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Preface

This volume contains the papers selected for presentation at IPCO XII, the 12th
Conference on Integer Programming and Combinatorial Optimization, held June
25-27, 2007, in Ithaca, New York, USA. Since its inception in 1990, the IPCO
conference series has become an important forum for researchers and practi-
tioners working on various aspects of integer programming and combinatorial
optimization. The aim of the conference is to present recent developments in
theory, computation, and applications in these areas.

IPCO is sponsored by the Mathematical Programming Society, and is held in
those years in which no International Symposium on Mathematical Programming
takes place. The previous Symposium was held in 2006 in Rio de Janeiro, Brazil,
and the previous two IPCOs were held in 2004 and 2005 in New York, USA and
Berlin, Germany, respectively.

There were over 120 submissions to the conference. During its meeting in
early January of 2007, the Program Committee carefully selected 36 papers for
presentation in non-parallel sessions at the conference. Because of the limited
number of time slots for presentations, many excellent submissions could not be
accepted.

During the selection process, the extended abstracts were refereed according
to the standards of refereed conferences. As a result, this volume contains papers
describing high-quality research efforts. The page limit for contributions to these
proceedings was set to 15. We expect full versions of these papers to appear in
scientific journals in the near future.

We gratefully acknowledge IBM Research, ILOG, and the Office of Naval
Research for their sponsorship of IPCO 2007. We are grateful for the use of
EasyChair (www.easychair.org), which greatly simplified the process of col-
lecting submissions, reviewing papers, and assembling this proceedings volume.
We thank Phoebe Sengers and the Culturally Embedded Computing Group at
Cornell, whose server was used to host the IPCO 2007 Web site. We thank the
members of the Program Committee and the many subreferees who spent un-
told hours examining all of the submissions. And finally, we especially thank the
many authors for submitting their work to the conference.

March 2007 Matteo Fischetti
David P. Williamson
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Inequalities from Two Rows of a Simplex
Tableau™

Kent Andersen', Quentin Louveaux?, Robert Weismantel?,
and Laurence A. Wolsey*

! Institute for Mathematical Sciences, University of Copenhagen, Denmark
kha@math.ku.dk
2 CORE and INMA, Université catholique de Louvain, Belgium
louveaux@core.ucl.ac.be
3 Department of Mathematics, Otto-von-Guericke Universitit, Magdeburg, Germany
weismant@mail .math.uni-magdeburg.de
4 CORE and INMA, Université catholique de Louvain, Belgium
wolsey@core.ucl.ac.be

Abstract. In this paper we explore the geometry of the integer points in
a cone rooted at a rational point. This basic geometric object allows us to
establish some links between lattice point free bodies and the derivation
of inequalities for mixed integer linear programs by considering two rows
of a simplex tableau simultaneously.

1 Introduction

Throughout this paper we investigate a mixed integer linear program (MIP) with
rational data defined for a set I of integer variables and a set C' of continuous
variables

(MIP) max ¢’z subject to Az =b, x>0, x; € Z fori € I.

Let LP denote the linear programming relaxation of MIP. From the theory of
linear programming it follows that a vertex z* of the LP corresponds to a basic
feasible solution of a simplex tableau associated with subsets B and N of basic
and nonbasic variables

x; + Z Qi jT; = Bi fori € B.
jEN
Any row associated with an index i € BN I such that b; € Z gives rise to a set

X(Z) = {x S RlNI ‘ Bz — Z&@jﬂ?j €7, xj > (0 for allj S N}
JEN

* This work was partly carried out within the framework of ADONET, a European
network in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438.
The second author is supported by FRS-FNRS. This text presents research results of
the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian
State, Prime Minister’s Office, Science Policy Programming. The scientific responsi-
bility is assumed by the authors.
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2 K. Andersen et al.

whose analysis provides inequalities that are violated by x*. Indeed, Gomory’s
mixed integer cuts [4] and mixed integer rounding cuts [0] are derived from such
a basic set X (¢) using additional information about integrality of some of the
variables. Interestingly, unlike in the pure integer case, no finite convergence
proof of a cutting plane algorithm is known when Gomory’s mixed integer cuts
or mixed integer rounding cuts are applied only. More drastically, in [3], an
interesting mixed integer program in three variables is presented, and it is shown
that applying split cuts iteratively does not suffice to generate the cut that is
needed to solve this problem.

Example 1: [3] Consider the mixed integer set
t<uwy,
t S €2,
1 +x2 +1 < 2,
reZ?andteRL.
The projection of this set onto the space of z1 and xo variables is given by
{(z1,22) € RY : @1 4+ 22 < 2} and is illustrated in Fig. 0l A simple analysis
shows that the inequality z1 + z2 < 2, or equivalently ¢ < 0, is valid. In [3] it

is, however, shown that with the objective function z = maxt, a cutting plane
algorithm based on split cuts does not converge finitely. a

Fig. 1. The Instance in [3]

The analysis given in this paper will allow us to explain the cut ¢ < 0 of Example
1. To this end we consider two indices ¢1,i2 € B NI simultaneously. It turns out
that the underlying basic geometric object is significantly more complex than
its one-variable counterpart. The set that we denote by X (i1, 42) is described as

X(il,iz) = {33 S RINl ‘ Bz — Z Qi jTj € Z for i =1iy,19, T; > 0 for all] € N}
JEN
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Setting
[ = (Bilvgiz)T € R?, and
ri = (Ezilyj,c’zim)T € R2,

the set obtained from two rows of a simplex tableau can be represented as

Pri={(z,8) € Z* xR} 12 = f+ Zsjrj},
jEN
where f is fractional and 7/ € R? for all j € N. Valid inequalities for the set P;
was studied in [5] by using superadditive functions related to the group problem
associated with two rows. In this paper, we give a characterization of the facets
of conv(Pr) based on its geometry.

Example 1 (revisited): For the instance of Example 1, introduce slack vari-
ables, s1, s2 and y; in the three constraints. Then, solving as a linear program,
the constraints of the optimal simplex tableau are
t +§S1 +182+%y1=§
431 —§S1 +§82 +§y1=§
T2 +581 =382 +3Y1 = 3

Taking the last two rows, and rescaling using s, = s;/3 for i = 1,2, we obtain
the set P;

71 —2s] +1s) —&-%yl = +§
T2 +1s] =285 +5y1 = +3

xEZQ,SER2+7y1 ER}F.

Letting f = (3,3)7, r' = (2,-1)7, r* = (=1,2)T and r5 = (—3,—3)" (see

Fig. ), one can derive a cut for conv(Pr) of the form

T1 + T2 +y1 > 2 or equivalently ¢t < 0,

which, when used in a cutting plane algorithm, yields immediate termination.
O

Our main contribution is to characterize geometrically all facets of conv(Pr).
All facets are intersection cuts [2], i.e., they can be obtained from a (two-
dimensional) convex body that does not contain any integer points in its interior.
Our geometric approach is based on two important facts that we prove in this
paper
— every facet is derivable from at most four nonbasic variables.
— with every facet F' one can associate three or four particular vertices of
conv(Pr). The classification of F' depends on how the corresponding k = 3, 4
integer points in Z? can be partitioned into k sets of cardinality at most two.

More precisely, the facets of conv(Pr) can be distinguished with respect to the
number of sets that contain two integer points. Since k = 3 or k = 4, the
following interesting situations occur
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— no sets with cardinality two: all the k € {3,4} sets contain exactly one tight
integer point. We call cuts of this type disection cuts.

— exactly one set has cardinality two: in this case we show that the inequality
can be derived from lifting a cut associated with a two-variable subproblem
to k variables. We call these cuts lifted two-variable cuts.

— two sets have cardinality two. In this case we show that the corresponding
cuts are split cuts.

Furthermore, we show that inequalities of the first two families are not split
cuts. Our geometric approach allows us to generalize the cut introduced in Ex-
ample 1. More specifically, the cut of Example 1 is a degenerate case in the sense
that it is “almost” a disection cut and “almost” a lifted two-variable cut: by
perturbing the vectors r', r? and 72 slightly, the cut in Example 1 can become
both a disection cut and a lifted two-variable cut.

We review some basic facts about the structure of conv(Pr) in Section 2. In
Section 3 we explore the geometry of all the feasible points that are tight for a
given facet of conv(Pr), explain our main result and presents the classification
of all the facets of conv(Py).

2 Basic Structure of conv(Pr)

The basic mixed-integer set considered in this paper is

Pri={(z,s) €22 xRL :x=f+ ) sy}, (1)
jEN

where N := {1,2,...,n}, f € Q*\ Z? and 7 € Q2 for all j € N. The set
Prp = {(z,5) € R* xR} 1 @ = f + 3,y s;r7 } denotes the LP relaxation of
P;. The j' unit vector in R™ is denoted e;. In this section, we describe some
basic properties of conv(Pr). The vectors {r’} jen are called rays, and we assume
r7 0 for all j € N.

In the remainder of the paper we assume P; # (). The next lemma gives a
characterization of conv(Pr) in terms of vertices and extreme rays.

Lemma 1.

(i) The dimension of conv(Pr) is n.
(ii) The extreme rays of conv(Pr) are (r7,e;) for j € N.
(iii) The vertices (z!,s!) of conv(Pr) take the following two forms:
(a) (z!,s7) = ( I,sfej), where x! = f+s][Tj €7Z? and j € N
(an integer point on the ray {f + s;jr7 : s; > 0}).
(b) (xf,sT) =( I,s]lej—&—siek), where ! = f—i—sjlrj—&—sirk €72 and j,k € N
(an integer point in the set f + cone({r7,r¥})).

Using Lemmal[ll we now give a simple form for the valid inequalities for conv(Pr)
considered in the remainder of the paper.
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Corollary 1. Every non-trivial valid inequality for Pr that is tight at a point
(z,3) € Pr can be written in the form

Zajsj Z 1, (2)

jEN
where aj > 0 for all j € N.

For an inequality >,y ajs; > 1 of the form (@), let N0:={j€eN:a; =0}
denote the variables with coefficient zero, and let N7 := N\ N denote the re-
mainder of the variables. We now introduce an object that is associated with the
inequality Z]EN ajs; > 1. We will use this object to obtain a two dimensional
representation of the facets of conv(FPr).

Lemma 2. Let ZJEN a;s; > 1 be a valid inequality for conv(Pr) of the form
[@). Define v’ = f + O}j r for j € N7V, Consider the convex polyhedron in R?

Ly:={z€ R2 : there exists s € R? s.t. (z,s) € PLp and Z a;s; <1}
JEN

(i) La = conv({f} U {v'}; yz0)+ cone({r’};c o).
(ii) interior(L,,) does not contain any integer points.
(ii3) If cone({rj}jeN) = R?, then f € interior(L,).

Example 2: Consider the set

Pr={(z,s): 2= f+ (?)sl—k <}>32+ (‘23)s3+ (_01> 54+ (_12)85}7

1
where f = ( ¢ >, and consider the inequality
2

251 + 259 + 483 + 54 + 172 s5 > 1. (3)
The corresponding set L, is shown in Fig. Pl As can be seen from the figure,
L, does not contain any integer points in its interior. It follows that (B]) is valid
for conv(Pr). Note that, conversely, the coefficients a; for j =1,2,...,5 can be
obtained from the polygon L, as follows: a; is the ratio between the length of
rJ and the distance between f and v?. In particular, if the length of r7 is 1, then
; is the inverse of the distance from f to v7. O

The interior of L, gives a two-dimensional representation of the points x €
R? that are affected by the addition of the inequality > jen @jsj = 1 to the
LP relaxation Prp of Pr. In other words, for any (z,s) € Ppp that satisfies
>jen @jsj < 1, we have z € interior(L,). Furthermore, for a facet defining
inequality > jen @S =1 of conv(Pr), there exist n affinely independent points
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3
<

Fig. 2. The set L, for a valid inequality for conv(Pr)

(x%,s%) € Pr, i = 1,2,...,n, such that djeN
{a'},cy are on the boundary of Lq, i.e., they belong to the integer set:

ajs; = 1. The integer points

Xo:i={z€ 7% :3s € R” s.t. (x,s) € PLp and Z a;s; =1}
JEN
We have X, = L, NZ2%, and X, # () whenever djen @jsj > 1 defines a

facet of conv(Pr). We first characterize the facets of conv(Pr) that have zero
coefficients.

Lemma 3. Any facet defining inequality Z]EN a;s; > 1 for conv(Pr) of the
form (@) that has zero coefficients is a split cut. In other words, if NO # (), there
exists (m,mo) € Z? X Z such that Lo C {(x1,12) : mp < a1 + moxe < mo + 1}.

Proof: Let k € NO be arbitrary. Then the line {f +pur* : u € R} does not contain
any integer points. Furthermore, if j € N0, j # k, is such that r* and 77 are not
parallel, then f + cone({r*,77}) contains integer points. It follows that all rays
{Tj}jeNg are parallel. By letting ' := (7¥)t = (=%, 7%)T and 7}, := (7")T f, we
have that {f + ur* : p € R} = {o € R? : wjay + mhws = 7 }. Now define:

71'(1) :zmax{ﬂixl + 77/2332 : 71"1331 + 71"21‘2 < 71'6 and x € ZQ}, and

7 i=min{m)z1 + whae : M1 + THTo > ) and x € Z}.

We have 7§ < 7y < 73, and the set S, := {z € R* : 7} < wl@y + whas < 73}
does not contain any integer points in its interior. We now show L, C S, by
showing that every vertex v™ = f + alm 7™ of L,, where m € N7 satisfies
v™ € Sr. Suppose v™ satisfies 7] v + mhod < 7} (the case vt + whvt > 73 is
symmetric). By definition of 7, there exists 2! € Z? such that mjz! +whal = =,
and o1 =M™ + (1 = \)(f + 6rF), where X €]0, 1], for some 6 > 0. We then have
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el = f+ 2 ™4 §(1-N)r*. Inserting this representation of 2/ into the inequality
> jen @jsj > 1 then gives au, ai‘n—i— ar6(1 —X) = X < 1, which contradicts the
validity of ZjeN a;s; > 1 for Pr. Hence L, C S.

To finish the proof, we show that we may write S, = {z € R? : my < mz1 +
maxe < o+ 1} for some (7, my) € Z? x Z. First observe that we can assume (by
scaling) that 7/, 7} and 72 are integers. Next observe that any common divisor
of 7} and 7} also divides both 7} and 73 (this follows from the fact that there
exists z!, 22 € Z? such that 7z} + bzl = n} and 7} 2? + 723 = 7). Hence we
can assume that 7] and 7 are relative prime. Now the Integral Farkas Lemma
(see [8]) implies that the set {x € Z* : 7} x1 + whae = 1} is non-empty. It follows
that we must have 73 = 7} + 1, since otherwise the point 3 := 2’ + 2! € Z?,
where 2’ € {x € Z? : mjz1 + whxe = 1} and 2! € {z € Z% : w1 + mhao = 7S},
satisfies 7§ < 7} 91 + mhya < 73, which contradicts that S, does not contain any
integer points in its interior. a

3 A Characterization of conv(X,) and conv(Pr)

As a preliminary step of our analysis, we first characterize the set conv(X,). We
assume a; > 0 for all j € N. Clearly conv(X,) is a convex polygon with only
integer vertices, and since X, C L,, conv(X,) does not have any integer points
in its interior. We first limit the number of vertices of conv(X,) to four (see [1]
and [7] for this and related results).

Lemma 4. Let P C R? be a convex polygon with integer vertices that has no
wnteger points in its interior.

(i) P has at most four vertices

(i) If P has four vertices, then at least two of its four facets are parallel.

(iii) If P is not a triangle with integer points in the interior of all three facets
(see Fig.[3.(c)), then there exists parallel lines 7z = w9 and Tz = 7y + 1,
(m,m0) € Z3, such that P is contained in the corresponding split set, i.e.,
PC{zeR?:my<mx<m+1}.

Lemma M shows that the polygons in Fig. [3] include all possible polygons that
can be included in the set L., in the case when L, is bounded and of dimension
2. The dashed lines in Fig. [3lindicate the possible split sets that include P. We
excluded from Fig. Bl the cases when X, is of dimension 1. We note that Lemma
[l (iii) (existence of split sets) proves that there cannot be any triangles where
two facets have interior integer points, and also that no quadrilateral can have
more than two facets that have integer points in the interior.

Next, we focus on the set L,. As before we assume a; > 0 for all j € N.
Due to the direct correspondence between the set L, and a facet defining in-
equality Zje N @;8; > 1 for conv(Pr), this gives a characterization of the facets
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(a) A triangle: no facet (b) A triangle: one facet (c) A triangle: all facets
has interior integer points has interior integer points have interior integer
points

(d) A quadrilateral: no (e) A quadrilateral: one (f) A quadrilateral: two
facet has interior integer facet has interior integer facets have interior inte-
points points ger points

Fig. 3. All integer polygons that do not have interior integer points

of conv(Pr). The main result in this section is that L, can have at most four
vertices. In other words, we prove

Theorem 1. Let ZjeN a;s; > 1 be a facet defining inequality for conv(Pr) that
satisfies a; > 0 for all j € N. Then L, is a polygon with at most four vertices.

Theorem[Ishows that there exists aset S C N such that [S| < 4and >
1 is facet defining for conv(Pr(5)), where

jes Qsj =

Pr(S) := {(z,5) € Z* x Rf' cr=f+ Zsﬂj}.
JjES

Throughout this section we assume that no two rays point in the same di-
rection. If two variables ji,j» € N are such that j; # jp and v/t = éri2
for some § > 0, then the halflines {x € R? : z = f + s;,r",s;, > 0} and
{z € R? : & = [+ s;,r72,s;, > 0} intersect the boundary of L, at the same
point, and therefore L, = conv({f} U {vj}jeN) = conv({f} U {1)j}~j€]\,\{h})7
where vJ 1= f + alj rJ for j € N. This assumption does therefore not affect the
validity of Theorem [I]

The proof of Theorem [ is based on characterizing the vertices conv(Fy) that
are tight for ZjeN ajs;j > 1. We show that there exists a subset S C N of
variables and a set of |S| affinely independent vertices of conv(Pr) such that
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|S| < 4 and {a;},c 5 is the unique solution to the equality system of the polar
defined by these vertices. The following notation will be used intensively in the
remainder of this section.

Notation 1

(i) The number k < 4 denotes the number of vertices of conv(Xy).
(ii) The set {x"}, . denotes the vertices of conv(X,), where K = {1,2,...,k}.

Recall that Lemma [ (iii) demonstrates that for a vertex (z,5) of conv(Pr), §
is positive on at most two coordinates j1,j2 € N, and in that case T € f +
cone({r’t,r72}). If 5 is positive on only one coordinate j € N, then = f+5;r7,
and the inequality of the polar corresponding to (Z, ) is a;5; > 1, which simply
states a; > . A point Z € Z? that satisfies € {z € R? 1z = f + s5;17,5; > 0}
for some j e N is called a ray point in the remainder of the paper. In order to
characterize the tight inequalities of the polar that correspond to vertices z¥ of
conv(X,) that are not ray points, we introduce the following concepts.
Definition 1. Let ),y
a ray point, and that T € f + cone({r’1,r72}), where ji,j2 € N. This implies
T = f+ s +sj,r72, where sj,,s;, >0 are unique.

a;js; > 1 be valid for conv(Pr). Suppose T € Z? is not

(a) The pair (j1,j2) is said to give a representation of Z.

(b) If o, sj, + @, 85, = 1, (J1, j2) is said to give a tight representation of T wrt.
Ljen @8 2 1 o .

(¢) If (i1,i2) € NXN satisfies cone({r"*,r2}) C cone({r?', r2}), the pair (i1,i2)
is said to define a subcone of (j1,j2).

Example 2 (continued): Consider again the set

Pr={(z,s):x=f+ (?)sl—k <}>32+ (‘23)53+ (_01> sa+ (_12)85}7

1
where f = ( 4 ), and the valid inequality 2s1 + 253 + 4s3 + s4 + ?s5 > 1 for

2
conv(Pr). The point & = (1,1) is on the boundary of L, (see Fig. Bl). We have
that Z can be written in any of the following forms

1 1
T =f+47“1+4r2,
- 3 1 1 3
I—f+7r tog"
3 1
T=f +4r2 +4r4.

It follows that (1,2),(1,3) and (2,4) all give representations of z. Note that
(1,2) and (1,3) give tight representations of  wrt. the inequality 2s; + 259 +
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4s3 + s4 + Zs5 > 1, whereas (2,4) does not. Finally note that (1,5) defines a
subcone of (2,4). O

Observe that, for a vertex z¥ of conv(X, ) which is not a ray point, and a tight
representation (j1,j2) of ¥, the corresponding inequality of the polar satisfies
aj tj, + ay,tyj, = 1, where ¢;,,t;, > 0. We now characterize the set of tight
representations of an integer point Z € Z2, which is not a ray point

To(Z) :={(j1,72) : (J1,j2) gives a tight representation of T wrt. Z a;s; > 1}
JEN

We show that T,(Z) contains a unique maximal representation (j7,75) €
T, (Z) with the following properties.

Lemma 5. There exists a unique mazimal representation (5T,73) € Tu(Z) of T
that satisfies:

(i) Every subcone (j1,72) of (jT,j¥) that gives a representation of T satisfies
(J1,J2) € Ta(Z). -
(i) Conversely, every (ji,j2) € To(Z) defines a subcone of (ji,73).

To prove Lemma [ there are two cases to consider. For two representations
(i1,12) and (41, j2) of Z, either one of the two cones (i1, i2) and (j1, j2) is contained
in the other (Lemma [@]), or their intersection defines a subcone of both (i1,i2)
and (ji,j2) (Lemma [7). Note that we cannot have that their intersection is
empty, since they both give a representation of Z.

Lemma 6. Let ) ;. a;js; > 1 be a facet defining inequality for conv(Pr) that
satisfies aj > 0 for all j € N, and let & € Z*. Then (j1,j2) € Tu(Z) implies
(i1,i2) € Ta(Z) for every subcone (i1, i) of (ji1,j2) that gives a representation
of .

Proof: Suppose (j1,72) € To(Z). Observe that it suffices to prove the following:
for any j3 € N such that 772 € cone({r71,772}) and (j1, j3) gives a representation
of z, the representation (j1,7j3) is tight wrt. ZjeN a;s; > 1. The result for all
remaining subcones of (j1,j2) follows from repeated application of this result.
For simplicity we assume j; = 1, jo = 2 and j3 = 3.

Since z € f+cone({r!,7?}),z € f+cone({r!,r3}) and r3 € cone({rt,r?}), we
may write Z = f+uir! +uor?, T = f+virt +vsr? and 3 = wir! +wor?, where
U1, U2, V1, V3, w1y, we > 0. Furthermore, since (1, 2) gives a tight representation of
T wrt. ZjeN ajs; > 1, we have ayui+asus = 1. Finally we have a1 v14+azvs > 1,
since ZjeN ajs; > 1 is valid for Pr. If also ajv1 + azvz = 1, we are done, so
suppose a1v] + azvs > 1.

We first argue that this implies ais > awy +ows. Since T = f4uirt +ugr? =
f + virt + v3rd, it follows that (u; — vy)rt = v3r® — uar?. Now, using the
representation 13 = wir! + wor?, we get (uy — vy —v3wy )rt + (uz — v3ws)r? = 0.
Since r! and r? are linearly independent, we obtain:

(u1 — v1) = v3w; and ug = v3ws.
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Now we have ajv1+agzvz > 1 = ajui+agus, which implies (v; —uq ) —agus+
azvz > 0. Using the identities derived above, we get —vzwia; — asvsws + azvs >
0, or equivalently vs(—wy a1 —agws +asg) > 0. It follows that ag > w4+ asws.

We now derive a contradiction to the identity as > ajw; + asws. Since
> jen @jsj = 1 defines a facet of conv(Py), there must exist 2’ € Z? and k € N
such that (3, k) gives a tight representation of 2’ wrt. Z]EN ajsj > 1. In other
words, there exists @’ € Z2, k € N and 63, 6, > 0 such that 2’ = f + 637> + 61"
and as383 + a6, = 1. Furthermore, we can choose 2/, 83 and &), such that 3 is
used in the representation of 2/, i.e., we can assume 63 > 0.

Now, using the representation 3 = wyr! 4+ wor? then gives ' = f + 63r° +
OprF = f+ 63wirt 4 S3war? + 6r* . Since > jen @jsj > 1is valid for Pr, we have
103wy +agd3we+ apdr > 1 = azdz+ard. This implies 63(0&3 — 1wy —OQUJQ) <
0, and therefore ag < ajw; — asws, which is a contradiction. O

Lemma 7. Let ZjeN a;s; > 1 be a facet defining inequality for conv(Pr) satis-
fying ocj > 0 for j € N, and suppose T € Z* is not a ray point. Also suppose the
intersection between the cones (j1,j2), (js,ja) € Ta(Z) is given by the subcone
(J2,J3) of both (ji,j2) and (js,ja). Then (j1,js) € Ta(Z), i.e., (j1,ja) also gives
a tight representation of T.

Proof: For simplicity assume j; = 1, jo = 2, j3 = 3 and j4 = 4. Since the cones
(1,2) and (3,4) intersect in the subcone (2,3), we have 3 € cone({r!,r?}), r? €
cone({r3,r}), r* ¢ cone({r',r?}) and r! ¢ cone({r3,r*}). We first represent =
in the translated cones in which we have a tight representation of z. In other
words, we can write

- 1 2
T=f+uir +ugsrs,
T = f 4 v3rd + vyt and

- 2 3
T = f+ zor° 4+ 2317,

~—~ o~
[S2JN G2 SIS
— — ~—

where g, ug, v3,v4, 22, 23 > 0. Note that Lemma [0l proves that (@) gives a tight
represention of z. Using ({#))-(@]), we obtain the relation

Tialo Tiplay r2\  juprt
(T2,1I2 TQ,QIQ)(TS) - (1)47“4 )a (7)

Ti1 Tl,z) _ ((22 —u2) 23
T51 T2 2 (23 —
the 2 x 2 identity matrix. On the other hand, the tightness of the representations
[@)-([©]) leads to the following identities

where T is the 2 x 2 matrix T := ( v )) and I is
3

ajuitagus =1, (8)
o3v34+aavs = 1 and (9)
ozo+ayzy =1, (10)
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where, again, the last identity follows from Lemma [l Using ()-(I0), we obtain
the relation

Tiq1 Ty 2y jur0n
(T2,1 T2,2)(a3) - (v4a4 )- (11)

We now argue that T is non-singular. Suppose, for a contradiction, that
T11T22 =T 2T 1. From (@) and (@) we obtain vyr* = (23 — v3)r® + 2972, which
implies z3 < vs, since 7* ¢ cone({r!,r%}) 2 cone({r?,r3}). Multiplying the first
equation of (I:EU) with T2)2 gives T2’2T1’1a2 + T2’2T1’2a3 = ’U,1T2’2CE17 which im-
plies Ty o(T5,100 + T 2003) = w1 T2 2001. By using the definition of T, this can be
rewritten as z3(aaze + (23 — v3)as) = ura(z3 — v3). Since zos + zgag = 1, this
implies z3(1 — vzag) = uraq(zs — v3). However, from (@) we have vzag €]0, 1],
50 23(1 —vgag) > 0 and uyag (23 — v3) < 0, which is a contradiction. Hence T is
non-singular.

We now solve (7)) for an expression of 72 and 73 in terms of 7! and r%.
The inverse of the coefficient matrix on the left hand side of () is given by

T Tl Ty Tiy

=~ o , where T~ 1 := »5 245 ) denotes the inverse of T'. We there-
Uy tn 1yin) (it ;)
fore obtain
r? = Al + M\t and (12)
3 = prt + pgrt, (13)
where A\ := u1T1T117)\4 = ’U4T1T217 Wi = u1T2f11 and pyg = v4T£§. Similarly,

solving () to express as and ag in terms of o and g gives

a9 = M aq + Ay and (].4)
a3 = U101 + [ha0lg. (15)

Now, using for instance [{]) and ([I2]), we obtain

T=f+ (u1 + uzx\l)rl + (uzx\4)r4, and:

(u1 + ugA)aq + (uadg)ay = (using @)
(1 — ugaa) + ugA1aq + (ugAg)oy =
1+ UQ(/\qu + Agoy — 042) =1. (using (M))

To finish the proof, we only need to argue that we indeed have T € f +
cone({rt,r*}), i.e., that & = f + 617" + 847* with 61 = ug +ug A1 and 84 = us Ay
satisfying 61,864 > 0. If 6 < 0 and &4 > 0, we have T = f + 617! + 7% =
f+urrt + ugr?, which means 6474 = (ug — 61)r! + uar? € cone({r!,r?}), which
is a contradiction. Similarly, if §; > 0 and 64 < 0, we have z = f + 60! +
bar* = f+wv3r® +vtrd, which implies 8171 = v3r3+ (vg — 84)r* € cone({r®,r*}),
which is also a contradiction. Hence we can assume 61,064 < 0. However, since
01 = u1 +ugA and &4 = us N4, this implies A, A4 < 0, and this contradicts what
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was shown above, namely that the representation = f + 87! + 8,7 satisfies
161 + aygdy = 1. O

It follows that only one tight representation of every point x of conv(X,) is
needed. We now use Lemma 5 to limit the number of vertices of L, to four. The
following notation is introduced. The set J* := U, j,)er. (2){J1,J2} denotes
the set of variables that are involved in tight representations of z. As above,
(47, 75) € To(x) denotes the unique maximal representation of 2. Furthermore,
given any (j1,j2) € Ta(x), let (2 (x), t?;(x)) satisfy © = f 432 (z)r/! + til (x‘)rj“’.
Lemma 5 implies that € coge(r3f7rjg) for every j € J*. Let (w}(z), ws(z))
satisfy 77/ = w(x)r/t + wj(x)r’z , where w](x), w)(z) > 0 are unique.

Let >-.cnajs; > 1 be a valid inequality for conv(Pr) that satisfies a; > 0
for j € N. The inequality ZjeN ajs; > 1 is facet defining for conv(Pr), if and
only if the coefficients {a;},c v define a vertex of the polar of conv(Pr). Hence
> jen @jsj > 1is facet defining for conv(Pr), if and only if the solution to the
system

ajltgf (z) + Oéjzt;é (x) =1, forevery x € X, and (j1,j2) € To(x). (16)

is unique. We now rewrite the subsystem of (Il that corresponds to a fixed
point z € X,,.

Lemma 8. Let Z]EN ajs; > 1 be a facet defining inequality for conv(Pr) that
satisfies o > 0 for j € N. Suppose x € X, is not a ray point. The system

ajlt;‘;’ (z) + athﬁ () =1, for every (j1,72) € Ta(x). (17)
has the same set of solutions {a;},c ;. as the system
1= t;f (m)a]& + tﬁ (x)ajza for (jlvj?) = (]1$7J2$)7 (18)
a; = wi(z)agy + wy(x)ags, for j € JE\{T, 45 }- (19)
We next show that it suffices to consider vertices of conv(X,) in ().

Lemma 9. Let ),y a;js; > 1 be a facet defining inequality for conv(Pr) that
satisfies a;j > 0 for j € N. Suppose x € X, is not a vertex of conv(X,). Then
there exists vertices y and z of conv(X,) such that the equalities

aj, tﬁ (y) + athﬁ (y) =1, for every (j1,j2) € Tu(y) and (20)
ajltgf (z) + ajztﬁ(z) =1, for every (j1,j2) € Tu(z) (21)

imply the equalities:
ajlt;f (z) + aht?; () =1, for every (j1,72) € Ta(x). (22)

By combining Lemma 8 and Lemma 9 we have that, if the solution to (@) is
unique, then the solution to the system

t?% (r)aje + t;g (r)ajs =1, for every vertex x of conv(Xy). (23)
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is unique. Since 23] involves exactly k < 4 equalities and has a unique solution,
exactly k < 4 variables are involved in (23] as well. This finishes the proof of
Theorem [I1

We note that from an inequality ZjES ajs;j > 1 that defines a facet of
conv(Pr(S)), where |S| = k, the coefficients on the variables j € N \ S can be
simultaneously lifted by computing the intersection point between the halfline
{f+s;m7 : s; > 0} and the boundary of L.

We now use Theorem 2 to categorize the inequalities ..\ ajs; > 1 that
define facets of conv(Pr). For simplicity, we only consider the most general case,
namely when none of the vertices of conv(X,) are ray points. Furthermore, we
only consider k = 3 and k = 4. When k = 2, ZjEN ajs; > 11is a facet defining
inequality for a cone defined by two rays. We divide the remaining facets of
conv(Pr) into the following three main categories.

(i) Disection cuts (Fig.[§ (a) and Fig. [ (b)):
Every vertex of conv(X,) belongs to a different facet of L.

(i) Lifted two-variable cuts (Fig. [f)(c) and Fig. [ (d)):
Exactly one facet of L, contains two vertices of conv(X,). Observe that this
implies that there is a set S C N, [S]| = 2, such that >, 5 a;s; > 1 is facet
defining for conv(Pr(5)).

(iii) Split cuts:
Two facets of L, each contain two vertices of conv(Xy).

=

(a) Disection cut from a triangle (b) Disection cut from a quadrilateral
(¢) Lifted two-variable cut from ) Lifted two-variable cut from tri-
quadrilateral angle

Fig. 4. Disection cuts and lifted two-variable cuts

An example of a cut that is not a split cut was given in [3] (see Fig. 1). This
cut is the only cut when conv(X,) is the triangle of Fig. 4.(c), and, necessarily,
L, = conv(X,) in this case. Hence, all three rays that define this triangle are
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ray points. As mentioned in the introduction, the cut in [3] can be viewed as
being on the boundary between disection cuts and lifted two-variable cuts.

Since the cut presented in [3] is not a split cut, and this cut can be viewed
as being on the boundary between disection cuts and lifted two-variable cuts, a
natural question is whether or not disection cuts and lifted two-variable cuts are
split cuts. We finish this section by answering this question.

Lemma 10. Let ZjeN ajs; > 1 be a facet defining inequality for conv(Pr)
satisfying o > 0 for j € N. Also suppose ZJEN ajs; > 1 is either a disection
cut or a lifted two-variable cut. Then }_ .,y ojs; > 1 is not a split cut.

Proof: Observe that, if ZJEN a;s; > 1 is a split cut, then there exists (7, m) €
72 x 7 such that L, is contained in the split set Sy := {z e R2: 19 < mz1 +
moxe < mo + 1}. Furthermore, all points z € X, and all vertices of L, must be
either on the line 77z = 7, or on the line 77z = my + 1. However, this implies
that there must be two facets of L, that do not contain any integer points. 0O
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Abstract. A conic integer program is an integer programming problem
with conic constraints. Conic integer programming has important ap-
plications in finance, engineering, statistical learning, and probabilistic
integer programming.

Here we study mixed-integer sets defined by second-order conic con-
straints. We describe general-purpose conic mixed-integer rounding cuts
based on polyhedral conic substructures of second-order conic sets. These
cuts can be readily incorporated in branch-and-bound algorithms that
solve continuous conic programming relaxations at the nodes of the
search tree. Our preliminary computational experiments with the new
cuts show that they are quite effective in reducing the integrality gap of
continuous relaxations of conic mixed-integer programs.

Keywords: Integer programming, conic programming, branch-and-cut.

1 Introduction

In the last two decades there have been major advances in our capability of
solving linear integer programming problems. Strong cutting planes obtained
through polyhedral analysis of problem structure contributed to this success
substantially by strengthening linear programming relaxations of integer pro-
gramming problems. Powerful cutting planes based on simpler substructures of
problems have become standard features of leading optimization software pack-
ages. The use of such structural cuts has improved the performance of the linear
integer programming solvers dramatically.

On another front, since late 1980’s we have experienced significant advances
in convex optimization, particularly in conic optimization. Starting with Nes-
terov and Nemirovski [22], 23] 24] polynomial interior point algorithms that have
earlier been developed for linear programming have been extended to conic opti-
mization problems such as convex quadratically constrained quadratic programs
(QCQP’s) and semidefinite programs (SDP’s).

Availability of efficient algorithms and publicly available software (CDSP[J],
DSDP[7], SDPA[33], SDPT3[32], SeDuMi[30]) for conic optimization spurred
many optimization and control applications in diverse areas ranging from med-
ical imaging to signal processing, from robust portfolio optimization to truss
design. Commercial software vendors (e.g. ILOG, MOSEK, XPRESS-MP) have
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responded to the demand for solving (continuous) conic optimization problems
by including stable solvers for second-order cone programming (SOCP) in their
recent versions.

Unfortunately, the phenomenal advances in continuous conic programming
and linear integer programming have so far not translated to improvements in
conic integer programming, i.e., integer programs with conic constraints. Solu-
tion methods for conic integer programming are limited to branch-and-bound
algorithms that solve continuous conic relaxations at the nodes of the search
tree. In terms of development, conic integer programming today is where linear
integer programming was before 1980’s when solvers relied on pure branch-and-
bound algorithms without the use of any cuts for improving the continuous
relaxations at the nodes of the search tree.

Here we attempt to improve the solvability of conic integer programs. We develop
general purpose cuts that can be incorporated into branch-and-bound solvers for
conic integer programs. Toward this end, we describe valid cuts for the second-order
conic mixed-integer constraints (defined in Section2l). The choice of second-order
conic mixed-integer constraint is based on (¢) the existence of many important ap-
plications modeled with such constraints, (i) the availability of efficient and stable
solvers for their continuous SOCP relaxations, and (i) the fact that one can form
SOCP relaxations for the more general conic programs, which make the cuts pre-
sented here widely applicable to conic integer programming.

1.1 Outline

In SectionZlwe introduce conic integer mixed-programming, briefly review the rel-
evant literature and explain our approach for generating valid cuts. In SectionBlwe
describe conic mixed-integer rounding cuts for second-order conic mixed-integer
programming and in Section @l we summarize our preliminary computational re-
sults with the cuts.

2 Conic Integer Programming

A conic integer program (CIP) is an integer program with conic constraints. We
limit the presentation here to second-order conic integer programming. However,
as one can relax more general conic programs to second-order conic programs
[14] our results are indeed applicable more generally.

A second-order conic mized-integer program is an optimization problem of the
form

min cx + ry
(SOCMIP) s.t. || Aix+ Gy —b; || <dix+ey—h;y 1=12,...k
x €L, yeRP .

Here || - || is the Euclidean norm, A4;, G;, b are rational matrices with m; rows,
and c¢,r,d;, e; are rational row vectors of appropriate dimension, and h; is a
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rational scalar. Each constraint of SOCMIP can be equivalently stated as (A;x+
Giy — b, d;x + e;y — h) € QML where

Qmitl .= {(t,t,) ER™ xR : || t| <to} .

For n = 0, SOCMIP reduces to SOCP, which is a generalization of linear pro-
gramming as well as convex quadratically constrained quadratic programming.
If G; = 0 for all 7, then SOCP reduces to linear programming. If e; = 0 for all
1, then it reduces to QCQP after squaring the constraints. In addition, convex
optimization problems with more general norms, fractional quadratic functions,
hyperbolic functions and others can be formulated as an SOCP. We refer the
reader to [2 [6] [T0, [I8] 25] for a detailed exposure to conic optimization and
many applications of SOCP.

2.1 Relevant Literature

There has been significant work on deriving conic (in particular SDP) relax-
ations for (linear) combinatorial optimization problems [I} I3} [19] for obtaining
stronger bounds for such problems than the ones given by their natural linear
programming relaxations. We refer the reader to Goemans [12] for a survey on
this topic. However, our interest here is not to find conic relaxations for linear
integer problems, but for conic integer problems.

Clearly any method for general nonlinear integer programming applies to conic
integer programming as well. Reformulation-Linearization Technique (RLT) of
Sherali and Adams [27] initially developed for linear 0-1 programming has been
extended to nonconvex optimization problems [28]. Stubbs and Mehrotra [29)
generalize the lift-and-project method [5] of Balas et. al for 0-1 mixed convex
programming. See also Balas [4] and Sherali and Shetti [26] on disjunctive pro-
gramming methods. Kojima and Tungel [I5] give successive semidefinite relax-
ations converging to the convex hull of a nonconvex set defined by quadratic
functions. Lasserre [I6] describes a hierarchy of semidefinite relaxations nonlin-
ear 0-1 programs. Common to all of these general approaches is a hierarchy of
convex relaxations in higher dimensional spaces whose size grows exponentially
with the size of the original formulation. Therefore using such convex relaxations
in higher dimensions is impractical except for very small instances. On the other
hand, projecting these formulations to the original space of variables is also very
difficult except for certain special cases.

Another stream of more practically applicable research is the development
of branch-and-bound algorithms for nonlinear integer programming based on
linear outer approximations [8, [I7, B1]. The advantage of linear approximations
is that they can be solved fast; however, the bounds from linear approximations
may not be strong. However, in the case of conic programming, and in particular
second-order cone programming, existence of efficient algorithms permits the use
of continuous conic relaxations at the nodes of the branch-and-bound tree.
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The only study that we are aware of on developing valid inequalities for conic
integer sets directly is due to Cezik and Iyengar [II]. For a pointed, closed,
convex cone K C R™ with nonempty interior, given S = {x € Z" : b — Az € K},
their approach is to write a linear aggregation

NAz < XNb for some fixed \ € ¥, (1)

where IC* is the dual cone of I and then apply the Chvétal-Gomory (CG) integer
rounding cuts [20] to this linear inequality. Hence, the resulting cuts are linear
in x as well. For the mixed-integer case as the convex hull feasible points is
not polyhedral and has curved boundary (see Figure 2 in Section [B]). Therefore,
nonlinear inequalities may be more effective for describing or approximating the
convex hull of solutions.

2.2 A New Approach

Our approach for deriving valid inequalities for SOCMIP is to decompose the
second-order conic constraint into simpler polyhedral sets and analyze each of
these sets. Specifically, given a second-order conic constraint

| Az + Gy —b||<dr+ey—h (2)
and the corresponding second-order conic mixed-integer set
C:={zeZl, yeRE : (z,y) satisfies @)} ,

by introducing auxiliary variables (t,t,) € R™*! we reformulate () as

to <dr+ey—h (3)
ti > |aiz +giy—bi|, i=1,...,m (4)
to > [ t], (5)

where a; and g; denote the ith rows of matrices A and G, respectively. Observe
that each constraint (@) is indeed a second-order conic constraint as (a;x + g;y —
bi, t;) € Q'L yet polyhedral. Consequently, we refer to a constraint of the form
) as a polyhedral second-order conic constraint.

Breaking (@) into polyhedral conic constraints allows us to exploit the implicit
polyhedral set for each term in a second-order cone constraint. Cuts obtained for
C' in this way are linear in (x,y,t); however, they are nonlinear in the original
space of (z,y).

Our approach extends the successful polyhedral method for linear integer
programming where one studies the facial structure of simpler building blocks
to second-order conic integer programming. To the best of our knowledge such
an analysis for second-order conic mixed-integer sets has not been done before.
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3 Conic Mixed-Integer Rounding

For a mixed integer set X C Z™ x RP, we use relax(X) to denote its continu-
ous relaxation in R™ x RP obtained by dropping the integrality restrictions and
conv(X) to denote the convex hull of X. In this section we will describe the cuts
for conic mixed-integer programming, first on a simple case with a single integer
variable. Subsequently we will present the general inequalities.

3.1 The Simple Case

Let us first consider the mixed-integer set
So={(z,y,w,t) EZxRY :|z+y—w—>b|<t} (6)

defined by a simple, yet non-trivial polyhedral second-order conic constraint
with one integer variable. The continuous relaxation relax(Sp) has four extreme
rays: (1,0,0,1),(—1,0,0,1), (1,0,1,0), and (—1,1,0,0), and one extreme point:
(b,0,0,0), which is infeasible for Sy if f := b—[b] > 0. It is easy to see that if f >
0, conv(Sy) has four extreme points: (|b], f,0,0), ([b],0,0, f), ([6],0,1 — f,0)
and ([b],0,0,1 — f). Figure @M illustrates Sy for the restriction y = w = 0.

Proposition 1. The simple conic mized-integer rounding inequality
I=2f)z—[b)+f<t+y+tw (7)
cuts off all points in relax(Sy) \ conv(Sp).

Observe that inequality (7l) is satisfied at equality at all extreme points of
conv(Sy). Proposition [[l can be proved by simply checking that every intersec-
tion of the hyperplanes defining Sy and ([d) is one of the four extreme points of
conv(Sy) listed above.

Fig. 1. Simple conic mixed-integer rounding cut
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The simple conic mixed-integer rounding inequality (@) can be used to derive
nonlinear conic mixed-integer inequalities for nonlinear conic mixed-integer sets.
The first observation useful in this direction is that the piecewise-linear conic
inequality

(1 —2f)a— b))+ fl <t+y+w (8)

is valid for Sp. See Figure [l for the restriction y = w = 0.

In order to illustrate the nonlinear conic cuts, based on cuts for the polyhedral
second-order conic constraints (), let us now consider the simplest nonlinear
second-order conic mixed-integer set

Ty = {(x,y,t)erRxR : \/(x—b)2+y2§t} . 9)

The continuous relaxation relax(7p) has exactly one extreme point (z,y,t) =
(b,0,0), which is infeasible for T} if b ¢ Z. Formulating Ty as

t1 > |z —b| (10)
t> \/t‘{ + 92, (11)

we write the piecewise-linear conic inequality (B) for ([I0). Substituting out the
auxiliary variable t1, we obtain the simple nonlinear conic mized-integer round-
g inequality

J@=2p)@— o)+ 12+ <t, (12)

which is valid for Tj.

Proposition 2. The simple nonlinear conic mized-integer rounding inequality
@) cuts off all points in relax(Tp) \ conv(Typ).

Proof. First, observe that for z = [b| — 6, the constraint in (@) becomes ¢ >
V(6 + )2 +y2, and ([[Z) becomes t > /(f — (1 — 2£)8)2 + y2. Since (§+ f)? —
(f = (1 —=2£)8)? =4f6(1+68) (1 —f) >0 for § >0 and for § < —1, we see
that (I2)) is dominated by relax(7p) unless |b] < z < [b]. When —1 < § < 0
(i.e., x € ([b],[0])), 4f6(1 + 6)(1 — f) < 0, implying that (I2) dominates the
constraint in ().

We now show that if (z1,y1,t1) € relax(Tp) and satisfies ([I2), then
(x1,91,t1) € conv(Tp). If z1 & (|b], [b]), it is sufficient to consider (z1,y1,t1) €
relax(Ty) as ([2) is dominated by relax(Tp) in this case. Now, the ray Ry :=
{(6,0,0) + a(xy — b,y1,t1) : «a € Ry} C relax(Tp). Let the intersections of
Ry with the hyperplanes x = |z1] and z = [z1] be (|z1], 71, 1), ([z17,91,t1),
which belong to Ty. Then (z1,y1,11) can be written as a convex combination of
points (|x1],91,%1), ([21],91,%1); hence (z1,y1,t1) € conv(Tp).

On the other hand, if x; € (|b],[b]), it is sufficient to consider (z1,y1,¢1)
that satisfies (I2), since (IZ) dominates the constraint in (@) for = € [|b], [b]].
If f=1/2, (x1,91,t1) is a convex combination of (|b],y1,¢1) and ([b],y1,t1).
Otherwise, all points on the ray Ry := {(0,0,0) + a(z1 —x0,y1,t1) : a € Ry},
where zo = |b] — | _f2 s+ satisfy (I2). Let the intersections of Ry with the
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hyperplanes z = |b] and =

[b1 be (I_bJ Y1, 2?1)7 ((b—| ) gla tAl)a which belong to
Tpy. Note that the intersections are nonempty because xg & [[b], [b]]. Then we

see that (w1,y1,t1) can be written as a convex combination of (|b],7,t) and
([b],9,t). Hence, (z1,y1,t1) € conv(Tp) in this case as well. |
Proposition Bl shows that the curved convex hull of Ty can be described us-

ing only two second-order conic constraints. The following example illustrates
Proposition
Example 1. Consider the second-order conic set given as

To

AN 2
(x,y,t) EZXRXR : z— g +(y—1)2<t

The unique extreme point of relax(Ty) (2

3, 1,0) is fractional. Here [b] = 1 and
f = 3; therefore,

2

conv(To) = g +y—-1)?2<t,

(m,y,t)eRS: T — Sl)aﬁ—l—(y—l)2

IN
o~

We show the inequality \/éxz + (y—1)? < ¢ and the region it cuts off in
Figure[2l Observe that the function values are equal at x

cut eliminates the points between them.
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Fig. 2. Nonlinear conic integer rounding cut
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3.2 The General Case

In this section we present valid inequalities for the mixed-integer sets defined by
general polyhedral second-order conic constraints (). Toward this end, let

Si={xeZ',yeRE, teR: t>|ax+gy—b|} .

We refer to the inequalities used in describing S as the trivial inequalities. The
following result simplifies the presentation.

Proposition 3. Any non-trivial facet-defining inequality for conv(S) is of the
form ~vx + my < mo + t. Moreover, the following statements hold:

1. m; <0 foralli=1,...,p;
2. 7= gl‘forallzg—l

i

Hence it is sufficient to consider the polyhedral second-order conic constraint
laz +yt —y~ — b <t, (13)

where all continuous variables with positive coefficients are aggregated into y™ €
R, and those with negative coefficients are aggregated into y~ € R to represent
a general polyhedral conic constraint of the form (H]).

Definition 1. For 0 < f < 1 let the conic mized-integer rounding function
vy R— R be

(1=2f)n—(v—n), ifn<v<n-+f,
erlv) = {(1—2f)n+(v—n)—2f7 fn+f<v<n+1. neZ (14

The conic mixed-integer rounding function ¢ is piecewise linear and continuous.
Figure Bl illustrates ¢y.
Lemma 1. The conic mized-integer rounding function ¢y is superadditive on R.

Theorem 1. For any a # 0 the conic mized-integer rounding inequality

Z@fa (aj/a)zj — ps,(b/a) < (t+y" +y7)/lal, (15)
where fo = b/a— |b/a], is valid for S. Moreover, if « = a;j and b/a; > 0 for
some j € {1,...,n}, then (IH) is facet-defining for conv(S).

Proof. (Sketch) It can be shown that ¢ fa; is the lifting function of inequality
A=2f)x—[b)) +f < (t+y" +y7)/layl (16)

for the restriction
lajz; +yT —y~ —b| <t
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of ([M3)) with z; =0 for i # j. Then the validity as well as the facet claim follows
from superadditive lifting [3] of (6] with x; for i # j. For o # 0 validity follows
by introducing an auxiliary integer variable x, with coefficient « and lifting
inequality

’amo—l—er—y* —b’ <t

with all x;, ¢ =1,...,n and then setting z, = 0. O

Remark 1. The continuous relaxation relax(S) has at most n fractional extreme
points (z7,0,0,0) of the form x} = b/a; > 0, and 2] = 0 for all i # j, which
are infeasible if b/a; ¢ Z. It is easy to check that conic mixed-integer rounding
inequalities with a@ = a; are sufficient to cut off all fractional extreme points
(27,0,0,0) of relax(S) as for 7 = 0 inequality (IH) reduces to ().

o5(0)

1o 2ff ‘

Fig. 3. Conic mixed-integer rounding function.

Next we show that mixed-integer rounding (MIR) inequalities [2I] 20] for
linear mixed-integer programming can be obtained as conic MIR inequalities.
Consider a linear mixed-integer set

ar—y<b, x>0, y>0, z€Z", yeR (17)

and the corresponding valid MIR inequality

Z<Lajj+(fg‘l—_§)+)xj_lifygLbJ, (18)

where fj :=a; — |a;]| for j=1,...,nand f:=b— [b].
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Proposition 4. FEvery MIR inequality is a conic MIR inequality.
Proof. We first rewrite inequalities ax — y < b and y > 0, in the conic form
—ax +2y+b> |ax — b

and then split the terms involving integer variables x on the right hand side into
their integral and fractional parts as

—ax+2y—+b> Z lajlz; + Z [ajlz; | + Z fjzj — Z (1— fj)x;

Fisf Ii>f Fisf Ii>f
Then, since z = 37, - la;]z;+ 30 - ;[a;]z; is integer and y™ =37, _; fiz; €
Ry and y= =3 ;o (1= fj)z; € Ry, we write the simple conic MIR inequal-

ity @)

—ar+2y+b+ Z fixy + Z:(l—fj)avJ
Fisf Ii>f

> (1-2f) Z lajlz; + Z [a;lz; —[b] | +f .

Iisf Ii>f

After rearranging this inequality as

2y+2(1-f)[b) > Y (1=2f)[ag) = fi+az)a;+ Y (1=-2f)[a;]—(1—f;)+a;)z;
5<I fi>1

and dividing it by 2(1 — f) we obtain the MIR inequality (Lg]). O

Ezxample 2. In this example we illustrate that conic mixed-integer rounding cuts
can be used to generate valid inequalities that are difficult to obtain by Chvatal-
Gomory (CG) integer rounding in the case of pure integer programming. It is
well-known that CG rank of the polytope given by inequalities

—kr1+ a0 <1, kx1+a22o < k41, 21 <1, 21,29 >0

for a positive integer k equals exactly k [20]. Below we show that the non-trivial
facet o < 1 of the convex hull of integer points can be obtained by a single
application of the conic MIR cut.

Writing constraints —kx; + o < 1 and kx; + x2 < k + 1 in conic form, we
obtain B

< 1-— . 19
J—2+ 2 (19)
Dividing the conic constraint (I9) by &k and treating 1/2 + 1/k — z2/k as a
continuous variable, we obtain the conic MIR cut

1 - 1 1 a9

90 L T &

kxl —

which is equivalent to x5 < 1.
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Conic Aggregation

We can generate other cuts for the second order conic mixed integer set C'
by aggregating constraints () in conic form: for A\,u € R"’, we have Nt >
N(Az + Gy —b), and p't > p/(— Az — Gy + b). Writing these two inequalities in
conic form, we obtain

A+ p ! W= A ! A—p !
( 5 )t+< 9 (Az + Gy) + 9 b
=AY A ' A '
> [ tr (TR vy - () b
2 2 2
Then we can write the corresponding conic MIR inequalities for (20]) by treating

the left-hand-side of inequality 20) as a single continuous variable. Constraint
([20) allows us to utilize multiple polyhedral conic constraints (@) simultaneously.

(20)

4 Preliminary Computational Results

In this section we report our preliminary computational results with the conic
mixed-integer rounding inequalities. We tested the effectiveness of the cuts on
SOCMIP instances with cones @2, 9?°, and Q°°. The coefficients of A, G, and
b were uniformly generated from the interval [0,3]. All experiments were per-
formed on a 3.2 GHz Pentium 4 Linux workstation with 1GB main memory using
CPLEX[ (Version 10.1) second-order conic MIP solver. CPLEX uses a barrier
algorithm to solve SOCPs at the nodes of a branch-and-bound algorithm.

Conic MIR cuts () were added only at the root node using a simple sep-
aration heuristic. We performed a simple version of conic aggregation ([20) on
pairs of constraints using only 0 — 1 valued multipliers A and pu, and checked for
violation of conic MIR cut (IH) for each integer variable x; with fractional value
for the continuous relaxation.

In Table [[l we report the size of the cone (m), number (n) of integer vari-
ables in the formulation, the number of cuts, the integrality gap (the percentage
gap between the optimal solution and the continuous relaxation), the number
of nodes explored in the search tree, and CPU time (in seconds) with and with-
out adding the conic mixed-integer rounding cuts ([Z). Each row of the table
represents the averages for five instances. We have used the default settings of
CPLEX except that the primal heuristics were turned off. CPLEX added a small
number of MIR cuts ([I8) to the formulations in a few instances.

We see in Table[Ilthe conic MIR cuts have been very effective in closing the inte-
grality gap. Most of the instances had 0% gap at the root node after adding the cuts
and were solved without branching. The remaining ones were solved within only a
few nodes. These preliminary computational results are quite encouraging on the
positive impact of conic MIR cuts on solving conic mixed-integer programs.

! CPLEX is a registered trademark of ILOG, Inc.
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Table 1. Effectiveness of conic MIR cuts ([I5)

without cuts with cuts
m n % gap nodes time cuts % gap nodes time

100 95.8 19 0 87 04 1

200 90.8 29 0 192 0.6 1
2 300 903 38 0 248 0.6 1

400 85.2 62 0 322 0.0 0

500 86.4 71 0 349 0.7 1

100 8.6 10 0 35 26 2

200 412 80 2 101 4.5 12
25 300 46.1 112 4 20 0.0

400 68.3 5951 295 99 178
500 74.6 505 24 116 34
100 24.5 7 1 42 0.0
200 51.3 67 6 44 0.0
50 300 52.6 105 13 51 3.2
400 55.6 158 20 49 54
500 66.9 233 43 62 1.3

o
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Sequential-Merge Facets for Two-Dimensional
Group Problems™*

Santanu S. Dey and Jean-Philippe P. Richard

School of Industrial Engineering, Purdue University,
315 N. Grant Street, West Lafayette, IN 47906-2023

Abstract. Inthispaper, we show how to generate strong cuts for unstruc-
tured mixed integer programs through the study of high-dimensional group
problems. We present a new operation that generates facet-defining inequ-
alities for two-dimensional group problems by combining two facet-defining
inequalities of one-dimensional group problems. Because the procedure al-
lows the use of a large variety of one-dimensional constituent inequalities, it
yields large families of new cutting planes for MIPs that we call sequential-
merge inequalities. We show that sequential-merge inequalities can be used
to generate inequalities whose continuous variable coefficients are stronger
than those of one-dimensional cuts and can be used to derive the three-
gradient facet-defining inequality introduced by Dey and Richard [4].

1 Introduction

Over the last decade, a vast amount of research has been directed towards gener-
ating strong general purpose cutting planes for unstructured integer programs;
see Marchand et al. [I3] and Johnson et al. [I2]. One approach to generate
strong cutting planes is to use constraints of the problems one at a time. This
approach has proven to be successful in many cases and cuts generated from
single constraint relaxations of MIPs are currently used in all commercial MIP
solvers. It seems however that an option to generate stronger cutting planes is to
use information from multiple constraints concurrently. In this paper, we show
how to generate such strong cuts through the study of two-dimensional group
relaxations.

In a series of papers Gomory [6], Gomory and Johnson [7, [8, @], Gomory et
al. [T0], and Johnson [IT] showed how to use group relaxations to generate cutting
planes for general Integer Programs. Although their theory applies to problems
with multiple constraints, most research has considered only one-dimensional
group relaxations; see Gomory and Johnson [7, 8, @], Gomory et al. [I0], Ardoz
et al. [2], Miller et al. [14], Richard et al. [I5], and Dash and Giinliik [3]. There
are only a few papers that focus on the systematic study of group problems
with multiple constraints. In [IT], Johnson presents general theoretical results
for group relaxations of Mixed Integer Programs with multiple constraints. Re-
cently, Dey and Richard [] introduced tools to study two-dimensional infinite

* This research was supported by NSF Grant DMI-03-48611.

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 30 2007.
© Springer-Verlag Berlin Heidelberg 2007
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group problems and introduced two families of facet-defining inequalities for
two-dimensional group relaxations. We note however that very few families of
facet-defining inequalities are known for two-dimensional group problems. Fur-
ther, Gomory and Johnson [J] recently write about strong inequalities of two-
dimensional group problems that

“There are reasons to think that such inequalities would be stronger
since they deal with the properties of two rows, not one. They can also
much more accurately reflect the structure of the continuous variables.”

Similarly, in a recent review of non-traditional approaches to Mixed Integer
Programming, Aardal, Weismantel and Wolsey [I] mention that:

“Given the recent computational interest in using Gomorys fractional
cuts, mixed integer rounding inequalities and Gomorys mixed integer
cuts, this reopens questions about the possible use of alternative subad-
ditive functions to generate practically effective cutting planes. It is also
natural to ask whether interesting higher dimensional functions can be
found and put to use...”

In this paper, we present a general procedure for generating large fami-
lies of facet-defining inequalities for two-dimensional infinite group problems.
This procedure in turn yields a large number of new cutting planes for general
MIPs. Although Dey and Richard [4] already showed that a specific aggrega-
tion scheme yields facet-defining inequalities for two-dimensional group prob-
lems from facet-defining inequalities of the one-dimensional group problem, the
procedure presented in this paper shows different, richer relations between facets
of one-dimensional and two-dimensional group problems.

In Sect. 2l we introduce and present fundamental results and concepts about
the group problem. We also describe its relation to lifting. In Sect. Bl we present
a sequential-merge procedure that generates inequalities for the two-dimensional
group problem by combining inequalities for the one-dimensional group problem
in a specific fashion. We also show that the procedure shares some relationship
with the two-step MIR procedure of Dash and Giinliik [3] and can be used to
derive the family of three-gradient facet of Dey and Richard [4]. In Sect. ] we
show that, under mild conditions, the procedure presented in Sect. 3] generates
facets for the two-dimensional infinite group problem. We conclude in Sect.
with directions of future research.

2 Group Problem and Lifting-Space

In this section, we present important results about group problems that were
introduced and proven by Gomory and Johnson [9]. We then introduce the notion
of valid and facet-defining inequalities for group problems and discuss how such
inequalities can be derived from certain lifting functions. We denote by I the
group of real m-dimensional vectors where the group operation is performed as
addition modulo 1 componentwise, i.e., I™ = {(z1,22...2,) | 0 < z; < 1V1 <
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i < m}. In particular, the symbol + is used to denote both the addition in R™
and in I"™. We refer to the vector (0,0,...,0) € I"™ as o. Next we give a formal
definition of the group problem.

Definition 1 ([I1]). For r € I™ with r # o, the group problem PI(r,m) is the
set of functions t : 1™ — R such that

1. t has a finite support, i.e., t(u) > 0 for a finite subset of I'".
2. t(u) is a non-negative integer for all w € 1™,

8. e ut(u) = .

Next we define the concept of a valid inequality for the group problem.

Definition 2 ([I1]). A function ¢ : I™ — Ry is said to define a valid inequality
for PI(r,m) if (o) =0, ¢(r) =1 and 3, c1m ¢(u)t(u) > 1, Vt € PI(r,m).

In the remainder of this paper, we will use the terms valid function and valid
inequality interchangeably. For a vector a € R™, define P(a) = (a1(modl),
<y (Modl)).

It can be verified that given m rows of the simplex tableau >, a;z; = b of
an integer program P, the inequality >\ ; ¢(P(a;))x; > 1 is valid for P, if ¢ is
valid for PI(r,m), and P(b) = r; see Gomory and Johnson [9]. We next describe
necessary conditions for valid inequalities ¢ to be strong.

Definition 3 ([7]). A valid inequality ¢ for PI(r,m) is said to be subadditive
if 6(u) + 6(v) > (u +v), Yu,v € I,

Gomory and Johnson [7] prove that all valid functions of PI(r,m) that are not
subadditive are dominated by valid subadditive functions of PI(r, m). Therefore
it is sufficient to study the valid subadditive functions of PI(r,m). Next we
introduce a definition to characterize strong inequalities.

Definition 4 ([I1]). A valid inequality ¢ is minimal for PI(r,m) if there does
not exist a valid function ¢* for PI(r,m) different from ¢ such that ¢*(u) < ¢(u)
Yu e I™.

We next present a result characterizing minimal functions. This result is proven
in Gomory and Johnson [7] and Johnson [I1].

Theorem 1 ([7]). If ¢ is a valid function for PI(r,m) and ¢p(u)+ ¢(r—u) =1
Yu € I'™ then ¢ is minimal. |

Minimal inequalities for PI(r,m) are strong because they are not dominated by
any single valid inequality. However, there is a stronger class of valid inequalities
that Gomory and Johnson refer to as facet-defining inequalities. Next, we present
the definition of facet-defining inequality in the context of PI(r,2).

Definition 5 (Facet). Let P(¢) = {t € PI(r,2)| X, cp2 y(u)>0 @(Wt(u) = 1}.
We say that an inequality ¢ is facet-defining for PI(r,2) if there does not exist
a valid function ¢* such that P(¢*) 2 P(¢).
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Gomory and Johnson [§] proved that all facet-defining inequalities are minimal
inequalities. To prove that a function is facet-defining, Gomory and Johnson [9]
introduced a tool that they refer to as Facet Theorem. We describe the Facet
Theorem in Theorem ] and introduce the necessary definitions next.

Definition 6 (Equality Set, [9]). For each point u € 12, we define g(u) to
be the variable corresponding to the point u. We define the set of equalities of ¢
to be the system of equations g(u) + g(v) = g(u +v) for all u,v € 12 such that
o(u) + ¢p(v) = ¢(u + v). We denote this set as E(p).

Theorem 2 (Facet Theorem, [9]). If ¢ is minimal and subadditive, and if ¢
is the unique solution of E(¢p) then ¢ is facet-defining. a

Currently all known facets for infinite group problems are piecewise linear func-
tions. A function ¢ is defined to be piecewise linear, if I? can be divided into
polytopes such that the function ¢ is linear over each polytope; see Gomory and
Johnson [9] and Dey and Richard [4]. Further, Gomory and Johnson [9] conjec-
tured that all facets of infinite group problems are piecewise linear. Therefore,
when introducing tools to prove that inequalities are facet-defining, it is usual to
assume that the inequality under study is piecewise linear. Next we present in
Theorem Ml a result regarding the continuity of functions of PI(r,2) that is used
in the proof of the Sequential-Merge Theorem of Sect. @l Theorem Ml is proven
using the following preliminary result.

Theorem 3 ([5]). If a valid function ¢ for PI(r,m) satisfies the following con-
ditions

1. ¢(x) + o(y) = d(z +y) Yo,y €™,
2. limp o ¢(Zd) exists for any d € R™,

then ¢ is continuous. (I

Theorem 4. Let ¢ be a minimal piecewise linear and continuous function for
PI(r,2). If ¥ is a valid function for PI(r,2) such that E(¢) C E(¢) then v is
continuous. U

Generating strong inequalities for group problems is often difficult. Richard et
al. [I5] showed that lifting can be used to derive valid and facet-defining inequali-
ties for one-dimensional group problems. The family of facet-defining inequalities
we present here is also easier to derive using lifting functions. In the remainder of
this section, given any x € I, we denote Z as the element of R with the same
numerical value as x. Similarly, for x € R™ such that 0 < z; < 1 V1 <1i < m,
we denote & to be the element of I such that & = .

Definition 7 (Lifting-Space Representation). Given a valid inequality ¢
for PI(r,m), we define the lifting-space representation of ¢ as [¢], : R™ — R
where

[Blr(x) = zi — >~ 7id(P(x)).

i=1
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To illustrate the idea that motivates this definition, we discuss the case where
m = 1. Consider a row of the simplex tableau Z:-L:l a;r; = ag of an integer pro-
gram, where a; € R, the fractional part of ag is r # 0, and x; are nonnegative in-
teger variables. If ¢ is a valid function for PI(r, 1) we have that Y ;" | ¢(a;)z; > 1
is a valid cut for the original IP. Multiplying this cut with r and then subtracting
it from the original row we obtain Y . [¢].(a;)z; < [#]r(ag). One well-known
example of the relation between the group-space and the lifting-space represen-
tation of an inequality is that of Gomory Mixed Integer Cut (GMIC) and the
Mixed Integer Rounding (MIR) inequality. It can be easily verified that the form
in which MIR is presented is [GMIC],. Thus, intuitively, the construction of the
lifting-space representation given in Definition[dis a generalization of the relation
that GMIC shares with MIR to other group cuts of one- and higher-dimensions.
Propositions [I] and 2] are generalizations of results from Richard et al. [15].

Proposition 1. If ¢ is valid function for PI(r,m),

1. [@)-(z +ei) = [@](z) + 1, where e; is the it" unit vector of R™. We say that
[¢] is pseudo-symmetric.
2. [Py is superadditive iff ¢ is subadditive. |
Motivated by Definition [7, we define next the inverse operation to [¢],(x).

Definition 8 (Group-Space Representation). Given a superadditive func-
tion ¢ : R™ — R which is pseudo-symmetric, we define the group-space repre-

sentation of 1 as [¢p];71 : ™ — R where [¢];1(2) = Zz’%%ﬁf(m).

In Fig. [[I a three-gradient facet [] of the two-dimensional group problem is
shown in its group-space and lifting-space representation.

Proposition 2. A wvalid group-space function g : I — R is minimal iff |g], is
superadditive and [g],(z) + [g]-(r — ) = 0. 0

3 Sequential-Merge Inequalities for Two-Dimensional
Group Problems

In this section, we introduce an operation that produces valid inequalities for
PI(r,2) from valid inequalities for PI(r’,1). To simplify the notation, we denote
X and X by x since the symbol is clear from the context.

Definition 9 (Sequential-merge inequality). Assume that g and h are valid
functions for PI1(ry,1) and PI(ra, 1) respectively. We define the sequential-merge
of g and h as the function gOh : 12 — R, where

gOh(x1, 22) = [[g]r, (1 + [y (22))]; (21, 72) (1)

and r = (r1,72). In this construction, we refer to g as the outer function and to
h as the inner function.

Figure [ gives an example of a sequential-merge inequality that is facet-defining
of PI((Th 7"2), 2)
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Fig. 1. Group-space and lifting-space representations of a three-gradient facet of P1(r,2)
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Fig. 2. Examples of sequential-merge operation

We first observe that there is an intuitive interpretation to the construction
presented in Definition @l Given two rows of a simplex tableau, we first gener-
ate a cutting plane in the lifting-space of the first row. This cutting plane is
added to the second row of the tableau to generate a combined inequality. Fi-
nally, a one-dimensional cutting plane is generated from the combined inequality.
Proposition M] states that the group-space representation of inequalities gener-
ated using this procedure are valid inequalities for PI(r,2) under the condition
that the outer function is nondecreasing in the lifting-space.

Before we present this result, we give a formula for the sequential-merge in-
equality in terms of the inner and outer functions in their group-space represen-

tations.

Proposition 3. gOh(z1,x2) =

roh(z2)+rig(P(xi+xz2—r2h(x2)))
ri+7r2 ’

O
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Using Proposition [ it is easy to verify that the sequential-merge ¢ operator
is non-commutative. In the next proposition, we record that sequential-merge
inequalities are valid for the two-dimensional group problem.

Proposition 4. If g, h are valid functions for PI(ri,1) and PI(re,1) respec-
tively, and [g],, is nondecreasing then gOh is a valid function for PI(r,2) where
r=(ry,re). O

In Fig. B8] we illustrate all the different types of valid inequalities that can be
obtained using GMIC, a two-step MIR and a three-slope facet of the one-
dimensional group problem as inner and outer functions in the sequential-merge
construction. These inequalities are valid for PI(r,2) since all the three build-
ing functions used have non-decreasing lifting-space representations. It can be
proven that the inequalities obtained in this way are strong.

Proposition 5. If g and h are minimal and [g],, is nondecreasing, then gQh is
minimal. 0

We next give two examples of well-known valid inequalities for group problems
that can be obtained using the sequential-merge procedure.

GMIC { GMIC Two Slope ¢ GMIC Three Slope ¢ GMIC

0 00

GMIC ¢ Two Slope Two Slope ¢ Two Slope Three Slope { Two Slope

0 0o

GMIC ¢ Three Slope Two Slope ¢ Three Slope

Fig. 3. Examples of sequential-merge inequalities for PI(r,2)
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Proposition 6. Consider x(x) = [[¢](z + [f]r(a;))](;lr) (x,x), where & is the
GMIC, i.e., k(x) is the sequential-merge inequality obtained using the same con-
straint twice and using GMIC as both the inner and outer function. Then r(x)

is a two-step MIR function from Dash and Ginlik [3]. O

We observe that sequential-merge procedure shares some relations with the two-
step MIR procedure of Dash and Giinliik [3]. An important difference however
is that the sequential-merge procedure uses in general two different rows of a
simplex tableau. Also the two-step MIR procedure only uses MIR inequalities
as constituent functions.

We describe in the next proposition another family of facets for the two-
dimensional group problem that can be obtained using the sequential-merge
procedure.

Proposition 7. Consider p(z,y) = [[¢],(z + [f]r(y))}(_ri m)(a;,y), where & is the
GMIC, i.e. p(z,y) is the sequential-merge inequality obtained using GMIC as
both the inner and outer function. This inequality is the three-gradient facet-

defining inequality for P((r1,r2),2) presented in Dey and Richard [)]. O

4 Facet-Defining Sequential-Merge Inequalities

In this section, we derive conditions under which sequential-merge inequalities
are facet-defining for the two-dimensional group problem PI(r,2). We begin by
studying some geometric properties of gQh.

Definition 10. We define the set of points {(x,y) | x = (—y + r2h(y))(modl)}
as the support of the function gOh. We denote the support of gOh as S(gOh).

It is easy to verify that given a value of y, there is an unique value of x such
that (z,y) € S(gOh).

In Fig. @ we illustrate the support of a function gQh for the case where the
inner function is the three-slope facet defining inequality of Gomory and John-
son [9] with right-hand-side of 0.2. The support of gOh is important because

X

Fig. 4. Example of S(gOh) where h is the three-slope facet of Gomory and Johnson [J]
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it contains all the equalities that h satisfies. In particular, the next proposition
states that for every equality that h satisfies, there exists a related equality that
gOh satisfies, which only involves points of its support.

Proposition 8. Let g and h be valid subadditive inequalities and let [g]., be
nondecreasing. If vi,v2 € I' are such that h(vi) + h(v2) = h(vi + v2) and
(u1,v1), (uz,v2) € S(gOh) then

1. (u1 + ug,v1 + v2) € S(gOh).
2. gOh(u1,v1) + gOh(uz,v2) = gOh(ur + uz, v1 +v2) =

Definition 11. Let ¢ be a valid continuous function for PI(r,1). We say E(¢)
is unique up to scaling if for any other continuous function ¢' : I' — R,
E(¢') D E(¢) implies that ¢’ = cé for c € R.

Intuitively, because the function gQh has the equalities of h on its support,
E(gOh) will have an unique solution on its support up to scaling whenever E(h)
has a unique solution up to to scaling. This key result is used in the proof of the
Sequential-Merge Theorem Bl to show that E(gOh) is unique and therefore show
that gOh is facet-defining.

Proposition 9. Let g, h be piecewise linear and continuous valid inequalities for
PI(r1,1) and PI(rq, 1) respectively and assume that E(h) has an unique solution
up to scaling. Let v be a valid function for PI(r,2) such that E(v¥) 2 E(g0h),
then the value of P(u1,u2) = cgOh(ur,uz) = %2 h(uz) V(ui,u2) € S(gOh)
where ¢ 18 a nonnegative real number. O

Although Proposition [0 establishes that E(gOh) has an unique solution up to
scaling on its support, it falls short of proving that E(gQh) has an unique solution
over I2. Therefore, we identify in Propositions and [II] some equalities that
gOh satisfies that help in extending the result of Proposition [ to I2.

Proposition 10. Let g and h be valid functions for PI(ri,1) and PI(rse,1)
respectively such that [g],, is nondecreasing, then gQh(x1,y1) + gOh(6,0) =
gOh(z1 + 6,31) V6 € I' and V(z1,31) € S(gOh). O

Proposition 11. Let g and h be valid functions for PI(r1,1) and PI(ra,1) re-
spectively and assume that [g];, and [h];, are nondecreasing functions. Then
gOh(x1,x0) = fiif; for 0 < x1 < 71, and 0 < xo < r1o. Furthermore
gOh(ur,v1) + gOh(ug, va) = gOh(uy + ug, v1 + v2) whenever uy, ug, ug + us < 71
and vy,ve,v1 + V2 < 1o O

Theorem 5 (Sequential-Merge Theorem). Assume that g and h are con-
tinuous, piecewise linear, facet-defining inequalities of PI(r1,1) and PI(rq,1)
respectively. Assume also that E(g) and E(h) are unique up to scaling and
[9]r, and [h],, are nondecreasing. Then gOh is a facet-defining inequality for
PI((?"l,?"Q),2). (Il
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We briefly present the outline of the proof of the above theorem. We first as-
sume by contradiction that gQh is not facet-defining. Then using Theorem 2] we
conclude that there exists a function ¢’ that is different from gQh and satisfies
all the equalities of gOh. Using Theorem F we can prove that ¢ is continuous.
Using Proposition [0l we show that the function ¢’ is a scalar multiple times gOh
over S(gOh). Finally, we use Proposition[I0 and Proposition[Iland the fact that
E(g) is unique up to scaling to show that the value of this scalar is 1 and that
@' (u) = gOh(u) Yu € 12, which is the required contradiction.

In Theorem [§ we assumed the technical condition that E(h) and E(g) are
unique up to scaling. This assumption is not very restrictive as it is satisfied
by all known facet-defining inequalities for PI(r,1). The condition that [g],
and [h],, are nondecreasing on the other hand is more restrictive since there
exists facet-defining inequalities of PI(r,1) that do not satisfy this condition.
Finally note that, Theorem [B] implies that all the functions illustrated in Fig.
are facet-defining for the two-dimensional group problem.

We now extend the family of inequalities obtained in Theorem [l to the mixed
integer case. To this end we use a result from Johnson [11] which states that the
coefficient of a continuous variable in a minimal group cut ¢ can be found as
o (u) = limy,_ o+ ¢(P(hhu)) where u € R? is the column vector of coefficients of
this continuous variable in the simplex tableau.

The following proposition describes how the sequential-merge facets obtained
for PI(r,2) can be extended into two-dimensional mixed integer group cuts.

. . _ . 1—
Proposition 12. Let ¢/ = lim o+ g(:) = r117 ¢, = lime_o+ 9 i 2 of =
lime_o+ h(:) = rl and ¢; = lim g+ M=) The coefficients of the continuous

variables for gOh are given by

vt up > 0,u2 >0

ri+re

uz—ric, (u1)
r1+7T2

U1<O,UQZO

—rac, uztric, (—u1—uz2—rac, uz)

4 U1 S O,UQ S 0
frgon(u1, uz) = e (2)

wydus up > 0,u2 <0
ri+re U1 + ug + TQC}_LUQ >0

—7’2(:;71.2—"-7‘1(,';(—ul—ug—T’QC;UQ) uy > 0, Uy < 0
r1+T2 ur +u2 +1r2c, uz <0

O

Next we illustrate on an example how the sequential-merge procedure can be
applied to mixed integer programs.
Example 1. Consider the following mixed integer set
7 7 154
— <
17" 177 = 85
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710 359
<
177 T 17Y = 170 ()

x,y € L. (5)

We introduce non-negative slack variables s; and so and perform a few simplex
iterations to obtain

x4 1.4286s1 + so = 4.7
Yy —8s1+ 52 =0.3.

Using Proposition and using GMIC as both the inner and outer functions
we obtain the sequential-merge cut 0.4286s7 4+ 2s2 > 1 which is equivalent to
x4y < 4. It can easily be verified that this inequality is facet-defining for the
convex hull of solutions to @), (@) and (&).

Moreover the two GMICs generated from the individual rows are 2.048s; +
1.4286s5 > 1 and 1.4286s; + 3.3333s2 > 1 which are equivalent to z < 4 and
10z + 7y < 44. It can be verified that these inequalities are not facet-defining
for the convex hull of solutions to (@), @) and ().

It can be seen from Proposition [[2] that the sequential-merge inequalities yield
very diverse coeflicients for continuous variables. To understand the strength
of the continuous coefficients in sequential-merge inequalities we consider the
following general example.

Example 2. Consider a continuous variable with u; > 0, us < 0, u; + us +
roc, uz = 0. The coefficient of this continuous variable in gQh is h:’j‘m (—uacy, ).
If the group cut h was used to generate a cut from the second constraint alone, the
coefficient of the continuous variable would have been —uac;, > | "2 (—uacy,).
Similarly, if the group cut g was derived using the first constraint alone, the coeffi-

cient of the continuous variable would have been 7}1 uy. Since uq +us +7a¢, uz =0

the coefficient of the continuous variable using gOh, is Tl’”jm (—ugcy, ) = Zifr‘; <
Tll u1 as us < 0. Therefore in this case the continuous coefficients generated us-
ing the two different cuts g and h individually will be strictly weaker than those

generated using gOh.

We conclude from Example 2] that if both the inner and outer functions used in
the sequential-merge procedure are GMICs then the coefficient generated for the
continuous variable is stronger than the coefficient generated using each of the
individual group cuts when the column corresponding to the continuous vari-
able is (u1,u2) with u1 > 0, ug < 0, w1 + u2 + rac;, uz = 0 (i.e., the coefficients
of the sequential-merge inequalities are not dominated by the GMIC). This re-
sult is significant because it can be proven that GMIC generates the strongest
possible coefficients for continuous variables among all facets of one-dimensional
group problems. We note that this result was numerically observed for the three-
gradient facet in Dey and Richard [4].

Note also that although the above discussion was based on the specific case
where u; > 0, ug < 0 and uy + uz + rac;, uz = 0, there exists a large range of
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continuous variables coefficient for which the sequential-merge procedure yields
inequalities whose coefficients are not dominated by the continuous coefficient
of the one-dimensional group cuts derived from individual rows.

5 Conclusion

In this paper we presented a general procedure that produces a wide array of
facet-defining inequalities for two-dimensional group problems. We showed that,
under very general conditions, these inequalities are facet-defining. These cuts
illustrate that strong coefficients for continuous variables can be found by con-
sidering group relaxations with multiple constraints. In particular, it is possible
to obtain inequalities that are not dominated by group cuts generated from in-
dividual constraints. Sequential-merge inequalities are also interesting because
they show strong relations between facet-defining inequalities of one-dimensional
and two-dimensional group problems.

A few important theoretical and practical questions arise from this paper.
First we observe that all the known facet-defining inequalities for the two-
dimensional group problem obtained to date are derived either using aggrega-
tion [] or using the sequential-merge procedure. This is an interesting character-
ization of a subset of facets of the two-dimensional group problem. However this
implies that all known facet-defining inequalities of the two-dimensional prob-
lem are tightly related to facet-defining inequalities of the one-dimensional group
problem. An interesting open question is that of finding a family of group cuts
for the two-dimensional infinite group problem that cannot be easily obtained
using one-dimensional group cuts.

Second because the sequential merge approach can be applied using the same
constraint twice instead of using two different constraints, one interesting ques-
tion is that of determining when the sequential-merge procedure generates strong
inequalities for one-dimensional group problems. The question is particularly in-
teresting since we have shown in Sect. Bl that some two-step MIRs can be derived
in this way.

Finally, a large numerical experimentation is needed to determine how and
when to use multi-dimensional group cuts to solve MIPs. In particular, numer-
ical determination of how much two-dimensional group cuts improve on one-
dimensional group cuts is an important direction of research.
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Abstract. A simple 2-matching in an edge-weighted graph is a subgraph
all of whose vertices have degree 1 or 2. We consider the problem of finding
a maximum weight simple 2-matching that contains no triangles, which is
closely related to a class of relaxations of the TSP. Our main results are,
for graphs with maximum degree 3, a complete description of the convex
hull of incidence vectors of triangle-free simple 2-matchings and a strongly
polynomial time algorithm for the above problem. Our system requires the
use of a type of comb inequality (introduced by Grotschel and Padberg for
the TSP polytope) that has {0,1,2}-coefficients and hence is more general
than the well-known blossom inequality used in Edmonds’ characteriza-
tion of the simple 2-matching polytope.

1 Introduction

We consider undirected graphs G = (V, E') with no parallel edges or loops. With
every edge e € E we associate a real weight w.. A simple 2-matching in a
graph G = (V,E) is a subgraph of G all of whose vertices have degree 1 or
2. Hence the connected components of a simple 2-matching are simple paths
or cycles, each with at least one edge. (For the sake of brevity, we henceforth
drop the adjective “simple.”) A 2-factor in G is a special type of 2-matching
that contains all the vertices of G and all of whose components are cycles. The
problems of finding a maximum weight 2-matching and a maximum weight 2-
factor in a graph are well studied. Polynomial time algorithms (see Johnson [19])
and polyhedral characterizations (see Edmonds [I0]) are known for both, as well
as many other results (see Schrijver [25] for a thorough survey). The key type of
inequalities used for the polyhedron is typically called blossom inequalities (they
are different from the blossoms used by Edmonds [J] for the classical matching
problem).

In this paper we focus on a variation of these problems, which we next define.
A 2-matching or 2-factor is called Cj-free if it contains no cycles of length < k,
for k a positive integer. The Cy-free 2-matching (2-factor) problem is to find a
Cl-free 2-matching (2-factor) with maximum weight.

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 43-[2] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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These problems were originally studied in the context of the travelling sales-
man problem by Fisher, Nemhauser, and Wolsey [II] and by Cornuéjols and
Pulleyblank [7]. It is shown in [I1] how solutions to the Cy-free 2-factor prob-
lem in a complete graph, for increasing values of k, yield increasingly accurate
appoximations of the optimal value of a travelling salesman tour. Observe that
for n/2 < k <n —1 (where n is the number of vertices in the graph), solving
the Cj-free 2-factor problem is equivalent to the TSP.

Other results are known for these problems, which lead to some open ques-
tions. For k > 5, the Cy-free 2-factor problem with weights all 0, 1 was shown to
be NP-hard by Papadimitriou (the proof appears in [7]). This implies that, for
k > 5, the Ck-free 2-matching problem with general weights is NP-hard. (See
also Hell et al [I6], where similar complexity results are presented.) Vornberger
[29] showed that the Cy-free 2-factor problem (with general weights) is NP-hard.
For the case that the edge weights are all 0,1, an algorithm solving the Cs-free
2-matching problem (hence the Cs-free 2-factor problem) appears in [I4]. (It is
quite complex.) So two obvious open problems (discussed in [29] and [7]) are to
find the complexity of the Cs-free 2-factor (2-matching) problem, with general
weights, and the Cy-free 2-factor (2-matching) problem, with weights all 0, 1.
Another obvious open problem is to describe the polytope associated with the
Cs5-free 2-factor (2-matching) problem (assuming it is polynomial).

One way of approaching the open problems mentioned above has been to con-
sider them on special classes of graphs. For example, Hartvigsen [T5] presented,
for bipartite graphs, a polynomial time algorithm for the Cj4-free 2-matching
problem with weights all 0,1 (hence for the corresponding 2-factor problem as
well). Nam [22] presented a polynomial time algorithm for the Cy-free 2-factor
problem for general graphs with the property that no two squares share a vertex.
(The algorithm is quite complex.) In this paper we consider such problems on
the cubic (subcubic) graphs; that is, those graphs for which every vertex has
degree 3 (at most 3). Some work in this regard has been done. For cubic graphs,
Vornberger [29] presented a polynomial time algorithm for the Cs-free 2-factor
problem. Furthermore, his proof that the Cy-free 2-factor problem (with general
weights) is NP-hard was done for cubic graphs. He also showed that the Cs5-free
2-factor problem with weights all 0,1 is NP-hard for cubic graphs. Some partial
polyhedral results have also been obtained by Cunningham and Wang [§], who
presented a class of valid inequalities for the polytope associated with the Cl-
free 2-factor problem and studied the special structure of these inequalities for
the Cs-free 2-factor problem.

Our main results are, for subcubic graphs, a complete description of the convex
hull of Cs-free 2-matchings and a strongly polynomial time algorithm for finding
a maximum weight Cs-free 2-matching. (This polytope immediately yields the
polytope for Cs-free 2-factors in subcubic graphs.) An interesting property of
this polytope is that it requires the use of two types of inequalities not needed
for the 2-matching polytope. One type is straightforward and simply requires
that, for each triangle in the graph, the sum of the associated edge variables is
at most 2. The second type is a class, we call them tri-combs, that properly falls
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between the blossom inequalities (as introduced by Edmonds for the 2-matching
polytope [I0]) and the more general comb inequalities (introduced by Grotschel
and Padberg [13] for the travelling salesman polytope; another class, the Chvétal
combs [4], also properly falls between the blossom and comb inequalities, but is
different from our tri-combs). Results of Cunningham and Wang [8] show that
the tri-combs are not sufficient to describe the Cj-free 2-factor polytope on
general graphs. They show that additional needed inequalities include, but are
not limited to, the so-called bipartition inequalities.

A tri-comb is a comb such that every tooth has at most 3 vertices and every
tooth has exactly one node not in the handle. A blossom is a comb such that every
tooth has exactly two vertices. Another property of our tri-comb inequalities that
distinquishes them from blossoms is that they are not {0,1}-inequalities; i.e., the
variables have coefficients in {0,1,2}. We also show, somewhat surprisingly, that
only the {0,1}-inequalities in this class (i.e., the blossoms) are needed to describe
the polytope for Cs-free 2-factors in subcubic graphs (which is a face of the
polytope for Cs-free 2-matchings). Thus we see that Cs-free 2-matchings and Cs-
free 2-factors, in this domain, have significantly different polyhedral descriptions.
To the best of our knowledge, this is the only matching example known to have
this property.

Our main polyhedral result is proved using the algorithm, which is primal-dual
in the style used by Edmonds [9] for the classical matching problem. Polyhedral
and algorithmic results for the 2-matching problem (and more general problems)
are often proved in the literature by using a reduction to classical matchings due
to Tutte [28] (see Schrijver [25]). Algorithms that avoid such a reduction are
typically more efficient (but more complex) and have also been studied (e.g.,
see Johnson [I9] and Gabow [12]). We have been unable to find such a reduc-
tion for the Cs-free 2-matching problem in subcubic graphs, hence our algorithm
works directly on the original graph. However, for the restricted case of Cs-free
2-factors, a reduction was discovered by Vornberger [29]. It yields a polynomial
algorithm for finding Cs-free 2-factors in cubic graphs (which can be extended,
in a straightforward manner, to finding Cs-free 2-factors in subcubic graphs). We
show that this same reduction idea, combined with the 3-cut polyhedral reduc-
tion idea for the TSP problem developed by Cornuéjols, Naddef, and Pulleyblank
[6], yields the Cs-free 2-factor polytope for subcubic graphs.

Let us remark on a topic one might expect to accompany work of this type.
In Edmonds’ primal-dual algorithm for classical matchings, the primal stage is
essentially an algorithm for finding a maximum (0, 1)-weight matching, which is
applied to a special subgraph of the original graph. Hence, as a by-product, one
obtains a simpler algorithm for finding a maximum (0, 1)-weight matching and
one can prove, directly from the algorithm, theorems such as Tutte’s characteri-
zation of the graphs with a perfect matching [27] and the min-max Tutte-Berge
theorem [I]. The algorithm we have d eveloped does not appear to have these
nice by-products, at least in a direct way. Hence we plan to address the special
case of (0, 1)-weights elsewhere.
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This extended abstract is organized as follows. In Section 2 we state our two
main polyhedral results. Section 3 contains an outline of our non-algorithmic
proof of the second, simpler result. The final section contains an overview of
the primal-dual algorithm for Cs-free 2-matchings. The details of the proofs and
algorithm will appear elsewhere.

We close this section by referencing some related research. A {0,1,2}-matching
is an assignment of 0,1, or 2 to each edge in a graph so that the sum of the
values on the edges incident with each node is at most 2. (In this terminol-
ogy, we consider {0,1}-matchings in this paper.) Cornuéjols and Pulleyblank
in [7] completely characterize the convex hull of Cs-free {0,1,2}-matchings and
present a polynomial time algorithm for finding maximum weight Cs-free {0,1,2}-
matchings. Their algorithm is similar in style to the one presented in this paper:
it is primal-dual (as in [9]) and provides a proof of the polyhedral result.

Finally, we note that there is a fairly extensive literature involving the study
of matching problems in regular graphs, particularly in cubic graphs. Here are
some of the highlights:

e Kaiser and Skrekovski [20] showed that every bridgeless cubic graph has a
2-factor that intersects all edge cuts of size 3 or 4. This result implies that
every bridgeless cubic graph has a Cs-free 2-factor.

e Petersen [23] showed that every bridgeless cubic graph can be decomposed
into a 2-factor and a perfect matching.

e Tait [20] showed that every planar bridgeless cubic graph can be decomposed
into three perfect matchings iff the 4-color conjecture holds (which, of course,
is now a theorem). And Petersen [24] showed that this is not true for non-
planar bridgeless cubic graphs by exhibiting what we now call the Petersen
graph. Holyer [I§] showed that it’s NP-complete to decide if a cubic graph
can be decomposed into three matchings.

e Bertram and Horak [2] showed that there is a polynomial time algorithm to
decompose any 4-regular graph into two Cs-free 2-factors, if such a decom-
position exists.

e The study of Hamilton cycles in cubic graphs is fairly extensive. A key result
is that the problem of deciding if a planar, bipartite, subcubic graph has a
Hamiltonian cycle is NP-complete (see [21]). Additional results can be found

in [I7].

2 Main Results

In this section we present our main polyhedral results: complete descriptions of
the convex hulls of Cs-free 2-matchings and 2-factors for subcubic graphs. We
begin with some definitions.

Let G = (V, E) be a graph. For V' C V| let §(V’) denote the set of edges
of G with exactly one vertex in V’; and let (V') denote the set of edges of G
with both vertices in V’. For S C E and « € R”, let 2(S) = 3 g @e. If G’ is

a subgraph of G, then a vector z € {0, 1}E is called the 0-1 incidence vector for
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G" if x. =1 if and only if e is in G'. A triangle of G is a set of three edges of G
that form a cycle. A Cs-free 2-matching is also called a triangle-free 2-matching.
Let PM(G) denote the convex hull of incidence vectors of triangle-free 2-
matchings in G. Let P (G) denote the convex hull of incidence vectors of
triangle-free 2-factors in G.
A tri-comb of G is a set {H,T},...Tog+1} of subsets of V, where k > 1, that
satisfy the following conditions:

1. Ty, ... T4 are pairwise disjoint;
2. For each i, v(T;) is either a single edge or a triangle;
3. Each T; has exactly one vertex not in H.

We call H the handle and Ti,...Toxy1 the teeth of the tri-comb. A tooth
with two vertices is called an edge-tooth and a tooth with three edges is called a
triangle-tooth. Observe that every triangle-tooth has exactly one edge in common
with y(H ), which we call a common edge. See Fig. [, which contains a tri-comb
with two triangle-teeth, one edge-tooth, and two common edges.

Fig. 1. A tri-comb

Consider the following variations on conditions 2 and 3:

2. For each i, y(T;) is a single edge;
3’. Each T; has, at least, one vertex in H and one vertex not in H.

The sets {H,T1,...,Tor+1} that satisfy conditions 1, 2/, and 3 are the well-
known class of blossoms and the sets that satisfy conditions 1 and 3’ are the
well-known class of combs. Hence tri-combs are more general than blossoms and
a special case of combs.

For z a variable vector indexed on F, we associate with each tri-comb C' =
{H,T,..., Tops1} the following tri-comb inequality:

2k+1 2k+1
z(y(H)) + Z z (y(Ty) < |H| + Z (T3] = 1) — (k + 1),

which we abbreviate, a(C)z < b(C). In general, these inequalities have non-zero
variable coefficients in {1, 2}, with the 2s precisely on the common edges. The tri-
comb inequalities can be shown to be feasible for PM (G) (hence for PF'(G)) using
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standard arguments (e.g., see [0]). For the cases of blossoms and combs, this same
inequality is the well-known blossom inequality and comb inequality, respectively.
Observe that for blossoms, the right hand side of the inequality simplifies to | H |+ k.
(We have borrowed the notation for this inequality from [5].)

We are now ready to state our characterization of PM(G).

Theorem 1. For a subcubic graph G = (V, E), PM(G) is determined by
z(6(v)) <2 YveV
T, <1 Vee E

x(T) <2 VY triangles T 3)

a(C)x < b(C) V tri-combs C 4)

ze>0 VYeeE ()

)
2)

~ Y~~~

Let SM(G) denote the system in Theorem [II If we remove inequalities (3) and
replace “tri-combs” with “blossoms” in inequality (4), then we obtain the convex
hull of incidence vectors of 2-matchings given by Edmonds [10] for general graphs.
If, instead, we remove inequalities (4) and replace inequalities (2) with z, <
2 Ve € E, we obtain the convex hull of incidence vectors of Cs-free {0,1,2}-
matchings given by Cornuéjols and Pulleyblank [7] for general graphs.

Fig. @l contains a subcubic graph that illustrates the need for the tri-comb
inequalities in S (G). The numbers indicate a fractional solution x that can
be seen to be extreme for the system of inequalities: (), @), @), and (B). The
tri-comb inequality associated with the entire graph (which is a tri-comb C
with indicated handle H) has b(C') = 6; however, the fractional solution has
a(C)x = 6.5. In contrast, one can easily check that no blossom inequality is able
to cut off this fractional extreme solution.

Fig. 2. A fractional extreme point cut off by a tri-comb inequality

Our characterization of P¥(G) follows.
Theorem 2. For a subcubic graph G = (V, E), PF(G) is determined by
x(6(v) =2 YweV
ze <1 VeeFE
z(T)=2 V triangles T
a(C)x < b(C) V blossoms C
r. >0 Vee F (10
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Let ST (G) denote the system in Theorem [l If we remove inequalities (), then
we obtain the convex hull of incidence vectors of 2-factors given by Edmonds
[10] for general graphs.

3 The 2-Factor Polytope for Subcubic Graphs

In this section we outline the proof of Theorem Bl The proof uses a triangle
shrinking operation and a variation on the Basic Polyhedral Theorem in [6].

Fig. Blshows the four triangle patterns that can exist in a subcubic graph (i.e.,
a triangle can have 0, 1, 2, or 3 vertices of degree 2). If two or three vertices of a
triangle have degree 2 in the graph, then there is obviously no feasible solution
to the triangle-free 2-factor problem. Therefore, we only consider the subcubic
graphs with the triangle patterns shown in Fig.[Bl(a) and Fig. BI(b).

| d A
e f ¢ (&
d, e and f may not be different  d and e may not be different

(a) (b) © (d)

Fig. 3. Four triangle patterns

Let G = (V, E) be a graph and let S C V, such that |S| > 2. We let G x S
denote the graph obtained by shrinking (or contracting) S. That is, the vertices
of G x S are the vertices of V\S, plus a new vertex, say v, obtained by identifying
all the vertices in S. The edges of G x S are the edges in v (V'\S) and the edges
of §(5), each of which now has one vertex v and its original vertex in V\S. All
edges in G x S retain their identities from G.

If T is a triangle (which is a set of three edges), we let V(1) denote the vertices
of T

The following lemmas will help us obtain P (G).

Lemma 1. Let G be a subcubic graph and T be a triangle of G that has the
pattern of Figure[@(a) or Figure[@(b). A linear system sufficient to define P¥(G)

is obtained by taking the union of linear systems sufficient to define PY (G x
V(T)) and P¥(G x (V\V(T))).

Lemma 2. PF(G x (V\V(T))) is determined by

z(8(v)) =2 Vv e V(T)
ze <1 Vee E(Gx (V\V(T)))
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z(T)=2
ze >0 Vee E(Gx (V\V(T)))

The proof of Lemma [ is quite similar to the proof of the Basic Polyhedral
Theorem in [6]. That theorem says that one can obtain a linear system sufficient
to define the TSP polytope T'SP(G) by the union of two linear systems sufficient
to define TSP(G x S) and TSP(G x S), where G has a 3-edge cutset with shores
S and S. The proof of Lemma B is straightforward.

We can now obtain P¥(G) as follows: First, we iteratively shrink triangles
that have three original nodes of G and apply the above two lemmas until every
triangle in the graph has at least one shrunk node. Then we apply the polyhedral
description of 2-factors [10] to this final graph. Finally, the union of all the linear
systems obtained through applying Lemma[lland Lemma[2land the linear system
sufficient to define the 2-factors of the final graph defines P¥'(G).

4 The Algorithm for Finding Max Weight 2-Matchings
in Subcubic Graphs

In this section we give an overview of the algorithm, followed by a few details
describing how the algorithm is set up. The details of the algorithm are approx-
imately ten pages long and will appear elsewhere.

The algorithm has two main phases: primal and dual. While maintaining
primal and dual feasible solutions, the algorithm alternates between these two
phases until it produces primal and dual feasible solutions that satisfy comple-
mentary slackness, and hence are optimal. The primal phase has two main stages.
We call the first stage “triangle alteration.” In this stage we identify special tri-
angles in the original graph and alter each by either shrinking the triangle to a
vertex, shrinking an edge of the triangle to a vertex, or deleting one of its edges.
In some sense, this is an elaborated version of the shrinking operation described
in the preceeding section; however, this type of shrinking cannot be done just
once at the beginning of the algorithm — it occurs repeatedly throughout. In the
second stage of the primal phase we grow an alternating tree looking for ways to
satisfy violated complementary slackness conditions. If no such improvement is
found, the algorithm moves into its second phase, the dual change. In this phase
the dual solution is changed, again in an effort to satisfy violated complementary
slackness conditions. The growth and dual change steps are, in a general sense,
typical of Edmonds-style matching algorithms; the triangle alteration stage is
unique to this problem. The primal growth stage is quite straightforward due
to the simple structure of the graphs and our triangle alteration stage; however,
the dual change is significantly more complex than is typical of such algorithms.

We next present some details we need to set up the algorithm. For an arbitrary
subcubic graph G = (V, E), let w € R” be an arbitrary weight vector, let 7'
denote the set of all triangles in GG, and let 7C denote the set of all tri-combs in
G. We let T (e) denote the triangles of G that contain edge e, let 7C;(e) denote
the tri-combs of G that contain e as a non-common edge, and let 7Cz(e) denote
the tri-combs of G that contain e as a common edge.
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The primal LP is the following:

max wz s.t. z € SM(Q).

If we associate variable vectors y, z, 7, m with constraints ([I), @), @), @),
respectively, then we obtain the corresponding dual LP:

min QZyU—FZze—G—QZTT—F Z b(C)me

veV ecE TeT ceTcC
s.t.
Yu + Yo + Zyo + 2 Z T + Z o + 2 Z o > we Ve =uv € F
TeT (e) CeTC(e) CeTCx(e)
Yy, 2, 7, > 0.

From linear programming theory, a primal feasible solution z and a dual
feasible solution v, z, 7, ™ are both optimal if and only if they satisfy the following
complementary slackness conditions:

Te > 0= Yy + Yo + 2uw + Z o + 2( Z T + Z o) = we; (11)
CETC(e) TET (e) CETCs(e)

yp > 0= 2(6(v)) = 2;

Ze > 0=, =1;

> 0= 2(T) = 2;

e > 0= a(C)x =b(C).

At each stage of the primal-dual algorithm we maintain an integral primal
feasible solution z, which is the incidence vector of a triangle-free 2-matching,
and a dual feasible solution y, z, 7,7, which satisfies (I1), (@3], (I4) and [I5).
Condition (I2) is not, in general, satisfied. The algorithm modifies the variables
x,y, 2,7, 7 (maintaining primal and dual feasibility as well as conditions (LTI,
[@3), () and (@) until condition (IZ) is satisfied at which point z is the
incidence vector of a maximum weight triangle-free 2-matching.
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Abstract. A well established heuristic approach for solving various bi-
criteria optimization problems is to enumerate the set of Pareto optimal
solutions, typically using some kind of dynamic programming approach.
The heuristics following this principle are often successful in practice.
Their running time, however, depends on the number of enumerated so-
lutions, which can be exponential in the worst case.

In this paper, we prove an almost tight bound on the expected number
of Pareto optimal solutions for general bicriteria integer optimization
problems in the framework of smoothed analysis. Our analysis is based
on a semi-random input model in which an adversary can specify an
input which is subsequently slightly perturbed at random, e.g., using a
Gaussian or uniform distribution.

Our results directly imply tight polynomial bounds on the expected
running time of the Nemhauser /Ullmann heuristic for the 0/1 knapsack
problem. Furthermore, we can significantly improve the known results on
the running time of heuristics for the bounded knapsack problem and for
the bicriteria shortest path problem. Finally, our results also enable us
to improve and simplify the previously known analysis of the smoothed
complexity of integer programming.

1 Introduction

We study integer optimization problems having two criteria, say profit and
weight, which are to be optimized simultaneously. A common approach for solv-
ing such problems is generating the set of Pareto optimal solutions, also known
as the Pareto set. Pareto optimal solutions are optimal compromises of the two
criteria in the sense that any improvement of one criterion implies an impair-
ment to the other. In other words, a solution S* is Pareto optimal if there exists
no other solution S that dominates S*, i.e., has at least the profit and at most
the weight of S* and at least one inequality is strict. Generating the Pareto set

* This work was supported by DFG grant VO 889/2 and by the EU within the 6th
Framework Programme under contract 001907 (DELIS).

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 5367 2007.
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is of great interest in many scenarios and widely used in practice. Unfortunately,
this approach fails to yield reasonable results in the worst case because even
integer optimization problems with a simple combinatorial structure can have
exponentially many Pareto optimal solutions. In practice, however, generating
the Pareto set is often feasible since typically the number of Pareto optimal
solutions does not attain its worst-case bound.

The discrepancy between practical experience and worst-case results moti-
vates the study of the number of Pareto optimal solutions in a more realistic
scenario. One possible approach is to study the average number of Pareto opti-
mal solutions rather than the worst case number. In order to analyze the average,
one has to define a probability distribution on the set of instances, with respect
to which the average is taken. In most situations, however, it is not clear how to
choose a probability distribution that reflects typical inputs. In order to bypass
the limitations of worst-case and average-case analysis, Spielman and Teng de-
fined the notion of smoothed analysis [15]. They consider a semi-random input
model in which an adversary specifies an input which is then randomly per-
turbed. One can hope that semi-random input models are more realistic than
worst-case and average-case input models since the adversary can specify an arbi-
trary input with a certain structure, and the subsequent perturbation generates
an instance which is still close to the adversarial one.

We consider integer optimization problems in a semi-random setting, in which
an adversary can specify an arbitrary set S C D" of feasible solutions and two
objective functions: profit p: § — R and weight w: § — R, where D C Z
denotes a finite set of integers. We assume that the profit is to be maximized
and the weight is to be minimized. This assumption is without loss of generality
as our results are not affected by changing the optimization direction of any
of the objective functions. In our model, the weight function w can be chosen
arbitrarily by the adversary, whereas the profit p has to be linear of the form
p(x) = pix1 + -+ + ppxy. The adversary can choose an arbitrary vector of
profits from [—1, 1]™, but in the second step of the semi-random input model, the
profits p; are randomly perturbed by adding an independent Gaussian random
variable with mean 0 and standard deviation o to each profit p;. The standard
deviation o can be seen as a parameter measuring how close the analysis is to
a worst-case analysis: The smaller ¢ is chosen, the smaller is the influence of
the perturbation and, hence, the closer is the analysis to a worst-case analysis.
Our probabilistic analysis is not restricted to Gaussian perturbations but is
much more general. In fact, it covers arbitrary probability distributions with a
bounded density function and a finite absolute mean value. In particular, if one
is interested in obtaining a positive domain for the profits, one can restrict the
adversary to profits p; € [0,1] and perturb these profits by adding independent
random variables that are distributed uniformly over some interval [0, c].

We present a new method for bounding the expected number of Pareto op-
timal solutions in the aforementioned scenario which yields an upper bound
that depends polynomially on the number of variables n, the integer with the
largest absolute value in D, and the reciprocal of the standard deviation o. This
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immediately implies polynomial upper bounds on the expected running time
of several heuristics for generating the Pareto set of problems like, e.g., the
Bounded Knapsack problem. Previous results of this kind were restricted to the
case of binary optimization problems. For this special case, our method yields an
improved upper bound, which matches the known lower bound. Furthermore, we
show that our results on the expected number of Pareto optimal solutions yield
a significantly simplified and improved analysis of the smoothed complexity of
integer programming.

1.1 Previous Results

Multi-objective optimization is a well studied research area. Various algorithms
for generating the Pareto set of various optimization problems like, e.g., the
(bounded) knapsack problem [ITIg], the bicriteria shortest path problem [4IT4]
and the bicriteria network flow problem [BII0], have been proposed. The running
time of these algorithms depends crucially on the number of Pareto optimal
solutions and, hence, none of them runs in polynomial time in the worst case.
In practice, however, generating the Pareto set is tractable in many situations.
For instance, Miiller-Hannemann and Weihe [9] study the number of Pareto
optimal solutions in multi-criteria shortest path problems experimentally. They
consider examples that arise from computing the set of best train connections
(in view of travel time, fare, and number of train changes) and conclude that
in this application scenario generating the complete Pareto set is tractable even
for large instances. For more examples, we refer the reader to [0].

One way of coping with the bad worst-case behavior is to relax the requirement
of finding the complete Pareto set. Papadimitriou and Yannakakis present a gen-
eral framework for finding approzimate Pareto sets. A solution S is e-dominated
by another solution S’ if p(S)/p(S") < 1+ ¢ and w(S")/w(S) < 1+ e. We say
that P, is an e-approximation of a Pareto set P if for any solution S € P there
is a solution S’ € P, that e-dominates it. Papadimitriou and Yannakakis show
that for any Pareto set P, there is an e-approximation of P with polynomially
many points (w.r.t. the input size and 1/¢) [I2]. Furthermore they give neces-
sary and sufficient conditions under which there is an FPTAS to generate P..
Vassilvitskii and Yannakakis [I6] show how to compute e-approximate Pareto
curves of almost minimal size.

Beier and Vocking analyze the expected number of Pareto optimal solu-
tions for binary optimization problems [2]. They consider the aforementioned
scenario with D = {0,1} and show that the expected number of Pareto opti-
mal solutions is bounded from above by O(n*/c). This result implies that the
Nembhauser /Ullmann algorithm [I1] has polynomial expected running time. Fur-
thermore, they also present a lower bound of £2(n?) on the expected number of
Pareto optimal solutions for profits that are chosen uniformly from the interval
[0, 1].

In [3] Beier and Vicking analyze the smoothed complexity of binary optimiza-
tion problems. They consider optimization problems with one objective function
in which the set of feasible solutions is given as SNB1N. ..NB,,, where S C {0,1}"
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denotes a fixed ground set and B; denotes a halfspace induced by a linear con-
straint of the form w; 121 + -+ + w; pxy < ;. Similar to the aforementioned
model it is assumed that the coefficients w; ; are perturbed by adding indepen-
dent random variables to them. Based on the probabilistic analysis of certain
structural properties, Beier and Vécking show that a binary optimization prob-
lem in this form has polynomial smoothed complexity if and only if there exists
a pseudo-polynomial (w.r.t. the w; ;) time algorithm for solving the problem.
The term polynomial smoothed complexity is defined analogously to the way
polynomial complexity is defined in average-case complexity theory, adding the
requirement that the running time should be polynomially bounded not only in
the input size but also in 1/0. This characterization is extended to the case of
integer optimization problems where D C Z is a finite set of integers by Roglin
and Vocking [I3].

1.2 Our Results

In this paper, we present a new approach for bounding the expected number
of Pareto optimal solutions for bicriteria integer optimization problems. This
approach yields the first bounds for integer optimization problems and improves
the known bound for the binary case significantly. We show that the expected
number of Pareto optimal solutions is bounded from above by O(n2?k? log(k)/o)
if D=1{0,...,k—1}. We also present a lower bound of 2(n?k?), assuming that
the profits are chosen uniformly at random from the interval [—1, 1]. For the case
in which the adversary is restricted to linear weight functions, we present a lower
bound of £2(n?klogk). Furthermore, for the binary case D = {0, 1}, the upper
bound simplifies to O(n? /o), which improves the previously known bound by a
factor of ©(n?) and matches the lower bound in [2] in terms of n. Hence, our
method yields tight bounds in terms of n and almost tight bounds in terms of k
for the expected number of Pareto optimal solutions and, thereby, even simplifies
the proof in [2]. In the following, we list some applications of these results.

Knapsack Problem. The Nemhauser/Ullmann algorithm solves the knapsack
problem by enumerating all Pareto optimal solutions [I1]. Its running time on
an instance with n items is ©(>__ | ¢;), where ¢; denotes the number of Pareto
optimal solutions of the knapsack instance that consists only of the first ¢ items.
Beier and Vocking analyze the expected number of Pareto optimal solutions and
show that the expected running time of the Nemhauser/Ullmann algorithm is
bounded by O(n® /o) if all profits are perturbed by adding Gaussian or uniformly
distributed random variables with standard deviation o [2]. Based on our im-
proved bounds on the expected number of Pareto optimal solutions, we conclude
the following corollary.

Corollary 1. For semi-random knapsack instances in which the profits are per-
turbed by adding independent Gaussian or uniformly distributed random variables
with standard deviation o, the expected running time of the Nemhauser/Ullmann
algorithm is O(n? /o).
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For uniformly distributed profits Beier and Vocking present a lower bound on the
expected running time of £2(n3). Hence, we obtain tight bounds on the running
time of the Nemhauser/Ullmann algorithm in terms of the number of items n.
This lower bound can easily be extended to the case of Gaussian perturbations.

Bounded Knapsack Problem. In the bounded knapsack problem, a number k € N
and a set of n items with weights and profits are given. It is assumed that k
instances of each of the n items are given. In [7] it is described how an in-
stance with n items of the bounded knapsack problem can be transformed into
an instance of the (binary) knapsack problem with ©(nlog (k + 1)) items. Us-
ing this transformation, the bounded knapsack problem can be solved by the
Nemhauser/Ullmann algorithm with running time @(Z?:hig(kﬂ) i), where g;
denotes the number of Pareto optimal solutions of the binary knapsack instance
that consists only of the first i items. Based on our results on the expected
number of Pareto optimal solutions, we obtain the following corollary.

Corollary 2. The expected running time of the Nemhauser/Ullmann algorithm
on semi-random bounded knapsack instances in which the profits are perturbed
by adding independent Gaussian or uniformly distributed random variables with
standard deviation o is bounded from above by O(n*k?(log® (k +1))/o) and
bounded from below by 2(nklog? (k +1)).

Hence, our results yield tight bounds in terms of n for the expected running time
of the Nemhauser/Ullmann algorithm.

Bicriteria Shortest Path Problem. Different algorithms have been proposed for
enumerating the Pareto set in bicriteria shortest path problems [4[14]. In [] a
modified version of the Bellman/Ford algorithm is suggested. Beier shows that
the expected running time of this algorithm is O(nm? /o) for graphs with n
nodes and m edges [I]. We obtain the following improved bound.

Corollary 3. For semi-random bicriteria shortest path problems in which one
objective function is linear and its coefficients are perturbed by adding indepen-
dent Gaussian or uniformly distributed random variables with standard devia-
tion o, the expected running time of the modified Bellman/Ford algorithm is

O(nm3/a).

Smoothed Complexity of Integer Programming. We were not able to bound the
expected number of Pareto optimal solutions for optimization problems with
more than two objective functions. One approach for tackling multicriteria prob-
lems is to solve a constrained problem in which all objective functions except
for one are made constraints. Our results for the bicriteria case can be used to
improve the smoothed analysis of integer optimization problems with multiple
constraints. In [I3] we show that an integer optimization problem has polyno-
mial smoothed complexity if and only if there exists a pseudo-polynomial time
algorithm for solving the problem. To be more precise, we consider integer op-
timization problems in which an objective function is to be maximized over a
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feasible region that is defined as the intersection of a fixed ground set & C D"
with halfspaces By, ..., B,, that are induced by m linear constraints of the form
w121+ -+ Wi n Ty < t;, where the w; ; are independently perturbed by adding
Gaussian or uniformly distributed random variables with standard deviation o
to them.

The term polynomial smoothed complexity is defined such that it is robust
under different machine models analogously to the way polynomial average-case
complexity is defined. One disadvantage of this definition is that polynomial
smoothed/average-case complexity does not imply expected polynomial run-
ning time. For the binary case it is shown in [3] that problems that admit a
pseudo-linear algorithm, i.e., an algorithm whose running time is bounded by
O(poly(N)W), where N denotes the input size and W the largest coefficient
|w; ;| in the input, can be solved in expected polynomial time in the smoothed
model. Based on our analysis of the expected number of Pareto optimal solutions,
we generalize this result to the integer case.

Theorem 4. Fvery integer optimization problem that can be solved in time
O(poly(N)W), where N denotes the input size and W = max; ; |w; ;|, allows an
algorithm with expected polynomial (in N and 1/c) running time for perturbed
instances, in which an independent Gaussian or uniformly distributed random
variables with standard deviation o is added to each coefficient.

In the following section, we introduce the probabilistic model we analyze, which
is more general than the Gaussian and uniform perturbations described above.
After that, in Sections [3 and @, we present the upper and lower bounds on the
expected number of Pareto optimal solutions. Finally, in Section [l we present
the applications of our results to the smoothed analysis of integer programming.

2 Model and Notations

For the sake of a simple presentation, using the framework of smoothed analy-
sis, we described our results in the introduction not in their full generality. Our
probabilistic analysis assumes that the adversary can choose, for each p;, a prob-
ability distribution according to which p; is chosen independently of the other
profits. We prove an upper bound that depends linearly on the maximal density
of the distributions and on the expected distance to zero. The maximal density
of a continuous probability distribution, i.e., the supremum of the density func-
tion, is a parameter of the distribution, which we denote by ¢. Similar to the
standard deviation o for Gaussian random variables, ¢ can be seen as a mea-
sure specifying how close the analysis is to a worst-case analysis. The larger ¢,
the more concentrated the probability mass can be. For Gaussian and uniformly
distributed random variables, we have ¢ ~ 1/0.

In the following, we assume that p; is a random variable with density f;
and that f;(x) < ¢; for all € R. Furthermore, we denote by u; the expected
absolute value of p;, i.e., i = E[|pi]] = [, g 2| fi(z) dz. Let ¢ = max;c,) ¢ and
b = maX;e[,) pi- We denote by [n] the set {1,...,n}, and we use the notations
d=|D| and D = max{a —b | a,b € D}.
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3 Upper Bound on the Expected Number of Pareto
Optimal Solutions

While the profit function is assumed to be linear with stochastic coefficients,
the weight function w : & — R can be chosen arbitrarily. We model this by
assuming an explicit ranking of the solutions in S, which can be chosen by the
adversary. This way, we obtain a bicriteria optimization problem that aims at
maximizing the rank as well as the profit. Observe that the weight function can
map several solutions to the same value whereas the rank of a solution is always
unique. This strict ordering, however, can only increase the number of Pareto
optimal solutions.

Theorem 5. Let S C D" be a set of arbitrarily ranked solutions with a finite
domain D C Z. Define d = |D| and D = max{a — b | a,b € D}. Assume that
each profit p; is a random variable with density function f; : R — R>q. Suppose
wi = E[|pi|] and ¢; = sup,ep fi(z). Let ¢ denote the number of Pareto optimal
solutions. Then

Eq] <2DdH, (i ¢i> (i Mz‘) + O(dn) ,

i=1 i=1

where Hg is the d-th harmonic number. For D = {0,...,k — 1} and p =
maX;e(,) fi and ¢ = maxc(,) ¢; the bound simplifies to

E[q] = O(ugn’k*logk) .

Note that the number of Pareto optimal solutions is not affected when all profits
are scaled by some constant ¢ # 0. This property is also reflected by the above
bound. The random variable ¢p; has maximal density ¢;/c and the expected
absolute value is cu;. Hence, the product ¢u is invariant under scaling too.

Proof (Theorem [d). We use the following classification of Pareto optimal solu-
tions. We say that a Pareto optimal solution z is of class ¢ € D if there exists an
index i € [n] with x; # ¢ such that the succeeding Pareto optimal solution y satis-
fies y; = ¢, where succeeding Pareto optimal solution refers to the highest ranked
Pareto optimal solution that is lower ranked than x. The lowest ranked Pareto
optimal solution, which does not have a succeeding Pareto optimal solution, is
not contained in any of the classes. A Pareto optimal solution can be in several
classes but it is at least in one class. Let ¢. denote the number of Pareto optimal
solutions of class c. Since ¢ <143 .pqc it holds Efq] <1+ p E(g.].
Lemma [0 enables us to bound the expected number of class-0 Pareto opti-
mal solutions. In order to bound E [¢.] for values ¢ # 0 we analyze a modified
sequence of solutions. Starting from the original sequence S = z' 22,..., !
(z9 € D"), we obtain a modified sequence 8¢ by subtracting (c, ..., c) from each
solution vector x7. This way, the profit of each solution is reduced by ¢ p;.
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Observe that this operation does not affect the set of Pareto optimal solutions. A
solution z is class-c¢ Pareto optimal in S if and only if the corresponding solution
x—(c,...,c)is class-0 Pareto optimal in S¢. Hence, the number of class-c Pareto
optimal solutions in S corresponds to the number of class-0 Pareto optimal
solutions in §¢. We apply Lemma [Gl for the solution set S¢ with a corresponding
domain D¢ = {z — ¢ : z € D}. Since the difference between the largest and the
smallest element of the domain does not change, applying Lemma [@] yields that
E [¢] is bounded from above by

s X (o 3wt (e ) (Su) o)

ceD c€D veDe\{0}
and the theorem follows. a

Lemma 6. Let S C D" be a set of arbitrarily ranked solutions with a finite
domain D C Z with 0 € D. Let D denote the difference between the largest and
the smallest element in D. Let qy denote the number of class-0 Pareto optimal
solutions. Then

Elp<D{ > [ <Z¢i> (Zm) +n .

veD\{0}

Proof. The key idea is to prove an upper bound on the probability that there
exists a class-0 Pareto optimal solution whose profit falls into a small interval
(t —e,t), for arbitrary ¢t and €. We will classify class-0 Pareto optimal solutions
to be ordinary or extraordinary. Considering only ordinary solutions allows us to
prove a bound that depends not only on the length ¢ of the interval but also on
[t], the distance to zero. This captures the intuition that it becomes increasingly
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Fig. 2. In this case x is an extraordinary class-0 Pareto optimal solution

unlikely to observe solutions whose profits are much larger than the expected
profit of the most profitable solution. The final bound is obtained by observing
that there can be at most n extraordinary class-0 Pareto optimal solutions.

We want to bound the probability that there exists an ordinary class-0 Pareto
optimal solution whose profit lies in the interval (¢t — ¢,t). Define z* to be the
highest ranked solution from S satisfying pTa > t. If 2* exists then it is Pareto
optimal. Let Z denote the Pareto optimal solution that precedes x*, i.e., & has
the largest profit among all solutions that are higher ranked than z* (see Fig. [I]).
We aim at bounding the probability that & is an ordinary class-0 Pareto optimal
solution and falls into the interval (t — e, 1).

We classify solutions to be ordinary or extraordinary as follows. Let = be
a class-0 Pareto optimal solution and let y be the succeeding Pareto optimal
solution, which must exist as the lowest ranked Pareto optimal solution is not
class-0 Pareto optimal. We say that z is extraordinary if for all indices i € [n]
with z; # 0 and y; = 0, z; # 0 holds for all Pareto optimal solutions z that
preceed x. In other words, for those indices ¢ that make x class-0 Pareto optimal,
y is the highest ranked Pareto optimal solution that is independent of p; (see
Fig. ). For every index i € [n] there can be at most one extraordinary class-0
Pareto optimal solution. In the following we will restrict ourselves to solutions
Z that are ordinary. Define

At) = t —pT&if z* and & exist and 2 is ordinary class-0 Pareto optimal
Tl 4L otherwise.

Let PY denote the set of ordinary class-0 Pareto optimal solutions. Whenever
A(t) < €, then there exists a solution z € P° with pTz € (t — ¢,t), namely 2.
The reverse is not true because it might be the case that & ¢ P° but that there
exists another solution z € P° with pTz € (t—e¢,t). If, however, ¢ is smaller than
the minimum distance between two Pareto optimal solutions, then the existence
of a solution € PY with pTx € (t — ¢,t) implies 2 = 2 and hence A(t) < e. Let
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A(t,e) denote the event that there is at most one Pareto optimal solution with
a profit in the interval (¢ — &,t). Then

Pr[A(t) <e] > Pr[(A(t) < e) A At e)]
=Pr |3z eP’:pTze(t—ct) AAlte)]
>Pr[3zeP’:iplae (t—et) - Pr[~Ate),

and therefore

P EI 0: T — =
limPr[A(t)<€]zlim r(3zePO:ptac(t s,t)]_hmPr[A(tﬁ)].

e—0 £ e—0 £ e—0 I3

In the full version we show that for every ¢ # 0 the probability of that two
solutions lie in the interval (¢ — ¢, t) decreases like €2 for € — 0. Hence, for every

t # 0, lim._q Pr[ﬁ:‘(t’s)] = 0. Since the expected number of ordinary class-0
Pareto optimal solutions can be written as

o0 Pr|[3zePC:pTae (t—e,t o0
/ - r 3z pTa e (t—e,t)] dtg/ i Pr[A(t) < €]
00 €0 £ 00 €0 £

dt |

it remains to analyze the term Pr [A(t) < ¢]. In order to analyze this probability
we define a set of auxiliary random variables such that A(t) is guaranteed to
always take a value also taken by one of the auxiliary random variables. Then
we analyze the auxiliary random variables and use a union bound to conclude
the desired bound for A(t).

Define D' = D\{0} and S¥=" = {x € S | x; = v} for all i € [n] and v € D.
Let #*() denote the highest ranked solution from S*=° with profit at least t.
For each i € [n] and v € D’ we define the set L") as follows. If 2*(V) does not
exist or z*(") is the highest ranked solution in S*=° then we define £?) = ().
Otherwise £(4?) consists of all solutions from S**=" that have a higher rank than
2*() Let (%) denote the lowest ranked Pareto optimal solution from the set
£ ie., 25 has the largest profit among all solutions in £(%). Finally we
define for each i € [n] and v € D’ the auxiliary random variable

A(t) = t — pT20) if 7000) exists,
g 1 otherwise.

If AY(t) € (0,¢) (which excludes AY(¢) =L) then the following three events must
co-occur:

1. & : There exists an z € S*=0 with pTz > ¢.
2. & : There exists an z € S*=° with pTz < t.
3. & : 24 exists and its profit falls into the interval (¢ — e,).

The events & and & only depend on the profits p;, j # ¢. The existence
and identity of #(»¥) is completely determined by those profits as well.
Hence, if we fix all profits except for p;, then #(4%) is fixed and its profit is
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¢ + vp; for some constant ¢ that depends on the profits already fixed. Ob-
serve that the random variable ¢ 4+ vp; has denslty at most ¢;/|v|. Hence we
obtainPr [pT2() € (t —e,t)| 2(0%) exists | < 5| |- Define

ij and P’:ij.

Jp; >0 J:p; <0

Moreover let dt and d~ denote the largest and the smallest element in D.
For ¢ > 0, the event & implies ¢t < dTP* + d~P~, and hence Pr[&;] <
Pr[dtPT +d P~ >1t]. For t < 0, the event & implies ¢ > dTP~ + d~P*
and hence Pr [&] < Pr[dt P~ +d~ P* < t]. By combining these results we get

Pr[AY(t 0 < Pr[d+P++d7P*Zt}€|i|7fort>o and
P 0= Pr[dtP~ +d Pt <t]ef, for t <0.

Next we argue that A(t) < e implies AY(¢t) € (0,e) for at least one pair
(i,v) € [n] x D’. So assume that A(t) < e. By definition, z* and & exist and &
is an ordinary class-0 Pareto optimal solution. Since Z is class-0 Pareto optimal
and z* is the succeeding Pareto optimal solution, there exists an index i € [n]
such that

(a) 2f =0 and &; = v # 0 for some v € D', and
(b) x* is not the highest ranked solution in S*i=°.

The second condition is a consequence of the assumption, that & is not extraor-
dinary, i. e., there exists a Pareto optimal solution z with z; = 0 that has higher
rank than Z. Recall that z*() is defined to be the highest ranked solution in
§%=0 with pTz > t. As z* € §%=9, z* = 2*@). Moreover, L) consists of
all solutions from S*=? that have a higher rank than z*. Thus, & € £*). By
construction, Z has the largest profit among the solutions in £>*) and, therefore
#(4%) = & and AY(t) = A(t). Applying a union bound yields, for all ¢ > 0,

Pr[A(t) < ¢] gzn:ZPr[A;’(t)<6]

i=1veD’
giZPrd+P++dP >t]e 2
=1 veD’ |U|
Pr[d"P"+d P~ >t]e ZZH.

=1 veD’

For t < 0 we get analogously

Pr[A(t) <e] <Pr[d*P™ +d P <] i Z
i=1 veD’
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Now we can bound the expected number of class-0 Pareto optimal solutions,
taking into account that at most n of them can be extraordinary.

Elg] <n+ /OO iy FTIA) < €]

00 €0 £

dt

oo Pr(dtPt +d P~ >tle> >, ﬁ;
0

Lt
e—0 13
0 PrldtP +d Pt<teXl, Y,
+ / liH(l) dt
—00 £ €

<n+ (Z i) <i1¢> (/OOOPr [d* Pt +d P~ >t]dt
+AmPﬁ—ﬁP—dP+>ﬂﬁ)

As 0 € D, it holds dt > 0 and d~ < 0. Hence we have d* Pt +d~P~ > 0,
—dtP~ —d P >0, and

/ Pr[d"PT+d P >t dt+/ Pr[—dtP~ —d P* >t] dt
0 0
=E[d"P'+d P |+E[-d"P” —d P"]

leill =D i . m
i=1 1=1

=(d"—d )E[Pt—P7 | =(d"-d)E

4 Lower Bounds on the Expected Number of Pareto
Optimal Solutions

In this section we present a lower bound of 2(n?klog(1 + k)) on the number of
Pareto optimal solutions for D = {0, ..., k}, generalizing a bound for the binary
domain presented in [2]. In Theorem [ we prove the stronger bound 2(n%k?)
under slightly stronger assumptions. The weaker bound provides a vector of
weights w1, . . ., wy, such that the bound holds for a linear weight function wTz.
For the stronger bound we can only prove that there is some weight function
w: S — R for which the bound holds but this function might not be linear.
In combinatorial optimization, however, many problems have linear objective
functions. The proofs of the theorems in this section will be contained in the full
version of this paper.

Theorem 7. Let D = {0,...,k}. Suppose profits are drawn independently at
random according to a continuous probability distribution with non-increasing
density function f : R>9 — Rx>q. Let q denote the number of Pareto optimal
solutions over & = D™. Then there is a vector of weights w1, ..., w, € Rsq for
which

Hy,

4 k(n> —n)+kn+1

Elq] >
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where Hy, is the k-th harmonic number. If the profits are drawn according to the
uniform distribution over some interval [0, c] with ¢ > 0 then the above inequality
holds with equality.

Similarly, a lower bound of £2(n?klogk) can be obtained for the case that f is
the density of a Gaussian random variable with mean 0. Since all weights w; are
larger than 0, a solution with a negative profit cannot be contained in a Pareto
optimal solution. Hence, we can ignore those items. Restricted to the interval
[0,00) the density of a Gaussian random variable with mean 0 is non-increasing
and, hence, we can apply Theorem [1

Now we consider general weight functions and show a lower bound of £2(n2k?)
on the expected number of Pareto optimal solutions for D = {0,...,k} and
S = D". We assume that k is a function of n with (5(c+ 1) 4+ 1)logn < k < n¢
for some constant c. We use the probabilistic method to show that, for each
sufficiently large n € N, a ranking exists for which the expected number of Pareto
optimal solutions is lower bounded by n?k?/k for some constant x depending
only on ¢, that is, we create a ranking at random (but independently of the
profits) and show that the expected number of Pareto optimal solutions (where
the expectation is taken over both the random ranking and the random profits)
satisfies the desired lower bound. This implies that, for each sufficiently large
n € N, there must exist a deterministic ranking on {0,...,k}" for which the
expected number of Pareto optimal solutions (where the expectation is now
taken only over the random profits) is at least n?k?/k.

Theorem 8. Let (5(c+ 1)+ 1)logn < k < n® for some ¢ > 2 and assume that
n is a multiple of ¢ + 2. There exists a constant k depending only on ¢ and a
ranking on {0, ..., k}"™ such that the expected number of Pareto optimal solutions
is lower bounded by n*k?/k if each profit p; is chosen independently, uniformly
at random from the interval [—1,1].

5 Smoothed Complexity of Integer Programming

In [I3], we analyze the smoothed complexity of integer programming. We con-
sider integer programs in which an objective function is to be maximized over a
feasible region that is defined as the intersection of a fixed ground set & C D"
with a halfspace B that is induced by a linear constraint wyxy + - -+ + wpx, < t,
where the w; are independent random variables which can be represented by
densities that are bounded by ¢. We show that an integer optimization problem
in this form has polynomial smoothed complexity if and only if there exists a
pseudo-polynomial algorithm (w.r.t. the w;) for solving it.

The main technical contribution in [13] is the analysis of the random variables
loser gap and feasibility gap. The feasibility gap I" is defined as the slack of the
optimal solution from the threshold ¢. To be more precise, let * denote the
optimal solution, that is, 2* denotes the solution from &N B that maximizes the
objective function. Then the feasibility gap can be defined as I' = t — wTz*. A
solution z € § is called a loser if it has a higher objective value than z* but is
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infeasible due to the linear constraint, that is, wTz > t. We denote the set of all
losers by L. Furthermore, we define the minimal loser x € £ to be the solution
from £ with minimal weight, that is, * = argmin{w™z | z € £}. The loser gap
A denotes the slack of the minimal loser from the threshold ¢, i.e., A = w2 —¢.

If both the loser and the feasibility gap are not too small, then rounding
all weights w; with sufficient accuracy does not change the optimal solution.
Rounding the weights can only affect the optimal solution if either z* becomes
infeasible or a loser x becomes feasible. The former event can only occur if the
feasibility gap is small; the latter event can only occur if the loser gap is small.
In a rather technical and lengthy analysis we show the following lemma on the
probability that the loser or the feasibility gap is small.

Lemma 9. (Separating Lemma [13]) Let S C D™ with 0™ ¢ S be chosen arbi-
trarily, let p = max;ep,) Ef|wi|], d = |D|, and dmax = max{|a| | a € D}. Then,
for all £ € [0, (32un®d" dmaxd®) 1],

Pr(l" < ¢] < 2(-32un°d" diax®)Y? and Pr[A < e] < 2(e-32un’d" duay?) /.

In the full version of this paper we present a much simpler proof for the following
improved version of the previous lemma.

Theorem 10. Let S C D™ with 0™ ¢ S be chosen arbitrarily, and let D =
max{a — b | a,b € D} < 2dpax. There exists a constant k such that, for all
e >0,

Pr (I < €] < enp?un®Ddlog? d and Pr[A < €] < ex¢?un®Ddlog®d .

In [13] we show that Lemma [ can also be used to analyze integer optimization
problems with more than one linear constraint. We consider integer optimization
problems in which an objective function is to be maximized over a feasible region
that is defined as the intersection of a fixed ground set & C D™ with halfspaces
Bi,...,B, that are induced by m linear constraints of the form w; 21 + --- +
Wi nTn < t;, where the w;; are independent random variables which can be
represented by densities that are bounded by ¢.

The feasibility gap I" for multiple constraints is defined to be the minimal slack
of the optimal solution z* from one of the thresholds, i.e., I' = min;epm,(t; —
(wi1x1+- - -+w; ny)). The loser gap A for multiple constraints is defined as A =
Minge £ MaX;e (] (Wi 121 + - - - + Wi nTn — ). In [I3] we show how Lemma [ gives
rise to bounds on the sizes of loser and feasibility gap for multiple constraints.
Based on this observation we show that an integer optimization problem with
multiple constraints has polynomial smoothed complexity if and only if there
exists a pseudo-polynomial algorithm (w.r.t. the w; ;) for solving it. By applying
the same arguments, our bounds in Theorem [I0 yield the following corollary.

Corollary 11. Let & C D™ with 0™ ¢ S be chosen arbitrarily, let D = max{a —
bl abe D} < 2dmax, and let the set of feasible solutions be given as S N By N
...NB,,. There exists a constant k such that, for all € > 0,

Pr (I <¢| < eng’umn®Ddlog? d and Pr[A < e] < erg?umn®Ddlog?d .
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The main improvement upon our previous analysis is that the bounds in Corol-
lary [T depend only linearly on e instead of £'/3. Due to this improvement we
can prove Theorem Ml in the same way as its binary version in [3], which is not
possible with the bounds derived in [13].
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Abstract. We show that one can compute a (simple) polytope from its
graph in Polynomial time. This computation of a polytope from its graph
was shown to be solvable by Blind and Mani and more recently Kalai
provided a simple proof that leads to an exponential time algorithm.
Our proof relies on a Primal-Dual characterization by Joswig, Kaibel
and Korner. We describe an exponential Linear Programming which can
be used to construct the solution and show that it can be solved in
polynomial time.

1 Introduction

In [I] Blind and Mani showed, using tools from homology theory, that one can
construct the entire face lattice of a (simpl) polytope from its graph. Then
in [7], Kalai presented an elementary proof of this result. Whereas Blind and
Mani’s result was essentially nonconstructive, Kalai’s result was constructive
but required exponential time (in the size of the graph).

More recently, Joswig, Kaibel and Korner [4] extended Kalai’s analysis to
provide polynomial certificates for this problem, based on a pair of combinato-
rial optimization problems that form a primal dual pair. However, they do not
provide polynomial algorithms for either of these problems and thus left open
the question of whether this problem can be solved in polynomial time.

In this paper, we present a polynomial time algorithm for computing the face
lattice of a polytope from its graph, resolving this question. We present a linear
program for computing the 2-faces of the polytope from its graph which can be
solved in polynomial time. As discussed in [5l6] this resolves the issue, as one
can compute the full face lattice from the set of 2 faces.

Our discussion in the remainder of the paper will be self contained, but terse.
For more details see the related papers [4J5] and the book [9].

2 2-Systems and Pseudo-polytopes
Let G = (V, E) be the graph of a simple (full dimensional) polytope, P, in R¢,
where V' is the set of vertices of the polytope and E are its edges.

! Note that if the polytope is not simple then it is not uniquely defined by its graph.
Thus, we will only consider simple polytopes.

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 68 2007.
© Springer-Verlag Berlin Heidelberg 2007
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A 2-frame, centered at v, is a set of three distinct nodes, v,v’,v” such that
(v,v") and (v,v") are both elements of E. A 2-system is a set of cycles in G such
that every 2-frame is contained in a unique cycle.

Let O be an acyclic orientation on G. Define H(O) to be the number of 2-
frames that are sinks under O, where the 2-frame (v,v’,v”) is a sink if both
edges (v,v') and (v,v”) are oriented towards the center of the frame, v.

Our analysis will be based on the following (minor) extension of the main
result from [4]. Our modification is that we require a specified vertex not be a
source.

Theorem 1 (Joswig, Korner and Kaibel). Let P be a simple d-polytope.
For every 2-system S of G, vertex v, and every acyclic orientation O of G, such
that no 2-frame centered at v is a 2-sink, the inequalities

1S < [Va(P)] < H(O)

hold, where the first inequality holds with equality if and only if S = Va(P) (the
set of 2 faces of P), and the second holds with equality if and only if O induces
precisely one sink on every 2-face of P.

Proof: Our proof is a slight modification of that in [4], since we require that a
chosen vertex not be a source. First note that for an acyclic orientation that
every cycle must contain a 2-sink. Thus we must have that |S| < H(O). In
addition, since V5 (P) is a 2-system this implies that |V2(P)| < H(O) which in
turn implies that |S| < [Va(P)|. The second inequality holds with equality when
O is an abstract objective function with v as a source. Such an AOF exists since
there exists a linear objective function on the polytope where v is the worst
vertex. That S = V5(P) when the first holds with equality can be shown using
the same proof as in [4]. O

Thus, if we can find a 2-system S that maximizes |S| in polynomial time, then
we have found V5 (p) and from that one can compute the full face lattice of P in
polynomial time. See [5lJf] for details.

We use the above theorem to define a “pseudo-polytopal multi-graph” to be a
multi-graph G such that there exists a vertex v and “pseudo 2-face set”, Vo(G)
such that Theorem 1 holds. Clearly the graph of a polytope is pseudo-polytopal;
however, as we now show, other multi-graphs (which do not arise from simple
polytopes) may also be pseudo-polytopal.

Given a graph G of a polytope P define the contraction of G by a 2-face f to
be a new multi-graph Cy(G), where all the nodes in f are contracted to a single
node, denoted v. Note that this is a multi-graph as there may be multiple edges
connecting v to an adjacent node. We consider each of these to be distinct and
may even have a 2-face on only 2 nodes.

Theorem 2. Let G be the graph of a simple polytope P and F be a 2-face of P.
Then G' = Cf(G) is a pseudo-polytopal multi-graph.

Proof: The proof is identical to the proof of Theorem 1 where we choose V2(G’)
to be the Vo(P) \ f and O to be the contraction of an AOF for G where all
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vertices on the face f are worse than all other vertices. To construct such an
AOF simply take the linear objective function with f as a level set and perturb
it slightly. O

In the following section, we will present a binary integer program with an expo-
nential number of variables for computing this 2-system. Somewhat surprisingly,
this can be solved in polynomial time.

3 Solving Via Linear Programming

Let T be the set of all 2-frames in G and ¢ € T be the 2-frame (¢, 1, t2) centered
at to. Let W be the set of all loops in G. Then to compute Va(P) we need to
solve:

mazx Z T (IP—-25)

weW
s.t.
VteT: Zajw =1
wot
zy € {0,1}

where we write w > t as a shorthand for the 2-frames ¢ contained in w. First we
consider the following relaxation of this integer program.

max Z Ty (LP-S)
weWw
s.t.
VEeT: Y x,<0
w3t
Ty >0

Next, we consider the dual of this LP:

min» v, (LP-SD)
teT
s.t

VweW: Y v >1

tew
V¢ Z 0

Let IP-SD be the related binary integer program for LP-SD, i.e., replace 0 < vy
with v; € {0,1}. Now, consider an acyclic orientation, @ of G and let v; = 1
represent the case when the 2-frame ¢ is a 2-sink. Then the integer program
for minimizing H(QO) over all acyclic orientations can be written by adding the
constraint that v must arise from an acyclic orientation on G, to IP-SD.
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min Z v (IP-H)

teT
s.t

Ywe W : thzl

tew
V¢ Z 0

v arises from an acyclic orientation of G
This sequence of optimization problems allows us to present our first result:

Theorem 3. Let P be a simple d-polytope with graph G. Then the following
optimization problems for G all have the same optimal value: IP-S, LP-S, LP-
SD, IP-SD and IP-H.

Proof: Let Opt(problem) be the optimal objective value for the optimization prob-
lem, “problem”. Then it is easy to see that Opt(IP — S) < Opt(LP — S) and
Opt(LP — SD) < Opt(IP—SD) < Opt(IP —H) as these are sequences of relax-
ations. By strong duality, we have Opt(LP—S) = Opt(LP—SD). Now, Theorem 1
completes the proof since it implies that Opt(IP — S) = Opt(IP — H). 0

4 Solution and Integrality of the Linear Program

To complete our analysis we show that LP-SD can be solved in polynomial time
and that its solution is actually a solution to IP-S, yielding V5 (P).

Note that even though LP-SD has an exponential number of constraints it can
be solved in polynomial time by the ellipsoid method if there exists a polynomial
separation algorithm [3]. That is, an algorithm which given a vector v can check
whether v is feasible and if not, find a constraint violated by v. In our case such
a constraint is a cycle w € W such that ZtEw wy < 1. This can be solved easily
in polynomial time via a graphical algorithm.

For example, one can search node by node for a loop starting at that node
that violates the constraint. This can be done by finding a shortest path from
that node to a copy of itself on a modified version of G where the specified node
is doubled and the graph is directed to force any such path to be a cycle.

To complete the analysis one must guarantee that the the solution of the LP
is binary. Note that the optimal solution of IP-S is unique, since there is only
one true set of 2-faces for a polytope. So it suffices to show that the extreme
point solution of LP-S is unique.

Theorem 4. LP-S has a unique optimal solution.

Proof: Suppose that LP-S has the binary optimal solution z* and second extreme
point 2’. Then there must exist some w € W such that ¥, = 1 and 2}, = 0,
otherwise (1 + €)a’ — ex* would also be an optimal solution, for small enough
e > 0, implying that 2/, is not an extreme point.
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Let f € F denote the face implied by z}, and contract the graph G by f,
denoting this node by f and the contracted graph by G' = C¢(G).

Now consider IP-S on this graph where we drop the constraints for 2-frames
centered at f but require all the remaining ones. Since G’ is psuedo-polytopal
our previous argument holds for the string of optimization problems induced
by G’. In particular, the solution of IP-S must have objective value equal to
[V2(P)| — 1; however the projection of 2’ is feasible for LP-S but has a greater
objective value (|Va(P)l|), providing a contradiction and proving the theorem. O

Thus, we can find an integral solution of LP-S and hence a solution of IP-S, in
polynomial time, and can find the full face lattice in polynomial time.

5 Discussion

Our analysis shows that one can compute the face lattice of a polytope from its
graph in polynomial time and suggests that similar techniques might be useful
for finding abstract objective functions in polynomial time, an interesting open
problem.

One interesting question is whether one can tell whether a graph is polytopal,
i.e., arising from a polytope. One way to show that a graph is not polytopal
would be to show that the linear program (LP-S) does not have an integral
solution or the related existence of a duality gap. However, the existence of
psuedo-polytopal graphs shows that this would not be sufficient.

Lastly, we note that our analysis appears to have connections to recent work
on unique sink orientations [8I2], as our intermediate integer program (IP-SD) is
essentially solving for a unique sink orientation. Thus, minimizing over unique
sink orientations is equivalent to minimizing over abstract objective functions.
We conjecture that using this equivalence, one could provide an optimization
based characterization of unique sink orientations for general polytopes analo-
gous to our definition of pseudo-polytopal graphs.
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Abstract. The topic of this paper are integer programming models in
which a subset of 0/1-variables encode a partitioning of a set of objects
into disjoint subsets. Such models can be surprisingly hard to solve by
branch-and-cut algorithms if the order of the subsets of the partition is
irrelevant. This kind of symmetry unnecessarily blows up the branch-
and-cut tree.

We present a general tool, called orbitopal fixing, for enhancing the
capabilities of branch-and-cut algorithms in solving such symmetric inte-
ger programming models. We devise a linear time algorithm that, applied
at each node of the branch-and-cut tree, removes redundant parts of the
tree produced by the above mentioned symmetry. The method relies on
certain polyhedra, called orbitopes, which have been investigated in [LT].
It does, however, not add inequalities to the model, and thus, it does not
increase the difficulty of solving the linear programming relaxations. We
demonstrate the computational power of orbitopal fixing at the example
of a graph partitioning problem motivated from frequency planning in
mobile telecommunication networks.

1 Introduction

Being welcome in most other contexts, symmetry causes severe trouble in the so-
lution of many integer programming (IP) models. This paper describes a method
to enhance the capabilities of branch-and-cut algorithms with respect to hand-
ling symmetric models of a certain kind that frequently occurs in practice.

We illustrate this kind of symmetry by the example of a graph partitioning
problem (another notorious example is the vertex coloring problem). Here, one
is given a graph G = (V, E) with nonnegative edge weights w € Q% and an
integer ¢ > 2. The task is to partition V into ¢ disjoint subsets such that the
sum of all weights of edges connecting nodes in the same subset is minimized.

A straight-forward IP model arises by introducing 0/1-variables x;; for all
i€ [p]:={1,...,p} and j € [¢] that indicate whether node 7 is contained in

* Supported by the DFG Research Center MATHEON Mathematics for key technologies
in Berlin.
** During the research of this work the first author was a visiting professor at Technische
Universitat Berlin.
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subset j (where we assume V = [p]). In order to model the objective function,
we furthermore need 0/1-variables y;;, for all edges {i, k} € F indicating whether
nodes 4 and k are contained in the same subset. This yields the following model

(see, e.g., [B]):
min Z Wik Yik

{i,k}€E
q
s.t. Zmij =1 for all ¢ € [p]
j=1

Tij + T — Yiw < 1 for all {i,k} € E, j € [q]
xi; €40,1} for all i € [p], j € [q]
yik €{0,1} for all {i,k} € E.

The z-variables describe a 0/1-matrix of size p x ¢ with exactly one 1-entry
per row. They encode the assignment of the nodes to the subsets of the partition.
The methods that we discuss in this paper do only rely on this structure and thus
can be applied to many other models as well. We use the example of the graph
partitioning problem as a prototype application and report on computational
experiments in Sect. [l Graph partitioning problems are discussed in [3], @] [5],
for instance as a relaxation of frequency assignment problems in mobile telecom-
munication networks. The maximization version is relevant as well [6l [12]. Also
capacity bounds on the subsets of the partition (which can easily be incorporated
into the model) are of interest, in particular the graph equipartitioning problem
[7, 8, 18, [19]. For the closely related clique partitioning problem, see [9] [10].

As it is given above, the model is unnecessarily difficult for state-of-the-art IP
solvers. Even solving small instances requires enormous efforts (see Sect.[B]). One
reason is that every feasible solution (z,y) to this model can be turned into ¢!
different ones by permuting the columns of = (viewed as a 0/1-matrix) in an
arbitrary way, thereby not changing the structure of the solution (in particular:
its objective function value). Phrased differently, the symmetric group of all
permutations of the set [¢] operates on the solutions by permuting the columns of
the z-variables in such a way that the objective function remains constant along
each orbit. Therefore, when solving the model by a branch-and-cut algorithm,
basically the same work will be done in the tree at many places. Thus, there
should be potential for reducing the running times significantly by exploiting
the symmetry. A more subtle second point is that interior points of the convex
hulls of the individual orbits are responsible for quite weak linear programming
(LP) bounds. We will, however, not address this second point in this paper.

In order to remove symmetry, the above model for the graph partitioning
problem is often replaced by models containing only edge variables, see, e.g. [7].
However, for this to work the underlying graph has to be complete, which might
introduce many unnecessary variables. Moreover, formulation (D) is sometimes
favorable, e.g., if node-weighted capacity constraints should be incorporated.

One way to deal with symmetry is to restrict the feasible region in each
of the orbits to a single representative, e.g., to the lexicographically maximal
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(with respect to the row-by-row ordering of the x-components) element in the
orbit. In fact, this can be done by adding inequalities to the model that enforce
the columns of = to be sorted in a lexicographically decreasing way. This can
be achieved by O(pq) many column inequalities. In [IT] even a complete (and
irredundant) linear description of the convex hull of all 0/1-matrices of size p x ¢
with exactly one l-entry per row and lexicographically decreasing columns is
derived; these polytopes are called orbitope. The description basically consists of
an exponentially large superclass of the column inequalities, called shifted column
inequalities, for which there is a linear time separation algorithm available. We
recall some of these results in Sect.

Incorporating the inequalities from the orbitope description into the IP model
removes symmetry. At each node of the branch-and-cut tree this ensures that the
corresponding IP is infeasible as soon as there is no representative in the subtree
rooted at that node. In fact, already the column inequalities are sufficient for
this purpose.

In this paper, we investigate a way to utilize these inequalities (or the or-
bitope that they describe) without adding any of the inequalities to the models
explicitly. The reason for doing this is the unpleasant effect that adding (shifted)
column inequalities to the models results in more difficult LP relaxations. One
way of avoiding the addition of these inequalities to the LPs is to derive logical
implications instead: If we are working in a branch-and-cut node at which the
x-variables corresponding to index subsets Iy and I are fixed to zero and one,
respectively, then there might be a (shifted) column inequality yielding impli-
cations for all representatives in the subtree rooted at the current node. For
instance, it might be that for some (4, j) & Iy U I1 we have x;; = 0 for all feasi-
ble solutions in the subtree. In this case, z;; can be fixed to zero for the whole
subtree rooted at the current node, enlarging Iy. We call the iterated process
of searching for such additional fixings sequential fixing with (shifted) column
inequalities.

Let us mention at this point that deviating from parts of the literature, we
do not distinguish between “fixing* and “setting* of variables in this paper.

Sequential fixing with (shifted) column inequalities is a special case of con-
straint propagation, which is well known from constraint logic programming.
Modern IP solvers like SCIP [I] use such strategies also in branch-and-cut algo-
rithms. With orbitopes, however, we can aim at something better: Consider a
branch-and-cut node identified by fixing the variables corresponding to sets Iy
and [ to zero and one, respectively. Denote by W (I, I1) the set of all vertices
of the orbitope with z;; = 0 for all (¢,7) € Ip and a;; = 1 for all (¢,5) € I.
Define the sets I} and I7 of indices of all variables, for which no = in W (I, I1)
satisfies z;; = 1 for some (i,5) € If or x;; = 0 for some (,j) € I7. Fixing of
the corresponding variables is called simultaneous fizing at the branch-and-cut
node. Simultaneous fixing is always at least as strong as sequential fixing.

Investigations of sequential and simultaneous fixing for orbitopes are the cen-
tral topic of the paper. The main contributions and results are the following:
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o We present a linear time algorithm for orbitopal fizing, i.e., for solving the
problem to compute simultaneous fixings for orbitopes (Theorem H).

o We show that, for general 0/1-polytopes, sequential fixing, even with com-
plete and irredundant linear descriptions, is weaker than simultaneous fix-
ing (Theorem [Z), We clarify the relationships between different versions of
sequential fixing with (shifted) column inequalities, where (despite the situ-
ation for general 0/1-polytopes) the strongest one is as strong as orbitopal
fixing (Theorem []).

o We report on computer experiments (Sect. Bl) with the graph partitioning
problem described above, showing that orbitopal fixing leads to significant
performance improvements for branch-and-cut algorithms.

Margot [14, [I5, [I7] considers a related method for symmetry handling. His ap-
proach works for more general types of symmetries than ours. Similarly to our
approach, the basic idea is to assure that only (partial) solutions which are lexi-
cographical maximal in their orbit are explored in the branch-and-cut tree. This
is guaranteed by an appropriate fixing rule. The fixing and pruning decisions
are done by means of a Schreier-Sims table for representing the group action.
While Margot’s approach is much more generally applicable than orbitopal fix-
ing, the latter seems to be more powerful in the special situation of partitioning
type symmetries. One reason is that Margot’s method requires to choose the
branching variables according to an ordering that is chosen globally for the en-
tire branch-and-cut tree.

Another approach has recently been proposed by Linderoth et al. [I3] (in this
volume). They exploit the symmetry arising in each node of a branch-and-bound
tree when all fixed variables are removed from the model. Thus one may find
additional local symmetries. Nevertheless, for partitioning type symmetries one
still may miss some part of the (fixed) global symmetry we are dealing with.

We will elaborate on the relations between orbitopal fixing, isomorphism prun-
ing, and orbital branching in more detail in a journal version of the paper.

2  Orbitopes

Throughout the paper, let p and g be integers with p > ¢ > 2. The orbitope O, ,
is the convex hull of all 0/1-matrices x € {0,1}[P/*l9 with exactly one 1-entry
per row, whose columns are in decreasing lexicographical order (i.e., they satisfy
P 2Py > S 2P~y sy for all j € [g — 1]). Let the symmetric group of
size ¢ act on {0, 1}[17le [9] via permuting the columns. Then the vertices of 0,4
are exactly the lexicographically maximal matrices (with respect to the row-by-
row ordering of the components) in those orbits whose elements are matrices
with exactly one l-entry per row. As these vertices have z;; = 0 for all (¢, )
with ¢ < j, we drop these components and consider O, , as a subset of the space
R7ra with Z,, , := {(4,) € {0,1}P1*[a : j > j}. Thus, we consider matrices, in
which the i-th row has ¢(i) := min{i, ¢} components.
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i O i +++ i +++ i +++
(a) (b) (c) (d)
Fig. 1. @ Example for coordinates (9,5) = (5,5). Three shifted column

inequalities, the left one of which is a column mequahty

In [I1], in the context of more general orbitopes, O, is referred to as the
partitioning orbitope with respect to the symmetric group. As we will confine
ourselves with this one type of orbitopes in this paper, we will simply call it
orbitope.

The main result in [I1] is a complete linear description of 0, 4 In order to
describe the result, it will be convenient to address the elements in 7, , via a
different “system of coordinates” For j € [¢] and 1 < n < p — j + 1, define
(n,7) == (j+n—1,7). Thus (as before) i and j denote the row and the column,
respectively, while 7 is the index of the diagonal (counted from above) containing
the respective element; see Figure [Il@ for an example.

Aset S = {(1,¢1),(2,¢2),....,(mcy)} CIpgq with ¢ < ¢cp < -+ < ¢y and
n > 1 is called a shifted column. For (i,7) = (1, j) € I, 4, a shifted column S as
above with ¢,, < j, and B = {(4, j), (¢,7+1), ..., (¢,q9(2))}, we call z(B)—z(S) <0
a shifted column inequality. The set B is called its bar. In case of ¢; = --- = ¢, =
j — 1 the shifted column inequality is called a column inequality. See Figure [l
for examples.

Finally, a bit more notation is needed. For each i € [p], we define row; :=
{(i,j) : j €lq(i)]}. For A C Z,, and z € R%r4, we denote by z(A) the sum

(in)eA Ti-
Theorem 1 (see [11]). The orbitope O, is completely described by the non-

negativity constraints x;; > 0, the row-sum equations x(row;) = 1, and the
shifted column inequalities.

In fact, in [IT] it is also shown that, up to a few exceptions, the inequalities
in this description define facets of Op 4+ Furthermore, a linear time separation
algorithm for the exponentially large class of shifted column inequalities is given.

3 The Geometry of Fixing Variables

In this section, we deal with general 0/1-integer programs and, in particular,
their associated polytopes. We will define some basic terminology used later in
the special treatment of orbitopes, and we are going to shed some light on the
geometric situation of fixing variables.
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We denote by [d] the set of indices of variables, and by C? = {z € R? :
0 <ux; <1forallie[d]} the corresponding 0/1-cube. For two disjoint subsets
107]1 Q [d} (Wlth IO n Il = @) we call

{reC?:z;=0forallicly, z;=1foralliel}

the face of C% defined by (Iy,I,). All nonempty faces of C¢ are of this type.

For a polytope P C C? and for a face F of C? defined by (o, I1), we denote
by Fixz(P) the smallest face of C? that contains PN F N{0,1}% (i.e., Fixp(P)
is the intersection of all faces of C* that contain P N F N {0,1}%). If Fixy(P) is
the nonempty cube face defined by (I5, I7), then I} and I consist of all i € [d]
for which z; = 0 and a; = 1, respectively, holds for all z € PN F n {0, l}d. In
particular, we have Iy C Iy and I; C I}, or Fixp(P) = &. Thus, if Iy and I
are the indices of the variables fixed to zero and one, respectively, in the current
branch-and-cut node (with respect to an IP with feasible points P N {0,1}%),
the node can either be pruned, or the sets Ij and I yield the maximal sets of
variables that can be fixed to zero and one, respectively, for the whole subtree
rooted at this node. Unless Fixp(P) = @, we call (I}, I7) the fixing of P at
(Lo, I1). Similarly, we call Fixp(P) the fizing of P at I

Remark 1. If P, P’ C C? are two polytopes with P C P’ and F and F’ are two
faces of C% with F C F’, then Fixy(P) C Fixz (P’) holds.

In general, it is not clear how to compute fixings efficiently. Indeed, computing
the fixing of P at (&, @) includes deciding whether P N {0,1}¢ = @, which, of
course, is NP-hard in general. Instead, one can try to derive as large as possible
subsets of Iy and I7 by looking at relaxations of P. In case of an IP that is
based on an intersection with an orbitope, one might use the orbitope as such a
relaxation. We will deal with the fixing problem for orbitopes in Sect. [

If P is given via an inequality description, one possibility is to use the knapsack
relaxations obtained from single inequalities out of the description. For each of
these relaxations, the fixing can easily be computed. If the inequality system
describing P is exponentially large, and the inequalities are only accessible via
a separation routine, it might still be possible to decide efficiently whether any
of the exponentially many knapsack relaxations allows to fix some variable (see
Sect. [A2]).

Suppose, P = {z € C? : Az <b} and P, = {x € C? : oz <b,} is the
knapsack relaxation of P for the rth-row afm < b.of Ax < b,wherer =1,...,m.
Let F be some face of C?. The face G of C? obtained by setting G := F and
then iteratively replacing G by Fixg(FP,) as long as there is some r € [m] with
Fixg(P,) € G, is denoted by Fixp(Az <b). Note that the outcome of this
procedure is independent of the choices made for r, due to Remark [l We call
the pair (Io, I;) defining the cube face Fixp(Az < b) (unless this face is empty)
the sequential fizing of Az < b at (Iy,I1). In the context of sequential fixing we
often refer to (the computation of) Fixp(P) as simultaneous fizing.

Due to Remark [[ it is clear that Fixp(P) C Fixp(Az < b) holds.
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Theorem 2. In general, even for a system of facet-defining inequalities describ-
ing a full-dimensional 0/1-polytope, sequential fixing is weaker than simultaneous
fizing.

Proof. The following example shows this. Let P ¢ C* be the four-dimensional
polytope defined by the trivial inequalities z; > 0 for ¢ € {1,2,3}, z; < 1 for
i € {1,2,4}, the inequality —x1 +xo+x3—24 < 0and 1 —xo+23—24 < 0. Let F
be the cube face defined by ({4}, ). Then, sequential fixing does not fix any
further variable, although simultaneous fixing yields Ij = {3,4} (and I} = @).
Note that P has only 0/1-vertices, and all inequalities are facet defining (x4 > 0
and z3 < 1 are implied). O

4 Fixing Variables for Orbitopes

For this section, suppose that Iy,I; C 7, , are subsets of indices of orbitope
variables with the following properties:

(P1) |Ip Nnrow;| < (i) — 1 for all ¢ € [p]

(P2) For all (i,7) € Iy, we have (i,£) € I for all £ € [q(i)] \ {7}-

In particular, P1 and P2 imply that Iy N I; = &. Let F be the face of the 0/1-
cube C*ra defined by (I, I,). Note that if P1 is not fulfilled, then 0, ,NF=a.
The following statement follows immediately from Property P2.

Remark 2. 1f a vertex x of O, , satisfies x;; = 0 for all (i, j) € Ip, then x € F',

We assume that the face Fixp(O,,,) is defined by (I§,I7), if Fixp(O, ) is
not empty. Orbitopal firing is the problem to compute the simultaneous fixing

(I, IT) from (1o, I ), or determine that Fixr (O, ,) = 9.

Remark 3. 1If Fixp (O, ,) # 9, it is enough to determine I, as we have (i, j) € IT
if and only if (i,£) € I§ holds for for all £ € [g(¢)] \ {j}-

4.1 Intersection of Orbitopes with Cube Faces

We start by deriving some structural results on orbitopes that are crucial in
our context. Since O, , C %74 is a 0/1-polytope (i.e., it is integral), we have
conv(0, ,NFN{0,1}*re) = O, , NF. Thus, Fixp(0,,) is the smallest cube face
that contains the face O, , OF of the orbitope O, ,

Let us, for i € [p], define values a; := aZ(IO) [q(z)] recursively by setting
ap :=1 and, for all 7 € [p] with ¢ > 2,

Qg = .
a;—1+ 1 otherwise.

{ai1 ifay_q = q(Z) or (7;7OZZ;1 + ].) el
The set of all indices of rows, in which the a-value increases, is denoted by
I'ly) == {iefp] :i>2, ay =01 +1}U{1}

(where, for technical reasons 1 is included).
The following observation follows readily from the definitions.
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Remark 4. For each ¢ € [p] with ¢ > 2 and «;(Iy) < q(i), the set S;(Ip) :=
{(k,ap(lo) +1) : k€ ;]\ I'(Iy)} is a shifted column with S;(I) C Io.

Lemma 1. For each i € [p], no vertex of O, ,NF has its 1-entry in row i in a
column j € [q(?)] with j > a;(Ip).

Proof. Let ¢ € [p]. We may assume «a;(ly) < ¢(7), because otherwise the state-
ment trivially is true. Thus, B := {(4,j) € row; : j > a;(lp)} # @.

Let us first consider the case i € I'(ly). As we have a;(ly) < ¢q(i) < i and
a1(Ip) = 1, there must be some k < ¢ such that k & I'(Ip). Let k be maximal
with this property. Thus we have k' € I'(Ip) for all 1 < k < k' <. According to
Remark [l x(B) — 2(Sk(lp)) < 0 is a shifted column inequality with z(Sk(ly)) =
0, showing z(B) = 0 as claimed in the lemma.

Thus, let us suppose i € [p] \ I'(lp). If a;(Lp) > q(i) — 1, the claim holds
trivially. Otherwise, B’ := B\ {(i,a;({p) + 1)} # @. Similarly to the first case,
now the shifted column inequality x(B’") — z(S;—1(Ip)) < 0 proves the claim. O

For each i € [p] we define p;(Ip) := min{j € [¢(i)] : (i,7) & Ip}. Because of
Property P1, the sets over which we take minima here are non-empty.

Lemma 2. If we have p;(Ip) < a;(ly) for all i € [p], then the point x* =

z*(Ip) € {0, 1}Fra with i (o) =1 forall i € I'(Ip) and 7, (1) = 1 for alli e

[p] \ I'(Io) and all other components being zero, is contained in O,  NF.

Proof. Due to a;(Ip) < a;—1(Ip) + 1 for all ¢ € [p] with ¢ > 2, the point z* is
contained in Op q- 1t follows from the definitions that z* does not have a 1-entry
at a position in Iy. Thus, by Remark 2] we have x* € F. g

We now characterize the case O, , NI = & (leading to pruning the corresponding
node in the branch-and-cut tree) and describe the set I§.

Proposition 1.

1. We have O, ,NF' = @ if and only if there exists i € [p] with p;(lo) > a;(lo).
2. If ui(Ly) < al(Io) holds for all i € [p], then the following is true.
(a) For alli € [p)\ I'(Iy), we have

Ij Nrow; = {(i,75) € row; : (i,7) € I or j > a;(Ip)}.
(b) For all i € [p] with p;(Iy) = a;(Lo), we have
I} Nrow; = row; \{(¢, ;(1p))}.

(¢c) For all s € I'(Iy) with ps(lo) < as(lo) the following holds: If there is
some i > s with p;(Ip) > a;(Io U{(s,as(Ip))}), then we have

Iy Nrowys = rows \{(s,as(lp))}
Otherwise, we have

I Nrows = {(s,j) €row, : (s,4) € In or j > as(lo)}.
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1
10 1
s 1
0 0
o 0
0081 00 o 0o o
(b) (c) (d)

Fig. 2. @ Example for Prop. [ (). Light- gray entries indicate the entries (7, u;i(lo))
and dark-gray entries indicate entries (¢, o (Io) @ Example of fixing an entry to 1 for
Prop. [l (2¢). As before light-gray entries indicate entries (4, p;(Io)). Dark-gray entries
indicate entries (¢, a;(Io U {(s,as(l0))})) with s = 3. and [(d)} Gray entries show
the SCIs used in the proofs of Parts 1(a) and 1(b) of Thm. [3] respectively.

A

—
&
— o o o

Proof. Part [ follows from Lemmas [T and

In order to prove Part[2] let us assume that p;(Ip) < a;(lp) holds for all i € [p].
For Part [2al let i € [p]\ I'({p) and (7,7) € row,. Due to Iy C Ij, we only have to
consider the case (i,7) & lo. If j > a;(Ip), then, by Lemma[Il we find (4, j) € Ij.
Otherwise, the point that is obtained from x*(Iy) (see Lemma [2) by moving the
L-entry in position (i, u1;(Io)) to position (i, j) is contained in O, , NF, proving
(i,5) ¢ 1§

In the situation of Part 2B the claim follows from Lemma [[ and O,,NF#2
(due to Part 1).

For Part Bd let s € I'(Ip) with us(lp) < as(lp) and define I := Iy U
{(s,as(1p))}. It follows that we have u; (1)) = pi(lo) for all i € [p].

Let us first consider the case that there is some i > s with p;(Ip) > a;(I)).
Part [l (applied to I; instead of Ip) implies that O, NF does not contain a
vertex x with 4 o (7,) = 0. Therefore, we have (s, a (IO)) € I, and thus I N
rOwWs; = TOWg \{(s as(Ip))} holds (where for “C* we exploit O, ,NF' # @ by
Part [T}, this time applied to Ip).

The other case of Part 2d follows from s ¢ I'(I})) and as(I)) = as(Ip) — 1.
Thus, Part 2al applied to I, and s instead of Iy and i, respectively, yields the
claim (because of (s,as(lo)) € I5 due to s € I'(Ip) and O, , NF # ). O

4.2 Sequential Fixing for Orbitopes

Let us, for some fixed p > ¢ > 2, denote by Sgcr the system of the nonnegativity
inequalities, the row-sum equations (each one written as two inequalities, in
order to be formally correct) and all shifted column inequalities. Thus, according
to Theorem [I], 0, , is the set of all z € R%r.a that satisfy Sscr. Let Scp be the
subsystem of Sgcr containing only the column inequalities (and all nonnegativity
inequalities and row-sum equations).

At first sight, it is not clear whether sequential fixing with the exponentially
large system Sgcy can be done efficiently. A closer look at the problem reveals,
however, that one can utilize the linear time separation algorithm for shifted
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column inequalities (mentioned in Sect. ) in order to devise an algorithm for
this sequential fixing, whose running time is bounded by O(gpq), where o is the
number of variables that are fixed by the procedure.

In fact, one can achieve more: One can compute sequential fixings with respect
to the affine hull of the orbitope. In order to explain this, consider a polytope
P={ze c? . Ax < b}, and let S C R? be some affine subspace containing P.
As before, we denote the knapsack relaxations of P obtained from Az < b by P,
..., Py, Let us define Fix}.(P,) as the smallest cube-face that contains P, NS N
{0,1}¢N F. Similarly to the definition of Fix(Az < b), denote by Fix}.(Az < b)
the face of C? that is obtained by setting G := F and then iteratively replacing
G by Fix2(P,) as long as there is some r € [m] with Fix2(P,) € G. We call
Fixy.(Az < b) the sequential fizing of Az < b at F relative to S. Obviously, we
have Fixz(P) C Fixy(Az < b) C Fixp(Az < b). In contrast to sequential fixing,
sequential fixing relative to affine subspaces in general is NP-hard (as it can be
used to decide whether a linear equation has a 0/1-solution).

Theorem 3. 1. There are cube-faces F', F?, F3 with the following properties:
(a) Fixpi(Sscr) & Fixpi (Ser)
. aff(O> .
(b) FIXFZ( p’q)(Sc]) C Fixp2(Sscor)

. aff(0= . aff (O]
(c) F1XF3( p’q)(SSCI) - FIXFs( M)(SCI)

2. For all cube-faces F', we have Fix?ﬂ(oj‘q)(ssm) = Fixg (0, ,)-

Proof. For Part 1(a), we chose p = 5, ¢ = 4, and define the cube-face F; via
I} = {(3,2),(5,1),(52),(53)} and I§ = {(1,1),(5,4)}. The shifted column
inequality with shifted column {(2,2), (3,2)} and bar {(5,4)} allows to fix 92 to
one (see Fig. 2[(c)), while no column inequality (and no nonnegativity constraint
and no row-sum equation) allows to fix any variable.

For Part 1(b), let p = 4, ¢ = 4, and define F? via I3 = {(3,2),(4,1), (4,2)}
and I7 = {(1,1)}. Exploiting that z43 + 44 = 1 for all z € aff(O, ) N F?, we
can use the column inequality with column {(2,2), (3,2)} and bar {(4, 3), (4,4)}
to fix 22 to one (see Fig. A[(d)), while no fixing is possible with Sscr only.

For Part 1(c), we can use F'® = F'*. The proof of Part 2 is omitted here. O

The different versions of sequential fixing for partitioning orbitopes are dom-
inated by each other in the following sequence: Scr — {Sscr, affine Scr} —
affine Sgcy, which finally is as strong as orbitopal fixing. For each of the ar-
rows there exists an instance for which dominance is strict. The examples in the
proof of Theorem Bl also show that there is no general relation between Sscr and
affine SCL

In particular, we could compute orbitopal fixings by the polynomial time
algorithm for sequential fixing relative to aff(O, ,). It turns out, however, that
this is not the preferable choice. In fact, we will describe below a linear time
algorithm for solving the orbitopal fixing problem directly.
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Algorithm 1. Orbitopal Fixing

1: Set I§ « I, IT «— T, p1 «— 1, a1 < 1,and ' = &.

2: fori=2,...,pdo

3:  compute u; < min{j : (4,7) & Io}.

if a;—1 = q(i) or (i, ai—1 + 1) € Iy then
Qi — Q-1

else
aj — a1+ 1, ' —T"U{i}

if p; > «a; then

9: return “Orbitopal fixing is empty”

10:  Set I§ «— Iz U{(3,5) : j > ai}.

11:  if |[I§ Nrow; | = ¢(i) — 1 then

12: set IT « Iy U (row; \Ij).

13: for all s € I" with (s,as) ¢ I7 do

14: Set Bs «— as — 1.

15: fori=s4+1,...,pdo

16: if i1 = q(’L) or (i,ﬁi—l + 1) € Ip then

17: Bi — Bi—1

18: else

19: Bi — Bic1+1

20: if p; > B; then

21: It — I U{(s,as)} and I < rows \{(s, as)}.
22: Proceed with the next s in Step

4.3 An Algorithm for Orbitopal Fixing

Algorithm [ describes a method to compute the simultaneous fixing (I}, I7) from
(Io, I1) (which are assumed to satisfy Properties P1 and P2). Note that we use 3;
for a; (Io U {(s, as(1p))})-

Theorem 4. A slight modification of Algorithm [ solves the orbitopal firing
problem in time O(pq).

Proof. The correctness of the algorithm follows from the structural results given
in Proposition [

In order to prove the statement on the running time, let us assume that the data
structures for the sets Ip, I, I}, and I} allow both membership testing and addition
of single elements in constant time (e.g., the sets can be stored as bit vectors).

As none of the Steps B to [2 needs more time than O(g), we only have to
take care of the second part of the algorithm starting in Step (In fact, used
verbatim as described above, the algorithm might need time £2(p?).)

For s,s' € I' with s < s’ denote the corresponding (-values by ; (i > s) and
by 5, (i > s'), respectively. We have (; < ! for all ¢ > s/, and furthermore, if
equality holds for one of these i, we can deduce § = (3, for all k£ > i. Thus, as
soon as a pair (i, 3;) is used a second time in Step 20, we can break the for-loop
in Step [[8 and reuse the information that we have obtained earlier.

This can, for instance, be organized by introducing, for each (i,5) € Z, 4, a
flag f(i,7) € {red, green, white} (initialized by white), where f(i,j) = red / green
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means that we have already detected that (3; = j eventually leads to a posi-
tive/negative test in Step The modifications that have to be applied to the
second part of the algorithm are the following: The selection of the elements
in I in Step must be done in increasing order. Before performing the test
in Step 20, we have to check whether f(i, ;) is green. If this is true, then we
can proceed with the next s in Step [[3] after setting all flags f(k, 8;) to green
for s < k < 4. Similarly, we set all flags f(k,8x) to red for s < k < i, before
switching to the next s in Step 22 And finally, we set all flags f(k, 8x) to green
for s < k < p at the end of the body of the s-loop starting in Step

As the running time of this part of the algorithm is proportional to the number
of flags changed from white to red or green, the total running time indeed is
bounded by O(pq) (since a flag is never reset). O

5 Computational Experiments

We performed computational experiments for the graph partitioning problem
mentioned in the introduction. The code is based on the SCIP 0.90 framework
by Achterberg [I], and we use CPLEX 10.01 as the basic LP solver. The com-
putations were performed on a 3.2 GHz Pentium 4 machine with 2 GB of main
memory and 2 MB cache running Linux. All computation times are CPU sec-
onds and are subject to a time limit of four hours. Since in this paper we are
not interested in the performance of heuristics, we initialized all computations
with the optimal primal solution. We compare different variants of the code by
counting winning instances. An instance is a winner for variant A compared to
variant B, if A finished within the time limit and B did not finish or needed a
larger CPU time; if A did not finish, then the instance is a winner for A in case
that B did also not finish, leaving, however, a larger gap than A. If the difference
between the times or gaps are below 1 sec. and 0.1, respectively, the instance is
not counted.

In all variants, we fix the variables x;; with j > ¢ to zero. Furthermore,
we heuristically separate general clique inequalities Zz jec Yij = b, where b =
st —1)(g—r) + 3t(t + 1)r and C C V is a clique of size tqg +r > ¢ with
integers ¢ > 1, 0 < r < ¢ (see [3]). The separation heuristic for a fractional
point y* follows ideas of Eisenblétter [B]. We generate the graph G' = (V, F’)
with {7,k} € E' if and only if {i,k} € E and y}, < b(b+ 1)/2, where y* is the
y-part of an LP-solution. We search for maximum cliques in G’ with the branch-
and-bound method implemented in SCIP (with a branch-and-bound node limit
of 10000) and check whether the corresponding inequality is violated.

Our default branching rule combines first index and reliability branching. We
branch on the first fractional z-variable in the row-wise variable order used for
defining orbitopes, but we skip columns in which a 1 has appeared before. If
no such fractional variable could be found, we perform reliability branching as
described by Achterberg, Koch, and Martin [2].

We generated random instances with n vertices and m edges of the following
types. For n = 30 we used m = 200 (sparse), 300 (medium), and 400 (dense).
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Table 1. Results of the branch-and-cut algorithm. All entries are rounded averages
over three instances. CPU times are given in seconds.

basic Iso Pruning OF

n m q nsub cpu nsub cpu nsub cpu #OF
30 200 3 1082 6 821 4 697 5 6
30 200 6 358 1 122 0 57 0 25
30 200 9 1 0 1 0 1 0 0
30 200 12 1 0 1 0 1 0 0
30 300 3 3470 87 2729 64 2796 69 7
30 300 6 89919 445 63739 168 8934 45 353
30 300 9 8278 19 5463 5 131 0 73
30 300 12 1 0 1 0 1 0 0
30 400 3 11317 755 17433 800 9864 660 8
30 400 6 458996 14400 1072649 11220 159298 3142 1207
30 400 9 2470503 14400 1048256 2549 70844 450 7305
30 400 12 3668716 12895 37642 53 2098 12 1269
50 560 3 309435 10631 290603 14400 288558 10471 10
50 560 6 1787989 14400 3647369 14400 1066249 9116 4127
50 560 9 92 0 2978 5 10 0 10
50 560 12 1 0 1 0 1 0 0

Additionally, for n = 50 we choose m = 560 in search for the limits of our
approach. For each type we generated three instances by picking edges uniformly
at random (without recourse) until the specified number of edges is reached. The
edge weights are drawn independently uniformly at random from the integers
{1,...,1000}. For each instance we computed results for ¢ = 3, 6, 9, and 12.

In a first experiment we tested the speedup that can be obtained by perform-
ing orbitopal fixing. For this we compare the variant (basic) without symmetry
breaking (except for the zero-fixing of the upper right z-variables) and the ver-
sion in which we use orbitopal fixing (OF'); see Table [ for the results. Columns
nsub give the number of nodes in the branch-and-bound tree. The results show
that orbitopal fixing is clearly superior (OF winners: 26, basic winners: 3), see
also Figure B

Table [ shows that the sparse instances are extremely easy, the instances with
m = 300 are quite easy, while the dense instances are hard. One effect is that

1000 s 150 % 100 %
750s 100% 50 %
50 %
4h
500s 4h
250's 2h 2h nﬂ
3 33 6 6 6 9 9 9 3 33 6 6 6 9 9 9 121212 3 336 6 6

Fig. 3. Computation times/gaps for the basic version (dark gray) and the version with
orbitopal fixing (light gray). From left to right: instances with n = 30, m = 300,
instances for n = 30, m = 400, instances for n = 50, m = 560. The number of
partitions ¢ is indicated on the xz-axis. Values above 4 hours indicate the gap in percent.
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often for small m and large ¢ the optimal solution is 0 and hence no work has to
be done. For m = 300 and 400, the hardest instances arise when ¢ = 6. It seems
that for ¢ = 3 the small number of variables helps, while for ¢ = 12 the small
objective function values help. Of course, symmetry breaking methods become
more important when ¢ gets larger.

In a second experiment we investigated the symmetry breaking capabilities
built into CPLEX. We suspect that it breaks symmetry within the tree, but no
detailed information was available. We ran CPLEX 10.01 on the IP formulation
stated in Sect. [l In one variant, we fixed variables z;; with j > ¢ to zero, but
turned symmetry breaking off. In a second variant, we turned symmetry breaking
on and did not fix variables to zero (otherwise CPLEX seems not to recognize
the symmetry). These two variants performed about equally good (turned-on
winners: 13, turned-off winners: 12). The variant with no symmetry breaking
and no fixing of variables performed extremely badly. The results obtained by
the OF-variant above are clearly superior to the best CPLEX results (CPLEX
could not solve 10 instances within the time limit, while OF could not solve 2).
Probably this is at least partially due to the separation of clique inequalities and
the special branching rule in our code.

In another experiment, we turned off orbitopal fixing and separated shifted
column inequalities in every node of the tree. The results are that the OF-version
is slightly better than this variant (OF winners: 13, SCI winners: 10), but the
results are quite close (OF average time: 1563.3, SCI average time: 1596.7).
Although by Part 2 of Theorem Bl orbitopal fixing is not stronger than fixing
with SCIs (with the same branching decisions), the LPs get harder and the
process slows down a bit.

Finally, we compared orbitopal fixing to the isomorphism pruning approach
of Margot. We implemented the ranked branching rule (see [I6]) adapted to the
special symmetry we exploit, which simplifies Margot’s algorithm significantly. It
can be seen from Table [I] that isomorphism pruning is inferior to both orbitopal
fixing (OF winners: 25, isomorphism pruning winners: 3) and shifted column
inequalities (26:2), but is still a big improvement over the basic variant (23:7).

6 Concluding Remarks

The main contribution of this paper is a linear time algorithm for the orbitopal
fixing problem, which provides an efficient way to deal with partitioning type
symmetries in integer programming models. The result can easily be extended to
“packing orbitopes” (where, instead of z(row;) = 1, we require x(row;) < 1). Our
proof of correctness of the procedure uses the linear description of O, , given
in [I1]. However, we only need the validity of the shifted column inequalities in
our arguments. In fact, one can devise a similar procedure for the case where
the partitioning constraints xz(row;) = 1 are replaced by covering constraints
x(row;) > 1, though, for the corresponding “covering orbitopes” no complete lin-
ear descriptions are known at this time. A more detailed treatment of this will be



88

V. Kaibel, M. Peinhardt, and M.E. Pfetsch

contained in a journal version of the paper, which will also include comparisons
to the isomorphism pruning method [I4} [I5] [I7] and to orbital branching [13].
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Abstract. We discuss an open source implementation and preliminary
computational testing of three variants of the Balas-Perregaard proce-
dure for generating lift-and-project cuts from the original simplex
tableau, two of which are new. Variant 1 is the original procedure of
[6] with minor modifications. Variant 2 uses a new procedure for choos-
ing the pivot element: After identifying the set of row candidates for
an improving pivot, the pivot element (and column) is chosen by opti-
mizing over the entries of all candidate rows. Finally, Variant 3 replaces
the source row with its disjunctive modularization, and after each pivot
it again modularizes the resulting source row. We report on computa-
tional results with the above three variants and their combinations on
65 MIPLIB.3 instances.

Keywords: integer programming, branch and cut algorithms.

1 Introduction

The revolution of the last 15 years in the state of the art of integer programming
was brought about, besides faster computers and more efficient linear program-
ming codes, also by improved cutting plane techniques. Lift-and-project (L&P)
cuts were the first to be generated in rounds and to be embedded into a branch-
and-cut framework. They were also the first locally valid cuts lifted into globally
valid ones. Soon after the success of L&P cuts [34], it was shown [5] that mixed
integer Gomory (MIG) cuts used in the same manner could also enhance the
performance of MIP solvers. Thus, during the nineties a number of different cut
families (cover and flow cover inequalities, MIG cuts, simple disjunctive cuts,
MIR cuts etc.) became part of the toolkit of commercial MIP solvers and have
led to a radical improvement of their performance. The L&P cuts themselves,
however, were found to be computationally too expensive to be incorporated into
commercial codes, as each such cut came at the price of solving a Cut Generating
Linear Program (CGLP) in a higher dimensional space. It was not until a few
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years later, when a way was found [6] to generate L&P cuts by pivoting in the
original simplex tableau, without constructing the higher dimensional CGLP,
that these cuts became sufficiently cost-effective to be incorporated into a state-
of-the-art MIP solver, where they soon proved their value [I0] and became the
default cut generator.

Although the algorithm for generating L&P cuts from the original simplex
tableau is now in practical use and has contributed to solving countless hard in-
teger programs, its implementation was until now commercial property not pub-
licly available, which made it harder for researchers to experiment with different
versions of it. In this paper we discuss an implementation of this algorithm in the
COIN-OR framework, publicly available [9] since September 2006, and compare
three different variants of it. Variant 1 is a slightly modified version of the origi-
nal algorithm [0] for generating L&P cuts by pivoting in the original LP tableau
which incorporates the various improvements proposed in [I0/IT], whereas the
other two variants contain substantial changes in the algorithm, which give rise
to different pivot sequences and therefore different cuts. Variant 2 uses a new
rule for choosing the entering variable in the pivoting procedure. Instead of first
choosing a most promising pivot row and then identifying the best column in
that row, this version of the algorithm first identifies all candidate rows for an im-
proving pivot, then chooses the pivot element as the best one among the entries
of all the candidate rows. Variant 3 uses recursive disjunctive modularization of
the source row. In other words, rather than first generating an unstrengthened
“deepest” L&P cut through a sequence of pivots in the original LP tableau and
then strengthening the end product by modular arithmetic, this version replaces
the source row with its disjunctive modularization, and after each pivot it again
applies the disjunctive modularization to the resulting transformed source row.
Each of the three Variants give rise to sequences of pivots different from each
other. In the case of both Variants 2 and 3, each pivot is guaranteed to produce
an improvement in cut strength at least equal to that produced by the corre-
sponding pivot of Variant 1, but this additional improvement comes at some
computational cost.

After describing each of the three Variants, we compare them on a battery
of MIPLIB test problems and assess the results by trying to identify the merits
and demerits of each Variant.

Consider a problem of the form min{cz : z € P,z; € Z,j =1,...,p} (MIP)
and its linear programming relaxation min{cz : * € P} (LP), where P is the
polyhedron defined by the system

Ax >b
x>0

Here Ais m xn, 1 < p < n, and (1) will also be denoted as Az > b. Note
that the vector s € R™P+" of surplus variables has n components of the form
Sm+p+j = Tj, which represent just a set of different names for the structural
variables x;.
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Let 2* be an optimal solution to (LP) and let

T = ko — Z akjS; 2)

jeJ

be the row of the optimal simplex tableau corresponding to basic variable xy,
with 0 < arp < 1 and J the index set of nonbasic variables. The intersection
cut [I] from the convex set {z € R™ : 0 < x;, < 1}, also known as the simple
disjunctive cut from the condition z; < 0V x; > 1 applied to (2), is s > o,
where mg = @ko(l — El}co) and Tj = max {dkj(l — d}co)7 —El;cjdko} , J€EJ.

This cut can be strengthened [I] using the integrality of some variables in
J, by replacing = with 7, where 7, = =; for j € J\ {1,...,p}, and 7, :=
min{fkj(l — dko), (1 — fkj)&ko},j eJn {1, - ,p}, where fkj = Qkj — I_aij- This
strengthened intersection cut or strengthened simple disjunctive cut is the same
as the mized integer Gomory (MIG) cut.

On the other hand, given the same optimal solution z* to (LP), a deepest lift-
and-project (L€P) cut ax > 3 is obtained by solving a Cut Generating Linear
Program [3] in a higher dimensional space:

min ax* — 3

s.t.
«a —uA + upex =0
« —vA —voer =0
7 CGLP
— [+ ub =0 ( )i
- p + vb +v9 =0
ue +ve +ug +vg =1
U, v, Up, Vo = 0
where e = (1,...,1) and ¢, is the k-th unit vector.

While an optimal solution to (CGLP)j yields a “deepest” cut ax > 3, i.e.
one that cuts off 2* by a maximum amount, any solution to the constraint set
of (CGLP), yields a member of the family of L&P cuts. If (o, 8, u, v, ug, vo)
is a basic solution to (CGLP)j, the coefficients of the corresponding L&P cut
are 8 = ub = vb + vy, a = max{uA;c — up — uo, vAy — v + vo} and a; =
max{uA] uj, 'UAJ vj},j # k where AJ is the j-th column of A.

Again, this cut can be strengthened using the integrality of some of the struc-
tural variables by replacing o with &, where &; = oj for j = kand j ¢ {1,...,p},
and & = min{ud; — u; +uo[m;],vA; —v; —volmy]}, j € {1,...,p}\{k}, with
mj = (vA; —vj —ud; +u;)/(uo +vo).

In [6] it was shown that the intersection cut obtained from a given component
xy, of a basic feasible solution of (LP) is equivalent to the L&P cut obtained
from a basic solution to (CGLP), where the bases in question are related to
each other in a well defined manner. The same relationship holds between the
strengthened version of the intersection cut, i.e. the mixed integer Gomory cut,
on the one hand, and the strengthened L&P cut on the other. Furthermore, a
strengthened L&P cut is equivalent to a MIG cut from some LP tableau that
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in general is neither optimal nor feasible, and the search for a deepest L&P cut
can be viewed as the search for the appropriate simplex tableau from which to
derive the corresponding MIG cut. The next section discusses this connection.

2 The Correspondence Between L&P Cuts and MIG
Cuts

Let aur > 3 be a L&P cut corresponding to a basic feasible solution («, 3, u, v, ug,
vg) of (CGLP)g, and let ax > [ be its strengthened version. Further, let ug > 0,
vp > 0 (these are known to be the only solutions yielding cuts that differ from the
rows of Az > 1), and let My and M; be the index sets of the basic components
of u and v respectively. Then M; N My = 0, My U Ms| = n, and the square
submatrix A of A whose rows are indexed by M; U My is nonsingular (see [a1).
Now define J := M;UMs5. Then letting b denote the subvector of b corresponding
to A and writing s for the surplus variables indexed by J, we have

Az —s;=b or xz=A"'b—A"ls, (3)

and the row of (3) corresponding to ) (a basic variable, since k ¢ .J) can be
written as
Tp = aro — dej8j7 (4)

jeJ

where aro = erA~1b and agj = —Agjl. Notice that (4) is the same as (2).
Furthermore, it can be shown that 0 < axo < 1, and we have (from [6])

Theorem 1. The MIG cut ws > my from (4) is equivalent to the strengthened
L&P cut ax > .

Conversely, suppose (4) is the row associated with 2, in a basic solution to (LP),
not necessarily optimal or even feasible, such that 0 < @y < 1. Then we have

Theorem 2. Let (M, Ms) be any partition of J such that j € My if ag; < 0
and j € My if ar; > 0. Then the solution to (CGLP)y, corresponding to the basis
with components (o, B, ug,vo, {u; : i € My}, {v; : i € Ma}) defines a LEP cut
ax > 3 whose strengthened version ax > 0 is equivalent to the MIG cut Ts > g
derived from (/).

Note that the partition (M, Mz) of J, and therefore the basis of (CGLP)j
defined by it, is not unique, since the variables j € J such that ax; = 0 can be
assigned either to My or to Ms. This means that the correspondence between
bases described above maps each basis B of (LP) into a set of bases ¢(B) of
(CGLP)j, where typically |o(B)| > 1. However, all bases in ¢(B) correspond to
the same solution of (CGLP)y, i.e. they are degenerate, and the correspondence
between basic solutions (as opposed to bases) of (LP) and (CGLP)y is one to
one (see [6] for details).
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3 The Lift-and-Project Procedure in the Original LP
Tableau

The lift-and-project procedure in the (LP) tableau uses the above correspon-
dence to mimic the optimization of (CGLP) by the simplex algorithm. Consider
the row corresponding to zj of the form (2) which we call the source row. At
each iteration of the procedure, we perform a pivot in a row i # k, which brings
about a linear combination of the source row with row 4

T+ YT = ako + Yo — Z(akj + 7aij)s; ()
i€t

such that the intersection cut obtained from this new row is more violated by
x* than the one obtained from the source row. This combination (the choice of
the row 7 and of ), is guided by the correspondence with (CGLP)s. Each row i
of the (LP) simplex tableau corresponds to a pair of columns of (CGLP); with
associated nonbasic variables u;, v;.

The first main step in the procedure is to compute the reduced costs r,, and
Ty, in (CGLP)y, for all ¢ ¢ J U {k}. As shown in [6], these reduced costs can be
expressed in terms of the entries @;; of the (LP) tableau and the solution z*.
We use these expressions in our computations. If there is no negative reduced
cost, the current basis is optimal for (CGLP); and the optimal strengthened
lift-and-project cut is obtained as the MIG cut from the source row of (LP)
(using the correspondence of Theorem 2). On the other hand, if at least one
negative reduced cost exists, then the cut can be improved by performing a
pivot in (CGLP), where the corresponding variable u; or v; enters the basis. In
the (LP) tableau, this negative reduced cost (r,, or r,,) corresponds to a basic
variable x; which has to leave the basis.

Choosing the variable z; to enter the basis is the second main step of the
procedure. In [6], two evaluation functions f*(y) (resp. f~ (7)) were defined,
which represent the objective function value of (CGLP)y, i.e. the violation of the
cut resulting from the combination of row k and row i for positive, respectively
negative values of . These two functions are minimized to select the variable to
enter the basis which leads to the largest improvement in cut violation among
all variables that can replace the exiting variable.

Once the exiting and entering variables have been selected, the pivot in (LP)
is performed and the procedure is iterated from the new basis until (CGLP)y, is
optimized. The pseudo-code of Figure 1 describes this procedure.

As shown in [4], the lift-and-project cuts are more efficiently generated in
a subspace where all the non-basic structural variables of (LP) are fixed to
their values in the optimal solution. Performing the separation in the subspace
while working in the (LP) tableau is done simply by removing all the structural
nonbasic variables from it before starting the pivoting procedure. At the end of
the procedure a lifting step is performed to obtain a valid cut for the original
problem by recomputing the source row in the full space and generating the
corresponding MIG cut.
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Let z* be the optimal solution to (LP).
Let k € {1,...,p}with z} fractional.
Let I and J be the index sets of basic and non-basic variables in an optimal
basis of (LP).
Let A be the optimal tableau.
Let num pivots:= 0.
while num pivots < pivot limit do

Compute the reduced costs r,,, 7., for each i ¢ J U {k}

if There exists ¢ such that r,, <0V r,, <0

then

Let i := arg min {ry. 7.,
gzéJU{k}{ Ui ’01}7

Let J' = {j € J : |ai;| > €, } be the set of admissible pivots.
Let JT =J'N {j e J: —akj/aij < 0}.
Let j := argmin{argjrgiﬁ (), argjer}l,i\rlJ+ f= i)k
Perform a pivot in (LP) by pivoting out 1 and pivoting in j.
Let I:=TU{j}\ {i}.
Let A be the updated tableau in the new basis.
Let num pivots+= 1.

else /* cut is optimal. */
Generate the MIG cut from row k of the current tableau.
exit

od

Fig. 1. Lift-and-Project Procedure

4 Computation of the Reduced Cost and of the
Evaluation Functions

A key point for efficiently implementing the lift-and-project procedure is the
computation of the reduced costs and the evaluation functions.

As shown in [TT], for a given partition (M7, M) (as defined in section 2) the
expressions for the reduced costs depend only linearly on the coefficients of the
tableau, and therefore the reduced costs of all non-basic variables in (CGLP)j
can be computed by doing only one multiplication with the basis inverse. The
expressions for the reduced costs are

Ty, = —0+ai(l —ay) —7 and r,, = —0—ai(l—a}) +s; +7

where s* = Az* —b, 0 = ( 3 ay;s; —aro(1 — %)) /(14 = |ak;|) is the current
JjeEM> jeJ

objective value of (CGLP)g, and 7, = Y oca;; + > (s;‘ —0)a;.
JEM: JEM>
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A critical element in computing the reduced costs is the choice of the partition
(M, My). If for all j € J, ax; is non-zero, this partition is uniquely defined; but
if this is not the case, several partitions can be chosen. The rule given in [6] is
to take My ={j e J:ap; <0 A (ar; =0 A a;; >0)} (and My = J\ M) for
computing r,, and My = {j € J : ar; <0 A (arj = 0Aa;; < 0)} for computing
ry,. This rule has the advantage that if a negative reduced cost is found, then
the corresponding pivot leads to a strictly better cut. On the other hand, to
determine this partition, one has to compute the coefficients a;; for all j such
that ar; = 0 and all 7. Therefore we use another rule. Namely, following [TI], we
randomly assign all the zero elements of the source row to either My or Ms. This
rule has the disadvantage that although the reduced cost for the perturbed row
is negative, it may happen that all the pivots with the corresponding variable
u; or v; entering the basis are degenerate in (CGLP)g. Nevertheless, in our
experiments, this rule had a clear computational advantage.

The second main step of the procedure is the computation of the evaluation
functions fT and f—, given by

;}max{@kj; —Yij}s} — ko + (aro + Y@io) Ty,
+(~) = 7€
7o) Lty + 3 [aks +7ai]
je€J
and 0.4 - . - = V1 .
) J%;] max {0, a; +7ai;}s; — (@ro + 7aio) (1 — )
) L=y + X lar; + vay]
=

As shown in [IT], these functions are unimodal piecewise continuously differ-
entiable and their minimum can be found efficiently, once rows k£ and ¢ of the
tableau are specified, by computing the values of fT (resp. f~) by increasing
(resp. decreasing) the value of v, = — " for valid pivots of the correct sign.

5 Most Violated Cut Selection Rule

Here we present a variant of the lift-and-project procedure which uses a new
rule for choosing the leaving and entering variables in the pivot sequence. The
lift-and-project procedure in the (LP) tableau usually requires a remarkably
small number of pivots to obtain the optimal L&P cut, nevertheless it may be
computationally interesting to reduce this number further by studying alternate
rules for this choice. The rule discussed here performs, at each iteration, the pivot
to the adjacent basis in (LP) for which the objective of (CGLP); is decreased
by the largest amount or, equivalently, the one for which the intersection cut
obtained from the row k of (LP) is the most violated by z*.

Let us denote by f;" () (resp. f; (7)) the function f*+(v) (resp. f~ (7)) defined
for source row k and a row ¢ of the tableau. Recall that these functions give the
violation of the intersection cut derived from the row obtained by adding 7 times
row ¢ to row k, depending on the sign of . Thus, the violation of the cut in the
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adjacent basis of (LP) where variable ¢ leaves the basis and variable j enters the
basis is given by f;"(v;) if v, = —ax;/ai; > 0 and f; (v;) if v, = —ap/ai; <0,
and the most violated intersection cut which can be derived from an adjacent
basis has violation

A . . . + . —_

¢ = Zain min{min f7(y;), min £ (3;)}
where I is the basic index set and J*,J~ are the index sets for 7; > 0 and
v; < 0, respectively.

Here the variables 1 and j for which this minimum is attained are selected as
the leaving and entering variables respectively. By computing the reduced costs
ry, and r,,, we first identify all the candidate rows for an improving pivot. Then
for each such row i we minimize the functions f;” and f; .

This clearly amounts to more computation at each iteration than the selection
rule used in Variant 1, where only one minimization of the evaluation function
is performed at each pivot. But on the other hand, the cut violation is increased
at each iteration by an amount at least as large, and therefore one may expect
to obtain in less iterations a cut with a given violation. In particular, in the
presence of zero elements in the source row, it presents the advantage that fewer
degenerate pivots in (CGLP)j are performed.

6 Disjunctive Modularization

L&P cuts are obtained from disjunctions of the type
(ufl:r — UpTp > ug) Vv (vfim + vk > vb + V)

where solving the (CGLP)j, optimizes the multipliers u, ug, v and vy. Once the
optimal values for these multipliers are obtained, the cut can be further strength-
ened, as mentioned in section 1, by using modular arithmetic on the coefficients
of the integer-constrained components of x. This latter operation can be inter-
preted (see [4]) as subtracting from zj on each side of the disjunction a product
of the form max, where m is an integer vector, and then optimizing the com-
ponents of m over all integer values. In other words, the strengthened deepest
intersection cut is the result of a sequence of two optimization procedures, first
in the mutipliers u, v, ug and vg, then in the components of m. But this raises the
quest for a procedure that would simultaneously optimize both the continuous
multipliers and the integer vector m. While this is an intricate task, equivalent
to finding an optimal split cut, which has been treated elsewhere [7], the dis-
junctive modularization procedure described below is meant to approximate this
goal.

Consider again the equation of the source row (2) for an intersection cut or
a MIG cut. By applying disjunctive modularization to this equation we mean
deriving from it the modularized equation

Yk = Pko — Z Pr;jSj (6)
jed
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where yj is a new, integer-constrained variable of unrestricted sign, ¢ro = axo,

Ak — |akj ], j € Ji:={j € Ji: an; — |ar;] < aro}
Pkj = gj — f@kﬂ,j eJ ={je: agj — |ai; | > Qo }
A jeJo:=J\

and J; :=JN{1,...,p}.

Clearly, every set of s;, j € J, that satisfies (2) with x}, integer, also satisfies
(6) with yy integer; hence the equation (6) is valid. Also, it is easy to see that the
intersection cut derived from (6) is the strengthened intersection cut, or MIG
cut derived from (2). However, at this point we do not intend to generate a cut.
Instead, we append (6) to the optimal (LP) tableau and declare it the source
row in place of (2) for the entire pivoting sequence. Further, after each pivot in
row 1 and column j the transformed row of yg, say yr = ¢}y — > go;vjsj where

jeJ’
J = (J\ {j}) U {i}, is treated again with disjunctive modularization. Namely,
this time the row of yy, is replaced with yx = Pro — D ¥y, 8; where @0 = @i,

jer
and
Pr; — LWl J € (J1)*
Prj = Prj — [Pkl 5 € (J1)~ (7)
‘P;cj J€J;

with (J{)*, (J])~ and J4 defined analogously to J;", J; and J,.

The expressions used for calculating the reduced costs 7, , 7, and the evalua-
tion functions fT(v), f~ () used for selecting the pivot element at each iteration
remain valid, except for the fact that the entries ay; of the current row (2) of a,
are replaced (since this is no longer the source row) with the entries ¢, ; of the
current row of y, (see [2] for details).

It is clear that the modularized source row, if used for cut generation, would
yield a cut that dominates the one from the unmodularized source row. It can
also be shown that every iteration of the cut generating algorithm that uses
disjunctive modularization improves the cut obtainable from the source row.

7 Computational Results

The algorithm for generating L&P cuts from the (LP) tableau was implemented,
in all three of its Variants discussed above, as a cut generator called CglLandP [9]
in the COIN-OR framework. This generator is open-source and is available since
September 2006 as part of the Cut Generation Library [§]. All the computations
have been carried out using the publicly available version of the cut generator
and were performed on a computer equipped with a 2 GHz AMD Optetron CPU
and 3 GB of RAM.

Before presenting our results, it will be useful to recall a comparison between
the computational efforts required by the original procedure that generates L&P
cuts by solving the higher dimensional (CGLP), and the new one that pivots in
the (LP) tableau. Based on running XPRESS on about 100 test problems with
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Table 1. Comparing 10 rounds of different cuts at the root node

MIG Cuts Lift-and-Project Cuts
Variant 1 Variant 2 Variant 3
% average % average % average % average
time (sec) losed cut time (sec) losed cut time (sec) losed cut time (sec) losed cut
8ap €losed i lation 8ap closed i lation 8ap closed  yiolation gap closed — yiolation
10teams 17 100.00  2.9728e-04  10.3 100.00  5.4248¢-03  12.0 100.00  2.9581e-03  10.1 100.00  6.0645¢-03
air03 0.3 100.00  1.0055e-04 0.7 100.00  2.5349e-02 0.3 100.00  1.0055e-04 0.8 100.00  2.5638e-02
air04 15.1 13.13  2.6198e-05  176.4 18.17  4.1924e-04  284.8 2232 1.9377e-04 1824 19.83  3.9787e-04
air03 11.8 6.89  4.0196e-05  98.9 12,99 1.3294e-03  163.1 1412 4.6990e-04  114.4 12.65  1.3018e-03
arki001 2.6 52.07  4.2588e-03 6.9 52.89  2.2820e-02 6.4 52.07  3.0722e-02 5.8 43.80  2.6925e-02
bell3a 0.0 7211 1.0944e-02 0.0 72.04  1.3493e-02 0.0 70.74  1.3322¢-02 0.0 7107 1.19344e-02
bell5 0.0 90.71  2.1735e-02 0.1 9232 2.1099e-02 0.1 92.62  2.2064e-02 0.1 9239 2.1817e-02
blend2 0.1 34.14  1.8580e-03 0.3 37.21  2.1410e-02 0.3 3434 1.8501e-02 0.2 36.14  3.0460e-02
cap6000 0.2 62.50  3.9211e-05 1.7 62.50  7.1012e-05 2.2 62.50  6.3832e-05 2.5 62.50  8.1029e-05
dano3mip 75.2 0.03 2.9685e-03  498.4 0.03 1.2500e-02  223.7 0.03 1.0568e-02  147.6 0.03 1.5132e-02
danoint 0.7 174 7.4911e-04 7.5 1.59  1.2143e-02  10.5 1.88  8.8077e-03 9.2 1.38 9.2614e-03
demulti 0.4 69.54  2.5191e-02 2.5 78.17  4.5511e-02 2.3 83.10  4.5834e-02 1.5 76.60 4.6794e-02
dsbmip 0.3 no gap  4.3132e-02 0.6 no gap  5.8988e-02 0.5 no gap  6.6541e-02 0.5 no gap  6.1998e-02
egout 0.0 99.83  3.9095¢-02 0.0 100.00  7.6798¢-02 0.0 100.00  7.6902¢-02 0.0 100.00  7.6798¢-02
enigma 0.0 no gap  6.6426e-03 0.0 no gap 1.1151e-02 0.0 no gap  8.8013e-03 0.0 no gap  1.7631e-02
fast0507 80.9 345  6.8759e-06  325.2 3.67  7.3836e-04 297.6 4.05  1.6800e-04  357.3 3.40 1.2375e-03
fiber 0.8 79.79  8.8217e-04 1.6 87.07  4.3319e-03 1.9 92.65  5.8489e-03 2.8 88.35  4.2286e-03
fixnet6 0.3 85.77  7.4356e-03 1.3 87.90  3.6747e-02 2.3 89.15  3.7913e-02 1.3 89.09 3.6157e-02
flugpl 0.0 14.05  1.2964e-02 0.0 15.94  1.7391e-02 0.0 16.09  1.5143e-02 0.0 15.94  1.7391e-02
gen 0.1 81.97  3.2112e-03 0.2 81.42  1.5461e-02 0.3 81.97  1.5146e-02 0.2 80.33 1.4654e-02
gesa2 1.0 7512 5.0931e-03 1.8 76.33  1.3842e-02 2.5 90.64  1.6601e-02 1.3 77.62  1.3775e-02
gesa2 o 1.1 63.28  5.0887e-03 1.5 63.74  1.2591e-02 3.6 63.91  1.4217e-02 2.1 64.40  1.2421e-02
gesa3 1.0 56.16  2.4234e-03 2.0 80.37  7.4798e-03 2.6 84.18  9.6241e-03 2.2 83.16  7.5700e-03
gesa3 o 0.9 5813  3.1590e-03 2.5 80.62  9.3592e-03 5.2 83.74  8.9960e-03 2.1 77.89  8.4678e-03
gt2 0.0 100.00  5.4967¢-03 0.1 100.00  1.0840e-02 0.0 100.00  2.0432¢-02 0.0 100.00  2.1752¢-02
harp2 0.9 3729 3.1194e-04 2.0 40.62  3.8258¢-03 4.2 45.51  4.8609e-03 3.3 40.02  4.4110e-03
khb05250 0.2 94.34  3.2644¢-02 0.3 96.68  5.3187¢-02 0.4 97.18  6.1590¢-02 0.3 96.44  5.6201e-02
1152lav 1.7 20.78  1.4208e-04 8.4 39.87  3.3926e-03 9.5 4030 2.0602e-03  13.8 33.10  3.7684e-03
Iseu 0.0 85.81  2.8617¢-03 0.0 88.83  1.3431e-02 0.1 89.19  1.0132¢-02 0.1 85.27  1.5530e-02
marksharel 0.0 0.00  2.4035e-03 0.0 0.00  1.5459¢-02 0.0 0.00  7.8762e-03 0.0 0.00 1.0355¢-02
markshare2 0.0 0.00  1.7025e-03 0.0 0.00  4.5266e-03 0.0 0.00  5.3009¢-03 0.0 0.00 1.0701e-02
mas74 0.1 7.62  3.6506e-04 0.5 8.89  5.3231e-03 0.5 8.75  3.0362e-03 0.4 8.29 7.5558e-03
mas76 0.0 7.40  2.5738e-04 0.4 9.09  2.1974e-03 0.4 8.63  1.6655¢-03 0.4 8.84 5.8109¢-03
misc03 0.1 20.00  3.7024e-03 0.2 19.44  2.6853e-02 0.7 23.75  1.9687e-02 0.1 17.24  3.0294e-02
misc06 0.1 78.26  1.3575¢-03 0.3 90.22  5.6188¢-03 0.2 95.65  5.8362¢-03 0.3 90.22  6.7744e-03
misc07 0.0 0.72  3.7471e-03 0.1 0.72  2.8068e-02 0.3 2,51 2.9601e-02 0.1 0.72 3.0492e-02
mitre 0.3 100.00  1.5473e-03 0.4 100.00  3.8563e-03 0.6 100.00  5.6427e-03 0.4 100.00  3.8195e-03
mkc 3.3 30.66  2.7229e-03 4.7 49.98  1.7965e-02 4.4 46.18  1.8324e-02 47 43.84  1.8470e-02
mod008 0.0 3044 3.1792e-04 0.1 33.73  5.8576e-03 0.1 4162 5.4240e-03 0.1 39.35  2.4730e-02
mod010 0.1 100.00  2.2217e-04 0.7 100.00  7.6252¢-03 0.1 100.00  2.5233e-04 14 94.79  3.9760e-03
mod011 6.4 38.50  3.1465e-02 19.3 39.61  5.7859-02 60.0 4142 6.1338e-02 17.6 39.37 5.7518e-02
modglob 0.3 61.05  2.5368¢-02 0.5 62.31  4.5024¢-02 1.0 5817 4.4318e-02 0.6 63.89  4.3180e-02
noswot 0.0 no gap 1.3127e-02 0.1 no gap  3.4442e-02 0.1 no gap  4.1982e-02 0.2 no gap  4.2526e-02
nw04 7.2 100.00  5.7806e-06 6.0 100.00  8.4070e-03  10.2 100.00  5.7806e-06  34.0 100.00  6.1504e-03
p0033 0.0 76.98  9.4281e-03 0.0 75.57  2.3048e-02 0.0 78.38  2.2338e-02 0.0 75.75  1.9114e-02
p0201 0.2 54.97  2.1807e-03 11 83.28  1.1511e-02 1.6 79.78  1.1691e-02 1.2 84.92 9.7795e-03
p0282 0.1 24.10  1.0334e-02 0.2 55.66  6.8690e-02 0.3 48.78  5.6026e-02 0.3 59.46  7.2102e-02
p0548 0.2 95.57  7.7912¢-03 0.3 97.60  1.7712¢-02 0.5 94.83  1.7799¢-02 0.3 97.16  1.7990e-02
p2756 0.6 97.90  2.2700e-02 0.8 97.00  4.4864e-02 1.0 9742 3.6267e-02 1.0 97.16  4.4811e-02
pkl 0.0 0.00 2.9938e-03 0.0 0.00 9.5531e-03 0.1 0.00 1.4450e-02 0.0 0.00 3.7375e-02
pp08a 0.3 90.39  3.5520e-02 0.6 89.49  4.5770e-02 0.5 92.49  5.1440e-02 0.6 92.59  4.6828e-02
pp08aCUTS 0.5 65.48  2.2789e-02 1.0 71.99  3.7008e-02 14 75.06  3.4990e-02 11 71.49 3.5609e-02
qiu 2.0 837  5.6655e-03  23.4 29.18  1.1153e-02 455 30.60  1.0984e-02 234 29.18  1.1153e-02
qnetl L5 36.18  3.5439e-04 4.5 39.39  6.6478e-03 4.6 46.06  5.3104e-03 7.1 42.29 5.8200e-03
qnetl o 12 56.80  9.8367e-04 4.1 67.05  1.4260e-02 3.4 69.15  1.4546e-02 5.0 68.93  1.4840e-02
rentacar 0.3 30.56  2.7062e-02 0.4 37.20  5.3647e-02 5.5 4326 5.0001e-02 0.4 3720 5.3647e-02
rgn 0.0 12.30  5.9142e-03 0.0 16.37  4.3256e-02 0.0 19.76  3.9477e-02 0.1 33.62  -0.00558971
rout 0.2 519  2.1877e-03 3.4 24.54  1.2801e-02 4.3 35.35  1.0830e-02 3.7 2917 1.4507e-02
setlch 0.5 68.44  5.5305¢-02 0.9 75.66  7.3559¢-02 1.1 7543 7.6604c-02 1.6 73.00  7.3731e-02
seymour 4.9 14.27  1.0106e-02  21.7 14.60  1.1268e-02  30.7 19.92  1.5199e-02  20.5 15.75  1.2845e-02
stein27 0.0 0.00  3.2688¢-02 0.0 0.00  6.0127¢-02 0.0 0.00  6.1522¢-02 0.0 0.00 6.0228¢-02
stein45 0.0 0.00  1.9886e-02 0.3 0.00  5.5584e-02 0.3 0.00  5.3331e-02 0.3 0.00 5.5584e-02
swath 4.1 26.87  1.1443¢-04 5.4 27.60  1.0963¢-02 6.5 2720 6.4202¢-03 4.6 28.36  1.0804e-02
vpml 0.0 52.70  8.7372-03 0.0 75.59  2.0991e-02 0.1 76.82  2.1853e-02 0.0 75.59  2.1079e-02
vpm2 0.0 53.51  8.6445e-03 0.1 61.66  1.7934e-02 0.2 64.13  1.6697e-02 0.1 59.29 2.0777e-02

Average 3.566 48.45 9.515e-3 19.27 53.62 2.232e-2 18.81 55.05 2.164e-2 15.28 53.69 2.297e-2

each of the two methods, Perregaard [I0] reported that the new method required
5% of the number of pivots and 1.3% of the time required by the original one
for generating a L&P cut.
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Table[ presents a comparison for 10 rounds of cuts generated at the root node,
where a round means a cut for every integer-constrained fractional variable. In
this experiment, the problems are preprocessed with COIN CglPreproces pro-
cedure and then 10 rounds of cuts are generated. The test set consists of 65
problems from the MIPLIB.3 library. The four methods compared are mixed
integer Gomory (MIG) cuts, and the three variants of lift-and-project cuts pre-
sented in this paper: Variant 1 (Balas and Perregaard’s algorithm cf. Sections 3
and 4), Variant 2 (the algorithm using the most violated cut selection rule, cf.
Section 5) and Variant 3 (the algorithm using disjunctive modularization cf. Sec-
tion 6). For each of the methods, we report the running time, the percentage of
the initial integrality gap closed, and the average violation for each cut generated
in 10 rounds (where the violation is the change in the objective of (CGLP);, after
each cut added).

As can be seen from the table, generating lift-and-project cuts with the three
different variants proposed here is not much more expensive than generating
MIG cuts. For our test set, it took on the average 3.566 seconds per instance to
perform 10 rounds of MIG cuts, while it took 19, 19 and 15 seconds respectively
per instance for the three variants of lift-and-project cuts. Considering that cut
generation takes less than 5% of the total time needed to solve a mixed integer
program (see [I0]), this difference is not significant. This extra computational
cost made it possible to close a significantly larger fraction of the integrality gap,
namely 54%, 55% and 54% with Variants 1, 2 and 3, respectively, versus 48% for
the MIG cuts. Of the 65 instances, there are only two (bell3a and p2756) on which
the MIG cuts close a slightly larger fraction of the gap than the three flavors of
lift-and-project cuts. Even more striking is the difference in the strength of the
individual cuts, as measured by the amount of their violation by the current LP
solution: it is on the average 2.4 times as large for the lift-and-project cuts as it
is for the MIG cuts.

To more thoroughly assess the effectiveness of lift-and-project cuts, it is of course
necessary to solve the instances to completion by running a branch-and-cut code
and using these cuts to strengthen the LP relaxation. To this end, we present two
comparative experiments of complete resolution for the MIPLIB.3 problems. The
first experiment, presented in Table[2] consists in performing 10 rounds of cut gen-
eration at the root node and then solving the problem by branch-and-bound with-
out further cut generation. In the second experiment, summarized in Table[3] 10
rounds of cuts are generated at the root node and 1 round is performed every 10
nodes of the branch-and-cut tree. Again, the four cut generation methods tested
are MIG cuts and the three variants of lift-and-project cuts. For all three variants,
the limit on the number of pivots is set to 10.

The branch-and-cut runs are performed by using Cbc (COIN-OR Branch and
Cut) with some specific settings: a two hours time limit for solving each problem
is imposed; all the default cut generation procedures of Cbc are deactivated; the
variable selection strategy used is strong branching with the default parameters
of Cbc (i.e. performing strong branching on the 5 most fractional variables); the
node selection strategy is best bound.
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Table 2. Comparing complete resolutions with cut-and-branch with 10 rounds of cuts.
S means solved within the time limit, T means aborted because of the time limit.

MIG Cuts Lift-and-Project Cuts
Variant 1 Variant 2 Variant 3
status time (sec) # nodes |status time (sec) # nodes |status time (sec) # nodes |status time (sec) # nodes
Group A:Instances solved with MIG cuts in less than 10 seconds
air03 S 0.52 1 S 1.14 1 S 0.82 1 S 1.18 1
demulti S 4.27 57 S 6.46 51 S 6.49 41 S 6.61 51
egout S 0.04 5 S 0.03 1 S 0.04 3 S 0.02 1
enigma, S 2.91 1168 S 2.62 931 S 3.00 1257 S 0.25 40
fixnet6 S 4.78 49 S 10.26 43 S 27.16 147 S 11.21 67
flugpl S 0.38 243 S 0.44 309 S 0.49 347 S 0.44 309
gen S 1.28 35 S 1.92 31 S 0.87 17 S 1.46 35
gt2 S 0.01 1 S 1.16 229 S 2.15 259 S 4.60 1041
khb05250 S 1.28 31 S 1.61 31 S 1.68 17 S 1.64 31
Iseu S 1.18 425 S 1.40 537 S 2.56 611 S 2.11 709
misc03 S 2.92 157 S 5.85 111 S 5.97 73 S 3.59 81
misc06 S 1.08 26 S 0.85 10 S 0.51 7 S 1.06 13
mitre S 0.59 1 S 1.18 1 S 1.50 1 S 1.34 1
mod008 S 6.65 919 S 7.22 729 S 6.29 691 S 3.06 313
mod010 S 0.59 1 S 1.08 1 S 0.71 1 S 1.32 1
p0033 S 0.24 157 S 0.17 53 S 0.18 71 S 0.05 9
p0201 S 4.07 153 S 10.53 215 S 7.75 65 S 2.63 17
p0282 S 0.50 47 S 1.11 43 S 1.01 55 S 0.92 51
p0548 S 5.24 409 S 11.59 883 S 9.29 657 S 2.60 187
p2756 S 8.39 168 S 20.41 306 S 10.68 158 S 13.88 200
rentacar S 4.42 13 S 4.81 13 S 5.16 13 S 4.80 13
Tgn S 2.07 527 S 4.93 533 S 2.71 367 S 3.47 363
stein27 S 3.34 873 S 3.33 877 S 3.58 891 S 3.52 893
vpml S 4.81 415 S 0.21 5 S 0.27 5 S 0.23 5
Group B: Instances solved with MIG cuts in a time between 10 seconds and 10 minutes
10teams S 301.57 1091 S 561.25 1600 S 129.68 329 S 321.45 1030
bell3a S 19.69 12871 S 27.31 19765 S 28.30 19205 S 21.42 12927
bell5 S 46.12 22015 S 72.72 29655 S 20.82 9215 S 43.22 17755
blend2 S 27.73 2117 S 25.43 1723 S 7.66 271 S 40.36 2725
cap6000 S 311.07 1557 S 502.07 1923 S 465.71 1853 S 445.67 1825
dsbmip S 15.26 168 S 16.00 159 S 12.15 145 S 43.14 528
fiber S 428.58 8339 S 115.94 2607 S 32.48 257 S 109.52 923
gesad S 34.59 483 S 20.82 129 S 12.98 87 S 29.17 219
gesad_o S 36.45 591 S 48.02 353 S 57.45 319 S 32.43 225
1152lav S 189.21 657 S 157.63 465 S 214.21 293 S 280.03 439
misc07 S 148.21 3745 S 229.06 4913 S 182.43 4161 S 235.73 4593
nw04 S 10.47 1 S 14.05 1 S 33.34 1 S 71.95 1
qnetl S 170.77 567 S 121.46 263 S 94.20 287 S 214.00 489
qnetl_o S 35.52 171 S 80.97 261 S 39.46 131 S 68.18 189
stein4h S 125.43 9819 S 119.04 11767 S 113.12 10093 S 118.13 11381
vpm2 S 401.08 40191 S 165.28 13717 S 267.30 19531 S 309.16 23561
Group C: Instances solved with MIG cuts in more than 10 minutes or unsolved
air04 S 4244.27 903 S 2945.54 689 S 6559.62 841 S 2057.31 467
air05 S 1872.60 1199 S 3048.48 1055 S 6301.18 1783 S 6061.42 1795
gesa2 S 1742.22 34263 S 3525.33 92709 S 3574.77 74509 S 3843.77 83425
gesa2_o T  7200.61 90683 T  7199.81 97291 T  7201.03 79284 T 720091 88376
mas76 S 3643.00 765927 S 2729.41 730081 S 1733.07 783863 S 2104.06 731935
mod011 T 7199.75 19457 T 7200.16 17990 T 7199.88 16488 T 7200.20 13504
modglob S 2140.48 257313 S 714.17 38231 S 1122.85 68141 S 563.46 29151
pkl S 656.52 318694 S 665.89 321034 S 651.76 328540 S 681.34 357178
pp08a S 1164.49 55853 S 745.10 30769 S 261.32 12081 S 537.56 26211
pp08aCUTS| S 962.24 45755 S 646.92 20095 S 782.85 29135 S 869.54 23443
qiu S 3077.94 8505 S 4278.59 4665 T 7200.33 3647 S 3864.11 4665
Average — 711.1  3.35le+04| — 7074  2.843e+04| — 870.6  2.883e+04| — 734.1  2.83e+04
Geo. Mean — 23.226 599.19 — 27.901 508.96 — 25.4 420.4 — 25.897 428.82

In Table 2, for each problem and each method, we indicate the status, the
computing time and the number of nodes to solve the problem. Averages and
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geometric means are reported in the last two lines of the table. Among the
65 problems of the MIPLIB.3, 14 were not solved in the two hours time limit
with any of the methods tested (namely arkiO1, dano3mip, danoint, fast0507,
harp2, mas74, marksharel, markshare2, mkc, noswot, rout, setlch, seymour
and swath). We do not include statistics for these 14 problems.

As Table 2 shows, the average size of the branch-and-bound trees generated
by each of Variants 1, 2 and 3 is about 15% smaller than the one obtained with
the MIG cuts. The average time needed to solve an instance remains roughly
the same for Variants 1 and 3 as for the MIG cuts, and increases by a fifth for
Variant 2.

The experiment reported in Table 2 was in cut-and-branch mode, in that cuts
were only generated at the root node. Our next experiment explores the use
of cuts in the branch-and-cut mode: it generates 10 rounds of cuts at the root
node, and one round of cuts at every 10-th node of the branch-and-bound tree.
A summary of its results are reported in Table 3 (we only report averages by
groups of instances the same as the ones constituted in Table ). The complete
results are available at [9]

It is highly edifying to examine the effect of cut generation in the branch-and-
bound tree. One would expect these extra cuts to reduce the size of the search
tree by making the linear programming relaxation tighter, evidently at some com-
putational cost not so much from generating the cuts as from the increased time
needed to solve the linear programs with more constraints. So our expectation was
for a decrease in the size of the tree, but an increase of the computing time per
node. Surprisingly, a very different picture emerges from comparing Tables 2 and
3. The average number of search tree nodes is indeed smaller for Table 3, but only
by 1.4% in the case of MIG cuts and by 7%, 9% and 18% respectively for the three
variants of lift-and-project cuts. On the other hand, the total computing time is
reduced by 32% in the case of the MIG cuts, and by 31%, 26% and 35% respectively
for Variants 1, 2 and 3 of the lift-and-project cuts. In other words, adding cuts at
some nodes of the branch-and-bound tree has reduced, rather than increased, the
computing time per node. Another aspect of this finding is the fact that in many
instances an increase in the number of search tree nodes is accompanied by a de-
crease in the total number of pivots performed during the procedure (excluding
those used for cut generation, see [9]).

In trying to explain this strange phenomenon, we looked in detail at several
runs and found that the most likely explanation lies in the fact that the cuts
added at some nodes tend to substantially enhance the power of reduced cost
fixing. In other words, they help fix more 0-1 variables whose reduced cost ex-
ceeds the difference between the value of the incumbent solution and the current
upper bound (difference which is reduced as the result of adding the cuts), and
thereby they facilitate the solution of the subproblems rather than making it
harder. This explanation is partially corroborated by the detailed data that we
were able to retrieve for a few instances, in the sense that in all cases the number
of variables fixed by reduced cost throughout the run is significantly larger (by
anywhere from 15% to 50% to even 400% in one case) for the runs of Table 3
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Table 3. Summary of the results comparing complete resolutions with branch-and-cut,
generating 10 rounds of cuts at the root node and then one round every 10 nodes

MIG Cuts Lift-and-Project Cuts
Variant 1 Variant 2 Variant 3

# instances|time (sec) # nodes |time (sec) # nodes |time (sec) # nodes |time (sec) # nodes

Group A 24 2.126 214 2.789 195.9 3.065 177.2 3.042 168.9
Group B 16 77.15 3649 75.56 3276 72.84 3150 123.3 3827
Group C 11 2135  1.475e+05| 2154  1.183e+05| 2898  1.163e+05| 2020 1.013e+05
Average - 485.8  3.305e+04| 489.5 2.663e+04| 649.3 2.615e+04| 475.9 2.312e+04
Geo. Mean - 17.307 510.8 19.734 432.86 19.324 383.63 20.243 409.7

than for those of Table 2, but this does not solve the mystery, which requires
further study.

As it is well known that cutting planes tend to play a more significant role
in solving hard instances than easy ones (easy instances are often solved faster
without cutting planes), we turned our attention to the behavior of our proce-
dures on the hardest of the instances that we solved. There were 11 instances
whose solution required over 10 minutes, but that were nevertheless solved within
our time limit of 2 hours, and their data are collected in Table 4for the case of
branch-and-cut with 10 rounds of cuts at the root node and another round of
cuts after every 10-th node (the same runs described in Table 3). Out of these 11
instances, the procedure using MIG cuts was fastest in 3 cases, whereas Variants
1, 2 and 3 of the lift-and project based procedure were fastest in 1, 3 and 4 cases,
respectively. Similarly, in terms of the number of branch and bound tree nodes
generated, the MIG cuts did best in 2 instances, whereas Variants 1, 2 and 3
were best in 2, 2 and 4 instances, respectively. Table 4 shows in boldface the best

Table 4. Comparing branch-and-cut with 10 rounds of cuts at the root node and one
round at every 10 nodes, on the 11 instances requiring more than 10 minutes. The best
performers for each instance (in terms of time and nodes) are boldfaced.

MIG Cuts Lift-and-Project Cuts
Variant 1 Variant 2 Variant 3

status time (sec) # nodes |status time (sec) # nodes |status time (sec) # nodes |status time (sec) # nodes
air04 S 2310.95 1027 S 1766.50 685 S 1220.82 533 S 1289.52 481
air05 S 890.55 865 S 1364.21 1085 S 2688.23 1965 S 1500.95 1115
gesa2 S 1089.67 23899 S 791.22 17767 S 1834.55 39627 S 1337.58 31899
gesa2_0 S 3266.18 50109 S 3630.03 58059 T >7208.71 >76979 S 5962.31 100257
mas76 S 3965.26 609723 S 6293.23 734951 T >7201.54 >740897 | S  2414.62 557405
mod011 S 4907.91 23463 S 4950.25 22453 S 6118.13 25097 S 6034.56 23825
modglob S 2517.83 392369 S 752.74 49065 S 653.60 43677 S 388.67 22811
pkl S 764.46 354890 S 805.46 321690 S T77.89 297800 S 752.74 291104
pp08a S 1575.11 120203 S 1038.75 67785 S 323.80 18977 S 677.60 43437
pp08aCUTS| S 858.07 40175 S 479.43 20751 S 472.34 23113 S 833.71 37959
qiu S 1344.05 5429 S 1819.18 6649 S 3375.35 10315 S 1030.98 3561
Average — 2135  1.475e4+05| — 2154 1.183e+05| — 2898  1.163e+05| — 2020 1.013e+05
Geo. Mean — 1758.9 33285 — 1543.5 24451 — 1760 25885 — 1393 22853
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performers for each instance. The geometric means of the computing time and
of the number of search tree nodes for Variant 3 of the L&P procedure are less
than the corresponding means for the MIG cut-based procedure by 48% and 31
%, respectively.

Generating lift-and-project cuts from the LP simplex tableau rather than
the higher dimensional Cut Generating Linear Program is a new approach (the
correspondence making this possible was discovered around 2002 [6] and its first
implementation [I0], corresponding more or less to our Variant 1, was done in
2003). Therefore the parameters used in our runs reported in this paper are
first choices, to be improved upon by further research and experimentation. It
is therefore legitimate to also look at the performance of the best of the three
Variants in comparison with the classical MIG cuts on this set of hard problems.
The result of that comparison is that the ”best of three” is the fastest on 8 of the
11 instances, and generates the fewest search tree nodes on 9 of the 11 instances.
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Abstract. Weintroduce orbital branching, an effective branching method
for integer programs containing a great deal of symmetry. The method is
based on computing groups of variables that are equivalent with respect to
the symmetry remaining in the problem after branching, including sym-
metry which is not present at the root node. These groups of equivalent
variables, called orbits, are used to create a valid partitioning of the fea-
sible region which significantly reduces the effects of symmetry while still
allowing a flexible branching rule. We also show how to exploit the sym-
metries present in the problem to fix variables throughout the branch-and-
bound tree. Orbital branching can easily be incorporated into standard IP
software. Through an empirical study on a test suite of symmetric inte-
ger programs, the question as to the most effective orbit on which to base
the branching decision is investigated. The resulting method is shown to
be quite competitive with a similar method known as isomorphism prun-
ing and significantly better than a state-of-the-art commercial solver on
symmetric integer programs.

1 Introduction

In this work, we focus on packing and covering integer programs (IP)s of the
form

Ta | Az < d PIP
mer?ozg(}n{e x| Az < e} an (PIP)
i To| Az > e} CIP
iy {eTo | A} ()

where A € {0,1}™*", and e is a vector of ones of conformal size. Our particular
focus is on cases when (CID) or (PIP)) is highly-symmetric, a concept we formalize
as follows. Let II™ be the set of all permutations of I™ = {1,...,n}. Given a
permutation m € II™ and a permutation o € II"™, let A(m, o) be the matrix
obtained by permuting the columns of A by 7w and the rows of A by o, i.e.
A(m,0) = P,AP,, where P, and P, are permutation matrices. The symmetry
group G of the matrix A is the set of permutations

G(A) Y {x e 1" | 3o € II™ such that A(m,0) = A} .

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 104 2007.
© Springer-Verlag Berlin Heidelberg 2007
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So, for any m € G(A), if % is feasible for (CIP]) or (PIP) (or the LP relaxations
of (CIP)) or (PIP)), then if the permutation 7 is applied to the coordinates of Z,
the resulting solution, which we denote as 7(z), is also feasible. Moreover, the
solutions & and 7 (Z) have equal objective value.

This equivalence of solutions induced by symmetry is a major factor that might
confound the branch-and-bound process. For example, suppose Zis a (non-integral)
solution to an LP relaxation of PIP or CIP, with 0 < #; < 1, and the decision
is made to branch down on variable z; by fixing z; = 0. If 37 € G(A) such that
[7(2)]; = 0, then (%) is a feasible solution for this child node, and e”# = €T (7(1)),
so the relaxation value for the child node will not change. If the cardinality of G(A)
is large, then there are many permutations through which the parent solution of
the relaxation can be preserved in this manner, resulting in many branches that do
not change the bound on the parent node. Symmetry has long been recognized as
a curse for solving integer programs, and auxiliary (often extended) formulations
are often sought that reduce the amount of symmetry in an IP formulation [TI2lJ3].
In addition, there is a body of research on valid inequalities that can help exclude
symmetric feasible solutions [4U5lJ6]. Kaibel and Pfetsch [7] formalize many of these
arguments by defining and studying the properties of a polyhedron known as an
orbitope, the convex hull of lexicographically maximal solutions with respect to a
symmetry group. Kaibel et al. [8] then use the properties of orbitopes to remove
symmetry in partitioning problems.

A different idea, isomorphism pruning, introduced by Margot [910] in the con-
text of IP and dating back to Bazaraa and Kirca [I1], examines the symmetry
group of the problem in order to prune isomorphic subproblems of the enumera-
tion tree. The branching method introduced in this work, orbital branching, also
uses the symmetry group of the problem. However, instead of examining this group
to ensure that an isomorphic node will never be evaluated, the group is used to
guide the branching decision. At the cost of potentially evaluating isomorphic sub-
problems, orbital branching allows for considerably more flexibility in the choice of
branching entity than isomorphism pruning. Furthermore, orbital branching can
be easily incorporated within a standard MIP solver and even exploit problem
symmetry that may only be locally present at a nodal subproblem.

The remainder of the paper is divided into five sections. In Sect. 2 we give some
mathematical preliminaries. Orbital branching is introduced and formalized in
Sect. Bl and a mechanism to fix additional variables based on symmetry con-
siderations called orbital fizing is described there. A more complete comparison
to isomorphism pruning is also presented in Sect. Bl Implementation details are
provided in Sect. @ and computational results are presented in Sect. Bl Conclu-
sions about the impact of orbital branching and future research directions are
given in Sect.

2 Preliminaries

Orbital branching is based on elementary concepts from algebra that we recall in
this section to make the presentation self-contained. Some definitions are made
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in terms of an arbitrary permutation group I, but for concreteness, the reader
may consider the group I" to be the symmetry group of the matrix G(A).

For a set S C I", the orbit of S under the action of I" is the set of all subsets
of I" to which S can be sent by permutations in I, i.e.,

orb(S, I) def

{S§' CI" | 3m € I" such that S’ == (S)} .

In the orbital branching we are concerned with the orbits of sets of cardinality
one, corresponding to decision variables z; in PIP or CIP. By definition, if j €
orb({k},I"), then k € orb({j},I"), i.e. the variable z; and xj share the same
orbit. Therefore, the union of the orbits

o) = | J orb({j}, 1)

Jj=1

forms a partition of I™ = {1,2,...,n}, which we refer to as the orbital partition
of I'; or simply the orbits of I'. The orbits encode which variables are “equivalent”
with respect to the symmetry I'.

The stabilizer of a set S C I in I is the set of permutations in I" that send
S to itself.

stab(S, ) = {r € I' | ©(S) = S} .

The stabilizer of S is a subgroup of I'.

We characterize a node a = (F}*, F§') of the branch-and-bound enumeration
tree by the indices of variables fixed to one F}* and fixed to zero F§ at node a.
The set of free variables at node a is denoted by N* = I\ F§ \ F{*. At node a,
the set of feasible solutions to (CIP)) or (PIP)) is denoted by F(a), and the value
of an optimal solution for the subtree rooted at node a is denoted as z*(a).

3 Orbital Branching

In this section we introduce orbital branching, an intuitive way to exploit the
orbits of the symmetry group G(A) when making branching decisions. The clas-
sical 0-1 branching variable dichotomy does not take advantage of the problem
information encoded in the symmetry group. To take advantage of this infor-
mation in orbital branching, instead of branching on individual variables, orbits
of variables are used to create the branching dichotomy. Informally, suppose
that at the current subproblem there is an orbit of cardinality k& in the orbital
partitioning. In orbital branching, the current subproblem is divided into k + 1
subproblems: the first k£ subproblems are obtained by fixing to one in turn each
variable in the orbit while the (k + 1)S! subproblem is obtained by fixing all
variables in the orbit to zero. For any pair of variables z; and z; in the same
orbit, the subproblem created when x; is fixed to one is essentially equivalent
to the subproblem created when z; is fixed to one. Therefore, we can keep in
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the subproblem list only one representative subproblem, pruning the (k — 1)
equivalent subproblems. This is formalized below.

Let A(F{, F§) be the matrix obtained by removing from the constraint matrix
A all columns in F§ U FY{ and either all rows intersecting columns in F{* (CIP
case) or all columns nonorthogonal to columns in F{* (PIP case). Note that if
x € F(a) and x is feasible with respect to the matrix A, then x is feasible with
respect to the matrix A(FY, F').

Let O = {i1,2,...,ijo;} € N be an orbit of the symmetry group G(A(FY,
F§)). Given a subproblem a, the disjunction

ry =1Va, =1V.. 2, =1VY 2;=0 (1)

icO
induces a feasible division of the search space. In what follows, we show that for
any two variables x;,z; € O, the two children a(j) and a(k) of a, obtained by

fixing respectively x; and z; to 1 have the same optimal solution value. As a
consequence, disjunction (IJ) can be replaced by the binary disjunction

achzl\/Za:i=07 (2)

icO
where h is a variable in O. Formally, we have Theorem [Il

Theorem 1. Let O be an orbit in the orbital partitioning O(G(A(FY, F§))),
and let j,k be two variable indices in O. If a(j) = (Ff U {j}, E§) and a(k) =
(Fy U{k}, F§) are the child nodes created when branching on variables x; and
X, then z*(a(j)) = 2*(a(k)).

Proof. Let «* be an optimal solution of a(j) with value z*(a(j)). Obviously
x* is also feasible for a. Since j and k are in the same orbit O, there exists a
permutation © € G(A(F{, F§)) such that n(j) = k. By definition, 7(z*) is a
feasible solution of a with value z*(a(j)) such that x = 1. Therefore, 7(z*) is
feasible for a(k), and z*(a(k)) = z*(a(j)). O

The basic orbital branching method is formalized in Algorithm [

Algorithm 1. Orbital Branching

Input: Subproblem a = (F}, F'), non-integral solution Z.
Output: Two child subproblems b and c.

Step 1. Compute orbital partition O(G(A(FY, F§))) = {01,02,...,0}.

Step 2. Select orbit Oj«, j* € {1,2,...,p}.

Step 3. Choose arbitrary k € O;=. Return subproblems b = (F{' U {k}, F¢') and
c= (FP, Fg UQ;~).

The consequence of Theorem [l is that the search space is limited, but orbital
branching has also the relevant effect of reducing the likelihood of encountering
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symmetric solutions. Namely, no solutions in the left and right child nodes of
the current node will be symmetric with respect to the local symmetry. This is
formalized in Theorem 21

Theorem 2. Let b and ¢ be any two subproblems in the enumeration tree. Let a
be the first common ancestor of b and c. For any x € F(b) and m € G(A(F§, F{")),
m(z) does not belong F(c).

Proof. Suppose not, i.e., that there 3z € F(b) and a permutation 7 € G(A(F,
F{)) such that 7(z) € F(c). Let O; € O(G(A(FY, F§))) be the orbit chosen to
branch on at subproblem a. W.l.o.g. we can assume zj = 1 for some k € O;.
We have that x;, = [7(2)]-x) = 1, but m(k) € O;. Therefore, by the orbital
branching dichotomy, 7 (k) € F¢, so w(x) & F(c). ]

Note that by using the matrix A(F}, F{§'), orbital branching attempts to use sym-
metry found at all nodes in the enumeration tree, not just the symmetry found
at the root node. This makes it possible to prune nodes whose corresponding
solutions are not symmetric in the original IP.

3.1 Orbital Fixing

In orbital branching, all variables fixed to zero and one are removed from the
constraint matrix at every node in the enumeration tree. As Theorem 2l demon-
strates, using orbital branching in this way ensures that any two nodes are not
equivalent with respect to the symmetry found at their first common ancestor.
It is possible however, for two child subproblems to be equivalent with respect
to a symmetry group found elsewhere in the tree. In order to combat this type
of symmetry we perform orbital fizing, which works as follows.

Consider the symmetry group G(A(F{*,()) at node a. If there exists an orbit
O in the orbital partition O(G(A(F{,0))) that contains variables such that O N
F§ # 0 and O N N® # (), then all variables in O can be fixed to zero. In the
following theorem, we show that such variable setting (orbital fixing) excludes
feasible solutions only if there exists a feasible solution of the same objective
value to the left of the current node in the branch and bound tree. (We assume
that the enumeration tree is oriented so that the branch with an additional
variable fixed at one is the left branch).

To aid in our development,we introduce the concept of a focus node. For
x € F(a), we call node b(a,x) a focus node of a with respect to z if Jy € F(b)
such that ez = €Ty and b is found to the left of a in the tree.

Theorem 3. Let {O1,02,...0,} be an orbital partitioning of G(A(FY,0)) at
node a, and let the set

g {j e N*| 3k € F§ and j,k € Oy for some £ € {1,2,...q}}
be the set of free variables that share an orbit with a variable fixed to zero at a.
If x € F(a) with x; = 1 for some i € S, then there exists a focus node for a with
respect to x.
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Proof. Suppose that a is the first node in any enumeration tree where S is non-
empty. Then, there exist j € F¢ and i € S such that ¢ € orb({j}, G(A(F{,0))),
i.e., there exists a 7 € G(A(F®,0)) with 7(i) = j. W.lLo.g., suppose that j is
any of the first such variables fixed to zero on the path from the root node to
a and let ¢ be the subproblem in which such a fixing occurs. Let p(c) be the
parent node of ¢. By our choice of j as the first fixed variable, for all i € F§, we
have z,(;y = 0. Then, there exists € F(a) with z; = 1 such that m(z) is not
feasible in a (since it does not satisfy the bounds) but it is feasible in p(c) and
has the same objective value of x. Since j was fixed by orbital branching then
the left child of p(c) has x;, = 1 for some h € orb({j},Q(A(Ff(c)7Fé)(c)))). Let
s Q(A(Ff(c), F(f(c))) have 7/(j) = h. Then 7/(7(z)) is feasible in the left node
with the same objective value of x. The left child node of p(c) is then the focus
node of a with respect to x.

If @ is not a first node in the enumeration tree one can apply the same argu-
ment to the first ancestor b of a such that S # ). The focus node of ¢ = (b, ) is
then a focus node of (a, ).

O

An immediate consequence of Theorem [3 is that for all i € F§ and for all
J € orb({i}, G(A(FY,0))) one can set x; = 0. We update orbital branching to
include orbital fixing in Algorithm

Algorithm 2. Orbital Branching with Orbital Fixing

Input: Subproblem a = (FY, Fy') (with free variables N® = I"™ \ F{' \ Fy), frac-
tional solution Z.

Output: Two child nodes b and c.

Step 1. Compute orbital partition O(G(A(F,0))) = {O1,0s,...,0,}. Let S Lof
{j € N |3k e F§ and (jNk) € O for some £ € {1,2,...q}}.

Step 2. Compute orbital partition O(G(A(FY, F§))) = {01,02,...,0}.

Step 3. Select orbit O+, j* € {1,2,...,p}.

Step 4. Choose arbitrary k € O;=. Return child subproblems b = (F{U{k}, FgUS)
and ¢ = (F?, F§ UO;- US).

In orbital fixing, the set S of additional variables set to zero is a function of
E§. Variables may appear in F' due to a branching decision or due to traditional
methods for variable fixing in integer programming, e.g. reduced cost fixing or
implication-based fixing. Orbital fixing, then, gives a way to enhance traditional
variable-fixing methods by including the symmetry present at a node of the
branch and bound tree.

3.2 Comparison to Isomorphism Pruning

The fundamental idea behind isomorphism pruning is that for each node a =
(FY, F§), the orbits orb(Fy, G(A)) of the “equivalent” sets of variables to F}* are
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computed. If there is a node b = (F?, F{) elsewhere in the enumeration tree such
that F} € orb(F{, G(A)), then the node a need not be evaluated—the node a is
pruned by isomorphism. A very distinct and powerful advantage of this method
is that no nodes whose sets of fixed variables are isomorphic will be evaluated.
One disadvantage of this method is that computing orb(F},G(A)) can require
computational effort on the order of O(n|F{|!). A more significant disadvantage
of isomorphism pruning is that orb(F{, G(A)) may contain many equivalent sub-
sets to F{*, and the entire enumeration tree must be compared against this list to
ensure that a is not isomorphic to any other node b. In a series of papers, Margot
offers a way around this second disadvantage [910]. The key idea introduced is
to declare one unique representative among the members of orb(Fy,G(A)), and
if F? is not the unique representative, then the node a may safely be pruned.
The advantage of this extension is that it is trivial to check whether or not node
a may be pruned once the orbits orb(Ff, G(A)) are computed. The disadvantage
of the method is ensuring that the unique representative occurs somewhere in the
branch and bound tree requires a relatively inflexible branching rule. Namely, all
child nodes at a fixed depth must be created by branching on the same variable.

Orbital branching does not suffer from this inflexibility. By not focusing on
pruning all isomorphic nodes, but rather eliminating the symmetry through
branching, orbital branching offers a great deal more flexibility in the choice
of branching entity. Another advantage of orbital branching is that by using the
symmetry group G(A(F{, F§)), symmetry introduced as a result of the branching
process is also exploited.

Both methods allow for the use of traditional integer programming methodolo-
gies such as cutting planes and fixing variables based on considerations such as
reduced costs and implications derived from preprocessing. In isomorphism prun-
ing, for a variable fixing to be valid, it must be that all non-isomorphic optimal
solutions are in agreement with the fixing. Orbital branching does not suffer from
this limitation. A powerful idea in both methods is to combine the variable fixing
with symmetry considerations in order to fix many additional variables. This idea
is called orbit setting in [I0] and orbital fizing in this work (see Sect. B.IJ).

4 Implementation

The orbital branching method has been implemented using the user application
functions of MINTO v3.1 [I2]. The branching dichotomy of Algorithm [ or
is implemented in the appl divide() method, and reduced cost fixing is im-
plemented in appl bounds () . The entire implementation, including code for all
the branching rules subsequently introduced in Sect. consists of slightly over
1000 lines of code. All advanced IP features of MINTO were used, including
clique inequalities, which can be useful for instances of (PID)).

4.1 Computing G(+)

Computation of the symmetry groups required for orbital branching and orbital
fixing is done by computing the automorphism group of a related graph. Recall
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that the automorphism group Aut(G(V, E)) of a graph G = (V| E), is the set of
permutations of V' that leave the incidence matrix of G unchanged, i.e.

Aw(G(V,E)) = {r € IV | (i,j) € E & (n(i),n(j)) € E} .

The matrix A whose symmetry group is to be computed is transformed into a
bipartite graph G(A) = (N, M, E) where vertex set N = {1,2,...,n} represents
the variables, and vertex set M = {1,2,...,m} represents the constraints. The
edge (i,7) € E if and only if a;; = 1. Under this construction, feasible solutions
to (PIP) are subsets of the vertices S C N such that each vertex i € M is
adjacent to at most one vertex j € S. In this case, we say that S packs M.
Feasible solutions to (CIP)) correspond to subsets of vertices S C N such that
each vertex i € M is adjacent to at least one vertex j € S, or S covers M. Since
applying members of the automorphism group preserves the incidence structure
of a graph, if S packs (covers) M, and 7 € stab(M, Aut(G(A))), then there exists
ao € II"™ such that (M) = M and 7(S) packs (covers) o(M). This implies that
if m € stab(M, Aut(G(A))), then the restriction of 7 to N must be an element of
G(A), i.e. using the graph G(A), one can find elements of symmetry group G(A).
In particular, we compute the orbital partition of the stabilizer of the constraint
vertices M in the automorphism group of G(A4), i.e.

O(stab(M, Aut(G(A)))) = {01, 0s,...,0,} .

The orbits O1,0a3,...,0, in the orbital partition are such that if i € M and
j € N, then ¢ and j are not in the same orbit. We can then refer to these orbits
as variable orbits and constraint orbits. In orbital branching, we are concerned
only with the variable orbits.

There are several software packages that can compute the automorphism groups
required to perform orbital branching. The program nauty [I3], by McKay, has
been shown to be quite effective [I4], and we use nauty in our orbital branching
implementation.

The complexity of computing the automorphism group of a graph is not
known to be polynomial time. However, nauty was able to compute the symme-
try groups of our problems very quickly, generally faster than solving an LP at
a given node. One explanation for this phenomenon is that the running time of
nauty’s backtracking algorithm is correlated to the size of the symmetry group
being computed. For example, computing the automorphism group of the clique
on 2000 nodes takes 85 seconds, while graphs of comparable size with little or no
symmetry require fractions of a second. The orbital branching procedure quickly
reduces the symmetry group of the child subproblems, so explicitly recomputing
the group by calling nauty is computational very feasible. In the table of results
presented in the Appendix, we state explicitly the time required in computing
automorphism groups by nauty.

4.2 Branching Rules

The orbital branching rule introduced in Sect. [J leaves significant freedom in
choosing the orbit on which to base the partitioning. In this section, we discuss
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mechanisms for deciding on which orbit to branch. As input to the branching de-
cision, we are given a fractional solution # and orbits O1, Os, . .. O, (consisting of
all currently free variables) of the orbital partitioning O(G(A(F§, F{*))) for the
subproblem at node a. Output of the branching decision is an index j* of an orbit
on which to base the orbital branching. We tested six different branching rules.
Rule 1: Branch Largest: The first rule chooses to branch on the largest orbit
Oj* :
Jj* € arg max \O | .
je{1,..

Rule 2: Branch Largest LP Solution: The second rule branches on the orbit
O~ whose variables have the largest total solution value in the fractional solution
Z:
€ arg max z(0;) .
J g ey (0;)

Rule 3: Strong Branching: The third rule is a strong branching rule. For each
orbit j, two tentative child nodes are created and their bounds zf and z. are
computed by solving the resulting linear programs. The orbit j* for which the
product of the change in linear program bounds is largest is used for branching:

j* € arg max eac—z ela—27]) .

i earg max (|67 - zf)(e"E - )
Note that if one of the potential child nodes in the strong branching procedure
would be pruned, either by bound or by infeasibility, then the bounds on the
variables may be fixed to their values on the alternate child node. We refer to
this as strong branching fizing, and in the computational results in the Appendix,
we report the number of variables fixed in this manner. As discussed at the end
of Sect. Bl variables fixed by strong branching fixing may result in additional
variables being fixed by orbital fixing.

Rule 4: Break Symmetry Left: This rule is similar to strong branching, but
instead of fixing a variable and computing the change in objective value bounds,
we fix a variable and compute the change in the size of the symmetry group.
Specifically, for each orbit j, we compute the size of the symmetry group in
the resulting left branch if orbit j (including variable index i;) was chosen for
branching, and we branch on the orbit that reduces the symmetry by as much
as possible:
j*earg min (G(A(FY Ui}, F3)))
Je{1,...p}

Rule 5: Keep Symmetry Left: This branching rule is the same as Rule 4,
except that we branch on the orbit for which the size of the child’s symmetry
group would remain the largest:

j* g max (GACFY U (i}, F)))

Rule 6: Branch Max Product Left: This rule attempts to combine the fact
that we would like to branch on a large orbit at the current level and also keep
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a large orbit at the second level on which to base the branching dichotomy.
For each orbit O1,Os, ..., 0,, the orbits P/, PJ,..., PJ of the symmetry group
G(A(FU{i;}, FY)) of the left child node are computed for some variable index
i; € O;. We then choose to branch on the orbit j* for which the product of the
orbit size and the largest orbit of the child subproblem is largest:

¥ € arg max O;|( max Pj>
e ()

5 Computational Experiments

In this section, we give empirical evidence of the effectiveness of orbital branch-
ing, we investigate the impact of choosing the orbit on which branching is based,
and we demonstrate the positive effect of orbital fixing. The computations are
based on the instances whose characteristics are given in Table[Il The instances
beginning with cod are used to compute maximum cardinality binary error cor-
recting codes [I5], the instances whose names begin with cov are covering designs
[16], the instance £5 is the “football pool problem” on five matches [I7], and the
instances sts are the well-known Steiner-triple systems [I8]. The cov formu-
lations have been strengthened with a number of Schéenheim inequalities, as
derived by Margot [19]. All instances, save for £5, are available from Margot’s
web site: http://wpweb2.tepper.cmu.edu/fmargot/lpsym.htmll

The computations were run on ma-
chines with AMD Opteron proces-
sors clocked at 1.8GHz and having  Table 1. Symmetric Integer Programs
2GB of RAM. The COIN-OR soft-

ware Clp was used to solve the lin- Name Variables
ear programs at nodes of the branch cod83 256
and bound tree. All code was com- cod93 512
piled with the GNU family of compil- cod105 1024
ers using the flags -03 -m32. For each covl053 252
instance, the (known) optimal solu- covl054 2252
tion value was set to aid pruning and covl075 120
reduce the “random” impact of find- covl076 120
ing a feasible solution in the search. cov954 126
Nodes were searched in a best-first f5 243
fashion. When the size of the maxi- sts27 27
mum orbit in the orbital partitioning sts4d 45

is less than or equal to two, nearly all
of the symmetry in the problem has
been eliminated by the branching procedure, and there is little use to perform
orbital branching. In this case, we use MINTO’s default branching strategy. The
CPU time was limited in all cases to four hours.

In order to succinctly present the results, we use performance profiles of Dolan
and Moré [20]. A performance profile is a relative measure of the effectiveness of
one solution method in relation to a group of solution methods on a fixed set of
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problem instances. A performance profile for a solution method m is essentially
a plot of the probability that the performance of m (measured in this case with
CPU time) on a given instance in the test suite is within a factor of 3 of the best
method for that instance.

Figure [Il shows the results of an experiment designed to compare the perfor-
mance of the six different orbital branching rules introduced in Sect. In this
experiment, both reduced cost fixing and orbital fixing were used. A complete
table showing the number of nodes, CPU time, CPU time computing automor-
phism groups, the number of variables fixed by reduced cost fixing, orbital fixing,
and strong branching fixing, and the deepest tree level at which orbital branching
was performed is shown in the Appendix.

Hahi ! 3

b i H
JaeRERE branch-largest =
. branch-largest-lp ==

oot I HE strong—branch  s=sex

I. ° break—symmetry—left +==

keep-symmetry—left

Prob(within factor B of fastest)

branch-pax-product-left s+ +

1 2 4 8 16 2

B

Fig. 1. Performance Profile of Branching Rules

A somewhat surprising result from the results depicted in Fig. [l is that the
most effective branching method was Rule 5, the method that keeps the sym-
metry group size large on the left branch. (This method gives the “highest”
line in Fig. ). The second most effective branching rule appears to be the rule
that tries to reduce the group size by as much as possible. While these methods
may not prove to be the most robust on a richer suite of difficult instances, one
conclusion that we feel safe in making from this experiment is that considering
the impact on the symmetry of the child node of the current branching decision
is important. Another important observation is that for specific instances, the
choice of orbit on which to branch can have a huge impact on performance.
For example, for the instance cov1054, branching rules 4 and 5 both reduce the
number of child nodes to 11, while other mechanisms that do not consider the
impact of the branching decision on the symmetry of the child nodes cannot
solve the problem in four hours of computing time.

The second experiment was aimed at measuring the impact of performing
orbital fixing, as introduced in Sect. [3.Il Using branching rule 5, each instance
in Table [l was run both with and without orbital fixing. Figure [ shows a
performance profile comparing the results in the two cases. The results shows
that orbital fixing has a significant positive impact.
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orbital—fixing e

Prob(within factor 3 of fastest)

no—orbitalfixing ===
. . . | |
1 2 s s 6 2 o

Fig. 2. Performance Profile of Impact of Orbital Fixing

The final comparison we make here is between orbital branching (with keep-
symmetry-left branching), the isomorphism pruning algorithm of Margot, and
the commercial solver CPLEX version 10.1, which has features for symmetry
detection and handling. Table 2] summarizes the results of the comparison. The
results for isomorphism pruning are taken directly from the paper of Margot
using the most sophisticated of his branching rules “BC4” [10]. The paper [10]
does not report results on sts27 or £5. The CPLEX results were obtained on
an Intel Pentium 4 CPU clocked at 2.40GHz. Since the results were obtained on
three different computer architectures and each used a different LP solver for
the child subproblems, the CPU times should be interpreted appropriately.

The results show that the number of subproblems evaluated by orbital
branching is smaller than isomorphism pruning in three cases, and in nearly
all cases, the number of nodes is comparable. For the instance cov1076, which
is not solved by orbital branching, a large majority of the CPU time is spent
computing symmetry groups at each node. In a variant of orbital branching that

Table 2. Comparison of Orbital Branching, Isomorphism Pruning, and CPLEX v10.1

Orbital Branching Isomorphism Pruning CPLEX v10.1

Instance Time Nodes Time Nodes Time Nodes
cod83 2 25 19 33 391 32077
cod93 176 539 651 103 fail 488136

cod105 306 11 2000 15 1245 1584

cov1053 50 745 35 111 937 99145

covl054 2 11 130 108 fail 239266

cov1075 292 377 118 169 141 10278

cov1076 fail 13707 3634 5121 fail 1179890

cov9b4d 22 401 24 126 9 1514
5 66 935 - - 1150 54018
sts27 1 71 - - 0 1647

sts4d5 3302 24317 31 513 24 51078
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Table 3. Performance of Orbital Branching Rules on Symmetric IPs

Nauty # Fixed # Fixed # Fixed Deepest

Instance Branching Rule Time Nodes Time by RCF by OF by SBF Orbital Level
cod105 Break Symmetry 305.68 11 22.88 0 1020 0 4
cod105 Keep Symmetry 306.47 11 22.92 0 1020 0 4
cod105 Branch Largest LP Solution 283.54 7 11.87 0 0 0 2
cod105 Branch Largest 283.96 9 18.01 0 0 0 3
cod105 Max Product Orbit Size 302.97 9 17.41 0 920 0 3
cod105 Strong Branch 407.14 7 11.85 0 1024 1532 2
cod83 Break Symmetry 2.35 25 1.09 44 910 0 7
cod83 Keep Symmetry 2.38 25 1.10 44 910 0 7
cod83 Branch Largest LP Solution 8.81 93 2.76 209 534 0 6
cod83 Branch Largest 10.03 113 3.41 183 806 0 14
cod83 Max Product Orbit Size 9.39 115 4.59 109 634 0 11
cod83 Strong Branch 9.44 23 0.97 27 878 394 6
cod93 Break Symmetry 175.47 529 75.15 3382 3616 0 17
cod93 Keep Symmetry 175.58 529 75.31 3382 3616 0 17
cod93 Branch Largest LP Solution 3268.89 12089 1326.26 181790 3756 0 29
cod93 Branch Largest 2385.80 8989 920.90 142351 4986 0 49
cod93 Max Product Orbit Size 587.06 2213 215.68 28035 1160 o] 29
cod93 Strong Branch 2333.22 161 19.76 380 2406 13746 14
cov1053 Break Symmetry 50.28 745 27.51 0 836 0 33
cov1053 Keep Symmetry 50.31 745 27.54 0 836 0 33
cov1053 Branch Largest LP Solution 1841.41 23593 990.12 0 5170 0 71
cov1053 Branch Largest 148.37 2051 70.73 0 1504 o] 36
cov1053 Max Product Orbit Size 192.18 2659 91.72 0 1646 0 68
cov1053 Strong Branch 1998.55 1455 53.96 0 5484 34208 54
cov1054 Break Symmetry 1.77 11 0.85 0 186 0 4
cov1054 Keep Symmetry 1.76 11 0.85 0 186 0 4
cov1054 Branch Largest LP Solution 14400 54448 7600.80 0 814 0 35
cov1l054 Branch Largest 14400 54403 7533.80 0 1452 0 49
cov1l054 Max Product Orbit Size 14400 52782 7532.77 0 1410 0 38
cov1l054 Strong Branch 14400 621 87.76 0 204 4928 32
cov1075 Break Symmetry 14400 9387 13752.11 37121 0 0 2
cov1075 Keep Symmetry 291.85 377 268.45 379 926 0 15
cov1075 Branch Largest LP Solution 906.48 739 861.57 1632 716 0 23
cov1075 Branch Largest 268.49 267 248.45 793 1008 [¢] 13
cov1075 Max Product Orbit Size 395.11 431 366.24 1060 1066 0 21
cov1075 Strong Branch 223.53 67 60.71 106 128 1838 10
cov1076 Break Symmetry 14400 8381 13853.35 2 0 0 3
cov1076 Keep Symmetry 14400 13707 13818.47 11271 1564 0 26
cov1076 Branch Largest LP Solution 14400 6481 13992.74 10 116 0 14
cov1076 Branch Largest 14400 6622 13988.71 0 176 0 13
cov1076  Max Product Orbit Size 14400 6893 13967.86 71 580 0 14
cov1076 Strong Branch 14400 1581 3255.74 5 164 58 23
cov954 Break Symmetry 21.72 401 14.81 570 1308 0 14
cov954 Keep Symmetry 21.70 401 14.83 570 1308 0 14
cov954 Branch Largest LP Solution 11.30 175 7.03 498 48 0 5
cov954 Branch Largest 15.69 265 10.51 671 212 0 12
cov954 Max Product Orbit Size 14.20 229 9.25 602 212 0 11
cov954 Strong Branch 17.55 45 1.74 50 100 1084 8

5 Break Symmetry 65.86 935 23.25 2930 2938 [¢] 17
f5 Keep Symmetry 65.84 935 23.26 2930 2938 0 17
f5 Branch Largest LP Solution 91.32 1431 28.95 7395 272 0 8
f5 Branch Largest 100.66 1685 30.75 7078 434 0 11
5 Max Product Orbit Size 102.54 1691 30.96 7230 430 0 13
5 Strong Branch 671.51 123 2.59 187 760 8586 15
sts27 Break Symmetry 0.84 71 0.71 0 8 0 10
sts27 Keep Symmetry 0.83 71 0.71 0 8 0 10
sts27 Branch Largest LP Solution 2.33 115 2.12 3 86 0 14
sts27 Branch Largest 0.97 73 0.83 1 28 0 13
sts27 Max Product Orbit Size 2.88 399 2.42 1 888 0 11
sts27 Strong Branch 1.63 75 1.15 2 76 0 14
sts4b Break Symmetry 3302.70 24317 3230.12 12 0 0 4
sts4b Keep Symmetry 3301.81 24317 3229.88 12 0 0 4
sts45 Branch Largest LP Solution 4727.29 36583 4618.66 25 0 0 2
sts45 Branch Largest 4389.80 33675 4289.45 36 0 0 2
sts45 Max Product Orbit Size 4390.39 33675 4289.79 36 0 0 2
sts45 Strong Branch 1214.04 7517 884.79 2 144 45128 21

uses a symmetry group that is smaller but much more efficient to compute (and
which space prohibits us from describing in detail here), cov1076 can be solved
in 679 seconds and 14465 nodes. Since in any optimal solution to the Steiner
triple systems, more than 2/3 of the variables will be set to 1, orbital branching
would be much more efficient if all variables were complemented, or equivalently
if the orbital branching dichotomy () was replaced by its complement. Margot
[10] also makes a similar observation, and his results are based on using the
complemented instances, which may account for the large gap in performance
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of the two methods on sts45. We are currently instrumenting our code to deal
with instances for which the number of ones in an optimal solution is larger than
1/2. Orbital branching proves to be faster than CPLEX in six cases, while in all
cases the number of evaluated nodes is remarkably smaller.

6 Conclusion

In this work, we presented a simple way to capture and exploit the symmetry of an
integer program when branching. We showed through a suite of experiments that
the new method, orbital branching, outperforms state-of-the-art solvers when a
high degree of symmetry is present. In terms of reducing the size of the search tree,
orbital branching seems to be of comparable quality to the isomorphism pruning
method of Margot [I0]. Further, we feel that the simplicity and flexibility of orbital
branching make it an attractive candidate for further study. Continuing research
includes techniques for further reducing the number of isomorphic nodes that are
evaluated and on developing branching mechanisms that combine the child bound
improvement and change in symmetry in a meaningful way.
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Abstract. Erdés, Purdy, and Straus conjectured that the number of
distinct (nonzero) areas of the triangles determined by n noncollinear
points in the plane is at least |™," ], which is attained for [n/2] and
respectively [n/2] equally spaced points lying on two parallel lines. We
show that this number is at least ;;n — O(1) = 0.4473n. The best pre-
vious bound, (v/2 — 1)n — O(1) =~ 0.4142n, which dates back to 1982,
follows from the combination of a result of Burton and Purdy [5] and
Ungar’s theorem [23] on the number of distinct directions determined by
n noncollinear points in the plane.

1 Introduction

Let S be a finite set of points in the plane. Consider the (nondegenerate) triangles
determined by triples of points of S. There are at most () triangles, some of
which may have the same area. Denote by ¢(S) the number of distinct (nonzero)
areas of the triangles determined by S. For every n € N, let g(n) be the minimum
of g(S) over all sets S of n noncollinear points in the plane. The problem of
finding g(n) has a long history; the attention it has received is perhaps due to
its simplicity and elegance, as well as to its connections to another fundamental
problem in combinatorial geometry—that of finding the minimum number of
directions spanned by n points in the plane. The problem of distinct areas is
also similar in nature to a notoriously hard problem of distinct distances. It is
listed for instance in the problem collection by Croft, Falconer, and Guy [6], and
more recently by Brafl, Moser, and Pach [3]; see also [12].

The first estimates on g(n) were given in 1976 by Erdés and Purdy [10], who
proved that

en®t < g(n) < can,

for some absolute constants c1,co > 0. The upper bound follows easily if we
consider the points (i,5) € N? for 1 < i,j < y/n and observe that every triangle
area is a multiple of ; and bounded by n/2. A simple construction that consists
of two sets of [n/2] and respectively |n/2| equally spaced points lying on two

* Supported in part by NSF CAREER grant CCF-0444188.

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 119 2007.
© Springer-Verlag Berlin Heidelberg 2007
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parallel lines was found by Burton and Purdy [5], and also by Straus [21]: It
gives | ", '] triangles of distinct areas.

In 1979, Burton and Purdy [5] obtained a linear lower bound, which follows
from a linear bound on the number of directions determined by n noncollinear
points in the plane. More precisely, denoting by f(n) the minimum number of
directions determined by n noncollinear points in the plane, they showed that

HERCELHE

Using this result, an averaging argument of Burton and Purdy gave

0.32n < g(n) < V‘ ) 1J .

In 1982, Ungar proved a sharp bound

fomy =21 | (1)
on the minimum number of directions determined by n noncollinear points, using
a purely combinatorial approach of allowable sequences devised by Goodman and
Pollack [14/15]. A combination of Burton and Purdy’s argument [5] with Ungar’s
theorem [23] immediately gives

(v2- -0 s g < | "]

In this paper, we refine Burton and Purdy’s averaging argument by applying
yet one more time (and perhaps not for the last time) Ungar’s technique on
allowable sequences, and further improve the lower bound on distinct triangle
areas.

Theorem 1. The number of triangles of distinct areas determined by n non-
collinear points in the plane is at least

17

—0O(1) =~ 0.4473n.
35" O(1) ~ 0.4473n

g(n) =
In fact, we prove Theorem[Ilin a stronger form: There are at least 17n/38 — O(1)
triangles of distinct areas having a common side, in other words there are at least
this many points of our set at distinct distances from the line determined by a
pair of points in the set. One can draw here a parallel with the problem of
distinct distances raised by Erdés in 1946: What is the minimum number of
distinct distances ¢(n) determined by n points in the plane? Erdds conjectured
that t(n) = £2(n/v/logn), and moreover, that there is a point in the set which
determines this many distinct distances to other points. In a sequence of recent
breakthrough developments since 1997, all new lower bounds on #(n) due to
Székely [22], Solymosi and C. Téth [20], and including the current best one due
to Katz and Tardos [16], in fact give lower bounds on the maximum number
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of inter-point distances measured from a single point. For triangles areas in the
plane, we have a similar phenomenon: By the argument of Burton and Purdy [5],
every set S of n noncollinear points in the plane contains two distinct points
p,q € S such that the points of S determine 2(n) distinct distances to the
line pq, therefore at least this many triangles with distinct areas. As mentioned
above, our bound holds also in this stronger sense. A similar example is that
of tetrahedra of distinct volumes determined by a set of n points in R3 (not all
in the same plane): we have recently shown [§] that n points determine 2(n)
tetrahedra of distinct volumes, which share a common side. One exception to
this phenomenon is the problem of distinct distances among vertices of a convex
polygon, as the results of [TI2l7] show (see also [3]).

2 Proof of Theorem (1]

Burton and Purdy’s idea. We first review Burton and Purdy’s argument [5]. Let
S be a set of n noncollinear points in the plane, and let L denote the set of
connecting lines (i.e., lines incident to at least 2 points of S). We may assume
w.l.o.g. that there is no horizontal line in L. For a line £ € L, let ¢1,0s,... 0. € L
be all connecting lines parallel to ¢ (including ¢) such that ¢; lies to the left of
liyq for 1 < i < r. Let k; > 2 denote the number of points along ¢; € L for
t=1,...,r. Let s be the number of singleton points of S not covered by any of
l1,...,0.. We clearly have Y._, k; + s = n. Taking any two points p,q € S on
£y or on £, the triangles Apqz; have different areas for at least r + [s/2] — 1
indices 7, where z; are either singleton points or points on different connecting
lines lying all on the same side of pg. Therefore the number m of distinct areas
satisfies
m>r+[s/2] 1.

The next step is selecting a suitable direction of connecting lines, more pre-
cisely, one with a small number of pairs of points, i.e., with a small value of
S0, (%). By Ungar’s theorem, there is a direction corresponding to the lines

ly,...,0., such that
" [k n n
< —1)= .
> (5)=()/e-n-s

After observing that Y., (kz) is minimal if the points on these r connecting
lines are distributed as evenly as possible, Burton and Purdy derive a quadratic
equation whose solution gives (using Ungar’s theorem instead of their weaker
bound of [n/2] on the number of directions) a lower bound of m > (v/2 — 1)n —
O(1) ~ 0.4142n on the number of distinct triangle areas. Detailed calculations
show that a configuration attaining the Burton-Purdy bound should have 2+ /2
points on each connecting line parallel to the certain direction (determined by

at most n/2 pairs of points), a value which is certainly infeasible.



122 A. Dumitrescu and C.D. Téth

A tiny improvement. We first formulate a system of linear inequalities (the
linear program (LP1) below). Unlike Burton and Purdy’s quadratic equation,
our linear program imposes an integrality condition on the number of points
on each connecting line parallel to a specified direction; which leads to a tiny
improvement (5/12 versus V2-— 1). More important, our linear system paves the
way for a more substantial improvement obtained by two linear programs with
additional constraints (to be described later).

Assume that the connecting lines ¢1,05...,¢,. € L are vertical and contain
at most n/2 point pairs (by Ungar’s theorem). Every vertical line of L (passing
through at least two points) is called a regular line. A regular line passing through
exactly k points (k > 2) is called a k-line. We call a vertical line passing through
exactly one point of S a singleton line.

Partition the n points of S as follows. Let s be a real number 0 < s < 1
such that there are sn singleton points to the left of the leftmost regular line ¢;.
Similarly, let tn be the number of singleton points to the right of ¢,., and let a;n
be the number of remaining singleton points. (See Figure[ll) For k = 2,3,...,8,
let axn be the number of points on k-lines. Finally denote by ag the total number
of points on regular lines with at least 9 points each. We have accounted for all
points of S, hence we have

9
s+t+Zak=1-
k=1
b by 4 ly
oo : : . . [ ] . .
o : o o : L
e - ° o °
. T . e
. S .
L : ° 3
o * Co . : Lo
‘ I e i SR
sn am, asn, agn, ..., agn tn

Fig. 1. The orthogonal projection of a point set S in a direction determined by S

Letan =), (’;) be the total number of point pairs on vertical lines. Let en
denote the number of distinct horizontal distances measured from the leftmost
regular line /4 to its right: Consequently, there are en triangles with distinct areas
having a common side along the leftmost regular line. Similarly, let fn denote
the number of distinct horizontal distances measured from the rightmost regular
line £, to its left. We can deduce lower bounds on e and f: Since en > tn+ayn+

asn/24+azn/3+...+agn/8—1, we have e > t+a;+az/2+as/3+...+ag/8—1/n,
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and similarly, f > s+ a1 +a2/2+a3/3+ ...+ as/8 — 1/n. We can also give a
lower bound for x in terms of the previous parameters. We have

T > 1a2—|—2a3—|—3a4—|—...—|—8a9

-2 2 2 27
since if there are apn points on k-lines, then the number of k-lines is axn/k,
and each k-line contains (’;) vertical point pairs. Hence, there are akn(g) Jk =
arn(k—1)/2 pairs of points on k-lines, k = 2,3, ..., 8. Similarly there are at least
gagn pairs of points on lines incident to at least 9 points. Putting all of these
equations and inequalities together, we formulate the following linear program.

minimize r (LP1)
subject to = < 0.5;

sS+t+ay+ay+a3+as+as+as+ar+ag+ag=1;
§a2+a3+§a4+2a5+ ga6+3a7+ gag+4ag <z
t+a1+§a2+§a3+ia4+éa5+éa6+%a7+§a8—iSe;
s+a1+éa2+éa3+}la4+éa5+éa6+%a7+éag—i§f;
e<r;

[ <

S,t, ay, az, as, a4, as, dg, ar, ag, ag, €, fa r,T > 01

The linear system (LP1) does not describe completely a point configuration
(e.g., we do not make any distinction among k-lines for £ > 9), but all these
inequalities must hold if the variables correspond to a point set S. Let (LP1’) be
the linear program obtained from (LP1) by removing the two terms !, and let r
be its solution. Since the constraints are linear, the term 711 can only contribute
a constant additive blow-up in the LP solution. That is, if r is the solution of
(LP1%), the solution of (LP1) is » — O(1/n). We can deduce that there are at
least rn — O(1) distinct triangle areas with a common side on either ¢ or ¢,.

A solution to (LP1’) is r = 5/12 ~ 0.4166, attained for s =t = 1/4, a3 = 1/2,
ap =az=a4=as=a¢ =a7 =ag =ag =0, e = f =5/12, and = 1/2. That
is, there are n/6 3-lines in the middle, and n/4 singleton lines on each side, and
5n/12—0(1) distinct areas measured from left or right. Another optimal solution
that looks similar consists of n/12 4-lines in the middle, and n/3 singleton lines
on each side, for which the number of distinct areas is also 5n/12 — O(1).

Allowable sequences. We now give a very brief account on Ungar’s technique (fol-
lowing [23]) and allowable sequences [12], as they are relevant to our proof. Allow-
able sequences occur in the context of transforming the permutation 1,2,...,n
into the reverse permutation n,n — 1,...,1 by going through a sequence of per-
mutations. The operation between two consecutive permutations, called mouve,
consists of inverting pairwise disjoint increasing strings. In a geometric context,
each symbol corresponds to a point in the plane; each permutation is the left-
to-right order in an orthogonal projections of the points on a directed line. The
directed line is rotated around the origin, and a move occurs when the normal of
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this line coincides with a direction of a connecting line (a line in L). An exam-
ple of a sequence arising in this way is 1(23)4(56), 13(246)5, (136)425, 63(14)25,
6(34)(125), 64(35)21, 6(45)321, and 654321. We have put parentheses around the
increasing string (called blocks) reversed at the next move. So each permutation
with the blocks enclosed in parentheses describes also the next move.

Ungar’s theorem states that for even n, going from 1,2,...,nton,n—1,...,1
but not in one move, requires at least n moves (in other words, if every block
reversed has fewer than n elements, at least n moves are needed). The general
idea in the proof is that building up a long increasing block involves many moves
required by dismantling other (possibly long) decreasing blocks formed at earlier
moves, and vice versa. More precisely, the moves have the following properties.

(I) In one move, a decreasing string can get shorter by at most one element at
each end.

(IT) in one move, an increasing string can get longer by at most one element at
each end.

For instance, the reason for (I) is that a move reverses increasing strings, and
so only the first and the last elements of a decreasing string can be part of a
block in a move. We refer the reader to [23] for more details. Properties (I) and
(IT) further imply that if a block B of size at least 3 is reversed in one move,
then all but the two extreme elements of B must be singletons in the next move.
Analogously, if a block B of size at least 3 is reversed in a move, then at least
one of its elements is a singleton in the previous move.

%y

Fig. 2. The orthogonal projection of a point set S in two consecutive directions, a and
b, determined by S
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New bound. The idea for our new bound is the following. Recall that two optimal
solutions of (LP1’) we have seen have a similar structure: (A) n/6 3-lines in the
middle, and n/4 singleton lines on each side, or (B) n/12 4-lines in the middle,
and n/3 singleton lines on each side. Assume that there are two consecutive
moves, m and 7o, in an allowable sequence such that both look like (A) or
(B). Notice that our observations regarding the blocks of size at least 3 imply
that there cannot be two consecutive such moves, since the first move would
force many singletons in the middle segment of 7o (at least one for each block
of m1). This suggests that one of two consecutive directions of L must give a
configuration where the solution of (LP1’) is above 5/12. We follow with the
precise technical details in the proof of Theorem [

By Ungar’s theorem, the average number of pairs determining the same di-
rection is at most n/2, so there are two consecutive moves (corresponding to two
consecutive directions of lines in L) parallel to at most n pairs of points. We
introduce a similar notation as above for a single direction, but we distinguish
the notation by indices a and b, respectively (e.g., son and spn are the number
of points which give singletons at the left side of the first and the second per-
mutation, respectively). This time we count up to 9-lines (rather than 8-lines)
and group together the k-lines for k£ > 10. We denote by ai9n and bign the total
number of points on lines with at least 10 points each. By symmetry, we need to
consider only two cases (instead of the four combinations of s, § sp and t, § ty).

Case (i): sp < s, and t;, < t,.
Case (ii): sq < sp and &, > t,.

We are lead to minimizing the following two linear programs (LP2i) and (LP2ii),
where (LP2i) corresponds to Case (i) and (LP2ii) corresponds to Case (ii).

Case (i): sp < $q and ty < t,. We formulate the linear program (LP2i) as follows.
We repeat the constraints of (LP1) for both moves, and impose the constraint
To + xp < 1 since the total number of pairs for the two consecutive directions
is at most n. We introduce two linear constraints to express r = max(rq, 7).
Constraints («) and () are crucial: Constraint («) indicates that if in the first
move, a block B of size at least 3 is reversed, then all but the two extreme
elements of B must be singletons in the next move; constraint () specifies that
each block B of size at least 3 which is reversed in the second move must contain
an element which is a singleton in the first move (with the possible exception of
two blocks that lie on the boundary of the singletons s, and t,).

Here is an example regarding constraint (3). Let m; and 7o denote the two
consecutive moves (each represented by pairwise disjoint blocks). The prefixes
(resp., suffixes) of length s, (resp., t5) coincide, and are made of singletons. So
each block of size at least 3 in the second move in between these common prefix
and suffix strings (to be reversed in the second move) must pick up at least a
singleton in a1 from 71 or must be made entirely up of singletons in the (s, — sp)
and (t, — tp) segments of m (except for at most two blocks crossing segment
borders). For instance, if a move transforms permutation m = ...(47)(359)...
to ) =...74953.. ., then no triple (or other longer block) may be formed in the
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next move. But if there was a singleton in between, like in 7, = ... (47)6(359) .. .,
then a triple may be formed in the next move: For instance, mo = ...7(469)53.. ..
minimize r (LP2i)

subject to s, < 84;
ty < ta;

Sq + 1o+ a1 +az+ag+ a4 +as +ag +ar +ag + ag + ajp = 1;

a2+ az + Sag + 2as + Sag + 3ar + Sas + dag + Jaig < @
wp1y | fetat G EGEGAT T Y~ <ol

a

Sata+ G+ B+ Y+ P+ E T B+ Y — <o

€a < Taj

faSTa;

Sy +tp 4+ b1 + ba + bg + by + b5 + b + by + bg + by + b1g = 1;

%b2+b3+gb4+2b5+ gb6+3b7+;bg+4bg+gb10 < xp;
(LP1), b+ 2 +8 + %+l + U4l <ey

sp+bi+ B+l - L < fy;

ep < Tp;

fo < rp;

To +xp < 14

Ta <75

ry ST

(@) la +2a +3a +4a +5a +6a +7a+8a < by;
g1 gaat a5+ cac+ ar+ gag+ gag+ ai0 < b

2
(B) b3+ bg + bs + b + by + bg + by + b1g — " < 3ai+ 84 — 8p +la — lp;

sa7tﬂ.aalaaQaa3aa4aa5?a67a7?a8aa93a1076a7faaTa7$a 2 07

Sby tp, b1, b2, b3, ba, bs, bg, bz, bs, by, b1o, €p, fo, T, Tp > 0;

r > 0;

1

lowing solution: r = 17/38 ~ 0.4473, attained for s, = t, = 15/38, a1 = as =
as =0, ag = 4/19, a5 = ag = a7 = ag = ag = a1p = 0 for the first permuta-
tiOIl, and Sp — tb = 3/387 b1 = b2 = 2/].97 b3 = ].2/].97 b4 = b5 = b6 = b7 =

bs = bg = bip = 0 for the second permutation; also z, = 6/19, xz, = 13/19,
€o=fo=Ta=e€,=fr=r,=17/38.

When we ignore the terms O( ), we get a new system (LP2i’) with the fol-

Case (ii): sp < sq and t, > t,. The linear program (LP2ii) is very similar to
(LP2i). Besides the first two constraints, which are specific to this case, only
constraints () and (8) are different: Constraint () specifies that each block B
of size at least 3 which is reversed in the second move must contain at least one
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singleton in the first move; constraint (§) specifies the same thing when going
back from the second permutation to the first one (by time reversibility).

minimize r (LP2ii)
subject to sp < Sq;
to < to;
Sa +la+a1+az2+az+as+as+as+ar+asg+ag+apg=1;

yaz +az + Sas+ 2a5 + Jag + 3ar + Tag + 4dag + Jaig < @
Wpy | et AT Ty -l <
N o sata+ G+ S+ T+ T+ T Y - L < fos
€q < Tqj
faSTaQ
Sp+ty + by + by + b3 + by + bs + bg + b7 + bg + bg + big = 1;
%b2+b3+gb4+2b5+gb6+3b7+ ;b8+4b9+gb10§1‘b;
(LP1), b+ 2 +%+ %+ T+ - <ep
R i e B e e I
ey < Tp;
fo < ry;
xa+$b§1;
Ta S T3
Ty <15
1
(’}/) a3+a4+a5+a6+a7+a8+a9+a10—n < 3by +tp — tg;
1
©) b3—|—b4—|—b5+b6+b7+b8+bg+b10—n < 3a1 + Sq — Sb;

Saatavalva'Qva37a47a57a67a77a87a97a107ea7faaraaxa > Oa
Sb, tb, b1, b2, b3, ba, bs, be, b7, bs, by, bio, €v, fo, 76, Ty > 0;

r>0;
When we ignore the terms O(!), we get a new system (LP2ii’) with the
following solution: r = 25/54 &~ 0.4629, attained for s, = t, = 23/54, a1 = 1/27,

ay = a3 = ay = a5 = ag = ay = ag = ag = 0, a;p = 1/9, for the first
permutation, and s, = tp, = 23/54, by = 1/27, by = by = by = b5 = bg = by =
bs = by = 0, byg = 1/9, for the second permutation; also z, = 1/2, x, = 1/2,
o= fo=Ta=ep=fr =15 =25/54.

Since the solution of (LP2i’) is smaller than that of (LP2ii’), i.e., 17/38 <
25/54, we conclude that there are always ;'n — O(1) ~ 0.4473n triangles of
distinct areas.

One may ask if the same result can be obtained using fewer variables in the
LPs, or whether a better result can be obtained by increasing the number of

variables in the LPs. The answer to both questions is negative.
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3 Remarks

In 1982, Erdéds, Purdy, and Straus [I3] considered the generalization of the prob-
lem of distinct triangle areas to higher dimensions and posed the following:

Problem (Erdés, Purdy, and Straus). Let S be a set of n points in R? not all
in one hyperplane. What is the minimal number g4(n) of distinct volumes of
nondegenerate simplices with vertices in S7

By taking d sets of about n/d equally spaced points on parallel lines through the
vertices of a (d — 1)-simplex, one gets gg(n) < ["']. Erdds, Purdy, and Straus
conjectured that equality holds at least for sufficiently large n (see also [6]). The
first development in this old problem for higher dimensions is only very recent:
for d = 3 we have shown that the tetrahedra determined by n points in R?, not
all in a plane, have at least {2(n) distinct volumes, which thereby confirms the
conjecture in 3-space apart from the multiplicative constant [g].

We conclude with two problems on distinct triangle areas. The former is di-
rectly related to the original problem of distinct areas studied here, and appears
to have been first raised by Erdds and Pach in the 1980s [I7], while the latter
appears to be new.

Given a planar point set S, consider the set L of connecting lines. A connecting
line is called an ordinary line if it passes through exactly two points of S. By the
well known Sylvester-Gallai theorem [I83], any finite set of noncollinear points
in the plane determines an ordinary line. Consider now the set @ of directions
of lines in L. A direction 6 € © is called an ordinary direction if all connecting
lines of direction # are ordinary lines.

Problem 1. Let S be a set of n noncollinear points in the plane. Is it true that
apart from a finite set of values of n, © always contains an ordinary direction?

It should be clear that such a direction would be enough to prove the Erdos-Purdy-
Strauss conjecture that S determines at least [(n — 1)/2] distinct (nonzero) tri-
angle areas — apart from a finite set of exceptions for n. Observe that n = 7 is
such an exception, since the configuration of 7 points given by the three vertices
of a triangle, the midpoints of its three sides, and the triangle center admits no
ordinary direction.

Problem 2. Let S be a set of n noncollinear points in the plane. Is it true that
each point p € S is the vertex of £2(n) triangles of distinct areas determined by
S? In other words, is there a constant ¢ > 0 such that for every p € S, the point
set S determines at least cn triangles of distinct areas, all incident to p?
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Abstract. We consider the single machine scheduling problem to mini-
mize the average weighted completion time under precedence constrains.
Improving on the various 2-approximation algorithms is considered one
of the ten most prominent open problems in scheduling theory. Recently,
research has focused on special cases of the problem, mostly by restrict-
ing the set of precedence constraints to special classes such as convex
bipartite, two-dimensional, and interval orders.

In this paper we extend our previous results by presenting a framework
for obtaining (2 — 2/d)-approximation algorithms provided that the set
of precedence constraints has fractional dimension d. Our generalized
approach yields the best known approximation ratios for all previously
considered classes of precedence constraints, and it provides the first
results for bounded degree and interval dimension 2 orders.

As a negative result we show that the addressed problem remains
NP-hard even when restricted to the special case of interval orders.

1 Introduction

The problem we consider in this paper is a classical problem in scheduling theory,
known as 1|prec| 3 ; w;C; in standard scheduling notation (see e.g. Graham et
al. [12]). Tt is defined as the problem of scheduling a set N = {1,...,n} of n jobs
on a single machine, which can process at most one job at a time. Each job j has
a processing time p; and a weight w;, where p; and w; are nonnegative integers.
Jobs also have precedence constraints between them that are specified in the form
of a partially ordered set (poset) P = (N, P), consisting of the set of jobs N and
a partial order i.e. a reflexive, antisymmetric, and transitive binary relation P on
N, where (i,7) € P (i # j) implies that job ¢ must be completed before job j
can be started. The goal is to find a non-preemptive schedule which minimizes
Z?:1 w;C;, where Cj is the time at which job j completes in the given schedule.

The described problem was shown to be strongly NP-hard already in 1978
by Lawler [I7] and Lenstra & Rinnooy Kan [I§]. While currently no inapprox-
imability result is known (other than that the problem does not admit a fully
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polynomial time approximation scheme), there are several 2-approximation al-
gorithms [26129T3I6/512002]. Closing this approximability gap is a longstanding
open problem in scheduling theory (see e.g. [30]).

Due to the difficulty to obtain better than 2-approximation algorithms, much
attention has recently been given to special cases which manifests itself in recent
approximation and exact algorithms [T633/7I23].

On the negative side, Woeginger [33] proved that many quite severe restric-
tions on the weights and processing times do not influence approximability. For
example, the special case in which all jobs either have p; = 1 and w; = 0, or
p; = 0 and w; = 1, is as hard to approximate as the general case. This sug-
gests that in order to identify classes of instances which allow a better than
2-approximation one has to focus on the precedence constraints rather than the
weights and processing times.

Indeed, Lawler [I7] gave an exact algorithm for series-parallel orders already
in 1978. For interval orders and convex bipartite precedence constraints, Woeg-
inger [33] gave approximation algorithms with approximation ratio arbitrarily
close to the golden ratio }(1+ /5) ~ 1.61803.

Recently, Ambiihl & Mastrolilli [2] settled an open problem first raised by
Chudak & Hochbaum [6] and whose answer was subsequently conjectured by
Correa & Schulz [7]. The results in [2/7] imply that 1|prec|) w;Cj; is a special
case of the weighted vertex cover problem. More precisely, they proved that
every instance S of 1|prec|)  w;C; can be translated in polynomial time into
a weighted graph Gp, such that finding the optimum of S can be reduced to
finding an optimum vertex cover in Gp. This result even holds for approximate
solutions: Finding an a-approximate solution for S can be reduced to finding an
a-approximate vertex cover in Gp.

Based on these results, three of the authors [3] discovered an interesting con-
nection between 1|prec|d w;C; and the dimension theory of posets [32], by
observing that the graph Gp is well known in dimension theory as the graph of
incomparable pairs of a poset P. Applying results from dimension theory allowed
to describe a framework for obtaining simple and efficient approximation algo-
rithms for 1|prec| )" w;C; with precedence constraints of low dimension, such
as convex bipartite and semi-orders. In both cases, the new 4/3-approximation
algorithms outperform the previously known results. The approach even yields
a polynomial algorithm for 2-dimensional precedence constraints, based on the
fact that the minimum weighted vertex cover on Gp can be solved in polynomial
time since Gp is bipartite for a 2-dimensional poset P [32/7]. This considerably
extends Lawler’s result [T7] for series-parallel orders. Unfortunately, the frame-
work in [3] fails in the case of interval orders (in this case the dimension can be
of the order of loglogn [32]).

The work in this paper originated from the study of 1|prec|) w,;C; under
interval orders (abbreviated 1[interval-order| ), w;Cj). Interval orders appear
in many natural contexts [I0]. We provide both positive and negative results.

In the first part of the paper, we further generalize our previous frame-
work [3] such that it can be applied to precedence constraints of low fractional
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dimension [4] (Section[3)). The extended framework yields (2—2/d)-approximation
algorithms whenever precedence constraints have fractional dimension bounded
by a constant d and satisfy a mild condition (see SectionB]). Since the fractional
dimension of interval orders is bounded by 4 (see Section ET), this gives a 1.5-
approximation algorithm and improves the previous result in [33]. The extended
framework can also be applied to interval dimension two posets (Section F2)),
bounded degree posets (Section F3]), and posets obtained by the lexicographic
sums (Section FA)).

In the second part of the paper, we show that 1|interval-order| Zj w;Cjre-
mains NP-hard (Section [B]). This result is rather unexpected as many prob-
lems can be solved in polynomial time when restricted to interval orders (see
e.g. [25]). The reduction heavily relies on the connection between 1|prec| > w;C;
and weighted vertex cover described in [2].

In summary, our results indicate a strong relationship between the approxima-
bility of 1|prec| }-; w;C; and the fractional dimension d of the precedence con-
straints. In particular, it is polynomial for d = 2, but NP-hard already for d > 3.
The latter stems from the facts that problem 1|prec| > 5 Wj C} is strongly NP-hard
even for posets with in-degree 2 [I7], and the fractional dimension of these posets
is bounded by 3 [§]. This leaves the complexity for 2 < d < 3 as an open question.

2 Definitions and Preliminaries

2.1 Posets and Fractional Dimension

Let P = (N, P) be a poset. For z,y € N, we write z <y when (z,y) € P, and
x < y when (x,y) € P and = # y. When neither (z,y) € P nor (y,z) € P, we
say that = and y are incomparable, denoted by z||y. We call inc(P) = {(x,y) €
N x N : z||ly in P} the set of incomparable pairs of P. A poset P is a linear
order (or a total order) if for any x,y € N either (z,y) € P or (y,z) € P,
i.e. inc(P) = (. A partial order P’ on N is an extension of a partial order P
on the same set N, if P C P’. An extension that is a linear order is called a
linear extension. Mirroring the definition of the fractional chromatic number of a
graph, Brightwell & Scheinerman [] introduce the notion of fractional dimension
of a poset. Let F = {L1, Lo, ..., L:} be a nonempty multiset of linear extensions
of P. The authors in [4] call F a k-fold realizer of P if for each incomparable
pair (z,y), there are at least k linear extensions in F which reverse the pair
(x,y), ie, {t =1,...,¢t 1y < zin L;}| > k. We call a k-fold realizer of size ¢
a k:t-realizer. The fractional dimension of P is then the least rational number
fdim(P) > 1 for which there exists a k:t-realizer of P so that k/t > 1/fdim(P).
Using this terminology, the dimension of P, denoted by dim(P), is the least ¢ for
which there exists a 1-fold realizer of P. It is immediate that fdim(P) < dim(P)
for any poset P. Furthermore [], fdim(P) = 1, or fdim(P) > 2.

2.2 Scheduling, Vertex Cover, and Dimension Theory

In [7203] a relationship between 1|prec| ) ; w;Cj, weighted vertex cover, and
the dimension theory of posets is shown. This relationship will turn out to be
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useful for both improving the approximation ratio for several classes of prece-
dence constraints and establishing the NP-hardness of 1|interval-order| ) ; w;C;.

Let P = (N, P) be any poset, that is not a linear order. Felsner and Trotter [9]
associate with P a hypergraph Hp, called the hypergraph of incomparable pairs,
defined as follows. The vertices of Hp are the incomparable pairs in P. The edge
set consists of those sets U of incomparable pairs such that no linear extension of
P reverses all incomparable pairs in U. Let Gp denote the ordinary graph, called
the graph of incomparable pairs, determined by all edges of size 2 in Hp. In [932]
it is shown that the dimension of P is equal to the chromatic number of Hp,
ie., dim(P) = x(Hp) > x(Gp). In [], it was noted that the same relationship
holds for the fractional versions, i.e., fdim(P) = xs(Hp) > xs(Gp). We refer
the reader to [28] for an introduction to fractional graph coloring.

Given an instance S of 1|prec| >~ w;C;, we associate with S a weighted vertex
cover instance VCgs on Gp, where Gp is the graph of incomparable pairs of the
poset P representing the precedence constraints and each vertex (i,j) € inc(P)
has weight p; - w;. We denote the value of a solution s by val(s).

Theorem 1 ([2I37]). Let S be an instance of 1|prec| }_; w;C; where prece-
dence constraints are given by the poset P = (N, P). Then the following trans-
formations can be performed in polynomial time.

1. Any feasible solution s’ of S can be turned into a feasible solution ¢ of VCg,
such that
val(c') < val(s Z pi - wj.
(i,5)ep

2. Any feasible solution ¢’ to VCs can be turned into a feasible solution s’ of
S, such that
val(s') < val(c Z Di - wj.
(i.)ep

In particular, if ¢* and s* are optimal solutions to VCg and S, respectively, we
have val(c*) = val(s*) = 3 (; »ep Pi - wj-

We remark that the term Z jepPi-wjis a fized cost and it is present in all
feasible schedules of S. This follows from the facts that a job’s processing time
is always included in its completion time, and any feasible schedule of S must
schedule job 7 before job j if i < j in P.

3 Scheduling and Fractional Dimension

In this section, we present an algorithmic framework that can be used to obtain
better than 2-approximation algorithms provided that the set of precedence con-
straints has low fractional dimension. Applications that follow this pattern are
given in Section [l

We say that a poset P admits an efficiently samplable k:t-realizer if there exists
a randomized algorithm that, in polynomial time, returns any linear extension
from a k-fold realizer F = {L1, Lo, ..., L;} with probability 1/t.
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Let S be an instance of 1|prec| ) ; w;C; where precedence constraints are
given by a poset P = (N, P). Assuming that P admits an efficiently samplable
k:t-realizer F = {L1,..., L}, we proceed as follows.

Let Vp and Ep be the vertex set and edge set, respectively, of the graph of
incomparable pairs Gp. Consider the following integer program formulation of
the weighted vertex cover VCg:

min E W; T

i€Vp
s.t. Ti+x;>1 {7,7]} € Ep
x; € {0,1} i€ Vp

where w; denotes the weight of vertex v; € Vp, as specified in the definition of
Vs (see Section [Z2)). Let [VC-LP] denote the linear relaxation of the integer
program above.

Nembhauser & Trotter [23124] proved that any basic feasible solution to [VC-
LP] is half-integral, that is x; € {0, 1,1} for all i € V. Let V; be the set of nodes

)20
whose corresponding variables took value i € {0, %, 1} in the optimal solution of

[VC-LP].

Observe that for any linear extension L, the set of all incomparable pairs that
are reversed in L is an independent set in the graph of incomparable pairs Gp.
Now, pick uniformly at random a linear extension L of F in polynomial time.
Note that Vo U (V32 \ L) defines an independent set of Gp. Generalizing a result
by Hochbaum in [I4], we prove that the complement of Vo U (V; 2\ L) is a vertex
cover whose expected value is within (2 — 2%) times the weight of an optimum
cover. By Theorem[I] we can transform (in polynomial time) the solution of V- Cg
into a feasible solution of S of expected value at most (2 — 2’:) times the value
of an optimum schedule. We summarize the above arguments in the following
theorem.

Theorem 2. The problem 1|prec| Zj w;Cj, whenever precedence constraints ad-

mit an efficiently samplable k:t-realizer, has a randomized (2—2’;)—approximation
algorithm.

For a proof of this theorem, see Appendix [AIl Following a similar argumen-
tation, Hochbaum’s approach [I4] for approximating the vertex cover prob-
lem can be extended to fractional coloring, yielding the same approximation
result.

A natural question is for which posets one can have an efficiently samplable
k:t-realizer. In the general case, Jain & Hedge [I5] recently proved that it is
hard to approximate the dimension of a poset with n elements within a fac-
tor n%°7¢ and the same hardness of approximation holds for the fractional
dimension. However, for several special cases, including interval orders (Sec-
tion ) and bounded degree posets (Section E.3]), efficiently samplable
k:t-realizers exist.



Scheduling with Precedence Constraints of Low Fractional Dimension 135

4 Precedence Constraints with Low Fractional Dimension

4.1 Interval Orders

A poset P = (N, P) is an interval order if there is a function F, which assigns to
each x € N a closed interval F(z) = [ay, by] of the real line R, so that < y in P
if and only if b, < a, in R. Interval orders can be recognized in O(n?) time [21J25].
The dimension of interval orders can be of the order of loglogn [32], whereas the
fractional dimension is known to be less than 4 [], and this bound is asymptoti-
cally tight [§]. In the following we show how to obtain a 1.5-approximation algo-
rithm for 1|interval-order|_; w;C;. By Theorem [ it is sufficient to prove that
interval orders admit an efficiently samplable k:t-realizer with ¢/k = 4.

Given a poset P = (N, P), disjoint subsets A and B of the ground set N, and
a linear extension L of P, we say that B is over A in L if, for every incomparable
pair of elements (a,b) with a € A and b € B, one has b > a in L. The following
property of interval orders is fundamental.

Theorem 3 (Rabinovitch [27/10]). A poset P = (N, P) is an interval order
if and only if for every pair (A, B) of disjoint subsets of N there is a linear
extension L of P with B over A.

By using this property we can easily obtain a k-fold realizer F = {L1,..., L}
with & = 2772 and t = 2", where n = |N|. Indeed, consider every subset A of
N and let L be a linear extension of P in which B = N \ A is over A. Now
let F be the multiset of all the L4’s. Note that |F| = 2™. Moreover, for any
incomparable pair (z,y) there are at least k = 2"~2 linear extensions in F for
which € B and y € A. Finally, observe that we can efficiently pick uniformly
at random one linear extension from F: for every job j € N put j either in A or
in B with the same probability 1/2.

By the previous observations and Theorem 2, we have a randomized polyno-
mial time 1.5-approximation for 1|interval-order|_, w;C;. The described algo-
rithm can easily be derandomized by using the classical method of conditional
probabilities.

Theorem 4. Problem 1|interval-order| ), w;C; has a deterministic polynomial
time 1.5-approzimation algorithm.

4.2 Interval Dimension Two

The interval dimension of a poset P = (N, P), denoted by dim;(P), is defined [32]
as the least ¢ for which there exist ¢ extensions @1, Qo, .. ., Q¢, so that:

- P=0Q1NQ2N---NQ¢ and
— (N, Q;) is an interval order for i = 1,2,...,t.

Generally dim;(P) < dim(P). Obviously, if P is an interval order, dim;(P) = 1.
The class of posets of interval dimension 2 forms a proper superclass of the
class of interval orders. Posets of interval dimension two can be recognized in
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O(n?) time due to Ma & Spinrad [19]. Given a poset P with dim;(P) = 2, their
algorithm also yields an interval realizer {Q1,Q2}. As described in Section A1l
we obtain k-fold realizers Fy = {L1, Lo, ..., Li} and Fo = {L}, L}, ..., L}} of Q4
and Qs, respectively, with k = 2"~2 and ¢t = 2". It is immediate that F = F;UF,
is a k-fold realizer of P of size 2t = 2"t!. Furthermore, we can efficiently pick
uniformly at random one linear extension from F: pick uniformly at random a
linear extension from either F; or F» with the same probability 1/2. Again by
using conditional probabilities we have the following.

Theorem 5. Problem 1|prec| Zj w;C;, whenever precedence constraints have in-
terval dimension at most 2, has a polynomial time 1.75-approzimation algorithm.

4.3 Posets of Bounded Degree

In the following we will see how to obtain, using Theorem 2] an approximation
algorithm for 1|prec|)  w;C; when the precedence constraints form a poset of
bounded degree. Before we proceed, we need to introduce some definitions.

Let P = (N, P) be a poset. For any job j € N, define the degree of j,
denoted deg(j), as the number of jobs comparable (but not equal) to j in P.
Let A(P) = max{deg(j) : j € N}. Given a job j, let D(j) denote the set of all
jobs which are less than j, and U(j) those which are greater than j in P. Define
degp(j) = |D(j)| and Ap(P) = max{degp(j) : € N}. The quantities degy (5)
and Ay (P) are defined dually.

We observe that the NP-completeness proof for 1|prec|d w;C; given by
Lawler [I7] was actually provided for posets P with Ap(P) = 2. By using
fractional dimension we show that these posets (with bounded min{Ap, Ay })
allow for better than 2-approximation.

Theorem 6. Problem 1|prec|) w;C; has a polynomial time (2 —2/ f)-approa-
imation algorithm, where f =1+ min{Ap, Ay, 1}.

Proof. Let P = (N, P) be the poset representing the precedence constraints
with bounded min{Ap, Ay }. Assume, without loss of generality, that P is not
decomposable with respect to lexicographic sums (see Section 4. Otherwise,
a decomposition with respect to lexicographic sums can be done in O(n?) time
(see e.g. [22]), and each component can be considered separately. We call an
incomparable pair (z,y) € inc(P) a critical pair if for all z,w € N\ {z,y}

1. z <z in P implies z < y in P, and
2. y <w in P implies x < w in P.

Critical pairs play an important role in dimension theory: if for each critical pair
(z,y), there are at least k linear extensions in F which reverse the pair (z,y)
then F is a k-fold realizer of P and vice versa [4].

For any permutation M of N, consider the set C' (M) of critical pairs (z,y)
that satisfy the following two conditions:

1. &> (D(y) U{y}) in M if [Dy)] < Ap
2. 2> D(y)in M if |[D(y)| = Ap
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In [], Felsner & Trotter present an algorithm that converts in polynomial time a
permutation M of N to alinear extension L of P so that L reverses all critical pairs
in the set C(M). Now set ¢t = |N|! and consider the set M = {My, Ms, ..., M}
of all permutations of the ground set N. Observe that for any critical pair (z,y)
there are at least n!/(Ap + 1) different permutations M; € M, where the critical
pair is reversed, i.e., (y,x) € C(M;). Applying the algorithm in [8] we obtain a
k-fold realizer F = {L1,..., L} of P witht = nl and k = n!/(Ap +1). Moreover,
we can efficiently pick uniformly at random one linear extension from F: generate
uniformly at random one permutation of jobs (e.g. by using Knuth’s shuffle algo-
rithm) and transform it into a linear extension with the described properties by
using the algorithm in [8]. The described algorithm can be derandomized by us-
ing the classical method of conditional probabilities. Finally observe that we can
repeat a similar analysis by using Ay instead of Ap. O

In fact, this result is stronger than the same statement with d = A(P). To
see this, consider the graph poset P(G) = (N, P) defined as follows: given an
undirected graph G(V, E), let N = VUE and for every v € V and e = {vy,v2} €
E, put (v,e) € P if and only if v € {v1,v2}. If A(G) is unbounded, this also
holds for A(P). However, since every edge is adjacent to only two vertices, Ap
is bounded by 2, thus the value 1 + min{Ay, Ap} is also bounded. On the
other hand, for the complete graph on n nodes, K, Spencer [31] showed that
dim(P(K,)) = O(loglogn). Therefore, the poset P(K,) is an example where
the dimension of the poset is unbounded, while min{Ap, Ay} (and thus also
the fractional dimension) is bounded. This means that the fractional dimension
approach can yield a substantially better result than the dimension approach
used in [3].

4.4 Lexicographic Sums

In this section we show how to use previous results to obtain approximation al-
gorithms for new ordered sets. The construction we use here, lexicographic sums,
comes from a very simple pictorial idea (see [32] for a more comprehensive dis-
cussion). Take a poset P = (N, P) and replace each of its points z € N with a
partially ordered set Qx, the module, such that the points in the module have the
same relation to points outside it. A more formal definition follows. For a poset
P = (N, P) and a family of posets S = {(Y;, Q) | + € N} indexed by the ele-
ments in N, the lexicographic sum of S over (N, P), denoted Zme(N’P)(Yx, Q)
is the poset (Z, R) where Z = {(z,y) | x € N,y € Y} and (x1,y1) < (22,¥2) in
R if and only if one of the following two statements holds:

1. 21 <z in P.
2. 21 =z2 and y1 < yo in Q.

We call P = PUJF the components of the lexicographic sum. A lexicographic
sum is trivial if |[N| =1 or if |V, | = 1 for all z € N. A poset is decomposable with
respect to lexicographic sums if it is isomorphic to a non-trivial lexicographic
sum.
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In case the precedence constraints of every component admit an efficiently sam-
plable realizer, we observe that this translates into a randomized approximation
algorithm:

Theorem 7. Problem 1|prec| Zj w;Cj, whenever precedence constraints form
a lezicographic sum whose components i € P admit efficiently samplable realiz-
ers, has a polynomial time randomized (2 — Qét)—appmximation algorithm, where
t/k = maX;cp (tl/k‘z)

Finally, we point out that, if the approximation algorithm for each component
can be derandomized, this yields a derandomized approximation algorithm for
the lexicographic sum.

5 NP-Completeness for Interval Orders

In this section we show that 1|prec| Zj w;C; remains NP-complete even in the
special case of interval order precedence constraints. To prove this we exploit
the vertex cover nature of problem 1|prec| >  w;C;.

Theorem 8. Problem 1|interval-order| Y, w;Cj is NP-complete.

Proof. A graph G is said to have bounded degree d if every vertex v in G is
adjacent to at most d other vertices. The problem of deciding if a graph G
with bounded degree 3 has a (unweighted) vertex cover of size at most m is
NP-complete [I1I]. We provide a reduction from the minimum vertex cover on
graphs with bounded degree 3 to 1|interval-order|}_; w;Cj;.

Given a connected graph G = (V, E) with bounded degree 3, we construct an
instance S of 1|interval-order| 3 ; w;Cj so that S has a schedule with value less
than m + ¢+ 1 if and only if G has a vertex cover of size at most m, where c is
a fixed value defined later (see Equation (). We present the construction of S
in two stages.

Stage 1 (Tree-layout of the graph). Starting from any vertex s € V', consider
the tree T' = (V, Er), with Ep C E, rooted at s on the set of nodes reachable
from s by using, for example, breadth-first search. Furthermore, we number the
vertices of T top-down and left-right. Figure [l shows the breadth-first search
tree T for Ky.

Define G’ = (V', E’) to be the graph obtained from T in the following way. For
each vertex v; in T' we add two new vertices uj, u} and edges {uj, u}}, {u}, v;}.
Furthermore, for each edge {v;,v;} € E'\ Er with i < j we add vertices e}, e/
and edges {v;, e}, {e7, eV, {e5 ul}.

The following claim relates the optimum unweighted vertex covers of G and G.

Claim 1. Let C, CV and C., C V' be optimum vertex cover solutions to G' and
G, respectively, then |C,| = |C%|—|V|—|E\ Er|. (For a proof, see Appendix[A22).
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Fig. 1. The breadth first search tree T' = (V, Er) for the graph G = K4, and the graph
G’. The solid edges belong to Er.

Stage 2 (Construction of scheduling instance). Given the vertex cover
graph G = (V,E) and its corresponding tree T = (V, Er), we construct the
scheduling instance S with processing times, weights, and precedence constraints
to form an interval order I as defined below (see Figure2lfor an example), where
k is a value to be determined later.

Job Interval Repr. Proc. Time Weight
S0 [—1,0] 1 0

51 [0, 1] 1/k 1
$iyj=2,...,|V]| [i, §], where 1/k7 k

{Ui,Uj} ceFbr,i<y

mii=1,...,|V]| [i— 5, [V]+1] 1/kUVIHD i
eii=1,...,|V] [V]+i,|V]+i+1]0 E(VI+)
bi;, where

{vi,v;} € E\ BEr,i<jli,j— 3] 1/k K

Remark 1. Let i and j be two jobs in S with interval representations [a, b] and
[c, d] respectively, where a < d. By the construction of the scheduling instance
S we have p; < l/kHﬂ and w; < k<l Tt follows that pi-w; = 1orp;-w; <
1/k if ¢ and j are incomparable, since p; - w; > k implies that b < ¢, i.e., i’s
interval representation is completely to the left of j’s interval representation.
Furthermore, if p; - w; = 1 then [b] = [c].

Let D= {(s0,51)}
U {(ss,s;) : v; is the parent of v; in T'}
U {(si,mi), (mi,e;) i =1,2,....|VI]}
U {(si, bij), (bij, my) : {vi,v;} € E\ Er,i < j}
By the interval representation of the jobs and the remark above, we have the
following:
Claim 2. A pair of incomparable jobs (i,j) has p; -w; = 1if (4, j) € D; otherwise
if (¢,7) € D then p; - w; < 1/k.
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Fig. 2. The interval order I obtained from K4; Gf is the subgraph induced on the
graph of incomparable pairs G1 by the vertex subset D (the vertices with weight 1)

Claim 3. Let G} = (D, Er) be the subgraph induced on the graph of incompa-
rable pairs Gp by the vertex subset D. Then G’ and Gj are isomorphic. (For a
proof, see Appendix [A3]).

By Claim[2 each incomparable pair of jobs (7, j) ¢ D satisfies p(i)-w(j) < 1/k.
Let n be the number of jobs in the scheduling instance S and select k to be n?+1.
Let C,Cr, and C} be optimal vertex cover solutions to G, Gy and Gj (defined
as in Claim [B)), respectively. Then, by the selection of k& and Claim 2l we have
ICr| < |Cr| < |CY + > piw; < |C] 4+ 1. Furthermore, Claims B and [l

(i,5)€inc(I)\D
give us that |C|+ |V|+ |E\ Er| < |Cf| < |C|+|V|+|E\ Er|+1. This, together
with Theorem [ implies that |C] < m if and only if there is a schedule of S with
value less than m + ¢ + 1, where

c=[V|+|E\Er|+ Y pi-w;. (1)
(i,5)el

Acknowledgements

We are grateful to Andreas Schulz for many helpful discussions we had with
him during his visit at IDSTA. This research is supported by Swiss National Sci-
ence Foundation project 200021-104017/1, “Power Aware Computing”, and by
the Swiss National Science Foundation project 200020-109854, “Approximation
Algorithms for Machine scheduling Through Theory and Experiments I1I”. The
first author is supported by Nuffield Foundation Grant NAL32608.



Scheduling with Precedence Constraints of Low Fractional Dimension 141

References

1.

2

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theor.
Comput. Sci., 237(1-2):123-134, 2000.

C. Ambiihl and M. Mastrolilli. Single machine precedence constrained scheduling
is a vertex cover problem. In Proceedings of the 14th Annual European Symposium
on Algorithms (ESA), volume 4168 of Lecture Notes in Computer Science, pages
28-39. Springer, 2006.

C. Ambiihl, M. Mastrolilli, and O. Svensson. Approximating precedence-
constrained single machine scheduling by coloring. In Proceedings of APPROX
+ RANDOM, volume 4110 of Lecture Notes in Computer Science, pages 15-26.
Springer, 2006.

G. R. Brightwell and E. R. Scheinerman. Fractional dimension of partial orders.
Order, 9:139-158, 1992.

. C. Chekuri and R. Motwani. Precedence constrained scheduling to minimize sum

of weighted completion times on a single machine. Discrete Applied Mathematics,
98(1-2):29-38, 1999.

F. A. Chudak and D. S. Hochbaum. A half-integral linear programming relax-
ation for scheduling precedence-constrained jobs on a single machine. Operations
Research Letters, 25:199-204, 1999.

J. R. Correa and A. S. Schulz. Single machine scheduling with precedence con-
straints. Mathematics of Operations Research, 30(4):1005-1021, 2005. Extended
abstract in Proceedings of the 10th Conference on Integer Programming and Com-
binatorial Optimization (IPCO 2004), pages 283-297.

S. Felsner and W. T. Trotter. On the fractional dimension of partially ordered
sets. DMATH: Discrete Mathematics, 136:101-117, 1994.

S. Felsner and W. T. Trotter. Dimension, graph and hypergraph coloring. Order,
17(2):167-177, 2000.

P. C. Fishburn. Interval Orders and Interval Graphs. John Wiley and Sons, 1985.
M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified NP-complete
graph problems. Theor. Comput. Sci., 1(3):237-267, 1976.

R. Graham, E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: A survey. In Annals
of Discrete Mathematics, volume 5, pages 287-326. North—Holland, 1979.

L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize av-
erage completion time: off-line and on-line algorithms. Mathematics of Operations
Research, 22:513-544, 1997.

D. S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing
problems. Discrete Applied Mathematics, 6:243-254, 1983.

K. Jain, R. Hedge. Some inapproximability results for the (fractional) poset di-
mension Personal communication, 2006

S. G. Kolliopoulos and G. Steiner. Partially-ordered knapsack and applications to
scheduling. In Proceedings of the 10th Annual European Symposium on Algorithms
(ESA), pages 612-624, 2002.

E. L. Lawler. Sequencing jobs to minimize total weighted completion time subject
to precedence constraints. Annals of Discrete Mathematics, 2:75-90, 1978.

J. K. Lenstra and A. H. G. Rinnooy Kan. The complexity of scheduling under
precedence constraints. Operations Research, 26:22-35, 1978.

T.-H. Ma and J. P. Spinrad. On the 2-chain subgraph cover and related problems.
J. Algorithms, 17(2):251-268, 1994.



142 C. Ambiihl et al.

20. F. Margot, M. Queyranne, and Y. Wang. Decompositions, network flows and a
precedence constrained single machine scheduling problem. Operations Research,
51(6):981-992, 2003.

21. R. H. Mohring. Computationally tractable classes of ordered sets. In I. Rival,
editor, Algorithms and Order, pages 105-193. Kluwer Academic, 1989.

22. R. H. Mohring. Computationally tractable classes of ordered sets. Algorithms and
Order, pages 105-194, 1989.

23. G. L. Nemhauser and L. E. Trotter. Properties of vertex packing and independence
system polyhedra. Mathematical Programming, 6:48-61, 1973.

24. G. L. Nemhauser and L. E. Trotter. Vertex packings: Structural properties and
algorithms. Mathematical Programming, 8:232-248, 1975.

25. C. H. Papadimitriou and M. Yannakakis. Scheduling interval-ordered tasks. STAM
Journal of Computing, 8:405-409, 1979.

26. N. N. Pisaruk. A fully combinatorial 2-approximation algorithm for precedence-
constrained scheduling a single machine to minimize average weighted completion
time. Discrete Applied Mathematics, 131(3):655-663, 2003.

27. 1. Rabinovitch. The dimension of semiorders. J. Comb. Theory, Ser. A, 25:50-61,
1978.

28. E. R. Scheinerman and D. H. Ullman. Fractional Graph Theory. John Wiley and
Sons Inc., 1997.

29. A. S. Schulz. Scheduling to minimize total weighted completion time: Performance
guarantees of LP-based heuristics and lower bounds. In Proceedings of the 5th Con-
ference on Integer Programming and Combinatorial Optimization (IPCO), pages
301-315, 1996.

30. P. Schuurman and G. J. Woeginger. Polynomial time approximation algorithms for
machine scheduling: ten open problems. Journal of Scheduling, 2(5):203-213, 1999.

31. J. Spencer. On minimum scrambling sets of simple orders. Acta Mathematica,
22:349-353, 1971.

32. W. T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory.
Johns Hopkins Series in the Mathematical Sciences. The Johns Hopkins University
Press, 1992.

33. G. J. Woeginger. On the approximability of average completion time scheduling
under precedence constraints. Discrete Applied Mathematics, 131(1):237-252, 2003.

A Omitted Proofs

A.1 Proof of Theorem

Proof. Let S be an instance of 1|prec|>_; w;C; where precedence constraints
are given by a poset P = (N, P) that admits an efficiently samplable k:t-realizer
F ={L1, Lo,...,L;}. Furthermore, we assume that fdim(P) > 2. The case when
fdim(P) = 1, i.e., P is a linear order, is trivial.

Let Vp and Ep be the vertex set and edge set, respectively, of the graph of in-
comparable pairs Gp. Consider the weighted vertex cover V Cs on Gp where each
vertex (incomparable pair) (i,j) € Vp has weight w(; jy = p; - wj, as specified in
the definition of V.C's (see Section[Z2]). Solve the [VC-LP] formulation of V Cg (see
Section[]) and let V; be the set of vertices with value i (i = 0, %, 1) in the optimum
solution. Denote by Gp [V} 2] the subgraph of Gp induced by the vertex set V; /5.
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We consider the linear extensions of F as outcomes in a uniform sample space. For
an incomparable pair (z,y), the probability that y is over x in F is given by

1 k
PTobf[y>x}:t\{i:l,...,t:y>x€Li}|2t (2)

The last inequality holds because every incomparable pair is reversed in at least
k linear extensions of F.

Let us pick one linear extension L uniformly at random from F = {L1, ..., L;}.
Then, by linearity of expectation, the expected value of the independent set I, /5,
obtained by taking the incomparable pairs in V; /, that are reversed in L, is

5 (Vi) 3)

Elw(Lip) = > Probrlj>il-wg;) > .

(1,5)€V12

A vertex cover solution C' for the graph Gp[V] /5] can be obtained by picking the
nodes that are not in Iy /5, namely C' = Vj 5 \ I;/5. The expected value of this
solution is

Elu(O)] = w(Via) - Bluliy2)] < (1= ) uVip)

As observed in [I4], V7 U C gives a valid vertex cover for graph Gp. Moreover,
the expected value of the cover is bounded as follows

Blu u0) < (i) + (1= F) ultisa) ()
<2 (1 - f) (w(vl) + ;w%z)) ()
< (2 _ 2;“) oPT (6)

where the last inequality holds since w(Vi) + jw (Vi) is the optimal value
of [VC-LP]. Note that t/k > fdim(P) > 2 was used for the second inequal-
ity. Theorem [ implies that any a-approximation algorithm for VCyg also gives
an a-approximation algorithm for S. Thus we obtain a randomized (2 — 2%)-
approximation algorithm for S. a

A.2 Proof of Claim [

This proof is similar to the proof in [I] for proving APX-completeness of vertex
cover on cubic graphs.

Proof of Claim. It is easy to see that from every vertex cover C' C V of G we
can construct a vertex cover C’ C V’ of G’ of size exactly |C| + |V|+ |E\ E7|.
In C’ we include ui for alli € {i:v; € V\C}; ub for alli € {i : v; € C}; e
for each (vi,v;) € E\ Er with v; € V' \ C; €4 for each (v;,v;) € E\ Er with
v; € C'; and every vertex in C.

Given a vertex cover ¢’ C V' of G’ we transform it into a vertex cover C C V
of G in the following manner. Suppose there exists v;,v; € V with ¢ < j such
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that {v;,v;} € E and v; ¢ C',v; ¢ C'. Since C” is a feasible vertex cover of G’
we have that {v;,v;} € E\ Er and either {e¥,e¥ ul} € € or {e¥ ,u,ul} C C".
Thus we can obtain a vertex cover C”" C V' of G’ with |C”| < |C'| by letting
C" = (C"\{uj, ey })U{v;,u}}. Repeating this procedure will result in a vertex
cover C"" C V' of G' with |C""| < |C’] such that C' = C""NV is a feasible vertex
cover of G. Furthermore it is easy to see that |C| < |C"'| - |V|—|E\ Er|. O

A.3 Proof of Claim

Proof of Claim. We relate the two graphs G and G’ by the bijection f : D — V”,
defined as follows.

vj, if (a,b) = (si, s;),
u§7 if (a,b) = (si,m;),
f((a, b)) = u‘le if (a,b) = (m;, e;),
e’f7 if (a,b) = (84, bi5),

ey, if (a,b) = (b;j, m;).

Suppose {(a,b), (¢,d)} € Ej. Since I is an interval order (does not contain
any 2 + 2 structures as induced posets [21I32]) and by the definition of D we
have that b = ¢. Now consider the possible cases of {(a,b), (b,d)}.

(a=si,b=sj,d = si,i < j < k) By construction of I, v; is the parent of vy,
ie., (f((siy85)), f((s5,8K) = (vj,v) € BEr C E'. -

(a=si,b=sj,d="0bj,i <j<k) Then f((si,;s;)) = v; and f((s;,bjx)) = ey
and by definition of G’ we have (v;,el") € E'.

The remaining cases (¢ = s;,b = s;,d = mj,i < j), (@ = 53,0 = b;j,d =
mj,i < j), (a = 8,0 = m;,d = ¢;), and (a = bij,b = mj,d = e;,i < j)
are similar to the two above and it is straightforward to check the implication
[(a,b), (b d)} € By = {£((a,5)), F((b,0)} € E.

On the other hand, suppose (a,b) € E' and again consider the different pos-
sible cases.

(a = v;,b=j,i < j) Then v; is the parent of v; in T and f~(v;) = (sg, s;)
and f~!(v;) = (s;,s;) for some k < i < j. Since s;’s interval representation
is completely to the left of s;’s interval representation in I the incomparable
pairs (sk,s;) and (s;,s;) cannot be reversed in the same linear extension,
ie. {(sk,sl) (si,s;)} € Er. -

(a = vl,b— e,i < j) Then f~1(v;) = (sk,si) and f~1(e) = (s, b;j) for some
k < i < j. Since si’s interval representation is completely to the left of
b;;’s interval representation in I the incomparable pairs (sk, s;) and (s;, b;;)
cannot be reversed in the same linear extension, i.e., {(sk, s), (s;,b5)} € Er.

The remaining cases (a = el ,b = 62 1< j), (a= egj7b = u&i <j), (a= u{7b =
ug,i < j), and (@ = v;,b =w],i < j) are similar to the two above and omitted.

We have thus proved that {(a,b),(b,d)} € E; < {f((a,b)), f((b,¢))} € F',
i.e., the function f defines an isomorphism between G and G’. O
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Abstract. There has been a series of results deriving approximation algorithms
for 2-stage discrete stochastic optimization problems, in which the probabilistic
component of the input is given by means of “black box”, from which the algo-
rithm “learns” the distribution by drawing (a polynomial number of ) indepen-
dent samples. The performance guarantees proved for such problems, of course,
is generally worse than for their deterministic analogue. We focus on a 2-stage
stochastic generalization of the problem of finding the maximum-weight subset
of jobs that can be scheduled on one machine where each job is constrained to
be processed within a specified time window. Surprisingly, we show that for this
generalization, the same performance guarantee that is obtained for the determin-
istic case can be obtained for its stochastic extension.

Our algorithm builds on an approach of Charikar, Chekuri, and Pal: one first
designs an approximation algorithm for the so-called polynomial scenario model
(in which the probability distribution is restricted to have the property that there
are only a polynomial number of possible realizations of the input that occur with
positive probability); then one shows that by sampling from the distribution via
the “black box™ to obtain an approximate distribution that falls in this class and
approximately solves this approximation to the problem, one nonetheless obtains
a near-optimal solution to the original problem. Of course, to follow this broad
outline, one must design an approximation algorithm for the stochastic optimiza-
tion problem in the polynomial scenario model, and we do this by extending a
result of Bar-Noy, Bar-Yehuda, Freund, Naor, and Schieber.

Furthermore, the results of Bar-Noy et al. extend to a wide variety of resource-
constrained selection problems including, for example, the unrelated parallel-
machine generalization R|r;|>  w;U; and point-to-point admission control
routing in networks (but with a different performance guarantee). Our techniques
can also be extended to yield analogous results for the 2-stage stochastic gener-
alizations for this class of problems.

1 Introduction

Consider the following 2-stage stochastic optimization problem: there are n users, each
of whom might request a particular communication channel, which can serve at most
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one user at a time, for a specified length of time within a specified time interval; for
a given planning period, it is not known which of the n users will actually make their
request — all that is known is a probability distribution over the subsets of users indicat-
ing which subset might be active; each user has an associated profit for actually being
scheduled on the channel; alternatively, the manager of the channel can redirect the
user to other providers, thereby obtaining a specified (but significantly smaller) profit;
the aim is to decide which users to defer so as to maximize the expected profit over
the two stages (where the expectation is with respect to the probability distribution over
subsets of active users). Thus, this is a stochastic generalization of the (maximization
version) of the single machine scheduling problem that is denoted in the notation of
(4] as 1|r;| > w;U; and we shall refer to this generalization as the 2-stage stochas-
tic 1|r;] >~ w;Uj. For the deterministic version of this problem, Bar-Noy, Bar-Yehuda,
Freund, Naor, & Schieber give a p-approximation algorithm for any constant p > 2;
rather surprisingly, we show that the exact same result holds for the stochastic general-
ization. (A p-approximation algorithm for an optimization problem is a (randomized)
polynomial-time algorithm that finds a feasible solution with (expected) cost within a
factor of p of optimal.)

Recently, there has been a series of results for 2-stage discrete stochastic optimiza-
tion problems with recourse, starting with the work of Dye, Stougie, and Tomasgard([3]
that addressed a knapsack-like single-node network provisioning problem. That paper
made the simplifying assumption of the polynomial scenario model in which there are
(only) a polynomial number of scenarios that can be realized in the second stage, and
thereby derived the first worst-case performance guarantees for polynomial-time algo-
rithms for models of this type. Kong & Schaefer 8] gave an 2-approximation algo-
rithm for a 2-stage variant of the the maximum-weight matching problem, again in a
polynomial scenario model. Later, Immorlica, Karger, Minkoff, and Mirrokni [[7]], and
also Ravi and Sinha [9] addressed analogous questions based on deterministic prob-
lems such as the vertex cover problem, the set covering problem, the uncapacitated
facility location problem, and network flow problems. The former paper also con-
sidered the situation when the probability distribution conformed to an independent
activation model which, in our setting for example, would mean that there is a prob-
ability associated with each user and the active set is drawn by assuming that these
are independent Bernoulli random events. However, for these latter results they in-
troduced the proportionality assumption in which the corresponding costs for an el-
ement in the two stages had constant ratio A for all elements. Gupta, P4l, Ravi, and
Sinha [5] proposed a much more general mechanism for specifying the probability
distribution, in which one has access to a black box from which to generate inde-
pendent samples according to the distribution, and thereby make use of a polynomial
number of samples in the process of computing the first-stage decisions. They gave con-
stant approximation algorithms for a number of 2-stage stochastic optimization prob-
lems in this model, most notably the minimum-cost rooted Steiner tree problem and
the uncapacitated facility location problem, but they also require the proportionality
assumption.
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Shmoys & Swamy [10] gave an LP-rounding technique, and showed that one could
derive a polynomial-time approximation scheme for the exponentially-large linear pro-
gramming relaxations in order to derive the first approximation algorithms in the black
box model without the proportionality assumption, in particular for a variety of set
covering-related problems, the uncapacitated facility location problem, and multi-com-
modity flow problems. Swamy & Shmoys [11] extend this to constant-stage models,
and also show that the so-called sample average approximation yields a polynomial
approximation scheme for the LP relaxations. Charikar, Chekuri, and Pal gave a
general technique based on the sample average approximation that, for a broad class of
2-stage stochastic minimization problem with recourse, in effect reduced the problem
of obtaining a good approximation algorithm for the black box model, to the problem
of obtaining the analogous result in the polynomial scenario setting.

We build on these results, by first constructing an approximation algorithm for our
maximization problem in the polynomial scenario model, and then derive a maximiza-
tion variant of the result of [2] (but still specialized to our class of problems) to obtain
approximation algorithms in the black box probability model.

We focus on the central model in the class proposed by Bar-Noy, Bar-Yehuda, Fre-
und, Naor, and Schieber [1]], who gave primal-dual algorithms for a rich class of de-
terministic resource allocation and scheduling problems. In their terminology, there is
a set of activities, {A1,...,A,}; let NV = {1,...,n} index this set. For each activ-
ity Aj, j € N, there is a set of possible instances A; that specify the various ways
in which the activity might be handled (so, in the description above, assuming integer
data for the input times, for each user we have one instance for each possible integer
starting time that would have it complete by the deadline). This approach appears to
convert the original input to a new input in which there are a pseudopolynomial number
of instances for each activity. However, Bar-Noy et al. also show how to convert their
pseudopolynomial-time algorithm into a polynomial-time one, while losing only a 1 +¢
factor in the performance guarantee.

Our algorithm is a rather natural extension of the approach of Bar-Noy et al. We first
run their algorithm on each of the polynomially many scenarios, where the profit of
selecting an instance is its contribution to the overall expected second stage profit. For
each scenario (which is, after all just an ordinary deterministic input), this generates a
feasible dual solution. The deterministic dual variables are of two types: those that are
dual to the constraint that says that each activity is scheduled in at most one way (that
is, at most one instance of each activity is selected); and those that correspond to the
constraint that at each time at most one instance (over all activities) is active. The usual
interpretation of dual variables leads us to view the former as providing the marginal ex-
pected profit attainable by having this activity on hand in a particular scenario. Thus, we
decide to defer an activity A;, if the total of the corresponding dual variables, summed
over all scenarios, is less than the profit collected by actually deferring that activity.
This gives the stage I actions. The stage II actions for each scenario are computed by
adapting the algorithm of Bar-Noy et al.; we first compute a dual solution that includes
even the deferred activities, but then does not select any instance of a deferred activity
in constructing the primal solution.
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The analysis of our algorithm is also surprisingly simple, and is based on a primal-
dual approach using an integer programming formulation of the 2-stage problem. We
show that the dual solutions constructed in each scenario can be pieced together to
yield a feasible solution for the dual to the linear programming relaxation, and can
then show that the expected profit of the primal solution constructed is at least half the
value of the feasible dual solution found. This yields that the resulting algorithm is a
2-approximation algorithm. Like the algorithm of Bar-Noy et al., this is a pseudopoly-
nomial-time algorithm, but an approach identical to the one they employed yields a
polynomial-time algorithm, while losing a factor of 1 + € in the performance guaran-
tee. Although we focus on this single-machine scheduling model, our approach can be
generalized to yield analogously strong results for 2-stage stochastic generalization of
the class of problems for which the framework of Bar-Noy et al. applies. This will be
discussed in detail in the full version of this paper.

There are other potential 2-stage stochastic extensions of the problem of computing
a maximum-weight subset of jobs that can be feasible scheduled. One other natural ap-
proach is to use the first stage to make initial decisions about which users to service
(but to commit to serve them if they are active), and then to allow the possibility of
serving additional users in the second stage, once the probabilistic choice of scenario
has been made (with correspondingly lesser profit). We show that the maximum in-
dependent set problem can be reduced to an extremely restricted special case of this
model in an approximation-preserving way, and hence we cannot hope to obtain a good
approximation algorithm for this setting (unless P = N'P). There are few (if any) such
strong inapproximability results known for stochastic optimization problems for which
their deterministic analogue is relatively easily approximable.

2 IP and LP Formulations: 2-Stage Stochastic Models

We start by giving a natural integer (linear) programming formulation (and its dual) for
the 2-stage stochastic version of 1|r;| > ;Wj U;, in its pseudopolynomial-sized variant.
Let S be a collection of explicitly given scenarios {S1,..., Sy} that occur with
positive probability; in each scenario S, for each activity .4, there is an associated set
of available instances A;(S) C A;. For each instance I, there is an associated starting
time s(7), and an associated ending time e([). For each scenario S € S, there is an
associated probability ¢(S), where ¢(S) > 0 and ) ¢ s ¢(S) = 1. In stage I, we must
decide which activities to defer, and thereby obtain a (small) profit of p;-, or else retain
for stage II, in which for each scenario S we can obtain a profit p;I(I ,,S) for assigning
this activity using instance I € A;(S). We give an integer programming formulation
of this problem. For each activity A;, we have a 0-1 variable x; that indicates whether
activity A; is deferred in the first phase or not (where z; = 1 means that it is deferred).
For each instance I of activity A;(.5), we have a variable y;(/, .S) whose value is 1 if
and only if instance [ of this activity is scheduled. Let 7 be the set of all start-times and
end-times of all instances belonging to all activities andlet 7; = {t € T|s(I) <t <
e(I)} for each instance I. Moreover, let f(I) € 7 be maximal such that f(I) < e(I).
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We can formulate the 2-stage problem of maximizing the total expected profit as
follows:

max Zp]azj + Z Z Z S)p; (I, S)y;(I,S) (SIP)

JEN JEN SESTeA;(S)
st.zj+ Y w18 <1 VjieN,SesS, (1)
I€A;(S)
oYy <t VSeS teT, ()
JEN I€A;(S):teT;
zj,y;(1,5) € {0,1}, VieN,SeS8,IeA;i(S). 3)

Let (SLP) be the LP obtained by replacing (3)) by non-negativity constraints for these
variables. If we let u;(S') be the dual variables corresponding to the constraints (I}, and
let v(S) denote the dual variables corresponding to the constraints (), then we can
write the LP dual of (SLP) as:

DD w9+ >0 w(S) (SD)

JEN SES SeSteT
s.t. Zuj(S) > pj, VieN, @)
Ses
)+ Y ve(S) > q(S)py (I,9), VieN,S eS8, IeAS8), (5
teTr
u;(S),v:(S) > 0. (0)

It is important to note that our algorithm will not need to solve any of these linear
programs! We will simply apply an algorithm for the deterministic variant (for which a
performance guarantee relative the optimal value of the deterministic LP is known) to
an input based on each scenario S € S, and then use the linear programs to analyze the
performance of the resulting algorithm.

3 An Algorithm for the Polynomial Scenario Model

We shall show how to adapt the primal-dual algorithmic framework of Bar-Noy, Bar-
Yehua, Freund, Naor, & Schieber [[I]] to yield an approximation algorithm with the
identical performance guarantee for the 2-stage stochastic variant of 1|r;| > w;Uj, in
the polynomial scenario model. For this model, it is straightforward to derive a constant
approximation algorithm. The simplest approach is to randomize, and with probability
1/2 to defer all jobs, and otherwise, to run the 2-approximation algorithm of Bar-Noy
et al. on the active jobs in the second stage; this is a randomized 4-approximation algo-
rithm. In the polynomial scenario model, one can improve upon this by comparing the
benefit of deferring all users with the expected profit obtained by the Bar-Noy algorithm
based on not deferring anyone, and then selecting the better of the two. This is easily
shown to be a 3-approximation algorithm (and can be extended to the black box model
while losing only a factor of 1 + ¢€). Thus, the surprising aspect of our result is that it is
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in fact possible to obtain an algorithm for the 2-stage generalization without degrading
the performance guarantee at all.

The framework of Bar-Noy et al. works in two phases: a pushing phase in which
a dual solution is constructed along with a stack of instances that might be selected
to be scheduled; and a popping phase in which elements of the stack are popped off,
and accepted for scheduling provided that they do not conflict with activities already
scheduled by this procedure.

The algorithm for the 2-stage problem proceeds as follows. For each scenario S € S,
the deterministic profit p;(I) is ¢(S)p} (I, S) for each j € N, and each I € A;(S).
We execute the pushing procedure of the algorithm proposed in Bar-Noy et al. for each
scenario S € S. Algorithm [I] shows the pseudocode for this procedure. We let u;(.5)
denote the dual variable corresponding to the deterministic analogue of () computed
by this procedure. Then, for each activity A;, j € N, we check if

Py =Y u(9), @)
Ses
and defer each activity .A; that satisfies this condition. This completes the first stage
action. We shall also denote this solution by setting Z; = 1 for each deferred activity
Aj, and setting 7; = 0 otherwise.

In what follows, we shall say that an instance I is uncovered if constraint () for
instance I is not satisfied and we say that I is tight if this constraint is satisfied with
equality.

For the second stage, for a given scenario S € S, we recompute the execution of the
pushing procedure. Then we compute a feasible schedule by executing the popping pro-
cedure of the algorithm of Bar-Noy et al., but we delete each activity that was deferred
in the first phase. We denote this solution by setting 3, (I, S) = 1 for each scheduled
instance I, and setting (I, S) = 0 otherwise. Algorithm 2] shows the pseudocode for
the second phase for a given scenario.

The main intuition behind the deferring rule is the following. Suppose at the end of
the pushing phase the total value of variables v of an activity .A; is “small”. There are
two possible reasons for this. The total profit of all instances of .A; is smaller than p;.
In this case, it is clear that deferring the activity is the best we can do. If the total profit
P of instances of A; is greater than pﬁ, then since w is “small”, there are many other
instances of other activities which are in conflict with instances of .4;. Hence, P can
be “replaced” by the profit of these instances, and we can gain other profit by deferring
A;. More generally, the value of the sum reflects the total expected marginal value of
the activity A;; if this is less than the (sure) profit gained by deferring it, then certainly
deferring it is a good thing to do.

We shall prove that the performance guarantee of the two-phase algorithm is 2. The
main idea behind this proof is the following. Each instance increases the total value
of the dual variables by some amount 26. For instances that belong to a non-deferred
activity, we are able to charge ¢ to a scheduled instance. For instances that belong to a
deferred activity, we charge this amount to the profit gained by deferring that activity.

Given a scenario S we say that I € A;(S) and I € A;(S) are incompatible if j = |
or their time intervals overlap. For each instance I € A;(.5), we refer to the variables
which occur in the constraint (3)) for I, as “the variables of I”.
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Algorithm 1. Pushing procedure for the first phase in scenario .S
Stack(S)=0;
u;(S) «—0 Vj€EN,
UVt (S) — 0 Vt € T;
while no uncovered instance is left do
select an uncovered instance I € A;(S), j € N with minimum end-time;
push(L,Stack(S));
let §(1,8) = (q(S)pj (1, S) = uj(S) = X,cq, ve(5))/2;
u; ()« u;(S) + ( S
V(1) (S) —vp)(5) + 6
: end while

);
(Z,5);

SO RXFIDN R R

—_

Algorithm 2. The algorithm for the second phase in scenario S
/* pushing procedure */
Stack(S)=0;
u;(S) «—0 Vj €N,
v(S)—0 VteT;
while no uncovered instance is left do
select an uncovered instance I € A;(S), j € N with minimum end-time;
push(L,Stack(S));
let 6(1,5) = (a(S)PII, $) — u;(8) = ye, ve(S))/2:
9:  wui(S) —wui(S)+6(1,95)
10: 1}/'(])(5) <—’Uf([)(S)+6(I,S);
11: end while
12: /* scheduling procedure */
13: while Stack(S) is not empty do
14:  I=pop(Stack(S));
150 LetjeN: 1€ A;(S);
16: if A; is not deferred and [ is not in conflict with other scheduled instances then
17: schedule I and set §;(1,S) = 1;
18:  endif
19: end while

e A S o e

Theorem 1. For the 2-stage stochastic maximization version of 1|r;| > w;Uj, there is
a (2 + €)-approximation algorithm in the polynomial scenario model.

Proof. We shall consider only the version of the problem in which we have a pseu-
dopolynomial representation of the input: that is, for each activity, we have an explic-
itly given set of allowed starting times. However, for each scenario, this is exactly the
algorithm of Bar-Noy et al. (on a carefully constructed input), who show that it can be
converted to run in polynomial time for 1|r;| >~ w;U;, while losing a factor of 1 + € in
the performance guarantee. This will thereby yield the theorem in the form stated above.

Let @;(.5) and 7,(S) be the value of the dual variables u and v at the end of the algo-
rithm. First consider the constraints (@); the algorithm ensures that these are satisfied by
the dual solution computed. This is a consequence of the fact that as long as there exists
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an uncovered instance, the algorithm pushes an instance in the stack and increases its
dual variables making a constraint (3)) tight. Hence, at the end of the algorithm, there
does not exist an uncovered instance, and each constraint (8) is satisfied. On the other
hand, constraint (@) can be violated by any deferred activity. In order to satisfy this
constraint, we increase the value of dual variables in the following way. Let

(5]‘:]?;—2’[7,]‘(5) j=1....n

Ses

and let S € S, be an arbitrarily chosen scenario. For each activity .4;, we increase the
value of 4 (.S) by 6;. Clearly, this maintains that the other constraints are satisfied, and
ensures that constraint (@) is satisfied now as well.

We now prove the performance guarantee of the algorithm is 2. The essence of the
proof is as follows. In each scenario S, for each instance I of a non-deferred activity,
we charge (1, S) to some scheduled instance. For each instance I of a deferred activity
Aj, we charge &; and §(I, S) to the profit p}. Hence, at the end of the algorithm, all
amounts ¢ are “charged” to some profit. Moreover, the sum of all these §, multiplied by
2, gives a bound on the total value of the dual variables. The theorem then follows from
weak duality.

Consider a scenario S. Let I € A;(.S) be an instance scheduled in S such that A; is
not deferred, j € NV. Let B;(S) be a set which contains I and as well as instances that
are:

— incompatible with I and
— pushed onto Stack(S) before I.

Consider each instance I in B;(.S). When [ is placed on the stack, there are two dual
variables that are increased by ¢ (I,S). For each such I, one of these two variables are
variables of I. If I € A;(.S), then the variable u;(S) occurs in constraint (3) for I. Oth-
erwise, since e(I) > e([), then the variable v #(1)(:S) occurs in this constraint. Let @ and
o be the value of dual variables v and v at the time I is pushed in the stack. We have that:

Y 8(L,S) < a(S) + ) 4ulS) < gsplf (1.S) (8)

I€B;(S) teT;

where last inequality follows from the fact that I is uncovered before being pushed on
the stack and after that, its variables are increased in order to make constraint (@) tight.

Note that each instance I of a non-deferred activity belongs to the set B;(S) for
some instance /. This follows from the fact that either [ is scheduled or there is another
instance [ pushed after [ in the stack, which has been scheduled instead of I. This
implies that for each scenario S € S

SN s =3 > > eus

jEN I€A;(S) JEN: fea,(S): I€B;(S)
75=0 Ty d8)=1
<y Z gspy (1,9)g;(1, 9) ©)

JENG Teay(5)
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For each deferred activity .A;, we have that:

S+ Y. > 8(I,8)=> u(S)=p} (10)

SeST1eA;(S) ses

By combining Equation (9) and Equation (I0), we obtain

25+ZMS =33 3 U8+ 6+ZMS

JEN €S SeSgeN I€A;(S) JEN:
JeA (S) T;= z;=1 IeA (S)
11 —
<D D e (LIS + >
SES]EN I€A;(S) JEN:
z77 1771
<D PEi+ Y D> a(S)PiIL9)y (I, S) (1
JEN JEN SeS
TEA;(S)

Since the initial value of each dual variable is zero, and each instance I € A;(S)
increases the total value of the dual variables by at most 26(7, S), we can sum over all
such 6 to bound the total value of the dual variables:

ZZUj(S)-FZZUt(S)SQ(Z (6j+z > 6([,5‘))) (12)

JEN SES sesteT JEN SESIEA;(S)

Equations (TI)) and (I2), together with the weak duality theorem, immediately imply
the claimed result.

4 An Algorithm for the Black Box Model

We show next that we can adapt the algorithm derived in the previous section for the
polynomial scenario setting to the black box model, where the probability distribution is
specified only by allowing access to an oracle from which independent samples accord-
ing the distribution can be drawn. We show that applying the previous algorithm to an
approximate version of the distribution based on sampling can be shown to still yield
the same performance guarantee. Our analysis uses the structure of the analysis used
for the previous algorithm, and builds on the general result for minimization 2-stage
stochastic problems derived by Charikar, Chekuri, and P4l [2].

We shall make use of the following version of the Chernoff bound.

Lemma 1. Let X1, ... Xx be independent random variables with X; € [0, 1] and let
X = Zf\il X;. Then, forany € > 0, we have Pr [| X — E[X]| > eN] < 2 exp(—€>N).

We assume that there is an inflation factor X > 1 such that pi (I, S) < Ap}, Vj €
N, VS eS8, VI e Aj(S).

The algorithm ﬁrst takes a polynomial-sized sample from the set of scenarios and
then proceeds just as the Algorithm [I] in Section [3] while using a slightly different
deferring rule.
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More precisely, it takes N = O( ’E\z log :) independent random samples S1, ..., Sy
from the black box, where n is the number of activities, € will be the allowed additional
relative error, and -y is the confidence parameter (that is, we shall obtain that the desired
approximation is found with probability at least 1 — «). Then the algorithm executes
the pushing procedure (see Algorithm[I]) for each scenario that occurs in the polynomial
sample. Observe that the data used by this algorithm for scenario S is described to be
q(S) p? (I,5). At first glance, this might be worrying, but of course the value ¢(S) is just
auniform scalar multiple for all profits, and so it makes sense to define u and v as the dual
variables computed after executing this algorithm with inputs p!! (1, S). Observe that the
values @ and © for a scenario S from our exact distribution are equal to ¢(.S)@ and ¢(.5) v,
respectively. Given € > 0, we shall defers an activity A;, j € N, if and only if:

1 N
(Lt epl > > ai(S:) (13)
=1

This is the deferring rule for the black box model.

This concludes the description of the first stage action. For the second stage, for
a given scenario S € S, we execute Algorithm ] for scenario S. (Again, note that
the linearity effect of ¢(S) implies that we can run the algorithm with inputs p!! (I, S)
instead.) '

Let us analyze the performance guarantee of this algorithm. The proof proceeds by
showing that, under the assumption that there is an inflation factor A, equation (I3) is a
good approximation for equation (7). This approach is inspired by the proof in [2] for
“low scenarios”.

Theorem 2. For any € > 0 and ~y > 0, with probability at least 1 — vy, the proposed
deferring rule is a (2 + €)-approximation algorithm for the 2-stage stochastic variant
of the problem 1|r;| >~ w;U; in the black box model.

Proof. Suppose we run Algorithm[Tlin each of the exponentially-many scenarios and let
@ and v be the value of dual variables computed in this way. Consider activity A;. Let

N
r=>Y_u;(S)=>Y_ qS)i(S) i= ;Zaj(gi).

Ses Ses

We will prove that, with “high” probability, 7 is “close” to r. We can view 7 as the arith-
metic mean of IV independent copies (01, . . . , @ n of the random variable () defined as

Q = 1u;(S).

Note that E[Q] = r. Let Y; be the variable Q; /M where M = Apj andlet Y = ), Y;.
Note that for each activity A; and for each scenario S € S, there exists some I € A;(.5)
such that @;(S) < pl. This implies that Y; € [0, 1]. Moreover, Y = >, Q;/M = 7
and E[Y] = 3. E[Q;]/M = 1 r. By applying the Chernoff bound, we obtain the
following:

2
prl|ly — E[Y] > ;N] < 2exp (—;2N> & Prijr—7# > eh] < Z (14)
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where the last inequality follows from the choice of the value of N. By taking the
union bound over all activities, we obtain that r is “close” to 7 for all activities, with
probability at least 1 —

We use the same argument as we used in the polynomial scenario model to show that
constraint (3) is satisfied. Consider constraint () for some scenario; it may be violated
by any activity. We show that it is satisfied, with high probability, by a non-deferred
activity. For a deferred activity, we shall increasing the value of its dual variables, as
we did in the polynomial scenario model so that the corresponding constraint is also
satisfied with high probability. (It is important to note that this increase in the dual
variables is not performed by the algorithm; it is only used for the analysis.)

For each deferred activity A;, let

o =ps =Y u(S) j=1,....N
Ses

and let S € S be an arbitrarily selected scenario. We increase the value of @;(.S) by
0; for each deferred activity .4;. From the fact that r is a good approximation of 7, it
follows that, for each activity A ,if

Z a;(8;) < (1+ )p},

then with probability at least 1 — ~
Y a;(S) < (1+2€)p}. (15)
ses
This implies that with high probability, for each deferred activity A;
S+ > 81,8 = u;(S) < (1+2e)p} (16)
SeSIeA;(S) SesS

In a similar way, if for an activity A;

Z (S (1+ e)
then with probability at least 1 — -, it follows that
> a(S) > pl.
ses

Hence, the new solution is dual feasible with high probability. Note that Equation (T8))
is an approximation to Equation (I0). This implies that by replacing this new equation
in the previous proof we obtain

DOD w8+ 0> w(S) <21 +2¢) > phz; +

JEN SeS8 SeSteT JEN
+2(1+20) > > Z pi(I,8)y; (1, S), (17)
JEN SeSTeA;(

which completes the proof.
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5 An NP-Hardness of Approximation Result

We show that, in contrast to the results of the previous sections, another natural 2-stage
stochastic generalization of the problem 1|r;| >~ w;U; (even in a very simple case) can
not be approximated. Suppose that in the first phase, we select a set of activities that
we are committed to serve. In the second phase, for a given scenario, we must schedule
exactly one instance of each activity selected in the first phase, and we may augment
this solution by scheduling other instances of additional activities. We wish to maximize
is the total expected profit (where it is now natural to assume that the profit obtained
for an instance in the second phase is less than the corresponding profit in the first). We
will refer to this problem as the augmentation 2-stage stochastic 1|r;| > w;U;.

An integer programming formulation for this problem is obtained by changing (SIP)
in the following way: a 0-1 variable x; indicates (with value 1) that activity A; is
selected in the first phase; constraint (I)) is replaced by the following two constraints:

>y S8) > a; VS e S,jeN:A(S)#D (18)
IGAJ’(S)

> oy8) <1 VieN,SeSs (19)
IGAJ’(S)

Unfortunately, it is straightforward to show that selecting a feasible set of activities
in the first phase can be used to model the maximum independent set problem. This is
formalized in the following lemma.

Lemma 2. [f there is a p-approximation algorithm for the augmentation 2-stage sto-
chastic 1|r;| > w;Uj, then there is a p-approximation algorithm for maximum inde-
pendent set problem.

Proof Sketch. We give an approximation-preserving reduction from the maximum in-
dependent set problem. Given a graph G, we build the following input for the aug-
mentation 2-stage stochastic 1|r;| > w,;U;. For each vertex v;, there is an activity A;,
j =1,...,n, each activity is always released at time 0, has deadline time 1, and takes
one time unit to complete; each activity has first-stage profit 1, and second-stage profit
0. For each edge e; = (vj;,vy), there is a scenario \S; in which only the activities A,
and Ay, are active. Each scenario .S; occurs with positive probability, and hence our
first stage selection must contain at most one of the endpoints of e;. Thus, there is a
one-to-one correspondence between independent sets in GG and feasible first-stage deci-
sions. Furthermore, the objective function value of any first-stage decision is exactly the
number of activities selected (since the second stage does not contribute any expected
profit). Hence, we see that the two optimization problems are identical.

From Lemma (@) and the result in [6] we obtain the following theorem.

Theorem 3. For any € > 0, there does not exist a polynomial-time algorithm that ap-
proximates the augmentation 2-stage stochastic 1|r;| > w;U; within a factor nl/2=¢,

unless P = N'P.
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Abstract. Consider an integer program max(c'z : Az =b, x>0, x €
Z") where A € Z™*™ b € Z™, and ¢ € Z". We show that the integer
program can be solved in pseudo-polynomial time when A is non-negative
and the column-matroid of A has constant branch-width.

1 Introduction

For positive integers m and n, let A € Z™*" b€ Z™, and ¢ € Z™. Consider the
following integer programming problems:

nd z € satisfying (Az = b, x > 0).
IPF) Find Z" satisfyi A b 0
(IP) Find x € Z™ maximizing c¢'z subject to (Ax = b, 2 > 0).

Let M(A) denote the column-matroid of A. We are interested in properties of
M (A) which lead to polynomial-time solvability for (IPF) and (IP). Note that,
even when A (or, equivalently, M (A)) has rank one, the problems (IPF) and (IP)
are NP-hard. Papadimitriou [9] considered these problems for instances where
A has constant rank.

Theorem 1 (Papadimitriou). There is a pseudopolynomial-time algorithm
for solving (IP) on instances where the rank of A is constant.

Robertson and Seymour [10] introduced the parameter “branch-width” for
graphs and also, implicitly, for matroids. We postpone the definition until Sec-
tion 2. Our main theorem is the following; a more precise result is given in
Theorem [6

Theorem 2. There is a pseudopolynomial-time algorithm for solving (IP) on
instances where A is non-negative and the branch-width of M(A) is constant.

The branch-width of a matroid M is at most (M )+1. Theorem 2l does not imply
Papadimitriou’s theorem, since we require that A is non-negative. In Section
we show that the non-negativity can be dropped when we have bounds on the
variables. However, the following result shows that we cannot just relax the
non-negativity.

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 158-[IG6} 2007.
© Springer-Verlag Berlin Heidelberg 2007


http://www.math.uwaterloo.ca/C_andO_Dept/index.shtml

On Integer Programming and the Branch-Width of the Constraint Matrix 159

Theorem 3. (IPF) is NP-hard even for instances where M(A) has branch-
width < 3 and the entries of A are in {0,£1}.

We also prove the following negative result.

Theorem 4. (IPF) is NP-hard even for instances where the entries of A and b
are in {0, £1} and M(A) is the cycle matroid of a graph.

We find Theorem Ml somewhat surprising considering the fact that graphic ma-
troids are regular. Note that, if A is a (0, £1)-matrix and M ([I, 4]) is regular,
then A is a totally unimodular matix and, hence, we can solve (IP) efficiently.
It seems artificial to append the identity to the constraint matrix here, but for
inequality systems it is more natural.

Recall that M (A) is regular if and only if it has no U, 4-minor (see Tutte [I3] or
Oxley [8], Section 6.6). Moreover, Seymour [12] found a structural characteriza-
tion of the class of regular matroids. We suspect that the class of R-representable
matroids with no Uy ;- or U3 -minor is also “highly structured” for alll > 0 (by
which we mean that there is likely to be a reasonable analogue to the graph mi-
nors structure theorem; see [11]). Should such results ever be proved, one could
imagine using the structure to solve the following problem.

Problem 1. Given a non-negative integer [ > 0, is there a polynomial-time algo-
rithm for solving max(ctz : Az < b,z > 0, z € Z") on instances where A is a
(0, £1)-matrix and M ([, A]) has no Us,;- or U; -minor?

2 Branch-Width

For a matroid M and X C E(M), we let Ay (X) =rp (X)) +ru(E(M) — X) —
r(M)+1; we call A\js the connectivity function of M. Note that the connectivity
function is symmetric (that is, Ay (X) = Ay (E(M) — X) for all X C E(M))
and submodular (that is, Ay (X) + Ay (Y) > Au(XNY) + Ay (X UY) for all
X,Y C E(M)).

Let A R™*™ and let E ={1,...,n}. For X C E, we let

S(A, X) :=span(A|X) Nspan(A|(E — X)),

where span(A) denotes the subspace of R spanned by the columns of A and
A|X denotes the restriction of A to the columns indexed by X. By the modularity
of subspaces,

dlmS(A,X) = AM(A)(X) — 1.

A tree is cubic if its internal vertices all have degree 3. A branch-decomposition
of M is a cubic tree T whose leaves are labelled by elements of E(M) such that
each element in F(M) labels some leaf of T and each leaf of T receives at most
one label from E(M). The width of an edge e of T is defined to be Ay (X) where
X C E(M) is the set of labels of one of the components of T — {e}. (Since Ay
is symmetric, it does not matter which component we choose.) The width of T
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is the maximum among the widths of its edges. The branch-width of M is the
minimum among the widths of all branch-decompositions of M.

Branch-width can be defined more generally for any real-valued symmetric set-
function. For graphs, the branch-width is defined using the function Ag(X); here,
for each X C E(G), Ag(X) denotes the number of vertices incident with both
an edge in X and an edge in E(G)— X. The branch-width of a graph is within a
constant factor of its tree-width. Tree-width is widely studied in theoretical com-
puter science, since many NP-hard problems on graphs can be efficiently solved
on graphs of constant tree-width (or, equivalently, branch-width). The most
striking results in this direction were obtained by Courcelle [I]. These results
have been extended to matroids representable over a finite field by Hlinény [4].
They do not extend to all matroids or even to matroids represented over the
reals.

Finding Near-Optimal Branch-Decompositions

For any integer constant k&, Oum and Seymour [7] can test, in polynomial time,
whether or not a matroid M has branch-width & (assuming that the matroid
is given by its rank-oracle). Moreover their algorithm finds an optimal branch-
decomposition in the case that the branch-width is at most k. The algorithm is
not practical; the complexity is O(n®**12). Fortunately, there is a more practical
algorithm for finding a near-optimal branch-decomposition. For an integer con-
stant k, Oum and Seymour [6] provide an O(n3-) algorithm that, for a matroid
M with branch-width at most &, finds a branch-decomposition of width at most
3k — 1. The branch decomposition is obtained by solving O(n) matroid inter-
section problems. When M is represented by a matrix A € Z™*" each of these
matroid intersection problems can be solved in O(m?nlogm) time; see [2]. Hence
we can find a near-optimal branch-decomposition for M(A) in O(m?n?logm)
time.

3 Linear Algebra and Branch-Width

In this section we discuss how to use branch decompositions to perform certain
matrix operations more efficiently. This is of relatively minor significance, but it
does improve the efficiency of our algorithms.

Let A € Z™*™ and let E = {1,...,n}. Recall that, for X C E, S(4,X) =
span(A|X)Nspan(A[(E — X)) and that dim S(A, X) = Apea)(X) — 1. Now let T
be a branch-decomposition of M (A) of width k, let e be an edge of T, and let X be
the label-set of one of the two components of T—e. We let S.(A) := S(A, X). The
aim of this section is to find bases for each of the subspaces (S.(A) : e € E(T))
in O(km?n) time.

Converting to Standard Form

Let B C E be a basis of M(A). Now let Ag = A|B and A’ = (Ap)~!A. Therefore
M(A) = M(A’) and S.(A) = {Apv : v € Se(A")}. Note that we can find B
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and A’ in O(m?n) time. Given a basis for S.(A’), we can determine a basis for
Se(A) in O(km?) time. Since T has O(n) edges, if we are given bases for each
of (Se(4") : e € E(T)) we can find bases for each of (S.(4) : e € E(T)) in
O(km?n) time.

Matrices in Standard Form

Henceforth we suppose that A is already in standard form; that is A|B = I for
some basis B of M(A). We will now show the stronger result that we can find a
basis for each of the subspaces (S.(A) : e € E(T)) in O(k*mn) time (note that
E<m+1).

We label the columns of A by the elements of B so that the identity A|B
is labelled symmetrically. For X € B and Y C E, we let A[X,Y] denote the
submatrix of A with rows indexed by X and columns indexed by Y.

Claim. For any partition (X,Y) of E,
Ay (X) = rank A[IX N B, X — B] 4+ rank A[Y N B,Y — B] + 1.
Moreover S(A, X) is the column-span of the matriz
X-B Y-B

XNB (AXNB,X - B 0
YNB 0 AYNB,Y -B] )

Proof. The formula for A\y;(4)(X) is straightforward and well known. It follows
that S(A, X) has the same dimension as the column-space of the given matrix.
Finally, it is straightforward to check that each column of the given matrix is
spanned by both A|X and A|(E — X).

Let (X,Y) be a partition of E. Note that BN X can be extended to a maximal
independent subset Bx of X and BNY can be extended to a maximal indepen-
dent subset By of Y. Now S(A4, X) = S(A|(Bx UB,y), Bx). Then, by the claim
above, given By and By we can trivially find a basis for S(A, X).

Finding Bases

A set X C F is called T-branched if there exists an edge e of T such that
X is the label-set for one of the components of T' — e. For each T-branched
set X we want to find a maximal independent subset B(X) of X containing
X N B. The number of T-branched sets is O(n), and we will consider them in
order of non-decreasing size. If | X| = 1, then we can find B(X) in O(m) time.
Suppose then that |X| > 2. Then there is a partition (X1, X2) of X into two
smaller T-branched sets. We have already found B(X;) and B(X5). Note that
X is spanned by B(X;) U B(X3). Moreover, for any T-branched set Y, we have
raa)(Y) = Y N B| < rapay(Y) + rara) (B = Y) = r(M(A)) = Ay (Y) — 1.
Therefore |(B(X1)UB(X2))— (BNX)| < 2(k—1). Recall that A|B = I. Then in
O(k?m) time (O(k) pivots on an m x k-matrix) we can extend BN X to a basis
B(X) C B(X1)UB(X3). Thus we can find all of the required bases in O(k%*mn)
time.
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4 The Main Result

In this section we prove Theorem Pl We begin by considering the feasibility
version.
IPF (k).
INSTANCE: Positive integers m and n, a non-negative matrix A € Z™*", a non-
negative vector b € Z™, and a branch-decomposition T of M(A) of width k.
PROBLEM: Does there exist x € Z™ satisfying (Az = b, x > 0)?
Theorem 5. IPF(k) can be solved in O((d + 1)**mn + m?n) time, where d =
max(by,...,bm).
Note that for many combinatorial problems (like the set partition problem), we
have d = 1. For such problems the algorithm requires only O(m?n) time (consid-
ering k as a constant). Recall that S(A, X) denotes the subspace span(A|X) N
span(A|(F — X)), where E is the set of column-indices of A.

The following lemma is the key.

Lemma 1. Let A € {0,...,d}™" and let X C {1,...,n} such that Ay a(X)=
k. Then there are at most (d + 1)*=1 vectors in S(A, X) N {0,...,d}™.

Proof. Since Apr(4)(X) <k, S(A, X) has dimension k—1;let ay,...,ax—1 € R™
span S(A, X). There is a (k—1)-element set Z C {1,...,n} such that the matrix

(a1]Z,...,ar-1]|Z) is non-singular. Now any vector z € R that is spanned by
(a1,...,ax_1) is uniquely determined by x|Z. So there are at most (d + 1)F~!
vectors in {0,...,d}™ that are spanned by (a1,...,a5_1).

Proof (Proof of Theorem[3.). Let A" = [A,b], E={1,...,n},and E' = {1,...,
n+1}. Now, let T be a branch-decomposition of M (A) of width &k and let 7" be
a branch-decomposition of M(A’) obtained from T by subdividing an edge and
adding a new leaf-vertex, labelled by n + 1, adjacent to the degree 2 node. Note
that 7" has width < k + 1. Recall that a set X C E is T-branched if there is an
edge e of T such that X is the label-set of one of the components of T' — e. By
the results in the previous section, in O(m?n) time we can find bases for each
subspace S(A’, X) where X C E is T’-branched.

For X C E, we let B(X) denote the set of all vectors b’ € Z™ such that
(1) 0 <V <b,
(2) there exists z € Z¥ with z > 0 such that (A|X)z =¥/, and
(3) V' € span(A’|(E' — X)).

Note that, if b € B(X), then, by (2) and (3), b’ € S(A’, X). If Appany(X) <
k + 1, then, by Lemma [ |B(X)| < (d + 1)*. Moreover, we have a solution to
the problem (IPF) if and only b € B(E).

We will compute B(X) for all T'-branched sets X C F using dynamic pro-
gramming. The number of T’-branched subsets of F is O(n), and we will consider
them in order of non-decreasing size. If | X | = 1, then we can easily find B(X) in
O(dm) time. Suppose then that |X| > 2. Then there is a partition (X7, X2) of
X into two smaller 7”-branched sets. We have already found B(X7) and B(X3).
Note that b’ € B(X) if and only if
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(a) there exist b} € B(X1) and b}, € B(X3) such that b’ = b} + b},
(b) ¥/ <b, and
(c) ¥ € S(A, X).

The number of choices for b’ generated by (a) is O((d + 1)?¥). For each such
b" we need to check that b’ < b and V' € S(A’, X). Since we have a basis for
S(A’, X) and since S(A’, X) has dimension < k, we can check whether or not
b e S(A', X) in O(m) time (considering k as a constant). Therefore we can find
B(E) in O((d + 1)?*mn + m2n) time.

We now return to the optimization version.

IP (k).

INSTANCE: Positive integers m and n, a non-negative matrix A € Z™*", a non-
negative vector b € Z™, a vector ¢ € Z", and a branch-decomposition 7" of M (A)
of width k.

PROBLEM: Find x € Z™ maximizing c'x subject to (Az = b, > 0).

Theorem 6. IP(k) can be solved in O((d + 1)**mn + m2n) time, where d =
max(by,...,bm).

Proof. The proof is essentially the same as the proof of Theorem [ except that
for each b’ € B(X) we keep a vector z € Z* maximizing > (c;z; : i € X)
subject to ((A|Xe)x =¥, © > 0). The details are easy and left to the reader.

Theorem [B] implies Theorem

5 Hardness Results

In this section we prove Theorems [B] and @l We begin with Theorem Bl The
reduction is from the following problem, which is known to be NP-hard; see
Lueker [5].

Single Constraint Integer Programming Feasibility (SCIPF).
INSTANCE: A non-negative vector a € Z™ and an integer b.
PROBLEM: Does there exist z € Z™ satisfying (a'z = b, z > 0)?

Proof (Proof of Theorem [3.). Consider an instance (a,b) of (SCIPF). Choose
an integer k as small as possible subject to 2**1 > max(ay, ..., a,). For each
i e {l,...,n}, let (@i, k—1,...,q;0) be the binary expansion of a;. Now
consider the following system of equations and inequalities:

n k
M 22 iy =b
i=1 j=0

(2) = Yoy =0, forie{l,...,n} and j € {0,...,k}.
(3) acz ZOfor each i € {1,...,n}.
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If (yij € {1,....,n},j € {0,...,k}) and (z1,...,x,) satisfy (2), then y;; =
27z;, and (1) simplifies to > (a;z; : i € {1,...,n}) = b. Therefore there is an
integer solution to (1), (2), and (3) if and only if there is an integer solution to
(a'z =b, z > 0).

The constraint matrix B for system (2) is block diagonal, where each block is
a copy of the matrix:

1 2 3 ... k4+1 k42

1 1 -1 -1 - -1 -1

2 0o 1 -1 -1 -1
C=. . )

k+1\0 O 0o - 1 -1

It is straightforward to verify that M(C) is a circuit and, hence, M (C) has
branch-width 2. Now M (B) is the direct sum of copies of M(C) and, hence,
M (B) has branch-width 2. Appending a single row to B can increase the branch-
width by at most one.

Now we turn to Theorem @l Our proof is by a reduction from 3D Matching
which is known to be NP-complete; see Garey and Johnson [3], pp. 46.

3D Matching.

INSTANCE: Three disjoint sets X, Y, and Z with | X| = [Y| = | Z| and a collection
F of triples {z,y, 2} wherez € X,y €Y, and 2z € Z.

PRrROBLEM: Does there exist a partition of X UY U Z into triples, each of which
is contained in F7?

Proof (Proof of Theorem[j) ). Consider an instance (X,Y, Z, F) of 3D Matching.
For each triple ¢ € F we define elements u; and v;. Now construct a graph
G = (V, E) with

V=XUYUZU{w :te FtU{v, : t € F}, and

E= U {(Ut7$)7 (ut,y), (ut,ve), (vtvz)}'

t={z,y,z}€F

Note that G is bipartite with bipartition (XUY U{v, : t € F}, ZU{u, : t € F}).

Now we define b € Z" such that b,, = 2 for each t € F and b, = 1 for
all other vertices w of G. Finally, we define a matrix A = (a,.) € Z¥*F such
that a,e = 0 whenever v is not incident with e, a,. = 2 whenever v = u; and
e = (ug,vy) for some t € F, and a,e = 1 otherwise; see Figure[Il

It is straightforward to verify that (X,Y,Z,F) is a YES-instance of the 3D
Matching problem if and only if there exists x € Z¥ satisfying (Az = b, > 0).
Now A and b are not (0,+1)-valued, but if, for each ¢t € F, we subtract the
vi-row from the us;-row, then the entries in the resulting system A’z = b are in
{0,£1}.

It remains to verify that M (A) is graphic. It is straightforward to verify that
A is equivalent, up to row and column scaling, to a {0, 1}-matrix A”. Since G
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z

Fig. 1. The reduction

is bipartite, we can scale some of the rows of A” by —1 to obtain a matrix B
with a 1 and a —1 in each column. Now M (B) = M(A) is the cycle-matroid of
G and, hence, M (A) is graphic.

6 Bounded Variables

In this section we consider integer programs with bounds on the variables.

Integer Programming with Variable Bounds (BIP)

INSTANCE: Positive integers m and n, a matrix A € Z™*" a vector b € Z™, and
vectors ¢,d € Z".

PROBLEM: Find z € Z™ maximizing c'z subject to (Az =0, 0 < z < d).

We can rewrite the problem as: Find y € Z>" mazximizing ¢ty subject to
(Ay = b, y > 0), where

IR .

Note that, for i € {1,...,n}, the elements ¢ and ¢ +n are in series in M (A), and,
hence, M (A) is obtained from M (A) by a sequence of series-coextensions. Then
it is easy to see that, if the branch-width of M (A) is k, then the branch-width
of M(A) is at most max(k, 2).

Now note that the all-ones vector is in the row-space of A. Therefore, by taking
appropriate combinations of the equations Ay = 137 we can make an equivalent
system fly = b where A is non-negative. Therefore, we obtain the following

corollary to Theorem
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Corollary 1. There is a pseudopolynomial-time algorithm for solving (BIP) on
instances where the branch-width of M(A) is constant.
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Abstract. According to the present state of the theory of the matroid
matching problem, the existence of a good characterization to the size of
a maximum matching depends on the behavior of certain substructures,
called double circuits. In this paper we prove that if a polymatroid has
no double circuits at all, then a partition-type min-max formula charac-
terizes the size of a maximum matching. We provide applications of this
result to parity constrained orientations and to a rigidity problem.

A polynomial time algorithm is constructed by generalizing the prin-
ciple of shrinking blossoms used in Edmonds’ matching algorithm [2].

Keywords: matroids and submodular functions.

1 Introduction

Polymatroid matching is a combinatorial optimization problem which is con-
cerned with parity and submodularity. Early well-solved special cases are the
matching problem of graphs and the matroid intersection problem, which have
in fact motivated Lawler to introduce the matroid and polymatroid matching
problems. Jensen, Korte [6], and Lovasz [9] have shown that, in general, the
matroid matching problem is of exponential complexity under the independence
oracle framework. The major breakthrough came when Lovész gave a good char-
acterization to the size of a maximum matching and also a polynomial algorithm
for linearly represented matroids [12[9]. Lovész [I0], and Dress and Lovasz [1]
observed that the solvability of the linear case is due to the fact that these ma-
troids can be embedded into a matroid satisfying the so-called double circuit
property, or DCP for short. It was also shown that full linear, full algebraic, full
graphic, and full transversal matroids are DCP matroids [I]. The disadvantage of
this approach is that, due to the embedding into a bigger matroid, the min-max
formula is rather difficult to interpret in a combinatorial way, and often does not
even imply a good characterization. However, the diversity and the importance
of solvable special cases of the matroid matching problem is a motivation to
explore those techniques implying a combinatorial characterization.
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In this paper we investigate the class of those polymatroids having no non-
trivial compatible double circuits, called ntcdc-free for short, defined later. We
prove that in these polymatroids a partition-type combinatorial formula charac-
terizes the maximum size of a matching. We remark that in the min-max formula
for DCP matroids, for example representable matroids, we have to take a parti-
tion and a projection into consideration. Contrarily, in ntcde-free polymatroids,
it suffices to consider partitions in the min-max formula. As an application, we
show that two earlier results are special cases of this approach. The first appli-
cation is that the parity constrained orientation problem of Kirdly and Szabd
[7] can be formulated as a matching problem in a ntede-free polymatroid, which
implies the partition-type formula given in [7]. Second, we deduce a result of
Fekete [3] on the problem of adding a clique of minimum size to a graph to
obtain a graph that is generically rigid in the plane.

1.1 The Partition Formula

To formulate our main result, some definitions are in order. We denote by R
and N the set of non-negative reals and non-negative integers, respectively. Let
S be a finite ground set. A set-function f : 2% — Z is called submodular if

fX)+fY) = [(XNY)+ f(XUY) (1)

holds whenever X, Y C S. b is called supermodular if —b is submodular. The set-
function f is said to be non-decreasing if f(X) < f(Y) forevery) # X CY C S,
and we say that f is non-increasing if — f is non-decreasing. A non-decreasing
submodular set-function f : 29 — N with f())) = 0 is called a polymatroid
function. A polymatroid function f : 2% — Z, induces a polymatroid P(f) and
a base polyhedron B(f) defined by

P(f):={zxeR%:2>0,2(Z) < f(Z) for all Z C S}, (2)

B(f) :={z e RY : 2(S) = f(S), and = > 0,2(Z) < f(Z) for all Z C S}, (3)

where z(Z) := 3", x; for some Z C S. A vector m € Z° is called even if m; is
even for every i € S. The even vectors m € P(f) are called the matchings of f.
The size of a matching is m(S)/2. The polymatroid matching problem is to find
a mazximum matching, i.e. a matching of maximum size

v(f) = max{m(S)/2: m is a matching of f}.

We will investigate the polymatroid matching problem in ntcdc-free polyma-
troids, defined below. Our main result goes as follows.

Theorem 1. Let f : 25 — N be a ntcde-free polymatroid function. Then

y(f):mm; V(QUJ‘)J

where the minimum is taken over all partitions Uy,Us, ..., U of S.
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We propose two different proofs. In the first proof we exploit a theorem of Lovasz,
and a couple of polymatroid operations. The second proof relies on a (semi-
strongly) polynomial time algorithm, which is based on a generalization of the
contraction of blossoms in Edmonds’ matching algorithm [2].

1.2 Circuits and Compatible Double Circuits in Polymatroids

Consider a polymatroid function f : 2% — N, and a vector € N°. For a set
Z C S, we call defy,(Z) = x(Z) — f(Z) the deficiency of set Z with respect
to f,z. A set is called k-deficient with respect to f,x if defy,(Z) = k. The
deficiency of a vector x is defined by defy(x) := maxycgdefy(Z), which is
non-negative. Notice that defy.(-) is a supermodular set-function, hence the
family of sets Z such that def; ,(Z) = def s () is closed under taking unions and
intersections.

Consider a 1-deficient vector x. x is called a circuit if supp(zx) is equal to the
unique inclusionwise minimal 1-deficient set.

Consider a 2-deficient vector z € N°, and let W := supp(z). x is called a com-
patible double circuit (or cde, for short), if W is the unique inclusionwise minimal
2-deficient set, and there is a partition 7 = {Wi,--- , Wy} of W such that k > 2
and {W —W; :i=1,---,k} is equal to the family of all inclusionwise minimal
1-deficient sets. We remark that if x is a cdc, then 7 is uniquely determined —
let it be called the principal partition of x. If k = 2, then x is called a trivial
cde. If k > 3, then x is called a non-trivial compatible double circuit, or ntcdc,
for short.

A polymatroid is called ntede-free if there is no ntedc.

2 First Proof of the Partition Formula

For some well-known notions and results on the theory of matroids, polymatroids
and matroid matching, see [I4]. We need some more preparation.

2.1 Preliminaries

There is a close relation between polymatroid functions and matroids. First, if
M = (T,r) is a matroid and ¢ : T — S is a function then f : 29 — N, X s
r(p~1(X)) is a polymatroid function, the homomorphic image of M under .
Second, for any polymatroid function f it is possible to define a matroid M, the
homomorphic image of which is f, in such a way that M is “most independent” in
some sense. The ground set T" of M is the disjoint union of sets T; for i € S of size
|T;| > f({i}). If X C T then we define the vector x* € N¥ with x¥ = |X N T}
for ¢ € S. With this notation, a set X C T is defined to be independent in M if
X~ € P(f). It is routine to prove that M is indeed a matroid with rank function
r(X) =minycx(|[Y]+ f(e(X =Y))), where ¢ : T'— S maps t to i if t € T;. This
M is called a prematroid of f. Note that a prematroid M is uniquely determined
by f and by the sizes |T;|, i € S. If M is a matroid with rank function r then the
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prematroids of r are the parallel extensions of M. If we consider a prematroid
M then we tacitly assume that M = (T, r) and that the function ¢ : T — S is
given with ¢t — ¢ if t € T;.

If f is a polymatroid function and z € Z° then we define the rank of = as
re(z) = mingcs(z(S — U) + f(U)). If 2 € N9 then r¢(x) = x(S) if and only if
x € P(f). Besides, if M = (T,r) is a prematroid of f and X C T then ry(x~) =
7(X). The span of x € N¥ is defined by spp(z) ={i € S:rp(x+xi) =71(2)}
If M is a prematroid of f and X C T then sp;(x*) ={i € S : Ti C spy(X)}.

2.2 Circuits and Double Circuits in Matroids

Let M = (T,r) be a matroid. A set C' C T is said to be a circuit if r(C —
x) = r(C) = |C| -1 for every z € C. A set D C T is a double circuit if
r(D —x) =r(D) = |D| — 2 for every x € D. If D is a double circuit then the
dual of M|D is a matroid of rank 2 without loops, that is a line, showing that
there exists a principal partition D = D1UDyU...UDy, d > 2, such that the
circuits of D are exactly the sets of the form D — D,;, 1 <i < d. We say that D
is mon-trivial if d > 3, and trivial otherwise. A trivial double circuit is simply
the direct sum of two circuits.

Analogously, we define circuits and double circuits of the polymatroid function
f:2% — N. For a vector z € RY let supp(z) = {i € S : ; > 0}. A vector ¢ € N¥
is a circuit of f if ry(c— xi) = rp(c) = ¢(S) — 1 for every i € supp(c). A vector
w € N is a double circuit of f if rp(w — x;) = rp(w) = w(S) — 2 for every
i € supp(w). It is also easy to see the exact relation between matroidal and
polymatroidal double circuits, which is given as follows.

Lemma 1. Let M be a prematroid of f, D C T and xP = w. Then D is a
double circuit of M if and only if w is a double circuit of f.

Recall that we have already defined cdc’s and ntedc’s. Next we add another
definition, which is easily seen to be equivalent with those above. For € R¥ and
U C S we introduce the notation x|y for the vector by (z|y); := x; for i € U and
(z|p)i :==0fori e S—U. Let M be a prematroid of f and w be a double circuit
of f such that there is a set D C T with y” = w. By Lemma[ll D is a double
circuit of M, thus it has a principal partition D = D1UDsU...UDy. We define
the principal partition of w as follows. Due to the structure of prematroids it is
easy to check that supp(w) has a partition WoUW1U. .. UW, with the property
that each set D; is either a singleton belonging to some 7; with w; > 2 and
1 € Wy, or is equal to D N UieWh T; for some 1 < h < d. Note that a partition
WoUW1U. .. UW, of supp(w) is the principal partition of w if and only if w — x;
is a circuit of f and w; > 2 whenever i € Wy, moreover, w|w _w, is a circuit
of f for each 1 < i < d. A double circuit w is said to be compatible if Wy = 0,
and it is trivial if D is trivial. We remark that these definitions are easily see
equivalent with the above ones.

We shortly mention what is the double circuit property, or DCP, for short.
If M = (T,r) is a prematroid of the polymatroid function f and Z C T then
w(M/Z) is called a contraction of f. A polymatroid function f is said to have the
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DCP if whenever w is a non-trivial compatible double circuit in a contraction f’
of f with principal partition W7 U...UWy then f'((;<;<qsp(w|w—w,)) > 0, [].
A polymatroid function without non-trivial compatible double circuits has not
necessarily the DCP, as its contractions may have many non-trivial compatible
double circuits.

Note that every polymatroid function has double circuits, say (f({i}) + 2)x;
for some ¢ € S. However, these are not compatible, as Wy = {i}.

Lemma 2. Ifw € N° is a double circuit of the polymatroid function f : 25 — N
with principal partition W = WoUW1U...UWy then f(W) = w(W) — 2 and
fW =W,) =w(W —W;) —1 for1 <i<d.

Proof. We prove that if z € N is a vector with the property that ry(z) =
r(x — xi) for all ¢ € supp(z) then f(supp(z)) = ry(z). By definition, r¢(z) =
z(S=Y)+f(Y) for some Y C S. Note that r¢e(z—x;) < (x—x:)(S=Y)+f(Y) =
r(xz) — 1 for all ¢ € supp(z) — Y. Thus supp(z) C Y. Finally, f(Y) = r¢(z) <
f(supp(z)) < f(Y), since f is non-decreasing. If x is a circuit or a double circuit
then r¢(z) = ry(x — x;) for all i € supp(x), we are done.

2.3 Polymatroid Operations

Next we investigate how two polymatroid operations (translation, deletion) effect
double circuits. If f : 2° — Nis a function and n € Z° then define f+n : 25 — N
by X +— f(X) +n(X). If f is a polymatroid function and n € N° then f + n is
clearly a polymatroid function, too.

Lemma 3. Ifn € Z° and f and f +n are polymatroid functions then a vector
w is a double circuit of f with W = supp(w) if and only if w + n|w is a double
circuit of f 4+ n. In this case their principal partition coincide.

Proof. Clearly, 7¢4n(z +n) — (x+n)(S) =rs(z) — 2(S) for all z € Z°. Thus by
symmetry, it is enough to prove that if w is a double circuit of f with support
W then w; + n; > 0 for every i € W. Otherwise by Lemma ] we would have
wW —1i) —n; > w(W) = f(W)+2> f(W — i) — n; + 2, which is impossible.

Let u € N° be a bound vector and define f\u = ¢(rysz) where M is a prema-
troid of f and Z C T with x? = u. The matroid union theorem asserts that
(f\u)(X) =minycx(u(Y)+ f(X = Y)). If M is a matroid with rank function
r then r\u is the rank function of M|supp(u).

Lemma 4. Let u € N°. If w € N is a double circuit of f' := f\u then w
1s either a double circuit of f with the same principal partition, or trivial, or
non-compatible.

Proof. Let M = (T, r) be a prematroid of f and Z C T with x% = u. If w < x?
then w is a double circuit of f with the same principal partition by Lemma [Tl
Observe that w; < f/({i}) + 2 and f'({i}) < w; for every i € S. Thus if w £ x?
then there exists an i € S such that w; — f'({i}) € {1,2}. If w; = f'({i}) + 2
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then 7y (wix;) = w; — 2, thus Wy = supp(w) = {i}, implying that w is non-
compatible. If w; = f'({i}) + 1 then w;x; is a circuit of f’ thus if Wy # () then
w is non-compatible and if Wy = () then w is trivial.

Finally we cite Lovasz’s deep and important theorem on 2-polymatroids, which
can be translated to arbitrary polymatroids as follows. This theorem will be a
key to our first proof below.

Theorem 2 (Lovasz [10]). If f : 2° — N is a polymatroid function then at
least one of the following cases holds.

1. f(S)=2v(f)+1.

2. There exists a partition S = S1USa, S; # 0, s.t. v(f) = v(flas:) + v(flas2)-

3. There exists ani € S, f(i) > 2 such that for each mazimum matching m we
have i € sp¢(m).

4. There exists a certain substructure, called v-double flower in f, which we do
not define here, but which always contains a non-trivial compatible double
circust.

Proof (First proof of Theorem ). Tt is easy to see that v(f) < 22:1 V(gj)J
holds for every partition Uy, Us, ..., U; of S. For the other direction we argue by
induction on the pair (S, |[K(f)|), where K(f) = {s € S : s € sp;(m) for each
maximum matching m of f}. If S = () then the statement is trivial. If K(f) =0
then either 1. or 2. holds in Theorem [l If 7. holds then the trivial partition will
do, while if 2. holds then we can use our induction hypothesis applied to f|qs,
and f|ys,.

Next, let K(f) # (0. We prove that if m is a maximum matching of f + 2y,
then m(s) > 2. Indeed, assume that m(s) = 0. As m is a maximum matching,
there exists a set s € U C S with m(U) > (f + 2xs)(U) — 1. Thus m(U — s) =
m(U) > (f+2xs)(U)—1> f(U—s)+1, which is a contradiction. It is also clear
that m + 2y, is a matching of f 4 2y, for each matching m of f. Therefore, m
is a maximum matching of f if and only if m + 2y, is a maximum matching of
J+2xs.

Let s € K(f). Clearly, v(f) < v(f + xs) < v(f + 2xs) = v(f) + 1 and we
claim that in fact, v(f + xs) = v(f) holds. Indeed, if v(f + xs) = v(f) + 1 and
m is a maximum matching of f 4 xs then m is also a maximum matching of
|+ 2xs, thus m(s) > 2. Then m — 2y, is a maximum matching of f and, as
s € spp(m —2xs), there exists a set s € U C . with (m —2x,)(U) = f(U). This
implies m(U) = f(U) + 2, contradicting to that m is a matching of f + ys.

So if m is a maximum matching of f then m is a maximum matching of
f + Xs, too, and clearly, sp;(m) = sp;, (m) — s. Thus we have K(f 4 xs) C
K(f) — s. By Lemma Bl f + xs has no non-trivial compatible double circuits,
so we can apply induction to f + xs. This gives a partition Uy, Us,...,U; of S

such that v(f + xs) = 22:1 B(f—i—xs)(Uj)J. But then, v(f) = v(f + xs) =
S B ) 2 S |19,
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3 Second, Constructive Proof of the Partition Formula

The second proof is based on projections of blossoms, which is the generalization
of the principle in Edmonds’ matching algorithm [2]. For this, of course, we need
some more definitions and direct observations concerning projections.

3.1 Projections

Consider a polymatroid function f on groundset S, as above. For a subset B C S
we define the projection fB :29-8 — N by fB(X) := min{ f(X), f(X UB) —
f(B)+1} for X C S — B. It is easy to see that f? is a polymatroid function,
and its induced polymatroid is equal to

P(fB) ={y e R% B : thereis [z,y] € P(f) s.t.z(B)=f(B)—1}. (4)

For x € RS, Z C S we introduce the notation z||z € RZ for the vector such
that (z||z); = x; for all i € Z.

Consider a family H = {Hy,--- , H,,} of disjoint subsets of S. Assume that
there is a vector x € P(f) such that for all i = 1,---,m, we have z(H;) =
f(H;) — 1, and there is an element h; € H; such that x + x5, € P(f). By @)
we get that z||s_pg, € P(f), thus fHi(H;) = f(H;) for all i # j. This implies
that we obtain the same polymatroid function on groundset S — UH no matter
which order the sets H; are projected. Let f* denote the unique polymatroid
function obtained by projecting all the members of H. Then

P(f") = {y € R¥VM . there is [2,y] € P(f) s.t. 2(H;) = f(H;) — 1}, (5)
and we get that for any X C S — U H,
X)) =min {f(X UUH') —2(UH) : H CH}. (6)

We remark without proof that f* may be evaluated in strongly polynomial time.

3.2 Blossoms

The notion of blossoms comes from an algorithmic point of view, which is the ana-
logue of Edmonds’ blossoms in the matching algorithm. An ear-decomposition of
a matching is constructed by finding a circuit induced in the matching, and it-
erating this procedure after the projection. More precisely, the definition is the
following. If y € P(f), y + xu € P(f), y +2xu ¢ P(f),u € C C S, and C is
the unique inclusionwise minimal 1-deficient set for y + 2x,,, then we say that “u
induces a circuit on C iny”.

Consider a matching = with respect to a polymatroid function f : 25 — N.
Consider a laminar family F = {By, -+, By} of subsets of S, that is, any two
members of F are either disjoint or one contains the other. For indices i =
1,---,k, let F; denote the family of inclusionwise maximal proper subsets of B;
in F, and let G; := B; — UF;. Consider a set U = {uy,--- ,ux} C S such that
u; € G;. Hence F,U is called an x-ear-decomposition if
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(a) z(B;) = f(B;) — 1, and
(b) u; induces a circuit on G; in z||s_yx, with respect to f%.

Notice that the above definition implies that x4 x,, € P(f) holds whenever B; is
an inclusionwise minimal member of F. This implies that the projection of F, or
F; satisfies the assumption in the previous section, and thus the projection may
be performed in arbitrary order. Notice, if we drop an inclusionwise maximal
member B; € F together with u;, we retain another ear-decomposition. A set B
appearing in the family F of some ear-decomposition is called an z-blossom. An
ear-decomposition of a blossom B is an ear-decomposition F, U such that B is
the unique inclusionwise maximal member of F.

The following Lemma [B] will be our crucial inductive tool to deal with ear-
decompositions by extending a matching with respect to f¥ to a matching with
respect to f.

Lemma 5. Suppose we are given a matching x, an x-blossom B together with
an x-ear-decomposition, and a vector y € P(fB). There is a polynomial time
algorithm to find either

(A) a ntcde, or
(B) an even vector z € (2N)B such that 2(B) = f(B) — 1 and [z,y] € P(f).

Proof. Let us use notation from above. The algorithm is recursive on the number
k of ears. Firstly, notice that def([z||p,y]) < 1. If def¢([z||5,y]) = 0, then (B)
holds for z = z|| 5, and we are done. Henceforth we suppose that def ¢ ([z||5,y]) =
1, and let D denote the inclusionwise minimal 1-deficient set for [z||p,y]. Say
B = By and G = Gj.

We claim that either [z||g,y] € P(f”*), or D C (S — B) U G. Suppose
[z]|a,y] ¢ P(f7*). By @), there is a set Q such that defy ;) ,(Q) > 1, and
for all B; € Fi we have Q N B; = 0 or Q 2 B;. Clearly, defy ,,.,(B) = —1.
Since y € P(f%), we get that def 14 ,,,, (BUQ) < 0. Thus, by supermodularity
of deficiency, 0 < defy )),,,(B N Q) = def (B N Q). Recall that for every
inclusionwise minimal set B; € F we have x + x,, € P(f) for u; € B;. Thus,
u; ¢ BN Q, which implies that D C Q C (S — B)UG.

Now suppose that [z||q,y] € P(f7*). Thus, by (@), there is a (not necessarily
even) vector 2/ € NY7* such that [2/,2||q,y] € P(f), and 2/(B;) = b(B;) — 1
for all B; € Fi. Then we apply the algorithm recursively for B; € Fj and
[/, x||c,y], that is, we replace z’||p, step-by-step by an even vector retaining
the above properties — or we find a ntedc.

Finally suppose that D C (S — B) U G. Notice that y € P(f?) implies D N
B # 0. Also, # € P(f) implies D — B # (). Moreover, y € P(f?) implies
deff)[w|3’y](BUD) < 0. Recall that deff’[JJllB,y](D) =1 and deff,[JJllB,y](B) = -1
By supermodularity of deficiency, def 4|, (B N D) > 0. Thus, by (b) we get
that ug ¢ D. Consider an arbitrary element d € D N B. By (b), [z||¢ + 2Xu, —
Xd,0] € P(f7*). By applying the algorithm recursively for [z||¢ + 2Xu, — Xd;0]
one can find either a ntede, or an even vector ¢ € (2N)Y7* such that [q, z||¢ +
2Xu, — Xd,0] € P(f). Next, we will find out whether there is an element e such
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that z = [q, z||g + 2Xxu, — 2X.] satisfies (B). Clearly, all these vectors are even. It
is easy to see that def s ([q, || +2xu,, ¥]) is 1 or 2. If def ¢ ([¢, z|| ¢ +2Xu,, y]) = 1,
then for some element e we get that [q, z||q + 2Xu, — 2Xe, y], and we are done. If
def¢([q, z||a + 2Xuy,y]) = 2, then let W denote the unique minimal 2-deficient
set. If there is an element e € W such that all the 1-deficient sets contain e,
then [q,z||c + 2Xu, — 2Xe,y] € P(f), and we are done. Otherwise, if for every
element e there is a 1-deficient set e ¢ W, then [q, z||¢ + 2Xu,, ¥]lw € N° is a
cdc. Notice that B and D are circuits in [q, z||g 4+ 2Xu,, ], thus W — B € 7 and
W — D € x. Since d € BN D # {), this implies |7| > 3.

3.3 A Semi-strongly Polynomial Time Algorithm

We construct a semi-strongly polynomial time algorithm which either returns a
ntedce, or returns a maximum matching x and a partition certifying its maximal-
ity. The algorithm maintains a matching, and iteratively augments its size by
one, until it either finds a certifying partition, or a ntcdc. We may initiate x as a
basis of P(f), rounded down to the closest even vector. This initialization may
be performed in semi-strongly polynomial time, where “semi-" comes only from
the fact that we have to take lower integer part to detect parity. The remaining
part of the algorithm may be performed in strongly polynomial time.

The idea behind the algorithm is the following. If our matching z is a basis
in the polymatroid, then we are done. Thus we find an element u € S such that
x4+ xu € P(f). f 2+ 2x, € P(f), then that gives a larger matching, and we are
done. Otherwise, we may assume that x + x,, € P(f) and « + 2x,, ¢ P(f), i.e. u
induces a circuit in z, which can be used building blossoms and projections. If
we find a larger matching in the projection, then we use Lemma [l to expand
blossoms and retain a larger matching over the original groundset. This idea is
developed in detail below.

Consider a matching x. Define C := (). In a general step of the algorithm,
C={Bi, -, By} is a family of disjoint z-blossoms. This implies that z||s_uc €
P(f€). We distinguish three cases on how close z||s_yc is to a basis of P(f¢).

Case 1. Suppose that (S —(JC) = f¢(S —JC). Then, by claim (@), there is a
set C' C C such that f(S—JC+JC") ==z(S—JC"+UC’). Then C" = 0, since
for all blossoms B; € C there is an element ¢ € B; such that z + x; € P(f). We
conclude that x is a maximum matching, certified by the partition CU{S—|JC}.

Case 2. Suppose that z||s—uc + xu € P(f¢), but z||s—uc +2xu ¢ P(f€). Then
there is a set w € Z C S — UC such that u induces a circuit on Z in z||s—_yuc
with respect to f€. By claim (@) there is a set C’ C C such that f(ZU|JC') =
z(ZUlUC')+ 1. Thus, C —C'+{ZUJC'} is a blossom family.

Case 3. Suppose that z||s_uc +2xu € P(fC). In this case, by applying Lemma5]
for members of C, we construct either a matching larger than z, or a ntedce. This is
done as follows. By assertion (), there is a (not necessarily even) vector z € NY¢
such that 2’ := [z, z||s—uc+2xu) € P(f), and 2(B;) = f(B;)—1fori=1,--- , k.
Thus, for an arbitrary index i € {1,---,k} we get that 2’'||[s_p, € P(f?/). By
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applying Lemma [l for B;, we either construct a ntcde, or we may replace entries
of ¥’ in B; with even numbers, and retain the above properties. By repeating
this procedure for ¢ = 1,--- , k we retain a matching =’ that is larger than .

4 Applications

4.1 A Parity Constrained Orientation Theorem

Frank, Jordan and Szigeti [4] proved that the existence of a k-rooted-connected
orientation with prescribed parity of in-degrees can be characterized by a parti-
tion type condition. Recently, Kiraly and Szabo [7] proved that the connectivity
requirement in this parity constrained orientation problem can be given by a
more general non-negative intersecting supermodular function. It is well-known
that all these problems can be formalized as polymatroid parity problems. In
this section we show that it is possible to formalize the problem of Kirdly and
Szab6 in such a way that the arising polymatroid function has no non-trivial
double circuits. So Theorem [I] can be applied to yield the result in [7].

H = (V,€&) is called a hypergraph if V is a finite set and ) ¢ £ is a collection
of multisets of V', the set of hyperedges of H. If in every hyperedge h € £ we
designate a vertex v € h as the head verter then we get a directed hypergraph
D = (V, A), called an orientation of H. For a set X C V, let 6p(X) denote the
set of directed hyperedges entering X, that is the set of hyperedges with head
in X and at least one vertex in V — X.

Let p : 2¥ — N be a function with p()) = p(V) = 0. An orientation D of
a hypergraph H = (V,&) covers p if |6p(X)| > p(X) for every X C V. In a
connectivity orientation problem the question is the existence of an orientation
covering p. When we are talking about parity constrained orientations, we are
looking for connectivity orientations such that the out-degree at each vertex is
of prescribed parity. Now define b : 2V — Z by

b(X) = 3 h(X) — |E[X]] ~ p(X) for X CV, (7)
he&

where £[X] denotes the set of hyperedges h € € with h N (V — X) = ), and
h equivalently stands for the hyperedge and its multiplicity function. It is clear
that if x : V' — N is the out-degree vector of an orientation covering p then
x € B(b). The contrary is also easy to prove, see e.g. in [14]:

Lemma 6. Let H = (V,&) be a hypergraph, p : 2 — N be a function with
p(0) =p(V) =0, and 2 : V — N. Then H has an orientation covering p such
that the out-degree of each vertex v € V is x(v) if and only if x € B(b).

The function b : 2V — Z is said to be intersecting submodular if (@) holds
whenever X N'Y # (). Similarly, p : 2¥ — Z is intersecting supermodular if
—p is intersecting submodular. If b : 2" — N is a non-negative, non-decreasing
intersecting submodular function then we can define a polymatroid function

b:2Y — N by b(X) = min{zle b(X) : X1UXaU.. . UX, = X} for X C V,
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which is called the Dilworth truncation of b. It is also well-known that, if p :
2V — N is intersecting supermodular with p(V') = 0, then p is non-increasing.
Thus if p : 2¥ — N is an intersecting supermodular function with p(f)) =
p(V) = 0 then b : 2V — Z, as defined in (), is a non-decreasing intersect-
ing submodular function, but it is not necessarily non-negative. The following
theorem can be proved using basic properties of polymatroid functions.

Theorem 3. Let H = (V,&) be a hypergraph and p : 2V — N be an intersecting
supermodular function with p(0) = p(V) = 0. Define b as in [@). Then H has an
orientation covering p if and only if b(V) < 22:1 b(U;) holds for every partition
U17U2,...7Ut OfV

Let H = (V,€) be a hypergraph and T C V. Our goal is to find an orientation
of H covering p, where the set of odd out-degree vertices is as close as possible
to T.

Theorem 4 (Kiraly and Szabé [7]). Let H = (V,£) be a hypergraph, T C V,
p: 2Y — N be an intersecting supermodular function with p(0) = p(V) = 0,
and assume that H has an orientation covering p. Define b as in ([0). For an
orientation D of H let Yp C V' denote the set of odd out-degree vertices in D.
Then

min {|TAYp| : D is an orientation of H covering p} =
max {b(V) — 4, b(U;) + (5 : b(U;) # [T AUy mod 2} } . (8)

where the maximum is taken on partitions Uy,Us, ..., Uy of V.

An interesting corrollary is the following non-defect form, which is again a gen-
eralization of Theorem

Theorem 5. Let H = (V,&) be a hypergraph, T C V, and let p : 2V — N be
an intersecting supermodular function with p(§)) = p(V) = 0. Then, H has an
orientation covering p with odd out-degrees exactly in the vertices of T, if and
only if
t )
b(V) < 32521 b(U;) = [{j  b(U;) # |T N Uj| mod 2}| 9)

holds for every partition Uy,Us, ..., Us of V.

Proof. For every v € T add a loop 2x, to &, resulting in the hypergraph H' =
(V,E&"). Define b as in (@), w.r.t. H'. As there is a straightforward bijection
between the orientations of H and H', we have min{|TAYp| : D is an orientation
of H covering p} = min{|Yp/| : D’ is an orientation of H' covering p}, and
B(V) =324y b(U) + {5 : b(U;) # [T AU mod 21 = b/ (V) = 24, b/(Uj) + |45
b'(U;) is odd }|. Thus we can assume that 7' = 0.

By Lemmal [6] the integer vectors of B(b) are exactly the out-degree vectors of
the orientations of H covering p. Thus the > direction is easy to check. Now we
prove the other direction. As H has an orientation covering p, if ) C U C V then
b(U)+b(V—=U) > b(V) by Theorem[3] implying that b(U) > b(V)—b(V-U) > 0.
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Thus, b is non-decreasing, and we can define the polymatroid function f = b.
We claim that it is enough to prove that v(f) = min}_;_; |3 f(V;)], where
the minimum is taken over all partitions Vi, Vs, ..., Vs of V. Indeed, using the
definition of the Dilworth-truncation and that b(V) = f(V) by Theorem B we
get

min{|Yp| : D is an ori. of H covering p} = f(V) — 2v(f) =

=b(V)—min{>;_, f(V;) = |{i: f(Vi) is odd}| : Vi,...,V; partitions V} <
§bWﬁ—mm{z;ﬂM%)—HbeQBO&H|:UMUWMpMmmmV}.

Thus by Theorem [ it is enough to prove that b has no non-trivial compatible
double circuits. The next lemma does the job.

Lemma 7. Let H = (V,€) be a hypergraph and let p : 2V — N an intersecting
supermodular function with p(()) = 0. Suppose moreover that b : 2V — 7 defined
by (@) is non-negative and non-decreasing. Then the polymatroid function f = b
has no non-trivial compatible double circuits.

Proof. Assume that w : V — N is a non-trivial compatible double circuit of
f with principal partition W = W1UWsU...UW,. Clearly, b(W) > w(W) — 2.
Let 1 <i< j<dand Z =W —W,. As w|z is a circuit, Lemma [ yields
that w(Z) — 1 = f(Z) = min > _{b(X;) : Xi,..., X} partitions Z}. However,
if a non-trivial partition with & > 2 gave equality here, then we would have
F(2) = S b(X,) = ¥ F(X) = Y w(X,) = w(Z) > f(2), because wlx, € P(f).
Thus w(W —W;) — 1 = b(W —W;), and similarly, «(W —W;) —1 = b(W — W).
By applying intersecting submodularity to W — W; and W — W, and using that
wlw_w,—w, € P(f), we get 0> b(W) —b(W —W;) —b(W — W) +b(W — W; —
W;) > (w(W)=2)—(w(W -W;)—1)— (w(W -W;)—1)+w(W -W;—W;) = 0, so
equality holds throughout. As a corollary, each hyperedge e € £[WW] is spanned
by one of the W;’s, and

(3 e+ 2= (5 uon -

= > wW-Wi=W;)= > bW —W;—W;). (10)
1<i<j<d 1<i<j<d

On the other hand,
d—1
) DW= > N (W -W; - W),
heg 1<i<j<dhec€
since ), c¢ h is modular, and

("3 )pm = 5w - w)

1<i<j<d
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since p is non-negative and non-increasing. Finally,

(d )'g[ ( )ZIE = > jEW - Wi - W)l

1<i<j<d
By the definition of b, the last 3 equalities together contradict (0.

Let us give an example showing that polymatroids without non-trivial compat-
ible double circuits are not closed under contractions. Let V' = {v1, va, v3,v4},
& = {vwvi, v i € {2,3,4}}, p({vr}) = 1 and p(U) = 0 for the other sets.
Then, by Lemma [1 b has no non-trivial compatible double circuits, while the
polymatroid obtained from b by contracting an element in the prematroid from
the preimage of v; has the non-trivial compatible double circuit (1,2,2,2).

4.2 A Planar Rigidity Problem

If G = (V,E) is a graph and p : V — R? is an embedding into the Euclidean
plane then (G,p) is said to be a framework. We think of the edges of G as
rigid bars with flexible joins at the vertices. An infinitesimal motion means an
assignment of velocities z(v) € R? to each vertex v € V such that the bar lengths
are preserved, that is (p(u)—p(v)) L (z(u)—x(v)). The framework (G, p) is called
rigid if all infinitesimal motions of (G,p) correspond to isometries of R2. The
question of pinning down a minimum vertex set resulting a rigid framework was
solved by Lovasz in his seminal paper [I0] about matroid parity. We say that
G = (V, E) is generic rigid if all frameworks (G, p) with algebraically independent
coordinates p are rigid. The problem of finding a vertex set Z C V of minimum
size such that G + Kz is generic rigid is left open by [10], and it was solved
recently by Fekete [3]. For more on the 2-dimensional rigidity see Laman [§] and
Lovész and Yemini [IT].

The setup of [3] puts the problem into a bit more general setting. Let G =
(V,E) be a graph, and for | € {2,3} let Ms; be the matroid on ground set F
such that F' C FE is independent in My if and only if |F[X]| < 2|X| -1 for all
X CV,|X| > 2. It can be proved that M is really a matroid. For clarity, Ms o
is two times the cycle matroid of G, and so G has two edge-disjoint spanning
trees if and only if roo(E) = 2|V| — 2. As M 3 is the rigidity matroid of G,
the graph G is generic rigid if and only if ro 3(E) = 2|V| — 3. For Z C V let
Kz = (Z,Ez) be the graph with vertex set Z having 4 —[ parallel edges between
any two vertices of Z. Our goal is to find a set Z C V' of minimum size such that
E + Ez has rank 2|V| — [. For | = 2, this is equivalent to shrinking a minimum
vertex set Z such that G/Z has two edge-disjoint spanning trees.

We assume that F is independent in My, since if E is replaced by one of
its bases then the solution set does not change. Fekete 3] proved the following
lemma. For X C V let e(X) denote the number of edges having at least one end
vertex in X.

Lemma 8 ([3]). Let I € {2,3}. Assume that E is independent in Mo and
that o (E) < 2|V| —1. Let Z C V. Then r(E + Ez) = 2|V| =1 if and only if
e(Y) >2|Y| for every Y CV — Z.
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Therefore, the goal is to find a set Z C V of minimum size such that e(Y) > 2|Y|
for every Y C V — Z. Let f : 2¥ — N be the polymatroid function with
f(X) =minycx 2|Y|+e(X-Y),ie. f is obtained from the polymatroid function
X — e(X) by deleting with the vector (2,2,...,2). Hence for [ = 2 the value
|V |—v(f) means the minimum size of a set Z whose contraction results in a graph
with two edge-disjoint spanning trees, and for [ = 3 it is the minimum size of a
set Z such that G+ Kz is generic rigid. In [10] the computation of v(f) is reduced
to the matching problem of graphs, yielding a partition type characterization.
This characterization follows from the previous results of this paper, too. First,
by Lemma [0 with the choice p = 0, the polymatroid function X — e(X) has
no non-trivial compatible double circuits. As f is obtained from X — e(X) by
deletion, Claim M yields that nor f has. Thus, v(f) = min 25:1 | 3£ (U;)|, where
the minimum is taken over all partitions Uy, Us,...,U; of V. By the definition
of f, we get the following.

Theorem 6 (Fekete, [3]). Let | € {2,3}. Assume that E is independent in
Ms, and that ro (E) < 2|V| — 1. Then the minimum size of a set Z C 'V such
that r(E+ Ez) =2|V| = 1is |V| —v(f), where

v(f) = min |V — QUj 4 t {e(gj)J’

1

where the minimum is taken over all subpartitions Uy, Us, ..., U of V.
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Abstract. Let f:2Y — R* be a non-decreasing submodular set func-
tion, and let (IV,Z) be a matroid. We consider the problem maxsez f(.5).
It is known that the greedy algorithm yields a 1/2-approximation [9] for
this problem. It is also known, via a reduction from the max-k-cover prob-
lem, that there is no (1 —1/e + €)-approximation for any constant € > 0,
unless P = NP [6]. In this paper, we improve the 1/2-approximation to
a (1—1/e)-approximation, when f is a sum of weighted rank functions of
matroids. This class of functions captures a number of interesting prob-
lems including set coverage type problems. Our main tools are the pi-
page rounding technique of Ageev and Sviridenko [I] and a probabilistic
lemma on monotone submodular functions that might be of independent
interest.

We show that the generalized assignment problem (GAP) is a special
case of our problem; although the reduction requires |N| to be expo-
nential in the original problem size, we are able to interpret the recent
(1 — 1/e)-approximation for GAP by Fleischer et al. [I0] in our frame-
work. This enables us to obtain a (1 — 1/e)-approximation for variants
of GAP with more complex constraints.

1 Introduction

This paper is motivated by the following optimization problem. We are given
a ground set N of n elements and a non-decreasing submodular set function
f 2N — R*. The function f is submodulariff f(A)+ f(B) > f(AUB)+ f(ANB)
for all A, B C N. We restrict attention to non-decreasing (or monotone) sub-
modular set functions, that is f(A4) > f(B) for all B C A and f(#) = 0. An
independence family Z C 2% is a family of subsets that is downward closed, that
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is, A € Z and B C A implies that B € Z. A set A is independent iff A € T.
A family 7 is a p-independence family for an integer p > 1 if for all A € 7
and e € N there exists a set B C A such that |B| < p and A\ B + ¢ is inde-
pendent. For computational purposes we will assume that f and Z are specified
as oracles although in many specific settings of interest, an explicit description
is often available. The problem (or rather class of problems) of interest in this
paper is the following: maxgecz f(S). We will be mostly interested in the special
case when 7 consists of the independent sets of a matroid on N. The problem
of maximizing a submodular set function subject to independence constraints
has been studied extensively. A number of interesting and useful combinatorial
optimization problems, including NP-hard problems, are special cases. Some no-
table examples are maximum independent set in a matroid, weighted matroid
intersection, and maximum coverage. Below we describe some candidates for f
and 7 that arise frequently in applications.

Modular functions: A function f : 2V — R* is modular iff f(A) + f(B) =
f(AUB)+ f(ANB). If f is modular then there is a weight function w : N — Rt
such that f(A) = w(A) =3 ., w(e).

Set Systems and Coverage: Given a universe U and n subsets Sy, So,...,S, of
U we obtain several natural submodular functions on the set N = {1,2,...,n}.
First, the coverage function f given by f(A) = |U;ea.5;| is submodular. This nat-
urally extends to the weighted coverage function; given a non-negative weight
function w : U — R, f(A) = w(U;ecaS;). We obtain a multi-cover version
as follows. For © € U let k(x) be an integer. For each x € U and S; let
c(Si,z) = 1ifx € S; and 0 if x ¢ S;. Given A C N, let ¢/(A,x), the cov-
erage of = under A, be defined as ¢/(A,z) = min{k(z),> ;4 ¢(Si,z)}. The
function f with f(A) = > .y ¢/(A,z) is submodular. A related function de-
fined by f(A) = >,y max;ea w(S;, ) is also submodular where w(S;, z) is a
non-negative weight for .S; covering x.

Weighted rank functions of matroids and their sums: The rank function of a
matroid M = (N,Z), rpm(A) = max{|S|: S C A, S € T}, is submodular. Given
w: N — R*, the weighted rank function defined by 7, (A) = max{w(S) :
S C A,S € I} is a submodular function. A sum of weighted rank functions is
also submodular. Functions arising in this way form a rich class of submodular
functions. In particular, all the functions on set systems and coverage mentioned
above are captured by this class. However, the class does not include all monotone
submodular functions; one notable exception is multi-cover by multisets.

Matroid Constraint: An independence family of particular interest is one induced
by a matroid M = (N,Z). A very simple matroid constraint that is of much
importance in applications [SITA2I3IT0] is the partition matroid; N is partitioned
into £ sets Ny, No, ..., Ny with associated integers k1, ko, ..., k¢, and aset A C N
is independent iff [A N N;| < k;. In fact even the case of £ = 1 (the uniform
matroid) is of interest. Laminar matroids generalize partition matroids. We have
a laminar family of sets on N and each set S in the family has an integer value
ks. A set A C N is independent iff |4 N S| < kg for each S in the family.
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Intersection of Matroids: A natural generalization of the single matroid case is
obtained when we consider intersections of different matroids My, Mo, ..., M,
on the same ground set N. That is, Z = N;Z; where Z; is the independence family
of M;. A simple example is the family of hypergraph matchings in a p-partite
graph (p = 2 is simply the family of matchings in a bipartite graph).
Matchings: Given a general graph G = (V, N) the set of matchings forms a 2-
independent family. Given a hypergraph G = (V, N) such that each edge e € N
is of cardinality at most p, the set of matchings in G induce a p-independent
family. Note that matchings in general graphs are not captured as intersections
of matroids.

The Greedy Algorithm: A simple greedy algorithm is quite natural for this
problem. The algorithm incrementally builds a solution (without backtracking)
starting with the empty set. In each iteration it adds an element that most
improves the current solution (according to f) while maintaining independence of
the solution. The greedy algorithm yields a 1/p-approximation for maximizing a
modular function subject to a p-independence constraint [1213]. For submodular
functions, the greedy algorithm yields a ratio of 1/(p+ 1) [9]. Il These ratios for
greedy are tight for all p even when the p-independent system is obtained as
an intersection of p matroids. For large but fixed p, the p-dimensional matching
problem is NP-hard to approximate to within an £2(log p/p) factor [I1].

For the problem of maximizing a submodular function subject to a matroid
constraint (special case of p = 1), the greedy algorithm achieves a ratio of 1/2.
When the matroid is the simple uniform matroid (S C N is independent iff
|S] < k) the greedy algorithm yields a (1 —1/e)-approximation [14]. This special
case already captures the maximum coverage problem for which it is shown
in [6] that, unless P = NP, no 1 — 1/e + € approximation is possible for any
constant ¢ > 0. This paper is motivated by the following question. Is there a
(1—1/e)-approximation algorithm for maximizing a submodular function subject
to (any given) matroid constraint? We resolve this question for a subclass of
monotone submodular functions, which can be expressed as a sum of weighted
rank functions of matroids. The following is our main result.

Theorem 1. Given a ground set N, let f(S) = >.", gi(S) where g1,...,gm :
2N — Rt are weighted rank functions, g; defined by a matroid M; = (N, X;)
and weight function w; : N — RT. Given another matroid M = (N,Z) and
membership oracles for My, Ma, ..., M., and M, there is a polynomial time
(1 — 1/e)-approximation for the problem maxgez f(.5).

As immediate corollaries we obtain a (1 — 1/e)-approximation for a number
of coverage problems under a matroid constraint. It is known that there exist
submodular monotone functions that cannot be expressed as a sum of weighted
rank functions of matroids (see [I6], 44.6e). For such functions, our framework

1 'We give a somewhat new proof of this result in the full version of the paper. If only
an a-approximate oracle (o < 1) is available for the function evaluation, the ratio
obtained is o/ (p+ ). Several old and recent applications of greedy can be explained
using this observation.
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does not seem to apply at this moment. We leave it as an open question whether
a (1 — 1/e)-approximation is possible for all monotone submodular functions.

Our main tools are the the pipage rounding technique of Ageev and Sviri-
denko [I], and the following useful lemma.

Lemma 1. Let f : 2V — RT be a monotone submodular function and let f* :
0.1 — R+ be defined as f*(y) = mins(£(S) + 3 ui(F(S +1) — £(5))). For
y € [0,1]V, let § denote a random vector in {0,1} obtained by independently
setting §; = 1 with probability y; and 0 otherwise. Then, E[f ()] > (1-1/e) f*(y).

We give a non-trivial application of Theorem [ to variants of the generalized
assignment problem (GAP). In GAP we are given n bins and m items. Each
item ¢ specifies a size sj; and a value (or profit) v;; for each bin j. Each bin
has capacity 1 and the goal is to assign a subset of items to bins such that the
bin capacities are not violated and the profit of the assignment is maximized.
Recently Fleischer et al. [10] gave a (1 — 1/e)-approximation for this problem,
improving upon a 1/2-approximation [4]. We rederive the same ratio casting the
problem as a special case of submodular function maximization. Moreover our
techniques allow us to obtain a (1 —1/e)-approximation for GAP even under any
given laminar matroid constraint on the bins. A simple and easy to understand
example is GAP with the added constraint that at most k of the n bins be used.

Theorem 2. Let A be an instance of GAP with n bins and m items and let
B be the set of bins. Let M = (B,T) be a laminar matroid on B. There is a
polynomial time (1 — 1/e)-approzimation to find a maximum profit assignment
to bins such that the subset S C B of bins that are used in the assignment satisfy
the constraint S € L.

We note that the approximation ratio for GAP has been improved to 1 —1/e+ 61
for a small 61 > 0 in [§] using the same LP as in [10]. However, the algorithm in
[10] extends to even more general assignment problems in which the sets of items
allowed in a bin are further constrained; for such allocation problems it is shown
in [10] that it is NP-hard to obtain an approximation ratio of 1 —1/e + € for any
constant € > 0. Our framework also extends to this wider class of assignment
problems and hence 1 — 1/e is the best approximation factor one can achieve
with this approach.

1.1 Preliminaries

Given a submodular function f: N — R™ and A C N, the function f4 defined
by fa(S) = f(SUA)— f(A) is also submodular. Further, if f is monotone, f4 is
also monotone. For i € N, we abbreviate S U {i} by S +i. By fa(i), we denote
the “marginal value” f(A+1i)— f(A). Submodularity is equivalent to f4(i) being
non-increasing as a function of A for every fixed 7.

Given a matroid M = (N,Z), we denote by rp¢ the rank function of M
where 7aq(A) = max{|S|: S C A, S € Z}. The rank function is monotone and
submodular. We denote by P(M) the polytope associated with M; this is the set
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of all real vectors y € [0,1]Y that satisfy the constraints: y(S) < rap(S) VS C
N, where y(S) = > ;.- Edmonds showed that the vertices of P(M) are
precisely the characteristic vectors of the independent sets of M. Further, given
a membership oracle for M (that is given S C N, the oracle answers if S € Z or
not), one can optimize linear functions over P(M).

A baseof Misaset S € 7 suchthat ra(S) = raq(N). The base polytope B(M)
of M is given by {y € P(M) | y(N) = rym(N)}. The extreme points of B(M)
are the characteristic vectors of the bases of M. Given the problem maxgsecz f(S),
where M = (N, Z) is a matroid, there always exists an optimum solution S* where
S* is a base of M. Note that this is false if f is not monotone. Thus, for monotone
f, it is equivalent to consider the problem maxgep f(S) where B is the set of bases
of M. See [16] for more details on matroids and polyhedral aspects.

2 Pipage Rounding Framework

Ageev and Sviridenko [I] developed an elegant technique for rounding solutions
of linear and non-linear programs that they called “pipage rounding”. Subse-
quently, Srinivasan [I7] and Gandhi et al. [15] interpreted some applications of
pipage rounding as a deterministic variant of dependent randomized rounding.
In a typical scenario, randomly rounding a fractional solution of a linear program
does not preserve the feasibility of constraints, in particular equality constraints.
Nevertheless, the techniques of [IJI7UT5] show that randomized rounding can be
applied in a certain controlled way to guide a solution that respects certain class
of constraints. In particular these techniques were used to round fractional so-
lutions to the generalized assignment problem. In this paper we show that the
rounding framework applies quite naturally to our problem. Further, our analysis
also reveals the important role of submodularity in this context.

We now describe the pipage rounding framework as adapted to our problem. We
follow [I] in spirit although our notation and description is somewhat different and
tailored to our application: given a monotone submodular function f : 2V — R+
and a matroid M = (N,Z), we wish to solve maxgez f(5). Let y; € {0,1} be
a variable that indicates whether 7 is picked in a solution to the problem. Then
maxgez f(S) can be written as the following problem: max{ f(y) : y € P(M),y €
{0,1}"}. As we observed in Section [T} this is equivalent to max{f(y) : y €
B(M),y € {0,1}} where B(M) is the base polytope of M.

The framework relies on the ability to solve a relaxation of the problem in
polynomial time. To obtain a relaxation we let y € [0,1]V. This also requires
us to find an extension of f to a function f : [0,1]¥ — R* such that the
problem max{f(y) :y € P(M)} can be solved in polynomial time. We require
two properties of the extension: (i) f(y) = f(y) for all y € {0,1}", and (ii)
monotonicity, that is f(y) > f(z), for all y > z; y,z € [0,1]¥. Note that the
optimum value of the relaxation is at least the integral optimum solution denoted
by OPT. Given an optimum fractional solution y* to the relaxation, our goal is
to round y* to an integer solution z such that f(z) > af(y*) > aOPT. Clearly
the quality of the relaxation depends on the extension function f . The rounding
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framework relies on a potential function F : [0,1]Y — R*, derived from f, that
guides the rounding and at the same time allows one to derive bounds on the
quality of the approximation. The reason to consider f and F separately will
become clear later. Assuming the existence of f and F', we describe the pipage
rounding algorithm for our problem.

Given y € [0,1]™ we say that ¢ is fractional in y if 0 < y; < 1. For y € P(M),
aset A C N is tight if y(A) = rp(A). The following useful proposition follows
easily from the submodularity of the rank function 4.

Proposition 1. If A and B are two tight sets with respect to y then AN B and
AU B are also tight with respect to y.

The monotonicity of f also implies the following.

Proposition 2. There exists an optimum solution y* to max{f(y) : y € P(M)}
such that y*(N) =3, cnyyi =Tm(N).

Alternatively we can solve the problem max{f(y) : y € B(M)} which would
automatically ensure that y*(N) = rap(N). We are interested in tight sets that
contain a fractional variable. Observe that a tight set with a fractional variable
has at least two fractional variables. Given a tight set A with fractional variables
i,j, we let y;;(€) be the vector obtained by adding e to y; and subtracting e
from y; and leaving the other values unchanged. Let ejg (y) = max{e > 0 |
Yij(e) € P(M)}. Similarly we let €;;(y) = min{e < 0 | y;;(¢e) € P(M)}. We
let y;; = yij(ejg) and y;; = y;j(€;;). For a given y and i,j € N, we define a
real-valued function F : [e;;(y), €5 (y)] = RT where F}}(6) = F(yi;(9)).
Algorithm PipageRound(y):
While (y is not integral) do
Let A be a minimal tight set containing fractional 7,j € A
It (F(yf) > Fly;) v v
Else 1y« Yi;
EndWhile
Output y, f(y).

Lemma 2. The pipage rounding algorithm outputs an integral feasible y in
O(n?) iterations. Given an oracle access to F' and a membership oracle for M,
the algorithm can be implemented in polynomial time.

Proof (sketch). Using Proposition 2] we assume that N is tight with respect to
y. Since yjj and y,; both belong to P (M), the algorithm maintains the invariant
that y € P(M) and that N is tight. Thus there is always a tight set with two
fractional variables as long as y is not integral. We observe that the algorithm
does not alter a variable y; once y; € {0,1}. To simplify the algorithm’s analysis
we can alter it slightly so that the set A that is picked in each iteration is not
only minimal but also of minimum cardinality among such minimal sets. Let
y(h) be the vector y at the beginning of iteration h. We claim that y(h +mn — 1)
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has at least one more integral variable than y(h). This will give us the desired
bound of O(n?) on the total number of iterations.

To prove the claim, let Ay be the tight set picked by the algorithm, and
ih, jn € Ap the two fractional variables modified in iteration h. If one of them
becomes integral in y(h+1), we are done. Otherwise we claim that |Aj41] < |An],
hence after n— 1 iterations we are guaranteed to have one more integral variable.
To see that |Ap11] < |Ap|, assume wlog that y(h + 1) = y(h);;jh; since ip, Jn
are still fractional, there is a new tight set B with respect to y(h + 1), which
prevented us from going further. B contains exactly one of iy, j;,, otherwise y(B)
does not change in iteration h. From Proposition[ it follows that BN Ay, is also
tight, it contains a fractional variable, and |[BNAy| < |A4p]. In the next iteration,
we can use A1 = BN Ap. To implement an iteration, we need to compute y;;,

y;; and the new tight set in polynomial time. These can be done by appealing
to known methods [16]. We defer the details to a full version of the paper.

To obtain a guarantee on the quality of the solution, F' needs to satisfy some
properties, as suggested in [IJ.

— Fis an extension of f and F(y) > af(y) for all y € [0,1]V.
— F} is conver for all y and i, j.

Given the above two conditions, it is shown in [I] that the pipage rounding
algorithm yields the following: given an optimum fractional solution y*, the
rounding yields an integral solution z such that F(z) > F(y*). This follows from
the convexity requirement on F}; either F(yj]') > F(y) or F(y;;) > F(y) and
the choice of the algorithm ensures that in each iteration the value of F' does
not decrease. Therefore we can conclude that f(z) = F(z) > F(y*) > af(y*).

Since f(y*) > OPT, we have f(z) > aOPT.

3 Extensions of Submodular Functions

In this section, we address the issue of extending a monotone submodular func-
tion f: 2NV — Rt to continuous functions f, F : [0,1]N — R, as required by
the framework.
F' as the expected value of f: We consider a simple and natural candidate
for F' that is implicitly generated from f. Define F(y) = E[f(§)] where § is
a random integer vector obtained from y by independently rounding each i to
1 with probability y; and to 0 with probability 1 — y;. In shorthand, we write
F = Ef. We can evaluate I' = Ef to any desired accuracy by taking several
independent samples. We defer details that show that a polynomial number of
samples suffice to obtain a (1 —1/poly(n))-approximation to F(y). Alternatively
we could use a randomized version of the pipage rounding that does not require
us to evalute F explicitly.

In [I], F was given as an explicit function for some simple functions and the
convexity of Fg was explicitly shown. A nice feature of F = Ef is that the
convexity requirement is satisfied for all submodular f.
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Lemma 3. For any submodular f, if ' = Ef, then Fg is convex for all y €
[0,1]Y andi,j € N.

Proof. Let F = Ef. For S € N\ {i,j} and y € [0,1]V, let p,(S) = [T,esu
[Lien i3 s(1 — w1) be the probability that S is precisely the set obtained by
randomized rounding on N \ {7, j}. Then

Fly)= Y py(8) (L =y —y;)f(S) + (1= y)y; f(S + 7))

SCN\{i,j}
+yi(1 —y;) (S + 1) + yiy; f(S + i+ 7).

We have F;(8) = F(yij(6)). Let x = y;;(6), i.e. z; = y; + 6, z; = y; — 6 and
x; = y; for alll € N\{i, j}. Hence it follows that p,(S) = p, (S) for S € N\{¢, j}.
It can be seen that F'(y;;(6)) = F(z) = €262 + €16 + co where c2,¢1,co do not
depend on 6 (they depend only on y and f). Thus to show that Fi"j»(c‘i) is convex
in 8, it is sufficient to prove that co > 0. It is easy to check that

o= Y. py(S(=F(S)+ [(S+1)+ [(S+i)— f(S+i+1))
SCN\{i,j}

By submodularity, f(S+i)+ f(S+7j) > f((S+9)N(S+7))+ f(S+i)U(S+7)) =
f(S)+ f(S+ i+ j) which proves that co > 0.

Next, we need an extension f such that max{f(y) : y € P(M)} can be solved
in polynomial time. The approximation guarantee is the largest o such that

F(y) > af(y).
Extension f7: Our first candidate for f is an extension similar to the objective
function of the “Configuration LP” [TOI7Ig].

_ f+(y):maX{ZSgNasf(S) Ygas<lag>0& Vj?Zs:jesaS < yj}.

Extension f*: Another candidate is a function appearing in [I4] and subse-
quently [QUT8I9], where it is used indirectly in the analysis of the greedy algo-
rithm for submodular function maximization:

— F() = min {£(8) + e Fs(iys s S S N}

Unfortunately, as the theorem below shows, it is NP-hard to evaluate f7(y)
and f*(y) and also to optimize them over matroid polytopes.

Theorem 3. It is NP-hard to compute f*(y) or f*(y) for a given y € [0,1]"
and a given monotone submodular function f. Also, there is 6 > 0 such that
for a given matroid M it is NP-hard to find any point z € P(M) such that
[H(z) > (1= 6)max{f*(y) : y € P(M)}. Similarly, it is NP-hard to find any
point z € P(M) such that f*(z) > (1—06) max{f*(y) : y € P(M)}. These results
hold even for coverage-type submodular functions and partition matroids.
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We defer the proof to a full version of the paper; the authors are unaware of prior
work that might have addressed this question. Still, both f*(y) and f*(y) will
be useful in our analysis. We remark that for any class of submodular functions
where either fT(y) or f*(y) is computable in polynomial time, we obtain a
(1 — 1/e)-approximation for our problem.

It is known and easy to see that for y € {0,1}", both f* and f* functions
coincide with f and thus they are indeed extensions of f. For any y € [0, 1],
we first show the following.

Lemma 4. For any monotone submodular f, F(y) < f*(y) < f*(y).

Proof. To see the first inequality, let ag = [[;c i [1;25(1 — yi) be the proba-
bility that we obtain § = xg by independent rounding of y. Since . jes s =
Pr[y; = 1] = yj;, this is a feasible solution for f*(y) and therefore f*(y) >
>_sasf(S) =E[f(H)] = F(y).

For the second inequality, consider any feasible vector g and any set 7' C N:

doasf(S) <Y as [ LT+ frli) | < AT+ yifr(h)
S S

jES JEN

using submodularity and the properties of ag. By taking the maximum on the
left and the minimum on the right, we obtain fT(y) < f*(y).

It is tempting to conjecture that f*(y) and f*(y) are in fact equal, due to some
duality relationship. However, this is not the case: both inequalities in Lemma [
can be sharp and both gaps can be close to 1 — 1/e. For the first inequality,
consider the submodular function f(S) = min{|S|,1} and y; = 1/n for all j;
then F(y) =1— (1 —1/n)" and f*(y) = 1. For the second inequality, choose
a large but fixed k, f(S) =1 — (1 —|S|/n)* and y; = 1/k for all j. The reader
can verify that f(y) = 1 — (1 — 1/k)*, while f*(y) > 1 —k/n — 1 as n — oo.
We prove that 1 — 1/e is the worst possible gap for both inequalities. Moreover,
even the gap between F'(y) and f*(y) is bounded by 1 — 1/e.

Lemma 5. For any monotone submodular f, F(y) > (1 - 1) f*(y).

Proof. For each element j € N, set up an independent Poisson clock C; of rate
yj, i.e. a device which sends signals at random times, in any infinitesimal time
interval of size dt independently with probability y;dt. We define a random
process which starts with an empty set S(0) = () at time ¢ = 0. At any time
when the clock C; sends a signal, we include element j in S, which increases
its value by fs(j). (If j is already in S, nothing happens; the marginal value
fs(j) is zero in this case.) Denote by S(t) the random set we have at time ¢.
By the definition of a Poisson clock, S(1) contains element j independently with
probability 1 —e™% < y;. Since such a set can be obtained as a subset of the
random set defined by ¢, we have E[f(S(1))] < F(y) by monotonicity. We show
that E[f(S(1))] > (1 — 1/e) f*(y) which will prove the claim.

Let t € [0,1]. Condition on S(¢) = S and consider how f(S(¢)) changes in an
infinitesimal interval [t, ¢+ dt]. The probability that we include element j is y;dt.
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Since dt is very small, the events for different elements j are effectively disjoint.
Thus the expected increase of f(S(t)) is (up to O(dt?) terms)

E[f(S(t+dt)) = f(S(1)) | S(t) = S]= D fs(iydt = (f*(y) — f(5))dt

JEN

using the definition of f*(y). We divide by dt and take the expectation over S:

B8+ dn) = F(5() 2 £*() - BLAS )]

We define ¢(t) = E[f(S(t))], i.e. Z‘f > f*(y) — ¢(t). We solve this differential
inequality by considering ¢ (t) = e'¢(t) and % = ' (4 + ¢(t)) > e! f*(y). Since

¥(0) = ¢(0) = 0, this implies
v = [z [ era = -

for any = > 0. We conclude that E[f(S(¢))] = ¢(t) = e “(t) > (1 — e b) f*(y)
and F(y) > BIF(S())] > (1 1/¢)f*(y).

We remark that we did not actually use submodularity in the proof of Lemma 5]
Formally, it can be stated for all monotone functions f. However, f*(y) is not a
proper extension of f when f is not submodular (e.g., f*(y) is identically zero
if £(S) =0 for |S| < 1). So the statement of Lemma[H is not very meaningful in
this generality.

To summarize what we have proved so far, we have two relaxations of our
problem:

— max{f*(y) :y € P(M)}
— max{f*(y) : y € P(M)}

Our framework together with Lemma [l and Lemma [B] implies that both of these
relaxations have integrality gap at most 1 — 1/e. Theorem [3 shows NP-hardness
of solving the relaxations. We show how to use the framework efficiently in a
restricted case of interest which is described in the following section.

4 Sums of Weighted Rank Functions

We achieve a (1 — 1/e)-approximation, under a matroid constraint M, for any
submodular function f that can be expressed as a sum of “weighted rank func-
tions” of matroids. This is the most general subclass of submodular functions
for which we are able to use the framework outlined in Section [2 in an efficient
way. Here we describe this in detail.

Weighted rank functions of matroids: Given a matroid (N, X') and a weight
function w : N — R*, we define a weighted rank function g : 2N — R¥,

g() :maX{ij:IQS& IeXxi.

jel
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It is well known that such a function is monotone and submodular. A simple
special case is when X = {I | |I| = 1}. Then g(S) returns simply the maximum-
weight element of S; this will be useful in our application to GAP.

Sums of weighted rank functions: We consider functions f : 2V — R*
of the form f(S) = Y, g;(S) where each g; is a weighted rank function for
matroid (N, ;) with weights w;;. Again, f(S) is monotone and submodular.
The functions that can be generated in this way form a fairly rich subclass
of monotone submodular functions. In particular, they generalize submodu-
lar functions arising from coverage systems. Coverage-type submodular func-
tions can be obtained by considering a simple uniform matroid (N, X) with
X ={I C N | |I|] < 1}. For a collection of sets {A,};cn on a ground set
[m], we can define m collections of weights on N, where w;; = 1 if A; con-
tains element 4, and 0 otherwise. Then the weighted rank function g¢;(S) =
max{w;; : j € S} is simply an indicator of whether (J;cg A; covers element
i. The sum of the rank functions g;(S) gives exactly the size of this union

F(S) =30 9:i(5) = ‘UjGS A ’ Generalization to the weighted case is straight-
forward.

LP formulation for sums of weighted rank functions: For a submodular
function given as f(S) = >"1", ¢;(S) where g;(S) = max{w;(I): I C 5,1 € X;},
consider an extension g; (y) for each g;, as defined in Section [3

g5 (y) =max{ Y aggi(5): Y as<las>0&Vj; Y as <y}
SCN S S:jes

Here, we can assume without loss of generality that a,g is nonzero only for S € &;
(otherwise replace each S by a subset I C S, € A&, such that g;(S) = w;(I)).
Therefore, g;” can be written as

gf(y)zmax{z aIZwij: Z ay <1,a; >0 & Vy; Z ar <yjt.

Iex; jel Iex; IeXx;:jel

We can set z;; = Zlexi:jel ar and observe that a vector x; = (z;)jen can
be obtained in this way if and only if it is a convex linear combination of
independent sets; i.e., if it is in the matroid polytope P(X;). The objective
function becomes ZjeN Wyj Zle)ﬁ,:jel ar = Z]EN w;jxi; and so we can write
equivalently

g () = max{ ) wizy; 1 2 € P(X) & Vjimi; < y;}.
jEN

We sum up these functions to obtain an extension f(y) = S g (y). This
leads to the following LP formulation for the problem max{f(y) : y € P(M)}:
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We can solve the LP using the ellipsoid

method, since a separation oracle can be ef- m

ficiently implemented for each matroid poly- maxz Z Wij Tz
tope, and therefore also for this LP. To obtain i=1jEN

a (1—1/e)-approximation (Theorem/[I]) via the Vi, iz < yj,
above LP using the pipage rounding frame- Viyz; € P(X;),

work from Section [2] it is sufficient to prove
the following lemma. y € P(M).
Lemma 6. For any sum of weighted rank functions f, F(y) > (1 — l/e)f(y).

Proof. By Lemma [ F(y) > (1 —1/e)f*(y) and hence it suffices to prove that
f*(y) = fly). By Lemma B, ¢ (y) < g;(y) where gi(y) = ming, (g:(S;) +
> Yi9i,s:(4))- (Here, gis,(j) = g:(Si + j) — 9i(S;).) Consequently,

m

fl) =g (v) < 3 _min(gi(Si) + Y 96,5.(7)
i=1

i=1 JEN

< m§HZ(9i(S) + > yigis())) = min(f(S) + > uifs() = £ (w)-

jEN jEN

5 The Generalized Assignment Problem

Here we consider an application of our techniques to the Generalized Assignment
Problem (“GAP”). An instance of GAP consists of n bins and m items. Each
item 4 has two non-negative numbers for each bin j; a value v;; and a size sj;.
We seek an assignment of items to bins such that the total size of items in each
bin is at most 1, and the total value of all items is maximized.

In [I0], a (1 —1/e)-approximation algorithm for GAP has been presented. The
algorithm uses LP.

In LP;, F; denotes the collection of all

feasible assignments for bin j, i.e. sets
’ LP: ma i 504 (9);
Satisfying ZieS Sji < 1. The variable Ui, 1 X Z Yj,8 J( )

. . .. . j’Sej:j

represents bin j receiving a set of items S.

Although this is an LP of exponential size, Vj; Z yjs <1,

it is shown in [I0] that it can be solved to SEF;

an arbitrary precision in polynomial time. Vi Z yis <1,

Then the fractional solution can be rounded SeFies T

to an integral one to obtain a (1 — 1/e) V), S s > 0
s My W = Y.

approximation.
We show in this section that this (1 — 1/e)-approximation algorithm can be
interpreted as a special case of submodular maximization subject to a matroid
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constminﬂa7 and this framework also allows some generalizations of GAPH. For
this purpose, we reformulate the problem as follows.

We define N = {(5,5) |1 < j <n, S € F;} and a submodular function
f:2N - RH,

f(8) = imax{vji :3(5,5) e S,ie S}
i=1

We maximize this function subject to a matroid constraint M, where S € M
iff S contains at most one pair (j,5) for each j. Such a set S corresponds to
an assignment of set S to bin j for each (j,5) € S. This is equivalent to GAP:
although the bins can be assigned overlapping sets in this formulation, we only
count the value of the most valuable assignment for each item. We can write
F(S) = >, 9i(S) where ¢;(S) = max{vj; : 3(j,5) € S,i € S} is a weighted
rank function of a matroid X; on N. In the matroid X; an element (j,S) € N has
weight vj; if ¢ € S and 0 otherwise. A set is independent in Aj iff its cardinality
is at most 1. Therefore the problem falls under the umbrella of our framework.

We now write explicitly the LP arising from interpreting GAP as a submodular
function problem. We have variables y; s for each j and S € Fj. In addition, for
each matroid Aj, we define copies of these variables z; j 5. The resulting linear
program is given as LPs.

LP, has exponentially many variables
and exponentially many constraints. How- LpP, -
ever, observe that a feasible solution y; s :
for LP; is also feasible for L P,, when we set
%;4,.5 = Yj,s for i € S and 0 otherwise. This
is because the constraint Zj,S:ieS Y5 <1 Vi; x; € P(X;),
in LP, implies z; € P(X;), and the con- y € P(M).
straint ) ¢y s < 1 implies y € P(M).
Therefore, we can solve LP; using the techniques of [I0] and then convert the
result into a feasible solution of LP,. Finally, we can apply the pipage rounding
technique to obtain a (1 — 1/e)-approximation.

This is simply a reformulation of the algorithm from [10]. However, the flex-
ibility of our framework allows a more complicated matroid constraint M than
each bin choosing at most one set. We briefly discuss this below.

max E VjiTi,5,83
J,SEF;ies
Via j7 S? xiijs S ijs’

Laminar matroid constraints on the bins: Let B be the set of bins in a
GAP instance. Consider a laminar matroid M on B. We consider the problem
of assigning items to a subset of bins B’ C B such that B’ is independent in M.
An example is when M is the simple uniform matroid; that is B’ is independent
iff |B’| < k. This gives rise to a variant of GAP in which at most k of the n bins

2 This formulation of GAP is also described in [I0] as a personal communication from
an author of this paper.

3 In [1I0] more general allocation problems are considered that allow constraints on the
sets of items packable within a bin. Our approach also works for such problems but
in this extended abstract we limit our discussion to GAP.
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can be used. One can modify LP; by adding a new constraint: Zj’SEE_ vs <k,
to obtain a relaxation LPs for this new problem.

Using the same ideas as those in [I0],
one can solve LP; to an arbitrary

LP;: i svi(S);
precision in polynomial time. The simple 3¢ max Z Y505 (9);

rounding scheme of [I0] for LP; does not 8€Fs

apply to LPs;. However, as before, we can Vj; Z yjs < 1,
see that a solution to L Pj is feasible for L P, SEF;

where the. matroid /\/l. now also enforces Vi Z i <1,
the additional constraint that at most k j,SEF ies
elements from N are chosen. Thus pipage

rounding can be used to obtain a (1—1/¢)- Z Yis <k,
approximation. A similar reasoning allows J,5€F;

us to obtain a (1 — 1/e)-approximation for V3,55 yjs > 0.

any laminar matroid constraint on the bins
B. We defer the details to a full version of the paper.

6 Conclusions

We obtained a (1 — 1/e)-approximation for an interesting and useful class of
submodular functions. We note that the methods in the paper apply to some
interesting submodular functions that are not in the class. An example is the
maximum multiset multicover problem which generalizes the multicover problem
defined in Section[Il The difference between multicover and multiset multicover
is that a set can cover an element multiple times (at most the requirement of the
element). We can obtain a (1—1/¢e) approximation for this problem even though
this function cannot be expressed as a weighted sum of matroid rank functions.
We defer the details. It would be of much interest to prove or disprove the
existence of a (1 — 1/e)-approximation for all monotone submodular functions.
Note that our hardness results (Theorem [3)) hold even when f can be expressed
as a sum of weighted rank functions of matroids, yet we can obtain a (1 —1/e)-
approximation in this case.

The unconstrained problem maxgcy f(5) is NP-hard and hard to approxi-
mate if f is a non-monotone submodular set function; the Max-Cut problem is a
special case. However, the pipage rounding framework is still applicable to non-
monotone functions (as already shown in [I]). For non-monotone functions, the
problem we need to consider is maxgep f(S) where B is the set of bases of M. Tt
is easy to see that Lemma [2l and Lemma [3] still apply. Thus, the approximation
ratio that can be guaranteed depends on the extension f .

Pipage rounding [I] and dependent randomized rounding [I7/15] are based on
rounding fractional solutions to the assignment problem into integer solutions
while maintaining the quality of a solution that is a function of the variables on
the edges of the underlying bipartite graph. A number of applications are given
in [IJT7/15]. This paper shows that submodularity and uncrossing properties of
solutions to matroids and other related structures are the basic ingredients in
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the applicability of the pipage rounding technique. We hope this insight will lead
to more applications in the future.
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Abstract. We study the Master Equality Polyhedron (MEP) which gen-
eralizes the Master Cyclic Group Polyhedron and the Master Knapsack
Polyhedron.

We present an explicit characterization of the nontrivial facet-defining
inequalities for MEP. This result generalizes similar results for the Master
Cyclic Group Polyhedron by Gomory [9] and for the Master Knapsack
Polyhedron by Araoz [I]. Furthermore, this characterization also gives
a polynomial time algorithm for separating an arbitrary point from the
MEP.

We describe how facet defining inequalities for the Master Cyclic
Group Polyhedron can be lifted to obtain facet defining inequalities for
the MEP, and also present facet defining inequalities for the MEP that
cannot be obtained in such a way. Finally, we study the mixed-integer ex-
tension of the MEP and present an interpolation theorem that produces
valid inequalities for general Mixed Integer Programming Problems us-
ing facets of the MEP.

Keywords: integer programming, polyhedral combinatorics.

1 Introduction

We study the Master Equality Polyhedron (MEP), which we define as:
K(n.7) = com{@,y) Ty XTY: Y im— Y iy =r} 0
i=1 =1

where n,r € Z and n > 0. Without loss of generality we assume that » > 0. To
the best of our knowledge, K (n,r) was first defined by Uchoa [I4] in a slightly
different form and described as an important object for study.

* Work developed while at IBM Research.

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 197 2007.
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As lower dimensional faces, MEP contains two well known polyhedra from the
literature: The Master Cyclic Group Polyhedron (MCGP), which is defined as

n—1
P(n,r) = conv{(m,y) €LY X Zy Z 1T — nYyp = r} , (2)

i=1

where r,n € Z, and 0 < r < n; and the Master Knapsack Polyhedron (MKP),
which is defined as

K(r):conv{xEZi:ZiIizT}, 3)

i=1

where r € Z and r > 0.

Facets of P(n,r) are a useful source of cutting planes for general MIPs. The
Gomory mixed-integer cut (also known as the mixed-integer rounding (MIR) in-
equality) can be derived from a facet of P(n,r) [10]. Other facets and
studies related to the Master Cyclic Group Polyhedron can be found in
2ABI6BITTI2T3]. In particular, several relationships between facet-defining
inequalities of the MCGP and facet-defining inequalities of the MKP were es-
tablished in [2]. We note that the Master Cyclic Group Polyhedron is usually
presented as

n—1
P'(n,r) = conv {ac ez Z iz; =r mod n}
i=1

which is the projection of P(n,r) in the space of = variables. We use ([2) as it
makes the comparison to K (n,r) easier and clearer.

Gomory [9] and Araoz [I] give an explicit characterization of the polar of the
nontrivial facets of P(n,r) and K (r). In this paper, we give a similar description
of the nontrivial facets of K(n,r), yielding as a consequence a polynomial time
algorithm to separate over it. We also analyze some structural properties of the
MEP and relate it to the MCGP.

In addition, we describe how to obtain valid inequalities for general MIPs
using facet defining inequalities for the MEP.

Finally, we remark that another motivation to study the MEP is that it also
arises as a natural structure in a reformulation of the Fixed-Charge Network
Flow problem, which has recently been used in [I5] to derive strong cuts for the
Capacitated Minimum Spanning Tree Problem and can also be used in other
problems such as the Capacitated Vehicle Routing Problem.

2 Polyhedral Analysis of K(n,r)

From this point until the end of section [ZI] we assume 0 < r < n. In
subsections and 23] we consider the cases r = 0 and r > n. We start with
some basic polyhedral properties of K (n,r).
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Lemma 1. dim(K(n,r)) =2n— 1.
Lemma 2. The nonnegativity constraints of K(n,r) are facet-defining if n > 2.

Let e; denote the unit vector with a one in the component corresponding to vari-
able z; and f; denote the unit vector with a one in the component corresponding
to variable y;.

Clearly, K(n,r) is an unbounded polyhedron. We next characterize all the
extreme rays (unbounded one-dimensional faces) of K(n,r). We represent an
extreme ray {u+ v : u,v € R3", X\ > 0} of K(n,r) simply by the vector v. Let
rij = je; +if; forany 4,5 € {1,...,n}.

Lemma 3. The set of extreme rays of K(n,r) is given by R={r;; : 1 <i,j<n}.

As K (n,r) is not a full-dimensional polyhedron, any valid inequality mz+py > 7,
for K(n,r) has an equivalent representation with p, = 0. If a valid inequality
does not satisfy this condition, one can add an appropriate multiple of the equa-
tion Y i, ix; — Y., iy; = r to it. Therefore, without loss of generality, we may
assume that all valid inequalities for K (n,r) satisfy p, = 0.

We classify the facets of K(n,r) as trivial and non-trivial facets.

Definition 1. The following facet-defining inequalities of K(n,r) are called
trivial:
T > O,Vi: 1,...,71

Yi ZO,VZZ 1,...,7},—1
All other facet-defining inequalities of K(n,r) are called nontrivial.

Notice that we left inequality y,, > 0 out of the trivial set. That happens just
because of technical details to simplify the statement of our theorems and lem-
mas. In fact there is nothing particularly special about the y, > 0 inequality
other than it is the only nonnegativity constraint that does not comply directly
with the p, = 0 assumption.

Let N ={1,...,n}. We next state our main result:

Theorem 1. The inequality 7x + py > 7, defines a nontrivial facet of K(n,r)
if and only if it can be represented as an extreme point of T C R?"*1 where T
18 defined by the following linear equations and inequalities:

i+ pj = Tig, Vi,j € N, i> 7, (F1)

T + T > Mgy, Vi,j € N, i1+75<mn, (F2)

Pk 4+ T+ T > Wik, YVi,5keEN, 1<i+j—k<n, (F3)
T+ Ty = To, Vi e N, i<, (EP1)
Ty = To, (EP2)

T + pier = To, Vie N P>, (EP3)
pn =0, (N1)

To =1 (N2)
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This theorem implies that for 0 < r < n, the separation problem over K (n,r)
can be solved in polynomial time. Although the restriction that 0 < r < n might
seem undesirable, later in Sect. [Z.3] we show that the separation can be done for
every value of r.

Note that the definition of T" in Theorem [I] is similar to that of a polar of
K (n,r). However, T is not a polar, as it does not contain extreme points of the
polar that correspond to the trivial facet-defining inequalities. In addition, some
of the extreme rays of the polar are not present in T'. It is possible to interpret
T as an important subset of the polar that contains all extreme points of the
polar besides the ones that lead to the trivial inequalities.

2.1 Facet Characterization

In this section we develop the required analysis to prove Theorem[Il We start by
noting some necessary conditions for validity, which arise by looking at points
and rays of K(n,r):

Observation 2. Let mx + py > 7, be a valid inequality for K(n,r), then the
following holds:

jmi+ip; > 0,¥i,j € N (

T+ Ty > e, VI <i<r (
T, > T, (P2

T + Pir 2> Mo, Vr <i < (

Note that (RI) is obtained by considering the extreme rays of K(n,r) and
(PI)-(P3) are obtained by considering the following feasible points of K (n,r):

{ei+e—i,Vi<i<riUe,U{e;+ fi_,,Vr <i<n}

We call these points the Elementary points of K(n,r). Note that there are
n— LTEIJ Elementary points.

We next present some conditions satisfied by all nontrivial facet defining in-
equalities.

Lemma 4. Let mx+py > 7, be a nontrivial facet-defining inequality of K (n,r),

then it satisfies ([EI)-(E3) as well as (EPI)-(EPJ).

Proof. ([[): Pick a point (z*,y*) tight at 7z + py > 7, such that z} ; > 0.
Note that (z*,y*) + (e; + f; — €;—;) is a point of K (n,r). Thus, (ET]) holds.

The proofs of (E2)) and (E3]) are analogous.

(EPI): Pick points (z/,y) and (z”,y”) tight at (m,p,m,) such that =} > 0
and z)_;, > 0. Then (z",y"") = («/,v') + (2", y") — e; — e,—; € K(n,r), thus
(. p)" (", y") = (7, )T (', i)+ (m, p)T (2" y") =i = Mo i = 2o — Ty — Ty >
TTo = T + i < . So (BI) =
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Proofs of (EP2) and (EP3) are analogous, using (P2)) and (P3) instead of
D).

It is worth mentioning that conditions (EPI)-(EP3) imply that all nontrivial
facets intersect at a nonempty lower dimensional face of K(n,r). Note that
all Elementary Points of K(n,r) are in this lower-dimensional face, which has
therefore dimension at least n — | "' | — 1.

In the following Lemma we show that a subset of the conditions presented in
Theorem [ suffices to ensure the validity.

Lemma 5. Let (m, p,7,) satisfy (EP2), (1), (F2) and ([E3). Then mz+py >
defines a valid inequality for K(n,r).

Proof. We will prove this by contradiction. Assume that 7z + py > 7, satisfies
(EP2), (1), (E2) and (E3) but 7z + py > 7, does not define a valid inequality
for K(n,r), r > 0. Let (z*,y*) be an integer point in K (n,r) that has minimum
L1 norm amongst all points violated by 7z + py > m,. Note that since r > 0,
then z* # 0.

If |[(=*, y*)][1 = 0 then (z*,y*) =0 ¢ K(n,r). If ||(z*,y*)|]1 = 1 then clearly
z* = e, and y* = 0 but as m, = m,, (z*,y*) does not violate the inequality.
Therefore ||(z*,y*)||1 > 2. We next consider three cases.

Case 1: Assume that y* = 0. In this case, Y., iz} = r. By successively

applying ([F2)), we obtain

*

n n
To > mei‘ > Zﬂ'iz;‘ > Ty gt =Ty
i=1 i=1
which contradicts (EP2]). Therefore y* # 0.
Case 2: Assume that z7 > 0 and y; > 0 for some i > j. Let (2/,y') =
(2, y")+ (e1_g—ei— ;). Note that (/') € K (n, ), and [|(,5") |l =l (=", 57 I
— 1. Moreover, since 7wz + py > 7, satisfies (E1)), naz’ + py’ = wa* + py* +m—j —
m — pj < mx* + py* < m,, which contradicts the choice of (z*,y*). Therefore
@ < j whenever z7 > 0 and y; > 0.
Case 3: Assume that for any i,j € N, if 27 > 0 and y; > 0, then
@ < j. Suppose there exists i,j € N such that z7 > 0, 27 > 0 or zj > 2
(in which case, we let j =1). If i +j < n, let (2/,vy") = (z*,y") + (eir; — € — €j).
If i +j > n, since y* # 0 there exists k such that y; > 0 and k > ¢, thus
i+j—k<n. Solet (z',y) = (%, y") + (eirj—r — € — € — fr).
Note that in either case (¢/,y’) € K(n,r) and ||(z,y")||1 < |[|(z*,y*)||]1. More-
over, since (7, p, 7, ) satisfy (E2)) and ([3)), in either case w7z’ + py’ < wa* + py* <
To, which contradicts the choice of (z*,y*).

One condition that so far has not been mentioned is (N2), which is a nor-
malization condition like (N1). The following Lemma states that we are not
eliminating any nontrivial facets by making such an assumption.

Lemma 6. Let mx+py > 7, be a nontrivial facet-defining inequality of K (n,r),
that satisfies p, = 0. Then m, > 0.
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Combining Lemmas with some more technical observations it is possible to
prove Theorem [l As a corollary of the theorem, we also make the following
observation:

Observation 3. Let (7, p,m,) be an extreme point of T, then for all k € N:

|—/€/7’~| > m >0
n/r] = pe = —Tk/r]

As a final remark, it is interesting to note that conditions (RI]) do not appear
in the description of T even though they are necessary for any valid inequality.
This happens because conditions (RI)) are implied by (ET), (E2]) and (E3). We
formally state this fact in the next observation:

Observation 4. Let (m,p,m,) € T. Then:

Jjmi+ip; > 0, V1<i,j<n

2.2 Facets of K(n,0)

Observe that LK(n,0), the linear relaxation of K(n,0), is a cone and is
pointed (as it is contained in the nonnegative orthant) and has a single ex-
treme point (z,y) = (0,0). Therefore LK (n,0) equals its integer hull, i.e.,
LK (n,0)=K(n,0). In Lemma Bl we characterized the extreme rays of K(n,r)
and thereby showed that the characteristic cone of K(n,r) is generated by
the vectors {r;;}. But the characteristic cone of K(n,r) for some r > 0 is
just K(n,0). Therefore, LK (n,0) is generated by the vectors {r;;}, and the
next result follows.

Theorem 5. The inequality mx + py > 7, is facet defining for K(n,0) if and
only if (7, p, 7o) is a minimal face of

T jmi+ip; >0,Vi,j €N,
¢ T = 0.

In his work on the MCGP, Gomory also studied the convex hull of non-zero
integral solutions in P(n,0) and gave a dual characterization of its facets. We
now consider a similar modification of K (n,0) and study the set:

K(n,0) = conv{(m,y) €z xZﬁ:Zixi—Ziyi =0,(z,y) 750}

i=1 i=1

By an analysis similar to the case where r > 0, it is possible to prove the following
theorem:
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Theorem 6. The inequality Tz + py > 7, defines a nontrivial facet of K(n,0)
if and only if it can be represented as an extreme point of T,, where T, is defined
by the following linear equations and inequalities:

™+ pj = T, Vi,j € N, 1> j, (&)
T + Pj = Pj—is Vi,j €N, i<}, (F1)
i + pi = To, Vi€ N, (EP1-RO)
o =1, (N1-R0)
pn = 0. (N2-R0)

2.3 Separating over K (n,r)

We finish this section by presenting the following theorem stating that sepa-
ration over K(n,r) can be done in polynomial time when 7 is bounded by a
polynomial function of n and pseudo-polynomial time otherwise. This theorem
is an immediate consequence of Theorems [T and

Theorem 7. Given (x*,y*) € R™ x R"™, the problem of separating (x*,y*) from
K(n,r) can be solved in time polynomial in max{n,r}.

Proof. If 0 < r < n, the separation problem can be solved in time polynomial
in n by first checking if (2*,y*) violates any nonnegativity constraint or the
constraint >, iz; — ., iy; = r and if not, solve:

min{(7, p, )" («*,y*,0) : (m, p, 7o) € T}

If there exists (m, p,m,) € T such that (7, p)T (z*,y*) < 1, then 7z + py >,
defines a hyperplane that separates (z*,y*) from K(n,r). Otherwise, (z*,y*)
is in the same affine subspace as K (n,r) and satisfies all nontrivial and trivial
facets of K(n,r), thus (z*,y*) € K(n,r).

If r > n, then define (2/,y’) € R” x R” such that z} = a5y, = y;,V1 <i<n
and i =y, = 0,Vn < i < r. and note that (z/,¢y') € K(r,r) < (a*,y*) €
K (n,r), so the separation can be done in time polynomial in r.

In the case where 7 = 0, we can solve min{(m, p)T (z*,y*) : (7, p) € T,} and
we'll know (z*,y*) € K(n,0) if and only if the optimum is 0. Otherwise, the
problem is unbounded, in which case the ray which proves unboundedness gives
us a valid inequality separating (z*,y*) from K (n,0).

3 Lifting Facets of P(n,r)

Lifting is a general principle for constructing valid (facet defining) inequalities
for higher dimensional sets using valid (facet defining) inequalities for lower
dimensional sets. Starting with the early work of Gomory [9], this approach was
generalized by Wolsey [16], Balas and Zemel [3] and Gu et. al [I7], among others.

In this section we discuss how facets of P(n,r) can be lifted to obtain facets
of K(n,r). P(n,r) can also be considered as an n— 1 dimensional face of K(n,r)
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obtained by setting n variables to their lower bounds. Throughout this section
we assume that n > r > 0.

We start with a result of Gomory [J] that gives a complete characterization of
the nontrivial facets (i.e., excluding the non-negativity inequalities) of P(n,r).

Theorem 8 (Gomory [9]). Inequality 7x > 1 defines a non-trivial facet of
P(n,r) if and only if ®# € R*~! is an extreme point of

m+ 72> T (i45) modn Vi,je{l,...,n—1},
7+ =7 Vi, j such that r = (i+ j) modn,
T >0 VjE{l,...,n—l},

T =1.

Given a non-trivial facet defining inequality for P(n,r)
n—1
Z mix; > 1 (4)
i=1
it is possible to [ift this inequality to obtain a facet-defining inequality
n—1 n—1
Z TiTi + T Tp + Z Piyi > 1 (5)
i=1 i=1

for K(n,r). We call inequality (Bl a lifted inequality and note that in general
for a given starting inequality there might be an exponential number of lifted
inequalities, see [16].

3.1 The Restricted Coefficient Polyhedron T7™

First note that a non-trivial facet of P(n,r) can only yield a non-trivial facet
of K(n,r). This, in turn, implies that (7, n/,, p’,0) has to be an extreme point
of the coefficient polyhedron 7. Therefore, the lifting procedure can also be
seen as a way of extending an extreme point of () to obtain an extreme point
of T

Let p = (7,7, p’,0) be an an extreme point of T. Then, p also has to be an
extreme point of the lower dimensional polyhedron

T = Tﬂ{m:fr“ Vie{l,...7n—1}}

obtained by fixing some of the coordinates.
Let L={n—r+1,...,n—1}.

Lemma 7. If inequality (4) defines a non-trivial facet of P(n,r), then T™ # ()
and it has the form
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T 2> w73 =0

Pk > VkelL
P+ 1T =1k Vkel
= Pk —Tn > [ VkelL

= 7Tn+pn7'r:]-
Pn =0
Pk =Tpk Vke{l,...,n—r—1}
T =T; ViE{l,...ﬂ”L—].}

where numbers ly, ty, fr and T can be computed easily using 7.

We next make a simple observation that will help us show that T™ has a small
(polynomial) number of extreme points.

Lemma 8. Ifp = (7,7,,p',0) is an extreme point of T™, then
P, = max {lp, ty — 7, fr + 7 }
forallk € L.

We next characterize the set possible values 7/, can take at an extreme point
of TT.

Lemma 9. Let p 7, 0, 0) be an extreme point of T™, if wl, & {0,7}, then
< tk—lk,lk—fk}>U< U {(tk—fk)/2}>
kel keLo

where Ly = {k €L : ty+ fr, <2lx} and Ly = L\ Ly.
Combining the previous Lemmas, we have the following result:

Theorem 9. Given a non-trivial facet defining inequality (4) for P(n,r), there
are at most 2r lifted inequalities that define facets of K(n,r).

Proof. The set L in the proof of Lemma [@ has » — 1 members and therefore
together with 0 and 7, there are at most 2r possible values for 7/, in a facet
defining lifted inequality (B). As the value of 7/, uniquely determines the re-
maining coefficients in the lifted inequality, by Lemma B the claim follows.

Note that, in general determining all possible lifted inequalities is a hard task.
However, the above results show that obtaining all possible facet-defining in-
equalities lifted from facets of P(n,r) is straightforward and can be performed
in polynomial time. We conclude this section with a result on sequential lifting.

Lemma 10. If variable z,, is lifted before all yi, for k € {n—r,...,n—1}, then
independent of the rest of the lifting sequence the lifted inequality is

n—1 n—1
Zﬁ'ixi + Zﬁ'n—iyi > 1
i=1 i=1
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4 Mixed Integer Rounding Inequalities

In this section we study MIR inequalities in the context of K(n,r). Our analysis
also provides an example that shows that lifting facets of P(n,r) cannot give
all facets of K(n,r). Throughout, we will use the notation & := x — |x]. Recall
that, for a general single row system of the form: {w ezt Yy P aw; = b}

where b > 0, the MIR inequality is:

i (LaZ | + min (az/b 1)) ;> [b].

i=1

We define the }-MIR (for ¢ € Z) to be the MIR inequality obtained from the

following equivalent representation of K (n,r):

K(n,r) = {(:@y) €L XL Y (ift)w — Y (i/t)yi = r/t} .

i=1 i=1

Lemma 11. Given t € Z such that 2 <t <mn, L‘he%
i ) 4 min i mod ¢t 1 ot
—\ [t r mod t’ !
- i . ((t—14) modt T
- 7]- 12’7 —‘
Z( Hﬂnm< r mod t ))y ¢

i=1
is facet defining for K(n,r) provided that r/t & Z.

It is easy to check that if £ > n, then the }-MIR is not facet defining for K (n, ).

Moreover, note that if r/t € Z, then the condltlon that b > 0 is not satisfied, thus

the 1—MIR inequalities are not facet defining unless they satisfy the conditions

of Lemma [TT]

By using the 1

-MIR inequality

-MIR as an example, one can then show the following corollary:

Corollary 1. Not all facet-defining inequalities of K(n,r) can be obtained from
lifting facet-defining inequalities of P(n,r), for0 <r<n-—2,n>9

For r = n — 1, it is harder to say, since in this case all points in T automati-
cally satisfy all equations in Q). So every facet-defining inequality of K (n,r) can
be obtained by lifting a valid inequality for P(n,r) corresponding to a point in
. However, this point is not necessarily an extreme point of @), and thus the
corresponding valid inequality is not necessarily a facet of P(n,r).

5 Mixed-Integer Extension

Consider the mixed-integer extension of K (n,r):

K'(n,r) =4 (vp,v_,z,y) e REXZ®" cvp —v_+ > ix;— > dys=r
+

i=1 i=1
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where n,r € Z and n > r > 0. As with the mixed-integer extension of the
master cyclic group of Gomory studied by Gomory and Johnson [I0], the facets
of K'(n,r) can easily be derived from the facets of K(n,r) when r is an integer.

Proposition 1. All non-trivial facet defining inequalities for K'(n,r) have the
form

n n
muy + pro— + Z T + Zpiyi > 7. (6)
i=1 i=1
Furthermore, inequality (@) is facet defining if and only if 7 + py > 7, defines
a non-trivial facet of K(n,r).

5.1 General Mixed-Integer Sets

Gomory and Johnson used facets of P(n,r) to derive valid inequalities for knap-
sack problems. In particular, they derived subadditive functions from facet co-
efficients via interpolation. We show here how to derive valid inequalities for
knapsack problems from facets of K(n,r).

Definition 2. Given a facet defining inequality mx + py > 7w, for K(n,r), let
f?:ZN[=n,n] — R be defined as:

ms if s >0
ff(s)=4¢ 0 ifs=0
p—s ifs<0

We say f : [-n,n] — R where
f(v) = (1 =0)f*([v]) +of*([v])

is a facet-interpolated function derived from (m, p,mo).

Proposition 2. Let f be a facet-interpolated function derived from a facet of
K (n,r). Consider the set

q P
Q= {(s,w) € R{ x Z% Zcisi—i—Zaiwi :b},

i=1 i=1

where the coefficients of the knapsack constraint defining Q) are rational numbers.
Let t be such that ta;,tb € [-n,n] and tb > 0. Then

q q
Ztcl si+ f(— Z —tc;) sﬁ—Zf ta;)w; > f(tb)
i=1

i=1 i=1
where (a)T = max(«,0), s a valid inequality for Q.
6 Conclusion

We studied a generalization of the Master Cyclic Group Polyhedron and pre-
sented an explicit characterization of the polar of its nontrivial facet-defining
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inequalities. We also showed that one can obtain valid inequalities for a general
MIP that cannot be obtained from facets of the Master Cyclic Group Polyhe-
dron.

In addition, for mixed-integer knapsack sets with rational data and nonnega-
tive variables without upper bounds, our results yield a pseudo-polynomial time
algorithm to separate and therefore optimize over their convex hull. This can
be done by scaling their data and aggregating variables to fit into the Master
Equality Polyhedron framework.

Our characterization of the MEP can also be used to find violated Homoge-
neous Extended Capacity Cuts efficiently. These cuts were proposed in [I5] for
solving Capacitated Minimum Spanning Tree problems and Capacitated Vehicle
Routing problems.

An interesting topic for further study is the derivation of “interesting” classes
of facets for the MEP, i.e., facets which cannot be derived trivially from facets
of the MCGP or as rank one mixed-integer rounding inequalities.

References

1. J. Araoz. Polyhedral Neopolarities. Phd thesis, University of Waterloo, Department
of Computer Sciences, 1974.

2. J. Araoz, L. Evans, R. E. Gomory, and E. Johnson. Cyclic group and knapsack
facets. Mathematical Programming Ser. B, 96(2):377-408, 2003.

3. E. Balas and E. Zemel. Facets of the knapsack polytope from minimal covers.
SIAM Journal of Applied Mathematics, 34:119-148, 1978.

4. S. Dash and O. Giinliikk. On the strength of gomory mixed-integer cuts as group
cuts. Technical Report RC23967, IBM Research Division, Yorktown Heights, NY
10598, 2006.

5. S. Dash and O. Giinliik. Valid inequalities based on simple mixed-integer sets.
Mathematical Programming, 105:29-53, 2006.

6. S. Dash and O. Giinliik. Valid inequalities based on the interpolation procedure.
Mathematical Programming, 106:111-136, 2006.

7. M. Fischetti and M. Monaci. How tight is the corner relaxation? Discrete Opti-
mazation, 2007. To appear.

8. M. Fischetti and C. Saturni. Mixed-integer cuts from cyclic groups. Mathematical
Programming A, 109(1):27-53, 2007.

9. R. Gomory. Some polyhedra related to combinatorial problems. Journal of Linear
Algebra and its Applications, 2:451-558, 1969.

10. R. Gomory and E. Johnson. Some continuous functions related to corner polyhedra
1. Mathematical Programming, 3:23-85, 1972.

11. R. Gomory and E. Johnson. Some continuous functions related to corner polyhedra
II. Mathematical Programming, 3:359-389, 1972.

12. R. Gomory and E. Johnson. T-space and cutting planes. Mathematical Program-
ming, 96:341-375, 2003.

13. R. Gomory, E. Johnson, and L. Evans. Cyclic group and knapsack facets. Mathe-
matical Programming, 96:321-339, 2003.

14. E. Uchoa. Robust branch-and-cut-and-price for the CMST problem and ex-
tended capacity cuts. Presentation in the MIP 2005 Workshop, Minneapolis
(2005). Available athttp://wuw.ima.umn.edu/matter/W7.25-29.05/activities/
Uchoa-Eduardo/cmst-ecc-IMA.pdf


http://www.ima.umn.edu/matter/W7.25-29.05/activities/Uchoa-Eduardo/cmst-ecc-IMA.pdf
http://www.ima.umn.edu/matter/W7.25-29.05/activities/Uchoa-Eduardo/cmst-ecc-IMA.pdf

15.

16.

17.

On a Generalization of the Master Cyclic Group Polyhedron 209

E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M. Poggi de Aragdo, and D. An-
drade. Robust branch-cut-and-price for the capacitated minimum spanning tree
problem over a large extended formulation. Mathematical Programming, To appear.
L. Wolsey. Facets and strong valid inequalities for integer programs. Oper. Res.,
24:367-372, 1976.

G. Nemhauser Z. Gu and M. Savelsbergh. Sequence independent lifting in mixed
integer programming. J. Comb. Optim., 4:109-129, 2000.



A Framework to Derive Multidimensional
Superadditive Lifting Functions and Its
Applications*

Bo Zeng and Jean-Philippe P. Richard

School of Industrial Engineering, Purdue University, 315 N. Grant Street,
West Lafayette, IN 47907-2023.

Abstract. In this paper, we present a systematic method to derive
strong superadditive approximations of multidimensional lifting func-
tions using single-dimensional superadditive functions. This constructive
approach is based on the observation that, in many cases, the lifting func-
tion of a multidimensional problem can be expressed or approximated
through the single-dimensional lifting function of some of its components.
We then apply our approach to two variants of classical models and show
that it yields an efficient procedure to derive strong valid inequalities.

1 Introduction

Lifting is the process of deriving valid inequalities for a complex mixed integer
program (MIP) from valid inequalities of a simple restriction. Lifting, in its com-
mon acception, was introduced by Padberg and generalized by Wolsey ]
It was used to study the polyhedral structure of many mixed integer programs
such as 0—1 knapsack sets (see Balas %], Hammer et al] and Wolsey [22))
and single node flow sets (see Gu et al. [9] and Atamtiirk [1]). More importantly,
cutting planes obtained through lifting have been proven to be very effective at
reducing solution times for 0—1 MIPs; see Crowder et al. ﬂ], Gu et al. B] and
Van Roy and Wolsey @] As a consequence, lifted cuts generated from simple
substructures of MIPs have been implemented in various commercial software,
including CPLEX and X-Press.

Given a valid inequality (seed inequality) that is strong for the restriction of
a set of interest, lifting is typically implemented sequentially, i.e. fixed variables
are reintroduced into the inequality one at a time (or one group at a time).
Furthermore, to determine the lifting coefficient of a variable, it is necessary to
obtain an optimal solution of the lifting problem which is itself an MIP. Because
the lifting problems to be solved are different for each lifted variable, lifting
can rapidly become prohibitive. Nevertheless, when the lifting function of a seed
inequality is well-structured, lifting can be performed efficiently. In particular,
Wolsey [24], Gu et al. [10] and Atamtiirk [3] showed that if the lifting function
of the seed inequality is superadditive, then all the lifting coefficients can be
obtained from the first lifting problem.

* This research is supported by NSF Grant DMI-03-48611.
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There are various inequalities whose lifting functions are naturally superad-
ditive. Examples include some flow covers inequalities (see Gu et al. [10]), and
mixed integer cover inequalities for knapsack problems with a single continuous
variable (see Marchand and Wolsey ﬂﬂ]) However, most often, lifting functions
are not superadditive. In these cases, a superadditive lower approximation of the
exact lifting function can be used to generate strong cuts ﬂi m] This idea was
successfully used by Gu et al. IE} for 0—1 knapsack problems, by Gu et al. ﬂg] and
Louveaux and Wolsey ﬂﬁ] for single node flow models, by Shebalov and Klabjan

| for mixed-integer programs with variable upper bounds and by Atamtiirk

| for general mixed integer knapsack sets. We note however that the lifting
functions used in all of these cases are single-dimensional.

In one dimension, constructing a high-quality superadditive approximation of
a lifting function is typically difficult and verifying that it is superadditive is
often cumbersome. Although Atamtiirk B] proved that multidimensional super-
additive lifting functions yield sequence independent lifting for general MIPs, a
practical implementation of the idea seems to be difficult at first because in addi-
tion to the difficulties mentioned for single-dimensional problems, the derivation
of exact multidimensional lifting functions is difficult and the proof that approx-
imations are of good quality is hard. To the best of our knowledge, all but one
of the superadditive lifting functions that were investigated to date are single-
dimensional. The only exception is our study of the 0—1 knapsack problem with
disjoint cardinality constraints ﬂﬁ} where we derived provably strong superaddi-
tive approximations of the multidimensional lifting function of cover inequalities.
In @], we observed that the high-dimensional exact lifting function of a minimal
cover inequality could be represented using a composition of lower-dimensional
exact lifting functions. We used this observation to build multidimensional su-
peradditive lifting functions from the known superadditive approximations of
the lower-dimensional lifting functions.

In this paper, we generalize these results to typical 0—1 MIP sets and propose
a framework to construct high-dimensional superadditive lifting functions us-
ing known lower-dimensional superadditive lifting functions. We also show how
this approach can be applied to variants of the knapsack and single node flow
models with additional constraints. In particular, we obtain with our approach
various families of strong inequalities for MIPs that are difficult to study using
traditional tools.

The paper is organized as follows. In Section 2] after briefly reviewing sequence
independent and superadditive lifting, we describe a way to represent /approx-
imate high-dimensional exact lifting functions of valid inequalities for 0—1 MIP
sets using the exact lifting functions of simpler 0—1 MIP sets. Then, we propose a
framework to construct high-dimensional superadditive approximations of lifting
functions using this representation. In Section[3] we apply our framework to the
precedence-constrained knapsack model (PCKP). In particular, we build strong
multidimensional superadditive lifting functions and derive strong lifted inequal-
ities. Similarly, in Section [ we obtain a family of facet-defining inequalities for
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the single node flow model with disjoint cardinality constraints (SNFCC). In
Section [} we give a conclusion and discuss future directions of research.

2 Constructing Multidimensional Superadditive Lifting
Functions

In this section, we first review basic results about lifting. Then, we give a method
to represent or approximate high-dimensional exact lifting functions using lower-
dimensional ones. Finally, we describe an approach to build high-dimensional
superadditive lifting functions that is based on the previous representation.

2.1 Lifting and Superadditive Lifting Functions

In this section, we briefly review lifting concepts and techniques. We focus on
0—1 MIP models in which the continuous variables have variable upper bounds.
The description for pure 0—1 integer program is simpler and can be obtained
similarly.

Let N = {1,...,n}. Consider S = {(x,y) € {0,1}" x R} : Az 4+ By <
d,y; < ujzj, Vj € N}. We define PS to be the convex hull of S and define
PS(No, N1) = conv{(z,y) € S :x; =0Y € Nog,z; =1Vj € Ni,y; =0Vj €
No,y; = u; Vj € Ni}. We use a similar notation for pure 0—1 sets.

Assume that
Z a;xj + Z Biy; < ao (1)
jeN jeN

is a strong valid inequality for PS(Ny, N1) with N = N\(No U N;). We wish
to reintroduce (lift) the fixed variables (z;,y;) for j € Ny U Ny into the seed
inequality ([Il). Without loss of generality, we denote Ny U Ny = {1,...,72} and
assume that (z1,y1) is the first pair of variables to be lifted. Define lp =1; =0
if (z1,y1) is lifted from (0,0) and define Iy = 1 and {y = wy if (x1,y1) is lifted
from (1,u1). The inequality obtained through lifting is

i+ Y By + (e —lo) + Bilyr — ) < o (2)
jeN jeN
where a; and (3 are chosen in such a way that
o1(z1 —lo) + Bi(yr — 1) < f(Ar(zr — lo) + Bi(yr — 1)) (3)
for (z1,y1) € {(s,t) € {0,1} x [0,2] : t < su;} and where
f(z) =minag — Z ;i + Z Biyj
jeEN jEN
s.t. Z(Ajl‘j + Bjyj) <d-zvy; <ujzj, Vj € N.
JEN
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By sequentially applying the above lifting operation with respect to the variables
(z1,y1),---,(za,yn), the seed inequality () is progressively converted into a
strong valid inequality for PS. It is proven in Nemhauser and Wolsey ﬂﬂ] that
if PS(No, Ny) is full-dimensional, (1)) is facet-defining for PS(Np, N1) and (3]
is satisfied at equality by two new affinely independent solutions, then (2] is
facet-defining for PS(No\{1}, N1) if lifted from (0,0) or for PS(No, N1\{1}) if
lifted from (1, uy).

Usually f(2) in [ ) is referred to as the exact lifting function (or lifting func-
tion) of the seed inequality (IJ). As we mentioned in Section[I] generating strong
cuts through sequential lifting is typically computationally intensive. Wolsey
[24], Gu et al. [10], and Atamtiirk [3] showed that if the lifting function f is su-
peradditive, i.e. f(21)+ f(22) < f(21+ 22) for 21, 22, 21 + 22 in the domain of the
lifting function, then lifting coefficients are independent of the lifting sequence
and can be directly obtained from f. Since most lifting functions are not super-
additive, superadditive lower approximations are often used to generate strong
cuts ﬂE, 3]. We use the criteria of non-dominance and maximality proposed by
Gu et al. [10] to measure the strength of superadditive approximations.

2.2 Representation of High-Dimensional Lifting Function

In this section, we give a representation of high-dimensional lifting functions
of given seed inequalities using low-dimensional lifting functions. Although the
method does not always describe the high-dimensional lifting functions exactly,
it has two advantages. First, it significantly reduces the difficulties associated
with describing high-dimensional exact lifting functions. Second, it can be used
to derive a superadditive approximation of the initial high-dimensional function
using superadditive approximation of the lower-dimensional lifting functions.

An intuitive explanation of our scheme is as follows. When a new constraint is
introduced into the initial constraint matrix, it forces some variables to become
0 or 1. If these variables are known, we can use the lifting function associated
with the initial set of constraints to represent or approximate the exact lifting
function of the new system.

Consider PS = conv{z € {0,1}" : Az < b} with A = {A,,..., A4,} € R™*"
and b € R™. Let >, g mjz; < mo be a valid inequality for PS(N\N,0) and
denote its lifting function by f. Assume now that the constraint > jen Pty <
bm+1 is added to A and denote the augmented constraint matrix by A’. Then,
define f’ to be the lifting function based on A’. Clearly, f : R™ — R and
f': R™*!1 — R. Note that, the objective functions of the lifting problems defining
f and f’ are identical. It is also clear that f(z) = f/(_*_) for z € R™.

o0
Proposition 1. Let j* € N and assume that & is an optimal solution to I (;)

(i) If j+ =0, then

Iz (p) > max{f(z — Aj2) + 10, F(2)): (5)
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(ii) If z;+ =1, then

Iz (p) > max{f(z + Aj2) — 10, F(2)). (6)

]

The conclusion of Proposition [I] is very general since it is independent of the
structure of the 0—1 set and of the seed inequality. It is helpful because in many
lifting functions of 0—1 sets with multiple constraints, it is easy to determine the
variables that are forced to 0 or 1 by the addition of a constraint. In such cases,
we can derive a representation of f’ for all (;) € R™*!, Furthermore, we observe
that the expressions of Proposition [l can be recursively used to approximate
complicated situations. For example, if {x1, z2} are forced to 0 and 1 respectively
at (;) in an optimal solution to f’, then we can write f’(;) > max{f(z — A1 +
Ag)+m—ma, f(z— A1) +m1, f(z+ A2) —ma, f(2)}. We also observe that in various
types of multidimensional lifting functions, the inequalities in (&) and (@) can
be proven to be satisfied at equality, i.e. we can use the low-dimensional lifting
functions through (&) and (@) to represent the high-dimensional lifting functions
exactly; see Zeng and Richard @] for a proof in the case of cover inequalities
for knapsack problems with disjoint cardinality constraints.

The situation for general mixed integer program is more difficult than that
presented in Proposition [[I Next, we generalize these results to describe the
effect on the lifting function of adding constraints to mixed integer sets of the
flow type, which form an important class of MIPs.

Consider PS = conv{(z,y) € R x{0,1}" : Ax+ By < d,y; < ujz;,Vj} with
A={A4,...,A,},B={By,...,B,} € R™*" Let Zje]\?ajmj + ZjeNﬁjyj <
ap be a valid inequality for PS(Ny, N1) and denote its lifting function by g.
Assume that the constraint ZjeN P;jZj < dm+1 is added to [AB] and denote the
augmented constraint matrix by [A’B]. Then, define ¢’ to be the lifting function
based on [A'B].

Proposition 2. Let j* € N\(Ng U Ny) and assume that (Z,9) is an optimal

solution to g’ (;) .

(i) If ;+ =0, then
z
g <p> > max{g(z — Aj» — Bj=u;-) + aj- + Bj-uj-,9(2)}; (7)
(ii) If £;» =1, then

z N N
g (p) > max{g(z + Aj« + Bj=7j+) — aj- — B5=0;+,9(2)}- (8)

where g« is the value of the i™" element of 4. O

Note that Proposition [ can also be applied recursively to approximate more
complicated situations.
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2.3 A Framework to Build Multidimensional Superadditive
Functions

In this subsection, we propose a constructive framework to build
high-dimensional superadditive lifting functions from lower-dimensional ones.
This framework is composed of a general scheme that can be enhanced by sev-
eral simple rules. These rules can be used alone or in combination to create new
superadditive lifting functions.

First observe that f’ and ¢’ in Proposition [l and Proposition 2] contain forms
such as f(z — Aj«) + mj« and g(z — Aj+ — Bj«uj+) + o= + Gj«uj~. In Theo-
rem [II we show how to find superadditive approximations for a generalization
of these forms and show how to combine them to obtain a multidimensional
superadditive approximation of the lifting function. We first generalize the con-
cept of superadditivity. Let ¢ : R™ +—— R™2. We say that ¢ is non-decreasing
if o(x) > p(y) when x > y for ¢,y € R™. We say that ¢ is superadditive if
o) +¢(y) < p(x +y) for all z,y € R™.

Theorem 1. Let m; : R™ —— R, m : R™ x R™ +— R, and w3 : R™ X
R™2 —— R™ be superadditive functions over their domains, and assume that
71(0) = m2(0,0) = 0 and w3(0,0) = 0. Assume that m is non-decreasing. The
function k : R™ x R™2 —— R defined as

(@, y) = m(z + m3(w,y)) + m2(x, y) 9)

is superadditive over R™ x R™2 with k(0,0) = 0. Furthermore, if mo and w3 are
non-decreasing, then k is non-decreasing. O

Next, we present several simple rules to compose superadditive functions. Rule 1
presents a way to extend an existing superadditive function to a larger domain.
Rule 2 and Rule 3 are adapted from Nemhauser and Wolsey HE]

Rule 1. Let mi(x) : Dy € R™ — R be a superadditive function. Let y €
R™\Dy. Then, the function

K({ﬂ):{m(w), ifz €Dy

sup{mi(z1) + m1(x2) 1 x = a1 + X2, 1,2 € D1, }, ifx =y
is superadditive over Dy U {y}. O

Assume now that ; : R™ —— R are superadditive functions for i = 1, 2.

Rule 2. The function k defined as k(x) = min{yi(x),v2(x)} is superadditive
over R™. O

Rule 3. The function r defined as k(x) = y1(x) + v2(x) is superadditive over
R™. ([

In SectionBland in Section @l we show how to apply Theorem [ and Rules 1—3 to
build strong multidimensional superadditive lifting functions for specific MIPs.
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3 Superadditive Lifting Functions for 0—1 PCKP

Let N = {1,...,n} and 0 < a; < b for j € N. The precedence-constrained
knapsack model is defined as

Xpoxp ={z €{0,1}": Z ajrj <b, Ty S Tpy,t =1, .7} (10)
JEN

where ¢(i) # h(i) for i = 1,...,r. We denote the convex hull of X pcxp as Ppokp
and the convex hull of the classical knapsack set as Pxp.

Precedence-constrained knapsack problems arise frequently in planning,
scheduling and project management. The polyhedral structure of PCKP has
been studied by various authors; see Boyd ﬂaL Park and Park ﬂﬁ], van de Leensel
et al. [19] and Boland et al. [5]. In particular, van de Leensel et al. [19] proved
that lifting minimal induced cover inequality is a NP-hard problem in general.
In this section, we focus on deriving strong inequalities from minimal cover in-
equalities of the knapsack constraint using superadditive lifting functions. Note
that precedence constraints are one of the many additional features that we can
incorporate into the lifting function using the framework we proposed in Sec-
tion 2l Another variant of knapsack problem, the 0—1 knapsack problem with
disjoint cardinality constraints was studied in Zeng and Richard ﬂﬁ, ] These
papers are the roots of the results of Section 21

For the traditional 0—1 knapsack polytope Pgp, we say that a set C'C N is
a cover if ) .~ a; > b. Furthermore, we say that a cover C' is minimal if, for all
j€C, C\{j} is not a cover. Given a minimal cover C, the cover inequality

d z<iCl-1 (11)

jec

is facet-defining for Prp(N\C,0).

We now use cover inequality (1) to derive strong valid inequality for Ppokp.
To simplify the exposition, we assume in this paper that the precedence con-
straints are organized into s disjoint paths such that z;,, > -+ > zj,
where N; = {ji1,...,jin;|} is the ¢ path. It is not restrictive to assume
that N = N; U--- U Ny since path can have length one. Furthermore, because
the precedence constraint structure of any PCKP problem can be relaxed into a
set of disjoint paths, our results are applicable to the general case.

Define i[j] to be the index of the path x; belongs to, i.e. j € N;j;. Also
denote CNN; = C; fori = 1,...,s and define F(j) for j € N\C to be the set all
ancestors of x; in its path. We next present necessary and sufficient conditions
for () to be strong for Prexp.

Proposition 3. Let C be a minimal cover. The cover inequality [{I) is facet-
defining for Ppcxp(N\C,0) if and only if C; = {ji1} or C; = 0 for i =
1,...,s. (I

Next, we describe how to lift minimal cover inequality. First observe that the
lifting of variables in a given path is fixed because of the precedence