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Preface

This volume contains the papers selected for presentation at IPCO XII, the 12th
Conference on Integer Programming and Combinatorial Optimization, held June
25–27, 2007, in Ithaca, New York, USA. Since its inception in 1990, the IPCO
conference series has become an important forum for researchers and practi-
tioners working on various aspects of integer programming and combinatorial
optimization. The aim of the conference is to present recent developments in
theory, computation, and applications in these areas.

IPCO is sponsored by the Mathematical Programming Society, and is held in
those years in which no International Symposium on Mathematical Programming
takes place. The previous Symposium was held in 2006 in Rio de Janeiro, Brazil,
and the previous two IPCOs were held in 2004 and 2005 in New York, USA and
Berlin, Germany, respectively.

There were over 120 submissions to the conference. During its meeting in
early January of 2007, the Program Committee carefully selected 36 papers for
presentation in non-parallel sessions at the conference. Because of the limited
number of time slots for presentations, many excellent submissions could not be
accepted.

During the selection process, the extended abstracts were refereed according
to the standards of refereed conferences. As a result, this volume contains papers
describing high-quality research efforts. The page limit for contributions to these
proceedings was set to 15. We expect full versions of these papers to appear in
scientific journals in the near future.

We gratefully acknowledge IBM Research, ILOG, and the Office of Naval
Research for their sponsorship of IPCO 2007. We are grateful for the use of
EasyChair (www.easychair.org), which greatly simplified the process of col-
lecting submissions, reviewing papers, and assembling this proceedings volume.
We thank Phoebe Sengers and the Culturally Embedded Computing Group at
Cornell, whose server was used to host the IPCO 2007 Web site. We thank the
members of the Program Committee and the many subreferees who spent un-
told hours examining all of the submissions. And finally, we especially thank the
many authors for submitting their work to the conference.

March 2007 Matteo Fischetti
David P. Williamson
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Maximizing a Submodular Set Function Subject to a Matroid
Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák
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Inequalities from Two Rows of a Simplex

Tableau�

Kent Andersen1, Quentin Louveaux2, Robert Weismantel3,
and Laurence A. Wolsey4

1 Institute for Mathematical Sciences, University of Copenhagen, Denmark
kha@math.ku.dk

2 CORE and INMA, Université catholique de Louvain, Belgium
louveaux@core.ucl.ac.be

3 Department of Mathematics, Otto-von-Guericke Universität, Magdeburg, Germany
weismant@mail.math.uni-magdeburg.de

4 CORE and INMA, Université catholique de Louvain, Belgium
wolsey@core.ucl.ac.be

Abstract. In this paper we explore the geometry of the integer points in
a cone rooted at a rational point. This basic geometric object allows us to
establish some links between lattice point free bodies and the derivation
of inequalities for mixed integer linear programs by considering two rows
of a simplex tableau simultaneously.

1 Introduction

Throughout this paper we investigate a mixed integer linear program (MIP) with
rational data defined for a set I of integer variables and a set C of continuous
variables

(MIP) max cT x subject to Ax = b, x ≥ 0, xi ∈ Z for i ∈ I.

Let LP denote the linear programming relaxation of MIP. From the theory of
linear programming it follows that a vertex x∗ of the LP corresponds to a basic
feasible solution of a simplex tableau associated with subsets B and N of basic
and nonbasic variables

xi +
∑

j∈N

āi,jxj = b̄i for i ∈ B.

Any row associated with an index i ∈ B ∩ I such that b̄i �∈ Z gives rise to a set

X(i) :=
{
x ∈ R

|N | | b̄i −
∑

j∈N

āi,jxj ∈ Z, xj ≥ 0 for all j ∈ N
}

� This work was partly carried out within the framework of ADONET, a European
network in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438.
The second author is supported by FRS-FNRS. This text presents research results of
the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian
State, Prime Minister’s Office, Science Policy Programming. The scientific responsi-
bility is assumed by the authors.

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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whose analysis provides inequalities that are violated by x∗. Indeed, Gomory’s
mixed integer cuts [4] and mixed integer rounding cuts [6] are derived from such
a basic set X(i) using additional information about integrality of some of the
variables. Interestingly, unlike in the pure integer case, no finite convergence
proof of a cutting plane algorithm is known when Gomory’s mixed integer cuts
or mixed integer rounding cuts are applied only. More drastically, in [3], an
interesting mixed integer program in three variables is presented, and it is shown
that applying split cuts iteratively does not suffice to generate the cut that is
needed to solve this problem.

Example 1: [3] Consider the mixed integer set

t ≤ x1,

t ≤ x2,

x1 + x2 + t ≤ 2,

x ∈ Z
2 and t ∈ R

1
+.

The projection of this set onto the space of x1 and x2 variables is given by
{(x1, x2) ∈ R

2
+ : x1 + x2 ≤ 2} and is illustrated in Fig. 1. A simple analysis

shows that the inequality x1 + x2 ≤ 2, or equivalently t ≤ 0, is valid. In [3] it
is, however, shown that with the objective function z = max t, a cutting plane
algorithm based on split cuts does not converge finitely. ��

2

1

21

r2

r1

r3

0

x1 + x2 ≤ 2

f = ( 2
3 . 23 )

x2

x1

Fig. 1. The Instance in [3]

The analysis given in this paper will allow us to explain the cut t ≤ 0 of Example
1. To this end we consider two indices i1, i2 ∈ B ∩ I simultaneously. It turns out
that the underlying basic geometric object is significantly more complex than
its one-variable counterpart. The set that we denote by X(i1, i2) is described as

X(i1, i2) :=
{
x ∈ R

|N | | b̄i −
∑

j∈N

āi,jxj ∈ Z for i = i1, i2, xj ≥ 0 for all j ∈ N
}
.
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Setting
f :=

(
b̄i1 , b̄i2

)T ∈ R
2, and

rj :=
(
āi1,j , āi2,j

)T ∈ R
2,

the set obtained from two rows of a simplex tableau can be represented as

PI := {(x, s) ∈ Z
2 × R

n
+ : x = f +

∑

j∈N

sjr
j},

where f is fractional and rj ∈ R
2 for all j ∈ N . Valid inequalities for the set PI

was studied in [5] by using superadditive functions related to the group problem
associated with two rows. In this paper, we give a characterization of the facets
of conv(PI) based on its geometry.

Example 1 (revisited): For the instance of Example 1, introduce slack vari-
ables, s1, s2 and y1 in the three constraints. Then, solving as a linear program,
the constraints of the optimal simplex tableau are

t + 1
3s1 + 1

3s2 + 1
3y1 = 2

3
x1 − 2

3s1 + 1
3s2 + 1

3y1 = 2
3

x2 + 1
3s1 − 2

3s2 + 1
3y1 = 2

3

Taking the last two rows, and rescaling using s′i = si/3 for i = 1, 2, we obtain
the set PI

x1 −2s′1 +1s′2 + 1
3y1 = + 2

3
x2 +1s′1 −2s′2 + 1

3y1 = + 2
3

x ∈ Z
2, s ∈ R

2
+, y1 ∈ R

1
+.

Letting f = (2
3 , 2

3 )T , r1 = (2, −1)T , r2 = (−1, 2)T and r3 = (− 1
3 , − 1

3 )T (see
Fig. 1), one can derive a cut for conv(PI) of the form

x1 + x2 + y1 ≥ 2 or equivalently t ≤ 0,

which, when used in a cutting plane algorithm, yields immediate termination.
��

Our main contribution is to characterize geometrically all facets of conv(PI).
All facets are intersection cuts [2], i.e., they can be obtained from a (two-
dimensional) convex body that does not contain any integer points in its interior.
Our geometric approach is based on two important facts that we prove in this
paper

– every facet is derivable from at most four nonbasic variables.
– with every facet F one can associate three or four particular vertices of

conv(PI). The classification of F depends on how the corresponding k = 3, 4
integer points in Z

2 can be partitioned into k sets of cardinality at most two.

More precisely, the facets of conv(PI) can be distinguished with respect to the
number of sets that contain two integer points. Since k = 3 or k = 4, the
following interesting situations occur
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– no sets with cardinality two: all the k ∈ {3, 4} sets contain exactly one tight
integer point. We call cuts of this type disection cuts.

– exactly one set has cardinality two: in this case we show that the inequality
can be derived from lifting a cut associated with a two-variable subproblem
to k variables. We call these cuts lifted two-variable cuts.

– two sets have cardinality two. In this case we show that the corresponding
cuts are split cuts.

Furthermore, we show that inequalities of the first two families are not split
cuts. Our geometric approach allows us to generalize the cut introduced in Ex-
ample 1. More specifically, the cut of Example 1 is a degenerate case in the sense
that it is “almost” a disection cut and “almost” a lifted two-variable cut: by
perturbing the vectors r1, r2 and r3 slightly, the cut in Example 1 can become
both a disection cut and a lifted two-variable cut.

We review some basic facts about the structure of conv(PI) in Section 2. In
Section 3 we explore the geometry of all the feasible points that are tight for a
given facet of conv(PI), explain our main result and presents the classification
of all the facets of conv(PI).

2 Basic Structure of conv(PI)

The basic mixed-integer set considered in this paper is

PI := {(x, s) ∈ Z
2 × R

n
+ : x = f +

∑

j∈N

sjr
j}, (1)

where N := {1, 2, . . . , n}, f ∈ Q
2 \ Z

2 and rj ∈ Q
2 for all j ∈ N . The set

PLP := {(x, s) ∈ R
2 × R

n
+ : x = f +

∑
j∈N sjr

j} denotes the LP relaxation of
PI . The jth unit vector in R

n is denoted ej . In this section, we describe some
basic properties of conv(PI). The vectors {rj}j∈N are called rays, and we assume
rj �= 0 for all j ∈ N .

In the remainder of the paper we assume PI �= ∅. The next lemma gives a
characterization of conv(PI) in terms of vertices and extreme rays.

Lemma 1.

(i) The dimension of conv(PI) is n.
(ii) The extreme rays of conv(PI) are (rj , ej) for j ∈ N .
(iii) The vertices (xI , sI) of conv(PI) take the following two forms:

(a) (xI , sI) = (xI , sI
jej), where xI = f + sI

jr
j ∈ Z

2 and j ∈ N

(an integer point on the ray {f + sjr
j : sj ≥ 0}).

(b) (xI , sI) = (xI , sI
jej +sI

kek), where xI = f+sI
jr

j +sI
krk ∈ Z

2 and j, k ∈ N

(an integer point in the set f + cone({rj , rk})).

Using Lemma 1, we now give a simple form for the valid inequalities for conv(PI)
considered in the remainder of the paper.
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Corollary 1. Every non-trivial valid inequality for PI that is tight at a point
(x̄, s̄) ∈ PI can be written in the form

∑

j∈N

αjsj ≥ 1, (2)

where αj ≥ 0 for all j ∈ N .

For an inequality
∑

j∈N αjsj ≥ 1 of the form (2), let N0
α := {j ∈ N : αj = 0}

denote the variables with coefficient zero, and let N �=0
α := N \ N0

α denote the re-
mainder of the variables. We now introduce an object that is associated with the
inequality

∑
j∈N αjsj ≥ 1. We will use this object to obtain a two dimensional

representation of the facets of conv(PI).

Lemma 2. Let
∑

j∈N αjsj ≥ 1 be a valid inequality for conv(PI) of the form
(2). Define vj := f + 1

αj
rj for j ∈ N �=0

α . Consider the convex polyhedron in R
2

Lα := {x ∈ R
2 : there exists s ∈ R

n
+ s.t. (x, s) ∈ PLP and

∑

j∈N

αjsj ≤ 1}.

(i) Lα = conv({f} ∪ {vj}j∈N �=0
α

)+ cone({rj}j∈N0
α
).

(ii) interior(Lα) does not contain any integer points.
(iii) If cone({rj}j∈N ) = R

2, then f ∈ interior(Lα).

Example 2: Consider the set

PI = {(x, s) : x = f +
(

2
1

)
s1 +

(
1
1

)
s2 +

(
−3
2

)
s3 +

(
0

−1

)
s4 +

(
1

−2

)
s5},

where f =
( 1

4
1
2

)
, and consider the inequality

2s1 + 2s2 + 4s3 + s4 +
12
7

s5 ≥ 1. (3)

The corresponding set Lα is shown in Fig. 2. As can be seen from the figure,
Lα does not contain any integer points in its interior. It follows that (3) is valid
for conv(PI). Note that, conversely, the coefficients αj for j = 1, 2, . . . , 5 can be
obtained from the polygon Lα as follows: αj is the ratio between the length of
rj and the distance between f and vj . In particular, if the length of rj is 1, then
αj is the inverse of the distance from f to vj . ��

The interior of Lα gives a two-dimensional representation of the points x ∈
R

2 that are affected by the addition of the inequality
∑

j∈N αjsj ≥ 1 to the
LP relaxation PLP of PI . In other words, for any (x, s) ∈ PLP that satisfies∑

j∈N αjsj < 1, we have x ∈ interior(Lα). Furthermore, for a facet defining
inequality

∑
j∈N αjsj ≥ 1 of conv(PI), there exist n affinely independent points
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r1r2

r3

r4

r5

v1
v2v3

v4

v5

Fig. 2. The set Lα for a valid inequality for conv(PI)

(xi, si) ∈ PI , i = 1, 2, . . . , n, such that
∑

j∈N αjs
i
j = 1. The integer points

{xi}i∈N are on the boundary of Lα, i.e., they belong to the integer set:

Xα := {x ∈ Z
2 : ∃s ∈ R

n
+ s.t. (x, s) ∈ PLP and

∑

j∈N

αjsj = 1}.

We have Xα = Lα ∩ Z
2, and Xα �= ∅ whenever

∑
j∈N αjsj ≥ 1 defines a

facet of conv(PI). We first characterize the facets of conv(PI) that have zero
coefficients.

Lemma 3. Any facet defining inequality
∑

j∈N αjsj ≥ 1 for conv(PI) of the
form (2) that has zero coefficients is a split cut. In other words, if N0

α �= ∅, there
exists (π, π0) ∈ Z

2 × Z such that Lα ⊆ {(x1, x2) : π0 ≤ π1x1 + π2x2 ≤ π0 + 1}.

Proof: Let k ∈ N0
α be arbitrary. Then the line {f +μrk : μ ∈ R} does not contain

any integer points. Furthermore, if j ∈ N0
α, j �= k, is such that rk and rj are not

parallel, then f + cone({rk, rj}) contains integer points. It follows that all rays
{rj}j∈N0

α
are parallel. By letting π′ := (rk)⊥ = (−rk

2 , rk
1 )T and π′

0 := (π′)T f , we
have that {f + μrk : μ ∈ R} = {x ∈ R

2 : π′
1x1 + π′

2x2 = π′
0}. Now define:

π1
0 := max{π′

1x1 + π′
2x2 : π′

1x1 + π′
2x2 ≤ π′

0 and x ∈ Z
2}, and

π2
0 := min{π′

1x1 + π′
2x2 : π′

1x1 + π′
2x2 ≥ π′

0 and x ∈ Z
2}.

We have π1
0 < π′

0 < π2
0 , and the set Sπ := {x ∈ R

2 : π1
0 ≤ π′

1x1 + π′
2x2 ≤ π2

0}
does not contain any integer points in its interior. We now show Lα ⊆ Sπ by
showing that every vertex vm = f + 1

αm
rm of Lα, where m ∈ N �=0

α , satisfies
vm ∈ Sπ. Suppose vm satisfies π′

1v
m
1 +π′

2v
m
2 < π1

0 (the case π′
1v

m
1 +π′

2v
m
2 > π2

0 is
symmetric). By definition of π1

0 , there exists xI ∈ Z
2 such that π′

1x
I
1+π′

2x
I
2 = π1

0 ,
and xI = λvm + (1 − λ)(f + δrk), where λ ∈]0, 1[, for some δ > 0. We then have
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xI = f+ λ
αm

rm+ δ(1−λ)rk . Inserting this representation of xI into the inequality∑
j∈N αjsj ≥ 1 then gives αm

λ
αm

+ αkδ(1 − λ) = λ < 1, which contradicts the
validity of

∑
j∈N αjsj ≥ 1 for PI . Hence Lα ⊆ Sπ.

To finish the proof, we show that we may write Sπ = {x ∈ R
2 : π0 ≤ π1x1 +

π2x2 ≤ π0 + 1} for some (π, π0) ∈ Z
2 × Z. First observe that we can assume (by

scaling) that π′, π1
0 and π2

0 are integers. Next observe that any common divisor
of π′

1 and π′
2 also divides both π1

0 and π2
0 (this follows from the fact that there

exists x1, x2 ∈ Z
2 such that π′

1x
1
1 + π′

2x
1
2 = π1

0 and π′
1x

2
1 + π′

2x
2
2 = π2

0). Hence we
can assume that π′

1 and π′
2 are relative prime. Now the Integral Farkas Lemma

(see [8]) implies that the set {x ∈ Z
2 : π′

1x1 + π′
2x2 = 1} is non-empty. It follows

that we must have π2
0 = π1

0 + 1, since otherwise the point ȳ := x′ + x1 ∈ Z
2,

where x′ ∈ {x ∈ Z
2 : π′

1x1 + π′
2x2 = 1} and x1 ∈ {x ∈ Z

2 : π′
1x1 + π′

2x2 = π1
0},

satisfies π1
0 < π′

1ȳ1 + π′
2ȳ2 < π2

0 , which contradicts that Sπ does not contain any
integer points in its interior. ��

3 A Characterization of conv(Xα) and conv(PI)

As a preliminary step of our analysis, we first characterize the set conv(Xα). We
assume αj > 0 for all j ∈ N . Clearly conv(Xα) is a convex polygon with only
integer vertices, and since Xα ⊆ Lα, conv(Xα) does not have any integer points
in its interior. We first limit the number of vertices of conv(Xα) to four (see [1]
and [7] for this and related results).

Lemma 4. Let P ⊂ R
2 be a convex polygon with integer vertices that has no

integer points in its interior.

(i) P has at most four vertices
(ii) If P has four vertices, then at least two of its four facets are parallel.
(iii) If P is not a triangle with integer points in the interior of all three facets

(see Fig. 3.(c)), then there exists parallel lines πx = π0 and πx = π0 + 1,
(π, π0) ∈ Z

3, such that P is contained in the corresponding split set, i.e.,
P ⊆ {x ∈ R

2 : π0 ≤ πx ≤ π0 + 1}.

Lemma 4 shows that the polygons in Fig. 3 include all possible polygons that
can be included in the set Lα in the case when Lα is bounded and of dimension
2. The dashed lines in Fig. 3 indicate the possible split sets that include P . We
excluded from Fig. 3 the cases when Xα is of dimension 1. We note that Lemma
4.(iii) (existence of split sets) proves that there cannot be any triangles where
two facets have interior integer points, and also that no quadrilateral can have
more than two facets that have integer points in the interior.

Next, we focus on the set Lα. As before we assume αj > 0 for all j ∈ N .
Due to the direct correspondence between the set Lα and a facet defining in-
equality

∑
j∈N αjsj ≥ 1 for conv(PI), this gives a characterization of the facets
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(a) A triangle: no facet
has interior integer points

(b) A triangle: one facet
has interior integer points

(c) A triangle: all facets
have interior integer
points

(d) A quadrilateral: no
facet has interior integer
points

(e) A quadrilateral: one
facet has interior integer
points

(f) A quadrilateral: two
facets have interior inte-
ger points

Fig. 3. All integer polygons that do not have interior integer points

of conv(PI). The main result in this section is that Lα can have at most four
vertices. In other words, we prove

Theorem 1. Let
∑

j∈N αjsj ≥ 1 be a facet defining inequality for conv(PI) that
satisfies αj > 0 for all j ∈ N . Then Lα is a polygon with at most four vertices.

Theorem 1 shows that there exists a set S ⊆ N such that |S| ≤ 4 and
∑

j∈S αjsj ≥
1 is facet defining for conv(PI(S)), where

PI(S) := {(x, s) ∈ Z
2 × R

|S|
+ : x = f +

∑

j∈S

sjr
j}.

Throughout this section we assume that no two rays point in the same di-
rection. If two variables j1, j2 ∈ N are such that j1 �= j2 and rj1 = δrj2

for some δ > 0, then the halflines {x ∈ R
2 : x = f + sj1r

j1 , sj1 ≥ 0} and
{x ∈ R

2 : x = f + sj2r
j2 , sj2 ≥ 0} intersect the boundary of Lα at the same

point, and therefore Lα = conv({f} ∪ {vj}j∈N ) = conv({f} ∪ {vj}j∈N\{j2}),
where vj := f + 1

αj
rj for j ∈ N . This assumption does therefore not affect the

validity of Theorem 1.
The proof of Theorem 1 is based on characterizing the vertices conv(PI) that

are tight for
∑

j∈N αjsj ≥ 1. We show that there exists a subset S ⊆ N of
variables and a set of |S| affinely independent vertices of conv(PI) such that
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|S| ≤ 4 and {αj}j∈S is the unique solution to the equality system of the polar
defined by these vertices. The following notation will be used intensively in the
remainder of this section.

Notation 1

(i) The number k ≤ 4 denotes the number of vertices of conv(Xα).
(ii) The set {xv}v∈K denotes the vertices of conv(Xα), where K := {1, 2, . . . , k}.

Recall that Lemma 1.(iii) demonstrates that for a vertex (x̄, s̄) of conv(PI), s̄
is positive on at most two coordinates j1, j2 ∈ N , and in that case x̄ ∈ f +
cone({rj1 , rj2}). If s̄ is positive on only one coordinate j ∈ N , then x̄ = f + s̄jr

j ,
and the inequality of the polar corresponding to (x̄, s̄) is αj s̄j ≥ 1, which simply
states αj ≥ 1

s̄j
. A point x̄ ∈ Z

2 that satisfies x̄ ∈ {x ∈ R
2 : x = f + sjr

j , sj ≥ 0}
for some j ∈ N is called a ray point in the remainder of the paper. In order to
characterize the tight inequalities of the polar that correspond to vertices xv of
conv(Xα) that are not ray points, we introduce the following concepts.

Definition 1. Let
∑

j∈N αjsj ≥ 1 be valid for conv(PI). Suppose x̄ ∈ Z
2 is not

a ray point, and that x̄ ∈ f + cone({rj1 , rj2}), where j1, j2 ∈ N . This implies
x̄ = f + sj1r

j1 + sj2r
j2 , where sj1 , sj1 > 0 are unique.

(a) The pair (j1, j2) is said to give a representation of x̄.
(b) If αj1sj1 +αj2sj2 = 1, (j1, j2) is said to give a tight representation of x̄ wrt.∑

j∈N αjsj ≥ 1.
(c) If (i1, i2) ∈ N×N satisfies cone({ri1 , ri2}) ⊆ cone({rj1 , rj2}), the pair (i1, i2)

is said to define a subcone of (j1, j2).

Example 2 (continued): Consider again the set

PI = {(x, s) : x = f +
(

2
1

)
s1 +

(
1
1

)
s2 +

(
−3
2

)
s3 +

(
0

−1

)
s4 +

(
1

−2

)
s5},

where f =
( 1

4
1
2

)
, and the valid inequality 2s1 + 2s2 + 4s3 + s4 + 12

7 s5 ≥ 1 for

conv(PI). The point x̄ = (1, 1) is on the boundary of Lα (see Fig. 2). We have
that x̄ can be written in any of the following forms

x̄ =f+
1
4
r1+

1
4
r2,

x̄ =f+
3
7
r1 +

1
28

r3,

x̄ =f +
3
4
r2 +

1
4
r4.

It follows that (1, 2), (1, 3) and (2, 4) all give representations of x̄. Note that
(1, 2) and (1, 3) give tight representations of x̄ wrt. the inequality 2s1 + 2s2 +
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4s3 + s4 + 12
7 s5 ≥ 1, whereas (2, 4) does not. Finally note that (1, 5) defines a

subcone of (2, 4). ��

Observe that, for a vertex xv of conv(Xα) which is not a ray point, and a tight
representation (j1, j2) of xv, the corresponding inequality of the polar satisfies
αj1tj1 + αj2tj2 = 1, where tj1 , tj2 > 0. We now characterize the set of tight
representations of an integer point x̄ ∈ Z

2, which is not a ray point

Tα(x̄) := {(j1, j2) : (j1, j2) gives a tight representation of x̄ wrt.
∑

j∈N

αjsj ≥ 1}.

We show that Tα(x̄) contains a unique maximal representation (jx̄
1 , jx̄

2 ) ∈
Tα(x̄) with the following properties.

Lemma 5. There exists a unique maximal representation (jx̄
1 , jx̄

2 ) ∈ Tα(x̄) of x̄
that satisfies:

(i) Every subcone (j1, j2) of (jx̄
1 , jx̄

2 ) that gives a representation of x̄ satisfies
(j1, j2) ∈ Tα(x̄).

(ii) Conversely, every (j1, j2) ∈ Tα(x̄) defines a subcone of (jx̄
1 , jx̄

2 ).

To prove Lemma 5, there are two cases to consider. For two representations
(i1, i2) and (j1, j2) of x̄, either one of the two cones (i1, i2) and (j1, j2) is contained
in the other (Lemma 6), or their intersection defines a subcone of both (i1, i2)
and (j1, j2) (Lemma 7). Note that we cannot have that their intersection is
empty, since they both give a representation of x̄.

Lemma 6. Let
∑

j∈N αjsj ≥ 1 be a facet defining inequality for conv(PI) that
satisfies αj > 0 for all j ∈ N , and let x̄ ∈ Z

2. Then (j1, j2) ∈ Tα(x̄) implies
(i1, i2) ∈ Tα(x̄) for every subcone (i1, i2) of (j1, j2) that gives a representation
of x̄.

Proof: Suppose (j1, j2) ∈ Tα(x̄). Observe that it suffices to prove the following:
for any j3 ∈ N such that rj3 ∈ cone({rj1 , rj2}) and (j1, j3) gives a representation
of x̄, the representation (j1, j3) is tight wrt.

∑
j∈N αjsj ≥ 1. The result for all

remaining subcones of (j1, j2) follows from repeated application of this result.
For simplicity we assume j1 = 1, j2 = 2 and j3 = 3.

Since x̄ ∈ f+cone({r1, r2}), x̄ ∈ f+cone({r1, r3}) and r3 ∈ cone({r1, r2}), we
may write x̄ = f +u1r

1 +u2r
2, x̄ = f +v1r

1 +v3r
3 and r3 = w1r

1 +w2r
2, where

u1, u2, v1, v3, w1, w2 ≥ 0. Furthermore, since (1, 2) gives a tight representation of
x̄ wrt.

∑
j∈N αjsj ≥ 1, we have α1u1+α2u2 = 1. Finally we have α1v1+α3v3 ≥ 1,

since
∑

j∈N αjsj ≥ 1 is valid for PI . If also α1v1 + α3v3 = 1, we are done, so
suppose α1v1 + α3v3 > 1.

We first argue that this implies α3 > α1w1+α2w2. Since x̄ = f+u1r
1+u2r

2 =
f + v1r

1 + v3r
3, it follows that (u1 − v1)r1 = v3r

3 − u2r
2. Now, using the

representation r3 = w1r
1 +w2r

2, we get (u1 − v1 − v3w1)r1 +(u2 − v3w2)r2 = 0.
Since r1 and r2 are linearly independent, we obtain:

(u1 − v1) = v3w1 and u2 = v3w2.
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Now we have α1v1+α3v3 > 1 = α1u1+α2u2, which implies (v1−u1)α1−α2u2+
α3v3 > 0. Using the identities derived above, we get −v3w1α1−α2v3w2 +α3v3 >
0, or equivalently v3(−w1α1 −α2w2 +α3) > 0. It follows that α3 > α1w1 +α2w2.

We now derive a contradiction to the identity α3 > α1w1 + α2w2. Since∑
j∈N αjsj ≥ 1 defines a facet of conv(PI), there must exist x′ ∈ Z

2 and k ∈ N
such that (3, k) gives a tight representation of x′ wrt.

∑
j∈N αjsj ≥ 1. In other

words, there exists x′ ∈ Z
2, k ∈ N and δ3, δk ≥ 0 such that x′ = f + δ3r

3 + δkrk

and α3δ3 + αkδk = 1. Furthermore, we can choose x′, δ3 and δk such that r3 is
used in the representation of x′, i.e., we can assume δ3 > 0.

Now, using the representation r3 = w1r
1 + w2r

2 then gives x′ = f + δ3r
3 +

δkrk = f +δ3w1r
1 +δ3w2r

2 +δkrk. Since
∑

j∈N αjsj ≥ 1 is valid for PI , we have
α1δ3w1+α2δ3w2+ αkδk ≥ 1 = α3δ3+αkδk. This implies δ3(α3−α1w1−α2w2) ≤
0, and therefore α3 ≤ α1w1 − α2w2, which is a contradiction. ��

Lemma 7. Let
∑

j∈N αjsj ≥ 1 be a facet defining inequality for conv(PI) satis-
fying αj > 0 for j ∈ N , and suppose x̄ ∈ Z

2 is not a ray point. Also suppose the
intersection between the cones (j1, j2), (j3, j4) ∈ Tα(x̄) is given by the subcone
(j2, j3) of both (j1, j2) and (j3, j4). Then (j1, j4) ∈ Tα(x̄), i.e., (j1, j4) also gives
a tight representation of x̄.

Proof: For simplicity assume j1 = 1, j2 = 2, j3 = 3 and j4 = 4. Since the cones
(1, 2) and (3, 4) intersect in the subcone (2, 3), we have r3 ∈ cone({r1, r2}), r2 ∈
cone({r3, r4}), r4 /∈ cone({r1, r2}) and r1 /∈ cone({r3, r4}). We first represent x̄
in the translated cones in which we have a tight representation of x̄. In other
words, we can write

x̄ = f + u1r
1 + u2r

2, (4)

x̄ = f + v3r
3 + v4r

4 and (5)

x̄ = f + z2r
2 + z3r

3, (6)

where u1, u2, v3, v4, z2, z3 > 0. Note that Lemma 6 proves that (6) gives a tight
represention of x̄. Using (4)-(6), we obtain the relation

(T1,1I2 T1,2I2
T2,1I2 T2,2I2

)(r2

r3
)

=
(u1r

1

v4r
4
)
, (7)

where T is the 2 × 2 matrix T :=
(T1,1 T1,2
T2,1 T2,2

)
=

( (z2 − u2) z3
z2 (z3 − v3)

)
and I2 is

the 2×2 identity matrix. On the other hand, the tightness of the representations
(4)-(6) leads to the following identities

α1u1+α2u2 = 1, (8)
α3v3+α4v4 = 1 and (9)
α2z2 +α4z3 = 1, (10)
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where, again, the last identity follows from Lemma 6. Using (8)-(10), we obtain
the relation

(T1,1 T1,2
T2,1 T2,2

)(α2
α3

)
=

(u1α1
v4α4

)
. (11)

We now argue that T is non-singular. Suppose, for a contradiction, that
T1,1T2,2 = T1,2T2,1. From (5) and (6) we obtain v4r

4 = (z3 − v3)r3 + z2r
2, which

implies z3 < v3, since r4 /∈ cone({r1, r2}) ⊇ cone({r2, r3}). Multiplying the first
equation of (11) with T2,2 gives T2,2T1,1α2 + T2,2T1,2α3 = u1T2,2α1, which im-
plies T1,2(T2,1α2 + T2,2α3) = u1T2,2α1. By using the definition of T , this can be
rewritten as z3(α2z2 + (z3 − v3)α3) = u1α1(z3 − v3). Since z2α2 + z3α3 = 1, this
implies z3(1 − v3α3) = u1α1(z3 − v3). However, from (9) we have v3α3 ∈]0, 1[,
so z3(1 − v3α3) > 0 and u1α1(z3 − v3) < 0, which is a contradiction. Hence T is
non-singular.

We now solve (7) for an expression of r2 and r3 in terms of r1 and r4.
The inverse of the coefficient matrix on the left hand side of (7) is given by
(T−1

1,1 I2 T−1
1,2 I2

T−1
2,1 I2 T−1

2,2 I2

)
, where T−1 :=

(T−1
1,1 T−1

1,2
T−1

2,1 T−1
2,2

)
denotes the inverse of T . We there-

fore obtain

r2 = λ1r
1 + λ4r

4 and (12)

r3 = μ1r
1 + μ4r

4, (13)

where λ1 := u1T
−1
1,1 , λ4 := v4T

−1
1,2 , μ1 := u1T

−1
2,1 and μ4 := v4T

−1
2,2 . Similarly,

solving (11) to express α2 and α3 in terms of α1 and α4 gives

α2 = λ1α1 + λ4α4 and (14)
α3 = μ1α1 + μ4α4. (15)

Now, using for instance (4) and (12), we obtain

x̄ = f + (u1 + u2λ1)r1 + (u2λ4)r4, and:

(u1 + u2λ1)α1 + (u2λ4)α4 = (using (8))
(1 − u2α2) + u2λ1α1 + (u2λ4)α4 =
1 + u2(λ1α1 + λ4α4 − α2) = 1. (using (14))

To finish the proof, we only need to argue that we indeed have x̄ ∈ f +
cone({r1, r4}), i.e., that x̄ = f + δ1r

1 + δ4r
4 with δ1 = u1 + u2λ1 and δ4 = u2λ4

satisfying δ1, δ4 ≥ 0. If δ1 ≤ 0 and δ4 > 0, we have x̄ = f + δ1r
1 + δ4r

4 =
f + u1r

1 + u2r
2, which means δ4r

4 = (u1 − δ1)r1 + u2r
2 ∈ cone({r1, r2}), which

is a contradiction. Similarly, if δ1 > 0 and δ4 ≤ 0, we have x̄ = f + δ1r
1 +

δ4r
4 = f + v3r

3 + v4r4, which implies δ1r
1 = v3r

3+ (v4 − δ4)r4 ∈ cone({r3, r4}),
which is also a contradiction. Hence we can assume δ1, δ4 ≤ 0. However, since
δ1 = u1 +u2λ1 and δ4 = u2λ4, this implies λ1, λ4 ≤ 0, and this contradicts what
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was shown above, namely that the representation x̄ = f + δ1r
1 + δ4r

4 satisfies
α1δ1 + α4δ4 = 1. ��

It follows that only one tight representation of every point x of conv(Xα) is
needed. We now use Lemma 5 to limit the number of vertices of Lα to four. The
following notation is introduced. The set Jx := ∪(j1,j2)∈Tα(x){j1, j2} denotes
the set of variables that are involved in tight representations of x. As above,
(jx

1 , jx
2 ) ∈ Tα(x) denotes the unique maximal representation of x. Furthermore,

given any (j1, j2) ∈ Tα(x), let (tj2j1(x), tj1j2 (x)) satisfy x = f +tj2j1 (x)rj1 +tj1j2(x)rj2 .
Lemma 5 implies that rj ∈ cone(rjx

1 , rjx
2 ) for every j ∈ Jx. Let (wj

1(x), wj
2(x))

satisfy rj = wj
1(x)rjx

1 + wj
2(x)rjx

2 , where wj
1(x), wj

2(x) ≥ 0 are unique.
Let

∑
j∈N αjsj ≥ 1 be a valid inequality for conv(PI) that satisfies αj > 0

for j ∈ N . The inequality
∑

j∈N αjsj ≥ 1 is facet defining for conv(PI), if and
only if the coefficients {αj}j∈N define a vertex of the polar of conv(PI). Hence∑

j∈N αjsj ≥ 1 is facet defining for conv(PI), if and only if the solution to the
system

αj1t
j2
j1

(x) + αj2t
j1
j2

(x) = 1, for every x ∈ Xα and (j1, j2) ∈ Tα(x). (16)

is unique. We now rewrite the subsystem of (16) that corresponds to a fixed
point x ∈ Xα.

Lemma 8. Let
∑

j∈N αjsj ≥ 1 be a facet defining inequality for conv(PI) that
satisfies αj > 0 for j ∈ N . Suppose x ∈ Xα is not a ray point. The system

αj1t
j2
j1

(x) + αj2t
j1
j2

(x) = 1, for every (j1, j2) ∈ Tα(x). (17)

has the same set of solutions {αj}j∈Jx as the system

1 = tj2j1(x)αj1 + tj1j2(x)αj2 , for (j1, j2) = (jx
1 , jx

2 ), (18)

αj = wj
1(x)αjx

1
+ wj

2(x)αjx
2
, for j ∈ Jx \ {jx

1 , jx
2 }. (19)

We next show that it suffices to consider vertices of conv(Xα) in (16).

Lemma 9. Let
∑

j∈N αjsj ≥ 1 be a facet defining inequality for conv(PI) that
satisfies αj > 0 for j ∈ N . Suppose x ∈ Xα is not a vertex of conv(Xα). Then
there exists vertices y and z of conv(Xα) such that the equalities

αj1t
j2
j1

(y) + αj2t
j1
j2

(y) = 1, for every (j1, j2) ∈ Tα(y) and (20)

αj1t
j2
j1

(z) + αj2t
j1
j2

(z) = 1, for every (j1, j2) ∈ Tα(z) (21)

imply the equalities:

αj1t
j2
j1

(x) + αj2t
j1
j2

(x) = 1, for every (j1, j2) ∈ Tα(x). (22)

By combining Lemma 8 and Lemma 9 we have that, if the solution to (16) is
unique, then the solution to the system

t
jx
2

jx
1
(x)αjx

1
+ t

jx
1

jx
2
(x)αjx

2
= 1, for every vertex x of conv(Xα). (23)
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is unique. Since (23) involves exactly k ≤ 4 equalities and has a unique solution,
exactly k ≤ 4 variables are involved in (23) as well. This finishes the proof of
Theorem 1.

We note that from an inequality
∑

j∈S αjsj ≥ 1 that defines a facet of
conv(PI(S)), where |S| = k, the coefficients on the variables j ∈ N \ S can be
simultaneously lifted by computing the intersection point between the halfline
{f + sjr

j : sj ≥ 0} and the boundary of Lα.
We now use Theorem 2 to categorize the inequalities

∑
j∈N αjsj ≥ 1 that

define facets of conv(PI). For simplicity, we only consider the most general case,
namely when none of the vertices of conv(Xα) are ray points. Furthermore, we
only consider k = 3 and k = 4. When k = 2,

∑
j∈N αjsj ≥ 1 is a facet defining

inequality for a cone defined by two rays. We divide the remaining facets of
conv(PI) into the following three main categories.

(i) Disection cuts (Fig. 4.(a) and Fig. 4.(b)):
Every vertex of conv(Xα) belongs to a different facet of Lα.

(ii) Lifted two-variable cuts (Fig. 4.(c) and Fig. 4.(d)):
Exactly one facet of Lα contains two vertices of conv(Xα). Observe that this
implies that there is a set S ⊂ N , |S| = 2, such that

∑
j∈S αjsj ≥ 1 is facet

defining for conv(PI(S)).
(iii) Split cuts:

Two facets of Lα each contain two vertices of conv(Xα).

(a) Disection cut from a triangle (b) Disection cut from a quadrilateral

(c) Lifted two-variable cut from
quadrilateral

(d) Lifted two-variable cut from tri-
angle

Fig. 4. Disection cuts and lifted two-variable cuts

An example of a cut that is not a split cut was given in [3] (see Fig. 1). This
cut is the only cut when conv(Xα) is the triangle of Fig. 4.(c), and, necessarily,
Lα = conv(Xα) in this case. Hence, all three rays that define this triangle are
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ray points. As mentioned in the introduction, the cut in [3] can be viewed as
being on the boundary between disection cuts and lifted two-variable cuts.

Since the cut presented in [3] is not a split cut, and this cut can be viewed
as being on the boundary between disection cuts and lifted two-variable cuts, a
natural question is whether or not disection cuts and lifted two-variable cuts are
split cuts. We finish this section by answering this question.

Lemma 10. Let
∑

j∈N αjsj ≥ 1 be a facet defining inequality for conv(PI)
satisfying αj > 0 for j ∈ N . Also suppose

∑
j∈N αjsj ≥ 1 is either a disection

cut or a lifted two-variable cut. Then
∑

j∈N αjsj ≥ 1 is not a split cut.

Proof: Observe that, if
∑

j∈N αjsj ≥ 1 is a split cut, then there exists (π, π0) ∈
Z

2 × Z such that Lα is contained in the split set Sπ := {x ∈ R
2 : π0 ≤ π1x1 +

π2x2 ≤ π0 + 1}. Furthermore, all points x ∈ Xα and all vertices of Lα must be
either on the line πT x = π0, or on the line πT x = π0 + 1. However, this implies
that there must be two facets of Lα that do not contain any integer points. ��
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Abstract. A conic integer program is an integer programming problem
with conic constraints. Conic integer programming has important ap-
plications in finance, engineering, statistical learning, and probabilistic
integer programming.

Here we study mixed-integer sets defined by second-order conic con-
straints. We describe general-purpose conic mixed-integer rounding cuts
based on polyhedral conic substructures of second-order conic sets. These
cuts can be readily incorporated in branch-and-bound algorithms that
solve continuous conic programming relaxations at the nodes of the
search tree. Our preliminary computational experiments with the new
cuts show that they are quite effective in reducing the integrality gap of
continuous relaxations of conic mixed-integer programs.

Keywords: Integer programming, conic programming, branch-and-cut.

1 Introduction

In the last two decades there have been major advances in our capability of
solving linear integer programming problems. Strong cutting planes obtained
through polyhedral analysis of problem structure contributed to this success
substantially by strengthening linear programming relaxations of integer pro-
gramming problems. Powerful cutting planes based on simpler substructures of
problems have become standard features of leading optimization software pack-
ages. The use of such structural cuts has improved the performance of the linear
integer programming solvers dramatically.

On another front, since late 1980’s we have experienced significant advances
in convex optimization, particularly in conic optimization. Starting with Nes-
terov and Nemirovski [22, 23, 24] polynomial interior point algorithms that have
earlier been developed for linear programming have been extended to conic opti-
mization problems such as convex quadratically constrained quadratic programs
(QCQP’s) and semidefinite programs (SDP’s).

Availability of efficient algorithms and publicly available software (CDSP[9],
DSDP[7], SDPA[33], SDPT3[32], SeDuMi[30]) for conic optimization spurred
many optimization and control applications in diverse areas ranging from med-
ical imaging to signal processing, from robust portfolio optimization to truss
design. Commercial software vendors (e.g. ILOG, MOSEK, XPRESS-MP) have
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responded to the demand for solving (continuous) conic optimization problems
by including stable solvers for second-order cone programming (SOCP) in their
recent versions.

Unfortunately, the phenomenal advances in continuous conic programming
and linear integer programming have so far not translated to improvements in
conic integer programming, i.e., integer programs with conic constraints. Solu-
tion methods for conic integer programming are limited to branch-and-bound
algorithms that solve continuous conic relaxations at the nodes of the search
tree. In terms of development, conic integer programming today is where linear
integer programming was before 1980’s when solvers relied on pure branch-and-
bound algorithms without the use of any cuts for improving the continuous
relaxations at the nodes of the search tree.

Hereweattempt to improve the solvability of conic integer programs.Wedevelop
general purpose cuts that can be incorporated into branch-and-bound solvers for
conic integer programs.Toward this end,wedescribe valid cuts for the second-order
conic mixed-integer constraints (defined in Section 2). The choice of second-order
conic mixed-integer constraint is based on (i) the existence of many important ap-
plications modeled with such constraints, (ii) the availability of efficient and stable
solvers for their continuous SOCP relaxations, and (iii) the fact that one can form
SOCP relaxations for the more general conic programs, which make the cuts pre-
sented here widely applicable to conic integer programming.

1.1 Outline

In Section 2 we introduce conic integer mixed-programming, briefly review the rel-
evant literature and explain our approach for generating valid cuts. In Section 3 we
describe conic mixed-integer rounding cuts for second-order conic mixed-integer
programming and in Section 4 we summarize our preliminary computational re-
sults with the cuts.

2 Conic Integer Programming

A conic integer program (CIP) is an integer program with conic constraints. We
limit the presentation here to second-order conic integer programming. However,
as one can relax more general conic programs to second-order conic programs
[14] our results are indeed applicable more generally.

A second-order conic mixed-integer program is an optimization problem of the
form

min cx + ry

(SOCMIP) s.t. ‖ Aix + Giy − bi ‖ ≤ dix + eiy − hi, i = 1, 2, . . . , k

x ∈ Z
n, y ∈ R

p .

Here ‖ · ‖ is the Euclidean norm, Ai, Gi, b are rational matrices with mi rows,
and c, r, di, ei are rational row vectors of appropriate dimension, and hi is a
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rational scalar. Each constraint of SOCMIP can be equivalently stated as (Aix+
Giy − bi, dix + eiy − h) ∈ Qmi+1, where

Qmi+1 := {(t, to) ∈ R
mi × R : ‖ t ‖ ≤ to} .

For n = 0, SOCMIP reduces to SOCP, which is a generalization of linear pro-
gramming as well as convex quadratically constrained quadratic programming.
If Gi = 0 for all i, then SOCP reduces to linear programming. If ei = 0 for all
i, then it reduces to QCQP after squaring the constraints. In addition, convex
optimization problems with more general norms, fractional quadratic functions,
hyperbolic functions and others can be formulated as an SOCP. We refer the
reader to [2, 6, 10, 18, 25] for a detailed exposure to conic optimization and
many applications of SOCP.

2.1 Relevant Literature

There has been significant work on deriving conic (in particular SDP) relax-
ations for (linear) combinatorial optimization problems [1, 13, 19] for obtaining
stronger bounds for such problems than the ones given by their natural linear
programming relaxations. We refer the reader to Goemans [12] for a survey on
this topic. However, our interest here is not to find conic relaxations for linear
integer problems, but for conic integer problems.

Clearly any method for general nonlinear integer programming applies to conic
integer programming as well. Reformulation-Linearization Technique (RLT) of
Sherali and Adams [27] initially developed for linear 0-1 programming has been
extended to nonconvex optimization problems [28]. Stubbs and Mehrotra [29]
generalize the lift-and-project method [5] of Balas et. al for 0-1 mixed convex
programming. See also Balas [4] and Sherali and Shetti [26] on disjunctive pro-
gramming methods. Kojima and Tunçel [15] give successive semidefinite relax-
ations converging to the convex hull of a nonconvex set defined by quadratic
functions. Lasserre [16] describes a hierarchy of semidefinite relaxations nonlin-
ear 0-1 programs. Common to all of these general approaches is a hierarchy of
convex relaxations in higher dimensional spaces whose size grows exponentially
with the size of the original formulation. Therefore using such convex relaxations
in higher dimensions is impractical except for very small instances. On the other
hand, projecting these formulations to the original space of variables is also very
difficult except for certain special cases.

Another stream of more practically applicable research is the development
of branch-and-bound algorithms for nonlinear integer programming based on
linear outer approximations [8, 17, 31]. The advantage of linear approximations
is that they can be solved fast; however, the bounds from linear approximations
may not be strong. However, in the case of conic programming, and in particular
second-order cone programming, existence of efficient algorithms permits the use
of continuous conic relaxations at the nodes of the branch-and-bound tree.



Cuts for Conic Mixed-Integer Programming 19

The only study that we are aware of on developing valid inequalities for conic
integer sets directly is due to Çezik and Iyengar [11]. For a pointed, closed,
convex cone K ⊆ R

m with nonempty interior, given S = {x ∈ Z
n : b − Ax ∈ K},

their approach is to write a linear aggregation

λ′Ax ≤ λ′b for some fixed λ ∈ K∗, (1)

where K∗ is the dual cone of K and then apply the Chvátal-Gomory (CG) integer
rounding cuts [20] to this linear inequality. Hence, the resulting cuts are linear
in x as well. For the mixed-integer case as the convex hull feasible points is
not polyhedral and has curved boundary (see Figure 2 in Section 3). Therefore,
nonlinear inequalities may be more effective for describing or approximating the
convex hull of solutions.

2.2 A New Approach

Our approach for deriving valid inequalities for SOCMIP is to decompose the
second-order conic constraint into simpler polyhedral sets and analyze each of
these sets. Specifically, given a second-order conic constraint

‖ Ax + Gy − b ‖≤ dx + ey − h (2)

and the corresponding second-order conic mixed-integer set

C :=
{
x ∈ Z

n
+, y ∈ R

p
+ : (x, y) satisfies (2)

}
,

by introducing auxiliary variables (t, to) ∈ R
m+1, we reformulate (2) as

to ≤ dx + ey − h (3)
ti ≥ |aix + giy − bi| , i = 1, . . . , m (4)
to ≥ ‖ t ‖, (5)

where ai and gi denote the ith rows of matrices A and G, respectively. Observe
that each constraint (4) is indeed a second-order conic constraint as (aix+giy −
bi, ti) ∈ Q1+1, yet polyhedral. Consequently, we refer to a constraint of the form
(4) as a polyhedral second-order conic constraint.

Breaking (2) into polyhedral conic constraints allows us to exploit the implicit
polyhedral set for each term in a second-order cone constraint. Cuts obtained for
C in this way are linear in (x, y, t); however, they are nonlinear in the original
space of (x, y).

Our approach extends the successful polyhedral method for linear integer
programming where one studies the facial structure of simpler building blocks
to second-order conic integer programming. To the best of our knowledge such
an analysis for second-order conic mixed-integer sets has not been done before.
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3 Conic Mixed-Integer Rounding

For a mixed integer set X ⊆ Z
n × R

p, we use relax(X) to denote its continu-
ous relaxation in R

n × R
p obtained by dropping the integrality restrictions and

conv(X) to denote the convex hull of X . In this section we will describe the cuts
for conic mixed-integer programming, first on a simple case with a single integer
variable. Subsequently we will present the general inequalities.

3.1 The Simple Case

Let us first consider the mixed-integer set

S0 := {(x, y, w, t) ∈ Z × R
3
+ : | x + y − w − b | ≤ t} (6)

defined by a simple, yet non-trivial polyhedral second-order conic constraint
with one integer variable. The continuous relaxation relax(S0) has four extreme
rays: (1, 0, 0, 1), (−1, 0, 0, 1), (1, 0, 1, 0), and (−1, 1, 0, 0), and one extreme point:
(b, 0, 0, 0), which is infeasible for S0 if f := b−�b� > 0. It is easy to see that if f >
0, conv(S0) has four extreme points: (�b�, f, 0, 0), (�b�, 0, 0, f), (	b
, 0, 1 − f, 0)
and (	b
, 0, 0, 1 − f). Figure 1 illustrates S0 for the restriction y = w = 0.

Proposition 1. The simple conic mixed-integer rounding inequality

(1 − 2f)(x − �b�) + f ≤ t + y + w (7)

cuts off all points in relax(S0) \ conv(S0).

Observe that inequality (7) is satisfied at equality at all extreme points of
conv(S0). Proposition 1 can be proved by simply checking that every intersec-
tion of the hyperplanes defining S0 and (7) is one of the four extreme points of
conv(S0) listed above.

x	b
�b� b �b� − f
1−2f

t ≥
| x

− b |

t ≥| (1
− 2f

)(x
− �b�)

+
f |

t

1 − f

f

Fig. 1. Simple conic mixed-integer rounding cut
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The simple conic mixed-integer rounding inequality (7) can be used to derive
nonlinear conic mixed-integer inequalities for nonlinear conic mixed-integer sets.
The first observation useful in this direction is that the piecewise-linear conic
inequality

|(1 − 2f)(x − �b�) + f | ≤ t + y + w (8)

is valid for S0. See Figure 1 for the restriction y = w = 0.
In order to illustrate the nonlinear conic cuts, based on cuts for the polyhedral

second-order conic constraints (4), let us now consider the simplest nonlinear
second-order conic mixed-integer set

T0 :=
{
(x, y, t) ∈ Z × R × R :

√
(x − b)2 + y2 ≤ t

}
. (9)

The continuous relaxation relax(T0) has exactly one extreme point (x, y, t) =
(b, 0, 0), which is infeasible for T0 if b �∈ Z. Formulating T0 as

t1 ≥ |x − b| (10)

t ≥
√

t21 + y2, (11)

we write the piecewise-linear conic inequality (8) for (10). Substituting out the
auxiliary variable t1, we obtain the simple nonlinear conic mixed-integer round-
ing inequality √

((1 − 2f)(x − �b�) + f)2 + y2 ≤ t, (12)

which is valid for T0.

Proposition 2. The simple nonlinear conic mixed-integer rounding inequality
(12) cuts off all points in relax(T0) \ conv(T0).

Proof. First, observe that for x = �b� − δ, the constraint in (9) becomes t ≥√
(δ + f)2 + y2, and (12) becomes t ≥

√
(f − (1 − 2f)δ)2 + y2. Since (δ + f)2 −

(f − (1 − 2f)δ)2 = 4fδ(1 + δ)(1 − f) ≥ 0 for δ ≥ 0 and for δ ≤ −1, we see
that (12) is dominated by relax(T0) unless �b� < x < 	b
. When −1 < δ < 0
(i.e., x ∈ (�b�, 	b
)), 4fδ(1 + δ)(1 − f) < 0, implying that (12) dominates the
constraint in (9).

We now show that if (x1, y1, t1) ∈ relax(T0) and satisfies (12), then
(x1, y1, t1) ∈ conv(T0). If x1 �∈ (�b�, 	b
), it is sufficient to consider (x1, y1, t1) ∈
relax(T0) as (12) is dominated by relax(T0) in this case. Now, the ray R1 :=
{(b, 0, 0) + α(x1 − b, y1, t1) : α ∈ R+} ⊆ relax(T0). Let the intersections of
R1 with the hyperplanes x = �x1� and x = 	x1
 be (�x1�, ȳ1, t̄1), (	x1
, ŷ1, t̂1),
which belong to T0. Then (x1, y1, t1) can be written as a convex combination of
points (�x1�, ȳ1, t̄1), (	x1
, ŷ1, t̂1); hence (x1, y1, t1) ∈ conv(T0).

On the other hand, if x1 ∈ (�b�, 	b
), it is sufficient to consider (x1, y1, t1)
that satisfies (12), since (12) dominates the constraint in (9) for x ∈ [�b�, 	b
].
If f = 1/2, (x1, y1, t1) is a convex combination of (�b�, y1, t1) and (	b
, y1, t1).
Otherwise, all points on the ray R2 := {(x0, 0, 0)+α(x1 −x0, y1, t1) : α ∈ R+},
where x0 = �b� − f

1−2f , satisfy (12). Let the intersections of R2 with the
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hyperplanes x = �b� and x = 	b
 be (�b�, ȳ1, t̄1), (	b
, ŷ1, t̂1), which belong to
T0. Note that the intersections are nonempty because x0 �∈ [�b�, 	b
]. Then we
see that (x1, y1, t1) can be written as a convex combination of (�b�, ȳ, t̄) and
(	b
, ŷ, t̂). Hence, (x1, y1, t1) ∈ conv(T0) in this case as well. �


Proposition 2 shows that the curved convex hull of T0 can be described us-
ing only two second-order conic constraints. The following example illustrates
Proposition 2.

Example 1. Consider the second-order conic set given as

T0 =

⎧
⎨

⎩(x, y, t) ∈ Z × R × R :

√(
x − 4

3

)2

+ (y − 1)2 ≤ t

⎫
⎬

⎭ .

The unique extreme point of relax(T0) (4
3 , 1, 0) is fractional. Here �b� = 1 and

f = 1
3 ; therefore,

conv(T0) =

⎧
⎨

⎩(x, y, t) ∈ R
3 :

√(
x − 4

3

)2

+ (y − 1)2 ≤ t,

√
1

9
x2 + (y − 1)2 ≤ t

⎫
⎬

⎭ .

We show the inequality
√

1
9x2 + (y − 1)2 ≤ t and the region it cuts off in

Figure 2. Observe that the function values are equal at x = 1 and x = 2 and the
cut eliminates the points between them.

Fig. 2. Nonlinear conic integer rounding cut
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3.2 The General Case

In this section we present valid inequalities for the mixed-integer sets defined by
general polyhedral second-order conic constraints (4). Toward this end, let

S := {x ∈ Z
n
+, y ∈ R

p
+, t ∈ R : t ≥ |ax + gy − b|} .

We refer to the inequalities used in describing S as the trivial inequalities. The
following result simplifies the presentation.

Proposition 3. Any non-trivial facet-defining inequality for conv(S) is of the
form γx + πy ≤ π0 + t. Moreover, the following statements hold:

1. πi < 0 for all i = 1, . . . , p;
2. πi

πj
=

∣∣∣ gi

gj

∣∣∣ for all i, j = 1, . . . , p.

Hence it is sufficient to consider the polyhedral second-order conic constraint
∣∣ax + y+ − y− − b

∣∣ ≤ t, (13)

where all continuous variables with positive coefficients are aggregated into y+ ∈
R+ and those with negative coefficients are aggregated into y− ∈ R+ to represent
a general polyhedral conic constraint of the form (4).

Definition 1. For 0 ≤ f < 1 let the conic mixed-integer rounding function
ϕf : R → R be

ϕf (v) =
{

(1 − 2f)n − (v − n), if n ≤ v < n + f,
(1 − 2f)n + (v − n) − 2f, if n + f ≤ v < n + 1 .

n ∈ Z (14)

The conic mixed-integer rounding function ϕf is piecewise linear and continuous.
Figure 3 illustrates ϕf .

Lemma 1. The conic mixed-integer rounding function ϕf is superadditive on R.

Theorem 1. For any α �= 0 the conic mixed-integer rounding inequality

n∑

j=1

ϕfα(aj/α)xj − ϕfα(b/α) ≤ (t + y+ + y−)/|α|, (15)

where fα = b/α − �b/α�, is valid for S. Moreover, if α = aj and b/aj > 0 for
some j ∈ {1, . . . , n}, then (15) is facet-defining for conv(S).

Proof. (Sketch) It can be shown that ϕfaj
is the lifting function of inequality

(1 − 2f)(x − �b�) + f ≤ (t + y+ + y−)/|aj | (16)

for the restriction ∣∣ajxj + y+ − y− − b
∣∣ ≤ t
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of (13) with xi = 0 for i �= j. Then the validity as well as the facet claim follows
from superadditive lifting [3] of (16) with xi for i �= j. For α �= 0 validity follows
by introducing an auxiliary integer variable xo with coefficient α and lifting
inequality ∣∣αxo + y+ − y− − b

∣∣ ≤ t

with all xi, i = 1, . . . , n and then setting xo = 0. �


Remark 1. The continuous relaxation relax(S) has at most n fractional extreme
points (xj , 0, 0, 0) of the form xj

j = b/aj > 0, and xj
i = 0 for all i �= j, which

are infeasible if b/aj �∈ Z. It is easy to check that conic mixed-integer rounding
inequalities with α = aj are sufficient to cut off all fractional extreme points
(xj , 0, 0, 0) of relax(S) as for xj

i = 0 inequality (15) reduces to (7).

v

ϕf(v)

1

1 − 2f

f

−f

Fig. 3. Conic mixed-integer rounding function.

Next we show that mixed-integer rounding (MIR) inequalities [21, 20] for
linear mixed-integer programming can be obtained as conic MIR inequalities.
Consider a linear mixed-integer set

ax − y ≤ b, x ≥ 0, y ≥ 0, x ∈ Z
n, y ∈ R (17)

and the corresponding valid MIR inequality

∑

j

(
�aj� +

(fj − f)+

1 − f

)
xj − 1

1 − f
y ≤ �b�, (18)

where fj := aj − �aj� for j = 1, . . . , n and f := b − �b�.
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Proposition 4. Every MIR inequality is a conic MIR inequality.

Proof. We first rewrite inequalities ax − y ≤ b and y ≥ 0, in the conic form

−ax + 2y + b ≥ |ax − b|

and then split the terms involving integer variables x on the right hand side into
their integral and fractional parts as

−ax+2y+b ≥

∣∣∣∣∣∣

⎛

⎝
∑

fj≤f

�aj�xj +
∑

fj>f

	aj
xj

⎞

⎠ +
∑

fj≤f

fjxj −
∑

fj>f

(1 − fj)xj − b

∣∣∣∣∣∣
.

Then, since z =
∑

fj≤f�aj�xj +
∑

fj>f	aj
xj is integer and y+ =
∑

fj≤f fjxj ∈
R+ and y− =

∑
fj>f (1 − fj)xj ∈ R+, we write the simple conic MIR inequal-

ity (8)

−ax + 2y + b +
∑

fj≤f

fjxj +
∑

fj>f

(1 − fj)xj

≥ (1 − 2f)

⎛

⎝
∑

fj≤f

�aj�xj +
∑

fj>f

	aj
xj − �b�

⎞

⎠ + f .

After rearranging this inequality as

2y+2(1−f)�b� ≥
∑

fj≤f

((1−2f)�aj�−fj+aj)xj+
∑

fj>f

((1−2f)	aj
−(1−fj)+aj)xj

and dividing it by 2(1 − f) we obtain the MIR inequality (18). �


Example 2. In this example we illustrate that conic mixed-integer rounding cuts
can be used to generate valid inequalities that are difficult to obtain by Chvátal-
Gomory (CG) integer rounding in the case of pure integer programming. It is
well-known that CG rank of the polytope given by inequalities

−kx1 + x2 ≤ 1, kx1 + x2 ≤ k + 1, x1 ≤ 1, x1, x2 ≥ 0

for a positive integer k equals exactly k [20]. Below we show that the non-trivial
facet x2 ≤ 1 of the convex hull of integer points can be obtained by a single
application of the conic MIR cut.

Writing constraints −kx1 + x2 ≤ 1 and kx1 + x2 ≤ k + 1 in conic form, we
obtain ∣∣∣∣kx1 − k

2

∣∣∣∣ ≤ k

2
+ 1 − x2 . (19)

Dividing the conic constraint (19) by k and treating 1/2 + 1/k − x2/k as a
continuous variable, we obtain the conic MIR cut

1
2

≤ 1
2

+
1
k

− x2

k

which is equivalent to x2 ≤ 1.
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Conic Aggregation

We can generate other cuts for the second order conic mixed integer set C
by aggregating constraints (4) in conic form: for λ, μ ∈ R

m
+ , we have λ′t ≥

λ′(Ax + Gy − b), and μ′t ≥ μ′(−Ax − Gy + b). Writing these two inequalities in
conic form, we obtain

(
λ + μ

2

)′
t +

(
μ − λ

2

)′
(Ax + Gy) +

(
λ − μ

2

)′
b

≥
∣∣∣∣∣

(
μ − λ

2

)′
t +

(
λ + μ

2

)′
(Ax + Gy) −

(
λ + μ

2

)′
b

∣∣∣∣∣ .

(20)

Then we can write the corresponding conic MIR inequalities for (20) by treating
the left-hand-side of inequality (20) as a single continuous variable. Constraint
(20) allows us to utilize multiple polyhedral conic constraints (4) simultaneously.

4 Preliminary Computational Results

In this section we report our preliminary computational results with the conic
mixed-integer rounding inequalities. We tested the effectiveness of the cuts on
SOCMIP instances with cones Q2, Q25, and Q50. The coefficients of A, G, and
b were uniformly generated from the interval [0,3]. All experiments were per-
formed on a 3.2 GHz Pentium 4 Linux workstation with 1GB main memory using
CPLEX1 (Version 10.1) second-order conic MIP solver. CPLEX uses a barrier
algorithm to solve SOCPs at the nodes of a branch-and-bound algorithm.

Conic MIR cuts (15) were added only at the root node using a simple sep-
aration heuristic. We performed a simple version of conic aggregation (20) on
pairs of constraints using only 0 − 1 valued multipliers λ and μ, and checked for
violation of conic MIR cut (15) for each integer variable xj with fractional value
for the continuous relaxation.

In Table 1 we report the size of the cone (m), number (n) of integer vari-
ables in the formulation, the number of cuts, the integrality gap (the percentage
gap between the optimal solution and the continuous relaxation), the number
of nodes explored in the search tree, and CPU time (in seconds) with and with-
out adding the conic mixed-integer rounding cuts (15). Each row of the table
represents the averages for five instances. We have used the default settings of
CPLEX except that the primal heuristics were turned off. CPLEX added a small
number of MIR cuts (18) to the formulations in a few instances.

We see in Table 1 the conic MIR cuts have been very effective in closing the inte-
grality gap. Most of the instances had 0% gap at the root node after adding the cuts
and were solved without branching. The remaining ones were solved within only a
few nodes. These preliminary computational results are quite encouraging on the
positive impact of conic MIR cuts on solving conic mixed-integer programs.

1 CPLEX is a registered trademark of ILOG, Inc.
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Table 1. Effectiveness of conic MIR cuts (15)

without cuts with cuts
m n % gap nodes time cuts % gap nodes time

100 95.8 19 0 87 0.4 1 0
200 90.8 29 0 192 0.6 1 0

2 300 90.3 38 0 248 0.6 1 0
400 85.2 62 0 322 0.0 0 0
500 86.4 71 0 349 0.7 1 0

100 8.6 10 0 35 2.6 2 0
200 41.2 80 2 101 4.5 12 1

25 300 46.1 112 4 20 0.0 0 2
400 68.3 5951 295 99 17.8 63 12
500 74.6 505 24 116 3.4 6 3

100 24.5 7 1 42 0.0 0 1
200 51.3 67 6 44 0.0 0 1

50 300 52.6 105 13 51 3.2 3 2
400 55.6 158 20 49 5.4 7 5
500 66.9 233 43 62 1.3 2 3
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for semidefinite programming. Optimization Methods and Software, 11/12:545–
581, 1999.

[33] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of
SDPA 6.0 (SemiDefinite Programming Algorithm 6.0). Optimization Methods and
Software, 18:491–505, 2003.



Sequential-Merge Facets for Two-Dimensional

Group Problems�

Santanu S. Dey and Jean-Philippe P. Richard

School of Industrial Engineering, Purdue University,
315 N. Grant Street, West Lafayette, IN 47906-2023

Abstract. In this paper, we show how to generate strong cuts for unstruc-
turedmixed integer programs through the study of high-dimensional group
problems. We present a new operation that generates facet-defining inequ-
alities for two-dimensional groupproblemsby combining two facet-defining
inequalities of one-dimensional group problems. Because the procedure al-
lows the use of a large variety of one-dimensional constituent inequalities, it
yields large families of new cutting planes for MIPs that we call sequential-
merge inequalities. We show that sequential-merge inequalities can be used
to generate inequalities whose continuous variable coefficients are stronger
than those of one-dimensional cuts and can be used to derive the three-
gradient facet-defining inequality introduced by Dey and Richard [4].

1 Introduction

Over the last decade, a vast amount of research has been directed towards gener-
ating strong general purpose cutting planes for unstructured integer programs;
see Marchand et al. [13] and Johnson et al. [12]. One approach to generate
strong cutting planes is to use constraints of the problems one at a time. This
approach has proven to be successful in many cases and cuts generated from
single constraint relaxations of MIPs are currently used in all commercial MIP
solvers. It seems however that an option to generate stronger cutting planes is to
use information from multiple constraints concurrently. In this paper, we show
how to generate such strong cuts through the study of two-dimensional group
relaxations.

In a series of papers Gomory [6], Gomory and Johnson [7, 8, 9], Gomory et
al. [10], and Johnson [11] showed how to use group relaxations to generate cutting
planes for general Integer Programs. Although their theory applies to problems
with multiple constraints, most research has considered only one-dimensional
group relaxations; see Gomory and Johnson [7, 8, 9], Gomory et al. [10], Aráoz
et al. [2], Miller et al. [14], Richard et al. [15], and Dash and Günlük [3]. There
are only a few papers that focus on the systematic study of group problems
with multiple constraints. In [11], Johnson presents general theoretical results
for group relaxations of Mixed Integer Programs with multiple constraints. Re-
cently, Dey and Richard [4] introduced tools to study two-dimensional infinite
� This research was supported by NSF Grant DMI-03-48611.
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group problems and introduced two families of facet-defining inequalities for
two-dimensional group relaxations. We note however that very few families of
facet-defining inequalities are known for two-dimensional group problems. Fur-
ther, Gomory and Johnson [9] recently write about strong inequalities of two-
dimensional group problems that

“There are reasons to think that such inequalities would be stronger
since they deal with the properties of two rows, not one. They can also
much more accurately reflect the structure of the continuous variables.”

Similarly, in a recent review of non-traditional approaches to Mixed Integer
Programming, Aardal, Weismantel and Wolsey [1] mention that:

“Given the recent computational interest in using Gomorys fractional
cuts, mixed integer rounding inequalities and Gomorys mixed integer
cuts, this reopens questions about the possible use of alternative subad-
ditive functions to generate practically effective cutting planes. It is also
natural to ask whether interesting higher dimensional functions can be
found and put to use...”

In this paper, we present a general procedure for generating large fami-
lies of facet-defining inequalities for two-dimensional infinite group problems.
This procedure in turn yields a large number of new cutting planes for general
MIPs. Although Dey and Richard [4] already showed that a specific aggrega-
tion scheme yields facet-defining inequalities for two-dimensional group prob-
lems from facet-defining inequalities of the one-dimensional group problem, the
procedure presented in this paper shows different, richer relations between facets
of one-dimensional and two-dimensional group problems.

In Sect. 2 we introduce and present fundamental results and concepts about
the group problem. We also describe its relation to lifting. In Sect. 3, we present
a sequential-merge procedure that generates inequalities for the two-dimensional
group problem by combining inequalities for the one-dimensional group problem
in a specific fashion. We also show that the procedure shares some relationship
with the two-step MIR procedure of Dash and Günlük [3] and can be used to
derive the family of three-gradient facet of Dey and Richard [4]. In Sect. 4 we
show that, under mild conditions, the procedure presented in Sect. 3 generates
facets for the two-dimensional infinite group problem. We conclude in Sect. 5
with directions of future research.

2 Group Problem and Lifting-Space

In this section, we present important results about group problems that were
introduced and proven by Gomory and Johnson [9]. We then introduce the notion
of valid and facet-defining inequalities for group problems and discuss how such
inequalities can be derived from certain lifting functions. We denote by I

m the
group of real m-dimensional vectors where the group operation is performed as
addition modulo 1 componentwise, i.e., I

m = {(x1, x2...xm) | 0 ≤ xi < 1 ∀1 ≤
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i ≤ m}. In particular, the symbol + is used to denote both the addition in R
m

and in I
m. We refer to the vector (0, 0, ..., 0) ∈ I

m as o. Next we give a formal
definition of the group problem.

Definition 1 ([11]). For r ∈ I
m with r �= o, the group problem PI(r, m) is the

set of functions t : I
m → R such that

1. t has a finite support, i.e., t(u) > 0 for a finite subset of I
m.

2. t(u) is a non-negative integer for all u ∈ I
m,

3.
∑

u∈Im ut(u) = r.

Next we define the concept of a valid inequality for the group problem.

Definition 2 ([11]). A function φ : I
m → R+ is said to define a valid inequality

for PI(r,m) if φ(o) = 0, φ(r) = 1 and
∑

u∈Im φ(u)t(u) ≥ 1, ∀t ∈ PI(r, m).

In the remainder of this paper, we will use the terms valid function and valid
inequality interchangeably. For a vector a ∈ R

m, define P(a) = (a1(mod1),
...am(mod1)).

It can be verified that given m rows of the simplex tableau
∑n

i=1 aixi = b of
an integer program P , the inequality

∑n
i=1 φ(P(ai))xi ≥ 1 is valid for P , if φ is

valid for PI(r, m), and P(b) = r; see Gomory and Johnson [9]. We next describe
necessary conditions for valid inequalities φ to be strong.

Definition 3 ([7]). A valid inequality φ for PI(r, m) is said to be subadditive
if φ(u) + φ(v) ≥ φ(u + v), ∀u, v ∈ I

m.

Gomory and Johnson [7] prove that all valid functions of PI(r, m) that are not
subadditive are dominated by valid subadditive functions of PI(r, m). Therefore
it is sufficient to study the valid subadditive functions of PI(r, m). Next we
introduce a definition to characterize strong inequalities.

Definition 4 ([11]). A valid inequality φ is minimal for PI(r, m) if there does
not exist a valid function φ∗ for PI(r, m) different from φ such that φ∗(u) ≤ φ(u)
∀u ∈ I

m.

We next present a result characterizing minimal functions. This result is proven
in Gomory and Johnson [7] and Johnson [11].

Theorem 1 ([7]). If φ is a valid function for PI(r, m) and φ(u)+φ(r−u) = 1
∀u ∈ I

m then φ is minimal. �

Minimal inequalities for PI(r, m) are strong because they are not dominated by
any single valid inequality. However, there is a stronger class of valid inequalities
that Gomory and Johnson refer to as facet-defining inequalities. Next, we present
the definition of facet-defining inequality in the context of PI(r, 2).

Definition 5 (Facet). Let P (φ) = {t ∈ PI(r, 2)|
∑

u∈I2,t(u)>0 φ(u)t(u) = 1}.
We say that an inequality φ is facet-defining for PI(r, 2) if there does not exist
a valid function φ∗ such that P (φ∗) � P (φ).
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Gomory and Johnson [8] proved that all facet-defining inequalities are minimal
inequalities. To prove that a function is facet-defining, Gomory and Johnson [9]
introduced a tool that they refer to as Facet Theorem. We describe the Facet
Theorem in Theorem 2 and introduce the necessary definitions next.

Definition 6 (Equality Set, [9]). For each point u ∈ I
2, we define g(u) to

be the variable corresponding to the point u. We define the set of equalities of φ
to be the system of equations g(u) + g(v) = g(u + v) for all u, v ∈ I

2 such that
φ(u) + φ(v) = φ(u + v). We denote this set as E(φ).

Theorem 2 (Facet Theorem, [9]). If φ is minimal and subadditive, and if φ
is the unique solution of E(φ) then φ is facet-defining. �

Currently all known facets for infinite group problems are piecewise linear func-
tions. A function φ is defined to be piecewise linear, if I

2 can be divided into
polytopes such that the function φ is linear over each polytope; see Gomory and
Johnson [9] and Dey and Richard [4]. Further, Gomory and Johnson [9] conjec-
tured that all facets of infinite group problems are piecewise linear. Therefore,
when introducing tools to prove that inequalities are facet-defining, it is usual to
assume that the inequality under study is piecewise linear. Next we present in
Theorem 4 a result regarding the continuity of functions of PI(r, 2) that is used
in the proof of the Sequential-Merge Theorem of Sect. 4. Theorem 4 is proven
using the following preliminary result.

Theorem 3 ([5]). If a valid function φ for PI(r, m) satisfies the following con-
ditions

1. φ(x) + φ(y) ≥ φ(x + y) ∀x, y ∈ I
m,

2. limh↓0
φ(hd)

h exists for any d ∈ R
m,

then φ is continuous. �

Theorem 4. Let φ be a minimal piecewise linear and continuous function for
PI(r, 2). If ψ is a valid function for PI(r, 2) such that E(φ) ⊆ E(ψ) then ψ is
continuous. �

Generating strong inequalities for group problems is often difficult. Richard et
al. [15] showed that lifting can be used to derive valid and facet-defining inequali-
ties for one-dimensional group problems. The family of facet-defining inequalities
we present here is also easier to derive using lifting functions. In the remainder of
this section, given any x ∈ I

m, we denote x̃ as the element of R
m with the same

numerical value as x. Similarly, for x ∈ R
m such that 0 ≤ xi < 1 ∀1 ≤ i ≤ m,

we denote ẋ to be the element of I
m such that ˜̇x = x.

Definition 7 (Lifting-Space Representation). Given a valid inequality φ
for PI(r, m), we define the lifting-space representation of φ as [φ]r : R

m → R

where

[φ]r(x) =
m∑

i=1

xi −
m∑

i=1

r̃iφ(P(x)).
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To illustrate the idea that motivates this definition, we discuss the case where
m = 1. Consider a row of the simplex tableau

∑n
i=1 aixi = a0 of an integer pro-

gram, where ai ∈ R, the fractional part of a0 is r �= 0, and xi are nonnegative in-
teger variables. If φ is a valid function for PI(r, 1) we have that

∑n
i=1 φ(ai)xi ≥ 1

is a valid cut for the original IP. Multiplying this cut with r and then subtracting
it from the original row we obtain

∑n
i=1[φ]r(ai)xi ≤ [φ]r(a0). One well-known

example of the relation between the group-space and the lifting-space represen-
tation of an inequality is that of Gomory Mixed Integer Cut (GMIC) and the
Mixed Integer Rounding (MIR) inequality. It can be easily verified that the form
in which MIR is presented is [GMIC]r. Thus, intuitively, the construction of the
lifting-space representation given in Definition 7 is a generalization of the relation
that GMIC shares with MIR to other group cuts of one- and higher-dimensions.

Propositions 1 and 2 are generalizations of results from Richard et al. [15].

Proposition 1. If φ is valid function for PI(r, m),

1. [φ]r(x + ei) = [φ]r(x) + 1, where ei is the ith unit vector of R
m. We say that

[φ]r is pseudo-symmetric.
2. [φ]r is superadditive iff φ is subadditive. �

Motivated by Definition 7, we define next the inverse operation to [φ]r(x).

Definition 8 (Group-Space Representation). Given a superadditive func-
tion ψ : R

m → R which is pseudo-symmetric, we define the group-space repre-
sentation of ψ as [ψ]−1

r : I
m → R where [ψ]−1

r (ẋ) =
∑ m

i=1 xi−ψ(x)∑
m
i=1 ri

.

In Fig. 1, a three-gradient facet [4] of the two-dimensional group problem is
shown in its group-space and lifting-space representation.

Proposition 2. A valid group-space function g : I
m → R is minimal iff [g]r is

superadditive and [g]r(x) + [g]r(r − x) = 0. �

3 Sequential-Merge Inequalities for Two-Dimensional
Group Problems

In this section, we introduce an operation that produces valid inequalities for
PI(r, 2) from valid inequalities for PI(r′, 1). To simplify the notation, we denote
x̃ and ẋ by x since the symbol is clear from the context.

Definition 9 (Sequential-merge inequality). Assume that g and h are valid
functions for PI(r1, 1) and PI(r2, 1) respectively. We define the sequential-merge
of g and h as the function g♦h : I

2 → R+ where

g♦h(x1, x2) = [[g]r1(x1 + [h]r2(x2))]−1
r (x1, x2) (1)

and r = (r1, r2). In this construction, we refer to g as the outer function and to
h as the inner function.

Figure 2 gives an example of a sequential-merge inequality that is facet-defining
of PI((r1, r2), 2).
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Fig. 1. Group-space and lifting-space representations of a three-gradient facet of PI(r,2)

Fig. 2. Examples of sequential-merge operation

We first observe that there is an intuitive interpretation to the construction
presented in Definition 9. Given two rows of a simplex tableau, we first gener-
ate a cutting plane in the lifting-space of the first row. This cutting plane is
added to the second row of the tableau to generate a combined inequality. Fi-
nally, a one-dimensional cutting plane is generated from the combined inequality.
Proposition 4 states that the group-space representation of inequalities gener-
ated using this procedure are valid inequalities for PI(r, 2) under the condition
that the outer function is nondecreasing in the lifting-space.

Before we present this result, we give a formula for the sequential-merge in-
equality in terms of the inner and outer functions in their group-space represen-
tations.

Proposition 3. g♦h(x1, x2) = r2h(x2)+r1g(P(x1+x2−r2h(x2)))
r1+r2

. �
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Using Proposition 3 it is easy to verify that the sequential-merge ♦ operator
is non-commutative. In the next proposition, we record that sequential-merge
inequalities are valid for the two-dimensional group problem.

Proposition 4. If g, h are valid functions for PI(r1, 1) and PI(r2, 1) respec-
tively, and [g]r1 is nondecreasing then g♦h is a valid function for PI(r, 2) where
r ≡ (r1, r2). �

In Fig. 3 we illustrate all the different types of valid inequalities that can be
obtained using GMIC, a two-step MIR and a three-slope facet of the one-
dimensional group problem as inner and outer functions in the sequential-merge
construction. These inequalities are valid for PI(r, 2) since all the three build-
ing functions used have non-decreasing lifting-space representations. It can be
proven that the inequalities obtained in this way are strong.

Proposition 5. If g and h are minimal and [g]r1 is nondecreasing, then g♦h is
minimal. �

We next give two examples of well-known valid inequalities for group problems
that can be obtained using the sequential-merge procedure.

Fig. 3. Examples of sequential-merge inequalities for PI(r, 2)
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Proposition 6. Consider κ(x) = [[ξ]r(x + [ξ]r(x))]−1
(r,r)(x, x), where ξ is the

GMIC, i.e., κ(x) is the sequential-merge inequality obtained using the same con-
straint twice and using GMIC as both the inner and outer function. Then κ(x)
is a two-step MIR function from Dash and Günlük [3]. �
We observe that sequential-merge procedure shares some relations with the two-
step MIR procedure of Dash and Günlük [3]. An important difference however
is that the sequential-merge procedure uses in general two different rows of a
simplex tableau. Also the two-step MIR procedure only uses MIR inequalities
as constituent functions.

We describe in the next proposition another family of facets for the two-
dimensional group problem that can be obtained using the sequential-merge
procedure.

Proposition 7. Consider ρ(x, y) = [[ξ]r(x + [ξ]r(y))]−1
(r1,r2)

(x, y), where ξ is the
GMIC, i.e. ρ(x, y) is the sequential-merge inequality obtained using GMIC as
both the inner and outer function. This inequality is the three-gradient facet-
defining inequality for P ((r1, r2), 2) presented in Dey and Richard [4]. �

4 Facet-Defining Sequential-Merge Inequalities

In this section, we derive conditions under which sequential-merge inequalities
are facet-defining for the two-dimensional group problem PI(r, 2). We begin by
studying some geometric properties of g♦h.

Definition 10. We define the set of points {(x, y) | x = (−y + r2h(y))(mod1)}
as the support of the function g♦h. We denote the support of g♦h as S(g♦h).

It is easy to verify that given a value of y, there is an unique value of x such
that (x, y) ∈ S(g♦h).

In Fig. 4 we illustrate the support of a function g♦h for the case where the
inner function is the three-slope facet defining inequality of Gomory and John-
son [9] with right-hand-side of 0.2. The support of g♦h is important because

Fig. 4. Example of S(g♦h) where h is the three-slope facet of Gomory and Johnson [9]
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it contains all the equalities that h satisfies. In particular, the next proposition
states that for every equality that h satisfies, there exists a related equality that
g♦h satisfies, which only involves points of its support.

Proposition 8. Let g and h be valid subadditive inequalities and let [g]r1 be
nondecreasing. If v1, v2 ∈ I

1 are such that h(v1) + h(v2) = h(v1 + v2) and
(u1, v1), (u2, v2) ∈ S(g♦h) then

1. (u1 + u2, v1 + v2) ∈ S(g♦h).
2. g♦h(u1, v1) + g♦h(u2, v2) = g♦h(u1 + u2, v1 + v2) �

Definition 11. Let φ be a valid continuous function for PI(r, 1). We say E(φ)
is unique up to scaling if for any other continuous function φ′ : I

1 → R+,
E(φ′) ⊇ E(φ) implies that φ′ = cφ for c ∈ R.

Intuitively, because the function g♦h has the equalities of h on its support,
E(g♦h) will have an unique solution on its support up to scaling whenever E(h)
has a unique solution up to to scaling. This key result is used in the proof of the
Sequential-Merge Theorem 5 to show that E(g♦h) is unique and therefore show
that g♦h is facet-defining.

Proposition 9. Let g, h be piecewise linear and continuous valid inequalities for
PI(r1, 1) and PI(r2, 1) respectively and assume that E(h) has an unique solution
up to scaling. Let ψ be a valid function for PI(r, 2) such that E(ψ) ⊇ E(g♦h),
then the value of ψ(u1, u2) = cg♦h(u1, u2) = cr2

r1+r2
h(u2) ∀(u1, u2) ∈ S(g♦h)

where c is a nonnegative real number. �

Although Proposition 9 establishes that E(g♦h) has an unique solution up to
scaling on its support, it falls short of proving that E(g♦h) has an unique solution
over I

2. Therefore, we identify in Propositions 10 and 11 some equalities that
g♦h satisfies that help in extending the result of Proposition 9 to I

2.

Proposition 10. Let g and h be valid functions for PI(r1, 1) and PI(r2, 1)
respectively such that [g]r1 is nondecreasing, then g♦h(x1, y1) + g♦h(δ, 0) =
g♦h(x1 + δ, y1) ∀δ ∈ I

1 and ∀(x1, y1) ∈ S(g♦h). �

Proposition 11. Let g and h be valid functions for PI(r1, 1) and PI(r2, 1) re-
spectively and assume that [g]r1 and [h]r2 are nondecreasing functions. Then
g♦h(x1, x2) = x1+x2

r1+r2
for 0 ≤ x1 ≤ r1, and 0 ≤ x2 ≤ r2. Furthermore

g♦h(u1, v1) + g♦h(u2, v2) = g♦h(u1 + u2, v1 + v2) whenever u1, u2, u1 + u2 ≤ r1
and v1, v2, v1 + v2 ≤ r2. �

Theorem 5 (Sequential-Merge Theorem). Assume that g and h are con-
tinuous, piecewise linear, facet-defining inequalities of PI(r1, 1) and PI(r2, 1)
respectively. Assume also that E(g) and E(h) are unique up to scaling and
[g]r1 and [h]r2 are nondecreasing. Then g♦h is a facet-defining inequality for
PI((r1, r2), 2). �
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We briefly present the outline of the proof of the above theorem. We first as-
sume by contradiction that g♦h is not facet-defining. Then using Theorem 2 we
conclude that there exists a function φ′ that is different from g♦h and satisfies
all the equalities of g♦h. Using Theorem 4 we can prove that φ′ is continuous.
Using Proposition 9 we show that the function φ′ is a scalar multiple times g♦h
over S(g♦h). Finally, we use Proposition 10 and Proposition 11 and the fact that
E(g) is unique up to scaling to show that the value of this scalar is 1 and that
φ′(u) = g♦h(u) ∀u ∈ I

2, which is the required contradiction.
In Theorem 5, we assumed the technical condition that E(h) and E(g) are

unique up to scaling. This assumption is not very restrictive as it is satisfied
by all known facet-defining inequalities for PI(r, 1). The condition that [g]r1

and [h]r2 are nondecreasing on the other hand is more restrictive since there
exists facet-defining inequalities of PI(r, 1) that do not satisfy this condition.
Finally note that, Theorem 5 implies that all the functions illustrated in Fig. 3
are facet-defining for the two-dimensional group problem.

We now extend the family of inequalities obtained in Theorem 5 to the mixed
integer case. To this end we use a result from Johnson [11] which states that the
coefficient of a continuous variable in a minimal group cut φ can be found as
μφ(u) = limh→0+

φ(P(hu))
h where u ∈ R

2 is the column vector of coefficients of
this continuous variable in the simplex tableau.

The following proposition describes how the sequential-merge facets obtained
for PI(r, 2) can be extended into two-dimensional mixed integer group cuts.

Proposition 12. Let c+
g = limε→0+

g(ε)
ε = 1

r1
, c−g = limε→0+

g(1−ε)
ε , c+

h =

limε→0+
h(ε)

ε = 1
r2

and c−h = limε→0+
h(1−ε)

ε . The coefficients of the continuous
variables for g♦h are given by

μg♦h(u1, u2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1+u2
r1+r2

u1 ≥ 0, u2 ≥ 0

u2−r1c−
g (u1)

r1+r2
u1 < 0, u2 ≥ 0

−r2c−
h u2+r1c−

g (−u1−u2−r2c−
h u2)

r1+r2
u1 ≤ 0, u2 ≤ 0

u1+u2
r1+r2

{
u1 > 0, u2 < 0
u1 + u2 + r2c

−
h u2 > 0

−r2c−
h u2+r1c−

g (−u1−u2−r2c−
h u2)

r1+r2

{
u1 > 0, u2 < 0
u1 + u2 + r2c

−
h u2 ≤ 0

(2)

�
Next we illustrate on an example how the sequential-merge procedure can be
applied to mixed integer programs.

Example 1. Consider the following mixed integer set

7
17

x − 7
17

y ≤ 154
85

(3)
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7
17

x +
10
17

y ≤ 359
170

(4)

x, y ∈ Z+. (5)

We introduce non-negative slack variables s1 and s2 and perform a few simplex
iterations to obtain

x + 1.4286s1 + s2 = 4.7
y − s1 + s2 = 0.3.

Using Proposition 12 and using GMIC as both the inner and outer functions
we obtain the sequential-merge cut 0.4286s1 + 2s2 ≥ 1 which is equivalent to
x + y ≤ 4. It can easily be verified that this inequality is facet-defining for the
convex hull of solutions to (3), (4) and (5).

Moreover the two GMICs generated from the individual rows are 2.048s1 +
1.4286s2 ≥ 1 and 1.4286s1 + 3.3333s2 ≥ 1 which are equivalent to x ≤ 4 and
10x + 7y ≤ 44. It can be verified that these inequalities are not facet-defining
for the convex hull of solutions to (3), (4) and (5).

It can be seen from Proposition 12 that the sequential-merge inequalities yield
very diverse coefficients for continuous variables. To understand the strength
of the continuous coefficients in sequential-merge inequalities we consider the
following general example.

Example 2. Consider a continuous variable with u1 > 0, u2 < 0, u1 + u2 +
r2c

−
h u2 = 0. The coefficient of this continuous variable in g♦h is r2

r1+r2
(−u2c

−
h ).

If the group cut h was used to generate a cut from the second constraint alone, the
coefficient of the continuous variable would have been −u2c

−
h > r2

r1+r2
(−u2c

−
h ).

Similarly, if the group cut g was derived using the first constraint alone, the coeffi-
cient of the continuous variable would have been 1

r1
u1. Since u1+u2+r2c

−
h u2 = 0

the coefficient of the continuous variable using g♦h, is r2
r1+r2

(−u2c
−
h ) = u1+u2

r1+r2
<

1
r1

u1 as u2 < 0. Therefore in this case the continuous coefficients generated us-
ing the two different cuts g and h individually will be strictly weaker than those
generated using g♦h.

We conclude from Example 2 that if both the inner and outer functions used in
the sequential-merge procedure are GMICs then the coefficient generated for the
continuous variable is stronger than the coefficient generated using each of the
individual group cuts when the column corresponding to the continuous vari-
able is (u1, u2) with u1 > 0, u2 < 0, u1 + u2 + r2c

−
h u2 = 0 (i.e., the coefficients

of the sequential-merge inequalities are not dominated by the GMIC). This re-
sult is significant because it can be proven that GMIC generates the strongest
possible coefficients for continuous variables among all facets of one-dimensional
group problems. We note that this result was numerically observed for the three-
gradient facet in Dey and Richard [4].

Note also that although the above discussion was based on the specific case
where u1 > 0, u2 < 0 and u1 + u2 + r2c

−
h u2 = 0, there exists a large range of
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continuous variables coefficient for which the sequential-merge procedure yields
inequalities whose coefficients are not dominated by the continuous coefficient
of the one-dimensional group cuts derived from individual rows.

5 Conclusion

In this paper we presented a general procedure that produces a wide array of
facet-defining inequalities for two-dimensional group problems. We showed that,
under very general conditions, these inequalities are facet-defining. These cuts
illustrate that strong coefficients for continuous variables can be found by con-
sidering group relaxations with multiple constraints. In particular, it is possible
to obtain inequalities that are not dominated by group cuts generated from in-
dividual constraints. Sequential-merge inequalities are also interesting because
they show strong relations between facet-defining inequalities of one-dimensional
and two-dimensional group problems.

A few important theoretical and practical questions arise from this paper.
First we observe that all the known facet-defining inequalities for the two-
dimensional group problem obtained to date are derived either using aggrega-
tion [4] or using the sequential-merge procedure. This is an interesting character-
ization of a subset of facets of the two-dimensional group problem. However this
implies that all known facet-defining inequalities of the two-dimensional prob-
lem are tightly related to facet-defining inequalities of the one-dimensional group
problem. An interesting open question is that of finding a family of group cuts
for the two-dimensional infinite group problem that cannot be easily obtained
using one-dimensional group cuts.

Second because the sequential merge approach can be applied using the same
constraint twice instead of using two different constraints, one interesting ques-
tion is that of determining when the sequential-merge procedure generates strong
inequalities for one-dimensional group problems. The question is particularly in-
teresting since we have shown in Sect. 3 that some two-step MIRs can be derived
in this way.

Finally, a large numerical experimentation is needed to determine how and
when to use multi-dimensional group cuts to solve MIPs. In particular, numer-
ical determination of how much two-dimensional group cuts improve on one-
dimensional group cuts is an important direction of research.
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Abstract. A simple 2-matching in an edge-weighted graph is a subgraph
all of whose vertices have degree 1 or 2. We consider the problem of finding
a maximum weight simple 2-matching that contains no triangles, which is
closely related to a class of relaxations of the TSP. Our main results are,
for graphs with maximum degree 3, a complete description of the convex
hull of incidence vectors of triangle-free simple 2-matchings and a strongly
polynomial time algorithm for the above problem. Our system requires the
use of a type of comb inequality (introduced by Grötschel and Padberg for
the TSP polytope) that has {0,1,2}-coefficients and hence is more general
than the well-known blossom inequality used in Edmonds’ characteriza-
tion of the simple 2-matching polytope.

1 Introduction

We consider undirected graphs G = (V, E) with no parallel edges or loops. With
every edge e ∈ E we associate a real weight we. A simple 2-matching in a
graph G = (V, E) is a subgraph of G all of whose vertices have degree 1 or
2. Hence the connected components of a simple 2-matching are simple paths
or cycles, each with at least one edge. (For the sake of brevity, we henceforth
drop the adjective “simple.”) A 2-factor in G is a special type of 2-matching
that contains all the vertices of G and all of whose components are cycles. The
problems of finding a maximum weight 2-matching and a maximum weight 2-
factor in a graph are well studied. Polynomial time algorithms (see Johnson [19])
and polyhedral characterizations (see Edmonds [10]) are known for both, as well
as many other results (see Schrijver [25] for a thorough survey). The key type of
inequalities used for the polyhedron is typically called blossom inequalities (they
are different from the blossoms used by Edmonds [9] for the classical matching
problem).

In this paper we focus on a variation of these problems, which we next define.
A 2-matching or 2-factor is called Ck-free if it contains no cycles of length ≤ k,
for k a positive integer. The Ck-free 2-matching (2-factor) problem is to find a
Ck-free 2-matching (2-factor) with maximum weight.

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 43–52, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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These problems were originally studied in the context of the travelling sales-
man problem by Fisher, Nemhauser, and Wolsey [11] and by Cornuéjols and
Pulleyblank [7]. It is shown in [11] how solutions to the Ck-free 2-factor prob-
lem in a complete graph, for increasing values of k, yield increasingly accurate
appoximations of the optimal value of a travelling salesman tour. Observe that
for n/2 ≤ k ≤ n − 1 (where n is the number of vertices in the graph), solving
the Ck-free 2-factor problem is equivalent to the TSP.

Other results are known for these problems, which lead to some open ques-
tions. For k ≥ 5, the Ck-free 2-factor problem with weights all 0, 1 was shown to
be NP-hard by Papadimitriou (the proof appears in [7]). This implies that, for
k ≥ 5, the Ck-free 2-matching problem with general weights is NP-hard. (See
also Hell et al [16], where similar complexity results are presented.) Vornberger
[29] showed that the C4-free 2-factor problem (with general weights) is NP-hard.
For the case that the edge weights are all 0, 1, an algorithm solving the C3-free
2-matching problem (hence the C3-free 2-factor problem) appears in [14]. (It is
quite complex.) So two obvious open problems (discussed in [29] and [7]) are to
find the complexity of the C3-free 2-factor (2-matching) problem, with general
weights, and the C4-free 2-factor (2-matching) problem, with weights all 0, 1.
Another obvious open problem is to describe the polytope associated with the
C3-free 2-factor (2-matching) problem (assuming it is polynomial).

One way of approaching the open problems mentioned above has been to con-
sider them on special classes of graphs. For example, Hartvigsen [15] presented,
for bipartite graphs, a polynomial time algorithm for the C4-free 2-matching
problem with weights all 0, 1 (hence for the corresponding 2-factor problem as
well). Nam [22] presented a polynomial time algorithm for the C4-free 2-factor
problem for general graphs with the property that no two squares share a vertex.
(The algorithm is quite complex.) In this paper we consider such problems on
the cubic (subcubic) graphs; that is, those graphs for which every vertex has
degree 3 (at most 3). Some work in this regard has been done. For cubic graphs,
Vornberger [29] presented a polynomial time algorithm for the C3-free 2-factor
problem. Furthermore, his proof that the C4-free 2-factor problem (with general
weights) is NP-hard was done for cubic graphs. He also showed that the C5-free
2-factor problem with weights all 0, 1 is NP-hard for cubic graphs. Some partial
polyhedral results have also been obtained by Cunningham and Wang [8], who
presented a class of valid inequalities for the polytope associated with the Ck-
free 2-factor problem and studied the special structure of these inequalities for
the C3-free 2-factor problem.

Our main results are, for subcubic graphs, a complete description of the convex
hull of C3-free 2-matchings and a strongly polynomial time algorithm for finding
a maximum weight C3-free 2-matching. (This polytope immediately yields the
polytope for C3-free 2-factors in subcubic graphs.) An interesting property of
this polytope is that it requires the use of two types of inequalities not needed
for the 2-matching polytope. One type is straightforward and simply requires
that, for each triangle in the graph, the sum of the associated edge variables is
at most 2. The second type is a class, we call them tri-combs, that properly falls
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between the blossom inequalities (as introduced by Edmonds for the 2-matching
polytope [10]) and the more general comb inequalities (introduced by Grötschel
and Padberg [13] for the travelling salesman polytope; another class, the Chvátal
combs [4], also properly falls between the blossom and comb inequalities, but is
different from our tri-combs). Results of Cunningham and Wang [8] show that
the tri-combs are not sufficient to describe the C3-free 2-factor polytope on
general graphs. They show that additional needed inequalities include, but are
not limited to, the so-called bipartition inequalities.

A tri-comb is a comb such that every tooth has at most 3 vertices and every
tooth has exactly one node not in the handle. A blossom is a comb such that every
tooth has exactly two vertices. Another property of our tri-comb inequalities that
distinquishes them from blossoms is that they are not {0,1}-inequalities; i.e., the
variables have coefficients in {0,1,2}. We also show, somewhat surprisingly, that
only the {0,1}-inequalities in this class (i.e., the blossoms) are needed to describe
the polytope for C3-free 2-factors in subcubic graphs (which is a face of the
polytope for C3-free 2-matchings). Thus we see that C3-free 2-matchings and C3-
free 2-factors, in this domain, have significantly different polyhedral descriptions.
To the best of our knowledge, this is the only matching example known to have
this property.

Our main polyhedral result is proved using the algorithm, which is primal-dual
in the style used by Edmonds [9] for the classical matching problem. Polyhedral
and algorithmic results for the 2-matching problem (and more general problems)
are often proved in the literature by using a reduction to classical matchings due
to Tutte [28] (see Schrijver [25]). Algorithms that avoid such a reduction are
typically more efficient (but more complex) and have also been studied (e.g.,
see Johnson [19] and Gabow [12]). We have been unable to find such a reduc-
tion for the C3-free 2-matching problem in subcubic graphs, hence our algorithm
works directly on the original graph. However, for the restricted case of C3-free
2-factors, a reduction was discovered by Vornberger [29]. It yields a polynomial
algorithm for finding C3-free 2-factors in cubic graphs (which can be extended,
in a straightforward manner, to finding C3-free 2-factors in subcubic graphs). We
show that this same reduction idea, combined with the 3-cut polyhedral reduc-
tion idea for the TSP problem developed by Cornuéjols, Naddef, and Pulleyblank
[6], yields the C3-free 2-factor polytope for subcubic graphs.

Let us remark on a topic one might expect to accompany work of this type.
In Edmonds’ primal-dual algorithm for classical matchings, the primal stage is
essentially an algorithm for finding a maximum (0, 1)-weight matching, which is
applied to a special subgraph of the original graph. Hence, as a by-product, one
obtains a simpler algorithm for finding a maximum (0, 1)-weight matching and
one can prove, directly from the algorithm, theorems such as Tutte’s characteri-
zation of the graphs with a perfect matching [27] and the min-max Tutte-Berge
theorem [1]. The algorithm we have d eveloped does not appear to have these
nice by-products, at least in a direct way. Hence we plan to address the special
case of (0, 1)-weights elsewhere.
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This extended abstract is organized as follows. In Section 2 we state our two
main polyhedral results. Section 3 contains an outline of our non-algorithmic
proof of the second, simpler result. The final section contains an overview of
the primal-dual algorithm for C3-free 2-matchings. The details of the proofs and
algorithm will appear elsewhere.

We close this section by referencing some related research. A {0,1,2}-matching
is an assignment of 0,1, or 2 to each edge in a graph so that the sum of the
values on the edges incident with each node is at most 2. (In this terminol-
ogy, we consider {0,1}-matchings in this paper.) Cornuéjols and Pulleyblank
in [7] completely characterize the convex hull of C3-free {0,1,2}-matchings and
present a polynomial time algorithm for finding maximum weight C3-free {0,1,2}-
matchings. Their algorithm is similar in style to the one presented in this paper:
it is primal-dual (as in [9]) and provides a proof of the polyhedral result.

Finally, we note that there is a fairly extensive literature involving the study
of matching problems in regular graphs, particularly in cubic graphs. Here are
some of the highlights:

• Kaiser and Skrekovski [20] showed that every bridgeless cubic graph has a
2-factor that intersects all edge cuts of size 3 or 4. This result implies that
every bridgeless cubic graph has a C3-free 2-factor.

• Petersen [23] showed that every bridgeless cubic graph can be decomposed
into a 2-factor and a perfect matching.

• Tait [26] showed that every planar bridgeless cubic graph can be decomposed
into three perfect matchings iff the 4-color conjecture holds (which, of course,
is now a theorem). And Petersen [24] showed that this is not true for non-
planar bridgeless cubic graphs by exhibiting what we now call the Petersen
graph. Holyer [18] showed that it’s NP-complete to decide if a cubic graph
can be decomposed into three matchings.

• Bertram and Horak [2] showed that there is a polynomial time algorithm to
decompose any 4-regular graph into two C3-free 2-factors, if such a decom-
position exists.

• The study of Hamilton cycles in cubic graphs is fairly extensive. A key result
is that the problem of deciding if a planar, bipartite, subcubic graph has a
Hamiltonian cycle is NP-complete (see [21]). Additional results can be found
in [17].

2 Main Results

In this section we present our main polyhedral results: complete descriptions of
the convex hulls of C3-free 2-matchings and 2-factors for subcubic graphs. We
begin with some definitions.

Let G = (V, E) be a graph. For V ′ ⊆ V , let δ(V ′) denote the set of edges
of G with exactly one vertex in V ′; and let γ(V ′) denote the set of edges of G
with both vertices in V ′. For S ⊆ E and x ∈ IRE , let x(S) =

∑
e∈S xe. If G′ is

a subgraph of G, then a vector x ∈ {0, 1}E is called the 0-1 incidence vector for
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G′ if xe = 1 if and only if e is in G′. A triangle of G is a set of three edges of G
that form a cycle. A C3-free 2-matching is also called a triangle-free 2-matching.

Let PM (G) denote the convex hull of incidence vectors of triangle-free 2-
matchings in G. Let PF (G) denote the convex hull of incidence vectors of
triangle-free 2-factors in G.

A tri-comb of G is a set {H, T1, . . . T2k+1} of subsets of V , where k ≥ 1, that
satisfy the following conditions:

1. T1, . . . T2k+1 are pairwise disjoint;
2. For each i, γ(Ti) is either a single edge or a triangle;
3. Each Ti has exactly one vertex not in H .

We call H the handle and T1, . . . T2k+1 the teeth of the tri-comb. A tooth
with two vertices is called an edge-tooth and a tooth with three edges is called a
triangle-tooth. Observe that every triangle-tooth has exactly one edge in common
with γ(H), which we call a common edge. See Fig. 1, which contains a tri-comb
with two triangle-teeth, one edge-tooth, and two common edges.

Fig. 1. A tri-comb

Consider the following variations on conditions 2 and 3:

2′. For each i, γ(Ti) is a single edge;
3′. Each Ti has, at least, one vertex in H and one vertex not in H .

The sets {H, T1, . . . , T2k+1} that satisfy conditions 1, 2′, and 3 are the well-
known class of blossoms and the sets that satisfy conditions 1 and 3′ are the
well-known class of combs. Hence tri-combs are more general than blossoms and
a special case of combs.

For x a variable vector indexed on E, we associate with each tri-comb C =
{H, T1, . . . , T2k+1} the following tri-comb inequality:

x(γ(H)) +
2k+1∑

i=1

x (γ(Ti)) ≤ |H | +
2k+1∑

i=1

(|Ti| − 1) − (k + 1),

which we abbreviate, a(C)x ≤ b(C). In general, these inequalities have non-zero
variable coefficients in {1, 2}, with the 2s precisely on the common edges. The tri-
comb inequalities can be shown to be feasible for PM (G) (hence for PF (G)) using
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standard arguments (e.g., see [5]). For the cases of blossoms and combs, this same
inequality is the well-known blossom inequality and comb inequality, respectively.
Observe that for blossoms, the right hand side of the inequality simplifies to |H |+k.
(We have borrowed the notation for this inequality from [5].)

We are now ready to state our characterization of PM (G).

Theorem 1. For a subcubic graph G = (V, E), PM (G) is determined by

x(δ(v)) ≤ 2 ∀v ∈ V (1)
xe ≤ 1 ∀e ∈ E (2)

x(T ) ≤ 2 ∀ triangles T (3)
a(C)x ≤ b(C) ∀ tri-combs C (4)

xe ≥ 0 ∀e ∈ E (5)

Let SM (G) denote the system in Theorem 1. If we remove inequalities (3) and
replace “tri-combs” with “blossoms” in inequality (4), then we obtain the convex
hull of incidence vectors of 2-matchings given by Edmonds [10] for general graphs.
If, instead, we remove inequalities (4) and replace inequalities (2) with xe ≤
2 ∀e ∈ E, we obtain the convex hull of incidence vectors of C3-free {0,1,2}-
matchings given by Cornuéjols and Pulleyblank [7] for general graphs.

Fig. 2 contains a subcubic graph that illustrates the need for the tri-comb
inequalities in SM (G). The numbers indicate a fractional solution x that can
be seen to be extreme for the system of inequalities: (1), (2), (3), and (5). The
tri-comb inequality associated with the entire graph (which is a tri-comb C
with indicated handle H) has b(C) = 6; however, the fractional solution has
a(C)x = 6.5. In contrast, one can easily check that no blossom inequality is able
to cut off this fractional extreme solution.

Fig. 2. A fractional extreme point cut off by a tri-comb inequality

Our characterization of PF (G) follows.

Theorem 2. For a subcubic graph G = (V, E), PF (G) is determined by

x(δ(v)) = 2 ∀v ∈ V (6)
xe ≤ 1 ∀e ∈ E (7)

x(T ) = 2 ∀ triangles T (8)
a(C)x ≤ b(C) ∀ blossoms C (9)

xe ≥ 0 ∀e ∈ E (10)
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Let SF (G) denote the system in Theorem 2. If we remove inequalities (8), then
we obtain the convex hull of incidence vectors of 2-factors given by Edmonds
[10] for general graphs.

3 The 2-Factor Polytope for Subcubic Graphs

In this section we outline the proof of Theorem 2. The proof uses a triangle
shrinking operation and a variation on the Basic Polyhedral Theorem in [6].

Fig. 3 shows the four triangle patterns that can exist in a subcubic graph (i.e.,
a triangle can have 0, 1, 2, or 3 vertices of degree 2). If two or three vertices of a
triangle have degree 2 in the graph, then there is obviously no feasible solution
to the triangle-free 2-factor problem. Therefore, we only consider the subcubic
graphs with the triangle patterns shown in Fig. 3(a) and Fig. 3(b).

Fig. 3. Four triangle patterns

Let G = (V, E) be a graph and let S ⊆ V , such that |S| ≥ 2. We let G × S
denote the graph obtained by shrinking (or contracting) S. That is, the vertices
of G×S are the vertices of V \S, plus a new vertex, say v, obtained by identifying
all the vertices in S. The edges of G × S are the edges in γ (V \S) and the edges
of δ(S), each of which now has one vertex v and its original vertex in V \S. All
edges in G × S retain their identities from G.

If T is a triangle (which is a set of three edges), we let V (T ) denote the vertices
of T .

The following lemmas will help us obtain PF (G).

Lemma 1. Let G be a subcubic graph and T be a triangle of G that has the
pattern of Figure 3(a) or Figure 3(b). A linear system sufficient to define PF (G)
is obtained by taking the union of linear systems sufficient to define PF (G ×
V (T )) and PF (G × (V \V (T ))).

Lemma 2. PF (G × (V \V (T ))) is determined by

x(δ(v)) = 2 ∀v ∈ V (T )
xe ≤ 1 ∀e ∈ E(G × (V \V (T )))
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x(T ) = 2
xe ≥ 0 ∀e ∈ E(G × (V \V (T )))

The proof of Lemma 1 is quite similar to the proof of the Basic Polyhedral
Theorem in [6]. That theorem says that one can obtain a linear system sufficient
to define the TSP polytope TSP (G) by the union of two linear systems sufficient
to define TSP (G×S) and TSP (G× S̄), where G has a 3-edge cutset with shores
S and S̄. The proof of Lemma 2 is straightforward.

We can now obtain PF (G) as follows: First, we iteratively shrink triangles
that have three original nodes of G and apply the above two lemmas until every
triangle in the graph has at least one shrunk node. Then we apply the polyhedral
description of 2-factors [10] to this final graph. Finally, the union of all the linear
systems obtained through applying Lemma 1 and Lemma 2 and the linear system
sufficient to define the 2-factors of the final graph defines PF (G).

4 The Algorithm for Finding Max Weight 2-Matchings
in Subcubic Graphs

In this section we give an overview of the algorithm, followed by a few details
describing how the algorithm is set up. The details of the algorithm are approx-
imately ten pages long and will appear elsewhere.

The algorithm has two main phases: primal and dual. While maintaining
primal and dual feasible solutions, the algorithm alternates between these two
phases until it produces primal and dual feasible solutions that satisfy comple-
mentary slackness, and hence are optimal. The primal phase has two main stages.
We call the first stage “triangle alteration.” In this stage we identify special tri-
angles in the original graph and alter each by either shrinking the triangle to a
vertex, shrinking an edge of the triangle to a vertex, or deleting one of its edges.
In some sense, this is an elaborated version of the shrinking operation described
in the preceeding section; however, this type of shrinking cannot be done just
once at the beginning of the algorithm – it occurs repeatedly throughout. In the
second stage of the primal phase we grow an alternating tree looking for ways to
satisfy violated complementary slackness conditions. If no such improvement is
found, the algorithm moves into its second phase, the dual change. In this phase
the dual solution is changed, again in an effort to satisfy violated complementary
slackness conditions. The growth and dual change steps are, in a general sense,
typical of Edmonds-style matching algorithms; the triangle alteration stage is
unique to this problem. The primal growth stage is quite straightforward due
to the simple structure of the graphs and our triangle alteration stage; however,
the dual change is significantly more complex than is typical of such algorithms.

We next present some details we need to set up the algorithm. For an arbitrary
subcubic graph G = (V, E), let w ∈ IRE be an arbitrary weight vector, let T
denote the set of all triangles in G, and let T C denote the set of all tri-combs in
G. We let T (e) denote the triangles of G that contain edge e, let T C1(e) denote
the tri-combs of G that contain e as a non-common edge, and let T C2(e) denote
the tri-combs of G that contain e as a common edge.
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The primal LP is the following:

max wx s.t. x ∈ SM (G).

If we associate variable vectors y, z, τ , π with constraints (1), (2), (3), (4),
respectively, then we obtain the corresponding dual LP :

min 2
∑

v∈V

yv +
∑

e∈E

ze + 2
∑

T∈T
τT +

∑

C∈T C
b(C)πC

s.t.
yu + yv + zuv + 2

∑

T∈T (e)

τT +
∑

C∈T C1(e)

πC + 2
∑

C∈T C2(e)

πC ≥ we ∀e = uv ∈ E

y, z, τ, π ≥ 0.

From linear programming theory, a primal feasible solution x and a dual
feasible solution y, z, τ, π are both optimal if and only if they satisfy the following
complementary slackness conditions:

xe > 0 ⇒ yu + yv + zuv +
∑

C∈T C1(e)

πC + 2(
∑

T∈T (e)

τT +
∑

C∈T C2(e)

πC) = we; (11)

yv > 0 ⇒ x(δ(v)) = 2; (12)
ze > 0 ⇒ xe = 1; (13)
τT > 0 ⇒ x(T ) = 2; (14)
πC > 0 ⇒ a(C)x = b(C). (15)

At each stage of the primal-dual algorithm we maintain an integral primal
feasible solution x, which is the incidence vector of a triangle-free 2-matching,
and a dual feasible solution y, z, τ, π, which satisfies (11), (13), (14) and (15).
Condition (12) is not, in general, satisfied. The algorithm modifies the variables
x, y, z, τ, π (maintaining primal and dual feasibility as well as conditions (11),
(13), (14) and (15)) until condition (12) is satisfied at which point x is the
incidence vector of a maximum weight triangle-free 2-matching.
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Abstract. A well established heuristic approach for solving various bi-
criteria optimization problems is to enumerate the set of Pareto optimal
solutions, typically using some kind of dynamic programming approach.
The heuristics following this principle are often successful in practice.
Their running time, however, depends on the number of enumerated so-
lutions, which can be exponential in the worst case.

In this paper, we prove an almost tight bound on the expected number
of Pareto optimal solutions for general bicriteria integer optimization
problems in the framework of smoothed analysis. Our analysis is based
on a semi-random input model in which an adversary can specify an
input which is subsequently slightly perturbed at random, e. g., using a
Gaussian or uniform distribution.

Our results directly imply tight polynomial bounds on the expected
running time of the Nemhauser/Ullmann heuristic for the 0/1 knapsack
problem. Furthermore, we can significantly improve the known results on
the running time of heuristics for the bounded knapsack problem and for
the bicriteria shortest path problem. Finally, our results also enable us
to improve and simplify the previously known analysis of the smoothed
complexity of integer programming.

1 Introduction

We study integer optimization problems having two criteria, say profit and
weight, which are to be optimized simultaneously. A common approach for solv-
ing such problems is generating the set of Pareto optimal solutions, also known
as the Pareto set. Pareto optimal solutions are optimal compromises of the two
criteria in the sense that any improvement of one criterion implies an impair-
ment to the other. In other words, a solution S∗ is Pareto optimal if there exists
no other solution S that dominates S∗, i. e., has at least the profit and at most
the weight of S∗ and at least one inequality is strict. Generating the Pareto set
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is of great interest in many scenarios and widely used in practice. Unfortunately,
this approach fails to yield reasonable results in the worst case because even
integer optimization problems with a simple combinatorial structure can have
exponentially many Pareto optimal solutions. In practice, however, generating
the Pareto set is often feasible since typically the number of Pareto optimal
solutions does not attain its worst-case bound.

The discrepancy between practical experience and worst-case results moti-
vates the study of the number of Pareto optimal solutions in a more realistic
scenario. One possible approach is to study the average number of Pareto opti-
mal solutions rather than the worst case number. In order to analyze the average,
one has to define a probability distribution on the set of instances, with respect
to which the average is taken. In most situations, however, it is not clear how to
choose a probability distribution that reflects typical inputs. In order to bypass
the limitations of worst-case and average-case analysis, Spielman and Teng de-
fined the notion of smoothed analysis [15]. They consider a semi-random input
model in which an adversary specifies an input which is then randomly per-
turbed. One can hope that semi-random input models are more realistic than
worst-case and average-case input models since the adversary can specify an arbi-
trary input with a certain structure, and the subsequent perturbation generates
an instance which is still close to the adversarial one.

We consider integer optimization problems in a semi-random setting, in which
an adversary can specify an arbitrary set S ⊆ Dn of feasible solutions and two
objective functions: profit p : S → R and weight w : S → R, where D ⊂ Z

denotes a finite set of integers. We assume that the profit is to be maximized
and the weight is to be minimized. This assumption is without loss of generality
as our results are not affected by changing the optimization direction of any
of the objective functions. In our model, the weight function w can be chosen
arbitrarily by the adversary, whereas the profit p has to be linear of the form
p(x) = p1x1 + · · · + pnxn. The adversary can choose an arbitrary vector of
profits from [−1, 1]n, but in the second step of the semi-random input model, the
profits pi are randomly perturbed by adding an independent Gaussian random
variable with mean 0 and standard deviation σ to each profit pi. The standard
deviation σ can be seen as a parameter measuring how close the analysis is to
a worst-case analysis: The smaller σ is chosen, the smaller is the influence of
the perturbation and, hence, the closer is the analysis to a worst-case analysis.
Our probabilistic analysis is not restricted to Gaussian perturbations but is
much more general. In fact, it covers arbitrary probability distributions with a
bounded density function and a finite absolute mean value. In particular, if one
is interested in obtaining a positive domain for the profits, one can restrict the
adversary to profits pi ∈ [0, 1] and perturb these profits by adding independent
random variables that are distributed uniformly over some interval [0, c].

We present a new method for bounding the expected number of Pareto op-
timal solutions in the aforementioned scenario which yields an upper bound
that depends polynomially on the number of variables n, the integer with the
largest absolute value in D, and the reciprocal of the standard deviation σ. This
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immediately implies polynomial upper bounds on the expected running time
of several heuristics for generating the Pareto set of problems like, e. g., the
Bounded Knapsack problem. Previous results of this kind were restricted to the
case of binary optimization problems. For this special case, our method yields an
improved upper bound, which matches the known lower bound. Furthermore, we
show that our results on the expected number of Pareto optimal solutions yield
a significantly simplified and improved analysis of the smoothed complexity of
integer programming.

1.1 Previous Results

Multi-objective optimization is a well studied research area. Various algorithms
for generating the Pareto set of various optimization problems like, e. g., the
(bounded) knapsack problem [11,8], the bicriteria shortest path problem [4,14]
and the bicriteria network flow problem [5,10], have been proposed. The running
time of these algorithms depends crucially on the number of Pareto optimal
solutions and, hence, none of them runs in polynomial time in the worst case.
In practice, however, generating the Pareto set is tractable in many situations.
For instance, Müller-Hannemann and Weihe [9] study the number of Pareto
optimal solutions in multi-criteria shortest path problems experimentally. They
consider examples that arise from computing the set of best train connections
(in view of travel time, fare, and number of train changes) and conclude that
in this application scenario generating the complete Pareto set is tractable even
for large instances. For more examples, we refer the reader to [6].

One way of coping with the bad worst-case behavior is to relax the requirement
of finding the complete Pareto set. Papadimitriou and Yannakakis present a gen-
eral framework for finding approximate Pareto sets. A solution S is ε-dominated
by another solution S′ if p(S)/p(S′) ≤ 1 + ε and w(S′)/w(S) ≤ 1 + ε. We say
that Pε is an ε-approximation of a Pareto set P if for any solution S ∈ P there
is a solution S′ ∈ Pε that ε-dominates it. Papadimitriou and Yannakakis show
that for any Pareto set P , there is an ε-approximation of P with polynomially
many points (w. r. t. the input size and 1/ε) [12]. Furthermore they give neces-
sary and sufficient conditions under which there is an FPTAS to generate Pε.
Vassilvitskii and Yannakakis [16] show how to compute ε-approximate Pareto
curves of almost minimal size.

Beier and Vöcking analyze the expected number of Pareto optimal solu-
tions for binary optimization problems [2]. They consider the aforementioned
scenario with D = {0, 1} and show that the expected number of Pareto opti-
mal solutions is bounded from above by O(n4/σ). This result implies that the
Nemhauser/Ullmann algorithm [11] has polynomial expected running time. Fur-
thermore, they also present a lower bound of Ω(n2) on the expected number of
Pareto optimal solutions for profits that are chosen uniformly from the interval
[0, 1].

In [3] Beier and Vöcking analyze the smoothed complexity of binary optimiza-
tion problems. They consider optimization problems with one objective function
in which the set of feasible solutions is given as S∩B1∩. . .∩Bm, where S ⊆ {0, 1}n
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denotes a fixed ground set and Bi denotes a halfspace induced by a linear con-
straint of the form wi,1x1 + · · · + wi,nxn ≤ ti. Similar to the aforementioned
model it is assumed that the coefficients wi,j are perturbed by adding indepen-
dent random variables to them. Based on the probabilistic analysis of certain
structural properties, Beier and Vöcking show that a binary optimization prob-
lem in this form has polynomial smoothed complexity if and only if there exists
a pseudo-polynomial (w. r. t. the wi,j) time algorithm for solving the problem.
The term polynomial smoothed complexity is defined analogously to the way
polynomial complexity is defined in average-case complexity theory, adding the
requirement that the running time should be polynomially bounded not only in
the input size but also in 1/σ. This characterization is extended to the case of
integer optimization problems where D ⊂ Z is a finite set of integers by Röglin
and Vöcking [13].

1.2 Our Results

In this paper, we present a new approach for bounding the expected number
of Pareto optimal solutions for bicriteria integer optimization problems. This
approach yields the first bounds for integer optimization problems and improves
the known bound for the binary case significantly. We show that the expected
number of Pareto optimal solutions is bounded from above by O(n2k2 log(k)/σ)
if D = {0, . . . , k − 1}. We also present a lower bound of Ω(n2k2), assuming that
the profits are chosen uniformly at random from the interval [−1, 1]. For the case
in which the adversary is restricted to linear weight functions, we present a lower
bound of Ω(n2k log k). Furthermore, for the binary case D = {0, 1}, the upper
bound simplifies to O(n2/σ), which improves the previously known bound by a
factor of Θ(n2) and matches the lower bound in [2] in terms of n. Hence, our
method yields tight bounds in terms of n and almost tight bounds in terms of k
for the expected number of Pareto optimal solutions and, thereby, even simplifies
the proof in [2]. In the following, we list some applications of these results.

Knapsack Problem. The Nemhauser/Ullmann algorithm solves the knapsack
problem by enumerating all Pareto optimal solutions [11]. Its running time on
an instance with n items is Θ(

∑n
i=1 qi), where qi denotes the number of Pareto

optimal solutions of the knapsack instance that consists only of the first i items.
Beier and Vöcking analyze the expected number of Pareto optimal solutions and
show that the expected running time of the Nemhauser/Ullmann algorithm is
bounded by O(n5/σ) if all profits are perturbed by adding Gaussian or uniformly
distributed random variables with standard deviation σ [2]. Based on our im-
proved bounds on the expected number of Pareto optimal solutions, we conclude
the following corollary.

Corollary 1. For semi-random knapsack instances in which the profits are per-
turbed by adding independent Gaussian or uniformly distributed random variables
with standard deviation σ, the expected running time of the Nemhauser/Ullmann
algorithm is O(n3/σ).
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For uniformly distributed profits Beier and Vöcking present a lower bound on the
expected running time of Ω(n3). Hence, we obtain tight bounds on the running
time of the Nemhauser/Ullmann algorithm in terms of the number of items n.
This lower bound can easily be extended to the case of Gaussian perturbations.

Bounded Knapsack Problem. In the bounded knapsack problem, a number k ∈ N

and a set of n items with weights and profits are given. It is assumed that k
instances of each of the n items are given. In [7] it is described how an in-
stance with n items of the bounded knapsack problem can be transformed into
an instance of the (binary) knapsack problem with Θ(n log (k + 1)) items. Us-
ing this transformation, the bounded knapsack problem can be solved by the
Nemhauser/Ullmann algorithm with running time Θ(

∑n log (k+1)
i=1 qi), where qi

denotes the number of Pareto optimal solutions of the binary knapsack instance
that consists only of the first i items. Based on our results on the expected
number of Pareto optimal solutions, we obtain the following corollary.

Corollary 2. The expected running time of the Nemhauser/Ullmann algorithm
on semi-random bounded knapsack instances in which the profits are perturbed
by adding independent Gaussian or uniformly distributed random variables with
standard deviation σ is bounded from above by O(n3k2(log2 (k + 1))/σ) and
bounded from below by Ω(n3k log2 (k + 1)).

Hence, our results yield tight bounds in terms of n for the expected running time
of the Nemhauser/Ullmann algorithm.

Bicriteria Shortest Path Problem. Different algorithms have been proposed for
enumerating the Pareto set in bicriteria shortest path problems [4,14]. In [4] a
modified version of the Bellman/Ford algorithm is suggested. Beier shows that
the expected running time of this algorithm is O(nm5/σ) for graphs with n
nodes and m edges [1]. We obtain the following improved bound.

Corollary 3. For semi-random bicriteria shortest path problems in which one
objective function is linear and its coefficients are perturbed by adding indepen-
dent Gaussian or uniformly distributed random variables with standard devia-
tion σ, the expected running time of the modified Bellman/Ford algorithm is
O(nm3/σ).

Smoothed Complexity of Integer Programming. We were not able to bound the
expected number of Pareto optimal solutions for optimization problems with
more than two objective functions. One approach for tackling multicriteria prob-
lems is to solve a constrained problem in which all objective functions except
for one are made constraints. Our results for the bicriteria case can be used to
improve the smoothed analysis of integer optimization problems with multiple
constraints. In [13] we show that an integer optimization problem has polyno-
mial smoothed complexity if and only if there exists a pseudo-polynomial time
algorithm for solving the problem. To be more precise, we consider integer op-
timization problems in which an objective function is to be maximized over a
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feasible region that is defined as the intersection of a fixed ground set S ⊆ Dn

with halfspaces B1, . . . , Bm that are induced by m linear constraints of the form
wi,1x1 + · · ·+wi,nxn ≤ ti, where the wi,j are independently perturbed by adding
Gaussian or uniformly distributed random variables with standard deviation σ
to them.

The term polynomial smoothed complexity is defined such that it is robust
under different machine models analogously to the way polynomial average-case
complexity is defined. One disadvantage of this definition is that polynomial
smoothed/average-case complexity does not imply expected polynomial run-
ning time. For the binary case it is shown in [3] that problems that admit a
pseudo-linear algorithm, i. e., an algorithm whose running time is bounded by
O(poly(N)W ), where N denotes the input size and W the largest coefficient
|wi,j | in the input, can be solved in expected polynomial time in the smoothed
model. Based on our analysis of the expected number of Pareto optimal solutions,
we generalize this result to the integer case.

Theorem 4. Every integer optimization problem that can be solved in time
O(poly(N)W ), where N denotes the input size and W = maxi,j |wi,j |, allows an
algorithm with expected polynomial (in N and 1/σ) running time for perturbed
instances, in which an independent Gaussian or uniformly distributed random
variables with standard deviation σ is added to each coefficient.

In the following section, we introduce the probabilistic model we analyze, which
is more general than the Gaussian and uniform perturbations described above.
After that, in Sections 3 and 4, we present the upper and lower bounds on the
expected number of Pareto optimal solutions. Finally, in Section 5, we present
the applications of our results to the smoothed analysis of integer programming.

2 Model and Notations

For the sake of a simple presentation, using the framework of smoothed analy-
sis, we described our results in the introduction not in their full generality. Our
probabilistic analysis assumes that the adversary can choose, for each pi, a prob-
ability distribution according to which pi is chosen independently of the other
profits. We prove an upper bound that depends linearly on the maximal density
of the distributions and on the expected distance to zero. The maximal density
of a continuous probability distribution, i. e., the supremum of the density func-
tion, is a parameter of the distribution, which we denote by φ. Similar to the
standard deviation σ for Gaussian random variables, φ can be seen as a mea-
sure specifying how close the analysis is to a worst-case analysis. The larger φ,
the more concentrated the probability mass can be. For Gaussian and uniformly
distributed random variables, we have φ ∼ 1/σ.

In the following, we assume that pi is a random variable with density fi

and that fi(x) ≤ φi for all x ∈ R. Furthermore, we denote by μi the expected
absolute value of pi, i. e., μi = E [|pi|] =

∫
x∈R

|x|fi(x) dx. Let φ = maxi∈[n] φi and
μ = maxi∈[n] μi. We denote by [n] the set {1, . . . , n}, and we use the notations
d = |D| and D = max{a − b | a, b ∈ D}.
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3 Upper Bound on the Expected Number of Pareto
Optimal Solutions

While the profit function is assumed to be linear with stochastic coefficients,
the weight function w : S → R can be chosen arbitrarily. We model this by
assuming an explicit ranking of the solutions in S, which can be chosen by the
adversary. This way, we obtain a bicriteria optimization problem that aims at
maximizing the rank as well as the profit. Observe that the weight function can
map several solutions to the same value whereas the rank of a solution is always
unique. This strict ordering, however, can only increase the number of Pareto
optimal solutions.

Theorem 5. Let S ⊆ Dn be a set of arbitrarily ranked solutions with a finite
domain D ⊂ Z. Define d = |D| and D = max{a − b | a, b ∈ D}. Assume that
each profit pi is a random variable with density function fi : R → R≥0. Suppose
μi = E [|pi|] and φi = supx∈R

fi(x). Let q denote the number of Pareto optimal
solutions. Then

E [q] ≤ 2DdHd

(
n∑

i=1

φi

) (
n∑

i=1

μi

)
+ O(dn) ,

where Hd is the d-th harmonic number. For D = {0, . . . , k − 1} and μ =
maxi∈[n] μi and φ = maxi∈[n] φi the bound simplifies to

E [q] = O(μφn2k2 log k) .

Note that the number of Pareto optimal solutions is not affected when all profits
are scaled by some constant c 	= 0. This property is also reflected by the above
bound. The random variable cpi has maximal density φi/c and the expected
absolute value is cμi. Hence, the product φμ is invariant under scaling too.

Proof (Theorem 5). We use the following classification of Pareto optimal solu-
tions. We say that a Pareto optimal solution x is of class c ∈ D if there exists an
index i ∈ [n] with xi 	= c such that the succeeding Pareto optimal solution y satis-
fies yi = c, where succeeding Pareto optimal solution refers to the highest ranked
Pareto optimal solution that is lower ranked than x. The lowest ranked Pareto
optimal solution, which does not have a succeeding Pareto optimal solution, is
not contained in any of the classes. A Pareto optimal solution can be in several
classes but it is at least in one class. Let qc denote the number of Pareto optimal
solutions of class c. Since q ≤ 1 +

∑
c∈D qc it holds E [q] ≤ 1 +

∑
c∈D E [qc].

Lemma 6 enables us to bound the expected number of class-0 Pareto opti-
mal solutions. In order to bound E [qc] for values c 	= 0 we analyze a modified
sequence of solutions. Starting from the original sequence S = x1, x2, . . . , xl

(xj ∈ Dn), we obtain a modified sequence Sc by subtracting (c, . . . , c) from each
solution vector xj . This way, the profit of each solution is reduced by c

∑
pi.
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x∗

x̂

pTx

t

Rank
(in decreasing order)

Fig. 1. If x̂ is an ordinary class-0 Pareto optimal solution, then there must be an index
i with x∗

i = 0 and x̂i �= 0

Observe that this operation does not affect the set of Pareto optimal solutions. A
solution x is class-c Pareto optimal in S if and only if the corresponding solution
x−(c, . . . , c) is class-0 Pareto optimal in Sc. Hence, the number of class-c Pareto
optimal solutions in S corresponds to the number of class-0 Pareto optimal
solutions in Sc. We apply Lemma 6 for the solution set Sc with a corresponding
domain Dc = {z − c : z ∈ D}. Since the difference between the largest and the
smallest element of the domain does not change, applying Lemma 6 yields that
E [q] is bounded from above by

1 +
∑

c∈D
E [q0(Sc)] ≤ 1 +

∑

c∈D

⎛

⎝D

⎛

⎝
∑

v∈Dc\{0}
|v|−1

⎞

⎠
(

n∑

i=1

φi

)(
n∑

i=1

μi

)
+ n

⎞

⎠ ,

and the theorem follows. ��

Lemma 6. Let S ⊆ Dn be a set of arbitrarily ranked solutions with a finite
domain D ⊂ Z with 0 ∈ D. Let D denote the difference between the largest and
the smallest element in D. Let q0 denote the number of class-0 Pareto optimal
solutions. Then

E [q0] ≤ D

⎛

⎝
∑

v∈D\{0}
|v|−1

⎞

⎠
(

n∑

i=1

φi

)(
n∑

i=1

μi

)
+ n .

Proof. The key idea is to prove an upper bound on the probability that there
exists a class-0 Pareto optimal solution whose profit falls into a small interval
(t − ε, t), for arbitrary t and ε. We will classify class-0 Pareto optimal solutions
to be ordinary or extraordinary. Considering only ordinary solutions allows us to
prove a bound that depends not only on the length ε of the interval but also on
|t|, the distance to zero. This captures the intuition that it becomes increasingly
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y
x

pTx
yi = 0

xi 	= 0

z

zi 	= 0

Rank
(in decreasing order)

Fig. 2. In this case x is an extraordinary class-0 Pareto optimal solution

unlikely to observe solutions whose profits are much larger than the expected
profit of the most profitable solution. The final bound is obtained by observing
that there can be at most n extraordinary class-0 Pareto optimal solutions.

We want to bound the probability that there exists an ordinary class-0 Pareto
optimal solution whose profit lies in the interval (t − ε, t). Define x∗ to be the
highest ranked solution from S satisfying pTx ≥ t. If x∗ exists then it is Pareto
optimal. Let x̂ denote the Pareto optimal solution that precedes x∗, i. e., x̂ has
the largest profit among all solutions that are higher ranked than x∗ (see Fig. 1).
We aim at bounding the probability that x̂ is an ordinary class-0 Pareto optimal
solution and falls into the interval (t − ε, t).

We classify solutions to be ordinary or extraordinary as follows. Let x be
a class-0 Pareto optimal solution and let y be the succeeding Pareto optimal
solution, which must exist as the lowest ranked Pareto optimal solution is not
class-0 Pareto optimal. We say that x is extraordinary if for all indices i ∈ [n]
with xi 	= 0 and yi = 0, zi 	= 0 holds for all Pareto optimal solutions z that
preceed x. In other words, for those indices i that make x class-0 Pareto optimal,
y is the highest ranked Pareto optimal solution that is independent of pi (see
Fig. 2). For every index i ∈ [n] there can be at most one extraordinary class-0
Pareto optimal solution. In the following we will restrict ourselves to solutions
x̂ that are ordinary. Define

Λ(t) =
{

t − pTx̂ if x∗ and x̂ exist and x̂ is ordinary class-0 Pareto optimal
⊥ otherwise.

Let P0 denote the set of ordinary class-0 Pareto optimal solutions. Whenever
Λ(t) < ε, then there exists a solution x ∈ P0 with pTx ∈ (t − ε, t), namely x̂.
The reverse is not true because it might be the case that x̂ 	∈ P0 but that there
exists another solution x ∈ P0 with pTx ∈ (t−ε, t). If, however, ε is smaller than
the minimum distance between two Pareto optimal solutions, then the existence
of a solution x ∈ P0 with pTx ∈ (t − ε, t) implies x̂ = x and hence Λ(t) < ε. Let
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A(t, ε) denote the event that there is at most one Pareto optimal solution with
a profit in the interval (t − ε, t). Then

Pr [Λ(t) < ε] ≥ Pr [(Λ(t) < ε) ∧ A(t, ε)]
= Pr

[
(∃x ∈ P0 : pTx ∈ (t − ε, t)) ∧ A(t, ε)

]

≥ Pr
[
∃x ∈ P0 : pTx ∈ (t − ε, t)

]
− Pr [¬A(t, ε)] ,

and therefore

lim
ε→0

Pr [Λ(t) < ε]
ε

≥ lim
ε→0

Pr
[
∃x ∈ P0 : pTx ∈ (t − ε, t)

]

ε
− lim

ε→0

Pr [¬A(t, ε)]
ε

.

In the full version we show that for every t 	= 0 the probability of that two
solutions lie in the interval (t − ε, t) decreases like ε2 for ε → 0. Hence, for every
t 	= 0, limε→0

Pr[¬A(t,ε)]
ε = 0. Since the expected number of ordinary class-0

Pareto optimal solutions can be written as

∫ ∞

−∞
lim
ε→0

Pr
[
∃x ∈ P0 : pTx ∈ (t − ε, t)

]

ε
dt ≤

∫ ∞

−∞
lim
ε→0

Pr [Λ(t) < ε]
ε

dt ,

it remains to analyze the term Pr [Λ(t) < ε]. In order to analyze this probability
we define a set of auxiliary random variables such that Λ(t) is guaranteed to
always take a value also taken by one of the auxiliary random variables. Then
we analyze the auxiliary random variables and use a union bound to conclude
the desired bound for Λ(t).

Define D′ = D\{0} and Sxi=v = {x ∈ S | xi = v} for all i ∈ [n] and v ∈ D.
Let x∗(i) denote the highest ranked solution from Sxi=0 with profit at least t.
For each i ∈ [n] and v ∈ D′ we define the set L(i,v) as follows. If x∗(i) does not
exist or x∗(i) is the highest ranked solution in Sxi=0 then we define L(i,v) = ∅.
Otherwise L(i,v) consists of all solutions from Sxi=v that have a higher rank than
x∗(i). Let x̂(i,v) denote the lowest ranked Pareto optimal solution from the set
L(i,v), i. e., x̂(i,v) has the largest profit among all solutions in L(i,v). Finally we
define for each i ∈ [n] and v ∈ D′ the auxiliary random variable

Λv
i (t) =

{
t − pTx̂(i,v) if x̂(i,v) exists,
⊥ otherwise.

If Λv
i (t) ∈ (0, ε) (which excludes Λv

i (t) =⊥) then the following three events must
co-occur:

1. E1 : There exists an x ∈ Sxi=0 with pTx ≥ t.
2. E2 : There exists an x ∈ Sxi=0 with pTx < t.
3. E3 : x̂(i,v) exists and its profit falls into the interval (t − ε, t).

The events E1 and E2 only depend on the profits pj, j 	= i. The existence
and identity of x̂(i,v) is completely determined by those profits as well.
Hence, if we fix all profits except for pi, then x̂(i,v) is fixed and its profit is
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c + vpi for some constant c that depends on the profits already fixed. Ob-
serve that the random variable c + vpi has density at most φi/|v|. Hence we
obtainPr

[
pTx̂(i,v) ∈ (t − ε, t)

∣∣ x̂(i,v) exists
]

≤ ε φi

|v| . Define

P+ =
∑

j:pj>0

pj and P− =
∑

j:pj<0

pj .

Moreover let d+ and d− denote the largest and the smallest element in D.
For t ≥ 0, the event E1 implies t ≤ d+P+ + d−P−, and hence Pr [E1] ≤
Pr [d+P+ + d−P− ≥ t]. For t ≤ 0, the event E2 implies t > d+P− + d−P+

and hence Pr [E2] ≤ Pr [d+P− + d−P+ ≤ t]. By combining these results we get

Pr [Λv
i (t) ∈ (0, ε)] ≤

{
Pr [d+P+ + d−P− ≥ t] ε φi

|v| , for t ≥ 0, and
Pr [d+P− + d−P+ ≤ t] ε φi

|v| , for t ≤ 0.

Next we argue that Λ(t) < ε implies Λv
i (t) ∈ (0, ε) for at least one pair

(i, v) ∈ [n] × D′. So assume that Λ(t) < ε. By definition, x∗ and x̂ exist and x̂
is an ordinary class-0 Pareto optimal solution. Since x̂ is class-0 Pareto optimal
and x∗ is the succeeding Pareto optimal solution, there exists an index i ∈ [n]
such that

(a) x∗
i = 0 and x̂i = v 	= 0 for some v ∈ D′, and

(b) x∗ is not the highest ranked solution in Sxi=0.

The second condition is a consequence of the assumption, that x̂ is not extraor-
dinary, i. e., there exists a Pareto optimal solution z with zi = 0 that has higher
rank than x̂. Recall that x∗(i) is defined to be the highest ranked solution in
Sxi=0 with pTx ≥ t. As x∗ ∈ Sxi=0, x∗ = x∗(i). Moreover, L(i,v) consists of
all solutions from Sxi=v that have a higher rank than x∗. Thus, x̂ ∈ L(i,v). By
construction, x̂ has the largest profit among the solutions in L(i,v) and, therefore
x̂(i,v) = x̂ and Λv

i (t) = Λ(t). Applying a union bound yields, for all t ≥ 0,

Pr [Λ(t) < ε] ≤
n∑

i=1

∑

v∈D′

Pr [Λv
i (t) < ε]

≤
n∑

i=1

∑

v∈D′

Pr
[
d+P+ + d−P− ≥ t

]
ε
φi

|v|

≤ Pr
[
d+P+ + d−P− ≥ t

]
ε

n∑

i=1

∑

v∈D′

φi

|v| .

For t ≤ 0 we get analogously

Pr [Λ(t) < ε] ≤ Pr
[
d+P− + d−P+ ≤ t

]
ε

n∑

i=1

∑

v∈D′

φi

|v| .
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Now we can bound the expected number of class-0 Pareto optimal solutions,
taking into account that at most n of them can be extraordinary.

E [q0] ≤ n +
∫ ∞

−∞
lim
ε→0

Pr [Λ(t) ≤ ε]
ε

dt

≤ n +
∫ ∞

0
lim
ε→0

Pr [d+P+ + d−P− ≥ t] ε
∑n

i=1
∑

v
φi

|v|
ε

dt

+
∫ 0

−∞
lim
ε→0

Pr [d+P− + d−P+ ≤ t] ε
∑n

i=1
∑

v
φi

|v|
ε

dt

≤ n +

(
∑

v

1
|v|

)(
n∑

i=1

φi

)(∫ ∞

0
Pr

[
d+P+ + d−P− ≥ t

]
dt

+
∫ ∞

0
Pr

[
−d+P− − d−P+ ≥ t

]
dt

)

As 0 ∈ D, it holds d+ ≥ 0 and d− ≤ 0. Hence we have d+P+ + d−P− ≥ 0,
−d+P− − d−P+ ≥ 0, and
∫ ∞

0
Pr

[
d+P+ + d−P− ≥ t

]
dt +

∫ ∞

0
Pr

[
−d+P− − d−P+ ≥ t

]
dt

= E
[
d+P+ + d−P−]

+ E
[
−d+P− − d−P+]

= (d+ − d−)E
[
P+ − P−]

= (d+ − d−)E

[
n∑

i=1

|pi|
]

= D

n∑

i=1

μi . ��

4 Lower Bounds on the Expected Number of Pareto
Optimal Solutions

In this section we present a lower bound of Ω(n2k log(1 + k)) on the number of
Pareto optimal solutions for D = {0, . . . , k}, generalizing a bound for the binary
domain presented in [2]. In Theorem 8 we prove the stronger bound Ω(n2k2)
under slightly stronger assumptions. The weaker bound provides a vector of
weights w1, . . . , wn, such that the bound holds for a linear weight function wTx.
For the stronger bound we can only prove that there is some weight function
w : S → R for which the bound holds but this function might not be linear.
In combinatorial optimization, however, many problems have linear objective
functions. The proofs of the theorems in this section will be contained in the full
version of this paper.

Theorem 7. Let D = {0, . . . , k}. Suppose profits are drawn independently at
random according to a continuous probability distribution with non-increasing
density function f : R≥0 → R≥0. Let q denote the number of Pareto optimal
solutions over S = Dn. Then there is a vector of weights w1, . . . , wn ∈ R>0 for
which

E [q] ≥ Hk

4
k(n2 − n) + kn + 1 ,
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where Hk is the k-th harmonic number. If the profits are drawn according to the
uniform distribution over some interval [0, c] with c > 0 then the above inequality
holds with equality.

Similarly, a lower bound of Ω(n2k log k) can be obtained for the case that f is
the density of a Gaussian random variable with mean 0. Since all weights wi are
larger than 0, a solution with a negative profit cannot be contained in a Pareto
optimal solution. Hence, we can ignore those items. Restricted to the interval
[0, ∞) the density of a Gaussian random variable with mean 0 is non-increasing
and, hence, we can apply Theorem 7.

Now we consider general weight functions and show a lower bound of Ω(n2k2)
on the expected number of Pareto optimal solutions for D = {0, . . . , k} and
S = Dn. We assume that k is a function of n with (5(c + 1) + 1) logn ≤ k ≤ nc

for some constant c. We use the probabilistic method to show that, for each
sufficiently large n ∈ N, a ranking exists for which the expected number of Pareto
optimal solutions is lower bounded by n2k2/κ for some constant κ depending
only on c, that is, we create a ranking at random (but independently of the
profits) and show that the expected number of Pareto optimal solutions (where
the expectation is taken over both the random ranking and the random profits)
satisfies the desired lower bound. This implies that, for each sufficiently large
n ∈ N, there must exist a deterministic ranking on {0, . . . , k}n for which the
expected number of Pareto optimal solutions (where the expectation is now
taken only over the random profits) is at least n2k2/κ.

Theorem 8. Let (5(c + 1) + 1) log n ≤ k ≤ nc for some c ≥ 2 and assume that
n is a multiple of c + 2. There exists a constant κ depending only on c and a
ranking on {0, . . . , k}n such that the expected number of Pareto optimal solutions
is lower bounded by n2k2/κ if each profit pi is chosen independently, uniformly
at random from the interval [−1, 1].

5 Smoothed Complexity of Integer Programming

In [13], we analyze the smoothed complexity of integer programming. We con-
sider integer programs in which an objective function is to be maximized over a
feasible region that is defined as the intersection of a fixed ground set S ⊆ Dn

with a halfspace B that is induced by a linear constraint w1x1 + · · · + wnxn ≤ t,
where the wi are independent random variables which can be represented by
densities that are bounded by φ. We show that an integer optimization problem
in this form has polynomial smoothed complexity if and only if there exists a
pseudo-polynomial algorithm (w. r. t. the wi) for solving it.

The main technical contribution in [13] is the analysis of the random variables
loser gap and feasibility gap. The feasibility gap Γ is defined as the slack of the
optimal solution from the threshold t. To be more precise, let x∗ denote the
optimal solution, that is, x∗ denotes the solution from S ∩B that maximizes the
objective function. Then the feasibility gap can be defined as Γ = t − wTx∗. A
solution x ∈ S is called a loser if it has a higher objective value than x∗ but is
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infeasible due to the linear constraint, that is, wTx > t. We denote the set of all
losers by L. Furthermore, we define the minimal loser x ∈ L to be the solution
from L with minimal weight, that is, x = argmin{wTx | x ∈ L}. The loser gap
Λ denotes the slack of the minimal loser from the threshold t, i. e., Λ = wTx− t.

If both the loser and the feasibility gap are not too small, then rounding
all weights wi with sufficient accuracy does not change the optimal solution.
Rounding the weights can only affect the optimal solution if either x∗ becomes
infeasible or a loser x becomes feasible. The former event can only occur if the
feasibility gap is small; the latter event can only occur if the loser gap is small.
In a rather technical and lengthy analysis we show the following lemma on the
probability that the loser or the feasibility gap is small.

Lemma 9. (Separating Lemma [13]) Let S ⊆ Dn with 0n /∈ S be chosen arbi-
trarily, let μ = maxi∈[n] E [|wi|], d = |D|, and dmax = max{|a| | a ∈ D}. Then,
for all ε ∈ [0, (32μn5d7dmaxφ

2)−1],

Pr [Γ ≤ ε] ≤ 2(ε·32μn5d7dmaxφ
2)1/3 and Pr [Λ ≤ ε] ≤ 2(ε·32μn5d7dmaxφ

2)1/3.

In the full version of this paper we present a much simpler proof for the following
improved version of the previous lemma.

Theorem 10. Let S ⊆ Dn with 0n /∈ S be chosen arbitrarily, and let D =
max{a − b | a, b ∈ D} ≤ 2dmax. There exists a constant κ such that, for all
ε ≥ 0,

Pr [Γ ≤ ε] ≤ εκφ2μn3Dd log2 d and Pr [Λ ≤ ε] ≤ εκφ2μn3Dd log2 d .

In [13] we show that Lemma 9 can also be used to analyze integer optimization
problems with more than one linear constraint. We consider integer optimization
problems in which an objective function is to be maximized over a feasible region
that is defined as the intersection of a fixed ground set S ⊆ Dn with halfspaces
B1, . . . , Bm that are induced by m linear constraints of the form wi,1x1 + · · · +
wi,nxn ≤ ti, where the wi,j are independent random variables which can be
represented by densities that are bounded by φ.

The feasibility gap Γ for multiple constraints is defined to be the minimal slack
of the optimal solution x∗ from one of the thresholds, i. e., Γ = mini∈[m](ti −
(wi,1x1+· · ·+wi,nxn)). The loser gap Λ for multiple constraints is defined as Λ =
minx∈L maxi∈[m](wi,1x1 + · · ·+wi,nxn − ti). In [13] we show how Lemma 9 gives
rise to bounds on the sizes of loser and feasibility gap for multiple constraints.
Based on this observation we show that an integer optimization problem with
multiple constraints has polynomial smoothed complexity if and only if there
exists a pseudo-polynomial algorithm (w. r. t. the wi,j) for solving it. By applying
the same arguments, our bounds in Theorem 10 yield the following corollary.

Corollary 11. Let S ⊆ Dn with 0n /∈ S be chosen arbitrarily, let D = max{a−
b | a, b ∈ D} ≤ 2dmax, and let the set of feasible solutions be given as S ∩ B1 ∩
. . . ∩ Bm. There exists a constant κ such that, for all ε ≥ 0,

Pr [Γ ≤ ε] ≤ εκφ2μmn3Dd log2 d and Pr [Λ ≤ ε] ≤ εκφ2μmn3Dd log2 d .
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The main improvement upon our previous analysis is that the bounds in Corol-
lary 11 depend only linearly on ε instead of ε1/3. Due to this improvement we
can prove Theorem 4 in the same way as its binary version in [3], which is not
possible with the bounds derived in [13].

References

1. René Beier. Probabilistic Analysis of Discrete Optimization Problems. PhD thesis,
Universität des Saarlandes, 2004.
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3. René Beier and Berthold Vöcking. Typical properties of winners and losers in
discrete optimization. SIAM Journal on Computing, 35(4):855–881, 2006.

4. H.W. Corley and I.D Moon. Shortest paths in networks with vector weights.
Journal of Optimization Theory and Application, 46(1):79–86, 1985.

5. Matthias Ehrgott. Integer solutions of multicriteria network flow problems. Inves-
tigacao Operacional, 19:61–73, 1999.

6. Matthias Ehrgott and Xavier Gandibleux. Multiple Criteria Optimization, volume
491 of Lecture Notes in Economics and Mathematical Systems, chapter Multiob-
jective Combinatorial Optimization. Springer-Verlag, 2000.

7. H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin,
Germany, 2004.

8. Kathrin Klamroth and Margaret M. Wiecek. Dynamic programming approaches
to the multiple criteria knapsack problem. Naval Research Logistics, 47(1):57–76,
2000.

9. Matthias Müller-Hannemann and Karsten Weihe. Pareto shortest paths is often
feasible in practice. In Proceedings of the 5th International Workshop on Algorithm
Engineering (WAE), pages 185–198, 2001.

10. Adli Mustafa and Mark Goh. Finding integer efficient solutions for bicriteria and
tricriteria network flow problems using dinas. Computers & OR, 25(2):139–157,
1998.

11. George L. Nemhauser and Zev Ullmann. Discrete dynamic programming and cap-
ital allocation. Management Science, 15:494–505, 1969.

12. Christos H. Papadimitriou and Mihalis Yannakakis. On the approximability of
trade-offs and optimal access of web sources. In Proceedings of the 41st An-
nual Symposium on Foundations of Computer Science (FOCS), pages 86–92. IEEE
Computer Society, 2000.
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Abstract. We show that one can compute a (simple) polytope from its
graph in Polynomial time. This computation of a polytope from its graph
was shown to be solvable by Blind and Mani and more recently Kalai
provided a simple proof that leads to an exponential time algorithm.
Our proof relies on a Primal-Dual characterization by Joswig, Kaibel
and Korner. We describe an exponential Linear Programming which can
be used to construct the solution and show that it can be solved in
polynomial time.

1 Introduction

In [1] Blind and Mani showed, using tools from homology theory, that one can
construct the entire face lattice of a (simple1) polytope from its graph. Then
in [7], Kalai presented an elementary proof of this result. Whereas Blind and
Mani’s result was essentially nonconstructive, Kalai’s result was constructive
but required exponential time (in the size of the graph).

More recently, Joswig, Kaibel and Korner [4] extended Kalai’s analysis to
provide polynomial certificates for this problem, based on a pair of combinato-
rial optimization problems that form a primal dual pair. However, they do not
provide polynomial algorithms for either of these problems and thus left open
the question of whether this problem can be solved in polynomial time.

In this paper, we present a polynomial time algorithm for computing the face
lattice of a polytope from its graph, resolving this question. We present a linear
program for computing the 2-faces of the polytope from its graph which can be
solved in polynomial time. As discussed in [5,6] this resolves the issue, as one
can compute the full face lattice from the set of 2 faces.

Our discussion in the remainder of the paper will be self contained, but terse.
For more details see the related papers [4,5] and the book [9].

2 2-Systems and Pseudo-polytopes

Let G = (V, E) be the graph of a simple (full dimensional) polytope, P , in �d,
where V is the set of vertices of the polytope and E are its edges.
1 Note that if the polytope is not simple then it is not uniquely defined by its graph.

Thus, we will only consider simple polytopes.
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A 2-frame, centered at v, is a set of three distinct nodes, v, v′, v′′ such that
(v, v′) and (v, v′′) are both elements of E. A 2-system is a set of cycles in G such
that every 2-frame is contained in a unique cycle.

Let O be an acyclic orientation on G. Define H(O) to be the number of 2-
frames that are sinks under O, where the 2-frame (v, v′, v′′) is a sink if both
edges (v, v′) and (v, v′′) are oriented towards the center of the frame, v.

Our analysis will be based on the following (minor) extension of the main
result from [4]. Our modification is that we require a specified vertex not be a
source.

Theorem 1 (Joswig, Korner and Kaibel). Let P be a simple d-polytope.
For every 2-system S of G, vertex v, and every acyclic orientation O of G, such
that no 2-frame centered at v is a 2-sink, the inequalities

|S| ≤ |V2(P )| ≤ H(O)

hold, where the first inequality holds with equality if and only if S = V2(P ) (the
set of 2 faces of P ), and the second holds with equality if and only if O induces
precisely one sink on every 2-face of P .

Proof: Our proof is a slight modification of that in [4], since we require that a
chosen vertex not be a source. First note that for an acyclic orientation that
every cycle must contain a 2-sink. Thus we must have that |S| ≤ H(O). In
addition, since V2(P ) is a 2-system this implies that |V2(P )| ≤ H(O) which in
turn implies that |S| ≤ |V2(P )|. The second inequality holds with equality when
O is an abstract objective function with v as a source. Such an AOF exists since
there exists a linear objective function on the polytope where v is the worst
vertex. That S = V2(P ) when the first holds with equality can be shown using
the same proof as in [4]. ��
Thus, if we can find a 2-system S that maximizes |S| in polynomial time, then
we have found V2(p) and from that one can compute the full face lattice of P in
polynomial time. See [5,6] for details.

We use the above theorem to define a “pseudo-polytopal multi-graph” to be a
multi-graph G such that there exists a vertex v and “pseudo 2-face set”, V2(G)
such that Theorem 1 holds. Clearly the graph of a polytope is pseudo-polytopal;
however, as we now show, other multi-graphs (which do not arise from simple
polytopes) may also be pseudo-polytopal.

Given a graph G of a polytope P define the contraction of G by a 2-face f to
be a new multi-graph Cf (G), where all the nodes in f are contracted to a single
node, denoted v. Note that this is a multi-graph as there may be multiple edges
connecting v to an adjacent node. We consider each of these to be distinct and
may even have a 2-face on only 2 nodes.

Theorem 2. Let G be the graph of a simple polytope P and F be a 2-face of P .
Then G′ = Cf (G) is a pseudo-polytopal multi-graph.

Proof: The proof is identical to the proof of Theorem 1 where we choose V2(G′)
to be the V2(P ) \ f and O to be the contraction of an AOF for G where all
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vertices on the face f are worse than all other vertices. To construct such an
AOF simply take the linear objective function with f as a level set and perturb
it slightly. ��
In the following section, we will present a binary integer program with an expo-
nential number of variables for computing this 2-system. Somewhat surprisingly,
this can be solved in polynomial time.

3 Solving Via Linear Programming

Let T be the set of all 2-frames in G and t ∈ T be the 2-frame (t0, t1, t2) centered
at t0. Let W be the set of all loops in G. Then to compute V2(P ) we need to
solve:

max
∑

w∈W

xw (IP − S)

s.t.

∀t ∈ T :
∑

w�t

xw = 1

xw ∈ {0, 1}
where we write w � t as a shorthand for the 2-frames t contained in w. First we
consider the following relaxation of this integer program.

max
∑

w∈W

xw (LP-S)

s.t.

∀t ∈ T :
∑

w�t

xw ≤ 0

xw ≥ 0

Next, we consider the dual of this LP:

min
∑

t∈T

vt (LP-SD)

s.t.

∀w ∈ W :
∑

t∈w

vt ≥ 1

vt ≥ 0

Let IP-SD be the related binary integer program for LP-SD, i.e., replace 0 ≤ vt

with vt ∈ {0, 1}. Now, consider an acyclic orientation, O of G and let vt = 1
represent the case when the 2-frame t is a 2-sink. Then the integer program
for minimizing H(O) over all acyclic orientations can be written by adding the
constraint that v must arise from an acyclic orientation on G, to IP-SD.
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min
∑

t∈T

vt (IP-H)

s.t.

∀w ∈ W :
∑

t∈w

vt ≥ 1

vt ≥ 0

vt arises from an acyclic orientation of G

This sequence of optimization problems allows us to present our first result:

Theorem 3. Let P be a simple d-polytope with graph G. Then the following
optimization problems for G all have the same optimal value: IP-S, LP-S, LP-
SD, IP-SD and IP-H.

Proof: Let Opt(problem) be the optimal objective value for the optimization prob-
lem, “problem”. Then it is easy to see that Opt(IP − S) ≤ Opt(LP − S) and
Opt(LP − SD) ≤ Opt(IP − SD) ≤ Opt(IP − H) as these are sequences of relax-
ations. By strong duality, we have Opt(LP−S) = Opt(LP−SD). Now, Theorem 1
completes the proof since it implies that Opt(IP − S) = Opt(IP − H). ��

4 Solution and Integrality of the Linear Program

To complete our analysis we show that LP-SD can be solved in polynomial time
and that its solution is actually a solution to IP-S, yielding V2(P ).

Note that even though LP-SD has an exponential number of constraints it can
be solved in polynomial time by the ellipsoid method if there exists a polynomial
separation algorithm [3]. That is, an algorithm which given a vector v can check
whether v is feasible and if not, find a constraint violated by v. In our case such
a constraint is a cycle w ∈ W such that

∑
t∈w wt < 1. This can be solved easily

in polynomial time via a graphical algorithm.
For example, one can search node by node for a loop starting at that node

that violates the constraint. This can be done by finding a shortest path from
that node to a copy of itself on a modified version of G where the specified node
is doubled and the graph is directed to force any such path to be a cycle.

To complete the analysis one must guarantee that the the solution of the LP
is binary. Note that the optimal solution of IP-S is unique, since there is only
one true set of 2-faces for a polytope. So it suffices to show that the extreme
point solution of LP-S is unique.

Theorem 4. LP-S has a unique optimal solution.

Proof: Suppose that LP-S has the binary optimal solution x∗ and second extreme
point x′. Then there must exist some w ∈ W such that x∗

w = 1 and x′
w = 0,

otherwise (1 + ε)x′ − εx∗ would also be an optimal solution, for small enough
ε > 0, implying that x′

w is not an extreme point.



72 E.J. Friedman

Let f ∈ F denote the face implied by x∗
w and contract the graph G by f ,

denoting this node by f and the contracted graph by G′ = Cf (G).
Now consider IP-S on this graph where we drop the constraints for 2-frames

centered at f but require all the remaining ones. Since G′ is psuedo-polytopal
our previous argument holds for the string of optimization problems induced
by G′. In particular, the solution of IP-S must have objective value equal to
|V2(P )| − 1; however the projection of x′ is feasible for LP-S but has a greater
objective value (|V2(P )|), providing a contradiction and proving the theorem. ��
Thus, we can find an integral solution of LP-S and hence a solution of IP-S, in
polynomial time, and can find the full face lattice in polynomial time.

5 Discussion

Our analysis shows that one can compute the face lattice of a polytope from its
graph in polynomial time and suggests that similar techniques might be useful
for finding abstract objective functions in polynomial time, an interesting open
problem.

One interesting question is whether one can tell whether a graph is polytopal,
i.e., arising from a polytope. One way to show that a graph is not polytopal
would be to show that the linear program (LP-S) does not have an integral
solution or the related existence of a duality gap. However, the existence of
psuedo-polytopal graphs shows that this would not be sufficient.

Lastly, we note that our analysis appears to have connections to recent work
on unique sink orientations [8,2], as our intermediate integer program (IP-SD) is
essentially solving for a unique sink orientation. Thus, minimizing over unique
sink orientations is equivalent to minimizing over abstract objective functions.
We conjecture that using this equivalence, one could provide an optimization
based characterization of unique sink orientations for general polytopes analo-
gous to our definition of pseudo-polytopal graphs.
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Abstract. The topic of this paper are integer programming models in
which a subset of 0/1-variables encode a partitioning of a set of objects
into disjoint subsets. Such models can be surprisingly hard to solve by
branch-and-cut algorithms if the order of the subsets of the partition is
irrelevant. This kind of symmetry unnecessarily blows up the branch-
and-cut tree.

We present a general tool, called orbitopal fixing, for enhancing the
capabilities of branch-and-cut algorithms in solving such symmetric inte-
ger programming models. We devise a linear time algorithm that, applied
at each node of the branch-and-cut tree, removes redundant parts of the
tree produced by the above mentioned symmetry. The method relies on
certain polyhedra, called orbitopes, which have been investigated in [11].
It does, however, not add inequalities to the model, and thus, it does not
increase the difficulty of solving the linear programming relaxations. We
demonstrate the computational power of orbitopal fixing at the example
of a graph partitioning problem motivated from frequency planning in
mobile telecommunication networks.

1 Introduction

Being welcome in most other contexts, symmetry causes severe trouble in the so-
lution of many integer programming (IP) models. This paper describes a method
to enhance the capabilities of branch-and-cut algorithms with respect to hand-
ling symmetric models of a certain kind that frequently occurs in practice.

We illustrate this kind of symmetry by the example of a graph partitioning
problem (another notorious example is the vertex coloring problem). Here, one
is given a graph G = (V, E) with nonnegative edge weights w ∈ �E

≥0 and an
integer q ≥ 2. The task is to partition V into q disjoint subsets such that the
sum of all weights of edges connecting nodes in the same subset is minimized.

A straight-forward IP model arises by introducing 0/1-variables xij for all
i ∈ [p] := {1, . . . , p} and j ∈ [q] that indicate whether node i is contained in
� Supported by the DFG Research Center Matheon Mathematics for key technologies

in Berlin.
�� During the research of this work the first author was a visiting professor at Technische

Universität Berlin.
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subset j (where we assume V = [p]). In order to model the objective function,
we furthermore need 0/1-variables yik for all edges {i, k} ∈ E indicating whether
nodes i and k are contained in the same subset. This yields the following model
(see, e.g., [5]):

min
∑

{i,k}∈E

wik yik

s.t.
q∑

j=1

xij = 1 for all i ∈ [p]

xij + xkj − yik ≤ 1 for all {i, k} ∈ E, j ∈ [q]
xij ∈ {0, 1} for all i ∈ [p], j ∈ [q]
yik ∈ {0, 1} for all {i, k} ∈ E.

(1)

The x-variables describe a 0/1-matrix of size p × q with exactly one 1-entry
per row. They encode the assignment of the nodes to the subsets of the partition.
The methods that we discuss in this paper do only rely on this structure and thus
can be applied to many other models as well. We use the example of the graph
partitioning problem as a prototype application and report on computational
experiments in Sect. 5. Graph partitioning problems are discussed in [3, 4, 5],
for instance as a relaxation of frequency assignment problems in mobile telecom-
munication networks. The maximization version is relevant as well [6, 12]. Also
capacity bounds on the subsets of the partition (which can easily be incorporated
into the model) are of interest, in particular the graph equipartitioning problem
[7, 8, 18, 19]. For the closely related clique partitioning problem, see [9, 10].

As it is given above, the model is unnecessarily difficult for state-of-the-art IP
solvers. Even solving small instances requires enormous efforts (see Sect. 5). One
reason is that every feasible solution (x, y) to this model can be turned into q!
different ones by permuting the columns of x (viewed as a 0/1-matrix) in an
arbitrary way, thereby not changing the structure of the solution (in particular:
its objective function value). Phrased differently, the symmetric group of all
permutations of the set [q] operates on the solutions by permuting the columns of
the x-variables in such a way that the objective function remains constant along
each orbit. Therefore, when solving the model by a branch-and-cut algorithm,
basically the same work will be done in the tree at many places. Thus, there
should be potential for reducing the running times significantly by exploiting
the symmetry. A more subtle second point is that interior points of the convex
hulls of the individual orbits are responsible for quite weak linear programming
(LP) bounds. We will, however, not address this second point in this paper.

In order to remove symmetry, the above model for the graph partitioning
problem is often replaced by models containing only edge variables, see, e.g. [7].
However, for this to work the underlying graph has to be complete, which might
introduce many unnecessary variables. Moreover, formulation (1) is sometimes
favorable, e.g., if node-weighted capacity constraints should be incorporated.

One way to deal with symmetry is to restrict the feasible region in each
of the orbits to a single representative, e.g., to the lexicographically maximal
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(with respect to the row-by-row ordering of the x-components) element in the
orbit. In fact, this can be done by adding inequalities to the model that enforce
the columns of x to be sorted in a lexicographically decreasing way. This can
be achieved by O(pq) many column inequalities. In [11] even a complete (and
irredundant) linear description of the convex hull of all 0/1-matrices of size p×q
with exactly one 1-entry per row and lexicographically decreasing columns is
derived; these polytopes are called orbitope. The description basically consists of
an exponentially large superclass of the column inequalities, called shifted column
inequalities, for which there is a linear time separation algorithm available. We
recall some of these results in Sect. 2.

Incorporating the inequalities from the orbitope description into the IP model
removes symmetry. At each node of the branch-and-cut tree this ensures that the
corresponding IP is infeasible as soon as there is no representative in the subtree
rooted at that node. In fact, already the column inequalities are sufficient for
this purpose.

In this paper, we investigate a way to utilize these inequalities (or the or-
bitope that they describe) without adding any of the inequalities to the models
explicitly. The reason for doing this is the unpleasant effect that adding (shifted)
column inequalities to the models results in more difficult LP relaxations. One
way of avoiding the addition of these inequalities to the LPs is to derive logical
implications instead: If we are working in a branch-and-cut node at which the
x-variables corresponding to index subsets I0 and I1 are fixed to zero and one,
respectively, then there might be a (shifted) column inequality yielding impli-
cations for all representatives in the subtree rooted at the current node. For
instance, it might be that for some (i, j) �∈ I0 ∪ I1 we have xij = 0 for all feasi-
ble solutions in the subtree. In this case, xij can be fixed to zero for the whole
subtree rooted at the current node, enlarging I0. We call the iterated process
of searching for such additional fixings sequential fixing with (shifted) column
inequalities.

Let us mention at this point that deviating from parts of the literature, we
do not distinguish between “fixing“ and “setting“ of variables in this paper.

Sequential fixing with (shifted) column inequalities is a special case of con-
straint propagation, which is well known from constraint logic programming.
Modern IP solvers like SCIP [1] use such strategies also in branch-and-cut algo-
rithms. With orbitopes, however, we can aim at something better: Consider a
branch-and-cut node identified by fixing the variables corresponding to sets I0
and I1 to zero and one, respectively. Denote by W (I0, I1) the set of all vertices x
of the orbitope with xij = 0 for all (i, j) ∈ I0 and xij = 1 for all (i, j) ∈ I1.
Define the sets I�

0 and I�
1 of indices of all variables, for which no x in W (I0, I1)

satisfies xij = 1 for some (i, j) ∈ I�
0 or xij = 0 for some (i, j) ∈ I�

1 . Fixing of
the corresponding variables is called simultaneous fixing at the branch-and-cut
node. Simultaneous fixing is always at least as strong as sequential fixing.

Investigations of sequential and simultaneous fixing for orbitopes are the cen-
tral topic of the paper. The main contributions and results are the following:
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◦ We present a linear time algorithm for orbitopal fixing, i.e., for solving the
problem to compute simultaneous fixings for orbitopes (Theorem 4).

◦ We show that, for general 0/1-polytopes, sequential fixing, even with com-
plete and irredundant linear descriptions, is weaker than simultaneous fix-
ing (Theorem 2), We clarify the relationships between different versions of
sequential fixing with (shifted) column inequalities, where (despite the situ-
ation for general 0/1-polytopes) the strongest one is as strong as orbitopal
fixing (Theorem 3).

◦ We report on computer experiments (Sect. 5) with the graph partitioning
problem described above, showing that orbitopal fixing leads to significant
performance improvements for branch-and-cut algorithms.

Margot [14, 15, 17] considers a related method for symmetry handling. His ap-
proach works for more general types of symmetries than ours. Similarly to our
approach, the basic idea is to assure that only (partial) solutions which are lexi-
cographical maximal in their orbit are explored in the branch-and-cut tree. This
is guaranteed by an appropriate fixing rule. The fixing and pruning decisions
are done by means of a Schreier-Sims table for representing the group action.
While Margot’s approach is much more generally applicable than orbitopal fix-
ing, the latter seems to be more powerful in the special situation of partitioning
type symmetries. One reason is that Margot’s method requires to choose the
branching variables according to an ordering that is chosen globally for the en-
tire branch-and-cut tree.

Another approach has recently been proposed by Linderoth et al. [13] (in this
volume). They exploit the symmetry arising in each node of a branch-and-bound
tree when all fixed variables are removed from the model. Thus one may find
additional local symmetries. Nevertheless, for partitioning type symmetries one
still may miss some part of the (fixed) global symmetry we are dealing with.

We will elaborate on the relations between orbitopal fixing, isomorphism prun-
ing, and orbital branching in more detail in a journal version of the paper.

2 Orbitopes

Throughout the paper, let p and q be integers with p ≥ q ≥ 2. The orbitope O=
p,q

is the convex hull of all 0/1-matrices x ∈ {0, 1}[p]×[q] with exactly one 1-entry
per row, whose columns are in decreasing lexicographical order (i.e., they satisfy∑p

i=1 2p−ixij >
∑p

i=1 2p−ixi,j+1 for all j ∈ [q − 1]). Let the symmetric group of
size q act on {0, 1}[p]×[q] via permuting the columns. Then the vertices of O=

p,q

are exactly the lexicographically maximal matrices (with respect to the row-by-
row ordering of the components) in those orbits whose elements are matrices
with exactly one 1-entry per row. As these vertices have xij = 0 for all (i, j)
with i < j, we drop these components and consider O=

p,q as a subset of the space
�Ip,q with Ip,q := {(i, j) ∈ {0, 1}[p]×[q] : i ≥ j}. Thus, we consider matrices, in
which the i-th row has q(i) := min{i, q} components.
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Fig. 1. (a) Example for coordinates (9, 5) = 〈5, 5〉. (b), (c), (d) Three shifted column
inequalities, the left one of which is a column inequality.

In [11], in the context of more general orbitopes, O=
p,q is referred to as the

partitioning orbitope with respect to the symmetric group. As we will confine
ourselves with this one type of orbitopes in this paper, we will simply call it
orbitope.

The main result in [11] is a complete linear description of O=
p,q. In order to

describe the result, it will be convenient to address the elements in Ip,q via a
different “system of coordinates”: For j ∈ [q] and 1 ≤ η ≤ p − j + 1, define
〈η, j〉 := (j + η − 1, j). Thus (as before) i and j denote the row and the column,
respectively, while η is the index of the diagonal (counted from above) containing
the respective element; see Figure 1 (a) for an example.

A set S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} ⊂ Ip,q with c1 ≤ c2 ≤ · · · ≤ cη and
η ≥ 1 is called a shifted column. For (i, j) = 〈η, j〉 ∈ Ip,q, a shifted column S as
above with cη < j, and B = {(i, j), (i, j+1), . . . , (i, q(i))}, we call x(B)−x(S) ≤ 0
a shifted column inequality. The set B is called its bar. In case of c1 = · · · = cη =
j − 1 the shifted column inequality is called a column inequality. See Figure 1
for examples.

Finally, a bit more notation is needed. For each i ∈ [p], we define rowi :=
{(i, j) : j ∈ [q(i)]}. For A ⊂ Ip,q and x ∈ �Ip,q , we denote by x(A) the sum∑

(i,j)∈A xij .

Theorem 1 (see [11]). The orbitope O=
p,q is completely described by the non-

negativity constraints xij ≥ 0, the row-sum equations x(rowi) = 1, and the
shifted column inequalities.

In fact, in [11] it is also shown that, up to a few exceptions, the inequalities
in this description define facets of O=

p,q. Furthermore, a linear time separation
algorithm for the exponentially large class of shifted column inequalities is given.

3 The Geometry of Fixing Variables

In this section, we deal with general 0/1-integer programs and, in particular,
their associated polytopes. We will define some basic terminology used later in
the special treatment of orbitopes, and we are going to shed some light on the
geometric situation of fixing variables.
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We denote by [d] the set of indices of variables, and by Cd = {x ∈ �d :
0 ≤ xi ≤ 1 for all i ∈ [d]} the corresponding 0/1-cube. For two disjoint subsets
I0, I1 ⊆ [d] (with I0 ∩ I1 = ∅) we call

{x ∈ Cd : xi = 0 for all i ∈ I0, xi = 1 for all i ∈ I1}

the face of Cd defined by (I0, I1). All nonempty faces of Cd are of this type.
For a polytope P ⊆ Cd and for a face F of Cd defined by (I0, I1), we denote

by FixF (P ) the smallest face of Cd that contains P ∩ F ∩ {0, 1}d (i.e., FixF (P )
is the intersection of all faces of Cd that contain P ∩ F ∩ {0, 1}d). If FixF (P ) is
the nonempty cube face defined by (I�

0 , I�
1 ), then I�

0 and I�
1 consist of all i ∈ [d]

for which xi = 0 and xi = 1, respectively, holds for all x ∈ P ∩ F ∩ {0, 1}d. In
particular, we have I0 ⊆ I�

0 and I1 ⊆ I�
1 , or FixF (P ) = ∅. Thus, if I0 and I1

are the indices of the variables fixed to zero and one, respectively, in the current
branch-and-cut node (with respect to an IP with feasible points P ∩ {0, 1}d),
the node can either be pruned, or the sets I�

0 and I�
1 yield the maximal sets of

variables that can be fixed to zero and one, respectively, for the whole subtree
rooted at this node. Unless FixF (P ) = ∅, we call (I�

0 , I�
1 ) the fixing of P at

(I0, I1). Similarly, we call FixF (P ) the fixing of P at F .

Remark 1. If P, P ′ ⊆ Cd are two polytopes with P ⊆ P ′ and F and F ′ are two
faces of Cd with F ⊆ F ′, then FixF (P ) ⊆ FixF ′(P ′) holds.

In general, it is not clear how to compute fixings efficiently. Indeed, computing
the fixing of P at (∅, ∅) includes deciding whether P ∩ {0, 1}d = ∅, which, of
course, is NP-hard in general. Instead, one can try to derive as large as possible
subsets of I�

0 and I�
1 by looking at relaxations of P . In case of an IP that is

based on an intersection with an orbitope, one might use the orbitope as such a
relaxation. We will deal with the fixing problem for orbitopes in Sect. 4.

If P is given via an inequality description, one possibility is to use the knapsack
relaxations obtained from single inequalities out of the description. For each of
these relaxations, the fixing can easily be computed. If the inequality system
describing P is exponentially large, and the inequalities are only accessible via
a separation routine, it might still be possible to decide efficiently whether any
of the exponentially many knapsack relaxations allows to fix some variable (see
Sect. 4.2).

Suppose, P = {x ∈ Cd : Ax ≤ b} and Pr = {x ∈ Cd : aT
r x ≤ br} is the

knapsack relaxation of P for the rth-row aT
r x ≤ br of Ax ≤ b, where r = 1, . . . , m.

Let F be some face of Cd. The face G of Cd obtained by setting G := F and
then iteratively replacing G by FixG(Pr) as long as there is some r ∈ [m] with
FixG(Pr) � G, is denoted by FixF (Ax ≤ b). Note that the outcome of this
procedure is independent of the choices made for r, due to Remark 1. We call
the pair (Ĩ0, Ĩ1) defining the cube face FixF (Ax ≤ b) (unless this face is empty)
the sequential fixing of Ax ≤ b at (I0, I1). In the context of sequential fixing we
often refer to (the computation of) FixF (P ) as simultaneous fixing.

Due to Remark 1 it is clear that FixF (P ) ⊆ FixF (Ax ≤ b) holds.
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Theorem 2. In general, even for a system of facet-defining inequalities describ-
ing a full-dimensional 0/1-polytope, sequential fixing is weaker than simultaneous
fixing.

Proof. The following example shows this. Let P ⊂ C4 be the four-dimensional
polytope defined by the trivial inequalities xi ≥ 0 for i ∈ {1, 2, 3}, xi ≤ 1 for
i ∈ {1, 2, 4}, the inequality −x1+x2+x3−x4 ≤ 0 and x1−x2+x3−x4 ≤ 0. Let F
be the cube face defined by ({4}, ∅). Then, sequential fixing does not fix any
further variable, although simultaneous fixing yields I�

0 = {3, 4} (and I�
1 = ∅).

Note that P has only 0/1-vertices, and all inequalities are facet defining (x4 ≥ 0
and x3 ≤ 1 are implied). 
�

4 Fixing Variables for Orbitopes

For this section, suppose that I0, I1 ⊆ Ip,q are subsets of indices of orbitope
variables with the following properties:
(P1) |I0 ∩ rowi| ≤ q(i) − 1 for all i ∈ [p]
(P2) For all (i, j) ∈ I1, we have (i, �) ∈ I0 for all � ∈ [q(i)] \ {j}.
In particular, P1 and P2 imply that I0 ∩ I1 = ∅. Let F be the face of the 0/1-
cube CIp,q defined by (I0, I1). Note that if P1 is not fulfilled, then O=

p,q ∩F = ∅.
The following statement follows immediately from Property P2.

Remark 2. If a vertex x of O=
p,q satisfies xij = 0 for all (i, j) ∈ I0, then x ∈ F .

We assume that the face FixF (O=
p,q) is defined by (I�

0 , I�
1 ), if FixF (O=

p,q) is
not empty. Orbitopal fixing is the problem to compute the simultaneous fixing
(I�

0 , I�
1 ) from (I0, I1), or determine that FixF (O=

p,q) = ∅.

Remark 3. If FixF (O=
p,q) �= ∅, it is enough to determine I�

0 , as we have (i, j) ∈ I�
1

if and only if (i, �) ∈ I�
0 holds for for all � ∈ [q(i)] \ {j}.

4.1 Intersection of Orbitopes with Cube Faces

We start by deriving some structural results on orbitopes that are crucial in
our context. Since O=

p,q ⊂ CIp,q is a 0/1-polytope (i.e., it is integral), we have
conv(O=

p,q ∩F ∩{0, 1}Ip,q) = O=
p,q ∩F . Thus, FixF (O=

p,q) is the smallest cube face
that contains the face O=

p,q ∩F of the orbitope O=
p,q.

Let us, for i ∈ [p], define values αi := αi(I0) ∈ [q(i)] recursively by setting
α1 := 1 and, for all i ∈ [p] with i ≥ 2,

αi :=

{
αi−1 if αi−1 = q(i) or (i, αi−1 + 1) ∈ I0

αi−1 + 1 otherwise.

The set of all indices of rows, in which the α-value increases, is denoted by

Γ (I0) := {i ∈ [p] : i ≥ 2, αi = αi−1 + 1} ∪ {1}

(where, for technical reasons 1 is included).
The following observation follows readily from the definitions.
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Remark 4. For each i ∈ [p] with i ≥ 2 and αi(I0) < q(i), the set Si(I0) :=
{(k, αk(I0) + 1) : k ∈ [i] \ Γ (I0)} is a shifted column with Si(I0) ⊆ I0.

Lemma 1. For each i ∈ [p], no vertex of O=
p,q ∩F has its 1-entry in row i in a

column j ∈ [q(i)] with j > αi(I0).

Proof. Let i ∈ [p]. We may assume αi(I0) < q(i), because otherwise the state-
ment trivially is true. Thus, B := {(i, j) ∈ rowi : j > αi(I0)} �= ∅.

Let us first consider the case i ∈ Γ (I0). As we have αi(I0) < q(i) ≤ i and
α1(I0) = 1, there must be some k < i such that k �∈ Γ (I0). Let k be maximal
with this property. Thus we have k′ ∈ Γ (I0) for all 1 < k < k′ ≤ i. According to
Remark 4, x(B)−x(Sk(I0)) ≤ 0 is a shifted column inequality with x(Sk(I0)) =
0, showing x(B) = 0 as claimed in the lemma.

Thus, let us suppose i ∈ [p] \ Γ (I0). If αi(I0) ≥ q(i) − 1, the claim holds
trivially. Otherwise, B′ := B \ {(i, αi(I0) + 1)} �= ∅. Similarly to the first case,
now the shifted column inequality x(B′)−x(Si−1(I0)) ≤ 0 proves the claim. 
�

For each i ∈ [p] we define μi(I0) := min{j ∈ [q(i)] : (i, j) �∈ I0}. Because of
Property P1, the sets over which we take minima here are non-empty.

Lemma 2. If we have μi(I0) ≤ αi(I0) for all i ∈ [p], then the point x� =
x�(I0) ∈ {0, 1}Ip,q with x�

i,αi(I0) = 1 for all i ∈ Γ (I0) and x�
i,μi(I0) = 1 for all i ∈

[p] \ Γ (I0) and all other components being zero, is contained in O=
p,q ∩F .

Proof. Due to αi(I0) ≤ αi−1(I0) + 1 for all i ∈ [p] with i ≥ 2, the point x� is
contained in O=

p,q. It follows from the definitions that x� does not have a 1-entry
at a position in I0. Thus, by Remark 2, we have x� ∈ F . 
�

We now characterize the case O=
p,q ∩F = ∅ (leading to pruning the corresponding

node in the branch-and-cut tree) and describe the set I�
0 .

Proposition 1.

1. We have O=
p,q ∩F = ∅ if and only if there exists i ∈ [p] with μi(I0) > αi(I0).

2. If μi(I0) ≤ αi(I0) holds for all i ∈ [p], then the following is true.
(a) For all i ∈ [p] \ Γ (I0), we have

I�
0 ∩ rowi = {(i, j) ∈ rowi : (i, j) ∈ I0 or j > αi(I0)}.

(b) For all i ∈ [p] with μi(I0) = αi(I0), we have

I�
0 ∩ rowi = rowi \{(i, αi(I0))}.

(c) For all s ∈ Γ (I0) with μs(I0) < αs(I0) the following holds: If there is
some i ≥ s with μi(I0) > αi(I0 ∪ {(s, αs(I0))}), then we have

I�
0 ∩ rows = rows \{(s, αs(I0))}.

Otherwise, we have

I�
0 ∩ rows = {(s, j) ∈ rows : (s, j) ∈ I0 or j > αs(I0)}.
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Fig. 2. (a): Example for Prop. 1 (1). Light-gray entries indicate the entries (i, μi(I0))
and dark-gray entries indicate entries (i, αi(I0)). (b): Example of fixing an entry to 1 for
Prop. 1 (2c). As before light-gray entries indicate entries (i, μi(I0)). Dark-gray entries
indicate entries (i, αi(I0 ∪ {(s, αs(I0))})) with s = 3. (c) and (d): Gray entries show
the SCIs used in the proofs of Parts 1(a) and 1(b) of Thm. 3, respectively.

Proof. Part 1 follows from Lemmas 1 and 2.
In order to prove Part 2, let us assume that μi(I0) ≤ αi(I0) holds for all i ∈ [p].

For Part 2a, let i ∈ [p] \ Γ (I0) and (i, j) ∈ rowi. Due to I0 ⊂ I�
0 , we only have to

consider the case (i, j) �∈ I0. If j > αi(I0), then, by Lemma 1, we find (i, j) ∈ I�
0 .

Otherwise, the point that is obtained from x�(I0) (see Lemma 2) by moving the
1-entry in position (i, μi(I0)) to position (i, j) is contained in O=

p,q ∩F , proving
(i, j) �∈ I�

0 .
In the situation of Part 2b, the claim follows from Lemma 1 and O=

p,q ∩F �= ∅

(due to Part 1).
For Part 2c, let s ∈ Γ (I0) with μs(I0) < αs(I0) and define I ′0 := I0 ∪

{(s, αs(I0))}. It follows that we have μi(I ′0) = μi(I0) for all i ∈ [p].
Let us first consider the case that there is some i ≥ s with μi(I0) > αi(I ′0).

Part 1 (applied to I ′0 instead of I0) implies that O=
p,q ∩F does not contain a

vertex x with xs,αs(I0) = 0. Therefore, we have (s, αs(I0)) ∈ I�
1 , and thus I�

0 ∩
rows = rows \{(s, αs(I0))} holds (where for “⊆“ we exploit O=

p,q ∩F �= ∅ by
Part 1, this time applied to I0).

The other case of Part 2c follows from s �∈ Γ (I ′0) and αs(I ′0) = αs(I0) − 1.
Thus, Part 2a applied to I ′0 and s instead of I0 and i, respectively, yields the
claim (because of (s, αs(I0)) �∈ I�

0 due to s ∈ Γ (I0) and O=
p,a ∩F �= ∅). 
�

4.2 Sequential Fixing for Orbitopes

Let us, for some fixed p ≥ q ≥ 2, denote by SSCI the system of the nonnegativity
inequalities, the row-sum equations (each one written as two inequalities, in
order to be formally correct) and all shifted column inequalities. Thus, according
to Theorem 1, O=

p,q is the set of all x ∈ �Ip,q that satisfy SSCI. Let SCI be the
subsystem of SSCI containing only the column inequalities (and all nonnegativity
inequalities and row-sum equations).

At first sight, it is not clear whether sequential fixing with the exponentially
large system SSCI can be done efficiently. A closer look at the problem reveals,
however, that one can utilize the linear time separation algorithm for shifted
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column inequalities (mentioned in Sect. 2) in order to devise an algorithm for
this sequential fixing, whose running time is bounded by O(�pq), where � is the
number of variables that are fixed by the procedure.

In fact, one can achieve more: One can compute sequential fixings with respect
to the affine hull of the orbitope. In order to explain this, consider a polytope
P = {x ∈ Cd : Ax ≤ b}, and let S ⊆ �d be some affine subspace containing P .
As before, we denote the knapsack relaxations of P obtained from Ax ≤ b by P1,
. . . , Pm. Let us define FixS

F (Pr) as the smallest cube-face that contains Pr ∩S ∩
{0, 1}d∩F . Similarly to the definition of FixF (Ax ≤ b), denote by FixS

F (Ax ≤ b)
the face of Cd that is obtained by setting G := F and then iteratively replacing
G by FixS

G(Pr) as long as there is some r ∈ [m] with FixS
G(Pr) � G. We call

FixS
F (Ax ≤ b) the sequential fixing of Ax ≤ b at F relative to S. Obviously, we

have FixF (P ) ⊆ FixS
F (Ax ≤ b) ⊆ FixF (Ax ≤ b). In contrast to sequential fixing,

sequential fixing relative to affine subspaces in general is NP-hard (as it can be
used to decide whether a linear equation has a 0/1-solution).

Theorem 3. 1. There are cube-faces F 1, F 2, F 3 with the following properties:

(a) FixF 1(SSCI) � FixF 1(SCI)

(b) Fix
aff(O=

p,q)
F 2 (SCI) � FixF 2(SSCI)

(c) Fix
aff(O=

p,q)
F 3 (SSCI) � Fix

aff(O=
p,q)

F 3 (SCI)

2. For all cube-faces F , we have Fix
aff(O=

p,q)
F (SSCI) = FixF (O=

p,q).

Proof. For Part 1(a), we chose p = 5, q = 4, and define the cube-face F1 via
I1
0 = {(3, 2), (5, 1), (5, 2), (5, 3)} and I1

1 = {(1, 1), (5, 4)}. The shifted column
inequality with shifted column {(2, 2), (3, 2)} and bar {(5, 4)} allows to fix x22 to
one (see Fig. 2 (c)), while no column inequality (and no nonnegativity constraint
and no row-sum equation) allows to fix any variable.

For Part 1(b), let p = 4, q = 4, and define F 2 via I2
0 = {(3, 2), (4, 1), (4, 2)}

and I2
1 = {(1, 1)}. Exploiting that x43 + x44 = 1 for all x ∈ aff(O=

p,q) ∩ F 2, we
can use the column inequality with column {(2, 2), (3, 2)} and bar {(4, 3), (4, 4)}
to fix x22 to one (see Fig. 2 (d)), while no fixing is possible with SSCI only.

For Part 1(c), we can use F 3 = F 1. The proof of Part 2 is omitted here. 
�

The different versions of sequential fixing for partitioning orbitopes are dom-
inated by each other in the following sequence: SCI → {SSCI, affine SCI} →
affine SSCI, which finally is as strong as orbitopal fixing. For each of the ar-
rows there exists an instance for which dominance is strict. The examples in the
proof of Theorem 3 also show that there is no general relation between SSCI and
affine SCI.

In particular, we could compute orbitopal fixings by the polynomial time
algorithm for sequential fixing relative to aff(O=

p,q). It turns out, however, that
this is not the preferable choice. In fact, we will describe below a linear time
algorithm for solving the orbitopal fixing problem directly.
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Algorithm 1. Orbitopal Fixing
1: Set I�

0 ← I0, I�
1 ← I1, μ1 ← 1, α1 ← 1, and Γ = ∅.

2: for i = 2, . . . , p do
3: compute μi ← min{j : (i, j) �∈ I0}.
4: if αi−1 = q(i) or (i, αi−1 + 1) ∈ I0 then
5: αi ← αi−1

6: else
7: αi ← αi−1 + 1, Γ ← Γ ∪ {i}
8: if μi > αi then
9: return “Orbitopal fixing is empty”

10: Set I�
0 ← I�

0 ∪ {(i, j) : j > αi}.
11: if |I�

0 ∩ rowi | = q(i) − 1 then
12: set I�

1 ← I�
1 ∪ (rowi \I�

0 ).
13: for all s ∈ Γ with (s, αs) /∈ I�

1 do
14: Set βs ← αs − 1.
15: for i = s + 1, . . . , p do
16: if βi−1 = q(i) or (i, βi−1 + 1) ∈ I0 then
17: βi ← βi−1

18: else
19: βi ← βi−1 + 1
20: if μi > βi then
21: I�

1 ← I�
1 ∪ {(s, αs)} and I�

0 ← rows \{(s, αs)}.
22: Proceed with the next s in Step 13.

4.3 An Algorithm for Orbitopal Fixing

Algorithm 1 describes a method to compute the simultaneous fixing (I�
0 , I�

1 ) from
(I0, I1) (which are assumed to satisfy Properties P1 and P2). Note that we use βi

for αi(I0 ∪ {(s, αs(I0))}).

Theorem 4. A slight modification of Algorithm 1 solves the orbitopal fixing
problem in time O(pq).

Proof. The correctness of the algorithm follows from the structural results given
in Proposition 1.

In order to prove the statement on the running time, let us assume that the data
structures for the sets I0, I1, I�

0 , and I�
1 allowbothmembership testing andaddition

of single elements in constant time (e.g., the sets can be stored as bit vectors).
As none of the Steps 3 to 12 needs more time than O(q), we only have to

take care of the second part of the algorithm starting in Step 13. (In fact, used
verbatim as described above, the algorithm might need time Ω(p2).)

For s, s′ ∈ Γ with s < s′ denote the corresponding β-values by βi (i ≥ s) and
by β′

i (i ≥ s′), respectively. We have βi ≤ β′
i for all i ≥ s′, and furthermore, if

equality holds for one of these i, we can deduce βk = β′
k for all k ≥ i. Thus, as

soon as a pair (i, βi) is used a second time in Step 20, we can break the for-loop
in Step 15 and reuse the information that we have obtained earlier.

This can, for instance, be organized by introducing, for each (i, j) ∈ Ip,q, a
flag f(i, j) ∈ {red, green, white} (initialized by white), where f(i, j) = red / green
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means that we have already detected that βi = j eventually leads to a posi-
tive/negative test in Step 20. The modifications that have to be applied to the
second part of the algorithm are the following: The selection of the elements
in Γ in Step 13 must be done in increasing order. Before performing the test
in Step 20, we have to check whether f(i, βi) is green. If this is true, then we
can proceed with the next s in Step 13, after setting all flags f(k, βk) to green
for s ≤ k < i. Similarly, we set all flags f(k, βk) to red for s ≤ k ≤ i, before
switching to the next s in Step 22. And finally, we set all flags f(k, βk) to green
for s ≤ k ≤ p at the end of the body of the s-loop starting in Step 13.

As the running time of this part of the algorithm is proportional to the number
of flags changed from white to red or green, the total running time indeed is
bounded by O(pq) (since a flag is never reset). 
�

5 Computational Experiments

We performed computational experiments for the graph partitioning problem
mentioned in the introduction. The code is based on the SCIP 0.90 framework
by Achterberg [1], and we use CPLEX 10.01 as the basic LP solver. The com-
putations were performed on a 3.2 GHz Pentium 4 machine with 2 GB of main
memory and 2 MB cache running Linux. All computation times are CPU sec-
onds and are subject to a time limit of four hours. Since in this paper we are
not interested in the performance of heuristics, we initialized all computations
with the optimal primal solution. We compare different variants of the code by
counting winning instances. An instance is a winner for variant A compared to
variant B, if A finished within the time limit and B did not finish or needed a
larger CPU time; if A did not finish, then the instance is a winner for A in case
that B did also not finish, leaving, however, a larger gap than A. If the difference
between the times or gaps are below 1 sec. and 0.1, respectively, the instance is
not counted.

In all variants, we fix the variables xij with j > i to zero. Furthermore,
we heuristically separate general clique inequalities

∑
i,j∈C yij ≥ b, where b =

1
2 t(t − 1)(q − r) + 1

2 t(t + 1)r and C ⊆ V is a clique of size tq + r > q with
integers t ≥ 1, 0 ≤ r < q (see [3]). The separation heuristic for a fractional
point y� follows ideas of Eisenblätter [5]. We generate the graph G′ = (V, E′)
with {i, k} ∈ E′ if and only if {i, k} ∈ E and y�

ik < b(b + 1)/2, where y� is the
y-part of an LP-solution. We search for maximum cliques in G′ with the branch-
and-bound method implemented in SCIP (with a branch-and-bound node limit
of 10 000) and check whether the corresponding inequality is violated.

Our default branching rule combines first index and reliability branching. We
branch on the first fractional x-variable in the row-wise variable order used for
defining orbitopes, but we skip columns in which a 1 has appeared before. If
no such fractional variable could be found, we perform reliability branching as
described by Achterberg, Koch, and Martin [2].

We generated random instances with n vertices and m edges of the following
types. For n = 30 we used m = 200 (sparse), 300 (medium), and 400 (dense).
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Table 1. Results of the branch-and-cut algorithm. All entries are rounded averages
over three instances. CPU times are given in seconds.

basic Iso Pruning OF
n m q nsub cpu nsub cpu nsub cpu #OF

30 200 3 1 082 6 821 4 697 5 6
30 200 6 358 1 122 0 57 0 25
30 200 9 1 0 1 0 1 0 0
30 200 12 1 0 1 0 1 0 0

30 300 3 3 470 87 2 729 64 2 796 69 7
30 300 6 89 919 445 63 739 168 8 934 45 353
30 300 9 8 278 19 5 463 5 131 0 73
30 300 12 1 0 1 0 1 0 0

30 400 3 11 317 755 17 433 800 9 864 660 8
30 400 6 458 996 14 400 1 072 649 11 220 159 298 3 142 1 207
30 400 9 2 470 503 14 400 1 048 256 2 549 70 844 450 7 305
30 400 12 3 668 716 12 895 37 642 53 2 098 12 1 269

50 560 3 309 435 10 631 290 603 14 400 288 558 10 471 10
50 560 6 1 787 989 14 400 3 647 369 14 400 1 066 249 9 116 4 127
50 560 9 92 0 2 978 5 10 0 10
50 560 12 1 0 1 0 1 0 0

Additionally, for n = 50 we choose m = 560 in search for the limits of our
approach. For each type we generated three instances by picking edges uniformly
at random (without recourse) until the specified number of edges is reached. The
edge weights are drawn independently uniformly at random from the integers
{1, . . . , 1000}. For each instance we computed results for q = 3, 6, 9, and 12.

In a first experiment we tested the speedup that can be obtained by perform-
ing orbitopal fixing. For this we compare the variant (basic) without symmetry
breaking (except for the zero-fixing of the upper right x-variables) and the ver-
sion in which we use orbitopal fixing (OF ); see Table 1 for the results. Columns
nsub give the number of nodes in the branch-and-bound tree. The results show
that orbitopal fixing is clearly superior (OF winners: 26, basic winners: 3), see
also Figure 3.

Table 1 shows that the sparse instances are extremely easy, the instances with
m = 300 are quite easy, while the dense instances are hard. One effect is that

250 s250 s250 s

500 s500 s500 s
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Fig. 3. Computation times/gaps for the basic version (dark gray) and the version with
orbitopal fixing (light gray). From left to right: instances with n = 30, m = 300,
instances for n = 30, m = 400, instances for n = 50, m = 560. The number of
partitions q is indicated on the x-axis. Values above 4 hours indicate the gap in percent.
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often for small m and large q the optimal solution is 0 and hence no work has to
be done. For m = 300 and 400, the hardest instances arise when q = 6. It seems
that for q = 3 the small number of variables helps, while for q = 12 the small
objective function values help. Of course, symmetry breaking methods become
more important when q gets larger.

In a second experiment we investigated the symmetry breaking capabilities
built into CPLEX. We suspect that it breaks symmetry within the tree, but no
detailed information was available. We ran CPLEX 10.01 on the IP formulation
stated in Sect. 1. In one variant, we fixed variables xij with j > i to zero, but
turned symmetry breaking off. In a second variant, we turned symmetry breaking
on and did not fix variables to zero (otherwise CPLEX seems not to recognize
the symmetry). These two variants performed about equally good (turned-on
winners: 13, turned-off winners: 12). The variant with no symmetry breaking
and no fixing of variables performed extremely badly. The results obtained by
the OF-variant above are clearly superior to the best CPLEX results (CPLEX
could not solve 10 instances within the time limit, while OF could not solve 2).
Probably this is at least partially due to the separation of clique inequalities and
the special branching rule in our code.

In another experiment, we turned off orbitopal fixing and separated shifted
column inequalities in every node of the tree. The results are that the OF-version
is slightly better than this variant (OF winners: 13, SCI winners: 10), but the
results are quite close (OF average time: 1563.3, SCI average time: 1596.7).
Although by Part 2 of Theorem 3, orbitopal fixing is not stronger than fixing
with SCIs (with the same branching decisions), the LPs get harder and the
process slows down a bit.

Finally, we compared orbitopal fixing to the isomorphism pruning approach
of Margot. We implemented the ranked branching rule (see [16]) adapted to the
special symmetry we exploit, which simplifies Margot’s algorithm significantly. It
can be seen from Table 1 that isomorphism pruning is inferior to both orbitopal
fixing (OF winners: 25, isomorphism pruning winners: 3) and shifted column
inequalities (26:2), but is still a big improvement over the basic variant (23:7).

6 Concluding Remarks

The main contribution of this paper is a linear time algorithm for the orbitopal
fixing problem, which provides an efficient way to deal with partitioning type
symmetries in integer programming models. The result can easily be extended to
“packing orbitopes” (where, instead of x(rowi) = 1, we require x(rowi) ≤ 1). Our
proof of correctness of the procedure uses the linear description of O=

p,q given
in [11]. However, we only need the validity of the shifted column inequalities in
our arguments. In fact, one can devise a similar procedure for the case where
the partitioning constraints x(rowi) = 1 are replaced by covering constraints
x(rowi) ≥ 1, though, for the corresponding “covering orbitopes” no complete lin-
ear descriptions are known at this time. A more detailed treatment of this will be
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contained in a journal version of the paper, which will also include comparisons
to the isomorphism pruning method [14, 15, 17] and to orbital branching [13].
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Abstract. We discuss an open source implementation and preliminary
computational testing of three variants of the Balas-Perregaard proce-
dure for generating lift-and-project cuts from the original simplex
tableau, two of which are new. Variant 1 is the original procedure of
[6] with minor modifications. Variant 2 uses a new procedure for choos-
ing the pivot element: After identifying the set of row candidates for
an improving pivot, the pivot element (and column) is chosen by opti-
mizing over the entries of all candidate rows. Finally, Variant 3 replaces
the source row with its disjunctive modularization, and after each pivot
it again modularizes the resulting source row. We report on computa-
tional results with the above three variants and their combinations on
65 MIPLIB.3 instances.

Keywords: integer programming, branch and cut algorithms.

1 Introduction

The revolution of the last 15 years in the state of the art of integer programming
was brought about, besides faster computers and more efficient linear program-
ming codes, also by improved cutting plane techniques. Lift-and-project (L&P)
cuts were the first to be generated in rounds and to be embedded into a branch-
and-cut framework. They were also the first locally valid cuts lifted into globally
valid ones. Soon after the success of L&P cuts [3,4], it was shown [5] that mixed
integer Gomory (MIG) cuts used in the same manner could also enhance the
performance of MIP solvers. Thus, during the nineties a number of different cut
families (cover and flow cover inequalities, MIG cuts, simple disjunctive cuts,
MIR cuts etc.) became part of the toolkit of commercial MIP solvers and have
led to a radical improvement of their performance. The L&P cuts themselves,
however, were found to be computationally too expensive to be incorporated into
commercial codes, as each such cut came at the price of solving a Cut Generating
Linear Program (CGLP) in a higher dimensional space. It was not until a few
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years later, when a way was found [6] to generate L&P cuts by pivoting in the
original simplex tableau, without constructing the higher dimensional CGLP,
that these cuts became sufficiently cost-effective to be incorporated into a state-
of-the-art MIP solver, where they soon proved their value [10] and became the
default cut generator.

Although the algorithm for generating L&P cuts from the original simplex
tableau is now in practical use and has contributed to solving countless hard in-
teger programs, its implementation was until now commercial property not pub-
licly available, which made it harder for researchers to experiment with different
versions of it. In this paper we discuss an implementation of this algorithm in the
COIN-OR framework, publicly available [9] since September 2006, and compare
three different variants of it. Variant 1 is a slightly modified version of the origi-
nal algorithm [6] for generating L&P cuts by pivoting in the original LP tableau
which incorporates the various improvements proposed in [10,11], whereas the
other two variants contain substantial changes in the algorithm, which give rise
to different pivot sequences and therefore different cuts. Variant 2 uses a new
rule for choosing the entering variable in the pivoting procedure. Instead of first
choosing a most promising pivot row and then identifying the best column in
that row, this version of the algorithm first identifies all candidate rows for an im-
proving pivot, then chooses the pivot element as the best one among the entries
of all the candidate rows. Variant 3 uses recursive disjunctive modularization of
the source row. In other words, rather than first generating an unstrengthened
“deepest” L&P cut through a sequence of pivots in the original LP tableau and
then strengthening the end product by modular arithmetic, this version replaces
the source row with its disjunctive modularization, and after each pivot it again
applies the disjunctive modularization to the resulting transformed source row.
Each of the three Variants give rise to sequences of pivots different from each
other. In the case of both Variants 2 and 3, each pivot is guaranteed to produce
an improvement in cut strength at least equal to that produced by the corre-
sponding pivot of Variant 1, but this additional improvement comes at some
computational cost.

After describing each of the three Variants, we compare them on a battery
of MIPLIB test problems and assess the results by trying to identify the merits
and demerits of each Variant.

Consider a problem of the form min{cx : x ∈ P, xj ∈ Z, j = 1, . . . , p} (MIP)
and its linear programming relaxation min{cx : x ∈ P} (LP), where P is the
polyhedron defined by the system

Ax ≥ b
−xj ≥ −1 j = 1, . . . , p

x ≥ 0
(1)

Here A is m × n, 1 ≤ p ≤ n, and (1) will also be denoted as Ãx ≥ b̃. Note
that the vector s ∈ R

m+p+n of surplus variables has n components of the form
sm+p+j = xj , which represent just a set of different names for the structural
variables xj .
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Let x∗ be an optimal solution to (LP) and let

xk = āk0 −
∑

j∈J

ākjsj (2)

be the row of the optimal simplex tableau corresponding to basic variable xk,
with 0 < āk0 < 1 and J the index set of nonbasic variables. The intersection
cut [1] from the convex set {x ∈ R

n : 0 ≤ xk ≤ 1}, also known as the simple
disjunctive cut from the condition xk ≤ 0 ∨ xk ≥ 1 applied to (2), is πs ≥ π0,
where π0 = āk0(1 − āk0) and πj := max {ākj(1 − āk0), −ākj āk0} , j ∈ J.

This cut can be strengthened [1] using the integrality of some variables in
J , by replacing π with π̄, where π̄j = πj for j ∈ J \ {1, . . . , p}, and π̄j :=
min{fkj(1− āk0), (1− fkj)āk0}, j ∈ J ∩{1, . . . , p}, where fkj = ākj −�ākj�. This
strengthened intersection cut or strengthened simple disjunctive cut is the same
as the mixed integer Gomory (MIG) cut.

On the other hand, given the same optimal solution x∗ to (LP), a deepest lift-
and-project (L&P) cut αx ≥ β is obtained by solving a Cut Generating Linear
Program [3] in a higher dimensional space:

min αx∗ − β
s.t.

α − uÃ + u0ek = 0
α − vÃ − v0ek = 0

− β + ub̃ = 0
− β + vb̃ + v0 = 0

ue + ve + u0 + v0 = 1
u, v, u0, v0 ≥ 0

(CGLP)k

where e = (1, . . . , 1) and ek is the k-th unit vector.
While an optimal solution to (CGLP)k yields a “deepest” cut αx ≥ β, i.e.

one that cuts off x∗ by a maximum amount, any solution to the constraint set
of (CGLP)k yields a member of the family of L&P cuts. If (α, β, u, v, u0, v0)
is a basic solution to (CGLP)k, the coefficients of the corresponding L&P cut
are β = ub̃ = vb̃ + v0, αk = max{uÃk − uk − u0, vÃk − vk + v0}, and αj =
max{uÃj − uj , vÃj − vj}, j 	= k where Ãj is the j-th column of Ã.

Again, this cut can be strengthened using the integrality of some of the struc-
tural variables by replacing α with ᾱ, where ᾱj = αj for j = k and j /∈ {1, . . . , p},
and ᾱj = min{uÃj −uj +u0
mj�, vÃj − vj − v0�mj�}, j ∈ {1, . . . , p}\{k}, with
mj = (vÃj − vj − uÃj + uj)/(u0 + v0).

In [6] it was shown that the intersection cut obtained from a given component
xk of a basic feasible solution of (LP) is equivalent to the L&P cut obtained
from a basic solution to (CGLP)k, where the bases in question are related to
each other in a well defined manner. The same relationship holds between the
strengthened version of the intersection cut, i.e. the mixed integer Gomory cut,
on the one hand, and the strengthened L&P cut on the other. Furthermore, a
strengthened L&P cut is equivalent to a MIG cut from some LP tableau that
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in general is neither optimal nor feasible, and the search for a deepest L&P cut
can be viewed as the search for the appropriate simplex tableau from which to
derive the corresponding MIG cut. The next section discusses this connection.

2 The Correspondence Between L&P Cuts and MIG
Cuts

Let αx ≥ β be a L&P cut corresponding to a basic feasible solution (α, β, u, v, u0,
v0) of (CGLP)k, and let āx ≥ β be its strengthened version. Further, let u0 > 0,
v0 > 0 (these are known to be the only solutions yielding cuts that differ from the
rows of Ãx ≥ b̃), and let M1 and M2 be the index sets of the basic components
of u and v respectively. Then M1 ∩ M2 = 0, |M1 ∪ M2| = n, and the square
submatrix Â of Ã whose rows are indexed by M1 ∪ M2 is nonsingular (see [6]).
Now define J := M1∪M2. Then letting b̂ denote the subvector of b̃ corresponding
to Â and writing sJ for the surplus variables indexed by J , we have

Âx − sJ = b̂ or x = Â−1b̂ − Â−1sJ (3)

and the row of (3) corresponding to xk (a basic variable, since k /∈ J) can be
written as

xk = āk0 −
∑

j∈J

ākjsj , (4)

where āk0 = ekÂ−1b̂ and ākj = −Â−1
kj . Notice that (4) is the same as (2).

Furthermore, it can be shown that 0 < āk0 < 1, and we have (from [6])

Theorem 1. The MIG cut π̄s ≥ π0 from (4) is equivalent to the strengthened
L&P cut αx ≥ β.

Conversely, suppose (4) is the row associated with xk in a basic solution to (LP),
not necessarily optimal or even feasible, such that 0 < āk0 < 1. Then we have

Theorem 2. Let (M1, M2) be any partition of J such that j ∈ M1 if ākj < 0
and j ∈ M2 if ākj > 0. Then the solution to (CGLP)k corresponding to the basis
with components (α, β, u0, v0, {ui : i ∈ M1}, {vi : i ∈ M2}) defines a L&P cut
αx ≥ β whose strengthened version ᾱx ≥ β is equivalent to the MIG cut π̄s ≥ π0
derived from (4).

Note that the partition (M1, M2) of J , and therefore the basis of (CGLP)k

defined by it, is not unique, since the variables j ∈ J such that ākj = 0 can be
assigned either to M1 or to M2. This means that the correspondence between
bases described above maps each basis B of (LP) into a set of bases ϕ(B) of
(CGLP)k, where typically |ϕ(B)| > 1. However, all bases in ϕ(B) correspond to
the same solution of (CGLP)k, i.e. they are degenerate, and the correspondence
between basic solutions (as opposed to bases) of (LP) and (CGLP)k is one to
one (see [6] for details).
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3 The Lift-and-Project Procedure in the Original LP
Tableau

The lift-and-project procedure in the (LP) tableau uses the above correspon-
dence to mimic the optimization of (CGLP)k by the simplex algorithm. Consider
the row corresponding to xk of the form (2) which we call the source row. At
each iteration of the procedure, we perform a pivot in a row i 	= k, which brings
about a linear combination of the source row with row i

xk + γxi = ak0 + γai0 −
∑

j∈J

(akj + γaij)sj (5)

such that the intersection cut obtained from this new row is more violated by
x∗ than the one obtained from the source row. This combination (the choice of
the row i and of γ), is guided by the correspondence with (CGLP)k. Each row i
of the (LP) simplex tableau corresponds to a pair of columns of (CGLP)k with
associated nonbasic variables ui, vi.

The first main step in the procedure is to compute the reduced costs rui and
rvi in (CGLP)k for all i 	∈ J ∪ {k}. As shown in [6], these reduced costs can be
expressed in terms of the entries āij of the (LP) tableau and the solution x∗.
We use these expressions in our computations. If there is no negative reduced
cost, the current basis is optimal for (CGLP)k and the optimal strengthened
lift-and-project cut is obtained as the MIG cut from the source row of (LP)
(using the correspondence of Theorem 2). On the other hand, if at least one
negative reduced cost exists, then the cut can be improved by performing a
pivot in (CGLP)k where the corresponding variable ui or vi enters the basis. In
the (LP) tableau, this negative reduced cost (rui or rvi) corresponds to a basic
variable xi which has to leave the basis.

Choosing the variable xi to enter the basis is the second main step of the
procedure. In [6], two evaluation functions f+(γ) (resp. f−(γ)) were defined,
which represent the objective function value of (CGLP)k, i.e. the violation of the
cut resulting from the combination of row k and row i for positive, respectively
negative values of γ. These two functions are minimized to select the variable to
enter the basis which leads to the largest improvement in cut violation among
all variables that can replace the exiting variable.

Once the exiting and entering variables have been selected, the pivot in (LP)
is performed and the procedure is iterated from the new basis until (CGLP)k is
optimized. The pseudo-code of Figure 1 describes this procedure.

As shown in [4], the lift-and-project cuts are more efficiently generated in
a subspace where all the non-basic structural variables of (LP) are fixed to
their values in the optimal solution. Performing the separation in the subspace
while working in the (LP) tableau is done simply by removing all the structural
nonbasic variables from it before starting the pivoting procedure. At the end of
the procedure a lifting step is performed to obtain a valid cut for the original
problem by recomputing the source row in the full space and generating the
corresponding MIG cut.
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Let x∗ be the optimal solution to (LP).
Let k ∈ {1, . . . , p}with x∗

k fractional.
Let I and J be the index sets of basic and non-basic variables in an optimal
basis of (LP).
Let A be the optimal tableau.
Let num pivots:= 0.
while num pivots < pivot limit do

Compute the reduced costs rui , rvi for each i 	∈ J ∪ {k}
if There exists i such that rui < 0 ∨ rvi < 0

then
Let î := arg min

i�∈J∪{k}
{rui , rvi},

Let J ′ = {j ∈ J : |âıj | ≥ ε, } be the set of admissible pivots.
Let J+ = J ′ ∩ {j ∈ J : −akj/âıj < 0}.
Let ĵ := argmin{arg min

j∈J+
f+(γj), arg min

j∈J′\J+
f−(γj)}.

Perform a pivot in (LP) by pivoting out ı̂ and pivoting in ĵ.
Let I := I ∪ {̂j} \ {̂ı}.
Let A be the updated tableau in the new basis.
Let num pivots+= 1.

else /* cut is optimal. */
Generate the MIG cut from row k of the current tableau.
exit

fi
od

Fig. 1. Lift-and-Project Procedure

4 Computation of the Reduced Cost and of the
Evaluation Functions

A key point for efficiently implementing the lift-and-project procedure is the
computation of the reduced costs and the evaluation functions.

As shown in [11], for a given partition (M1, M2) (as defined in section 2) the
expressions for the reduced costs depend only linearly on the coefficients of the
tableau, and therefore the reduced costs of all non-basic variables in (CGLP)k

can be computed by doing only one multiplication with the basis inverse. The
expressions for the reduced costs are

rui = −σ + ai0(1 − x∗
k) − τi and rvi = −σ − ai0(1 − x∗

k) + s∗i + τi

where s∗ = Ãx∗ − b, σ = (
∑

j∈M2

akjs
∗
j − ak0(1−x∗

k))/(1+
∑
j∈J

|akj |) is the current

objective value of (CGLP)k, and τi =
∑

j∈M1

σaij +
∑

j∈M2

(s∗j − σ)aij .
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A critical element in computing the reduced costs is the choice of the partition
(M1, M2). If for all j ∈ J , akj is non-zero, this partition is uniquely defined; but
if this is not the case, several partitions can be chosen. The rule given in [6] is
to take M1 = {j ∈ J : akj < 0 ∧ (akj = 0 ∧ aij > 0)} (and M2 = J \ M1) for
computing rui , and M1 = {j ∈ J : akj < 0 ∧ (akj = 0∧aij < 0)} for computing
rvi . This rule has the advantage that if a negative reduced cost is found, then
the corresponding pivot leads to a strictly better cut. On the other hand, to
determine this partition, one has to compute the coefficients aij for all j such
that akj = 0 and all i. Therefore we use another rule. Namely, following [11], we
randomly assign all the zero elements of the source row to either M1 or M2. This
rule has the disadvantage that although the reduced cost for the perturbed row
is negative, it may happen that all the pivots with the corresponding variable
ui or vi entering the basis are degenerate in (CGLP)k. Nevertheless, in our
experiments, this rule had a clear computational advantage.

The second main step of the procedure is the computation of the evaluation
functions f+ and f−, given by

f+(γ) =

∑
j∈J

max{ākj , −γāij}s∗j − āk0 + (āk0 + γāi0)x∗
k

1 + γ +
∑
j∈J

|ākj + γāij |

and

f−(γ) =

∑
j∈J

max{0, ākj + γāij}s∗j − (āk0 + γāi0)(1 − x∗
k)

1 − γ +
∑
j∈J

|ākj + γāij |

As shown in [11], these functions are unimodal piecewise continuously differ-
entiable and their minimum can be found efficiently, once rows k and i of the
tableau are specified, by computing the values of f+ (resp. f−) by increasing
(resp. decreasing) the value of γl = −akl

ail
for valid pivots of the correct sign.

5 Most Violated Cut Selection Rule

Here we present a variant of the lift-and-project procedure which uses a new
rule for choosing the leaving and entering variables in the pivot sequence. The
lift-and-project procedure in the (LP) tableau usually requires a remarkably
small number of pivots to obtain the optimal L&P cut, nevertheless it may be
computationally interesting to reduce this number further by studying alternate
rules for this choice. The rule discussed here performs, at each iteration, the pivot
to the adjacent basis in (LP) for which the objective of (CGLP)k is decreased
by the largest amount or, equivalently, the one for which the intersection cut
obtained from the row k of (LP) is the most violated by x∗.

Let us denote by f+
i (γ) (resp. f−

i (γ)) the function f+(γ) (resp. f−(γ)) defined
for source row k and a row i of the tableau. Recall that these functions give the
violation of the intersection cut derived from the row obtained by adding γ times
row i to row k, depending on the sign of γ. Thus, the violation of the cut in the
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adjacent basis of (LP) where variable i leaves the basis and variable j enters the
basis is given by f+

i (γj) if γj = −akj/aij > 0 and f−
i (γj) if γj = −akl/aij < 0,

and the most violated intersection cut which can be derived from an adjacent
basis has violation

σ̂ = min
i∈I\{k}

min{min
j∈J+

f+
i (γj), min

j∈J−
f−

i (γj)}

where I is the basic index set and J+, J− are the index sets for γj > 0 and
γj < 0, respectively.

Here the variables ı̂ and ĵ for which this minimum is attained are selected as
the leaving and entering variables respectively. By computing the reduced costs
rui and rvi , we first identify all the candidate rows for an improving pivot. Then
for each such row i we minimize the functions f+

i and f−
i .

This clearly amounts to more computation at each iteration than the selection
rule used in Variant 1, where only one minimization of the evaluation function
is performed at each pivot. But on the other hand, the cut violation is increased
at each iteration by an amount at least as large, and therefore one may expect
to obtain in less iterations a cut with a given violation. In particular, in the
presence of zero elements in the source row, it presents the advantage that fewer
degenerate pivots in (CGLP)k are performed.

6 Disjunctive Modularization

L&P cuts are obtained from disjunctions of the type

(uÃx − u0xk ≥ ub̃) ∨ (vÃx + v0xk ≥ vb̃ + v0)

where solving the (CGLP)k optimizes the multipliers u, u0, v and v0. Once the
optimal values for these multipliers are obtained, the cut can be further strength-
ened, as mentioned in section 1, by using modular arithmetic on the coefficients
of the integer-constrained components of x. This latter operation can be inter-
preted (see [4]) as subtracting from xk on each side of the disjunction a product
of the form mx, where m is an integer vector, and then optimizing the com-
ponents of m over all integer values. In other words, the strengthened deepest
intersection cut is the result of a sequence of two optimization procedures, first
in the mutipliers u, v, u0 and v0, then in the components of m. But this raises the
quest for a procedure that would simultaneously optimize both the continuous
multipliers and the integer vector m. While this is an intricate task, equivalent
to finding an optimal split cut, which has been treated elsewhere [7], the dis-
junctive modularization procedure described below is meant to approximate this
goal.

Consider again the equation of the source row (2) for an intersection cut or
a MIG cut. By applying disjunctive modularization to this equation we mean
deriving from it the modularized equation

yk = ϕk0 −
∑

j∈J

ϕkjsj (6)
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where yk is a new, integer-constrained variable of unrestricted sign, ϕk0 = āk0,

ϕkj :=

⎧
⎨

⎩

ākj − �ākj�, j ∈ J+
1 := {j ∈ J1 : ākj − �ākj� ≤ āk0}

ākj − 
ākj�, j ∈ J−
1 := {j ∈ J1 : ākj − �ākj� > āk0}

ākj j ∈ J2 := J \ J1

and J1 := J ∩ {1, . . . , p}.
Clearly, every set of sj , j ∈ J , that satisfies (2) with xk integer, also satisfies

(6) with yk integer; hence the equation (6) is valid. Also, it is easy to see that the
intersection cut derived from (6) is the strengthened intersection cut, or MIG
cut derived from (2). However, at this point we do not intend to generate a cut.
Instead, we append (6) to the optimal (LP) tableau and declare it the source
row in place of (2) for the entire pivoting sequence. Further, after each pivot in
row ı̂ and column ĵ the transformed row of yk, say yk = ϕ′

k0 −
∑

j∈J′
ϕ′

kjsj where

J ′ := (J \ {̂j}) ∪ {̂ı}, is treated again with disjunctive modularization. Namely,
this time the row of yk is replaced with yk = ϕ̄k0 −

∑
j∈J′

ϕkjsj where ϕk0 = ϕ′
k0,

and

ϕkj :=

⎧
⎨

⎩

ϕ′
kj − �ϕ′

kj�, j ∈ (J ′
1)

+

ϕ′
kj − 
ϕ′

kj�, j ∈ (J ′
1)−

ϕ′
kj j ∈ J ′

2

(7)

with (J ′
1)

+, (J ′
1)

− and J ′
2 defined analogously to J+

1 , J−
1 and J2.

The expressions used for calculating the reduced costs rui , rvi and the evalua-
tion functions f+(γ), f−(γ) used for selecting the pivot element at each iteration
remain valid, except for the fact that the entries ākj of the current row (2) of xk

are replaced (since this is no longer the source row) with the entries ϕkj of the
current row of yk (see [2] for details).

It is clear that the modularized source row, if used for cut generation, would
yield a cut that dominates the one from the unmodularized source row. It can
also be shown that every iteration of the cut generating algorithm that uses
disjunctive modularization improves the cut obtainable from the source row.

7 Computational Results

The algorithm for generating L&P cuts from the (LP) tableau was implemented,
in all three of its Variants discussed above, as a cut generator called CglLandP [9]
in the COIN-OR framework. This generator is open-source and is available since
September 2006 as part of the Cut Generation Library [8]. All the computations
have been carried out using the publicly available version of the cut generator
and were performed on a computer equipped with a 2 GHz AMD Optetron CPU
and 3 GB of RAM.

Before presenting our results, it will be useful to recall a comparison between
the computational efforts required by the original procedure that generates L&P
cuts by solving the higher dimensional (CGLP), and the new one that pivots in
the (LP) tableau. Based on running XPRESS on about 100 test problems with
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Table 1. Comparing 10 rounds of different cuts at the root node

MIG Cuts Lift-and-Project Cuts
Variant 1 Variant 2 Variant 3

time (sec)
%

gap closed

average
cut

violation
time (sec)

%
gap closed

average
cut

violation
time (sec)

%
gap closed

average
cut

violation
time (sec)

%
gap closed

average
cut

violation

10teams 1.7 100.00 2.9728e-04 10.3 100.00 5.4248e-03 12.0 100.00 2.9581e-03 10.1 100.00 6.0645e-03
air03 0.3 100.00 1.0055e-04 0.7 100.00 2.5349e-02 0.3 100.00 1.0055e-04 0.8 100.00 2.5638e-02
air04 15.1 13.13 2.6198e-05 176.4 18.17 4.1924e-04 284.8 22.32 1.9377e-04 182.4 19.83 3.9787e-04
air05 11.8 6.89 4.0196e-05 98.9 12.99 1.3294e-03 163.1 14.12 4.6990e-04 114.4 12.65 1.3018e-03

arki001 2.6 52.07 4.2588e-03 6.9 52.89 2.2820e-02 6.4 52.07 3.0722e-02 5.8 43.80 2.6925e-02
bell3a 0.0 72.11 1.0944e-02 0.0 72.04 1.3493e-02 0.0 70.74 1.3322e-02 0.0 71.07 1.19344e-02
bell5 0.0 90.71 2.1735e-02 0.1 92.32 2.1099e-02 0.1 92.62 2.2064e-02 0.1 92.39 2.1817e-02

blend2 0.1 34.14 1.8580e-03 0.3 37.21 2.1410e-02 0.3 34.34 1.8501e-02 0.2 36.14 3.0460e-02
cap6000 0.2 62.50 3.9211e-05 1.7 62.50 7.1012e-05 2.2 62.50 6.3832e-05 2.5 62.50 8.1029e-05

dano3mip 75.2 0.03 2.9685e-03 498.4 0.03 1.2500e-02 223.7 0.03 1.0568e-02 147.6 0.03 1.5132e-02
danoint 0.7 1.74 7.4911e-04 7.5 1.59 1.2143e-02 10.5 1.88 8.8077e-03 9.2 1.38 9.2614e-03
dcmulti 0.4 69.54 2.5191e-02 2.5 78.17 4.5511e-02 2.3 83.10 4.5834e-02 1.5 76.60 4.6794e-02
dsbmip 0.3 no gap 4.3132e-02 0.6 no gap 5.8988e-02 0.5 no gap 6.6541e-02 0.5 no gap 6.1998e-02
egout 0.0 99.83 3.9095e-02 0.0 100.00 7.6798e-02 0.0 100.00 7.6902e-02 0.0 100.00 7.6798e-02

enigma 0.0 no gap 6.6426e-03 0.0 no gap 1.1151e-02 0.0 no gap 8.8013e-03 0.0 no gap 1.7631e-02
fast0507 80.9 3.45 6.8759e-06 325.2 3.67 7.3836e-04 297.6 4.05 1.6800e-04 357.3 3.40 1.2375e-03

fiber 0.8 79.79 8.8217e-04 1.6 87.07 4.3319e-03 1.9 92.65 5.8489e-03 2.8 88.35 4.2286e-03
fixnet6 0.3 85.77 7.4356e-03 1.3 87.90 3.6747e-02 2.3 89.15 3.7913e-02 1.3 89.09 3.6157e-02
flugpl 0.0 14.05 1.2964e-02 0.0 15.94 1.7391e-02 0.0 16.09 1.5143e-02 0.0 15.94 1.7391e-02
gen 0.1 81.97 3.2112e-03 0.2 81.42 1.5461e-02 0.3 81.97 1.5146e-02 0.2 80.33 1.4654e-02

gesa2 1.0 75.12 5.0931e-03 1.8 76.33 1.3842e-02 2.5 90.64 1.6601e-02 1.3 77.62 1.3775e-02
gesa2 o 1.1 63.28 5.0887e-03 1.5 63.74 1.2591e-02 3.6 63.91 1.4217e-02 2.1 64.40 1.2421e-02
gesa3 1.0 56.16 2.4234e-03 2.0 80.37 7.4798e-03 2.6 84.18 9.6241e-03 2.2 83.16 7.5700e-03

gesa3 o 0.9 58.13 3.1590e-03 2.5 80.62 9.3592e-03 5.2 83.74 8.9960e-03 2.1 77.89 8.4678e-03
gt2 0.0 100.00 5.4967e-03 0.1 100.00 1.0840e-02 0.0 100.00 2.0432e-02 0.0 100.00 2.1752e-02

harp2 0.9 37.29 3.1194e-04 2.0 40.62 3.8258e-03 4.2 45.51 4.8609e-03 3.3 40.02 4.4110e-03
khb05250 0.2 94.34 3.2644e-02 0.3 96.68 5.3187e-02 0.4 97.18 6.1590e-02 0.3 96.44 5.6201e-02
l152lav 1.7 20.78 1.4208e-04 8.4 39.87 3.3926e-03 9.5 40.30 2.0602e-03 13.8 33.10 3.7684e-03

lseu 0.0 85.81 2.8617e-03 0.0 88.83 1.3431e-02 0.1 89.19 1.0132e-02 0.1 85.27 1.5530e-02
markshare1 0.0 0.00 2.4035e-03 0.0 0.00 1.5459e-02 0.0 0.00 7.8762e-03 0.0 0.00 1.0355e-02
markshare2 0.0 0.00 1.7025e-03 0.0 0.00 4.5266e-03 0.0 0.00 5.3009e-03 0.0 0.00 1.0701e-02

mas74 0.1 7.62 3.6506e-04 0.5 8.89 5.3231e-03 0.5 8.75 3.0362e-03 0.4 8.29 7.5558e-03
mas76 0.0 7.40 2.5738e-04 0.4 9.09 2.1974e-03 0.4 8.63 1.6655e-03 0.4 8.84 5.8109e-03
misc03 0.1 20.00 3.7024e-03 0.2 19.44 2.6853e-02 0.7 23.75 1.9687e-02 0.1 17.24 3.0294e-02
misc06 0.1 78.26 1.3575e-03 0.3 90.22 5.6188e-03 0.2 95.65 5.8362e-03 0.3 90.22 6.7744e-03
misc07 0.0 0.72 3.7471e-03 0.1 0.72 2.8068e-02 0.3 2.51 2.9601e-02 0.1 0.72 3.0492e-02
mitre 0.3 100.00 1.5473e-03 0.4 100.00 3.8563e-03 0.6 100.00 5.6427e-03 0.4 100.00 3.8195e-03
mkc 3.3 30.66 2.7229e-03 4.7 49.98 1.7965e-02 4.4 46.18 1.8324e-02 4.7 43.84 1.8470e-02

mod008 0.0 30.44 3.1792e-04 0.1 33.73 5.8576e-03 0.1 41.62 5.4240e-03 0.1 39.35 2.4730e-02
mod010 0.1 100.00 2.2217e-04 0.7 100.00 7.6252e-03 0.1 100.00 2.5233e-04 1.4 94.79 3.9760e-03
mod011 6.4 38.50 3.1465e-02 19.3 39.61 5.7859e-02 60.0 41.42 6.1338e-02 17.6 39.37 5.7518e-02
modglob 0.3 61.05 2.5368e-02 0.5 62.31 4.5024e-02 1.0 58.17 4.4318e-02 0.6 63.89 4.3180e-02
noswot 0.0 no gap 1.3127e-02 0.1 no gap 3.4442e-02 0.1 no gap 4.1982e-02 0.2 no gap 4.2526e-02
nw04 7.2 100.00 5.7806e-06 6.0 100.00 8.4070e-03 10.2 100.00 5.7806e-06 34.0 100.00 6.1504e-03
p0033 0.0 76.98 9.4281e-03 0.0 75.57 2.3048e-02 0.0 78.38 2.2338e-02 0.0 75.75 1.9114e-02
p0201 0.2 54.97 2.1807e-03 1.1 83.28 1.1511e-02 1.6 79.78 1.1691e-02 1.2 84.92 9.7795e-03
p0282 0.1 24.10 1.0334e-02 0.2 55.66 6.8690e-02 0.3 48.78 5.6026e-02 0.3 59.46 7.2102e-02
p0548 0.2 95.57 7.7912e-03 0.3 97.60 1.7712e-02 0.5 94.83 1.7799e-02 0.3 97.16 1.7990e-02
p2756 0.6 97.90 2.2700e-02 0.8 97.00 4.4864e-02 1.0 97.42 3.6267e-02 1.0 97.16 4.4811e-02
pk1 0.0 0.00 2.9938e-03 0.0 0.00 9.5531e-03 0.1 0.00 1.4450e-02 0.0 0.00 3.7375e-02

pp08a 0.3 90.39 3.5520e-02 0.6 89.49 4.5770e-02 0.5 92.49 5.1440e-02 0.6 92.59 4.6828e-02
pp08aCUTS 0.5 65.48 2.2789e-02 1.0 71.99 3.7008e-02 1.4 75.06 3.4990e-02 1.1 71.49 3.5609e-02

qiu 2.0 8.37 5.6655e-03 23.4 29.18 1.1153e-02 45.5 30.60 1.0984e-02 23.4 29.18 1.1153e-02
qnet1 1.5 36.18 3.5439e-04 4.5 39.39 6.6478e-03 4.6 46.06 5.3104e-03 7.1 42.29 5.8200e-03

qnet1 o 1.2 56.80 9.8367e-04 4.1 67.05 1.4260e-02 3.4 69.15 1.4546e-02 5.0 68.93 1.4840e-02
rentacar 0.3 30.56 2.7062e-02 0.4 37.20 5.3647e-02 5.5 43.26 5.0001e-02 0.4 37.20 5.3647e-02

rgn 0.0 12.30 5.9142e-03 0.0 16.37 4.3256e-02 0.0 19.76 3.9477e-02 0.1 33.62 -0.00558971
rout 0.2 5.19 2.1877e-03 3.4 24.54 1.2801e-02 4.3 35.35 1.0830e-02 3.7 29.17 1.4507e-02

set1ch 0.5 68.44 5.5305e-02 0.9 75.66 7.3559e-02 1.1 75.43 7.6604e-02 1.6 73.00 7.3731e-02
seymour 4.9 14.27 1.0106e-02 21.7 14.60 1.1268e-02 30.7 19.92 1.5199e-02 20.5 15.75 1.2845e-02
stein27 0.0 0.00 3.2688e-02 0.0 0.00 6.0127e-02 0.0 0.00 6.1522e-02 0.0 0.00 6.0228e-02
stein45 0.0 0.00 1.9886e-02 0.3 0.00 5.5584e-02 0.3 0.00 5.3331e-02 0.3 0.00 5.5584e-02
swath 4.1 26.87 1.1443e-04 5.4 27.60 1.0963e-02 6.5 27.20 6.4202e-03 4.6 28.36 1.0804e-02
vpm1 0.0 52.70 8.7372e-03 0.0 75.59 2.0991e-02 0.1 76.82 2.1853e-02 0.0 75.59 2.1079e-02
vpm2 0.0 53.51 8.6445e-03 0.1 61.66 1.7934e-02 0.2 64.13 1.6697e-02 0.1 59.29 2.0777e-02

Average 3.566 48.45 9.515e-3 19.27 53.62 2.232e-2 18.81 55.05 2.164e-2 15.28 53.69 2.297e-2

each of the two methods, Perregaard [10] reported that the new method required
5% of the number of pivots and 1.3% of the time required by the original one
for generating a L&P cut.
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Table 1 presents a comparison for 10 rounds of cuts generated at the root node,
where a round means a cut for every integer-constrained fractional variable. In
this experiment, the problems are preprocessed with COIN CglPreproces pro-
cedure and then 10 rounds of cuts are generated. The test set consists of 65
problems from the MIPLIB.3 library. The four methods compared are mixed
integer Gomory (MIG) cuts, and the three variants of lift-and-project cuts pre-
sented in this paper: Variant 1 (Balas and Perregaard’s algorithm cf. Sections 3
and 4), Variant 2 (the algorithm using the most violated cut selection rule, cf.
Section 5) and Variant 3 (the algorithm using disjunctive modularization cf. Sec-
tion 6). For each of the methods, we report the running time, the percentage of
the initial integrality gap closed, and the average violation for each cut generated
in 10 rounds (where the violation is the change in the objective of (CGLP)k after
each cut added).

As can be seen from the table, generating lift-and-project cuts with the three
different variants proposed here is not much more expensive than generating
MIG cuts. For our test set, it took on the average 3.566 seconds per instance to
perform 10 rounds of MIG cuts, while it took 19, 19 and 15 seconds respectively
per instance for the three variants of lift-and-project cuts. Considering that cut
generation takes less than 5% of the total time needed to solve a mixed integer
program (see [10]), this difference is not significant. This extra computational
cost made it possible to close a significantly larger fraction of the integrality gap,
namely 54%, 55% and 54% with Variants 1, 2 and 3, respectively, versus 48% for
the MIG cuts. Of the 65 instances, there are only two (bell3a and p2756) on which
the MIG cuts close a slightly larger fraction of the gap than the three flavors of
lift-and-project cuts. Even more striking is the difference in the strength of the
individual cuts, as measured by the amount of their violation by the current LP
solution: it is on the average 2.4 times as large for the lift-and-project cuts as it
is for the MIG cuts.

Tomore thoroughly assess the effectiveness of lift-and-project cuts, it is of course
necessary to solve the instances to completion by running a branch-and-cut code
and using these cuts to strengthen the LP relaxation. To this end, we present two
comparative experiments of complete resolution for the MIPLIB.3 problems. The
first experiment, presented in Table 2, consists in performing 10 rounds of cut gen-
eration at the root node and then solving the problem by branch-and-bound with-
out further cut generation. In the second experiment, summarized in Table 3, 10
rounds of cuts are generated at the root node and 1 round is performed every 10
nodes of the branch-and-cut tree. Again, the four cut generation methods tested
are MIG cuts and the three variants of lift-and-project cuts. For all three variants,
the limit on the number of pivots is set to 10.

The branch-and-cut runs are performed by using Cbc (COIN-OR Branch and
Cut) with some specific settings: a two hours time limit for solving each problem
is imposed; all the default cut generation procedures of Cbc are deactivated; the
variable selection strategy used is strong branching with the default parameters
of Cbc (i.e. performing strong branching on the 5 most fractional variables); the
node selection strategy is best bound.
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Table 2. Comparing complete resolutions with cut-and-branch with 10 rounds of cuts.
S means solved within the time limit, T means aborted because of the time limit.

MIG Cuts Lift-and-Project Cuts
Variant 1 Variant 2 Variant 3

status time (sec) # nodes status time (sec) # nodes status time (sec) # nodes status time (sec) # nodes

Group A:Instances solved with MIG cuts in less than 10 seconds

air03 S 0.52 1 S 1.14 1 S 0.82 1 S 1.18 1
dcmulti S 4.27 57 S 6.46 51 S 6.49 41 S 6.61 51
egout S 0.04 5 S 0.03 1 S 0.04 3 S 0.02 1
enigma S 2.91 1168 S 2.62 931 S 3.00 1257 S 0.25 40
fixnet6 S 4.78 49 S 10.26 43 S 27.16 147 S 11.21 67
flugpl S 0.38 243 S 0.44 309 S 0.49 347 S 0.44 309
gen S 1.28 35 S 1.92 31 S 0.87 17 S 1.46 35
gt2 S 0.01 1 S 1.16 229 S 2.15 259 S 4.60 1041
khb05250 S 1.28 31 S 1.61 31 S 1.68 17 S 1.64 31
lseu S 1.18 425 S 1.40 537 S 2.56 611 S 2.11 709
misc03 S 2.92 157 S 5.85 111 S 5.97 73 S 3.59 81
misc06 S 1.08 26 S 0.85 10 S 0.51 7 S 1.06 13
mitre S 0.59 1 S 1.18 1 S 1.50 1 S 1.34 1
mod008 S 6.65 919 S 7.22 729 S 6.29 691 S 3.06 313
mod010 S 0.59 1 S 1.08 1 S 0.71 1 S 1.32 1
p0033 S 0.24 157 S 0.17 53 S 0.18 71 S 0.05 9
p0201 S 4.07 153 S 10.53 215 S 7.75 65 S 2.63 17
p0282 S 0.50 47 S 1.11 43 S 1.01 55 S 0.92 51
p0548 S 5.24 409 S 11.59 883 S 9.29 657 S 2.60 187
p2756 S 8.39 168 S 20.41 306 S 10.68 158 S 13.88 200
rentacar S 4.42 13 S 4.81 13 S 5.16 13 S 4.80 13
rgn S 2.07 527 S 4.93 533 S 2.71 367 S 3.47 363
stein27 S 3.34 873 S 3.33 877 S 3.58 891 S 3.52 893
vpm1 S 4.81 415 S 0.21 5 S 0.27 5 S 0.23 5

Group B: Instances solved with MIG cuts in a time between 10 seconds and 10 minutes

10teams S 301.57 1091 S 561.25 1600 S 129.68 329 S 321.45 1030
bell3a S 19.69 12871 S 27.31 19765 S 28.30 19205 S 21.42 12927
bell5 S 46.12 22015 S 72.72 29655 S 20.82 9215 S 43.22 17755
blend2 S 27.73 2117 S 25.43 1723 S 7.66 271 S 40.36 2725
cap6000 S 311.07 1557 S 502.07 1923 S 465.71 1853 S 445.67 1825
dsbmip S 15.26 168 S 16.00 159 S 12.15 145 S 43.14 528
fiber S 428.58 8339 S 115.94 2607 S 32.48 257 S 109.52 923
gesa3 S 34.59 483 S 20.82 129 S 12.98 87 S 29.17 219
gesa3 o S 36.45 591 S 48.02 353 S 57.45 319 S 32.43 225
l152lav S 189.21 657 S 157.63 465 S 214.21 293 S 280.03 439
misc07 S 148.21 3745 S 229.06 4913 S 182.43 4161 S 235.73 4593
nw04 S 10.47 1 S 14.05 1 S 33.34 1 S 71.95 1
qnet1 S 170.77 567 S 121.46 263 S 94.20 287 S 214.00 489
qnet1 o S 35.52 171 S 80.97 261 S 39.46 131 S 68.18 189
stein45 S 125.43 9819 S 119.04 11767 S 113.12 10093 S 118.13 11381
vpm2 S 401.08 40191 S 165.28 13717 S 267.30 19531 S 309.16 23561

Group C: Instances solved with MIG cuts in more than 10 minutes or unsolved

air04 S 4244.27 903 S 2945.54 689 S 6559.62 841 S 2057.31 467
air05 S 1872.60 1199 S 3048.48 1055 S 6301.18 1783 S 6061.42 1795
gesa2 S 1742.22 34263 S 3525.33 92709 S 3574.77 74509 S 3843.77 83425
gesa2 o T 7200.61 90683 T 7199.81 97291 T 7201.03 79284 T 7200.91 88376
mas76 S 3643.00 765927 S 2729.41 730081 S 1733.07 783863 S 2104.06 731935
mod011 T 7199.75 19457 T 7200.16 17990 T 7199.88 16488 T 7200.20 13504
modglob S 2140.48 257313 S 714.17 38231 S 1122.85 68141 S 563.46 29151
pk1 S 656.52 318694 S 665.89 321034 S 651.76 328540 S 681.34 357178
pp08a S 1164.49 55853 S 745.10 30769 S 261.32 12081 S 537.56 26211
pp08aCUTS S 962.24 45755 S 646.92 20095 S 782.85 29135 S 869.54 23443
qiu S 3077.94 8505 S 4278.59 4665 T 7200.33 3647 S 3864.11 4665

Average — 711.1 3.351e+04 — 707.4 2.843e+04 — 870.6 2.883e+04 — 734.1 2.83e+04
Geo. Mean — 23.226 599.19 — 27.901 508.96 — 25.4 420.4 — 25.897 428.82

In Table 2, for each problem and each method, we indicate the status, the
computing time and the number of nodes to solve the problem. Averages and



New Variants of Lift-and-Project Cut Generation from the LP Tableau 101

geometric means are reported in the last two lines of the table. Among the
65 problems of the MIPLIB.3, 14 were not solved in the two hours time limit
with any of the methods tested (namely arki01, dano3mip, danoint, fast0507,
harp2, mas74, markshare1, markshare2, mkc, noswot, rout, set1ch, seymour
and swath). We do not include statistics for these 14 problems.

As Table 2 shows, the average size of the branch-and-bound trees generated
by each of Variants 1, 2 and 3 is about 15% smaller than the one obtained with
the MIG cuts. The average time needed to solve an instance remains roughly
the same for Variants 1 and 3 as for the MIG cuts, and increases by a fifth for
Variant 2.

The experiment reported in Table 2 was in cut-and-branch mode, in that cuts
were only generated at the root node. Our next experiment explores the use
of cuts in the branch-and-cut mode: it generates 10 rounds of cuts at the root
node, and one round of cuts at every 10-th node of the branch-and-bound tree.
A summary of its results are reported in Table 3 (we only report averages by
groups of instances the same as the ones constituted in Table 2). The complete
results are available at [9]

It is highly edifying to examine the effect of cut generation in the branch-and-
bound tree. One would expect these extra cuts to reduce the size of the search
tree by making the linear programming relaxation tighter, evidently at some com-
putational cost not so much from generating the cuts as from the increased time
needed to solve the linear programs with more constraints. So our expectation was
for a decrease in the size of the tree, but an increase of the computing time per
node. Surprisingly, a very different picture emerges from comparing Tables 2 and
3. The average number of search tree nodes is indeed smaller for Table 3, but only
by 1.4% in the case of MIG cuts and by 7%, 9% and 18% respectively for the three
variants of lift-and-project cuts. On the other hand, the total computing time is
reduced by 32% in the case of the MIG cuts, and by 31%, 26% and 35% respectively
for Variants 1, 2 and 3 of the lift-and-project cuts. In other words, adding cuts at
some nodes of the branch-and-bound tree has reduced, rather than increased, the
computing time per node. Another aspect of this finding is the fact that in many
instances an increase in the number of search tree nodes is accompanied by a de-
crease in the total number of pivots performed during the procedure (excluding
those used for cut generation, see [9]).

In trying to explain this strange phenomenon, we looked in detail at several
runs and found that the most likely explanation lies in the fact that the cuts
added at some nodes tend to substantially enhance the power of reduced cost
fixing. In other words, they help fix more 0-1 variables whose reduced cost ex-
ceeds the difference between the value of the incumbent solution and the current
upper bound (difference which is reduced as the result of adding the cuts), and
thereby they facilitate the solution of the subproblems rather than making it
harder. This explanation is partially corroborated by the detailed data that we
were able to retrieve for a few instances, in the sense that in all cases the number
of variables fixed by reduced cost throughout the run is significantly larger (by
anywhere from 15% to 50% to even 400% in one case) for the runs of Table 3
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Table 3. Summary of the results comparing complete resolutions with branch-and-cut,
generating 10 rounds of cuts at the root node and then one round every 10 nodes

MIG Cuts Lift-and-Project Cuts
Variant 1 Variant 2 Variant 3

# instances time (sec) # nodes time (sec) # nodes time (sec) # nodes time (sec) # nodes

Group A 24 2.126 214 2.789 195.9 3.065 177.2 3.042 168.9
Group B 16 77.15 3649 75.56 3276 72.84 3150 123.3 3827
Group C 11 2135 1.475e+05 2154 1.183e+05 2898 1.163e+05 2020 1.013e+05

Average – 485.8 3.305e+04 489.5 2.663e+04 649.3 2.615e+04 475.9 2.312e+04
Geo. Mean – 17.307 510.8 19.734 432.86 19.324 383.63 20.243 409.7

than for those of Table 2, but this does not solve the mystery, which requires
further study.

As it is well known that cutting planes tend to play a more significant role
in solving hard instances than easy ones (easy instances are often solved faster
without cutting planes), we turned our attention to the behavior of our proce-
dures on the hardest of the instances that we solved. There were 11 instances
whose solution required over 10 minutes, but that were nevertheless solved within
our time limit of 2 hours, and their data are collected in Table 4for the case of
branch-and-cut with 10 rounds of cuts at the root node and another round of
cuts after every 10-th node (the same runs described in Table 3). Out of these 11
instances, the procedure using MIG cuts was fastest in 3 cases, whereas Variants
1, 2 and 3 of the lift-and project based procedure were fastest in 1, 3 and 4 cases,
respectively. Similarly, in terms of the number of branch and bound tree nodes
generated, the MIG cuts did best in 2 instances, whereas Variants 1, 2 and 3
were best in 2, 2 and 4 instances, respectively. Table 4 shows in boldface the best

Table 4. Comparing branch-and-cut with 10 rounds of cuts at the root node and one
round at every 10 nodes, on the 11 instances requiring more than 10 minutes. The best
performers for each instance (in terms of time and nodes) are boldfaced.

MIG Cuts Lift-and-Project Cuts
Variant 1 Variant 2 Variant 3

status time (sec) # nodes status time (sec) # nodes status time (sec) # nodes status time (sec) # nodes

air04 S 2310.95 1027 S 1766.50 685 S 1220.82 533 S 1289.52 481
air05 S 890.55 865 S 1364.21 1085 S 2688.23 1965 S 1500.95 1115
gesa2 S 1089.67 23899 S 791.22 17767 S 1834.55 39627 S 1337.58 31899
gesa2 o S 3266.18 50109 S 3630.03 58059 T >7208.71 >76979 S 5962.31 100257
mas76 S 3965.26 609723 S 6293.23 734951 T >7201.54 >740897 S 2414.62 557405
mod011 S 4907.91 23463 S 4950.25 22453 S 6118.13 25097 S 6034.56 23825
modglob S 2517.83 392369 S 752.74 49065 S 653.60 43677 S 388.67 22811
pk1 S 764.46 354890 S 805.46 321690 S 777.89 297800 S 752.74 291104
pp08a S 1575.11 120203 S 1038.75 67785 S 323.80 18977 S 677.60 43437
pp08aCUTS S 858.07 40175 S 479.43 20751 S 472.34 23113 S 833.71 37959
qiu S 1344.05 5429 S 1819.18 6649 S 3375.35 10315 S 1030.98 3561

Average — 2135 1.475e+05 — 2154 1.183e+05 — 2898 1.163e+05 — 2020 1.013e+05
Geo. Mean — 1758.9 33285 — 1543.5 24451 — 1760 25885 — 1393 22853
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performers for each instance. The geometric means of the computing time and
of the number of search tree nodes for Variant 3 of the L&P procedure are less
than the corresponding means for the MIG cut-based procedure by 48% and 31
%, respectively.

Generating lift-and-project cuts from the LP simplex tableau rather than
the higher dimensional Cut Generating Linear Program is a new approach (the
correspondence making this possible was discovered around 2002 [6] and its first
implementation [10], corresponding more or less to our Variant 1, was done in
2003). Therefore the parameters used in our runs reported in this paper are
first choices, to be improved upon by further research and experimentation. It
is therefore legitimate to also look at the performance of the best of the three
Variants in comparison with the classical MIG cuts on this set of hard problems.
The result of that comparison is that the ”best of three” is the fastest on 8 of the
11 instances, and generates the fewest search tree nodes on 9 of the 11 instances.
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3. E. Balas, S. Ceria, and G. Cornuéjols, “A lift-and-project cutting plane algorithm
for mixed 0-1 programs.” Mathematical Programming, 58 1993, 295-324.
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Abstract. We introduceorbital branching, an effective branchingmethod
for integer programs containing a great deal of symmetry. The method is
based on computing groups of variables that are equivalent with respect to
the symmetry remaining in the problem after branching, including sym-
metry which is not present at the root node. These groups of equivalent
variables, called orbits, are used to create a valid partitioning of the fea-
sible region which significantly reduces the effects of symmetry while still
allowing a flexible branching rule. We also show how to exploit the sym-
metries present in the problem to fix variables throughout the branch-and-
bound tree. Orbital branching can easily be incorporated into standard IP
software. Through an empirical study on a test suite of symmetric inte-
ger programs, the question as to the most effective orbit on which to base
the branching decision is investigated. The resulting method is shown to
be quite competitive with a similar method known as isomorphism prun-
ing and significantly better than a state-of-the-art commercial solver on
symmetric integer programs.

1 Introduction

In this work, we focus on packing and covering integer programs (IP)s of the
form

max
x∈{0,1}n

{eT x | Ax ≤ e} and (PIP)

min
x∈{0,1}n

{eT x | Ax ≥ e} , (CIP)

where A ∈ {0, 1}m×n, and e is a vector of ones of conformal size. Our particular
focus is on cases when (CIP) or (PIP) is highly-symmetric, a concept we formalize
as follows. Let Πn be the set of all permutations of In = {1, . . . , n}. Given a
permutation π ∈ Πn and a permutation σ ∈ Πm, let A(π, σ) be the matrix
obtained by permuting the columns of A by π and the rows of A by σ, i.e.
A(π, σ) = PσAPπ , where Pσ and Pπ are permutation matrices. The symmetry
group G of the matrix A is the set of permutations

G(A) def= {π ∈ Πn | ∃σ ∈ Πm such that A(π, σ) = A} .

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 104–118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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So, for any π ∈ G(A), if x̂ is feasible for (CIP) or (PIP) (or the LP relaxations
of (CIP) or (PIP)), then if the permutation π is applied to the coordinates of x̂,
the resulting solution, which we denote as π(x̂), is also feasible. Moreover, the
solutions x̂ and π(x̂) have equal objective value.

This equivalence of solutions induced by symmetry is a major factor that might
confound thebranch-and-boundprocess.For example, suppose x̂is a (non-integral)
solution to an LP relaxation of PIP or CIP, with 0 < x̂j < 1, and the decision
is made to branch down on variable xj by fixing xj = 0. If ∃π ∈ G(A) such that
[π(x̂)]j = 0, thenπ(x̂) is a feasible solution for this child node, and eT x̂ = eT (π(x̂)),
so the relaxation value for the child node will not change. If the cardinality of G(A)
is large, then there are many permutations through which the parent solution of
the relaxation can be preserved in this manner, resulting in many branches that do
not change the bound on the parent node. Symmetry has long been recognized as
a curse for solving integer programs, and auxiliary (often extended) formulations
are often sought that reduce the amount of symmetry in an IP formulation [1,2,3].
In addition, there is a body of research on valid inequalities that can help exclude
symmetric feasible solutions [4,5,6]. Kaibel and Pfetsch [7] formalize many of these
arguments by defining and studying the properties of a polyhedron known as an
orbitope, the convex hull of lexicographically maximal solutions with respect to a
symmetry group. Kaibel et al. [8] then use the properties of orbitopes to remove
symmetry in partitioning problems.

A different idea, isomorphism pruning, introduced by Margot [9,10] in the con-
text of IP and dating back to Bazaraa and Kirca [11], examines the symmetry
group of the problem in order to prune isomorphic subproblems of the enumera-
tion tree. The branching method introduced in this work, orbital branching, also
uses the symmetry group of the problem. However, instead of examining this group
to ensure that an isomorphic node will never be evaluated, the group is used to
guide the branching decision. At the cost of potentially evaluating isomorphic sub-
problems, orbital branching allows for considerably more flexibility in the choice of
branching entity than isomorphism pruning. Furthermore, orbital branching can
be easily incorporated within a standard MIP solver and even exploit problem
symmetry that may only be locally present at a nodal subproblem.

The remainder of the paper is divided into five sections. In Sect. 2 we give some
mathematical preliminaries. Orbital branching is introduced and formalized in
Sect. 3, and a mechanism to fix additional variables based on symmetry con-
siderations called orbital fixing is described there. A more complete comparison
to isomorphism pruning is also presented in Sect. 3. Implementation details are
provided in Sect. 4, and computational results are presented in Sect. 5. Conclu-
sions about the impact of orbital branching and future research directions are
given in Sect. 6.

2 Preliminaries

Orbital branching is based on elementary concepts from algebra that we recall in
this section to make the presentation self-contained. Some definitions are made
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in terms of an arbitrary permutation group Γ , but for concreteness, the reader
may consider the group Γ to be the symmetry group of the matrix G(A).

For a set S ⊆ In, the orbit of S under the action of Γ is the set of all subsets
of In to which S can be sent by permutations in Γ , i.e.,

orb(S, Γ ) def= {S′ ⊆ In | ∃π ∈ Γ such that S′ = π(S)} .

In the orbital branching we are concerned with the orbits of sets of cardinality
one, corresponding to decision variables xj in PIP or CIP. By definition, if j ∈
orb({k}, Γ ), then k ∈ orb({j}, Γ ), i.e. the variable xj and xk share the same
orbit. Therefore, the union of the orbits

O(Γ ) def=
n⋃

j=1

orb({j}, Γ )

forms a partition of In = {1, 2, . . . , n}, which we refer to as the orbital partition
of Γ , or simply the orbits of Γ . The orbits encode which variables are “equivalent”
with respect to the symmetry Γ .

The stabilizer of a set S ⊆ In in Γ is the set of permutations in Γ that send
S to itself.

stab(S, Γ ) = {π ∈ Γ | π(S) = S} .

The stabilizer of S is a subgroup of Γ .
We characterize a node a = (F a

1 , F a
0 ) of the branch-and-bound enumeration

tree by the indices of variables fixed to one F a
1 and fixed to zero F a

0 at node a.
The set of free variables at node a is denoted by Na = In \ F a

0 \ F a
1 . At node a,

the set of feasible solutions to (CIP) or (PIP) is denoted by F(a), and the value
of an optimal solution for the subtree rooted at node a is denoted as z∗(a).

3 Orbital Branching

In this section we introduce orbital branching, an intuitive way to exploit the
orbits of the symmetry group G(A) when making branching decisions. The clas-
sical 0-1 branching variable dichotomy does not take advantage of the problem
information encoded in the symmetry group. To take advantage of this infor-
mation in orbital branching, instead of branching on individual variables, orbits
of variables are used to create the branching dichotomy. Informally, suppose
that at the current subproblem there is an orbit of cardinality k in the orbital
partitioning. In orbital branching, the current subproblem is divided into k + 1
subproblems: the first k subproblems are obtained by fixing to one in turn each
variable in the orbit while the (k + 1)st subproblem is obtained by fixing all
variables in the orbit to zero. For any pair of variables xi and xj in the same
orbit, the subproblem created when xi is fixed to one is essentially equivalent
to the subproblem created when xj is fixed to one. Therefore, we can keep in
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the subproblem list only one representative subproblem, pruning the (k − 1)
equivalent subproblems. This is formalized below.

Let A(F a
1 , F a

0 ) be the matrix obtained by removing from the constraint matrix
A all columns in F a

0 ∪ F a
1 and either all rows intersecting columns in F a

1 (CIP
case) or all columns nonorthogonal to columns in F a

1 (PIP case). Note that if
x ∈ F(a) and x is feasible with respect to the matrix A, then x is feasible with
respect to the matrix A(F a

1 , F a
0 ).

Let O = {i1, i2, . . . , i|O|} ⊆ Na be an orbit of the symmetry group G(A(F a
1 ,

F a
0 )). Given a subproblem a, the disjunction

xi1 = 1 ∨ xi2 = 1 ∨ . . . xiO = 1 ∨
∑

i∈O

xi = 0 (1)

induces a feasible division of the search space. In what follows, we show that for
any two variables xj , xk ∈ O, the two children a(j) and a(k) of a, obtained by
fixing respectively xj and xk to 1 have the same optimal solution value. As a
consequence, disjunction (1) can be replaced by the binary disjunction

xh = 1 ∨
∑

i∈O

xi = 0 , (2)

where h is a variable in O. Formally, we have Theorem 1.

Theorem 1. Let O be an orbit in the orbital partitioning O(G(A(F a
1 , F a

0 ))),
and let j, k be two variable indices in O. If a(j) = (F a

1 ∪ {j}, F a
0 ) and a(k) =

(F a
1 ∪ {k}, F a

0 ) are the child nodes created when branching on variables xj and
xk, then z∗(a(j)) = z∗(a(k)).

Proof. Let x∗ be an optimal solution of a(j) with value z∗(a(j)). Obviously
x∗ is also feasible for a. Since j and k are in the same orbit O, there exists a
permutation π ∈ G(A(F a

1 , F a
0 )) such that π(j) = k. By definition, π(x∗) is a

feasible solution of a with value z∗(a(j)) such that xk = 1. Therefore, π(x∗) is
feasible for a(k), and z∗(a(k)) = z∗(a(j)). 	

The basic orbital branching method is formalized in Algorithm 1.

Algorithm 1. Orbital Branching
Input: Subproblem a = (F a

1 , F a
0 ), non-integral solution x̂.

Output: Two child subproblems b and c.

Step 1. Compute orbital partition O(G(A(F a
1 , F a

0 ))) = {O1, O2, . . . , Op}.
Step 2. Select orbit Oj∗ , j∗ ∈ {1, 2, . . . , p}.
Step 3. Choose arbitrary k ∈ Oj∗ . Return subproblems b = (F a

1 ∪ {k}, F a
0 ) and

c = (F a
1 , F a

0 ∪ Oj∗).

The consequence of Theorem 1 is that the search space is limited, but orbital
branching has also the relevant effect of reducing the likelihood of encountering
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symmetric solutions. Namely, no solutions in the left and right child nodes of
the current node will be symmetric with respect to the local symmetry. This is
formalized in Theorem 2.

Theorem 2. Let b and c be any two subproblems in the enumeration tree. Let a
be the first common ancestor of b and c. For any x ∈ F(b) and π ∈ G(A(F a

0 , F a
1 )),

π(x) does not belong F(c).

Proof. Suppose not, i.e., that there ∃x ∈ F(b) and a permutation π ∈ G(A(F a
0 ,

F a
1 )) such that π(x) ∈ F(c). Let Oi ∈ O(G(A(F a

1 , F a
0 ))) be the orbit chosen to

branch on at subproblem a. W.l.o.g. we can assume xk = 1 for some k ∈ Oi.
We have that xk = [π(x)]π(k) = 1, but π(k) ∈ Oi. Therefore, by the orbital
branching dichotomy, π(k) ∈ F c

0 , so π(x) �∈ F(c). 	

Note that by using the matrix A(F a

1 , F a
0 ), orbital branching attempts to use sym-

metry found at all nodes in the enumeration tree, not just the symmetry found
at the root node. This makes it possible to prune nodes whose corresponding
solutions are not symmetric in the original IP.

3.1 Orbital Fixing

In orbital branching, all variables fixed to zero and one are removed from the
constraint matrix at every node in the enumeration tree. As Theorem 2 demon-
strates, using orbital branching in this way ensures that any two nodes are not
equivalent with respect to the symmetry found at their first common ancestor.
It is possible however, for two child subproblems to be equivalent with respect
to a symmetry group found elsewhere in the tree. In order to combat this type
of symmetry we perform orbital fixing, which works as follows.

Consider the symmetry group G(A(F a
1 , ∅)) at node a. If there exists an orbit

O in the orbital partition O(G(A(F a
1 , ∅))) that contains variables such that O ∩

F a
0 �= ∅ and O ∩ Na �= ∅, then all variables in O can be fixed to zero. In the

following theorem, we show that such variable setting (orbital fixing) excludes
feasible solutions only if there exists a feasible solution of the same objective
value to the left of the current node in the branch and bound tree. (We assume
that the enumeration tree is oriented so that the branch with an additional
variable fixed at one is the left branch).

To aid in our development,we introduce the concept of a focus node. For
x ∈ F(a), we call node b(a, x) a focus node of a with respect to x if ∃y ∈ F(b)
such that eT x = eT y and b is found to the left of a in the tree.

Theorem 3. Let {O1, O2, . . . Oq} be an orbital partitioning of G(A(F a
1 , ∅)) at

node a, and let the set

S
def= {j ∈ Na | ∃k ∈ F a

0 and j, k ∈ O� for some � ∈ {1, 2, . . . q}}

be the set of free variables that share an orbit with a variable fixed to zero at a.
If x ∈ F(a) with xi = 1 for some i ∈ S, then there exists a focus node for a with
respect to x.



Orbital Branching 109

Proof. Suppose that a is the first node in any enumeration tree where S is non-
empty. Then, there exist j ∈ F a

0 and i ∈ S such that i ∈ orb({j}, G(A(F a
1 , ∅))),

i.e., there exists a π ∈ G(A(F a
1 , ∅)) with π(i) = j. W.l.o.g., suppose that j is

any of the first such variables fixed to zero on the path from the root node to
a and let c be the subproblem in which such a fixing occurs. Let ρ(c) be the
parent node of c. By our choice of j as the first fixed variable, for all i ∈ F a

0 , we
have xπ(i) = 0. Then, there exists x ∈ F(a) with xi = 1 such that π(x) is not
feasible in a (since it does not satisfy the bounds) but it is feasible in ρ(c) and
has the same objective value of x. Since j was fixed by orbital branching then
the left child of ρ(c) has xh = 1 for some h ∈ orb({j}, G(A(F ρ(c)

1 , F
ρ(c)
0 ))). Let

π′ ∈ G(A(F ρ(c)
1 , F

ρ(c)
0 )) have π′(j) = h. Then π′(π(x)) is feasible in the left node

with the same objective value of x. The left child node of ρ(c) is then the focus
node of a with respect to x.

If a is not a first node in the enumeration tree one can apply the same argu-
ment to the first ancestor b of a such that S �= ∅. The focus node of c = (b, x) is
then a focus node of (a, x).

	

An immediate consequence of Theorem 3 is that for all i ∈ F a

0 and for all
j ∈ orb({i}, G(A(F a

1 , ∅))) one can set xj = 0. We update orbital branching to
include orbital fixing in Algorithm 2.

Algorithm 2. Orbital Branching with Orbital Fixing
Input: Subproblem a = (F a

1 , F a
0 ) (with free variables Na = In \ F a

1 \ F a
0 ), frac-

tional solution x̂.
Output: Two child nodes b and c.

Step 1. Compute orbital partition O(G(A(F a
1 , ∅))) = {Ô1, Ô2, . . . , Ôq}. Let S

def
=

{j ∈ Na | ∃k ∈ F a
0 and (j ∩ k) ∈ Ô� for some � ∈ {1, 2, . . . q}}.

Step 2. Compute orbital partition O(G(A(F a
1 , F a

0 ))) = {O1, O2, . . . , Op}.
Step 3. Select orbit Oj∗ , j∗ ∈ {1, 2, . . . , p}.
Step 4. Choose arbitrary k ∈ Oj∗ . Return child subproblems b = (F a

1 ∪{k}, F a
0 ∪S)

and c = (F a
1 , F a

0 ∪ Oj∗ ∪ S).

In orbital fixing, the set S of additional variables set to zero is a function of
F a

0 . Variables may appear in F a
0 due to a branching decision or due to traditional

methods for variable fixing in integer programming, e.g. reduced cost fixing or
implication-based fixing. Orbital fixing, then, gives a way to enhance traditional
variable-fixing methods by including the symmetry present at a node of the
branch and bound tree.

3.2 Comparison to Isomorphism Pruning

The fundamental idea behind isomorphism pruning is that for each node a =
(F a

1 , F a
0 ), the orbits orb(F a

1 , G(A)) of the “equivalent” sets of variables to F a
1 are
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computed. If there is a node b = (F b
1 , F b

0 ) elsewhere in the enumeration tree such
that F b

1 ∈ orb(F a
1 , G(A)), then the node a need not be evaluated—the node a is

pruned by isomorphism. A very distinct and powerful advantage of this method
is that no nodes whose sets of fixed variables are isomorphic will be evaluated.
One disadvantage of this method is that computing orb(F a

1 , G(A)) can require
computational effort on the order of O(n|F a

1 |!). A more significant disadvantage
of isomorphism pruning is that orb(F a

1 , G(A)) may contain many equivalent sub-
sets to F a

1 , and the entire enumeration tree must be compared against this list to
ensure that a is not isomorphic to any other node b. In a series of papers, Margot
offers a way around this second disadvantage [9,10]. The key idea introduced is
to declare one unique representative among the members of orb(F a

1 , G(A)), and
if F a

1 is not the unique representative, then the node a may safely be pruned.
The advantage of this extension is that it is trivial to check whether or not node
a may be pruned once the orbits orb(F a

1 , G(A)) are computed. The disadvantage
of the method is ensuring that the unique representative occurs somewhere in the
branch and bound tree requires a relatively inflexible branching rule. Namely, all
child nodes at a fixed depth must be created by branching on the same variable.

Orbital branching does not suffer from this inflexibility. By not focusing on
pruning all isomorphic nodes, but rather eliminating the symmetry through
branching, orbital branching offers a great deal more flexibility in the choice
of branching entity. Another advantage of orbital branching is that by using the
symmetry group G(A(F a

1 , F a
0 )), symmetry introduced as a result of the branching

process is also exploited.
Both methods allow for the use of traditional integer programming methodolo-

gies such as cutting planes and fixing variables based on considerations such as
reduced costs and implications derived from preprocessing. In isomorphism prun-
ing, for a variable fixing to be valid, it must be that all non-isomorphic optimal
solutions are in agreement with the fixing. Orbital branching does not suffer from
this limitation. A powerful idea in both methods is to combine the variable fixing
with symmetry considerations in order to fix many additional variables. This idea
is called orbit setting in [10] and orbital fixing in this work (see Sect. 3.1).

4 Implementation

The orbital branching method has been implemented using the user application
functions of MINTO v3.1 [12]. The branching dichotomy of Algorithm 1 or 2
is implemented in the appl divide() method, and reduced cost fixing is im-
plemented in appl bounds(). The entire implementation, including code for all
the branching rules subsequently introduced in Sect. 4.2 consists of slightly over
1000 lines of code. All advanced IP features of MINTO were used, including
clique inequalities, which can be useful for instances of (PIP).

4.1 Computing G(·)

Computation of the symmetry groups required for orbital branching and orbital
fixing is done by computing the automorphism group of a related graph. Recall
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that the automorphism group Aut(G(V, E)) of a graph G = (V, E), is the set of
permutations of V that leave the incidence matrix of G unchanged, i.e.

Aut(G(V, E)) = {π ∈ Π |V | | (i, j) ∈ E ⇔ (π(i), π(j)) ∈ E} .

The matrix A whose symmetry group is to be computed is transformed into a
bipartite graph G(A) = (N, M, E) where vertex set N = {1, 2, . . . , n} represents
the variables, and vertex set M = {1, 2, . . . , m} represents the constraints. The
edge (i, j) ∈ E if and only if aij = 1. Under this construction, feasible solutions
to (PIP) are subsets of the vertices S ⊆ N such that each vertex i ∈ M is
adjacent to at most one vertex j ∈ S. In this case, we say that S packs M .
Feasible solutions to (CIP) correspond to subsets of vertices S ⊆ N such that
each vertex i ∈ M is adjacent to at least one vertex j ∈ S, or S covers M . Since
applying members of the automorphism group preserves the incidence structure
of a graph, if S packs (covers) M , and π ∈ stab(M, Aut(G(A))), then there exists
a σ ∈ Πm such that σ(M) = M and π(S) packs (covers) σ(M). This implies that
if π ∈ stab(M, Aut(G(A))), then the restriction of π to N must be an element of
G(A), i.e. using the graph G(A), one can find elements of symmetry group G(A).
In particular, we compute the orbital partition of the stabilizer of the constraint
vertices M in the automorphism group of G(A), i.e.

O(stab(M, Aut(G(A)))) = {O1, O2, . . . , Op} .

The orbits O1, O2, . . . , Op in the orbital partition are such that if i ∈ M and
j ∈ N , then i and j are not in the same orbit. We can then refer to these orbits
as variable orbits and constraint orbits. In orbital branching, we are concerned
only with the variable orbits.

There are several softwarepackages that can compute the automorphismgroups
required to perform orbital branching. The program nauty [13], by McKay, has
been shown to be quite effective [14], and we use nauty in our orbital branching
implementation.

The complexity of computing the automorphism group of a graph is not
known to be polynomial time. However, nauty was able to compute the symme-
try groups of our problems very quickly, generally faster than solving an LP at
a given node. One explanation for this phenomenon is that the running time of
nauty’s backtracking algorithm is correlated to the size of the symmetry group
being computed. For example, computing the automorphism group of the clique
on 2000 nodes takes 85 seconds, while graphs of comparable size with little or no
symmetry require fractions of a second. The orbital branching procedure quickly
reduces the symmetry group of the child subproblems, so explicitly recomputing
the group by calling nauty is computational very feasible. In the table of results
presented in the Appendix, we state explicitly the time required in computing
automorphism groups by nauty.

4.2 Branching Rules

The orbital branching rule introduced in Sect. 3 leaves significant freedom in
choosing the orbit on which to base the partitioning. In this section, we discuss
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mechanisms for deciding on which orbit to branch. As input to the branching de-
cision, we are given a fractional solution x̂ and orbits O1, O2, . . . Op (consisting of
all currently free variables) of the orbital partitioning O(G(A(F a

0 , F a
1 ))) for the

subproblem at node a. Output of the branching decision is an index j∗ of an orbit
on which to base the orbital branching. We tested six different branching rules.
Rule 1: Branch Largest: The first rule chooses to branch on the largest orbit
Oj∗ :

j∗ ∈ arg max
j∈{1,...p}

|Oj | .

Rule 2: Branch Largest LP Solution: The second rule branches on the orbit
Oj∗ whose variables have the largest total solution value in the fractional solution
x̂:

j∗ ∈ arg max
j∈{1,...p}

x̂(Oj) .

Rule 3: Strong Branching: The third rule is a strong branching rule. For each
orbit j, two tentative child nodes are created and their bounds z+

j and z−j are
computed by solving the resulting linear programs. The orbit j∗ for which the
product of the change in linear program bounds is largest is used for branching:

j∗ ∈ arg max
j∈{1,...p}

(|eT x̂ − z+
j |)(|eT x̂ − z−j |) .

Note that if one of the potential child nodes in the strong branching procedure
would be pruned, either by bound or by infeasibility, then the bounds on the
variables may be fixed to their values on the alternate child node. We refer to
this as strong branching fixing, and in the computational results in the Appendix,
we report the number of variables fixed in this manner. As discussed at the end
of Sect. 3.1, variables fixed by strong branching fixing may result in additional
variables being fixed by orbital fixing.

Rule 4: Break Symmetry Left: This rule is similar to strong branching, but
instead of fixing a variable and computing the change in objective value bounds,
we fix a variable and compute the change in the size of the symmetry group.
Specifically, for each orbit j, we compute the size of the symmetry group in
the resulting left branch if orbit j (including variable index ij) was chosen for
branching, and we branch on the orbit that reduces the symmetry by as much
as possible:

j∗ ∈ arg min
j∈{1,...p}

(|G(A(F a
1 ∪ {ij}, F a

0 ))|) .

Rule 5: Keep Symmetry Left: This branching rule is the same as Rule 4,
except that we branch on the orbit for which the size of the child’s symmetry
group would remain the largest:

j∗ ∈ arg max
j∈{1,...p}

(|G(A(F a
1 ∪ {ij}, F a

0 ))|) .

Rule 6: Branch Max Product Left: This rule attempts to combine the fact
that we would like to branch on a large orbit at the current level and also keep
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a large orbit at the second level on which to base the branching dichotomy.
For each orbit O1, O2, . . . , Op, the orbits P j

1 , P j
2 , . . . , P j

q of the symmetry group
G(A(F a

1 ∪ {ij}, F a
0 )) of the left child node are computed for some variable index

ij ∈ Oj . We then choose to branch on the orbit j∗ for which the product of the
orbit size and the largest orbit of the child subproblem is largest:

j∗ ∈ arg max
j∈{1,...p}

(
|Oj |( max

k∈{1,...q}
|P j

k |)
)

.

5 Computational Experiments

In this section, we give empirical evidence of the effectiveness of orbital branch-
ing, we investigate the impact of choosing the orbit on which branching is based,
and we demonstrate the positive effect of orbital fixing. The computations are
based on the instances whose characteristics are given in Table 1. The instances
beginning with cod are used to compute maximum cardinality binary error cor-
recting codes [15], the instances whose names begin with cov are covering designs
[16], the instance f5 is the “football pool problem” on five matches [17], and the
instances sts are the well-known Steiner-triple systems [18]. The cov formu-
lations have been strengthened with a number of Schöenheim inequalities, as
derived by Margot [19]. All instances, save for f5, are available from Margot’s
web site: http://wpweb2.tepper.cmu.edu/fmargot/lpsym.html.

Table 1. Symmetric Integer Programs

Name Variables
cod83 256
cod93 512
cod105 1024
cov1053 252
cov1054 2252
cov1075 120
cov1076 120
cov954 126

f5 243
sts27 27
sts45 45

The computations were run on ma-
chines with AMD Opteron proces-
sors clocked at 1.8GHz and having
2GB of RAM. The COIN-OR soft-
ware Clp was used to solve the lin-
ear programs at nodes of the branch
and bound tree. All code was com-
piled with the GNU family of compil-
ers using the flags -O3 -m32. For each
instance, the (known) optimal solu-
tion value was set to aid pruning and
reduce the “random” impact of find-
ing a feasible solution in the search.
Nodes were searched in a best-first
fashion. When the size of the maxi-
mum orbit in the orbital partitioning
is less than or equal to two, nearly all
of the symmetry in the problem has
been eliminated by the branching procedure, and there is little use to perform
orbital branching. In this case, we use MINTO’s default branching strategy. The
CPU time was limited in all cases to four hours.

In order to succinctly present the results, we use performance profiles of Dolan
and Moré [20]. A performance profile is a relative measure of the effectiveness of
one solution method in relation to a group of solution methods on a fixed set of

http://wpweb2.tepper.cmu.edu/fmargot/lpsym.html
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problem instances. A performance profile for a solution method m is essentially
a plot of the probability that the performance of m (measured in this case with
CPU time) on a given instance in the test suite is within a factor of β of the best
method for that instance.

Figure 1 shows the results of an experiment designed to compare the perfor-
mance of the six different orbital branching rules introduced in Sect. 4.2. In this
experiment, both reduced cost fixing and orbital fixing were used. A complete
table showing the number of nodes, CPU time, CPU time computing automor-
phism groups, the number of variables fixed by reduced cost fixing, orbital fixing,
and strong branching fixing, and the deepest tree level at which orbital branching
was performed is shown in the Appendix.
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Fig. 1. Performance Profile of Branching Rules

A somewhat surprising result from the results depicted in Fig. 1 is that the
most effective branching method was Rule 5, the method that keeps the sym-
metry group size large on the left branch. (This method gives the “highest”
line in Fig. 1). The second most effective branching rule appears to be the rule
that tries to reduce the group size by as much as possible. While these methods
may not prove to be the most robust on a richer suite of difficult instances, one
conclusion that we feel safe in making from this experiment is that considering
the impact on the symmetry of the child node of the current branching decision
is important. Another important observation is that for specific instances, the
choice of orbit on which to branch can have a huge impact on performance.
For example, for the instance cov1054, branching rules 4 and 5 both reduce the
number of child nodes to 11, while other mechanisms that do not consider the
impact of the branching decision on the symmetry of the child nodes cannot
solve the problem in four hours of computing time.

The second experiment was aimed at measuring the impact of performing
orbital fixing, as introduced in Sect. 3.1. Using branching rule 5, each instance
in Table 1 was run both with and without orbital fixing. Figure 2 shows a
performance profile comparing the results in the two cases. The results shows
that orbital fixing has a significant positive impact.
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Fig. 2. Performance Profile of Impact of Orbital Fixing

The final comparison we make here is between orbital branching (with keep-
symmetry-left branching), the isomorphism pruning algorithm of Margot, and
the commercial solver CPLEX version 10.1, which has features for symmetry
detection and handling. Table 2 summarizes the results of the comparison. The
results for isomorphism pruning are taken directly from the paper of Margot
using the most sophisticated of his branching rules “BC4” [10]. The paper [10]
does not report results on sts27 or f5. The CPLEX results were obtained on
an Intel Pentium 4 CPU clocked at 2.40GHz. Since the results were obtained on
three different computer architectures and each used a different LP solver for
the child subproblems, the CPU times should be interpreted appropriately.

The results show that the number of subproblems evaluated by orbital
branching is smaller than isomorphism pruning in three cases, and in nearly
all cases, the number of nodes is comparable. For the instance cov1076, which
is not solved by orbital branching, a large majority of the CPU time is spent
computing symmetry groups at each node. In a variant of orbital branching that

Table 2. Comparison of Orbital Branching, Isomorphism Pruning, and CPLEX v10.1

Orbital Branching Isomorphism Pruning CPLEX v10.1
Instance Time Nodes Time Nodes Time Nodes

cod83 2 25 19 33 391 32077
cod93 176 539 651 103 fail 488136
cod105 306 11 2000 15 1245 1584
cov1053 50 745 35 111 937 99145
cov1054 2 11 130 108 fail 239266
cov1075 292 377 118 169 141 10278
cov1076 fail 13707 3634 5121 fail 1179890
cov954 22 401 24 126 9 1514

f5 66 935 - - 1150 54018
sts27 1 71 - - 0 1647
sts45 3302 24317 31 513 24 51078
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Table 3. Performance of Orbital Branching Rules on Symmetric IPs

Nauty # Fixed # Fixed # Fixed Deepest
Instance Branching Rule Time Nodes Time by RCF by OF by SBF Orbital Level
cod105 Break Symmetry 305.68 11 22.88 0 1020 0 4
cod105 Keep Symmetry 306.47 11 22.92 0 1020 0 4
cod105 Branch Largest LP Solution 283.54 7 11.87 0 0 0 2
cod105 Branch Largest 283.96 9 18.01 0 0 0 3
cod105 Max Product Orbit Size 302.97 9 17.41 0 920 0 3
cod105 Strong Branch 407.14 7 11.85 0 1024 1532 2
cod83 Break Symmetry 2.35 25 1.09 44 910 0 7
cod83 Keep Symmetry 2.38 25 1.10 44 910 0 7
cod83 Branch Largest LP Solution 8.81 93 2.76 209 534 0 6
cod83 Branch Largest 10.03 113 3.41 183 806 0 14
cod83 Max Product Orbit Size 9.39 115 4.59 109 634 0 11
cod83 Strong Branch 9.44 23 0.97 27 878 394 6
cod93 Break Symmetry 175.47 529 75.15 3382 3616 0 17
cod93 Keep Symmetry 175.58 529 75.31 3382 3616 0 17
cod93 Branch Largest LP Solution 3268.89 12089 1326.26 181790 3756 0 29
cod93 Branch Largest 2385.80 8989 920.90 142351 4986 0 49
cod93 Max Product Orbit Size 587.06 2213 215.68 28035 1160 0 29
cod93 Strong Branch 2333.22 161 19.76 380 2406 13746 14

cov1053 Break Symmetry 50.28 745 27.51 0 836 0 33
cov1053 Keep Symmetry 50.31 745 27.54 0 836 0 33
cov1053 Branch Largest LP Solution 1841.41 23593 990.12 0 5170 0 71
cov1053 Branch Largest 148.37 2051 70.73 0 1504 0 36
cov1053 Max Product Orbit Size 192.18 2659 91.72 0 1646 0 68
cov1053 Strong Branch 1998.55 1455 53.96 0 5484 34208 54
cov1054 Break Symmetry 1.77 11 0.85 0 186 0 4
cov1054 Keep Symmetry 1.76 11 0.85 0 186 0 4
cov1054 Branch Largest LP Solution 14400 54448 7600.80 0 814 0 35
cov1054 Branch Largest 14400 54403 7533.80 0 1452 0 49
cov1054 Max Product Orbit Size 14400 52782 7532.77 0 1410 0 38
cov1054 Strong Branch 14400 621 87.76 0 204 4928 32
cov1075 Break Symmetry 14400 9387 13752.11 37121 0 0 2
cov1075 Keep Symmetry 291.85 377 268.45 379 926 0 15
cov1075 Branch Largest LP Solution 906.48 739 861.57 1632 716 0 23
cov1075 Branch Largest 268.49 267 248.45 793 1008 0 13
cov1075 Max Product Orbit Size 395.11 431 366.24 1060 1066 0 21
cov1075 Strong Branch 223.53 67 60.71 106 128 1838 10
cov1076 Break Symmetry 14400 8381 13853.35 2 0 0 3
cov1076 Keep Symmetry 14400 13707 13818.47 11271 1564 0 26
cov1076 Branch Largest LP Solution 14400 6481 13992.74 10 116 0 14
cov1076 Branch Largest 14400 6622 13988.71 0 176 0 13
cov1076 Max Product Orbit Size 14400 6893 13967.86 71 580 0 14
cov1076 Strong Branch 14400 1581 3255.74 5 164 58 23
cov954 Break Symmetry 21.72 401 14.81 570 1308 0 14
cov954 Keep Symmetry 21.70 401 14.83 570 1308 0 14
cov954 Branch Largest LP Solution 11.30 175 7.03 498 48 0 5
cov954 Branch Largest 15.69 265 10.51 671 212 0 12
cov954 Max Product Orbit Size 14.20 229 9.25 602 212 0 11
cov954 Strong Branch 17.55 45 1.74 50 100 1084 8

f5 Break Symmetry 65.86 935 23.25 2930 2938 0 17
f5 Keep Symmetry 65.84 935 23.26 2930 2938 0 17
f5 Branch Largest LP Solution 91.32 1431 28.95 7395 272 0 8
f5 Branch Largest 100.66 1685 30.75 7078 434 0 11
f5 Max Product Orbit Size 102.54 1691 30.96 7230 430 0 13
f5 Strong Branch 671.51 123 2.59 187 760 8586 15

sts27 Break Symmetry 0.84 71 0.71 0 8 0 10
sts27 Keep Symmetry 0.83 71 0.71 0 8 0 10
sts27 Branch Largest LP Solution 2.33 115 2.12 3 86 0 14
sts27 Branch Largest 0.97 73 0.83 1 28 0 13
sts27 Max Product Orbit Size 2.88 399 2.42 1 888 0 11
sts27 Strong Branch 1.63 75 1.15 2 76 0 14
sts45 Break Symmetry 3302.70 24317 3230.12 12 0 0 4
sts45 Keep Symmetry 3301.81 24317 3229.88 12 0 0 4
sts45 Branch Largest LP Solution 4727.29 36583 4618.66 25 0 0 2
sts45 Branch Largest 4389.80 33675 4289.45 36 0 0 2
sts45 Max Product Orbit Size 4390.39 33675 4289.79 36 0 0 2
sts45 Strong Branch 1214.04 7517 884.79 2 144 45128 21

uses a symmetry group that is smaller but much more efficient to compute (and
which space prohibits us from describing in detail here), cov1076 can be solved
in 679 seconds and 14465 nodes. Since in any optimal solution to the Steiner
triple systems, more than 2/3 of the variables will be set to 1, orbital branching
would be much more efficient if all variables were complemented, or equivalently
if the orbital branching dichotomy (2) was replaced by its complement. Margot
[10] also makes a similar observation, and his results are based on using the
complemented instances, which may account for the large gap in performance
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of the two methods on sts45. We are currently instrumenting our code to deal
with instances for which the number of ones in an optimal solution is larger than
1/2. Orbital branching proves to be faster than CPLEX in six cases, while in all
cases the number of evaluated nodes is remarkably smaller.

6 Conclusion

In this work, we presented a simple way to capture and exploit the symmetry of an
integer program when branching. We showed through a suite of experiments that
the new method, orbital branching, outperforms state-of-the-art solvers when a
high degree of symmetry is present. In terms of reducing the size of the search tree,
orbital branching seems to be of comparable quality to the isomorphism pruning
method of Margot [10]. Further, we feel that the simplicity and flexibility of orbital
branching make it an attractive candidate for further study. Continuing research
includes techniques for further reducing the number of isomorphic nodes that are
evaluated and on developing branching mechanisms that combine the child bound
improvement and change in symmetry in a meaningful way.
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Abstract. Erdős, Purdy, and Straus conjectured that the number of
distinct (nonzero) areas of the triangles determined by n noncollinear
points in the plane is at least �n−1

2 �, which is attained for �n/2� and
respectively �n/2� equally spaced points lying on two parallel lines. We
show that this number is at least 17

38n − O(1) ≈ 0.4473n. The best pre-

vious bound, (
√

2 − 1)n − O(1) ≈ 0.4142n, which dates back to 1982,
follows from the combination of a result of Burton and Purdy [5] and
Ungar’s theorem [23] on the number of distinct directions determined by
n noncollinear points in the plane.

1 Introduction

Let S be a finite set of points in the plane. Consider the (nondegenerate) triangles
determined by triples of points of S. There are at most

(
n
3

)
triangles, some of

which may have the same area. Denote by g(S) the number of distinct (nonzero)
areas of the triangles determined by S. For every n ∈ N, let g(n) be the minimum
of g(S) over all sets S of n noncollinear points in the plane. The problem of
finding g(n) has a long history; the attention it has received is perhaps due to
its simplicity and elegance, as well as to its connections to another fundamental
problem in combinatorial geometry—that of finding the minimum number of
directions spanned by n points in the plane. The problem of distinct areas is
also similar in nature to a notoriously hard problem of distinct distances. It is
listed for instance in the problem collection by Croft, Falconer, and Guy [6], and
more recently by Braß, Moser, and Pach [3]; see also [12].

The first estimates on g(n) were given in 1976 by Erdős and Purdy [10], who
proved that

c1n
3/4 ≤ g(n) ≤ c2n,

for some absolute constants c1, c2 > 0. The upper bound follows easily if we
consider the points (i, j) ∈ N

2 for 1 ≤ i, j ≤
√

n and observe that every triangle
area is a multiple of 1

2 and bounded by n/2. A simple construction that consists
of two sets of �n/2� and respectively �n/2� equally spaced points lying on two

� Supported in part by NSF CAREER grant CCF-0444188.

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 119–129, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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parallel lines was found by Burton and Purdy [5], and also by Straus [21]: It
gives �n−1

2 � triangles of distinct areas.
In 1979, Burton and Purdy [5] obtained a linear lower bound, which follows

from a linear bound on the number of directions determined by n noncollinear
points in the plane. More precisely, denoting by f(n) the minimum number of
directions determined by n noncollinear points in the plane, they showed that

⌊n

2

⌋
≤ f(n) ≤ 2

⌊n

2

⌋
.

Using this result, an averaging argument of Burton and Purdy gave

0.32n ≤ g(n) ≤
⌊

n − 1
2

⌋
.

In 1982, Ungar proved a sharp bound

f(n) = 2
⌊n

2

⌋
(1)

on the minimum number of directions determined by n noncollinear points, using
a purely combinatorial approach of allowable sequences devised by Goodman and
Pollack [14,15]. A combination of Burton and Purdy’s argument [5] with Ungar’s
theorem [23] immediately gives

(
√

2 − 1)n − O(1) ≤ g(n) ≤
⌊

n − 1
2

⌋
.

In this paper, we refine Burton and Purdy’s averaging argument by applying
yet one more time (and perhaps not for the last time) Ungar’s technique on
allowable sequences, and further improve the lower bound on distinct triangle
areas.

Theorem 1. The number of triangles of distinct areas determined by n non-
collinear points in the plane is at least

g(n) ≥ 17
38

n − O(1) ≈ 0.4473n.

In fact, we prove Theorem 1 in a stronger form: There are at least 17n/38−O(1)
triangles of distinct areas having a common side, in other words there are at least
this many points of our set at distinct distances from the line determined by a
pair of points in the set. One can draw here a parallel with the problem of
distinct distances raised by Erdős in 1946: What is the minimum number of
distinct distances t(n) determined by n points in the plane? Erdős conjectured
that t(n) = Ω(n/

√
log n), and moreover, that there is a point in the set which

determines this many distinct distances to other points. In a sequence of recent
breakthrough developments since 1997, all new lower bounds on t(n) due to
Székely [22], Solymosi and C. Tóth [20], and including the current best one due
to Katz and Tardos [16], in fact give lower bounds on the maximum number
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of inter-point distances measured from a single point. For triangles areas in the
plane, we have a similar phenomenon: By the argument of Burton and Purdy [5],
every set S of n noncollinear points in the plane contains two distinct points
p, q ∈ S such that the points of S determine Ω(n) distinct distances to the
line pq, therefore at least this many triangles with distinct areas. As mentioned
above, our bound holds also in this stronger sense. A similar example is that
of tetrahedra of distinct volumes determined by a set of n points in R

3 (not all
in the same plane): we have recently shown [8] that n points determine Ω(n)
tetrahedra of distinct volumes, which share a common side. One exception to
this phenomenon is the problem of distinct distances among vertices of a convex
polygon, as the results of [1,2,7] show (see also [3]).

2 Proof of Theorem 1

Burton and Purdy’s idea. We first review Burton and Purdy’s argument [5]. Let
S be a set of n noncollinear points in the plane, and let L denote the set of
connecting lines (i.e., lines incident to at least 2 points of S). We may assume
w.l.o.g. that there is no horizontal line in L. For a line � ∈ L, let �1, �2, . . . , �r ∈ L
be all connecting lines parallel to � (including �) such that �i lies to the left of
�i+1 for 1 ≤ i < r. Let ki ≥ 2 denote the number of points along �i ∈ L for
i = 1, . . . , r. Let s be the number of singleton points of S not covered by any of
�1, . . . , �r. We clearly have

∑r
i=1 ki + s = n. Taking any two points p, q ∈ S on

�1 or on �r, the triangles Δpqzi have different areas for at least r + �s/2� − 1
indices i, where zi are either singleton points or points on different connecting
lines lying all on the same side of pq. Therefore the number m of distinct areas
satisfies

m ≥ r + �s/2� − 1.

The next step is selecting a suitable direction of connecting lines, more pre-
cisely, one with a small number of pairs of points, i.e., with a small value of∑r

i=1

(
ki

2

)
. By Ungar’s theorem, there is a direction corresponding to the lines

�1, . . . , �r, such that

r∑

i=1

(
ki

2

)
≤

(
n

2

)/
(n − 1) =

n

2
.

After observing that
∑r

i=1

(
ki

2

)
is minimal if the points on these r connecting

lines are distributed as evenly as possible, Burton and Purdy derive a quadratic
equation whose solution gives (using Ungar’s theorem instead of their weaker
bound of �n/2� on the number of directions) a lower bound of m ≥ (

√
2− 1)n−

O(1) ≈ 0.4142n on the number of distinct triangle areas. Detailed calculations
show that a configuration attaining the Burton-Purdy bound should have 2+

√
2

points on each connecting line parallel to the certain direction (determined by
at most n/2 pairs of points), a value which is certainly infeasible.
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A tiny improvement. We first formulate a system of linear inequalities (the
linear program (LP1) below). Unlike Burton and Purdy’s quadratic equation,
our linear program imposes an integrality condition on the number of points
on each connecting line parallel to a specified direction; which leads to a tiny
improvement (5/12 versus

√
2−1). More important, our linear system paves the

way for a more substantial improvement obtained by two linear programs with
additional constraints (to be described later).

Assume that the connecting lines �1, �2 . . . , �r ∈ L are vertical and contain
at most n/2 point pairs (by Ungar’s theorem). Every vertical line of L (passing
through at least two points) is called a regular line. A regular line passing through
exactly k points (k ≥ 2) is called a k-line. We call a vertical line passing through
exactly one point of S a singleton line.

Partition the n points of S as follows. Let s be a real number 0 ≤ s < 1
such that there are sn singleton points to the left of the leftmost regular line �1.
Similarly, let tn be the number of singleton points to the right of �r, and let a1n
be the number of remaining singleton points. (See Figure 1.) For k = 2, 3, . . . , 8,
let akn be the number of points on k-lines. Finally denote by a9 the total number
of points on regular lines with at least 9 points each. We have accounted for all
points of S, hence we have

s + t +
9∑

k=1

ak = 1.

tnsn a1n, a2n, a3n, . . . , a9n

�1 �2 �3 �4

Fig. 1. The orthogonal projection of a point set S in a direction determined by S

Let xn =
∑r

i=1

(
ki

2

)
be the total number of point pairs on vertical lines. Let en

denote the number of distinct horizontal distances measured from the leftmost
regular line �1 to its right: Consequently, there are en triangles with distinct areas
having a common side along the leftmost regular line. Similarly, let fn denote
the number of distinct horizontal distances measured from the rightmost regular
line �r to its left. We can deduce lower bounds on e and f : Since en ≥ tn+a1n+
a2n/2+a3n/3+. . .+a8n/8−1, we have e ≥ t+a1+a2/2+a3/3+. . .+a8/8−1/n,
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and similarly, f ≥ s + a1 + a2/2 + a3/3 + . . . + a8/8 − 1/n. We can also give a
lower bound for x in terms of the previous parameters. We have

x ≥ 1
2
a2 +

2
2
a3 +

3
2
a4 + . . . +

8
2
a9,

since if there are akn points on k-lines, then the number of k-lines is akn/k,
and each k-line contains

(
k
2

)
vertical point pairs. Hence, there are akn

(
k
2

)
/k =

akn(k−1)/2 pairs of points on k-lines, k = 2, 3, . . . , 8. Similarly there are at least
8
2a9n pairs of points on lines incident to at least 9 points. Putting all of these
equations and inequalities together, we formulate the following linear program.

minimize r (LP1)
subject to x ≤ 0.5;

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s + t + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 = 1;
1
2a2 + a3 + 3

2a4 + 2a5 + 5
2a6 + 3a7 + 7

2a8 + 4a9 ≤ x;
t + a1 + 1

2a2 + 1
3a3 + 1

4a4 + 1
5a5 + 1

6a6 + 1
7a7 + 1

8a8 − 1
n ≤ e;

s + a1 + 1
2a2 + 1

3a3 + 1
4a4 + 1

5a5 + 1
6a6 + 1

7a7 + 1
8a8 − 1

n ≤ f ;
e ≤ r;
f ≤ r;
s, t, a1, a2, a3, a4, a5, a6, a7, a8, a9, e, f, r, x ≥ 0;

The linear system (LP1) does not describe completely a point configuration
(e.g., we do not make any distinction among k-lines for k ≥ 9), but all these
inequalities must hold if the variables correspond to a point set S. Let (LP1’) be
the linear program obtained from (LP1) by removing the two terms 1

n , and let r
be its solution. Since the constraints are linear, the term 1

n can only contribute
a constant additive blow-up in the LP solution. That is, if r is the solution of
(LP1’), the solution of (LP1) is r − O(1/n). We can deduce that there are at
least rn − O(1) distinct triangle areas with a common side on either �1 or �r.

A solution to (LP1’) is r = 5/12 ≈ 0.4166, attained for s = t = 1/4, a3 = 1/2,
a1 = a2 = a4 = a5 = a6 = a7 = a8 = a9 = 0, e = f = 5/12, and x = 1/2. That
is, there are n/6 3-lines in the middle, and n/4 singleton lines on each side, and
5n/12−O(1) distinct areas measured from left or right. Another optimal solution
that looks similar consists of n/12 4-lines in the middle, and n/3 singleton lines
on each side, for which the number of distinct areas is also 5n/12 − O(1).

Allowable sequences. We now give a very brief account on Ungar’s technique (fol-
lowing [23]) and allowable sequences [12], as they are relevant to our proof. Allow-
able sequences occur in the context of transforming the permutation 1, 2, . . . , n
into the reverse permutation n, n − 1, . . . , 1 by going through a sequence of per-
mutations. The operation between two consecutive permutations, called move,
consists of inverting pairwise disjoint increasing strings. In a geometric context,
each symbol corresponds to a point in the plane; each permutation is the left-
to-right order in an orthogonal projections of the points on a directed line. The
directed line is rotated around the origin, and a move occurs when the normal of
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this line coincides with a direction of a connecting line (a line in L). An exam-
ple of a sequence arising in this way is 1(23)4(56), 13(246)5, (136)425, 63(14)25,
6(34)(125), 64(35)21, 6(45)321, and 654321. We have put parentheses around the
increasing string (called blocks) reversed at the next move. So each permutation
with the blocks enclosed in parentheses describes also the next move.

Ungar’s theorem states that for even n, going from 1, 2, . . . , n to n, n−1, . . . , 1
but not in one move, requires at least n moves (in other words, if every block
reversed has fewer than n elements, at least n moves are needed). The general
idea in the proof is that building up a long increasing block involves many moves
required by dismantling other (possibly long) decreasing blocks formed at earlier
moves, and vice versa. More precisely, the moves have the following properties.

(I) In one move, a decreasing string can get shorter by at most one element at
each end.

(II) in one move, an increasing string can get longer by at most one element at
each end.

For instance, the reason for (I) is that a move reverses increasing strings, and
so only the first and the last elements of a decreasing string can be part of a
block in a move. We refer the reader to [23] for more details. Properties (I) and
(II) further imply that if a block B of size at least 3 is reversed in one move,
then all but the two extreme elements of B must be singletons in the next move.
Analogously, if a block B of size at least 3 is reversed in a move, then at least
one of its elements is a singleton in the previous move.

tan

sbn

b1n, b2n, b3n, . . . , b10n

tbn

san a1n, a2n, a3n, . . . , a10n

Fig. 2. The orthogonal projection of a point set S in two consecutive directions, a and
b, determined by S
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New bound. The idea for our new bound is the following. Recall that two optimal
solutions of (LP1’) we have seen have a similar structure: (A) n/6 3-lines in the
middle, and n/4 singleton lines on each side, or (B) n/12 4-lines in the middle,
and n/3 singleton lines on each side. Assume that there are two consecutive
moves, π1 and π2, in an allowable sequence such that both look like (A) or
(B). Notice that our observations regarding the blocks of size at least 3 imply
that there cannot be two consecutive such moves, since the first move would
force many singletons in the middle segment of π2 (at least one for each block
of π1). This suggests that one of two consecutive directions of L must give a
configuration where the solution of (LP1’) is above 5/12. We follow with the
precise technical details in the proof of Theorem 1.

By Ungar’s theorem, the average number of pairs determining the same di-
rection is at most n/2, so there are two consecutive moves (corresponding to two
consecutive directions of lines in L) parallel to at most n pairs of points. We
introduce a similar notation as above for a single direction, but we distinguish
the notation by indices a and b, respectively (e.g., san and sbn are the number
of points which give singletons at the left side of the first and the second per-
mutation, respectively). This time we count up to 9-lines (rather than 8-lines)
and group together the k-lines for k ≥ 10. We denote by a10n and b10n the total
number of points on lines with at least 10 points each. By symmetry, we need to
consider only two cases (instead of the four combinations of sa � sb and ta � tb).

Case (i): sb ≤ sa and tb ≤ ta.
Case (ii): sa ≤ sb and tb ≥ ta.

We are lead to minimizing the following two linear programs (LP2i) and (LP2ii),
where (LP2i) corresponds to Case (i) and (LP2ii) corresponds to Case (ii).

Case (i): sb ≤ sa and tb ≤ ta. We formulate the linear program (LP2i) as follows.
We repeat the constraints of (LP1) for both moves, and impose the constraint
xa + xb ≤ 1 since the total number of pairs for the two consecutive directions
is at most n. We introduce two linear constraints to express r = max(ra, rb).
Constraints (α) and (β) are crucial: Constraint (α) indicates that if in the first
move, a block B of size at least 3 is reversed, then all but the two extreme
elements of B must be singletons in the next move; constraint (β) specifies that
each block B of size at least 3 which is reversed in the second move must contain
an element which is a singleton in the first move (with the possible exception of
two blocks that lie on the boundary of the singletons sa and ta).

Here is an example regarding constraint (β). Let π1 and π2 denote the two
consecutive moves (each represented by pairwise disjoint blocks). The prefixes
(resp., suffixes) of length sb (resp., tb) coincide, and are made of singletons. So
each block of size at least 3 in the second move in between these common prefix
and suffix strings (to be reversed in the second move) must pick up at least a
singleton in a1 from π1 or must be made entirely up of singletons in the (sa −sb)
and (ta − tb) segments of π1 (except for at most two blocks crossing segment
borders). For instance, if a move transforms permutation π1 = . . . (47)(359) . . .
to π′

1 = . . . 74953 . . ., then no triple (or other longer block) may be formed in the
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next move. But if there was a singleton in between, like in π1 = . . . (47)6(359) . . .,
then a triple may be formed in the next move: For instance, π2 = . . . 7(469)53 . . ..

minimize r (LP2i)
subject to sb ≤ sa;

tb ≤ ta;

(LP1)a

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sa + ta + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10 = 1;
1
2a2 + a3 + 3

2a4 + 2a5 + 5
2a6 + 3a7 + 7

2a8 + 4a9 + 9
2a10 ≤ xa;

ta + a1 + a2
2 + a3

3 + a4
4 + a5

5 + a6
6 + a7

7 + a8
8 + a9

9 − 1
n ≤ ea;

sa + a1 + a2
2 + a3

3 + a4
4 + a5

5 + a6
6 + a7

7 + a8
8 + a9

9 − 1
n ≤ fa;

ea ≤ ra;
fa ≤ ra;

(LP1)b

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sb + tb + b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 + b9 + b10 = 1;
1
2b2 + b3 + 3

2b4 + 2b5 + 5
2b6 + 3b7 + 7

2b8 + 4b9 + 9
2 b10 ≤ xb;

tb + b1 + b2
2 + b3

3 + b4
4 + b5

5 + b6
6 + b7

7 + b8
8 + b9

9 − 1
n ≤ eb;

sb + b1 + b2
2 + b3

3 + b4
4 + b5

5 + b6
6 + b7

7 + b8
8 + b9

9 − 1
n ≤ fb;

eb ≤ rb;
fb ≤ rb;

xa + xb ≤ 1;
ra ≤ r;
rb ≤ r;

(α)
1
3
a3 +

2
4
a4 +

3
5
a5 +

4
6
a6 +

5
7
a7 +

6
8
a8 +

7
9
a9 +

8
10

a10 ≤ b1;

(β) b3 + b4 + b5 + b6 + b7 + b8 + b9 + b10 − 2
n

≤ 3a1 + sa − sb + ta − tb;

sa, ta, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, ea, fa, ra, xa ≥ 0;
sb, tb, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, eb, fb, rb, xb ≥ 0;
r ≥ 0;

When we ignore the terms O( 1
n ), we get a new system (LP2i’) with the fol-

lowing solution: r = 17/38 ≈ 0.4473, attained for sa = ta = 15/38, a1 = a2 =
a3 = 0, a4 = 4/19, a5 = a6 = a7 = a8 = a9 = a10 = 0 for the first permuta-
tion, and sb = tb = 3/38, b1 = b2 = 2/19, b3 = 12/19, b4 = b5 = b6 = b7 =
b8 = b9 = b10 = 0 for the second permutation; also xa = 6/19, xb = 13/19,
ea = fa = ra = eb = fb = rb = 17/38.

Case (ii): sb ≤ sa and tb ≥ ta. The linear program (LP2ii) is very similar to
(LP2i). Besides the first two constraints, which are specific to this case, only
constraints (γ) and (δ) are different: Constraint (γ) specifies that each block B
of size at least 3 which is reversed in the second move must contain at least one
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singleton in the first move; constraint (δ) specifies the same thing when going
back from the second permutation to the first one (by time reversibility).

minimize r (LP2ii)
subject to sb ≤ sa;

ta ≤ tb;

(LP1)a

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sa + ta + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10 = 1;
1
2a2 + a3 + 3

2a4 + 2a5 + 5
2a6 + 3a7 + 7

2a8 + 4a9 + 9
2a10 ≤ xa;

ta + a1 + a2
2 + a3

3 + a4
4 + a5

5 + a6
6 + a7

7 + a8
8 + a9

9 − 1
n ≤ ea;

sa + a1 + a2
2 + a3

3 + a4
4 + a5

5 + a6
6 + a7

7 + a8
8 + a9

9 − 1
n ≤ fa;

ea ≤ ra;
fa ≤ ra;

(LP1)b

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sb + tb + b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 + b9 + b10 = 1;
1
2b2 + b3 + 3

2b4 + 2b5 + 5
2b6 + 3b7 + 7

2b8 + 4b9 + 9
2b10 ≤ xb;

tb + b1 + b2
2 + b3

3 + b4
4 + b5

5 + b6
6 + b7

7 + b8
8 + b9

9 − 1
n ≤ eb;

sb + b1 + b2
2 + b3

3 + b4
4 + b5

5 + b6
6 + b7

7 + b8
8 + b9

9 − 1
n ≤ fb;

eb ≤ rb;
fb ≤ rb;

xa + xb ≤ 1;
ra ≤ r;
rb ≤ r;

(γ) a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10 − 1
n

≤ 3b1 + tb − ta;

(δ) b3 + b4 + b5 + b6 + b7 + b8 + b9 + b10 − 1
n

≤ 3a1 + sa − sb;

sa, ta, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, ea, fa, ra, xa ≥ 0;
sb, tb, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, eb, fb, rb, xb ≥ 0;
r ≥ 0;

When we ignore the terms O( 1
n ), we get a new system (LP2ii’) with the

following solution: r = 25/54 ≈ 0.4629, attained for sa = ta = 23/54, a1 = 1/27,
a2 = a3 = a4 = a5 = a6 = a7 = a8 = a9 = 0, a10 = 1/9, for the first
permutation, and sb = tb = 23/54, b1 = 1/27, b2 = b3 = b4 = b5 = b6 = b7 =
b8 = b9 = 0, b10 = 1/9, for the second permutation; also xa = 1/2, xb = 1/2,
ea = fa = ra = eb = fb = rb = 25/54.

Since the solution of (LP2i’) is smaller than that of (LP2ii’), i.e., 17/38 <
25/54, we conclude that there are always 17

38n − O(1) ≈ 0.4473n triangles of
distinct areas.

One may ask if the same result can be obtained using fewer variables in the
LPs, or whether a better result can be obtained by increasing the number of
variables in the LPs. The answer to both questions is negative.
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3 Remarks

In 1982, Erdős, Purdy, and Straus [13] considered the generalization of the prob-
lem of distinct triangle areas to higher dimensions and posed the following:

Problem (Erdős, Purdy, and Straus). Let S be a set of n points in R
d not all

in one hyperplane. What is the minimal number gd(n) of distinct volumes of
nondegenerate simplices with vertices in S?

By taking d sets of about n/d equally spaced points on parallel lines through the
vertices of a (d − 1)-simplex, one gets gd(n) ≤ �n−1

d �. Erdős, Purdy, and Straus
conjectured that equality holds at least for sufficiently large n (see also [6]). The
first development in this old problem for higher dimensions is only very recent:
for d = 3 we have shown that the tetrahedra determined by n points in R

3, not
all in a plane, have at least Ω(n) distinct volumes, which thereby confirms the
conjecture in 3-space apart from the multiplicative constant [8].

We conclude with two problems on distinct triangle areas. The former is di-
rectly related to the original problem of distinct areas studied here, and appears
to have been first raised by Erdős and Pach in the 1980s [17], while the latter
appears to be new.

Given a planar point set S, consider the set L of connecting lines. A connecting
line is called an ordinary line if it passes through exactly two points of S. By the
well known Sylvester-Gallai theorem [18,3], any finite set of noncollinear points
in the plane determines an ordinary line. Consider now the set Θ of directions
of lines in L. A direction θ ∈ Θ is called an ordinary direction if all connecting
lines of direction θ are ordinary lines.

Problem 1. Let S be a set of n noncollinear points in the plane. Is it true that
apart from a finite set of values of n, Θ always contains an ordinary direction?

It should be clear that such a direction would be enough to prove the Erdős-Purdy-
Strauss conjecture that S determines at least �(n − 1)/2� distinct (nonzero) tri-
angle areas — apart from a finite set of exceptions for n. Observe that n = 7 is
such an exception, since the configuration of 7 points given by the three vertices
of a triangle, the midpoints of its three sides, and the triangle center admits no
ordinary direction.

Problem 2. Let S be a set of n noncollinear points in the plane. Is it true that
each point p ∈ S is the vertex of Ω(n) triangles of distinct areas determined by
S? In other words, is there a constant c > 0 such that for every p ∈ S, the point
set S determines at least cn triangles of distinct areas, all incident to p?
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9. P. Erdős, On sets of distances of n points, American Mathematical Monthly 53
(1946), 248–250.
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Abstract. We consider the single machine scheduling problem to mini-
mize the average weighted completion time under precedence constrains.
Improving on the various 2-approximation algorithms is considered one
of the ten most prominent open problems in scheduling theory. Recently,
research has focused on special cases of the problem, mostly by restrict-
ing the set of precedence constraints to special classes such as convex
bipartite, two-dimensional, and interval orders.

In this paper we extend our previous results by presenting a framework
for obtaining (2 − 2/d)-approximation algorithms provided that the set
of precedence constraints has fractional dimension d. Our generalized
approach yields the best known approximation ratios for all previously
considered classes of precedence constraints, and it provides the first
results for bounded degree and interval dimension 2 orders.

As a negative result we show that the addressed problem remains
NP-hard even when restricted to the special case of interval orders.

1 Introduction

The problem we consider in this paper is a classical problem in scheduling theory,
known as 1|prec|

∑
j wjCj in standard scheduling notation (see e.g. Graham et

al. [12]). It is defined as the problem of scheduling a set N = {1, . . . , n} of n jobs
on a single machine, which can process at most one job at a time. Each job j has
a processing time pj and a weight wj , where pj and wj are nonnegative integers.
Jobs also have precedence constraints between them that are specified in the form
of a partially ordered set (poset) P = (N, P ), consisting of the set of jobs N and
a partial order i.e. a reflexive, antisymmetric, and transitive binary relation P on
N , where (i, j) ∈ P (i �= j) implies that job i must be completed before job j
can be started. The goal is to find a non-preemptive schedule which minimizes∑n

j=1 wjCj , where Cj is the time at which job j completes in the given schedule.
The described problem was shown to be strongly NP-hard already in 1978

by Lawler [17] and Lenstra & Rinnooy Kan [18]. While currently no inapprox-
imability result is known (other than that the problem does not admit a fully

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 130–144, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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polynomial time approximation scheme), there are several 2-approximation al-
gorithms [26,29,13,6,5,20,2]. Closing this approximability gap is a longstanding
open problem in scheduling theory (see e.g. [30]).

Due to the difficulty to obtain better than 2-approximation algorithms, much
attention has recently been given to special cases which manifests itself in recent
approximation and exact algorithms [16,33,7,2,3].

On the negative side, Woeginger [33] proved that many quite severe restric-
tions on the weights and processing times do not influence approximability. For
example, the special case in which all jobs either have pj = 1 and wj = 0, or
pj = 0 and wj = 1, is as hard to approximate as the general case. This sug-
gests that in order to identify classes of instances which allow a better than
2-approximation one has to focus on the precedence constraints rather than the
weights and processing times.

Indeed, Lawler [17] gave an exact algorithm for series-parallel orders already
in 1978. For interval orders and convex bipartite precedence constraints, Woeg-
inger [33] gave approximation algorithms with approximation ratio arbitrarily
close to the golden ratio 1

2 (1 +
√

5) ≈ 1.61803.
Recently, Ambühl & Mastrolilli [2] settled an open problem first raised by

Chudak & Hochbaum [6] and whose answer was subsequently conjectured by
Correa & Schulz [7]. The results in [2,7] imply that 1|prec |

∑
wjCj is a special

case of the weighted vertex cover problem. More precisely, they proved that
every instance S of 1|prec |

∑
wjCj can be translated in polynomial time into

a weighted graph GP, such that finding the optimum of S can be reduced to
finding an optimum vertex cover in GP. This result even holds for approximate
solutions: Finding an α-approximate solution for S can be reduced to finding an
α-approximate vertex cover in GP.

Based on these results, three of the authors [3] discovered an interesting con-
nection between 1|prec |

∑
wjCj and the dimension theory of posets [32], by

observing that the graph GP is well known in dimension theory as the graph of
incomparable pairs of a poset P. Applying results from dimension theory allowed
to describe a framework for obtaining simple and efficient approximation algo-
rithms for 1|prec |

∑
wjCj with precedence constraints of low dimension, such

as convex bipartite and semi-orders. In both cases, the new 4/3-approximation
algorithms outperform the previously known results. The approach even yields
a polynomial algorithm for 2-dimensional precedence constraints, based on the
fact that the minimum weighted vertex cover on GP can be solved in polynomial
time since GP is bipartite for a 2-dimensional poset P [32,7]. This considerably
extends Lawler’s result [17] for series-parallel orders. Unfortunately, the frame-
work in [3] fails in the case of interval orders (in this case the dimension can be
of the order of log log n [32]).

The work in this paper originated from the study of 1|prec |
∑

wjCj under
interval orders (abbreviated 1|interval-order |

∑
j wjCj). Interval orders appear

in many natural contexts [10]. We provide both positive and negative results.
In the first part of the paper, we further generalize our previous frame-

work [3] such that it can be applied to precedence constraints of low fractional
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dimension [4] (Section 3). The extended framework yields (2−2/d)-approximation
algorithms whenever precedence constraints have fractional dimension bounded
by a constant d and satisfy a mild condition (see Section 3). Since the fractional
dimension of interval orders is bounded by 4 (see Section 4.1), this gives a 1.5-
approximation algorithm and improves the previous result in [33]. The extended
framework can also be applied to interval dimension two posets (Section 4.2),
bounded degree posets (Section 4.3), and posets obtained by the lexicographic
sums (Section 4.4).

In the second part of the paper, we show that 1|interval-order |
∑

j wjCjre-
mains NP-hard (Section 5). This result is rather unexpected as many prob-
lems can be solved in polynomial time when restricted to interval orders (see
e.g. [25]). The reduction heavily relies on the connection between 1|prec |

∑
wjCj

and weighted vertex cover described in [2].
In summary, our results indicate a strong relationship between the approxima-

bility of 1|prec|
∑

j wjCj and the fractional dimension d of the precedence con-
straints. In particular, it is polynomial for d = 2, but NP-hard already for d ≥ 3.
The latter stems from the facts that problem 1|prec|

∑
j wjCj is strongly NP-hard

even for posets with in-degree 2 [17], and the fractional dimension of these posets
is bounded by 3 [8]. This leaves the complexity for 2 < d < 3 as an open question.

2 Definitions and Preliminaries

2.1 Posets and Fractional Dimension

Let P = (N, P ) be a poset. For x, y ∈ N , we write x ≤ y when (x, y) ∈ P , and
x < y when (x, y) ∈ P and x �= y. When neither (x, y) ∈ P nor (y, x) ∈ P , we
say that x and y are incomparable, denoted by x||y. We call inc(P) = {(x, y) ∈
N × N : x||y in P} the set of incomparable pairs of P. A poset P is a linear
order (or a total order) if for any x, y ∈ N either (x, y) ∈ P or (y, x) ∈ P ,
i.e. inc(P) = ∅. A partial order P ′ on N is an extension of a partial order P
on the same set N , if P ⊆ P ′. An extension that is a linear order is called a
linear extension. Mirroring the definition of the fractional chromatic number of a
graph, Brightwell & Scheinerman [4] introduce the notion of fractional dimension
of a poset. Let F = {L1, L2, . . . , Lt} be a nonempty multiset of linear extensions
of P. The authors in [4] call F a k-fold realizer of P if for each incomparable
pair (x, y), there are at least k linear extensions in F which reverse the pair
(x, y), i.e., |{i = 1, . . . , t : y < x in Li}| ≥ k. We call a k-fold realizer of size t
a k:t-realizer. The fractional dimension of P is then the least rational number
fdim(P) ≥ 1 for which there exists a k:t-realizer of P so that k/t ≥ 1/fdim(P).
Using this terminology, the dimension of P, denoted by dim(P), is the least t for
which there exists a 1-fold realizer of P . It is immediate that fdim(P) ≤ dim(P)
for any poset P. Furthermore [4], fdim(P) = 1, or fdim(P) ≥ 2.

2.2 Scheduling, Vertex Cover, and Dimension Theory

In [7,2,3] a relationship between 1|prec|
∑

j wjCj , weighted vertex cover, and
the dimension theory of posets is shown. This relationship will turn out to be
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useful for both improving the approximation ratio for several classes of prece-
dence constraints and establishing the NP-hardness of 1|interval-order |

∑
j wjCj .

Let P = (N, P ) be any poset, that is not a linear order. Felsner and Trotter [9]
associate with P a hypergraph HP, called the hypergraph of incomparable pairs,
defined as follows. The vertices of HP are the incomparable pairs in P. The edge
set consists of those sets U of incomparable pairs such that no linear extension of
P reverses all incomparable pairs in U . Let GP denote the ordinary graph, called
the graph of incomparable pairs, determined by all edges of size 2 in HP. In [9,32]
it is shown that the dimension of P is equal to the chromatic number of HP,
i.e., dim(P) = χ(HP) ≥ χ(GP). In [4], it was noted that the same relationship
holds for the fractional versions, i.e., fdim(P) = χf (HP) ≥ χf (GP). We refer
the reader to [28] for an introduction to fractional graph coloring.

Given an instance S of 1|prec|
∑

j wjCj , we associate with S a weighted vertex
cover instance V CS on GP, where GP is the graph of incomparable pairs of the
poset P representing the precedence constraints and each vertex (i, j) ∈ inc(P)
has weight pi · wj . We denote the value of a solution s by val(s).

Theorem 1 ([2,3,7]). Let S be an instance of 1|prec|
∑

j wjCj where prece-
dence constraints are given by the poset P = (N, P ). Then the following trans-
formations can be performed in polynomial time.

1. Any feasible solution s′ of S can be turned into a feasible solution c′ of V CS,
such that

val(c′) ≤ val(s′) −
∑

(i,j)∈P

pi · wj .

2. Any feasible solution c′ to V CS can be turned into a feasible solution s′ of
S, such that

val(s′) ≤ val(c′) +
∑

(i,j)∈P

pi · wj .

In particular, if c∗ and s∗ are optimal solutions to V CS and S, respectively, we
have val(c∗) = val(s∗) −

∑
(i,j)∈P pi · wj .

We remark that the term
∑

(i,j)∈P pi · wj is a fixed cost and it is present in all
feasible schedules of S. This follows from the facts that a job’s processing time
is always included in its completion time, and any feasible schedule of S must
schedule job i before job j if i < j in P .

3 Scheduling and Fractional Dimension

In this section, we present an algorithmic framework that can be used to obtain
better than 2-approximation algorithms provided that the set of precedence con-
straints has low fractional dimension. Applications that follow this pattern are
given in Section 4.

We say that a poset P admits an efficiently samplable k:t-realizer if there exists
a randomized algorithm that, in polynomial time, returns any linear extension
from a k-fold realizer F = {L1, L2, . . . , Lt} with probability 1/t.
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Let S be an instance of 1|prec|
∑

j wjCj where precedence constraints are
given by a poset P = (N, P ). Assuming that P admits an efficiently samplable
k:t-realizer F = {L1, . . . , Lt}, we proceed as follows.

Let VP and EP be the vertex set and edge set, respectively, of the graph of
incomparable pairs GP. Consider the following integer program formulation of
the weighted vertex cover V CS :

min
∑

i∈VP

wixi

s.t. xi + xj ≥ 1 {i, j} ∈ EP

xi ∈ {0, 1} i ∈ VP

where wi denotes the weight of vertex vi ∈ Vp, as specified in the definition of
V CS (see Section 2.2). Let [VC-LP] denote the linear relaxation of the integer
program above.

Nemhauser & Trotter [23,24] proved that any basic feasible solution to [VC-
LP] is half-integral, that is xi ∈ {0, 1

2 , 1} for all i ∈ V . Let Vi be the set of nodes
whose corresponding variables took value i ∈ {0, 1

2 , 1} in the optimal solution of
[VC-LP].

Observe that for any linear extension L, the set of all incomparable pairs that
are reversed in L is an independent set in the graph of incomparable pairs GP.
Now, pick uniformly at random a linear extension L of F in polynomial time.
Note that V0 ∪ (V1/2 \L) defines an independent set of GP. Generalizing a result
by Hochbaum in [14], we prove that the complement of V0 ∪(V1/2 \L) is a vertex
cover whose expected value is within (2 − 2k

t ) times the weight of an optimum
cover. By Theorem 1, we can transform (in polynomial time) the solution of V CS

into a feasible solution of S of expected value at most (2 − 2k
t ) times the value

of an optimum schedule. We summarize the above arguments in the following
theorem.

Theorem 2. The problem 1|prec|
∑

j wjCj, whenever precedence constraints ad-
mit an efficiently samplable k:t-realizer, has a randomized (2−2k

t )-approximation
algorithm.

For a proof of this theorem, see Appendix A.1. Following a similar argumen-
tation, Hochbaum’s approach [14] for approximating the vertex cover prob-
lem can be extended to fractional coloring, yielding the same approximation
result.

A natural question is for which posets one can have an efficiently samplable
k:t-realizer. In the general case, Jain & Hedge [15] recently proved that it is
hard to approximate the dimension of a poset with n elements within a fac-
tor n0.5−ε, and the same hardness of approximation holds for the fractional
dimension. However, for several special cases, including interval orders (Sec-
tion 4.1) and bounded degree posets (Section 4.3), efficiently samplable
k:t-realizers exist.
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4 Precedence Constraints with Low Fractional Dimension

4.1 Interval Orders

A poset P = (N, P ) is an interval order if there is a function F , which assigns to
each x ∈ N a closed interval F (x) = [ax, bx] of the real line R, so that x < y in P
if and only if bx < ay in R. Interval orders can be recognized in O(n2) time [21,25].
The dimension of interval orders can be of the order of log log n [32], whereas the
fractional dimension is known to be less than 4 [4], and this bound is asymptoti-
cally tight [8]. In the following we show how to obtain a 1.5-approximation algo-
rithm for 1|interval-order |

∑
j wjCj . By Theorem 2, it is sufficient to prove that

interval orders admit an efficiently samplable k:t-realizer with t/k = 4.
Given a poset P = (N, P ), disjoint subsets A and B of the ground set N , and

a linear extension L of P , we say that B is over A in L if, for every incomparable
pair of elements (a, b) with a ∈ A and b ∈ B, one has b > a in L. The following
property of interval orders is fundamental.

Theorem 3 (Rabinovitch [27,10]). A poset P = (N, P ) is an interval order
if and only if for every pair (A, B) of disjoint subsets of N there is a linear
extension L of P with B over A.

By using this property we can easily obtain a k-fold realizer F = {L1, . . . , Lt}
with k = 2n−2 and t = 2n, where n = |N |. Indeed, consider every subset A of
N and let LA be a linear extension of P in which B = N \ A is over A. Now
let F be the multiset of all the LA’s. Note that |F| = 2n. Moreover, for any
incomparable pair (x, y) there are at least k = 2n−2 linear extensions in F for
which x ∈ B and y ∈ A. Finally, observe that we can efficiently pick uniformly
at random one linear extension from F : for every job j ∈ N put j either in A or
in B with the same probability 1/2.

By the previous observations and Theorem 2, we have a randomized polyno-
mial time 1.5-approximation for 1|interval-order |

∑
j wjCj . The described algo-

rithm can easily be derandomized by using the classical method of conditional
probabilities.

Theorem 4. Problem 1|interval-order|
∑

j wjCj has a deterministic polynomial
time 1.5-approximation algorithm.

4.2 Interval Dimension Two

The interval dimension of a poset P = (N, P ), denoted by dimI(P), is defined [32]
as the least t for which there exist t extensions Q1, Q2, . . . , Qt, so that:

– P = Q1 ∩ Q2 ∩ · · · ∩ Qt and
– (N, Qi) is an interval order for i = 1, 2, . . . , t.

Generally dimI(P) ≤ dim(P). Obviously, if P is an interval order, dimI(P) = 1.
The class of posets of interval dimension 2 forms a proper superclass of the

class of interval orders. Posets of interval dimension two can be recognized in
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O(n2) time due to Ma & Spinrad [19]. Given a poset P with dimI(P) = 2, their
algorithm also yields an interval realizer {Q1, Q2}. As described in Section 4.1,
we obtain k-fold realizers F1 = {L1, L2, . . . , Lt} and F2 = {L′

1, L
′
2, . . . , L

′
t} of Q1

and Q2, respectively, with k = 2n−2 and t = 2n. It is immediate that F = F1∪F2
is a k-fold realizer of P of size 2t = 2n+1. Furthermore, we can efficiently pick
uniformly at random one linear extension from F : pick uniformly at random a
linear extension from either F1 or F2 with the same probability 1/2. Again by
using conditional probabilities we have the following.

Theorem 5. Problem 1|prec|
∑

j wjCj, whenever precedence constraints have in-
terval dimension at most 2, has a polynomial time 1.75-approximation algorithm.

4.3 Posets of Bounded Degree

In the following we will see how to obtain, using Theorem 2, an approximation
algorithm for 1|prec |

∑
wjCj when the precedence constraints form a poset of

bounded degree. Before we proceed, we need to introduce some definitions.
Let P = (N, P ) be a poset. For any job j ∈ N , define the degree of j,

denoted deg(j), as the number of jobs comparable (but not equal) to j in P.
Let Δ(P) = max{deg(j) : j ∈ N}. Given a job j, let D(j) denote the set of all
jobs which are less than j, and U(j) those which are greater than j in P . Define
degD(j) = |D(j)| and ΔD(P) = max{degD(j) : j ∈ N}. The quantities degU (j)
and ΔU (P) are defined dually.

We observe that the NP-completeness proof for 1|prec |
∑

wjCj given by
Lawler [17] was actually provided for posets P with ΔD(P) = 2. By using
fractional dimension we show that these posets (with bounded min{ΔD, ΔU})
allow for better than 2-approximation.

Theorem 6. Problem 1|prec |
∑

wjCj has a polynomial time (2 − 2/f)-approx-
imation algorithm, where f = 1 + min{ΔD, ΔU , 1}.

Proof. Let P = (N, P ) be the poset representing the precedence constraints
with bounded min{ΔD, ΔU}. Assume, without loss of generality, that P is not
decomposable with respect to lexicographic sums (see Section 4.4). Otherwise,
a decomposition with respect to lexicographic sums can be done in O(n2) time
(see e.g. [22]), and each component can be considered separately. We call an
incomparable pair (x, y) ∈ inc(P) a critical pair if for all z, w ∈ N \ {x, y}
1. z < x in P implies z < y in P , and
2. y < w in P implies x < w in P .

Critical pairs play an important role in dimension theory: if for each critical pair
(x, y), there are at least k linear extensions in F which reverse the pair (x, y)
then F is a k-fold realizer of P and vice versa [4].

For any permutation M of N , consider the set C(M) of critical pairs (x, y)
that satisfy the following two conditions:

1. x > (D(y) ∪ {y}) in M if |D(y)| < ΔD

2. x > D(y) in M if |D(y)| = ΔD
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In [8], Felsner & Trotter present an algorithm that converts in polynomial time a
permutation M of N to a linear extension L of P so that L reverses all critical pairs
in the set C(M). Now set t = |N |! and consider the set M = {M1, M2, . . . , Mt}
of all permutations of the ground set N . Observe that for any critical pair (x, y)
there are at least n!/(ΔD + 1) different permutations Mi ∈ M, where the critical
pair is reversed, i.e., (y, x) ∈ C(Mi). Applying the algorithm in [8] we obtain a
k-fold realizer F = {L1, . . . , Lt} of P with t = n! and k = n!/(ΔD +1). Moreover,
we can efficiently pick uniformly at random one linear extension from F : generate
uniformly at random one permutation of jobs (e.g. by using Knuth’s shuffle algo-
rithm) and transform it into a linear extension with the described properties by
using the algorithm in [8]. The described algorithm can be derandomized by us-
ing the classical method of conditional probabilities. Finally observe that we can
repeat a similar analysis by using ΔU instead of ΔD. �


In fact, this result is stronger than the same statement with d = Δ(P). To
see this, consider the graph poset P(G) = (N, P ) defined as follows: given an
undirected graph G(V, E), let N = V ∪E and for every v ∈ V and e = {v1, v2} ∈
E, put (v, e) ∈ P if and only if v ∈ {v1, v2}. If Δ(G) is unbounded, this also
holds for Δ(P). However, since every edge is adjacent to only two vertices, ΔD

is bounded by 2, thus the value 1 + min{ΔU , ΔD} is also bounded. On the
other hand, for the complete graph on n nodes, Kn, Spencer [31] showed that
dim(P(Kn)) = Θ(log log n). Therefore, the poset P(Kn) is an example where
the dimension of the poset is unbounded, while min{ΔD, ΔU} (and thus also
the fractional dimension) is bounded. This means that the fractional dimension
approach can yield a substantially better result than the dimension approach
used in [3].

4.4 Lexicographic Sums

In this section we show how to use previous results to obtain approximation al-
gorithms for new ordered sets. The construction we use here, lexicographic sums,
comes from a very simple pictorial idea (see [32] for a more comprehensive dis-
cussion). Take a poset P = (N, P ) and replace each of its points x ∈ N with a
partially ordered set Qx, the module, such that the points in the module have the
same relation to points outside it. A more formal definition follows. For a poset
P = (N, P ) and a family of posets S = {(Yx, Qx) | x ∈ N} indexed by the ele-
ments in N , the lexicographic sum of S over (N, P ), denoted

∑
x∈(N,P )(Yx, Qx)

is the poset (Z, R) where Z = {(x, y) | x ∈ N, y ∈ Yx} and (x1, y1) ≤ (x2, y2) in
R if and only if one of the following two statements holds:

1. x1 < x2 in P .
2. x1 = x2 and y1 ≤ y2 in Qx1 .

We call P = P ∪ F the components of the lexicographic sum. A lexicographic
sum is trivial if |N | = 1 or if |Yx| = 1 for all x ∈ N . A poset is decomposable with
respect to lexicographic sums if it is isomorphic to a non-trivial lexicographic
sum.
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In case the precedence constraints of every component admit an efficiently sam-
plable realizer, we observe that this translates into a randomized approximation
algorithm:

Theorem 7. Problem 1|prec|
∑

j wjCj , whenever precedence constraints form
a lexicographic sum whose components i ∈ P admit efficiently samplable realiz-
ers, has a polynomial time randomized (2− 2t

k )−approximation algorithm, where
t/k = maxi∈P (ti/ki).

Finally, we point out that, if the approximation algorithm for each component
can be derandomized, this yields a derandomized approximation algorithm for
the lexicographic sum.

5 NP-Completeness for Interval Orders

In this section we show that 1|prec|
∑

j wjCj remains NP-complete even in the
special case of interval order precedence constraints. To prove this we exploit
the vertex cover nature of problem 1|prec |

∑
wjCj .

Theorem 8. Problem 1|interval-order|
∑

j wjCj is NP-complete.

Proof. A graph G is said to have bounded degree d if every vertex v in G is
adjacent to at most d other vertices. The problem of deciding if a graph G
with bounded degree 3 has a (unweighted) vertex cover of size at most m is
NP-complete [11]. We provide a reduction from the minimum vertex cover on
graphs with bounded degree 3 to 1|interval-order |

∑
j wjCj .

Given a connected graph G = (V, E) with bounded degree 3, we construct an
instance S of 1|interval-order |

∑
j wjCj so that S has a schedule with value less

than m + c + 1 if and only if G has a vertex cover of size at most m, where c is
a fixed value defined later (see Equation (1)). We present the construction of S
in two stages.

Stage 1 (Tree-layout of the graph). Starting from any vertex s ∈ V , consider
the tree T = (V, ET ), with ET ⊆ E, rooted at s on the set of nodes reachable
from s by using, for example, breadth-first search. Furthermore, we number the
vertices of T top-down and left-right. Figure 1 shows the breadth-first search
tree T for K4.

Define G′ = (V ′, E′) to be the graph obtained from T in the following way. For
each vertex vi in T we add two new vertices ui

2, u
i
1 and edges {ui

2, u
i
1}, {ui

1, vi}.
Furthermore, for each edge {vi, vj} ∈ E \ ET with i < j we add vertices eij

1 , eij
2

and edges {vi, e
ij
1 }, {eij

1 , eij
2 }, {eij

2 , uj
2}.

The following claim relates the optimum unweighted vertex covers of G and G′.

Claim 1. Let C∗ ⊆ V and C′∗ ⊆ V ′ be optimum vertex cover solutions to G and
G′, respectively, then |C∗| = |C′

∗|−|V |−|E\ET |. (For a proof, see Appendix A.2).
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Fig. 1. The breadth first search tree T = (V, ET ) for the graph G = K4, and the graph
G′. The solid edges belong to ET .

Stage 2 (Construction of scheduling instance). Given the vertex cover
graph G = (V, E) and its corresponding tree T = (V, ET ), we construct the
scheduling instance S with processing times, weights, and precedence constraints
to form an interval order I as defined below (see Figure 2 for an example), where
k is a value to be determined later.

Job Interval Repr. Proc. Time Weight
s0 [-1,0] 1 0
s1 [0, 1] 1/k 1
sj , j = 2, . . . , |V | [i, j], where 1/kj ki

{vi, vj} ∈ ET , i < j

mi, i = 1, . . . , |V | [i − 1
2 , |V | + i] 1/k(|V |+i) ki

ei, i = 1, . . . , |V | [|V | + i, |V | + i + 1] 0 k(|V |+i)

bij , where
{vi, vj} ∈ E \ ET , i < j [i, j − 1

2 ] 1/kj ki

Remark 1. Let i and j be two jobs in S with interval representations [a, b] and
[c, d] respectively, where a ≤ d. By the construction of the scheduling instance
S we have pi ≤ 1/k�b� and wj ≤ k�c�. It follows that pi · wj = 1 or pi · wj ≤
1/k if i and j are incomparable, since pi · wj ≥ k implies that b < c, i.e., i’s
interval representation is completely to the left of j’s interval representation.
Furthermore, if pi · wj = 1 then �b� = �c�.

Let D = {(s0, s1)}
∪ {(si, sj) : vi is the parent of vj in T }
∪ {(si, mi), (mi, ei) : i = 1, 2, . . . , |V |}
∪ {(si, bij), (bij , mj) : {vi, vj} ∈ E \ ET , i < j}

By the interval representation of the jobs and the remark above, we have the
following:
Claim 2. A pair of incomparable jobs (i,j) has pi ·wj = 1 if (i, j) ∈ D; otherwise
if (i, j) �∈ D then pi · wj ≤ 1/k.
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G′ ∼= G′
II

(s0, s1)

(s1, s2) (s1, s3) (s1, s4)

(s1, m1)

(s2, m2)
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(m1, e1)
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(m3, e3) (m4, e4)

(s2, b23)

(b23, m3)

(s2, b24)

(b24, m4)

(s3, b34)

(b34, m4)

0 1 2 3 4 5 6 7 8 9

s0

s1

s2

s3

s4

m1

m2

m3

m4

e1

e2

e3
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b23

b24

b34

Fig. 2. The interval order I obtained from K4; G′
I is the subgraph induced on the

graph of incomparable pairs GI by the vertex subset D (the vertices with weight 1)

Claim 3. Let G′
I = (D, EI) be the subgraph induced on the graph of incompa-

rable pairs GI by the vertex subset D. Then G′ and G′
I are isomorphic. (For a

proof, see Appendix A.3).
By Claim 2, each incomparable pair of jobs (i, j) �∈ D satisfies p(i)·w(j) ≤ 1/k.

Let n be the number of jobs in the scheduling instance S and select k to be n2+1.
Let C,CI , and C′

I be optimal vertex cover solutions to G, GI and G′
I (defined

as in Claim 3), respectively. Then, by the selection of k and Claim 2, we have
|C′

I | ≤ |CI | ≤ |C′
I | +

∑
(i,j)∈inc(I)\D

piwj < |C′
I | + 1. Furthermore, Claims 3 and 1

give us that |C|+ |V |+ |E \ET | ≤ |CI | < |C|+ |V |+ |E \ET |+1. This, together
with Theorem 1, implies that |C| ≤ m if and only if there is a schedule of S with
value less than m + c + 1, where

c = |V | + |E \ ET | +
∑

(i,j)∈I

pi · wj . (1)

�
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A Omitted Proofs

A.1 Proof of Theorem 2

Proof. Let S be an instance of 1|prec|
∑

j wjCj where precedence constraints
are given by a poset P = (N, P ) that admits an efficiently samplable k:t-realizer
F = {L1, L2, . . . , Lt}. Furthermore, we assume that fdim(P) ≥ 2. The case when
fdim(P) = 1, i.e., P is a linear order, is trivial.

Let VP and EP be the vertex set and edge set, respectively, of the graph of in-
comparable pairs GP. Consider the weighted vertex cover V CS on GP where each
vertex (incomparable pair) (i, j) ∈ VP has weight w(i,j) = pi · wj , as specified in
the definition of V CS (see Section 2.2). Solve the [VC-LP] formulation of V CS (see
Section 3) and let Vi be the set of vertices with value i (i = 0, 1

2 , 1) in the optimum
solution. Denote by GP[V1/2] the subgraph of GP induced by the vertex set V1/2.
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We consider the linear extensions of F as outcomes in a uniform sample space. For
an incomparable pair (x, y), the probability that y is over x in F is given by

ProbF [y > x] =
1
t
|{i = 1, . . . , t : y > x ∈ Li}| ≥ k

t
(2)

The last inequality holds because every incomparable pair is reversed in at least
k linear extensions of F .

Let us pick one linear extension L uniformly at random from F = {L1, . . . , Lt}.
Then, by linearity of expectation, the expected value of the independent set I1/2,
obtained by taking the incomparable pairs in V1/2 that are reversed in L, is

E[w(I1/2)] =
∑

(i,j)∈V1/2

ProbF [j > i] · w(i,j) ≥ k

t
· w(V1/2) (3)

A vertex cover solution C for the graph GP[V1/2] can be obtained by picking the
nodes that are not in I1/2, namely C = V1/2 \ I1/2. The expected value of this
solution is

E[w(C)] = w(V1/2) − E[w(I1/2)] ≤
(

1 − k

t

)
w(V1/2)

As observed in [14], V1 ∪ C gives a valid vertex cover for graph GP. Moreover,
the expected value of the cover is bounded as follows

E[w(V1 ∪ C)] ≤ w(V1) +
(

1 − k

t

)
w(V1/2) (4)

≤ 2
(

1 − k

t

) (
w(V1) +

1
2
w(V1/2)

)
(5)

≤
(

2 − 2k

t

)
OPT (6)

where the last inequality holds since w(V1) + 1
2w(V1/2) is the optimal value

of [VC-LP]. Note that t/k ≥ fdim(P) ≥ 2 was used for the second inequal-
ity. Theorem 1 implies that any α-approximation algorithm for V CS also gives
an α-approximation algorithm for S. Thus we obtain a randomized (2 − 2k

t )-
approximation algorithm for S. �


A.2 Proof of Claim 1

This proof is similar to the proof in [1] for proving APX-completeness of vertex
cover on cubic graphs.

Proof of Claim. It is easy to see that from every vertex cover C ⊆ V of G we
can construct a vertex cover C′ ⊆ V ′ of G′ of size exactly |C| + |V | + |E \ ET |.
In C′ we include ui

1 for all i ∈ {i : vi ∈ V \ C}; ui
2 for all i ∈ {i : vi ∈ C}; eij

1
for each (vi, vj) ∈ E \ ET with vi ∈ V \ C; eij

2 for each (vi, vj) ∈ E \ ET with
vi ∈ C; and every vertex in C.

Given a vertex cover C′ ⊆ V ′ of G′ we transform it into a vertex cover C ⊆ V
of G in the following manner. Suppose there exists vi, vj ∈ V with i < j such
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that {vi, vj} ∈ E and vi �∈ C′, vj �∈ C′. Since C′ is a feasible vertex cover of G′

we have that {vi, vj} ∈ E\ET and either {eij
1 , eij

2 , uj
1} ⊆ C′ or {eij

1 , uj
2, u

j
1} ⊆ C′.

Thus we can obtain a vertex cover C′′ ⊆ V ′ of G′ with |C′′| ≤ |C′| by letting
C′′ = (C′ \ {uj

1, e
ij
2 }) ∪ {vj , u

j
2}. Repeating this procedure will result in a vertex

cover C′′′ ⊆ V ′ of G′ with |C′′′| ≤ |C′| such that C = C′′′ ∩V is a feasible vertex
cover of G. Furthermore it is easy to see that |C| ≤ |C′′′| − |V | − |E \ ET |. �


A.3 Proof of Claim 3

Proof of Claim. We relate the two graphs G′
I and G′ by the bijection f : D → V ′,

defined as follows.

f((a, b)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vj , if (a, b) = (si, sj),
ui

1, if (a, b) = (si, mi),
ui

2, if (a, b) = (mi, ei),
eij
1 , if (a, b) = (si, bij),

eij
2 , if (a, b) = (bij , mj).

Suppose {(a, b), (c, d)} ∈ EI . Since I is an interval order (does not contain
any 2 + 2 structures as induced posets [21,32]) and by the definition of D we
have that b = c. Now consider the possible cases of {(a, b), (b, d)}.

(a = si, b = sj , d = sk, i < j < k) By construction of I, vj is the parent of vk,
i.e., (f((si, sj)), f((sj , sk)) = (vj , vk) ∈ ET ⊆ E′.

(a = si, b = sj , d = bjk, i < j < k) Then f((si, sj)) = vj and f((sj , bjk)) = eij
1

and by definition of G′ we have (vj , e
jk
1 ) ∈ E′.

The remaining cases (a = si, b = sj , d = mj , i < j), (a = si, b = bij , d =
mj , i < j), (a = si, b = mi, d = ei), and (a = bij , b = mj , d = ej , i < j)
are similar to the two above and it is straightforward to check the implication
{(a, b), (b, d)} ∈ EI ⇒ {f((a, b)), f((b, c))} ∈ E′.

On the other hand, suppose (a, b) ∈ E′ and again consider the different pos-
sible cases.

(a = vi, b = vj , i < j) Then vi is the parent of vj in T and f−1(vi) = (sk, si)
and f−1(vj) = (si, sj) for some k < i < j. Since sk’s interval representation
is completely to the left of sj ’s interval representation in I the incomparable
pairs (sk, si) and (si, sj) cannot be reversed in the same linear extension,
i.e., {(sk, si), (si, sj)} ∈ EI .

(a = vi, b = eij
1 , i < j) Then f−1(vi) = (sk, si) and f−1(eij

1 ) = (si, bij) for some
k < i < j. Since sk’s interval representation is completely to the left of
bij ’s interval representation in I the incomparable pairs (sk, si) and (si, bij)
cannot be reversed in the same linear extension, i.e., {(sk, si), (si, bij)} ∈ EI .

The remaining cases (a = eij
1 , b = eij

2 , i < j), (a = eij
2 , b = uj

2, i < j), (a = uj
1, b =

uj
2, i < j), and (a = vj , b = uj

1, i < j) are similar to the two above and omitted.
We have thus proved that {(a, b), (b, d)} ∈ EI ⇔ {f((a, b)), f((b, c))} ∈ E′,

i.e., the function f defines an isomorphism between G′
I and G′. �
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Abstract. There has been a series of results deriving approximation algorithms
for 2-stage discrete stochastic optimization problems, in which the probabilistic
component of the input is given by means of “black box”, from which the algo-
rithm “learns” the distribution by drawing (a polynomial number of ) indepen-
dent samples. The performance guarantees proved for such problems, of course,
is generally worse than for their deterministic analogue. We focus on a 2-stage
stochastic generalization of the problem of finding the maximum-weight subset
of jobs that can be scheduled on one machine where each job is constrained to
be processed within a specified time window. Surprisingly, we show that for this
generalization, the same performance guarantee that is obtained for the determin-
istic case can be obtained for its stochastic extension.

Our algorithm builds on an approach of Charikar, Chekuri, and Pál: one first
designs an approximation algorithm for the so-called polynomial scenario model
(in which the probability distribution is restricted to have the property that there
are only a polynomial number of possible realizations of the input that occur with
positive probability); then one shows that by sampling from the distribution via
the “black box” to obtain an approximate distribution that falls in this class and
approximately solves this approximation to the problem, one nonetheless obtains
a near-optimal solution to the original problem. Of course, to follow this broad
outline, one must design an approximation algorithm for the stochastic optimiza-
tion problem in the polynomial scenario model, and we do this by extending a
result of Bar-Noy, Bar-Yehuda, Freund, Naor, and Schieber.

Furthermore, the results of Bar-Noy et al. extend to a wide variety of resource-
constrained selection problems including, for example, the unrelated parallel-
machine generalization R|rj |

∑
wjUj and point-to-point admission control

routing in networks (but with a different performance guarantee). Our techniques
can also be extended to yield analogous results for the 2-stage stochastic gener-
alizations for this class of problems.

1 Introduction

Consider the following 2-stage stochastic optimization problem: there are n users, each
of whom might request a particular communication channel, which can serve at most
� Research supported partially by NSF grants CCR-0635121 & DMI-0500263.

�� This work was done while this author was a visiting student at Cornell University. The work
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one user at a time, for a specified length of time within a specified time interval; for
a given planning period, it is not known which of the n users will actually make their
request – all that is known is a probability distribution over the subsets of users indicat-
ing which subset might be active; each user has an associated profit for actually being
scheduled on the channel; alternatively, the manager of the channel can redirect the
user to other providers, thereby obtaining a specified (but significantly smaller) profit;
the aim is to decide which users to defer so as to maximize the expected profit over
the two stages (where the expectation is with respect to the probability distribution over
subsets of active users). Thus, this is a stochastic generalization of the (maximization
version) of the single machine scheduling problem that is denoted in the notation of
[4] as 1|rj |

∑
wjUj and we shall refer to this generalization as the 2-stage stochas-

tic 1|rj |
∑

wjUj . For the deterministic version of this problem, Bar-Noy, Bar-Yehuda,
Freund, Naor, & Schieber give a ρ-approximation algorithm for any constant ρ > 2;
rather surprisingly, we show that the exact same result holds for the stochastic general-
ization. (A ρ-approximation algorithm for an optimization problem is a (randomized)
polynomial-time algorithm that finds a feasible solution with (expected) cost within a
factor of ρ of optimal.)

Recently, there has been a series of results for 2-stage discrete stochastic optimiza-
tion problems with recourse, starting with the work of Dye, Stougie, and Tomasgard[3]
that addressed a knapsack-like single-node network provisioning problem. That paper
made the simplifying assumption of the polynomial scenario model in which there are
(only) a polynomial number of scenarios that can be realized in the second stage, and
thereby derived the first worst-case performance guarantees for polynomial-time algo-
rithms for models of this type. Kong & Schaefer [8] gave an 2-approximation algo-
rithm for a 2-stage variant of the the maximum-weight matching problem, again in a
polynomial scenario model. Later, Immorlica, Karger, Minkoff, and Mirrokni [7], and
also Ravi and Sinha [9] addressed analogous questions based on deterministic prob-
lems such as the vertex cover problem, the set covering problem, the uncapacitated
facility location problem, and network flow problems. The former paper also con-
sidered the situation when the probability distribution conformed to an independent
activation model which, in our setting for example, would mean that there is a prob-
ability associated with each user and the active set is drawn by assuming that these
are independent Bernoulli random events. However, for these latter results they in-
troduced the proportionality assumption in which the corresponding costs for an el-
ement in the two stages had constant ratio λ for all elements. Gupta, Pál, Ravi, and
Sinha [5] proposed a much more general mechanism for specifying the probability
distribution, in which one has access to a black box from which to generate inde-
pendent samples according to the distribution, and thereby make use of a polynomial
number of samples in the process of computing the first-stage decisions. They gave con-
stant approximation algorithms for a number of 2-stage stochastic optimization prob-
lems in this model, most notably the minimum-cost rooted Steiner tree problem and
the uncapacitated facility location problem, but they also require the proportionality
assumption.
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Shmoys & Swamy [10] gave an LP-rounding technique, and showed that one could
derive a polynomial-time approximation scheme for the exponentially-large linear pro-
gramming relaxations in order to derive the first approximation algorithms in the black
box model without the proportionality assumption, in particular for a variety of set
covering-related problems, the uncapacitated facility location problem, and multi-com-
modity flow problems. Swamy & Shmoys [11] extend this to constant-stage models,
and also show that the so-called sample average approximation yields a polynomial
approximation scheme for the LP relaxations. Charikar, Chekuri, and Pál [2] gave a
general technique based on the sample average approximation that, for a broad class of
2-stage stochastic minimization problem with recourse, in effect reduced the problem
of obtaining a good approximation algorithm for the black box model, to the problem
of obtaining the analogous result in the polynomial scenario setting.

We build on these results, by first constructing an approximation algorithm for our
maximization problem in the polynomial scenario model, and then derive a maximiza-
tion variant of the result of [2] (but still specialized to our class of problems) to obtain
approximation algorithms in the black box probability model.

We focus on the central model in the class proposed by Bar-Noy, Bar-Yehuda, Fre-
und, Naor, and Schieber [1], who gave primal-dual algorithms for a rich class of de-
terministic resource allocation and scheduling problems. In their terminology, there is
a set of activities, {A1, . . . , An}; let N = {1, . . . , n} index this set. For each activ-
ity Aj , j ∈ N , there is a set of possible instances Aj that specify the various ways
in which the activity might be handled (so, in the description above, assuming integer
data for the input times, for each user we have one instance for each possible integer
starting time that would have it complete by the deadline). This approach appears to
convert the original input to a new input in which there are a pseudopolynomial number
of instances for each activity. However, Bar-Noy et al. also show how to convert their
pseudopolynomial-time algorithm into a polynomial-time one, while losing only a 1+ε
factor in the performance guarantee.

Our algorithm is a rather natural extension of the approach of Bar-Noy et al. We first
run their algorithm on each of the polynomially many scenarios, where the profit of
selecting an instance is its contribution to the overall expected second stage profit. For
each scenario (which is, after all just an ordinary deterministic input), this generates a
feasible dual solution. The deterministic dual variables are of two types: those that are
dual to the constraint that says that each activity is scheduled in at most one way (that
is, at most one instance of each activity is selected); and those that correspond to the
constraint that at each time at most one instance (over all activities) is active. The usual
interpretation of dual variables leads us to view the former as providing the marginal ex-
pected profit attainable by having this activity on hand in a particular scenario. Thus, we
decide to defer an activity Aj , if the total of the corresponding dual variables, summed
over all scenarios, is less than the profit collected by actually deferring that activity.
This gives the stage I actions. The stage II actions for each scenario are computed by
adapting the algorithm of Bar-Noy et al.; we first compute a dual solution that includes
even the deferred activities, but then does not select any instance of a deferred activity
in constructing the primal solution.
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The analysis of our algorithm is also surprisingly simple, and is based on a primal-
dual approach using an integer programming formulation of the 2-stage problem. We
show that the dual solutions constructed in each scenario can be pieced together to
yield a feasible solution for the dual to the linear programming relaxation, and can
then show that the expected profit of the primal solution constructed is at least half the
value of the feasible dual solution found. This yields that the resulting algorithm is a
2-approximation algorithm. Like the algorithm of Bar-Noy et al., this is a pseudopoly-
nomial-time algorithm, but an approach identical to the one they employed yields a
polynomial-time algorithm, while losing a factor of 1 + ε in the performance guaran-
tee. Although we focus on this single-machine scheduling model, our approach can be
generalized to yield analogously strong results for 2-stage stochastic generalization of
the class of problems for which the framework of Bar-Noy et al. applies. This will be
discussed in detail in the full version of this paper.

There are other potential 2-stage stochastic extensions of the problem of computing
a maximum-weight subset of jobs that can be feasible scheduled. One other natural ap-
proach is to use the first stage to make initial decisions about which users to service
(but to commit to serve them if they are active), and then to allow the possibility of
serving additional users in the second stage, once the probabilistic choice of scenario
has been made (with correspondingly lesser profit). We show that the maximum in-
dependent set problem can be reduced to an extremely restricted special case of this
model in an approximation-preserving way, and hence we cannot hope to obtain a good
approximation algorithm for this setting (unless P = NP). There are few (if any) such
strong inapproximability results known for stochastic optimization problems for which
their deterministic analogue is relatively easily approximable.

2 IP and LP Formulations: 2-Stage Stochastic Models

We start by giving a natural integer (linear) programming formulation (and its dual) for
the 2-stage stochastic version of 1|rj |

∑
j wjUj , in its pseudopolynomial-sized variant.

Let S be a collection of explicitly given scenarios {S1, . . . , Sm} that occur with
positive probability; in each scenario S, for each activity Aj , there is an associated set
of available instances Aj(S) ⊆ Aj . For each instance I , there is an associated starting
time s(I), and an associated ending time e(I). For each scenario S ∈ S, there is an
associated probability q(S), where q(S) ≥ 0 and

∑
S∈S q(S) = 1. In stage I, we must

decide which activities to defer, and thereby obtain a (small) profit of pI
j , or else retain

for stage II, in which for each scenario S we can obtain a profit pII
j (I, S) for assigning

this activity using instance I ∈ Aj(S). We give an integer programming formulation
of this problem. For each activity Aj , we have a 0-1 variable xj that indicates whether
activity Aj is deferred in the first phase or not (where xj = 1 means that it is deferred).
For each instance I of activity Aj(S), we have a variable yj(I, S) whose value is 1 if
and only if instance I of this activity is scheduled. Let T be the set of all start-times and
end-times of all instances belonging to all activities and let TI = {t ∈ T |s(I) ≤ t <
e(I)} for each instance I . Moreover, let f(I) ∈ T be maximal such that f(I) < e(I).



Approximation Algorithms for 2-Stage Stochastic Scheduling Problems 149

We can formulate the 2-stage problem of maximizing the total expected profit as
follows:

max
∑

j∈N
pI

jxj +
∑

j∈N

∑

S∈S

∑

I∈Aj(S)

q(S)pII
j (I, S)yj(I, S) (SIP)

s.t. xj +
∑

I∈Aj(S)

yj(I, S) ≤ 1 ∀j ∈ N , S ∈ S , (1)

∑

j∈N

∑

I∈Aj(S):t∈TI

yj(I, S) ≤ 1 ∀S ∈ S , t ∈ T , (2)

xj , yj(I, S) ∈ {0, 1}, ∀j ∈ N , S ∈ S , I ∈ Aj(S). (3)

Let (SLP) be the LP obtained by replacing (3) by non-negativity constraints for these
variables. If we let uj(S) be the dual variables corresponding to the constraints (1), and
let vt(S) denote the dual variables corresponding to the constraints (2), then we can
write the LP dual of (SLP) as:

min
∑

j∈N

∑

S∈S
uj(S) +

∑

S∈S

∑

t∈T
vt(S) (SD)

s.t.
∑

S∈S
uj(S) ≥ pI

j , ∀j ∈ N , (4)

uj(S) +
∑

t∈TI

vt(S) ≥ q(S)pII
j (I, S), ∀j ∈ N , S ∈ S , I ∈ Aj(S), (5)

uj(S), vt(S) ≥ 0. (6)

It is important to note that our algorithm will not need to solve any of these linear
programs! We will simply apply an algorithm for the deterministic variant (for which a
performance guarantee relative the optimal value of the deterministic LP is known) to
an input based on each scenario S ∈ S, and then use the linear programs to analyze the
performance of the resulting algorithm.

3 An Algorithm for the Polynomial Scenario Model

We shall show how to adapt the primal-dual algorithmic framework of Bar-Noy, Bar-
Yehua, Freund, Naor, & Schieber [1] to yield an approximation algorithm with the
identical performance guarantee for the 2-stage stochastic variant of 1|rj |

∑
wjUj , in

the polynomial scenario model. For this model, it is straightforward to derive a constant
approximation algorithm. The simplest approach is to randomize, and with probability
1/2 to defer all jobs, and otherwise, to run the 2-approximation algorithm of Bar-Noy
et al. on the active jobs in the second stage; this is a randomized 4-approximation algo-
rithm. In the polynomial scenario model, one can improve upon this by comparing the
benefit of deferring all users with the expected profit obtained by the Bar-Noy algorithm
based on not deferring anyone, and then selecting the better of the two. This is easily
shown to be a 3-approximation algorithm (and can be extended to the black box model
while losing only a factor of 1 + ε). Thus, the surprising aspect of our result is that it is
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in fact possible to obtain an algorithm for the 2-stage generalization without degrading
the performance guarantee at all.

The framework of Bar-Noy et al. works in two phases: a pushing phase in which
a dual solution is constructed along with a stack of instances that might be selected
to be scheduled; and a popping phase in which elements of the stack are popped off,
and accepted for scheduling provided that they do not conflict with activities already
scheduled by this procedure.

The algorithm for the 2-stage problem proceeds as follows. For each scenario S ∈ S,
the deterministic profit pj(I) is q(S)pII

j (I, S) for each j ∈ N , and each I ∈ Aj(S).
We execute the pushing procedure of the algorithm proposed in Bar-Noy et al. for each
scenario S ∈ S. Algorithm 1 shows the pseudocode for this procedure. We let uj(S)
denote the dual variable corresponding to the deterministic analogue of (1) computed
by this procedure. Then, for each activity Aj , j ∈ N , we check if

pI
j ≥

∑

S∈S
uj(S), (7)

and defer each activity Aj that satisfies this condition. This completes the first stage
action. We shall also denote this solution by setting x̄j = 1 for each deferred activity
Aj , and setting x̄j = 0 otherwise.

In what follows, we shall say that an instance I is uncovered if constraint (5) for
instance I is not satisfied and we say that I is tight if this constraint is satisfied with
equality.

For the second stage, for a given scenario S ∈ S, we recompute the execution of the
pushing procedure. Then we compute a feasible schedule by executing the popping pro-
cedure of the algorithm of Bar-Noy et al., but we delete each activity that was deferred
in the first phase. We denote this solution by setting ȳj(I, S) = 1 for each scheduled
instance I , and setting ȳj(I, S) = 0 otherwise. Algorithm 2 shows the pseudocode for
the second phase for a given scenario.

The main intuition behind the deferring rule is the following. Suppose at the end of
the pushing phase the total value of variables u of an activity Aj is “small”. There are
two possible reasons for this. The total profit of all instances of Aj is smaller than pI

j .
In this case, it is clear that deferring the activity is the best we can do. If the total profit
P of instances of Aj is greater than pI

j , then since u is “small”, there are many other
instances of other activities which are in conflict with instances of Aj . Hence, P can
be “replaced” by the profit of these instances, and we can gain other profit by deferring
Aj . More generally, the value of the sum reflects the total expected marginal value of
the activity Aj ; if this is less than the (sure) profit gained by deferring it, then certainly
deferring it is a good thing to do.

We shall prove that the performance guarantee of the two-phase algorithm is 2. The
main idea behind this proof is the following. Each instance increases the total value
of the dual variables by some amount 2δ. For instances that belong to a non-deferred
activity, we are able to charge δ to a scheduled instance. For instances that belong to a
deferred activity, we charge this amount to the profit gained by deferring that activity.

Given a scenario S we say that I ∈ Aj(S) and Î ∈ Al(S) are incompatible if j = l
or their time intervals overlap. For each instance I ∈ Aj(S), we refer to the variables
which occur in the constraint (5) for I , as “the variables of I”.
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Algorithm 1. Pushing procedure for the first phase in scenario S

1: Stack(S)=∅;
2: uj(S) ← 0 ∀j ∈ N ;
3: vt(S) ← 0 ∀t ∈ T ;
4: while no uncovered instance is left do
5: select an uncovered instance I ∈ Aj(S), j ∈ N with minimum end-time;
6: push(I,Stack(S));
7: let δ(I, S) = (q(S)pII

j (I, S) − uj(S) −
∑

t∈TI
vt(S))/2;

8: uj(S) ← uj(S) + δ(I, S);
9: vf(I)(S) ← vf(I)(S) + δ(I, S);

10: end while

Algorithm 2. The algorithm for the second phase in scenario S

1: /* pushing procedure */
2: Stack(S)=∅;
3: uj(S) ← 0 ∀j ∈ N ;
4: vt(S) ← 0 ∀t ∈ T ;
5: while no uncovered instance is left do
6: select an uncovered instance I ∈ Aj(S), j ∈ N with minimum end-time;
7: push(I,Stack(S));
8: let δ(I, S) = (q(S)pII

j (I, S) − uj(S) −
∑

t∈TI
vt(S))/2;

9: uj(S) ← uj(S) + δ(I, S);
10: vf(I)(S) ← vf(I)(S) + δ(I, S);
11: end while
12: /* scheduling procedure */
13: while Stack(S) is not empty do
14: I=pop(Stack(S));
15: Let j ∈ N : I ∈ Aj(S);
16: if Aj is not deferred and I is not in conflict with other scheduled instances then
17: schedule I and set ȳj(I, S) = 1;
18: end if
19: end while

Theorem 1. For the 2-stage stochastic maximization version of 1|rj |
∑

wjUj , there is
a (2 + ε)-approximation algorithm in the polynomial scenario model.

Proof. We shall consider only the version of the problem in which we have a pseu-
dopolynomial representation of the input: that is, for each activity, we have an explic-
itly given set of allowed starting times. However, for each scenario, this is exactly the
algorithm of Bar-Noy et al. (on a carefully constructed input), who show that it can be
converted to run in polynomial time for 1|rj |

∑
wjUj , while losing a factor of 1 + ε in

the performance guarantee. This will thereby yield the theorem in the form stated above.

Let ūj(S) and v̄t(S) be the value of the dual variables u and v at the end of the algo-
rithm. First consider the constraints (5); the algorithm ensures that these are satisfied by
the dual solution computed. This is a consequence of the fact that as long as there exists
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an uncovered instance, the algorithm pushes an instance in the stack and increases its
dual variables making a constraint (5) tight. Hence, at the end of the algorithm, there
does not exist an uncovered instance, and each constraint (5) is satisfied. On the other
hand, constraint (4) can be violated by any deferred activity. In order to satisfy this
constraint, we increase the value of dual variables in the following way. Let

δj = pI
j −

∑

S∈S
ūj(S) j = 1, . . . , n

and let S̄ ∈ S, be an arbitrarily chosen scenario. For each activity Aj , we increase the
value of ūj(S) by δj . Clearly, this maintains that the other constraints are satisfied, and
ensures that constraint (4) is satisfied now as well.

We now prove the performance guarantee of the algorithm is 2. The essence of the
proof is as follows. In each scenario S, for each instance I of a non-deferred activity,
we charge δ(I, S) to some scheduled instance. For each instance I of a deferred activity
Aj , we charge δj and δ(I, S) to the profit pI

j . Hence, at the end of the algorithm, all
amounts δ are “charged” to some profit. Moreover, the sum of all these δ, multiplied by
2, gives a bound on the total value of the dual variables. The theorem then follows from
weak duality.

Consider a scenario S. Let Î ∈ Aj(S) be an instance scheduled in S such that Aj is
not deferred, j ∈ N . Let BÎ(S) be a set which contains Î and as well as instances that
are:

– incompatible with Î and
– pushed onto Stack(S) before Î .

Consider each instance I in BÎ(S). When I is placed on the stack, there are two dual
variables that are increased by δ(I, S). For each such I , one of these two variables are
variables of Î . If I ∈ Aj(S), then the variable uj(S) occurs in constraint (5) for Î . Oth-
erwise, since e(Î) ≥ e(I), then the variable vf(I)(S) occurs in this constraint. Let û and

v̂ be the value of dual variables u and v at the time Î is pushed in the stack. We have that:
∑

I∈BÎ(S)

δ(I, S) ≤ ûj(S) +
∑

t∈TÎ

v̂t(S) ≤ qSpII
j (Î , S) (8)

where last inequality follows from the fact that Î is uncovered before being pushed on
the stack and after that, its variables are increased in order to make constraint (5) tight.

Note that each instance I of a non-deferred activity belongs to the set BÎ(S) for
some instance Î . This follows from the fact that either I is scheduled or there is another
instance Î pushed after I in the stack, which has been scheduled instead of I . This
implies that for each scenario S ∈ S

∑

j∈N :
x̄j=0

∑

I∈Aj(S)

δ(I, S) =
∑

j∈N :
x̄j=0

∑

Î∈Aj(S):
yj(Î,S)=1

∑

I∈BÎ(S)

δ(I, S)

≤
∑

j∈N :
x̄j=0

∑

Î∈Aj(S)

qSpII
j (Î , S)ȳj(Î , S) (9)
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For each deferred activity Aj , we have that:

δj +
∑

S∈S

∑

I∈Aj(S)

δ(I, S) =
∑

S∈S
ūj(S) = pI

j (10)

By combining Equation (9) and Equation (10), we obtain

∑

j∈N

⎛

⎜⎜⎝δj +
∑

S∈S
I∈Aj(S)

δ(I, S)

⎞

⎟⎟⎠ =
∑

S∈S

∑

j∈N :
x̄j=0

∑

I∈Aj(S)

δ(I, S) +
∑

j∈N :
x̄j=1

⎛

⎜⎜⎝δj +
∑

S∈S
I∈Aj(S)

δ(I, S)

⎞

⎟⎟⎠

≤
∑

S∈S

∑

j∈N :
x̄j=0

∑

I∈Aj(S)

qSpII
j (I, S)ȳj(I, S) +

∑

j∈N :
x̄j=1

pI
j

≤
∑

j∈N
pI

jx̄j +
∑

j∈N

∑

S∈S
I∈Aj(S)

q(S)pII
j (I, S)ȳj(I, S) (11)

Since the initial value of each dual variable is zero, and each instance I ∈ Aj(S)
increases the total value of the dual variables by at most 2δ(I, S), we can sum over all
such δ to bound the total value of the dual variables:

∑

j∈N

∑

S∈S
ūj(S) +

∑

S∈S

∑

t∈T
v̄t(S) ≤ 2

⎛

⎝
∑

j∈N

⎛

⎝δj +
∑

S∈S

∑

I∈Aj(S)

δ(I, S)

⎞

⎠

⎞

⎠ (12)

Equations (11) and (12), together with the weak duality theorem, immediately imply
the claimed result.

4 An Algorithm for the Black Box Model

We show next that we can adapt the algorithm derived in the previous section for the
polynomial scenario setting to the black box model, where the probability distribution is
specified only by allowing access to an oracle from which independent samples accord-
ing the distribution can be drawn. We show that applying the previous algorithm to an
approximate version of the distribution based on sampling can be shown to still yield
the same performance guarantee. Our analysis uses the structure of the analysis used
for the previous algorithm, and builds on the general result for minimization 2-stage
stochastic problems derived by Charikar, Chekuri, and Pál [2].

We shall make use of the following version of the Chernoff bound.

Lemma 1. Let X1, . . .XN be independent random variables with Xi ∈ [0, 1] and let
X =

∑N
i=1 Xi. Then, for any ε ≥ 0, we have Pr [|X − E[X ]| > εN ] ≤ 2 exp(−ε2N).

We assume that there is an inflation factor λ ≥ 1 such that pII
j (I, S) ≤ λpI

j , ∀j ∈
N , ∀S ∈ S, ∀I ∈ Aj(S).

The algorithm first takes a polynomial-sized sample from the set of scenarios and
then proceeds just as the Algorithm 1 in Section 3 while using a slightly different
deferring rule.
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More precisely, it takes N = Θ(λ2

ε2 log n
γ ) independent random samples S1, . . . , SN

from the black box, where n is the number of activities, ε will be the allowed additional
relative error, and γ is the confidence parameter (that is, we shall obtain that the desired
approximation is found with probability at least 1 − γ). Then the algorithm executes
the pushing procedure (see Algorithm 1) for each scenario that occurs in the polynomial
sample. Observe that the data used by this algorithm for scenario S is described to be
q(S)pII

j (I, S). At first glance, this might be worrying, but of course the value q(S) is just
a uniform scalar multiple for all profits, and so it makes sense to define ũ and ṽ as the dual
variables computed after executing this algorithm with inputs pII

j (I, S). Observe that the
values ū and v̄ for a scenario S from our exact distribution are equal to q(S)ũ and q(S)ṽ,
respectively. Given ε > 0, we shall defers an activity Aj , j ∈ N , if and only if:

(1 + ε)pI
j ≥ 1

N

N∑

i=1

ũj(Si) (13)

This is the deferring rule for the black box model.
This concludes the description of the first stage action. For the second stage, for

a given scenario S ∈ S, we execute Algorithm 2 for scenario S. (Again, note that
the linearity effect of q(S) implies that we can run the algorithm with inputs pII

j (I, S)
instead.)

Let us analyze the performance guarantee of this algorithm. The proof proceeds by
showing that, under the assumption that there is an inflation factor λ, equation (13) is a
good approximation for equation (7). This approach is inspired by the proof in [2] for
“low scenarios”.

Theorem 2. For any ε > 0 and γ > 0, with probability at least 1 − γ, the proposed
deferring rule is a (2 + ε)-approximation algorithm for the 2-stage stochastic variant
of the problem 1|rj |

∑
wjUj in the black box model.

Proof. Suppose we run Algorithm 1 in each of the exponentially-many scenarios and let
ū and v̄ be the value of dual variables computed in this way. Consider activity Aj . Let

r =
∑

S∈S
ūj(S) =

∑

S∈S
q(S)ũj(S) r̂ =

1
N

N∑

i=1

ũj(Si).

We will prove that, with “high” probability, r̂ is “close” to r. We can view r̂ as the arith-
metic mean of N independent copies Q1, . . . , QN of the random variable Q defined as

Q = ũj(S).

Note that E[Q] = r. Let Yi be the variable Qi/M where M = λpI
j and let Y =

∑
i Yi.

Note that for each activity Aj and for each scenario S ∈ S, there exists some I ∈ Aj(S)
such that ũj(S) ≤ pII

j . This implies that Yi ∈ [0, 1]. Moreover, Y =
∑

i Qi/M = N
M r̂

and E[Y ] =
∑

i E[Qi]/M = N
M r. By applying the Chernoff bound, we obtain the

following:

Pr
[
|Y − E[Y ]| >

ε

λ
N

]
≤ 2 exp

(
− ε2

λ2 N

)
⇔ Pr

[
|r − r̂| > εpI

j

]
≤ γ

n
, (14)
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where the last inequality follows from the choice of the value of N . By taking the
union bound over all activities, we obtain that r is “close” to r̂ for all activities, with
probability at least 1 − γ.

We use the same argument as we used in the polynomial scenario model to show that
constraint (5) is satisfied. Consider constraint (4) for some scenario; it may be violated
by any activity. We show that it is satisfied, with high probability, by a non-deferred
activity. For a deferred activity, we shall increasing the value of its dual variables, as
we did in the polynomial scenario model so that the corresponding constraint is also
satisfied with high probability. (It is important to note that this increase in the dual
variables is not performed by the algorithm; it is only used for the analysis.)

For each deferred activity Aj , let

δj = pI
j −

∑

S∈S
ūj(S) j = 1, . . . , N

and let S ∈ S be an arbitrarily selected scenario. We increase the value of ūj(S) by
δj for each deferred activity Aj . From the fact that r is a good approximation of r̂, it
follows that, for each activity Aj , if

1
N

N∑

i=1

ũj(Si) ≤ (1 + ε)pI
j ,

then with probability at least 1 − γ,
∑

S∈S
ūj(S) ≤ (1 + 2ε)pI

j . (15)

This implies that with high probability, for each deferred activity Aj

δj +
∑

S∈S

∑

I∈Aj(S)

δ(I, S) =
∑

S∈S
ūj(S) ≤ (1 + 2ε)pI

j (16)

In a similar way, if for an activity Aj

1
N

N∑

i=1

ūj(Si) > (1 + ε)pI
j

then with probability at least 1 − γ, it follows that
∑

S∈S
ūj(S) > pI

j .

Hence, the new solution is dual feasible with high probability. Note that Equation (16)
is an approximation to Equation (10). This implies that by replacing this new equation
in the previous proof we obtain

∑

j∈N

∑

S∈S
ūj(S) +

∑

S∈S

∑

t∈T
v̄t(S) ≤ 2(1 + 2ε)

∑

j∈N
pI

jx̄j +

+ 2(1 + 2ε)
∑

j∈N

∑

S∈S

∑

I∈Aj(S)

q(S)pII
j (I, S)ȳj(I, S), (17)

which completes the proof.
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5 An NP-Hardness of Approximation Result

We show that, in contrast to the results of the previous sections, another natural 2-stage
stochastic generalization of the problem 1|rj |

∑
wjUj (even in a very simple case) can

not be approximated. Suppose that in the first phase, we select a set of activities that
we are committed to serve. In the second phase, for a given scenario, we must schedule
exactly one instance of each activity selected in the first phase, and we may augment
this solution by scheduling other instances of additional activities. We wish to maximize
is the total expected profit (where it is now natural to assume that the profit obtained
for an instance in the second phase is less than the corresponding profit in the first). We
will refer to this problem as the augmentation 2-stage stochastic 1|rj |

∑
wjUj .

An integer programming formulation for this problem is obtained by changing (SIP)
in the following way: a 0-1 variable xj indicates (with value 1) that activity Aj is
selected in the first phase; constraint (1) is replaced by the following two constraints:

∑

I∈Aj(S)

yj(I, S) ≥ xj ∀S ∈ S, j ∈ N : Aj(S) �= ∅ (18)

∑

I∈Aj(S)

yj(I, S) ≤ 1 ∀j ∈ N , S ∈ S (19)

Unfortunately, it is straightforward to show that selecting a feasible set of activities
in the first phase can be used to model the maximum independent set problem. This is
formalized in the following lemma.

Lemma 2. If there is a ρ-approximation algorithm for the augmentation 2-stage sto-
chastic 1|rj |

∑
wjUj , then there is a ρ-approximation algorithm for maximum inde-

pendent set problem.

Proof Sketch. We give an approximation-preserving reduction from the maximum in-
dependent set problem. Given a graph G, we build the following input for the aug-
mentation 2-stage stochastic 1|rj |

∑
wjUj . For each vertex vj , there is an activity Aj ,

j = 1, . . . , n, each activity is always released at time 0, has deadline time 1, and takes
one time unit to complete; each activity has first-stage profit 1, and second-stage profit
0. For each edge ei = (vj , vk), there is a scenario Si in which only the activities Aj

and Ak are active. Each scenario Si occurs with positive probability, and hence our
first stage selection must contain at most one of the endpoints of ei. Thus, there is a
one-to-one correspondence between independent sets in G and feasible first-stage deci-
sions. Furthermore, the objective function value of any first-stage decision is exactly the
number of activities selected (since the second stage does not contribute any expected
profit). Hence, we see that the two optimization problems are identical.

From Lemma (2) and the result in [6] we obtain the following theorem.

Theorem 3. For any ε > 0, there does not exist a polynomial-time algorithm that ap-
proximates the augmentation 2-stage stochastic 1|rj |

∑
wjUj within a factor n1/2−ε,

unless P = NP .
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Abstract. Consider an integer program max(ctx : Ax = b, x ≥ 0, x ∈
Zn) where A ∈ Zm×n, b ∈ Zm, and c ∈ Zn. We show that the integer
program can be solved in pseudo-polynomial time when A is non-negative
and the column-matroid of A has constant branch-width.

1 Introduction

For positive integers m and n, let A ∈ Zm×n, b ∈ Zm, and c ∈ Zn. Consider the
following integer programming problems:

(IPF) Find x ∈ Zn satisfying (Ax = b, x ≥ 0).
(IP) Find x ∈ Zn maximizing ctx subject to (Ax = b, x ≥ 0).

Let M(A) denote the column-matroid of A. We are interested in properties of
M(A) which lead to polynomial-time solvability for (IPF) and (IP). Note that,
even when A (or, equivalently, M(A)) has rank one, the problems (IPF) and (IP)
are NP-hard. Papadimitriou [9] considered these problems for instances where
A has constant rank.

Theorem 1 (Papadimitriou). There is a pseudopolynomial-time algorithm
for solving (IP) on instances where the rank of A is constant.

Robertson and Seymour [10] introduced the parameter “branch-width” for
graphs and also, implicitly, for matroids. We postpone the definition until Sec-
tion 2. Our main theorem is the following; a more precise result is given in
Theorem 6.

Theorem 2. There is a pseudopolynomial-time algorithm for solving (IP) on
instances where A is non-negative and the branch-width of M(A) is constant.

The branch-width of a matroid M is at most r(M)+1. Theorem 2 does not imply
Papadimitriou’s theorem, since we require that A is non-negative. In Section 6
we show that the non-negativity can be dropped when we have bounds on the
variables. However, the following result shows that we cannot just relax the
non-negativity.
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Theorem 3. (IPF) is NP-hard even for instances where M(A) has branch-
width ≤ 3 and the entries of A are in {0, ±1}.

We also prove the following negative result.

Theorem 4. (IPF) is NP-hard even for instances where the entries of A and b
are in {0, ±1} and M(A) is the cycle matroid of a graph.

We find Theorem 4 somewhat surprising considering the fact that graphic ma-
troids are regular. Note that, if A is a (0, ±1)-matrix and M([I, A]) is regular,
then A is a totally unimodular matix and, hence, we can solve (IP) efficiently.
It seems artificial to append the identity to the constraint matrix here, but for
inequality systems it is more natural.

Recall that M(A) is regular if and only if it has no U2,4-minor (see Tutte [13] or
Oxley [8], Section 6.6). Moreover, Seymour [12] found a structural characteriza-
tion of the class of regular matroids. We suspect that the class of R-representable
matroids with no U2,l- or U∗

2,l-minor is also “highly structured” for all l ≥ 0 (by
which we mean that there is likely to be a reasonable analogue to the graph mi-
nors structure theorem; see [11]). Should such results ever be proved, one could
imagine using the structure to solve the following problem.

Problem 1. Given a non-negative integer l ≥ 0, is there a polynomial-time algo-
rithm for solving max(ctx : Ax ≤ b, x ≥ 0, x ∈ Zn) on instances where A is a
(0, ±1)-matrix and M([I, A]) has no U2,l- or U∗

2,l-minor?

2 Branch-Width

For a matroid M and X ⊆ E(M), we let λM (X) = rM (X) + rM (E(M) − X) −
r(M)+1; we call λM the connectivity function of M . Note that the connectivity
function is symmetric (that is, λM (X) = λM (E(M) − X) for all X ⊆ E(M))
and submodular (that is, λM (X) + λM (Y ) ≥ λM (X ∩ Y ) + λM (X ∪ Y ) for all
X, Y ⊆ E(M)).

Let A ∈ Rm×n and let E = {1, . . . , n}. For X ⊆ E, we let

S(A, X) := span(A|X) ∩ span(A|(E − X)),

where span(A) denotes the subspace of Rm spanned by the columns of A and
A|X denotes the restriction of A to the columns indexed by X . By the modularity
of subspaces,

dimS(A, X) = λM(A)(X) − 1.

A tree is cubic if its internal vertices all have degree 3. A branch-decomposition
of M is a cubic tree T whose leaves are labelled by elements of E(M) such that
each element in E(M) labels some leaf of T and each leaf of T receives at most
one label from E(M). The width of an edge e of T is defined to be λM (X) where
X ⊆ E(M) is the set of labels of one of the components of T − {e}. (Since λM

is symmetric, it does not matter which component we choose.) The width of T
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is the maximum among the widths of its edges. The branch-width of M is the
minimum among the widths of all branch-decompositions of M .

Branch-width can be defined more generally for any real-valued symmetric set-
function. For graphs, the branch-width is defined using the function λG(X); here,
for each X ⊆ E(G), λG(X) denotes the number of vertices incident with both
an edge in X and an edge in E(G)−X . The branch-width of a graph is within a
constant factor of its tree-width. Tree-width is widely studied in theoretical com-
puter science, since many NP-hard problems on graphs can be efficiently solved
on graphs of constant tree-width (or, equivalently, branch-width). The most
striking results in this direction were obtained by Courcelle [1]. These results
have been extended to matroids representable over a finite field by Hliněný [4].
They do not extend to all matroids or even to matroids represented over the
reals.

Finding Near-Optimal Branch-Decompositions

For any integer constant k, Oum and Seymour [7] can test, in polynomial time,
whether or not a matroid M has branch-width k (assuming that the matroid
is given by its rank-oracle). Moreover their algorithm finds an optimal branch-
decomposition in the case that the branch-width is at most k. The algorithm is
not practical; the complexity is O(n8k+13). Fortunately, there is a more practical
algorithm for finding a near-optimal branch-decomposition. For an integer con-
stant k, Oum and Seymour [6] provide an O(n3.5) algorithm that, for a matroid
M with branch-width at most k, finds a branch-decomposition of width at most
3k − 1. The branch decomposition is obtained by solving O(n) matroid inter-
section problems. When M is represented by a matrix A ∈ Zm×n, each of these
matroid intersection problems can be solved in O(m2n log m) time; see [2]. Hence
we can find a near-optimal branch-decomposition for M(A) in O(m2n2 log m)
time.

3 Linear Algebra and Branch-Width

In this section we discuss how to use branch decompositions to perform certain
matrix operations more efficiently. This is of relatively minor significance, but it
does improve the efficiency of our algorithms.

Let A ∈ Zm×n and let E = {1, . . . , n}. Recall that, for X ⊆ E, S(A, X) =
span(A|X)∩span(A|(E −X)) and that dimS(A, X) = λM(A)(X)−1. Now let T
be a branch-decomposition of M(A) of width k, let e be an edge of T , and let X be
the label-set of one of the two components of T −e. We let Se(A) := S(A, X). The
aim of this section is to find bases for each of the subspaces (Se(A) : e ∈ E(T ))
in O(km2n) time.

Converting to Standard Form

Let B ⊆ E be a basis of M(A). Now let AB = A|B and A′ = (AB)−1A. Therefore
M(A) = M(A′) and Se(A) = {ABv : v ∈ Se(A′)}. Note that we can find B
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and A′ in O(m2n) time. Given a basis for Se(A′), we can determine a basis for
Se(A) in O(km2) time. Since T has O(n) edges, if we are given bases for each
of (Se(A′) : e ∈ E(T )) we can find bases for each of (Se(A) : e ∈ E(T )) in
O(km2n) time.

Matrices in Standard Form

Henceforth we suppose that A is already in standard form; that is A|B = I for
some basis B of M(A). We will now show the stronger result that we can find a
basis for each of the subspaces (Se(A) : e ∈ E(T )) in O(k2mn) time (note that
k ≤ m + 1).

We label the columns of A by the elements of B so that the identity A|B
is labelled symmetrically. For X ⊆ B and Y ⊆ E, we let A[X, Y ] denote the
submatrix of A with rows indexed by X and columns indexed by Y .

Claim. For any partition (X, Y ) of E,

λM(A)(X) = rank A[X ∩ B, X − B] + rank A[Y ∩ B, Y − B] + 1.

Moreover S(A, X) is the column-span of the matrix

( X − B Y − B

X ∩ B A[X ∩ B, X − B] 0
Y ∩ B 0 A[Y ∩ B, Y − B]

)
.

Proof. The formula for λM(A)(X) is straightforward and well known. It follows
that S(A, X) has the same dimension as the column-space of the given matrix.
Finally, it is straightforward to check that each column of the given matrix is
spanned by both A|X and A|(E − X).

Let (X, Y ) be a partition of E. Note that B ∩ X can be extended to a maximal
independent subset BX of X and B ∩Y can be extended to a maximal indepen-
dent subset BY of Y . Now S(A, X) = S(A|(BX ∪ By), BX). Then, by the claim
above, given BX and BY we can trivially find a basis for S(A, X).

Finding Bases

A set X ⊆ E is called T -branched if there exists an edge e of T such that
X is the label-set for one of the components of T − e. For each T -branched
set X we want to find a maximal independent subset B(X) of X containing
X ∩ B. The number of T -branched sets is O(n), and we will consider them in
order of non-decreasing size. If |X | = 1, then we can find B(X) in O(m) time.
Suppose then that |X | ≥ 2. Then there is a partition (X1, X2) of X into two
smaller T -branched sets. We have already found B(X1) and B(X2). Note that
X is spanned by B(X1) ∪ B(X2). Moreover, for any T -branched set Y , we have
rM(A)(Y ) − |Y ∩ B| ≤ rM(A)(Y ) + rM(A)(E − Y ) − r(M(A)) = λM(A)(Y ) − 1.
Therefore |(B(X1)∪B(X2))−(B∩X)| ≤ 2(k−1). Recall that A|B = I. Then in
O(k2m) time (O(k) pivots on an m × k-matrix) we can extend B ∩ X to a basis
B(X) ⊆ B(X1)∪B(X2). Thus we can find all of the required bases in O(k2mn)
time.
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4 The Main Result

In this section we prove Theorem 2. We begin by considering the feasibility
version.

IPF(k).
Instance: Positive integers m and n, a non-negative matrix A ∈ Zm×n, a non-
negative vector b ∈ Zm, and a branch-decomposition T of M(A) of width k.
Problem: Does there exist x ∈ Zn satisfying (Ax = b, x ≥ 0)?

Theorem 5. IPF(k) can be solved in O((d + 1)2kmn + m2n) time, where d =
max(b1, . . . , bm).

Note that for many combinatorial problems (like the set partition problem), we
have d = 1. For such problems the algorithm requires only O(m2n) time (consid-
ering k as a constant). Recall that S(A, X) denotes the subspace span(A|X) ∩
span(A|(E − X)), where E is the set of column-indices of A.

The following lemma is the key.

Lemma 1. Let A ∈ {0, . . . , d}m×n and let X ⊆ {1, . . . , n} such that λM(A)(X)=
k. Then there are at most (d + 1)k−1 vectors in S(A, X) ∩ {0, . . . , d}m.

Proof. Since λM(A)(X) ≤ k, S(A, X) has dimension k−1; let a1, . . . , ak−1 ∈ Rm

span S(A, X). There is a (k−1)-element set Z ⊆ {1, . . . , n} such that the matrix
(a1|Z, . . . , ak−1|Z) is non-singular. Now any vector x ∈ R that is spanned by
(a1, . . . , ak−1) is uniquely determined by x|Z. So there are at most (d + 1)k−1

vectors in {0, . . . , d}m that are spanned by (a1, . . . , ak−1).

Proof (Proof of Theorem 5.). Let A′ = [A, b], E = {1, . . . , n}, and E′ = {1, . . . ,
n + 1}. Now, let T be a branch-decomposition of M(A) of width k and let T ′ be
a branch-decomposition of M(A′) obtained from T by subdividing an edge and
adding a new leaf-vertex, labelled by n + 1, adjacent to the degree 2 node. Note
that T ′ has width ≤ k + 1. Recall that a set X ⊆ E is T -branched if there is an
edge e of T such that X is the label-set of one of the components of T − e. By
the results in the previous section, in O(m2n) time we can find bases for each
subspace S(A′, X) where X ⊆ E is T ′-branched.

For X ⊆ E, we let B(X) denote the set of all vectors b′ ∈ Zm such that

(1) 0 ≤ b′ ≤ b,
(2) there exists z ∈ ZX with z ≥ 0 such that (A|X)z = b′, and
(3) b′ ∈ span(A′|(E′ − X)).

Note that, if b′ ∈ B(X), then, by (2) and (3), b′ ∈ S(A′, X). If λM(A′)(X) ≤
k + 1, then, by Lemma 1, |B(X)| ≤ (d + 1)k. Moreover, we have a solution to
the problem (IPF) if and only b ∈ B(E).

We will compute B(X) for all T ′-branched sets X ⊆ E using dynamic pro-
gramming. The number of T ′-branched subsets of E is O(n), and we will consider
them in order of non-decreasing size. If |X | = 1, then we can easily find B(X) in
O(dm) time. Suppose then that |X | ≥ 2. Then there is a partition (X1, X2) of
X into two smaller T ′-branched sets. We have already found B(X1) and B(X2).
Note that b′ ∈ B(X) if and only if
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(a) there exist b′1 ∈ B(X1) and b′2 ∈ B(X2) such that b′ = b′1 + b′2,
(b) b′ ≤ b, and
(c) b′ ∈ S(A′, X).

The number of choices for b′ generated by (a) is O((d + 1)2k). For each such
b′ we need to check that b′ ≤ b and b′ ∈ S(A′, X). Since we have a basis for
S(A′, X) and since S(A′, X) has dimension ≤ k, we can check whether or not
b′ ∈ S(A′, X) in O(m) time (considering k as a constant). Therefore we can find
B(E) in O((d + 1)2kmn + m2n) time.

We now return to the optimization version.

IP(k).
Instance: Positive integers m and n, a non-negative matrix A ∈ Zm×n, a non-
negative vector b ∈ Zm, a vector c ∈ Zn, and a branch-decomposition T of M(A)
of width k.
Problem: Find x ∈ Zn maximizing ctx subject to (Ax = b, x ≥ 0).

Theorem 6. IP(k) can be solved in O((d + 1)2kmn + m2n) time, where d =
max(b1, . . . , bm).

Proof. The proof is essentially the same as the proof of Theorem 5, except that
for each b′ ∈ B(X) we keep a vector x ∈ ZX maximizing

∑
(cixi : i ∈ X)

subject to ((A|Xe)x = b′, x ≥ 0). The details are easy and left to the reader.

Theorem 6 implies Theorem 2.

5 Hardness Results

In this section we prove Theorems 3 and 4. We begin with Theorem 3. The
reduction is from the following problem, which is known to be NP-hard; see
Lueker [5].

Single Constraint Integer Programming Feasibility (SCIPF).
Instance: A non-negative vector a ∈ Zn and an integer b.
Problem: Does there exist x ∈ Zn satisfying (atx = b, x ≥ 0)?

Proof (Proof of Theorem 3.). Consider an instance (a, b) of (SCIPF). Choose
an integer k as small as possible subject to 2k+1 > max(a1, . . . , an). For each
i ∈ {1, . . . , n}, let (αi,k, αi,k−1, . . . , αi,0) be the binary expansion of ai. Now
consider the following system of equations and inequalities:

(1)
n∑

i=1

k∑

j=0

αijyij = b.

(2) yij − xi −
∑i−1

l=0 yi,l = 0, for i ∈ {1, . . . , n} and j ∈ {0, . . . , k}.
(3) xi ≥ 0 for each i ∈ {1, . . . , n}.
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If (yij : ∈ {1, . . . , n}, j ∈ {0, . . . , k}) and (x1, . . . , xn) satisfy (2), then yij =
2jxi, and (1) simplifies to

∑
(aixi : i ∈ {1, . . . , n}) = b. Therefore there is an

integer solution to (1), (2), and (3) if and only if there is an integer solution to
(atx = b, x ≥ 0).

The constraint matrix B for system (2) is block diagonal, where each block is
a copy of the matrix:

C =

⎛

⎜⎜⎝

1 2 3 . . . k + 1 k + 2
1 1 −1 −1 · · · −1 −1
2 0 1 −1 −1 −1
...

. . . . . .
k + 1 0 0 0 · · · 1 −1

⎞

⎟⎟⎠.

It is straightforward to verify that M(C) is a circuit and, hence, M(C) has
branch-width 2. Now M(B) is the direct sum of copies of M(C) and, hence,
M(B) has branch-width 2. Appending a single row to B can increase the branch-
width by at most one.

Now we turn to Theorem 4. Our proof is by a reduction from 3D Matching
which is known to be NP-complete; see Garey and Johnson [3], pp. 46.

3D Matching.
Instance: Three disjoint sets X , Y , and Z with |X | = |Y | = |Z| and a collection
F of triples {x, y, z} where x ∈ X , y ∈ Y , and z ∈ Z.
Problem: Does there exist a partition of X ∪ Y ∪ Z into triples, each of which
is contained in F?

Proof (Proof of Theorem 4.). Consider an instance (X, Y, Z, F) of 3D Matching.
For each triple t ∈ F we define elements ut and vt. Now construct a graph
G = (V, E) with

V = X ∪ Y ∪ Z ∪ {ut : t ∈ F} ∪ {vt : t ∈ F}, and

E =
⋃

t={x,y,z}∈F
{(ut, x), (ut, y), (ut, vt), (vt, z)}.

Note that G is bipartite with bipartition (X∪Y ∪{vt : t ∈ F}, Z∪{ut : t ∈ F}).
Now we define b ∈ ZV such that but = 2 for each t ∈ F and bw = 1 for

all other vertices w of G. Finally, we define a matrix A = (ave) ∈ ZV ×E such
that ave = 0 whenever v is not incident with e, ave = 2 whenever v = ut and
e = (ut, vt) for some t ∈ F , and ave = 1 otherwise; see Figure 1.

It is straightforward to verify that (X, Y, Z, F) is a yes-instance of the 3D
Matching problem if and only if there exists x ∈ ZE satisfying (Ax = b, x ≥ 0).
Now A and b are not (0, ±1)-valued, but if, for each t ∈ F , we subtract the
vt-row from the ut-row, then the entries in the resulting system A′x = b′ are in
{0, ±1}.

It remains to verify that M(A) is graphic. It is straightforward to verify that
A is equivalent, up to row and column scaling, to a {0, 1}-matrix A′′. Since G
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Fig. 1. The reduction

is bipartite, we can scale some of the rows of A′′ by −1 to obtain a matrix B
with a 1 and a −1 in each column. Now M(B) = M(A) is the cycle-matroid of
G and, hence, M(A) is graphic.

6 Bounded Variables

In this section we consider integer programs with bounds on the variables.

Integer Programming with Variable Bounds (BIP)
Instance: Positive integers m and n, a matrix A ∈ Zm×n, a vector b ∈ Zm, and
vectors c, d ∈ Zn.
Problem: Find x ∈ Zn maximizing ctx subject to (Ax = b, 0 ≤ x ≤ d).

We can rewrite the problem as: Find y ∈ Z2n maximizing ĉty subject to
(Ây = b̂, y ≥ 0), where

Â =
[

A 0
I I

]
, b̂ =

[
b
d

]
, and ĉ =

[
c
0

]
.

Note that, for i ∈ {1, . . . , n}, the elements i and i+n are in series in M(Â), and,
hence, M(Â) is obtained from M(A) by a sequence of series-coextensions. Then
it is easy to see that, if the branch-width of M(A) is k, then the branch-width
of M(Â) is at most max(k, 2).

Now note that the all-ones vector is in the row-space of Â. Therefore, by taking
appropriate combinations of the equations Ây = b̂, we can make an equivalent
system Ãy = b̃ where Ã is non-negative. Therefore, we obtain the following
corollary to Theorem 2.
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Corollary 1. There is a pseudopolynomial-time algorithm for solving (BIP) on
instances where the branch-width of M(A) is constant.
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Abstract. According to the present state of the theory of the matroid
matching problem, the existence of a good characterization to the size of
a maximum matching depends on the behavior of certain substructures,
called double circuits. In this paper we prove that if a polymatroid has
no double circuits at all, then a partition-type min-max formula charac-
terizes the size of a maximum matching. We provide applications of this
result to parity constrained orientations and to a rigidity problem.

A polynomial time algorithm is constructed by generalizing the prin-
ciple of shrinking blossoms used in Edmonds’ matching algorithm [2].

Keywords: matroids and submodular functions.

1 Introduction

Polymatroid matching is a combinatorial optimization problem which is con-
cerned with parity and submodularity. Early well-solved special cases are the
matching problem of graphs and the matroid intersection problem, which have
in fact motivated Lawler to introduce the matroid and polymatroid matching
problems. Jensen, Korte [6], and Lovász [9] have shown that, in general, the
matroid matching problem is of exponential complexity under the independence
oracle framework. The major breakthrough came when Lovász gave a good char-
acterization to the size of a maximum matching and also a polynomial algorithm
for linearly represented matroids [12,9]. Lovász [10], and Dress and Lovász [1]
observed that the solvability of the linear case is due to the fact that these ma-
troids can be embedded into a matroid satisfying the so-called double circuit
property, or DCP for short. It was also shown that full linear, full algebraic, full
graphic, and full transversal matroids are DCP matroids [1]. The disadvantage of
this approach is that, due to the embedding into a bigger matroid, the min-max
formula is rather difficult to interpret in a combinatorial way, and often does not
even imply a good characterization. However, the diversity and the importance
of solvable special cases of the matroid matching problem is a motivation to
explore those techniques implying a combinatorial characterization.
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In this paper we investigate the class of those polymatroids having no non-
trivial compatible double circuits, called ntcdc-free for short, defined later. We
prove that in these polymatroids a partition-type combinatorial formula charac-
terizes the maximum size of a matching. We remark that in the min-max formula
for DCP matroids, for example representable matroids, we have to take a parti-
tion and a projection into consideration. Contrarily, in ntcdc-free polymatroids,
it suffices to consider partitions in the min-max formula. As an application, we
show that two earlier results are special cases of this approach. The first appli-
cation is that the parity constrained orientation problem of Király and Szabó
[7] can be formulated as a matching problem in a ntcdc-free polymatroid, which
implies the partition-type formula given in [7]. Second, we deduce a result of
Fekete [3] on the problem of adding a clique of minimum size to a graph to
obtain a graph that is generically rigid in the plane.

1.1 The Partition Formula

To formulate our main result, some definitions are in order. We denote by R+
and N the set of non-negative reals and non-negative integers, respectively. Let
S be a finite ground set. A set-function f : 2S → Z is called submodular if

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) (1)

holds whenever X, Y ⊆ S. b is called supermodular if −b is submodular. The set-
function f is said to be non-decreasing if f(X) ≤ f(Y ) for every ∅ 	= X ⊆ Y ⊆ S,
and we say that f is non-increasing if −f is non-decreasing. A non-decreasing
submodular set-function f : 2S → N with f(∅) = 0 is called a polymatroid
function. A polymatroid function f : 2S → Z+ induces a polymatroid P (f) and
a base polyhedron B(f) defined by

P (f) := {x ∈ R
S : x ≥ 0, x(Z) ≤ f(Z) for all Z ⊆ S}, (2)

B(f) := {x ∈ R
S : x(S) = f(S), and x ≥ 0, x(Z) ≤ f(Z) for all Z ⊆ S}, (3)

where x(Z) :=
∑

i∈Z xi for some Z ⊆ S. A vector m ∈ Z
S is called even if mi is

even for every i ∈ S. The even vectors m ∈ P (f) are called the matchings of f .
The size of a matching is m(S)/2. The polymatroid matching problem is to find
a maximum matching, i.e. a matching of maximum size

ν(f) = max{m(S)/2 : m is a matching of f}.

We will investigate the polymatroid matching problem in ntcdc-free polyma-
troids, defined below. Our main result goes as follows.

Theorem 1. Let f : 2S → N be a ntcdc-free polymatroid function. Then

ν(f) = min
t∑

j=1

⌊
f(Uj)

2

⌋
,

where the minimum is taken over all partitions U1, U2, . . . , Ut of S.
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We propose two different proofs. In the first proof we exploit a theorem of Lovász,
and a couple of polymatroid operations. The second proof relies on a (semi-
strongly) polynomial time algorithm, which is based on a generalization of the
contraction of blossoms in Edmonds’ matching algorithm [2].

1.2 Circuits and Compatible Double Circuits in Polymatroids

Consider a polymatroid function f : 2S → N, and a vector x ∈ N
S . For a set

Z ⊆ S, we call deff,x(Z) := x(Z) − f(Z) the deficiency of set Z with respect
to f, x. A set is called k-deficient with respect to f, x if deff,x(Z) = k. The
deficiency of a vector x is defined by deff (x) := maxZ⊆S deff,x(Z), which is
non-negative. Notice that deff,x(·) is a supermodular set-function, hence the
family of sets Z such that deff,x(Z) = deff (x) is closed under taking unions and
intersections.

Consider a 1-deficient vector x. x is called a circuit if supp(x) is equal to the
unique inclusionwise minimal 1-deficient set.

Consider a 2-deficient vector x ∈ N
S , and let W := supp(x). x is called a com-

patible double circuit (or cdc, for short), if W is the unique inclusionwise minimal
2-deficient set, and there is a partition π = {W1, · · · , Wk} of W such that k ≥ 2
and {W − Wi : i = 1, · · · , k} is equal to the family of all inclusionwise minimal
1-deficient sets. We remark that if x is a cdc, then π is uniquely determined –
let it be called the principal partition of x. If k = 2, then x is called a trivial
cdc. If k ≥ 3, then x is called a non-trivial compatible double circuit, or ntcdc,
for short.

A polymatroid is called ntcdc-free if there is no ntcdc.

2 First Proof of the Partition Formula

For some well-known notions and results on the theory of matroids, polymatroids
and matroid matching, see [14]. We need some more preparation.

2.1 Preliminaries

There is a close relation between polymatroid functions and matroids. First, if
M = (T, r) is a matroid and ϕ : T → S is a function then f : 2S → N, X �→
r(ϕ−1(X)) is a polymatroid function, the homomorphic image of M under ϕ.
Second, for any polymatroid function f it is possible to define a matroid M , the
homomorphic image of which is f , in such a way that M is “most independent” in
some sense. The ground set T of M is the disjoint union of sets Ti for i ∈ S of size
|Ti| ≥ f({i}). If X ⊆ T then we define the vector χX ∈ N

S with χX
i = |X ∩ Ti|

for i ∈ S. With this notation, a set X ⊆ T is defined to be independent in M if
χX ∈ P (f). It is routine to prove that M is indeed a matroid with rank function
r(X) = minY ⊆X(|Y |+f(ϕ(X −Y ))), where ϕ : T → S maps t to i if t ∈ Ti. This
M is called a prematroid of f . Note that a prematroid M is uniquely determined
by f and by the sizes |Ti|, i ∈ S. If M is a matroid with rank function r then the
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prematroids of r are the parallel extensions of M . If we consider a prematroid
M then we tacitly assume that M = (T, r) and that the function ϕ : T → S is
given with t �→ i if t ∈ Ti.

If f is a polymatroid function and x ∈ Z
S then we define the rank of x as

rf (x) = minU⊆S(x(S − U) + f(U)). If x ∈ N
S then rf (x) = x(S) if and only if

x ∈ P (f). Besides, if M = (T, r) is a prematroid of f and X ⊆ T then rf (χX) =
r(X). The span of x ∈ N

S is defined by spf (x) = {i ∈ S : rf (x + χi) = rf (x)}.
If M is a prematroid of f and X ⊆ T then spf (χX) = {i ∈ S : Ti ⊆ spM (X)}.

2.2 Circuits and Double Circuits in Matroids

Let M = (T, r) be a matroid. A set C ⊆ T is said to be a circuit if r(C −
x) = r(C) = |C| − 1 for every x ∈ C. A set D ⊆ T is a double circuit if
r(D − x) = r(D) = |D| − 2 for every x ∈ D. If D is a double circuit then the
dual of M |D is a matroid of rank 2 without loops, that is a line, showing that
there exists a principal partition D = D1∪̇D2∪̇ . . . ∪̇Dd, d ≥ 2, such that the
circuits of D are exactly the sets of the form D − Di, 1 ≤ i ≤ d. We say that D
is non-trivial if d ≥ 3, and trivial otherwise. A trivial double circuit is simply
the direct sum of two circuits.

Analogously, we define circuits and double circuits of the polymatroid function
f : 2S → N. For a vector x ∈ R

S
+ let supp(x) = {i ∈ S : xi > 0}. A vector c ∈ N

S

is a circuit of f if rf (c − χi) = rf (c) = c(S) − 1 for every i ∈ supp(c). A vector
w ∈ N

S is a double circuit of f if rf (w − χi) = rf (w) = w(S) − 2 for every
i ∈ supp(w). It is also easy to see the exact relation between matroidal and
polymatroidal double circuits, which is given as follows.

Lemma 1. Let M be a prematroid of f , D ⊆ T and χD = w. Then D is a
double circuit of M if and only if w is a double circuit of f .

Recall that we have already defined cdc’s and ntcdc’s. Next we add another
definition, which is easily seen to be equivalent with those above. For x ∈ R

S and
U ⊆ S we introduce the notation x|U for the vector by (x|U )i := xi for i ∈ U and
(x|U )i := 0 for i ∈ S −U . Let M be a prematroid of f and w be a double circuit
of f such that there is a set D ⊆ T with χD = w. By Lemma 1, D is a double
circuit of M , thus it has a principal partition D = D1∪̇D2∪̇ . . . ∪̇Dd′ . We define
the principal partition of w as follows. Due to the structure of prematroids it is
easy to check that supp(w) has a partition W0∪̇W1∪̇ . . . ∪̇Wd with the property
that each set Dj is either a singleton belonging to some Ti with wi ≥ 2 and
i ∈ W0, or is equal to D ∩

⋃
i∈Wh

Ti for some 1 ≤ h ≤ d. Note that a partition
W0∪̇W1∪̇ . . . ∪̇Wd of supp(w) is the principal partition of w if and only if w −χi

is a circuit of f and wi ≥ 2 whenever i ∈ W0, moreover, w|W−Wi is a circuit
of f for each 1 ≤ i ≤ d. A double circuit w is said to be compatible if W0 = ∅,
and it is trivial if D is trivial. We remark that these definitions are easily see
equivalent with the above ones.

We shortly mention what is the double circuit property, or DCP, for short.
If M = (T, r) is a prematroid of the polymatroid function f and Z ⊆ T then
ϕ(M/Z) is called a contraction of f . A polymatroid function f is said to have the
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DCP if whenever w is a non-trivial compatible double circuit in a contraction f ′

of f with principal partition W1∪̇ . . . ∪̇Wd then f ′(
⋂

1≤i≤d sp(w|W−Wi )) > 0, [1].
A polymatroid function without non-trivial compatible double circuits has not
necessarily the DCP, as its contractions may have many non-trivial compatible
double circuits.

Note that every polymatroid function has double circuits, say (f({i}) + 2)χi

for some i ∈ S. However, these are not compatible, as W0 = {i}.

Lemma 2. If w ∈ N
S is a double circuit of the polymatroid function f : 2S → N

with principal partition W = W0∪̇W1∪̇ . . . ∪̇Wd then f(W ) = w(W ) − 2 and
f(W − Wi) = w(W − Wi) − 1 for 1 ≤ i ≤ d.

Proof. We prove that if x ∈ N
S is a vector with the property that rf (x) =

rf (x − χi) for all i ∈ supp(x) then f(supp(x)) = rf (x). By definition, rf (x) =
x(S−Y )+f(Y ) for some Y ⊆ S. Note that rf (x−χi) ≤ (x−χi)(S−Y )+f(Y ) =
rf (x) − 1 for all i ∈ supp(x) − Y . Thus supp(x) ⊆ Y . Finally, f(Y ) = rf (x) ≤
f(supp(x)) ≤ f(Y ), since f is non-decreasing. If x is a circuit or a double circuit
then rf (x) = rf (x − χi) for all i ∈ supp(x), we are done.

2.3 Polymatroid Operations

Next we investigate how two polymatroid operations (translation, deletion) effect
double circuits. If f : 2S → N is a function and n ∈ Z

S then define f+n : 2S → N

by X �→ f(X) + n(X). If f is a polymatroid function and n ∈ N
S then f + n is

clearly a polymatroid function, too.

Lemma 3. If n ∈ Z
S and f and f + n are polymatroid functions then a vector

w is a double circuit of f with W = supp(w) if and only if w + n|W is a double
circuit of f + n. In this case their principal partition coincide.

Proof. Clearly, rf+n(x + n)− (x+ n)(S) = rf (x) − x(S) for all x ∈ Z
S . Thus by

symmetry, it is enough to prove that if w is a double circuit of f with support
W then wi + ni > 0 for every i ∈ W . Otherwise by Lemma 2 we would have
w(W − i) − ni ≥ w(W ) = f(W ) + 2 ≥ f(W − i) − ni + 2, which is impossible.

Let u ∈ N
S be a bound vector and define f\u = ϕ(rM|Z ) where M is a prema-

troid of f and Z ⊆ T with χZ = u. The matroid union theorem asserts that
(f\u)(X) = minY ⊆X(u(Y ) + f(X − Y )). If M is a matroid with rank function
r then r\u is the rank function of M |supp(u).

Lemma 4. Let u ∈ N
S. If w ∈ N

S is a double circuit of f ′ := f\u then w
is either a double circuit of f with the same principal partition, or trivial, or
non-compatible.

Proof. Let M = (T, r) be a prematroid of f and Z ⊆ T with χZ = u. If w ≤ χZ

then w is a double circuit of f with the same principal partition by Lemma 1.
Observe that wi ≤ f ′({i}) + 2 and f ′({i}) ≤ ui for every i ∈ S. Thus if w 	≤ χZ

then there exists an i ∈ S such that wi − f ′({i}) ∈ {1, 2}. If wi = f ′({i}) + 2
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then rf ′(wiχi) = wi − 2, thus W0 = supp(w) = {i}, implying that w is non-
compatible. If wi = f ′({i}) + 1 then wiχi is a circuit of f ′ thus if W0 	= ∅ then
w is non-compatible and if W0 = ∅ then w is trivial.

Finally we cite Lovász’s deep and important theorem on 2-polymatroids, which
can be translated to arbitrary polymatroids as follows. This theorem will be a
key to our first proof below.

Theorem 2 (Lovász [10]). If f : 2S → N is a polymatroid function then at
least one of the following cases holds.

1. f(S) = 2ν(f) + 1.
2. There exists a partition S = S1∪̇S2, Si 	= ∅, s.t. ν(f) = ν(f |2S1 ) + ν(f |2S2 ).
3. There exists an i ∈ S, f(i) ≥ 2 such that for each maximum matching m we

have i ∈ spf (m).
4. There exists a certain substructure, called ν-double flower in f , which we do

not define here, but which always contains a non-trivial compatible double
circuit.

Proof (First proof of Theorem 1). It is easy to see that ν(f) ≤
∑t

j=1

⌊
f(Uj)

2

⌋

holds for every partition U1, U2, . . . , Ut of S. For the other direction we argue by
induction on the pair (|S|, |K(f)|), where K(f) = {s ∈ S : s ∈ spf (m) for each
maximum matching m of f}. If S = ∅ then the statement is trivial. If K(f) = ∅
then either 1. or 2. holds in Theorem 2. If 1. holds then the trivial partition will
do, while if 2. holds then we can use our induction hypothesis applied to f |2S1

and f |2S2 .
Next, let K(f) 	= ∅. We prove that if m is a maximum matching of f + 2χs

then m(s) ≥ 2. Indeed, assume that m(s) = 0. As m is a maximum matching,
there exists a set s ∈ U ⊆ S with m(U) ≥ (f + 2χs)(U) − 1. Thus m(U − s) =
m(U) ≥ (f +2χs)(U)−1 ≥ f(U −s)+1, which is a contradiction. It is also clear
that m + 2χs is a matching of f + 2χs for each matching m of f . Therefore, m
is a maximum matching of f if and only if m + 2χs is a maximum matching of
f + 2χs.

Let s ∈ K(f). Clearly, ν(f) ≤ ν(f + χs) ≤ ν(f + 2χs) = ν(f) + 1 and we
claim that in fact, ν(f + χs) = ν(f) holds. Indeed, if ν(f + χs) = ν(f) + 1 and
m is a maximum matching of f + χs then m is also a maximum matching of
f + 2χs, thus m(s) ≥ 2. Then m − 2χs is a maximum matching of f and, as
s ∈ spf (m − 2χs), there exists a set s ∈ U ⊆ S with (m − 2χs)(U) = f(U). This
implies m(U) = f(U) + 2, contradicting to that m is a matching of f + χs.

So if m is a maximum matching of f then m is a maximum matching of
f + χs, too, and clearly, spf (m) = spf+χs

(m) − s. Thus we have K(f + χs) ⊆
K(f) − s. By Lemma 3, f + χs has no non-trivial compatible double circuits,
so we can apply induction to f + χs. This gives a partition U1, U2, . . . , Ut of S
such that ν(f + χs) =

∑t
j=1

⌊ 1
2 (f + χs)(Uj)

⌋
. But then, ν(f) = ν(f + χs) =

∑t
j=1

⌊ 1
2 (f + χs)(Uj)

⌋
≥

∑t
j=1

⌊
f(Uj)

2

⌋
.
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3 Second, Constructive Proof of the Partition Formula

The second proof is based on projections of blossoms, which is the generalization
of the principle in Edmonds’ matching algorithm [2]. For this, of course, we need
some more definitions and direct observations concerning projections.

3.1 Projections

Consider a polymatroid function f on groundset S, as above. For a subset B ⊆ S
we define the projection fB : 2S−B → N by fB(X) := min{ f(X), f(X ∪ B) −
f(B) + 1 } for X ⊆ S − B. It is easy to see that fB is a polymatroid function,
and its induced polymatroid is equal to

P (fB) = {y ∈ R
S−B : there is [z, y] ∈ P (f) s.t. z(B) = f(B) − 1}. (4)

For x ∈ R
S , Z ⊆ S we introduce the notation x||Z ∈ R

Z for the vector such
that (x||Z)i = xi for all i ∈ Z.

Consider a family H = {H1, · · · , Hm} of disjoint subsets of S. Assume that
there is a vector x ∈ P (f) such that for all i = 1, · · · , m, we have x(Hi) =
f(Hi) − 1, and there is an element hi ∈ Hi such that x + χhi ∈ P (f). By (4)
we get that x||S−Hi ∈ P (fHi), thus fHi(Hj) = f(Hj) for all i 	= j. This implies
that we obtain the same polymatroid function on groundset S − ∪H no matter
which order the sets Hi are projected. Let fH denote the unique polymatroid
function obtained by projecting all the members of H. Then

P (fH) = {y ∈ R
S−∪H : there is [z, y] ∈ P (f) s.t. z(Hi) = f(Hi) − 1}, (5)

and we get that for any X ⊆ S −
⋃

H,

fH(X) = min {f(X ∪
⋃

H′) − x(
⋃

H′) : H′ ⊆ H} . (6)

We remark without proof that fH may be evaluated in strongly polynomial time.

3.2 Blossoms

The notion of blossoms comes from an algorithmic point of view, which is the ana-
logue of Edmonds’ blossoms in the matching algorithm. An ear-decomposition of
a matching is constructed by finding a circuit induced in the matching, and it-
erating this procedure after the projection. More precisely, the definition is the
following. If y ∈ P (f), y + χu ∈ P (f), y + 2χu /∈ P (f), u ∈ C ⊆ S, and C is
the unique inclusionwise minimal 1-deficient set for y + 2χu, then we say that “u
induces a circuit on C in y”.

Consider a matching x with respect to a polymatroid function f : 2S → N.
Consider a laminar family F = {B1, · · · , Bk} of subsets of S, that is, any two
members of F are either disjoint or one contains the other. For indices i =
1, · · · , k, let Fi denote the family of inclusionwise maximal proper subsets of Bi

in F , and let Gi := Bi − ∪Fi. Consider a set U = {u1, · · · , uk} ⊆ S such that
ui ∈ Gi. Hence F , U is called an x-ear-decomposition if
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(a) x(Bi) = f(Bi) − 1, and
(b) ui induces a circuit on Gi in x||S−∪Fi with respect to fFi .

Notice that the above definition implies that x+χui ∈ P (f) holds whenever Bi is
an inclusionwise minimal member of F . This implies that the projection of F , or
Fi satisfies the assumption in the previous section, and thus the projection may
be performed in arbitrary order. Notice, if we drop an inclusionwise maximal
member Bi ∈ F together with ui, we retain another ear-decomposition. A set B
appearing in the family F of some ear-decomposition is called an x-blossom. An
ear-decomposition of a blossom B is an ear-decomposition F , U such that B is
the unique inclusionwise maximal member of F .

The following Lemma 5 will be our crucial inductive tool to deal with ear-
decompositions by extending a matching with respect to fF to a matching with
respect to f .

Lemma 5. Suppose we are given a matching x, an x-blossom B together with
an x-ear-decomposition, and a vector y ∈ P (fB). There is a polynomial time
algorithm to find either

(A) a ntcdc, or
(B) an even vector z ∈ (2N)B such that z(B) = f(B) − 1 and [z, y] ∈ P (f).

Proof. Let us use notation from above. The algorithm is recursive on the number
k of ears. Firstly, notice that deff ([x||B , y]) ≤ 1. If deff ([x||B , y]) = 0, then (B)
holds for z = x||B , and we are done. Henceforth we suppose that deff ([x||B , y]) =
1, and let D denote the inclusionwise minimal 1-deficient set for [x||B , y]. Say
B = Bk and G = Gk.

We claim that either [x||G, y] ∈ P (fFk), or D ⊆ (S − B) ∪ G. Suppose
[x||G, y] /∈ P (fFk). By (4), there is a set Q such that deff,[x||B,y](Q) ≥ 1, and
for all Bi ∈ Fk we have Q ∩ Bi = ∅ or Q ⊇ Bi. Clearly, deff,[x||B,y](B) = −1.
Since y ∈ P (fB), we get that deff,[x||B,y](B ∪Q) ≤ 0. Thus, by supermodularity
of deficiency, 0 ≤ deff,[x||B,y](B ∩ Q) = deff,x(B ∩ Q). Recall that for every
inclusionwise minimal set Bi ∈ F we have x + χui ∈ P (f) for ui ∈ Bi. Thus,
ui /∈ B ∩ Q, which implies that D ⊆ Q ⊆ (S − B) ∪ G.

Now suppose that [x||G, y] ∈ P (fFk). Thus, by (4), there is a (not necessarily
even) vector z′ ∈ N

∪Fk such that [z′, x||G, y] ∈ P (f), and z′(Bi) = b(Bi) − 1
for all Bi ∈ Fk. Then we apply the algorithm recursively for Bi ∈ Fk and
[z′, x||G, y], that is, we replace z′||Bi step-by-step by an even vector retaining
the above properties – or we find a ntcdc.

Finally suppose that D ⊆ (S − B) ∪ G. Notice that y ∈ P (fB) implies D ∩
B 	= ∅. Also, x ∈ P (f) implies D − B 	= ∅. Moreover, y ∈ P (fB) implies
deff,[x|B,y](B∪D) ≤ 0. Recall that deff,[x||B,y](D) = 1 and deff,[x||B,y](B) = −1.
By supermodularity of deficiency, deff,[x||B,y](B ∩ D) ≥ 0. Thus, by (b) we get
that uk /∈ D. Consider an arbitrary element d ∈ D ∩ B. By (b), [x||G + 2χuk

−
χd, 0] ∈ P (fFk). By applying the algorithm recursively for [x||G + 2χuk

− χd, 0]
one can find either a ntcdc, or an even vector q ∈ (2N)∪Fk such that [q, x||G +
2χuk

− χd, 0] ∈ P (f). Next, we will find out whether there is an element e such
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that z = [q, x||G +2χuk
−2χe] satisfies (B). Clearly, all these vectors are even. It

is easy to see that deff ([q, x||G+2χuk
, y]) is 1 or 2. If deff ([q, x||G+2χuk

, y]) = 1,
then for some element e we get that [q, x||G +2χuk

−2χe, y], and we are done. If
deff ([q, x||G + 2χuk

, y]) = 2, then let W denote the unique minimal 2-deficient
set. If there is an element e ∈ W such that all the 1-deficient sets contain e,
then [q, x||G + 2χuk

− 2χe, y] ∈ P (f), and we are done. Otherwise, if for every
element e there is a 1-deficient set e /∈ We, then [q, x||G + 2χuk

, y]|W ∈ N
S is a

cdc. Notice that B and D are circuits in [q, x||G + 2χuk
, y], thus W − B ∈ π and

W − D ∈ π. Since d ∈ B ∩ D 	= ∅, this implies |π| ≥ 3.

3.3 A Semi-strongly Polynomial Time Algorithm

We construct a semi-strongly polynomial time algorithm which either returns a
ntcdc, or returns a maximum matching x and a partition certifying its maximal-
ity. The algorithm maintains a matching, and iteratively augments its size by
one, until it either finds a certifying partition, or a ntcdc. We may initiate x as a
basis of P (f), rounded down to the closest even vector. This initialization may
be performed in semi-strongly polynomial time, where “semi-” comes only from
the fact that we have to take lower integer part to detect parity. The remaining
part of the algorithm may be performed in strongly polynomial time.

The idea behind the algorithm is the following. If our matching x is a basis
in the polymatroid, then we are done. Thus we find an element u ∈ S such that
x+χu ∈ P (f). If x+2χu ∈ P (f), then that gives a larger matching, and we are
done. Otherwise, we may assume that x + χu ∈ P (f) and x + 2χu /∈ P (f), i.e. u
induces a circuit in x, which can be used building blossoms and projections. If
we find a larger matching in the projection, then we use Lemma 5 to expand
blossoms and retain a larger matching over the original groundset. This idea is
developed in detail below.

Consider a matching x. Define C := ∅. In a general step of the algorithm,
C = {B1, · · · , Bk} is a family of disjoint x-blossoms. This implies that x||S−∪C ∈
P (fC). We distinguish three cases on how close x||S−∪C is to a basis of P (fC).

Case 1. Suppose that x(S −
⋃

C) = fC(S −
⋃

C). Then, by claim (6), there is a
set C′ ⊆ C such that f(S −

⋃
C +

⋃
C′) = x(S −

⋃
C′ +

⋃
C′). Then C′ = ∅, since

for all blossoms Bi ∈ C there is an element t ∈ Bi such that x + χt ∈ P (f). We
conclude that x is a maximum matching, certified by the partition C∪{S−

⋃
C}.

Case 2. Suppose that x||S−∪C +χu ∈ P (fC), but x||S−∪C + 2χu /∈ P (fC). Then
there is a set u ∈ Z ⊆ S − ∪C such that u induces a circuit on Z in x||S−∪C
with respect to fC. By claim (6) there is a set C′ ⊆ C such that f(Z ∪

⋃
C′) =

x(Z ∪
⋃

C′) + 1. Thus, C − C′ + {Z ∪
⋃

C′} is a blossom family.

Case 3. Suppose that x||S−∪C+2χu ∈ P (fC). In this case, by applying Lemma 5
for members of C, we construct either a matching larger than x, or a ntcdc. This is
done as follows. By assertion (5), there is a (not necessarily even) vector z ∈ N

∪C

such that x′ := [z, x||S−∪C+2χu] ∈ P (f), and z(Bi) = f(Bi)−1 for i = 1, · · · , k.
Thus, for an arbitrary index i ∈ {1, · · · , k} we get that x′||S−Bi ∈ P (fBi). By
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applying Lemma 5 for Bi, we either construct a ntcdc, or we may replace entries
of x′ in Bi with even numbers, and retain the above properties. By repeating
this procedure for i = 1, · · · , k we retain a matching x′ that is larger than x.

4 Applications

4.1 A Parity Constrained Orientation Theorem

Frank, Jordán and Szigeti [4] proved that the existence of a k-rooted-connected
orientation with prescribed parity of in-degrees can be characterized by a parti-
tion type condition. Recently, Király and Szabó [7] proved that the connectivity
requirement in this parity constrained orientation problem can be given by a
more general non-negative intersecting supermodular function. It is well-known
that all these problems can be formalized as polymatroid parity problems. In
this section we show that it is possible to formalize the problem of Király and
Szabó in such a way that the arising polymatroid function has no non-trivial
double circuits. So Theorem 1 can be applied to yield the result in [7].

H = (V, E) is called a hypergraph if V is a finite set and ∅ /∈ E is a collection
of multisets of V , the set of hyperedges of H . If in every hyperedge h ∈ E we
designate a vertex v ∈ h as the head vertex then we get a directed hypergraph
D = (V, A), called an orientation of H . For a set X ⊆ V , let δD(X) denote the
set of directed hyperedges entering X , that is the set of hyperedges with head
in X and at least one vertex in V − X .

Let p : 2V → N be a function with p(∅) = p(V ) = 0. An orientation D of
a hypergraph H = (V, E) covers p if |δD(X)| ≥ p(X) for every X ⊆ V . In a
connectivity orientation problem the question is the existence of an orientation
covering p. When we are talking about parity constrained orientations, we are
looking for connectivity orientations such that the out-degree at each vertex is
of prescribed parity. Now define b : 2V → Z by

b(X) =
∑

h∈E
h(X) − |E [X ]| − p(X) for X ⊆ V, (7)

where E [X ] denotes the set of hyperedges h ∈ E with h ∩ (V − X) = ∅, and
h equivalently stands for the hyperedge and its multiplicity function. It is clear
that if x : V → N is the out-degree vector of an orientation covering p then
x ∈ B(b). The contrary is also easy to prove, see e.g. in [14]:

Lemma 6. Let H = (V, E) be a hypergraph, p : 2V → N be a function with
p(∅) = p(V ) = 0, and x : V → N. Then H has an orientation covering p such
that the out-degree of each vertex v ∈ V is x(v) if and only if x ∈ B(b).

The function b : 2V → Z is said to be intersecting submodular if (1) holds
whenever X ∩ Y 	= ∅. Similarly, p : 2V → Z is intersecting supermodular if
−p is intersecting submodular. If b : 2V → N is a non-negative, non-decreasing
intersecting submodular function then we can define a polymatroid function
b̂ : 2V → N by b̂(X) = min

{∑t
i=1 b(Xi) : X1∪̇X2∪̇ . . . ∪̇Xt = X

}
for X ⊆ V ,
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which is called the Dilworth truncation of b. It is also well-known that, if p :
2V → N is intersecting supermodular with p(V ) = 0, then p is non-increasing.

Thus if p : 2V → N is an intersecting supermodular function with p(∅) =
p(V ) = 0 then b : 2V → Z, as defined in (7), is a non-decreasing intersect-
ing submodular function, but it is not necessarily non-negative. The following
theorem can be proved using basic properties of polymatroid functions.

Theorem 3. Let H = (V, E) be a hypergraph and p : 2V → N be an intersecting
supermodular function with p(∅) = p(V ) = 0. Define b as in (7). Then H has an
orientation covering p if and only if b(V ) ≤

∑t
j=1 b(Uj) holds for every partition

U1, U2, . . . , Ut of V .

Let H = (V, E) be a hypergraph and T ⊆ V . Our goal is to find an orientation
of H covering p, where the set of odd out-degree vertices is as close as possible
to T .

Theorem 4 (Király and Szabó [7]). Let H = (V, E) be a hypergraph, T ⊆ V ,
p : 2V → N be an intersecting supermodular function with p(∅) = p(V ) = 0,
and assume that H has an orientation covering p. Define b as in (7). For an
orientation D of H let YD ⊆ V denote the set of odd out-degree vertices in D.
Then

min {|T
YD| : D is an orientation of H covering p} =

max
{
b(V ) −

∑t
j=1 b(Uj) + |{j : b(Uj) 	≡ |T ∩ Uj | mod 2}|

}
, (8)

where the maximum is taken on partitions U1, U2, . . . , Ut of V .

An interesting corrollary is the following non-defect form, which is again a gen-
eralization of Theorem 3.

Theorem 5. Let H = (V, E) be a hypergraph, T ⊆ V , and let p : 2V → N be
an intersecting supermodular function with p(∅) = p(V ) = 0. Then, H has an
orientation covering p with odd out-degrees exactly in the vertices of T, if and
only if

b(V ) ≤
∑t

j=1 b(Uj) − |{j : b(Uj) 	≡ |T ∩ Uj | mod 2}| (9)

holds for every partition U1, U2, . . . , Ut of V .

Proof. For every v ∈ T add a loop 2χv to E , resulting in the hypergraph H ′ =
(V, E ′). Define b′ as in (7), w.r.t. H ′. As there is a straightforward bijection
between the orientations of H and H ′, we have min{|T
YD| : D is an orientation
of H covering p} = min{|YD′ | : D′ is an orientation of H ′ covering p}, and
b(V )−

∑t
j=1 b(Uj)+ |{j : b(Uj) 	≡ |T ∩ Uj| mod 2}| = b′(V )−

∑t
j=1 b′(Uj)+ |{j :

b′(Uj) is odd }|. Thus we can assume that T = ∅.
By Lemma 6, the integer vectors of B(b) are exactly the out-degree vectors of

the orientations of H covering p. Thus the ≥ direction is easy to check. Now we
prove the other direction. As H has an orientation covering p, if ∅ ⊆ U ⊆ V then
b(U)+b(V −U) ≥ b(V ) by Theorem 3, implying that b(U) ≥ b(V )−b(V −U) ≥ 0.
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Thus, b is non-decreasing, and we can define the polymatroid function f = b̂.
We claim that it is enough to prove that ν(f) = min

∑s
i=1

⌊1
2f(Vi)

⌋
, where

the minimum is taken over all partitions V1, V2, . . . , Vs of V . Indeed, using the
definition of the Dilworth-truncation and that b(V ) = f(V ) by Theorem 3, we
get

min{|YD| : D is an ori. of H covering p} = f(V ) − 2ν(f) =

= b(V ) − min {
∑s

i=1 f(Vi) − |{i : f(Vi) is odd}| : V1, . . . , Vs partitions V } ≤

≤ b(V ) − min
{∑t

j=1 b(Uj) − |{j : b(Uj) is odd}| : U1, . . . , Ut partitions V
}

.

Thus by Theorem 1 it is enough to prove that b̂ has no non-trivial compatible
double circuits. The next lemma does the job.

Lemma 7. Let H = (V, E) be a hypergraph and let p : 2V → N an intersecting
supermodular function with p(∅) = 0. Suppose moreover that b : 2V → Z defined
by (7) is non-negative and non-decreasing. Then the polymatroid function f := b̂
has no non-trivial compatible double circuits.

Proof. Assume that w : V → N is a non-trivial compatible double circuit of
f with principal partition W = W1∪̇W2∪̇ . . . ∪̇Wd. Clearly, b(W ) ≥ w(W ) − 2.
Let 1 ≤ i < j ≤ d and Z = W − Wi. As w|Z is a circuit, Lemma 2 yields
that w(Z) − 1 = f(Z) = min

∑
{b(Xi) : X1, . . . , Xk partitions Z}. However,

if a non-trivial partition with k ≥ 2 gave equality here, then we would have
f(Z) =

∑
b(Xi) ≥

∑
f(Xi) ≥

∑
w(Xi) = w(Z) > f(Z), because w|Xi ∈ P (f).

Thus w(W −Wi)− 1 = b(W −Wi), and similarly, x(W −Wj)− 1 = b(W −Wj).
By applying intersecting submodularity to W −Wi and W −Wj , and using that
w|W−Wi−Wj ∈ P (f), we get 0 ≥ b(W ) − b(W − Wi) − b(W − Wj) + b(W − Wi −
Wj) ≥ (w(W )−2)−(w(W −Wi)−1)−(w(W −Wj)−1)+w(W −Wi−Wj) = 0, so
equality holds throughout. As a corollary, each hyperedge e ∈ E [W ] is spanned
by one of the Wi’s, and

(
d − 1

2

)
(b(W ) + 2) =

(
d − 1

2

)
w(W ) =

=
∑

1≤i<j≤d

w(W − Wi − Wj) =
∑

1≤i<j≤d

b(W − Wi − Wj). (10)

On the other hand,
(

d − 1
2

) ∑

h∈E
h(W ) =

∑

1≤i<j≤d

∑

h∈E
h(W − Wi − Wj),

since
∑

h∈E h is modular, and
(

d − 1
2

)
p(W ) ≤

∑

1≤i<j≤d

p(W − Wi − Wj),
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since p is non-negative and non-increasing. Finally,
(

d − 1
2

)
|E [W ]| =

(
d − 1

2

) d∑

i=1

|E [Wi]| =
∑

1≤i<j≤d

|E [W − Wi − Wj ]|.

By the definition of b, the last 3 equalities together contradict (10).

Let us give an example showing that polymatroids without non-trivial compat-
ible double circuits are not closed under contractions. Let V = {v1, v2, v3, v4},
E = {v1vi, vivi : i ∈ {2, 3, 4}}, p({v1}) = 1 and p(U) = 0 for the other sets.
Then, by Lemma 7, b̂ has no non-trivial compatible double circuits, while the
polymatroid obtained from b̂ by contracting an element in the prematroid from
the preimage of v1 has the non-trivial compatible double circuit (1, 2, 2, 2).

4.2 A Planar Rigidity Problem

If G = (V, E) is a graph and p : V → R
2 is an embedding into the Euclidean

plane then (G, p) is said to be a framework. We think of the edges of G as
rigid bars with flexible joins at the vertices. An infinitesimal motion means an
assignment of velocities x(v) ∈ R

2 to each vertex v ∈ V such that the bar lengths
are preserved, that is (p(u)−p(v)) ⊥ (x(u)−x(v)). The framework (G, p) is called
rigid if all infinitesimal motions of (G, p) correspond to isometries of R

2. The
question of pinning down a minimum vertex set resulting a rigid framework was
solved by Lovász in his seminal paper [10] about matroid parity. We say that
G = (V, E) is generic rigid if all frameworks (G, p) with algebraically independent
coordinates p are rigid. The problem of finding a vertex set Z ⊆ V of minimum
size such that G + KZ is generic rigid is left open by [10], and it was solved
recently by Fekete [3]. For more on the 2-dimensional rigidity see Laman [8] and
Lovász and Yemini [11].

The setup of [3] puts the problem into a bit more general setting. Let G =
(V, E) be a graph, and for l ∈ {2, 3} let M2,l be the matroid on ground set E
such that F ⊆ E is independent in M2,l if and only if |F [X ]| ≤ 2|X | − l for all
X ⊆ V , |X | ≥ 2. It can be proved that M is really a matroid. For clarity, M2,2
is two times the cycle matroid of G, and so G has two edge-disjoint spanning
trees if and only if r2,2(E) = 2|V | − 2. As M2,3 is the rigidity matroid of G,
the graph G is generic rigid if and only if r2,3(E) = 2|V | − 3. For Z ⊆ V let
KZ = (Z, EZ) be the graph with vertex set Z having 4− l parallel edges between
any two vertices of Z. Our goal is to find a set Z ⊆ V of minimum size such that
E + EZ has rank 2|V | − l. For l = 2, this is equivalent to shrinking a minimum
vertex set Z such that G/Z has two edge-disjoint spanning trees.

We assume that E is independent in M2,l, since if E is replaced by one of
its bases then the solution set does not change. Fekete [3] proved the following
lemma. For X ⊆ V let e(X) denote the number of edges having at least one end
vertex in X .

Lemma 8 ([3]). Let l ∈ {2, 3}. Assume that E is independent in M2,l and
that r2,l(E) < 2|V | − l. Let Z ⊆ V . Then r(E + EZ) = 2|V | − l if and only if
e(Y ) ≥ 2|Y | for every Y ⊆ V − Z.
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Therefore, the goal is to find a set Z ⊆ V of minimum size such that e(Y ) ≥ 2|Y |
for every Y ⊆ V − Z. Let f : 2V → N be the polymatroid function with
f(X) = minY ⊆X 2|Y |+e(X−Y ), i.e. f is obtained from the polymatroid function
X �→ e(X) by deleting with the vector (2, 2, . . . , 2). Hence for l = 2 the value
|V |−ν(f) means the minimum size of a set Z whose contraction results in a graph
with two edge-disjoint spanning trees, and for l = 3 it is the minimum size of a
set Z such that G+KZ is generic rigid. In [10] the computation of ν(f) is reduced
to the matching problem of graphs, yielding a partition type characterization.
This characterization follows from the previous results of this paper, too. First,
by Lemma 7 with the choice p = 0, the polymatroid function X �→ e(X) has
no non-trivial compatible double circuits. As f is obtained from X �→ e(X) by
deletion, Claim 4 yields that nor f has. Thus, ν(f) = min

∑t
j=1

⌊1
2f(Uj)

⌋
, where

the minimum is taken over all partitions U1, U2, . . . , Ut of V . By the definition
of f , we get the following.

Theorem 6 (Fekete, [3]). Let l ∈ {2, 3}. Assume that E is independent in
M2,l and that r2,l(E) < 2|V | − l. Then the minimum size of a set Z ⊆ V such
that r(E + EZ) = 2|V | − l is |V | − ν(f), where

ν(f) = min

∣∣∣∣∣∣
V −

t⋃

j=1

Uj

∣∣∣∣∣∣
+

t∑

j=1

⌊
e(Uj)

2

⌋
,

where the minimum is taken over all subpartitions U1, U2, . . . , Ut of V .
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Abstract. Let f : 2N → R+ be a non-decreasing submodular set func-
tion, and let (N, I) be a matroid. We consider the problem maxS∈I f(S).
It is known that the greedy algorithm yields a 1/2-approximation [9] for
this problem. It is also known, via a reduction from the max-k-cover prob-
lem, that there is no (1 − 1/e + ε)-approximation for any constant ε > 0,
unless P = NP [6]. In this paper, we improve the 1/2-approximation to
a (1−1/e)-approximation, when f is a sum of weighted rank functions of
matroids. This class of functions captures a number of interesting prob-
lems including set coverage type problems. Our main tools are the pi-
page rounding technique of Ageev and Sviridenko [1] and a probabilistic
lemma on monotone submodular functions that might be of independent
interest.

We show that the generalized assignment problem (GAP) is a special
case of our problem; although the reduction requires |N | to be expo-
nential in the original problem size, we are able to interpret the recent
(1 − 1/e)-approximation for GAP by Fleischer et al. [10] in our frame-
work. This enables us to obtain a (1 − 1/e)-approximation for variants
of GAP with more complex constraints.

1 Introduction

This paper is motivated by the following optimization problem. We are given
a ground set N of n elements and a non-decreasing submodular set function
f : 2N → R+. The function f is submodular iff f(A)+f(B) ≥ f(A∪B)+f(A∩B)
for all A, B ⊆ N . We restrict attention to non-decreasing (or monotone) sub-
modular set functions, that is f(A) ≥ f(B) for all B ⊆ A and f(∅) = 0. An
independence family I ⊆ 2N is a family of subsets that is downward closed, that
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is, A ∈ I and B ⊆ A implies that B ∈ I. A set A is independent iff A ∈ I.
A family I is a p-independence family for an integer p ≥ 1 if for all A ∈ I
and e ∈ N there exists a set B ⊆ A such that |B| ≤ p and A \ B + e is inde-
pendent. For computational purposes we will assume that f and I are specified
as oracles although in many specific settings of interest, an explicit description
is often available. The problem (or rather class of problems) of interest in this
paper is the following: maxS∈I f(S). We will be mostly interested in the special
case when I consists of the independent sets of a matroid on N . The problem
of maximizing a submodular set function subject to independence constraints
has been studied extensively. A number of interesting and useful combinatorial
optimization problems, including NP-hard problems, are special cases. Some no-
table examples are maximum independent set in a matroid, weighted matroid
intersection, and maximum coverage. Below we describe some candidates for f
and I that arise frequently in applications.

Modular functions: A function f : 2N → R+ is modular iff f(A) + f(B) =
f(A∪B)+f(A∩B). If f is modular then there is a weight function w : N → R+

such that f(A) = w(A) =
∑

e∈A w(e).

Set Systems and Coverage: Given a universe U and n subsets S1, S2, . . . , Sn of
U we obtain several natural submodular functions on the set N = {1, 2, . . . , n}.
First, the coverage function f given by f(A) = |∪i∈ASi| is submodular. This nat-
urally extends to the weighted coverage function; given a non-negative weight
function w : U → R+, f(A) = w(∪i∈ASi). We obtain a multi-cover version
as follows. For x ∈ U let k(x) be an integer. For each x ∈ U and Si let
c(Si, x) = 1 if x ∈ Si and 0 if x /∈ Si. Given A ⊆ N , let c′(A, x), the cov-
erage of x under A, be defined as c′(A, x) = min{k(x),

∑
i∈A c(Si, x)}. The

function f with f(A) =
∑

x∈U c′(A, x) is submodular. A related function de-
fined by f(A) =

∑
x∈U maxi∈A w(Si, x) is also submodular where w(Si, x) is a

non-negative weight for Si covering x.

Weighted rank functions of matroids and their sums: The rank function of a
matroid M = (N, I), rM(A) = max{|S| : S ⊆ A, S ∈ I}, is submodular. Given
w : N → R+, the weighted rank function defined by rM,w(A) = max{w(S) :
S ⊆ A, S ∈ I} is a submodular function. A sum of weighted rank functions is
also submodular. Functions arising in this way form a rich class of submodular
functions. In particular, all the functions on set systems and coverage mentioned
above are captured by this class. However, the class does not include all monotone
submodular functions; one notable exception is multi-cover by multisets.

Matroid Constraint: An independence family of particular interest is one induced
by a matroid M = (N, I). A very simple matroid constraint that is of much
importance in applications [5,14,2,3,10] is the partition matroid; N is partitioned
into � sets N1, N2, . . . , N� with associated integers k1, k2, . . . , k�, and a set A ⊆ N
is independent iff |A ∩ Ni| ≤ ki. In fact even the case of � = 1 (the uniform
matroid) is of interest. Laminar matroids generalize partition matroids. We have
a laminar family of sets on N and each set S in the family has an integer value
kS . A set A ⊆ N is independent iff |A ∩ S| ≤ kS for each S in the family.
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Intersection of Matroids: A natural generalization of the single matroid case is
obtained when we consider intersections of different matroids M1, M2, . . . , Mp

on the same ground set N . That is, I = ∩iIi where Ii is the independence family
of Mi. A simple example is the family of hypergraph matchings in a p-partite
graph (p = 2 is simply the family of matchings in a bipartite graph).
Matchings: Given a general graph G = (V, N) the set of matchings forms a 2-
independent family. Given a hypergraph G = (V, N) such that each edge e ∈ N
is of cardinality at most p, the set of matchings in G induce a p-independent
family. Note that matchings in general graphs are not captured as intersections
of matroids.

The Greedy Algorithm: A simple greedy algorithm is quite natural for this
problem. The algorithm incrementally builds a solution (without backtracking)
starting with the empty set. In each iteration it adds an element that most
improves the current solution (according to f) while maintaining independence of
the solution. The greedy algorithm yields a 1/p-approximation for maximizing a
modular function subject to a p-independence constraint [12,13]. For submodular
functions, the greedy algorithm yields a ratio of 1/(p + 1) [9]. 1 These ratios for
greedy are tight for all p even when the p-independent system is obtained as
an intersection of p matroids. For large but fixed p, the p-dimensional matching
problem is NP-hard to approximate to within an Ω(log p/p) factor [11].

For the problem of maximizing a submodular function subject to a matroid
constraint (special case of p = 1), the greedy algorithm achieves a ratio of 1/2.
When the matroid is the simple uniform matroid (S ⊆ N is independent iff
|S| ≤ k) the greedy algorithm yields a (1−1/e)-approximation [14]. This special
case already captures the maximum coverage problem for which it is shown
in [6] that, unless P = NP , no 1 − 1/e + ε approximation is possible for any
constant ε > 0. This paper is motivated by the following question. Is there a
(1−1/e)-approximation algorithm for maximizing a submodular function subject
to (any given) matroid constraint? We resolve this question for a subclass of
monotone submodular functions, which can be expressed as a sum of weighted
rank functions of matroids. The following is our main result.

Theorem 1. Given a ground set N , let f(S) =
∑m

i=1 gi(S) where g1, . . . , gm :
2N → R+ are weighted rank functions, gi defined by a matroid Mi = (N, Xi)
and weight function wi : N → R+. Given another matroid M = (N, I) and
membership oracles for M1, M2, . . . , Mm and M, there is a polynomial time
(1 − 1/e)-approximation for the problem maxS∈I f(S).

As immediate corollaries we obtain a (1 − 1/e)-approximation for a number
of coverage problems under a matroid constraint. It is known that there exist
submodular monotone functions that cannot be expressed as a sum of weighted
rank functions of matroids (see [16], 44.6e). For such functions, our framework
1 We give a somewhat new proof of this result in the full version of the paper. If only

an α-approximate oracle (α ≤ 1) is available for the function evaluation, the ratio
obtained is α/(p+α). Several old and recent applications of greedy can be explained
using this observation.
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does not seem to apply at this moment. We leave it as an open question whether
a (1 − 1/e)-approximation is possible for all monotone submodular functions.

Our main tools are the the pipage rounding technique of Ageev and Sviri-
denko [1], and the following useful lemma.

Lemma 1. Let f : 2N → R+ be a monotone submodular function and let f∗ :
[0, 1]N → R+ be defined as f∗(y) = minS(f(S) +

∑
i yi(f(S + i) − f(S))). For

y ∈ [0, 1]N , let ŷ denote a random vector in {0, 1}N obtained by independently
setting ŷi = 1 with probability yi and 0 otherwise. Then, E[f(ŷ)] ≥ (1−1/e)f∗(y).

We give a non-trivial application of Theorem 1 to variants of the generalized
assignment problem (GAP). In GAP we are given n bins and m items. Each
item i specifies a size sji and a value (or profit) vji for each bin j. Each bin
has capacity 1 and the goal is to assign a subset of items to bins such that the
bin capacities are not violated and the profit of the assignment is maximized.
Recently Fleischer et al. [10] gave a (1 − 1/e)-approximation for this problem,
improving upon a 1/2-approximation [4]. We rederive the same ratio casting the
problem as a special case of submodular function maximization. Moreover our
techniques allow us to obtain a (1−1/e)-approximation for GAP even under any
given laminar matroid constraint on the bins. A simple and easy to understand
example is GAP with the added constraint that at most k of the n bins be used.

Theorem 2. Let A be an instance of GAP with n bins and m items and let
B be the set of bins. Let M = (B, I) be a laminar matroid on B. There is a
polynomial time (1 − 1/e)-approximation to find a maximum profit assignment
to bins such that the subset S ⊆ B of bins that are used in the assignment satisfy
the constraint S ∈ I.

We note that the approximation ratio for GAP has been improved to 1−1/e+δ1
for a small δ1 > 0 in [8] using the same LP as in [10]. However, the algorithm in
[10] extends to even more general assignment problems in which the sets of items
allowed in a bin are further constrained; for such allocation problems it is shown
in [10] that it is NP-hard to obtain an approximation ratio of 1− 1/e+ ε for any
constant ε > 0. Our framework also extends to this wider class of assignment
problems and hence 1 − 1/e is the best approximation factor one can achieve
with this approach.

1.1 Preliminaries

Given a submodular function f : N → R+ and A ⊂ N , the function fA defined
by fA(S) = f(S ∪A)− f(A) is also submodular. Further, if f is monotone, fA is
also monotone. For i ∈ N , we abbreviate S ∪ {i} by S + i. By fA(i), we denote
the “marginal value” f(A+i)−f(A). Submodularity is equivalent to fA(i) being
non-increasing as a function of A for every fixed i.

Given a matroid M = (N, I), we denote by rM the rank function of M
where rM(A) = max{|S| : S ⊆ A, S ∈ I}. The rank function is monotone and
submodular. We denote by P (M) the polytope associated with M; this is the set
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of all real vectors y ∈ [0, 1]N that satisfy the constraints: y(S) ≤ rM(S) ∀S ⊆
N , where y(S) =

∑
i∈S yi. Edmonds showed that the vertices of P (M) are

precisely the characteristic vectors of the independent sets of M. Further, given
a membership oracle for M (that is given S ⊆ N , the oracle answers if S ∈ I or
not), one can optimize linear functions over P (M).

A base ofM is a setS ∈ I such that rM(S) = rM(N). The base polytope B(M)
of M is given by {y ∈ P (M) | y(N) = rM(N)}. The extreme points of B(M)
are the characteristic vectors of the bases of M. Given the problem maxS∈I f(S),
where M = (N, I) is a matroid, there always exists an optimum solution S∗ where
S∗ is a base of M. Note that this is false if f is not monotone. Thus, for monotone
f , it is equivalent to consider the problem maxS∈B f(S) where B is the set of bases
of M. See [16] for more details on matroids and polyhedral aspects.

2 Pipage Rounding Framework

Ageev and Sviridenko [1] developed an elegant technique for rounding solutions
of linear and non-linear programs that they called “pipage rounding”. Subse-
quently, Srinivasan [17] and Gandhi et al. [15] interpreted some applications of
pipage rounding as a deterministic variant of dependent randomized rounding.
In a typical scenario, randomly rounding a fractional solution of a linear program
does not preserve the feasibility of constraints, in particular equality constraints.
Nevertheless, the techniques of [1,17,15] show that randomized rounding can be
applied in a certain controlled way to guide a solution that respects certain class
of constraints. In particular these techniques were used to round fractional so-
lutions to the generalized assignment problem. In this paper we show that the
rounding framework applies quite naturally to our problem. Further, our analysis
also reveals the important role of submodularity in this context.

We now describe the pipage rounding framework as adapted to our problem. We
follow [1] in spirit although our notation and description is somewhat different and
tailored to our application: given a monotone submodular function f : 2N → R+

and a matroid M = (N, I), we wish to solve maxS∈I f(S). Let yi ∈ {0, 1} be
a variable that indicates whether i is picked in a solution to the problem. Then
maxS∈I f(S) can be written as the following problem: max{f(y) : y ∈ P (M), y ∈
{0, 1}N}. As we observed in Section 1.1, this is equivalent to max{f(y) : y ∈
B(M), y ∈ {0, 1}N} where B(M) is the base polytope of M.

The framework relies on the ability to solve a relaxation of the problem in
polynomial time. To obtain a relaxation we let y ∈ [0, 1]N . This also requires
us to find an extension of f to a function f̃ : [0, 1]N → R+ such that the
problem max{f̃(y) : y ∈ P (M)} can be solved in polynomial time. We require
two properties of the extension: (i) f̃(y) = f(y) for all y ∈ {0, 1}N , and (ii)
monotonicity, that is f̃(y) ≥ f̃(z), for all y ≥ z; y, z ∈ [0, 1]N . Note that the
optimum value of the relaxation is at least the integral optimum solution denoted
by OPT. Given an optimum fractional solution y∗ to the relaxation, our goal is
to round y∗ to an integer solution z such that f(z) ≥ αf̃(y∗) ≥ αOPT. Clearly
the quality of the relaxation depends on the extension function f̃ . The rounding
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framework relies on a potential function F : [0, 1]N → R+, derived from f , that
guides the rounding and at the same time allows one to derive bounds on the
quality of the approximation. The reason to consider f̃ and F separately will
become clear later. Assuming the existence of f̃ and F , we describe the pipage
rounding algorithm for our problem.

Given y ∈ [0, 1]n we say that i is fractional in y if 0 < yi < 1. For y ∈ P (M),
a set A ⊆ N is tight if y(A) = rM(A). The following useful proposition follows
easily from the submodularity of the rank function rM.

Proposition 1. If A and B are two tight sets with respect to y then A ∩ B and
A ∪ B are also tight with respect to y.

The monotonicity of f̃ also implies the following.

Proposition 2. There exists an optimum solution y∗ to max{f̃(y) : y ∈ P (M)}
such that y∗(N) =

∑
i∈N y∗

i = rM(N).

Alternatively we can solve the problem max{f̃(y) : y ∈ B(M)} which would
automatically ensure that y∗(N) = rM(N). We are interested in tight sets that
contain a fractional variable. Observe that a tight set with a fractional variable
has at least two fractional variables. Given a tight set A with fractional variables
i, j, we let yij(ε) be the vector obtained by adding ε to yi and subtracting ε
from yj and leaving the other values unchanged. Let ε+ij(y) = max{ε ≥ 0 |
yij(ε) ∈ P (M)}. Similarly we let ε−ij(y) = min{ε ≤ 0 | yij(ε) ∈ P (M)}. We
let y+

ij = yij(ε+ij) and y−
ij = yij(ε−ij). For a given y and i, j ∈ N , we define a

real-valued function F y
ij : [ε−ij(y), ε+ij(y)] → R+ where F y

ij(δ) = F (yij(δ)).

Algorithm PipageRound(y):
While (y is not integral) do
Let A be a minimal tight set containing fractional i, j ∈ A
If (F (y+

ij) ≥ F (y−
ij)) y ← y+

ij

Else y ← y−
ij

EndWhile
Output y, f(y).

Lemma 2. The pipage rounding algorithm outputs an integral feasible y in
O(n2) iterations. Given an oracle access to F and a membership oracle for M,
the algorithm can be implemented in polynomial time.

Proof (sketch). Using Proposition 2, we assume that N is tight with respect to
y. Since y+

ij and y−
ij both belong to P (M), the algorithm maintains the invariant

that y ∈ P (M) and that N is tight. Thus there is always a tight set with two
fractional variables as long as y is not integral. We observe that the algorithm
does not alter a variable yi once yi ∈ {0, 1}. To simplify the algorithm’s analysis
we can alter it slightly so that the set A that is picked in each iteration is not
only minimal but also of minimum cardinality among such minimal sets. Let
y(h) be the vector y at the beginning of iteration h. We claim that y(h + n − 1)
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has at least one more integral variable than y(h). This will give us the desired
bound of O(n2) on the total number of iterations.

To prove the claim, let Ah be the tight set picked by the algorithm, and
ih, jh ∈ Ah the two fractional variables modified in iteration h. If one of them
becomes integral in y(h+1), we are done. Otherwise we claim that |Ah+1| < |Ah|,
hence after n−1 iterations we are guaranteed to have one more integral variable.
To see that |Ah+1| < |Ah|, assume wlog that y(h + 1) = y(h)+ihjh

; since ih, jh

are still fractional, there is a new tight set B with respect to y(h + 1), which
prevented us from going further. B contains exactly one of ih, jh, otherwise y(B)
does not change in iteration h. From Proposition 1, it follows that B ∩Ah is also
tight, it contains a fractional variable, and |B∩Ah| < |Ah|. In the next iteration,
we can use Ah+1 = B ∩ Ah. To implement an iteration, we need to compute y+

ij ,
y−

ij and the new tight set in polynomial time. These can be done by appealing
to known methods [16]. We defer the details to a full version of the paper.

To obtain a guarantee on the quality of the solution, F needs to satisfy some
properties, as suggested in [1].

– F is an extension of f and F (y) ≥ αf̃(y) for all y ∈ [0, 1]N .
– F y

ij is convex for all y and i, j.

Given the above two conditions, it is shown in [1] that the pipage rounding
algorithm yields the following: given an optimum fractional solution y∗, the
rounding yields an integral solution z such that F (z) ≥ F (y∗). This follows from
the convexity requirement on F y

ij ; either F (y+
ij) ≥ F (y) or F (y−

ij) ≥ F (y) and
the choice of the algorithm ensures that in each iteration the value of F does
not decrease. Therefore we can conclude that f(z) = F (z) ≥ F (y∗) ≥ αf̃(y∗).
Since f̃(y∗) ≥ OPT, we have f(z) ≥ αOPT.

3 Extensions of Submodular Functions

In this section, we address the issue of extending a monotone submodular func-
tion f : 2N → R+ to continuous functions f̃ , F : [0, 1]N → R+, as required by
the framework.
F as the expected value of f : We consider a simple and natural candidate
for F that is implicitly generated from f . Define F (y) = E[f(ŷ)] where ŷ is
a random integer vector obtained from y by independently rounding each i to
1 with probability yi and to 0 with probability 1 − yi. In shorthand, we write
F = Ef . We can evaluate F = Ef to any desired accuracy by taking several
independent samples. We defer details that show that a polynomial number of
samples suffice to obtain a (1−1/poly(n))-approximation to F (y). Alternatively
we could use a randomized version of the pipage rounding that does not require
us to evalute F explicitly.

In [1], F was given as an explicit function for some simple functions and the
convexity of F y

ij was explicitly shown. A nice feature of F = Ef is that the
convexity requirement is satisfied for all submodular f .
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Lemma 3. For any submodular f , if F = Ef , then F y
ij is convex for all y ∈

[0, 1]N and i, j ∈ N .

Proof. Let F = Ef . For S ⊆ N \ {i, j} and y ∈ [0, 1]N , let py(S) =
∏

l∈S yl∏
l∈N\{i,j}\S(1 − yl) be the probability that S is precisely the set obtained by

randomized rounding on N \ {i, j}. Then

F (y) =
∑

S⊆N\{i,j}
py(S) ((1 − yi)(1 − yj)f(S) + (1 − yi)yjf(S + j))

+yi(1 − yj)f(S + i) + yiyjf(S + i + j)).

We have F y
ij(δ) = F (yij(δ)). Let x = yij(δ), i.e. xi = yi + δ, xj = yj − δ and

xl = yl for all l ∈ N\{i, j}. Hence it follows that px(S) = py(S) for S ⊆ N\{i, j}.
It can be seen that F (yij(δ)) = F (x) = c2δ

2 + c1δ + c0 where c2, c1, c0 do not
depend on δ (they depend only on y and f). Thus to show that F y

ij(δ) is convex
in δ, it is sufficient to prove that c2 ≥ 0. It is easy to check that

c2 =
∑

S⊆N\{i,j}
py(S)(−f(S) + f(S + j) + f(S + i) − f(S + i + j)).

By submodularity, f(S+i)+f(S+j) ≥ f((S+i)∩(S+j))+f((S+i)∪(S+j)) =
f(S) + f(S + i + j) which proves that c2 ≥ 0.

Next, we need an extension f̃ such that max{f̃(y) : y ∈ P (M)} can be solved
in polynomial time. The approximation guarantee is the largest α such that
F (y) ≥ αf̃(y).

Extension f+: Our first candidate for f̃ is an extension similar to the objective
function of the “Configuration LP” [10,7,8].

– f+(y)=max
{∑

S⊆N αSf(S) :
∑

S αS ≤ 1, αS ≥ 0 & ∀j;
∑

S:j∈S αS ≤ yj

}
.

Extension f∗: Another candidate is a function appearing in [14] and subse-
quently [9,18,19], where it is used indirectly in the analysis of the greedy algo-
rithm for submodular function maximization:

– f∗(y) = min
{
f(S) +

∑
j∈N fS(j)yj : S ⊆ N

}
.

Unfortunately, as the theorem below shows, it is NP-hard to evaluate f+(y)
and f∗(y) and also to optimize them over matroid polytopes.

Theorem 3. It is NP-hard to compute f+(y) or f∗(y) for a given y ∈ [0, 1]n

and a given monotone submodular function f . Also, there is δ > 0 such that
for a given matroid M it is NP-hard to find any point z ∈ P (M) such that
f+(z) ≥ (1 − δ)max{f+(y) : y ∈ P (M)}. Similarly, it is NP-hard to find any
point z ∈ P (M) such that f∗(z) ≥ (1−δ)max{f∗(y) : y ∈ P (M)}. These results
hold even for coverage-type submodular functions and partition matroids.
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We defer the proof to a full version of the paper; the authors are unaware of prior
work that might have addressed this question. Still, both f+(y) and f∗(y) will
be useful in our analysis. We remark that for any class of submodular functions
where either f+(y) or f∗(y) is computable in polynomial time, we obtain a
(1 − 1/e)-approximation for our problem.

It is known and easy to see that for y ∈ {0, 1}N , both f+ and f∗ functions
coincide with f and thus they are indeed extensions of f . For any y ∈ [0, 1]N ,
we first show the following.

Lemma 4. For any monotone submodular f , F (y) ≤ f+(y) ≤ f∗(y).

Proof. To see the first inequality, let αS =
∏

i∈S yi

∏
i/∈S(1 − yi) be the proba-

bility that we obtain ŷ = χS by independent rounding of y. Since
∑

S:j∈S αS =
Pr[ŷj = 1] = yj, this is a feasible solution for f+(y) and therefore f+(y) ≥∑

S αSf(S) = E[f(ŷ)] = F (y).
For the second inequality, consider any feasible vector αS and any set T ⊆ N :

∑

S

αSf(S) ≤
∑

S

αS

⎛

⎝f(T ) +
∑

j∈S

fT (j)

⎞

⎠ ≤ f(T ) +
∑

j∈N

yjfT (j)

using submodularity and the properties of αS . By taking the maximum on the
left and the minimum on the right, we obtain f+(y) ≤ f∗(y).

It is tempting to conjecture that f+(y) and f∗(y) are in fact equal, due to some
duality relationship. However, this is not the case: both inequalities in Lemma 4
can be sharp and both gaps can be close to 1 − 1/e. For the first inequality,
consider the submodular function f(S) = min{|S|, 1} and yj = 1/n for all j;
then F (y) = 1 − (1 − 1/n)n and f+(y) = 1. For the second inequality, choose
a large but fixed k, f(S) = 1 − (1 − |S|/n)k and yj = 1/k for all j. The reader
can verify that f+(y) = 1 − (1 − 1/k)k, while f∗(y) ≥ 1 − k/n → 1 as n → ∞.
We prove that 1 − 1/e is the worst possible gap for both inequalities. Moreover,
even the gap between F (y) and f∗(y) is bounded by 1 − 1/e.

Lemma 5. For any monotone submodular f , F (y) ≥
(
1 − 1

e

)
f∗(y).

Proof. For each element j ∈ N , set up an independent Poisson clock Cj of rate
yj , i.e. a device which sends signals at random times, in any infinitesimal time
interval of size dt independently with probability yjdt. We define a random
process which starts with an empty set S(0) = ∅ at time t = 0. At any time
when the clock Cj sends a signal, we include element j in S, which increases
its value by fS(j). (If j is already in S, nothing happens; the marginal value
fS(j) is zero in this case.) Denote by S(t) the random set we have at time t.
By the definition of a Poisson clock, S(1) contains element j independently with
probability 1 − e−yj ≤ yj . Since such a set can be obtained as a subset of the
random set defined by ŷ, we have E[f(S(1))] ≤ F (y) by monotonicity. We show
that E[f(S(1))] ≥ (1 − 1/e)f∗(y) which will prove the claim.

Let t ∈ [0, 1]. Condition on S(t) = S and consider how f(S(t)) changes in an
infinitesimal interval [t, t+dt]. The probability that we include element j is yjdt.
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Since dt is very small, the events for different elements j are effectively disjoint.
Thus the expected increase of f(S(t)) is (up to O(dt2) terms)

E[f(S(t + dt)) − f(S(t)) | S(t) = S] =
∑

j∈N

fS(j)yjdt ≥ (f∗(y) − f(S))dt

using the definition of f∗(y). We divide by dt and take the expectation over S:

1
dt

E[f(S(t + dt)) − f(S(t))] ≥ f∗(y) − E[f(S(t))].

We define φ(t) = E[f(S(t))], i.e. dφ
dt ≥ f∗(y) − φ(t). We solve this differential

inequality by considering ψ(t) = etφ(t) and dψ
dt = et(dφ

dt + φ(t)) ≥ etf∗(y). Since
ψ(0) = φ(0) = 0, this implies

ψ(x) =
∫ x

0

dψ

dt
dt ≥

∫ x

0
etf∗(y)dt = (ex − 1)f∗(y)

for any x ≥ 0. We conclude that E[f(S(t))] = φ(t) = e−tψ(t) ≥ (1 − e−t)f∗(y)
and F (y) ≥ E[f(S(1))] ≥ (1 − 1/e)f∗(y).

We remark that we did not actually use submodularity in the proof of Lemma 5!
Formally, it can be stated for all monotone functions f . However, f∗(y) is not a
proper extension of f when f is not submodular (e.g., f∗(y) is identically zero
if f(S) = 0 for |S| ≤ 1). So the statement of Lemma 5 is not very meaningful in
this generality.

To summarize what we have proved so far, we have two relaxations of our
problem:

– max{f+(y) : y ∈ P (M)}
– max{f∗(y) : y ∈ P (M)}

Our framework together with Lemma 4 and Lemma 5 implies that both of these
relaxations have integrality gap at most 1 − 1/e. Theorem 3 shows NP-hardness
of solving the relaxations. We show how to use the framework efficiently in a
restricted case of interest which is described in the following section.

4 Sums of Weighted Rank Functions

We achieve a (1 − 1/e)-approximation, under a matroid constraint M, for any
submodular function f that can be expressed as a sum of “weighted rank func-
tions” of matroids. This is the most general subclass of submodular functions
for which we are able to use the framework outlined in Section 2 in an efficient
way. Here we describe this in detail.

Weighted rank functions of matroids: Given a matroid (N, X ) and a weight
function w : N → R+, we define a weighted rank function g : 2N → R+,

g(S) = max{
∑

j∈I

wj : I ⊆ S & I ∈ X}.
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It is well known that such a function is monotone and submodular. A simple
special case is when X = {I | |I| = 1}. Then g(S) returns simply the maximum-
weight element of S; this will be useful in our application to GAP.

Sums of weighted rank functions: We consider functions f : 2N → R+

of the form f(S) =
∑m

i=1 gi(S) where each gi is a weighted rank function for
matroid (N, Xi) with weights wij . Again, f(S) is monotone and submodular.

The functions that can be generated in this way form a fairly rich subclass
of monotone submodular functions. In particular, they generalize submodu-
lar functions arising from coverage systems. Coverage-type submodular func-
tions can be obtained by considering a simple uniform matroid (N, X ) with
X = {I ⊆ N | |I| ≤ 1}. For a collection of sets {Aj}j∈N on a ground set
[m], we can define m collections of weights on N , where wij = 1 if Aj con-
tains element i, and 0 otherwise. Then the weighted rank function gi(S) =
max{wij : j ∈ S} is simply an indicator of whether

⋃
j∈S Aj covers element

i. The sum of the rank functions gi(S) gives exactly the size of this union
f(S) =

∑m
i=1 gi(S) =

∣∣∣
⋃

j∈S Aj

∣∣∣. Generalization to the weighted case is straight-
forward.

LP formulation for sums of weighted rank functions: For a submodular
function given as f(S) =

∑m
i=1 gi(S) where gi(S) = max{wi(I) : I ⊆ S, I ∈ Xi},

consider an extension g+
i (y) for each gi, as defined in Section 3:

g+
i (y) = max{

∑

S⊆N

αSgi(S) :
∑

S

αS ≤ 1, αS ≥ 0 & ∀j;
∑

S:j∈S

αS ≤ yj}.

Here, we can assume without loss of generality that αS is nonzero only for S ∈ Xi

(otherwise replace each S by a subset I ⊆ S, I ∈ Xi, such that gi(S) = wi(I)).
Therefore, g+

i can be written as

g+
i (y) = max{

∑

I∈Xi

αI

∑

j∈I

wij :
∑

I∈Xi

αI ≤ 1, αI ≥ 0 & ∀j;
∑

I∈Xi:j∈I

αI ≤ yj}.

We can set xij =
∑

I∈Xi:j∈I αI and observe that a vector xi = (xij)j∈N can
be obtained in this way if and only if it is a convex linear combination of
independent sets; i.e., if it is in the matroid polytope P (Xi). The objective
function becomes

∑
j∈N wij

∑
I∈Xi:j∈I αI =

∑
j∈N wijxij and so we can write

equivalently

g+
i (y) = max{

∑

j∈N

wijxij : xi ∈ P (Xi) & ∀j; xij ≤ yj}.

We sum up these functions to obtain an extension f̃(y) =
∑m

i=1 g+
i (y). This

leads to the following LP formulation for the problem max{f̃(y) : y ∈ P (M)}:
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max
m∑

i=1

∑

j∈N

wijxij ;

∀i, j; xij ≤ yj ,

∀i; xi ∈ P (Xi),
y ∈ P (M).

We can solve the LP using the ellipsoid
method, since a separation oracle can be ef-
ficiently implemented for each matroid poly-
tope, and therefore also for this LP. To obtain
a (1−1/e)-approximation (Theorem 1) via the
above LP using the pipage rounding frame-
work from Section 2, it is sufficient to prove
the following lemma.

Lemma 6. For any sum of weighted rank functions f , F (y) ≥ (1 − 1/e)f̃(y).

Proof. By Lemma 5, F (y) ≥ (1 − 1/e)f∗(y) and hence it suffices to prove that
f∗(y) ≥ f̃(y). By Lemma 4, g+

i (y) ≤ g∗i (y) where g∗i (y) = minSi(gi(Si) +∑
j yjgi,Si(j)). (Here, gi,Si(j) = gi(Si + j) − gi(Si).) Consequently,

f̃(y) =
m∑

i=1

g+
i (y) ≤

m∑

i=1

min
Si

(gi(Si) +
∑

j∈N

yjgi,Si(j))

≤ min
S

m∑

i=1

(gi(S) +
∑

j∈N

yjgi,S(j)) = min
S

(f(S) +
∑

j∈N

yjfS(j)) = f∗(y).

5 The Generalized Assignment Problem

Here we consider an application of our techniques to the Generalized Assignment
Problem (“GAP”). An instance of GAP consists of n bins and m items. Each
item i has two non-negative numbers for each bin j; a value vji and a size sji.
We seek an assignment of items to bins such that the total size of items in each
bin is at most 1, and the total value of all items is maximized.

In [10], a (1−1/e)-approximation algorithm for GAP has been presented. The
algorithm uses LP1.

LP1 : max
∑

j,S∈Fj

yj,Svj(S);

∀j;
∑

S∈Fj

yj,S ≤ 1,

∀i;
∑

j,S∈Fj:i∈S

yj,S ≤ 1,

∀j, S; yj,S ≥ 0.

In LP1, Fj denotes the collection of all
feasible assignments for bin j, i.e. sets
satisfying

∑
i∈S sji ≤ 1. The variable yj,S

represents bin j receiving a set of items S.
Although this is an LP of exponential size,
it is shown in [10] that it can be solved to
an arbitrary precision in polynomial time.
Then the fractional solution can be rounded
to an integral one to obtain a (1 − 1/e)
approximation.

We show in this section that this (1 − 1/e)-approximation algorithm can be
interpreted as a special case of submodular maximization subject to a matroid
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constraint2, and this framework also allows some generalizations of GAP3. For
this purpose, we reformulate the problem as follows.

We define N = {(j, S) | 1 ≤ j ≤ n, S ∈ Fj} and a submodular function
f : 2N → R+,

f(S) =
m∑

i=1

max{vji : ∃(j, S) ∈ S, i ∈ S}.

We maximize this function subject to a matroid constraint M, where S ∈ M
iff S contains at most one pair (j, S) for each j. Such a set S corresponds to
an assignment of set S to bin j for each (j, S) ∈ S. This is equivalent to GAP:
although the bins can be assigned overlapping sets in this formulation, we only
count the value of the most valuable assignment for each item. We can write
f(S) =

∑m
i=1 gi(S) where gi(S) = max{vji : ∃(j, S) ∈ S, i ∈ S} is a weighted

rank function of a matroid Xi on N . In the matroid Xi an element (j, S) ∈ N has
weight vji if i ∈ S and 0 otherwise. A set is independent in Xi iff its cardinality
is at most 1. Therefore the problem falls under the umbrella of our framework.

We now write explicitly the LP arising from interpreting GAP as a submodular
function problem. We have variables yj,S for each j and S ∈ Fj. In addition, for
each matroid Xi, we define copies of these variables xi,j,S . The resulting linear
program is given as LP2.

LP2 : max
∑

j,S∈Fj,i∈S

vjixi,j,S ;

∀i, j, S; xi,j,S ≤ yj,S,

∀i; xi ∈ P (Xi),
y ∈ P (M).

LP2 has exponentially many variables
and exponentially many constraints. How-
ever, observe that a feasible solution yj,S

for LP1 is also feasible for LP2, when we set
xi,j,S = yj,S for i ∈ S and 0 otherwise. This
is because the constraint

∑
j,S:i∈S yj,S ≤ 1

in LP1 implies xi ∈ P (Xi), and the con-
straint

∑
S yj,S ≤ 1 implies y ∈ P (M).

Therefore, we can solve LP1 using the techniques of [10] and then convert the
result into a feasible solution of LP2. Finally, we can apply the pipage rounding
technique to obtain a (1 − 1/e)-approximation.

This is simply a reformulation of the algorithm from [10]. However, the flex-
ibility of our framework allows a more complicated matroid constraint M than
each bin choosing at most one set. We briefly discuss this below.

Laminar matroid constraints on the bins: Let B be the set of bins in a
GAP instance. Consider a laminar matroid M on B. We consider the problem
of assigning items to a subset of bins B′ ⊆ B such that B′ is independent in M.
An example is when M is the simple uniform matroid; that is B′ is independent
iff |B′| ≤ k. This gives rise to a variant of GAP in which at most k of the n bins

2 This formulation of GAP is also described in [10] as a personal communication from
an author of this paper.

3 In [10] more general allocation problems are considered that allow constraints on the
sets of items packable within a bin. Our approach also works for such problems but
in this extended abstract we limit our discussion to GAP.
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can be used. One can modify LP1 by adding a new constraint:
∑

j,S∈Fj
yj,S ≤ k,

to obtain a relaxation LP3 for this new problem.

LP3 : max
∑

j,S∈Fj

yj,Svj(S);

∀j;
∑

S∈Fj

yj,S ≤ 1,

∀i;
∑

j,S∈Fj:i∈S

yj,S ≤ 1,

∑

j,S∈Fj

yj,S ≤ k,

∀j, S; yj,S ≥ 0.

Using the same ideas as those in [10],
one can solve LP3 to an arbitrary
precision in polynomial time. The simple
rounding scheme of [10] for LP1 does not
apply to LP3. However, as before, we can
see that a solution to LP3 is feasible for LP2
where the matroid M now also enforces
the additional constraint that at most k
elements from N are chosen. Thus pipage
rounding can be used to obtain a (1−1/e)-
approximation. A similar reasoning allows
us to obtain a (1 − 1/e)-approximation for
any laminar matroid constraint on the bins
B. We defer the details to a full version of the paper.

6 Conclusions

We obtained a (1 − 1/e)-approximation for an interesting and useful class of
submodular functions. We note that the methods in the paper apply to some
interesting submodular functions that are not in the class. An example is the
maximum multiset multicover problem which generalizes the multicover problem
defined in Section 1. The difference between multicover and multiset multicover
is that a set can cover an element multiple times (at most the requirement of the
element). We can obtain a (1−1/e) approximation for this problem even though
this function cannot be expressed as a weighted sum of matroid rank functions.
We defer the details. It would be of much interest to prove or disprove the
existence of a (1 − 1/e)-approximation for all monotone submodular functions.
Note that our hardness results (Theorem 3) hold even when f can be expressed
as a sum of weighted rank functions of matroids, yet we can obtain a (1 − 1/e)-
approximation in this case.

The unconstrained problem maxS⊆N f(S) is NP-hard and hard to approxi-
mate if f is a non-monotone submodular set function; the Max-Cut problem is a
special case. However, the pipage rounding framework is still applicable to non-
monotone functions (as already shown in [1]). For non-monotone functions, the
problem we need to consider is maxS∈B f(S) where B is the set of bases of M. It
is easy to see that Lemma 2 and Lemma 3 still apply. Thus, the approximation
ratio that can be guaranteed depends on the extension f̃ .

Pipage rounding [1] and dependent randomized rounding [17,15] are based on
rounding fractional solutions to the assignment problem into integer solutions
while maintaining the quality of a solution that is a function of the variables on
the edges of the underlying bipartite graph. A number of applications are given
in [1,17,15]. This paper shows that submodularity and uncrossing properties of
solutions to matroids and other related structures are the basic ingredients in
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the applicability of the pipage rounding technique. We hope this insight will lead
to more applications in the future.
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Abstract. We study the Master Equality Polyhedron (MEP) which gen-
eralizes the Master Cyclic Group Polyhedron and the Master Knapsack
Polyhedron.

We present an explicit characterization of the nontrivial facet-defining
inequalities for MEP. This result generalizes similar results for the Master
Cyclic Group Polyhedron by Gomory [9] and for the Master Knapsack
Polyhedron by Araoz [1]. Furthermore, this characterization also gives
a polynomial time algorithm for separating an arbitrary point from the
MEP.

We describe how facet defining inequalities for the Master Cyclic
Group Polyhedron can be lifted to obtain facet defining inequalities for
the MEP, and also present facet defining inequalities for the MEP that
cannot be obtained in such a way. Finally, we study the mixed-integer ex-
tension of the MEP and present an interpolation theorem that produces
valid inequalities for general Mixed Integer Programming Problems us-
ing facets of the MEP.

Keywords: integer programming, polyhedral combinatorics.

1 Introduction

We study the Master Equality Polyhedron (MEP), which we define as:

K(n, r) = conv

{
(x, y) ∈ Z

n
+ × Z

n
+ :

n∑

i=1

ixi −
n∑

i=1

iyi = r

}
(1)

where n, r ∈ Z and n > 0. Without loss of generality we assume that r ≥ 0. To
the best of our knowledge, K(n, r) was first defined by Uchoa [14] in a slightly
different form and described as an important object for study.
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As lower dimensional faces, MEP contains two well known polyhedra from the
literature: The Master Cyclic Group Polyhedron (MCGP), which is defined as

P (n, r) = conv

{
(x, y) ∈ Z

n−1
+ × Z+ :

n−1∑

i=1

ixi − nyn = r

}
, (2)

where r, n ∈ Z, and 0 ≤ r < n; and the Master Knapsack Polyhedron (MKP),
which is defined as

K(r) = conv

{
x ∈ Z

r
+ :

r∑

i=1

ixi = r

}
, (3)

where r ∈ Z and r > 0.
Facets of P (n, r) are a useful source of cutting planes for general MIPs. The

Gomory mixed-integer cut (also known as the mixed-integer rounding (MIR) in-
equality) can be derived from a facet of P (n, r) [10]. Other facets and
studies related to the Master Cyclic Group Polyhedron can be found in
[2,4,5,6,7,8,11,12,13]. In particular, several relationships between facet-defining
inequalities of the MCGP and facet-defining inequalities of the MKP were es-
tablished in [2]. We note that the Master Cyclic Group Polyhedron is usually
presented as

P ′(n, r) = conv

{
x ∈ Z

n−1
+ :

n−1∑

i=1

ixi ≡ r mod n

}

which is the projection of P (n, r) in the space of x variables. We use (2) as it
makes the comparison to K(n, r) easier and clearer.

Gomory [9] and Araoz [1] give an explicit characterization of the polar of the
nontrivial facets of P (n, r) and K(r). In this paper, we give a similar description
of the nontrivial facets of K(n, r), yielding as a consequence a polynomial time
algorithm to separate over it. We also analyze some structural properties of the
MEP and relate it to the MCGP.

In addition, we describe how to obtain valid inequalities for general MIPs
using facet defining inequalities for the MEP.

Finally, we remark that another motivation to study the MEP is that it also
arises as a natural structure in a reformulation of the Fixed-Charge Network
Flow problem, which has recently been used in [15] to derive strong cuts for the
Capacitated Minimum Spanning Tree Problem and can also be used in other
problems such as the Capacitated Vehicle Routing Problem.

2 Polyhedral Analysis of K(n, r)

From this point until the end of section 2.1 we assume 0 < r ≤ n. In
subsections 2.2 and 2.3, we consider the cases r = 0 and r > n. We start with
some basic polyhedral properties of K(n, r).
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Lemma 1. dim(K(n, r)) = 2n − 1.

Lemma 2. The nonnegativity constraints of K(n, r) are facet-defining if n ≥ 2.

Let ei denote the unit vector with a one in the component corresponding to vari-
able xi and fi denote the unit vector with a one in the component corresponding
to variable yi.

Clearly, K(n, r) is an unbounded polyhedron. We next characterize all the
extreme rays (unbounded one-dimensional faces) of K(n, r). We represent an
extreme ray {u + λv : u, v ∈ R

2n
+ , λ ≥ 0} of K(n, r) simply by the vector v. Let

rij = jei + ifj for any i, j ∈ {1, . . . , n}.

Lemma 3. The set of extreme rays of K(n, r) is given by R={rij : 1 ≤ i, j ≤ n}.

As K(n, r) is not a full-dimensional polyhedron, any valid inequality πx+ρy ≥ πo

for K(n, r) has an equivalent representation with ρn = 0. If a valid inequality
does not satisfy this condition, one can add an appropriate multiple of the equa-
tion

∑n
i=1 ixi −

∑n
i=1 iyi = r to it. Therefore, without loss of generality, we may

assume that all valid inequalities for K(n, r) satisfy ρn = 0.
We classify the facets of K(n, r) as trivial and non-trivial facets.

Definition 1. The following facet-defining inequalities of K(n, r) are called
trivial:

xi ≥ 0, ∀i = 1, . . . , n

yi ≥ 0, ∀i = 1, . . . , n − 1

All other facet-defining inequalities of K(n, r) are called nontrivial.

Notice that we left inequality yn ≥ 0 out of the trivial set. That happens just
because of technical details to simplify the statement of our theorems and lem-
mas. In fact there is nothing particularly special about the yn ≥ 0 inequality
other than it is the only nonnegativity constraint that does not comply directly
with the ρn = 0 assumption.

Let N = {1, . . . , n}. We next state our main result:

Theorem 1. The inequality πx + ρy ≥ πo defines a nontrivial facet of K(n, r)
if and only if it can be represented as an extreme point of T ⊆ R

2n+1 where T
is defined by the following linear equations and inequalities:

πi + ρj ≥ πi−j , ∀i, j ∈ N, i > j, (F1)
πi + πj ≥ πi+j , ∀i, j ∈ N, i + j ≤ n, (F2)

ρk + πi + πj ≥ πi+j−k , ∀i, j, k ∈ N, 1 ≤ i + j − k ≤ n, (F3)
πi + πr−i = πo, ∀i ∈ N, i < r, (EP1)

πr = πo, (EP2)
πi + ρi−r = πo, ∀i ∈ N i > r, (EP3)

ρn = 0, (N1)
πo = 1. (N2)
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This theorem implies that for 0 < r ≤ n, the separation problem over K(n, r)
can be solved in polynomial time. Although the restriction that 0 < r ≤ n might
seem undesirable, later in Sect. 2.3 we show that the separation can be done for
every value of r.

Note that the definition of T in Theorem 1 is similar to that of a polar of
K(n, r). However, T is not a polar, as it does not contain extreme points of the
polar that correspond to the trivial facet-defining inequalities. In addition, some
of the extreme rays of the polar are not present in T . It is possible to interpret
T as an important subset of the polar that contains all extreme points of the
polar besides the ones that lead to the trivial inequalities.

2.1 Facet Characterization

In this section we develop the required analysis to prove Theorem 1. We start by
noting some necessary conditions for validity, which arise by looking at points
and rays of K(n, r):

Observation 2. Let πx + ρy ≥ πo be a valid inequality for K(n, r), then the
following holds:

jπi + iρj ≥ 0, ∀i, j ∈ N (R1)
πi + πr−i ≥ πo, ∀1 ≤ i < r (P1)

πr ≥ πo (P2)
πi + ρi−r ≥ πo, ∀r < i ≤ n (P3)

Note that (R1) is obtained by considering the extreme rays of K(n, r) and
(P1)-(P3) are obtained by considering the following feasible points of K(n, r):

{ei + er−i, ∀1 ≤ i < r} ∪ er ∪ {ei + fi−r, ∀r < i ≤ n}

We call these points the Elementary points of K(n, r). Note that there are
n −

⌊
r−1
2

⌋
Elementary points.

We next present some conditions satisfied by all nontrivial facet defining in-
equalities.

Lemma 4. Let πx+ρy ≥ πo be a nontrivial facet-defining inequality of K(n, r),
then it satisfies (F1)-(F3) as well as (EP1)-(EP3).

Proof. (F1): Pick a point (x∗, y∗) tight at πx + ρy ≥ πo such that x∗
i−j > 0.

Note that (x∗, y∗) + (ei + fj − ei−j) is a point of K(n, r). Thus, (F1) holds.
The proofs of (F2) and (F3) are analogous.
(EP1): Pick points (x′, y′) and (x′′, y′′) tight at (π, ρ, πo) such that x′

i > 0
and x′′

r−i > 0. Then (x′′′, y′′′) = (x′, y′) + (x′′, y′′) − ei − er−i ∈ K(n, r), thus
(π, ρ)T (x′′′, y′′′) = (π, ρ)T (x′, y′)+(π, ρ)T (x′′, y′′)−πi −πr−i = 2πo −πi −πr−i ≥
πo ⇒ πi + πr−i ≤ πo. So (P1) ⇒ (EP1).
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Proofs of (EP2) and (EP3) are analogous, using (P2) and (P3) instead of
(P1).

It is worth mentioning that conditions (EP1)-(EP3) imply that all nontrivial
facets intersect at a nonempty lower dimensional face of K(n, r). Note that
all Elementary Points of K(n, r) are in this lower-dimensional face, which has
therefore dimension at least n −

⌊
r−1
2

⌋
− 1.

In the following Lemma we show that a subset of the conditions presented in
Theorem 1 suffices to ensure the validity.

Lemma 5. Let (π, ρ, πo) satisfy (EP2), (F1), (F2) and (F3). Then πx+ρy ≥ πo

defines a valid inequality for K(n, r).

Proof. We will prove this by contradiction. Assume that πx + ρy ≥ πo satisfies
(EP2), (F1), (F2) and (F3) but πx + ρy ≥ πo does not define a valid inequality
for K(n, r), r > 0. Let (x∗, y∗) be an integer point in K(n, r) that has minimum
L1 norm amongst all points violated by πx + ρy ≥ πo. Note that since r > 0,
then x∗ 
= 0.

If ||(x∗, y∗)||1 = 0 then (x∗, y∗) = 0 
∈ K(n, r). If ||(x∗, y∗)||1 = 1 then clearly
x∗ = er and y∗ = 0 but as πr = πo, (x∗, y∗) does not violate the inequality.
Therefore ||(x∗, y∗)||1 ≥ 2. We next consider three cases.

Case 1: Assume that y∗ = 0. In this case,
∑n

i=1 ix∗
i = r. By successively

applying (F2), we obtain

πo >

n∑

i=1

πix
∗
i ≥

n∑

i=1

πix∗
i

≥ π∑
n
i=1 ix∗

i
= πr

which contradicts (EP2). Therefore y∗ 
= 0.
Case 2: Assume that x∗

i > 0 and y∗
j > 0 for some i > j. Let (x′, y′) =

(x∗, y∗)+(ei−j−ei−fj). Note that (x′, y′) ∈ K(n, r), and ||(x′, y′)||1 = ||(x∗, y∗)||1
− 1. Moreover, since πx + ρy ≥ πo satisfies (F1), πx′ + ρy′ = πx∗ + ρy∗ +πi−j −
πi − ρj ≤ πx∗ + ρy∗ < πo, which contradicts the choice of (x∗, y∗). Therefore
i ≤ j whenever x∗

i > 0 and y∗
j > 0.

Case 3: Assume that for any i, j ∈ N , if x∗
i > 0 and y∗

j > 0, then
i ≤ j. Suppose there exists i, j ∈ N such that x∗

i > 0, x∗
j > 0 or x∗

i ≥ 2
(in which case, we let j = i). If i+ j ≤ n, let (x′, y′) = (x∗, y∗)+ (ei+j − ei − ej).
If i + j > n, since y∗ 
= 0 there exists k such that y∗

k > 0 and k ≥ i, thus
i + j − k ≤ n. So let (x′, y′) = (x∗, y∗) + (ei+j−k − ei − ej − fk).

Note that in either case (x′, y′) ∈ K(n, r) and ||(x′, y′)||1 < ||(x∗, y∗)||1. More-
over, since (π, ρ, πo) satisfy (F2) and (F3), in either case πx′+ρy′ ≤ πx∗+ρy∗ <
πo, which contradicts the choice of (x∗, y∗).

One condition that so far has not been mentioned is (N2), which is a nor-
malization condition like (N1). The following Lemma states that we are not
eliminating any nontrivial facets by making such an assumption.

Lemma 6. Let πx+ρy ≥ πo be a nontrivial facet-defining inequality of K(n, r),
that satisfies ρn = 0. Then πo > 0.
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Combining Lemmas 4-6 with some more technical observations it is possible to
prove Theorem 1. As a corollary of the theorem, we also make the following
observation:

Observation 3. Let (π, ρ, πo) be an extreme point of T , then for all k ∈ N :

�k/r� ≥ πk ≥ 0
�n/r� ≥ ρk ≥ − �k/r�

As a final remark, it is interesting to note that conditions (R1) do not appear
in the description of T even though they are necessary for any valid inequality.
This happens because conditions (R1) are implied by (F1), (F2) and (F3). We
formally state this fact in the next observation:

Observation 4. Let (π, ρ, πo) ∈ T . Then:

jπi + iρj ≥ 0, ∀1 ≤ i, j ≤ n

2.2 Facets of K(n, 0)

Observe that LK(n, 0), the linear relaxation of K(n, 0), is a cone and is
pointed (as it is contained in the nonnegative orthant) and has a single ex-
treme point (x, y) = (0, 0). Therefore LK(n, 0) equals its integer hull, i.e.,
LK(n, 0)=K(n, 0). In Lemma 3, we characterized the extreme rays of K(n, r)
and thereby showed that the characteristic cone of K(n, r) is generated by
the vectors {rij}. But the characteristic cone of K(n, r) for some r > 0 is
just K(n, 0). Therefore, LK(n, 0) is generated by the vectors {rij}, and the
next result follows.

Theorem 5. The inequality πx + ρy ≥ πo is facet defining for K(n, 0) if and
only if (π, ρ, πo) is a minimal face of

To =
{

jπi + iρj ≥ 0 , ∀i, j ∈ N,
πo = 0.

In his work on the MCGP, Gomory also studied the convex hull of non-zero
integral solutions in P (n, 0) and gave a dual characterization of its facets. We
now consider a similar modification of K(n, 0) and study the set:

K̄(n, 0) = conv

{
(x, y) ∈ Z

n
+ × Z

n
+ :

n∑

i=1

ixi −
n∑

i=1

iyi = 0, (x, y) 
= 0

}

By an analysis similar to the case where r > 0, it is possible to prove the following
theorem:
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Theorem 6. The inequality πx + ρy ≥ πo defines a nontrivial facet of K̄(n, 0)
if and only if it can be represented as an extreme point of T̄o, where T̄o is defined
by the following linear equations and inequalities:

πi + ρj ≥ πi−j , ∀i, j ∈ N, i > j, (F1)
πi + ρj ≥ ρj−i, ∀i, j ∈ N, i < j, (F1’)
πi + ρi = πo, ∀i ∈ N, (EP1-R0)

πo = 1, (N1-R0)
ρn = 0. (N2-R0)

2.3 Separating over K(n, r)

We finish this section by presenting the following theorem stating that sepa-
ration over K(n, r) can be done in polynomial time when r is bounded by a
polynomial function of n and pseudo-polynomial time otherwise. This theorem
is an immediate consequence of Theorems 1 and 5.

Theorem 7. Given (x∗, y∗) ∈ R
n × R

n, the problem of separating (x∗, y∗) from
K(n, r) can be solved in time polynomial in max{n, r}.
Proof. If 0 < r ≤ n, the separation problem can be solved in time polynomial
in n by first checking if (x∗, y∗) violates any nonnegativity constraint or the
constraint

∑n
i=1 ixi −

∑n
i=1 iyi = r and if not, solve:

min{(π, ρ, πo)T (x∗, y∗, 0) : (π, ρ, πo) ∈ T }

If there exists (π, ρ, πo) ∈ T such that (π, ρ)T (x∗, y∗) < 1, then πx + ρy ≥ πo

defines a hyperplane that separates (x∗, y∗) from K(n, r). Otherwise, (x∗, y∗)
is in the same affine subspace as K(n, r) and satisfies all nontrivial and trivial
facets of K(n, r), thus (x∗, y∗) ∈ K(n, r).

If r > n, then define (x′, y′) ∈ R
r × R

r such that x′
i = x∗

i ; y
′
i = y∗

i , ∀1 ≤ i ≤ n
and x′

i = y′
i = 0, ∀n < i ≤ r. and note that (x′, y′) ∈ K(r, r) ⇐⇒ (x∗, y∗) ∈

K(n, r), so the separation can be done in time polynomial in r.
In the case where r = 0, we can solve min{(π, ρ)T (x∗, y∗) : (π, ρ) ∈ To} and

we’ll know (x∗, y∗) ∈ K(n, 0) if and only if the optimum is 0. Otherwise, the
problem is unbounded, in which case the ray which proves unboundedness gives
us a valid inequality separating (x∗, y∗) from K(n, 0).

3 Lifting Facets of P (n, r)

Lifting is a general principle for constructing valid (facet defining) inequalities
for higher dimensional sets using valid (facet defining) inequalities for lower
dimensional sets. Starting with the early work of Gomory [9], this approach was
generalized by Wolsey [16], Balas and Zemel [3] and Gu et. al [17], among others.

In this section we discuss how facets of P (n, r) can be lifted to obtain facets
of K(n, r). P (n, r) can also be considered as an n−1 dimensional face of K(n, r)
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obtained by setting n variables to their lower bounds. Throughout this section
we assume that n > r > 0.

We start with a result of Gomory [9] that gives a complete characterization of
the nontrivial facets (i.e., excluding the non-negativity inequalities) of P (n, r).

Theorem 8 (Gomory [9]). Inequality π̄x ≥ 1 defines a non-trivial facet of
P (n, r) if and only if π̄ ∈ R

n−1 is an extreme point of

Q =

⎧
⎪⎪⎨

⎪⎪⎩

πi + πj ≥ π(i+j) modn ∀i, j ∈ {1, . . . , n − 1},

πi + πj = πr ∀i, j such that r = (i + j)modn,

πj ≥ 0 ∀j ∈ {1, . . . , n − 1},

πr = 1.

Given a non-trivial facet defining inequality for P (n, r)

n−1∑

i=1

π̄ixi ≥ 1 (4)

it is possible to lift this inequality to obtain a facet-defining inequality

n−1∑

i=1

π̄ixi + π′
nxn +

n−1∑

i=1

ρ′iyi ≥ 1 (5)

for K(n, r). We call inequality (5) a lifted inequality and note that in general
for a given starting inequality there might be an exponential number of lifted
inequalities, see [16].

3.1 The Restricted Coefficient Polyhedron T π̄

First note that a non-trivial facet of P (n, r) can only yield a non-trivial facet
of K(n, r). This, in turn, implies that (π̄, π′

n, ρ′, 0) has to be an extreme point
of the coefficient polyhedron T . Therefore, the lifting procedure can also be
seen as a way of extending an extreme point of Q to obtain an extreme point
of T .

Let p = (π̄, π′
n, ρ′, 0) be an an extreme point of T . Then, p also has to be an

extreme point of the lower dimensional polyhedron

T π̄ = T ∩
{

πi = π̄i, ∀i ∈ {1, . . . , n − 1}
}

obtained by fixing some of the coordinates.
Let L = {n − r + 1, . . . , n − 1}.

Lemma 7. If inequality (4) defines a non-trivial facet of P (n, r), then T π̄ 
= ∅
and it has the form
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T π̄ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ ≥ πn ≥ 0
ρk ≥ lk ∀ k ∈ L
ρk + πn ≥ tk ∀ k ∈ L
ρk − πn ≥ fk ∀ k ∈ L

πn + ρn−r = 1
ρn = 0
ρk = π̄n−k ∀k ∈ {1, . . . , n − r − 1}
πi = π̄i ∀i ∈ {1, . . . , n − 1}

where numbers lk, tk, fk and τ can be computed easily using π̄.

We next make a simple observation that will help us show that T π̄ has a small
(polynomial) number of extreme points.

Lemma 8. If p = (π̄, π′
n, ρ′, 0) is an extreme point of T π̄, then

ρ′k = max
{
lk, tk − π′

n, fk + π′
n

}

for all k ∈ L.

We next characterize the set possible values π′
n can take at an extreme point

of T π̄ .

Lemma 9. Let p = (π̄, π′
n, ρ′, 0) be an extreme point of T π̄, if π′

n 
∈ {0, τ}, then

π′
n ∈ Λ =

(
⋃

k∈L1

{
tk − lk, lk − fk

})
⋃

(
⋃

k∈L2

{
(tk − fk)/2

})

where L1 = {k ∈ L : tk + fk < 2lk} and L2 = L \ L1.

Combining the previous Lemmas, we have the following result:

Theorem 9. Given a non-trivial facet defining inequality (4) for P (n, r), there
are at most 2r lifted inequalities that define facets of K(n, r).

Proof. The set L in the proof of Lemma 9 has r − 1 members and therefore
together with 0 and τ , there are at most 2r possible values for π′

n in a facet
defining lifted inequality (5). As the value of π′

n uniquely determines the re-
maining coefficients in the lifted inequality, by Lemma 8, the claim follows.

Note that, in general determining all possible lifted inequalities is a hard task.
However, the above results show that obtaining all possible facet-defining in-
equalities lifted from facets of P (n, r) is straightforward and can be performed
in polynomial time. We conclude this section with a result on sequential lifting.

Lemma 10. If variable xn is lifted before all yk for k ∈ {n − r, . . . , n − 1}, then
independent of the rest of the lifting sequence the lifted inequality is

n−1∑

i=1

π̄ixi +
n−1∑

i=1

π̄n−iyi ≥ 1.
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4 Mixed Integer Rounding Inequalities

In this section we study MIR inequalities in the context of K(n, r). Our analysis
also provides an example that shows that lifting facets of P (n, r) cannot give
all facets of K(n, r). Throughout, we will use the notation x̂ := x − �x�. Recall
that, for a general single row system of the form:

{
w ∈ Z

p
+ :

∑p
i=1 aiwi = b

}

where b̂ > 0, the MIR inequality is:
p∑

i=1

(
�ai� + min

(
âi/b̂, 1

))
wi ≥ �b� .

We define the 1
t -MIR (for t ∈ Z+) to be the MIR inequality obtained from the

following equivalent representation of K(n, r):

K(n, r) =

{
(x, y) ∈ Z

n
+ × Z

n
+ :

n∑

i=1

(i/t)xi −
n∑

i=1

(i/t)yi = r/t

}
.

Lemma 11. Given t ∈ Z such that 2 ≤ t ≤ n, the 1
t -MIR inequality

n∑

i=1

(⌊
i

t

⌋
+ min

(
i mod t

r mod t
, 1

))
xi+

n∑

i=1

(
−

⌈
i

t

⌉
+ min

(
(t − i) mod t

r mod t
, 1

))
yi ≥

⌈r

t

⌉

is facet defining for K(n, r) provided that r/t 
∈ Z.

It is easy to check that if t > n, then the 1
t -MIR is not facet defining for K(n, r).

Moreover, note that if r/t ∈ Z, then the condition that b̂ > 0 is not satisfied, thus
the 1

t -MIR inequalities are not facet defining unless they satisfy the conditions
of Lemma 11.

By using the 1
t -MIR as an example, one can then show the following corollary:

Corollary 1. Not all facet-defining inequalities of K(n, r) can be obtained from
lifting facet-defining inequalities of P (n, r), for 0 < r ≤ n − 2, n ≥ 9

For r = n − 1, it is harder to say, since in this case all points in T automati-
cally satisfy all equations in Q. So every facet-defining inequality of K(n, r) can
be obtained by lifting a valid inequality for P (n, r) corresponding to a point in
Q. However, this point is not necessarily an extreme point of Q, and thus the
corresponding valid inequality is not necessarily a facet of P (n, r).

5 Mixed-Integer Extension

Consider the mixed-integer extension of K(n, r):

K ′(n, r) =

{
(v+, v−, x, y) ∈ R

2 × Z
2n : v+ − v− +

n∑

i=1

ixi −
n∑

i=1

iyi = r

}
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where n, r ∈ Z and n > r > 0. As with the mixed-integer extension of the
master cyclic group of Gomory studied by Gomory and Johnson [10], the facets
of K ′(n, r) can easily be derived from the facets of K(n, r) when r is an integer.

Proposition 1. All non-trivial facet defining inequalities for K ′(n, r) have the
form

π1v+ + ρ1v− +
n∑

i=1

πixi +
n∑

i=1

ρiyi ≥ π0. (6)

Furthermore, inequality (6) is facet defining if and only if πx + ρy ≥ πo defines
a non-trivial facet of K(n, r).

5.1 General Mixed-Integer Sets

Gomory and Johnson used facets of P (n, r) to derive valid inequalities for knap-
sack problems. In particular, they derived subadditive functions from facet co-
efficients via interpolation. We show here how to derive valid inequalities for
knapsack problems from facets of K(n, r).

Definition 2. Given a facet defining inequality πx + ρy ≥ πo for K(n, r), let
fz : Z ∩ [−n, n] → R be defined as:

fz(s) =

⎧
⎨

⎩

πs if s > 0
0 if s = 0

ρ−s if s < 0

We say f : [−n, n] → R where

f(v) = (1 − v̂)fz(�v�) + v̂fz(�v�)

is a facet-interpolated function derived from (π, ρ, π0).

Proposition 2. Let f be a facet-interpolated function derived from a facet of
K(n, r). Consider the set

Q =

{
(s, w) ∈ Rq

+ × Zp
+ :

q∑

i=1

cisi +
p∑

i=1

aiwi = b

}
,

where the coefficients of the knapsack constraint defining Q are rational numbers.
Let t be such that tai, tb ∈ [−n, n] and tb > 0. Then

f(1)
q∑

i=1

(tci)+si + f(−1)
q∑

i=1

(−tci)+si +
p∑

i=1

f(tai)wi ≥ f(tb)

where (α)+ = max(α, 0), is a valid inequality for Q.

6 Conclusion

We studied a generalization of the Master Cyclic Group Polyhedron and pre-
sented an explicit characterization of the polar of its nontrivial facet-defining
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inequalities. We also showed that one can obtain valid inequalities for a general
MIP that cannot be obtained from facets of the Master Cyclic Group Polyhe-
dron.

In addition, for mixed-integer knapsack sets with rational data and nonnega-
tive variables without upper bounds, our results yield a pseudo-polynomial time
algorithm to separate and therefore optimize over their convex hull. This can
be done by scaling their data and aggregating variables to fit into the Master
Equality Polyhedron framework.

Our characterization of the MEP can also be used to find violated Homoge-
neous Extended Capacity Cuts efficiently. These cuts were proposed in [15] for
solving Capacitated Minimum Spanning Tree problems and Capacitated Vehicle
Routing problems.

An interesting topic for further study is the derivation of “interesting” classes
of facets for the MEP, i.e., facets which cannot be derived trivially from facets
of the MCGP or as rank one mixed-integer rounding inequalities.
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A Framework to Derive Multidimensional

Superadditive Lifting Functions and Its
Applications�
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School of Industrial Engineering, Purdue University, 315 N. Grant Street,
West Lafayette, IN 47907-2023.

Abstract. In this paper, we present a systematic method to derive
strong superadditive approximations of multidimensional lifting func-
tions using single-dimensional superadditive functions. This constructive
approach is based on the observation that, in many cases, the lifting func-
tion of a multidimensional problem can be expressed or approximated
through the single-dimensional lifting function of some of its components.
We then apply our approach to two variants of classical models and show
that it yields an efficient procedure to derive strong valid inequalities.

1 Introduction

Lifting is the process of deriving valid inequalities for a complex mixed integer
program (MIP) from valid inequalities of a simple restriction. Lifting, in its com-
mon acception, was introduced by Padberg [15] and generalized by Wolsey [23].
It was used to study the polyhedral structure of many mixed integer programs
such as 0−1 knapsack sets (see Balas [4], Hammer et al. [11] and Wolsey [22])
and single node flow sets (see Gu et al. [9] and Atamtürk [1]). More importantly,
cutting planes obtained through lifting have been proven to be very effective at
reducing solution times for 0−1 MIPs; see Crowder et al. [7], Gu et al. [8] and
Van Roy and Wolsey [20]. As a consequence, lifted cuts generated from simple
substructures of MIPs have been implemented in various commercial software,
including CPLEX and X-Press.

Given a valid inequality (seed inequality) that is strong for the restriction of
a set of interest, lifting is typically implemented sequentially, i.e. fixed variables
are reintroduced into the inequality one at a time (or one group at a time).
Furthermore, to determine the lifting coefficient of a variable, it is necessary to
obtain an optimal solution of the lifting problem which is itself an MIP. Because
the lifting problems to be solved are different for each lifted variable, lifting
can rapidly become prohibitive. Nevertheless, when the lifting function of a seed
inequality is well-structured, lifting can be performed efficiently. In particular,
Wolsey [24], Gu et al. [10] and Atamtürk [3] showed that if the lifting function
of the seed inequality is superadditive, then all the lifting coefficients can be
obtained from the first lifting problem.
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There are various inequalities whose lifting functions are naturally superad-
ditive. Examples include some flow covers inequalities (see Gu et al. [10]), and
mixed integer cover inequalities for knapsack problems with a single continuous
variable (see Marchand and Wolsey [13]). However, most often, lifting functions
are not superadditive. In these cases, a superadditive lower approximation of the
exact lifting function can be used to generate strong cuts [3, 10]. This idea was
successfully used by Gu et al. [10] for 0−1 knapsack problems, by Gu et al. [9] and
Louveaux and Wolsey [12] for single node flow models, by Shebalov and Klabjan
[18] for mixed-integer programs with variable upper bounds and by Atamtürk
[2] for general mixed integer knapsack sets. We note however that the lifting
functions used in all of these cases are single-dimensional.

In one dimension, constructing a high-quality superadditive approximation of
a lifting function is typically difficult and verifying that it is superadditive is
often cumbersome. Although Atamtürk [3] proved that multidimensional super-
additive lifting functions yield sequence independent lifting for general MIPs, a
practical implementation of the idea seems to be difficult at first because in addi-
tion to the difficulties mentioned for single-dimensional problems, the derivation
of exact multidimensional lifting functions is difficult and the proof that approx-
imations are of good quality is hard. To the best of our knowledge, all but one
of the superadditive lifting functions that were investigated to date are single-
dimensional. The only exception is our study of the 0−1 knapsack problem with
disjoint cardinality constraints [26] where we derived provably strong superaddi-
tive approximations of the multidimensional lifting function of cover inequalities.
In [26], we observed that the high-dimensional exact lifting function of a minimal
cover inequality could be represented using a composition of lower-dimensional
exact lifting functions. We used this observation to build multidimensional su-
peradditive lifting functions from the known superadditive approximations of
the lower-dimensional lifting functions.

In this paper, we generalize these results to typical 0−1 MIP sets and propose
a framework to construct high-dimensional superadditive lifting functions us-
ing known lower-dimensional superadditive lifting functions. We also show how
this approach can be applied to variants of the knapsack and single node flow
models with additional constraints. In particular, we obtain with our approach
various families of strong inequalities for MIPs that are difficult to study using
traditional tools.

The paper is organized as follows. In Section 2, after briefly reviewing sequence
independent and superadditive lifting, we describe a way to represent /approx-
imate high-dimensional exact lifting functions of valid inequalities for 0−1 MIP
sets using the exact lifting functions of simpler 0−1 MIP sets. Then, we propose a
framework to construct high-dimensional superadditive approximations of lifting
functions using this representation. In Section 3, we apply our framework to the
precedence-constrained knapsack model (PCKP). In particular, we build strong
multidimensional superadditive lifting functions and derive strong lifted inequal-
ities. Similarly, in Section 4, we obtain a family of facet-defining inequalities for
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the single node flow model with disjoint cardinality constraints (SNFCC). In
Section 5, we give a conclusion and discuss future directions of research.

2 Constructing Multidimensional Superadditive Lifting
Functions

In this section, we first review basic results about lifting. Then, we give a method
to represent or approximate high-dimensional exact lifting functions using lower-
dimensional ones. Finally, we describe an approach to build high-dimensional
superadditive lifting functions that is based on the previous representation.

2.1 Lifting and Superadditive Lifting Functions

In this section, we briefly review lifting concepts and techniques. We focus on
0−1 MIP models in which the continuous variables have variable upper bounds.
The description for pure 0−1 integer program is simpler and can be obtained
similarly.

Let N = {1, . . . , n}. Consider S = {(x, y) ∈ {0, 1}n × R
n
+ : Ax + By ≤

d, yj ≤ ujxj , ∀j ∈ N}. We define PS to be the convex hull of S and define
PS(N0, N1) = conv{(x, y) ∈ S : xj = 0 ∀j ∈ N0, xj = 1 ∀j ∈ N1, yj = 0 ∀j ∈
N0, yj = uj ∀j ∈ N1}. We use a similar notation for pure 0−1 sets.

Assume that ∑

j∈N̂

αjxj +
∑

j∈N̂

βjyj ≤ α0 (1)

is a strong valid inequality for PS(N0, N1) with N̂ = N\(N0 ∪ N1). We wish
to reintroduce (lift) the fixed variables (xj , yj) for j ∈ N0 ∪ N1 into the seed
inequality (1). Without loss of generality, we denote N0 ∪ N1 = {1, . . . , n̂} and
assume that (x1, y1) is the first pair of variables to be lifted. Define l0 = l1 = 0
if (x1, y1) is lifted from (0, 0) and define l0 = 1 and l1 = u1 if (x1, y1) is lifted
from (1, u1). The inequality obtained through lifting is

∑

j∈N̂

αjxj +
∑

j∈N̂

βjyj + α1(x1 − l0) + β1(y1 − l1) ≤ α0 (2)

where α1 and β1 are chosen in such a way that

α1(x1 − l0) + β1(y1 − l1) ≤ f(A1(x1 − l0) + B1(y1 − l1)) (3)

for (x1, y1) ∈ {(s, t) ∈ {0, 1} × [0, ul] : t ≤ sul} and where

f(z) =min α0 −
∑

j∈N̂

αjxj +
∑

j∈N̂

βjyj

s.t.
∑

j∈N̂

(Ajxj + Bjyj) ≤ d − z, yj ≤ ujxj , ∀j ∈ N̂ .
(4)
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By sequentially applying the above lifting operation with respect to the variables
(x1, y1), . . . , (xn̂, yn̂), the seed inequality (1) is progressively converted into a
strong valid inequality for PS. It is proven in Nemhauser and Wolsey [14] that
if PS(N0, N1) is full-dimensional, (1) is facet-defining for PS(N0, N1) and (3)
is satisfied at equality by two new affinely independent solutions, then (2) is
facet-defining for PS(N0\{1}, N1) if lifted from (0, 0) or for PS(N0, N1\{1}) if
lifted from (1, u1).

Usually f(z) in (4) is referred to as the exact lifting function (or lifting func-
tion) of the seed inequality (1). As we mentioned in Section 1, generating strong
cuts through sequential lifting is typically computationally intensive. Wolsey
[24], Gu et al. [10], and Atamtürk [3] showed that if the lifting function f is su-
peradditive, i.e. f(z1)+f(z2) ≤ f(z1 +z2) for z1, z2, z1 +z2 in the domain of the
lifting function, then lifting coefficients are independent of the lifting sequence
and can be directly obtained from f . Since most lifting functions are not super-
additive, superadditive lower approximations are often used to generate strong
cuts [10, 3]. We use the criteria of non-dominance and maximality proposed by
Gu et al. [10] to measure the strength of superadditive approximations.

2.2 Representation of High-Dimensional Lifting Function

In this section, we give a representation of high-dimensional lifting functions
of given seed inequalities using low-dimensional lifting functions. Although the
method does not always describe the high-dimensional lifting functions exactly,
it has two advantages. First, it significantly reduces the difficulties associated
with describing high-dimensional exact lifting functions. Second, it can be used
to derive a superadditive approximation of the initial high-dimensional function
using superadditive approximation of the lower-dimensional lifting functions.

An intuitive explanation of our scheme is as follows. When a new constraint is
introduced into the initial constraint matrix, it forces some variables to become
0 or 1. If these variables are known, we can use the lifting function associated
with the initial set of constraints to represent or approximate the exact lifting
function of the new system.

Consider PS = conv{x ∈ {0, 1}n : Ax ≤ b} with A = {A1, . . . , An} ∈ R
m×n

and b ∈ R
m. Let

∑
j∈N̂ πjxj ≤ π0 be a valid inequality for PS(N\N̂, ∅) and

denote its lifting function by f . Assume now that the constraint
∑

j∈N pjxj ≤
bm+1 is added to A and denote the augmented constraint matrix by A′. Then,
define f ′ to be the lifting function based on A′. Clearly, f : R

m → R and
f ′ : R

m+1 → R. Note that, the objective functions of the lifting problems defining
f and f ′ are identical. It is also clear that f(z) = f ′( z

−∞
)

for z ∈ R
m.

Proposition 1. Let j∗ ∈ N̂ and assume that x̂ is an optimal solution to f ′(z
p

)
.

(i) If x̂j∗ = 0, then

f ′
(

z

p

)
≥ max{f(z − Aj∗) + πj∗ , f(z)}; (5)
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(ii) If x̂j∗ = 1, then

f ′
(

z

p

)
≥ max{f(z + Aj∗) − πj∗ , f(z)}. (6)

�

The conclusion of Proposition 1 is very general since it is independent of the
structure of the 0−1 set and of the seed inequality. It is helpful because in many
lifting functions of 0−1 sets with multiple constraints, it is easy to determine the
variables that are forced to 0 or 1 by the addition of a constraint. In such cases,
we can derive a representation of f ′ for all

(
z
p

)
∈ R

m+1. Furthermore, we observe
that the expressions of Proposition 1 can be recursively used to approximate
complicated situations. For example, if {x1, x2} are forced to 0 and 1 respectively
at

(
z
p

)
in an optimal solution to f ′, then we can write f ′(z

p

)
≥ max{f(z − A1 +

A2)+π1−π2, f(z−A1)+π1, f(z+A2)−π2, f(z)}. We also observe that in various
types of multidimensional lifting functions, the inequalities in (5) and (6) can
be proven to be satisfied at equality, i.e. we can use the low-dimensional lifting
functions through (5) and (6) to represent the high-dimensional lifting functions
exactly; see Zeng and Richard [26] for a proof in the case of cover inequalities
for knapsack problems with disjoint cardinality constraints.

The situation for general mixed integer program is more difficult than that
presented in Proposition 1. Next, we generalize these results to describe the
effect on the lifting function of adding constraints to mixed integer sets of the
flow type, which form an important class of MIPs.

Consider PS = conv{(x, y) ∈ R
n
+ ×{0, 1}n : Ax+By ≤ d, yj ≤ ujxj , ∀j} with

A = {A1, . . . , An}, B = {B1, . . . , Bn} ∈ R
m×n. Let

∑
j∈N̂ αjxj +

∑
j∈N̂ βjyj ≤

α0 be a valid inequality for PS(N0, N1) and denote its lifting function by g.
Assume that the constraint

∑
j∈N pjxj ≤ dm+1 is added to [AB] and denote the

augmented constraint matrix by [A′B]. Then, define g′ to be the lifting function
based on [A′B].

Proposition 2. Let j∗ ∈ N\(N0 ∪ N1) and assume that (x̂, ŷ) is an optimal
solution to g′

(
z
p

)
.

(i) If x̂j∗ = 0, then

g′
(

z

p

)
≥ max{g(z − Aj∗ − Bj∗uj∗) + αj∗ + βj∗uj∗ , g(z)}; (7)

(ii) If x̂j∗ = 1, then

g′
(

z

p

)
≥ max{g(z + Aj∗ + Bj∗ ŷj∗) − αj∗ − βj∗ ŷj∗ , g(z)}. (8)

where ŷj∗ is the value of the ith element of ŷ. �

Note that Proposition 2 can also be applied recursively to approximate more
complicated situations.
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2.3 A Framework to Build Multidimensional Superadditive
Functions

In this subsection, we propose a constructive framework to build
high-dimensional superadditive lifting functions from lower-dimensional ones.
This framework is composed of a general scheme that can be enhanced by sev-
eral simple rules. These rules can be used alone or in combination to create new
superadditive lifting functions.

First observe that f ′ and g′ in Proposition 1 and Proposition 2 contain forms
such as f(z − Aj∗) + πj∗ and g(z − Aj∗ − Bj∗uj∗) + αj∗ + βj∗uj∗ . In Theo-
rem 1, we show how to find superadditive approximations for a generalization
of these forms and show how to combine them to obtain a multidimensional
superadditive approximation of the lifting function. We first generalize the con-
cept of superadditivity. Let ϕ : R

m1 	−→ R
m2 . We say that ϕ is non-decreasing

if ϕ(x) ≥ ϕ(y) when x ≥ y for x, y ∈ R
m1 . We say that ϕ is superadditive if

ϕ(x) + ϕ(y) ≤ ϕ(x + y) for all x, y ∈ R
m1 .

Theorem 1. Let π1 : R
m1 	−→ R, π2 : R

m1 × R
m2 	−→ R, and π3 : R

m1 ×
R

m2 	−→ R
m1 be superadditive functions over their domains, and assume that

π1(0) = π2(0,0) = 0 and π3(0,0) = 0. Assume that π1 is non-decreasing. The
function κ : R

m1 × R
m2 	−→ R defined as

κ(x, y) = π1(x + π3(x, y)) + π2(x, y) (9)

is superadditive over R
m1 ×R

m2 with κ(0,0) = 0. Furthermore, if π2 and π3 are
non-decreasing, then κ is non-decreasing. �

Next, we present several simple rules to compose superadditive functions. Rule 1
presents a way to extend an existing superadditive function to a larger domain.
Rule 2 and Rule 3 are adapted from Nemhauser and Wolsey [14].

Rule 1. Let π1(x) : D1 ⊆ R
m1 → R be a superadditive function. Let y ∈

R
m1\D1. Then, the function

κ(x) =
{

π1(x), if x ∈ D1
sup{π1(x1) + π1(x2) : x = x1 + x2, x1, x2 ∈ D1, }, if x = y

is superadditive over D1 ∪ {y}. �

Assume now that γi : R
m 	−→ R are superadditive functions for i = 1, 2.

Rule 2. The function κ defined as κ(x) = min{γ1(x), γ2(x)} is superadditive
over R

m. �

Rule 3. The function κ defined as κ(x) = γ1(x) + γ2(x) is superadditive over
R

m. �

In Section 3 and in Section 4, we show how to apply Theorem 1 and Rules 1−3 to
build strong multidimensional superadditive lifting functions for specific MIPs.
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3 Superadditive Lifting Functions for 0−1 PCKP

Let N = {1, . . . , n} and 0 ≤ aj ≤ b for j ∈ N . The precedence-constrained
knapsack model is defined as

XPCKP = {x ∈ {0, 1}n :
∑

j∈N

ajxj ≤ b, xt(i) ≤ xh(i), i = 1, . . . , r} (10)

where t(i) �= h(i) for i = 1, . . . , r. We denote the convex hull of XPCKP as PPCKP

and the convex hull of the classical knapsack set as PKP .
Precedence-constrained knapsack problems arise frequently in planning,

scheduling and project management. The polyhedral structure of PCKP has
been studied by various authors; see Boyd [6], Park and Park [17], van de Leensel
et al. [19] and Boland et al. [5]. In particular, van de Leensel et al. [19] proved
that lifting minimal induced cover inequality is a NP-hard problem in general.
In this section, we focus on deriving strong inequalities from minimal cover in-
equalities of the knapsack constraint using superadditive lifting functions. Note
that precedence constraints are one of the many additional features that we can
incorporate into the lifting function using the framework we proposed in Sec-
tion 2. Another variant of knapsack problem, the 0−1 knapsack problem with
disjoint cardinality constraints was studied in Zeng and Richard [25, 26]. These
papers are the roots of the results of Section 2.

For the traditional 0−1 knapsack polytope PKP , we say that a set C ⊆ N is
a cover if

∑
j∈C aj > b. Furthermore, we say that a cover C is minimal if, for all

j ∈ C, C\{j} is not a cover. Given a minimal cover C, the cover inequality
∑

j∈C

xj ≤ |C| − 1 (11)

is facet-defining for PKP (N\C, ∅).
We now use cover inequality (11) to derive strong valid inequality for PPCKP .

To simplify the exposition, we assume in this paper that the precedence con-
straints are organized into s disjoint paths such that xji,1 ≥ · · · ≥ xji,|Ni|

where Ni = {ji,1, . . . , ji,|Ni|} is the ith path. It is not restrictive to assume
that N = N1 ∪ · · · ∪ Ns since path can have length one. Furthermore, because
the precedence constraint structure of any PCKP problem can be relaxed into a
set of disjoint paths, our results are applicable to the general case.

Define i[j] to be the index of the path xj belongs to, i.e. j ∈ Ni[j]. Also
denote C ∩Ni = Ci for i = 1, . . . , s and define F (j) for j ∈ N\C to be the set all
ancestors of xj in its path. We next present necessary and sufficient conditions
for (11) to be strong for PPCKP .

Proposition 3. Let C be a minimal cover. The cover inequality (11) is facet-
defining for PPCKP (N\C, ∅) if and only if Ci = {ji,1} or Ci = ∅ for i =
1, . . . , s. �
Next, we describe how to lift minimal cover inequality. First observe that the
lifting of variables in a given path is fixed because of the precedence constraints.



A Framework to Derive Multidimensional Superadditive Lifting Functions 217

In fact, when lifting xj from 0 to 1, all the ancestors of j are forced to 1 because
of the precedence constraints. Based on this observation and using Theorem 1
and Rule 1, we can easily derive a multidimensional superadditive lifting func-
tion using the single-dimensional superadditive approximation θ of the lifting
function for a minimal cover inequality proposed in Gu et al. [10]. We denote
this multidimensional function by φ

(
z
v

)
with (z, v) ∈ [0, b]×D where D = {0, 1}s.

Proposition 4. The function

φ

(
z

v

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ(z) if v = 0
θ(z) if v = ei and Ci = ∅
max{θ(z + aji,1) − 1, θ(z)} if v = ei and Ci = {ji,1}

sup
v=

∑
k∈V ek,z=

∑
k∈V zk, zk≥0 ∀k

{
∑

k∈V

φ

(
zk

ek

)
} if v /∈ {0, e1, . . . , es}

for (z, v) ∈ [0, b]×D is a valid superadditive approximation of the lifting function
of (11) that is non-dominated and maximal. �

In the next theorem, we present the lifted cover inequality for PPCKP that can
be obtained using the multidimensional superadditive lifting function φ.

Theorem 2. Assume that C is a minimal cover from the knapsack constraint
of PPCKP that satisfies the condition of Proposition 3, then

∑

j∈C

xj +
∑

j∈N\C

[
φ

(
p+

j + aj

ei[j]

)
− φ

(
p+

j

ei[j]

)]
xj ≤ |C| − 1. (12)

with p+
j =

∑
k∈F (j)\Ci[j]

ak is a valid inequality for PPCKP . �

Note that the inequality (12) can be derived very efficiently since the function
θ (and therefore the function φ) is known in closed form. Next, we show in
Example 1 that (12) is strong by comparing it to the lifted cover inequality
obtained using the single-dimensional superadditive lifting function θ from [10].

Example 1. Let

S = {x ∈ {0, 1}8 : 8x1 + 7x2 + 6x3 + 4x4 + 6x5 + 6x6 + 5x7 + 8x8 ≤ 22,

x6 ≤ x5 ≤ x2, x8 ≤ x7 ≤ x2}.

The cover inequality x1 +x2 +x3 +x4 ≤ 3 is facet-defining for PS({5, 6, 7, 8}, ∅).
Using the traditional single-dimensional superadditive lifting function of the

cover inequality, we obtain the following lifted inequality

x1 + x2 + x3 + x4 + 0.5x5 + 0.5x6 + x8 ≤ 3. (13)

We now show that we can obtain a stronger inequality using the precedence
structure. First, as illustrated in Figure 1, we relax the precedence constraints
into two disjoint paths. We then apply the results of Proposition 4 to obtain the
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multidimensional superadditive approximation φ
(

z
v

)
for (z, v) ∈ [0, b]×{0, e1}×

{0, e2} that is illustrated in Figure 2. The solid line in Figure 2 shows the exact
lifting function and the doted line describes the superadditive approximation.
Lifting the variables x5, x6, x7 and x8, we obtain α5 = φ

( 6
e1

)
= θ(13) − 1 =

1, α6 = φ
(12

e1

)
− φ

( 6
e1

)
= θ(19) − θ(13) = 1, α7 = φ

( 5
e2

)
= θ(5) = 0, α8 =

φ
(13
e2

)
− φ

( 5
e2

)
= θ(13) − θ(5) = 2. Therefore, the lifted cover inequality is

x1 + x2 + x3 + x4 + x5 + x6 + 2x8 ≤ 3. (14)

which clearly dominates (13). �

X7X8

X6 X5

X2

X7X8

X6 X5 X2

Fig. 1. Relaxing the precedence structure into disjoint paths

(a) φ
(

z
0

)
= φ

(
z

e2

)
= θ(z) (b) φ

(
z

e1

)
= φ

(
z

e1+e2

)

Fig. 2. Exact lifting function and superadditive approximation

4 Superadditive Lifting Functions for SNFCC

The single node flow model is a relaxation of numerous logistics, transportation
and telecommunication network design problems. Research on single node flow
model is very extensive; see Padberg et al. [16], Van Roy and Wolsey [21] and
Gu et al. [9, 10] among many others. In this paper, we consider a variant of this
model with disjoint cardinality constraints. It is defined as

XSNFCC = {(x, y) ∈ {0, 1}n × R
n
+ :

∑

j∈N

yj ≤ b, yj ≤ ajxj , ∀j ∈ N,

∑

j∈Ni

xj ≤ Ki, i = 1, . . . , r}

where a1 ≥ · · · ≥ an > 0, Ki ≥ 1 for i = 1, . . . , r, Ni ∩ Nj = ∅ if i �= j and
N = N0 ∪ · · · ∪ Nr.
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We denote the convex hull of SNFCC as PSNFCC. Again, cardinality con-
straints are one of the side constraints that can easily be incorporated into the
lifting function in our scheme and help us illustrate our multidimensional lifting
approach. A flow cover is a set C ⊆ N such that

∑
j∈C aj − b = λ > 0. Let

C+ = {j ∈ C : aj > λ}. The corresponding flow cover inequality is
∑

j∈C

yj +
∑

j∈C+

(aj − λ)(1 − xj) ≤ b. (15)

It is proven in Nemhauser and Wolsey [14] that this valid inequality is facet-
defining for PSNF (N\C, ∅). Gu et al. [10] studied the problem of lifting (15) and
proved that the lifting function ψ(z) of (15) is superadditive over [−λ, +∞).
Therefore, the lifting of variables (xj , yj) for j ∈ N\C is sequence independent
because aj > 0 for j ∈ N . We generalize these results for the cardinality con-
strained cases. For the sake of brevity, we consider here the most general case
where C is not a subset of Ni for i = 0, . . . , r. Next, we present a set of sufficient
conditions under which (15) is strong for PSNFCC.

Proposition 5. The flow cover inequality (15) is facet-defining for
PSNFCC(N\C, ∅) if |C ∩ Ni| ≤ Ki for i = 1, . . . , r. �

Define now C ∩ Ni = Ci, iM ∈ argmax{aj : j ∈ Ci, j ∈ C+} and im ∈
argmin{aj : j ∈ Ci, j /∈ C+}. Also, assume that Ci = {ji,1, . . . , ji,|Ci|} with
aji,1 ≥ · · · ≥ aji,|Ci| . To distinguish it from the traditional lifting function ψ of
the flow cover, we refer to the lifting function of the flow cover inequality with
the consideration of cardinality constraints as Ψ

(
z
v

)
for v ∈ D

′ = {0, e1, . . . , er}.
There are three nontrivial cases that we need to consider to approximate Ψ as a
function of ψ using Proposition 2.

Theorem 3. The lifting function Ψ
(

z
v

)
for (z, v) ∈ R+ ×D

′ is Ψ
(

z
0

)
= ψ(z) and

(i) if Ci ⊆ C+, then

Ψ

(
z

ei

)
≥

{
ψ(z) if |Ci| ≤ Ki − 1,
max{ψ(z − aiM ) + λ, ψ(z)} if |Ci| = Ki.

(16)

(i) if Ci ∩ C+ = ∅ and Ci �= ∅, then

Ψ

(
z

ei

)
≥

{
ψ(z) if |Ci| ≤ Ki − 1,
max{ψ(z − aim) + aim , ψ(z)} if |Ci| = Ki.

(17)

(iii) if Ci � C+ and Ci ∩ C+ �= ∅, then

Ψ

(
z

ei

)
≥

{
ψ(z) if |Ci| ≤ Ki − 1,
min{ψ1(z), ψ2(z)} if |Ci| = Ki

(18)

where ψ1(z) = max{ψ(z − aiM ) + λ, ψ(z)} and ψ2(z) = max{ψ(z − aim) +
aim , ψ(z)}. �
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In fact, we can further prove that (16)-(18) are satisfied at equality. Then, we
use Theorem 1, Rule 1 and Rule 2 to verify that Ψ is naturally superadditive.

Theorem 4. The function Ψ
(

z
v

)
defined as

Ψ

(
z

v

)
=

⎧
⎪⎨

⎪⎩

Ψ
(

z
v

)
if v ∈ D

′

sup
{z=

∑
s
i=1 zi, zi≥0 ∀i}

{
s∑

i=1

Ψ

(
zi

ei

)
} if v /∈ D

′ (19)

is superadditive over [0, b]×D where D = [0, b]×{0, . . . , K1}×· · ·×{0, . . . , Kr}. �
It follows from Theorem 4 that we can apply sequence independent lifting to
obtain the lifted flow cover inequality

∑

j∈C

yj +
∑

j∈C+

(aj − λ)(1 − xj) +
∑

j∈N\C

(αjxj + βjyj) ≤ b. (20)

To derive the coefficients αj and βj for j ∈ N\C, we define Aj =
∑j

h=1 ah

for j = 1, . . . , n and A0 = 0. Also, we let s+ = |C+|. In Theorem 5, we present
the lifting coefficients for the lifted flow cover inequality using Ψ

(
z
v

)
. We do not

list here the results for the case where Ci � C+ and Ci ∩ C+ �= ∅ because the
expressions for lifting coefficients are similar but more complicated.

Theorem 5. Inequality (20) is facet-defining for PSSNFCC if (αj , βj) ∈ Hj for
j ∈ N\C where Hj is defined as follows when j ∈ Ni:

(i) When (1) i = 0, or (2) |Ci| ≤ Ki − 1, or (3) |Ci| = Ki and aiM = a1.
If aj ≤ a1 − λ, we Hj = {(0, 0)}. Otherwise, let l = argmax0≤h≤s+{aj ≥
Ah − λ} and define Hj = {(0, 0)} ∪ H1

j ∪ H2
j with

H1
j = {(λ(k − 1) − λ(Ak − λ)

ak
,

λ

ak
) : k = 2, . . . , l}

and

H2
j =

⎧
⎨

⎩

∅ if aj = Al − λ
{(lλ − Al, 1)} if Al − λ < aj ≤ Al or aj > As+

{(lλ − ajρ, ρ)} if aj < As+ and Al < aj < Al+1 − λ

where ρ = λ
aj+λ−Al

.
(ii) When |Ci| = Ki and Ci ⊆ C+.

If aj ≤ aiM −λ, define Hj = {(0, 0)}. Otherwise, let l = argmax1≤h≤s+{aj ≥
min{Ah − λ, Ah−1 + aiM − λ}} and define Hj = {(0, 0)} ∪ H1

j ∪ H2
j with

H1
j = {(λ(k − 1) − λ(min{Ak, Ak−1 + aiM } − λ)

min{Ak, Ak−1 + aiM } − min{Ak−1, Ak−2 + aiM } ,

λ

min{Ak, Ak−1 + aiM } − min{Ak−1, Ak−2 + aiM } ) : k = 2, . . . , l}

and H2
j is equal to (5) with Al replaced by min{Al, Al−1 + aiM }.
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(iii) When |Ci| = Ki and Ci ∩ C+ = ∅.
If 0 < aj ≤ aim + a1 − λ, define Hj = {0,

aim

max{aj ,aim}}. Otherwise, let
l = arg max1≤h≤s+{aj ≥ Ah + aim − λ} and define A+

j = Aj + aim for
j = 1, . . . , s+ and Hj = {(0,

aim

aim+a1−λ )} ∪ H1
j ∪ H2

j with

H1
j = {((k − 1)λ + aim − λ(Ak − λ + aim)

ak
,

λ

ak
) : k = 2, . . . , l}

and

H2
j =

⎧
⎨

⎩

∅ if aj = A+
l − λ

{(lλ − Al, 1)} if A+
l − λ < aj ≤ A+

l or aj > A+
s+

{(lλ + aim − ajρ
+, ρ+)} if aj < A+

s+ and A+
l < aj < A+

l+1 − λ

where ρ+ = λ
aj+λ−A+

l

. �

We note that part (i) of Theorem 5 is identical to Theorem 9 in [10]. However,
Theorem 5 in general yields stronger coefficients as illustrated in Example 2.

Example 2. Let

S = {(x, y) ∈ {0, 1}8 × R
8
+ : y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 ≤ 24,

y1 ≤ 9x1, y2 ≤ 7x2, y3 ≤ 6x3, y4 ≤ 3x4,

y5 ≤ 2x5, y6 ≤ 2x6, y7 ≤ 3x7, y8 ≤ 12x8,

x6 + x7 + x8 ≤ 1}.

The flow cover inequality

6∑

j=1

yj + (9 − 5)(1 − x1) + (7 − 5)(1 − x2) + (6 − 5)(1 − x3) ≤ 24

based on C = {1, 2, 3, 4, 5, 6} is facet-defining for PS({7, 8}, ∅) since λ = 5.
In Figure 3, we show the multidimensional lifting function Ψ and the single-

dimensional function ψ. If we use the single-dimensional lifting function ψ, we
obtain the inequalities

6∑

j=1

yj + 4(1 − x1) + 2(1 − x2) + (1 − x3) +

⎧
⎨

⎩

0
− 20

7
−6

⎫
⎬

⎭ x8 +

⎧
⎨

⎩

0
5
7
1

⎫
⎬

⎭ y8 ≤ 24.

Using the results of Theorem 5(iii), we obtain

6∑

j=1

yj +4(1−x1)+2(1−x2)+1(1−x3)+
2
3
y7 +

{
0

−3

}
x8 +

{ 1
3
5
6

}
y8 ≤ 24. (21)

All the inequalities represented by (21) are facet-defining for the convex hull
of S. �
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(a) Ψ
(

z
0

)
= ψ(z) (b) Ψ

(
z
1

)

Fig. 3. Superadditive lifting function Ψ

5 Conclusion

In this paper we propose a novel approach to construct multidimensional su-
peradditive lifting functions and apply it to study two variants of classical MIP
models. This approach is based on the observation that it is usually possible
to represent high-dimensional lifting functions using lower-dimensional lifting
functions. The approach we propose is systematic, constructive and the multi-
dimensional superadditive lifting functions obtained yield strong inequalities for
models in which a direct lifting approach would have been difficult. In particular,
we obtained multidimensional superadditive lifting functions for the precedence-
constrained knapsack model and for the single node flow model with disjoint
cardinality constraints. For these models, we presented a set of cutting planes
that are stronger than those obtained from the knapsack or flow constraint only.
To the best of our knowledge, our framework is the first attempt to construct
multidimensional superadditive lifting functions.

We are currently generalizing the procedure to generate more complicated
multidimensional superadditive lifting functions for unstructured MIPs with
multiple constraints. We are also considering several more general MIP models
that have practical significance in transportation and network design. Finally,
we are currently carrying an empirical evaluation of the cutting planes produced
by the multidimensional lifting techniques presented in this paper.
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Abstract. During the last decades, much research has been conducted
deriving classes of valid inequalities for single-row mixed integer pro-
gramming polyhedrons. However, no such class has had as much practical
success as the MIR inequality when used in cutting plane algorithms for
general mixed integer programming problems. In this work we analyze
this empirical observation by developing an algorithm which takes as in-
put a point and a single-row mixed integer polyhedron, and either proves
the point is in the convex hull of said polyhedron, or finds a separating
hyperplane. The main feature of this algorithm is a specialized subroutine
for solving the Mixed Integer Knapsack Problem which exploits cost and
lexicographic dominance. Separating over the entire closure of single-row
systems allows us to establish natural benchmarks by which to evaluate
specific classes of knapsack cuts. Using these benchmarks on Miplib 3.0
instances we analyze the performance of MIR inequalities. Computations
are performed in exact arithmetic.

Keywords: cutting plane algorithms, integer programming.

1 Introduction

Consider positive integers n, m and let d ∈ Q
m, D ∈ Q

m×n, l ∈ {Q ∪ {−∞}}n

and u ∈ {Q ∪ {+∞}}n. Let I ⊆ N := {1, . . . , n} and consider the mixed integer
set:

P = {x ∈ R
n : Dx ≤ d, l ≤ x ≤ u, xi ∈ Z, ∀i ∈ I}.

We say that a mixed integer knapsack set of the form,

K = {x ∈ R
n : ax ≤ b, l ≤ x ≤ u, xi ∈ Z, ∀i ∈ I}

with b ∈ Q, a ∈ Q
n is implied by P if (a, b) is a non-negative linear combination

of rows obtained from (D, d). Observe that if K is implied by P , then P ⊆ K.
Hence, any inequality which is valid for K is also valid for P . We henceforth call
such inequalities knapsack cuts derived from K.

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 225–239, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Deriving strong knapsack cuts is of great practical importance to Mixed Inte-
ger Programming (MIP). In fact, most cutting planes known for general mixed
integer programming are knapsack cuts. For example, Gomory Mixed Integer
cuts [19,28] are knapsack cuts derived from the tableaus of linear programming
relaxations, and Lifted Cover Inequalities [12,23] are knapsack cuts derived from
the original rows of P . Other classes of knapsack cuts include mixed-integer-
rounding (MIR) cuts and their variations [11,26,28], split cuts [10], lift-and-
project cuts [4], and group cuts [15,20] – to name but a few.

In this paper we discuss an empirical methodology for evaluating sub-classes
of knapsack cuts. Formally, consider P as defined above, c ∈ Q

n, and C a set of
valid inequalities for P . Define,

z∗(C) = min{cx : Dx ≤ d, l ≤ x ≤ u, πx ≤ πo ∀(π, πo) ∈ C}.

Observe that the value z∗(C) defines a benchmark by which to evaluate classes
of cuts that are subsets of C. For example, consider a family of implied knapsack
sets K and let CK represent the set of all knapsack cuts which can be derived from
some set K ∈ K. Likewise, let MK represent the set of all MIR inequalities which
can be derived from some set K ∈ K. Given that MK ⊆ CK it is easy to see that
z∗(CK) ≥ z∗(MK) and that the proximity of these two values gives an indication
of the strength of MIR inequalities derived from that particular family K.

In our computational experiments we will consider two specific families of
implied knapsack sets: The set F of all formulation rows of P ; and, given a
basic solution of the simplex algorithm, the set T of all tableau rows.

Boyd [8] and Yan and Boyd [30] compute z∗(CF ) for a subset of pure and
mixed 0-1 instances in MIPLIB 3.0 [7]. Fischetti and Lodi [18] extend this result
by computing z∗(CA), where A is the set of all implied knapsack polyhedra, for
a similar test set of pure 0-1 problems.

In this paper we compute the values z∗(CF ) and z∗(CT ) for a larger subset
of MIPLIB 3.0 instances, including general mixed integer problems. We compare
these values to estimates of z∗(MF ) and z∗(MT ) (i.e., the bounds obtained by us-
ing MIR inequalities) and attempt to address the well acknowledged observation
that it is difficult to identify classes of knapsack inequalities which systematically
outperform the MIR inequality in broad test sets. Recently, Dash and Günlük [15]
also try to analyze this issue in terms of cuts from the cyclic group problem.

The organization of this paper is as follows. In the next section, we discuss how
to solve the problem of separating over a single mixed integer knapsack set. This
methodology described requires the use of a subroutine for solving the mixed
integer knapsack problem. An algorithm for solving this problem is discussed in
Sect. 3. Computational results are presented in Sect. 4, while final remarks and
a discussion ensues in Sect. 5.

2 Identifying Violated Knapsack Cuts

Consider x∗ ∈ R
n and a mixed integer knapsack set K. In this section we address

the following questions: Is x∗ ∈ conv(K)? If not, can we find an inequality
πx ≤ πo which is valid for K, and such that πx∗ > πo?
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We assume that K has no free variables, since it is easy to substitute a free
variables by two non-negative variables. Let {x1, x2, . . . , xq} and {r1, r2, . . . , rt}
represent the extreme points and extreme rays of conv(K). The following propo-
sition, which follows from the work of Applegate et. al [1], allows us to address
this question.

Proposition 1. Consider the following linear programming (LP) problem with
variables u, v, π ∈ R

n, and πo ∈ R:

LP1 : min
n∑

i=1
(ui + vi)

s.t.
πxk − πo ≤ 0 ∀k = 1 . . . q (C1)
πrk ≤ 0 ∀k = 1 . . . t (C2)
πx∗ − πo = 1 (C3)
π + u − v = 0 (C4)
u ≥ 0, v ≥ 0.

If this problem is infeasible, then x∗ ∈ conv(K), and thus there exists no knap-
sack cut violated by x∗. Otherwise, this problem admits an optimal solution
(u, v, π, πo) such that inequality πx ≤ πo is a valid knapsack cut maximizing:

πx∗ − πo

||π||1

That is, the hyperplane defined by (π, πo) maximizes the L1 distance to x∗.

Because LP1 has an exponential number of constraints, we use a dynamic cut
generation algorithm to solve the problem. We begin with constraints (C3)−(C4)
and a subset of constraints (C1) − (C2). The cut generation algorithm requires
solving the problem max{πx : x ∈ K} at each iteration. If this problem is
unbounded at any given iteration, then there exits an extreme ray rj of conv(K)
such that πrj > 0. That is, we have identified a violated constraint. If this
problem is not unbounded, then there exists an optimal solution corresponding
to an extreme point xk of conv(K). If πxk > πo then we have found a violated
constraint. Otherwise, it means that all constraints of the problem are satisfied.
Solving the oracle problem is discussed in Sect. 3.

Notice that in general, it is not possible to assure that the solution of max{πx :
x ∈ K} given by the oracle will correspond to an extreme point or ray of
conv(K). However, constraints (C1) − (C2) can be re-defined in terms of all
points/rays of K without affecting the correctness of Proposition 1. Even though
this would result in an infinite number of constraints, under very mild assump-
tions [17], the dynamic cut generation algorithm will still converge in a finite
number of iterations.

In order to speed up the solution of LP1 we make use of certain characteriza-
tions of violated knapsack cuts.

Let K = {x ∈ R
n : ax ≤ b, l ≤ x ≤ u, xi ∈ Z, ∀i ∈ I}. We may assume

without loss of generality [21] that the bound constraints are tight. Say that a
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knapsack cut for K is trivial if it is implied by the linear programming relaxation
of K. A proof of the following result concerning non-trivial knapsack cuts can
be found in Atamtürk [3].

Proposition 2. Every non-trivial facet-defining knapsack cut πx ≤ πo of
conv(K) satisfies the following properties:

(i) If ai > 0, πi ≥ 0
(ii) If ai < 0, πi ≤ 0
(iii) πi = 0 for all i /∈ I such that ai > 0 and ui = +∞.
(iv) πi = 0 for all i /∈ I such that ai < 0 and li = −∞.
(v) There exists a constant α > 0 such that πi = αai for all i /∈ I such that

ai > 0 and li = −∞, and for all i /∈ I such that ai < 0 and ui = +∞.

The following result concerning violated and non-trivial knapsack cuts is a simple
generalization of a technique employed in Boyd [8].

Proposition 3. Consider x∗ /∈ conv(K). Let H+ = {i ∈ N : ai > 0, x∗
i = li}

and H− = {i ∈ N : ai < 0, x∗
i = ui}. If there does not exist a trivial inequality

separating x∗ from conv(K), then there exists a knapsack cut πx ≤ πo such that
πi = 0, ∀i ∈ H+ ∪ H−.

We make use of Propositions 2 – 3 in the following way: We restrict the signs
of coefficients according to Proposition 2 items (i) and (ii). Coefficients πi with
i = 1, . . . , n which can be assumed to be zero are eliminated from LP1. Further,
a single variable is used for all coefficients πi with i = 1, . . . , n for which we
know that πi = αai. Note that this last reduction is equivalent to aggregating
the unbounded continuous variables into a single variable.

Two other techniques are used to speed up the separation process. The first
one uses the fact that MIR inequalities are knapsack cuts. With that in mind,
we first apply an MIR separation heuristic to try to find violated knapsack cuts
and only use the above separation procedure if the MIR heuristic fails.

The other technique relies on the following simple observation. Let U = {i ∈
N : x∗

i = ui} and L = {i ∈ N : x∗
i = li}. If we define,

K∗ = K ∩ {x : xi = ui ∀i ∈ U} ∩ {x : xi = li ∀i ∈ L},

we know that x∗ ∈ conv(K) iff x∗ ∈ conv(K∗). Thus, answering the question:
“Is x∗ ∈ conv(K)?” can be done in a space of usually much smaller dimension
by testing instead if x∗ ∈ conv(K∗).

If our test shows that x∗ ∈ conv(K∗), we are done with the separation since
we know that in this case x∗ ∈ conv(K). However, if x∗ /∈ conv(K∗) we still need
to get a cut separating x∗ from conv(K) and thus we have to run our separation
algorithm in the original space. Notice, however, that if x∗ /∈ conv(K∗), our
separation algorithm will return a cut separating x∗ from conv(K∗), so one
could potentially lift this cut to obtain a cut separating x∗ from conv(K). We
have not implemented this feature yet, but we expect that it will significantly
speed up our algorithm.

To summarize, we outline the complete algorithm below:
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Algorithm 1. Outline of knapsack separation process

Input: x∗ and K
Output: x∗ ∈ conv(K) or a cut separating x∗ from conv(K)

begin
Run the MIR separation heuristic
if cut found then

return the MIR cut separating x∗ from conv(K)
else

Apply Propositions 1 and 2 to simplify LP1

Solve LP1 in a reduced space to separate x∗ from conv(K∗)
if x∗ ∈ conv(K∗) then

return x∗ ∈ conv(K)
else

Solve LP1 in the original variable space to separate x∗ from conv(K)

end

3 Solving the Mixed Integer Knapsack Problem

In this section we are concerned with the problem of solving the Mixed Integer
Knapsack Problem (MIKP),

max{cx : x ∈ K} (1)

We will assume that the problem is feasible, and are interested in either (a)
proving that the problem is unbounded by finding an extreme ray r∗ of conv(K),
or (b) computing the optimal value of the problem by finding the optimal solution
x∗ ∈ K.

Variants of MIKP have long been studied in the research literature. In these
it is typically assumed that all coefficients defining the problem are integer, that
all variables must take integer values (i.e. no continuous variables are allowed),
and that li = 0 for all i = 1, . . . , n. In addition: In the Knapsack Problem (KP)
ui = 1 for all i = 1, . . . , n, in the Bounded Knapsack Problem (BKP) ui < ∞
for all i = 1, . . . , n, and in the Unbounded Knapsack Problem (UKP) ui = ∞
for all i = 1, . . . , n. Most modern algorithms for solving KP, BKP, and UKP are
based either on branch and bound (following the work of Horowitz and Sahni
[24]) and on dynamic programming (following the work of Bellman [6]). However,
the most efficient codes seldom make explicit use of Linear Programming and in
addition, they never consider the use of both integer and continuous variables.
For excellent surveys describing the rich literature on this topic, the reader is
advised to consult Kellerer et al [25] and Martello and Toth [27].

While it is reasonable to expect that many of these algorithms could be
adapted for solving our general case with a mix of continuous, integer, bounded
and unbounded variables, the fact that they are designed to work with integer co-
efficients raises certain concerns with regards to the application discussed in this
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paper. In fact, part of our motivation is to study the efficacy of cuts derived from
tableau rows. However, these rows are rarely are made up of integer coefficients,
and whats more, they are typically very ill conditioned. Thus, scaling them so
as to obtain integers may result in extremely large numbers. Considering this
important shortcoming, and the need to further study these algorithms in order
to account for the mixed use of bounded, unbounded, continuous and integer
variables, our approach has been to pursue an LP-based branch and bound ap-
proach, which seems naturally suited to mixed integer programming problems.
This issue, however, is one which merits further research. In what follows we
describe our algorithm for solving MIKP.

Detecting Unbounded Solutions

For each i ∈ 1, . . . , n define the efficiency of variable xi as ei = ci/ai if ai 
= 0,
as ei = +∞ if ai = 0 and ci > 0, and as ei = −∞ if ai = 0 and ci < 0. In
addition, we say that xi is a potentiator if,

(ai ≤ 0, ci > 0, ui = +∞) or (ai ≥ 0, ci < 0, li = −∞).

We say that xi is an incrementor if,

(ai > 0, ci > 0, ui = +∞) or (ai < 0, ci < 0, li = −∞).

We say that xi is a decrementor if,

(ai > 0, ci ≥ 0, li = −∞) or (ai < 0, ci ≤ 0, ui = +∞).

By identifying a potentiator, or instead, by identifying the most efficient in-
crementor and the least efficient decrementor, it is possible to easily establish if
a problem is unbounded, as shown by the following Proposition:

Proposition 4. MIKP is unbounded if and only if one of the following condi-
tions hold,

• MIKP admits a potentiator xj .
• MIKP admits an incrementor xi and a decrementor xj such that ei > ej.

Note that Proposition 4 implies that it can be determined if MIKP is unbounded
in linear time. Note also that once the potentiator, or instead, the incrementor
and decrementor have been identified, it is easy to construct an extreme ray of
conv(K).

Preprocessing

We consider the following four-step preprocessing algorithm (see [21],[29]) which
assumes the problem is not unbounded.

1. Fix to ui all variables xi such that ci ≥ 0 and ai ≤ 0. Fix to li to all variables
xi such that ci ≤ 0 and ai ≥ 0.
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2. Make all bounds as tight as possible.
3. Aggregate variables. If two variables xi, xj of the same type (integer or con-

tinuous) are such that ai = aj and ci = cj aggregate them into a new variable
xk of the same type such that ak = ai = aj , ck = ci = cj , lk = li + lj and
uk = ui + uj.

4. Sort variables in order of decreasing efficiency. Break ties checking for vari-
able types (integer or continuous).

Branch and Bound

We use a depth-first-search branch and bound algorithm which always branches
on the unique fractional variable. We use a simple linear programming algorithm,
a variation of Dantzig’s algorithm [13] , which runs in linear time by taking ad-
vantage of the fact that variables are sorted by decreasing efficiency. We do not
use any cutting planes in the algorithm, nor any heuristics to generate feasi-
ble solutions. The algorithm uses variable reduced-cost information to improve
variable bounds at each node of the tree.

Domination

Consider x1 and x2, two feasible solutions of MIKP. We say that x1 cost-
dominates x2 if cx1 > cx2 and ax1 ≤ ax2. On the other hand, we say that
x1 lexicographically-dominates x2 if cx1 = cx2 and ax1 ≤ ax2, and if in addi-
tion, there exists i ∈ 1, . . . , n such that x1

i < x2
i and x1

k = x2
k, ∀k ∈ 1, . . . , (i−1).

We say that a solution is dominated if it is cost-dominated or lexicographically-
dominated. Observe that there exists a unique non-dominated optimal solution
(or none at all).

Traditional branch and bound algorithms work by pruning nodes when (a)
they are proven infeasible, or (b) when it can be shown that the optimal solution
in those nodes has value worse than a bound previously obtained. In our imple-
mentation, we additionally prune nodes when (c) it can be shown that every
optimal solution in those nodes is dominated.

Using dominance to improve the branch and bound search can have an im-
portant impact on the effectiveness of the search. In fact, lexicographic and cost
dominance allow us to disregard feasible solutions that are not the unique lexi-
cographically smallest optimum solution, hence significantly reducing the search
space.

In general, the problem of detecting if a solution is dominated can be ex-
tremely difficult. In what follows we describe a simple methodology for identify-
ing specific cases of domination.

Consider indices i, j ∈ I, and non-zero integers ki, kj . If aiki + ajkj ≥ 0 and
ciki+cjkj < 0 we say that (i, j, ki, kj) defines an integer cost-domination tuple. If
ki ≥ 0, aiki +ajkj ≥ 0 and ciki + cjkj = 0 we say that (i, j, ki, kj) defines an in-
teger lexicographic-domination tuple. Observe that whenever (ci, ai) and (cj , aj)
are linearly independent there exist an infinite amount of cost-domination pairs.
Likewise, there exist an infinite amount of lexicographic-domination tuples in
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the linear dependence case. However, in each case, there always exists a minimal
domination tuple. That is, a domination tuple (i, j, ki, kj) such that all other
domination tuples (i, j, k′

i, k
′
j) defined for the same variables, satisfy |ki| ≤ |k′

i|
and |kj | ≤ |k′

j |. The propositions below show how domination tuples allow for
the easy identification of dominated solutions.

Proposition 5. Consider an integer cost-domination tuple (i, j, ki, kj) and let
x be a feasible MIKP solution. If any of the following three conditions hold:

• ki > 0, kj > 0, xi ≥ li + ki and xj ≥ lj + kj,
• ki < 0, kj > 0, xi ≤ ui + ki and xj ≥ lj + kj,
• ki < 0, kj < 0, xi ≤ ui + ki and xj ≤ uj + kj.

Then x is cost-dominated.

Proposition 6. Consider an integer lexicographic-domination tuple (i, j, ki, kj)
and let x be a feasible MIKP solution. If either of the following conditions hold:

• kj > 0, xi ≥ li + ki, and xj ≥ lj + kj,
• kj < 0, xi ≥ li + ki, and xj ≤ uj + kj,

then x is lexicographically-dominated.

To see that these propositions are true, it is simply a matter of observing that if
the conditions hold for a feasible x, then defining x′ so that x′

i = xi − ki, x′
j =

xj − kj and x′
k = xk for k 
= i, j, we have x′ is feasible and dominates x.

The following propositions illustrate how domination tuples can be used to
strengthen branch and bound algorithm. This is achieved by preventing nodes
with dominated solutions from being created through additional enforced bound
changes.

Proposition 7. Consider two integer type variables xi and xj and a domination
tuple (i, j, ki, kj) such that ki > 0. If in some node of the branch and bound tree
we impose xi ≥ li + αi, where αi ≥ ki, then:

• If kj > 0 we can impose the constraint xj ≤ lj + kj − 1 in that node.
• If kj < 0 we can impose the constraint xj ≥ uj + kj + 1 in that node.

The case ki < 0 is analogous.
In order to use the above propositions in the branch and bound algorithm

we compute what we call a domination table before initiating the solve. This
table is defined as a list of all possible (minimal) domination tuples. Observe
that we only need store domination tuples (i, j, ki, kj) such that |ki| ≤ (ui − li)
and |kj | ≤ (uj − lj). In order to compute domination tuples we perform a simple
enumeration algorithm which uses bounds to identify where to start and stop
the enumerations.
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Fig. 1. Histogram comparing KBB algorithm with CPLEX

4 Computational Experiments

In this section, our computational experiments are described. All implementa-
tions were compiled using the “C” and “C++” programming languages, using
the Linux operating system (v2.4.27) and Intel Xeon dual-processor computers
(2GB of RAM, at 2.66GHz). Since generating cuts which are invalid is a real
point of concern, we found it appropriate to use the exact arithmetic, both for
solving LP1, and for the MIKP oracle. Thus, we used Applegate et al. [2] exact
LP solver for LP1, and the GNU Multiple Precision (GMP) Arithmetic library
[22] to implement the MIKP algorithm.

4.1 The Optimization Oracle

We first compare the performance of our MIKP algorithm (“kbb”) with the
performance of CPLEX 9.0 (“cpx”), the only alternative for MIKP we know of
to date. Note that CPLEX was ran with all its default settings, except for the
tolerance, which was set to 10−6. Note also that our MIKP algorithm was ran
using double floating arithmetic, with a tolerance of 10−6.

In our first implementation of the separation algorithm we had incorporated a
version of kbb which did not use domination branching. We quickly realized that
this algorithm was not efficient enough. When running this version of the code,
we saved all problems which took our algorithm more than 2.0 seconds to solve.
These are the 1,556 problems that we now use to compare cpx with the full version
of kbb. It is important to note that by the nature of the way these instances were
generated, there might be some of instances that are very similar to each other.

In Fig. 1 we present a histogram summarizing the running times of kbb and
cpx. Each point in the curves represents the number of instances which were
solved within a given maximum time. For instance, note that the number of
instances solved to optimality by kbb within a second is roughly 1150, whereas
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the number of instances solved to optimality by cpx is roughly 700. Note that
the time is represented in logarithmic scale. Further, observe that the hardest
instance for kbb takes several hundred seconds – roughly ten times less than the
hardest instance for cpx.

It is clear from this histogram that the kbb algorithm outperforms cpx in
the instance set. Note that this does not necessarily mean that kbb solves every
instance faster than cpx, but rather, that cumulatively, kbb performs better.
In fact, on average, kbb takes 81% less time than cpx, and explores 37.5% less
branch-and-bound nodes. Moreover, in 49 instances, CPLEX fails to find the
optimum solution since it runs out of memory after creating too large a branch
and bound tree.

4.2 Knapsack Cuts

We next use an implementation of the algorithms presented in Sect. 2 and Sect.
3 to compare the practical performance of MIR cuts against the performance of
separating all possible knapsack cuts. As detailed in Sect. 1, given a family K of
knapsack sets implied by P , such a comparison can be made by comparing the
values z∗(CK) and z∗(MK). In this article we only consider the set K = F , i.e.,
the family of knapsack sets induced by the original formulation rows, and the
set K = T , i.e., the family of knapsack sets induced by the simplex tableau rows
of the optimal LP solution for the original LP relaxation.

Computing z∗(MK) is NP-hard [9], so instead we approximate this value
using an MIR separation heuristic. Given a point x∗, for every K ∈ K we try to
find MIR inequalities that are violated by x∗. We add these inequalities to the
LP relaxation of P and repeat the process until no more MIR inequalities are
found. The MIR inequalities for each K are derived by a separation heuristic
which combines scaling and variable complementation techniques (for details see
[21], [26], and [14]). Denote by zKM the objective function value at the end of the
procedure. Since this is just a heuristic, after completing a run, there may be
violated MIR inequalities which have not been identified. Therefore zKM should
be considered an estimate of z∗(MK).

Note that though the MIR separation problem is NP-hard, one could use the
approaches of Balas and Saxena [5] or Dash, Günlük and Lodi [16] to better
approximate z∗(MK).

To compute z∗(CK), we proceed as follows. Given a fractional solution, we
loop through all of the mixed integer knapsack sets K ∈ K. For each of these
we invoke the procedure outlined in Sect. 2 and identify a violated cut if such
exists. After completing this loop we add the cuts to the problem and repeat.
The procedure ends when for every K we can prove that there is no violated
knapsack cut.

Computational tests are performed on all MIPLIB 3.0 instances using the
mixed integer knapsack sets K = F and K = T . For each problem instance let
z∗UB represent the value of the optimal (or best known) solution and z∗LP the
LP relaxation value. For each set K and each instance we compute the following
performance measures:
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LP-PERF: Performance of the original LP formulation. That is, the value of
the LP relaxation gap:

z∗UB − z∗LP

|z∗UB| .

KNAP-PERF: Performance of the knapsack cuts. That is, how much of the
LP gap was closed by the knapsack cuts:

z∗(CK) − z∗LP

z∗UB − z∗LP

.

MIR-PERF: Performance of MIR separation heuristic. That is, how much of
the LP gap closed by the knapsack cuts was closed by the MIR cuts:

zKM − z∗LP

z∗(CK) − z∗LP

Knapsack Cuts Derived from Formulation Rows

In this section we analyze the performance of knapsack and MIR inequali-
ties on formulation rows of MIPLIB 3.0 instances. Results are summarized in
Table 1. Of the 59 instances in the library, we eliminated eight instances which
were unfinished at the time of writing the article (arki001, cap6000, dano3mip,
harp2, mitre, mod008, pk1 and rout), three for which LP-PERF was equal to
0.0 (dsbmip, enigma, and noswot), and thirty two for which KNAP-PERF and
MIR-PERF were both equal to 0.0.

Table 1. Benchmarks for Formulation Closure

Instance LP-PERF KNAP-PERF MIR-PERF

fiber 61.55% 93.82% 97.06 %
gen 0.16% 99.78% 100.00 %
gesa2 1.18% 71.03% 98.48 %
gesa3 0.56% 49.33% 96.90 %
gt2 36.41% 94.52% 97.93 %
l152lav 1.39% 1.36% 0.41 %
lseu 25.48% 76.09% 88.25 %
mod010 0.24% 18.34% 100.00 %
p0033 18.40% 87.42% 87.31 %
p0201 9.72% 33.78% 100.00 %
p0282 31.56% 98.59% 95.42 %
p0548 96.37% 84.34% 62.76 %
p2756 13.93% 86.35% 51.49 %
qnet1 10.95% 89.06% 56.68 %
qnet1 o 24.54% 95.12% 88.65 %
rgn 40.63% 57.49% 100.00 %
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First, note that knapsack cuts alone can considerably close the remaining LP
gap in some problems (column KNAP-PERF). In fact, in 9 problems out of the
16 problems in which knapsack cuts improved the gap, over 84% of the gap was
closed, and in 14 out of 16 problems, over 50 % of the gap was closed. On average,
the GAP closed by the knapsack cuts among these 16 instances is around 71%.
It is interesting, however, that in thirty two instances knapsack cuts should do
nothing to improve the gap. If in addition we consider in our average the thirty
two instances for which KNAP-PERF is 0.0%, this drops to 23.66%.

Second, consider the column MIR in which we can get an idea of how well
the mixed integer rounding cut closure compares to the knapsack cut closure.
Observe that of the 16 problems, in 12 of them, by using the MIR cuts alone, we
close over 87% of the GAP closed by the knapsack cuts. This indicates that MIR
inequalities are a very important subset of knapsack inequalities; at least for the
instances considered. A natural question is the following: How much could we
improve the value of MIR-PERF if we used an exact MIR separation algorithm
as opposed to a heuristic? In an attempt to answer this question we fine-tuned
the settings of the MIR heuristic for the problems p0033 and qnet1. In these,
we managed to improve the value of MIR-PERF from 87.31% to 100% and from
56.68% to 77.27% respectively.

Knapsack Cuts Derived from Tableau Rows

In this section we analyze the performance of knapsack and MIR inequalities
on tableau rows of MIPLIB 3.0 instances. For this we compute z∗LP and store
the tableau rows in the set of knapsack polyhedra K = T , which we use for all
subsequent computations. Results are summarized in Table 2. Of the 59 instances
in the library, we eliminated thirty two instances which were unfinished at the
time of writing the article, three for which LP-PERF was equal to 0.0 (dsbmip,
enigma, and noswot), and two for which KNAP-PERF and MIR-PERF were
both equal to 0.0 (stein27 and stein45).

First, it is important to remark that separating knapsack cuts from tableau
rows is considerable more difficult than separating knapsack cuts from original
formulation rows. This is due to several reasons: Tableau rows are typically much
more dense, coefficients tend to be numerically very bad, and rows tend to have
a lot of continuous variables. This added difficulty is reflected in the fact that out
of 59 instances, in two days of runs we just managed to solve 24 instances to com-
pletion, as opposed to the 48 which we solved when considering formulation rows.

Second, it is interesting to note that the value KNAP-PERF is very erratic,
uniformly ranging in values from 100% to 0.0%. In contrast to the case of for-
mulation rows, only two instances are such that KNAP-PERF is 0.0%.

The last, and perhaps most startling observation, is that the MIR-PERF is
always at 100%, if not very close. If this result were true in general, it would
be very surprising. However, because there are still thirty two instances which
have not been solved one must be very careful. Because of the way in which we
computed these numbers, it could be the case that those instances with MIR-
PERF close to 100% are easier for our methodology to solve. It is very reasonable



On the Exact Separation of Mixed Integer Knapsack Cuts 237

Table 2. Benchmarks for Tableau Closure

Instance LP-PERF KNAP-PERF MIR-PERF

air03 0.38 % 100.00 % 100.00%
bell3a 1.80 % 60.15 % 100.00%
bell5 3.99 % 14.68 % 98.94%
dcmulti 2.24 % 50.49 % 99.94%
egout 73.67 % 55.33 % 100.00%
fixnet6 69.85 % 11.08 % 100.00%
flugpl 2.86 % 11.74 % 100.00%
gesa2 1.18 % 28.13 % 99.98%
gesa2 o 1.18 % 29.65 % 99.67%
khb05250 10.31 % 75.14 % 100.00%
misc03 43.15 % 7.24 % 100.00%
misc06 0.07 % 26.98 % 100.00%
misc07 49.64 % 0.72 % 100.00%
modglob 1.49 % 18.05 % 100.00%
p0033 18.40 % 74.71 % 100.00%
p0201 9.72 % 34.36 % 100.00%
pp08a 62.61 % 50.97 % 100.00%
qiu 601.15 % 3.47 % 100.00%
rgn 40.63 % 9.78 % 100.00%
set1ch 41.31 % 39.18 % 100.00%
vpm1 22.92 % 49.09 % 96.30%
vpm2 28.08 % 19.39 % 98.85%

to expect that instances with MIR-PERF well below 100% are more difficult to
solve as they require more iterations of the knapsack separation algorithm as
opposed to iterations of the MIR separation heuristic.

5 Final Remarks

It is important to note that these results are very preliminary. We put great
care into ensuring that the generated cuts are valid and that the procedure runs
correctly, but this makes the methodology very slow. For example, some of the
KNAP-PERF values computed took as much as 5 days to obtain. Some of the
unsolved instances have been ran for over a week without a final answer being
reported. We are currently developing further techniques by which these compu-
tations can be accelerated. Part of the difficulty arises from the fact that exact
arithmetic is being employed. In average, we have observed that performing ex-
act arithmetic computations take 100 times longer than floating point arithmetic
computations.

One of the main goals of this study has been to assess the overall effectiveness
of MIR inequalities relative to knapsack cuts. The motivation being the empirical
observation that though much research has been conducted studying inequalities
derived from single row systems, no such class of inequalities has been able
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to systematically improve upon the performance of MIRs. In this regard, the
results we present are surprising. We observe that in most test problems, the
bound obtained by optimizing over the MIR closure is very similar in value (if
not equal) to the bound obtained optimizing over the knapsack closure. Though
it is important to note that this observation is limited in the number of test
problems considered, it does help explain the lack of success in generating other
cuts from tableau and formulation rows, and, suggests that for further bound
improvements we might have to consider new row aggregation schemes, or cuts
derived from multiple row systems.
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Abstract.  We consider the problem of minimizing a submodular function f 
defined on a set V with n elements.  We give a combinatorial algorithm that 
runs in O(n5 EO + n6) time, where EO is the time to evaluate f(S) for some S ⊆ 
V.  This improves the previous best strongly polynomial running time by more 
than a factor of n. 

1   Introduction 

Let V = {1, 2, …, n}.  A set function f on V is said to be submodular if the following 
is true:  

f (X) + f (Y ) ≥ f (X ∪Y ) + f (X ∩Y )   for all subsets X,Y ⊆ V .  (1) 

Here we consider the problem of Submodular Function Minimization (SFM), that is, 
determining a subset S ⊆ V that minimizes f( ).  Our contribution is to develop a 
strongly polynomial time algorithm for SFM that improves upon the best previous 
time bounds by a factor greater than n. 

For a given subset X ⊆ V ,  let fX (Y ) = f (X ∪Y ) − f (X).  It is elementary and well 

known that for fixed X, the function fX( ) is submodular whenever f( ) is submodular. 
An equivalent way of defining submodularity is as follows. 

For all subsets X, Y of V, and for each element v ∉ (X ∪ Y), if X ⊆ Y then 
fY(v) ≤ fX(v). 

In this way, submodular functions model decreasing marginal returns, and are 
economic counterparts of concave functions.  Nevertheless, Lovasz [11] showed that 
they behave algorithmically more similarly to convex functions, and provided 
analysis on why this is true. 

Examples of submodular functions include cut capacity functions, matroid rank 
functions, and entropy functions.   For additional examples of submodular functions 
and for applications of SFM see McCormick [12], Fleischer [4], Fushishige [6], and 
Schrijver [14]. 

We assume without loss of generality that f(∅) = 0.  Otherwise, if f(∅) ≠ 0, we can 
subtract f(∅) from f(S) for all S ⊆ V.    

Grotschel, Lovasz, and Schrijver [7] and [8] gave the first polynomial time and 
strongly polynomial time algorithms for minimizing a submodular function.  Their 
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algorithms rely on the ellipsoid algorithm.  Schrijver [13] and Iwata, Fleischer, and 
Fujishige [10] independently developed strongly polynomial time combinatorial 
algorithms for minimizing a submodular function.  Both algorithms build on the work 
of Cunningham [1], who developed a pseudo-polynomial time algorithm for 
minimizing a submodular function.   

Let EO be the maximum amount of time it takes to evaluate f(S) for a subset S ⊆ V.  
EO stands for evaluation of the oracle function, as per McCormick [12].  In general, 
one expects EO to be at least n since the input size is Ω(n); however, this running time 
can sometimes be improved in an amortized sense if one is evaluating EO multiple 
times consecutively, as is done by many of the SFM algorithms including the one 
presented here. Let M be an upper bound on |f(S)| for all S ⊆ V. 

The running times of the algorithms of Schrijver [13] and Iwata, Fleischer, and 
Fujishige [10] were shown to be O(n8 EO + n9).  Fleischer and Iwata [5] improved the 
running time of the combinatorial algorithms to O(n7 EO + n8).  Vygen [15] showed 
that the running time of Schrijver’s original algorithm was also O(n7 EO + n8). 
Subsequently Iwata [9] developed a scaling based algorithm whose running time is 
O(n4 EO log M + n5 log M).  To date, the best strongly polynomial time combinatorial 
algorithm for SFM was the strongly polynomial version of Iwata’s algorithm, which 
runs in O((n6 EO + n7) log n) time. 

We present a new approach for solving submodular minimization.  As have 
previous approaches, our algorithm relies on expressing feasible points in the base 
polyhedron as a convex combination of extreme points.  However, our algorithm 
works directly with vectors of the base polyhedron rather than relying on an auxiliary 
network, or on augmenting paths, or on flows.    

We present a strongly polynomial time algorithm that runs in O(n5 EO + n6) steps, 
thus improving upon Iwata’s time bound by a factor of n log n.  This also improves 
upon the best strongly polynomial time implementation of the ellipsoid algorithm for 

SFM, which runs in  
�O(n5 EO + n7 ) as reported by McCormick [12], where 

 �O indicates that factors of log n may have been omitted from the time bound.   Most 
of the proofs in this manuscript are omitted.  A complete draft including the proofs is 
available on the author’s website. 

2   The Base Polyhedron 

For a vector | |Vx ∈ \ , let x(v) denote the v-th component.  We let ( )x v−  =  

min {0, x(v)}.  For a subset S ⊆ V, , we let x(S) = x(v).
v∈S∑  

The base polyhedron is 

( ) { | , ( ) ( ), : ( ) ( )}.nB f x x x V f V S V x S f S= ∈ = ∀ ⊆ ≤\  

A vector in B( f )  is called a base.  An extreme point of B( f ) is called an extreme 

base.  Edmonds 3 established the following duality theorem, which Cunningham 1 
used to develop a pseudo-polynomial time algorithm for SFM.  Subsequently all other 
efficient algorithms for SFM use the following duality theorem or a closely related 
result.  
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Theorem 1 (Edmonds).  For a submodular function : 2 .Vf → \   

max{x− (V ) : x ∈B( f )} = min{ f (S) :S ⊆ V}. (2) 

The function x− ( )  is not linear, and the optimizer of max{x− (V ) : x ∈B( f )} is 

not, in general, an extreme point of the base polyhedron.  The polynomial time 
algorithms in [9] and [10] proceed by representing vectors in the base polyhedron as a 
convex combination of extreme bases of the base polyhedron. 

An extreme base can be computed by the greedy algorithm of Edmonds and 
Shapley [3] as follows:  Let L = {v1, …, vn} be any linear ordering (permutation) of 
the elements of V.  In our notation, for each j, vj  is in the j-th position of the 
permutation.  The extreme base yL induced by L is obtained by letting  

yL(vj) = f({v1, …, vj}) – f({v1, …, vj-1}) for j = 1 to n. 

If P(j) = {v1, …, vj}, then we can also write yL(vj) = fP( j−1) (vj ) , which is the 

marginal contribution for f of adding vj to {v1, …, vj-1}. 

3   Distance Functions and Optimality Conditions  

A distance function is a mapping d :V → {0,1,...,n} . Each distance function d induces 

a linear order L(d) (denoted as  ≺ d ) of V as follows:  u p d v  if d(u) < d(v) or if d(u) = 

d(v) and u < v. The extreme base induced by the order L(d) will be denoted as yd.  
In the algorithm presented in Section 5, at each iteration of the algorithm, we will 

maintain a collection D of O(n) different distance functions of V, a vector x in the 
base polyhedron, and a vector λ. The vectors x and λ satisfy the following: 

x = λdd∈D∑ yd , λdd∈D∑ = 1, and λ ≥ 0.  (3) 

We also write this as x = λDyD, where yD = {yd : d ∈ D}.  We let Dmin(v) be 
shorthand for min{d(v) : d ∈ D}.  We say that the triple  (x, λ, D) is valid if the 
following is true: 

1. If x(v) < 0, then d(v) = 0 for all d ∈ D; 
2. d(v) ≤ Dmin(v) + 1 for all d ∈ D and v ∈ V;  

The algorithm will maintain a valid triple (x, λ, D) throughout all iterations.  
Sometimes, we will just say that the collection D of distance functions is valid. 

Definition. We say that the quadruple (D, λ, x, S) satisfies the optimality conditions if 
it satisfies (3) and if it satisfies (4–6). 

x(v) ≤ 0  for v ∈S  (4) 

x(v) ≥ 0  for v ∈V \ S  (5) 

and \ . for all ,  d w V Sv w d D v S ∈∈ ∈≺  (6) 



 A Faster Strongly Polynomial Time Algorithm for SFM 243 

We will also say that the triple (D, λ, x) satisfies the optimality conditions if there 
is a subset S ⊆ V such that (D, λ, x, S) satisfies the optimality conditions.  By (6), 
given any element d ∈ V, one can narrow the choice of S to n possibilities.   

Lemma 1 (Sufficiency of Optimality Conditions). If the quadruple (D, λ, x, S) for 
SFM satisfies the optimality conditions, then S is a minimum cost set, and x is an 
optimal base in the base polyhedron.  

Proof. By assumption, x is in the base polyhedron. Moreover, suppose without loss of 
generality that the elements are reordered so that S = {1, 2, …, |S| }. Then  

x− (V ) = x− (S) = x(S) = λdd∈D∑ yd (S) = λdd∈D∑ f (S) = f (S).  (7) 

Thus x− (V ) = f (S) , and by Theorem 1, S is optimal.                                            ♦ 

Lemma 2 (Existence of Optimality Conditions). If S is a minimum cost set for 
SFM, then there is a quadruple (D, λ, x, S) for SFM that satisfies the optimality 
conditions.  

Proof. Let x be an optimal base in the base polyhedron. Moreover, suppose without 
loss of generality that the elements are reordered so that S = {1, 2, …, |S| }. Then  

x− (V ) ≤ x− (S) ≤ x(S) = λdd∈D∑ yd (S) = λdd∈D∑ f (S) = f (S).  (8) 

Since x− (V ) = f (S),  it follows that  (D, λ, x, S) satisfies the optimality conditions.  

(We have not established that D is valid, but our algorithm will produce a valid D as 
well).                                                                                                                                   ♦ 

Definition. We say that the quadruple (D, λ, x, S) satisfies the partial optimality 
conditions if it satisfies (3) and if it satisfies (5) and (6). 

Lemma 3 (Partial Optimality Conditions).  If the quadruple (D, λ, x, S) for SFM 
satisfies the partial optimality conditions, then there is a minimum cost set S* ⊆ S.  

We first claim that if the partial optimality conditions are satisfied, then ∅ is an 
optimal set for fS among subsets of V\S.  If the claim is true then for any subset T of V,  

f(T) ≥ f(S∩ T) + f(S ∪ T) – f(S) = f(S ∩ T) + fS(T\S) ≥ f(S ∩ T). 

So, if the claim is true, then the Lemma is true.  We next prove the claim. 
For each d ∈ D, let ′yd  be the extreme base induced by d for the base polyhedron 

B(fS) defined over the set of elements u ∈ V\s, and let ′x = λd ′ydd∈D∑ .  We will 

show that for each d ∈ D and for each u ∈ V\S, ′yd (u) = yd (u) .  If this statement is 

true, it follows that x’(u) = x(u) for u ∈ V\S, and thus (D, λ, x’, ∅) satisfies the 
optimality conditions for fS over the set V\S and thus the claim is true. 

So, suppose that d ∈ D and u ∈ V\S.  Let P(d,u) = {v ∈V : v p d u}.   By (6), S ⊆ 

P(d, u). Thus 
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 ′yd (u) = fS (u + P(d,u) \ S) − fS (P(d,u) \ S)  

          = [ f (u + P(d,u)) − f (S)] − [ f (P(d,u)) − f (S)] = yd (u) . 

This establishes that the claim is true, and thus the lemma is true.                          ♦ 

We will also say that the triple (D, λ, x) satisfies the partial optimality conditions if 
there is a subset S ⊆ V such that (D, λ, x, S) satisfies the partial optimality conditions. 

A sufficient condition for the partial optimality conditions to hold for valid 
distance functions D is the presence of a distance gap at level k, which is value k with 
0 < k < n such that  

1. there is some v with Dmin(v) = k, and  
2. there is no u with Dmin(u) = k -1.   

By letting S = {u ∈ V with Dmin(u) < k}, it is easy to verify that (D, λ, x, S) will 
satisfy the partial optimality conditions.  In such a case, we will eliminate all elements 
in V\S from the problem.  It would be possible to maintain these elements if we 
wanted to determine an optimal base, but they are not needed if we just want to 
determine a minimum cost set. 

4   Distance Functions and Extreme Vectors 

Suppose that d is a distance function.  We let INC(d, v) be the distance function 
obtained by incrementing the distance label of v by 1 and keeping all other distance 
labels the same.  That is, if d’ = INC(d, v), then 

′d (u) =
d(v) + 1    if u = v

d(u)     if u ≠ v

⎧
⎨
⎩  .

 

Lemma 4. Suppose that d’ = INC(d, v).  Then  

1. y ′d (v) ≤ yd (v) , 

2. y ′d (u) ≥ yd (u)   if  u ≠ v. 

Proof. For each u ∈ V, let ( ) { : }.dP u w V w u= ∈ ≺  Let ( ) { : }.dP u w V w u′′ = ∈ ≺  

Note that u ∉ P(u), and u ∉ P’(u).  Then for all u ∈ V, ( ) ( )d dy u y u′ −
 

( ) ( )( ) ( ).P v P vf u f u′= −  

Since P(v) ⊆ ′P (v) , it follows from the submodularity of f that 

f ′P (v) (v) ≤ fP(v) (v) , and so y ′d (v) − yd (v) ≤ 0.  Similarly, for u ≠ v, ′P (u) ⊆ P(u) , 

and so fP(v) (u) ≤ f ′P (v ) (u) .                                                                                          ♦ 

For any subset S ⊆ V, We let d(S) = d(v)
v∈S∑ .  We will maintain the distance 

functions in D in non-decreasing order of d(V).   
For each v ∈ V, we will maintain a primary distance function p(v) ∈ D, which is 

the first element d of D such that d(v) = Dmin(v).   By the way that we ordered the 
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elements of D, the primary distance function for v will minimize d(V) among all 
d ∈ D with d(v) = Dmin(v).  In addition, for every v ∈ V, we will maintain a secondary 
distance function s(v) = INC(p(v), v).  Our algorithm modifies x by increasing λs(v) and 
simultaneously decreasing λp(v) for v ∈ V.  

We maintain the order of D, and the functions p(v) and s(v) for all v by running the 
Procedure Update as follows: 

 
Procedure Update(D, p, s) 
begin 
    D := {d : λd > 0}; 
    order the vectors in D in non-decreasing order of d(V); 
    for each v ∈ V, let p(v) be the first element of D with d(v) = Dmin(v); 
    for each v ∈ V, let s(v) = INC(p(v), v); 
end 

5   A Strongly Polynomial Algorithm for SFM 

In this section, we present the strongly polynomial time algorithm for SFM.  But first, 
we point out that occasionally the size of D grows too large and we want to decrease 
its size.  Accordingly, we run a procedure called Reduce(x, λ, D) to reduce the size of 
D without affecting the base vector x. 

Procedure Reduce(x,λ, D)   

INPUT:  a collection D of distance functions, a non-negative vector λ such that 

λdd∈D∑ = 1 .   Let x = λdd∈D∑ yd . 

OUTPUT:  a subset ′D ⊆ D and a vector ′λ  such that  
1. ′λdd∈ ′D∑ = 1 and  ′λ ≥ 0,  and x = ′λdd∈ ′D∑ yd  , and  

2. the set {yd : d ∈ ′D }  is linear independent. 

We will call the procedure when 3n ≤ |D| < 4n, and so the running time will be 
O(n3) using standard techniques from linear programming.  For details on how to 
carry out Reduce, see Schrijver [13] or McCormick [12].  

In the following procedure, let V0 = {v ∈ V : x(v) = 0}.  Let V+ = {v ∈ V : x(v) > 0}. 

Algorithm SFM 
begin 

d := 0;  
D = {d};  λd := 1;  x := yd;  
while the optimality conditions are not satisfied 
begin 

 choose an element v* ∈ V+; 
choose a vector γ  ≥ 0 with γ ≠ 0 so that 

γ (v)
v∈V 0 +v*∑ [ys (v) (u) − yp(v) (u)] = 0  for all u ∈ V0 ; 
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let ′x := γ (v)
v∈V 0 +v*∑ [ys(v) − yp(v ) ] ; 

choose α maximum so that  x(u) + α x’(u) ≥ 0 for all u ∈ V+, and  

α γ (u)
u:p(u )=d∑ ≤ λd for all d ∈ D; 

x := x + α ′x ;  

λd := λd + α γ (u)
u:s(u )=d∑ − α γ (u)

u:p(u )=d∑  for all d ∈ D ∪ {s(u): u ∈ V}; 

 Update(D, p, s); 
if |D| ≥ 3n, then Reduce(x, λ, D); 
if there is a distance gap at level k, then V := {v ∈ V : Dmin(v) ≤ k}; 

end while 
end 

The algorithm initializes by letting x = yd, where d(v) = 0 for all v ∈ V.  
Subsequently, the algorithm continues until the optimality conditions are satisfied. 

At each iteration, the algorithm selects a non-zero vector γ ≥ 0 with the property 
that one can modify x by increasing ys(v) by γ(v) and decreasing yp(v) by γ(v) for all v so 
that the following is true:  if x(v) = 0 prior to the modification, then x(v) = 0 after the 
modification. It is not obvious that such a vector γ exists.  We prove its existence in 
the next section, and show that it can be determined easily by solving a system of 
linear equations. 

Once we determine the vector γ, we modify λ and x.  After the modification, at 
least one of the following changes takes place: either V0 increases in size or there is 
some primary vector p(v) that leaves D because dp(v) = 0 after the modification.  In 
fact, α is chosen sufficiently large so that one of these two events occur and so that no 
element ever leaves V0, and so that any element leaving V+ must enter V0. 

We reduce the size of D whenever |D| ≥ 3n, and we eliminate elements from V 
whenever a distance gap is found. 

In Section 7, we will show that the algorithm terminates in O(n6) steps with an 
optimal set.  The proof of the time bound relies on a potential function argument. 

6   The Auxiliary Matrix and How to Choose γ 

In this section, we show how to choose γ by solving a system of at most n equations. 
One of the key steps of the algorithm is as follows:  choose a vector γ ≥ 0 with  

γ ≠ 0 so that  

γ (v)
v∈V 0 +v*∑ [ys(v) (u) − yp(v ) (u)] = 0  for all u ∈ V0; 

We consider two separate cases.   

Case 1.  γ(v*) = 0. 

In this case, we need to solve γ (v)
v∈V 0∑ [ys(v) (u) − yp(v ) (u)] = 0  for all u ∈ V0 ; 
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Case 2. γ(v*) = 1.  (We can always scale γ  so that this is true whenever γ(v*) ≠ 0).   

In this case, we need to solve γ (v)
v∈V 0∑ [ys(v) (u) − yp(v ) (u)] = yp(v*) (u) − ys(v*) (u)  

for all u ∈ V0.   
Suppose that the rows and columns of the constraint matrix are both indexed by the 

elements of V0.  Then the constraint matrices for Cases 1 and 2 are identical.  The 
right hand side b in Case 2 may be non-zero; however, by Lemma 4, b ≤ 0.   

We refer to the constraint matrix A* for Cases 1 and 2 as the auxiliary matrix.  By 
Lemma 4, the auxiliary matrix satisfies the following properties: 

6.1. A* is an | V0| × | V0| matrix. 
6.2. The diagonal elements of A* are non-positive. 
6.3. All non-diagonal elements of A* are non-negative. 
6.4. Each column sum of A* is non-positive. 

In the case that A* is invertible, it is the negative of what is known in the literature 
as an M-matrix, and thus the inverse of A* is non-positive.  See, for example, [1] for 
results on M-matrices. 

Theorem 2. Let A* be an auxiliary matrix. If A* is singular, then there is a vector 
w’ ≠ 0, such that w’ ≥ 0, and A*w’ = 0.  If A* is non-singular then (A*)-1 ≤ 0, and thus 
the solution to A*w’ = b is non-positive whenever b is non-negative.  

Proof. The second half of the theorem is well known.  The first half can easily be 
derived from [1], but we include a proof for completeness.  Suppose that A* is 
singular.  Choose w ≠ 0 so that Aw = 0.  If w ≥ 0, there is nothing to prove.  Similarly 
if w ≤ 0, then we can replace w by –w and there is nothing to prove.  So, suppose that 
there are k < n positive coefficients of w.  Without loss of generality assume that w(v) 
> 0 for v = 1 to k.  (Otherwise, one can simultaneously reorder the rows and columns 
so that this is true.)  

Let us write A* =
A11 A12

A21 A22

⎡

⎣
⎢

⎤

⎦
⎥ , where A11 denotes the first k rows and columns 

of A*. Let us rewrite w as w =
w1

w2

⎡

⎣
⎢

⎤

⎦
⎥ , where w1 denotes the first k components of w. By 

assumption, A11w1 + A12w2 = 0  and A11w1 + A21w2 = 0 . By 6.3, A12 ≥ 0. By 

assumption, w2 ≤ 0.  Therefore, A11w1 ≥ 0.  We will next show that A11w1 = 0. 
Let 1 denote a row vector of k ones.  Then 1A11 ≤ 0 by 6.3 and 6.4.  If 1A11 ≠  0, 

then 1A11w1 < 0, contradicting that A11w1 ≥ 0.  We conclude that 1A11 =  0. It follows 
that 1A11w1 = 0, which combined with A11w1 ≥ 0 shows that A11w1 = 0. In addition, by 
6.1c and 6.1d, A21 = 0. 

Finally, we extend w to a vector w’ of |V0| components by letting  

′w =
w1

0

⎡

⎣
⎢

⎤

⎦
⎥

.

 

Then Aw’ = 0, which is what we wanted to prove.                                                   ♦ 
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By Theorem 2, the solution for γ in cases 1 and 2 can both be found by solving a 
system of equations on the auxiliary matrix, which takes O(|V0|3) = O(n3) time.  
Moreover, the running time is faster when the auxiliary matrix only changes by q 
columns in an iteration.  In this case, the time to solve the system of equations at a 
given iteration is O(qn2). 

We note that occasionally a column of the auxiliary matrix is 0, in which case it is 
trivial to find a non-zero vector w’ with Aw’ = 0.  However, this speedup does not 
affect the worst case analysis. 

7   Proof of Correctness and Time Bound 

In this section we establish the correctness of the SFM algorithm and show that it runs 
in O(n5 EO + n6) time. 

We first establish that the following remain true throughout the execution of the 
algorithm: 

7.1. At each iteration, there is a set D of valid distance functions, an element x ∈ 
B(f) and a vector λ such that (3) is satisfied.   

7.2. If x(v) = 0 at some iteration, then x(v) = 0 at all subsequent iterations; 
7.3. Dmin(v) is non decreasing over all iterations for all v ∈ V. 
7.4. If x(v) < 0, then Dmin(v) = 0; 

Theorem 3. Conditions 7.1 to 7.4 are satisfied at each stage of the algorithm SFM. 

Proof. Conditions 7.1 to 7.4 are all satisfied immediately subsequent to the 
initialization.  Suppose inductively that they are satisfied at some iteration of the 
algorithm, and we consider what happens after some procedure is called. 

We first consider the procedure Reduce.  This procedure maintains (3) and 
eliminates a number of elements of D.  It is easy to verify that 7.1-7.4 remain true 
subsequent to the call of Reduce. 

Next, we consider eliminating elements when a distance gap is found.  This results 
in eliminating components from yd for all d and from x, and also changes the base 
polyhedron.  However, it is easy to see that 7.1 to 7.4 remain satisfied with respect to 
the new base polyhedron.   

Finally, we consider changes that occur in Procedure SFM.  When we modify λ, note 
that every increase in λs(v) is matched by a decrease in  λp(v).  For this reason, if 

λd = 1
d∈D∑ holds prior to modifying λ, it also holds afterwards.  Also, by our choice of 

α we modify λ in such a way that it is always non-negative, and so (3.1) is still satisfied.  
The solution to the system of linear equations yields a vector x’ with the property 

that x’(v) = 0 for all v ∈ V0.  So, 7.2 is true after we replace x by x + αx’.   
We next consider 7.3.  The only distance functions added to D are of the form s(v).  

If u ≠ v, then Dmin(u) is unchanged if s(v)  is added to D.  As for Dmin(v), the vector d = 
p(v) is chosen so that Dmin(v) = d(v).  Accordingly, if d’ = s(v), then d’(v) = Dmin(v) 
+1, and so 7.3 remains satisfied. 

7.4 also remains satisfied.  If x(v) < 0, then we do not create any distance functions 
with d(v) ≥ 1.  This completes the proof.                                                                      ♦ 
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Theorem 4. The SFM algorithm terminates with a set S that minimizes the 
submodular function and finds an optimum solution x in the base polyhedron.  The 
algorithm runs in O(n5 EO + n6) time. 

Prior to proving the main theorem, we state our potential function, and prove three 
lemmas.   

For v ∈ V, let h(v) = d(V), where d = p(v). Thus h(v) is the sum of the distances in p(v). 

Let 
 
�
h(v) = (d(u) − Dmin (u)

u∈V∑ ).   Since D is valid, it follows that ˆ0 ( )h v n≤ ≤  for 

all v ∈ V.  Moreover, min
ˆ( ) ( ) ( ).

v V
h v h v D v

∈
− =∑  

Let H(v) = {d ∈ D:  d(V) = h(v) and Dmin(v) = d(v)}.  Note that any distance 
functions in H(v) could have been chosen as a primary distance function for v if we 
had broken ties differently in ordering the elements of D.  

We define the potential function Φ   as follows: 

Φ(v) = H (v)  and Φ = Φ(v).
v∈V in∑  

The next two lemmas concern h(v) and H(v). 

Lemma 5. For each v ∈ V, the number of times that h(v) changes over all iterations of 
the algorithm is O(n2). 

Proof. We will actually bound the number of changes in ˆ( )h v .  Note that it is 

possible for h(v) to change while ˆ( )h v stays constant if Dmin(u) increases.  But the 

number of changes in Dmin( ) over all iterations is O(n2).  If the number of changes of 
ˆ( )h v is O(n2), then so is the number of changes of h(v). 

Recall that 0 ≤  
�
h(v)  ≤ n.  We first consider changes in 

�
h(v) in between successive 

changes in Dmin(v), and we refer to this set of iterations as a phase. The value  
�
h(v)  

cannot decrease during a phase unless Dmin(u) increases for some u ∈ V, in which case 

 
�
h(v)  can decrease by at most 1.  All other changes in h(v) during the phase are 

increases.  So the total number of changes in 
�
h(v)  is at most n plus the two times the 

number of increases in Dmin(u) for some u.  Suppose that we “charge” the latter 
changes in  

�
h(v)  to changes in Dmin.  In this case, the number of charged changes in 

 
�
h(v)  over all iterations is O(n2), and the number of other changes in ˆ( )h v  is at most n 

per phase.  So the number of changes in ˆ( )h v  is O(n2) over all phases.                      ♦ 

Lemma 6. The distance function s(v) ∉ H(u) for any u ∈ V. 

Proof. Let d = p(v), and let d’ = s(v).  We note that d’ ∉ H(v) because d’(V) = h(v) 
+ 1. So, we consider u ≠ v.  If Dmin(u)= d’(u), then Dmin(u) = d(u).  In this case h(u) ≤ 
d(V) < d’(V), and so d’ ∉ H(u).                                                                                     ♦ 

We next prove a lemma concerning the potential function Φ .  We note that Φ  
decreases at some iterations and increases at others.  By the total decrease in Φ  over 
all iterations, we mean the sum of the decreases in Φ  as summed over all iterations at 
which Φ  decreases.  We define total increase analogously. 
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Lemma 7. The total increase in Φ  over all iterations is O(n4), and the total decrease 
in Φ  over all iterations is also O(n4). 

Proof. Given that Φ  = O(n2), it suffices to show that the total increase over all 
iterations is O(n4) after which the O(n4) bound on the total decrease will follow.  

We first note that the only vectors that are added to D are vectors d = s(v) for some 
v ∈ V0.  By Lemma 6, these additions to D do not change the potential function (until 
p(v) is deleted from D).  The potential function changes only when one of the 
following two steps takes place: 

1. changes in H(v) while h(v) remains constant; 
2. changes in H(v) when h(v) also changes. 

By Lemma 6, each change in H(v) while h(v) remains constant can only result in a 
decrease in Φ(v).   So, we only need to bound increases in changes in Φ  when h(v) 

changes for some v.  
Each change in h(v) can lead to an increase of at most |D| = O(n) in Φ(v) .  By 

Lemma 5, there are O(n2) changes in h(v) for each v and thus the total increase in Φ  
over all iterations due changes in h( ) is O(n4).                                                             ♦ 

We are now ready to prove Theorem 4.  

Proof of Theorem 4. We first note that if the algorithm terminates, then it must 
terminate with an optimal solution since satisfying the optimality conditions is the 
only termination criterion. 

The bottlenecks of the algorithm are the following: 

1. Adding columns A(v) = s(v) – p(v) to the auxiliary matrix. 
2. Solving a system of equations A*w = b or A*w = 0; 
3. Reducing the number of columns in D via Procedure Reduce. 

We add a column to A(v) only when p(v) was deleted from D.  A deletion of p(v) 
for some v either leads to a change in h(v) or else it leads to a decrease in |H(v)|.  The 
former can happen O(n3) times by Lemma 5.  We now consider the latter case. 

Deleting a single element d = p(v) can result in several columns needing to be 
added to A*.  In particular, it is possible that d = p(u) for a subset U ⊆ V.  If d is 
deleted from D, then we need to replace |U| different columns of A*.  But in this case, 
deleting d from D reduces |H(u)| for all u ∈ U, and thus reduces Φ  by |U|.  We 
conclude that the number of columns added to A* is at most the total decrease in Φ  
over all iterations, which is O(n4) by Lemma  7. 

Thus the running time for adding columns to the auxiliary matrix is O(n5 EO) since 
determining the values for a column takes O(n EO) steps. For each column added to 
the auxiliary matrix, it takes O(n2) time to carry out elementary row operations to get 
A* into canonical form for solving the system of equations.  This takes O(n6) time 
over all iterations.  Thus the running time for adding columns to A* and carrying out 
elementary row operations is O(n5 EO + n6). 

We call the procedure Reduce when |D| ≥ 3n, and we eliminate at least 2n 
elements of D.  The running time is thus O(n3) for each call of Reduce.  Each distance 
function d that is deleted from D must have been added as a vector of the form s(v) at 
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some iteration, and this happens only O(n4) times.  Thus the total time to carry out 
Reduce is O(n6).   

We conclude that the total running time is O(n5 EO + n6) time.                              ♦ 

We have developed a strongly polynomial time algorithm for SFM that dominates 
previous strongly polynomial time algorithms by a factor greater than n.  Moreover, 
whereas other algorithms rely on the combinatorics of paths and flows, our algorithm 
relies on an iterative local search plus a combinatorial potential function argument. 
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Abstract. This note considers convex optimization problems over base
polytopes of polymatroids. We show that the decomposition algorithm
for the separable convex function minimization problems helps us give
simple sufficient conditions for the rationality of optimal solutions and
that it leads us to some interesting properties, including the equivalence
of the lexicographically optimal base problem, introduced by Fujishige,
and the submodular utility allocation market problem, introduced by
Jain and Vazirani. In addition, we develop an efficient implementation
of the decomposition algorithm via parametric submodular function min-
imization algorithms. Moreover, we show that, in some remarkable cases,
non-separable convex optimization problems over base polytopes can be
solved in strongly polynomial time.

Keywords: submodular functions, convex optimization.

1 Introduction

This note considers convex optimization problems over base polytopes of poly-
matroids, which is associated with monotone submodular functions. Submodular
functions appear in the systems of graphs and networks. Besides, they natu-
rally model economies of scale. In fact, convex optimization problems over base
polytopes have numerous applications. As a generalization of lexicographically
optimal flow introduced by Megiddo [18], Fujishige [7] defined the concept of
lexicographically optimal base of a polymatroid and showed that finding that
point is equivalent to minimizing a separable convex quadratic function over the
base polytope. Although they came from different backgrounds, it is known that
the egalitarian solution of Dutta and Ray [4] in a convex game is essentially
the same concept as the lexicographically optimal base. Jain and Vazirani [15]
introduced the submodular utility allocation (SUA) market, in which a submod-
ular function specifies the maximum utility, and captured an equilibrium for the
SUA market as an optimal solution to the maximization of the sum of logarithm
functions over a base polytope.

Let us see some indirect applications in which such problems will appear
as subproblems. Fujishige [8] showed the minimum norm point in the base
polytope can be utilized for submodular function minimization (SFM). For
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uncapacitated facility location problems with submodular penalties and other
problems, Chudak and Nagano [2] designed approximation algorithms which
require solving convex optimization problems over submodular constraints iter-
atively. With the aid of the lexicographically optimal base, the minimum ratio
problem minX{f̃(X)/

∑
v∈X wv : ∅ �= X ⊆ V } can be solved immediately, where

f̃ is a submodular set function defined on subsets of a finite set V = {1, . . . , n}
and w = (wv : v ∈ V ) is a positive vector in R

n (though it can be solved in a
more direct manner by the discrete Newton method). In the greedy algorithm for
the set covering problem with submodular costs due to Hayrapetyan, Swamy and
Tardos [12], several minimum ratio problems have to be solved to find a subset
which has the smallest cost-effectiveness. Besides, the primal-dual algorithm for
the prize collecting forest problems with submodular penalties given by Sharma,
Swamy and Williamson [23] repeatedly solves minimum ratio problems in order
to determine the next dual constraint that will go tight at each step. For other
applications of minimum ratio problems, see Fujishige’s book [9, §7.2(b.3)].

Fujishige [7] presented a decomposition algorithm to find the lexicographically
optimal base by O(n) calls of SFM, where n is the number of elements of the ground
set. In [11], Groenevelt extended Fujishige’s algorithm to solve a general separable
convex minimization, though explicit running time was not given and the ratio-
nality of values in the algorithm was not considered. On the other hand, Fleischer
and Iwata [6] extended their push-relabel algorithm for SFM to solve the para-
metric minimization problem for a strong map sequence of submodular functions
and they noted that, in a way similar to the parametric maximum flow algorithm
of Gallo, Grigoriadis and Tarjan [10], their algorithm can be applied to solve the
lexicographically optimal base problem efficiently. Taking a different approach,
Hochbaum [13] proposed scaling-based algorithms for separable convex minimiza-
tion over submodular constraints. Her algorithm calls a membership oracle for the
base polytope, that is to say, an SFM oracle as a basic operation.

In this note, we mainly consider the minimization of separable and strictly con-
vex functions. By describing the decomposition algorithm in a simplified form,
we reveal the running time and give simple sufficient conditions for the rational-
ity of the optimal solution to the minimization of the separable convex function
over the base polytope. Furthermore, we illustrate some interesting properties,
including a new remark that the lexicographically optimal base problem and the
SUA market problem are equivalent. A part of these nice properties can also be
derived from the result on the universal bases given by Murota [19]. At the same
time, his approach is different from ours. Besides, by refining and generalizing
the discussion in [6], we develop an efficient implementation of the decomposition
algorithm via the Fleischer-Iwata push/relabel algorithm for SFM. We believe
that a parametric minimization version of Orlin’s new algorithm [21] could be
developed and our framework would also work in that case. Finally, we deal
with non-separable convex functions and show that in some remarkable cases
the minimization can be carried out in strongly polynomial time.

This note is organized as follows. In Section 2, we define the main problem and
see optimality conditions. In Section 3, we will see about related problems, give
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examples of objective functions and check the rationality of optimal solutions
to subproblems. Section 4 describes the decomposition algorithm in a simplified
form and discusses the rationality and the equivalence of some problems. In Sec-
tion 5, we review the basic framework of combinatorial algorithms for SFM and
develop an efficient implementation of the decomposition algorithm via para-
metric SFM algorithms. Lastly we consider the minimization of non-separable
convex functions in Section 6.

2 Preliminaries

Let V be a finite nonempty set with |V | = n. Suppose that V = {1, . . . , n}. A set
function f̃ defined on 2V is submodular if f̃(X)+f̃(Y ) ≥ f̃(X∪Y )+f̃(X∩Y ) for
each X, Y ⊆ V and monotone if f̃(X) ≤ f̃(Y ) for each X, Y ⊆ V with X ⊆ Y .
It is easy to see that the minimizers of submodular function f̃ are closed under
union and intersection, and thus there exist the (unique) minimal minimizer and
the (unique) maximal minimizer. For a vector x ∈ R

V and an element v ∈ V ,
we denote by x(v) the component of x on v.

Let f̃ : 2V → R be a submodular function with f̃(∅) = 0. We assume that
f̃ is given by a value-giving oracle. With such a function f̃ , the base polytope
B(f̃) is defined by

B(f̃) = { x ∈ R
V : x(X) ≤ f̃(X) (∀X ⊆ V ), x(V ) = f̃(V )} ⊆ R

V

where x(X) =
∑

v∈X x(v). It is known that B(f̃) is nonempty and bounded.
A vector in B(f̃) is called a base and an extreme point of B(f̃) is called an
extreme base. Consider any total order ≺ in V . The greedy algorithm [5] gives
an extreme base b≺ ∈ R

V by setting b≺(v) = f̃(L≺(v) ∪ {v}) − f̃(L≺(v)) for
each v ∈ V , where L≺(v) = {u ∈ V : u ≺ v}. Conversely, it is known that each
extreme base can be obtained in this way. For submodular functions f1, f2, if
Y ⊇ X implies f1(Y ) − f1(X) ≥ f2(Y ) − f2(X), we write f1 → f2 or f2 ← f1.
We call the relation f1 → f2 a strong map.

Throughout this note, we suppose the function f : 2V → R is rational, sub-
modular, monotone and satisfies f(∅) = 0, f({v}) > 0 for each v ∈ V . In
other words, f is a rank function of a polymatroid. So we have B(f) ⊆ R

V
≥0

and B(f) ∩ R
V
>0 is nonempty. Let gv : R → R ∪ {+∞} be a convex function on

dom gv for each v ∈ V . In this note, we mainly consider the separable convex
function minimization problem over the base polytope :

min
x

{g(x) : x ∈ B(f)} where g(x) =
∑

v∈V

gv(x(v)). (1)

For each v ∈ V , let ev ∈ R
V be the characteristic vector that has value 1 on v and

0 elsewhere. The following theorem states that the local optimality with respect
to directions of the form eu − ev for u, v ∈ V implies the global optimality.

Theorem 1 ([11], [9, Theorem 8.1]). For x ∈ B(f), x is an optimal solution
of (1) if and only if for each u, v ∈ V such that x + ε(eu − ev) ∈ B(f) for some
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ε > 0, we have D+
u (x(u)) ≥ D−

v (x(v)) where D+
u is the right derivative of gu and

D−
u is the left derivative of gv.

For any base x and each subset X with ∅ �= X ⊂ V , by standard arguments about
tight subsets, one can show that x(X) = f(X) if and only if x+ ε(eu − ev) /∈ B(f)
for any ε > 0 and each pair (u, v) with u ∈ X, v ∈ V \ X . In particular, we have :

Corollary 2 ([9, Theorem 8.2]). Suppose that gv is differentiable and strictly
convex for each v ∈ V . Let x ∈ B(f) and ξ1 < · · · < ξ� denote the distinct values
of g′v(x(v)). Let Hs = {v ∈ V : g′v(x(v)) ≤ ξs} for s = 1, . . . , �. Then, x
is the optimal solution of problem (1) if and only if x(Hs) = f(Hs) for each
s = 1, . . . , �.

To simplify the discussion, we mainly assume that gv is differentiable and strictly
convex and define the interval J ⊆ R by J :=

⋂
v∈V {g′v(x(v)) : x(v) ∈ dom gv}.

For any B ≥ 0 (or > 0) and each nonempty subset U ⊆ V , we suppose the problem

min
(x(v) : v∈U)

{
∑

v∈U

gv(x(v)) : x(U) = B} (2)

has the optimal solution xU ∈ R
U such that there exists α ∈ J such that

xU (v) = (g′v)−1(α) for each v ∈ U . In Section 4, we will see problem (1) has the
rational optimal solution if the optimal solution to (2) is always rational for any
rational B and each nonempty subset U .

3 Examples of Problems

We review some related problems. After that, we give examples of function g
and check the rationality of optimal solutions to (2) for rational B and U ⊆ V .

3.1 Related Problems

Let w ∈ R
V
>0 be a positive vector. For x ∈ R

V , let Tw(x) = ( x(v1)
w(v1)

, . . . , x(vn)
w(vn) ) be

the real n-sequence such that x(v1)
w(v1)

≤ · · · ≤ x(vn)
w(vn) where {v1, . . . , vn} = V . For

two real n-sequences ρ = (ρ1, . . . , ρn) and σ = (σ1, . . . , σn), we write ρ ≥LEX σ
if ρ = σ or ρ �= σ and ρi > σi for the minimum index i such that ρi �= σi.

Lexicographically Optimal Bases. A base x is called a lexicographically
optimal (lex-optimal) base with respect to w if Tw(x) ≥LEX Tw(y) for all y in
the base polytope. Fujishige [7] showed that such a base xLEX of B(f) is unique
and coincides with the optimal solution of (1) with gv(x(v)) = x(v)2/w(v). Now
the monotonicity of f is not crucial because, for any M ∈ R, xLEX + M · w is
lexicographically optimal in B(f + M · w) (= B(f) + M · w) w.r.t. w.

In Section 6, we will use the following characterization of the lex-optimal
bases, which is a special case of Theorem 1.

Corollary 3. For x ∈ B(f), x minimizes
∑

v∈V
x(v)2

w(v) over the base polytope
B(f) if and only if for each elements u, v ∈ V such that x + ε(eu − ev) ∈ B(f)
for some ε > 0, we have x(u)

w(u) ≥ x(v)
w(v) .
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Minimum Ratio Problems. Consider the minimum ratio problem which asks
for a subset X ∈ 2V \ {∅} minimizing f(X)/w(X). Now the monotonicity of
f is not essential again. Let xLEX ∈ B(f) be the lex-optimal base w.r.t. w,
ξ1 = minv

xLEX(v)
w(v) and X1 = {v : xLEX(v)

w(v) = ξ1}. For any X ⊆ V with X �= ∅, we
have ξ1w(X) ≤ xLEX(X) ≤ f(X) and so ξ1 ≤ f(X)/w(X). On the other hand,
by Corollary 2, xLEX(X1) = f(X1) and thus ξ1 = f(X1)/w(X1). Therefore, us-
ing the lex-optimal base, the minimum ratio problem can be easily solved. This
problem, however, can be solved more directly via the discrete Newton method.
See, e.g., [6, §4.1].

Egalitarian Allocations. Imagine that V is a set of players. We assume that
set function val : 2V → R is a convex game, that is, −val is submodular and it
satisfies val(∅) = 0. It is pointed out that the egalitarian allocation in a convex
game [3,4], which is often called the Dutta-Ray solution, is essentially the same
concept as the lex-optimal base w.r.t. 1 = (1, . . . , 1). To be precise, it is the
lex-optimal base of B(f̃) w.r.t. 1 where f̃(X) = val(V ) − val(V \ X) (X ⊆ V ).

Submodular Utility Allocation Markets. Let m(v) > 0 be the money pos-
sessed by buyer v ∈ V . The maximization of

∑
v m(v) ln x(v) over the polytope

P = {x ∈ R
V : x(X) ≤ f(X) (X ⊆ V ), x ≥ 0} is called the submodular utility

allocation (SUA) market problem [15]. As the base polytope B(f) is the set of
all the maximal points of P with respect to the partial order ≤ among vectors
in R

V , this problem is a special case of problem (1).

The Minimum Norm Point. Let f̃ : 2V → R be a submodular function with
f̃(∅) = 0 and let xMN be the point that minimize ‖x‖ over B(f̃) where ‖.‖ is
the Euclidean norm, that is, ‖x‖ =

√∑
v x(v)2 for x ∈ R

V . By Corollary 2, it is
easy to see X<0 := {v ∈ V : xMN(v) < 0} is the unique minimal minimizer and
X≤0 := {v ∈ V : xMN(v) ≤ 0} is the unique maximal minimizer of f̃ .

3.2 Examples of Objective Functions

Let w and m be vectors in Q
V
>0, a be a vector in Q

V , q be a vector in R
V
>0, p ∈ R

be a number such that p �= 0, −1 and let g0 : R → R ∪ {+∞} be a differentiable
and strictly convex function with dom g0 ⊇ R≥0. Define function sgn : R → R

by sgn(τ) = 0 if τ = 0 and sgn(τ) = τ/|τ | otherwise. For example, we consider
the convex functions

gMN(x) = 1
2‖x‖2, gMN′

(x) = 1
2‖x + a‖2

and

gLex
v (x(v)) = 1

2w(v)x(v)2, gPow
v (x(v)) = sgn(p) x(v)p+1

(p+1) w(v)p ,

gSUA
v (x(v)) = −m(v) ln x(v), gexp

v (x(v)) = exp(x(v) + a(v)),

gS
v (x(v)) = g0(x(v)), gW

v (x(v)) = x(v)g0(
w(v)
x(v) ),

gBad
v (x(v)) = x(v)

q(v) (ln x(v) − 1),
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for each v ∈ V . Functions gPow and gS are defined on R
V
≥0, and gSUA, gW and

gBad are defined on R
V
>0.

Among these functions, let us see that it suffices to examine gS, gW and gBad as
objective functions of (1) and (2). Trivially, gLex = gPow if p = 1, and gMN = gS

if g0(τ) = τ2

2 . By resetting f := f − a + (maxv a(v)) · 1, f is still monotone
and the minimization of gexp and gMN′

can be reduced to the problem with
g(x) = gS(x). The function gPow is a special case of gW where g0(τ) = sgn(p)

p+1 τ−p.
If g0(τ) = τ ln τ and w = m, we have gW

v (x(v)) = gSUA
v (x(v)) + m(v) ln m(v)

for each v. Thus gSUA is a special case of gW ignoring the constant term. In
some sense, we may view gSUA as gPow with p = −1 because gSUA

v (x(v)) =
limp→−1(gPow

v (x(v)) + 1
(p+1)w(v)p ).

Let B ≥ 0 (or > 0) and U ∈ 2V \ {∅}. We denote the optimal solutions of
problem (2) with g = gS, gW and gBad by xS

U , xW
U and xBad

U ∈ R
U , respectively.

Easily we have

xS
U (v) = 1

|U| · B , for each v ∈ U. (3)

So, if B is rational, xS
U is a rational vector and the size of vector xS

U is polyno-
mially bounded by n and the size of B. Now we let g = gW. Then g′v(x(v)) =
g0(

w(v)
x(v) ) − w(v)

x(v) g′0(
w(v)
x(v) ). Thus, for vector (x(v) : v ∈ U) if there exists a number

α ∈ J such that g′v(x(v)) = α for each v ∈ U , we can write x(v) = C · w(v) for
each v ∈ U , where C is some constant. Therefore we have

xW
U (v) = w(v)

w(U) · B , for each v ∈ U. (4)

Thus the size of xW
U is polynomially bounded by the sizes of w and B.

Finally, let us see a bad example in which the rationality of the optimal
solution of (2) does not hold. Now we let g = gBad. Then J = R and (g′v)−1(α) =
(exp(α))q(v) for any α ∈ R. So we can write xBad

U (v) = βq(v) for each v ∈ U
where β > 0 is the unique positive solution of the equation

∑
v∈U βq(v) = B.

In general, we cannot give β or xBad
U in a closed form. Moreover xBad

U is not
necessarily rational.

4 The Decomposition Algorithm

We describe the decomposition algorithm [7,11] for separable convex minimiza-
tion problems over base polytopes in a quite simplified form. The point of this
section is that the correctness of the algorithm gives us sufficient conditions for
the rationality of optimal solutions and some good properties. In Sections 4 and
5, we assume that gv is differentiable and strictly convex for each v ∈ V . Though
each gv is not necessarily differentiable, a similar algorithm also works and thus
things essentially do not change.
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4.1 The Decomposition Algorithm and the Rationality

Let x∗ be the optimal solution of (1). We denote the distinct values of g′v(x
∗(v))

by ξ∗1 < · · · < ξ∗� and let H∗
s = {v ∈ V : g′v(x∗(v)) ≤ ξ∗s} for s = 1, . . . , �. For

convenience, we let ξ0 = −∞, ξ�+1 = +∞, H∗
0 = ∅ and H∗ := {H∗

0 , . . . , H∗
� }.

For α ∈ J , define xα ∈ R
V as

xα(v) = (g′v)
−1(α) (5)

for each v ∈ V . If α < α′, we have xα < xα′ . For α ∈ J and U ⊆ V , the vector
(xα(v) : v ∈ U) is the unique optimal solution to (2) with B = xα(U). Remark
that set function fα := f − xα is submodular for α ∈ J and that we have the
relation fα → fα′ if α < α′.

Lemma 4. Let α ∈ J . If ξ∗s < α < ξ∗s+1, H∗
s is the unique minimizer of fα. If

α = ξ∗s , H∗
s−1 is the unique minimal minimizer and H∗

s is the unique maximal
minimizer of fα.

Proof. Suppose ξ∗s < α < ξ∗s+1. As g′v is strictly increasing, x∗(v) − xα(v) < 0
if v ∈ H∗

s and x∗(v) − xα(v) > 0 otherwise. Thus using Corollary 2, for each
X ⊆ V with X �= Hs, we have

f(X) − xα(X) ≥ x∗(X) − xα(X) > x∗(H∗
s ) − xα(H∗

s ) = f(H∗
s ) − xα(H∗

j ).

Suppose α = ξs holds. Then v ∈ H∗
s−1 iff x∗(v) − xα(v) < 0 and v ∈ H∗

s iff
x∗(v) − xα(v) ≤ 0. So H∗

s−1 and H∗
s minimize fα and any minimizer X satisfies

H∗
s−1 ⊆ X ⊆ H∗

s . ��

This lemma implies that problem (1) can be reduced to the parametric problem :

minX{fα(X) : X ⊆ V } for all α ∈ J. (6)

This fact leads us to the framework of the decomposition algorithm [7,11]. By
successively computing xα for some appropriately chosen α ∈ J and minimizing
fα, we find H∗

s ∈ H∗ one by one and finally we obtain the chain H∗
0 ⊂ · · · ⊂ H∗

�

and the point x∗.
The algorithm is recursive and now the description is simplified to reveal the

running time explicitly. First we know that H∗
0 = ∅ and H∗

� = V , although
we do not know how much � is. Let S = H∗

s and T = H∗
t for some s and t

such that 0 ≤ s < t ≤ �. Now we give the procedure DA(S, T ) which returns a
vector x∗

T\S ∈ R
T\S . We denote by αS, T the number α ∈ J satisfying xα(T \S) =

f(T )−f(S). We let α = αS, T . Note that α = ξt if s+1 = t and that ξs+1 < α < ξt

if s + 1 < t. Moreover xS,T := (xα(v) : v ∈ T \ S) is the optimal solution of
problem (2) with U = T \ S and B = f(T ) − f(S). Define the submodular
function fS, T : 2T\S → R by

fS, T (W ) = fαS, T (W ∪ S) − fαS, T (S)

= f(W ∪ S) − f(S) − xS, T (W ) (7)
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for each W ⊆ T \ S. The procedure computes the maximal minimizer R of
fα. Since any minimizer R′ of fα satisfies S ⊆ R′ ⊆ T , it suffices to compute
xS,T and minimize fS, T . If R = T , that is, t = s + 1, then x∗(v) = xα(v)
for each v ∈ T \ S and DA(S, T ) returns x∗

T\S := xS, T . Next, consider the
case where R ⊂ T and so S ⊂ R. By Lemma 4, R = H∗

r for some r with
s + 1 ≤ r < t. Let x1 = x∗

R\S and x2 = x∗
T\R be vectors returned by DA(S, R)

and DA(R, T ), respectively. The procedure DA(S, T ) returns the vector x∗
T\S

obtained by setting x∗
T\S(v) := x∗

1(v) for each v ∈ R \ S and x∗
T\S(v) := x∗

2(v)
for each v ∈ T \ R. By induction, we can see that x∗

T\S = (x∗(v) : v ∈ T \ S).
Thus DA(∅, V ) returnes the optimal solution of problem (1).

This algorithm implies sufficient conditions for the rationality of the optimal
solution of problem (1).

Theorem 5. Suppose problem (2) has a rational optimal solution for any ra-
tional number B ≥ 0 and each subset U ∈ 2V \ {∅}. Then the optimal solution
of problem (1) is rational.

Proof. Let v ∈ H∗
s \ H∗

s−1. The optimal solution to (2) with U = H∗
s \ H∗

s−1 and
B = f(H∗

s ) − f(H∗
s−1) is rational. So x∗(v) is also rational. ��

Note that this theorem can also be shown directly from Corollary 2. Moreover,
we can immediately get the following useful observation.

Corollary 6. Suppose the problems of the form (2) with objective function g
and g̃ always have the same optimal solution for any B ≥ 0 and each U . Then
the optimal solutions to the problems of the form (1) are also the same.

Additionally, we assume that the optimal solution xU to (2) is rational for any
B ∈ Q≥0 and each U ⊆ V and that arithmetic operations involving values xU (v)
(v ∈ U) can be carried out as basic steps. In the algorithm, we compute xS,T

and minimize fS,T for some S, T ∈ H∗ at most n times respectively. Since f and
xS,T are rational, fS,T is also rational. Therefore we can utilize a submodular
function minimization algorithm to minimize fS,T in polynomial time. Notice
that we need the maximal minimizer of fS,T . This point will be discussed in the
next section.

Theorem 7. The optimal solution of problem (1) can be obtained by solving
problem (2) and performing submodular function minimization at most n times
respectively.

4.2 Equivalence of Problems

The decomposition algorithm directly leads us to some interesting facts about
the convex minimization over B(f). Recall the functions introduced in Section
3. By Corollary 6, in view of (3) and (4), we have :

Corollary 8. The minimum norm point xMN of B(f) is the (unique) optimal
solution to problem minx{

∑
v g0(x(v)) : x ∈ B(f)}.
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Corollary 9. The following are equivalent:

(9.a) x ∈ R
V minimizes

∑
v

1
2w(v)x(v)2 over B(f);

(9.b) x ∈ R
V minimizes

∑
v

sgn(p)
(p+1) w(v)p x(v)p+1 over B(f) where p �= 0, −1;

(9.c) x ∈ R
V maximizes

∑
v w(v) ln x(v) over B(f);

(9.d) x ∈ R
V minimizes

∑
v x(v)g0(

w(v)
x(v) ) over B(f).

The equivalence of (9.a) and (9.d), that is, Corollary 9 itself can also be derived
from a general result on the universal bases of Murota [19], which is obtained in
a different way from our approach. In view of (9.a) and (9.c), however, it is still
a somewhat surprising fact and a new remark that the lexicographically optimal
base problem [7] and the SUA market problem [15] are equivalent.

Corollary 8 can be slightly generalized using Theorem 1. Let gN : R → R ∪
{∞} be a convex function which is not necessarily differentiable. For example,
gN(τ) = |τ | or gN(τ) = max{−τ, 0}. Note that many submodular function
minimization algorithms are based on the maximization of

∑
v min{0, x(v)} over

base polytopes (see §5.1).

Corollary 10. Let xMN ∈ R
V be the minimum norm point of B(f). Then xMN

also minimizes
∑

v gN(x(v)) over B(f). Besides, if gN(x(v)) is strictly convex,
xMN is the unique minimizer.

5 An Efficient Implementation

For submodular function minimization (SFM), Fleischer and Iwata [6] developed
a push/relabel algorithm using Schrijver’s subroutine [22]. They also extended
their algorithm to parametric minimization for a strong map sequence of sub-
modular functions. In addition, they noted that their algorithm can be used to
solve the lexicographically optimal base problem efficiently (though their discus-
sion includes some minor errors). By refining and generalizing the discussion of
[6], we propose an efficient implementation of the decomposition algorithm via
the Fleischer-Iwata algorithm. We also believe that our framework could be ex-
tended via (possible) parametric variants of Orlin’s new algorithm [21] for SFM.

In this section, if α = αS, T for some subsets S, T ⊆ V with S ⊂ T , we
assume that the time of function evaluation of fα is bounded by EO and that
arithmetic operations involving values fα(X) (X ⊆ V ) can be regarded as basic
steps. Let ≺◦ be a total order in V = {1, . . . , n} such that 1 ≺◦ · · · ≺◦ n. Let
f̃ : 2V → R be any submodular function with f̃(∅) = 0 and minX f̃(X) =: f̃∗.
We also denote by EO the upper bound on the time to evaluate f̃ .

5.1 Submodular Function Minimization

We briefly review the basic framework of combinatorial algorithms for SFM.
See McCormick [17] for a nice survey on SFM. For x ∈ R

V , define the vector
x− ∈ R

V by x−(v) = min{0, x(v)} for each v ∈ V . For any base x ∈ B(f̃)
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and each X ⊆ V , we have x−(V ) ≤ x(X) ≤ f̃(X). Furthermore, the result of
Edmonds [5] immediately implies that maxx{x−(V ) : x ∈ B(f̃)} = f̃∗.

In Schrijver’s algorithm [22] and the Fleischer-Iwata algorithm [6], at any step,
we keep a point x ∈ B(f̃) as a convex combination x =

∑
i∈I λib

≺i of extreme
bases where I is a finite set of indices with |I| = O(n) and each ≺i is a total
order in V . With such a point x ∈ B(f̃), we consider a digraph D = (V, AI)
where AI = {(u, v) : u ≺i v for some i ∈ I}. Let P = {v ∈ V : x(v) > 0} and
N = {v ∈ V : x(v) < 0}. We iteratively update x until D has no path from P
to N . Then let R1 be the vertices that can reach N and R2 be the vertices that
are not reachable from P in D. Clearly, we have N ⊆ Rh ⊆ V \ P for h = 1, 2.
Both of the algorithms [6,22], which can be implemented in O(n8 +n7 EO) time,
return R1 or R2 and terminate. It is easy to see that x is an optimal solution to
maxx{x−(V ) : x ∈ B(f̃)} and f̃(R1) = f̃(R2) = f̃∗.

Remark that the maximal minimizer of a submodular function is needed in
the decomposition algorithm and little attention was paid to this point in the
algorithm of [6]. The following example shows that R1 and R2 are not necessarily
maximal. Suppose that n = 5 and a = (0, −1, 0, 1, 0) ∈ R

V and the function
f̃ : 2V → R is defined by f̃(X) =

∑
v∈X a(v). Then the minimal minimizer

is {2} and the maximal minimizer is {1, 2, 3, 5}. By initially setting I = {1},
≺1=≺◦ and λ1 = 1, we get the point x = b≺◦ = (0, −1, 0, 1, 0) and the digraph
D has no directed path from P = {4} to N = {2}. So we obtain R1 = {1, 2}
and R2 = {1, 2, 3}, neither of which is maximal. Fortunately, it is known that
we can compute the maximal and the minimal minimizer in O(n3EO) additional
time using the result of [1]. See e.g. Note 10.11 of [20] for details.

Lemma 11. Given a maximizer x =
∑

i∈I λib
≺i of maxx{x−(V ) : x ∈ B(f̃)}

with |I| = O(n), the unique maximal minimizer and the unique minimal mini-
mizer of f̃ can be found in O(n3EO) time.

5.2 The Fleischer-Iwata Algorithm for Parametric SFM

We review the computation of a minimizer of every function in a strong map
sequence of submodular functions, f1 → · · · → fk, via the ordinary and the
reverse push/relabel algorithms for SFM of Fleischer and Iwata [6].

Consider a base x =
∑

i∈I λib
≺i ∈ B(f̃) and the digraph D for x. We need a

concept of a valid labeling on V . A labeling d : V → Z is valid for x if d(v) = 0
for v ∈ N , d(u) ≤ d(v) + 1 for each (u, v) ∈ AI and d(v) ≤ n for v ∈ V . A
labeling dR : V → Z is r-valid for x if dR(v) = 0 for v ∈ P , dR(v) ≤ dR(u) + 1
for each (u, v) ∈ AI and dR(v) ≤ n for v ∈ V . Obviously, the labeling d◦ := 0
on V is always valid and r-valid for any x.

Let f (1), f (2) and f (3) be submodular functions defined on 2V such that
f (h)(∅) = 0 for h = 1, 2, 3 and f (1) → f (2) → f (3). For each total order ≺ in
V , we denote the outputs of the greedy algorithm w.r.t. f (h) by b≺h ∈ B(f (h))
for each h. Notice that b≺1 ≥ b≺2 ≥ b≺3 for each total order ≺. To simplify
the notation, we use subindex 1, 2 and 3 for digraphs associated with B(f (1)),
B(f (2)), and B(f (3)) respectively. Suppose that we have bases x1 ∈ B(f (1)) and
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x3 ∈ B(f (3)) with x1 =
∑

i∈I1
λib

≺i
1 and x3 =

∑
j∈I3

μjb
≺j

3 where |I1| and |I3|
are O(n).

First we let d be a valid labeling for x3. By setting x2 :=
∑

j∈I3
μjb

≺j

2 , a base of
B(f (2)) can be obtained in O(n2EO) time. From the construction, the digraphs
D2 and D3 have the same edges, x2 ≥ x3 and N2 ⊆ N3. Therefore d is still
valid for x2 ∈ B(f (2)). The ordinary push/relabel (OPR) algorithm in [6] finds
a maximizer x̃2 =

∑
j∈Ĩ μ̃jb

≺j

2 of maxx{x−(V ) : x ∈ B(f (2))} with |Ĩ| = O(n)

and a valid labeling d̃ for x̃2 such that d̃ ≥ d in O((d̃(V ) − d(V ))(n6 + n5EO))
time. Thus, using the OPR algorithm, each function in fk ← · · · ← f1 can be
minimized in this order in O(n8 + (n7 + kn2)EO) time in total. Note that the
minimization of fk can be started with the exreme base b≺◦ ∈ B(fk) and the
labeling d = 0.

Next we let dR be an r-valid labeling for x1. As above, one can show that dR is
also r-valid for x2 :=

∑
i∈I1

λib
≺i
2 ∈ B(f (2)). Starting with x2 and dR, the reverse

push/relabel (RPR) algorithm [6] finds a maximizer x̃2 and an r-valid labeling d̃R

for x̃2 with d̃R ≥ dR in O((d̃R(V )−dR(V ))(n6 +n5EO)) time. So, every function
in f1 → · · · → fk can be minimized in this order in O(n8 + (n7 + kn2)EO) time.

5.3 An Efficient Implementation of the Decomposition Algorithm

If we know vectors {xα1 , . . . , xα�−1} such that ξ∗j < αj < ξ∗j+1 for each j =
1, . . . , � − 1, it follows from the relation fα1 → · · · → fα�−1 that algorithms for
parametric SFM solve problem (1) in the same asymptotic running time as a
single SFM. In the decomposition algorithm, however, each vector xα is obtained
in an on-line manner. As in [10] and [6], we introduce the procedure Slice, which
plays the same role as the procedure DA in Section 4. We can assume that f−∞
has the unique minimizer ∅ and f+∞ has the unique minimizer V . For S, T ⊆ V
with S ⊂ T , define the function fS, T : 2T\S → R by fS, T (W ) = f(W ∪S)−f(S)
for each W ⊆ T \ S.

Let S, T ∈ H∗ be subsets with S ⊂ T such that S is the maximal minimizer
of f (1) := fα1 and T is the maximal minimizer of f (3) := fα3 for α1, α3 ∈
J ∪ {±∞} with α1 < α3. In addition, we are given subsets S′, T ′ ∈ H∗ such
that S′ ⊆ S and T ⊆ T ′. Now we regard V ′ := T ′ \ S′ as the universe. Define
the function f ′ : 2V ′ → R by f ′ := fS′, T ′ and define f ′

α in the same way
for any α ∈ J , that is, f ′

α := (fα)S′, T ′ . Suppose that a labeling dR
1 on V ′ is

r-valid for x1 =
∑

i∈I1
λib

≺i
1 ∈ B(f ′

α1
) and a labeling d3 on V ′ is valid for

x3 =
∑

j∈I3
μjb

≺j

3 ∈ B(f ′
α3

).
In the procedure Slice(f ′, α1, α3, x1, x3, dR

1 , d3) for finding vector x∗
T\S in

R
T\S , we set α2 := αS, T , x′

2 :=
∑

i∈I1
λib

≺i
2 , x′′

2 :=
∑

j∈I3
μjb

≺j

2 ∈ B(f ′
α2

), and
try to minimize f (2) := fα2 (or, equivalently, f ′

α2
) by concurrently running the

RPR algorithm, starting with x′
2, dR

1 , and the OPR algorithm, starting with x′′
2 ,

d3. Suppose the RPR algorithm stops first with the base x2 =
∑

i∈I2
λib

≺i
2 of

B(f ′
α2

) and the r-valid labeling dR
2 on V ′ for x2. (The other case is symmet-

ric.) By lemma 11, the maximal minimizer R of f (2) can be found in O(n3EO)
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additional time and it holds that S ⊂ R ⊆ T . If R = T , the procedure Slice
returns x∗

T\S := xS, T . So we consider the case where S ⊂ R ⊂ T . If 2|R| < |S|+
|T |, we perform Slice(f ′, α2, α3, x2, x3, dR

2 , d3) and Slice(f ′′, α1, α2, b≺◦ , b≺◦ ,
d◦, d◦) where f ′′ := fS, R, d◦ = 0 ∈ R

R\S and ≺◦ is some total order of R \ S.
If 2|R| ≥ |S| + |T |, we continue the OPR algorithm until it stops. Then, re-
placing x2 by the resulting base and letting d2 be the valid labeling for x2, we
perform Slice(f ′, α1, α2, x1, x2, dR

1 , d2) and Slice(f ′′, α2, α3, b≺◦ , b≺◦ , d◦, d◦)
where f ′′ := fR, T . Remark that in any case the problem is divided into two
problems, the larger one of size n′ and the quite smaller one, whose size is less
than or equal to n′/2.

By running Slice(f, −∞, +∞, b≺◦ , b≺◦ , d◦, d◦), problem (1) can be solved.
Now we show this algorithm can be implemented to run in O(n8 + n7EO) time.
The running time analysis is quite similar to that of the lexicographically opti-
mal flow algorithm proposed by Gallo et al. [10]. Let RPR(n) (OPR(n)) denote
the time to minimize every function fk′ : 2V → R in a strong map sequence
f1 → · · · → fk with k ≤ n via the RPR (OPR) algorithm. That is, RPR(n)
and OPR(n) are O(n8 + n7EO). Once we incur 2(RPR(n) + OPR(n)) time (the
factor 2 comes from the fact that we concurrently run the two push/relabel al-
gorithms), then, in the larger subproblems of the procedure Slice, subsequent
implementations of the two push/relabel algorithms can be regarded as being
free. We denote by T (n′) the upper bound on the time to run the procedure
Slice(f ′, α1, α2, x1, x2, dR

1 , d2). We obtain the equalities T (1) = O(1) and

T (n) = O(n8 + n7EO) + max
{
T (n1) + T (n2) + · · · + T (nh) :
n1 + · · · + nh < n; n1, . . . , nh ≥ 1;

nh′ ≤ 1
2 (n − n1 − · · · − nh′−1) for h′ = 1, . . . , h

}
.

From these formulas, it is not difficult to verify that T (n) = O(n8 + n7EO).

Theorem 12. The optimal solution of problem (1) can be obtained in the same
asymptotic running time as a single implementation of the push/relabel algorithm
for SFM by Fleischer and Iwata, that is, O(n8 + n7EO) time.

This time complexity is better than the bound O((n8 + n7EO) log n) which is
obtained by performing Iwata’s algorithm [14] iteratively in the decomposition
algorithm. Quite recently, however, Orlin [21] developed a faster algorithm for
SFM which runs in O(n6 + n5EO) time. Therefore, using Orlin’s algorithm,
problem (1) can be solved in O(n7 +n6EO) time by Theorem 7. It is not certain
but we believe that parametric minimization versions of Orlin’s algorithm could
be developed and our framework would also work in that case.

6 Non-separable Convex Functions

This section deals with non-separable convex objective functions. We will see
that, using the characterization of the lex-optimal base, some non-separable
convex optimization problems can be solved in strongly polynomial time.
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For x ∈ R
V and u, v ∈ V , let xu, v ∈ R

V be the vector defined by

xu, v(v′) =

⎧
⎨

⎩

x(v) if v′ = u,
x(u) if v′ = v,
x(v′) if v′ ∈ V \ {u, v}.

We let gP : R
V → R ∪ {+∞} be a strictly convex function with dom gP ⊇

R
V
≥0 which has invariant value under permutation of indices. That is, we have

gP(xu, v) = gP(x) for any x and each u, v. If V = {1, 2}, x(1)2+x(2)2+x(1)x(2)
is such an example. Consider the minimization of gP over the base polytope B(f).
The following observation, which was originally shown by Maruyama [16] about
three decades ago, is a generalization of Corollary 8.

Corollary 13. The minimum norm point xMN ∈ R
V of B(f) is the (unique)

minimizer of minx{gP(x) : B(f)} and so this problem can be solved in strongly
polynomial time.

Proof. Let x be the (unique) optimal solution of min{gP(x) : B(f)}. Let δ be
any positive number and (u, v) be any ordered pair of elements in V such that
x + δ(eu − ev) ∈ B(f). By Corollary 3 and the uniqueness of the minimum
norm point, in order to verify the statement, it suffices to show the inequality
x(u) ≥ x(v). Assume, to the contrary, x(u) < x(v). Put β = x(v) − x(u) > 0
and y = x + β(eu − ev). By the definition of gP, we have gP(x) = gP(y). Let
ε = 1

2 min{δ, β}. Then we have 0 < ε < β and x + ε(eu − ev) ∈ B(f). The strict
convexity of gP implies gP(x) = (1 − ε

β )gP(x) + ε
β gP(y) > gP(x + ε(eu − ev)), a

contradiction to the definition of x. ��

Let w be a positive vector. Next we consider a class of problems whose opti-
mal solutions are the lex-optimal bases. For distinct elements u, v ∈ V , define
a cone E(u, v) ⊂ R

V by E(u, v) = {x ∈ R
V
≥0 : x(u)/w(u) = x(v)/w(v)}. Let

gL(x) : R
V → R ∪ {+∞} be a differentiable and strictly convex function with

dom gL ⊇ R
V
≥0. For any x ∈ R

V
≥0 and each v ∈ V , let Dv(x) = ∂gL(x)

∂x(v) . Now we
consider the minimization of gL over B(f) in the case where gL satisfies

L1. Du(x) = Dv(x), for each u, v ∈ V and any x ∈ E(u, v);
L2. For any x ∈ R

V
≥0 and u, v ∈ V , function cu, v(λ) = Du(x + λ(eu − ev))

is strictly increasing on the interval {λ ∈ R : x + λ(eu − ev) ∈ R
V
≥0}.

Clearly, the separable function gW(x) defined in Section 3 satisfies these prop-
erties. For example, if V = {1, 2, 3} and w = (2, 2, 3), then x(1)2 + x(2)2 +
3
4x(3)2 + 1

2x(1)x(2)+ 1
2x(1)x(3)+ 1

2x(2)x(3) satisfies L1 and L2. Using Corollary
3, we can generalize Corollary 9 as follows.

Corollary 14. Suppose that gL satisfies properties L1 and L2 and xL ∈ R
V is

the lex-optimal base of B(f) w.r.t. w. Then xL is the (unique) optimal solution
to problem minx{gL(x) : x ∈ B(f)}.
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Proof. Let x be the optimal solution to min{gL(x) : B(f)}, and let δ > 0 be any
number and (u, v) be any pair of elements such that x + δ(eu − ev) ∈ B(f). It
suffices to show x(u)

w(u) ≥ x(v)
w(v) . Assume that x(u)

w(u) < x(v)
w(v) . We let β > 0 be a number

such that x(u)+β
w(u) = x(v)−β

w(v) . Put y = x + β(eu − ev). Property L1 implies that
Du(y) = Dv(y), and property L2 implies that Du(x) < Du(y) and Dv(y) < Dv(x).
So we have Du(x) < Dv(x). Thus, ∃ε > 0 such that x + ε(eu − ev) =: x̃ ∈ B(f)
and gL(x) > gL(x̃), which contradicts the definition of x. ��
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Abstract. This paper presents an efficient algorithm for minimizing a
certain class of submodular functions that arise in analysis of multiclass
queueing systems. In particular, the algorithm can be used for testing
whether a given multiclass M/M/1 achieves an expected performance by
an appropriate control policy. With the aid of the topological sweeping
method for line arrangement, our algorithm runs in O(n2) time, where
n is the cardinality of the ground set. This is much faster than direct
applications of general submodular function minimization algorithms.

1 Introduction

Let V be a finite set of cardinality n. For a vector x := [xi]i∈V indexed by
V and a subset X ⊆ V , we denote

∑
i∈X xi by x(X). Let h be a nonnegative

nondecreasing convex function. This paper deals with the problem of finding a
subset X ⊆ V that minimizes

f(X) := z(X) − y(X)h(x(X)) (X ⊆ V ) (1)

for given nonnegative vectors x, y, z indexed by V . Such a minimization prob-
lem arises in performance analysis of the most fundamental multiclass queueing
system — multiclass M/M/1 (see Section 2).

This problem is a special case of submodular function minimization. A set
function f is called submodular if it satisfies

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ), ∀X, Y ⊆ V.

It can be shown that the function f in (1) is submodular (see Appendix). Re-
cent results on submodular functions are expounded in Fujishige [10] and in
McCormick [16].

A number of strongly polynomial algorithms have been devised for general
submodular function minimization. The first one due to Grötschel, Lovász, and
Schrijver [12,13] is based on the ellipsoid method, which is not efficient in prac-
tice. Combinatorial strongly polynomial algorithms are devised independently
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by Schrijver [19] and by Iwata, Fleischer, and Fujishige [14]. However, these
combinatorial algorithms are not yet very fast. Even a very recent algorithm
of Orlin [17], which is currently the fastest combinatorial strongly polynomial
algorithm, runs in O(n5γ + n6) time, where γ designates the time required for
computing the function value of f . Thus, it is still desirable to have a faster
algorithm for minimizing a specific class of submodular functions that naturally
arise in applications.

Instead of applying an algorithm for general submodular function minimiza-
tion, we take a completely different approach based on computational geometry.
The first step is to interpret our problem in a three-dimensional space as fol-
lows. Each subset X ⊆ V corresponds to a point (x(X), y(X), z(X)) in the
three-dimensional space. The original problem is then equivalent to finding the
minimum value of f̂(x, y, z) := z − y h(x) among all such points (x, y, z) corre-
sponding to the subsets of V .

The convex hull of these 2n points forms a special polytope called zonotope.
It will be shown that the minimizer of f̂ is among the lower extreme points of
the zonotope, i.e., extreme points that are visible from below (see Section 3).
The number of such lower extreme points are bounded by O(n2). Furthermore,
exploiting the duality relation between a zonotope in a three-dimensional space
and a line arrangement in a plane, we are able to enumerate all the lower ex-
treme points in O(n2) time with the aid of the topological sweeping method of
Edelsbrunner and Guibas [6,7]. Thus our algorithm finds a minimizer of f in
O(n2) time and O(n) space, if the function value of h is computable in a con-
stant time. This is substantially more efficient than direct applications of general
submodular function minimization algorithms.

In terms of the application to multiclass M/M/1, the above algorithm provides
an efficient way of testing if a given performance specification is achievable by
some control policy. Designing an appropriate control policy in the achievable
case is another issue. Extending our approach, we also devise an algorithm for
doing this in O(n4) time, which is yet faster than general submodular function
minimization algorithms (see Section 4).

2 Multiclass Queueing Systems

This section is devoted to a brief exposition on a connection between our min-
imization problem and the performance analysis of the fundamental multiclass
queueing system called multiclass M/M/1. For comparison, we also give a brief
description of the same type of problems for nonpreemptive case.

2.1 Preemptive M/M/1

Multiclass M/M/1 is a system which deals with various types of jobs whose
arrival interval and service time follow exponential distributions. Each job of
different classes wait in different queues and the server chooses the job to serve
the next by a control policy. A queueing system allowing preemptive control
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policies is called preemptive. In the following, the set of classes is denoted by
V = {1, 2, . . . , n}.

In a multiclass M/M/1, when the expected arrival rates and the expected
service rates of the job classes are given, the performance of the system depends
only on the control policy. A region of performance-measuring vectors achieved
by all control policies is called achievable region (see e.g. [4]). The performance
of a multiclass M/M/1 is often measured by the expected staying time vector T
:= [Ti ]i∈V , where Ti is the expected staying time in the system for class i jobs.
For preemptive multiclass M/M/1, achievable region of T is known as follows.

Theorem 1 ([3]). Consider a preemptive multiclass M/M/1 whose mean ar-
rival rates are λ:= [ λi ]i∈V and mean service rates are μ:= [ μi ]i∈V . Let ρi be
the utilization λi/μi of the server for class i jobs and assume

∑
i∈V ρi < 1 to

ensure the existence of equilibrium. The achievable region of the expected staying
time vector T := [ Ti ]i∈V is a polyhedron represented by 2n inequalities:

∑

i∈X

ρiTi ≥

∑

i∈X

ρi

μi

1 −
∑

i∈X

ρi

, ∀X ⊆ V. (2)

Given a target expected staying time vector Ť , it is important for system de-
signers to check performance achievability: whether Ť is in the achievable region
(Ť is achieved by some control policy) or not. This problem was posed by Fed-
ergruen and Groenevelt [8]. They provided an efficient algorithm for the special
case of identical service time distribution. This assumption is too restrictive in
practice, as we usually classify the jobs by their properties including expected
service time.

If we define xi := ρi, yi :=
ρi

μi
and h(x) :=

1
1 − x

, then y(X)h
(
x(X)

)
coincides

with the right-hand side function of (2). Furthermore, if we define zi := ρiŤi,
then the problem of checking performance achievability of preemptive multiclass
M/M/1 is reduced to our minimization problem. The target expected staying
time vector Ť is achievable if and only if the minimum value of f is equal to
zero.

For preemptive multiclass M/M/1, there is an another representation of ach-
ievable region. Bertsimas, Paschalidis, and Tsitsiklis [2] and Kumar and Ku-
mar [15] independently observed that the achievable region is the projection of
a polyhedron in a higher dimensional space. This makes it possible to check the
achievability by solving linear programming problem, which however involves
O(n2) variables and O(n2) inequalities.

2.2 Nonpreemptive M/G/1

For nonpreemptive M/M/1, which does not allow preemption, the performance
achievability can be tested by a simpler method. The achievable region of the
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expected waiting time in queue W := [Wi ]i∈V is a polyhedron represented by
2n inequalities:

∑

i∈X

ρi Wi ≥
(

∑

i∈V

ρi

μi

)
∑

i∈X

ρi

1 −
∑

i∈X

ρi

, ∀X ⊆ V.

This is obtained as a special case of the fact shown in Gelenbe and Mitrani [11]
that the achievable region of the nonpreemptive M/G/1, which admits general
service time distributions, is characterized by

∑

i∈X

ρi Wi ≥
(

1
2

∑

i∈V

λiM
2
i

)
∑

i∈X

ρi

1 −
∑

i∈X

ρi

, ∀X ⊆ V,

where M2
i denotes the second order moment of the service time distribution for

class i.
Let W̌ be a target expected waiting time vector. The problem of checking

performance achievability is reduced to minimizing a submodular function b in
the form of

b(X) := z(X) − h(x(X)) (X ⊆ V ),

where xi := ρi, zi := ρiW̌i, and h(x) :=
c x

1 − x
with c =

1
2

∑
i∈V λiM

2
i . This is

much simpler than our problem. In fact, it can be solved by sorting job classes
in the order of zi/xi. For k = 0, 1, . . . , n, let Yk denote the set of k jobs with
smallest values of zi/xi. Then the minimizer of b is among the candidates Yk for
k = 0, 1, . . . , n. See Federgruen and Groenevelt [9] for validity.

3 Geometric Approach

In this section, we present an algorithm for finding a minimum value of f de-
fined in (1). The problem can be seen in a three-dimensional space as follows.
Each subset X ⊆ V corresponds to a point (x(X), y(X), z(X)) in the three-
dimensional space. Let R+ denote the set of nonnegative reals. We also write
u(X) := (x(X), y(X), z(X)) ∈ R

3
+ and U := {u(X) | X ⊆ V }. Then our prob-

lem is equivalent to finding a point (x, y, z) ∈ U that attains the minimum value
of f̂(x, y, z) = z−y h(x). An example of a contour surface of f̂ is shown in Fig. 1.

The convex hull of U forms a special polytope called zonotope, which is defined
by the bounded linear combination of vectors (for example, see Fig. 2), and we
denote the zonotope by Z, namely

Z := conv(U ) =

{
∑

i∈V

ηi ui

∣∣∣∣∣ 0 ≤ ηi ≤ 1 (∀i ∈ V )

}
,
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Fig. 1. A contour surface of f̂
in the case of h(x) = 2/(10 − x)
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Fig. 2. A zonotope generated by
(4, 1, 1), (2, 1, 3), (1, 2, 3), (1, 4, 1)

where ui := u({i}) (∀i ∈ V ).
A point (x, y, z) in Z is called a lower point if (x, y, z′) /∈ Z for any z′ < z. If

in addition (x, y, z) is an extreme point of Z, it is called a lower extreme point.
The number of lower extreme points of Z is known to be O(n2), which is clarified
in Section 3.3.

Our algorithm enumerates all the lower extreme points of Z, and then it
identifies a lower extreme point that attains the minimum value of f̂ . It will be
shown in Section 3.2 that the minimum value among these lower extreme points
is in fact the minimum value of f̂ among all the points in U . How to enumerate
the lower extreme points will be described in Section 3.3. The total running time
of this algorithm is O(n2).

3.1 Lower Extreme Points

Every lower point of Z is described as a maximizer of a certain linear objective
function whose coefficient of z is negative. For any α, β ∈ R, we denote by
F (α, β) the set of maximizers for (α, β, −1) direction, namely

F (α, β) := Argmax{αx + β y − z | (x, y, z) ∈ Z}.

For a fixed (α, β), elements in V are classified by the sign of α xi + β yi − zi,
namely

S+(α, β) := { i ∈ V | α xi + β yi − zi > 0 },
S◦(α, β) := { i ∈ V | α xi + β yi − zi = 0 },
S−(α, β) := { i ∈ V | α xi + β yi − zi < 0 }.

(3)

Then F (α, β) is given by

F (α, β) =
{

u(S+(α, β)) +
∑

i∈S◦(α,β)

ηi ui

∣∣∣∣∀i ∈ S◦(α, β), 0 ≤ ηi ≤ 1
}

. (4)
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This implies the following lemma that characterizes the lower extreme points
of Z.

Lemma 1. A vector v is a lower extreme point of Z if and only if v = u(S+(α, β))
for some (α, β).

Proof. Since ui ≥ 0, it follows from (4) that u(S+(α, β)) is an extreme point of
F (α, β). Hence u(S+(α, β)) is an lower extreme point of Z. Conversely, suppose
v is an lower extreme point of Z. There exists a pair (α, β) such that v is
the unique maximizer of αx + βy − z in Z. Note that v = u(X) for some
X ⊆ V . Then we have X = S+(α, β) ∪ Y for some Y ⊆ S◦(α, β). Furthermore,
since v is the unique maximizer, ui = 0 holds for any i ∈ Y , which implies
u(X) = u(S+(α, β)).

We denote {S+(α, β) | α, β ∈ R} by L. Then Lemma 1 asserts that the set of
lower extreme points are given by {u(X) | X ∈ L}. The following two lemmas
concerning lower points of Z will be used in the proof of the validity of our
algorithm in Section 3.2.

Lemma 2. Any lower point v that is on an edge of Z is a convex combination
of two lower extreme points u(X1) and u(X2) with X1 ⊆ X2.

Proof. There exists a pair (α, β) such that F (α, β) is the edge that contains
v. Then it follows from (4) that F (α, β) is a line segment between u(X1) and
u(X2), where X1 = S+(α, β) and X2 = S+(α, β) ∪ S◦(α, β).

Lemma 3. Any lower point v of Z is a convex combination of some at most
three lower extreme points u(X0), u(X1), and u(X2) with X0 ⊆ X1 ⊆ X2.

Proof. There exists a pair (α, β) such that F (α, β) is the minimal face that
contains v. Then u(X0) with X0 = S+(α, β) is an extreme point of F (α, β). Let
t be the intersection of the half line from u(X0) through v and the boundary
of F (α, β). Note that v is a convex combination of u(X0) and t. Since t is on
an edge of Z, Lemma 2 implies that t is a convex combination of lower extreme
points u(X1) and u(X2) with X1 ⊆ X2. Furthermore, since u(X1) and u(X2)
are extreme points of F (α, β), we have X0 ⊆ X1, X2. Therefore, v is a convex
combination of u(X0), u(X1), and u(X2) with X0 ⊆ X1 ⊆ X2.

3.2 Finding the Minimum Value

The following theorem shows that it suffices to examine the lower extreme points
of Z on behalf of the points in U . This leads us to an efficient algorithm for
finding the minimum value of f , provided that an enumeration algorithm for the
lower extreme points is available.

Theorem 2. The minimum value of f is attained by a member of L, i.e.,

min{f(X) | X ⊆ V } = min{f(X) | X ∈ L}.
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Proof. Let v̄ = (x̄, ȳ, z̄) be a lower point of Z such that x̄ = x(Y ) and ȳ = y(Y )
for Y ⊆ V . By Lemma 3, there exist three lower extreme points u(X0), u(X1),
and u(X2) of Z with X0 ⊆ X1 ⊆ X2 such that

v̄ = σ0u(X0) + σ1u(X1) + σ2u(X2)

for some σ0, σ1, σ2 ≥ 0 with σ0 + σ1 + σ2 = 1. We denote u(Xj) by (xj , yj , zj)
for j = 0, 1, 2. Then we have

ȳ h(x̄) = (σ0y0 + σ1y1 + σ2y2)h(σ0x0 + σ1x1 + σ2x2)
≤ (σ0y0 + σ1y1 + σ2y2)(σ0h(x0) + σ1h(x1) + σ2h(x2))
= σ0y0h(x0) + σ1y1h(x1) + σ2y2h(x2) − σ0σ1(y1 − y0)(h(x1) − h(x0))

−σ1σ2(y2 − y1)(h(x2) − h(x1)) − σ0σ2(y2 − y0)(h(x2) − h(x0))
≤ σ0y0h(x0) + σ1y1h(x1) + σ2y2h(x2),

where the first inequality follows from the convexity of h and the second one
from the monotonicity. Since z(Y ) ≥ z̄ = σ0z0 + σ1z1 + σ2z2, we obtain

f(Y ) = z(Y ) − y(Y )h(x(Y ))
≥ z̄ − ȳ h(x̄)
≥ σ0(z0 − y0h(x0)) + σ1(z1 − y1h(x1)) + σ2(z2 − y2h(x2))
= σ0f(X0) + σ1f(X1) + σ2f(X2).

Therefore, if f(Y ) attains the minimum value, then X0, X1, and X2 must attain
the minimum value as well. Thus the minimum value of f is attained by a
member of L.

3.3 Duality Between Zonotope and Hyperplane Arrangement

In this section, we discuss how to enumerate all the lower extreme points of Z.
A one-to-one correspondence has been established between zonotopes in the d-
dimensional space and hyperplane arrangements in the d − 1-dimensional space
(see e.g. [5,20]). We exploit this duality principle with d = 3.

To visualize the transition of S+(α, β) in L with respect to α and β, we
consider the arrangement of n lines li : α xi + β yi − zi = 0, for i ∈ V in the
(α, β)-plane. Then it follows from Lemma 1 that the lower extreme points of Z
corresponds to the cells in this line arrangement. Note that the number of cells
in the line arrangement is O(n2), and so is the number of lower extreme points
of Z. Further correspondence between the lower faces of Z and the components
of the line arrangement are summarized in Table 1 (see also Fig. 3).

Based on this duality, it suffices to enumerate all the cells of the line arrange-
ment. Since x and y are nonnegative, algorithms for sweeping the arrangement
along α or β axis keep a maximal chain on V that corresponds to n cells and
enumerate all the cells one by one with updating the chain. Our algorithm main-
tain not only the chain but also the vectors u(S+) for all S+ in the chain to
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Table 1. Correspondence between lower faces of Z and components of line arrangement

Lower faces of Z Components of line arrangement

extreme point cell

edge line segment

facet intersection point
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Fig. 3. Correspondence between a lower extreme point of Z and a cell of line arrange-
ment

compute the value of f(S+) in a constant time on expected. This is achieved by
minor modifications of existing algorithms at no additional expense of running
time bound and space complexity.

For sweeping line arrangement, the topological sweeping method [6,7] is the
most efficient algorithm, which runs in O(n2) time and O(n) space. Thus we
obtain an algorithm to solve the minimization problem in O(n2) time and O(n)
space. An implementation of the topological sweeping method is available from
the Web [18].

4 Extension

The algorithm presented in Section 3 enables us to determine whether a preemp-
tive multiclass M/M/1 achieves a performance by some control policy or not.
However, even if a given performance specification turns out to be achievable,
the algorithm does not yield a concrete control policy. In the real application,
an efficient algorithm for finding such an achieving control policy is essential. In
order to find an achieving control policy in the achievable case, we discuss the
following problem.

Let g be a set function defined by

g(X) := y(X)h(x(X)) (X ⊆ V ) (5)
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with nonnegative vectors x, y indexed by V and a nonnegative nondecreasing
convex function h. Consider a polytope (i.e. bounded polyhedron)

B(g) := {z | z(X) ≥ g(X), ∀X ⊂ V and z(V ) = g(V )}. (6)

We now deal with the problem of finding a convex combination of some extreme
points of B(g) for a given point on B(g). Generally, a polytope in the form of
B(g) is called a base polytope if g is supermodular i.e.,

g(X) + g(Y ) ≤ g(X ∩ Y ) + g(X ∪ Y ), ∀X, Y ⊆ V.

Since the function g in (5) is supermodular (see Appendix), this problem is
a membership problem on base polytope for a specific class of supermodular
function.

Recall Theorem 1 and define g with xi := ρi, yi :=
ρi

μi
and h(x) :=

1
1 − x

as in Section 2.1. For simplicity, we introduce a new performance vector z by
zi := ρi Ti. Without loss of generality, assume z(V ) = g(V ) for any performance
z. This assumption means that we consider only work-conserving system, which
never idle if there exists a job in the queue. Then the achievable region of z forms
a base polytope in the form of (6), and each of its extreme points is achieved
by some absolute priority policy; An absolute priority policy is a control policy
defined by a total order ≺ on V which gives preference to jobs of class i over
jobs of class j if i ≺ j.

We provide an achieving control policy as a random mixture of absolute pri-
ority policies. For any achievable performance ž, our algorithm finds a convex
combination ž =

∑n
k=1 ak π(k) where π(k) is an extreme point of B(g). An

achieving control policy is derived as a control policy which follows the kth
corresponding absolute priority policy with probability ak.

Note that such a policy is not the only achieving control policy, i.e. there can
be other policies that achieve a given vector of performance. For example, in the
case of a nonpreemptive multiclass M/G/c with identical servers, Federgruen-
Groenevelt [9] provided an algorithm for finding another type of achieving control
policy, which is a slightly generalized dynamic or delay dependent control policy,
where a job’s priority is proportional to its time spent in the queue with the
coefficients being class dependent.

Generally, minimizing a submodular function f defined by f(X) := z(X) −
g(X) (X ⊆ V ) enables us to determine whether a point z is in B(g) or not. The
point z is in B(g) if and only if the minimum value of f , as well as f(V ), is
equal to zero. Most combinatorial algorithms for general submodular function
minimization yield a convex combination for z when z is in B(g). However the
algorithm shown in Section 3 does not.

By extending geometric approach, we present an efficient algorithm finding a
convex combination for a given point on B(g). With the aid of the topological
sweeping method for plane arrangement, the algorithm runs in O(n4) time and
O(n2) space, that is still faster than general submodular function minimization
algorithms.



276 T. Itoko and S. Iwata

Algorithm for Finding a Convex Combination

As shown in Fig. 4, our algorithm finds extreme points contributing to a convex
combination by successively projecting a considering point into lower dimen-
sional faces of B(g). First, the algorithm restricts the considering face F into
the minimal face that includes the current point (Step 1). Note that the current
point is initialized by a given point on B(g). Second, it selects an appropriate
extreme point of F as an observer’s position for the next step (Step 2). If the
dimension of F is zero i.e. F is a point, it terminates. Third, with the observer,
it projects the current point onto a proper face of F (Step 3). The algorithm
terminates after at most n iterations (of Steps 1–3) since the dimension of the
considering face decreases at least one by one. The selected observers (extreme
points of B(g)) are the solution.
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Fig. 4. Frame advance of the algorithm in the case of n = 3

The bottle neck of the algorithm is finding a projected point in Step 3. As
shown below, it can be reduced to sweeping cells of a plane arrangement in the
three-dimensional space. According to [1], this is possible in O(n3) time and
O(n2) space, which indicates that the entire algorithm runs in O(n4) time and
O(n2) space.

In Section 3, we proved that, for checking whether a point z is in B(g) or not,
it is sufficient to enumerate all the cells of an arrangement defined by n lines in
the (α, β)-plane:

α xi + β yi − zi = 0 (i ∈ V ). (7)

This is because each of the cells corresponds to X ⊆ V for which the validity
of an inequality z(X) ≥ g(X) should be checked. The set of those subsets was
denoted by L. Note that all the definitions of z, u, Z and L in Section 3 depends
on the point z to be checked. If z varies, so do the three-dimensional points
u(X) (X ⊆ V ). As the three-dimensional points moving, their convex hull Z
and its lower extreme points changes. We denote by L(z) the family of sets that
correspond to the lower extreme points of Z depending on z.

In Step 3, a point to be checked moves along the half line from an observer
vertex π through the current point ž. Any point to be checked is defined by
z(t) := π + t (ž − π) with t ∈ [1, +∞). Consider zi in (7) as a variable with t,
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and replace zi with zi(t) = πi + t (ži − πi) for all i ∈ V . We obtain n planes in
the (α, β, t)-space:

α xi + β yi + t (πi − ži) − πi = 0 (i ∈ V ). (8)

All the cells of the arrangement defined by (8) corresponds to the set family

L′ := {S+(α, β, t) | α, β ∈ R, t ∈ [1, +∞)} (9)

where S+(α, β, t) := {i ∈ V | α xi + β yi − zi(t) > 0}. Since L′ is the union of
L(z(t)) for all t ∈ [1, +∞), checking validity of the inequalities z(X) ≥ g(X)
(X ∈ L′) is sufficient to determine whether z(t) ∈ B(g) for any t ∈ [1, +∞). This
readily follows from the proofs in Section 3 for the case of a fixed t. By selecting
the maximal t such that z(X) ≥ g(X) is valid for all X ∈ L′ and denoting it by
t̄, we can find the projected point as z(t̄).

5 Conclusion

We have presented an efficient algorithm for minimizing a class of submodular
functions that arises in queueing analysis: checking performance achievability of
preemptive multiclass M/M/1. With the aid of the topological sweeping method
for line arrangement, our algorithm runs in O(n2) time, which is much faster
than previously known methods. We have also presented a fast algorithm for
finding a concrete control policy in the achievable case.
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Appendix

This Appendix is devoted to showing that the function f is a submodular
function. For this purpose, it suffices to show that the function g defined by
g(X) := y(X)h(x(X)) is supermodular, i.e.,

g(X) + g(Y ) ≤ g(X ∩ Y ) + g(X ∪ Y ), ∀X, Y ⊆ V.

Since h is convex, for any X ⊆ V and i, j ∈ V , we have

h
(
x(X ∪ {i})

)
≤ xj

xi + xj
h
(
x(X)

)
+

xi

xi + xj
h
(
x(X ∪ {i, j})

)
,

h
(
x(X ∪ {j})

)
≤ xi

xi + xj
h
(
x(X)

)
+

xj

xi + xj
h
(
x(X ∪ {i, j})

)
.
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By adding these two inequalities, we obtain

h
(
x(X ∪ {i})

)
+ h

(
x(X ∪ {j})

)
≤ h

(
x(X)

)
+ h

(
x(X ∪ {i, j})

)
,

which implies that h(x(·)) is a supermodular function. Because of this super-
modularity, the nonnegativity of x and y, and the monotonicity of h, we have

g(X ∪ Y ) + g(X ∩ Y ) − g(X) − g(Y )
= h(x(X ∪ Y )) y(X ∪ Y ) + h(x(X ∩ Y )) y(X ∩ Y ) − h(X) y(X) − h(Y ) y(Y )
=

(
h(x(X ∪ Y )) + h(x(X ∩ Y )) − h(x(X)) − h(x(Y ))

)
y(X ∩ Y )

+
(
h(x(X ∪ Y )) − h(X)

)
y(X \ Y ) +

(
h(x(X ∪ Y )) − h(Y )

)
y(Y \ X)

≥ 0

for any X, Y ⊆ V . Thus g is shown to be supermodular. In addition, it is easy
to see that g(X) ≥ 0 for any X ⊆ V and g(∅) = 0 hold.
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Abstract. As mixed integer programming (MIP) problems become eas-
ier to solve in pratice, they are used in a growing number of applications
where producing a unique optimal solution is often not enough to answer
the underlying business problem. Examples include problems where some
optimization criteria or some constraints are difficult to model, or where
multiple solutions are wanted for quick solution repair in case of data
changes. In this paper, we address the problem of effectively generat-
ing multiple solutions for the same model, concentrating on optimal and
near-optimal solutions. We first define the problem formally, study its
complexity, and present three different algorithms to solve it. The main
algorithm we introduce, the one-tree algorithm, is a modification of the
standard branch-and-bound algorithm. Our second algorithm is based on
MIP heuristics. The third algorithm generalizes a previous approach that
generates solutions sequentially. We then show with extensive computa-
tional experiments that the one-tree algorithm significantly outperforms
previously known algorithms in terms of the speed to generate multiple
solutions, while providing an acceptable level of diversity in the solutions
produced.

1 Introduction

Solving a standard mixed-integer programming (MIP) model minx∈X cT x where
X = {x ∈ �

d : Ax ≤ b, xi ∈ �, ∀i ∈ I ⊆ {1, . . . , d}} usually means finding
a solution x∗ that is feasible: x∗ ∈ X , and optimal: cT x∗ ≤ cT x, ∀x ∈ X .
However, there might exist not only one but several different solutions that fit
those two criteria. In this paper, we address the problem of generating multiple
feasible solutions effectively for the same model, concentrating on optimal and
near-optimal solutions.

1.1 Motivation

The three main reasons that motivate generating multiple solutions instead of
only one come from the applications of mixed-integer linear programming. MIP
is used extensively in industry to make short-term and long-term decisions, such
as scheduling operations on various machines in a factory, deciding how much of
each product to manufacture, choosing new locations for additional factories, etc.
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However, the mathematical model given to a MIP solver is often a simplification
of the real business problem. Such a model may leave out details that are difficult
to express as linear expressions or that make the model hard to solve. The data
used in the mathematical model are also often an estimate of the fluctuating
real data. More importantly, some optimization criteria are inherently subjective
and difficult to quantify. For example, Schittekat and Sorensen [19] studied the
problem of choosing subcontractors in the automotive industry. The obvious
choice criterion is the price each subcontractor demands for the same job, but
there are other factors to consider, such as the quality of work and service, and
these factors are difficult to quantify. Because of these differences between the
mathematical model and the real business problem, it is interesting to generate
multiple optimal or near-optimal solutions for the mathematical model so that
the decision maker can examine them, and, in the end, choose the best solution
overall, i.e., the one that also performs best for the criteria that could not be
expressed in the MIP model.

The second reason for generating multiple solutions is that MIP is increas-
ingly used beyond the simple framework of formulating a model, solving it, and
implementing the solution. If the data have changed between the moment the
model was written and the moment the solution is to be implemented (for ex-
ample in scheduling, if a machine has broken down), then it is valuable to have
immediately at hand an alternative solution that does not use this machine, or
a variety of solutions that can be used to repair the current solution. Another
application mentioned by Schittekat and Sorensen [19] is that being able to show
a subcontractor alternative solutions that have approximately the same cost and
use the subcontractor’s competitors was a very effective tool in negotiating.

Finally, a more technical application is that MIP is increasingly used to solve
subproblems inside the branch-and-cut framework itself. For example, several
approaches [9,10,2,8] formulate cut separation as a MIP where the objective is to
maximize the cut violation, and each solution corresponds to a cut. Although the
efficiency of a cut can be predicted approximately by its violation, more complex
measures [14,5] could be useful to evaluate efficiency more accurately, but they
are too complex to express in the aforementioned MIP models. Moreover, adding
several cuts at a time is a well known technique to obtain quick progress in the
best bound. MIP models for cut separation would therefore be an interesting
application for generating multiple solutions.

1.2 Related Work

Generating multiple solutions to optimization problems has been the subject of
few papers: Lee et al. [15] generate multiple solutions for LP; Bacchus solves
#SAT in [1]; Schittekat and Sorensen [19] use metaheuristics to generate so-
lutions for a logistics problem. As for generating multiple solutions for MIP,
Glover et al. [11] present an interesting approach based on MIP heuristics. How-
ever, because of its heuristic nature, this approach lacks the capacity of proving
how many different solutions exist for a given problem, and does not guaran-
tee generating all possible solutions. The work closest to our approach is by
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Greisdorfer et al. [12]. The authors compute two solutions to a MIP model, ei-
ther by solving two successive MIP models (sequential approach), or by solving
a MIP twice as big as the original model (simultaneous approach). Their paper
compares both algorithms in terms of performance and diversity of solutions
obtained, showing that the sequential approach outperforms the simultaneous
approach. The problem with both algorithms is that, although they can be gen-
eralized to p solutions instead of two, they do not scale well when p becomes
large, as we will show in Sec. 4.1.

1.3 Outline of the Paper

The remainder of the paper is organized as follows. Sec. 2 formally defines the
problems we are going to solve, examines their complexity and presents our mea-
sure for solution diversity. Sec. 3 describes our three algorithms for generating
multiple solutions. Sec. 4 presents computational results. Sec. 5 concludes with
a summary and directions for future work.

2 Definitions

2.1 Problem Definition and Complexity

Given a mixed integer programming model P = minx∈X cT x where X = {x ∈
�

d : Ax ≤ b, xi ∈ �, ∀i ∈ I ⊆ {1, . . . , d}}, for which an optimal solution is x∗,
we define the following problems:

– MIP(p): Generate p different feasible solutions for P
– #MIP: How many different feasible solutions does P have?
– MIP(p, q): Generate p different feasible solutions x(1), . . . , x(n) for P within

q% of the optimum, i.e., such that cT x(i) ≤ cT x∗+q|cT x∗|/100, ∀i = 1, . . . , n
– #MIP(q): How many different feasible solutions within q% of the optimum

does P have?

We consider two solutions to be different if and only if they differ by at least
one integer variable. The first reason for not taking into account continuous
variables is that the main decision variables are integer, whereas continuous
variables usually are less important. Secondly, there might exist an infinite num-
ber of solutions that differ only by continuous variables, especially if there is no
constraint on the objective value of the solution. Thirdly, the computer repre-
sentation of real values is not exact, therefore it is difficult to say in pratice that
two continuous variables are different without resorting to numerical tolerances.

The four problems are at least as hard as MIP(1), therefore are NP-hard.
In addition, #MIP and #MIP(q) belong to #P , the class of counting prob-
lems [20,21]. It follows from the polynomial reduction from SAT to MIP that
#MIP and #MIP(q) are at least as hard as #SAT, therefore are #P-complete.

In the rest of this paper, we will focus on solving the objective-controlled
version of the problems: MIP(p, q) and #MIP(q), because, however imprecise
the objective modeling can be, it is still very important.
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2.2 Solution Diversity

Next to objective value, diversity is the most important characteristic to take into
account when comparing sets of solutions produced by different algorithms [12].
Indeed, multiple solutions are mostly useful if they are structurally different from
each other [19].

We define the diversity of a set S of solutions as the average pairwise distance:
D(S) = 1

|S|2
∑

s,s′∈S d(s, s′), where the distance between two solutions is the
Hamming distance on the set B of binary variables: d(s, s′) = 1

|B|
∑

i∈B |si − s′i|.
Our measure generalizes to |S| > 2 the diversity used in Greisdorfer et al. [12].

D(S) ≤ 1
2 for all sets S of solutions. Indeed, D(S) = 1

|S|2|B|
∑

i∈B

∑
s,s′∈S |si−

s′i|. Looking at each variable i ∈ B individually, it is clear that
∑

s,s′∈S |si−s′i| is
maximal if �|S|/2� of the solutions have si = 0 and the remaining solutions have
si = 1. In that case, at most half of the addends |si − s′i| are equal to one, while
at least half of them are zero. It follows that D(S) ≤ 1

|S|2|B|
∑

i∈B
1
2 |S|2 = 1

2 .

3 Algorithms

We now describe the three algorithms considered in this paper in detail.

3.1 The One-Tree Algorithm

The standard branch-and-bound algorithm for solving integer programming
models aims at progressively reducing the search space as quickly and as much
as possible so that it is easier both to find the optimal solution and to prove
that it is optimal. However, when the aim is to generate multiple solutions, the
perspective needs to be different: if the search space is reduced too much, it
will not contain enough solutions. The one-tree algorithm we propose is adapted
from the standard branch-and-bound algorithm (outlined in Algorithm 1) for
this purpose1. It proceeds in two phases. During the first phase (outlined in
Algorithm 2), the branch-and-bound tree is constructed and explored to find
the optimal solution, and its nodes are kept for the second phase. During the
second phase (outlined in Algorithm 3), the tree built in the first phase is reused
and explored in a different way to yield multiple solutions. The differences with
the standard branch-and-bound algorithm relate to storing integer solutions,
fathoming nodes, branching, and dual tightening.

In standard branch-and-bound, an integer solution is stored only if it improves
on the incumbent. When generating solutions in the second phase, we store in
the set S all integer solutions that are within q% of the optimum value.

In standard branch-and-bound, a node is fathomed when the sub-model it
defines cannot yield any improving integer solution, i.e., when its LP solution is
integer-valued or has an objective value worse than the incumbent. In the first
1 Algorithm 1 is of course a very rudimentary outline of branch-and-bound. We left

out many techniques, such as cuts and heuristics, and many implementation details
to concentrate on the features that differ in the one-tree algorithm.
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Algorithm 1. Outline of standard branch-and-bound algorithm
Preprocessing
Set of open nodes: Nopen ← {rootnode}
Objective value of the incumbent: z∗ ← +∞
while Nopen �= ∅ do

Choose a node n from Nopen
Solve LP at node n. Solution is x(n) with objective z(n).
if z(n) ≥ z∗ then

Fathom the node: Nopen ← Nopen \ {n}
else

if x(n) is integer-valued then
x(n) becomes new incumbent: x∗ ← x(n); z∗ ← z(n)
Do reduced cost fixing
Fathom the node: Nopen ← Nopen \ {n}

else
Choose branching variable i such that xi(n) is fractional
Build children nodes n1 = n ∩ {xi ≤ �xi(n)�} and n2 = n ∩ {xi ≥ �xi(n)� + 1}
Nopen ← Nopen ∪ {n1, n2} \ {n}

end if
end if

end while

Algorithm 2. Outline of one-tree algorithm: phase I
Preprocessing with only primal reductions
Set of open nodes: Nopen ← {rootnode}
Set of stored nodes: Nstored ← ∅
Objective value of the incumbent: z∗ ← +∞
while Nopen �= ∅ do

Choose a node n from Nopen
Solve LP at node n. Solution is x(n) with objective z(n).
if z(n) ≥ z∗ then

Fathom the node and keep it for phase II: Nopen ← Nopen \ {n}; Nstored ← Nstored ∪ {n}
else

if x(n) is integer-valued then
x(n) becomes new incumbent: x∗ ← x(n); z∗ ← z(n)
Fathom the node and keep it for phase II: Nopen ← Nopen \ {n}; Nstored ← Nstored ∪ {n}

else
Choose branching variable i such that xi(n) is fractional
Build children nodes n1 = n ∩ {xi ≤ �xi(n)�} and n2 = n ∩ {xi ≥ �xi(n)� + 1}
Nopen ← Nopen ∪ {n1, n2} \ {n}

end if
end if

end while

Algorithm 3. Outline of one-tree algorithm: phase II
Reuse tree from phase I: Nopen ← Nstored
Reuse incumbent from phase I: Set of solutions: S ← {x∗}
while Nopen �= ∅ do

Choose a node n from Nopen
Solve LP at node n. Solution is x(n) with objective z(n)
if z(n) > z∗ + q|z∗|/100 then

Fathom the node: Nopen ← Nopen \ {n}
else

if x(n) is integer-valued then
x(n) is added to the pool of solutions if it is not a duplicate: if x(n) /∈ S, then S ← S ∪ {x(n)}

end if
Choose branching variable i such that it is not fixed by the local bounds of node n: lbi(n) < ubi(n)
Build children nodes n1 = n ∩ {xi ≤ �xi(n)�} and n2 = n ∩ {xi ≥ �xi(n)� + 1}
Nopen ← Nopen ∪ {n1, n2} \ {n}

end if
end while

phase of the one-tree algorithm, nodes are fathomed by the same criterion but
instead of being discarded, they are stored for further examination during the
second phase. During the second phase, a node is fathomed if it cannot yield
any additional integer solution within q% of the optimum value, i.e., if its LP
solution is integer-valued and all integer variables have been fixed by the local
bounds of the node, or if the objective value of its LP value is strictly more than
q% worse than the optimum value.
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In standard branch-and-bound, only variables that are fractional in the node
LP solution are branched on. When generating solutions in the second phase,
we also branch on variables that are integral in the LP node solution if they are
not fixed by local bounds. Suppose the node LP solution is integral and binary
variable xi = 0 at the node. There might exist some solutions with xi = 1; for
this reason, we need to create the right child node with xi fixed to 1. But there
might also exist solutions with xi = 0 and different values for other variables;
for this reason, we need to create the left child node with xi = 0. This branch,
however, contains the same integer solution as the parent. So, in order not to
count the same solution twice, either we check that it is not a duplicate of a
previous solution before adding it to the set S of solutions; or, we keep the LP
value of the branching variable in the parent node and discard the solution if
this value satisfies the local bounds of the variable at the node. Either way, it is
best to explore first the branch that does not contain the solution of the parent
node in order to get more diverse solutions.

In standard branch-and-bound, the search space is pruned because of consid-
erations on the objective function. This pruning takes place during preprocess-
ing [13,6], and during the exploration of the tree through reduced cost fixing [22].
In both phases of the one-tree algorithm, we do not want to eliminate poten-
tial solutions because they are suboptimal, so in theory we should turn off dual
tightening completely, as outlined in Algorithm 2 and 3. However, this choice
has a significant impact on performance, and turning off dual tightening com-
pletely is not required in practice to obtain a large enough number of solutions.
In practice, we need to choose a reasonable tradeoff between speed and number
of solutions we wish to obtain. Not fathoming a node even if its objective value
exceeds the incumbent, as we explained above, can be seen as a first level of
turning dual tightening off. It does not cost anything in terms of speed; it is just
expensive in terms of memory. The second level is to turn off dual reductions
during reduced cost fixing. This setting is the level we used in our first set of ex-
periments. We will show in Sec. 4.1 how it impacts performance. The third level,
which is needed for exhaustive enumeration (see the experiments in Sec. 4.3), is
to also turn off dual presolve reductions.

Let us note that one could enumerate solutions in a single phase, simply by
fathoming nodes and branching as in the second phase, and turning off some
dual tightening. We chose to separate the algorithm into two phases for the fol-
lowing reasons. The first reason is computational: generating multiple solutions
carries a performance penalty. So, if we are solving MIP(p, q) or #MIP(q), we
want to avoid spending time generating solutions within q% of a suboptimal
incumbent which will be discarded later when the optimal solution is found, and
it turns out those solutions are more than q% above the optimum. The second
reason is that the one-tree algorithm is to be used as an interactive discovery
tool, where the tree is built once during phase I and explored many times dur-
ing successive invocations of the phase II algorithm — possibly with different
additional constraints, different q values, or different stopping criteria — until
the user finds suitable solutions for his business problem. This is also why we
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chose to turn off dual tightening completely instead of carrying out dual reduc-
tions based on the incumbent value augmented by q%, which is also a possible
implementation.

Finally, let us mention the stopping criterion for both phases. As with the
standard branch-and-bound algorithm, the algorithm can be stopped in both
phases before the set of open nodes is empty for reasons such as time limit,
node limit, number of solutions generated, etc. An interesting case is the gap
criterion. During standard branch-and-bound, the best bound value (minimum
of objective value over open nodes) is always less than the incumbent. During
the second phase, it will happen, however, that the best bound value becomes
greater than the incumbent as nodes get fathomed. If the gap becomes less than
−q%, then no additional solutions within q% of the optimum can be generated,
and the algorithm can be stopped.

3.2 Heuristics

Heuristics are a natural way to generate multiple solutions [11,19]. The algo-
rithm we propose, outlined in Algorithm 4, is similar to the one-tree algorithm.
The difference is first that solutions are generated mainly by MIP heuristics such
as fix-and-dive heuristics [3], RINS [7], and solution polishing [17,18], instead of
relying only on the integral node LP solutions. In addition, heuristics can gener-
ate solutions that violate local bounds; therefore it is not necessary to store the
fathomed nodes as in the first phase of the one-tree algorithm. Finally, it should
be noted that this algorithm is not efficient for exhaustive enumeration (#MIP
and #MIP(q)), as heuristics do not explore the search space systematically like
the one-tree algorithm and risk generating the same solutions many times over.

Algorithm 4. Outline of the algorithm using heuristics for MIP(p, q)
Phase I:
Solve the model with standard branch-and-bound
Optimal solution is x∗ with objective value z∗
Set of solutions: S ← {x∗}

Phase II:
Start a new tree: Nopen ← {rootnode}
while |S| < p do

Choose a node n from Nopen
Solve LP at node n.
Run fix-and-dive heuristics, RINS, and solution polishing with an objective cutoff of z∗ + q|z∗|/100
If the solutions found are not duplicate of already stored solutions, they are added to S.

Rules for fathoming nodes, branching, and dual tigthening are the same as for the second phase of the one-tree
algorithm.

end while

3.3 The Sequential Algorithm

The last algorithm we present in this paper is a simple generalization of the
sequential generation of Greisdorfer et al. [12]. We present it mainly for com-
parison with previous work and for its variant that maximizes diversity. Instead
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of generating multiple solutions using a unique branch-and-bound tree as in the
one-tree algorithm and in heuristics, we solve here a sequence of integer program-
ming models, each providing one solution. The details are given in Algorithm 5.

Algorithm 5. Sequential algorithm for #MIP(q)
Solve P with standard branch-and-bound. Optimal solution is x∗ of cost z∗.
Set of solutions: S ← {x∗}
B = set of binary variables
Add constraint on objective value: X ← X ∩ {cT x ≤ z∗ + q|z∗|/100}
while P is feasible do

Change objective function of P to maximizing distance to already discovered solutions:
max

∑
s∈S

∑
i∈B:si=0 xi +

∑
i∈B:si=1 (1 − xi)

Add diversity constraint to exclude the previously found solution:
X ← X ∩ {

∑
i∈B:x∗

i
=0 xi +

∑
i∈B:x∗

i
=1 (1 − xi) ≥ 1}

Solve P with standard branch-and-bound. Optimal solution is x∗.
Store the new solution: S ← S ∪ {x∗}

end while

It is easy to see that this sequential algorithm will be slow to generate a large
number of solutions, as no information is reused from one iteration to the next.
However, the advantage of this algorithm is that any objective function can be
used once the optimal solution of the original problem has been obtained. Our
computational experience is that the most effective way is to use the original
objective. In the rest of the paper, we will refer to this algorithm as the plain
sequential algorithm. But, as outlined in Algorithm 5, we can also try to max-
imize the distance to already discovered solutions. This algorithm is a greedy
procedure that aims at maximizing the diversity of the set of solutions obtained
in the end, as defined in Sec. 2.2.

4 Computational Results

When we evaluate the performance of algorithms that generate multiple solu-
tions, several dimensions, possibly mutually conflicting, need to be considered:
the number of solutions generated, the solving time needed to generate these
solutions, the objective value and the diversity of the solutions generated. For a
comparison of algorithms to be valid, it is best to control as many dimensions as
possible and to let only one or two vary at a time. This consideration is an addi-
tional reason why all our experiments are about the objective-controlled version
of the problems: we solve MIP(10, 1), #MIP(1), and #MIP(0).

All experiments were carried out with CPLEX 10.1 on a 3.4 GHz GNU/Linux
machine with 2 GB memory. We experimented with models from MIPLIB3.0 [4]
and MIPLIB2003 [16] that can be solved to optimality within half an hour.

4.1 Comparison of Performance

The first set of experiments answers the question of how fast each algorithm
generates solutions. We compare the time needed for each algorithm to solve
MIP(10, 1), i.e., to generate 10 solutions within 1% of the optimum. For this
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experiment, we also enforce a time limit of 1 hour, except for the sequential
algorithm maximizing diversity. Additionally, we answer the question in a slightly
different way by comparing how many solutions within 1% of the optimum each
algorithm generates in 1 hour. For this experiment, we also enforce a solution
limit of 100000. The results, detailed model by model, are given in Table 2,
page 290, and Table 3, page 291. Since the limits of 10 solutions or one hour are
rather arbitrary, we also present graphically in Fig. 1 the evolution of the number
of solutions in function of the time needed to generate them for model 10teams.

In summary, when generating 10 solutions, the first phase of the one-tree
algorithm is on average 2.2 times slower than the first phase of heuristics2. This
difference is due to the fact that dual tightening is turned off during the tree
exploration for the one-tree algorithm. But, during the second phase, the one-tree
algorithm is on average 10.9 times faster than heuristics to generate solutions.
When comparing the total time, the one-tree algorithm has clearly the best
performance: it is on average 2.1 times faster than heuristics, 5.5 times faster
than the plain sequential algorithm and 20.2 times faster than the sequential
algorithm maximizing diversity. These results are corroborated by the number
of solutions that each algorithm can generate in one hour: the one-tree algorithm
generates on average 2.5 times more solutions than heuristics, 18.2 times more
solutions than the plain sequential algorithm, and 52.1 times more solutions than
the sequential algorithm maximizing diversity.

4.2 Comparison of Diversity

Only one of the algorithms we have presented explicitly tries to maximize the
diversity of the set of solutions to be obtained. However, the experiments of
the previous section showed that the sequential algorithm maximizing diversity
is much too slow to be practical. We were, therefore, curious to know whether
the better performance of the one-tree algorithm, heuristics, and, to a lesser
extent, the plain sequential algorithm, were obtained at the expense of a smaller
diversity in the solutions these two algorithms generate. Table 4 at page 292
compares the diversity obtained by each algorithm when solving MIP(10, 1). On
average, the diversity of the one-tree algorithm, of heuristics, and of the plain
sequential algorithm are respectively 3.5, 5.1, and 3.3 smaller than the diversity
obtained by the sequential algorithm when maximizing diversity. Given that the
first two algorithms are significantly faster and have much room for improvement
in solution diversity, we believe that these results are encouraging and show an
interesting trade-off between performance and diversity. Our future work will be
directed at improving the diversity of the solutions they produce.

4.3 Exhaustive Enumeration of Optimal Solutions

Our last set of experiments concerns solving #MIP(0), i.e., enumerating all
possible optimal solutions. We have restricted ourselves to models that contain
2 When presenting average numbers, we compute the geometric mean of the ratio of

the performance of the two algorithms compared.
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Fig. 1. Number of solutions generated over time for model 10teams

Table 1. Enumeration of all optimal solutions for pure binary models

Model Number of One-tree time Sequential time
optimal solutions (in seconds) (in seconds)

10teams ≥ 14764 > 1 day (found 14764 sol.) > 1 day (found 470 sol.)
air03 1 49.96 1.54
air04 8 37.70 166.41
air05 2 115.32 51.95
cap6000 1 7178.83 6.81
disctom ≥ 547 > 1 day (found 547 sol.) > 1 day (found 130 sol.)
enigma 3 0.90 1.24
l152lav 1 3.92 1.89
lseu 2 0.27 0.37
mitre 80 234.82 993.45
mod008 6 1.83 1.46
mod010 128 255.81 353.89
nw04 1 499.62 74.74
p0033 9 0.01 0.11
p0201 4 0.79 1.68
p0282 1 0.73 0.31
p0548 ≥ 100000 > 551.66 (found 100000 sol.) > 1 day (found 2940 sol.)
p2756 ≥ 100000 > 13519.22 (found 100000 sol.) > 1 day (found 1401 sol.)
stein27 2106 5.60 19819.2
stein45 70 50.71 1679.87

only binary variables because of the ambiguity of what all solutions mean when
continuous variables are involved (see Sec. 2.2), and because the sequential algo-
rithm cannot handle general integer variables (although the one-tree algorithm
can). Table 1 shows that we successfully enumerate all optimal solutions for 16
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Table 2. Time (in seconds) to enumerate 10 solutions within 1% of the optimum. The ‡
symbol means that the sequential algorithm maximizing diversity had to be limited to
two hours for each iteration in order to produce 10 solutions in a reasonable time.

Model One-tree One-tree One-tree Heuristics Heuristics Heuristics Sequential Sequential
phase I phase II total phase I phase II total plain max diversity

10teams 68.79 54 122.79 31.32 215.6 246.92 260.89 72103.9 ‡
aflow30a 104.85 17.97 122.82 23.57 72.44 96.01 375.26 1221.3
air03 0.58 1.04 1.62 0.55 2.78 3.33 24.41 35.98
air04 41.28 2.74 44.02 17.1 19.84 36.94 248.41 38772.7 ‡
air05 41.31 6.52 47.83 19.42 125.67 145.09 281 7307.85 ‡
arki001 3305.11 0.92 3306.03 27.43 3.62 31.05 2634.18 64954.7 ‡
bell3a 9.17 0.07 9.24 2.76 0.53 3.29 5.64 2.85
bell5 0.14 0.01 0.15 0.13 0.07 0.2 2.17 2.79
blend2 8.17 1.18 9.35 2.56 14.15 16.71 28.47 70.57
cap6000 12.38 0.51 12.89 0.56 0.82 1.38 14.8 49.18
dcmulti 0.69 0.07 0.76 0.54 0.59 1.13 6.42 46.18
disctom 362.47 387.55 750.02 363.48 >3600 >3600 2255.54 54780.6 ‡
dsbmip 0.44 0.38 0.82 0.35 1.35 1.7 3 17.86
egout 0.01 0.01 0.02 0.01 1.69 1.7 0.05 0.04
enigma 0.16 0.79 0.95 0.2 6.74 6.94 2.24 1.47
fiber 1.04 0.24 1.28 0.22 1052.65 1052.87 11.99 18.65
fixnet6 1.44 0.08 1.52 1.78 15.87 17.65 20.11 16.14
flugpl 0.01 >3600 >3600 0.01 >3600 >3600 >3600 >3600
gen 0.02 0.07 0.09 0.02 1.04 1.06 0.49 1.78
gesa2 0.99 0.15 1.14 0.4 0.33 0.73 5.4 105.1
gesa2 o 4.04 0.09 4.13 2.34 0.28 2.62 48.82 3266.6
gesa3 1.13 0.23 1.36 0.68 1.52 2.2 72.03 864.76
gesa3 o 0.89 0.13 1.02 0.8 1.01 1.81 17.97 48543.2 ‡
gt2 0.01 0.04 0.05 0.01 0.07 0.08 0.17 0.44
khb05250 0.14 0.2 0.34 0.11 66.15 66.26 2.44 4.97
l152lav 1.4 0.19 1.59 0.94 4.03 4.97 16.21 53.93
lseu 0.23 0.18 0.41 0.1 2407.72 2407.82 0.97 1.11
mas76 213.48 26.61 240.09 81.94 16.75 98.69 2188.01 1146.94
misc03 0.53 0.02 0.55 0.2 1.16 1.36 9.96 36.36
misc06 0.1 0.04 0.14 0.1 0.6 0.7 1.94 5.23
misc07 86.35 0.73 87.08 8.45 3.75 12.2 891.92 3119.26
mitre 0.64 20.57 21.21 0.59 5.64 6.23 14.78 27.7
mod008 1.17 0.7 1.87 0.17 10.83 11 2.41 28.63
mod010 0.42 0.15 0.57 0.27 0.73 1 4.48 13.69
mod011 125.32 82.58 207.9 56.47 >3600 >3600 1417.06 10956.5 ‡
modglob 0.24 0.04 0.28 0.16 0.19 0.35 3.15 45.94
mzzv11 253.15 45.38 298.53 179.42 42.88 222.3 3249.93 21817.4 ‡
mzzv42z 122.4 3.61 126.01 68.99 43.01 112 921.46 51016.4 ‡
nw04 744.85 23.7 768.55 29.11 106.88 135.99 1337.25 1479.38
p0033 0.01 0.01 0.02 0.01 0.15 0.16 0.12 0.16
p0201 1.02 0.16 1.18 0.24 7.61 7.85 6.1 4.95
p0282 0.74 0.12 0.86 0.16 0.97 1.13 2.41 5
p0548 0.12 0.06 0.18 0.06 0.08 0.14 0.99 3.42
p2756 0.66 0.11 0.77 0.36 0.29 0.65 4.82 10.78
pk1 187.93 7.37 195.3 89.98 >3600 >3600 269.59 206.46
pp08aCUTS 4.26 0.47 4.73 2.62 7.77 10.39 37.52 111.83
pp08a 1.6 0.46 2.06 0.92 8.28 9.2 22.2 62.06
qiu 250.26 0.24 250.5 53.06 73.46 126.52 2450.64 1311.36
qnet1 2.72 0.74 3.46 2.26 1.24 3.5 35.46 68.27
qnet1 o 1.72 0.29 2.01 1.69 0.69 2.38 26.46 65.8
rgn 1.26 0.02 1.28 0.76 0.33 1.09 8.54 1
rout 975.64 4.41 980.05 34.49 16.95 51.44 2940.5 2097.27
set1ch 0.54 0.08 0.62 0.58 0.57 1.15 9.75 51.31
stein27 0.79 0.01 0.8 0.4 0.2 0.6 7.16 2.51
stein45 20.56 3.26 23.82 17.19 9.83 27.02 177.87 65.5
vpm1 0.01 0.05 0.06 0.01 0.06 0.07 0.35 1.91
vpm2 1.66 0.54 2.2 0.9 1.6 2.5 14.8 101.48
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Table 3. Number of solutions within 1% of the optimum enumerated in one hour. The
(p) symbol means the algorithm has proved that no other solutions exist within 1% of
the optimum.

Model One-tree Heuristics Sequential Sequential
plain max. diversity

10teams 363 93 68 5
aflow30a 84 61 68 20
air03 938 425 165 126
air04 8015 268 80 1
air05 6728 207 56 7
arki001 12493 20964 13 1
bell3a ≥ 100000 221 1 1
bell5 ≥ 100000 7115 16 134
blend2 10 (p) 10 (p) 10 (p) 10 (p)
cap6000 79112 36648 225 23
dcmulti ≥ 100000 1541 640 145
disctom 37 3 25 1
dsbmip ≥ 100000 98385 1366 378
egout 2 (p) 2 (p) 2 (p) 2 (p)
enigma 3 (p) 2 3 (p) 3 (p)
fiber 136 10 279 160
fixnet6 28426 97 555 185
flugpl 5 4 1 1
gen ≥ 100000 ≥ 100000 717 371
gesa2 ≥ 100000 13164 505 59
gesa2 o ≥ 100000 16268 308 3
gesa3 28989 1361 118 17
gesa3 o ≥ 100000 2051 430 5
gt2 ≥ 100000 ≥ 100000 13 13
khb05250 28 (p) 28 (p) 28 (p) 28 (p)
l152lav 15958 8101 233 56
lseu 5 (p) 5 (p) 5 (p) 5 (p)
mas76 49 11 14 1
misc03 24 (p) 24 (p) 24 (p) 24 (p)
misc06 ≥ 100000 778 781 382
misc07 72 72 42 11
mitre 10308 10091 114 11
mod008 68 (p) 25 68 (p) 68 (p)
mod010 21263 10612 350 180
mod011 49 8 18 5
modglob ≥ 100000 4151 661 43
mzzv11 562 48703 11 1
mzzv42z 1076 43908 30 1
nw04 86 70 28 16
p0033 15 (p) 15 (p) 15 (p) 15 (p)
p0201 44 (p) 44 (p) 44 (p) 44 (p)
p0282 ≥ 100000 ≥ 100000 1042 623
p0548 ≥ 100000 18670 921 515
p2756 10164 92586 412 227
pk1 1 (p) 1 (p) 1 (p) 1 (p)
pp08aCUTS 64 (p) 57 64 (p) 64 (p)
pp08a 64 (p) 56 64 (p) 64 (p)
qiu 144 108 14 17
qnet1 30067 14834 147 97
qnet1 o 28196 13266 138 94
rgn 720 720 720 720
rout 3393 574 11 10
set1ch ≥ 100000 6096 313 112
stein27 2106 (p) 2106 (p) 904 793
stein45 70 (p) 70 70 (p) 70 (p)
vpm1 ≥ 100000 18729 1393 1344
vpm2 33 (p) 33 33 (p) 33 (p)
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Table 4. Diversity of solutions obtained when solving MIP(10, 1). The ‡ symbol means
that the sequential algorithm maximizing diversity had to be limited to two hours for
each iteration in order to produce 10 solutions in a reasonable time.

Model One-tree Heuristics Sequential Sequential
plain max. diversity

10teams 0.021 0.029 0.037 0.040 ‡
aflow30a 0.032 0.030 0.038 0.056
air03 0.001 0.001 0.001 0.003
air04 0.004 0.001 0.003 0.011 ‡
air05 0.003 0.002 0.001 0.011 ‡
arki001 0.038 0.022 0.059 0.434 ‡
bell3a 0.000 0.000 0.000 0.000
bell5 0.042 0.102 0.063 0.331
blend2 0.010 0.010 0.010 0.010
cap6000 0.002 0.001 0.002 0.028
dcmulti 0.039 0.044 0.025 0.253
disctom 0.109 0.137 0.423 0.476 ‡
dsbmip 0.028 0.044 0.173 0.237
egout 0.018 0.018 0.018 0.018
enigma 0.062 0.060 0.062 0.062
fiber 0.003 0.015 0.004 0.019
fixnet6 0.006 0.017 0.027 0.046
flugpl 0.000 0.000 0.000 0.000
gen 0.030 0.039 0.036 0.318
gesa2 0.034 0.012 0.008 0.151
gesa2 o 0.006 0.011 0.007 0.159
gesa3 0.006 0.000 0.009 0.086
gesa3 o 0.002 0.000 0.005 0.132 ‡
gt2 0.027 0.028 0.074 0.074
khb05250 0.138 0.119 0.138 0.200
l152lav 0.010 0.009 0.003 0.020
lseu 0.110 0.110 0.110 0.110
mas76 0.067 0.041 0.066 0.000
misc03 0.071 0.075 0.075 0.078
misc06 0.030 0.023 0.023 0.334
misc07 0.056 0.052 0.057 0.063
mitre 0.002 0.002 0.003 0.043
mod008 0.012 0.015 0.012 0.019
mod010 0.011 0.003 0.005 0.022
mod011 0.049 0.067 0.035 0.097 ‡
modglob 0.063 0.063 0.023 0.421
mzzv11 0.006 0.004 0.009 0.026 ‡
mzzv42z 0.006 0.004 0.013 0.033 ‡
nw04 0.000 0.000 0.000 0.000
p0033 0.158 0.228 0.108 0.242
p0201 0.121 0.077 0.144 0.153
p0282 0.014 0.020 0.006 0.164
p0548 0.007 0.018 0.015 0.080
p2756 0.001 0.017 0.009 0.083
pk1 0.000 0.000 0.000 0.000
pp08aCUTS 0.130 0.053 0.100 0.207
pp08a 0.069 0.103 0.100 0.207
qiu 0.333 0.239 0.346 0.370
qnet1 0.007 0.005 0.004 0.026
qnet1 o 0.005 0.006 0.003 0.026
rgn 0.062 0.055 0.066 0.071
rout 0.084 0.058 0.077 0.095
set1ch 0.034 0.034 0.020 0.145
stein27 0.363 0.353 0.393 0.444
stein45 0.383 0.346 0.415 0.429
vpm1 0.048 0.038 0.046 0.120
vpm2 0.052 0.048 0.058 0.067
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models. As expected, the one-tree algorithm is generally faster than the sequen-
tial algorithm, but it is slower when there is a very small number of solutions
to be enumerated because it requires all dual tightening (in presolve and during
the tree) to be turned off. Note that for models with a very large number of so-
lutions, there are probably smarter ways to enumerate all of them, for example,
by taking into account symmetries.

5 Conclusion and Future Work

In this paper, we have formally introduced four problems representative of the
issues of generating multiple solutions for mixed integer programming problems.
We have presented three new algorithms to solve them, and we have shown
with extensive computational experiments on the MIPLIB model library that it
is within our reach to generate multiple solutions effectively. In particular, the
main algorithm we introduced in this paper, the one-tree algorithm, improves
significantly over previously known algorithms. Unlike previous approaches such
as heuristics, this algorithm is able to compute all solutions for a model and prove
that no other solutions exist. It also performs on average significantly faster than
previously known algorithms, such as heuristics and sequential enumeration,
especially when a large number of solutions is requested.

We have also studied the diversity of the solutions produced, as this charac-
teristic is very important for applications. We have presented a variation of the
sequential algorithm that explicitly maximizes diversity. This algorithm is very
slow but useful to compare the diversity of the solutions produced by our other
algorithms. Our preliminary results are encouraging, as the one-tree algorithm
and, to a lesser extent, our MIP heuristics are significantly faster but still pro-
vide an acceptable level of diversity. We will work in the future on improving
the diversity of the solutions produced by the one-tree algorithm. We will also
work on taking into account general integer variables and continuous variables
in diversity measures.
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8. Sanjeeb Dash, Oktay Günlük, and Andrea Lodi. Separating from the MIR closure
of polyhedra. Workshop on mixed integer programming, MIP 2006.

9. Matteo Fischetti, Andrea Lodi. Optimizing over the first Chvátal closure, in M.
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Abstract. In this paper we present a method for finding exact solu-
tions of the Max-Cut problem max xT Lx such that x ∈ {−1, 1}n. We
use a semidefinite relaxation combined with triangle inequalities, which
we solve with the bundle method. This approach is due to Fischer, Gru-
ber, Rendl, and Sotirov [12] and uses Lagrangian duality to get upper
bounds with reasonable computational effort. The expensive part of our
bounding procedure is solving the basic semidefinite programming relax-
ation of the Max-Cut problem.

We review other solution approaches and compare the numerical re-
sults with our method. We also extend our experiments to unconstrained
quadratic 0-1 problems and to instances of the graph bisection problem.

The experiments show, that our method nearly always outperforms
all other approaches. Our algorithm, which is publicly accessible through
the Internet, can solve virtually any instance with about 100 variables
in a routine way.

1 Introduction

The Max-Cut problem is one of the fundamental NP-hard combinatorial opti-
mization problems. It corresponds to unconstrained quadratic optimization in
binary variables. We will present an exact method for this problem, which allows
us to solve instances of modest size (about 100 binary variables) in a routine
manner.

Since the late 1980’s a systematic investigation based on polyhedral combina-
torics was carried out to get exact solutions of the Max-Cut problem (see, e.g.,
[2, 3, 9, 11, 23, 1]). This approach is quite successful on sparse instances (e.g., in
[9] the solution of toroidal grid graphs of sizes up to 22 500 nodes is reported),
but it becomes no more usable for dense instances with more than, say, 50 nodes.
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A major theoretical break-through occured in the early 1990’s, when Goemans
and Williamson [16] showed that a semidefinite programming (SDP) relaxation
of Max-Cut has an error of no more than about 14%, independent of the density
of the underlying problem, provided the edge weights in the problem are all
nonnegative. This raised the hope that the use of this relaxation might open the
way to deal also with dense instances. Unfortunately, this SDP bound is still too
weak, see [28]. Closing an initial gap of more than 10% by Branch and Bound is
very likely to produce a huge number of subproblems to be investigated, leading
to excessive computation times.

In this paper we take up the approach from Helmberg and Rendl [18] of using
this SDP bound tightened by the inclusion of triangle inequalities in a Branch
and Bound framework. The major improvement as compared to [18] consists in
the way we compute the resulting relaxation. We use the approach of Fischer
et al. [12], which combines an interior-point method to compute the basic SDP
relaxation with the bundle method to handle the triangle inequalities, and which
we tuned for the Branch and Bound setting. A similar approach, but based on
a pure polyhedral relaxation, was used quite successfully by Frangioni, Lodi,
and Rinaldi [13] to compute the bound based on the triangle inequalities very
effectively. We report computational results with this approach on a wide variety
of instances and compare with virtually all existing methods. With the exception
of very sparse graphs, our approach is a substantial improvement over all existing
methods to solve the Max-Cut problem to optimality.

The paper is organized as follows. After a quick introduction to the problem
(Sect. 2), we describe the SDP bound enhanced with triangle inequalities in
Sect. 3. In Sect. 4 we briefly touch the other features of our Branch and Bound
approach. We test our approach on a variety of data sets. Some characteristics
of these data along with their origin are given in Sect. 5. In Sect. 6 we compare
our approach with existing exact methods. Finally we discuss some extensions
of our approach to the graph equipartition problem.

Notation. We use standard notation from graph theory. The vector of all ones
(of appropriate dimension) is denoted by e, A is a linear operator mapping
symmetric matrices to vectors in R

m, and AT is its adjoint operator. For a
vector v of size n we denote by Diag(v) the matrix D of order n with Dii = vi

and with all the off-diagonal elements equal to zero. For a matrix D of order n,
diag(D) denotes the n-dimensional vector v with vi = Dii. Finally, tr D denotes
the trace of the square matrix D, i.e., the sum of its diagonal elements.

2 The Max-Cut Problem

The Max-Cut problem is one of the basic NP-hard problems and has attracted
scientific interest from the combinatorial optimization community, and also from
people interested in nonlinear optimization. There are two essentially equivalent
formulations of the problem.
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Max-Cut in a Graph. Given an undirected graph G = (V, E) on |V | = n
vertices with edge weights we for e ∈ E, every bipartition (S, T ) of V (where S
or T can be empty) defines a cut (S : T ) = {ij ∈ E : i ∈ S, j ∈ T }. The problem
is to find a bipartition (S, T ) such that the weight of the corresponding cut

w(S, T ) :=
∑

e∈(S:T )

we

is maximized. It will be convenient to use matrix notation and introduce the
weighted adjacency matrix A = (aij) with aij = aji = we for edge e = [ij] ∈ E
and aij = 0 if [ij] /∈ E. Given A we also introduce the matrix L defined by
L = Diag(Ae) − A, often called the Laplacian, associated to A.

If we represent bipartitions (S, T ) by vectors x ∈ {−1, 1}n with xi = 1 exactly
if i ∈ S, then it is easy to show that w(S, T ) = 1

4xT Lx. Hence finding a cut in
a graph with maximum weight is equivalent to solving the following quadratic
optimization problem.

(MC) zMC = max{xT Lx : x ∈ {−1, 1}n}.

Quadratic 0-1 Minimization. Given a matrix Q of order n and a vector c,
let q(y) := yT Qy + cT y. We consider the following problem.

(QP) min{q(y) : y ∈ {0, 1}n}.

It is not difficult to show that solving (QP) is equivalent to solving (MC)
(see for instance [3]). We consider both models, as both are dealt with in the
literature.

3 Semidefinite Relaxations of (MC)

The following semidefinite relaxation of (MC) uses xT Lx = trL(xxT ) and intro-
duces a new matrix variable X taking the role of xxT .

zSDP = max{tr LX : diag(X) = e, X � 0}. (1)

Its dual form
min{eT u : Diag(u) − L � 0} (2)

was introduced by Delorme and Poljak [10] as the (equivalent) eigenvalue opti-
mization problem

min{nλmax(L − Diag(u)) : u ∈ R
n, uT e = 0}. (3)

The primal version (1) can be found in [28]. In [16] it is shown that this relaxation
has an error of no more than 13.82%, i.e.,

zSDP

zMC
≤ 1.1382,
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provided there are non-negative weights on the edges (we ≥ 0). This relaxation
can be further tightened by including the following triangle inequalities (that
define the semimetric polytope, the basic polyhedral relaxation of Max-Cut).

⎛

⎜⎜⎝

−1 −1 −1
−1 1 1

1 −1 1
1 1 −1

⎞

⎟⎟⎠

⎛

⎝
xij

xik

xjk

⎞

⎠ ≤

⎛

⎜⎜⎝

1
1
1
1

⎞

⎟⎟⎠ 1 ≤ i < j < k ≤ n.

We abbreviate all 4
(
n
3

)
of these constraints as A(X) ≤ e. Hence we get

zSDPMET = max{tr LX : diag(X) = e, A(X) ≤ e, X � 0}. (4)

Helmberg and Rendl [18] apply this semidefinite relaxation (solved by an
interior point code) in a Branch and Bound scheme. Later on, Helmberg [17] im-
proved this algorithm by fixing variables. The experiments in [18] clearly indicate
that an efficient computation of this relaxation is crucial for further computa-
tional improvements.

Instead of solving this relaxation with a limited number of inequality con-
straints by interior point methods, as done in [18], we use the bundle approach,
suggested in [12], which we modify to gain computational efficiency in the Branch
and Bound process.

The set E := {X : diag(X) = e, X � 0} defines the feasible region of (1).
Therefore (4) can compactly be written as

zSDPMET = max{〈L, X〉 : X ∈ E , A(X) ≤ e}. (5)

We now briefly recall the approach from [12] to approximate zSDPMET (from
above). Let us introduce the Lagrangian with respect to A(X) ≤ e

L(X, γ) := 〈L, X〉 + γT (e − A(X)) (6)

and the associated dual function

f(γ) := max
X∈E

L(X, γ) = eT γ + max
X∈E

〈L − AT (γ), X〉. (7)

We get for any γ̂ ≥ 0 that

zSDPMET = max
X∈E

min
γ≥0

L(X, γ) = min
γ≥0

f(γ) ≤ f(γ̂).

The problem now consists in finding a ‘good’ approximation γ̂ to the correct
minimizer of f .

The function f is well-known to be convex but non-smooth. Evaluating f for
some γ ≥ 0 amounts to solving a problem of type (1), which can be done easily
for problem sizes of our interest. We use a primal-dual interior-point method to
solve it, which also provides an optimality certificate Xγ , uγ (optimal solutions
to (1) and (2)). The primal matrix Xγ will turn out to be useful in our algorithmic
setup. We have, in particular that

f(γ) = L(Xγ , γ).
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Moreover, a subgradient of f at γ is given by e − A(Xγ).
Dualizing all triangle constraints would result in a dual problem of dimen-

sion roughly 2
3n3. We prefer a more economical approach where inequalities are

included only if they are likely to be active at the optimum.
Let I be a subset of the triangle inequalities, hence AI(X) ≤ eI . We also write

γI for the variables dual to the inequalities in I. Setting the dual variables not
in I to zero, it is clear that for any I and any γI ≥ 0, we get an upper bound on
zSDPMET . Approximating the value zSDPMET therefore breaks down into the
following two independent tasks:

1. Identify a subset I of triangle inequalities.
2. For a given set I of inequalities, determine an approximate minimizer γI ≥ 0

of f .

The second step can be carried out with any of the subgradient methods for
convex nonsmooth functions. For computational efficiency we use the bundle
method with a limit on the number of function evaluations.

Carrying out the first step is less obvious. We are interested in constraints
which are active at the optimum, but this information is in general not avail-
able. Therefore we use the optimizer XγI , corresponding to an approximate
minimizer γI of f , and add to the current set I of constraints the t triangle
inequalities most violated by XγI . (Here t is a parameter which is dynamically
chosen.) Thus we can identify promising new inequalities to be added to I.

On the other hand, we remove any constraint from I where the dual multi-
plier is close to zero, as this is an indication that the constraint is unlikely to
be binding. We iterate this process of selecting and updating a set of triangle
inequalities, and then solving the respective relaxation, as long as the decrease
of the upper bound is sufficiently large.

4 Branching Rules and Heuristics

4.1 Branching Strategies

We subdivide the set of feasible solutions by simply separating, or merging two
vertices i, j. This results again in an instance of (MC), see [27]. There are several
natural choices for such a pair i, j for branching.

Easy First. A first idea is to branch on pairs i, j where the decision seems to
be obvious. We choose i and j such that their rows are ‘closest’ to a {−1, 1}
vector, i.e., they minimize

∑n
k=1(1 − |xik|)2. We may assume, that for these

two very well articulated nodes the value |xij | is also very large. Setting xij

opposite to its current sign should lead to a sharp drop of the optimal solution
in the corresponding subtree. Hoping that the bound also drops as fast, we will,
presumably, be able to cut off this subtree quickly. This rule has been used also
in [18] and called R2.
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Difficult First. Another possibility for branching is to fix the hard decisions
first. We branch on the pair i, j which minimizes |xij |. This means, we fix the
most difficult decisions and hope that the quality of the bound gets better fast
and that the subproblems become easier. Following [18] we call this rule R3.

Depending on the class of problems, either rule R2 or R3 was more efficient
than the other. We also experimented with the so-called strong branching, as
this strategy is quite successful for linear programming based relaxations. Un-
fortunately, sensitivity information, necessary for selecting the branching pair,
is much harder to get in the case of semidefinite relaxations, hence there is
no computational trade off. Consequently, we did not pursue this strategy any
further.

4.2 Generating Feasible Solutions

Generating feasible solutions is done iteratively in basically three steps:

1. Apply the Goemans-Williamson hyperplane rounding technique [16] to the
primal matrix X obtained from solving the SDP during the bundle iterations.
This gives a cut vector x̄.

2. Cut x̄ is locally improved by checking all possible moves of a single vertex
to the opposite partition block. This gives a cut x̃.

3. Bring the matrix X towards a good cut by using a convex-combination of
X and x̃x̃T . With this new matrix go to 1. and repeat as long as one finds
better cuts.

It turned out, that with this heuristic for most of the instances the optimal cut
was found at the root node of the Branch and Bound tree.

5 Random Data for (MC) and (QP)

In this section some random data for presenting numerical results of our algo-
rithm are specified. All the data sets can be downloaded from http://www.math.
uni-klu.ac.at/or/Software. These instances are taken from various sources.
Here we provide some of the characteristics of the data sets.

5.1 Max-Cut Instances

Instances by the Graph Generator ‘rudy’. The first group of instances
follows [18] and consists of random graphs (of specified edge density) with various
types of random edge weights. All graphs were produced by the graph generator
‘rudy’ [30]. For a detailed description and a list of the rudy-calls the reader is
referred to the dissertation of Wiegele [31]. We generated ten instances of size
n = 100 and given density d of the following types of graphs:

– G0.5: unweighted graphs with density d = 0.5.
– G−1/0/1: complete graphswith edge weights chosen uniformly from {−1, 0, 1}.

protect protect protect edef OT1{OT1}let enc@update 
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef U/wasy/m/n/5 {OT1/cmr/m/n/10 }U/wasy/m/n/5 size@update enc@update ignorespaces 
elax protect 
elax protect edef cmr{cmtt}protect xdef U/wasy/m/n/5 {OT1/cmr/m/n/10 }U/wasy/m/n/5 size@update enc@update http://www.math.uni-klu.ac.at/or/Software
protect protect protect edef OT1{OT1}let enc@update 
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/10 {OT1/cmr/m/n/10 }OT1/cmtt/m/n/10 size@update enc@update ignorespaces 
elax protect 
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/10 {OT1/cmr/m/n/10 }OT1/cmtt/m/n/10 size@update enc@update http://www.math.uni-klu.ac.at/or/Software
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– G[−10,10]: Graphs with integer edge weights chosen from [−10, 10] and d ∈
{0.5, 0.9}.

– G[0,10]: Graphs with integer edge weights chosen from [0, 10] and d ∈
{0.5, 0.9}.

Applications in Statistical Physics: Ising Instances. We also consider a
set of test-problems of Frauke Liers [personal communication, 2005] coming from
physical applications. The first group consists of two- and three-dimensional
grid graphs with Gaussian distributed weights (zero mean and variance one).
The second group consists of dense Ising instances which are obtained in the
following way: all nodes lie evenly distributed on a cycle. The weights of the
edges depend on the Euclidean distance between two nodes and a parameter σ,
such that the proportion cij ∼ εij

rσ
ij

holds (εij is chosen according to a Gaussian
distribution with zero mean and variance one and rij is the Euclidean distance
between nodes i and j).

5.2 (QP) Instances

Pardalos and Rodgers [25] have proposed a test problem generator for uncon-
strained quadratic binary programming. Their routine generates a symmetric
integer matrix Q to define the objective function for (QP), with the linear term c
represented by the main diagonal of Q, and has several parameters to control the
characteristics of the problem. These parameters are the number n of variables,
the density d, i.e., the probability that a nonzero will occur in the off-diagonal
part of Q, the lower and upper bounds of the main diagonal of Q are given
by c−, c+. The lower and upper bounds for the off-diagonal part of Q are given
by q−, q+. Furthermore we have qii ∼ discrete uniform in (c−, c+) and qij = qji ∼
discrete uniform in (q−, q+).

Several test problems generated this way are provided in the OR-library [4],
[5]. We have chosen all the problems of sizes of our interest, which are the data
sets bqpgka, due to [14] and bqp100 and bqp250, see [6]. Furthermore, in [7] the
sets c and e of bqpgka are extended. We call these instances bqpbe.

The characteristics are as follows:
– bqpgka:

n d c− c+ q− q+

bqpgka, set a 30, . . . , 100 0.0625, . . . , 0.5 −100 100 −100 100
bqpgka, set b 20, . . . , 120 1.0 0 63 −100 0
bqpgka, set c 40, . . . , 100 0.1, . . . , 0.8 −100 100 −50 50
bqpgka, set d 100 0.1, . . . , 1.0 −75 75 −50 50
bqpgka, set e 200 0.1, . . . , 0.5 −100 100 −50 50

– bqpbe
Size ranging from n = 100 to n = 250 nodes; density ranging from d = 0.1
to d = 1.0; c− = −100; c+ = 100; q− = −50 and q+ = 50.

– beasley
Two sizes of n = 100 and n = 250 nodes; d = 0.1; c− = −100; c+ = 100;
q− = −100 and q+ = 100.



302 F. Rendl, G. Rinaldi, and A. Wiegele

6 Numerical Results

The algorithm was implemented in C and made publicly available for experimen-
tal runs as “Biq Mac” – a solver for binary quadratic and Max-Cut problems,
see [29]. If not stated otherwise, test runs were performed on a Pentium IV, 3.6
GHz and 2 GB RAM, operating system Linux. For a more detailed study of the
numerical results the reader is referred to the dissertation [31].

6.1 Summarizing Existing Methods and Their Limits

Before we present our computational results, we summarize existing exact meth-
ods for (MC) together with their limits, as reported in the publications under-
lying these approaches.

LP: Linear programming based Branch and Bound approaches go back to
Barahona et al. [3]. Liers et al. [23] enhance the algorithm and focus on solving
toroidal grid graphs arising from physical applications, the so-called Ising model.

V: Linear programming combined with volume algorithm has been investi-
gated by Barahona and Ladányi [1]. Also in this work, there is an emphasis on
toroidal grid graphs.

EO: An exact approach using eigenvalue optimization based on (3) has been
first investigated by Poljak and Rendl [27].

QP: The recent work of Billionnet and Elloumi [7] presents an approach
based on convex quadratic optimization. This algorithm convexifies the objective
function and uses a mixed-integer quadratic programming solver to obtain an
exact solution of the problem.

SDPMET: An approach based on SDP and the triangle inequalities was
first investigated by Helmberg and Rendl [18]. They solve (4) by an interior point
algorithm.

PP: Pardalos and Rodgers [25], [26] solve the quadratic program by Branch
and Bound using a preprocessing phase where they try to fix some of the vari-
ables. The test on fixing the variables exploits information of the partial deriva-
tives of the cost function.

SOCP: Kim and Kojima [21] and, later on, Muramatsu and Suzuki [24] use
a second-order cone programming (SOCP) relaxation as bounding routine in a
Branch and Bound framework to solve Max-Cut problems. However, the basic
SDP relaxation performs better than their SOCP relaxation and the algorithm
is capable of solving very sparse instances only. Therefore we omit comparing
with this algorithm in the subsequent sections.

In Table 1 we give a very näıve overview of the capability of these approaches.
We consider different types of instances and use the following symbols. A ✔

means, that the approach can solve instances of this type in a routine way. A K
indicates that one can have (at least) one cup of coffee while waiting for the
solution and maybe there are instances that cannot be solved at all. The ®
suggests to have some holidays and come back in a couple of days to see whether
the job is finished and the � indicates that the chances for solving the problem
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Table 1. Who can do what?

LP V EO QP SDPMET PP Biq Mac

quadr 0-1, n = 100, d = .1 ✔ ✔ � ✔ K ✔ ✔

quadr 0-1, n = 250, d = .1 ? ? � � � � K
2-dim. torus, n = 20 × 20 ✔ ✔ � � � ? ®
3-dim. torus, n = 7 × 7 × 7 ✔ ✔ � � � ? K
G0.5, n = 100 � ? � ® ® ? ✔

G−1/0/1, n = 100 � ? ® ® ® ? ✔

Table 2. Average Biq Mac results for Max-Cut problems. Run times on a Pentium
IV, 3.6 GHz, 2GB RAM.

min avg max min avg max
graph n d solved time (h:min) nodes

G0.5 100 0.5 10 5 50 3:44 65 610 2925
G−1/0/1 100 0.99 10 7 56 2:31 79 651 1811
G[−10,10] 100 0.5 10 9 38 1:13 97 435 815
G[−10,10] 100 0.9 10 5 57 3:12 51 679 2427
G[1,10] 100 0.5 10 7 48 2:02 111 576 1465
G[1,10] 100 0.9 10 12 40 1:26 155 464 1007

with this method are very low. If we do not know, whether an algorithm can
solve certain classes of instances or not, we indicate this with a question mark.
Most likely, we could place � instead of a question mark.

6.2 Numerical Results of Max-Cut Instances

Instances by the Graph Generator ‘rudy’. Table 2 lists the computation
times (minimum, average and maximum) and the number of nodes (minimum,
average, maximum) of the resulting Branch and Bound (B&B) tree. The branch-
ing rule used for this kind of instances is R2.

The average computation time for all instances is approximately one hour.
Nevertheless, instances may also be solved within some minutes, and it could
also take more than three hours for some graphs to obtain a solution.

The results show that on these classes of instances we outperform all other so-
lution approaches known so far. The currently strongest results on these graphs
are due to Billionnet and Elloumi [7]. They are not able to solve instances G−1/0/1
of size n = 100 at all. Also, they could solve only two out of ten instances of G0.5,
n = 100.

Applications in Statistical Physics: Ising Instances. As explained in
Sect. 5.1, we consider two kinds of Ising instances: toroidal grid graphs and
complete graphs.
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Table 3. Test runs on torus graphs with Gaussian distribution. Branch and Cut al-
gorithm run on 1.8 GHz machine, Biq Mac done on a Pentium IV, 3.6 GHz. Time in
seconds.

Problem [23] Biq Mac Problem [23] Biq Mac
number n time time number n time time

2 dimensional 3 dimensional

g10 5555 100 0.15 10.12 g5 5555 125 2.68 18.01
g10 6666 100 0.14 15.94 g5 6666 125 3.29 24.52
g10 7777 100 0.18 14.89 g5 7777 125 3.07 26.00

g15 5555 225 0.44 304.03 g6 5555 216 20.56 280.85
g15 6666 225 0.78 359.87 g6 6666 216 37.74 2025.74
g15 7777 225 0.67 346.89 g6 7777 216 27.30 277.95

g20 5555 400 1.70 6690.99 g7 5555 343 95.25 432.71
g20 6666 400 3.50 35205.95 g7 6666 343 131.34 550.12
g20 7777 400 2.61 8092.80 g7 7777 343 460.01 117782.75

Instances of the first kind can be solved efficiently by an LP-based Branch
and Cut algorithm (see [23]). The computation times of [23] and our algorithm
are reported in Table 3. As can be seen, on these sparse instances the LP-based
method clearly outperforms our algorithm. However, we find a solution within
a gap of 1% in reasonable time for all these samples.

The run time of the Branch-Cut & Price algorithm [22] developed for the sec-
ond kind of problems depends strongly on the parameter σ. For σ close to zero,
we have a complete graph with Gaussian distributed weights. But for σ chosen
suitably large, some of the edges become ‘unimportant’ and the pricing works
very well for these graphs. In Table 4 the computation times of [22] and our
algorithm are given. For σ = 3.0, we have roughly speaking the same computa-
tion times on the smallest instances. For the biggest ones, our approach clearly
dominates. For σ = 2.5, the Branch-Cut & Price algorithm already takes more
than 20 hours for instances of size n = 150, whereas our algorithm needs almost
similar computation times as in the σ = 3.0 case.

For both kinds of instances we used branching rule R3.

6.3 Numerical Results of (QP) Instances

In this section we report the results for the instances derived from (QP). Best
known lower and upper bounds for bqpgka and beasley data are reported at
the pseudo-Boolean website [8]. Our results are as follows:

– bqpgka.
• Set a. All problems are solved in the root node of the B&B tree within

seconds.
• Set b. These instances could all be solved, but were extremely chal-

lenging for our algorithm. The reason is, that the objective value in the
Max-Cut formulation is of magnitude 106, and therefore even a relative
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Table 4. Test runs on Ising instances (complete graphs). Branch-Cut & Price on a
1.8 GHz machine, Biq Mac on a 3.6 GHz PC. Times in hours:minutes:seconds.

Problem [22] Biq Mac Problem [22] Biq Mac
number n time time number n time time

σ = 3.0 σ = 2.5

100 5555 100 4:52 1:36 100 5555 100 18:22 1:32
100 6666 100 0:24 0:34 100 6666 100 6:27 1:06
100 7777 100 7:31 0:48 100 7777 100 10:08 0:47

150 5555 150 2:36:46 4:38 150 5555 150 21:28:39 4:25
150 6666 150 4:49:05 3:55 150 6666 150 23:35:11 5:39
150 7777 150 3:48:41 6:06 150 7777 150 31:40:07 9:19

200 5555 200 9:22:03 10:07 200 5555 200 – 10:05
200 6666 200 32:48:03 18:53 200 6666 200 – 17:55
200 7777 200 8:53:26 22:42 200 7777 200 – 21:38

250 5555 250 21:17:07 1:46:29 250 5555 250 – 3:00:28
250 6666 250 7:42:25 15:49 250 6666 250 – 1:17:04
250 7777 250 17:30:13 57:24 250 7777 250 – 1:10:50

300 5555 300 17:20:54 2:20:14 300 5555 300 – 6:43:47
300 6666 300 10:21:40 1:32:22 300 6666 300 – 9:04:38
300 7777 300 18:33:49 3:12:13 300 7777 300 – 13:00:10

gap of 0.1% does not allow to fathom the node. However, by allowing
a relative error of at most 0.1%, we can solve all problems in the root
node of the B&B tree.

• Set c. Similar to set a, also these instances were solved within a few
seconds in the root node of the B&B tree.

• Set d. Here n = 100. The problems of set d could be solved within at
most 7 minutes.

• Set e. We recall n = 200. The instances with densities 0.1, 0.2, 0.3
and 0.4 could all be solved within 2 hours of computation time. The
instance with d = 0.5 has been solved after 35 hours. According to [8],
none of these problems were solved before.

– bqpbe.
We report the results of Billionnet and Elloumi [7] and our results in Table 5.
As is shown in this table, [7] could not solve all out of the ten problems from
the n = 120 variables and density 0.8 instances on, whereas our method
still succeeded to solve them all. From the instances n = 150, d = 0.8 on,
the convex-quadratic approach failed to solve any instance within their time
limit of 3 hours. We still managed to obtain solutions to all of these instances
(although for one graph it took about 54 hours to prove the optimality of
the solution).

– beasley.
Solving the 10 problems of size n = 100 can be done in the root node
within one minute. Regarding the n = 250 instances, only two out of the ten
problems have been solved before (see [8]), for the other eight problems we
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Table 5. Comparison between [7] and Biq Mac. Computation times of the convex-
quadratic algorithm were obtained on a laptop Pentium IV, 1.6 GHz (time limit 3
hours), our results were computed on a Pentium IV of 3.6 GHz.

[7] Biq Mac
CPU time (sec) CPU time (sec)

n d solved min avg. max solved min avg. max

100 1.0 10 27 372 1671 10 86 178 436
120 0.3 10 168 1263 4667 10 29 162 424
120 0.8 6 322 3909 9898 10 239 1320 3642
150 0.3 1 6789 10 1425 2263 2761
150 0.8 0 – 10 1654 1848 2133
200 0.3 0 – 10 7627 37265 193530
200 0.8 0 – 10 5541 47740 148515
250 0.1 0 – 10 12211 13295 16663

could prove optimality for the first time. Six out of these eight were solved
within 5 hours, the other two needed 15 and 80 hours, respectively.

Deciding which branching rule is advisable for these instances is not so ob-
vious anymore. Tentatively, for sparse problems R3 is superior, but the denser
the instances are, the better is the performance of R2. A general recipe or an
intelligent way of deciding at the top levels of the B&B tree which rule to follow
would be very useful.

7 Equipartition

Finding a bisection of a graph such that each of the sets S and T have equal
cardinality is often called equipartition. It is also customary to minimize the
weight of edges in the cut. Hence the problem is a minor extension of (MC).

zEP = min{xT Lx : eT x = 0, x ∈ {−1, 1}n} (8)

This leads to the following semidefinite relaxation.

zEP−SDP = min{trLX : trJX = 0, diag(X) = e, X � 0}, (9)

where J = eeT . Let A be the adjacency matrix of the given graph. We consider
the Max-Cut instance with cost matrix B = −A + J . The “−” in B = −A + J
arises, because we minimize instead of maximizing, and the J comes from the
constraint trJX = 0, that comes with a Lagrange multiplier (set equal to 1 for
unweighted instances) into the objective function.

We consider the instances introduced in [19] of size n = 124 and n = 250
and summarize in Table 6 the best results for these instances known so far
(see [20]). With our algorithm we prove optimality of the known lower bounds
of all instances of size n = 124, and one of the instances of size n = 250. To the
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Table 6. Best known results of the bisection problem for the Johnson graphs and the
new gap obtained by Biq Mac

best known best known
d bound |Ecut| gap new gap d bound |Ecut| gap new gap

n = 124 n = 250

0.02 12.01 13 0 0 0.01 26.06 29 2 0
0.04 61.22 63 1 0 0.02 103.61 114 10 8
0.08 170.93 178 7 0 0.04 327.88 357 29 22
0.16 440.08 449 8 0 0.08 779.55 828 48 35

best of our knowledge, these exact solutions were obtained for the first time. The
improved gap for the instances of size n = 250 and densities 0.02, 0.04 and 0.08
were obtained after a time limit of 32 hours cpu-time.

8 Summary

In this paper we have presented an algorithm, that uses a Branch and Bound
framework to solve the Max-Cut and related problems. At each node of the tree
we calculate the bound by using a dynamic version of the bundle method that
solves the basic semidefinite relaxation for Max-Cut strengthened by triangle
inequalities. We conclude, that

– our approach solves any instance of all the test-bed considered with n ≈ 100
nodes in a routine way. To the best of our knowledge, no other algorithm
can manage these instances in a similar way.

– we solve problems of special structure and sparse problems up to n = 300
nodes.

– for the first time optimality could be proved for several problems of the OR-
library. All problems that are reported at the Pseudo-Boolean website [8]
with dimensions up to n = 250 are now solved.

– for the first time optimality of the bisection problem for some of the Johnson
graphs has been proved, for those where we could not close the gap we
reduced the best known gap significantly.

– for sparse problems it is not advisable to use our approach. Since linear
programming based methods are capable of exploiting sparsity, solutions
might be obtained much faster when applying these methods to sparse data.

Using our algorithm to solve this problem has been made publicly available
[29].
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[1] F. Barahona and L. Ladányi. Branch and cut based on the volume al-
gorithm: Steiner trees in graphs and max-cut. RAIRO Oper. Res., 40(1):
53–73, 2006.



308 F. Rendl, G. Rinaldi, and A. Wiegele
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Abstract. We introduce Distance Induced Neighbourhood Search

(DINS), a MIP improvement heuristic that tries to find improved MIP fea-
sible solutions from a given MIP feasible solution. DINS is based on a vari-
ation of local search that is embedded in an exact MIP solver, namely a
branch-and-bound or a branch-and-cut MIP solver. The key idea is to use
a distance metric between the linear programming relaxation optimal solu-
tion and the current MIP feasible solution to define search neighbourhoods
at different nodes of the search tree generated by the exact solver. DINS

considers each defined search neighbourhood as a new MIP problem and
explores it by an exact MIP solver with a certain node limit. On a set of
standard benchmark problems, DINS outperforms the MIP improvement
heuristics Local Branching due to Fischetti and Lodi and Relaxation In-
duced Neighbourhood Search due to Danna, Rothberg, and Pape, as well
as the generic commercial MIP solver Cplex.

1 Introduction

Mixed integer programs (MIPs) arise in many contexts; they are often intractable
and NP-hard, even for feasibility [14]. Therefore, there is interest in designing
effective heuristic methods for MIPs. Recently MIP heuristic development has
specialized into finding better feasibility heuristic (that tries to find an initial
MIP feasible solution), and improvement heuristic (that tries to find improved
MIP feasible solutions from a given MIP feasible solution). In this paper, we
present a new improvement heuristic.

Recent improvement heuristics such as Local Branching (LB), introduced
by Fischetti et al. [9] and re-engineered by Danna et al. [5], and Relaxation

Induced Neighbourhood Search (RINS), introduced by Danna et al. [5],
work in tandem with a state-of-the-art exact solver such as Cplex MIP solver as
follows. The exact solver generates a search tree using either branch-and-bound
or branch-and-cut approach; the new heuristics periodically select nodes of the
search tree at which to perform a localized search. Our heuristic also follows this
approach. The heuristics differ primarily in the definition of the search neigh-
bourhood; in LB the search neighbourhood is defined by restricting the number
of 0-1 variables to switch their bounds from the known MIP feasible solution
(referred as soft fixing), and in RINS it is defined by fixing some variables at
their current values in the known MIP feasible solution (referred as hard fixing).
� The research support of NSERC is gratefully acknowledged.
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Our search neighbourhood is defined in terms of a distance metric between a
relaxation solution and the current MIP feasible solution, where the distance
metric comes from the intuition that improved solutions are more likely to be
close to the relaxation solution at the nodes of the search tree.

On a set of standard benchmark MIP instances, DINS outperforms Cplex,
RINS, and LB with respect to the quality of solutions obtained within a time
limit.

2 Related Previous Work

In order to show the strength of our heuristic, we compare it against Cplex,
the exact solver in which it is embedded, and LB and RINS, the two recent
improvement heuristics that are most similar in design.

Much research has been done in other kinds of MIP heuristics. There are
several heuristics, introduced by Balas et al. [1], Faaland et al. [7], Hillier [12],
and Ibaraki et al. [13], that incorporate some form of neighbourhood search, and
most of them do so from the relaxation solution of MIP in order to find a MIP
feasible solution.

There are also several pivot based heuristics, introduced by Balas et al. [2,3],
Løkketangen et al. [15], Nediak et al. [18], and Løkketangen et al. [16], for MIP
that try to obtain a MIP solution by performing pivots on the simplex tableau of
the relaxation of MIP. Another heuristic introduced by Balas et al. [4], starting
from the relaxation solution of MIP, tries to find a MIP solution by first using
some pivoting on the simplex tableau and then doing some form of neighbour-
hood search. Recently Fischetti et al. [8] introduce another heuristic to find a
MIP solution from the relaxation solution of MIP, where they solve a sequence
of linear programs in the process of finding a MIP feasible solution.

3 Methods

We assume that the input program P is a generic MIP of the form shown below,
where c, x, b, A have dimensions n, n, m, m×n respectively, N = {1, . . . , n} is the
set of variable indices of P which is partitioned into (B, G, C) with B, G, and C
denoting the indices of 0-1, general integer, and continuous variables respectively.
An integer variable is any variable in B ∪ G.

P : min { cT x | Ax ≥ b, xi ∈ {0, 1} ∀i ∈ B,
xj ≥ 0 and integer ∀j ∈ G, xj ≥ 0 ∀j ∈ C}

Since we compare DINS with LB and RINS, we describe LB and RINS in
some details.

3.1 Local Branching

LB defines the neighbourhood of a feasible solution x∗ by limiting at some integer
p the number of 0-1 variables currently at 0 or 1 that can switch their bounds.
This is achieved by adding to the instance the LB inequality D(x, x∗) ≤ p, where
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D(x, x∗) :=
∑

j∈V0

xj +
∑

j∈V1

(1 − xj),

and where V0 and V1 are the index sets of the 0-1 variables that are at 0 and 1
respectively in x∗.

LB has been implemented in two different ways. Originally, Fischetti and
Lodi [9] treated it as an external branching framework (i.e., creates branches
in the search tree by D(x, x∗) ≤ p and D(x, x∗) ≥ p + 1 as opposed to the
standard branching which are done on the variables in the branch-and-bound
framework) in addition to an heuristic and obtained the diversification (i.e.,
switching the search in a different region of the MIP feasible space) by defining
the neighbourhoods with a change in the value of the parameter p. Later, Danna
et al. [5] implemented LB solely as a heuristic and obtained the diversification
by defining the neighbourhoods on the new solutions found during the MIP
search tree exploration. Danna et al. showed that their implementation of LB

outperformed the original. For this reason, we choose the Danna et al. version
of LB to compare against our DINS.

3.2 Relaxation Induced Neighbourhood Search

During the exploration of the MIP search tree, the relaxation solution at suc-
cessive nodes (that are not pruned by infeasibility or bound) provides a better
objective value than the objective value of the current MIP solution. Using this,
Danna et al. introduce RINS making the intuition that, in improved MIP solu-
tions, it is more likely for the variables to stay at the same values those agree
in the current MIP solution and current node relaxation solution. Thus RINS

defines the promising neighbourhood fixing all variables whose values at the
current MIP solution are equal to their respective values at the current node
relaxation solution.

In the implementation of RINS
1, the procedure for exploring the RINS de-

fined neighbourhood is invoked at a particular node of the MIP search tree. At
the termination of the procedure, the MIP search tree is resumed, and if the
procedure finds a new MIP solution, the MIP solution at the MIP search tree is
updated.

As noted by Danna et al. in [5], consecutive nodes of the MIP search tree
provide almost identical relaxation solution. Therefore, the RINS procedure is
called only every f nodes for some reasonably large f .

3.3 Distance Induced Neighbourhood Search

In contrast to RINS, which performs only hard fixing of variables, and LB,
which performs only soft fixing of variables, our DINS incorporates some hard
fixing, some soft fixing, and some rebounding (changing lower and upper bounds

1 ILOG Cplex 9.13 comes with an implementation of RINS and can be invoked by
setting the Cplex parameter IloCplex::MIPEmphasis to 4 [5].
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of the variables), all based on a distance metric. In the next sections we show that
DINS outperforms both RINS and LB

2 on an instance test bed that includes
all the instances studied in [5,9] as well as some other hard instances from other
sources.

Like RINS, DINS also rely on the fact that, during exploring the MIP search
tree, the relaxation solution at successive nodes (those are not pruned by infea-
sibility or bound) provides a better objective value compared to the objective
value provided by the current MIP solution.

But unlike RINS, the intuition in DINS is that the improved MIP solutions
are more likely to be the close ones to the current relaxation solution. An exact
modeling of this intuition would require inclusion of the following quadratic
inequality which unfortunately cannot be expressed as a linear constraint.

∑

j∈N

(xj − xj(node))2 ≤
∑

j∈N

(xj(mip) − xj(node))2,

where xmip and xnode denote the current MIP solution and the current relaxation
solution, and for a variable xj , xj(mip) and xj(node) denote the values of xj in
xmip and xnode respectively.

DINS relaxes the intuition by considering that the improved MIP solutions
are close to xnode only with respect to the integer variables and choosing the
following inequality based on absolute differences as the measure of close ones.

∑

j∈B∪G
|xj − xj(node)| ≤

∑

j∈B∪G
|xj(mip) − xj(node)|.

DINS then partially captures this inequality (the chosen distance metric) by
defining a neighbourhood with some rebounding, some hard fixing, and some
soft fixing of the integer variables.

We notice that if an integer variable xj , for which the absolute difference,
|xj(mip) − xj(node)|, is less than 0.5, takes a different value than xj(mip) in an
improved solution, the absolute difference increases. On the contrary, if an integer
variable, for which the absolute difference is greater or equal to 0.5, takes a
different value than xj(mip) in an improved solution, the absolute difference may
not increase.

DINS computes new lower and upper bounds of an integer variable xj , for
which the absolute difference is greater or equal to 0.5, so that at an improved
solution the absolute difference does not increase. Considering lold

j and uold
j as

the existing lower and upper bounds of xj , DINS computes the new lower and
upper bound lnew

j and unew
j respectively as follows:

if (xj(mip) ≥ xj(node)) then
lnew
j ←max(lold

j , �xj(node) − (xj(mip) − xj(node))	), unew
j ←xj(mip)

elsif (xj(mip) < xj(node)) then
lnew
j ←xj(mip), unew

j ←min(uold
j , 
xj(node) + (xj(node) − xj(mip))� ).

2 In [5], Danna et al. have tried two hybrid strategies of RINS and LB and concluded
that their performance were not better than RINS alone.
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We refer it as rebounding; the rebounding does not change existing bounds for
all the variables that fall in this category (for example, no 0-1 variable in this
category change its bounds). If all the integer variables, for which |xj(mip) −
xj(node)| < 0.5, are fixed to their respective current values, then any solution
found from this neighbourhood exploration will obviously be a closer one to
xnode in terms of the chosen distance metric. But the sum of absolute differences
can also decrease if the total decrease d in the sum of absolute differences caused
by the integer variables for which |xj(mip) − xj(node)| ≥ 0.5 is greater than the
total increase d′ in the sum of absolute differences caused by the integer variables
for which |xj(mip) − xj(node)| < 0.5.

DINS partially captures this observation by allowing the integer variables xj ,
for which |xj(mip) − xj(node)| < 0.5, to change their values in xmip so that d′

is not larger than a chosen small number p. It does this by performing some
soft fixing and some hard fixing of these variables. DINS performs soft fixing
through the LB inequality which requires introduction of new variables when
general integer variables are considered. As in [9] and [5], DINS constructs LB
inequality using only 0-1 variables. Therefore, all the general integer variables
xj with |xj(mip) − xj(node)| < 0.5 are fixed (hard fixing) at xj(mip).

Among the 0-1 variables with |xj(mip) −xj(node)| < 0.5, DINS performs some
hard fixing like RINS, but incorporates some more intuition in this process. Like
RINS, DINS chooses the same set of variables, that agree in both the current
MIP solution and the current node relaxation solution, as the primary candidates
for hard fixing. Then it applies a filtering step to this primary candidate set
using two information. First information comes from the intuition that if an
integer variable, in the primary candidate set, takes the same value in the root
relaxation solution of MIP search tree and current node relaxation solution, is
more likely to take the same value in improved MIP feasible solutions. The second
information comes from the intuition that if an integer variable, in the primary
candidate set, takes the same value in the previously encountered MIP solutions,
is more likely to take the same value in improved MIP feasible solutions. This
two information actually gather knowledge from both the relaxation solutions
and previously encountered MIP solutions. DINS uses an array of flag for the
integer variables to keep track which variables have taken different values in the
previously encountered MIP solutions. Thus the hard fixing in DINS can be
stated more explicitly in the following way: let xmip, xnode, and xroot denote
the current MIP solution, the current node relaxation solution, and the root
relaxation solution respectively. Also let Δ is an array where Δ[j] is set if xj

has taken different values in previously encountered MIP solutions. Therefore, a
variable xj is fixed (hard fixing) at value xj(mip) if xj(mip) = xj(node) = xj(root)
and Δ[j] is clear.

Consider F and H denote the set of variables for which rebounding and hard
fixing has been performed respectively. Now assume R be the set of variables
where R = (B ∪ G) − F − H. According to our construction R contains only 0-1
variables.
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DINS now performs soft fixing on the variables in R, when |R| �= φ, by adding
the following LB inequality:

∑

j∈R ∧ xj(mip)=0

xj +
∑

j∈R ∧ xj(mip)=1

(1 − xj) ≤ p

As noted earlier, our intuition is that improved feasible solutions are more
likely to be obtained by getting close to the current relaxation solution from the
current MIP solution. Therefore, DINS generates the promising neighbourhood
taking small value for p which means that a solution, in this defined neighbour-
hood, can have a sum of absolute differences increased by at most p.

Whenever DINS procedure is invoked at a particular node of MIP search
tree, it creates the described neighborhood with the initial chosen value of p
and explores it using a branch-and-bound or a branch-and-cut solver with a
specified node limit nl. If the exploration reaches the node limit without finding
a new solution, DINS reduces p by 5 and explores a new neighbourhood. This
continues until p < 0, or the neighbourhood exploration finds a new solution
or the neighbourhood is explored completely without finding a new solution.
Whenever the neighbourhood exploration finds a new solution, p is reset to its
initial chosen value and continues in the same fashion. The procedure in Figure 1
describes the operation sequence of DINS at a particular node of the MIP search
tree. At the termination of the procedure, the MIP search tree is resumed and,
if the procedure finds a new MIP solution, the MIP solution at the MIP search
tree is updated.

Like RINS, the DINS procedure is called first when the MIP search tree finds
its first MIP solution and, thereafter, at every f nodes of the MIP search tree.

4 Computational Results

4.1 Experimental Setup and Instance Test Bed

We implement LB, RINS, and DINS in the C programming language with the
MIP search tree generated by Cplex 9.13 MIP solver. All experiments are run on
an 2403 MHz AMD Athlon processor with 128 MByte of memory under Redhat
Linux 9.0. An implementation of DINS is available at [11].

We compose a benchmark test bed of MIP instances with the property that the
test bed excludes the instances which default Cplex either solves to optimality
or fails to find a MIP solution in one CPU-hour. With this criteria we have 64
MIP instances (all have some 0-1 variables), described in [10], from the following
sources commonly used as benchmark instances for MIP solvers.

– Twenty six instances used in the local branching paper [9]. These instances
have been collected from the instance set maintained by DEIS operations
research group [6].

– Twelve more instances from the instance set maintained by DEIS operations
research group [6].
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– Eleven instances from MIPLIB 2003 [17].
– Five job-shop scheduling instances with earliness and tardiness costs used in

[8].
– Eleven network design and multi-commodity routing instances used in [5].

Procedure DINS at tree node
Input: a 0-1 mixed integer problem P , the current MIP solution xmip,

the current node relaxation solution xnode, the root relaxation solution xroot,
parameter p, node limit nl, and the flag array Δ.

Output: A new MIP solution x∗ (xmip in case of failure in finding a new solution).

1. if (xmip is a new MIP solution compared to the MIP solution
at the termination of last call of this procedure)

update the array Δ accordingly
2. x∗ ← xmip, pcurrent←p, exploreAndNoSolution ←false
3. repeat
4. construct P+ from P as follows:

(i) perform rebounding on the variables xj for which |x∗
j − xj(node)| ≥ 0.5,

(ii) perform hard fixing of the general integer variables xj for which
|x∗

j − xj(node)| < 0.5,
(iii) perform hard fixing of the 0-1 integer variables xj for which

|x∗
j − xj(node)| < 0.5 and x∗

j = xj(node) = xj(root) and Δ[j] is clear,
(iv) let R be the set of remaining 0-1 integer variables.

if (R �= φ) perform soft fixing by adding the inequality∑
j∈R ∧ x∗

j
=0 xj +

∑
j∈R ∧ x∗

j
=1(1 − xj) ≤ p

5. Apply black-box MIP solver to P+ with node limit nl and
an objective cutoff equal to the objective value provided by x∗

6. if (a new solution xnew is obtained) then
7. x∗ ←xnew, pcurrent ←p, update the array Δ
8. elsif (node limit reached without having a new solution) then
9. if(|R| = φ) pcurrent = −1
10 else pcurrent ←pcurrent − 5
11. else exploreAndNoSolution ←true
12. until (pcurrent < 0 or exploreAndNoSolution)
13. return x∗

Fig. 1. Procedure DINS at tree node

4.2 Comparison Among Methods

We compare DINS against RINS, LB, and Cplex in its default setup (default
Cplex). One CPU-hour is set to be the execution time for each method and it
seems to be sufficient to distinguish the effectiveness of all the methods.

Default Cplex is used for exploring the neighbourhoods generated in LB,
RINS, and DINS. The three methods namely LB, RINS, and DINS have a
set of parameters which need to be set. As used in [5], for LB, we set p = 10
and nl = 1000, and for RINS, we use Cplex 9.13 with the parameter IloC-
plex::MIPEmphasis set to 4 where, according to [5], f = 100 and nl = 1000. For
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DINS, we set p = 5 (different from LB to relax our intuition a little as well as
to make the neighbourhood small), f = 100 and nl = 1000.

Following Danna et al. [5], we carry out two set of experiments; in one set of
experiments we invoke all four methods with a presumably poor solution at the
root node of the MIP search tree, and in the other we invoke all four methods with
a presumably good solution at the root node of the MIP search tree. Although
there is no exact way to distinguish a good and a bad MIP solution, following
Danna et al. [5], we presume that the first MIP solution found by the default
Cplex MIP solver represents a poor solution, and the solution obtained by default
Cplex in one CPU-hour represents a good solution.

In order to capture the quality of obtained solution by each method, we use
the measure percentage of gap defined by 100*|(obj. value of obtained solution -
obj. value of the best known solution) /obj. value of the best known solution|.
Table 1 and Table 2 show the percentage of gap obtained at the end of one
CPU-hour by all the four methods considered in this paper, where the bold face
identifies the best method for the corresponding instance (multiple bold faces
appear if there are multiple methods obtaining the same solution).

Following Danna et al. [5], we group the instances into three different sets so
that the effectiveness of different methods in different groups becomes visible.
According to [5], the groups are defined as ‘small spread’, ‘medium spread’, and
‘large spread’ instances where the gap between the worst solution found by any
of the four methods considered in this paper and the best known solution is
less than 10%, between 10% and 100%, and larger than 100% respectively. The
percentage of gap shown in Table 1 and Table 2 are used to group the instances.

We use three measures to evaluate the performance of different methods.
Our first measure is best in number of instances, which represents the number

of instances at which a method finds the best solution among the solutions
obtained by all the four methods. If multiple methods find the same best solution
for an instance, then the instance contributes one in the measures for all the
corresponding methods.

Our second measure is the average percentage of gap, which represents the
arithmetic mean of the percentage of gaps obtained by a method on a group of
instances at a certain point of execution.

Our third measure is the average percentage of improvement, which represents
the arithmetic mean of percentage of improvements obtained by a method on a
group of instances at a certain point of execution. In order to visualize how much
improvement has been obtained by different methods starting from a presumably
poor and good solution, we define the percentage of improvement for an instance
as 100*|(obj. value of the initial solution - obj. value of the obtained solution)
/obj. value of the initial solution|.

Table 3 represents the comparative results of four different methods for both
set of experiments.

As expected, DINS, comparing against all other three methods in both set
of experiments, has higher percentage of improvement and lower percentage of
gap for each of the categorized group of instances, and obtains best solution in
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Table 1. Percentage of Gap = 100 ∗ |(obj. value of obtained solution - obj. value of
the best known solution)/obj. value of the best known solution| in one CPU-hour

problem Percentage of Gap

Default Cplex LB RINS DINS

Small spread instances

a1c1s1 2.347 0.250 0.000 0.079
a2c1s1 2.978 1.889 0.000 0.024
b1c1s1 5.977 1.786 0.933 4.444
b2c1s1 4.240 2.701 0.559 1.010
biella1 0.309 0.806 0.426 0.739
danoint 0.000 0.000 0.000 0.000
mkc 0.180 0.049 0.043 0.021
net12 0.000 0.000 0.000 0.000
nsrand-ipx 0.625 0.625 0.313 0.000
rail507 0.000 0.000 0.000 0.000
rail2586c 2.518 2.204 1.994 1.574
rail4284c 1.774 1.867 1.027 1.027
rail4872c 1.742 1.290 1.097 1.032
seymour 0.473 0.473 0.000 0.236
sp97ar 0.428 0.513 0.335 0.000
sp97ic 0.793 0.642 0.551 0.000
sp98ar 0.184 0.106 0.177 0.228
sp98ic 0.270 0.146 0.204 0.072
tr12-30 0.000 0.024 0.000 0.000
arki001 0.003 0.003 0.004 0.002
roll3000 0.543 0.303 0.070 0.070
umts 0.013 0.049 0.022 0.002
berlin-5-8-0 0.000 0.000 0.000 0.000
bg512142 7.257 5.192 0.161 0.000
blp-ic97 0.779 0.653 0.358 0.000
blp-ic98 0.961 1.056 0.746 0.515
blp-ar98 0.655 0.060 0.461 0.000
cms750-4 2.372 0.791 1.186 0.791
dc1l 2.018 8.166 6.994 1.572
railway-8-1-0 0.250 0.000 0.250 0.250
usabbrv-8-25-70 3.306 2.479 0.000 1.653
aflow40b 0.257 1.455 0.000 0.000
dano3mip 2.602 3.595 4.724 2.230
fast0507 0.000 0.575 0.575 0.000
harp2 0.001 0.001 0.023 0.000
t1717 7.948 1.939 5.979 7.948
noswot 0.000 0.000 0.000 0.000
timtab1 7.469 7.779 0.000 0.000
ljb2 0.256 3.329 1.576 3.329
rococoB10-011000 0.802 2.848 0.437 0.437
rococoB11-010000 5.039 5.839 1.768 2.196
rococoB12-111111 5.204 4.489 3.738 2.541
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Table 2. Percentage of Gap = 100 ∗ |(obj. value of obtained solution - obj. value of
the best known solution)/obj. value of the best known solution| in one CPU-hour

Continued from Table 1

problem Percentage of Gap

Default Cplex LB RINS DINS

Small spread instances

rococoC10-001000 0.044 0.113 0.044 0.000
rococoC11-011100 6.018 9.991 9.244 5.879
rococoC12-111100 5.188 5.188 1.298 4.016

Medium spread instances

glass4 13.014 7.534 2.740 4.794
swath 18.067 5.679 8.089 4.622
dg012142 17.457 25.984 4.963 3.943
liu 2.475 10.066 3.465 5.281
timtab2 16.373 18.484 3.188 0.912
ljb7 7.424 21.834 4.367 8.908
ljb9 50.717 70.866 55.074 50.690
ljb10 0.807 13.929 13.693 8.578
rococoB10-011001 7.660 5.309 5.220 10.082
rococoB11-110001 9.994 19.558 4.267 6.894
rococoC10-100001 16.041 7.387 13.316 10.070
rococoC11-010100 27.431 13.615 10.546 9.029
rococoC12-100000 12.928 10.090 5.623 2.799

Large spread instances

markshare1 500.000 400.00 400.00 500.00
markshare2 1300.000 1100.000 2000.000 1800.000
dc1c 695.213 2.353 0.296 0.773
trento1 0.000 193.118 1.912 0.402
ds 11.226 945.745 11.226 6.119
ljb12 39.273 323.183 49.599 64.987

higher number of instances. It is to be noted that, starting from a presumably
good solution, DINS has become best in more number of instances than the
number of instances in which it has been best in the experimentation with bad
solution.

Furthermore, for different group of instances in Figure 2− 4, we sketch how
different methods improve the solution quality (average percentage of gap) over
time starting from presumably poor solutions. We can draw some basic conclu-
sions analyzing these figures. For all three group of instances, DINS performance
is worse comparing to that of RINS at the initial level of computation, but DINS

performance becomes better as the computation progresses and once it becomes
better, it maintains its lead over RINS for the remaining part of the computa-
tion. For small and large spread instances, DINS obtains the lead over RINS

earlier than in medium spread instances. Similarly in medium and large spread
instances, DINS performance is worse comparing to that of default Cplex at
the initial level of computation, but DINS outperforms default Cplex as the
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Table 3. A comparative performance summary for different methods

Average % of improvement

Group of Instances Default LB RINS DINS

(# of instances) Cplex

experiments from the presumably poor solutions

all instances (64) 36.19 35.49 38.01 38.05

small spread (45) 23.41 23.61 23.90 23.92

medium spread (13) 60.43 60.25 62.05 62.29

large spread (6) 80.78 70.90 91.64 91.66

experiments from the presumably good solutions

all instances (64) 2.35 3.04 3.45 3.96

small spread (45) 0.45 0.78 1.26 1.29

medium spread (13) 2.50 4.91 5.10 6.57

large spread (6) 16.31 15.96 16.27 18.47

Average % of gap

Group of Instances Default LB RINS DINS

(# of instances) Cplex

experiments from the presumably poor solutions

all instances (64) 44.22 51.19 41.33 39.73

small spread (45) 1.86 1.81 1.05 0.97

medium spread (13) 15.41 17.72 10.35 9.74

large spread (6) 424.28 494.07 410.51 395.38

experiments from the presumably good solutions

all instances (64) 32.43 31.67 31.21 29.14

small spread (45) 1.41 1.07 0.56 0.54

medium spread (13) 13.57 10.63 10.46 8.59

large spread (6) 305.92 306.77 306.06 288.17

Best in # of instances

Group of Instances Default LB RINS DINS

(# of instances) Cplex

experiments from the presumably poor solutions

all instances (64) 13 12 25 39

small spread (45) 9 9 19 32

medium spread (13) 2 1 4 6

large spread (6) 2 2 2 1

experiments from the presumably good solutions

all instances (64) 16 23 29 48

small spread (45) 13 17 26 35

medium spread (13) 1 5 2 8

large spread (6) 2 1 1 5

computation progresses. LB is always worse than RINS and DINS where, at
the end of time limit, LB has an edge over default Cplex only in small spread
instances.

In an attempt to see how good intuition DINS has made, we provide some
statistical measures from our experimental results. It has been seen that, the
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spread instances

number of times neighbourhood exploration finds a new solution in all the in-
stances, the chosen distance metric was satisfied in 80.89% occurrences, and the
quadratic distance metric was satisfied in 80.5% occurrences. These experimental
results support our intuition that improved solutions are more likely to be close
to the node relaxation solutions, and also support our choice of distance metric.
Moreover, relaxing the chosen distance metric a little bit gives DINS the extra
power of finding those improved solutions that do not satisfy the chosen distance
metric at the node at which the solution has been obtained, but probably would
satisfy the chosen distance metric at some deeper nodes of the MIP search tree.

5 Conclusions

We have introduced DINS, a heuristic to find improved MIP feasible solutions
from a known MIP feasible solution, based on a distance metric between the
current MIP solution and the current node relaxation solution.

A comparison of DINS against existing neighbourhood search based heuristics
shows that it outperforms both RINS and LB in obtaining good MIP solutions
within a certain time limit and in the power of improving both poor and good
MIP solutions.

Unlike RINS, DINS uses the change of relaxation solution between the root
and the node and the change in the encountered MIP solutions in guiding the
hard fixing of 0-1 variables; this has an effect in finding the good MIP solutions as
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the computation progresses. This has been experimentally visualized by having
a comparatively worse performance on the benchmark instances by running a
modified DINS where the hard fixing of 0-1 variables are carried out according
to the hard fixing of RINS.

Acknowledgements. We thank Emilie Danna for the useful email discussions
during the implementation and analysis of the methods.
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Abstract. Let A be the edge-node incidence matrix of a bipartite graph
G = (U,V ; E), I be a subset of the nodes of G, and b be a vector such
that 2b is integral. We consider the following mixed-integer set:

X(G, b, I) = {x : Ax ≥ b, x ≥ 0, xi integer for all i ∈ I}.

We characterize conv(X(G, b, I)) in its original space. That is, we de-
scribe a matrix (C,d) such that conv(X(G, b, I)) = {x : Cx ≥ d}. This
is accomplished by computing the projection onto the space of the x-
variables of an extended formulation, given in [1], for conv(X(G, b, I)).
We then give a polynomial-time algorithm for the separation problem for
conv(X(G, b, I)), thus showing that the problem of optimizing a linear
function over the set X(G, b, I) is solvable in polynomial time.

1 Introduction

Given a bipartite graph G = (U, V ; E), a vector b = (be)e∈E , with the property
that b is half-integral, i.e. 2be ∈ Z, e ∈ E, and a set I ⊆ (U ∪ V ), we consider
the problem of characterizing the convex hull of all nonnegative x ∈ R

U∪V such
that

xi + xj ≥ bij for every ij ∈ E,
xi ∈ Z for every i ∈ I.

That is, given the edge-node incidence matrix A of a bipartite graph G, a par-
tition (I, L) of its column-set, and an half-integral vector b, we consider the
following mixed-integer set:

X(G, b, I) = {x : Ax ≥ b, x ≥ 0, xi integer for all i ∈ I}. (1)

In this paper we provide a formulation for the polyhedron conv(X(G, b, I)),
where a formulation for a polyhedron P is a description of P as the intersection
of a finite number of half-spaces. So it consists of a finite set of inequalities
Cx ≥ d such that P = {x : Cx ≥ d}.

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 324–336, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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An extended formulation of P is a formulation for a polyhedron P ′ in a higher
dimensional space that includes the original space, so that P is the projection
of P ′ onto the original space.

A general technique to describe an extended formulation for the set of solu-
tions of a system Ax ≥ b, when A� is a network matrix and some of the variables
are restricted to be integer, was introduced in [1]. In Section 2 we derive such
an extended formulation for conv(X(G, b, I)), while in Section 3 we describe a
formulation in the original space by explicitly computing the projection of the
polyhedron defined by the extended formulation. Finally, in Section 4, we give a
polynomial-time algorithm to solve the separation problem for conv(X(G, b, I)).

1.1 The Main Result

Given a bipartite graph G = (U, V ; E), a partition (I, L) of U ∪ V , and an half-
integral vector b, we say that a path P of G is an I-path if at least one endnode
of P is in I, and no intermediate node of P is in I. We say that P is odd if P
has an odd number of edges e such that be = 1

2 mod 1. Whenever we have a
vector v with entries indexed by some set S, given a subset T of S we denote
v(T ) =

∑
i∈T vi. In this paper we show the following:

Theorem 1. The polyhedron conv(X(G, b, I)) is defined by the following in-
equalities:

xi + xj ≥ bij ij ∈ E, (2)
2x(V (P ) ∩ L) + x(V (P ) ∩ I) ≥ b(P ) + 1

2 P odd I-path, (3)
xi ≥ 0 i ∈ U ∪ V . (4)

Eisenbrand [4] conjectured that the inequalities in (2)-(4) are sufficient to char-
acterize conv(X(G, b, I)) when G is a path. Theorem 1 shows that this conjecture
holds in a quite more general setting (and it certainly cannot be extended be-
yond that). Preliminary results for the path case were obtained by Skutella [11]
and Eisenbrand [4].

1.2 First Chvátal Closure

The following observation allows us to describe X(G, b, I) in terms of a pure
integer set.

Observation 2. Let x̄ be a vertex of conv(X(G, b, I)). Then 2x̄ is integral.

Proof: If not, let U ′ and V ′ be the sets of nodes i in U and V , respectively, such
that 2x̄i is not integer. Then, for ε small enough, the vectors x̄ + εχU ′ − εχV ′

and x̄ − εχU ′
+ εχV ′

are both in conv(X(G, b, I)), where we denote by χS the
incidence vector of S for any S ⊆ U ∪ V . �

Let b′ = 2b, A′ be obtained form A by multiplying by 2 the columns correspond-
ing to nodes in I. By Observation 2, the linear transformation x′

i = xi, i ∈ I,
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x′
i = 2xi, i ∈ L, maps X(G, b, I) into {x′ : A′x′ ≥ b′, x′ ≥ 0, x′ integral}, which

is a pure integer set.
Let P = v1, . . . vn be an I-path. Notice that b(P ) = 1

2 mod 1 is equivalent to
b′(P ) odd. Then the inequality

∑

i∈V (P )

x′
i ≥

⌈
b′(P )

2

⌉
(5)

is a Gomory-Chvátal inequality of {x′ : A′x′ ≥ b′, x′ ≥ 0}. Indeed, assume
v1 ∈ I. If vn ∈ I, then (5) is obtained from

1
2
(2x′

v1
+x′

v2
≥ b′v1v2

)+
n−2∑

i=2

1
2
(x′

vi
+x′

vi+1
≥ b′vivi+1

)+
1
2
(x′

vn−1
+2x′

vn
≥ b′vn−1vn

)

by rounding up the right-hand-side. If xn /∈ I, then (5) is obtained from

1
2
(2x′

v1
+ x′

v2
≥ b′v1v2

) +
n−1∑

i=2

1
2
(x′

vi
+ x′

vi+1
≥ b′vivi+1

) +
1
2
(x′

vn
≥ 0)

by rounding up the right-hand-side.
Furthermore the inequalities in (5) correspond to the inequalities in (3).

Therefore Theorem 1 implies that the polyhedron defined by A′x′ ≥ b′, x′ ≥ 0
has Chvátal rank 1. In the case where G is a path with no intermediate node
in I, this last fact follows immediately from a theorem of Edmonds and Jonhn-
son [2,3], since in this case A′ satisfies the condition that the sum of the absolute
values of the entries of each column is at most 2.

1.3 The Motivation

A (general) mixed-integer set is a set of the form

{x | Ax ≥ b, xi integer i ∈ I} (6)

where I is a subset of the columns of A and b is a vector that may contain
fractional components.

In [1], it is shown that the problem of deciding if the above set is nonempty
is NP-complete, even if b is an half-integral vector and A is a network matrix.
(We refer the reader to [7] or [10] for definitions and results related to network
matrices and, more generally, totally unimodular matrices.)

However, it may be possible that, when A is the transpose of a network matrix,
the associated mixed-integer programming problem is polynomially solvable. In-
deed, let MIX2TU be a mixed-integer set of the form (6) when A� is a network
matrix.

An extended formulation of the polyhedron conv(MIX2TU ) was described
in [1]. The extended formulation involves an additional variable for each possible
fractional part taken by the variables at any vertex of conv(MIX2TU ). If this
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number is polynomial in the size of (A, b), then such a formulation is compact,
i.e. of polynomial size in the size of (A, b). Therefore the problem of optimizing
a linear function over MIX2TU can be efficiently solved in this case. However,
it seems to be rather difficult to compute the projection in the original x-space.
It follows from Observation 2 that if x̄ is a vertex of conv(X(G, b, I)), then x̄i −
�x̄i� ∈ {0, 1

2}. Therefore the extended formulation for conv(X(G, b, I)) (which
will be introduced in Section 2) is compact. The main contribution of this paper
is the explicit description of the projection of the polyhedron defined by this
extended formulation in the original x-space.

The mixed-integer set X(G, b, I) is related to certain mixed-integer sets that
arise in the context of production planning (see [9]). The case when G is a star
with center node in L and leaves in I has been studied by Pochet and Wolsey
in [8], where they gave a compact extended formulation for the convex hull of
feasible solutions. Günlük and Pochet [5] projected this formulation onto the
original space, thus showing that the family of mixing inequalities gives the
formulation in the x-space.

Miller and Wolsey [6] extended the results in [8] to general bipartite graphs,
with the restriction that the partition (I, L) coincides with the bipartition (U, V )
of the graph. Their result shows that the mixing inequalities associated with
every single star of G having center a node in L and leaf nodes all nodes in I
give a formulation for this case.

2 The Extended Formulation

We use here a modeling technique introduced by Pochet and Wolsey [8] and
extensively investigated in [1].
Observation 2 allows to express each variable xi , i ∈ L, as

xi = μi +
1
2
δi, μi ≥ 0, 0 ≤ δi ≤ 1, μi, δi integer. (7)

For now, we assume I = ∅, that is, L = (U ∪ V ).

Lemma 3. Let ij ∈ E, and suppose xi, xj , μi, μj , δi, δj satisfy (7).
If bij = 1

2 mod 1, xi, xj satisfy xi + xj ≥ bij if and only if

μi + μj ≥ �bij�
μi + δi + μj + δj ≥ �bij� .

(8)

If bij = 0 mod 1, xi, xj satisfy xi + xj ≥ bij if and only if

μi + δi + μj ≥ bij

μi + μj + δj ≥ bij .
(9)

Proof: Assume xi, xj , μi, μj , δi, δj satisfy (7). Then, if bij = 1
2 mod 1, constraint

xi + xj ≥ bij is satisfied if and only if μi + μj ≥ �bij� and δi + δj ≥ 1 whenever
μi+μj = �bij�. If bij = 0 mod 1, the constraint is satisfied if and only if μi+μj ≥
bij − 1 and δi = δj = 1 whenever μi + μj = bij − 1.
It is easy to see that these conditions are enforced by the above constraints. �
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Observation 4. Given ij ∈ E, the constraints (8) and (9) belong to the first
Chvátal closure of the polyhedron defined by

μi +
1
2
δi + μj +

1
2
δj ≥ bij

μi, μj ≥ 0
δi, δj ≤ 1
δi, δj ≥ 0

whenever bij = 1
2 mod 1 and bij = 0 mod 1, respectively.

By applying the unimodular transformation μ0
i = μi, μ1

i = μi+δi, the constraints
xi = μi + 1

2δi, μi ≥ 0, 0 ≤ δi ≤ 1 become

xi − 1
2
(μ0

i + μ1
i ) = 0 (10)

μ0
i ≥ 0

0 ≤ μ1
i − μ0

i ≤ 1 (11)

and constraints (8) and (9) become:

μ0
i + μ0

j ≥ �bij�
μ1

i + μ1
j ≥ �bij�

(12)

μ1
i + μ0

j ≥ bij

μ0
i + μ1

j ≥ bij
(13)

Theorem 5. The projection onto the space of the x variables of the polyhedron
Q defined on the space of the variables (x, μ0, μ1) by the inequalities

(10), (11) for every i ∈ U ∪ V,
(12) for every ij ∈ E s.t. bij = 1

2 mod 1
(13) for every ij ∈ E s.t. bij = 0 mod 1

is the polyhedron conv(X(G, b, ∅)).

Proof: Since the variable xi is determined by (10) for all i ∈ U ∪V , we only need
to show that the polyhedron defined by inequalities (11) for every i ∈ U ∪V , (12)
for every ij ∈ E s.t. bij = 1

2 mod 1, and (13) for every ij ∈ E s.t. bij = 0 mod 1,
is integral. Let Aμ be the constraint matrix of the above system. Since G is a
bipartite graph, then the matrix Ā, obtained by multiplying by −1 the columns
of Aμ relative to the variables μ0

i , μ
1
i , i ∈ V , has at most a 1 and at most a −1

in each row. Therefore Ā is the transpose of a network matrix, so Aμ is totally
unimodular (see [10]). Since the right-hand-sides of (11)-(13) are all integer, the
statement follows from the theorem of Hoffman and Kruskal. �

Observation 6. For any i ∈ U ∪ V , xi is integer valued if and only if δi = 0.
Therefore, for a given I ⊆ (U ∪V ), the polyhedron conv(X(G, b, I)) is the projec-
tion onto the space of the x variables of the face QI of Q defined by the equations
μ1

1 − μ0
i = 0, i ∈ I (which correspond to δi = 0, i ∈ I).
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3 The Formulation in the Original Space

In this section we prove Theorem 1 by projecting the polyhedron QI onto the
space of the x variables.

Let pi = μ0
i −μ1

i

2 . The μ0
i = xi +pi and μ1

i = xi −pi. The inequalities (10)-(13),
defining Q, become:

pi + pj ≥ �bij� − xi − xj , ij ∈ E s.t. bij = 1
2 mod 1,

−pi − pj ≥ �bij� − xi − xj , ij ∈ E s.t. bij = 1
2 mod 1,

pi − pj ≥ bij − xi − xj , ij ∈ E s.t. bij = 0 mod 1,
−pi + pj ≥ bij − xi − xj , ij ∈ E s.t. bij = 0 mod 1,

pi ≥ − 1
2 , i ∈ U ∪ V,

−pi ≥ 0, i ∈ U ∪ V,
pi ≥ −xi, i ∈ U ∪ V.

By Observation 6, conv(X(G, B, I)) is the projection onto the x-space of the
polyhedron defined by the above inequalities and by pi = 0 for every i ∈ I.

Associate multipliers to the above constraints as follows:

(u++
ij ) pi + pj ≥ �bij� − xi − xj

(u−−
ij ) −pi − pj ≥ �bij� − xi − xj

(u+−
ij ) pi − pj ≥ bij − xi − xj

(u−+
ij ) −pi + pj ≥ bij − xi − xj

(u
1
2
i ) pi ≥ − 1

2
(u0

i ) −pi ≥ 0
(ux

i ) pi ≥ −xi

(14)

Any valid inequality for conv(X(G, b, I)) has the form αux ≥ βu, where

αux =
∑

bij= 1
2 mod 1

(u++
ij + u−−

ij )(xi + xj) +

∑

bij=0 mod 1

(u+−
ij + u−+

ij )(xi + xj) +
∑

i∈U∪V

ux
i xi (15)

βu =
∑

bij= 1
2 mod 1

(u−−
ij �bij� + u++

ij �bij�) +

∑

bij=0 mod 1

(u+−
ij + u−+

ij )bij −
∑

i∈L

1
2
u

1
2
i (16)

for some nonnegative vector u = (u++
ij , u−−

ij , u+−
ij , u−+

ij , u
1
2
i , u0

i , u
x
i ) such that

uP = 0, where P is the column-submatrix of the above system (14) involv-
ing columns corresponding to variables pi, i ∈ L (see e.g. Theorem 4.10 in [7]).
For instance the inequality xi + xj ≥ bij , for ij ∈ E with bij = 1

2 mod 1, is
obtained by setting u++

ij = u−−
ij = 1

2 , and all other entries of u to be 0.
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We are interested in characterizing the nonnegative vectors u such that uP = 0
and αux ≥ βu is facet-defining for conv(X(G, b, I)), and such that the inequality
αux ≥ βu is not of the form xi + xj ≥ bij , for some ij ∈ E, or xi ≥ 0, for some
i ∈ U ∪V . From now on we will assume, w.l.o.g., that the entires of u are integer
and relatively prime.

We define an auxiliary graph Γu = (L ∪ {d}, F ), where d is a dummy node
not in U ∪ V , and F is defined as follows.

– For every edge ij ∈ E such that i, j ∈ L, there are u++
ij + u−−

ij + u+−
ij + u−+

ij

parallel edges between i and j in F , each edge corresponding to a multiplier
among u++

ij , u−−
ij , u+−

ij , u−+
ij .

– For each node i ∈ L, there are u
1
2
i + u0

i + ux
i +

∑
j∈I : ij∈E(u++

ij + u−−
ij +

u+−
ij + u−+

ij ) parallel edges between d and i in F , each edge corresponding

to a multiplier among u
1
2
i , u0

i , ux
i , or u++

ij , u−−
ij , u+−

ij , u−+
ij , for some j ∈ I.

We impose a bi-orientation ω on Γu, that is, to each edge e ∈ F , and each
endnode i of e that belongs to L, we associate the value ω(e, i) = tail if e cor-
responds to an inequality of (14) where pi has coefficient −1, while we associate
the value ω(e, i) = head if e corresponds to an inequality of (14) where pi has
coefficient +1. The dummy node d is neither a tail nor a head of any edge. Thus,
each edge of Γu can have one head and one tail, two heads, two tails, or, if d is
one of the two endnodes, only one head and no tail or only one tail and no head.

For each i ∈ L, we denote with δin
ω (i) the number of edges in F of which i is

a head, and with δout
w (i) the number of edges in F of which i is a tail.

We say that Γu is ω-eulerian if δin
ω (i) = δout

ω (i) for every i ∈ L.

Observation 7. Γu is ω-eulerian if and only if uP = 0.

We define a closed ω-eulerian walk in Γu as a closed-walk in Γu,

v0, e0, v1, e1, . . . , vk, ek, vk+1,

where v0 = vk+1, with the property that ω(eh−1, vh) 
= ω(eh, vh) for every h
such that vh is in L, h = 0, . . . , k, k + 1, where the indices are taken modulo k.
That is, if vh ∈ L, then vh is a head of eh−1 if and only if vh is a tail of eh.

Observation 8. Γu is ω-eulerian if and only if Γu is the disjoint union of closed
ω-eulerian walks. In particular, every node in L ∪ {d} has even degree in Γu.

Observe that, if v0, e0, . . . , ek, vk+1 is a closed ω-eulerian walk in Γu, then both
graphs Γ ′, Γ ′′ on L ∪ {d} with edge-sets F ′ = {e1, . . . , ek} and F ′′ = F \ F ′,
respectively, are ω-eulerian. Suppose F ′′ 
= ∅. Then there are nonnegative integer
vectors u′ and u′′, both different from zero, such that u′P = 0, u′′P = 0, Γ ′ = Γu′

and Γ ′′ = Γu′′ , and u = u′+u′′. By the fact that Γ ′ and Γ ′′ are ω-eulerian, and by
the structure of the inequalities in (14), the vectors (αu′ , βu′) and (αu′′ , βu′′) are
both non-zero. Furthermore αu = αu′ + αu′′ and βu = βu′ + βu′′ , contradicting
the fact that αux ≥ βu is facet-defining and the entries of u are relatively prime.

Hence we have shown the following.
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Observation 9. Every closed ω-eulerian walk of Γu traverses all the edges in
F . In particular, there exists a closed ω-eulerian walk v0, e0, . . . , ek, vk+1 of Γu

such that F = {eh | h = 1, . . . , k}.

Suppose d has positive degree in Γ . Then we may assume, w.l.o.g., that v0 =
vk+1 = d. Suppose d = vh for some h = 1, . . . , k. Then v0, e0, v1, . . . , eh−1vh is
a closed ω-eulerian walk, contradicting the previous observation. Hence we have
the following.

Observation 10. Node d has degree 0 or 2 in Γu.

Next we show the following.

Lemma 11. Every node in L ∪ {d} has degree 0 or 2 in Γu.

Proof: We have already shown d has degree 0 or 2 in Γu. If d has degree 2, we
assume d = v0 = vk+1, else v0 is arbitrarily chosen. If there is a node in L with
degree at least 4, then there exists distinct indices s, t ∈ {1, . . . , k} such that
vs = vt. We choose s and t such that t − s is positive and as small as possible.
Therefore C = vs, es, . . . , et−1, vt is a cycle of Γu containing only nodes in L.
Since G is a bipartite graph, C has even length, hence the edges in C can be
partitioned into two matchings M0, M1 of cardinality |C|/2. We will denote with
HH , TT , HT the sets of edges of F with, respectively, two heads, two tails, one
head and one tail.

If vs is the head of exactly one among es and et−1, then C is a closed ω-
eulerian walk, contradicting Observation 9. Hence vs is either a head of both es

and et−1 or a tail of both es and et−1. This shows that |C ∩TT | = |C ∩HH |±1.
Therefore there is an odd number of edges e in C such that be = 1

2 mod 1. By
symmetry, we may assume

∑
e∈M0

be ≥
∑

e∈M1
be + 1

2 . Then the inequality

2
∑

i∈V (C)

xi ≥
∑

e∈C

be +
1
2

(17)

is valid for conv(X(G, b, I)), since it is implied by the valid inequalities xi +xj ≥
bij , ij ∈ M0, because

2
∑

i∈V (C)

xi = 2
∑

ij∈M0

(xi +xj) ≥ 2
∑

ij∈M0

bij ≥
∑

e∈M0

be +
∑

e∈M1

be +
1
2

=
∑

e∈C

be +
1
2
.

Case 1: Node vs is a tail of both es and et−1.

Then |C ∩ TT | = |C ∩ HH | + 1, hence
∑

e∈C∩TT

�be� +
∑

e∈C∩HH

�be� +
∑

e∈C∩HT

be =
∑

e∈C

be +
1
2
. (18)

Let u′ be the vector obtained from u as follows
{

u′∗∗
ij = u∗∗

ij − 1 for every ij ∈ C
u′0

vs
= u0

vs
+ 2



332 M. Conforti, B. Gerards, and G. Zambelli

all other components of u′ and u being identical, where u∗∗
ij is the variable among

u++
ij , u−−

ij , u+−
ij , u−+

ij corresponding to edge ij of C.
Then one can easily see that Γu′ is the graph obtained from Γu by removing

the edges es, . . . , et, and adding two parallel edges vsd both with tail in vs, hence
Γu′ is ω-eulerian and u′P = 0. By (18)

βu′ = βu −
∑

e∈C

be − 1
2
,

while by construction
αux = αu′x + 2

∑

i∈V (C)

xi.

Thus αux ≥ βu can be obtained by taking the sum of αu′x ≥ βu′ and (17),
contradicting the assumption that αux ≥ βu is facet-defining.

Case 2: Node vs is a head of both es and et−1.

Then |C ∩ TT | = |C ∩ HH | − 1, hence

∑

e∈C∩TT

�be� +
∑

e∈C∩HH

�be� +
∑

e∈C∩HT

be =
∑

e∈C

be − 1
2
. (19)

Let u′ be the vector obtained from u as follows
{

u′∗∗
ij = u∗∗

ij − 1 for every ij ∈ C

u
′ 12
vs = u

1
2
vs + 2

all other components of u′ and u being identical.
Then one can easily see that Γu′ is the graph obtained from Γu by removing the
edges es, . . . , et, and adding two parallel edges vsd both with head in vs, hence
u′P = 0. By (19)

βu′ = βu −
∑

e∈C

be +
1
2

− 2
1
2
,

while by construction
αux = αu′x + 2

∑

i∈V (C)

xi.

Thus αux ≥ βu can be obtained by taking the sum of αu′x ≥ βu′ and (17),
contradicting the assumption that αux ≥ βu is facet-defining.

�
We are now ready to give the proof of the main theorem.

Proof of Theorem 1. We show that all facet-defining inequalities αux ≥ βu, where
u is nonnegative, integral, and with entries that are relatively prime, that are
not inequalities in (2) or (4), are of the form (3).
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First we show the following.
∑

ij∈E

u−−
ij >

∑

ij∈E

u++
ij +

∑

i∈U∪V

u
1
2
i (20)

In fact, we can write the inequality

αux ≥
∑

bij= 1
2 mod 1

(u−−
ij + u++

ij )bij +
∑

bij=0 mod 1

(u+−
ij + u−+

ij )bij

as nonnegative combination of inequalities of the form (2) or (4), therefore we
must have

βu >
∑

bij= 1
2 mod 1

(u−−
ij + u++

ij )bij +
∑

bij=0 mod 1

(u+−
ij + u−+

ij )bij .

Thus

0 < βu −
∑

bij= 1
2 mod 1

(u−−
ij + u++

ij )bij −
∑

bij=0 mod 1

(u+−
ij + u−+

ij )bij

=
1
2
(
∑

ij∈E

u−−
ij −

∑

ij∈E

u++
ij −

∑

i∈U∪V

u
1
2
i )

which proves (20).

By Lemma (11) and Observation (9), Γu consists of an induced cycle C and
isolated nodes, where every node in V (C) ∩ L is a head of exactly one edge and
a tail of exactly one edge.

If d is an isolated node, then each edge ij of C corresponds to a variable of
the form u∗∗

ij , and since the total number of heads in C equals the number of

tails, then
∑

ij∈E u−−
ij =

∑
ij∈E u++

ij and
∑

i∈U∪V u
1
2
i = 0, contradicting (20).

Thus we may assume that C = v0, e0, . . . , ek, vk+1 where d = v0 = vk+1.

Claim: The following are the only possible cases, up to symmetry.
1. Edges dv1, dvk of Γu correspond to variables ux

v1
and ux

vk
, respectively;

2. dv1 corresponds to variable u−−
wv1

or u−+
wv1

for some w ∈ I, and dvk corresponds
to ux

vk
;

3. dv1 corresponds to variables u−−
wv1

or u−+
wv1

for some w ∈ I, and dvk corresponds
to variable u−−

w′vk
or u−+

w′vk
for some w′ ∈ I.

Proof of claim. If v1 is a head of e0 and vk is a head of ek, then the number of
edges among e1, . . . , ek−1 with two tails is one plus the number of edges with two
heads. Since the former correspond to variables of type u−−

ij for some ij ∈ E,
and the latter correspond to to variables of type u++

ij for some ij ∈ E, then

by (20) dv1 does not correspond to variable u
1
2
v1 or to a variable u++

wv1
for any

w ∈ I, and dvk does not correspond to variable u
1
2
vk or to a variable u++

wvk
for any

w ∈ I, thus one of the above three cases holds.
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If v1 is a tail of e0 and vk is a head of ek, then the number of edges among
e1, . . . , ek−1 with two tails is equal the number of edges with two heads. By (20),
dv1 corresponds to variable u−−

wv1
for some w ∈ I, and dvk corresponds to either

ux
vk

or to a variable u−+
w′vk

for some w′ ∈ I, thus case 2 or 3 holds.
If v1 is a tail of e0 and vk is a tail of ek, then the number of edges among

e1, . . . , ek−1 with two tails is equal one minus the number of edges with two heads.
By (20), dv1 corresponds to variable u−−

wv1
for some w ∈ I, and dvk corresponds

to a variable u−−
w′vk

for some w′ ∈ I, thus case 3 holds. This completes the proof
of the claim.

Case 1: Edges dv1, dvk of Γu correspond to variables ux
v1

and ux
vk

, respectively.

In this case the path P = v1, e1, . . . , ek−1, vk of Γu is also a path of G containing
only nodes in L, and P contains an odd number of edges e such that be =
1
2 mod 1. The inequality αux ≥ βu is then 2x(V (P )) ≥ b(P ) + 1

2 . The edges
of P can be partitioned into two matchings M0 and M1, thus we may assume,
w.l.o.g.,

∑
e∈M0

be ≥
∑

e∈M1
be + 1

2 . Thus 2x(V (P )) ≥ 2
∑

ij∈M0
(xi + xj) ≥

2
∑

ij∈M0
bij ≥

∑
e∈M0

be +
∑

e∈M1
be + 1

2 = b(P ) + 1
2 , hence αux ≥ βu is not

facet-defining.

Case 2: dv1 corresponds to variable u−−
wv1

or u−+
wv1

for some w ∈ I, and dvk

corresponds to ux
vk

.

In this case, P = w, v1, e1, . . . , ek−1, vk is an odd I-path of G between w ∈ I and
vk ∈ L. The inequality αux ≥ βu is 2x(V (P )∩L)+ xw ≥ b(P )+ 1

2 , which is one
of the inequalities in (3).

Case 3: dv1 corresponds to variables u−−
wv1

or u−+
wv1

for some w ∈ I, and dvk

corresponds to variable u−−
w′vk

or u−+
w′vk

for some w′ ∈ I.

If w 
= w′, then the path P = w, v1, e1, . . . , ek−1, vk, w′ is an odd I-path of G
between w ∈ I and w′ ∈ I. The inequality αux ≥ βu is 2x(V (P )∩L)+xw +xw′ ≥
b(P ) + 1

2 , which is one of the inequalities in (3).
If w = w′, then we must have v1 
= vk, since otherwise v1 would be either the

head or the tail of both edges of Γu incident to v1. Thus C′ = w, v1, . . . , vk, w
is a cycle of G. Since G is a bipartite graph, C′ has even length, hence the
edges in C′ can be partitioned into two matchings M0, M1 of cardinality |C′|/2.
Since C′ contains an odd number of edges e such that bw = 1

2 mod 1, then we
may assume, w.l.o.g.,

∑
e∈M0

be ≥
∑

e∈M1
be + 1

2 . The inequality αux ≥ βu is
2x(V (C′)) ≥ b(C′) + 1

2 . But 2x(V (C′)) = 2
∑

ij∈M0
(xi + xj) ≥ 2

∑
ij∈M0

bij ≥∑
e∈M0

be +
∑

e∈M1
be + 1

2 = b(C′) + 1
2 , hence αux ≥ βu is not facet-defining.

�

4 Separation

Theorem 5 and Observation 6 imply that the problem of minimizing a linear func-
tion over the setX(G, b, I) is solvable in polynomial time, since it reduces to solving
a linear programming problem over the set of feasible points for (10)-(13).
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In this section we give a combinatorial polynomial-time algorithm for the sepa-
ration problem for the set conv(X(G, b, I)), thus giving an alternative proof that
the problem of optimizing a linear function over such polyhedron, and thus over
X(G, b, I), is polynomial.

Clearly, given a nonnegative vector x∗, we can check in polynomial-time whether
x∗ satisfies (2) for every edge. Thus, by Theorem 1, we only need to describe a
polynomial-time algorithm that, given a nonnegative vector x∗ satisfying (2), ei-
ther returns an inequality of type (3) violated by x∗, or proves that none exists.

For every ij ∈ E, let s∗ij = x∗
i + x∗

j − bij . Since x∗ satisfies (2), then s∗e is
nonnegative for every e ∈ E. Let P = v1, . . . vn be an odd I-path.

Claim. The vector x∗ satisfies 2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) ≥ b(P ) + 1
2 if and

only if s∗(P ) + x∗({v1, vn} ∩ L) ≥ 1
2 .

Indeed, assume v1 ∈ I. If vn ∈ I then

n−1∑

i=1

s∗vivi+1
=

n−1∑

i=1

(x∗
vi

+ x∗
vi+1

− bvivi+1)

gives the equality s∗(P ) = 2x∗(V (P )∩L)+x∗(V (P )∩I)−b(P ), hence 2x∗(V (P )∩
L) + x∗(V (P ) ∩ I) ≥ b(P ) + 1

2 if and only if s∗(P ) ≥ 1
2 .

If vn /∈ I, then

n−1∑

i=1

s∗vivi+1
+ x∗

vn
=

n−1∑

i=1

(x∗
vi

+ x∗
vi+1

− bvivi+1) + x∗
vn

gives the equality s∗(P ) + x∗
vn

= 2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) − b(P ), hence
2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) ≥ b(P ) + 1

2 if and only if s∗(P ) + x∗
vn

≥ 1
2 .

This completes the proof of the Claim.
Therefore, if we assign length s∗e to every e ∈ E, we need to give an algorithm

that, for any two nodes r, t such that r ∈ I, either determines that the shortest
odd I-path between r and t (if any) has length at least 1

2 − x∗({t}∩ L), or returns
an odd I-path P for which 2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) < b(P ) + 1

2 .
Observe that any walk W between r and t that contains an odd number of edges

e such that be = 1
2 mod 1 either contains a sub-path P that is an odd I-path or it

contains a cycle C that contains an odd number of edges e such that be = 1
2 mod 1.

In the former case, either both endnodes of P are in I, or t is the only endnode of
P in L. Hence, if s∗(W ) < 1

2 − x∗({t} ∩ L), then also s∗(P ) < 1
2 − x∗({t} ∩ L),

hence 2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) < b(P ) + 1
2 . In the second case, since G is

bipartite, the edges of C can be partitioned into two matchings M0 and M1 such
that b(M0) ≥ b(M1) + 1

2 . Thus s∗(C) =
∑

ij∈C(x∗
i + x∗

j − bij) = 2x∗(V (C)) −
b(C) ≥ 2(x∗(V (C)) − b(M0)) + 1

2 = 2
∑

ij∈M0
(x∗

i + x∗
j − bij) + 1

2 ≥ 1
2 , hence

s∗(W ) ≥ 1
2 .

Thus we only need to find, for every pair r, t ∈ U ∪ V with r ∈ I, the shortest
walk W between r and t, w.r.t. the distance s∗, among all such walks containing
an odd number of edges e such that be = 1

2 mod 1. If, for a given choice of r, t,
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s(W ) < 1
2−x∗({t}∩L), then by the above argumentwe can find in polynomial time

a sub-pathP ofW such thatP is an odd I-path and2x∗(V (P )∩L)+x∗(V (P )∩I) <
b(P ) + 1

2 , otherwise we can conclude that x∗ ∈ conv(X(G, b, I)).
To conclude, we only need to show a polynomial-time algorithm that, given an

undirected graph Γ with nonnegative lengths on the edges 	e, e ∈ E(Γ ), a subset
F ⊆ E(Γ ), and a pair of nodes r, t ∈ V (Γ ), determines the walk W of minimum
length between r and t such that |E(W ) ∩ F | is odd, or determines that no such
walk exists. The latter problem can be solved in polynomial time. Since, as far as
we know, this fact is folklore, we briefly describe an algorithm.

We construct a new graph Γ ′ as follows. For every node v ∈ V (Γ ), there is a
pair of nodes v, v′ in V (Γ ′). For every edge uv ∈ E(Γ ), E(Γ ′) contains the edges
uv′ and u′v if uv ∈ F , and the edges uv and u′v′ if uv /∈ F , each with length 	uv.
One can verify that a walk W between r and t with an odd number of edges in F
exists in Γ if and only if there exists a walk of the same length between r and t′ in
Γ ′. Hence we only need to find a shortest path between r and t′ in Γ ′, if any exists,
and output the corresponding walk in Γ .
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Abstract. We study the mixed-integer rounding (MIR) closure of poly-
hedra. The MIR closure of a polyhedron is equal to its split closure and
the associated separation problem is NP-hard. We describe a mixed-
integer programming (MIP) model with linear constraints and a non-
linear objective for separating an arbitrary point from the MIR closure
of a given mixed-integer set. We linearize the objective using additional
variables to produce a linear MIP model that solves the separation prob-
lem approximately, with an accuracy that depends on the number of
additional variables used. Our analysis yields a short proof of the result
of Cook, Kannan and Schrijver (1990) that the split closure of a polyhe-
dron is again a polyhedron. We also present some computational results
with our approximate separation model.

1 Introduction

We study the mixed-integer rounding (MIR) closure of a given mixed-integer set

P = {v ∈ R|J|, x ∈ Z |I| : Cv + Ax ≥ b, v, x ≥ 0}

where all numerical data is rational. In other words, we are interested in the set
of points that satisfy all MIR inequalities

(λC)+v + (−λ)+(Cv + Ax − b) + min{λA − �λA� , r}x + r �λA� x ≥ r �λb�

that can be generated by some λ of appropriate dimension. Here r = λb − �λb�,
(·)+ denotes max{0, ·} and all operators are applied to vectors component-wise.
In Section 2, we discuss in detail how these inequalities are derived and why
they are called MIR inequalities.

The term mixed-integer rounding was first used by Nemhauser and Wolsey
[18, pp.244] to denote valid inequalities that can be produced by what they
call the MIR procedure. These authors in [17] strengthen and redefine the MIR
procedure and the resulting inequality. The same term was later used to denote
seemingly simpler inequalities in Marchand and Wolsey [16], and Wolsey [20].

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 337–351, 2007.
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The definition of the MIR inequality we use in this paper is equivalent to the
one in [17], though our presentation is based on [20].

Split cuts were defined by Cook, Kannan and Schrijver in [9], and are a special
case of the disjunctive cuts introduced by Balas [2]. In [17], Nemhauser and
Wolsey show that MIR cuts are equivalent to split cuts in the sense that, for a
given polyhedron, the MIR closure is identical to the split closure. In [9], Cook,
Kannan and Schrijver show that the split closure of a polyhedron is again a
polyhedron. In this paper, we present a short proof of the same fact by analyzing
MIR closure of polyhedra. This is not a new result but our proof is significantly
easier to follow and present.

The problem of separating an arbitrary point from the MIR closure of a poly-
hedron is NP-hard as it was shown (using split cuts) by Caprara and Letchford
[7]. The same also holds for the (Gomory-)Chvátal closure of a polyhedron as
shown by Eisenbrand [13]. Gomory-Chvátal cuts are dominated by MIR cuts
and therefore Chvátal closure is contained in the MIR closure, usually strictly.

In [15], Fischetti and Lodi show that, even though it is theoretically hard, in
practice it is possible to separate points from the Chvátal closure in a reasonable
time. Their approach involves formulating the separation problem as an MIP, and
solving it with a black-box MIP solver. By repeatedly applying their separation
algorithm to MIPLIB instances, they are able to approximately optimize over the
Chvátal closure and obtain very tight bounds on the value of optimal solutions.
Motivated by their work, we describe an MIP model for separating from the MIR
closure of a polyhedron and present computational results on approximately
optimizing over the MIR closure for problems in the MIPLIB 3.0.

Our work is also closely related with two recent papers written independently.
The first one is a paper [4] by Balas and Saxena who experiment with a paramet-
ric MIP model to find violated split cuts. The second one is the paper by Vielma
[19] which presents a proof of the fact that the split closure of a polyhedron is
again a polyhedron.

The paper is organized as follows: In Section 2, we define MIR inequalities
and their basic properties. In Section 3 we present a mixed-integer programming
model that approximately separates an arbitrary point from the MIR closure of
a given polyhedron. In Section 4, we present a simple proof that the MIR (or,
split) closure of a polyhedron is again a polyhedron. In Section 5 we present a
summary of the experiments with the approximate separation model.

2 Mixed-Integer Rounding Inequalities

In [20], Wolsey develops the MIR inequality as the only non-trivial facet of the
following simple mixed-integer set:

Q0 =
{
v ∈ R, x ∈ Z : v + x ≥ b, v ≥ 0

}
.

It is easy to see that
v ≥ b̂(�b� − x) (1)
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where b̂ = b − �b� is valid and facet defining for Q0. In [20] this inequality is
called the basic mixed-integer inequality.

To apply this idea to more general sets defined by a single inequality, one
needs to group variables in a way that resembles Q0. More precisely, given a
set

Q1 =
{
v ∈ R|J|, x ∈ Z |I| :

∑

j∈J

cjvj +
∑

i∈I

aixi ≥ b, v, x ≥ 0
}

the defining inequality is relaxed to obtain
( ∑

j∈J

max{0, cj}vj +
∑

i∈I′

âixi

)
+

( ∑

i∈I\I′

xi +
∑

i∈I

�ai� xi

)
≥ b

where âi = ai − �ai� and I ′ ⊆ I. As the first part of the left hand side of this
inequality is non-negative, and the second part is integral, the MIR inequality

∑

j∈J

max{0, cj}vj +
∑

i∈I′

âixi ≥ b̂
(
�b� −

∑

i∈I\I′

xi −
∑

i∈I

�ai� xi

)

is valid for Q1. Notice that I ′ = {i ∈ I : âi < b̂} gives the strongest inequality
of this form and therefore the MIR inequality can also be written as

∑

j∈J

(cj)+vj +
∑

i∈I

min{âi, b̂}xi + b̂
∑

i∈I

�ai� xi ≥ b̂�b�. (2)

To apply this idea to sets defined by m > 1 inequalities, the first step is to
combine them to obtain a single base inequality and then apply inequality (2).
Let

P =
{

v ∈ Rl, x ∈ Zn : Cv + Ax ≥ b, v, x ≥ 0
}

be a mixed-integer set where C, A and b are vectors of appropriate dimension.
To obtain the base inequality, one possibility is to use a vector λ ∈ Rm, λ ≥ 0 to
combine the inequalities defining P . This approach leads to the base inequality
λCv + λAx ≥ λb and the corresponding MIR inequality

(λC)+v + min{λA − �λA� , r}x + r �λA� x ≥ r �λb� , (3)

where operators (·)+, �·� and min{·, ·} are applied to vectors component-wise,
and r = λb − �λb�.

Alternatively, it is also possible to first introduce slack variables to the set of
inequalities defining P and combine them using a vector λ which is not neces-
sarily non-negative. This gives the base inequality λCv + λAx − λs = λb and
the corresponding MIR inequality

(λC)+v + (−λ)+s + min{λA − �λA� , r}x + r �λA� x ≥ r �λb� , (4)

where s denotes the (non-negative) slack variables. Finally, substituting out the
slack variables gives the following MIR inequality in the original space of P :

(λC)+v + (−λ)+(Cv + Ax− b)+ min{λA− �λA� , r}x+ r �λA� x ≥ r �λb� . (5)
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These inequalities are what we call MIR inequalities in this paper.
Notice that when λ ≥ 0, inequality (5) reduces to inequality (3). When λ 	≥ 0,

however, there are inequalities (5) which cannot be written in the form (3). We
present an example to emphasize this point (a similar one was independently
developed in [5]).

Example 1. Consider the simple mixed-integer set T = {v ∈ R, x ∈ Z :
−v−4x ≥ −4, −v+4x ≥ 0, v, x ≥ 0} and the base inequality generated by λ =
[−1/8, 1/8] x+ s1/8 − s2/8 ≥ 1/2 where s1 and s2 denote the slack variables for
the first and second constraint, respectively. The corresponding MIR inequality is
1/2x + s1/8 ≥ 1/2, which after substituting out s1, becomes −v/8 ≥ 0 or simply
v ≤ 0. This inequality defines the only non-trivial facet of T .

Notice that it is not possible to generate this inequality using non-negative
multipliers. Any base inequality generated by λ1, λ2 ≥ 0 has the form (−λ1 −
λ2)v+(−4λ1 +4λ2)x ≥ −4λ1 where variable v has a negative coefficient. There-
fore, the MIR inequality generated by this base inequality would have a coefficient
of zero for the v variable, establishing that v ≤ 0 cannot be generated as an MIR
inequality (3).

2.1 Basic Properties of MIR Inequalities

Let PLP denote the continuous relaxation of P . A linear inequality hv + gx ≥ d
is called a split cut for P if it is valid for both PLP ∩{ᾱx ≤ β̄} and PLP ∩{ᾱx ≥
β̄ + 1}, where ᾱ and β̄ are integral. Inequality hv + gx ≥ d is said to be derived
from the disjunction ᾱx ≤ β̄ and ᾱx ≥ β̄ + 1. Obviously all points in P satisfy
any split cut for P . Note that multiple split cuts can be derived from the same
disjunction.

The basic MIR inequality (1) is a split cut for Q0 with respect to x derived
from the disjunction x ≤ �b� and x ≥ �b�+ 1. Therefore, the MIR inequality (5)
is also a split cut for P derived from the disjunction ᾱx ≤ β̄ and ᾱx ≥ β̄ + 1
where β̄ = �λb� and

ᾱi =
{

�(λA)i� if (λA)i − �(λA)i� ≥ λb − �λb�
�(λA)i� otherwise.

We note that this observation also implies that if a point (v∗, x∗) ∈ PLP violates
the MIR inequality (5) then β̄ + 1 > ᾱx∗ > β̄.

Furthermore, Nemhauser and Wolsey [17] showed that every split cut for P can
be derived as an MIR cut for P . As what we call MIR inequalities in this paper
are equivalent to the MIR inequalities defined in [17], the same observation holds
for the MIR inequalities written in the form of inequality (5). We next formally
define the MIR closure of polyhedra.

Definition 2. The MIR closure of a polyhedron is the set of points satisfying
all MIR inequality (5) that can be generated by some multiplier vector λ ∈ Rm.

Thus, the split closure of a polyhedron is the same as its MIR closure. We
next show that in certain cases, the closure of a polyhedron is invariant to
reformulation.
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3 The Separation Problem

In this section, we study the problem of separating an arbitrary point from the
MIR closure of the polyhedron P = {v ∈ Rl, x ∈ Zn : Cv + Ax ≥ b, v, x ≥ 0}.
In other words, for a given point, we are interested in either finding violated
inequalities or concluding that none exists. For convenience of notation, we first
argue that without loss of generality we can assume P is given in equality form.

Consider the MIR inequality (4) for P ,

(λC)+v + (−λ)+s + min{λA − �λA� , r}x + r �λA� x ≥ r �λb� ,

where s denotes the slack expression (Cv + Ax − b). If we explicitly define the
slack variables, by letting C̃ = (C, −I) and ṽ = (v, s), then the constraints
defining P become C̃ṽ + Ax = b, ṽ ≥ 0, x ≥ 0, and the MIR inequality can be
written as

(λC̃)+ṽ + min{λA − �λA� , r}x + r �λA� x ≥ r �λb� . (6)

In other words, all continuous variables, whether slack or structural, can be
treated uniformly. In the remainder we assume that P is given in the equality
form P = {v ∈ Rl, x ∈ Zn : Cv+Ax = b, v, x ≥ 0}, and we denote its continuous
relaxation by PLP .

3.1 Relaxed MIR Inequalities

Let

Π =
{

(λ, c+, α̂, ᾱ, β̂, β̄) ∈ Rm × Rl × Rn × Zn × R × Z :

c+ ≥ λC, α̂ + ᾱ ≥ λA, β̂ + β̄ ≤ λb, c+ ≥ 0, 1 ≥ α̂ ≥ 0, 1 ≥ β̂ ≥ 0
}

.

Note that for any (λ, c+, α̂, ᾱ, β̂, β̄) ∈ Π ,

c+v + (α̂ + ᾱ)x ≥ β̂ + β̄ (7)

is valid for PLP as it is a relaxation of (λC)v + (λA)x = λb. Furthermore, using
the basic mixed-integer inequality (1), we infer that

c+v + α̂x + β̂ᾱx ≥ β̂(β̄ + 1) (8)

is a valid inequality for P . We call inequality (8) where (λ, c+, α̂, ᾱ, β̂, β̄) ∈ Π a
relaxed MIR inequality derived using the base inequality (7). We next show some
basic properties of relaxed MIR inequalities.

Lemma 3. A relaxed MIR inequality (8) violated by (v∗, x∗) ∈ PLP satisfies
(i)1 > β̂ > 0, (ii)1 > Δ > 0, (iii) the violation of the inequality is at most
β̂(1 − β̂) ≤ 1/4, where Δ = β̄ + 1 − ᾱx∗ and violation is defined to be the right
hand side of inequality (8) minus its left hand side.
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Proof: If β̂ = 0, then the relaxed MIR is trivially satisfied by all points in PLP .
Furthermore, if β̂ = 1, then inequality (8) is identical to its base inequality (7)
which again is satisfied by all points in PLP . Therefore, a non-trivial relaxed
MIR cut satisfies 1 > β̂ > 0.

For part (ii) of the Lemma, note that if ᾱx∗ ≥ β̄ + 1 then inequality (8)
is satisfied, as c+, α̂, β̂ ≥ 0 and (v∗, x∗) ≥ 0. Furthermore, if (v∗, x∗) satisfies
inequality (7) and ᾱx∗ ≤ β̄, then so is inequality (8) as β̂ ≤ 1. Therefore, as the
cut is violated, 1 > Δ > 0. It is also possible to show this by observing that
inequality (8) is a split cut for P derived from the disjunction Δ ≥ 1 and Δ ≤ 0.

For the last part, let w = c+v∗ + α̂x∗ so that the base inequality (7) becomes
w ≥ β̂ + Δ − 1 and the relaxed MIR inequality (8) becomes w ≥ β̂Δ. Clearly
β̂Δ − w ≤ β̂(w + 1 − β̂) − w = β̂(1 − β̂) − (1 − β̂)w ≤ β̂(1 − β̂), and the last
inequality follows from the fact that w ≥ 0 and β̂ ≤ 1. �

Next, we relate MIR inequalities to relaxed MIR inequalities.

Lemma 4. For any λ ∈ Rm, the MIR inequality (6) is a relaxed MIR inequality.

Proof: For a given multiplier vector λ, define α to denote λA. Further, set
c+ = (λC)+, β̄ = �λb� and β̂ = λb − �λb�. Also, define α̂ and ᾱ as follows:

α̂i =
{

αi − �αi� if αi − �αi� < β̂
0 otherwise

, ᾱi =
{

�αi� if αi − �αi� < β̂
�αi� otherwise

,

Clearly, (λ, c+, α̂, ᾱ, β̂, β̄) ∈ Π and the corresponding relaxed MIR inequality (8)
is the same as the MIR inequality (6). �


Lemma 5. MIR inequalities dominate relaxed MIR inequalities.

Proof: Let (v∗, x∗) ∈ PLP violate a relaxed MIR inequality I which is obtained
with (λ, c+, α̂, ᾱ, β̂, β̄) ∈ Π . We will show that (v∗, x∗) also violates the MIR
inequality (6).

Due to Lemma 3, we have β̄ + 1 − ᾱx∗ > 0 and therefore increasing β̂ only
increases the violation of the relaxed MIR inequality. Assuming I is the most
violated relaxed MIR inequality, β̂ = min{λb − β̄, 1}. By Lemma 3, we know
that β̂ < 1, and therefore β̂ = λb − β̄ and β̄ = �λb�.

In addition, due to the definition of Π we have c+ ≥ (λC)+ and α̂ + β̂ᾱ ≥
min{λA−�λA� , β̂}+β̂ �λA�. As (v∗, x∗) ≥ 0, the violation of the MIR inequality
is at least as much as the violation of I. �

Combining Lemmas 4 and 5, we observe that a point in PLP satisfies all MIR
inequalities, if and only if it satisfies all relaxed MIR inequalities. Therefore, we
can define the MIR closure of polyhedra using relaxed MIR inequalities and thus
without using operators that take minimums, maximums or extract fractional
parts of numbers. Let Π̄ be the projection of Π in the space of c+, α̂, ᾱ, β̂ and
β̄ variables. In other words, Π̄ is obtained by projecting out the λ variables. We
now describe the MIR closure of P as:
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PMIR =
{

(v, x) ∈ PLP : c+v+α̂x+β̂ᾱx ≥ β̂(β̄+1) for all (c+, α̂, ᾱ, β̂, β̄) ∈ Π̄
}

.

We would like to emphasize that Π̄ is not the polar of PMIR and therefore
even though Π̄ is a polyhedral set (with a finite number of extreme points and
extreme directions), we have not yet shown that the polar of PMIR is polyhedral.
The polar of a polyhedral set is defined to be the set of points that yield valid
inequalities for the original set. If the original set is defined in Rn, its polar
is defined in Rn+1 and the first n coordinates of any point in the polar give
the coefficients of a valid inequality for the original set, and the last coordinate
gives the right hand side of the valid inequality. Therefore, polar of PMIR is the
collection of points (c+, α̂ + β̂ᾱ, β̂(β̄ + 1)) ∈ Rl+n+1 where (c+, α̂, ᾱ, β̂, β̄) ∈ Π̄ .
A set is polyhedral if and only if its polar is polyhedral.

For a given point (v∗, x∗) ∈ PLP , testing if (v∗, x∗) ∈ PMIR can be achieved
by solving the following non-linear integer program (MIR-SEP):

max
{
β̂(β̄ + 1) − (c+v∗ + α̂x∗ + β̂ᾱx∗) : (c+, α̂, ᾱ, β̂, β̄) ∈ Π̄

}
.

If the optimal value of this program is non-positive, then (v∗, x∗) ∈ PMIR.
Otherwise, if the optimal value is positive, the optimal solution gives a most
violated MIR inequality.

3.2 An Approximate Separation Model

We next (approximately) linearize the nonlinear terms that appear in the ob-
jective function of MIR-SEP. To this end, we first define a new variable Δ that
stands for the term (β̄ + 1 − ᾱx). We then approximate β̂ by a number β̃ ≤ β̂
representable over some E = {εk : k ∈ K}. We say that a number δ is repre-
sentable over E if δ =

∑
k∈K̄ εk for some K̄ ⊆ K. We can therefore write β̃ as∑

k∈K εkπk using binary variables πk and approximate β̂Δ by β̃Δ which can
now be written as

∑
k∈K εkπkΔ. Finally, we linearize terms πkΔ using standard

techniques as πk is binary and Δ ∈ (0, 1) for any violated inequality.
An approximate MIP model APPX-MIR-SEP reads as follows:

max
∑

k∈K

εkΔk − (c+v∗ + α̂x∗) (9)

s.t. (c+, α̂, ᾱ, β̂, β̄) ∈ Π̄ (10)

β̂ ≥
∑

k∈K

εkπk (11)

Δ = (β̄ + 1) − ᾱx∗ (12)

Δk ≤ Δ ∀k ∈ K (13)

Δk ≤ πk ∀k ∈ K (14)

λ ∈ Rm, π ∈ {0, 1}|K| (15)
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In our experiments, we use E = {2−k : k = 1, . . . , k̄} for some small number
k̄. With this choice of E , notice that for any β̂ there exists a β̃ representable over
E such that 2−k̄ ≥ β̂ − β̃ ≥ 0. This observation is used to bound the error of the
approximate model.

Theorem 6. Let E = {2−k : k = 1, . . . , k̄} for some positive integer k̄ and de-
note the optimal values of MIR-SEP and APPX-MIR-SEP by zsep and zapx−sep,
respectively. Then,

zsep ≥ zapx−sep > zsep − 2−k̄. (16)

Proof: By (10), any (integral) feasible solution of APPX-MIR-SEP yields a
feasible solution of MIR-SEP. Further, define β̃ to be

∑
k∈K εkπk. As Δk ≤

Δπk for all k ∈ K,
∑

k∈K εkΔk ≤
∑

k∈K εkπkΔ = β̃Δ ≤ β̂Δ. Therefore,
zsep ≥ zapx−sep.

Note that zapx−sep ≥ 0 as we can get a feasible solution of APPX-MIR-SEP
with objective 0 by setting Δ to 1, and the remaining variables to 0. Therefore
the second inequality in (16) holds if zsep ≤ 0. Assume that zsep > 0. Let
(c+, α̂, ᾱ, β̂, β̄) ∈ Π̄ be an optimal solution of MIR-SEP. For the variables in
APPX-MIR-SEP common with MIR-SEP, set their values to the above optimal
solution of MIR-SEP. Let β̃ be the largest number representable over E less
than or equal to β̂. Clearly, 2−k̄ ≥ β̂ − β̃ ≥ 0. Choose π ∈ {0, 1}k̄ such that
β̃ =

∑
k∈K εkπk. Set Δ = β̄ + 1 − ᾱx∗. Set Δk = 0 if πk = 0, and Δk = Δ

if πk = 1. Then Δk = πkΔ for all k ∈ K, and β̃Δ =
∑

k∈K εkΔk. Therefore,
2−k̄ > 2−k̄Δ ≥ β̂Δ − β̃Δ = β̂Δ −

∑
k∈K εkΔk. The second inequality in (16)

follows. �

The previous result says that a solution of APPX-MIR-SEP with positive ob-
jective value yields a violated MIR cut, and if there is an MIR cut with a “large
enough” violation, we will find some violated MIR cut by solving APPX-MIR-
SEP.

In the next section (Theorem 12) we show that APPX-MIR-SEP becomes an
exact model for finding violated MIR cuts when E is chosen as {εk = 2k/Φ, ∀k =
{1, . . . , �logΦ�}} where Φ is the least common multiple of all subdeterminants of
A|C|b.

4 A Simple Proof That the MIR Closure Is a Polyhedron

In this section we give a short proof that the MIR closure of a polyhedron
is a polyhedron. As MIR cuts are equivalent to split cuts, this result obviously
follows from the work of Cook, Kannan and Schrijver [9] on split cuts. Andersen,
Cornuéjols and Li [1], and Vielma [19] give alternative proofs that the split
closure of a polyhedron is a polyhedron.

The main tool in the proof is a finite bound on the multipliers λ needed for
non-redundant MIR cuts given in Lemma 9 . The bounds on λ can be tightened
if the MIP is a pure integer program, and we give these tighter bounds in the
next lemma whose proof is omitted due to the lack of space.
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In this section we assume that the coefficients in Cv + Ax = b are integers.
Denote the ith equation of Ax+Cv = b by civ+aix = bi. An equation civ+aix =
bi is a pure integer equation if ci = 0.

Lemma 7. If some MIR inequality is violated by the point (v∗, x∗), then there
is another MIR inequality violated by (v∗, x∗) derived using λi ∈ [0, 1) for every
pure integer equation.

Definition 8. We define Ψ to be the largest absolute value of subdeterminants
of C, and 1 if C = 0, where m is the number of rows in Ax + Cv = b.

Lemma 9. If there is an MIR inequality violated by the point (v∗, x∗), then there
is another MIR inequality violated by (v∗, x∗) with λi ∈ (−mΨ, mΨ), where m is
the number of rows in Ax + Cv = b.

Proof: Let the MIR cut (λC)+v + α̂x+ β̂ᾱx ≥ β̂(β̄ + 1) be violated by (v∗, x∗).
Then (λ, (λC)+, α̂, ᾱ, β̂, β̄) ∈ Π with 0 < β̂ < 1. Let Cj stand for the jth column
of C. Let S1 = {j : λCj > 0} and S2 = {j : λCj ≤ 0}.

Consider the cone C = {v ∈ Rm : vCi ≤ 0 ∀i ∈ S1, vCi ≥ 0 ∀i ∈ S2}.
Obviously λ belongs to C. We will find a vector λ′ in C, such that λ̄ = λ − λ′ is
integral and belongs to C. C is a polyhedral cone, and is generated by a finite set
of vectors μ1, . . . , μt, for some t > 0. (Observe that if C = 0, then C = Rm, and
μ1, . . . , μt can be chosen to be the unit vectors times ±1.) We can assume these
vectors are integral (by scaling); we can also assume the coefficients of μ1, . . . , μt

have absolute value at most Ψ . Further, we can assume that μ1, . . . , μk (here
k ≤ m) are linearly independent vectors such that λ =

∑k
j=1 vjμj , with vj ∈

R, vj > 0. If vj < 1 for j = 1, . . . , k, then each coefficient of λ has absolute value
less than mΨ , and there is nothing to prove. If vj ≥ 1 for any j ∈ {1, . . . , k}, then
let λ′ =

∑k
j=1 v̂jμj ⇒ λ − λ′ =

∑k
j=1�vj�μj , where v̂j = vj − �vj�. Clearly λ′

belongs to C, and has coefficients with absolute value at most mΨ . Also, λ′ 	= 0
as λ′ = 0 ⇒ λ is integral ⇒ β̂ = 0. Let λ̄ = λ − λ′; obviously λ̄ belongs to C
and is integral. Further, (λC)+ − (λ′C)+ = (λ̄C)+. Therefore (λ′, (λ′C)+, α̂, ᾱ−
λ̄A, β̂, β̄ − λ̄b) ∈ Π . It follows that the multipliers λ′ lead to the MIR

(λ′C)+v + α̂x + β̂(ᾱ − λ̄A)x ≥ β̂(β̄ − λ̄b + 1). (17)

The rhs of the old MIR minus the rhs of the new MIR equals

β̂λ̄b = β̂λ̄(Ax∗ + Cv∗) = β̂λ̄Ax∗ + β̂λ̄Cv∗

≤ β̂λ̄Ax∗ + β̂(λ̄C)+v∗. (18)

The lhs of the old MIR (with v∗, x∗ substituted) minus the lhs of the new MIR
equals the last term in (18). Therefore the new MIR is violated by at least as
much as the old MIR. �


Theorem 10. If there is an MIR inequality violated by the point (v∗, x∗), then
there is another MIR inequality violated by (v∗, x∗) for which β̂ and the compo-
nents of λ, α̂ are rational numbers with denominator equal to a subdeterminant
of A|C|b, and each component of λ is contained in the interval [−mΨ, mΨ ].
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Proof: Let (v∗, x∗) be a point in PLP which violates an MIR cut. Let this MIR
cut be defined by (λo, c

+
o , α̂o, ᾱo, β̂o, β̄o) ∈ Π . By Lemma 9 , we can assume each

component of λo lies in the range (−mΨ, mΨ). Define Δo = β̄o +1− ᾱT
o x∗. Then

β̂oΔo − c+
o v∗ − α̂ox

∗ > 0. Consider the following LP:

max
{
β̂Δo − c+v∗ − α̂x∗ : (λ, c+, α̂, ᾱo, β̂, β̄o) ∈ Π, −mΨ ≤ λi ≤ mΨ

}
.

Note that the objective is a linear function as Δo is fixed. Further, we have
fixed the variables ᾱ and β̄ in the constraints defining Π . The bounds on λ
come from Lemma 9, except that we weaken them to non-strict inequalities.
This LP has at least one solution for (λ, c+, α̂, β̂) with positive objective value,
namely (λo, c

+
o , α̂o, β̂o). Therefore a basic optimal solution of this LP has positive

objective value. Consider the MIR cut defined by an optimal solution along with
ᾱo and β̄o. It is obviously an MIR cut with violation at least the violation of the
original MIR cut. Therefore, 0 < β̂ < 1. Further, it is easy to see that the LP
constraints (other than the bounds on the variables) can be written as

⎡

⎣
AT −I
CT −I
bT −1

⎤

⎦

⎛

⎜⎜⎝

λ
α̂
c+

β̂

⎞

⎟⎟⎠
≤
≤
≥

⎛

⎝
ᾱo

0
β̄o

⎞

⎠ .

The theorem follows. �


Corollary 11 The MIR closure of a polyhedron P is a polyhedron.

Proof: By Theorem 10, each non-redundant MIR inequality is defined by λ =
(λi) where λi is a rational number in [−mΨ, mΨ ] with a denominator equal to a
subdeterminant of A|C|b. Thus, the number of non-redundant MIR inequalities
is finite. �

As the MIR closure equals the split closure, it follows that the split closure of a
polyhedron is again a polyhedron. Let the split closure of P be denoted by PS .
For integral c and d, define P(c,d) by

P(c,d) = conv{(P ∩ {cx ≤ d}) ∪ (P ∩ {cx ≥ d + 1})} ⇒ PS = ∩c∈Zn,d∈ZP(c,d),

where x has n components. Lemma 9 gives a characterization of the useful
disjunctions in the definition of the split closure. Define the vector μ ∈ Rm by

μi =
{

mΨ if ci 	= 0
1 if ci = 0

Define D = {(c, d) ∈ Zn × Z : −μ|A| ≤ c ≤ μ|A|, �−μ|b|� ≤ d ≤ �μ|b|�}, where
D is clearly a finite set, and PS = ∩c∈Zn,d∈ZP(c,d) = ∩(c,d)∈DP(c,d). To see this,
let x∗ be a point in P but not in PS . Then some split cut, which is also an MIR
cut, is violated by x∗. By Lemma 9 , there is an MIR cut with −μ < λ < μ
which is violated by x∗. This MIR cut has the form (λC)+v + α̂x + β̂ᾱx ≥
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β̂(β̄ +1), where (ᾱ, β̄) ∈ D. Thus x∗ does not belong to P(ᾱ,β̄). This implies that
∩(c,d)∈DP(c,d) ⊆ ∩c∈Zn,d∈ZP(c,d), and the two sets in the expression above are
equal as the reverse inclusion is true by definition.

Theorem 12. Let Φ be the least common multiple of all subdeterminants of
A|C|b, K = {1, . . . , logΦ}, and E = {εk = 2k/Φ, ∀k ∈ K}. Then APPX-MIR-
SEP is an exact model for finding violated MIR cuts.

Proof: By Theorem 10, β̂ in a violated MIR cut can be assumed to be a rational
number with a denominator equal to a subdeterminant of A|C|b and therefore
of Φ. But such a β̂ is representable over E . �


5 Computational Experiments

In this section we briefly discuss our computational experience with the approx-
imate separation model MIR-SEP . The goal is to approximately optimize over
the MIR closure of a given MIP instance by repeatedly solving APPX-MIR-SEP
to get violated MIR cuts. The general idea is to start off with the continuous
relaxation of the given MIP. Then the following separation step is repeated.
APPX-MIR-SEP is solved to find one or more MIR inequalities violated by the
optimal solution of the current relaxation of the MIP, and the current relaxation
is strengthened by adding these cuts. Even though this procedure is guaranteed
to terminate after a finite number of iterations (for any fixed precision), in prac-
tice, there is no guarantee that we can actually optimize over the (approximate)
MIR closure in a reasonable amount of time. Our approach, therefore, should be
considered as a heuristic that tries to find good bounds in a reasonable amount
of time.

We next sketch some practical issues and heuristic ideas to obtain good bounds
faster.

1. Numerical Issues. A major issue is that the point (v∗, x∗) to be separated
from the MIR closure of P is only approximately contained in PLP if it is
obtained using a practical LP solver. We deal with these numerical issues by
modifying (v∗, x∗) and b to get a truly feasible solution of a different set of
constraints. We let v′ = max{v∗,0}, and x′ = max{x∗,0}, and then define
b′ as Cv′ + Ax′. We then use APPX-MIR-SEP to separate (v′, x′) from the
MIR closure of Cv + Ax = b′, v, x ≥ 0, x ∈ Z. We use the multipliers λ in
the solution of APPX-MIR-SEP to compute an MIR cut for P . Of course,
this cut may not be violated by (v∗, x∗), but mostly is, as the point (v′, x′)
is usually very close to (v∗, x∗).

2. Reducing the size of the separation problem. It is clear that in APPX-
MIR-SEP, the variables c+

i , âj , āj corresponding to v∗i = 0 and x∗
j = 0 do

not contribute to the objective. For some of the problems in MIPLIB 3.0,
this approach is quite crucial in allowing us to use APPX-MIR-SEP at all.
For example, the MIP nw04 has 36 constraints, and over 87000 0-1 variables.
If we let k̄ = 5, the first separation MIP has at most 36+5 integer variables.
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3. Separation Heuristics. To speed up this process we implemented several
ideas which can essentially be seen as finding heuristic solutions to MIR-SEP.
(a) Preprocessing. We take a subset S of integer variables, and for every

xi with i ∈ S, we solve LPs to maximize and minimize xi for x ∈ PLP .
(b) Gomory mixed-integer cuts. Gomory mixed-integer cuts for the ini-

tial LP-relaxation of the MIP are known to be MIR inequalities [16]
where the multipliers used to aggregate the rows of the formulation are
obtained from the inverse of the optimal basis. Of course, we use these
cuts only in the first iteration of the cutting plane algorithm to be sure
that they have rank 1.

(c) Cuts based on the rows of the formulation. Another heuristic con-
siders rows of the formulation, one at a time, and obtains base inequal-
ities by scaling them. Variables that have upper bounds are sometimes
complemented using the bound constraints. The procedure is in the spirit
of [12].

(d) Cuts based on pure integer base inequalities. One way to generate
effective MIR cuts is to concentrate on base inequalities that only contain
integer variables. To obtain such base inequalities, the multiplier vector
λ, used to aggregate the rows of the formulation, is required to satisfy
λC ≤ 0 so that (λC)+ = 0. This can simply be achieved by fixing
variables c+ to zero in MIR-SEP thus obtaining a model called INT-
SEP. This heuristic in a way mimics the procedure to generate the so-
called projected Chvátal-Gomory (pro-CG) cuts [6] for mixed integer
programs.

(e) Cuts generated by MIR-SEP. The only parameter which must be
specified for the definition and solution of MIR-SEP is the value of k̄,
i.e., the parameter responsible of the degree of approximation we use for
β̂. In all computational experiments, we do use k̄ = 6 which is a good
compromise between computational efficiency and precision. In such a
way, as proved by Theorem 6, our approximate model is guaranteed to
find a cut violated by at least 1/64 = .015625 which can be considered
a reasonable threshold value to distinguish effective violated cuts.

4. Piloting the black-box MIP solver. A few tricks in the line of what
already done in [6,15] can be used to force the black-box MIP solver, in our
experiments ILOG-Cplex 10.0.1, to return good heuristic solutions of both
INT-SEP and MIR-SEP. Indeed, it has to be stressed that we do not need
to solve any of the separation problems to optimality in our cutting plane
algorithm but, eventually, a final MIR-SEP so as to prove that no MIR
inequality exists, i.e., the MIR closure has been computed.

The detailed computational results are reported in Tables 1 and 2 where the
bounds we obtain with a time limit of 1 hour of CPU time on a standard PC
are compared with those obtained in [4,6,15]. Our results confirm what other
authors have already noticed, i.e., that those closures indeed provide a very tight
approximation of the optimal solution of the problems in the MIPLIB. Most
of the times we are able to compute bounds comparable with the ones already
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Table 1. IPs of the MIPLIB 3.0

% gap time % CG gap time % gap time
instance |I| # iter # cuts closed MIR closed CG split split
air03 10,757 1 36 100.00 1 100.0 1 100.00 3
air04 8,904 5 294 9.18 3,600 30.4 43,200 91.23 864,360
air05 7,195 8 238 12.08 3,600 35.3 43,200 61.98 24,156
cap6000 6,000 120 334 50.55 3,600 22.5 43,200 65.17 1,260
fast0507 63,009 14 330 1.66 3,600 5.3 43,200 19.08 304,331
gt2 188 83 254 98.21 664 91.0 10,800 98.37 599
harp2 2,993 122 796 59.99 260 49.5 43,200 46.98 7,671
l152lav 1,989 57 214 12.66 3,600 59.6 10,800 95.20 496,652
lseu 89 103 306 92.28 3,600 93.3 175 93.75 32,281
mitre 10,724 12 158 100.00 380 16.2 10,800 100.00 5,330
mod008 319 41 173 100.00 11 100.0 12 99.98 85
mod010 2,655 1 39 100.00 0 100.0 1 100.00 264
nw04 87,482 100 301 95.16 3,600 100.0 509 100.00 996
p0033 33 27 115 87.42 2,179 85.3 16 87.42 429
p0201 201 394 1357 74.43 3,600 60.6 10,800 74.93 31,595
p0282 282 223 1474 99.60 3,600 99.9 10,800 99.99 58,052
p0548 548 255 1309 96.35 3,600 62.4 10,800 99.42 9,968
p2756 2,756 83 717 35.32 3,600 42.6 43,200 99.90 12,673
seymour 1,372 1 559 8.35 3,600 33.0 43,200 61.52 775,116
stein27 27 70 325 0.00 3,600 0.0 521 0.00 8,163
stein45 45 420 1930 0.00 3,600 0.0 10,800 0.00 27,624

Table 2. MILPs of the MIPLIB 3.0. For instance arki001 we used an upper bound of
value 7,580,813.0459.

% gap time % CG gap time % gap time
instance |I| |J| # iter # cuts closed MIR closed CG split split
10teams 1,800 225 338 3341 100.00 3,600 57.14 1,200 100.00 90
arki001 538 850 14 124 33.93 3,600 28.04 1,200 83.05 193,536
bell3a 71 62 21 166 98.69 3,600 48.10 65 65.35 102
bell5 58 46 105 608 93.13 3,600 91.73 4 91.03 2,233
blend2 264 89 723 3991 32.18 3,600 36.40 1,200 46.52 552
dano3mip 552 13,321 1 124 0.10 3,600 0.00 1,200 0.22 73,835
danoint 56 465 501 2480 1.74 3,600 0.01 1,200 8.20 147,427
dcmulti 75 473 480 4527 98.53 3,600 47.25 1,200 100.00 2,154
egout 55 86 37 324 100.00 31 81.77 7 100.00 18,179
fiber 1,254 44 98 408 96.00 3,600 4.83 1,200 99.68 163,802
fixnet6 378 500 761 4927 94.47 3,600 67.51 43 99.75 19,577
flugpl 11 7 11 26 93.68 3,600 19.19 1,200 100.00 26
gen 150 720 11 127 100.00 16 86.60 1,200 100.00 46
gesa2 408 816 433 1594 99.81 3,600 94.84 1,200 99.02 22,808
gesa2 o 720 504 131 916 97.74 3,600 94.93 1,200 99.97 8,861
gesa3 384 768 464 1680 81.84 3,600 58.96 1,200 95.81 30,591
gesa3 o 672 480 344 1278 69.74 3,600 64.53 1,200 95.20 6,530
khb05250 24 1,326 65 521 100.00 113 4.70 3 100.00 33
markshare1 50 12 4781 90628 0.00 3,600 0.00 1,200 0.00 1,330
markshare2 60 14 4612 87613 0.00 3,600 0.00 1,200 0.00 3,277
mas74 150 1 1 12 6.68 0 0.00 0 14.02 1,661
mas76 150 1 1 11 6.45 0 0.00 0 26.52 4,172
misc03 159 1 143 727 33.65 450 34.92 1,200 51.70 18,359
misc06 112 1,696 112 1125 99.84 376 0.00 0 100.00 229
misc07 259 1 432 2135 11.03 3,600 3.86 1,200 20.11 41,453
mod011 96 10,862 253 1781 17.30 3,600 0.00 0 72.44 86,385
modglob 98 324 357 2645 60.77 254 0.00 0 92.18 1,594
mkc 5,323 2 112 2745 12.18 3,600 1.27 1,200 36.16 51,519
pk1 55 31 4229 22088 0.00 3,600 0.00 0 0.00 55
pp08a 64 176 246 1400 95.97 3,600 4.32 1,200 97.03 12,482
pp08aCUTS 64 176 143 687 62.99 3,600 0.68 1,200 95.81 5,666
qiu 48 792 847 2243 28.41 3,600 10.71 1,200 77.51 200,354
qnet1 1,417 124 182 805 64.60 3,600 7.32 1,200 100.00 21,498
qnet1 o 1,417 124 90 409 83.78 3,600 8.61 1,200 100.00 5,312
rentacar 55 9,502 92 281 23.41 3,600 0.00 5 0.00 —
rgn 100 80 114 666 99.81 1,200 0.00 0 100.00 222
rout 315 241 2225 17230 16.07 3,600 0.03 1,200 70.70 464,634
set1ch 240 472 156 694 63.39 3,600 51.41 34 89.74 10,768
swath 6,724 81 167 1421 33.96 3,600 7.68 1,200 28.51 2,420
vpm1 168 210 53 241 99.93 158 100.00 15 100.00 5,010
vpm2 168 210 74 314 71.48 224 62.86 1,022 81.05 6,012
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reported in [4,6,15] in a much shorter computing time although sometimes a very
large computational effort seems customary to obtain tight approximations. In
a few cases, we have been able to improve over the best bound known so far. Of
course, 1 hour of CPU time to strengthen the initial formulation can be by far
too much, but as shown in [4,15] it might be the case that such a preprocessing
allows the solution of hard unsolved problems and making it quicker has an
intrinsic value.
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12. S. Dash, O. Günlük, M. Goycoolea. Two step MIR inequalities for mixed-integer
programs. Manuscript, 2005.

13. F. Eisenbrand, On the membership problem for the elementary closure of a poly-
hedron, Combinatorica 19 (1999), 297–300.

14. R. E. Gomory, An algorithm for the mixed integer problem, RM-2597, The Rand
Corporation, 1960.



On the MIR Closure of Polyhedra 351

15. M. Fischetti, A. Lodi, Optimizing over the first Chvátal closure, Integer Program-
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Abstract. In this paper we investigate two generalizations of the con-
tinuous mixing set studied by Miller and Wolsey [5] and Van Vyve [7]:
the intersection set

XI = {(σ, r, y) ∈ IRn
+ × IRn

+ × ZZn
+ : σk + rt + yt ≥ bkt, 1 ≤ k, t ≤ n}

and the continuous mixing set with flows

XCMF = {(s, r, x, y) ∈ IR+ × IRn
+ × IRn

+ × ZZn
+ :

s + rt + xt ≥ bt, xt ≤ yt, 1 ≤ t ≤ n} ,

which appears as a strong relaxation of some single-item lot-sizing prob-
lems. We give two extended formulations for the convex hull of each of
these sets. In particular, for XCMF the sizes of the extended formula-
tions are polynomial in the size of the original description of the set,
thus proving that the corresponding linear optimization problem can be
solved in polynomial time.

Keywords: integer programming.

1 Introduction

In the last 5-10 years several mixed-integer sets have been studied that are
interesting in their own right as well as providing strong relaxations of single-
item lot-sizing sets. One in particular is the continuous mixing set XCM:

s + rt + yt ≥ bt, 1 ≤ t ≤ n

s ∈ IR+, r ∈ IRn
+, y ∈ ZZn

+ .
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The continuous mixing polyhedron conv(XCM), which is the convex hull of
the above set, was introduced and studied by Miller and Wolsey in [5], where
an extended formulation of conv(XCM) with O(n2) variables and O(n2) con-
straints was given. Van Vyve [7] gave a more compact extended formulation
of conv(XCM) with O(n) variables and O(n2) constraints and a formulation of
conv(XCM) in its original space.

We study here two generalizations of the continuous mixing set. First we
consider the intersection set X I, the intersection of several continuous mixing
sets with distinct σk variables and common r and y variables:

σk + rt + yt ≥ bkt, 1 ≤ k, t ≤ n (1)
σ ∈ IRn

+, r ∈ IRn
+, y ∈ ZZn

+ . (2)

Then we consider XCMF, the “flow version” of the continuous mixing set:

s + rt + xt ≥ bt, 1 ≤ t ≤ n (3)
xt ≤ yt, 1 ≤ t ≤ n (4)
s ∈ IR+, r ∈ IRn

+, x ∈ IRn
+, y ∈ ZZn

+ . (5)

We now show two links between the continuous mixing set with flows XCMF

and lot-sizing. The first is to the single-item constant capacity lot-sizing problems
with backlogging over n periods, which can be formulated (including redundant
equations) as:

sk−1 +
∑t

u=k wu + rt =
∑t

u=k du + st + rk−1, 1 ≤ k ≤ t ≤ n

wu ≤ Czu, 1 ≤ u ≤ n; s ∈ IRn+1
+ , r ∈ IRn+1

+ , w ∈ IRn
+, z ∈ {0, 1}n .

Here du is the demand in period u, su and ru are the stock and backlog at the end
of period u, zu takes value 1 if there is a set-up in period u allowing production
to take place, wu is the production in period u and C is the capacity (i.e. the
maximum production). To see that this set has a relaxation as the intersection
of n continuous mixing sets with flows, take C = 1 wlog, fix k, set s = sk−1,
xt =

∑t
u=k wu, yt =

∑t
u=k zu and bt =

∑t
u=k du, giving a first relaxation:

s + xt + rt ≥ bt, k ≤ t ≤ n (6)
0 ≤ xu − xu−1 ≤ yu − yu−1 ≤ 1, k ≤ u ≤ n (7)

s ∈ IR+, r ∈ IRn−k+1
+ , x ∈ IRn−k+1

+ , y ∈ ZZn−k+1 . (8)

Now summing (7) over k ≤ u ≤ t (for each fixed t = k, . . . , n) and dropping the
upper bound on yt, one obtains precisely the continuous mixing set with flows
XCMF.

The set XCMF also provides an exact model for the two stage stochastic lot-
sizing problem with constant capacities and backlogging. Specifically, at time 0
one must choose to produce a quantity s at a per unit cost of h. Then in period 1,
n different outcomes are possible. For 1 ≤ t ≤ n, the probability of event t is φt,
the demand is bt and the unit production cost is pt, with production in batches
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of size up to C; there are also a fixed cost of qt per batch and a possible bound
kt on the number of batches. As an alternative to production there is a linear
backlog (recovery) cost et. Finally the goal is to satisfy all demands and minimize
the total expected cost. The resulting problem is

min hs +
∑n

t=1 φt(ptxt + qtyt + etrt)
s.t. s + rt + xt ≥ bt, 1 ≤ t ≤ n (9)

xt ≤ Cyt, yt ≤ kt, 1 ≤ t ≤ n (10)
s ∈ IR+, r ∈ IRn

+, x ∈ IRn
+, y ∈ ZZn

+ . (11)

When kt = 1 for all t, this is a standard lot-sizing problem, and in general
(assuming C = 1 wlog) this is the set XCMF ∩ {(s, r, x, y) : yt ≤ kt, 1 ≤ t ≤ n}.

Now we describe the contents of this paper. Note that throughout, a formu-
lation of a polyhedron P ⊆ IRn is an external description of P in its original
space. It consists of a finite set of inequalities Ax ≤ d such that P = {x ∈
IRn : Ax ≤ d}. A formulation of P is extended whenever it gives an external
description of P in a space IRn+m that includes the original space, so that, given
Q = {(x, w) ∈ IRn+m : A′x + B′w ≤ d′}, P is the projection of Q onto the
x-space. Given a mixed-integer set X , an extended formulation of conv(X) is
compact if the size of the matrix (A′ | B′ | d′) is polynomial in the size of the
original description of X .

In Sect. 2 we give two extended formulations for the polyhedron conv(X I).
In the first one, we split X I into smaller sets, where the fractional parts of the
σ variables are fixed. We then find an extended formulation for each of these
sets and we use Balas’ extended formulation for the convex hull of the union of
polyhedra [1] to obtain an extended formulation of conv(X I).

To construct the second extended formulation, we introduce extra variables
to represent all possible fractional parts taken by the continuous variables at a
vertex of conv(X I). We then strengthen the original inequalities and show that
the system thus obtained yields an extended formulation of conv(X I).

When bkt = bt − bk, 1 ≤ t, k ≤ n, the intersection set is called a difference set,
denoted XDIF. For conv(XDIF), we prove in Sect. 3 that our two extended for-
mulations are compact. On the other hand, we show in Sect. 4 that the extended
formulations of conv(X I) are not compact when the values bkt are arbitrary.

We then study the polyhedron conv(XCMF). We show in Sect. 5 that there is
an affine transformation which maps the polyhedron conv(XCMF) into the inter-
section of a polyhedron conv(XDIF) with a polyhedron that admits an easy exter-
nal description. This yields two compact extended formulations for conv(XCMF),
showing in particular that one can optimize over XCMF in polynomial time.

2 Two Extended Formulations for the Intersection Set

The intersection set X I is the mixed-integer set defined by (1)–(2). Note that X I

is the intersection of n continuous mixing sets XCM
k , each one associated with a

distinct variable σk and having common variables r, y.
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In order to obtain extended formulations for conv(X I), we introduce two ver-
sions of the intersection set in which the fractional parts of the continuous vari-
ables σk, rt are restricted in value.

In the following we call fractional part any number in [0, 1). Also, for a number
a ∈ IR, f(a) = a − �a� denotes the fractional part of a, and for a vector v =
(v1, . . . , vq), f(v) is the vector (f(v1), . . . , f(vq)).

In the first case, we consider a list Lσ = {f1, . . . , f �} of n-vectors whose
components are fractional parts and a list Lr = {g1, . . . , gm} of fractional parts
and define the set

X I
1 = {(σ, r, y) ∈ X I : f(σ) ∈ Lσ, f(rt) ∈ Lr, 1 ≤ t ≤ n} .

We say that the lists Lσ, Lr are complete for X I if for every vertex (σ̄, r̄, ȳ) of
conv(X I), f(σ̄) ∈ Lσ and f(r̄t) ∈ Lr, 1 ≤ t ≤ n.

Remark 1. If Lσ, Lr are complete lists for X I then conv(X I
1) = conv(X I).

In the second case, we consider a single list L = {f1, . . . , f�} of fractional parts
and define the set

X I
2 = {(σ, r, y) ∈ X I : f(σk) ∈ L, f(rt) ∈ L, 1 ≤ k, t ≤ n} .

We say that the list L is complete for X I if for every vertex (σ̄, r̄, ȳ) of conv(X I)
and for every 1 ≤ k, t ≤ n, f(σ̄k) ∈ L and f(r̄t) ∈ L.

Remark 2. If L is a complete list for X I then conv(X I
2) = conv(X I).

2.1 An Extended Formulation for conv(XI
1)

We give here an extended formulation of conv(X I
1) with O(�mn) variables and

O(�n(m + n)) constraints.
For each fixed vector f i ∈ Lσ, let X I

1,i = {(σ, r, y) ∈ X I
1 : f(σ) = f i}. Notice

that X I
1 =

⋃�
i=1 X I

1,i. First we find an extended formulation for each of the sets
conv(X I

1,i), 1 ≤ i ≤ �, and then, since conv(X I
1) = conv

( ⋃�
i=1 conv(X I

1,i)
)
, we

use Balas’ extended formulation for the convex hull of the union of polyhedra [1],
in the fashion introduced in [3].

In the following we assume wlog g1 > g2 > · · · > gm. The set X I
1,i can be

modeled as the following mixed-integer set:

σk = μk + f i
k, 1 ≤ k ≤ n

rt = νt +
∑m

j=1 gjδtj , 1 ≤ t ≤ n

μk + νt +
∑m

j=1 gjδtj + yt ≥ bkt − f i
k, 1 ≤ k, t ≤ n

∑m
j=1 δtj = 1, 1 ≤ t ≤ n

μk, νt, yt, δtj ≥ 0, 1 ≤ t, k ≤ n, 1 ≤ j ≤ m

μk, νt, yt, δtj integer, 1 ≤ t, k ≤ n, 1 ≤ j ≤ m .
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Using Chvátal-Gomory rounding, the above system can be tightened to

σk = μk + f i
k, 1 ≤ k ≤ n (12)

rt = νt +
∑m

j=1 gjδtj , 1 ≤ t ≤ n (13)

μk + νt +
∑

j:gj≥f(bkt−fi
k) δtj + yt ≥ �bkt − f i

k� + 1, 1 ≤ k, t ≤ n (14)
∑m

j=1 δtj = 1, 1 ≤ t ≤ n (15)

μk, νt, yt, δtj ≥ 0, 1 ≤ t, k ≤ n, 1 ≤ j ≤ m (16)
μk, νt, yt, δtj integer, 1 ≤ t, k ≤ n, 1 ≤ j ≤ m . (17)

Let A be the constraint matrix of (14)–(15). We show that A is a totally
unimodular (TU) matrix.

Order the columns of A according to the following ordering of the variables:

μ1, . . . , μn; y1, ν1, δ11, . . . , δ1m; y2, ν2, δ21, . . . , δ2m; . . . ; yn, νn, δn1, . . . , δnm .

For each row of A, the 1’s that appear in a block [yt, νt, δt1, . . . , δtm] are consec-
utive and start from the first position. Furthermore, for each row of A only one
of these blocks contains nonzero elements.

Consider an arbitrary column submatrix of A. We give color red to all the μi

(if any) and then, for each of the blocks [yt, νt, δt1, . . . , δtm], we give alternating
colors, always starting with blue, to the columns of this block which appear in
the submatrix. Since this is an equitable bicoloring, the theorem of Ghouila-
Houri [4] shows that A is TU. Since the right-hand side of the constraints is
integer, the theorem of Hoffman and Kruskal implies that (14)–(15) (along with
the nonnegativity conditions) define an integral polyhedron.

Since (12)–(13) just define variables σk, rt, we can remove the integrality con-
straints from (12)–(17), thus obtaining an extended formulation for conv(X I

1,i):

conv(X I
1,i) = {(σ, r, y) such that there exist δ, μ satisfying (12)–(16)} .

This formulation involves O(mn) variables and O(n(m + n)) constraints.
Using Balas’ description for the union of polyhedra [1], we obtain:

Theorem 3. The following linear system is an extended formulation of the poly-
hedron conv(X I

1) with O(�mn) variables and O(�n(m + n)) constraints:

σk =
∑�

i=1 σi
k, 1 ≤ k ≤ n

rt =
∑�

i=1 ri
t, 1 ≤ t ≤ n

yt =
∑�

i=1 yi
t, 1 ≤ t ≤ n

∑�
i=1 λi = 1

σi
k = μi

k + f i
kλi, 1 ≤ k ≤ n, 1 ≤ i ≤ �

ri
t = νi

t +
∑m

j=1 gjδ
i
tj , 1 ≤ t ≤ n, 1 ≤ i ≤ �

μi
k + νi

t +
∑

j:gj≥f(bkt−fi
k
) δi

tj + yi
t ≥ (�bkt − f i

k� + 1)λi, 1 ≤ k, t ≤ n, 1 ≤ i ≤ �
∑m

j=1 δi
tj = λi, 1 ≤ t ≤ n, 1 ≤ i ≤ �

μi
k, νi

t , y
i
t, δ

i
tj, λ

i ≥ 0, 1 ≤ k, t ≤ n, 1 ≤ j ≤ m, 1 ≤ i ≤ � .
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By Remark 1 we then obtain:

Corollary 4. If the lists Lσ, Lr are complete for X I then the linear system given
in Theorem 3 is an extended formulation of conv(X I).

2.2 An Extended Formulation for conv(XI
2)

We give an extended formulation for conv(X I
2) with O(�n) variables and O(�n2)

constraints. We include zero in the list L. Also, for technical reasons we define
f0 = 1. Wlog we assume 1 = f0 > f1 > · · · > f� = 0.

The set X I
2 can be modeled as the following mixed-integer set:

σk = μk +
∑�

j=1 fjδ
k
j , 1 ≤ k ≤ n (18)

rt = νt +
∑�

j=1 fjβ
t
j , 1 ≤ t ≤ n (19)

σk + rt + yt ≥ bkt, 1 ≤ k, t ≤ n (20)
∑�

j=1 δk
j = 1, 1 ≤ k ≤ n (21)

∑�
j=1 βt

j = 1, 1 ≤ t ≤ n (22)

σk ≥ 0, rt ≥ 0, yt ≥ 0, 1 ≤ k, t ≤ n

δk
j , βt

j ≥ 0, 1 ≤ k, t ≤ n, 1 ≤ j ≤ �

μk, νt, yt, δ
k
j , βt

j integer, 1 ≤ k, t ≤ n, 1 ≤ j ≤ � .

Now define the unimodular transformation

μk
0 = μk, μk

j = μk +
∑j

h=1 δk
h, 1 ≤ k ≤ n, 1 ≤ j ≤ �

νt
0 = νt + yt, νt

j = νt + yt +
∑j

h=1 βt
h, 1 ≤ t ≤ n, 1 ≤ j ≤ � .

Then (18) and (19) become

σk =
∑�−1

j=0(fj − fj+1)μk
j , 1 ≤ k ≤ n

rt = −yt +
∑�−1

j=0(fj − fj+1)νt
j , 1 ≤ t ≤ n ,

while (21)–(22) become μk
� − μk

0 = 1, 1 ≤ k ≤ n, and νt
� − νt

0 = 1, 1 ≤ t ≤ n.
Constraints δk

j ≥ 0, 1 ≤ k ≤ n, 1 ≤ j ≤ �, can be modeled as μk
j − μk

j−1 ≥ 0.
Similarly βt

j ≥ 0, 1 ≤ t ≤ n, 1 ≤ j ≤ �, can be modeled as νt
j − νt

j−1 ≥ 0.
Inequalities σk ≥ 0, 1 ≤ k ≤ n, become μk

0 ≥ 0, while rt ≥ 0, 1 ≤ t ≤ n,
become νt

0 − yt ≥ 0.
We now model (20). Define �kt = max{τ : fτ ≥ f(bkt)}. Also, for an index

0 ≤ j ≤ �kt − 1, define hj
kt = max{τ : fτ ≥ 1 + f(bkt) − fj+1} and for an index

�kt ≤ j ≤ � − 1, define hj
kt = max{τ : fτ ≥ f(bkt) − fj+1}.

Lemma 5. Assume that a point (σ, r, y) satisfies (18), (19), (21) and (22). Then
(σ, r, y) satisfies (20) if and only if the following inequalities are valid for (σ, r, y):

μk
hj

kt

+ νt
j ≥ �bkt�, 0 ≤ j ≤ �kt − 1 (23)

μk
hj

kt

+ νt
j ≥ �bkt� + 1, �kt ≤ j ≤ � − 1 . (24)
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Proof. We first assume that (σ, r, y) satisfies (18)–(22). Suppose 0 ≤ j ≤ �kt −
1. Constraint (20) can be written as μk + νt + yt +

∑�
i=1 fiδ

k
i +

∑�
i=1 fiβ

t
i ≥

(�bkt� − 1)+ 1 + f(bkt). Since the δk
i ’s (resp. βt

i ’s) are binary variables such that
∑�

i=1 δk
i = 1 (resp.

∑�
i=1 βt

i = 1), this implies μk +νt +yt +
∑hj

kt

i=1 fiδ
k
i +fhj

kt+1 +
∑j

i=1 fiβ
t
i + fj+1 ≥ (�bkt� − 1) + 1 + f(bkt), thus μk

hj
kt

+ νt
j ≥ (�bkt� − 1) + 1 +

f(bkt) − fhj
kt+1 − fj+1. As 1 + f(bkt)− fhj

kt+1 − fj+1 > 0 for 0 ≤ j ≤ �kt − 1 and
as μk

hj
kt

+ νt
j is an integer, (23) is valid.

Suppose now �kt ≤ j ≤ � − 1. Constraint (20) can be written as μk + νt +
yt +

∑�
i=1 fiδ

k
i +

∑�
i=1 fiβ

t
i ≥ �bkt� + f(bkt). Similarly as before, this implies

μk
hj

kt

+ νt
j ≥ �bkt� + f(bkt) − fhj

kt+1 − fj+1. As f(bkt) − fhj
kt+1 − fj+1 > 0 for

�kt ≤ j ≤ � − 1 and as μk
hj

kt

+ νt
j is an integer, (24) is valid.

Now assume that (σ, r, y) satisfies (18), (19), (21) and (22), along with (23)–
(24). Specifically, assume σk = μk + fi and rt = νt + fl.

Suppose l ≤ �kt. Inequality (23) for j = l − 1 is μk
hl−1

kt

+ νt + yt ≥ �bkt�.
If i ≤ hl−1

kt , the inequality is μk + νt + yt ≥ �bkt� − 1, thus σk + rt + yt ≥
�bkt� − 1 + fi + fl ≥ �bkt� + f(bkt) = bkt. And if i > hl−1

kt , the inequality is
μk + νt + yt ≥ �bkt�, thus σk + rt + yt ≥ �bkt� + fl ≥ �bkt� + f(bkt) = bkt. Thus
(20) is satisfied when l ≤ �kt. The case l > �kt is similar. 	


Thus we obtain the following result.

Theorem 6. The following linear system is an extended formulation of the poly-
hedron conv(X I

2) with O(�n) variables and O(�n2) constraints:

σk =
∑�−1

j=0(fj − fj+1)μk
j , 1 ≤ k ≤ n (25)

rt = −yt +
∑�−1

j=0(fj − fj+1)νt
j , 1 ≤ t ≤ n (26)

μk
hj

kt

+ νt
j ≥ �bkt�, 1 ≤ k, t ≤ n, 0 ≤ j ≤ �kt − 1 (27)

μk
hj

kt

+ νt
j ≥ �bkt� + 1, 1 ≤ k, t ≤ n, �kt ≤ j ≤ � − 1 (28)

μk
� − μk

0 = 1, νt
� − νt

0 = 1, 1 ≤ k, t ≤ n (29)

μk
j − μk

j−1 ≥ 0, νt
j − νt

j−1 ≥ 0, 1 ≤ k, t ≤ n, 1 ≤ j ≤ � (30)

μk
0 ≥ 0, νt

0 − yt ≥ 0, yt ≥ 0, 1 ≤ k, t ≤ n . (31)

Proof. X I
2 is the set of points (σ, r, y) such that there exist integral vectors δ, μ

satisfying (25)–(31). Changing the sign of the νt
j and yt variables, the constraint

matrix of (27)–(31) is a dual network matrix (that is, the transpose of a network
flow matrix), in particular it is TU. Since the right-hand side is an integer vector
and since (25)–(26) just define variables σk, rt,

conv(X I
2) = {(σ, r, y) such that there exist δ, μ satisfying (25)–(31)} . 	
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By Remark 2 we then obtain:

Corollary 7. If the list L is complete for X I then the linear system given in
Theorem 6 is an extended formulation of conv(X I).

3 The Difference Set

The following set is the difference set XDIF:

σk + rt + yt ≥ bt − bk, 0 ≤ k < t ≤ n

σ ∈ IRn+1
+ , r ∈ IRn

+, y ∈ ZZn
+ ,

where 0 = b0 ≤ b1 ≤ . . . ≤ bn. Note that XDIF is an intersection set where
bkt = bt − bk, as for k ≥ t the constraint σk + rt + yt ≥ bt − bk is redundant.

Here we prove that the extended formulations given in Sect. 2 are compact
for a set of the type XDIF. This will be useful in Sect. 5, where we study XCMF.

Theorem 8. Let (σ∗, r∗, y∗) be a vertex of conv(XDIF). Then there exists an
index h ∈ {0, . . . , n} such that σ∗

k > 0 for k < h and σ∗
k = 0 for k ≥ h.

Furthermore there is an index � ≥ h such that f(σ∗
k) = f(b� − bk) for 0 ≤ k < h.

Proof. Let (σ∗, r∗, y∗) be a vertex of conv(XDIF), let α = max1≤t≤n{bt−r∗t −y∗
t }

and let Tα ⊆ {1, . . . , n} be the subset of indices for which this maximum is
achieved.

Claim 1: For each 1 ≤ k ≤ n, σ∗
k = max{0, α − bk}.

Proof. The inequalities that define XDIF show that σ∗
k ≥ max{0, α − bk}. If

σ∗
k > max{0, α − bk}, then there is an ε > 0 such that (σ∗, r∗, y∗) ± ε(ek,0,0)

are both in conv(XDIF), a contradiction to the fact that (σ∗, r∗, y∗) is a vertex.
This concludes the proof of the claim.

Let h = min{k : α − bk ≤ 0}. (This minimum is well defined: since the
only inequality involving σn is σn ≥ 0, certainly σ∗

n = 0; then, by Claim 1,
α − bn ≤ 0.) Since 0 = b0 ≤ b1 ≤ · · · ≤ bn, Claim 1 shows that σ∗

k > 0 for k < h
and σ∗

k = 0 for k ≥ h and this proves the first part of the theorem. Furthermore
σ∗

k + r∗t + y∗
t = bt − bk for all k < h and t ∈ Tα.

Claim 2: Either r∗t = 0 for some t ∈ Tα or f(rt) = f(bt − bh) for every t ∈ Tα.
Proof. We use the fact that (σ∗, r∗) is a vertex of the polyhedron:

Q = {(σ, r) ∈ IRn+1
+ × IRn

+ : σk + rt ≥ bt − bk − y∗
t , 0 ≤ k < t ≤ n} .

We now consider the following two cases:
Case 1: α − bh < 0.
For k ≥ h, the only inequality that is tight for (σ∗, r∗) and contains σk in its
support is σk ≥ 0. For k < h, the only inequalities that are tight for (σ∗, r∗) and
contain σk in their support are σk + rt ≥ bt − bk − y∗

t , t ∈ Tα.
Let eH be the (n+1)-vector having the first h components equal to 1 and the

others to 0, let eTα be the incidence vector of Tα and assume that r∗t > 0 for all
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t ∈ Tα. Then the vectors (σ∗, r∗) ± ε(eH , −eTα) for some ε > 0 are both in Q,
contradicting the fact that (σ∗, r∗) is a vertex of Q. So r∗t = 0 for some t ∈ Tα.
Case 2: α − bh = 0.
Then (σ∗, r∗, y∗) satisfies σ∗

h + r∗t + y∗
t = bt − bh for all t ∈ Tα. Since σ∗

h = 0 and
y∗

t is integer, then f(r∗t ) = f(bt − bh) for all t ∈ Tα and this completes the proof
of Claim 2.

Assume r∗t = 0 for some t ∈ Tα. Since σ∗
k + r∗t + y∗

t = bt − bk for all k < h and
y∗

t is an integer, then f(σ∗
k) = f(bt − bk) for all k < h.

If f(r∗t ) = f(bt − bh) for all t ∈ Tα, since σ∗
k + r∗t + y∗

t = bt − bk for all t ∈ Tα

and for all k < h and since y∗ is an integer vector, then f(σ∗
k) = f(bh − bk) for

all k < h. 	

Corollary 9. If (σ∗, r∗, y∗) is a vertex of conv(XDIF), then f(r∗t ) ∈ {f(bt −
bk), 1 ≤ k ≤ n} for 1 ≤ t ≤ n.

Proof. The result follows from Theorem 8 and the observation that at a vertex
of conv(XDIF) either r∗t = 0 or σ∗

k + r∗t + y∗
t = bt − bk for some k. 	


We then obtain the following result.

Theorem 10. The polyhedron conv(XDIF) admits an extended formulation of
the type given in Theorem 3 with O(n5) variables and constraints and an ex-
tended formulation of the type given in Theorem 6 with O(n3) variables and
O(n4) constraints.

Proof. Recall that XDIF is an intersection set. Define Lσ as the set of all possible
(n + 1)-vectors of fractional parts taken by σ at a vertex of conv(XDIF) and Lr

as the set of all possible fractional parts taken by the variables rt at a vertex of
conv(XDIF). Since these lists are complete for XDIF, Corollary 4 implies that the
linear system given in Theorem 3 is an extended formulation of conv(XDIF). By
Theorem 8, � = |Lσ| = O(n2) and by Corollary 9, m = |Lr| = O(n2), therefore
this formulation has O(n5) variables and O(n5) constraints.

Now define L as the set of all possible fractional parts taken by the variables
σk, rt at a vertex of conv(XDIF). Since this list is complete for XDIF, by Corol-
lary 7 the system given in Theorem 6 is an extended formulation of conv(XDIF).
Since � = |L| = O(n2) (see Theorem 8 and Corollary 9), this formulation has
O(n3) variables and O(n4) constraints. 	

We point out that the result of the above theorem can be improved as follows.

Consider the first formulation. If for each set X I
1,i we define a different list of

fractional parts for the variables rt, say Li
r, then we can easily choose such lists

so that |Li
r| = O(n). In this case the first extended formulation for conv(XDIF)

involves O(n4) variables and constraints.
Consider now the second formulation. Instead of defining a unique list for all

variables, we can define a list for each variable, say Lσk
and Lrt , 1 ≤ k, t ≤ n.

It is not difficult to verify that the construction of the extended formulation
can be carried out with straightforward modifications. Since in this case |Lσk

| =
O(n) (by Theorem 8) and |Lrt | = O(n) (by Corollary 9), the second extended
formulation involves O(n2) variables and O(n3) constraints.
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Theorem 11. The polyhedron conv(XCMF) admits an extended formulation
with O(n2) variables and O(n3) constraints.

4 Intersection Sets with an Exponential Number of
Fractional Parts

In this section we show that the extended formulations derived in Sect. 2 are
not compact in general. Specifically, we prove here the following result:

Theorem 12. In the set of vertices of the polyhedron defined by

σk + rt ≥ 3(t−1)n+k

3n2+1 , 1 ≤ k, t ≤ n (32)

σ ∈ IRn
+, r ∈ IRn

+ (33)

the number of distinct fractional parts taken by variable σn is exponential in n.

Remark 13. Since the vertices of the above polyhedron are the vertices on the
face defined by y = 0 of the polyhedron conv(X I) with the same right-hand
side, Theorem 12 shows that any extended formulation that explicitly takes into
account a list of all possible fractional parts taken at a vertex by the continuous
variables (such as those introduced to model conv(X I

1) and conv(X I
2)) will not

be compact in general.

Now let bkt be as in the theorem, i.e. bkt = 3(t−1)n+k

3n2+1 , 1 ≤ k, t ≤ n.

Remark 14. bkt < bk′t′ if and only if (t, k) ≺ (t′, k′), where ≺ denotes the lexi-
cographic order. Thus b11 < b21 < · · · < bn1 < b12 < · · · < bnn.

Lemma 15. The following properties hold.

1. Suppose that α ∈ ZZq
+ with αj < αj+1 for 1 ≤ j ≤ q − 1, and define

Φ(α) =
∑q

j=1(−1)q−j3αj . Then 1
23αq < Φ(α) < 3

23αq .

2. Suppose that α is as above and β ∈ ZZq′

+ is defined similarly. Then Φ(α) =
Φ(β) if and only if α = β.

Proof. 1.
∑αq−1

j=0 3j = 3αq−1
3−1 < 1

23αq . Now Φ(α) ≥ 3αq −
∑αq−1

j=1 3j > 3αq −
1
23αq = 1

23αq , and Φ(α) ≤ 3αq +
∑αq−1

j=1 3j < 3αq + 1
23αq = 3

23αq .
2. Suppose α �= β. Wlog we assume q ≥ q′. Assume first (αq−q′+1, . . . , αq) = β.

Then q > q′ (otherwise α = β) and, after defining ᾱ = (α1, . . . , αq−q′), we have
Φ(α) − Φ(β) = Φ(ᾱ) > 0 by 1. Now assume (αq−q′+1, . . . , αq) �= β. Define
h = min{τ : αq−τ �= βq′−τ} and suppose αq−h > βq′−h (the other case is
similar). If we define the vectors ᾱ = (α1, . . . , αq−h) and β̄ = (β1, . . . , βq′−h), 1.
gives Φ(α) − Φ(β) = Φ(ᾱ) − Φ(β̄) > 1

23αq−h − 3
23βq′−h ≥ 0, as αq−h > βq′−h. 	
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We now give a construction of an exponential family of vertices of (32)–(33)
such that at each vertex variable σn takes a distinct fractional part. Therefore
this construction proves Theorem 12.

Let (k1, . . . , km) and (t1, . . . , tm−1) be two increasing subsets of {1, . . . , n}
with k1 = 1 and km = n. For 1 ≤ k, t ≤ n, let p(k) = max{j : kj ≤ k} and
q(t) = max{j : tj ≤ t}, with q(t) = 0 if t < t1.

Consider the following system of equations:

σk1 = 0
σkj + rtj = bkjtj , 1 ≤ j ≤ m − 1

σkj+1 + rtj = bkj+1tj , 1 ≤ j ≤ m − 1
σkq(t)+1 + rt = bkq(t)+1t, t /∈ {t1, . . . , tm−1}

σk + rtp(k) = bktp(k) , k /∈ {k1, . . . , km} .

The unique solution of this system is:

σk1 = 0

σkj =
∑j−1

�=1 bk�+1t�
−

∑j−1
�=1 bk�t�

, 2 ≤ j ≤ m

rtj =
∑j

�=1 bk�t�
−

∑j−1
�=1 bk�+1t�

, 1 ≤ j ≤ m − 1
σk = bktp(k) − rtp(k) , k /∈ {k1, . . . , km}
rt = bkq(t)+1t − σkq(t)+1 , t /∈ {t1, . . . , tm−1} .

As each of these variables σk, rt takes a value of the form Φ(α)/3n2+1, by
Lemma 15 (i) we have that σkj > 1

2bkjtj−1 > 0 for 2 ≤ j ≤ m, rtj > 1
2bkjtj > 0

for 1 ≤ j ≤ m−1, σk > 1
2bktp(k) > 0 for k /∈ {k1, . . . , km} and rt > 1

2bkq(t)+1t > 0
for t /∈ {t1, . . . , tm−1}. Therefore the nonnegativity constraints are satisfied.

Now we show that the other constraints are satisfied. Consider the k, t con-
straint with t /∈ {t1, . . . , tm−1}. We distinguish some cases.

1. p(k) ≤ q(t). Then σk + rt ≥ rt > 1
2 bkq(t)+1t ≥ 1

2bkp(k)+1t ≥ 3
2bkt > bkt.

2. p(k) > q(t) and k /∈ {k1, . . . , km}. Then σk+rt ≥ σk > 1
2bktp(k) ≥ 1

2bktq(t)+1 ≥
3n

2 bkt > bkt.
3. p(k) = q(t) + 1 and k = kj for some 1 ≤ j ≤ m (thus p(k) = j = q(t) + 1).

In this case the k, t constraints is satisfied at equality by construction.
4. p(k) > q(t) + 1 and k = kj for some 1 ≤ j ≤ m (thus p(k) = j > q(t) + 1).

Then σk + rt ≥ σk > 1
2bktj−1 ≥ 1

2bktq(t)+1 ≥ 3n

2 bkt > bkt.

The argument with k /∈ {k1, . . . , km} is similar.
Finally suppose that k = kj and t = th with h /∈ {j −1, j}. If h > j, σk + rt ≥

rt > 1
2bkhth

≥ 3
2bkjth

> bkt. If h < j−1, σk +rt ≥ σk > 1
2bkjtj−1 ≥ 3n

2 bkjth
> bkt.

This shows that the solution is feasible and as it is unique, it defines a vertex
of (32)–(33).

Now let akt = (t − 1)n + k, so that bkt = 3akt/3n2+1 and take

α = (ak1t1 , ak2t1 , ak2t2 , ak3t2 , . . . , akmtm−1) .
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As σn = Φ(α)/3n2+1, Lemma 15 (ii) implies that in any two vertices constructed
as above by different sequences (k1, . . . , km), (t1, . . . , tm−1) and (k′

1, . . . , k
′
m′),

(t′1, . . . , t′m′−1), the values of σn are distinct numbers in the interval (0, 1). As
the number of such sequences is exponential in n, this proves Theorem 12.

5 An Extended Formulation for conv(XCMF)

Now we address the question of showing that the linear optimization problem
over the continuous mixing set with flows (3)–(5) is solvable in polynomial time.
Specifically we derive compact extended formulations for conv(XCMF).

We assume that 0 < b1 ≤ · · · ≤ bn. Consider the set Z:

s + rt + yt ≥ bt, 1 ≤ t ≤ n (34)
s + rk + xk + rt + yt ≥ bt, 1 ≤ k < t ≤ n (35)
s + rt + xt ≥ bt, 1 ≤ t ≤ n (36)
s ∈ IR+, r ∈ IRn

+, x ∈ IRn, y ∈ ZZn
+ . (37)

Note that x is unrestricted in Z.

Proposition 16. Let XCMF and Z be defined on the same vector b. Then
XCMF ⊆ Z and XCMF = Z ∩ {(s, r, x, y) : 0 ≤ x ≤ y}.

Proof. Clearly (34)–(37) are valid for the points in XCMF. The only inequalities
that define XCMF but do not appear in the definition of Z are 0 ≤ x ≤ y. 	


Lemma 17. The 3n+1 extreme rays of conv(XCMF) are the vectors (1,0,0,0),
(0, ei,0,0), (0,0,0, ei), (0,0, ei, ei). The 3n +1 extreme rays of conv(Z) are the
vectors (1,0, −1,0), (0, ei, −ei,0), (0,0, ei,0), (0,0,0, ei). Therefore both reces-
sion cones of conv(XCMF) and conv(Z) are full-dimensional simplicial cones,
thus showing that conv(XCMF) and conv(Z) are full-dimensional polyhedra.

Proof. The first part is obvious. We characterize the extreme rays of conv(Z).
The recession cone C of conv(Z) is defined by

s + rk + xk + rt + yt ≥ 0, 1 ≤ k < t ≤ n

s + rt + xt ≥ 0, 1 ≤ t ≤ n

s ∈ IR+, r ∈ IRn
+, x ∈ IRn, y ∈ IRn

+ .

One can verify that the vectors ρ = (1,0, −1,0), ui = (0, ei, −ei,0), vi =
(0,0, ei,0), zi = (0,0,0, ei) are extreme rays of conv(Z) by checking that each
of them satisfies at equality 3n linearly independent inequalities defining C (in-
cluding nonnegativity constraints).

Thus we only have to show that every vector in C can be expressed as conic
combination of the above rays. Let (s̄, r̄, x̄, ȳ) be in C. Notice that (s̄, r̄, x̄, ȳ) =
s̄ρ +

∑n
i=1 r̄iui +

∑n
i=1(s̄ + r̄i + x̄i)vi +

∑n
i=1 ȳiwi. Since (s̄, r̄, x̄, ȳ) ∈ C, all the

coefficients appearing in the above combination are nonnegative.
It can also be checked that the above rays are linearly independent. 	
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Lemma 18. Let (s∗, r∗, x∗, y∗) be a vertex of conv(Z). Then

s∗ = max{0; bt − r∗t − y∗
t , 1 ≤ t ≤ n} ,

x∗
k = max{bk − s∗ − r∗k; bt − s∗ − r∗k − r∗t − y∗

t , 1 ≤ k < t ≤ n} .

Proof. Assume s∗ > 0 and s∗ + r∗t + y∗
t > bt, 1 ≤ t ≤ n. Then, there is an ε �= 0

such that (s∗, r∗, x∗, y∗)±ε(1,0, −1,0) belong to conv(Z), a contradiction. This
proves the first statement. The second one is obvious. 	


Proposition 19. Let (s∗, r∗, x∗, y∗) be a vertex of conv(Z). Then 0 ≤ x∗ ≤ y∗.

Proof. Assume that {t : x∗
t < 0} �= ∅ and let h = min{t : x∗

t < 0}. Then
s∗ + r∗h > bh > 0 and together with y∗

h ≥ 0, this implies s∗ + r∗h + y∗
h > bh.

Claim: r∗h > 0.
Proof. Assume r∗h = 0. Then s∗ > bh > 0. By Lemma 18, s∗ + r∗t + y∗

t = bt

for some index t. It follows that s∗ ≤ bt, thus t > h (as bh < s∗ ≤ bt). Equation
s∗ + r∗t + y∗

t = bt, together with s∗ + r∗h + x∗
h + r∗t + y∗

t ≥ bt, gives r∗h + x∗
h ≥ 0,

thus r∗h > 0, as x∗
h < 0, and this concludes the proof of the claim.

The inequalities s∗ + r∗h + y∗
h > bh and r∗k + x∗

k ≥ 0, 1 ≤ k < h, imply
s∗ + r∗k + x∗

k + r∗h + y∗
h > bh, 1 ≤ k < h.

All these observations show the existence of an ε �= 0 such that both points
(s∗, r∗, x∗, y∗) ± ε(0, eh, −eh,0) belong to conv(Z), a contradiction to the fact
that the point (s∗, r∗, x∗, y∗) is a vertex of conv(Z). Thus x∗ ≥ 0.

Suppose now that there exists h such that x∗
h > y∗

h. Then constraint s + rh +
yh ≥ bh gives s∗+r∗h+x∗

h > bh. Lemma 18 then implies that s∗+r∗h+x∗
h+r∗t +y∗

t =
bt for some t > h. This is not possible, as inequalities x∗

h > y∗
h ≥ 0, r∗h ≥ 0 and

s∗ + r∗t + y∗
t ≥ bt imply s∗ + r∗h + x∗

h + r∗t + y∗
t > bt. Thus x∗ ≤ y∗. 	


For the main theorem of this section we present a lemma whose proof is given
in [2].

For a polyhedron P in IRn and a vector a ∈ IRn, let μP (a) be the value
min{ax, x ∈ P} and MP (a) be the face {x ∈ P : ax = μP (a)}, where MP (a) = ∅
whenever μP (a) = −∞.

Lemma 20. Let P ⊆ Q be two pointed polyhedra in IRn, with the property that
every vertex of Q belongs to P . Let Cx ≥ d be a system of inequalities that are
valid for P such that for every inequality cx ≥ δ of the system, P �⊂ {x ∈ IRn :
cx = δ}. If for every a ∈ IRn such that μP (a) is finite but μQ(a) = −∞, Cx ≥ d
contains an inequality cx ≥ δ such that MP (a) ⊆ {x ∈ IRn : cx = δ}, then
P = Q ∩ {x ∈ IRn : Cx ≥ d}.

Proof. See [2].

Theorem 21. Let XCMF and Z be defined on the the same vector b. Then
conv(XCMF) = conv(Z) ∩ {(s, r, x, y) : 0 ≤ x ≤ y}.

Proof. By Proposition 16, conv(XCMF) ⊆ conv(Z). By Propositions 19 and 16,
every vertex of conv(Z) belongs to conv(XCMF).
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Let a = (h, d, p, q), h ∈ IR1, d ∈ IRn, p ∈ IRn, q ∈ IRn, be such that
μconv(XCMF)(a) is finite and μconv(Z)(a) = −∞. Since by Lemma 17, the extreme
rays of conv(Z) that are not rays of conv(XCMF) are the vectors (0,0, ei,0),
(0, ei, −ei,0) and (1,0, −1,0), then either pi < 0 for some index i or di < pi for
some index i or h <

∑n
t=1 pt.

If pi < 0, then Mconv(XCMF)(a) ⊆ {(s, r, x, y) : xi = yi}.
If di < pi, then Mconv(XCMF)(a) ⊆ {(s, r, x, y) : xi = 0}, otherwise, given an

optimal solution with xi > 0, we could increase ri by a small ε > 0 and decrease
xi by ε, thus obtaining a feasible point with lower objective value.

If h <
∑n

t=1 pt, let N+ = {j : pj > 0} and k = min{j : j ∈ N+}: we show that
Mconv(XCMF)(a) ⊆ {(s, r, x, y) : xk = 0}. Suppose that xk > 0 in some optimal
solution. As the solution is optimal and pk > 0, we cannot just decrease xk and
remain feasible. Thus s + rk + xk = bk, which implies that s < bk. Then for all
j ∈ N+ we have rj + xj ≥ bj − s > bj − bk ≥ 0, as j ≥ k. Since we can assume
dt ≥ pt for every t (otherwise we are in the previous case), rt = 0 for every t: if
not, chosen an index t such that rt > 0, one can decrease rt by a small ε > 0
and increase xt by ε, thus obtaining a feasible point with lower objective value,
a contradiction. So rt = 0 for every t and thus, since rj + xj > 0 for all j ∈ N+,
we have xj > 0 for all j ∈ N+. Then we can increase s by a small ε > 0 and
decrease xj by ε for all j ∈ N+. The new point is feasible in XCMF and has
lower objective value, a contradiction.

We have shown that for every vector a such that μconv(XCMF)(a) is finite and
μconv(Z)(a) = −∞, the system 0 ≤ x ≤ y contains an inequality which is tight for
the points in Mconv(XCMF)(a). To complete the proof, since conv(XCMF) is full-
dimensional (Lemma 17), the system 0 ≤ x ≤ y does not contain an improper
face of conv(XCMF). So we can now apply Lemma 20 to conv(XCMF), conv(Z)
and the system 0 ≤ x ≤ y. 	


Therefore, if we have a compact extended formulation of conv(Z), then this
will immediately yield a compact extended formulation of conv(XCMF). Such a
formulation exists, as Z is equivalent to a difference set:

Theorem 22. Let XDIF be a difference set and XCMF be defined on the same
vector b. The affine transformation σ0 = s, σt = s+rt +xt −bt, 1 ≤ t ≤ n, maps
conv(XCMF) into conv(XDIF)∩{(σ, r, y) : 0 ≤ σk−σ0−rk+bk ≤ yk, 1 ≤ k ≤ n}.

Proof. Let Z be defined on the same vector b. It is straightforward to check that
the affine transformation σ0 = s, σt = s + rt + xt − bt, 1 ≤ t ≤ n, maps conv(Z)
into conv(XDIF). By Theorem 21, conv(XCMF) = conv(Z) ∩ {(s, r, x, y) : 0 ≤
x ≤ y} and the result follows. 	


Then the extended formulations of conv(XDIF) described in Sects. 2–3 give ex-
tended formulations of conv(XCMF) which are compact. By Theorem 11 we
have:

Theorem 23. The polyhedron conv(XCMF) admits an extended formulation
with O(n2) variables and O(n3) constraints. It follows that the linear optimiza-
tion problem over XCMF can be solved in polynomial time.
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5.1 An Extended Formulation for the Two Stage Stochastic
Lot-Sizing Problem with Constant Capacities and Backlogging

We briefly consider the set XCMF ∩ W , where

W = {(s, r, x, y) : lj ≤ yj ≤ uj, ljk ≤ yj − yk ≤ ujk, 1 ≤ j, k ≤ n} ,

with lj , uj, ljk, ujk ∈ ZZ ∪ {+∞, −∞}, 1 ≤ j, k ≤ n. We assume that for each
1 ≤ i ≤ n, W contains a point satisfying yi ≥ 1.

In the following we show that an extended formulation of conv(XCMF ∩ W )
is obtained by adding the inequalities defining W to one of the extended formu-
lations of conv(XCMF) derived above. The proof uses the same technique as in
Sect. 5, where Z (resp. XCMF) has to be replaced with Z∩W (resp. XCMF∩W ).
We only point out the main differences.

To see that the proof of Theorem 21 is still valid, note that the extreme rays
of conv(Z ∩ W ) are of the following types:

1. (1,0, −1,0), (0, ei, −ei,0), (0,0, ei,0);
2. (0,0,0, y) for suitable vectors y ∈ ZZn.

However, the rays of type 2 are also rays of conv(XCMF∩W ). Also, the condition
that for every index i, W contains a vector with yi > 0, shows that none of the
inequalities 0 ≤ xi ≤ yi defines an improper face of conv(XCMF ∩ W ) and
Lemma 20 can still be applied. Thus the proof of Theorem 21 is still valid.

The rest of the proof is a straightforward adaptation of Theorem 22.
Since (9)–(11) define a set of the type XCMF ∩ W (assuming C = 1 wlog),

the above result yields an extended formulation for the feasible region of the two
stage stochastic lot-sizing problem with constant capacities and backlogging.
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Abstract. Given z ∈ C
n and A ∈ Z

m×n, we provide an explicit expres-
sion and an algorithm for evaluating the counting function h(y; z) :=∑

{ zx | x∈Z
n; Ax=y, x≥0}. The algorithm only involves simple (but pos-

sibly numerous) calculations. In addition, we exhibit finitely many fixed
convex cones of R

n explicitly and exclusively defined by A, such that
for any y ∈ Z

m, h(y; z) is obtained by a simple formula that evaluates∑
zx over the integral points of those cones only. At last, we also pro-

vide an alternative (and different) formula from a decomposition of the
generating function into simpler rational fractions, easy to invert.

1 Introduction

Consider the (not necessarily compact) polyhedron

Ω(y) := {x ∈ R
n | Ax = y; x ≥ 0}, (1)

with y ∈ Z
m and A ∈ Z

m×n of maximal rank for n ≥ m; besides, given z ∈ C
n,

let h : Z
m → C be the counting function

y �→ h(y; z) :=
∑

x∈Ω(y)∩Zn

zx (2)

(where zx stands for
∏

k zk
xk). The complex vector z ∈ C

n may be chosen close
enough to zero in order to ensure that h(y; z) is well defined even when Ω(y) is
not compact. If Ω(y) is compact, then y �→ h(y; z) provides us with the exact
number of points in the set Ω(y) ∩ Z

n by either evaluating h(y, 1), or even
rounding h(y; z) up to the nearest integer when all the entries of z are close
enough to one.

Computation of h has attracted a lot of attention in recent years, from
both theoretical and practical computation viewpoints. Barvinok and Pommer-
sheim [4], Brion and Vergne [8], have provided nice exact (theoretical) formulas
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for h(y; z); see also Szenes and Vergne [15]. For instance, Barvinok considers
z �→ h(y; z) as the generating function (evaluated at z := ec ∈ C

n) of the
indicator function x �→ IΩ(y)∩Zn(x) of the set Ω(y) ∩ Z

n and provides a decom-
position into a sum of simpler generating functions associated with supporting
cones (themselves having a signed decomposition into unimodular cones). We
call this a primal approach because y is fixed, and one works in the primal space
R

n in which Ω(y) is defined. Remarkably, Barvinok’s counting algorithm which
is implemented in the software LattE (see De Loera et al. [10]) runs in time
polynomial in the problem size when the dimension n is fixed. The software
developed by Verdoolaege [17] extends the LattE software to handle paramet-
ric polytopes. On the other hand, Brion and Vergne [8] consider the generating
function H : C

m → C of y �→ h(y; z), that is,

w �→ H(w) :=
∑

y∈Zm

h(y; z)wy =
n∏

k=1

1
1 − zkwAk

. (3)

They provide a generalized residue formula, and so obtain h(y; z) in closed form
by inversion. We call this latter approach dual because z is fixed, and one works
in the space C

m of variables w associated with the m constraints Ax = y.
As a result of both primal and dual approaches, h(y; z) is finally expressed as

a weighted sum over the vertices of Ω(y). Similarly, Beck [5], and Beck, Diaz and
Robins [6] provided a complete analysis based on residue techniques for the case
of a tetrahedron (m = 1). Despite its theoretical interest, Brion and Vergne’s
formula is not directly tractable because it contains many products with com-
plex coefficients (roots of unity) which makes the formula difficult to evaluate
numerically. However, in some cases, this formula can be exploited to yield an
efficient algorithm as e.g. in [2] for flow polytopes, in [7] for transportation poly-
topes, and more generally when the matrix A is totally unimodular as in [9].
Finally, in [12,13], we have provided two algorithms based on Cauchy residue
techniques to invert H in (3), and an alternative algebraic technique based on
partial fraction expansion of H . A nice feature of the latter technique of [13] is
to avoid computing residues.

Contribution: Our contribution is twofold as it is concerned with both pri-
mal and dual approaches. On the primal side, we provide an explicit expression
of h(y; z) and an algorithm which involves only elementary operations. It uses
Brion’s identity along with an explicit description of the supporting cones at the
vertices of Ω(y). It also has a simple equivalent formulation as a (finite) group
problem. Finally, we exhibit finitely many fixed convex cones of R

n, explicitly
and exclusively defined from A, such that for any y ∈ Z

m, the sum h(y; z) is
obtained by a simple formula which evaluates

∑
zx over the integral points of

those cones only.
On the dual side, we analyze the counting function h, via its generating func-

tion H in (3). Inverting H is difficult in general, except if an appropriate ex-
pansion of H into simple fractions is available, as in e.g. [13]. In their landmark
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paper [8], Brion and Vergne provided a generalized residue formula which yields
the generic expansion

H(w) =
∑

σ∈JA

∑

g∈Gσ

Q̂g,σ

∏

k∈σ

[zkwAk ]δk,σ

1 − ρgk
q [zkwAk ]1/q

. (4)

Here, σ ∈ JA whenever Aσ is invertible, q is the smallest common multiple
of all | detAσ| �= 0, ρq = e2πi/q is the q-root of unity, δk,σ ∈ {0, 1/q}, and
Q̂g,σ ∈ C. The finite group Gσ has qm elements. The coefficients Q̂g,σ are difficult
to evaluate. Our contribution is to expand H in (3) in the form

H(w) =
∑

σ∈JA

[
∏

j∈σ

1
1 − zjwAj

]
× 1

R2(σ; z)

∑

u�σ∈Z
n−m
μσ

zη[σ,u�σ] wAη[σ,u�σ ], (5)

where: Zμσ = {0, 1, . . . , μσ − 1}, μσ = | detAσ|, each η[σ, u �σ] ∈ Z
n and:

z �→ R2(σ; z) :=
∏

k/∈σ

[
1 −

(
zkz

−A−1
σ Ak

σ

)μσ
]
. (6)

Identity (5) is a nontrivial simplification of the residue formula (4) because the
η[σ, u �σ]’s are given explicitly. And so the coefficients of the rational fraction (5)
in w are very simple to evaluate with no root of unity involved (it can also be
done symbolically); however this task can be tedious as for each σ ∈ JA one has
| detAσ|n−m terms η[σ, u �σ] to determine. But once determined, (5) is easy to
invert and provides h(y; z) for any y ∈ Z

m.

2 Brion’s Decomposition

2.1 Notation and Definitions

The notation C, R and Z stand for the usual sets of complex, real and integer
numbers, respectively. Moreover, the set of natural numbers {0, 1, 2, . . .} is de-
noted by N, and for every natural number μ ∈ N, the finite set {0, 1, . . . , μ − 1}
of cardinality μ is denoted by Zμ. The notation B′ stands for the transpose of
a matrix (or vector) B ∈ R

s×t; and the kth column of the matrix B is denoted
by Bk := (B1,k, . . . , Bs,k)′. When y = 0, the cone Ω(0) in (1) is convex, and its
dual cone is given by,

Ω(0)∗ := {b ∈ R
n | b′x ≥ 0 for every x ∈ Ω(0)}. (7)

Notice that Ω(0)∗ ≡ R
n if Ω(0) = {0}, which is the case if Ω(y) is compact.

Definition 1. Let A ∈ Z
m×n be of maximal rank. An ordered set σ = {σ1, . . . ,

σm} of natural numbers is said to be a basis if it has cardinality |σ| = m, the
sequence of inequalities 1 ≤ σ1 < σ2 < · · · < σm ≤ n holds, and the square
[m × m] submatrix :

Aσ := [Aσ1 |Aσ2 | · · · |Aσm ] is invertible. (8)

We denote the set of all bases σ by JA.



370 J.B. Lasserre and E.S. Zeron

Definition 2. Given a maximal rank matrix A ∈ Z
m×n, and any basis σ ∈ JA,

the complementary matrices Aσ ∈ Z
m×n and A�σ ∈ Z

m×(n−m) stand for [Ak]k∈σ

and [Ak]k/∈σ, respectively. Similarly, given z ∈ C
n, the complementary vectors

zσ ∈ C
m and z �σ ∈ C

n−m stand for (zk)k∈σ and (zk)k/∈σ, respectively.

For each basis σ ∈ JA with associated matrix Aσ ∈ Z
m×m, introduce the indi-

cator function δσ : Z
m → N defined by :

y �→ δσ(y) :=
{

1 if A−1
σ y ∈ Z

m,
0 otherwise. (9)

Notice that δσ is a multi-periodic function with periods Aσ and μσ := | detAσ|,
meaning that δσ(y +Aσq) = δσ(y +μσq) = δσ(y) for all y, q ∈ Z

m. Finally, given
a triplet (z, x, u) ∈ C

n × Z
n × R

n, introduce the notation :

zx := zx1
1 zx2

2 · · · zs
xn ,

‖z‖ := max {|z1|, |z2|, . . . , |zn|},
ln〈z〉 := (ln(z1), ln(z2), . . . , ln(zn)).

(10)

Notice that zx = zxσ
σ z

x �σ
�σ , for all bases σ ∈ JA and all z ∈ C

n, x ∈ Z
n.

2.2 Brion’s Decomposition

Let Ω(y) be the convex polyhedron in (1) with y ∈ Z
m, A ∈ Z

m×n being of
maximal rank, and let h : Z

m → C be the counting function in (2), with ‖z‖ < 1.
Obviously h(y; z) = 0 whenever the equation Ax = y has no solution x ∈ N

n.
The main idea is to decompose the function h following Brion’s ideas. Given any
convex rational polyhedron P ⊂ R

n, let [P ] : R
n → {0, 1} be its characteristic

function, and f [P ] : C → C its associated rational function, such that

z �→ f [P, z] :=
∑

x∈P∩Zn

zx, (11)

holds whenever the sum converges absolutely. For every vertex V of P , define
Co(P, V ) ⊂ R

n to be the supporting cone of P at V . Then, Brion’s formula
yields the decomposition :

[P ] =
∑

vertices V

[Co(P, V )], (12)

modulo the group generated by the characteristic functions of convex polyhedra
which contain affine lines. And so,

f [P, z] =
∑

vertices V

f [Co(P, V ), z]. (13)

The above summation is formal because in general there is no z ∈ C
n for

which the series
∑

{zx | x ∈ P ∩ Z
n} and

∑
{zx | x ∈ Co(P, V ) ∩ Z

n}
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converge absolutely for all vertices V . The notation
∑

E stands for the sum of
all elements of a countable set E ⊂ C. It is a complex number whenever the
resulting series converges absolutely; otherwise it stands for a formal series.

Example: Let P := [0, 1] ⊂ R so that Co(P, {0}) = [0, +∞) and Co(P, {1}) =
(−∞, 1]. Simple enumeration yields f [P, z] = z0 + z = 1 + z, but one also has:

f [P, z] = f [Co(P, {0}), z] + f [(P, {1}), z] = 1/(1 − z) + z2/(z − 1) = 1 + z.

3 Computing h(y; z): A Primal Approach

Let C(JA) := {Ax | x ∈ N
n} ⊂ R

m be the cone generated by the columns of A,
and for any basis σ ∈ JA, let C(σ) ⊂ R

m be the cone generated by the columns
Ak with k ∈ σ. As A has maximal rank, C(JA) is the union of all C(σ), σ ∈ JA.
With any y ∈ C(JA) associate the intersection of all cones C(σ) that contain y.
This defines a subdivision of C(JA) into polyhedral cones. The interiors of the
maximal subdivisions are called chambers. In each chamber γ, the polyhedron
Ω(y) is simple, i.e. A−1

σ y > 0 for all σ ∈ JA such that A−1
σ y ≥ 0.

For any chamber γ, define,

B(JA, γ) := {σ ∈ JA | γ ⊂ C(σ)}. (14)

The intersection of all C(σ) with σ ∈ B(JA, γ) is the closure γ of γ.
Back to our original problem, and setting P := Ω(y), the rational function

f [P, z] is equal to h(y; z) in (2) whenever ‖z‖ < 1. We next provide an explicit
description of the rational function f [Co(P, V ), z] for every vertex V of P .

Let δσ be the function defined in (9), and let Zμσ := {0, 1, . . . , μσ − 1} with
μσ := | detAσ|. A vector V ∈ R

n is a vertex of P = Ω(y) if and only if there
exists a basis σ ∈ JA such that :

Vσ = A−1
σ y ≥ 0 and V�σ = 0, (15)

where Vσ and V�σ are given in Definition 2. Moreover, the supporting cone of P
at the vertex V is described by :

Co(Ω(y), V ) := {x ∈ R
n | Ax = y; xk ≥ 0 if Vk = 0} . (16)

Let us now define the larger set

C(Ω(y), σ) := {x ∈ R
n | Aσxσ + A�σx�σ = y; x�σ ≥ 0}, (17)

so that Co(Ω(y), V ) is a subcone of C(Ω(y), σ) for all bases σ ∈ JA and vertex
V of Ω(y) which satisfy V�σ = 0 (recall (15)). Besides, when V�σ = 0 and y ∈ γ for
some chamber γ, then C(Ω(y), σ) and Co(Ω(y), V ) are identical because Ω(y)
is a simple polytope, and so A−1

σ y > 0 for all σ ∈ JA.
Recall that Aσ ∈ Z

m×n and A�σ ∈ Z
m×(n−m) stand for [Ak]k∈σ and [Ak]k/∈σ,

respectively. Similarly, given a vector x ∈ Z
n, the vectors xσ and x�σ stand for

(xk)k∈σ and (xk)k/∈σ respectively. The following result is from [8, p. 818].
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Proposition 1. Let y ∈ R
m and let Ω(y) be as in (1), and let y ∈ γ for some

chamber γ. Then,
[Ω(y)] =

∑

σ∈B(JA,γ)

[C(Ω(y), σ)], (18)

modulo the group generated by the characteristic functions of convex polyhedra
which contain affine lines.

Proof. Using notation of [8, p. 817], define the linear mapping p : R
n → R

m

with p(x) = Ax, so that the polyhedra PΔ(y) and Ω(y) are identical. Moreover,
for every basis σ ∈ B(JA, γ), vσ : R

m → R
n is the linear mapping:

y �→ [vσ(y)]σ = A−1
σ y and [vσ(y)]�σ = 0, y ∈ R

m.

Finally, for every x̂ ∈ R
n with x̂ ≥ 0, ρσ(x̂) := x̂ − vσ(Ax̂) satisfies,

[ρσ(x̂)]σ = −A−1
σ A�σx̂�σ and [ρσ(x̂)]�σ = x̂�σ.

Therefore, the cone [vσ(y) + ρσ(C)] in [8] is the set of points x ∈ R
m such that

x�σ ≥ 0 and xσ = A−1
σ (y − A�σx�σ); and so this cone is just [C(Ω(y), σ)] in (17).

Therefore a direct application of (3.2.1) in [8, p. 818] yields (18).

Theorem 1. Let y ∈ Z
m, z ∈ C

n with ‖z‖ < 1, and let y ∈ γ for some chamber
γ. Recall the set of bases B(JA, γ) defined in (14). With P := Ω(y), the rational
function h defined in (2) can be written:

h(y; z) =
∑

σ∈B(JA,γ)

f [C(Ω(y), σ), z] =
∑

σ∈B(JA,γ)

R1(y, σ; z)
R2(σ; z)

, (19)

with z �→ R1(y, σ; z) := z
A−1

σ y
σ

∑

u∈Z
n−m
μσ

δσ(y − A�σu) zu
�σ

z
A−1

σ A �σu
σ

, (20)

and z �→ R2(σ; z) :=
∏

k/∈σ

[
1 −

(
zkz

−A−1
σ Ak

σ

)μσ
]
. (21)

The pair {R1, R2} is well defined whenever z ∈ C
n satisfies zk �= 0 and zk �=

zσ
A−1

σ Ak for every basis σ ∈ JA which does not contain the index k �∈ σ.

Proof. By a direct application of Brion’s theorem to the sum (18), the associated
rational functions f [Ω(y), z] and f [C(Ω(y), σ), z] satisfy:

h(y, z) = f [Ω(y), z] =
∑

σ∈B(JA,γ)

f [C(Ω(y), σ), z]. (22)

Therefore, in order to show (19), one only needs to prove that the rational
function R1(y,σ;z)

R2(σ;z) is equal to f [C(Ω(y), σ), z], i.e.,

R1(y, σ; z)
R2(σ; z)

=
∑

{zx | x ∈ C(Ω(y), σ) ∩ Z
n}, (23)
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on the domain Dσ = {z ∈ C
n | 1 > |zkz

−A−1
σ Ak

σ | for each k �∈ σ}. Notice that

1
R2(σ; z)

=
∏

k/∈σ

1

1 −
(
zkz−A−1

σ Ak
σ

)μσ
=

=
∏

k/∈σ

∑

vk∈N

[
zk

zA−1
σ Ak

σ

]μσvk

=
∑

v∈Nn−m

zμσv
�σ

z
μσA−1

σ A �σv
σ

,

on Dσ. On the other hand, according to (17), the integer vector x ∈ Z
n lies

inside the cone C(P, Vσ) if and only if :

xσ = A−1
σ (y − A�σx�σ), δσ(y − A�σx�σ) = 1 and

x�σ = u + μσv, with u ∈ Z
n−m
μσ

and v ∈ N
n−m.

From the definition (20) of R1(y, σ; z) and zx = z
x �σ
�σ zxσ

σ = z
x �σ
�σ z

A−1
σ (y−A �σx �σ)

σ ,

R1(y, σ; z)
R2(σ; z)

= z
A−1

σ y
σ

∑

u∈Z
n−m
μσ

∑

v∈Nn−m

δσ(y − A�σu) z
x �σ
�σ

z
A−1

σ A �σx �σ
σ

, (24)

=
∑

{zx | x ∈ C(Ω(y), σ) ∩ Z
n} = f [C(Ω(y)σ), z],

which is exactly (23). Notice that x�σ = u + μσv, and so δσ(y − A�σu) = δσ(y −
A�σx�σ) because of the definition (9) of δσ. Finally, using (24) in (22) yields that
(19) holds whenever ‖z‖ < 1 and R1(y, σ; z) and R2(σ; z) are all well defined.

Notice that R2 is constant with respect to y, and from the definition (9) of
δσ, R1 is quasiperiodic with periods Aσ and μσ, meaning that

R1(y + Aσq, σ; z) = R1(y, σ; z) zq
σ and

R1(y + μσq, σ; z) = R1(y, σ; z)
(
z

A−1
σ q

σ

)μσ
(25)

hold for all y, q ∈ Z
m. Obviously, the more expensive part in calculating R2(·) in

(21) is to compute the determinant μσ = | detAσ|. On the other hand, computing
R1(·) in (20) may become quite expensive when μσ is large, as one must evaluate
μn−m

σ terms, the cardinality of Z
n−m
μσ

. However, as detailed below, a more careful
analysis of (20) yields some simplifications.

3.1 Simplifications Via Group Theory

From the proof of Theorem 1, the closed forms (20)–(21) for R1(·) and R2(·) are
deduced from (24), i.e.,

R1(y, σ; z)
R2(σ; z)

= z
A−1

σ y
σ

∑

x �σ∈Zn−m

δσ(y − A�σx�σ) z
x �σ
�σ

z
A−1

σ A �σx �σ
σ

,
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after setting x�σ = u + μσv and recalling that δσ(y) is a periodic function, i.e.,
δσ(y + μσq) = δσ(y) for all y, q ∈ Z

m. However, we have not used yet that
δσ(y + Aσq) = δσ(y) as well. For every σ ∈ JA, consider the lattice :

Λσ :=
⊕

j∈σ

AjZ ⊂ Z
m, (26)

generated by the columns Aj , j ∈ σ. The following quotient group

Gσ := Z
m/Λσ = Z

m
/⊕

j∈σ

AjZ (27)

= {Ec[0, σ], Ec[2, σ], . . . , Ec[μσ − 1, σ]}

is commutative, with μσ = | detAσ| elements (or, equivalence classes) Ec[j, σ],
and so, Gσ is isomorphic to a finite Cartesian product of cyclic groups Zηk

, i.e.,

Gσ
∼= Zη1 × Zη2 × · · · × Zηs .

Obviously, μσ = η1η2 · · · ηs, and so, Gσ is isomorphic to the cyclic group Zμσ

whenever μσ is a prime number. Actually, Gσ = {0} whenever μσ = 1. Notice
that the Cartesian product Zη1 × · · · × Zηs can be seen as the integer space Z

s

modulo the vector η := (η1, η2, · · · , ηs)′ ∈ N
s.

Hence, for every finite commutative group Gσ, there exist a positive integer
sσ ≥ 1, a vector ησ ∈ N

sσ with positive entries, and a group isomorphism,

gσ : Gσ → Z
sσ mod ησ, (28)

where gσ(ξ) mod ησ means evaluating [gσ(ξ)]k mod [ησ]k, for all indices 1 ≤ k ≤
sσ. For every y ∈ Z

m, there exists a unique equivalence class Ec[jy, σ] which
contains y, and so we can define the following group epimorphism,

ĥσ : Z
m → Z

sσ mod ησ, (29)

y �→ ĥσ(y) := gσ(Ec[jy, σ]).

On the other hand, the unit element of Gσ is the equivalence class Ec[0, σ]
which contains the origin, that is, Ec[0, σ] = {Aσq | q ∈ Z

m}.
Hence, ĥσ(y) = 0 if and only if there exists q ∈ Z

m such that y = Aσq. We
can then redefine the function δσ as follows,

y �→ δσ(y) :=
{

1 if ĥσ(y) = 0,
0 otherwise,

(30)

One also needs the following additional notation; given any matrix B ∈ Z
m×t,

ĥσ(B) := [ĥσ(B1)|ĥσ(B2)| · · · |ĥσ(Bt)] ∈ Z
sσ×t. (31)

And so, from (20), ĥσ(y − A�σu) ≡ ĥσ(y) − ĥσ(A�σ)u mod ησ. Finally, using
(30) in (20), one obtains a simplified version of R1(·) in the form:

R1(y, σ; z) =
∑

{
z

A−1
σ y

σ zu
�σ

z
A−1

σ A �σu
σ

∣∣∣∣
u ∈ Z

n−m
μσ

;
ĥσ(y) ≡ ĥσ(A�σ)u mod ησ

}
. (32)
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Next, with q ∈ Z
m fixed, νqA

−1
σ q ∈ Z

m for some integer νq, if and only if
νqĥσ(q) = 0 mod ησ. If we set νq = μσ, then μσA−1

σ q ∈ Z
m, and μσĥσ(q) =

0 mod ησ, because Gσ has μσ = | detAσ| elements. Nevertheless, μσ may not be
the smallest positive integer with that property. So, given σ ∈ JA and k /∈ σ,
define νk,σ ≥ 1 to be order of ĥσ(Ak). That is, νk,σ is the smallest positive
integer such that νk,σĥσ(Ak) = 0 mod ησ, or equivalently :

νk,σA−1
σ Ak ∈ Z

m. (33)

Obviously νk,σ ≤ μσ. Moreover, μσ is a multiple of νk,σ for it is the order of
an element in Gσ. For example, the group Z

2 modulo η =
(2
7

)
has 14 elements;

and the elements b1 =
(1
0

)
, b2 =

(0
1

)
and b3 =

(1
1

)
have respective orders : 2, 7

and 14. Notice that, 2b1 ≡ 7b2 ≡ 14b3 ≡ 0 mod η. But, 2b3 ≡ 2b2 �≡ 0 and
7b3 ≡ b1 �≡ 0 mod η.

The important observation is that δσ(y −νk,σAkq) = δσ(y) for all q ∈ Z
m and

k /∈ σ, which follows from (33) and (9). Thus, following step by step the proof
of Theorem 1, we obtain:

Corollary 1. Let y ∈ Z
m, z ∈ C

n with ‖z‖ < 1, and let y ∈ γ for some chamber
γ. Recall the set of bases B(JA, γ) defined in (14). With σ ∈ B(JA, γ), let R1 and
R2 be as in Theorem 1. Then

R1(y, σ; z)
R2(y; z)

=
R∗

1(y, σ; z)
R∗

2(y; z)
, (34)

where : R∗
2(σ; z) :=

∏

k/∈σ

[
1 −

(
zkz

−A−1
σ Ak

σ

)νk,σ
]
, (35)

R∗
1(y, σ; z) := z

A−1
σ y

σ

∑

u�σ∈U�σ

δσ(y − A�σu �σ) z
u�σ
�σ

z
A−1

σ A �σu�σ
σ

= (36)

=
∑

{
z

A−1
σ y

σ z
u�σ
�σ

z
A−1

σ A �σu�σ
σ

∣∣∣∣
u �σ ∈ U �σ;
ĥσ(y) ≡ ĥσ(A�σ)u �σ mod ησ

}
,

with U �σ := {u �σ ∈ N
n−m | 0 ≤ uk ≤ νk,σ − 1; k /∈ σ}.

One can also obtain (34) by noticing that:

R1(y, σ; z)
R∗

1(y, σ; z)
=

R2(σ; z)
R∗

2(σ; z)
=

∏

k/∈σ

(
1 + βνk,σ + · · · + βμσ−νk,σ

)
,

where βk,σ = zkz
−A−1

σ Ak
σ , and μσ is a multiple of νk,σ.
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3.2 Simplifications Via Finite Number of Generators

Decompose Z
m into μσ := | det Aσ| disjoint equivalent classes, where y, ξ ∈ Z

m

are equivalent if and only if δσ(y − ξ) = 1. For every basis σ ∈ JA, let Gσ be the
quotient group defined in (27), that is,

Gσ = Z
m

/⊕

j∈σ

AjZ = {Ec[0, σ], . . . , Ec[μσ − 1, σ]}.

Notice that y, ξ ∈ Z
n belong to Ec[j, σ] if and only if A−1

σ (y − ξ) ∈ Z
n, and that

Z
m is equal to the disjoint union of all classes Ec[j, σ].
Next, pick up a minimal representative element of every class, i.e., fix

ξ[j, σ] ∈ Ec[j, σ] such that A−1
σ y ≥ A−1

σ ξ[j, σ] ≥ 0, (37)

for every y ∈ Ec[j, σ] with A−1
σ y ≥ 0. The minimal representative elements ξ[j, σ]

in (37) can be computed as follows: Let d ∈ Ec[j, σ], arbitrary, and let d∗ ∈ Z
m

be such that his k-entry d∗k is the smallest integer greater than or equal to the
k-entry of −A−1

σ d. The vector ξ[j, σ] defined by d + Aσd∗ satisfies (37).
Notice that d∗ + A−1

σ d ≥ 0. Besides, let d, y ∈ Ec[j, σ] with A−1
σ y ≥ 0. There

exists q ∈ Z
m such that y = d + Aσq. Hence q ≥ −A−1

σ d; in addition, q ≥ d∗

follows from the above definition of d∗, and so A−1
σ y ≥ d∗ + A−1

σ d ≥ 0.
Therefore, the vector ξ[j, σ] := d+Aσd∗ satisfies (37). In particular, if Ec[0, σ]

is the class which contains the origin of Z
m, then ξ[0, σ] = 0. Notice that for

every integer vector y ∈ Z
m, there exists a unique ξ[j, σ] such that :

y = ξ[j, σ] + Aσ q, for q ∈ Z
m.

Moreover, the extra condition A−1
σ y ≥ 0 holds if and only if:

y = ξ[j, σ] + Aσ q with q ∈ N
m. (38)

We obtain a compact form of h(y; z) when y ∈ Z
m ∩ γ, for some chamber γ.

Theorem 2. Let h and ξ[j, σ] be as in (2) and (37), respectively. Let y ∈ Z
m∩γ,

for some chamber γ. Recall the set of bases B(JA, γ) defined in (14). For every
basis σ ∈ B(Δ, γ) there is a unique index 0 ≤ j[y, σ] < μσ such that y is contained
in the equivalence class Ec[j[y, σ], σ] defined in (27), and so:

h(y; z) =
∑

σ∈B(Δ,γ)

R1(ξ[j[y, σ], σ], σ; z)
R2(σ; z)

z
�A−1

σ y	
σ , (39)

where �Aσ
−1y� ∈ Z

m is such that his k-entry is the largest integer less than or
equal to the k-entry of A−1

σ y.

Proof. Recall that if y ∈ Z
m ∩ γ

h(y; z) =
∑

σ∈B(Δ,γ)

R1(y, σ; z)
R2(y; z)
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Next, recalling the definition (14) of B(JA, γ), A−1
σ y ≥ 0 for every basis σ ∈

B(JA, γ) with y ∈ γ. Recall that there is a unique index j[y, σ] < μσ such that
y = ξ[j[y, σ], σ] + Aσq with q ∈ N

m; see (38) and the comment just before.
To obtain the vector q ∈ N

m, recall that the minimal representative element
ξ[j[y, σ], σ] in (37) is the sum y + Aσy∗ where y∗ ∈ Z

m is such that his k-entry
y∗

k is the smallest integer greater than or equal to −A−1
σ y, for we only need to

fix d = y in the paragraph that follows (37). In particular, �Aσ
−1y� = −y∗, and

ξ[j[y, σ], σ] = y − Aσ�Aσ
−1y�, which when used in (20) and (25), yields,

R1(y, σ; z) = R1(ξ[j[y, σ], σ], σ; z) z
�A−1

σ y	
σ .

And so (19) implies (39).

Theorem 2 explicitly shows that it suffices to compute R1(v, σ; z) for finitely
many values v = ξ[j, σ], with σ ∈ B(Δ, γ) and 0 ≤ j < μσ, in order to calculate
h(y; z) for arbitrary values y ∈ Z

m ∩ γ, via (39).
In other words, in the closure γ of a chamber γ, one only needs to consider

finitely many fixed convex cones C(Ω(ξ[j, σ]), σ) ⊂ R
n, where σ ∈ B(Δ, γ) and

0 ≤ j < μσ, and compute their associated rational function (39). The counting
function h(y; z) is then obtained as follows.

Input: y ∈ Z
m ∩ γ, z ∈ C

n.
Output ρ = h(y; z).
Set ρ := 0. For every σ ∈ B(Δ, γ) :

• Compute ξ[j[y, σ], σ] := y − Aσ�A−1
σ y� ∈ Z

m.
• Read the value R1(ξ[j[y, σ], σ], σ; z)/R2(σ; z), and update ρ by:

ρ := ρ +
R1(ξ[j[y, σ], σ], σ; z)

R2(σ; z)
z
�A−1

σ y	
σ .

For the whole space Z
m it suffices to consider all chambers γ and all cones

C(Ω(ξ[j, σ]), σ) ⊂ R
n, where σ ∈ B(Δ, γ) and 0 ≤ j < μσ.

Finally, in view of (20)-(21), the above algorithm can be symbolic, i.e., z ∈ C
m

can be treated symbolically, and ρ becomes a rational fraction of z.

4 Generating Function

An appropriate tool for computing the exact value of h(y; z) in (2) is the formal
generating function H : C

m → C,

s �→ H(s) :=
∑

y∈Zm

h(y; z) sy =
n∏

k=1

1
1 − zksAk

, (40)

where sy is defined in (10) and the sum is understood as a formal power series, so
that we need not consider conditions for convergence. This generating function
was already considered in Brion and Vergne [8] with λ = ln〈s〉.
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Following notation of [8, p. 805], let 0 ≤ x̂ ∈ R
n be a regular vector, i.e., no

entry [A−1
σ Ax̂]j vanishes for any basis σ ∈ JA or index 1 ≤ j ≤ m. Define :

εj,σ :=
{

1 if [A−1
σ Ax̂]j > 0,

−1 if [A−1
σ Ax̂]j < 0.

(41)

Next, for every basis σ ∈ JA, index j ∈ σ and vector u �σ ∈ Z
n−m, fix :

θ[j, σ, u �σ ] ∈ Z : the smallest integer greater
than or equal to − εj,σ[A−1

σ A�σu �σ]j .
(42)

Define also the vector η[σ, u �σ] ∈ Z
n by :

η[σ, u �σ]j =

⎧
⎨

⎩

uj if j �∈ σ;
θ[j, σ, u �σ] if j ∈ σ, εj,σ = 1;

1 − θ[j, σ, u �σ ] if j ∈ σ, εj,σ = −1.
(43)

The following expansion can be deduced from [8].

Theorem 3. Let 0 ≤ x̂ ∈ R
n be regular and consider the vectors η[σ, u �σ] ∈ Z

n

defined in (43) for σ ∈ JA and u �σ ∈ Z
n−m. The following expansion holds:

n∏

k=1

1
1 − zksAk

=
∑

σ∈JA

[
∏

j∈σ

1
1 − zjsAj

]
× (44)

× 1
R2(σ; z)

∑

u�σ∈Z
n−m
μσ

zη[σ,u�σ] sAη[σ,u�σ],

where Zμσ = {0, 1, . . . , μσ − 1}, μσ = | detAσ| and:

z �→ R2(σ; z) :=
∏

k/∈σ

[
1 −

(
zkz

−A−1
σ Ak

σ

)μσ
]
. (45)

Proof. From Brion and Vergne’s identity [8, p. 813],
n∏

j=1

1
1 − ewk

=
∑

σ∈JA

[ ∏

j∈σ

εj,σ

]
F (Cσ

x̂ + ρσ(C), L), (46)

where F (Cσ
x̂ + ρσ(C), L) is the formal power series

∑
l e

l added over all el-
ements l in the intersection of the cone Cσ

x̂ + ρσ(C) with the integer lattice
L = Z[w1, . . . , wn]. Moreover, the coefficients εj,σ are defined in (41) and the
cone Cσ

x̂ is defined by the following formula [8, p. 805],

Cσ
x̂ =

{∑

j∈σ

εj,σ xj wj

∣∣∣∣ xσ ∈ R
m, xσ ≥ 0

}
. (47)

Finally, given the real vector space W = R[w1, . . . , wn], every ρσ : W → W is
a linear mapping defined by its action on each basis element wk of W ,

ρσ(wk) := wk −
∑

j∈σ

[A−1
σ Ak]jwj . (48)
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Hence, ρσ(wj) = 0 for every j ∈ σ, and the cone ρσ(C) is given by

ρσ(C) =
{ ∑

k �∈σ

xkwk −
∑

j∈σ

[A−1
σ A�σx�σ]jwj

∣∣∣∣
x�σ ∈ R

n−m,
x�σ ≥ 0

}
; (49)

see [8, p.805]. Thus, every element in the intersection of the cone Cσ
x̂ + ρσ(C)

with the lattice Z[w1, . . . , wn] must be of the form :
∑

k �∈σ

xkwk +
∑

j∈σ

εj,σ ξj wj , with x�σ ∈ N
n−m, (50)

ξσ ∈ Z
m and ξj ≥ −εj,σ[A−1

σ A�σx�σ ]j .

On the other hand, for every basis σ, define μσ = | detAσ| and :

x�σ = u �σ + μσv�σ, with u �σ ∈ Z
n−m
μσ

and v�σ ∈ N
n−m. (51)

Moreover, as in (42), fix θ[j, σ, u �σ ] ∈ Z to be the smallest integer greater than
or equal to −εj,σ[A−1

σ A�σu �σ]j . Thus, we can rewrite (50) so that the intersection
of the cone Cσ

x̂ + ρσ(C) with the lattice Z[w1, . . . , wn] must be of the form :
∑

k �∈σ

[
ukwk + vkμσρ(wk)

]
+

∑

j∈σ

εj,σwj

[
θ[j, σ, u �σ]j + qj

]
, (52)

with u �σ ∈ Z
n−m
μσ

, v�σ ∈ N
n−m and qσ ∈ N

m.

We can deduce (52) from (50) by recalling the definition (48) of ρσ(wk) and
letting :

ξj := θ[j, σ, u �σ] + qj − εj,σμσ[A−1
σ A�σv�σ]j .

Since F (Cσ
x̂ +ρσ(C), L) is the formal power series

∑
l e

l with summation over
all elements l in (52), one obtains

F (Cσ
x̂ + ρσ(C), L) = (53)

∑

u�σ∈Z
n−m
μσ

[
∏

j∈σ

eεj,σθ[j,σ,u�σ]wj

1 − eεj,σwj

][
∏

k �∈σ

eukwk

1 − eμσρσ(wk)

]
.

With η[σ, u �σ] ∈ Z
n being as in (43), using (53) into (46) yields the expansion

n∏

j=1

1
1 − ewk

=
∑

σ∈JA

∑

u�σ∈Z
n−m
μσ

[
∏

j∈σ

1
1 − ewj

]
× (54)

×
[

n∏

j=1

eη[σ,u�σ]jwj

][
∏

k �∈σ

1
1 − eμσρσ(wk)

]
.

Finally, we defined wk := ln(zk) + ln〈s〉Ak for every index 1 ≤ k ≤ n, where
the vectors s, z ∈ C

n have all their entries different from zero and ln〈s〉 is the
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[1×n] matrix defined in (10). So ewk = zksAk . Moreover, recalling the definition
(48) of ρσ(wk), the following identities hold for all 1 ≤ k ≤ n,

ρσ(wk) = ln(zk) −
∑

j∈σ

ln(zj)[A−1
σ Ak]j . (55)

Notice
∑

j∈σ Aj [A−1
σ Ak]j = Ak. A direct application of (55) and the identities

ewk = zksAk yields (44), i.e.:

n∏

k=1

1
1 − zksAk

=
∑

σ∈JA

∑

u�σ∈Z
n−m
μσ

zη[σ,u�σ]sAη[σ,u�σ ]

R2(σ; z)

∏

j∈σ

1
1 − zjsAj

,

with R2(σ; z) =
∏

k/∈σ

[
1 −

(
zkz

−A−1
σ Ak

σ

)μσ
]
.

A direct expansion of (44) yields the following:

Theorem 4. Let 0 ≤ x̂ ∈ R
n be regular, and let h and η be as in (2) and (43),

respectively. Let JA be the set of bases associated with A. Then for every pair of
(y, z) ∈ Z

m × C
n with ‖z‖ < 1:

h(y; z) =
∑

σ∈JA, A−1
σ y≥0

z
A−1

σ y
σ

R2(σ; z)

∑

u∈Z
n−m
μσ

zu
�σ

z
A−1

σ A �σu
σ

× (56)

×
{

1 if A−1
σ

(
y − Aη[σ, u]

)
∈ N

m,
0 otherwise,

where: Zμσ = {0, 1, . . . , μσ − 1}, μσ = | detAσ|,

0 ≤
[
A−1

σ Aη[σ, u]
]
j

≤ 1 for each j ∈ σ (57)

and R2(σ; z) :=
∏

k/∈σ

[
1 −

(
zkz

−A−1
σ Ak

σ

)μσ
]
. (58)

The proof is based on arguments similar to those developed in [13].
Observe that (56) is different from (19) or (34) because in (19) and (34) the

summation is over bases σ in the subset B(Δ, γ) ⊂ {JA; A−1
σ y ≥ 0}.
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Abstract. In this paper we provide new characterizing properties of
TDI systems. A corollary is Sturmfels’ theorem relating toric initial ide-
als generated by square-free monomials to unimodular triangulations. A
reformulation of these test-sets to polynomial ideals actually generalizes
the existence of square-free monomials to arbitrary TDI systems, pro-
viding new relations between integer programming and Gröbner bases of
toric ideals. We finally show that stable set polytopes of perfect graphs
are characterized by a refined fan that is a triangulation consisting only
of unimodular cones, a fact that endows the Weak Perfect Graph Theo-
rem with a computationally advantageous geometric feature. Three ways
of implementing the results are described and some experience about one
of these is reported.

1 Introduction

Let A = [a1 a2 · · ·an] ∈ Z
d×n and assume that A has rank d. With an abuse

of notation the ordered vector configuration consisting of the columns of A will
also be denoted by A. For every σ ⊆ [n] := {1, . . . , n} we have the d×|σ| matrix
Aσ given by the columns of A indexed by σ. Let cone(A), ZA and NA denote
the non-negative real, integer and non-negative integer span of A respectively
and assume that ZA = Z

d.
Fixing c ∈ R

n, for each b ∈ R
d the linear program (or primal program)

LPA,c(b) and its dual program DPA,c(b) are defined by

LPA,c(b) := minimize { c · x : Ax = b, x ≥ 0 }

and DPA,c(b) := maximize {y · b : yA ≤ c }. Let Pb and Qc denote the
feasible regions of LPA,c(b) and DPA,c(b) respectively. Note that the linear
program LPA,c(b) is feasible if and only if b ∈ cone(A). We refer to Schrijver
[21] for basic terminology and facts about linear programming.
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The integer program is defined as

IPA,c(b) := minimize { c · x : Ax = b, x ∈ N
n }.

We say that c ∈ R
n is generic for A if the integer program IPA,c(b) has a unique

optimal solution for all b ∈ NA. In this case, each linear program LPA,c(b) also
has a unique optimal solution for all b ∈ cone(A) but the converse is not true
in general. (However, for TDI systems the two are equivalent.)

The system yA ≤ c is totally dual integral (TDI) if LPA,c(b) has an integer
optimal solution x ∈ N

n for each b ∈ cone(A) ∩ Z
d. In other words, the system

yA ≤ c is TDI exactly if the optima of LPA,c(b) and of IPA,c(b) coincide for all
b ∈ cone(A) ∩ Z

d. This is a slight twist of notation when compared to habits in
combinatorial optimization: we defined the TDI property for the dual problem.
We do this in order to be in accordance with notations in computational algebra.

Totally dual integral (TDI) systems of linear inequalities play a central role
in combinatorial optimization. The recognition of TDI systems and the task of
efficiently solving integer linear programs constrained by TDI systems of inequal-
ities and their duals are among the main challenges of the field. This problem
is open even for generic systems (Problem 1). Recent graph theory results of
Chudnovsky, Cornuéjols, Xinming and Vušković [7] allows one to recognize TDI
systems with 0−1 coefficient matrices A and right hand sides b. However, solving
the corresponding dual pair of integer linear programs (including the coloration
of perfect graphs) in polynomial time with combinatorial algorithms remains
open even in this special case.

In Section 2, new characterizing properties of TDI systems are provided. These
properties involve tools from both combinatorial optimization and computational
algebra. Section 3 specializes these results to integral set packing polytopes.
Finally, Section 4 will exhibit the utility of the computational algebraic tools in
recognizing TDI systems.

If A is a matrix whose first d× (n− d) submatrix is a 0− 1 matrix and whose
last d × d submatrix is −Id, and c is all 1 except for the last d coordinates
which are 0, then DPA,c(b) is called a set packing problem, and Qc a set packing
polytope. We will show that if the set packing polytope is integral then the
lexicographic perturbation technique of linear programming can be used to make
the set packing polytope non-degenerate while keeping TDI-ness. This means
that the normal fan of the set packing polytope has a refinement which is a
unimodular triangulation, and this does not hold for TDI systems in general.

The remainder of this introduction is devoted to providing some background.
A collection of subsets {σ1, . . . , σt} of [n] will be called a regular subdivision of

A if there exists c ∈ R
n, and z1, . . . , zt ∈ R

d, such that zi · aj = cj for all j ∈ σi

and zi ·aj < cj for all j /∈ σi. The sets σ1, . . . , σt are called the cells of the regular
subdivision and the regular subdivision is denoted by Δc(A) = {σ1, . . . , σt} or
simply Δc when A is unambiguous.

Equivalently, regular subdivisions are simply capturing complementary slack-
ness from linear programming. Namely, a feasible solution to LPA,c(b) is optimal
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if and only if the support of the feasible solution is a subset of some cell of Δc.
Geometrically, Δc can be thought of as a partition of cone(A) by the inclusion-
wise maximal ones among the cones cone(Aσ1 ), . . . , cone(Aσt); each such cone
is generated by the normal vectors of defining inequalities of faces of Qc, each
maximal cell indexes the set of normal vectors of defining inequalities of a vertex
(or minimal face) of Qc. So the regular subdivision Δc is geometrically realized
as the normal fan of Qc.

A regular subdivision of A is called a triangulation if the columns of each Aσi

are linearly independent for all i = 1, . . . , t. Note that a regular subdivision Δc

is a triangulation if and only if every vertex is contained in exactly d facets;
that is, the polyhedron Qc is simple, or, non-degenerate. A triangulation Δc is
called unimodular if det(σi) = ±1 for each maximal cell of Δc. The refinement
of a subdivision Δc of A is another subdivision Δc′ of A so that each cell of
Δc′ is contained in some cell of Δc. A vector configuration B ⊂ Z

d is a Hilbert
basis if NB = cone(B) ∩ Z

d. Note that if for some c ∈ R
n Δc is a unimodular

triangulation of A then Cramer’s rule implies that A itself is a Hilbert basis.
A simple but helpful characterization of the TDI property in terms of the

Hilbert basis property of regular subdivisions has been provided by Schrijver [21].
We prove another elementary characterization in Section 2 in terms of test-sets:

Let IPA,c := {IPA,c(b) : b ∈ NA} denote the family of integer programs
IPA,c(b) having a feasible solution. Informally, a test set for the family of integer
programs IPA,c is a finite collection of integer vectors, called test vectors, with
the property that any non-optimal feasible solution can be improved (in objective
value) by subtracting a test vector from it. Test sets for the family of integer
programs IPA,c were first introduced by Graver [13].

Theorem 1 (one of the equivalences). A system of linear inequalities is TDI if
and only if its coefficient vectors form a Hilbert basis, and there exists a test set
for IPA,c where all test vectors have positive entries equal to 1, and a linearly
independent positive support.1

This simple result has the virtue of presenting a not too big test-set: there is
at most one test-vector for each at most d element subset of {1, . . . , n}, so the
number of test-vectors is O(nd). This will allow to deduce shortly Cook, Lovász
and Schrijver’s result on testing for TDI in fix dimension, providing a short proof
for this result.

It also has the other virtue that it has a nice and useful reformulation to
polynomial ideals. This reformulation generalizes a well-known algebraic result
proved by Sturmfels [26, Corollary 8.9] relating toric initial ideals to unimod-
ular triangulations. The basic connections between integer programming and
1 In oral and electronic communication the condition on test-sets was replaced by the

following still equivalent condition: “A system of linear inequalities is TDI if and only
if the coefficient vectors form a Hilbert basis, and there exists an integer dual solution
for objective functions that are sums of linearly independent coefficient vectors”,
implying TDI test in fix dimension [5], in practically all interesting cases. This is
just another wording of Applegate, Cook and McCormick’s Theorem 2 (Operations
Research Letters 10 (1991) 37–41), as we learnt from several colleagues.
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computational algebra was initiated by Conti and Traverso [3] and studied by
Sturmfels and Thomas, Weismantel and Ziegler and further explained from var-
ious viewpoints in [26], [25], [27] and [28]. Knowledge of this algebraic viewpoint
will not be assumed and a useful part will be described in Section 2.

In Section 3 we show that the converse of the following fact (explained at
the end of Section 2) holds for normal fans of integral set packing polytopes: if
c, c′ ∈ R

n are such that Δc′ is a refinement of Δc, where Δc′ is a unimodular
triangulation, then yA ≤ c is TDI. In general, the converse does not hold.
Thus Schrijver’s above mentioned result cannot necessarily be strengthened by
asserting a unimodular refinement of A. In general, the most that is known in
this direction is the existence of just one full dimensional subset of the columns
of A which is unimodular [11]. Not even a “unimodular covering” of a Hilbert
basis may be possible [1]. However, the converse does hold for normal fans of
integral set packing polytopes. More precisely, the main result of Section 3 is the
following:

Theorem 2. Given a set-packing problem defined by A and c, Qc has integer
vertices if and only if there exists c′ such that Δc′ is a refinement of the normal
fan Δc of Qc, where Δc′ is a unimodular triangulation.

The proof relies on the basic idea of Fulkerson’s famous “pluperfect graph theo-
rem” [12] stating that the integrality of such polyhedra implies their total dual
integrality in a very simple “greedy” way. Chandrasekaran and Tamir [2] and
Cook, Fonlupt and Schrijver [4] exploited Fulkerson’s method by pointing out
its lexicographic or advantageous Caratheodory feature. In [23, §4] it is noticed
with the same method that the active rows of the dual of integral set packing
polyhedra (the cells of their normal fan) have a unimodular subdivision, which
can be rephrased as follows: the normal fan of integral set packing polyhedra has a
unimodular refinement. However, the proof of the regularity of such a refinement
appears for the first time in the present work.

These results offer three methods for recognizing TDI systems, explained and
illustrated in Section 4.

2 TDI Systems

In this section we provide some new characterizations of TDI systems. We show
the equivalence of five properties, three polyhedral (one of them is the TDI
property) and two concern polynomial ideals. A third property is also equivalent
to these in the generic case.

While the proofs of the equivalences of the three polyhedral properties use
merely polyhedral arguments, the last among them – (iii) – has an appealing
reformulation into the language of polynomial ideals. Therefore, we start this
section by introducing the necessary background on polynomial ideals; namely,
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toric ideals, their initial ideals and Gröbner bases. The characterizations of TDI
systems involving polynomial ideals are useful generalizations of known results
in computational algebra. See [8] and [26] for further background.

An ideal I in a polynomial ring R := k[x1, . . . , xn] is an R-vector subspace
with the property that I · R = I. It was proven by Hilbert that every ideal is
finitely generated. That is, given an ideal I there exists a finite set of polynomials
f1, . . . , ft ∈ I such that for every f ∈ I there exists h1, . . . , ht ∈ R with f =
h1f1 + · · ·+ htft. We call such a collection f1, . . . , ft ∈ I a generating set for the
ideal I and denote this by I = 〈f1, . . . , ft〉. For the monomials in R we write
xu = xu1

1 · · ·xun
n for the sake of brevity. We call u the exponent vector of xu.

A monomial xu is said to be square-free if u ∈ {0, 1}n. An ideal is called a
monomial ideal if it has a generating set consisting only of monomials. For any
ideal J of R, mono(J) denotes the largest monomial ideal in R contained in J .
Alternatively, mono(J) is the ideal generated by all monomials in J . There is an
algorithm [20, Algorithm 4.4.2] for computing the generators of the monomial
ideal mono(J).

Every weight vector c ∈ R
n induces a partial order 
 on the monomials in R

via xu 
 xv if c ·u ≥ c ·v. If c ∈ R
n where 1 is the monomial of minimum c-cost

(that is, c · u ≥ 0 for every monomial xu), then we can define initial terms and
initial ideals. Given a polynomial f =

∑
u∈Nn ruxu ∈ I the initial term of f with

respect to c, is denoted by inc(f), and equals the sum of all ruxu of f , where c·u
is maximum. The initial ideal of I with respect to c is defined as the ideal in R
generated by the initial terms of the polynomials in I: inc(I) := 〈 inc(f) : f ∈ I 〉.
A Gröbner basis of an ideal I with respect to c, is a finite collection of elements
g1, . . . , gs in I such that inc(I) = 〈 inc(g1), inc(g2), . . . , inc(gs) 〉. Every Gröbner
basis is a generating set for the ideal I.

If inc(I) is a monomial ideal then a Gröbner basis is reduced if for every i �= j,
no term of gi is divisible by inc(gj). The reduced Gröbner basis is unique. In this
case, the set of monomials in inc(I) equal {xu : u ∈ U} with U := D+N

n where
D is the set of exponent vectors of the monomials inc(g1), inc(g2), . . . , inc(gs).
Dickson’s lemma states that sets of the form D + N

n, where D is arbitrary have
only a finite number of minimal elements (with respect to coordinate wise in-
equalities). This is an alternative proof to Hilbert’s result that every polynomial
ideal is finitely generated. In this case, the Gröbner basis also provides a gen-
eralization of the Euclidean algorithm for polynomial rings with two or more
variables called Buchberger’s algorithm (see [8]). This algorithm solves the ideal
membership problem: decide if a given polynomial is in an ideal or not. However,
a Gröbner basis for an ideal can have many elements (relative to a minimal
generating set for the ideal).

The toric ideal of A is the ideal IA = 〈xu − xv : Au = Av, u,v ∈ N
n 〉

and is called a binomial ideal since it is generated by polynomials having at
most terms. Every reduced Gröbner basis of a toric ideal consists of binomials.
A toric initial ideal is any initial ideal of a toric ideal. The following lemma is a
natural connection between integer programming and toric initial ideals.
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Lemma 1. [20, Lemma 4.4.7] Let A ∈ Z
d×n and c ∈ R

n. Then the monomial
ideal mono(inc(IA)) is equal to

〈xω : ω ∈ N
n is non-optimal solution for IPA,c(Aω) 〉.

One direction of the proof of Lemma 1 is straightforward: let ω be a non-optimal
solution, and ω′ an optimal solution to IPA,c(Aω). Then xω − xω′ ∈ IA is a
binomial with xω as its initial term with respect to c and xω is a monomial in
mono(inc(IA)). Our proof of the converse made essential use of Gröbner bases,
and was longer, it is intuitive enough to be used without proof with the reference
[20, Lemma 4.4.7] in the background.

A test set for the family of integer programs IPA,c is a collection of integer
vectors {v+

i − v−
i : Av+

i = Av−
i , v+

i ,v−
i ∈ N

n, i = 1, . . . , s} with the property
that u is a feasible, non-optimal solution to IPA,c(b) if and only if there exists an
i, 1 ≤ i ≤ s, such that u−(v+

i −v−
i ) ≥ 0. We can now state our characterizations:

Theorem 1. Fix A ∈ Z
d×n and c ∈ R

n, where A is a Hilbert basis. The follow-
ing statements are equivalent:

(i) The system yA ≤ c is TDI.
(ii) The subconfiguration Aσ of A is a Hilbert basis for every cell σ in Δc.
(iii) There exists a test-set for IPA,c where all the positive coordinates are equal

to 1, the positive support consists of linearly independent columns, (and the
negative support is a subset of a cell of Δc).

(iv) The monomial ideal 〈xω : ω ∈ N
n is not an optimal solution for IPA,c(Aω) 〉

has a square-free generating set.
(v) The monomial ideal generated by the set of monomials in inc(IA) has a

square-free generating set, that is, mono(inc(IA)) has a square-free generat-
ing set.

Proof. (i) is equivalent to (ii) : This is well-known from Schrijver’s work, (see
for instance [21]), but we provide the (very simple) proof here for the sake of
completeness: Suppose the system yA ≤ c is TDI, and let σ ∈ Δc. We show that
Aσ is a Hilbert basis. Let b ∈ cone(Aσ). Since the optimal solutions for LPA,c(b)
are exactly the non-negative combinations of the columns of Aσ with result b,
the TDI property means exactly that b can also be written as a non-negative
integer combination of columns in Aσ, as claimed.

(ii) implies (iii) : Suppose (ii) holds true for Δc of A. For every τ ⊆ [n] with τ
not contained in any cell of Δc, let bτ :=

∑
i∈τ ai = A(

∑
i∈τ ei). Since τ is not

contained in any cell of Δc, there exists an optimal solution βτ to LPA,c(bτ )
with c · βτ < c ·

∑
i∈τ ei. By the optimality of βτ we must have supp(βτ ) ⊆ σ

for some σ a cell of Δc. Since (ii) holds Aσ is a Hilbert basis for every cell of Δc

and therefore βτ can be chosen to be an integral vector. Let

TA,c := {
∑

i∈τ

ei − βτ : τ not contained in any cell ofΔc }.
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We claim that TA,c is a test set for IPA,c. Suppose b ∈ Z
d and ω ∈ N

n satisfies
Aω = b. That is, ω is a feasible solution to LPA,c(b).

If ω is an optimal solution then supp(ω) is contained in a cell in Δc. Thus no
vector in TA,c can be subtracted from it and remain in N

n. Conversely, if ω is not
an optimal solution to LPA,c(b) then supp(ω) ⊆ [n] is not contained in any cell σ
of Δc and so by basic linear programming there exists τ ⊆ supp(ω), Aτ is linearly
independent which is also not contained in any cell. ω − (

∑
i∈τ ei − βτ ) ≥ 0.

Note that this integer vector is cheaper than ω with respect to c.

(iii) implies (i): Suppose (iii) is true but for some b ∈ cone(A) the linear
program LPA,c(b) does not have an integer optimal solution. Let ω ∈ N

n be the
optimal solution to the integer program IPA,c(b) and let α/D be the optimal
solution to LPA,c(b) where α ∈ N

n, and D is a positive integer. Since LPA,c(b)
does not have an integer optimal solution, we have c · α/D < c · ω. This also
implies that Dω is not an optimal solution to IPA,c(Db).

By (iii) there exists a test set for solving the integer program IPA,c(Db) and so
there exists a γ+−γ− with γ+ ∈ {0, 1}n and γ− ∈ N

n such that c·(γ+−γ−) > 0
and with Dω − (γ+ − γ−) ∈ N

n. Hence, supp(γ+) ⊆ supp(Dω) = supp(ω).
Since the value of all elements in γ+ is 0 or 1 then we also have ω ≥ γ+, so
ω−(γ+−γ−) ∈ N

n is also a feasible solution to IPA,c(b) with c·(ω−(γ+−γ−)) <
c · ω, in contradiction to the optimality of ω.

(iii) is equivalent to (iv): Both (iii) and (iv) can be reformulated as follows:
If ω ∈ N

n is not an optimal solution to LPA,c(Aω) then the vector ω′ defined
as ω′

i := 1 if i ∈ supp(ω) and 0 otherwise is also a non-optimal solution to
LPA,c(Aω′).

(iv) is equivalent to (v): This is a special case of Lemma 1. �


Recall that we defined c ∈ R
n to be generic with the first of the following

conditions, but the others are also equivalent to the definition [28]:

– The integer program IPA,c(b) has a unique optimal solution for all b ∈ NA.
– The toric initial ideal inc(IA) is a monomial ideal.
– There exists a Gröbner basis {xu+

1 −xu−
1 , . . . ,xu+

s −xu−
s } of IA with c ·u+

i >
c · u−

i for each i = 1, . . . , s.

In the generic case, by Cramer’s rule, (ii) is equivalent to Δc being a unimod-
ular triangulation which gives the following corollary.

Corollary 1. (Sturmfels) [26, Corollary 8.9] Let A ∈ Z
d×n and let c ∈ R

n be
generic with respect to A. Then Δc is a unimodular triangulation if and only if
the toric initial ideal inc(IA) is generated by square-free monomials.

Still concerning generic c it is worth to note the following result of Conti and
Traverso which provides another connection between integer linear programming
and Gröbner bases. Here we think of an element xv+ − xv−

in the reduced
Gröbner basis as a vector v+ − v−.
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Proposition 1. (Conti-Traverso) [2] – see [29, Lemma 3] If IPA,c(b) has a
unique optimal solution for every b ∈ NA then the reduced Gröbner basis is a
minimal test set for the family of integer programs IPA,c.

This proposition means for us that in the generic case the following (vi) can be
added to Theorem 1:

(vi) The initial terms in the reduced Gröbner basis are square-free.
In particular, in the generic case of condition (iii) of Theorem 1 the unique

inclusion wise minimal test set is defined by the reduced Gröbner basis, which,
by (vi) has only square-free terms initial terms.

As is typically the case in combinatorial optimization, the cost vector c is not
generic for A. Theorem 1 was found by a desire to generalize Sturmfels’ theorem.
In the rest of this section we study the limits of profiting from the advantages
of the generic case by refinement. ¿From the implication “(ii) implies (i)” we
immediately get the following:

Proposition 2. If c, c′ ∈ R
n are such that Δc′ of A is a refinement of Δc of

A, where Δc′ is a unimodular triangulation of A, then yA ≤ c is TDI.

Clearly, the unimodular triangulation does not even need to be regular – a uni-
modular cover of the cells is actually enough as well for verifying – by Cramer’s
rule – that Aσ is a Hilbert basis, and therefore (ii) holds. We are interested
in the converse of Proposition 2, that is, the existence of such a c′ for every
TDI system. In general such a converse does not hold. It is not even true that
a Hilbert basis has a unimodular partition or a unimodular covering [1]. This
counterexample [1] inspires two important remarks. First, it cannot be expected
that the equivalence of (i) and (v) can be reduced to Sturmfels’ generic case,
even though square-free generating sets exist for general TDI systems as well.
Secondly, it should be appreciated that the converse of this remark does hold in
the important set packing special case, as we will see in the next Section 3.

3 Set Packing

Let a set packing problem be defined with a matrix A and vector c, and recall
c := (1,0) ∈ R

n, where the last d entries of c are 0. If the set packing polytope
Qc has integer vertices then the matrix A and the polytope Qc are said to be
perfect. (We will not use the well-known equivalence of this definition with the
integer values of optima: this will follow.) Lovász’ (weak) perfect graph theorem
[16] is equivalent to: the matrix A defining a set packing polytope is perfect if
and only if its first (n − d) columns form the incidence vectors (indexed by the
vertices) of the inclusion wise maximal complete subgraphs of a perfect graph.

A polyhedral proof of the perfect graph theorem can be split into two parts:
Lovász’ replication lemma [16] and Fulkerson’s pluperfect graph theorem [12]. The
latter states roughly that a set packing polytope with integer vertices is described
by a TDI system of linear inequalities. In this section we restate Fulkerson’s result
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in a sharper form: there is a unimodular regular triangulation that refines the
normal fan of any integral set packing polytope. We essentially repeat Fulkerson’s
proof, completing it with a part that shows unimodularity along the lines of the
proof of [23, Theorem 3.1]. The following theorem contains the weak perfect
graph theorem and endows it with an additional geometric feature. Denote the
common optimal value of LPA,c(b) and DPA,c(b) by γc(b). Note that γc is a
monotone increasing function in all of the coordinates.

Theorem 2. Let Qc be a set packing polytope defined by A and c. Then there
exists a vector ε ∈ R

n such that c′ := (1,0) + ε defines a regular triangulation
Δc′ refining Δc, and this triangulation is unimodular, if and only if Qc is perfect.

We do not claim that the following proof of this theorem is novel. All essential
ingredients except unimodularity are already included in the proof of Fulker-
son’s pluperfect graph theorem [12]. Cook, Fonlupt and Schrijver [4] and Chan-
drasekaran, Tamir [2] both exploited the fact that the greedy way of taking
active rows leads to integer basic solutions in this case. The latter paper exten-
sively used lexicographically best solutions, which is an important tool in linear
programming theory, and this was used in observing the existence of a unimod-
ular refinement of the normal fan in [23]. This same lexicographic perturbation
is accounted for by the vector ε of Theorem 2, showing that the unimodular
refinement is regular. This motivated the following problem, thus containing
perfectness test:

Problem 1. [24] Given a d × n integer matrix A and an n dimensional integer
vector c, decide in polynomial time whether the normal fan of Qc consists only
of unimodular cones. Equivalently, can it be decided in polynomial time that Qc
is non-degenerate, and the determinant of Aσ is ±1 for all σ ∈ Δc.

Theorem 2 is a last step in a sharpening series of observations all having essen-
tially the same proof. We begin similarly, with the proof of Fulkerson’s pluperfect
graph theorem which will indicate what the c′ of Theorem 2 should be, and then
finish by showing that Δc′ is a unimodular triangulation.

Assume that A is a perfect matrix for the remainder of this section and that
c = (1,0) as before. For all b ∈ Z

d and column index i ∈ {1, . . . , n} let

λc,i(b) := max{xi : x is an optimal solution of LPA,c(b)}.

That is, λc,i(b) is the largest value of xi such that c·x is minimum under x ∈ Pb.
An additional remark: if σ is the minimal cell of Δc such b ∈ cone(Aσ), then

b−λc,i(b)ai ∈ cone(Aσ′ ) where σ′ ∈ Δc, σ′ ⊆ σ and the dimension of cone(Aσ′)
is strictly smaller than that of cone(Aσ). Furthermore, b − λai /∈ cone(Aσ) if
λ > λc,i(b).

For all b ∈ Z
d we show that λc,i(b) is an integer for every i = 1, . . . , n. This

is the heart of Fulkerson’s pluperfect graph theorem [12, Theorem 4.1]. We state
it here in a way that is most useful for our needs:
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Lemma 2. Suppose γc(b) ∈ Z for all b ∈ Z
d. If x is an optimal solution to

LPA,c(b) with xl �= 0 for some 1 ≤ l ≤ n, then there exists x∗ also optimal for
the same b, such that x∗

l ≥ 1.

Note that this lemma implies the integrality of λ := λc,l(b) for all l = 1, . . . , n:
if λ were not an integer then setting b′ := b − �λ�al we have λc,l(b′) = {λ}
where 0 ≤ {λ} := λ − �λ� < 1, contradicting Lemma 2.

Proof. Suppose x ∈ Pb with c · x = γ(b) and xl > 0 for some 1 ≤ l ≤ n. We
have two cases: either 1 ≤ l ≤ n − d or n − d + 1 ≤ l ≤ n.

If n − d + 1 ≤ l ≤ n then al = −el−(n−d) ∈ R
d and cl = 0. In this case, we

have γc(b) = γc(b+xlel−(n−d)) because replacing xl by 0 in x we get a solution
of the same objective value for the right hand side b + xlel−(n−d) which gives
γc(b) ≥ γc(b+xlel−(n−d)). The reverse inequality follows from the (coordinate-
wise) monotonicity of γc. But then

γc(b + el−(n−d)) ≤ γc(b + xlel−(n−d)) + 1 − xl = γc(b) + 1 − xl,

and since γc(b + el−(n−d)) is integer and 1 − xl < 1, we conclude that γc(b +
el−(n−d)) = γc(b).

So for any optimal x′ ∈ Pb+el−(n−d) where c · x′ = γc(b), letting x∗ :=
x′ + el−(n−d) ∈ Pb we have c · x∗ ≤ γc(b) and so x∗ is optimal and x∗

l ≥ 1.
On the other hand, suppose 1 ≤ l ≤ n − d. By the monotonicity of γc, and

noting that replacing xl in x by 0 we get a point in Pb−xlal
. This point has

objective value c · x − xl < c · x = γc(b), and so we have

γ(b − al) ≤ γ(b − xlal) < γ(b).

Since the left and right hand sides are both integer values then γ(b − al) ≤
γ(b) − 1. In other words, for any optimal x′ ∈ Pb−al

we have c · x′ ≤ γc(b) − 1.
Letting x∗ := x′ +el ∈ Pb we get c ·x∗ ≤ γc(b)−1+1 = γc(b) with x∗

l ≥ 1. �

Let us know define the appropriate c′ for the theorem, depending only on c.
Define c′ := c + ε ∈ R

n where εi := −(1/nn+2)i for each i = 1, . . . , n. Note that
the absolute value of the determinant of a {−1, 0, 1}-matrix cannot exceed nn.
It follows, by Cramer’s rule, that the coefficients of linear dependencies between
the columns of A are at most nn in absolute value, and then the sum of absolute
values of the coefficients between two solutions of an equation Ax = b for any
b ∈ R

n can differ by at most a factor of nn+2. After this observation two facts can
be immediately checked (this is well-known from courses of linear programming):

(i) Any optimal solution to LPA,c′(b) is also optimal for LPA,c(b).
(ii) If x′ and x′′ are both optimal solutions to LPA,c(b) then x′ is lexicograph-

ically bigger than x′′ (that is, the first non-zero coordinate of x′ − x′′ is
positive) if and only if c′ · x′ < c′ · x′′.

Fact (i) means that Δc′ refines Δc, and (ii) means that an optimal solution
to LPA,c′(b) is constructed by defining b0 := b and recursively

xi := λc,i(bi−1), bi := bi−1 − xiai.
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Furthermore, this optimum is unique and it follows that Δc′ is a triangulation.
We are now ready to prove Theorem 2.

Proof of Theorem 2. The necessity of the condition is straightforward: each vertex
y ∈ Qc satisfies the linear equation of the form yAσ′ = 1, where σ′ is a cell of
Δc′ , b ∈ cone(Aσ′ ) ⊆ cone(Aσ), σ ∈ Δc. Since the determinant of Aσ is ±1, by
Cramer’s rule, y is integer.

Conversely, we will prove the assertion supposing only that γc(b) is integer
for all b ∈ Z

d. (Note that then by the already proven easy direction we will
have proved from this weaker statement that Qc is perfect, as promised at the
definition of perfectness.)

Without loss of generality, suppose that b cannot be generated by less than
d columns of A, that is, the minimal cell σ of Δc such that b ∈ cone(Aσ) is a
maximal cell of Δc. That is, cone(Aσ) is d-dimensional. Because of fact (i), an
optimal solution to LPA,c′(b) will have support in σ and fact (ii) implies that
such an optimal solution is constructed as follows:

Let s1 := min{i : i ∈ σ} and xs1 := λc,s1 (b). Recursively, for j = 2, . . . , d let
sj be the smallest element in σ indexing a column of A on the minimal face of
cone(Aσ) containing

b −
j−1∑

i=1

xsiasi .

Since b is in the interior of cone(Aσ) then xsi > 0 for each i = 1, ..., d,
and by Lemma 2, these d xsi ’s are integer. Moreover, since the dimension of
cone(Aσ\{s1,...,si}) is strictly decreasing as i = 2, . . . , d progresses then

b −
d∑

i=1

xsiasi = 0

and, setting U := {s1, . . . , sd} ⊆ σ, we have the columns of AU are linearly
independent. Note that U is a cell of Δc′ and every maximal cell of Δc′ arises
in this fashion. We show that the matrix AU has determinant ±1.

Suppose not. Then the inverse of the matrix AU is non-integer, and from the
matrix equation (AU )−1AU =id we see that there exists a unit vector ej ∈ R

d

which is a noninteger combination of columns in AU :

d∑

i=1

xsiasi = ej .

For α ∈ R let {α} := α − �α�, and define:

d∑

i=1

{xsi}asi =: z

Clearly, z ∈ cone(AU ) and furthermore z ∈ Z
d since it differs from ej by an

integer combination of the columns of AU . So Lemma 2 can be applied to b := z:
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letting l := min{i : {xsi} �= 0} we see that λc,sl
(z) < 1 contradicting Lemma 2.

Hence both AU and (AU )−1 are integer, their determinant is ±1; since AU was
an arbitrary maximal cell of Δc′ , we conclude that Δc′ is unimodular. �

The argument concerning the inverse matrix replaces the use of parallelepipeds
(compare with [23, proof of Theorem 3.1]) that we wanted to avoid here to stay
in elementary terms.

Note that all the numbers in the definition of c′ are at most nn2
, so they have

a polynomial number of digits: the perturbed problem has polynomial size in
terms of the original one, reducing perfectness test to Problem 1.

4 Computation

In this section we wish to give an idea of how the results presented in this work
lead to practical algorithms. There are three essentially different approaches.

A first, general, elementary algorithm can be based on Theorem 1, or more
precisely on the proof of its Corollary ??. Indeed, the procedure described in
this corollary is a general algorithm for testing the TDI property in O(nd) time.
If d is fixed, it is a polynomial algorithm. This is very recent and has not yet
been implemented.

The equivalences of (i) and (v) in Theorem 1 along with an algorithm [20, Al-
gorithm 4.4.2] for computing the generators of the monomial ideal mono(inc(IA))
permit us to detect TDI using algebraic methods: the generators are square-free
if and only if the system yA ≤ c is TDI.

This algorithm works for all cost vectors, be they generic or non-generic, but it
is not yet implemented and our suspition is that mono(inc(IA)) could be rather
difficult to compute in the non-generic case. However, in the generic case, inc(IA)
is already a monomial ideal and can be attained in practice. In addition, even
if c is non-generic, it may have a generic perturbation yielding a unimodular
triangulation and then the toric initial ideals can be studied with respect to
the perturbed vector. Computing the toric initial ideal may be far easier than
investigating the unimodularity of the corresponding triangulation.

Let us have a look at one example of an A and c coming from a set packing
problem. A more efficient way of treating the data is at hand in the generic
case. Then we can use the computationally well studied reduced Gröbner bases
according to Proposition 1.

The perfect graph in Figure 1 with 21 maximal cliques on 20 vertices was
constructed by Padberg in [18]. The matrix A is a (20 × 41)-matrix and the
toric ideal IA lives in the polynomial ring k[a, . . . , u, v1, . . . , v20] where a, . . . , u
correspond to the maximal cliques of G (the first 21 columns of A) and where
v1, . . . , v20 correspond to the vertices of G (the ordered columns of −I20, the last
20 columns of A) as before.

The toric initial ideal with an appropriate perturbation has 61 elements, all
of which are square-free. The computation was carried out in Macaulay 2 [14]
(in less than 1 second) and its implementation can be seen in [17, Appendix A].
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Fig. 1. Padberg’s graph G with 21 maximal cliques on 20 vertices

However, we could (equivalently) have asked if a well-defined triangulation re-
fining Δc, was a unimodular triangulation. This is a far more exhausting task than
computing the monomial toric initial ideal. Because of the bijection between the
cells of Δc and the vertices of Qc, using PORTA [9] we computed that Qc had pre-
cisely 5901 vertices. Next, using TOPCOM [19] a number of these 5901 cells are each
refined into many pieces by the refinement. To confirm TDI, the determinant in-
dexed by each of the many refined cells would have to be computed.

Acknowledgments

The authors wish to thank Rekha Thomas for her valuable input and suggestions.
Some work related to the results of this article, including the computational
experimentation, can be found in the first author’s Ph.D. dissertation at the
University of Washington. Thanks are also due to our colleagues who developed
the computational packages Macaulay 2 and TOPCOM.

References

1. W. Bruns, J. Gubeladze, Normality and Covering Properties of Affine Semi-
groups, manuscript.

2. R. Chandrasekaran, A. Tamir , On the integrality of an extreme solution to
pluperfect graph and balanced systems, Oper. Res. Let., 3, (1984), 215–218.

3. P. Conti, C. Traverso, Buchberger algorithm and integer programming, Applied
algebra, algebraic algorithms and error-correcting codes, Lecture Notes in Comput.
Sci., 539, Springer, Berlin, 1991



Characterizations of Total Dual Integrality 395

4. W. Cook, J. Fonlupt, A. Schrijver, An integer analogue of Carathéodory’s
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Abstract. This paper presents a connection between qualitative matrix
theory and linear complementarity problems (LCPs). An LCP is said to
be sign-solvable if the set of the sign patterns of the solutions is uniquely
determined by the sign patterns of the given coefficients. We provide a
characterization for sign-solvable LCPs such that the coefficient matrix
has nonzero diagonals, which can be tested in polynomial time. This
characterization leads to an efficient combinatorial algorithm to find the
sign pattern of a solution for these LCPs. The algorithm runs in O(γ)
time, where γ is the number of the nonzero coefficients.

Keywords: Linear Complementarity Problems, Combinatorial Matrix
Theory.

1 Introduction

This paper deals with linear complementarity problems (LCPs) in the following
form:

LCP(A, b): find (w, z)
s.t. w = Az + b,

wTz = 0,
w ≥ 0, z ≥ 0,

where A is a real square matrix, and b is a real vector. The LCP, introduced
by Cottle [4], Cottle and Dantzig [5], and Lemke [16], is one of the most widely
studied mathematical programming problems, which contains linear program-
ming and convex quadratic programming. Solving LCP(A, b) for an arbitrary
matrix A is NP-complete [3], while there are several classes of matrices A for
which the associated LCPs can be solved efficiently. For details of the theory of
LCPs, see the books of Cottle, Pang, and Stone [6] and Murty [20].

The sign pattern of a real matrix A is the {+, 0, −}-matrix obtained from A
by replacing each entry by its sign. When we develop an LCP model in practice,
the entries of A and b are subject to many sources of uncertainty including
errors of measurement and absence of information. On the other hand, the sign
patterns of A and b are structural properties independent of such uncertainty.
This motivates us to provide a combinatorial method that exploits the sign
patterns before using numerical information.
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Sign pattern analysis for matrices and linear systems, called qualitative ma-
trix theory, was originated in economics by Samuelson [24]. Various results about
qualitative matrix theory are compiled in the book of Brualdi and Shader [1].
For a matrix A, we denote by Q(A) the set of all matrices having the same sign
pattern as A, called the qualitative class of A. The qualitative class of a vector
is defined similarly. A square matrix A is said to be sign-nonsingular if Ã is
nonsingular for any Ã ∈ Q(A). The problem of recognizing sign-nonsingular ma-
trices has many equivalent problems in combinatorics [17,21,25,27], while its time
complexity had been open for a long time. In 1999, Robertson, Seymour, and
Thomas [22] presented a polynomial-time algorithm for solving this problem (cf.
McCuaig [18,19]).

For linear programming, Iwata and Kakimura [11] proposed sign-solvability in
terms of qualitative matrix theory. A linear program max{cx | Ax = b, x ≥ 0},
denoted by LP(A, b, c), is sign-solvable if the set of the sign patterns of the
optimal solutions of LP(Ã, b̃, c̃) is the same as that of LP(A, b, c) for any Ã ∈
Q(A), b̃ ∈ Q(b), and c̃ ∈ Q(c). They showed that recognizing sign-solvability of
a given LP is NP-hard, and gave a sufficient condition for sign-solvable linear
programs, which can be tested in polynomial time. Moreover, they devised a
polynomial-time algorithm to obtain the sign pattern of an optimal solution for
linear programs satisfying this sufficient condition.

In this paper, we introduce sign-solvability for linear complementarity prob-
lems. We say that LCP(A, b) is sign-solvable if the set of the sign patterns of the
solutions of LCP(Ã, b̃) coincides with that of LCP(A, b) for any Ã ∈ Q(A) and
b̃ ∈ Q(b). An LCP(A, b) such that all diagonal entries of A are nonzero is said
to have nonzero diagonals. The class of LCPs with nonzero diagonals includes
LCPs associated with positive definite matrices, P-matrices, and nondegenerate
matrices, which are all of theoretical importance in the context of LCPs (e.g.
[6, Chapter 3]). LCPs with P-matrices are related to a variety of applications
such as circuit equations with piecewise linear resistances [8] and linear systems
of interval linear equations [23]. We present a characterization for a sign-solvable
LCP(A, b) with nonzero diagonals, and describe a polynomial-time algorithm to
solve them from the sign patterns of A and b.

We first provide a sufficient condition for sign-solvable LCPs with nonzero
diagonals. A square matrix A is term-nonsingular if the determinant of A con-
tains at least one nonvanishing expansion term. A square matrix A is term-
singular if it is not term-nonsingular. A matrix A is term-singular if and only
if Ã is singular for any Ã ∈ Q(A). An m × n matrix with m ≤ n is said
to be totally sign-nonsingular if all submatrices of order m are either
sign-nonsingular or term-singular, namely, if the nonsingularity of each subma-
trix of order m is determined uniquely by the sign pattern of the matrix. Totally
sign-nonsingular matrices were investigated in the context of sign-solvability of
linear systems [1,12,13,26] (the terms “matrices with signed mth compound”
and “matrices with signed null space” are used instead). Recognizing totally
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sign-nonsingular matrices can be done in polynomial time by testing sign-non
singularity of related square matrices [11]. We show that, if the matrix M = (A b)
is totally sign-nonsingular and A has nonzero diagonals, then LCP(A, b) is sign-
solvable.

We then present a characterization of sign-solvable LCPs with nonzero di-
agonals. A row of a matrix is called mixed if it has both positive and negative
entries. A matrix is row-mixed if every row is mixed. For an LCP(A, b) with
nonzero diagonals, we introduce the residual row-mixed matrix, which is the spe-
cial submatrix of M = (A b) defined in Sect. 3. Then LCP(A, b) with nonzero
diagonals is sign-solvable if and only if its residual row-mixed matrix M ′ satisfies
one of followings: M ′ does not contain the subvector of b, M ′ has no rows, or
M ′ is totally sign-nonsingular. The residual row-mixed matrix can be obtained
in polynomial time. Thus the sign-solvability of a given LCP(A, b) with nonzero
diagonals can be recognized in polynomial time.

This characterization leads to an efficient combinatorial algorithm to solve a
given LCP(A, b) with nonzero diagonals from the sign patterns of A and b. The
algorithm tests the sign-solvability, and finds the sign pattern of a solution if it
is a sign-solvable LCP with solutions. In this algorithm, we obtain a solution of
LCP(Ã, b̃) for some Ã ∈ Q(A) and b̃ ∈ Q(b). If LCP(A, b) is sign-solvable, then
LCP(A, b) has a solution with the same sign pattern as the obtained one. The
time complexity is O(γ), where γ is the number of nonzero entries in A and b.
We note that the obtained sign pattern easily derives a solution of the given
LCP by Gaussian elimination. Thus a sign-solvable LCP with nonzero diagonals
is a class of LCPs which can be solved in polynomial time.

Before closing this section, we give some notations and definitions used in the
following sections.

For a matrix A, the row and column sets are denoted by U and V . If A is a
square matrix, suppose that U and V are both identical with N . We denote by
aij the (i, j)-entry in A. Let A[I, J ] be the submatrix in A with row subset I and
column subset J , where the orderings of the elements of I and J are compatible
with those of U and V . The submatrix A[J, J ] is abbreviated as A[J ]. The
support of a row subset I, denoted by Γ (I), is the set of columns having nonzero
entries in the submatrix A[I, V ], that is, Γ (I) = {j ∈ V | ∃i ∈ I, aij �= 0}.
For a vector b, the jth entry of b is denoted by bj . The vector b[J ] means the
subvector with index subset J . The support of a vector b is the column index
subset {j | bj �= 0}.

For a square matrix A, let π be a bijection from the row set N to the column
set N . We denote by p(A|π) = sgnπ

∏
i∈N aiπ(i) the expansion term of detA cor-

responding to π. Then a matrix A is term-nonsingular if and only if there exists
a bijection π : N → N with p(A|π) �= 0. A square matrix A is sign-nonsingular if
and only if A is term-nonsingular and every nonvanishing expansion term of detA
has the same sign [1, Theorem 1.2.5]. Thus, if A is sign-nonsingular, the determi-
nant of every matrix in Q(A) has the same sign. It is also shown in [1, Theorem
2.1.1] that, if a square matrix A is sign-nonsingular, then A is not row-mixed.
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This paper is organized as follows. In Sect. 2, we provide a sufficient condition
using totally sign-nonsingular matrices. Section 3 gives a characterization for sign-
solvable LCPs with nonzero diagonals. In Sect. 4, we describe a polynomial-time
algorithm to solve sign-solvable LCPs with nonzero diagonals from the sign pat-
terns of the given coefficients.

2 Totally Sign-Nonsingular Matrices

In this section, we give a sufficient condition for sign-solvable LCPs using totally
sign-nonsingular matrices. For that purpose, we define sign-nondegenerate ma-
trices. A square matrix A is nondegenerate if every principal minor is nonzero.
A matrix A is nondegenerate if and only if LCP(A, b) has a finite number of
solutions for any vector b [6]. Recognizing nondegenerate matrices is co-NP-
complete [2,20]. A square matrix A is said to be sign-nondegenerate if Ã is non-
degenerate for any Ã ∈ Q(A). Then the following lemma holds, which implies
that sign-nondegeneracy can be tested in polynomial time.

Lemma 2.1. A square matrix A is sign-nondegenerate if and only if A is a
sign-nonsingular matrix with nonzero diagonals.

Proof. To see the necessity, suppose that A is sign-nondegenerate. Let Ã be a
matrix in Q(A). Since all principal minors in Ã are nonzero, all diagonal entries
are nonzero. Moreover, det Ã is nonzero, which implies that A is sign-nonsingular.
Thus A is a sign-nonsingular matrix with nonzero diagonals.

To see the sufficiency, suppose that A is a sign-nonsingular matrix with
nonzero diagonals. Let J ⊆ N be an index subset. Since the principal sub-
matrix A[J ] has nonzero diagonals, A[J ] is term-nonsingular. Let σ1 and σ2 be
bijections from J to J such that p(A[J ]|σ1 ) �= 0 and p(A[J ]|σ2 ) �= 0. Define
bijections πk : N → N to be πk(j) = j if j ∈ N \ J and πk(j) = σk(j) if
j ∈ J for k = 1, 2. Since A has nonzero diagonals, p(A|π1) and p(A|π2) are
both nonzero. By p(A|πk

) = p(A[J ]|σk
)
∏

i∈N\J aii for k = 1, 2, it follows from
sign-nonsingularity of A that the two nonzero terms p(A[J ]|σ1 ) and p(A[J ]|σ2)
have the same sign. Thus A[J ] is sign-nonsingular, which implies that A is sign-
nondegenerate. 	


We now obtain the following theorem. For LCP(A, b), let M be the matrix in
the form of M = (A b), where the column set is indexed by N ∪ {g}.

Theorem 2.2. For a linear complementarity problem LCP(A, b) with nonzero
diagonals, if the matrix M = (A b) is totally sign-nonsingular, then LCP(A, b)
is sign-solvable.

Proof. First assume that LCP(A, b) has a solution (w, z). Let J be the support

of z. Then we have AJ

(
w[N \ J ]

z[J ]

)
+ b = 0, where AJ is the matrix in the form

of

AJ =
(

O A[J ]
−I A[N \ J, J ]

)
.
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Since A is sign-nondegenerate by Lemma 2.1, each principal submatrix is sign-
nonsingular, and hence AJ is also sign-nonsingular by detAJ = ± detA[J ]. Then
it holds by Cramer’s rule that

zj =
{

−detAj
J/detAJ , if j ∈ J,
0, if j ∈ N \ J,

(1)

wj =
{

0, if j ∈ J,

−detAj
J/detAJ , if j ∈ N \ J,

(2)

where Aj
J is the matrix obtained from AJ by replacing the jth column vector of

AJ with b. The determinant of Aj
J is represented by

detAj
J =

{
± detM [J, J − j + g], if j ∈ J,
± detM [J + j, J + g], if j ∈ N \ J,

(3)

where J − j + g means J \ {j} ∪ {g} with g being put at the position of j in J ,
the set J + j coincides with J ∪ {j}, and J + g means J ∪ {g} in which g is put
at the same position as that of j in J + j.

We show that Aj
J is either term-singular or sign-nonsingular for any J ⊆ N

and j ∈ N . Assume that there exists j ∈ N such that Aj
J is term-nonsingular, but

not sign-nonsingular. First suppose that j ∈ J . By (3), the submatrix M [J, J−j+
g] is term-nonsingular, but not sign-nonsingular. Then there exist two bijections
σ1 and σ2 from J to J − j + g such that p(M [J, J − j + g]|σ1) and p(M [J, J −
j + g]|σ2) are both nonzero, and have the opposite signs. Define two bijections
πk : N → N − j + g to be πk(i) = i if i ∈ N \ J and πk(i) = σk(i) if i ∈ J
for k = 1, 2. By p(M [N, N − j + g]|πk

) = p(M [J, J − j + g]|σk
)
∏

i∈N\J aii for
k = 1, 2, the two nonzero terms p(M [N, N − j +g]|π1) and p(M [N, N − j +g]|π2)
are both nonzero, and have the opposite signs. This contradicts the total sign-
nonsingularity of M . Next suppose that j ∈ N \J . Then, by (3), M [J + j, J + g]
is term-nonsingular, but not sign-nonsingular. Let σ1 and σ2 be bijections from
J + j to J + g such that p(M [J + j, J + g]|σ1) and p(M [J + j, J + g]|σ2) are both
nonzero, and have the opposite signs. Define two bijections πk : N → N − j + g
for k = 1, 2 to be πk(i) = i if i ∈ N \ (J ∪ {j}) and πk(i) = σk(i) if i ∈ J ∪ {j}.
Then the two nonzero terms p(M [N, N − j + g]|π1) and p(M [N, N − j + g]|π2)
have the opposite signs, which contradicts the total sign-nonsingularity of M .

Thus Aj
J is either term-singular or sign-nonsingular for any index j. The

matrix AJ is sign-nonsingular. Therefore, it follows from (1) that the sign pattern
of (w, z) is independent of the magnitudes of A and b. Hence LCP(Ã, b̃) has a
solution with the same sign pattern as that of (w, z) for any Ã ∈ Q(A) and
b̃ ∈ Q(b). Thus LCP(A, b) is sign-solvable.

Next assume that LCP(A, b) has no solutions. Note that LCP(A, b) has no
solutions if and only if AJx+ b = 0 has no nonnegative solutions for any J ⊆ N ,
that is, there exists j ∈ N such that (A−1

J b)j < 0 for any J ⊆ N . It follows from
Cramer’s rule that we have (A−1

J b)j = −detAj
J/detAJ < 0. Since detAj

J �= 0,
the matrix Aj

J is sign-nonsingular. Hence it holds that −det Ãj
J/det ÃJ < 0 for
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any Ã ∈ Q(A) and b̃ ∈ Q(b). Thus LCP(Ã, b̃) has no solutions for any Ã ∈ Q(A)
and b̃ ∈ Q(b), which means that LCP(A, b) is sign-solvable. 	


Sign-solvable LCPs do not necessarily satisfy this sufficient condition. Indeed,
consider LCP(A, b), where A and b are defined to be

A =
(

−p1 −p2
+p3 +p4

)
and b =

(
0

+p5

)

for positive constants p1, . . . , p5 > 0. Then LCP(A, b) has a unique solution
w = (0 p5)T and z = 0, and hence LCP(A, b) is sign-solvable. However, this does
not satisfy the condition of Theorem 2.2, as A is not sign-nonsingular.

We conclude this section with sign-solvability of LCPs associated with another
class of matrices. A square matrix A is a P-matrix if every principal minor is
positive. A P-matrix is clearly nondegenerate. It is known that A is a P-matrix
if and only if LCP(A, b) has a unique solution for any vector b. Recognizing P-
matrices is co-NP-complete [7]. A matrix A is a sign-P-matrix if all matrices in
Q(A) are P-matrices. Then similar statements to Lemma 2.1 and Theorem 2.2
hold for sign-P-matrices.

Corollary 2.3. A square matrix A is a sign-P-matrix if and only if A is a
sign-nonsingular matrix with positive diagonals.

Corollary 2.4. For a linear complementarity problem LCP(A, b) with positive
diagonals, if the matrix M = (A b) is totally sign-nonsingular, then LCP(Ã, b̃)
has a unique solution with the same sign pattern as that of LCP(A, b).

3 Sign-Solvable LCPs with Nonzero Diagonals

In this section, we describe a characterization for a sign-solvable LCP(A, b) with
nonzero diagonals. Recall that M is the matrix in the form of M = (A b), where
the column set is indexed by N ∪ {g}.

3.1 The Residual Row-Mixed Matrix

We first introduce the residual row-mixed matrix of LCP(A, b) with nonzero
diagonals.

For each row index i, the ith equation of LCP(A, b) is represented by

wi =
∑

j∈Γ ({i})
aijzj + bi. (4)

First assume that M has a nonpositive row i, that is, bi ≤ 0 and aij ≤ 0 for
all j ∈ N . Suppose that bi < 0. Since any solution of LCP(A, b) is nonnegative,
the ith row implies that LCP(A, b) has no solutions. Next suppose that bi = 0.
Then, if LCP(A, b) has a solution (w, z), the solution (w, z) must satisfy that
zj = 0 for any j ∈ Γ ({i}).
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Next assume that M has a nonnegative row i, that is, bi ≥ 0 and aij ≥ 0 for all
j ∈ N . Let (w, z) be a solution of LCP(A, b). If wi > 0, then the complementarity
implies zi = 0. Suppose that wi = 0. Since any solution is nonnegative, (w, z)
must satisfy zj = 0 for any j ∈ Γ ({i}), and hence zi = 0 by aii �= 0. Thus,
if LCP(A, b) has a solution and M has a nonnegative row i, any solution of
LCP(A, b) must satisfy that zi = 0. Note that there exists j ∈ Γ ({i}) with
zj > 0 if and only if the left-hand side of (4) is positive, i.e., wi > 0.

Therefore, if M has a nonnegative or nonpositive row, then we know that
some entries of any solution must be zero. We can repeat this process as follows.
Set M (1) = M . For a positive integer ν and a matrix M (ν), let I

(ν)
− be the

set of nonpositive rows in M (ν), and I
(ν)
+ be the set of nonnegative rows that

have a nonzero entry in M (ν). If Γ (I(ν)
− ) contains the index g, then the LCP

has no solutions. Define I(ν) = I
(ν)
+ ∪ I

(ν)
− and J (ν) = I

(ν)
+ ∪ Γ (I(ν)

− ). Then any
solution (w, z) of LCP(A, b) satisfies zj = 0 for any j ∈ J (ν). Let M (ν+1) be
the matrix obtained from M (ν) by deleting the rows indexed by I(ν) and the
columns indexed by J (ν). Repeat this for ν = 1, 2, . . . until I(ν) = J (ν) = ∅, that
is, until either M (ν) is row-mixed or M (ν) has no rows.

We call the remaining row-mixed submatrix M ′ the residual row-mixed matrix
of LCP(A, b). Note that, if LCP(A, b) has solutions, the column index g is not
deleted in each iteration.

Assume that the column set of M ′ contains the index g. Let M ′ be in the forms
of M ′ = (A′ b′), where b′ is the subvector of b and A′ is the submatrix of A with
row set U ′ and column set V ′. We denote Ū ′ = N \U ′ and V̄ ′ = N \V ′. Since A
has nonzero diagonals, Ū ′ ⊆ V̄ ′ holds, and hence we have V ′ ⊆ U ′. Suppose that
M ′ has no rows. Then V̄ ′ = N holds, which means that any solution (w, z) of
LCP(A, b) must satisfy z = 0. Since g is not deleted in each iteration, the vector
b is nonnegative. Thus (b, 0) is a unique solution of LCP(A, b). Next suppose
that M ′ is row-mixed. Consider the following system:

w = A′z + b′,
wT

i zi = 0, for any i ∈ V ′,
w ≥ 0, z ≥ 0.

(5)

We claim that there exists a one-to-one correspondence between solutions of
LCP(A, b) and (5). For a solution (w, z) of LCP(A, b), the pair (w[U ′], z[V ′]) is
a solution of (5). Conversely, let (w′, z′) be a solution of (5). Define (w, z) to
be z[V ′] = z′, z[V̄ ′] = 0, and w = Az + b. Then w[U ′] = A′z′ + b′ = w′ ≥ 0
holds. Moreover, since each row in A[Ū ′, V ′] is nonnegative, we have w[Ū ′] =
A[Ū ′, V ′]z′+b[Ū ′] ≥ 0. By V ′ ⊆ U ′, the pair (w, z) satisfies the complementarity
wTz = 0. Thus (w, z) is a solution of LCP(A, b).

3.2 Characterization

Using the residual row-mixed matrix M ′ of LCP(A, b), we have the following
theorem.
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Theorem 3.1. Let LCP(A, b) be a linear complementarity problem with nonzero
diagonals, and M ′ be the residual row-mixed matrix. Then LCP(A, b) is sign-
solvable if and only if one of the followings holds:

– The column set of M ′ does not contain the index g.
– The residual row-mixed matrix M ′ has no rows.
– The residual row-mixed matrix M ′ is totally sign-nonsingular.

In order to prove this theorem, we give some definitions. A linear system Ax =
b has signed nonnegative solutions if the set of the sign patterns of nonnegative
solutions of Ãx = b̃ is the same as that of nonnegative solutions of Ax = b for
any Ã ∈ Q(A) and b̃ ∈ Q(b). A matrix A is said to have signed nonnegative
null space if Ax = 0 has signed nonnegative solutions. Matrices with signed
nonnegative null space were examined by Fisher, Morris, and Shapiro [9]. They
showed that a row-mixed matrix has signed nonnegative null space if and only
if it is the matrix called mixed dominating, which is defined to be a row-mixed
matrix which does not contain a square row-mixed submatrix. By the result of
mixed dominating matrices, the following two lemmas hold.

Lemma 3.2 (Fischer and Shapiro [10]). If a row-mixed matrix A has signed
nonnegative null space, then the rows of A are linearly independent.

A matrix A is said to have row-full term-rank if A has a term-nonsingular sub-
matrix with row size. A matrix A has column-full term-rank if AT has row-full
term-rank.

Lemma 3.3 (Fischer, Morris, and Shapiro [9]). An n × (n + 1) row-mixed
matrix has signed nonnegative null space if and only if it is a totally sign-
nonsingular matrix with row-full term-rank.

We have the following lemmas.

Lemma 3.4. Suppose that the matrix (A b) is row-mixed. If the linear system
Ax + b = 0 has signed nonnegative solutions, then it has a solution all of whose
entries are positive.

Proof. Since (A b) is row-mixed, there exist Ã ∈ Q(A) and b̃ ∈ Q(b) such that
the sum of the columns of Ã and b̃ is zero, that is, Ã1 + b̃ = 0, where 1 is the
column vector whose entries are all one. This implies that Ãx = b̃ has a solution
all of whose entries are positive for any Ã ∈ Q(A) and b̃ ∈ Q(b). 	


Lemma 3.5. Suppose that M = (A b) is row-mixed. The linear system Ax+b =
0 has signed nonnegative solutions if and only if M has signed nonnegative null
space.

Proof. Suppose that the matrix M has signed nonnegative null space. Since
{x | Ax + b = 0, x ≥ 0} = {x | (A b)

(
x
1

)
= 0, x ≥ 0} is contained in the set of

nonnegative vectors in the null space of M , the linear system Ax + b = 0 has
signed nonnegative solutions.
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Next suppose that Ax + b = 0 has signed nonnegative solutions, and that M
does not have signed nonnegative null space. Then M is not mixed dominating,
which means that there exists a row-mixed square submatrix in M . Note that
a row-mixed square submatrix which does not contain any row-mixed square
proper submatrix is term-nonsingular. Choose a row-mixed term-nonsingular
submatrix M [I, J ] such that |J | is maximum. Since M is row-mixed, the maxi-
mality implies that each row of M [N \ I, J ] is mixed or zero.

We define B to be B = M [N, J \ {g}] if g ∈ J , and B = M [N, J ] otherwise.
Then (B b) does not have signed nonnegative null space. The set of the nonnega-
tive vectors in the null space of (B b) consists of the union of {x | Bx = 0, x ≥ 0}
and {x | (B b)

(
x
xg

)
= 0, x ≥ 0, xg > 0}. Since the set of sign patterns in the sec-

ond one coincides with that of {x | Bx+b = 0, x ≥ 0} and Bx+b = 0 has signed
nonnegative solutions, we may assume that B does not have signed nonnegative
null space. Let B̃ ∈ Q(B) be a matrix such that B̃ has column-full rank. Then
the null space of B̃ is empty, and B̃x + b = 0 has a unique solution all of whose
entries are positive by Lemma 3.4. By the assumption, there exists B̂ ∈ Q(B)
such that B̂x = 0 has a nonnegative, nonzero solution x∗. Lemma 3.4 implies
that B̂x+b = 0 has a solution x0 all of whose entries are positive. Then x0−μx∗,
where μ = mini∈N x0

i /x∗
i , is also a nonnegative solution of B̂x + b = 0. Thus

the linear system Bx + b = 0 does not have signed nonnegative solutions, which
contradicts that Ax + b = 0 has signed nonnegative solutions. 	


We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. To show the necessity, suppose that LCP(A, b) is sign-
solvable. Assume that M ′ has a row and that M ′ is in the form of M ′ = (A′ b′),
where b′ is the subvector of b indexed by g. Let x be a nonnegative vector with
A′x + b′ = 0. Since there exists a one-to-one correspondence between solutions
of LCP(A, b) and (5), (0, x) is a solution of (5). Hence the sign-solvability of
LCP(A, b) implies that the linear system A′x + b′ = 0 has signed nonnegative
solutions. It follows from Lemma 3.5 that M ′ = (A′ b′) has signed nonnegative
null space. By Lemma 3.2 and V ′ ⊆ U ′, it holds that U ′ = V ′, i.e., A′ is square.
Therefore, Lemma 3.3 implies that M ′ is totally sign-nonsingular.

We next show the sufficiency. If the column set of M ′ does not contain the
index g, then clearly LCP(A, b) is a sign-solvable LCP with no solutions. Suppose
that M ′ is in the forms of M ′ = (A′ b′). If M ′ has no rows, then (b, 0) is
a unique solution of LCP(A, b), which means that LCP(A, b) is sign-solvable.
Next suppose that M ′ = (A′ b′) is totally sign-nonsingular. By V ′ ⊆ U ′, it holds
that |U ′| = |V ′| or |U ′| = |V ′| + 1. If |U ′| = |V ′|, then M ′ is sign-nonsingular,
which contradicts that M ′ is row-mixed. Hence we have |U ′| = |V ′| + 1. Since
A′ has nonzero diagonals, (5) forms the linear complementarity problem with
nonzero diagonals. By Theorem 2.2, LCP(A′, b′) is sign-solvable, and hence so is
LCP(A, b). 	


Note that LCP(A, b) is a sign-solvable LCP with no solutions if and only if the
column set of M ′ does not contain g.
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If M is row-mixed, then the residual row-mixed matrix is M itself. Hence
Theorem 3.1 implies the following corollary.

Corollary 3.6. Let A have nonzero diagonals, and M = (A b) be a row-mixed
matrix. Then LCP(A, b) is sign-solvable if and only if the matrix M is totally
sign-nonsingular.

We close this section with an example of sign-solvable LCPs with nonzero di-
agonals. Consider LCP(A, b), where A and b have the sign patterns, respectively,

⎛

⎜⎜⎜⎜⎝

+ + 0 0 0
− + + 0 +
+ − + − 0
− 0 − − +
0 − + 0 +

⎞

⎟⎟⎟⎟⎠
and

⎛

⎜⎜⎜⎜⎝

0
+
0
0
−

⎞

⎟⎟⎟⎟⎠
.

The residual row-mixed matrix is
⎛

⎝
+ − 0 0
− − + 0
+ 0 + −

⎞

⎠ ,

which is obtained from the matrix (A b) by deleting the first two rows and the
first two columns. This residual row-mixed matrix is totally sign-nonsingular,
and hence LCP(A, b) is sign-solvable.

4 Algorithm for Sign-Solvable LCPs with Nonzero
Diagonals

In this section, we describe an algorithm for a given LCP(A, b) with nonzero
diagonals. The algorithm tests sign-solvability of LCP(A, b), and finds the sign
pattern of a solution of LCP(A, b) if it is sign-solvable.

The algorithm starts with finding the residual row-mixed matrix M ′ as de-
scribed in the previous section. If the column set of M ′ does not contain the
index g, then LCP(A, b) is sign-solvable and has no solutions. Let M ′ be in the
forms of M ′ = (A′ b′), where b′ is the subvector of b and A′ is the submatrix of
A with row set U ′ and column set V ′. We denote Ū ′ = N \ U ′ and V̄ ′ = N \ V ′.
Note that V ′ ⊆ U ′ holds. If M ′ has a row and M ′ is not totally sign-nonsingular,
then return that LCP(A, b) is not sign-solvable by Theorem 3.1.

Assume that M ′ has no rows. Then LCP(A, b) is sign-solvable, and (b, 0) is a
unique solution of LCP(A, b). Next assume that M ′ has a row and M ′ = (A′ b′) is
totally sign-nonsingular. Then LCP(A, b) is sign-solvable by Theorem 3.1. Since
M ′ is row-mixed, there exists M̃ = (Ã b̃) ∈ Q(M) such that the sum of the
columns of M̃ ′ ∈ Q(M ′) is zero. Hence it follows from (5) that the pair (w, z),
defined to be z[V̄ ′] = 0, z[V ′] = +1, and w = Ãz + b̃, is a solution of LCP(Ã, b̃).
This means that the vector w satisfies that wj > 0 if j ∈ Ū ′ and A[{j}, V ′] has
nonzero entries, and wj = 0 otherwise. Since LCP(A, b) is sign-solvable, (w, z)
is the sign pattern of a solution of LCP(A, b).

We now summarize the algorithm description.
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Algorithm: An algorithm for LCPs with nonzero diagonals.
Input: A linear complementarity problem LCP(A, b) with nonzero diagonals.
Output: The sign pattern of a solution if LCP(A, b) is sign-solvable.
Step 1: Set M (1) = M and ν = 1. Repeat the following until I(ν) = J (ν) = ∅.

1-1: Find I
(ν)
− and I

(ν)
+ , where I

(ν)
− is the set of nonpositive rows in M (ν),

and I
(ν)
+ is the set of nonnegative rows that have a nonzero entry in

M (ν).
1-2: If g ∈ Γ (I(ν)

− ), then return that LCP(A, b) is sign-solvable and has no
solutions.

1-3: Let I(ν) = I
(ν)
+ ∪I

(ν)
− and J (ν) = I

(ν)
+ ∪Γ (I(ν)

− ). Define M (ν+1) to be the
matrix obtained by deleting the rows indexed by I(ν) and the columns
indexed by J (ν) from M (ν).

1-4: Set ν = ν + 1 and go back to Step 1.
Step 2: Let M ′ = (A′ b′) be the remaining submatrix, and U ′, V ′ be the row

and column sets of A′, respectively. If M ′ has a row and M ′ is not totally
sign-nonsingular, then return that LCP(A, b) is not sign-solvable. Otherwise
go to Step 3.

Step 3: Return that LCP(A, b) is sign-solvable and do the following.
3-1: If U ′ is empty, then return the sign pattern of a solution (w, z) = (b, 0).
3-2: Otherwise, return the sign pattern of (w, z) defined to be

sgn zj =
{

+, if j ∈ V ′

0, otherwise and sgnwj =
{

+, if j ∈ K
0, otherwise (6)

where K is the set of rows which have nonzero entries in A[Ū ′, V ′], that
is, K = {j ∈ Ū ′ | Γ ({j}) ∩ V ′ �= ∅}.

Applying this algorithm to the example at the end of Sect. 3, we obtain the
sign pattern of a solution, w = ( 0 + 0 0 0)T and z = ( 0 0 + + +)T.

Based on this algorithm, we can compute a solution of a sign-solvable LCP as
well as the sign pattern of a solution. Suppose that M ′ has a row. The solution
(w, z) with the obtained sign pattern satisfies that A′z[V ′] + b′ = 0, z[V̄ ′] = 0.
Since A′ is nonsingular by total sign-nonsingularity of M ′, we can compute a
solution of LCP(A, b) by performing Gaussian elimination.

The running time bound of the algorithm is now given as follows. Note that
an n × (n + 1) row-mixed matrix A is a totally sign-nonsingular matrix with
row-full term-rank if and only if all square submatrices of order n are sign-
nonsingular [1, Theorem 5.3.3]. Such matrix is called an S-matrix in [1,15], which
can be recognized in O(n2) time [14].

Theorem 4.1. For a linear complementarity problem LCP(A, b) with nonzero
diagonals, let n be the matrix size of A, and γ the number of nonzero entries in A
and b. Then the algorithm tests sign-solvability in O(n2) time, and, if LCP(A, b)
is sign-solvable, the algorithm finds the sign pattern of a solution in O(γ) time.
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Proof. In the νth iteration in Step 1, it requires O(γν) time to find I(ν) and
J (ν), where γν is the number of nonzero entries in the columns deleted in the νth
iteration. Since each column is deleted at most once, Step 1 takes O(γ) time in
total. In Step 2, if the residual row-mixed matrix M ′ is totally sign-nonsingular,
M ′ has row-full term-rank and the column size is one larger than the row size.
Hence testing total sign-nonsingularity of M ′ is equivalent to recognizing S-
matrices. Thus it requires O(n2) time to test sign-solvability in Step 2. Step 3
requires O(γ) time. Thus this statement holds. 	
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Abstract. Linear programs with joint probabilistic constraints (PCLP)
are known to be highly intractable due to the non-convexity of the feasi-
ble region. We consider a special case of PCLP in which only the right-
hand side is random and this random vector has a finite distribution.
We present a mixed integer programming formulation and study the re-
laxation corresponding to a single row of the probabilistic constraint,
yielding two strengthened formulations. As a byproduct of this analy-
sis, we obtain new results for the previously studied mixing set, subject
to an additional knapsack inequality. We present computational results
that indicate that by using our strengthened formulations, large scale
instances can be solved to optimality.

Keywords: Integer programming, probabilistic constraints, stochastic
programming.

1 Introduction

Consider a linear program with a probabilistic or chance constraint

(PCLP ) min
{
cx : x ∈ X, P{T̃x ≥ ξ} ≥ 1 − ε

}
(1)

where X =
{
x ∈ R

d
+ : Ax = b

}
is a polyhedron, c ∈ R

d, T̃ is an m × d random
matrix, ξ is a random vector taking values in R

m, and ε is a confidence parameter
chosen by the decision maker, typically near zero, e.g., ε = 0.01 or ε = 0.05. Note
that in (1) we enforce a single probabilistic constraint over all rows, rather than
requiring that each row independently be satisfied with high probability. Such
a constraint is known as a joint probabilistic constraint, and is appropriate in a
context in which it is important to have all constraints satisfied simultaneously
and there may be dependence between random variables in different rows.

Problems with joint probabilistic constraints have been extensively studied;
see [1] for background and an extensive list of references. Probabilistic constraints
have been used in various applications including supply chain management [2],
production planning [3], optimization of chemical processes [4,5] and surface
water quality management [6]. Unfortunately, linear programs with probabilistic
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constraints are still largely intractable except for a few very special cases. There
are two primary reasons for this intractability. First, in general, for a given
x ∈ X , the quantity φ(x) := P{T̃x ≥ ξ} is hard to compute, as it requires multi-
dimensional integration. Second, the feasible region defined by a probabilistic
constraint is generally not convex.

Recently, several approaches have been proposed which can find highly reli-
able feasible solutions to probabilistic programs. Examples of these conservative
approximations include scenario approximation [7,8], Bernstein approximation
[9] and robust optimization, e.g., [10,11,12]. These methods are attractive when
high reliability is most important and solution cost is a secondary objective.
However, when very high reliability is not crucial, for example if the proba-
bilistic constraint represents a service level constraint, a decision maker may be
interested in exploring the trade-off between solution cost and system reliability,
and would be interested in obtaining solutions which are on or near the efficient
frontier of these competing objectives. The aforementioned conservative approx-
imations generally do not yield bounds on the optimal solution cost at a given
reliability level ε, and hence cannot distinguish whether the produced solutions
are close to the efficient frontier. This latter context is the motivation for using
integer programming to solve PCLP so that we can obtain solutions that are
provably optimal or near optimal.

In this work, we demonstrate that by using integer programming techniques,
PCLP can be solved efficiently under the following two simplifying assumptions:

(A1) Only the right-hand side vector ξ is random; the matrix T̃ = T is deter-
ministic.

(A2) The random vector ξ has a finite distribution.

Despite its restrictiveness, the special case given by assumption A1 has received a
lot of attention in the literature, see, e.g., [1,13,14]. A notable result for this case
is that if the distribution of the right-hand side is log-concave, then the feasible
region defined by the joint probabilistic constraint is convex [15]. This allows
problems with small dimension of the random vector to be solved to optimal-
ity, but higher dimensional problems are still intractable due to the previously
mentioned difficulty in checking feasibility of the probabilistic constraint. Spe-
cialized methods have been developed in [14] for the case in which assumption
A1 holds and the random vector has discrete but not necessarily finite distri-
bution. However, these methods also do not scale well with the dimension of
the random vector. Assumption A2 may also seem very restrictive. However, if
the possible values for ξ are generated by taking Monte Carlo samples from a
general distribution, we can think of the resulting problem as an approxima-
tion of the problem with this distribution. Under some reasonable assumptions
we can show that the optimal solution of the sampled problem converges expo-
nentially fast to the optimal solution of the original problem as the number of
scenarios increases. Also, the optimal objective of the sampled problem can be
used to develop statistical lower bounds on the optimal objective of the original
problem. See [16,17,18] for some related results. It seems that the reason such
a sampling approach has not been seriously considered for PCLP in the past is
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that the resulting sampled problem has a non-convex feasible region, and thus
is still generally intractable. Our contribution is to demonstrate that, at least
under assumption A1, it is nonetheless possible to solve the sampled problem in
practice.

Under assumption A2 it is possible to write a mixed integer programming
formulation for PCLP, as has been done, for example, in [19]. In the general
case, such a formulation requires the introduction of “big-M” type constraints,
and hence is difficult to solve. However, the particular case of assumption A1 has
not been studied from an integer programming perspective; by doing so, we are
able to develop strong mixed integer programming formulations. Our approach
in developing these formulations is to consider the relaxation obtained from a
single row in the probabilistic constraint. It turns out that this yields a system
similar to the mixing set introduced by Günlük and Pochet [20], subject to an
additional knapsack inequality. We are able to derive strong valid inequalities for
this system by first using the knapsack inequality to “pre-process” the mixing
set, then applying the mixing inequalities of [20], see also [21,22]. We also derive
an extended formulation, equivalent to one given by Miller and Wolsey in [23].
Making further use of the knapsack inequality, we are able to derive more general
classes of valid inequalities, for both the original and extended formulations. If
all scenarios are equally likely, the knapsack inequality reduces to a cardinality
restriction. In this case, we are able to characterize the convex hull of feasible
solutions to the extended formulation for the single row case. Although these
results are motivated by the application to PCLP, they can be used in any
problem in which a mixing set appears along with a knapsack constraint.

2 The MIP Formulation

We now consider a probabilistically constrained linear programming problem,
with random right-hand side given by

(PCLPR) min cx
s.t. Ax = b

P{Tx ≥ ξ} ≥ 1 − ε
x ≥ 0 .

(2)

Here A is an r × d matrix, b ∈ R
r, T is an m × d matrix, ξ is a random vector

in R
m, ε ∈ (0, 1) (typically small) and c ∈ R

d. We assume that ξ has finite
support, that is there exist vectors, ξi, i = 1, . . . , n such that P{ξ = ξi} = πi for
each i where πi ≥ 0 and

∑n
i=1 πi = 1. We will refer to the possible outcomes as

scenarios. We assume without loss of generality that ξi ≥ 0 and πi ≤ ε for each
i. We also define the set N = {1, . . . , n}.

Before proceeding, we note that PCLPR is NP-hard even under assumptions
A1 and A2.

Theorem 1. PCLPR is NP-hard, even in the special case in which πi = 1/n
for all i ∈ N , the constraints Ax = b are not present, T is the m × m identity
matrix, and c = (1, . . . , 1) ∈ R

m.
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We now formulate PCLPR as a mixed integer program [19]. To do so, we in-
troduce for each i ∈ N , a binary variable zi, where zi = 0 will guarantee that
Tx ≥ ξi. Observe that because ε < 1 we must have Tx ≥ ξi for at least one
i ∈ N , and because ξi ≥ 0 for all i, this implies Tx ≥ 0 in any feasible solution
of PCLPR. Then, introducing variables v ∈ R

m to summarize Tx, we obtain the
MIP formulation of PCLPR given by

(PMIP ) min cx

s.t. Ax = b, Tx − v = 0 (3)
v + ξizi ≥ ξi i = 1, . . . , n (4)

n∑

i=1

πizi ≤ ε (5)

x ≥ 0, z ∈ {0, 1}n
.

3 Strengthening the Formulation

Our approach is to strengthen PMIP by ignoring (3) and finding strong formu-
lations for the set

F :=
{
(v, z) ∈ R

m
+ × {0, 1}n : (4), (5)

}
. (6)

Note that

F =
m⋂

j=1

{(v, z) : (vj , z) ∈ Gj} ,

where for j = 1, . . . , m

Gj = {(vj , z) ∈ R+ × {0, 1}n : (5), vj + ξijzi ≥ ξij i = 1, . . . , n} .

Thus, a natural first step in developing a strong formulation for F is to develop a
strong formulation for each Gj . In particular, note that if an inequality is facet-
defining for conv(Gj), then it is also facet-defining for conv(F ). This follows
because if an inequality valid for Gj is supported by n + 1 affinely independent
points in R

n+1, then because this inequality will not have coefficients on vi for
any i �= j, the set of supporting points can trivially be extended to a set of n+m
affinely independent supporting points in R

n+m by appropriately setting the vi

values for each i �= j.
The above discussion leads us to consider the generic set

G = {(y, z) ∈ R+ × {0, 1}n : (5), y + hizi ≥ hi i = 1, . . . , n} (7)

obtained by dropping the index j in the set Gj and setting y = vj and hi = ξij

for each i. For convenience, we assume that the hi are ordered so that h1 ≥ h2 ≥
· · · ≥ hn. The mixing set

P = {(y, z) ∈ R+ × {0, 1}n : y + hizi ≥ hi i = 1, . . . , n}
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has been extensively studied, in varying degrees of generality, by Atamtürk et. al
[21], Günlük and Pochet [20], Guan et. al [22] and Miller and Wolsey [23]. If we
ignore the knapsack constraint in G, we can apply these results to obtain the
set of valid inequalities

y +
l∑

j=1

(htj − htj+1)ztj ≥ ht1 ∀T = {t1, . . . , tl} ⊆ N , (8)

where t1 < t2 < · · · < tl and htl+1 := 0. Following [21], we call (8) the star
inequalities. In addition, these inequalities can be separated in polynomial time
[20,21,22]. It has been shown in these same works that these inequalities define
the convex hull of P and are facet defining if and only if t1 = 1. We can do
considerably better, however, by using the knapsack constraint in G to first
strengthen the inequalities, and then derive the star inequalities. In particular,
let p := max

{
k :

∑k
i=1 πi ≤ ε

}
. Then, due to the knapsack constraint, we cannot

have zi = 1 for all i = 1, . . . , p + 1 and thus we have y ≥ hp+1. This also implies
that the mixed integer constraints in G are redundant for i = p+1, . . . , n. Thus,
we can write a tighter formulation of G as

G = {(y, z) ∈ R+ × {0, 1}n : (5), y + (hi − hp+1)zi ≥ hi i = 1, . . . , p} . (9)

Remark 1. In addition to yielding a tighter relaxation, this description of G is
also more compact. In typical applications, ε will be near 0, suggesting p << n.
When applied for each j in the set F , this will yield a formulation with mp <<
mn rows.

If we now apply the star inequalities to the improved formulation of G, we obtain
the following result, which can be obtained by applying results in [20],[21] or [22].

Theorem 2. The inequalities

y +
l∑

j=1

(htj − htj+1)ztj ≥ ht1 ∀T = {t1, . . . , tl} ⊆ {1, . . . , p} (10)

with t1 < . . . < tl and htl+1 := hp+1, are valid for G. Moreover, (10) is facet-
defining for conv(G) if and only if ht1 = h1.

We refer to the inequalities (10) as the strengthened star inequalities.

Remark 2. The difference between the star inequalities (8) and strengthened
star inequalities (10) is that in (10) we have htl+1 := hp+1 whereas in (8) we
have htl+1 := 0, corresponding to the fact that our lower bound on y was shifted
from 0 to hp+1 by using the knapsack inequality.

Remark 3. The strengthened star inequalities are not sufficient to characterize
the convex hull of G, even in the special case in which all probabilities are equal,
that is πi = 1/n for all i.
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We now consider the special case in which πi = 1/n for all i ∈ N . Note that
in this case we have p := max

{
k :

∑k
i=1 1/n ≤ ε

}
= �nε	 and the knapsack

constraint (5) becomes
n∑

i=1

zi ≤ nε

which, by integrality on zi can be strengthened to the simple cardinality
restriction

n∑

i=1

zi ≤ p . (11)

Thus, the feasible region for our single row formulation becomes

G′ = {(y, z) ∈ R+ × {0, 1}n : (11), y + (hi − hp+1)zi ≥ hi i = 1, . . . , p} .

Now, observe that for any (γ, α) ∈ R
n+1, the problem

min {γy + αz : (y, z) ∈ G′}

is easy. Indeed, if γ < 0, then the problem is unbounded, so we can assume
γ ≥ 0. Then, one need only consider setting y to hk for k = 1, . . . , p + 1, and
setting the zi accordingly. That is, if y = hk for k ∈ {1, . . . , p + 1}, then we must
set zi = 1 for i = 1, . . . , k − 1. The remaining zi can be set to 0 or 1 as long as∑n

i=k zi ≤ p−k+1. Hence, we set zi = 1 if and only if i ∈ S∗
k where

S∗
k ∈ argmin

S⊆{k,...,n}

{
∑

i∈S

αi : |S| ≤ p−k+1

}
.

Since we can optimize over G′ efficiently, we know that we can separate over
conv(G′) efficiently. Indeed, given (y∗, z∗) we can write an explicit polynomial
size linear program for separation over conv(G′). Although this would yield a
theoretically efficient way to separate over conv(G′), it still may be too expensive
to solve a linear program to generate cuts. We would therefore prefer to have an
explicit characterization of a class or classes of valid inequalities for G′ with an
associated combinatorial algorithm for separation. The following theorem gives
an example of one such class.

Theorem 3. Let m ∈ {1, . . . , p − 1}, T = {t1, . . . , tl} ⊆ {1, . . . , m} and Q =
{q1, . . . , qp−m} ⊆ {p+1, . . . , n} . Define Δm

1 = hm+1 − hm+2 and

Δm
i = max

⎧
⎨

⎩Δm
i−1, hm+1 − hm+i+1 −

i−1∑

j=1

Δm
j

⎫
⎬

⎭ for i = 2, . . . , p−m .

Then, with htl+1 := hm+1,

y +
l∑

j=1

(htj − htj+1)ztj +
p−m∑

j=1

Δm
j (1 − zqj ) ≥ ht1 (12)

is valid for G′ and facet-defining for conv(G′) if and only if ht1 = h1.
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Example 1. Let n = 10 and ε = 0.4 so that p = 4 and suppose h1−5 =
{20, 18, 14, 11, 6}. Let m = 2, T = {1, 2} and Q = {5, 6}. Then, Δ2

1 = 3 and
Δ2

2 = max {3, 8 − 3} = 5 so that (12) yields

y + 2z1 + 4z3 + 3(1 − z5) + 5(1 − z6) ≥ 20 .

Separation of inequalities (12) can be accomplished by a simple modification to
the routine for separating the strengthened star inequalities. We have identified
other classes of valid inequalities, but have so far failed to find a general class
that characterizes the convex hull of G′.

4 A Strong Extended Formulation

Let
FS = {(y, z) ∈ R+ × [0, 1]n : (5), (10)} .

FS represents the polyhedral relaxation of G, augmented with the strengthened
star inequalities. Note that the inequalities y + (hi − hp+1)zi ≥ hi are included
in FS by taking T = {i}, so that enforcing integrality in FS would yield a valid
single row formulation for the set G. Our aim is to develop a reasonably compact
extended formulation which is equivalent to FS. To do so, we introduce variables
w1, . . . , wp and let

EG =
{
(y, z, w) ∈ R+ × {0, 1}n+p : (13) − (16)

}

where

wi − wi+1 ≥ 0 i = 1, . . . , p (13)
zi − wi ≥ 0 i = 1, . . . , p (14)

y +
p∑

i=1

(hi − hi+1)wi ≥ h1 (15)

n∑

i=1

πizi ≤ ε . (16)

and wp+1 := 0. The variables wi can be interpreted as deciding whether or not
scenario i is satisfied for the single row under consideration, and because they
are specific to this single row, the inequalities (13) can be safely added. The
inequalities (14) then ensure that if a scenario is infeasible for this row, then it is
infeasible overall, and the lower bound on y is now given by the single inequality
(15). We let EF be the polyhedron obtained by relaxing integrality in EG.

Theorem 4. Proj(y,z)(EG) = G, that is, EG is a valid formulation for G.

An interesting result is that the linear relaxation of this extended formulation is
as strong as having all strengthened star inequalities in the original formulation.
A similar result has been proved in [23].
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Theorem 5. Proj(y,z)(EF ) = FS.

Because of the equivalence between EF and FS, Remark 3 holds for this formu-
lation as well, that is, even in the special case in which all probabilities are equal,
this formulation does not characterize the convex hull of feasible solutions of G.
We therefore investigate what other valid inequalities exist for this formulation.
We first introduce the notation

fk :=
k∑

i=1

πi, k = 0, 1, . . . , p .

Theorem 6. Let k ∈ {1, . . . , p} and let S ⊆ {k, . . . , n} be such that
∑

i∈S πi ≤
ε − fk−1. Then, ∑

i∈S

πizi +
∑

i∈{k...,p}\S

πiwi ≤ ε − fk−1 (17)

is valid for EG.

Now, consider the special case in which πi = 1/n for i = 1, . . . , n. Then the
extended formulation becomes

EG′ =
{
(y, z, w) ∈ R+ × {0, 1}n+p : (11) and (13) − (15)

}
.

Letting Sk = {S ⊆ {k, . . . , n} : |S| ≤ p−k+1} for k = 1, . . . , p, the inequali-
ties (17) become

∑

i∈S

zi +
∑

i∈{k,...,p}\S

wi ≤ p−k+1 ∀S ∈ Sk, k = 1, . . . , p . (18)

Example 2. Let n = 10 and ε = 0.4 so that p = 4. Let k = 2 and S = {4, 5, 6}.
Then (18) becomes

z4 + z5 + z6 + w2 + w3 ≤ 3 .

Now, let

EH ′ =
{
(y, z, w) ∈ R+ × [0, 1]n+p : (11), (13) − (15) and (18)

}

be the linear relaxation of the extended formulation, augmented with this set of
valid inequalities.

Theorem 7. The convex hull of the extended formulation EG′ is given by the
inequalities defining EG′ and the inequalities (18); that is, EH ′ = conv(EG′).

We close this section by noting that inequalities (18) can be separated in poly-
nomial time. Indeed, suppose we wish to separate the point (z∗, w∗). Then sep-
aration can be accomplished by solving

max
S∈Sk

⎧
⎨

⎩
∑

i∈S

z∗i +
∑

i∈{k,...,p}\S

w∗
i

⎫
⎬

⎭ = max
S∈Sk

{
∑

i∈S

θ∗i

}
+

p∑

i=k

w∗
i
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for k = 1, . . . , p where

θ∗i =
{

z∗i − w∗
i i = 1, . . . , p

z∗i i = p + 1, . . . , n .

Hence, a trivial separation algorithm is to first sort the values θ∗i in non-
increasing order, then for each k, find the maximizing set S ∈ Sk by search-
ing this list. This yields an algorithm with complexity O(n log n + p2) = O(n2).
However, by considering the values of k in the order p, . . . , 1 and updating an or-
dered list of eligible indices Sk for each k, it is possible to improve the complexity
to O(n log n). For the more general inequalities (17), (heuristic) separation can
be accomplished by (heuristically) solving p knapsack problems.

5 Computational Experience

We performed computational tests on a probabilistic version of the classical
transportation problem. We have a set of suppliers S and a set of customers D
with |D| = m. The suppliers have limited capacity Mi for i ∈ S. There is a
per-unit transportation cost cij for (producing and) shipping a unit of product
from supplier i ∈ S to customer j ∈ D. The customer demands are random and
are represented by a random vector d̃ ∈ R

m
+ . We assume we must choose the

shipment quantities before the customer demands are known. We enforce the
following probabilistic constraint:

P{
∑

i∈S

xij ≥ d̃j , j = 1, . . . , m} ≥ 1 − ε . (19)

The objective is to minimize distribution costs subject to (19), non-negativity
on the flow variables xij , and the supply capacity constraints

∑

j∈D

xij ≤ Mi, ∀i ∈ S .

We randomly generated instances with the number of suppliers fixed at 40 and
varying numbers of customers and scenarios. The supply capacities and cost
coefficients were generated using normal and uniform distributions respectively.
For the random demands, we experimented with independent normal, dependent
normal and independent Poisson distributions. We found qualitatively similar
results in all cases, but the independent normal case yielded the most challenging
instances, so for our experiments we focus on this case. For each instance, we first
randomly generated the mean and variance of each customer demand. We then
generated the number n of scenarios required, independently across scenarios and
across customer locations, as Monte Carlo samples with these fixed parameters.
In most instances we assumed all scenarios occur with probability 1/n, but
we also did some tests in which the scenarios have general probabilities, which
were also randomly generated. CPLEX 9.0 was used as the MIP solver and all
experiments were done on a computer with two 2.4 Ghz processors (although
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no parallelism is used) and 2.0 Gigabytes of memory. We set a time limit of
one hour. For each problem size we generated 5 random instances and, unless
otherwise specified, the computational results reported are averages over the 5
instances.

5.1 Comparison of Formulations

In Table 1 we compare the results obtained by solving our instances using

1. formulation PMIP given by (3) - (5),
2. formulation PMIP with strengthened star inequalities (10), and
3. the extended formulation of Sect. 4, but without (17) or (18).

When the strengthened star inequalities are not used, we still used the improved
formulation of G corresponding to (9). Recall that the strengthened star inequal-
ities subsume the rows defining the formulation PMIP; therefore, when we us-
ing these inequalities we initially add only a small subset of the mp inequalities
in the formulation. Subsequently separating the strengthened star inequalities as
needed guarantees the formulation remains valid. For formulation PMIP without
strengthened star inequalities, we report the average optimality gap that remained
after the hour time limit was reached. For the other two formulations, which we
refer to as the strong formulations, we report the geometric average of the time
to solve the instances to optimality. We used ε = 0.05 and ε = 0.1, reflecting the
natural assumption that we want to meet demand with high probability.

The first observation from Table 1 is that formulation PMIP without the
strengthened star inequalities fails to solve these instances within an hour, often
leaving large optimality gaps, whereas the instances are solved efficiently using
the strong formulations. The number of nodes required to solve the instances for
the strong formulations is very small. The instances with equi-probable scenarios
were usually solved at the root, and even when branching was required, the root
relaxation usually gave an exact lower bound. Branching in this case was only
required to find an integer solution which achieved this bound. The instances
with general probabilities required slightly more branching, but generally not
more than 100 nodes. Observe that the number of strengthened star inequalities
that were added is small relative to the number of rows in the formulation PMIP
itself. For example, for ε = 0.1, m = 200 and n = 3, 000, the number of rows in
PMIP would be mp = 60, 000, but on average, only 5, 541 strengthened star in-
equalities were added. Next we observe that in most cases the computation time
using the extended formulation is significantly less than the formulation with
strengthened star inequalities. Finally, we observe that the instances with gen-
eral probabilities take somewhat longer to solve than those with equi-probable
scenarios but can still be solved efficiently.

5.2 Testing Inequalities (18)

With small ε the root relaxation given by the extended formulation is extremely
tight, so that adding the inequalities (18) is unlikely to have a positive impact on
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Table 1. Average solution times for different formulations

PMIP PMIP+Star Extended
Probabilities ε m n Gap Cuts Time(s) Time(s)

Equal 0.05 100 1000 0.18% 734.8 7.7 1.1
100 2000 1.29% 1414.2 31.8 4.6
200 2000 1.02% 1848.4 61.4 12.1
200 3000 2.56% 2644.0 108.6 12.4

0.10 100 1000 2.19% 1553.2 34.6 12.7
100 2000 4.87% 2970.2 211.3 41.1
200 2000 4.48% 3854.0 268.5 662.2
200 3000 5.84% 5540.8 812.7 490.4

General 0.05 100 1000 0.20% 931.8 9.0 3.9
100 2000 1.04% 1806.6 55.2 13.2

0.10 100 1000 1.76% 1866.0 28.7 52.5
100 2000 4.02% 3686.2 348.5 99.2

computation time. However, for larger ε, we have seen that the extended formu-
lation may have a substantial optimality gap. We therefore investigated whether
using inequalities (18) can improve solution time in this case. In Table 3 we present
results comparing solution times and node counts with and without inequalities
(18) for instances with larger ε. We performed these tests on smaller instances
since these instances are already hard for these values of ε. We observe that adding
inequalities (18) at the root can decrease the root optimality gap significantly. For
the instances that could be solved in one hour, this leads to a significant reduction
in the number of nodes explored, and a moderate reduction in solution time. For
the instances which were not solved in one hour, the remaining optimality gap
was usually, but not always, lower when the inequalities (18) were used. These
results indicate that when ε is somewhat larger, inequalities (18) may be helpful
on smaller instances. However, they also reinforce the difficulty of the instances
with larger ε, since even with these inequalities, only the smallest of these smaller
instances could be solved to optimality within an hour.

5.3 The Effect of Increasing ε

The results of Table 1 indicate that the strong formulations can solve large in-
stances to optimality when ε is small, which is the typical case. However, it
is still an interesting question to investigate how well this approach works for
larger ε. Note first that we should expect solution times to grow with ε if only
because the formulation sizes grow with ε. However, we observe from Table 2
that the situation is much worse than this. This table shows the root LP solve
times and optimality gaps achieved after an hour of computation time for an
example instance with equi-probable scenarios, m = 50 rows and n = 1, 000 sce-
narios at increasing levels of ε, using the formulation PMIP with strengthened
star inequalities. Root LP solve time here refers to the time until no further
strengthened star inequalities could be separated. We see that the time to solve
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Table 2. Effects of increasing ε on an instance with m = 50 and n = 1000

ε 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Root LP Time (s) 21.7 37.1 82.7 144.3 227.8 327.6 505.6 792.6 1142.6
Optimality Gap 0.0% 0.0% 2.2% 5.8% 10.5% 16.2% 28.7% 35.1% 44.4%

the root linear programs does indeed grow with ε as expected, but the optimality
gaps achieved after an hour of computation time deteriorate even more drasti-
cally with growing ε. This is explained by the increased time to solve the linear
programming relaxations combined with a weakening of the relaxation bound as
ε increases.

Table 3. Results with and without inequalities (18)

Root Gap Nodes Time(s) or Gap
m ε n Ext +(18) Ext +(18) Ext +(18)

25 0.3 250 1.18% 0.67% 276.9 69.0 121.2 93.9
0.3 500 1.51% 0.58% 455.0 165.8 750.6 641.3

0.35 250 2.19% 1.50% 1259.4 409.0 563.2 408.4
0.35 500 2.55% 1.61% 2297.6 968.8 0.22% 0.06%

50 0.3 500 2.32% 2.00% 991.8 238.6 1.37% 1.41%
0.3 1000 2.32% 1.75% 28.3 8.5 1.98% 1.66%

0.35 500 4.10% 3.31% 650.4 92.9 3.03% 2.66%
0.35 1000 4.01% 3.23% 22.7 6.2 3.58% 3.17%

6 Concluding Remarks

We have presented strong integer programming formulations for linear programs
with probabilistic constraints in which the right-hand side is random with finite
distribution. In the process we made use of existing results on mixing sets, and
have introduced new results for the case in which the mixing set additionally
has a knapsack restriction. Computational results indicate that these formula-
tions are extremely effective on instances in which reasonably high reliability
is enforced, which is the typical case. However, instances in which the desired
reliability level is lower remain difficult to solve, partly due to increased size of
the formulations, but more significantly due to the weakening of the formulation
bounds. Moreover, these instances remain difficult even when using the inequal-
ities which characterize the single row relaxation convex hull. This suggests that
relaxations which consider multiple rows simultaneously need to be studied to
yield valid inequalities which significantly improve the relaxation bounds for
these instances.

Future work in this area should focus on addressing the two assumptions we
made at the beginning of this paper. The finite distribution assumption can be
addressed by using the results about the statistical relationship between a prob-
lem with probabilistic constraints and its Monte Carlo sample approximation
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to establish methods for generating bounds on the optimal value of the original
problem. Computational studies will need to be performed to establish the prac-
ticality of this approach. We expect that relaxing the assumption that only the
right-hand side is random will be more challenging. A natural first step in this
direction will be to extend results from the generalized mixing set [23,24] to the
case in which an additional knapsack constraint is present.

Acknowledgments. This research has been supported in part by the National
Science Foundation under grants DMI-0121495 and DMI-0522485.
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Abstract. Consider the following Steiner Tree leasing problem. Given a
graph G = (V, E) with root r, and a sequence of terminal sets Dt ⊆ V for
each day t ∈ [T ]. A feasible solution to the problem is a set of edges Et for
each t connecting Dt to r. Instead of obtaining edges for a single day at
a time, or for infinitely long (both of which give Steiner tree problems),
we lease edges for say, { a day, a week, a month, a year }. Naturally,
leasing an edge for a longer period costs less per unit of time. What is a
good leasing strategy? In this paper, we give a general approach to solv-
ing a wide class of such problems by showing a close connection between
deterministic leasing problems and problems in multistage stochastic op-
timization. All our results are in the offline setting.

Keywords: Approximation algorithms, graph and network algorithms,
stochastic combinatorial optimization, randomized algorithms.

1 Introduction

Traditional network design problems require us to make decisions about how to
send data, and how to provision bandwidth on various links of the network. A
standard feature in most models for network design that have been considered,
and in the algorithms that have been developed, has been the permanence of
the bandwidth allocation—and this has been true even in cases where demands
arrive online: once some amount of bandwidth is allocated on an edge, this
bandwidth can be used at any time in the future (perhaps by paying some
additional incremental “routing cost” per unit of flow). Some works have also
considered the question of buying versus renting, but the simplifying assumption
again has been that buying gives permanent access to the commodity. But what
if we are allowed only to lease bandwidth on the links of the network for fixed
lengths of time: which leases on which network links should we obtain over time
to satisfy our demands?

Given a situation with multiple lease lengths, it is natural to assume that
a longer lease is a cheaper one (per day), and that we pay more dearly for the
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flexibility afforded by the short-term leases.1 Hence, if our traffic consists of some
stable parts and other bursty parts, we can use long-term leases to satisfy the
stable traffic, and the short-term leases to handle the more volatile demands: a
clever leasing strategy can reduce costs substantially over a näıve one. Note that
solving this problem requires us to simultaneously perform clustering over space
(in order to figure out which edges to allocate bandwidth on) and over time (to
figure out which traffic is stable and requires longer leases, and which is bursty
and is best served by shorter leases).

The question of finding good leasing strategies is relevant in the context of
other problems as well: in planning for demands arriving over multiple periods in
classical facility location problems, one might want to lease warehouses/plants
for varying lengths of time. Moreover, the idea that leases of varying lengths
are available is fairly natural: even in situations where there is a standard lease
length (say plants are usually leased for a year), the presence of a secondary
market for reselling or sub-letting might naturally give rise to the situation with
multiple lease lengths we consider in this paper.

In this paper, we initiate a systematic study of Leasing problems, and give
algorithms for several classic infrastructure design problems in the presence of
finite-duration leases. To illustrate our general model, we will use the Steiner

Tree Leasing problem as our running example.

We are given a graph G = (V, E) with a root r. For each day t, we are
given a set of terminals Dt and a set K of permissible lease lengths, where
the cost of leasing any edge e for length � ∈ K is c(�): we ensure that for
any lengths �1 < �2 in K, c(�2) ≤ c(�1)× �2

�1
. Note that an edge leased on

day t for duration � can be used on any of the days t, t + 1, . . . , t + � − 1,
and is said to be active on all these days. Define Xt(�) ⊆ E to be the set
of edges leased for duration � on day t, and Ft = ∪�∈K ∪j∈[t−�+1,t] Xj(�)
to be the set of active edges on day t. A solution (given by edge sets
Xt(�) for all t and �) is feasible if on each day t, the induced active edge
sets Ft connect the demand set Dt to the root r. The goal is to find a
feasible solution of minimum cost

∑
t,�[c(�) × |Xt(�)|].

One can follow this general idea and define other infrastructure design problems:
in Facility Location Leasing, we are given demand sets Dt for each day, and
may want to lease different facilities for different periods of time, with the goal
of minimizing the resulting cumulative facility opening costs plus the connection
costs for the clients on their respective days. (In this case, one may even imagine
a “non-uniform” scenario where the different facilities have different lease cost
functions.) And an even more general problem is that of Set Cover Leasing,
where we are given sets Dt ⊆ U of elements to cover on the tth day, and want to
lease sets such that the active sets at time t form a feasible cover of the set Dt.

While such problems of finite-period leases are related to the substantial body
of work on perishable commodities [29,13] in inventory theory, we are not aware

1 More formally, we assume leasing for length � costs no more than two leases of length
�/2. This sub-additive cost structure also allows amortization of one-time costs.
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of work that directly addresses the questions under consideration in this paper.
Loosely speaking, given supply of a perishable good—e.g., cartons of milk with a
lifetime of � days—and demands over time, research on perishable commodities
has considered questions pertaining to inventory positions (in deterministic vs
stochastic settings, with several classes of customers, etc.), and to pricing such
perishable goods. At a high level, our leasing problems can be viewed as solving
multiple perishable goods problems to solve a global network design problem.

1.1 Our Results and Techniques

The main result of this paper is the following, showing a close connection between
leasing problems as described above, and stochastic optimization problems.

Theorem 1 (General Leasing Theorem). The offline leasing version of a
subadditive combinatorial optimization problem Π with |K| = k lease lengths can
be reduced to the stochastic optimization version of Π in the model of k-stage
stochastic optimization with recourse.

We feel this theorem is somewhat surprising: even though the leasing version
of the problem Π can be completely deterministic with a given input and no
stochastic component, this theorem shows that an algorithm to solve the (multi-
stage) stochastic version of the problem suffices to solve the (non-stochastic)
leasing problem. The proof of this theorem turns out to be fairly clean, and
appears in Section 4.1. Given this main theorem, we can use recently-developed
algorithms for multistage stochastic combinatorial optimization [34,37] to infer:

Corollary 1 (Optimal Algorithms for Leasing). There exist O(1)-approx-
imation algorithms for the Facility Location Leasing and Vertex Cover Leasing
problems, and an O(log n)-approximation for the Set Cover Leasing problem.

All these results are asymptotically optimal (up to constants). For the Steiner
Tree Leasing problem we were using as our running example, we get the following
result by combining Theorem 1 with known results [17,19].

Theorem 2 (Steiner Tree Leasing). There is an O(min{k, logn})-approxi-
mation algorithm for offline Steiner Tree Leasing with |K| = k lease lengths.

It seems improving the approximation to o(k) requires techniques that also im-
prove results for the Stochastic Steiner Problem, which remains an open question.
New Algorithms for Network Problems: We go on to study other network
leasing problems that generalize the Steiner Tree Leasing problem. In these prob-
lems, instead of just connecting up the terminals, we are now required to allocate
“sufficient” bandwidth on the connecting edges as well. However, the cost of al-
locating bandwidth is itself a concave function g(b) of the amount of bandwidth
b allocated on the edge: these are commonly known as buy-at-bulk problems. In
the leasing framework, this translates into problems where the cost of leasing b
units of bandwidth for a period of length � is c(�) × g(b).
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Theorem 3 (Buy-at-Bulk Theorems). There is an O(k) approximation for
the k-stage Stochastic versions of the single-sink Rent-or-Buy, and the single-
sink Buy-at-Bulk problems. Moreover, the Stochastic Buy-at-Bulk problem with
multiple sinks has an O(k log n) approximation algorithm.

By Theorem 1, we get the same approximation ratios for the corresponding
network leasing versions of these problems as well.

Related Work. There has been a tremendous amount of work on network
design where the the cost of bandwidth obeys natural economies of scale (often
called “buy-at-bulk” network design). It is beyond the scope of this paper to
survey this body of work, so we point the reader to [25,26,4,32,2,14,12,38,1,10]
and the many references therein. This line of work is related to our work both
in spirit, as well as in some of the technical methodology. In this paper, we
also show how we can extend some of the current algorithms for these “buy-
at-bulk” problems to the case when the bandwidth is leased and not bought
permanently.

As mentioned above, leasing for finite periods is related to a large body of
work on perishable commodities [29,13] in inventory theory; however, to the
best of our knowledge, such problems have not been directly considered in the
literature.

The Steiner Tree Leasing problem was first explored in a paper on the “parking
permit problem” [27]. The paper noted that dynamic programming could be used
to solve the Steiner Tree Leasing problem when the graph was a single edge (or to
obtain an approximation scheme if the numbers are large), and gave an O(log k)
competitive algorithm in the online case where the terminal set Dt is revealed
only on day t. These results can be extended naturally to general graphs using
standard tree-approximation techniques [5,11] by losing an extra O(log n) factor.
However, it does not seem clear how to improve their techniques directly in the
offline case to avoid this loss of O(log n) and obtain an approximation dependent
only on k, or to extend them to the other problems we consider here.

In this paper, we show a concrete connection of network leasing to multistage
stochastic optimization problems. While the history of stochastic optimization
begins in the 1950s, this work is directly related to recent work on approxima-
tion algorithms for stochastic combinatorial problems [9,20,31,16,19,33,8,7]. We
draw most directly from the results of [19,17,34] on the multistage stochastic op-
timization problems, and on the results in [16,17] to convert algorithms for the
non-stochastic versions of problems to their multistage stochastic counterparts.

A standard tool in algorithms design today is the tree approximation tech-
nique of [5,11], as well as the general techniques for solving covering problems
from, e.g., [30,35,36,23]. These techniques will allow us to get some simple ap-
proximation bounds; one of the goals of this paper is to develop algorithms that
beat these näıve bounds by making use of the combinatorics of the problems,
and to explore connections to problems in multistage stochastic optimization.

As an aside, let us note that a problem called the “Network Leasing” problem
has been previously studied in the literature [3]; since that problem has come
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to be better known as the “Rent-or-Buy” problem, we have taken the liberty of
claiming the term “leasing” to refer to an orthogonal concept in this paper.

2 Models and Notation

Consider a general subadditive optimization problem Π with k lease lengths.
Formally, we are given a set U of potential clients or demands, such that on
each day t ∈ {1, 2, . . . , T}, some subset Dt ⊆ U of these clients actually appear
and demand service. (We will soon discuss how these sets Dt are given to us.)
We also have a set of elements X that we can use to build solutions: for each
subset of clients D ⊆ U , we are given some set of solutions Sols(D) ⊆ 2X to the
client set D. On day t, we would like to own a set of elements Ft ∈ Sols(Dt).

If each element could only be leased for a single day at a time, then this
would just require us to solve T instances of the problem Π ; on the other hand,
if elements could only be leased indefinitely (i.e., “bought”), we would just solve
the problem on ∪tDt. The “leasing” aspect of the problem is reflected in the
fact that each of these elements e ∈ X can be leased for several periods: i.e.,
on any day t, given any duration � ∈ K, one can obtain a lease of length � on
element e ∈ X for cost ce(�) and use it on days t, t + 1, . . . , t + � − 1. Formally,
let Xt(�) be the elements for which leases of length � were obtained on day t,
and Ft = ∪�∈K ∪t

t′=t−�+1 Xt(�), then a feasible leasing strategy is a sequence of
sets Xt(�) which results in Ft ∈ Sols(Dt) for each day t.

Definition 1 (Uniform vs. Non-Uniform). A leasing problem is called uni-
form if the cost functions ce(·) for all elements e ∈ X are identical (here we will
drop the subscript and refer to it as c(·)), and is called non-uniform otherwise.

As may be expected, we will be able to obtain better results for uniform problems
in some cases. One immediate advantage of uniform network design problems
will be the applicability of tree-approximation techniques (see Lemma 3); see
also Section 4.1 for other advantages of uniformity.
Stochastic Optimization. The relevant stochastic model is k-stage stochastic
optimization with recourse: the demand set D is revealed on day-k drawn from
some known distribution π, but on each of days 1, 2, . . . , k − 1, we are given
additional information about the set D. (One can view this process as having a
joint distribution over “signals” s1, s2, . . . , sk−1, sk received on the various days,
with the actual demand set some known function of this signals.) One can see,
e.g., [34,17] for more details about the model. The costs of elements change over
time (usually getting more expensive over time): the uniform inflation model
assumes the cost costt(e) of element e ∈ X on day-t (or stage-t) to be σi ×
costt−1(e) (and hence cost1(e)

∏
1<j≤i σj). Note that the σi’s are uniform, and

independent of the element e. In the more powerful non-uniform model, the
costs of different elements can change differently as time progresses.

We use the Boosted Sampling framework to develop new algorithms for some
network design problems: these will require us to use terminology about cost
shares, which can be found in Appendix A.
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Fig. 1. A solution, and the corresponding nested version (right), as in Lemma 2

3 Observations and Reductions

Before we give the main results of this paper, we give some observations which
will be helpful in the rest of the paper. We investigate how solutions can be
assumed to have a simple structure, what results tree-approximations can give
for Steiner Tree Leasing (giving us a baseline to compare to), and what tree-
approximation techniques can give for more complex network leasing problems.
Structure of Solutions. The following two lemmas allow us to impose a simple
structure on the instances we solve and solutions we seek. They are fairly stan-
dard (e.g., [27, Thms 2.1 & 2.2]) and are given for completeness. Recall that the
set of permissible lease lengths is K = {�1, �2, . . . , �k} with �1 < �2 < . . . < �k.

Lemma 1. Given any instance I of a leasing problem, we can convert it into
an instance I′ in which the lengths of leases exactly divide each other (i.e., �i|�j

for i < j), and where the costs satisfy c(�j) < c(�i) × (�j/�i). Moreover, there is
an optimal solution to I ′ which has cost at most 2 times the optimal cost for I.

The above lemma can be proved, e.g., by rounding all the lease lengths down to
the closest powers of 2, and by discarding leases that do not satisfy the subaddi-
tivity property. The following lemma shows that we can focus our attention only
on “nested” solutions; i.e., solutions where we never have a short-term lease still
active when a longer-term lease begins or ends.

Lemma 2 (Nested Solutions). Given an instance I of a leasing problem,
there is a solution which has cost at most 2 times the optimum, where a lease of
length � is obtained only for intervals of the form [t, t + �) with t a multiple of �.

See Fig. 1 for an example of a non-nested solution on the left, and a nested
solution whose cost is at most twice the cost of the former.
Reduction to Trees/Single-Edges. Given a graph G = (V, E), a theorem of
Fakcharoenphol et al. [11] (see also [5]) says that there is a distribution D over
dominating trees T (i.e., dG(u, v) ≤ dT (u, v) for any T in the support of D) such
that the expected stretch ET ←D[dT (u,v)]

dG(u,v) ≤ O(log n). The following use of this
result is fairly standard by now (see [2]).

Lemma 3 (Reduction to Trees/Edges). Given an instance of Steiner Tree
Leasing which is uniform (where the cost functions ce(·) are the same for all
edges), an α-approximation for the single-edge case gives an α approximation
for trees, and an O(α log n) approximation for the general graph case.
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The proof uses the fact that the reduction to a tree instance loses an O(log n);
once on a tree, the paths to be chosen are unique, and hence it suffices to run the
single-edge algorithm on each edge to determine when to lease it. (The simple
details are deferred to the final version of the paper.) Since we can solve the
leasing problem on a single edge exactly, we get an O(log n)-approximation for
the Steiner Tree Leasing problem.

General (Uniform) Leasing Strategies and CIPs. Consider a much more
general network design problem where at each time step t we are given a traffic
matrix Dt, and want to allocate enough bandwidth to route Dt. We are now
given a set L = {Lj = (Ij , bj, pj)}j of possible leases, where each lease Lj in L
is specified by a time interval Ij during which this lease is active, an amount bj

of bandwidth and a price pj for it. Moreover, for any lease Lj, we may have an
upper bound uj on the number of copies of this lease we can buy per edge. This
is a much more general model than the one we have been looking at, since we
allow “one-time-only” offers (a special deal valid only for some days at a special
price, limit one only), etc: this captures Buy-at-Bulk Leasing, and much more.

However, as long as the problem is uniform (i.e., each edge e has the same
set L of potential leases), we can use a reduction akin to Lemma 3 to ran-
domly reduce the problem to a tree and hence to a single edge, where it can
be solved using general theorems on CIPs, covering integer problems techniques
(e.g., see [30,35,6,36,23]). Applying these techniques to our problems give us ap-
proximation ratios that typically depend on log �max, and log bmax, where bmax is
the maximum bandwidth requirement. (See the full version for precise details.)
In this paper, we attempt to give algorithms that are better—i.e., independent
of �max; it is easy to see that log �max ≥ k, and we think of log �max � k.

4 Algorithms for Leasing Problems

In this section, we will prove the main result: that Leasing Problems can be
cast as Stochastic Optimization problems. This will allow us to get approxi-
mation algorithms for a variety of leasing problems from the corresponding al-
gorithms for stochastic optimization. While we use many stochastic algorithms
already in the literature, we will give new algorithms for some problems like
Stochastic Rent-or-Buy and Stochastic Buy-at-Bulk, and hence for their leasing
versions.

4.1 Reduction to Multistage Stochastic Optimization

Let us assume, without loss of generality, that �1 = 1, and denote the maximum
lease length by �max. By Lemma 2 we can assume that our solutions are nested.

Theorem 4. [Reduction to k-stage Stochastic Optimization] Any (non-uniform)
offline problem Π in the above framework with |K| = k lease lengths can be re-
duced to the standard k-stage stochastic optimization version of Π.
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Nk−2 = �k−1
�k−2

π1 π2 πt π16

Fig. 2. A nested leasing instance (k = 4), and the resulting stochastic tree T

Proof. As in the proof of Theorem 2, let us consider tiling time by intervals of
length �k, each of which are divided into Nk−1 = �k

�k−1
consecutive intervals of

length �k−1, each of which are further subdivided into Nk−2 = �k−1
�k−2

intervals of
length �k−2, and so on. Note that this gives a different representation of time: we
can describe time t =

∑k
p=1 jp �p as a k-tuple of the form (jk, jk−1, . . . , j1)—and

we will denote this tuple by τ̄ (t). (Note that jp is simply �t/�p	 (mod �p+1),
where we assume �k+1 = ∞). Corresponding to this notation, we will refer to
the set Xt(�i) also as X(jk,jk−1,...,j1)(�i), where t, �i and the jk’s are as above.

Recall that we are looking for nested solutions, and hence each lease of length
�i will be obtained at the beginning of some interval of length �i; hence Xt(�i) = ∅
for t �≡ 0 (mod �i). Moreover, since the longest interval is of length �k, all permits
will have to be purchased afresh at the end of each length �k interval, and hence
we can focus on the time interval from 0 to T = �k−1. Using these facts, consider
a leasing solution that for each t ∈ [T ] and p ∈ [k], buys leases of length �p on
the elements in Xt(�p) at time t. The (expected) cost of this solution is2

E

⎡

⎣
∑

e∈X0(�k)

ce(�k) +
∑

t:�k−1|t

∑

e∈Xt(�k−1)

ce(�k−1) +
∑

t:�k−2|t

∑

e∈Xt(�k−2)

ce(�k−2) + . . .

⎤

⎦ . (1)

We now define an instance of the k-stage stochastic optimization problem
Stock(Π) with the same optimal value as (1), and hence an α-approximation to
the stochastic problem gives an α-approximation to our network leasing problem.

The Stochastic Instance. Consider the tree T in Fig. 2 where the root has
Nk−1 = �k

�k−1
children, each node at depth 1 has Nk−2 = �k−1

�k−2
children, and so on.

This gives rise to �k leaves associated with the distributions π1, π2, . . . , π�t from
left to right. The k-stage stochastic problem now involves k stages of decision-
making. In the first stage, a particle is placed at the root, and we buy a set
Y1 ⊆ X , where element e ∈ X costs ce(�k). After this, the particle moves to
one of the children of the root at random; after we learn the identity of this
vertex of T, we can buy a “stage-2” set Y2 ⊆ X , but the cost of e now becomes

2 We allow randomized leasing policies, and so expectation is over the coin tosses of
our algorithm, as well as over randomness in the choice of the sets St in case we are
working in the stochastic offline model where St is drawn from the distribution πt.
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ce(�k−1) × Nk−1. In this way, after t steps, the particle reaches some node at
depth t, whence we buy some “stage-t+1” set Yt+1 ⊆ X with the costs ce(�k−t)×∏

1≤p≤t Nk−p = ce(�k−t) × �k

�k−t
. Finally, when the particle reaches some leaf vk

(at depth k − 1, say it is the tth leaf), the algorithm finally gets a random set of
clients St ∈R πt, and must output a set Yk such that Y1 ∪Y2 ∪ . . .∪Yk ∈ Sols(St);
as above, the costs are now ce(�1) ×

∏
1≤p≤k Nk−p = ce(�1) × �k

�1
.

The Correspondence. Note that a solution to this process associates a (po-
tentially) random set Y (v) with each vertex of tree T; the expected cost is

E

⎡

⎣
∑

e∈Y (root)

ce(�k) +
k−1∑

p=1

∑

v at depth p

Pr[reach v]
∑

e∈Y (v)

ce(�k−p) × �k

�k−p

⎤

⎦ (2)

Finally, we place the nodes at level p of T in correspondence with integers t
such that �k−p|t, associate Y (v) with Xt(�k−p), and observe the probability of
reaching any fixed node at level p is �k−p

�k
to get that (2) and (1) are identical.

Costs and Inflations. The instances of Stock(Π) created by the reduction
above have the property that when we go from stage p − 1 to stage p of the
stochastic problem, the cost of each element e increases by an inflation factor of

σe,p
.=

ce(�k−p+1) × Nk−p+1

ce(�k−p+2)
, (3)

which by our assumptions is at least 1. If the leasing problem was uniform (the
functions ce(·) were the same for all e ∈ X), this inflation parameter depends
only on the stage p but not on the element e (the uniform inflation case). But, if
the leasing problem was non-uniform, we get a non-uniform inflation stochastic
problem. This distinction will be useful, since depending on the problem Π ,
different approximation guarantees exist for uniform and non-uniform versions.

4.2 Leasing Algorithms from Existing Stochastic Algorithms

There has been much recent work on designing algorithms for multistage stochas-
tic optimization with provable guarantees; see [34,17,19]; some are in the uniform
inflation model, whereas others are more general. Using Theorem 4, we get:

Problem Inflation Approximation Ratio Stochastic
type for Leasing problem Citation

Steiner Tree uniform 8k 2k [17,19]

Facility Location non-uniform 9.4 2.36 [37]

Vertex Cover non-uniform 8 2 [28,37]

Set Cover non-uniform 4 ln n ln n [37]

We note that as presented, the algorithms for the k-stage stochastic problems
specify which elements to buy in an “online-like” fashion; given the observations
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of what has happened in the past, the stochastic algorithms prescribe the el-
ements to buy at the current time instant. In particular, they do not give an
explicit representation of the sets Y (v) of elements to buy for each node v of the
distribution tree T. However, the above algorithms can easily be altered to give
all these sets; the details are deferred to the final version of the paper.

5 New Stochastic/Leasing Approximations

In this paper, we give new results for k-stage stochastic optimization (and hence
for Network Leasing) on a group of network design problems, all of which lie
under the umbrella of “buy-at-bulk”-type problems. In these problems, the de-
mand Dt for day t is not just a set of clients that have to be connected (as in
Steiner Tree), but instead is a traffic matrix specifying how much traffic flows
between various pairs of nodes in the network. In addition to the lease-cost func-
tion c : K → R+ given earlier, we are also given a “bandwidth-cost” function
g : R+ → R+. The cost of leasing b bandwidth on an edge for � length of time
is now Cost(b, �) = g(b) × c(�). (We consider these problems only in the uniform
model, and hence both the functions c(·) and g(·) are the same for each edge.)

We will give the following results for some buy-at-bulk type problems, using
the Boosted Sampling approach and defining “strict” cost-shares to prove these
results; a quick overview is provided in Appendix A.

Problem Inflation Approximation Ratio Citation

Buy-at-Bulk uniform O(k log n) Theorem 5

Single-Sink Rent-or-Buy uniform O(k) Theorem 6

Single-Sink Buy at Bulk uniform O(k) Theorem 7

5.1 Multiple-Sink Buy-at-Bulk

There are many ways to specify the Buy-at-Bulk problem which are all equivalent
to within a factor of 2 (see, e.g., [38]), so let us fix one. We are given a demand
matrix D ∈ R

n×n where Dij gives the traffic from vi to vj . We have a monotone
subadditive cost function g(·), where the cost of bandwidth b is g(b). By well-
known properties of subadditive functions, we can find a concave cost function
h(·) such that g(b) ≤ h(b) ≤ 2g(b) for all b �= 0. We assume that the cost of
bandwidth allocation is h(b) for all non-zero values of b; this only changes the
problem by a factor of 2.

The best-known algorithm for the Buy-at-Bulk problem is by Awerbuch and
Azar [2]. We approximate the graph by a random tree (as in Lemma 3), and
given the Buy-at-Bulk problem on the tree, we can solve it on an edge-by-edge
basis. We now show how to get an algorithm for the stochastic version.

Theorem 5. The k-stage stochastic version of the Buy-at-Bulk problem on the
tree has an O(k) approximation, and hence Buy-at-Bulk on general graphs has
an O(k log n) approximation.
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Proof. Let us give an algorithm for a single edge in the tree that separates V into
A and V \A: we can calculate the traffic crossing this edge e as De =

∑
ij∈∂A Dij .

For this edge, we allocate capacity De and divide the cost h(De) equally among
each of the De units of demand. Clearly the cost shares are cross-monotone:
if more demand passes through the edge, the cost only decreases because h is
concave. Moreover, the algorithm is a 1-approximation with respect to these
cost-shares, since we share the exact cost of the algorithm amongst the players.

Moreover, we can check that these cost shares are 1-c-strict (as defined in (5)):
indeed, if we divided the traffic De into two parts S and T , and allocated S units
of bandwidth first, then the cost shares ξ(X/A(S), T, T ) = h(S+T )−h(S) would
be at most the cost-shares ξ(X, S ∪T, T ) = h(S + T )× T

S+T ascribed to T when
both S and T were in the fray; this follows from the concavity of h.

Given that we have 1-c-strict and cross-monotone cost shares ξ and a 1-
approximation algorithm A with respect to ξ, we can apply Theorem 8 to in-
fer a k-approximation (with respect to the cost function h), and hence a 2k-
approximation with respect to the original cost function g. Finally, since we
moved to a random tree, we lose another O(log n) in translating the solution
back to the original graph G. This concludes the proof.

5.2 Single-Sink Buy-at-Bulk Problems

In the Single-Sink Rent-or-Buy problem (a special case of the Buy-at-Bulk prob-
lem), we are given a graph G = (V, E) with a distinguished root vertex r. Each
vertex j wants to send dj amount of traffic to r. The bandwidth cost function
is g(b) = min{b, M} for some parameter M . We show the following result:

Theorem 6. The Single-Sink Rent-or-Buy problem has an O(1)-approximation
algorithm with respect to 1-c-strict cost sharing functions; moreover, these cost-
shares are cross-monotone.

Combined with Theorem 8, this gives an O(k)-approximation for stochastic
Single-Sink Rent-or-Buy, and hence an O(k)-approximation for the Single-Sink
Rent-or-Buy Leasing problem, where buying b bandwidth for � costs g(b) · c(�).

Proof. The algorithm A is the SimpleCFL algorithm from [15]. This algorithm
starts off with F = {r}, and add each vertex j to F independently with prob-
ability dj/M . It then builds an approximate Steiner tree on F using the MST
heuristic, and allocates unlimited capacity on its edges (hence paying M on each
such edge). It then sends dj units of flow from j to its closest vertex in F (which
may be j itself, in case j ∈ F ); for this it pays cost 1 per unit of flow.

Define the cost-share for node j as ξRoB(v) = E[M ξMST (v)] + E[dj l(v, F )].
(Here ξMST is a cross-monotonic cost-sharing function ξMST for the minimum
spanning tree problem—e.g., given in [22,21], and l(v, F ) is the distance from
v to the nearest vertex in F .) It is known that ξRoB is cross-monotone, and
moreover that A is a 4-approximation for Single-Sink Rent-or-Buy with respect
to these cost-shares ξRoB [24,18].
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We claim ξRoB is 1-c-strict with respect to A. By the definition of 1-c-strict-
ness, we want to show that given S, T ⊆ V , ξ(G, S∪T, T ) ≥ E[ξ(G/A(S), T, T )];
here the expectation on the right hand side is over the coins flipped by A(S).3 Of
course, to compute both the cost shares ξ’s, we also have to take expectations.
Since the expressions on the left and the right both involve flipping an indepen-
dent coin for each of the nodes in S ∪ T , let us couple the two random processes
in the natural way by making the same set of coin tosses in both expressions.

Consider a particular choice of coin flips for S ∪T , which chooses FS ⊆ S and
FT ⊆ T ; set F = {r} ∪ FS ∪ FT . The cost-shares on the right involve paying for
the MST on FT (in the graph G/A(S)), and paying for connections from each
j ∈ T \ FT to F . Charging for the latter is easy, since we pay for the distance
from j to F in the left expression too. To pay for the former, we look at the
primal-dual process that generates ξMST . In the run on G/A(S) with terminals
FT , a node j in FT obtains cost-shares as long as its moat does not contain the
root of the graph G/A(S). Since all nodes in FS are contracted to the root in
G/A(S), in the process for the left hand side the moat of j must not have hit any
moat of FS ∪ {r}, and hence must get at least as much cost-share. This implies
that for any particular set of coin flips, the cost-share on the right is bounded
above by the cost-share on the left, and hence this holds in expectation as well.

This can be extended to give the following theorem:

Theorem 7. The Single-Sink Buy-at-Bulk problem has an O(1)-approximation
algorithm with respect to 1-c-strict cross-monotone cost sharing functions.

The proof of Theorem 7 extends the proof of Theorem 6. While we defer it until
the final version of the paper, we sketch it here: the algorithm is essentially the
SimpleSSBB algorithm from [15], which uses the above SimpleCFL algorithm re-
peatedly to collect the traffic, which is then aggregated at some randomly chosen
locations. Each time the aggregation is done using cables of larger capacity, and
results in fewer and fewer locations, until finally all the traffic is at one location,
whence it is sent to the root. Since we repeatedly use the algorithm SimpleCFL,
the cost-share of a node u is just the expected cost-share of u accumulated over
the various runs of SimpleCFL (where its cost-share is zero when there is no more
traffic at u). The proof of strictness again proceeds by coupling the run on S ∪T
to the run where we build a solution on S, and then augment it to T .

6 Conclusions

In this paper, we defined several natural “Leasing” problems, in which an op-
timization problem is solved repeatedly over time (each time with a different
set of clients), and the elements chosen to serve the clients can be leased for
extended periods of time to take advantage of temporal trends in the sets of
clients. The costs of these leases satisfy standard economies of scale, and hence
longer leases cost less per unit of time. We study leasing problems in an offline
3 The added expectation sign over the definition (5) is required since A is randomized.
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setting, and give approximation algorithms for them via a connection with mul-
tistage stochastic optimization. We also give new algorithms for some network
design problems in the multistage stochastic framework.

Many future directions of research suggest themselves: an important one is
to extend the results to online or stochastic versions of leasing problems. In
this paper, the demands Dt were given up front, but one can also consider cases
where the demands Dt appear only on day t, chosen adversarially (i.e., the online
model) or from some probability distribution (i.e., the stochastic model). While
some of these problems can be solved by solving associated LPs and rounding
them online (as in [27]), obtaining general results for these online problems
is a direction we are exploring in ongoing work. There seem to be interesting
questions involved in pricing these leases as well. It would be good to extend the
“buy-at-bulk” results to cases where the cost function is not separable g(b)f(�).
Finally, getting o(k)-approximations for the Steiner Tree Leasing problem is an
intriguing question—it seems that the ideas for such an improvement would be
useful for the multistage stochastic versions as well.

References

1. Andrews, M., Zhang, L.: Wavelength assignment in optical networks with fixed
fiber capacity. In: 31st ICALP. Volume 3142 of LNCS. (2004) 134–145

2. Awerbuch, B., Azar, Y.: Buy-at-bulk network design. In: 38th FOCS. (1997)
542–547

3. Awerbuch, B., Azar, Y., Bartal, Y.: On-line generalized Steiner problem. Theoret.
Comput. Sci. 324(2-3) (2004) 313–324

4. Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: Network design. In Dell’Amico,
M., Maffioli, F., Martello, S., eds.: Annotated bibliographies in combinatorial op-
timization. John Wiley & Sons Ltd., Chichester (1997) 311–334

5. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic ap-
plications. In: 37th FOCS. (1996) 184–193

6. Carr, R., Fleischer, L., Leung, V., Phillips, C.: Strengthening integrality gaps for
capacitated network design and covering problems. In: 11th SODA. (2000) 106–115

7. Charikar, M., Chekuri, C., Pál, M.: Sampling bounds for stochastic optimization.
In: 9th APPROX. Volume 3624 of LNCS. Springer, Berlin (2005) 257–269

8. Dhamdhere, K., Ravi, R., Singh, M.: On two-stage stochastic minimum spanning
trees. In: IPCO. Volume 3509 of LNCS. Springer, Berlin (2005) 321–334

9. Dye, S., Stougie, L., Tomasgard, A.: The stochastic single resource service-provision
problem. Naval Research Logistics 50(8) (2003) 869–887

10. Eisenbrand, F., Grandoni, F., Oriolo, G., Skutella, M.: New approaches for virtual
private network design. In: 32nd ICALP. Volume 3580 of LNCS. (2005) 1151–1162

11. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. System Sci. 69(3) (2004) 485–497

12. Garg, N., Khandekar, R., Konjevod, G., Ravi, R., Salman, F.S., Sinha, A.: On
the integrality gap of a natural formulation of the single-sink buy-at-bulk network
design formulation. In: 8th IPCO. Volume 2081 of LNCS. (2001) 170–184

13. Goyal, S., Giri, B.C.: Recent trends in modeling of deteriorating inventory. Euro-
pean Journal of Operational Research 134(1) (2001) 1–16



Infrastructure Leasing Problems 437

14. Guha, S., Meyerson, A., Munagala, K.: Hierarchical placement and network design
problems. In: 41th FOCS. (2000) 603–612

15. Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algo-
rithms for network design. In: 35th STOC. (2003) 365–372

16. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: Approximation algo-
rithms for stochastic optimization problems. In: 36th STOC. (2004) 417–426

17. Gupta, A., Pál, M., Ravi, R., Sinha, A.: What about Wednesday? approximation
algorithms for multistage stochastic optimization. In: 8th APPROX. (2005) 86–98
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A Cost Shares and Stochastic Algorithms

We will draw on some techniques developed in recent work on converting ap-
proximation algorithms for standard (non-stochastic) versions of optimization
problems into those for the stochastic versions of the problems [16,17]. In par-
ticular, we use the following theorem.

Theorem 8 ([17]). Given a problem Π, if A is an α-approximation algorithm
w.r.t. a 1-c-strict cost-sharing function ξ, and if ξ is cross-monotone, then there
is an αk-approximation algorithm for the k-stage stochastic version of Π.

Let us briefly discuss the basics of the cost-sharing concepts we will use in
this paper; we refer the reader to [17] for a detailed discussion of the concepts.
Loosely, a cost-sharing function ξ divides the cost of a solution among the client
set S. We use the notation ξ(G, S, j) to denote the share of the client j when
the input is the graph G and the set of clients is S. (By convention, we will
assume that ξ(G, S, j) > 0 =⇒ j ∈ S.) The function ξ is cross-monotone if
for every pair of client sets S ⊆ T and a client j such that j ∈ S, we have
ξ(G, T, j) ≤ ξ(G, S, j). (I.e., if more clients join the system, the share of any
individual client does not increase.)

Competitiveness. We will try to relate algorithms A to cost-sharing functions
ξ, and hence ξ will conceptually behave like a “dual”. Hence a crucial property
is that ξ give a lower bound on the cost of the optimal solution: A cost-sharing
function ξ is competitive if for every client set S, it holds that

∑
j∈S ξ(G, S, j) ≤ OPT(X, S). (4)

We will focus only on competitive cost-sharing functions. (Henceforth, we will
use the notation ξ(G, S, S′) to denote

∑
j∈S′ ξ(G, S, j).)

Strictness. Let S, T ⊆ V be sets of users. Suppose G is the original graph, and
G/A(G, S) is the graph after the client set S has already been served by running
the algorithm A on it. Then the cost-sharing function ξ is β-c-strict if

ξ(G/A(G, S), T, T ) ≤ β × ξ(G, S ∪ T, T ). (5)

In other words, the total cost shares for the set T of users in the reduced instance
G/A(G, S) is at most β times the cost-shares for T if the users in S were present
as well. In this paper, we will deal only with the case when β = 1; i.e., cases
where the cost shares for T when it appears with S are at least as much as when
S is served earlier, and then T has to be served by itself.

Finally, we call A an α-approximation algorithm with respect to the cost-
sharing function ξ

c(A(G, S)) ≤ α ξ(G, S, S). (6)

Note that chaining the inequalities (6) and (4) implies thatA is anα-approximation
algorithm in the conventional sense as well.
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Abstract. Following the well-studied two-stage optimization framework
for stochastic optimization [15,18], we study approximation algorithms
for robust two-stage optimization problems with an exponential num-
ber of scenarios. Prior to this work, Dhamdhere et al. [8] introduced
approximation algorithms for two-stage robust optimization problems
with explicitly given scenarios. In this paper, we assume the set of pos-
sible scenarios is given implicitly, for example by an upper bound on
the number of active clients. In two-stage robust optimization, we need
to pre-purchase some resources in the first stage before the adversary’s
action. In the second stage, after the adversary chooses the clients that
need to be covered, we need to complement our solution by purchasing
additional resources at an inflated price. The goal is to minimize the cost
in the worst-case scenario. We give a general approach for solving such
problems using LP rounding. Our approach uncovers an interesting con-
nection between robust optimization and online competitive algorithms.
We use this approach, together with known online algorithms, to develop
approximation algorithms for several robust covering problems, such as
set cover, vertex cover, and edge cover. We also study a simple buy-
at-once algorithm that either covers all items in the first stage or does
nothing in the first stage and waits to build the complete solution in
the second stage. We show that this algorithm gives tight approximation
factors for unweighted variants of these covering problems, but performs
poorly for general weighted problems.

1 Introduction

In many combinatorial optimization problems, the objective is to minimize the
cost of building an installation to serve a number of clients. In classical opti-
mization problems, it is often assumed that the parameters of the system are
known in advance. However, in reality, it is almost always impossible or costly
to obtain accurate data about various parameters of the optimization problem
at the time of planning. For example, the cost of acquiring a resource or the
set of clients that need to be serviced might be unknown. The goal of the fields
of stochastic optimization and robust optimization is to provide algorithms for
minimizing the cost in presence of uncertainty.
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In stochastic optimization [6,7], it is assumed that we have information about
the probability distribution governing the data. Given this information, the
goal is to plan ahead to minimize the expected cost. In particular, in two-stage
stochastic optimization, a solution is built in two stages: in the first stage, we
need to decide which resources to purchase given only distributional information
about the instance. In the second stage, the exact information about the data is
revealed and we are allowed to complement the solution built in the first stage
by purchasing extra resources at an inflated cost.

Robust optimization [4,5,17,3] can be considered the worst-case analogue of the
stochastic optimization. In a robust optimization problem, we are given bounds
on various parameters of the system, and the goal is to find a solution that min-
imizes the cost in a worst-case scenario (or be feasible in a worst-case scenario).
A two-stage robust optimization problem (introduced in [3,8]) is similar to a two-
stage stochastic problem except instead of a distribution, we have a set of possible
scenarios (given either explicitly, or implicitly by giving bounds on various param-
eters), and instead of expectation, we would like to minimize the maximum cost
of the solution, where maximum is taken over the set of all possible scenarios.

During the past few years, stochastic optimization (and in particular, two-
stage stochastic optimization) has received considerable attention from the per-
spective of approximation algorithms. Efficient approximation algorithms are
given for a wide class of optimization problems, both for cases where the dis-
tribution is given explicitly by listing the set of all possible scenarios and the
corresponding probabilities [18,13], and in the more general case where the dis-
tribution is given implicitly, as the product of a number of independent trials,
or by an oracle [15,20,12,8].

For robust optimization, Ben-tal et al [3] initiated the study of two-stage ro-
bust optimization problems. Dhamdhere et al. [8] introduced the first approxima-
tion algorithms for two-stage robust covering problems when the set of scenarios
is given explicitly. In this paper, we take on the task of studying approximation
algorithms for two-stage robust optimization problems, where the set of possible
scenarios is given implicitly. In particular, we focus on the case where the set of
possible scenarios is given by an upper bound on the number of active clients,
and give approximation algorithms for the robust version of several classical
covering problems such as set cover, vertex cover, and edge cover.

1.1 The Model

In this section we give a formal definition of the robust optimization model
that will be studied in this paper. This model is a generalization of the model
introduced by Dhamdhere et al. [8] (in the case of explicitly listed scenarios),
and is motivated by similar models for two-stage stochastic optimization [15,13].

In a covering problem, we have a set C of potential clients, and a set R of
resources. Each resource r ∈ R can be purchased at a cost cr. In order to serve
a set of clients, a set of resources must be purchased. The collection of all sets
of resources which can serve the set S ⊂ C of clients is denoted by sol(S). In
covering problems the collection sol(S) is an upper ideal, i.e., if a set of resources
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can serve S, so can any superset of this set. An unweighted covering problem is
a covering problem in which all cr’s are equal to 1.

Generally, the collection sol(S) is given implicitly by specifying a set of con-
straints. Three examples that we will focus on in this paper are set cover, vertex
cover, and edge cover. In the set cover problem, each resource r ∈ R corresponds
to a set of clients, and the collection sol(S) consists of all sets of resources whose
union covers S. In the vertex cover problem, the set of clients and the set of
resources are the edge set and the vertex set of a given graph, respectively, and
a set S ⊂ C can be served by any set of vertices that contain at least one of the
endpoints of each edge in S. In the edge cover problem, each resource is an edge
and each client is a vertex of a given graph, and a set S of clients can be covered
by any set of edges that has at least one edge adjacent to any vertex in S.

In a two-stage robust covering problem, we have a collection S of scenarios,
each given by a set of active clients (i.e., clients that need to be covered). The
objective is to purchase a set of resources in the first stage to minimize the cost of
these resources plus a given inflation factor λ times the maximum over scenarios
S in S, of the cost of completing the solution for scenario S. In other words, after
we purchase a set of resources in the first stage, an adversary decides in which
scenario we are. After that, we need to complete the solution by purchasing
more resources at costs inflated by a factor λ (or more generally, by an inflation
factors λS

r which depends on the resource r ∈ R and the scenario S ∈ S).
The robust optimization problem can be studied in several different models,

depending on how the list of scenarios S is given to the algorithm. One model,
studied by Dhamdhere et al. [8] and Golovin et al [11], is to assume that the
list of all possible scenarios is given explicitly. This model is suitable for situ-
ations where the number of possible scenarios is not very large. An alternative
model, motivated by the independent trials model of stochastic optimization, is
to assume that the list of scenarios is given implicitly by an upper bound on
the maximum number of active clients. More formally, in this model an integer
k is given and S is defined as {S ⊆ C : |S| ≤ k}.1 Finally, motivated by the
oracle model in stochastic optimization, we define an oracle model for robust
optimization where the list of possible scenarios is given by an oracle which,
given the set of resources purchased in the first stage, outputs the worst-case (or
approximately the worst-case) scenario for the second stage.

An important distinction between our oracle model and the oracle model for
stochastic optimization is that in our model, the problem the oracle needs to
solve is often computationally intractable. For example, if the set of scenarios
in a robust set cover problem is given by an upper bound on the number of
active clients, the oracle needs to find a subset of k clients whose minimum cost
of covering is maximized. We call this problem the max-min set cover problem,

1 More generally, we can consider a model where the set of clients is partitioned into
subsets C1, . . . , Ct, and the set of scenarios is the collection of all sets that have at
most ki clients from the set Ci. Although the results in Sections 2 and 3 work for
this more general model, for clarity of exposition we restrict ourselves to the simpler
model.
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and will observe that it is computationally hard. Considering the hardness of the
oracle problem, the algorithms designed for the oracle model need to be able to
work with an approximate oracle as well. Furthermore, in order to solve a robust
optimization problem in the model where the scenarios are given by an upper
bound on the number of active clients, in addition to designing an algorithm for
the oracle model, we need to give an approximation algorithm for the max-min
version of the problem.

1.2 Our Contribution

In this paper, we mostly focus on the model where the scenarios are given implic-
itly by an upper bound on the number of active scenarios. This is motivated by
real-world situations where a good estimate of the total number of clients who
will show up is available, but we do not exactly know where they will appear. We
will also give a general LP-based algorithm for the oracle model, assuming that
the oracle gives a good approximation of the worst-case scenario with respect to
the fractional solution.

A naive idea to solve the robust optimization problems is a buy-at-once al-
gorithm: either cover all items in the first stage in which case nothing needs to
be done in the second stage. Or do nothing in the first stage and construct a
solution in the second stage, after the adversary makes its choices. The choice
of which of the two options to use is based on a polynomial-time test that is
problem specific. We study this algorithm in Section 4 and prove that when the
inflation factor is the same for all scenarios, the approximation ratio of this algo-
rithm for robust unweighted set cover, vertex cover, and edge cover problems are
max(log m, log n), 2, and 2, respectively. However, the following example shows
that for the weighted version of robust vertex cover, any buy-at-once algorithm
(even with unbounded computing power) performs poorly. Consider a clique on
n vertices, with k = 1 and λ =

√
n. All vertices have weight 1, except for two

vertices that have weight w =
√

n. The buy-at-once algorithm will either pay at
least n in the first stage, or at least λw = n in the second stage. However, an op-
timal algorithm can choose only one of the heavy vertices in the first stage, and
then pay at most w + λk = 2

√
n. Hence the approximation ratio of the buy-at-

once algorithm for weighted robust vertex cover is no better than Ω(
√

n). This
example indicates the need for more sophisticated approximation algorithms for
robust two-stage optimization problems.

In Section 2, we give a general LP-based framework for solving robust covering
problems given access to an oracle that solves the fractional max-min problem
(or the adversary’s problem) and another oracle that rounds the LP solution for
the classical (i.e., non-robust) optimization problem. For example, for the robust
set cover problem, we need an oracle that given an integer k and a collection of
subsets S1, S2, . . . , Sm of a universe F each with a cost c(Si), finds a subset T ⊆ F
of size at most k for which the cost of fractional set cover is maximized, and
another oracle that rounds a fractional set cover to an integral one. In Section 3,
we show how an online algorithm can be used to solve the max-min problem when
the set of feasible scenarios are given by an upper bound on the number of active
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clients. We use this to give an O(log m)-approximation algorithm for max-min
fractional set cover. We also show that the max-min fractional set cover problem
is not approximable within a factor better than Ω( log m

log log m) under reasonable
complexity assumptions. As a result of this framework, we get an O(log n log m)-
approximation for the robust set cover problem. Following similar ideas, we
design constant-factor approximation algorithms for robust vertex cover and
edge cover problems. This framework can be extended easily to more general
settings in which the scenarios are given implicitly in more general ways. The
main step for these extensions is to design good approximation algorithms for
the max-min problems.

Finally, in Section 5 we show that our algorithms for max-min fractional set
cover and edge cover achieve essentially the best possible approximation factors,
assuming reasonable complexity assumptions.

2 An LP-Rounding Approach for Robust Set Cover

In this section, we give an LP-based approach for robust set cover. Our tech-
niques work for a more general covering problem where each resource r ∈ R
can be picked an integer number of times xr, and a client is covered if a corre-
sponding inequality of the form

∑
r airxr ≥ 1 (where air are given non-negative

coefficients) is satisfied. The details of this generalization are omitted here.
We start by giving an LP formulation of two-stage robust set cover.2

minimize Z +
∑

r∈R
cry

0
r (1)

subject to ∀S ∈ S, ∀i ∈ S :
∑

r: i∈r

(y0
r + yS

r ) ≥ 1 (2)

∀S ∈ S :
∑

r∈R
λcry

S
r ≤ Z. (3)

The variable y0
r in the above LP indicates whether the resource r is purchased

in the first stage. Similarly, the variable yS
r indicates whether this resource is

purchased in the second stage, if the adversary selects the set S as the set of
active clients. The variable Z indicates the maximum cost of the second stage,
where the maximum is taken over all possible scenarios. Clearly, if the variables
y0

r and yS
r are restricted to be integers, the above integer program captures the

robust set cover problem precisely. Therefore, relaxing the integrality condition
gives us a linear program whose solution is a lower bound on the cost of the
optimal solution to the robust set cover problem.

The main difficulty with this LP formulation is that it contains an exponential
number of constraints and an exponential number of variables, and therefore can-
not be solved directly using the ellipsoid method. We can deal with this problem
2 We present this LP in the case that the inflation factor λ does not depend on the

resource r or the scenario S. However, it is easy to see that all proofs in this section
apply to the more general case.
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using a technique developed by Shmoys and Swamy [20] for stochastic optimiza-
tion: we consider the projection of the above LP onto the space corresponding
to the variables y0

r ’s and Z, and then give a separation oracle for the reduced
LP. The projection of the above LP corresponds to the following program.

minimize Z +
∑

r∈R
cry

0
r (P )

subject to ∀S ∈ S : Z ≥ cost2(S, y0)

Here cost2(S, y0) denotes the cost of the optimal fractional solution for the second
stage when the set of active clients is S, given that resource r is already purchased
to the extent of y0

r in the first stage.
The separation oracle for this LP corresponds to an algorithm that computes

the optimal strategy for the adversary of the robust fractional set cover problem.
We call this the max-min fractional set cover problem. More precisely, the max-
min fractional set cover problem is the following: given a fractional first-stage
solution (i.e., y0

r ’s), select a scenario (in the example we will focus on in this
paper, a set of at most k clients) so that the cost of a fractional solution for
the second stage is maximized. The following lemma, proved using a simple
application of the ellipsoid method, shows that given an approximation algorithm
for the max-min fractional problem, we can compute an approximate solution
of the above LP in polynomial time.

Lemma 1. Assume we have a polynomial time γ-approximation algorithm for
the max-min fractional problem. Then, we can compute a γ-approximation to
the solution of the linear program (P) in polynomial time.

The proof, which is omitted here, is based on the ellipsoid algorithm and the tech-
niques used by Shmoys and Swamy [20] in the context of stochastic optimization.

The above lemma requires us to be able to solve the max-min fractional set
cover problem given a fractional first-stage solution. In other words, for each
client i we are given a fractional value θi, so that if the adversary chooses i
in the set of active clients, we will have to cover i to the extent of θi. In the
following lemma, we show that it is enough to be able to solve the max-min
problem given that θi’s are zero or one. In other words, given a subset C′ of the
clients (corresponding to those with θi = 1), we need to be able to find a set of
at most k clients in C′ whose minimum fractional covering cost is maximized.
We call this problem the max-min fractional set cover problem with integer
requirements.

Lemma 2. Assume we have a polynomial time γ-approximation algorithm A
for the max-min fractional set cover problem with integer requirements. Then,
we can compute a (γ+1)-approximation to the solution of the linear program (P)
in polynomial time.

Proof. We iteratively run the ellipsoid algorithm to check whether (P) has a
solution with an objective function value of at most R, and use binary search to
find the smallest value of R for which the ellipsoid algorithm declares that there
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is such a solution. For the separation oracle, we do the following: let C′ = {i ∈
C :

∑
r:i∈r y0

r < 1/(γ + 1)} denote the set of clients covered by the fractional
first-stage solution to an extent less than 1/(γ + 1). We run algorithm A to find
the max-min fractional set cover among clients in C′. Let T denote the cost of
the solution returned by A. This means that there is at least one scenario S∗ ∈ S
such that the cost of minimum fractional cover for S∗ ∩ C′ is at least T , and for
every scenario S ∈ S, the cost of the minimum fractional cover for S ∩ C′ is at
most γT . Our separation oracle accepts (y0) if the cost of the first stage solution
y0 plus γ

γ+1T is at most R; otherwise it rejects (i.e., declares that there is no
solution with a first stage solution of y0 of total cost at most R).

First, we show that if the above separation oracle rejects y0, then an exact
separation oracle would do the same. This is because with a first stage solution
of y0, clients in C′ need to be covered to the extent of at least γ

γ+1 in the second
stage, and therefore the cost of the second stage in scenario S∗ cannot be less
than γ

γ+1 times the cost of the minimum fractional cover for S∗ ∩ C′, which, by
definition, is at least T .

Next, we prove that if our separation oracle accepts y0, then we can build a
feasible solution for (P) of cost at most (γ +1)R. This is done by multiplying y0

by (γ + 1). The set of clients not covered by this inflated first stage solution is a
subset of C′. Therefore, the cost of the second stage is at most γT . The overall
cost of this solution is at most (γ + 1)

∑
r∈R cry

0
r + γT ≤ (γ + 1)R, where the

latter inequality follows from the fact that our separation oracle accepts y0.
Now, let R∗ be the smallest value of R for which our algorithm decides that the

linear program has a solution. This means that for R < R∗, our separation oracle
never accepts any first stage solution y0. By our first observation, the ellipsoid
algorithm with an exact separation oracle would return the same answer. Hence,
R∗ is a lower bound on the solution of (P). Since the ellipsoid algorithm for
R = R∗ finds a y0 which our separation oracle accepts, our second observation
implies that there is a solution of value (γ + 1)R∗ for (P). This is a (γ + 1)-
approximate solution for the program (P). �

The solution obtained by solving the linear program (P) can be rounded into
an integral solution using an LP-based algorithm that solves the (non-robust)
optimization problem. Combining this with Lemma 2, we obtain the following.

Theorem 1. Assume there is an α-approximation algorithm A1 for the max-
min fractional set cover problem with integer requirements, and an algorithm
A2 that given a subset S of clients, finds an integral solution that covers the
clients in S and whose cost is at most β times the minimum cost of fractionally
covering S. Then there is a (α + 1)β-approximation algorithm for the robust set
cover problem.

Proof. We run the algorithm described in the proof of Lemma 2 to compute an
(α + 1)-approximate solution to the LP (P). The solution that this algorithm
finds corresponds to (α + 1)y0, where y0 is a first stage solution accepted by
our separation oracle. As in the separation oracle, we define C′ = {i ∈ C :∑

r:i∈r y0
r < 1/(α + 1)}. Now, we run the algorithm A2 to find an integral set
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cover solution that covers clients in C′. The cost of this first stage solution is at
most (α + 1)β times the cost of y0. Also, for every scenario in the second stage,
we use A2 to find a β-approximation to the optimal fractional second stage cost.
This defines a (α + 1)β approximation algorithm for robust set cover. �
By the above theorem, the main ingredient in solving a robust optimization
problem with implicitly given scenarios is the algorithm for the max-min prob-
lem. In the next section, we show how an online algorithm for the underlying
optimization problem can be used to approximately solve the max-min problem.

3 The Max-Min Problems

The results of the previous section show that in order to solve the LP relaxation
of the robust set cover problem, we need to consider the max-min problem.
In this section, we design an O(log m)-approximation algorithm for max-min
fractional set cover problem. In fact, we present a general framework to design
an approximation algorithms for a max-min problem using online competitive
algorithms for the underlying optimization problem. Note that the max-min
problems that we need to solve for approximating the robust covering problems
are the fractional variants of the problems.

Given a universe F of clients and a subset T ⊆ F , let opt(T ) be the cost of an
optimal (fractional) solution to cover all clients in T . Let A be an α-competitive
online algorithm for a covering problem. Namely, upon the arrival of any client
ak to an existing set of clients a1, a2, . . . , ak−1, A augments the current solution
to a feasible solution for a1, . . . , ak−1, ak. The algorithm is α-competitive if for
every sequence of clients a1, . . . , ak the cost of the online solution produced by
A is at most α times the cost of the optimal (offline) solution for a1, a2, . . . , ak.
Let A(b|a1, a2, . . . , ak) denote the marginal increase in the cost of the solution
constructed by algorithm A when we add a new element b to an existing sequence
of clients (a1, . . . , ak).

Consider two solutions w and w′ for a fractional covering problem. Solution w′

dominates solution w if for each set S the fractional value given to its respective
variable in w′ is at least as large as that given in w. We say that the covering
problem satisfies the monotonicity property, if for any two given solutions w and
w′ such that w′ dominates w and any element a, the optimal marginal increase
in expanding w′ to cover a is not more than the optimal marginal increase in
expanding w to cover a. It is not hard to prove that the set cover problem and
its special cases satisfy this property.

The following theorem presents a relation between competitive online algo-
rithms and approximation algorithms for the max-min problem.
Theorem 2. Let A be an α-competitive online algorithm for a covering problem.
If the covering problem satisfies the monotonicity property then the corresponding
max-min problem admits an ( e

e−1 )α-approximation algorithm.

Proof. Given the online algorithm A for the covering problem, we prove that the
following algorithm B is a (1 − 1

e )α-approximation algorithm for the max-min
problem:
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1. T = ∅.
2. for i = 1, . . . , k do

(a) Find a client ai that maximizes A(ai|a1, a2, . . . , ai−1) and add it to T .

Let the optimal solution to the max-min problem be the set {b1, . . . , bk} of
clients. Let OPT∗ be the optimal cost of covering {b1, . . . , bk}. Let Wi be the cost
of the solution of the online algorithm after i elements a1, . . . , ai have arrived and
Li = max[0, OPT∗ − Wi]. We prove that Li ≤ (1 − 1

k )Li−1. Consider expanding
the solution of the online algorithm for {a1, . . . , ai−1} in the optimal way so that
it covers {b1, b2, . . . , bk}. The cost of this new solution is at least OPT∗. Hence
there is some item bj (with 1 ≤ j ≤ k) such that there is difference of at least
OPT∗−Wi−1

k in cost between the case in which the clients b1, . . . , bj−1 are added
(or no clients at all, if j = 1) and the case in which the clients b1, . . . , bj are
added. Since the covering problem satisfies the monotonicity property, adding
bj alone to {a1, . . . , ai−1} requires an increase in cost of at least OPT∗−Wi−1

k

compared to the cost of A covering {a1, . . . , ai−1}. Hence Wi−1 +(OPT∗−Wi−1
k )

is a lower bound on the cost of A for covering {a1, . . . , ai−1, bj}. Since algorithm
B chooses in the ith step the ai that maximizes the marginal increase in the
cost of A, we will indeed have that Wi ≥ Wi−1 + OPT∗−Wi−1

k , and thus, Li ≤
Li−1(1 − 1

k ). Thus Li ≤ (1 − 1
k )iL0. Therefore, Lk ≤ (1 − 1

k )kOPT∗ ≤ 1
eOPT∗.

This shows that Wk ≥ (1 − 1
e )OPT∗. Since A is an α-competitive algorithm,

the true cost of covering {a1, . . . , ak} is at least Wk/α, and algorithm B is a
( e

e−1 )α-approximation algorithm for the max-min problem. �

Using Theorem 2 and known online algorithms, we can design approximation
algorithms for the max-min problems. For example, an O(log m)-competitive
algorithm for the online fractional set cover problem by Alon et al. [1] and The-
orem 2 implies an O(log m)-approximation algorithm for the max-min fractional
set cover problem. In Section 5, we show that this result is nearly best possible
(assuming certain complexity theoretic assumptions). This algorithm, together
with the O(log n) randomized rounding algorithm for set cover and Theorem 1,
imply the following.

Theorem 3. There exists an O(log m log n)-approximation algorithm for the ro-
bust two-stage set cover problem.

Using the ideas of the 2-approximation algorithm for vertex cover by Bar-Yehuda
and Even [2], we can design a 2-competitive online algorithm for vertex cover
problem as follows. In the online algorithm, we keep track of a value r(u) for
each vertex u of the graph. We initialize these values to r(u) = w(u). Upon the
arrival of a new edge e = uv, the online algorithm sets ru = ru − min(ru, rv)
and rv = rv − min (ru, rv). Observe that after this update either r(u) = 0 or
r(v) = 0. At any moment, the fractional vertex cover solution is to pick 1− r(u)

w(u)
fraction of each vertex u. This means that we fully pick u or v for edge e = uv
and this solution is a feasible fractional vertex cover. Similar to the proof of
Bar-Yehuda and Even [2], we can prove that this algorithm is a 2-competitive
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online algorithm. Using Theorem 2, this 2-competitive online algorithm implies a
( 2e

e−1 )-approximation algorithm for the max-min fractional vertex cover problem.
Applying the above results and the 2-approximate rounding procedure for the
vertex cover problem, we get a 2( 2e

e−1 +1)-approximation algorithm for the robust
(weighted) vertex cover problem. The details are omitted.

For the edge cover problem, a simple 2-competitive online algorithm is to cover
every arriving vertex with the cheapest edge incident to it. This, together with
Theorems 2 and 1, give a constant-factor approximation algorithm for the robust
edge cover problem. We do not optimize the constants of the approximation ratio
for the weighted problems. However, in Section 4 we show a tight buy-at-once
2-approximation for unweighted vertex cover and edge cover.

4 Improved Algorithms for Unweighted Problems

In this section, we give buy-at-once approximation algorithms for unweighted
variants of robust set cover, vertex cover, and edge cover.

4.1 Robust Unweighted Set Cover

In the robust unweighted set cover problem, all sets have unit cost. The input
of the problem consists of n items, a collection of m sets, a parameter k (for
number of items to be chosen by adversary), and an inflation factor λ > 1.
To simplify notation, we assume here that parameters such as k, m and n are
sufficiently large, and hence we shall ignore effects such as rounding ln m to the
nearest integer. They affect the approximation ratio only by low order terms.
The buy-at-once approximation algorithm for robust set cover is as follows:

1. Compute a minimum fractional set cover that covers all potential clients and
let t be its size.

2. If t < λk
ln n , use the greedy algorithm to find a set cover. It will be of size at

most t ln n. Nothing needs to be done in the second stage.
3. If t ≥ λk

ln n , do nothing in first stage. In the second stage, use a greedy
algorithm to cover the items chosen by the adversary.

Theorem 4. The above buy-at-once algorithm achieves an approximation ratio
no worse than max(ln n, ln m) (up to low order terms) for unweighted robust set
cover.

Proof. Observe that by duality, t is the size of the maximum fractional packing.
Let αt be the number of sets chosen by the optimal solution (to the robust
set cover problem) in the first stage. Removing all items covered by these sets,
the remaining set cover instance still has a fractional packing of value at least
(1 − α)t. (We may assume that α ≤ 1, as otherwise the analysis becomes even
simpler.) Pick a set T of items, where each item is selected into T independently,
with probability equal to its fractional value in the maximum fractional packing.
The expected size of T is at least (1 − α)t. In fact, known bounds by Siegel [19]
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imply that |T | ≥ �(1 − α)t� with probability at least 1/2. Moreover, every set is
expected to contain at most one item from T , and Chernoff bound implies that
with probability at least 1/2, no set will contain more than ln 2m items. For
simplicity of notation, we shall assume that T contains exactly (1 − α)t items,
and no set contains more than lnm items from T . (This assumption affects only
low order terms in the approximation ratio.) Hence in the second stage opt will
pay at least min((1 − α)t, k) λ

ln m , and in the two stages combined opt pays at
least αt + min((1 − α)t, k) λ

ln m . This is a piecewise linear function in α, and its
minimum is achieved when α is either 0 or 1, or when (1 − α)t = k. It follows
that opt pays at least min(t, kλ

ln m ).
Now we can analyze the approximation ratio of our algorithm. When t < λk

ln n ,
the algorithm pays at most t ln n ≤ λk, which is a factor of lnn larger than t,
and at most a factor of lnm larger than kλ

ln m . Hence the approximation ratio in
this case is at most max(ln m, lnn).

When t ≥ λk
lnn , the algorithm pays nothing in the first stage, and at most

λk ≤ t lnn in the second stage. Again, the approximation ratio can be seen to
be at most max(ln m, lnn). �

The following example shows that the above analysis for the buy-at-once algo-
rithm is tight up to a log log m factor: consider an instance of the two-stage robust
set cover where the ground set consists of n+n1/4 elements and k = n1/4 and λ =
n1/4. The family of subsets in the set cover instance is the family of all subsets of
size n1/4 of set {1, 2, . . . , n} and all singleton sets {n+1}, {n+2}, ..., {n+n1/4}.
The optimal solution is to buy all singleton sets in advance and wait for the
scenario. Since the adversary should choose a set of size n1/4 of {1..n} and this
set is in the family of sets in the set cover instance, we can cover any scenario
by buying one set at cost λ = n1/4 later. Thus, the cost of the optimal solution
is at most 2n1/4. If we do not buy any set in advance, the adversary selects
{n + 1, n+ 2, ..., n + n1/4} and we should pay λk = n1/2 in the second stage. On
the other hand, in order to cover all elements in the first stage, we need to buy at
least n3/4 sets. Both of these cases are more than a factor of n1/4 = Ω( log m

log log m)
larger than the optimal solution.

Also, observe that the term lnn in the approximation ratio cannot be im-
proved by any polynomial-time algorithm (e.g., when λ = ∞), due to the hard-
ness of approximating minimum set cover [10]. It is not clear whether the term
ln m can be improved.

4.2 Robust Unweighted Vertex Cover

Consider the following buy-at-once algorithm for the robust unweighted vertex
cover problem: compute a maximum matching M in G, and let |M | denote its
size. If |M | < λk, then we pick a vertex cover of size no larger than 2|M | in
the first stage (for example, by picking both endpoints of every edge in M) and
nothing needs to be done in the second stage. If |M | ≥ λk, we do nothing in the
first stage and in the second stage, for each edge that is present in the realized
scenario, we pick one of its endpoints arbitrarily.
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Theorem 5. The above algorithm achieves an approximation ratio of 2 for the
unweighted robust vertex cover problem.

Proof. Let OPT denote an optimal algorithm, and let x denote the number of
vertices purchased by this algorithm in the first stage. Thus, at least |M | − x of
the edges in M are not covered by OPT in the first stage. Consider the scenario
where the adversary picks min(k, |M | − x) of these edges in the second stage.
The overall cost of OPT in this scenario is T := x + λmin(k, |M | − x). Since
λ ≥ 1, we have T ≥ min(λk, |M |).

Now, we show that the cost of our algorithm is always at most 2T . We consider
two cases: if |M | < λk, our algorithmbuys a vertex cover of cost atmost 2|M | in the
first stage.Therefore, the cost of our algorithm is atmost 2|M | = 2 min(λk, |M |) ≤
2T . If |M | ≥ λk, our algorithm incurs a cost of λk = min(λk, |M |) ≤ T . Therefore,
in this case our algorithm is actually optimal. �

Note that any algorithm that approximates unweighted robust vertex cover
within a ratio better than 2 can be used to approximate the minimum ver-
tex cover problem within a ratio better than 2 (e.g., by setting λ = ∞), and
achieving this would resolve a long standing open problem.

4.3 Robust Unweighted Edge Cover

The input of the unweighted edge cover problem is a graph with n vertices, m
edges, a parameter k (for number of vertices to be chosen by adversary), and
an inflation factor λ > 1. All edges have unit cost. Observe that the number of
edges needed to cover � vertices is always between �/2 and �. This fact serves as a
basis for a tight 2-approximation for the robust unweighted edge cover problem.
The algorithm and the proof are left to the full version of the paper. Moreover,
we can prove that if P �=NP, then the max-min variant and the robust two-stage
variant of the edge cover problem cannot be approximated within a factor better
than 2.

5 Hardness of Max-Min Problems

In this section, we give a strong inapproximability result for the max-min (frac-
tional) set cover problem. First, we show a hardness result for the max-min
(fractional) edge cover problem.

Theorem 6. For every ε > 0, it is NP-hard to approximate the max-min un-
weighted edge cover problem within a ratio better than 2 − ε.

Proof. The proof is by reduction from the maximum independent set problem.
As shown in [14], for every sufficiently small ε > 0, it is NP-hard to distinguish
between the following two classes of graphs:

Yes instances: graphs on n vertices that contain an independent set of size εn.
No instances: graphs on n vertices with no independent set of size ε5n.
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In order to distinguish whether a given graph G is a yes instance or a no
instance, we construct an instance of the max-min edge cover problem that
consists of G and k = εn. On yes instances, one can select k vertices that
form an independent set in G, and then k edges are needed in order to cover
them. On no instances, whenever there are more than ε5k vertices, two of them
share an edge in G. It follows that any selection of k vertices can be covered by
ε5k +(1− ε5)k/2 < k/(2− ε) edges. Therefore, any algorithm that approximates
the max-min unweighted edge cover problem within a factor better than 2 − ε
can be used to distinguish between these classes. �

The proof of Theorem 6 can be adopted easily for the max-min fractional edge
cover problem. This implies that for any ε > 0, it is NP-hard to approximate
the max-min fractional edge cover problem within a factor better than 2 − ε.
This hardness ratio can be strengthened to nearly logarithmic factors for the
fractional set cover problem, but proving this using current techniques seems to
require assumptions stronger than P �= NP . Picking p(n) =

√
n in Theorem 7

shows that the max-min (fractional) set cover problem cannot be approximated
within a ratio better than Ω( log N

log log N ) (on instances of size N) unless 3SAT can
be solved in time 2O(

√
n) (on instances of size n).

Theorem 7. For every 0 < δ < 1 and p(n) = nδ, the max-min fractional set
cover problem cannot be approximated within a ratio better than Ω( p(n)

log p(n) ) on
instances of size N = 2O(p(n)) (in time polynomial in N), unless NP problems
(say 3SAT) can be solved in time 2O(p(n)).

Proof. The proof is presented for the integral set cover problem, but the ap-
proximation hardness applies also to the max-min fractional set cover problem,
because in the yes instance the cover is disjoint. The proof is based on the
structure of instances of set cover that are generated by the reduction described
in [10], and specifically, on the parameters given in Section 6 in [10]. Here we
only sketch the proof.

Recall that in [10], the hardness of approximation result is based on a certain
multiple-prover proof system. We shall need the number of provers (denoted
in [10] by k) to be p(n). (Hence one cannot use here the earlier [16] instead
of [10].) In [10] it suffices that the number of parallel repetitions � is logarithmic
in the number of provers, hence we can have � = O(log(p(n))). (Remark: later
work [9] used a version of a multilayered PCP which is somewhat simpler than
the multiple prover system of [10]. This simpler version requires � to grow at a
faster rate than p(n), and would result in weaker conclusions if used in the proof
of Theorem 7.) This results in a set cover instance with 2O(p(n)) clients and sets.

Each subset in [10] would be an item in the max-min set cover problem. Each
item in [10] would be a set in the max-min set cover problem. Note that in [10]
all sets are of the same size, and there is a disjoint set cover for yes instances, say,
by t sets. We shall set k for the max-min set cover problem to be equal to this
t. Hence yes instances of [10] correspond to yes instances of max-min set cover
for which k clients can be selected that require k sets in order to be covered.
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The property of no instances of [10] that we shall use is the following: for every
q < p(n), for every collection of tq/p(n) sets, there is some item that belongs to
O(p(n)/q) of the sets. Extensions of the analysis in [10] can be used in order to
prove this property, but this is omitted from the current paper.

The property above implies that for no instances in [10], for every collection
of t sets there are O(t log(p(n))

p(n) ) clients that hit all the sets. This implies that in
no instances of the max-min set cover problem, the optimum solution has value
O(t log(p(n))

p(n) ). �
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Abstract. We study the classical multi-item capacitated lot-sizing problem with
hard capacities. There are N items, each of which has specified sequence of
demands over a finite planning horizon of discrete T periods; the demands are
known in advance but can vary from period to period. All demands must be sat-
isfied on time. Each order incurs a time-dependent fixed ordering cost regardless
of the combination of items or the number of units ordered, but the total number
of units ordered cannot exceed a given capacity C. On the other hand, carrying
inventory from period to period incurs holding costs. The goal is to find a feasible
solution with minimum overall ordering and holding costs.

We show that the problem is strongly NP-Hard, and then propose a novel fa-
cility location type LP relaxation that is based on an exponentially large subset of
the well-known flow-cover inequalities; the proposed LP can be solved to opti-
mality in polynomial time via an efficient separation procedure for this subset of
inequalities. Moreover, the optimal solution of the LP can be rounded to a feasi-
ble integer solution with cost that is at most twice the optimal cost; this provides a
2-Approximation algorithm, being the first constant approximation algorithm for
the problem. We also describe an interesting on-the-fly variant of the algorithm
that does not require to solve the LP a-priori with all the flow-cover inequalities.
As a by-product we obtain the first theoretical proof regarding the strength of
flow-cover inequalities in capacitated inventory models. We believe that some of
the novel algorithmic ideas proposed in this paper have a promising potential in
constructing strong LP relaxations and LP-based approximation algorithms for
other inventory models, and for the capacitated facility location problem.

Keywords: approximation algorithms, integer programming, polyhedral
combinatorics, randomized algorithms, scheduling theory and algorithms.

1 Introduction

The issue of capacity constrains arises in many practical and theoretical inventory man-
agement problems as well as in problems in other application domains, such as facility
location problems. In most practical inventory systems there exist capacity constrains
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that limit the quantities that one can order, ship or produce. Unfortunately, it is often
the case that models with capacity constrains are computationally far more challenging
than their counterpart models with no capacity constrains. In particular, in many prob-
lems with capacity constrains computing optimal policies and sometimes even feasible
policies is a very challenging task.

In recent years there has been an immense work to develop integer programming
methods for solving hard, large-scale deterministic inventory management problems.
(We refer the reader to the recent book of Pochet and Wolsey [18].) A major part of
this work has been focused on constructing strong formulations for the corresponding
inventory models. In fact, it is essential to have an integer programming formulation
with a strong linear programming relaxation. Stronger formulations are achieved by
identifying valid inequalities that are satisfied by all feasible integral solutions and cut
off fractional solutions. Another key aspect within an integer programming framework
is the ability to construct good feasible integer solutions to the corresponding model.
This has been known to have a huge impact on decreasing the computational effort
involved. In models with capacity constrains, finding good feasible solutions can be
very challenging.

In this paper, we study the classical multi-item capacitated lot-sizing problem, which
is an extension of the single-item economic lot-sizing problem [18]. We propose a novel
facility location type linear programming (LP), and show how to round its optimal so-
lution to a feasible integral solution with cost that is guaranteed to be at most twice the
optimal cost. This is called a 2-Approximation algorithm, that is, the cost of the solution
constructed by the algorithm is guaranteed to be at most twice the optimal cost. (This
is the first constant approximation algorithm for this problem.) The LP relaxation is
based on a variant of a well-known class of valid inequalities called flow-cover inequal-
ities. These inequalities have been introduced over two decades ago [16] and have been
shown empirically to be very effective in solving several inventory and facility location
problems with capacity constrains [1,18]. (In Section 2 below, we discuss the relevant
literature on flow-cover inequalities in more details.) Our results have several significant
contributions: (i) To the best of our knowledge, this is the first theoretical evidence for
the strength of flow-cover inequalities applied to capacitated inventory models. (All the
previous theoretical results have been obtained for fixed-charge single-node problems.
See Section 2 below for details.) (ii) Our approach provides a conceptually simple way
to generate provably good feasible solutions, and can be easily implemented within an
integer programming framework. (iii) Several of the newly proposed algorithmic ideas
in this paper have a promising potential of applicability in other inventory models with
capacity constrains. Moreover, we believe that they can be used to develop strong LP
relaxations and LP-based approximation algorithms for the capacitated facility location
problem.

The model. The details of the inventory model discussed in this paper are as follows.
There are N items indexed by i = 1, . . . , N , each of which has a specified sequence of
demands over a finite planning horizon of T discrete periods indexed by t = 1, . . . , T .
The demand of item i in period t is denoted by dit. The demands are known in advance
but can vary from period to period. Moreover, all of the demands must be fully satisfied
on time, that is, dit must be fully ordered by time period t. At the beginning of each
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period s = 1, . . . , T , it is possible to place an order for any combination of items,
and this incurs a fixed ordering cost Ks regardless of the combination of items or the
number of units ordered. However, the overall quantity of units ordered in period s
cannot exceed a certain capacity limit Cs ≥ 0. These are usually called hard capacity
constrains in contrast to soft capacity constrains, where in each period s, the order is
placed in batches, each of which has capacity Cs and incurs an additional fixed ordering
cost Ks. We consider the special case with uniform capacities, i.e., Cs = C, for each
s = 1, . . . , T .

The units ordered in period s are assumed to arrive instantaneously, and can be used
to satisfy demands in that period and subsequent periods. The fixed ordering cost is
balanced with a cost to maintain physical inventory that is called holding cost. In most
of the existing literature the holding costs are linear and additive. Specifically, for each
item i and period t, there is a holding cost parameter hit ≥ 0 that denotes the per-unit
cost to carry one unit of item i in inventory from period t to period t + 1. Following
Levi, Roundy and Shmoys [12], we model the holding cost in a more general way. For
each demand point (i, t) and a potential order s ≤ t, let hi

st ≥ 0 be the per-unit cost of
holding one unit of item i in inventory from period s to period t. The only assumption is
that, for a fixed (i, t), the parameters hi

st are non-increasing in s. (This implies that if dit

is ordered from a closer period to t the resulting holding cost is not bigger.) The way we
model the holding cost is more general, and can capture several important phenomena
such as perishable goods. We also note that we can incorporate a per-unit ordering cost
into the holding cost parameters. The goal is to find a feasible policy that satisfies all of
the demands on time and has minimum overall ordering and holding cost.

Literature review. As we already mentioned, this is a classical model in inventory the-
ory that has been studied by several researchers throughout the years. The special case
with a single-item (N = 1) and uniform capacities is polynomially solvable both with
hard capacities [11] and soft capacities [17]. (This is usually called single-item capac-
itated economic lot-sizing problem.) Moreover, there are known extended LPs, that is,
LPs with integrality property that provide an exact description of the set of feasible so-
lutions. The single item problem with non-uniform capacities is known to be weakly
NP-Hard [11], but there is a fully polynomial time approximation scheme (FPTAS)
[19]. For results on other variants of single-item models, we refer the reader to [6,18].

Federgruen, Meisner and Tzur [10] have studied the model discussed in this paper
with traditional holding cost, but with additional fixed item ordering costs that are in-
curred in each period, in which item i is ordered. Under the assumption that all of the
demands and the cost parameters are uniformly bounded by constants, they have pro-
posed a dynamic-programming-based algorithm, and shown that it is asymptotically
optimal as the number of periods increases to infinity. In a subsequent paper [9], they
provide a probabilistic analysis of the algorithm. Another dynamic-programming-based
algorithm for a special case of the model discussed in this paper has been proposed
by Anily and Tzur [3]. (They have studied a model with traditional holding costs and
stationary cost parameters, i.e., hit = h and Kt = K , for each i and t.) However,
the running time of their algorithm grows exponentially fast in the number of items,
and thus, it is not practical unless there are few items. In a recent paper Anily, Tzur
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and Wolsey [4] have considered the same model with time-dependent cost parameters,
but with the additional monotonicity assumption on the holding parameters. In par-
ticular, the assumption is that the items are ordered, such that each item has higher
holding costs than all previously ordered items, uniformly for all periods. Specifically,
h1t ≤ h2t ≤ · · · ≤ hNt, for all periods t = 1, . . . , T . For this problem, they have
proposed an extended linear programming formulation with O(NT 2) constrains and
variables that solves the problem to optimality. (This implies that this special case is
polynomially solvable.)

Our results and techniques. Our first result shows that the multi-item capacitated lot-
sizing problem with hard or soft capacities is strongly NP-Hard. (This is done by re-
duction from 3-PARTITION Problem, the details are omitted due lack of space.) This
implies that the monotonicity assumption of Anily, Tzur and Wolsey [4] is somewhat
essential to get a polynomial time optimization algorithm. We propose a novel facility
location type LP relaxation for the problem that is very different than the one used by
Anily, Tzur and Wolsey [4]. Our LP is based on the family of flow-cover inequalities
in the same spirit as the LP proposed by Aardal, Pochet and Wolsey for the capacitated
facility location problem [2]. However, it incorporates only a subset of the class of flow-
cover inequalities: there are exponentially many inequalities in this subset, but we show
that they can be separated in polynomial time. Thus, the LP can be solved optimally in
polynomial time, using the Ellipsoid method. We then use an extremely simple round-
ing algorithm. The optimal solution of the LP relaxation is scaled by a suitably chosen
factor, and the scaled solution is used to execute a randomized rounding procedure that
outputs the sequence of periods, in which orders are placed. Given the output of the first
phase, demands are assigned to orders by solving the induced transportation problem,
and this minimizes the resulting holding costs. The main challenge in the worst-case
analysis is to show that the first phase of the algorithm opens capacity that is suffi-
cient to serve all of the demands, and that the resulting solution is of low cost. This is
done by exploiting the structure of the flow-cover inequalities. In particular, we show
that together with the scaling at the first phase of the algorithm, they guarantee that the
resulting transportation problem has a low cost feasible solution. This provides a ran-
domized 2-Approximation algorithm. The randomized procedure can be derandomized
to provide a deterministic 2-Approximation algorithm. As a by-product, we obtain the
first theoretical proof of the strength of flow-cover inequalities in capacitated inven-
tory models. (As already mentioned, all previous results are restricted to fixed-charge
single-node problems, see Section 2 below.)

Finally, the insights from the worst-case analysis are used to construct an on-the-fly
variant of the algorithm. Instead of solving the LP a-priori with all the correspond-
ing flow-cover inequalities, we propose an iterative procedure. In each iteration, a well
designed rounding procedure is applied to the optimal fractional solution of the LP
relaxation. If this procedure comes to an end successfully, it can be shown that the
resulting integral solution is feasible and has cost that is at most twice the optimal
cost. On the other hand, if the procedure is terminated in the middle, it is guaran-
teed to identify a violated flow-cover inequality. The corresponding inequality is added
to the LP, which is then solved again. The on-the-fly algorithm can be viewed as
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running the Ellipsoid method until termination or until the first time the rounding proce-
dure is ‘stuck’, whereas then we are guaranteed to have a good feasible integral solution.
We believe that the on-the-fly algorithm might be computationally more efficient, since
it does not require solving the LP a-priori with all the flow-cover inequalities. (This
algorithmic approach is similar in spirit to what is discussed in Carr at al. [8] in the
context of a single-node fixed charge problem.)

The rest of the paper is organized as follows. In Section 2, we describe the LP re-
laxation and discuss the flow-cover inequalities. In Section 3 we describe the rounding
algorithms and the worst-case analysis.

2 A Flow-Cover-Inequality-Based LP Relaxation

A natural Mixed Integer linear Programming (MIP) formulation of the multi-item ca-
pacitated lot-sizing problem can be obtained by using two sets of variables:

– For each s = 1, . . . , T , let ys be a binary variable that is equal to 1 if an order is
placed in period s and 0 otherwise.

– For each i = 1, . . . , N , t = 1, . . . , T and s = 1, . . . , t, let xi
st be the fraction of the

demand dit satisfied by an order placed in period s.
– For each i = 1, . . . , N , t = 1, . . . , T and s = 1, . . . , t, let Hi

st = hi
stdit be the cost

of holding the all demand dit if ordered in period s.

The corresponding MIP formulation is as follows:

min
T∑

s=1

Ksys +
N∑

i=1

T∑

s=1

T∑

t=s

Hi
stx

i
st (1)

∑

s≤t

xi
st = 1 i = 1, . . . , N, t = 1, . . . , T, dit > 0, (2)

xi
st ≤ ys i = 1, . . . , N, s = 1, . . . , T, t ≥ s, (3)

N∑

i=1

∑

t≥s

ditx
i
st ≤ Cys s = 1, . . . , T, (4)

xi
st ≥ 0 i = 1, . . . , N, (5)

ys ∈ {0, 1} s = 1, . . . , T. (6)

If we relax the integrality constrains to 0 ≤ ys ≤ 1, we get an LP relaxation that
provides a lower bound on the cost of the optimal solution. However, this LP relaxation
is weak in that the gap between its optimal value and the value of the optimal integral
solution can be arbitrarily high. Thus, there is no hope to use the LP to construct con-
stant approximation algorithms. For example, consider an instance with a single-item
and 2 periods, no holding costs, fixed ordering costs K1 = 0 and K2 = 1, and demands
d1 = 0 and d2 = C +1. The optimal policy must open two orders incurring a cost of 1.
The optimal fractional solution can achieve a cost of 1/C by setting y1 = 1, ys = 1/C,
x12 = C/(C + 1) and x22 = 1/(C + 1).
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2.1 Flow-Cover Inequalities

In this section, we introduce the class of flow-cover inequalities that we use to
strengthen the LP induced by (1)-(6). Flow-cover inequalities have been introduced
by Padberg, Van Roy and Wolsey [16] over two decades ago in the context of the fixed
charge single-node problem. In this problem there is a single-node of demand D and
a collection of T capacitated arcs. The goal is to open arcs and send a flow of D units
to the demand node. Opening arc s incurs a fixed cost Ks, and sending flow over arc s
incurs a per-unit cost hs, for each unit of flow. Padberg, Van Roy and Wolsey [16] have
used flow-cover inequalities to construct an extended LP for this problem with uniform
arc capacities. They have also shown that these flow-cover inequalities can be sepa-
rated in polynomial time. Carr et al. [8] have shown that another variant of flow-cover
inequalities can be used to construct an LP relaxation for the fixed-charge single-node
problem with nonuniform capacities, whose optimal solution can be rounded to a feasi-
ble solution with cost that is at most twice the optimal cost. Carnes and Shmoys [7] have
used the same LP to construct a prima-dual algorithm with the same worst-case perfor-
mance guarantee. Aardal, Pochet and Wolsey [2] have used aggregation of constrains
to leverage the flow-cover inequalities to multi-location problems, specifically, hard
capacitated facility location problems. They have reported that flow-cover inequalities
seem to be effective in narrowing the integrality gap and enhance integer programming
solution procedures. However, to the best of our knowledge there has been no theo-
retical analysis regarding the strength of flow-cover inequalities in facility location or
inventory models.

In the spirit of [2], we next introduce flow-cover inequalities for the multi-item ca-
pacitated lot-sizing problem. Given a subset A of demand points, i.e., a collections of
pairs (i, t), i = 1, . . . , N, t = 1, . . . , T , let D(A) =

∑
(i,t)∈A dit denote the cumu-

lative demand of the set A; �A = �D(A)
C � be the cover number of A, i.e., the min-

imum number of orders required to satisfy the demands in A; λA = �AC − D(A);
RA = C − λA be the residual capacity of A, i.e., the capacity required to satisfy the
demands in A after �A − 1 orders are fully used; and rA = RA/C(= D(A)

C − �D(A)
C �)

be the fraction of the residual capacity. Observe that by definition 0 < RA ≤ C and
0 < rA ≤ 1. Moreover, a subset F of orders (i.e., F ⊆ {1, . . . , T}) is called a cover of
A if |F | ≥ �A.

Then, we claim that the following inequalities are valid:
∑

(i,t)∈A

∑

s∈F

ditx
i
st − RA

∑

s∈F

ys ≤ D(A) − �ARA. (7)

The validity of inequalities (7) in the multi-item capacitated lot-sizing problem can
be obtained as a special case of the general mixed integer rounding inequalities, or in
short MIR inequalities (see, e.g., Nemhauser and Wolsey [15]). An MIR inequality is
defined with respect to the simple mixed-integer set Q = {x ∈ R, y ∈ Z : x + y ≥
b, x ≥ 0}, for which it is easy to prove the validity of the inequality x + b̂y ≥
b̂�b�, where �b� is equal to b rounded up to the next integer, and b̂ = �b� − b. This
can be generalized to more complicated sets that involve more variables, as long as
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the variables can be split into an integral part and a continuous nonnegative part. In
particular, we apply an MIR derivation to:

1
C

∑

(i,t)∈A

∑

s�∈F

ditx
i
st +

∑

s∈F

ys ≥ D(A)
C

. (8)

It is easy to see that Inequality (8) is valid for the system (1)–(6). Specifically, Constraint
(2) implies that D(A) =

∑
(i,t)∈A

∑
s∈F ditx

i
st +

∑
(i,t)∈A

∑
s�∈F ditx

i
st; then replace

the first term in the right hand side of the equality by an upper bound C
∑

s∈F ys (see
Constraint (4)) and divide by C to get the desired Inequality (8).

Thus, by applying an MIR derivation to (8) one obtains:

1
C

∑

(i,t)∈A

∑

s�∈F

ditx
i
st + rA

∑

s∈F

ys ≥ rA�A, (9)

which coincides with (7) after splitting D(A) as done before and dividing by C.

Separation. To the best of our knowledge the complexity of separating flow-cover
inequalities is unknown. Aardal [1] has shown that flow-cover inequalities can be sep-
arated in polynomial time for a fixed set of demand points. (There is a simple greedy
procedure.)

Next we consider a fixed subset of orders F̄ ⊆ {1, . . . , T}, and describe a polyno-
mial time algorithm to separate flow-cover inequalities that correspond to the subset of
orders F̄ . For the description of the algorithms, it will be useful to rewrite flow-cover
inequalities that correspond to the set F̄ as

∑

(i,t)∈A

dit

C
(1 −

∑

s∈F̄

xi
st) ≥ rA(�A −

∑

s∈F̄

ys). (10)

Observe that (10) above may still contain exponentially many constrains, one for each
subset A of demand points that can be covered by F̄ . However, this is similar to the
residual capacity inequalities introduced by Magnanti, Marchandani and Vachani [14]
for the mixed-integer set called splittable flow arc set X = {(x, y) :

∑n
i=1 aixi ≤

a0 + y, x ∈ [0, 1]n, y ∈ {0, 1}}. It has been shown that residual capacity inequalities
are sufficient to characterize conv(X ) [14,5]. Moreover, Atamtürk and Rajan [5] have
described an O(n) time separation algorithm .

Building on the results of Atamtürk and Rajan [5], we can obtain the following the-
orem. (The proof is omitted due to lack of space.)

Theorem 1. Consider a subset of orders F̄ . Then there exists a polynomial time sepa-
ration algorithm for the inequalities in (10). The algorithm runs in O(NT 2) time.

An LP. Next we describe an LP based on (1)-(5), relaxation of the integrality constraint
of (6) and a subset of the flow-cover inequalities defined in (7) above.

Let F := {[s, t] : 1 ≤ s ≤ t ≤ T } be the collection of all subsets of orders
defined by intervals [s, t]. Consider the LP defined by (1)-(5), the relaxation of (6) and
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only the inequalities in (7) that correspond to subsets of orders F ∈ F . Recall that in
Theorem 1 we have shown that flow-cover inequalities that correspond to a fixed subset
of orders can be separated in polynomial time. Since the cardinality of the set F is
O(T 2), it follows that the above LP can be solved to optimality in polynomial time by
using the Ellipsoid method. Let (x̂, ŷ) be the optimal solution of that LP and VLP be
the respective optimal value. Since the LP is a relaxation of the problem, it follows that
VLP is a lower bound on the optimal cost denoted by VOPT .

3 The Random-Shift Algorithm with Median Demand Assignment

In this section, we describe an approximation algorithm for the multi-item capacitated
lot-sizing problem with hard capacities that is based on the linear programming relax-
ation defined above by (1)-(5), relaxation of the integrality constraint of (6) and the
flow-cover inequalities in (7) that correspond to the collection of subsets F defined
above.

We shall first show how to round the optimal fractional solution (x̂, ŷ) of this LP to a
feasible integer solution with cost that is at most twice VLP . Since VLP is a lower bound
on the optimal cost, this implies that the algorithm is a 2-Approximation. In addition,
we shall describe an on-the-fly variant of the algorithm that does not require to add
all the respective flow-cover inequalities a-priori, but instead adds violated constrains
on-the-fly until a (good) integer solution is obtained.

First, we present a randomized rounding procedure that we call Random-Shift with
Median Assignment. This procedure rounds the fractional optimal solution (x̂, ŷ) to
a feasible integer solution (x̃, ỹ) with expected cost that is at most twice the optimal
cost VOPT . We then discuss how to derandomize the algorithm, and get a deterministic
2−Approximation algorithm.

The rounding algorithm runs in two phases. In the first phase of the algorithms we
determine in which periods to place orders. Based on the outcome of the first phase of
the algorithm, we decide how to assign demand points to orders.

3.1 Phase I: The Random-Shift Procedure

We first describe Phase I of the algorithm which we call the Random-Shift procedure.
(This is similar in spirit to the work of Levi, Roundy, Shmoys and Sviridenko [13] on the
single-warehouse and multi-retailer problem.) In this phase we decide, in which periods
to place orders. This simple randomized procedure is based on the values ŷ1, . . . , ŷT .
For each s = 1, . . . , T , let ȳs = min{2ŷs, 1}, i.e., we double the original value of each
variable ŷs ≤ 0.5 and make it equal to 1 if ŷs > 0.5. We call ŷs and ȳs the fractional
order and scaled fractional order in period s = 1, . . . , T , respectively. Next we shall
use the values ȳ1, . . . , ȳT to determine the periods in which orders are placed.

For the description of the Random-Shift procedure, consider the interval (0,
∑T

s=1ȳs],
which corresponds to the total weight of scaled fractional orders. Each period r =
1, . . . , T is then associated with the corresponding interval (

∑r−1
s=1 ȳs,

∑r
s=1 ȳs], which

is of length ȳr. In particular, some periods can correspond to empty intervals of length
0 (if ŷt = ȳt = 0). The input for this procedure is a shift-parameter α that is chosen
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uniformly at random in (0, 1]. Let W be the smallest integer that is greater than or equal
to

∑T
s=1 ȳs. Specifically, W is the upper ceiling of the total cumulative weight of the

scaled fractional orders; that is, W = �
∑T

s=1 ȳs�. Note that the interval (0,
∑T

s=1 ȳs]
is contained in the interval [0, W ]. Within the interval [0, W ] focus on the sequence of
points 0, 1, . . . , W − 1. The shift-parameter α induces a sequence of what we call shift-
points. Specifically, the set of shift-points is defined as {α + w : w = 0, . . . , W − 1}.
This set is constructed through a shift of random length α to the right of the points
0, 1, . . . , W − 1. Thus, there are W shift-points that are all located within the interval
[0, W ]. Observe that the sequence of shift-points is a-priori random and is realized with
the shift-parameter α.

The shift-points determine the periods, in which orders are placed. For each period
r = 1, . . . , T , we place an order in that period if there is a shift-point within the interval
(
∑r−1

s=1 ȳs,
∑r

s=1 ȳs] that is associated with period r. That is, we place an order in period
r, if for some integer 0 ≤ w ≤ W − 1 there exists a shift- point α + w that falls within
the interval (

∑r−1
s=1 ȳs,

∑r
s=1 ȳs]. Let T := {r1 < r2 < ... < rQ} be the set of periods

of the orders as determined in the first phase of the algorithm using the random-shift
procedure. We set ỹrm = 1, for each m = 1, . . . , Q, and call r1, . . . , rQ the opened
orders.

Next we bound the expected ordering cost incurred by the random shift procedure.
(The proof is omitted due lack of space.)

Lemma 2. Consider the Random-Shift procedure described above. Then, for each pe-
riod r = 1, . . . , T , the probability to place an order in period r is at most ȳr ≤ 2ŷr.
Thus, the total expected ordering cost of the Random-Shift procedure, denoted by K
is at most twice the total ordering costs in the optimal LP solution. That is, K ≤∑T

s=1 ȳsKs ≤ 2
∑T

s=1 ŷsKs.

Given the opened orders r1, . . . , rQ, we can compute the cheapest assignments of de-
mand points to opened orders by solving the corresponding transportation problem. The
solution of the transportation problem will determine the values of x̃i

st, for each (i, t)
and s ≤ t. However, it is not clear a-priori that the induced transportation problem has
a feasible solution, and even if it has one, there is a question regarding the cost of this
solution. Next we shall show that the induced transportation problem indeed has a fea-
sible solution with cost denoted by H that is at most twice the holding cost incurred by
the optimal fractional solution (x̂, ŷ). That is, the holding cost incurred by the algorithm
is H ≤ 2

∑N
i=1

∑T
t=1

∑t
s=1 Hi

stx
i
st.

3.2 The Median Assignment

Next we describe a constructive procedure, called the Median Assignment, that assigns
all the demand points to the opened orders r1, . . . , rQ, and incurs an holding cost that
is at most twice the holding cost incurred by the optimal fractional solution (x̂, ŷ). Ob-
serve that the optimal solution to the transportation problems induced by the opened
orders r1, . . . , rQ incurs even lower holding cost. To describe the procedure we intro-
duce the notion of flow-requirements of demand point (i, t). Focus on a specific demand
point (i, t), and let s1 < s2 < · · · < sG be the fractional orders that fractionally serve
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this demand point in the optimal LP solution (x̂, ŷ). In particular, x̂i
sg ,t > 0, for each

g = 1 . . . , G, and
∑G

g=1 x̂i
sg ,t = 1. Let sM be the median order of (i, t), i.e., the latest

point in time such that at least half of the demand dit is satisfied from orders within
[sM , t]. That is, M = max{m :

∑G
g=m x̂i

sg,t ≥ 0.5}. For each g = 1, . . . , G, let zi
sg,t

be the flow-requirement of (i, t) that is due sg . Specifically, for each g = 1, .., M − 1,
we define zi

sg,t = 2x̂i
sg,tdit; for g = M we define zi

sM ,t = 2(
∑M

q=1 x̂i
sq ,t − 0.5)dit;

and for each g = M + 1, . . . , G, we define zi
sg,t = 0.

Note that the flow-requirements defined above do not necessarily provide a feasi-
ble assignment of demands to orders. Intuitively, we consider the median order that
splits the assignment of demand point (i, t) in the optimal fractional solution (x̂, ŷ) into
two equal halves. We then ignore the upper (later) half and scale the lower (earlier)
half by 2. However, we shall use the flow-requirements zi

s1,t, . . . , z
i
sG,t to construct a

feasible assignment of demands with relatively low holding costs. First, observe that∑G
g=1 zi

sg,t = dit. We wish to construct a feasible assignment that, for each demand
point (i, t) and an order sg, satisfies at least zi

sg,t units of dit from orders within the in-
terval [sg, t]. That is, the flow-requirement zi

sg,t is satisfied either from sg or from orders
later in time. We will say that such an assignment satisfies all the flow-requirements.
(Recall that sg and zi

sg,t are specific to demand point (i, t) based on the optimal frac-
tional solution (x̂, ŷ).)

Consider any assignment of demands that satisfies all the flow-requirements of all
demands. Since the assignment satisfies zi

sg,t units of dit either from sg or even from
orders later in time, we conclude that the holding cost incurred by each demand point
(i, t) is at most

∑G
g=1 zi

sg,th
i
sg,t. However, by the definition of the flow-requirements,

we have
G∑

g=1

zi
sg,th

i
sg,t ≤ 2

G∑

g=1

x̂i
sg,tdith

i
sg,t = 2

G∑

g=1

x̂i
sg,tH

i
sg,t.

That is, the holding cost incurred is at most twice the holding costs incurred by (i, t) in
(x̂, ŷ). In light of Lemma 2 above, if such an assignment exists, the resulting feasible
solution (x̃, ỹ) has cost that is at most twice the optimal values of the LP VLP . Since
VLP is a lower bound on the optimal cost, it follows that the cost of the solution is at
most twice the optimal cost. It is then left to show that such an assignment does exist.
Next we shall describe the details of the Median Assignment procedure.

We construct the Median Assignment in stages indexed by τ = T, . . . , 1. In each
stage τ , we consider the set of positive flow-requirements due within τ , i.e., the set
Bτ = {zi

τt > 0 : i = 1, . . . , N, t = τ, . . . , T}. These are the flow-requirements
that need to be satisfied from orders within [τ, T ]. Partition the set Bτ into sets Bτt, for
t = τ, . . . , T , where Bτt = {zi

τt > 0 : i = 1, . . . , N}. We then consider the sets Bτt in
decreasing order t = T, . . . , τ . For each flow-requirement zi

τt ∈ Bτt, we consider the
opened orders (decided upon in Phase I) within [τ, t] in decreasing order from latest to
earliest. The flow-requirement zi

τt is then assigned to these orders greedily according to
the current available capacity. More rigorously, consider a specific flow-requirement zi

τt

and let T[τ,t] = T ∩ [τ, t] = {e1 < e2 < · · · < eV } be the set of opened orders within

the interval [τ, t]. Let δV = min{zi
τt, (C −

∑N
j=1

∑T
u=eV

x̃j
eV ,udju)+}, and for each
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v = V −1, . . . , 1, let δv = min{(zi
τt−

∑V
q=v+1 δq)+, (C−

∑N
j=1

∑T
u=ev

x̃j
ev ,udju)+}.

(Recall that (x)+ = max{x, 0}.) We then update x̃i
ev ,t = x̃i

ev ,t + δv/dit, for each
v = 1, . . . , V . By construction it follows that if completed successfully, the Median
Assignment described above satisfies the flow-requirements of all demand points. Thus,
to establish a bound on the holding cost incurred by the algorithm, it is sufficient to show
that the Median Assignment can be completed successfully.

Before we prove that, we would like to state a technical lemma that draws a connec-
tion between the cumulative fractional orders opened by the fractional solution (x̂, ŷ),
and the corresponding number of integral orders opened in Phase I of the algorithm.
(The proof is omitted due lack of space.)

Lemma 3. Consider the interval [s, t] for some s ≤ t, and suppose that the cumulative
fractional orders opened by the LP optimal solution (x̂, ŷ) is equal L + β, where L is
a non-negative integer and β is between 0 and 1. That is ,

∑t
u=s ŷu = L + β. Then if

β ≥ 0.5, the number of orders placed in Phase I of the algorithm over the interval [s, t]
is at least L + 1. That is,

∑t
u=s ỹu ≥ L + 1.

Lemma 4. The Median Assignment can be completed successfully.

Proof : Assume by contradiction that the Median Assignment cannot be completed at
some stage τ due lack of capacity to satisfy the flow-requirement zi

τ,t̄ of some demand
point (i, t̄). It follows that all the opened orders within the interval [τ, t̄] are currently
fully used by the integer partial solution (x̃, ỹ). That is, for each r ∈ T ∩ [τ, t̄], we have∑N

i=1
∑T

u=r x̃i
rudiu = C. Now let r̄ be the earliest opened order within (t̄, T ] ∩ T that

still has free capacity or T + 1 if no such order exists. That is,

r̄ = min{argmin{r ∈ T ∩ (t̄, T ] :
N∑

i=1

T∑

u=r

x̃i
rudiu < C}, T + 1}.

Let F = [τ, r̄) be the corresponding interval of orders.
Next we focus on the set of demand points (i, u) with positive flow-requirements that

are due within [τ, r̄), i.e., the set A = {(i, t) : t ∈ [τ, r̄) and
∑t

s=τ zi
st > 0}. Using

the notation in Section 2 we write D(A) =
∑

(i,t)∈A dit = (�A − 1)C + RA, where
�A ≥ 1 is an integer and 0 < RA ≤ C. Consider again the integer partial solution (x̃, ỹ)
at the moment the Median Assignment terminated due to lack of capacity. Recall that
r̄ = T + 1 or r̄ ∈ T is an opened order with free capacity. By the construction of the
Median Assignment it follows that no demand point outside the interval [τ, r̄) is being
served by the partial solution (x̃, ỹ) from orders within the interval. That is, x̃i

st = 0 for
each (i, t) with t ≥ r̄ and s ∈ [τ, r̄). This implies that all the available capacity of the
opened orders within the interval [τ, r̄) is fully used by the integer partial solution (x̃, ỹ)
to serve demand points in A. Moreover, since the Median Assignment could have not
been completed, it follows that the flow-requirements of demand points in A that are
due within the interval F exceed the total opened capacity over F . That is,

∑

(i,t)∈A

∑

u∈F

zi
ut >

∑

u∈F

ỹuC. (11)
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Now consider the set of fractional orders in the optimal LP solution (x̂, ŷ) over F .
Let

∑
u∈F ŷuC = (L−1)C+R, where L ≥ 1 is a nonnegative integer and 0 < R ≤ C.

The rest of the proof is based on comparing �A and RA to L and R, respectively, and
deriving a contradiction.

We first claim that L ≤ �A. We have already seen in the proof of Lemma 3 that if∑
u∈F ŷu ≥ L − 1, then the Random-Shift procedure will open at least L − 1 orders

over the interval F , i.e.,
∑

u∈F ỹuC ≥ (L − 1)C. However, Inequality (11) implies
that

∑
(i,t)∈A

∑
u∈F zi

ut > ỹuC ≥ (L − 1)C. Finally, observe that the overall flow-
requirements of demand points in A cannot exceed D(A), which is at most �AC. The
claim then follows.

Next we claim that R/C < 0.5. Assume otherwise. It follows that
∑

u∈F ŷu ≥
(L−1)+0.5, and by Lemma 3 we conclude that there are at least L opened orders over
F . That is,

∑
u∈F ỹuC ≥ LC. However, the flow-requirements are always bounded by

the original flow in the fractional optimal solution (x̂, ŷ). That is,

∑

u∈F

∑

(i,t)∈A

zi
ut ≤

∑

u∈F

∑

(i,t)∈A

x̂i
utdit ≤

∑

u∈F

ŷuC = (L − 1)C + R,

where the last inequality follows from (4). It follows that capacity of LC units is suf-
ficient to satisfy all the flow-requirements that are due within F of all demand points
in A, which leads to contradiction. (There are at least L opened orders over F , all of
which are used to satisfy flow-requirement of demand points in A.)

Next we claim that L = �A. Assume otherwise, i.e., �A > L. Since each demand
point (i, t) ∈ A has positive flow-requirements over F , it follows that

∑
u∈F x̂i

ut > 0.5.
However, by the construction of the flow-requirements this implies that its total flow-
requirements over F can be expressed as

∑

u∈F

zi
ut = 2dit(

∑

u∈F

x̂i
ut − 0.5).

Thus, the total flow-requirements of demand points in A over F can be expressed as

∑

(i,t)∈A

∑

u∈F

zi
ut = 2(

∑

(i,t)∈A

∑

u∈F

x̂i
utdit − 0.5D(A))

≤ 2(
∑

u∈F

ŷuC − 0.5D(A)) = 2(L − 1)C + 2R − (�A − 1)C − RA

≤ (L − 1)C.

The last inequality follows from the assumptions that �A − 1 ≥ L and that 2R < C.
Moreover, this implies that capacity of (L−1)C units is sufficient to satisfy all the flow-
requirements that are due within F of the demand points (i, t) ∈ A. However, we have
already seen that there are at least L− 1 opened orders over F , i.e.,

∑
u∈F ỹu ≥ L− 1.

Since all of them are fully used to satisfy flow-requirements of demand points in A, this
again leads to contradiction.

Suppose now that R/C < 0.5 and �A = L. This implies that the set of orders F is a
cover of the set of demands A. Moreover, F ∈ F , which implies that the solution (x̂, ŷ)
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satisfies the flow-cover inequality that corresponds to F and A. It follows that

D(A) −
∑

(i,t)∈A

∑

u∈F

x̂i
utdit ≥ RA(�A −

∑

u∈F

ŷu) = RA (�A − (L − 1) − R/C)

= RA(1 − R/C) ≥ 0.5RA.

The first inequality follows from the flow-cover inequality with respect to F and A. The
first equality follows from the fact that

∑
u∈F ŷu = L−1+R/C. The last inequality fol-

lows from the fact that R/C < 0.5. We conclude that 2(D(A)−
∑

(i,t)∈A

∑
u∈F x̂i

utdit)
≥ RA. However, D(A) −

∑
(i,t)∈A

∑
u∈F x̂i

utdit is exactly the portion of D(A) that
is being served in the optimal fractional solution (x̂, ŷ) from outside F . Moreover, we
have already seen that, for each demand point (i, t) ∈ A, more than half of the demand
dit is served by (x̂, ŷ) from within F , i.e.,

∑
u∈F x̂i

ut > 0.5. By the construction of
the flow-requirements this implies that the total flow-requirements of demand points
(i, t) ∈ A that are due outside F is exactly 2(D(A) −

∑
(i,t)∈A

∑
u∈F x̂i

utdit) ≥ RA.
In turn, this implies that the total flow-requirements that are due within F is at most
(�A − 1)C = (L − 1)C. However, as we have already seen, this leads to contradiction
since there are at least (L − 1) opened orders over F . We conclude that the Median
Assignment can be completed successfully.

Corollary 5. The overall holding cost incurred by the algorithm is at most
2

∑N
i=1

∑T
t=1

∑t
s=1 x̂i

stH
i
st.

Lemma 2 and Corollary 5 imply the following theorem.

Theorem 6. The Random-Shift algorithm is a randomized 2-Approximation algorithm
for the multi-item capacitated lot-sizing problem with hard capacities.

We note that the same analysis holds in the presence of soft capacities. Finally, we
describe how to derandomize the algorithms and get a deterministic 2-Approximation
algorithm. We have already mentioned that once the periods, in which orders are placed
are determined, the problem is reduced to solving a transportation problem that mini-
mizes the holding costs. The worst-case analysis implies that for any outcome of Phase
I, the induced transportation problem has a low-cost feasible solution with cost that is
at most twice the holding costs incurred by the optimal fractional solution. Thus, it is
sufficient to derandomize Phase I, and this can be done by enumerating over all the
values of α that yield a different set of orders in Phase I. (There are only O (T ) such
values.)

Theorem 7. There exists a deterministic 2-Approximation algorithm for the multi-item
capacitated lot-sizing problem with hard capacity constrains.

3.3 On-The-Fly Algorithm

In this section, we shall describe an on-the-fly variant of the algorithm described above.
The underlying idea is similar to what discussed by Carr et al. [8] in the context of the
fixed-charge single-node problem.
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This variant does not require to solve the LP a-priori with all the flow-cover inequali-
ties defined by the collection of subsets F . Instead, we shall have an iterative procedure
that is based on an oracle that, in each iteration, either finds a violated flow-cover in-
equality or generates a feasible solution with cost that is at most twice the optimal cost.

Having an efficient oracle that can separate the respective flow-cover inequalities
enables us to run the Ellipsoid method and solve the corresponding LP, and then use
the rounding algorithm described in Sections 3.1 and 3.2 above. The resulting integer
solution has cost that is at most twice the optimal cost.

However, instead of using an oracle that can separate all the corresponding flow-
cover inequalities, the on-the-fly algorithm will use the Median Assignment procedure.
If the Median Assignment procedure is stuck, then we can easily identify a violated
flow-cover inequality that corresponds to the set of demand points A and the set of
orders F as defined in Section 3.2 above. As long as this is the case we execute the
Ellipsoid method. On the other hand, if the Median Assignment procedure is completed
successfully and the Ellipsoid method is stuck, then we have constructed a solution with
cost that is at most twice the optimal cost. The main observation is that the our rounding
algorithm can be applied to any feasible fractional solution, where it either ends up with
a violated flow-cover inequality or in turn, provides a feasible integer solution with cost
that is at most twice the cost of the fractional solution.

We note that in practice the on-the-fly algorithm can be implemented using the Sim-
plex method. Since in each iteration we add a constraint to the primal LP, the Dual-
Simplex method might be very attractive to find the new optimal solution of the LP.
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Abstract. A cost-sharing problem is defined by a set of players vying
to receive some good or service, and a cost function describing the cost
incurred by the auctioneer as a function of the set of winners. A cost-
sharing mechanism is a protocol that decides which players win the auc-
tion and at what prices. Three desirable but provably mutually incompat-
ible properties of a cost-sharing mechanism are: incentive-compatibility,
meaning that players are motivated to bid their true private value for re-
ceiving the good; budget-balance, meaning that the mechanism recovers
its incurred cost with the prices charged; and efficiency, meaning that
the cost incurred and the value to the players served are traded off in an
optimal way.

Our work is motivated by the following fundamental question: for
which cost-sharing problems are incentive-compatible mechanisms with
good approximate budget-balance and efficiency possible? We focus on
cost functions defined implicitly by NP-hard combinatorial optimization
problems, including the metric uncapacitated facility location problem,
the Steiner tree problem, and rent-or-buy network design problems. For
facility location and rent-or-buy network design, we establish for the
first time that approximate budget-balance and efficiency are simulta-
neously possible. For the Steiner tree problem, where such a guarantee
was previously known, we prove a new, optimal lower bound on the ap-
proximate efficiency achievable by the wide and natural class of “Moulin
mechanisms”. This lower bound exposes a latent approximation hierar-
chy among different cost-sharing problems.

1 Introduction

Mechanism Design. In the past decade, there has been a proliferation of large sys-
tems used and operated by independent agents with competing objectives (most
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notably the Internet). Motivated by such applications, an increasing amount of al-
gorithm design research studies optimization problems that involve self-interested
entities. Naturally, game theory and economics are important for modeling and
solving such problems. Mechanism design is a classical area of microeconomics
that has been particularly influential. The field of mechanism design studies how
to solve optimization problems in which part of the problem data is known only
to self-interested players. It has numerous applications to, for example, auction
design, pricing problems, and network protocol design [8,15,24,27].

Selling a single good to one of n potential buyers is a paradigmatic problem
in mechanism design. Each bidder i has a valuation vi, expressing its maximum
willingness to pay for the good. We assume that this value is known only to the
bidder, and not to the auctioneer. A mechanism (or auction) for selling a single
good is a protocol that determines the winner and the selling price. Each bidder i
is “selfish” in the sense that it wants to maximize its “net gain” (vi − p)xi from
the auction, where p is the price, and xi is 1 (0) if the bidder wins (loses).

What optimization problem underlies a single-good auction? One natural goal
is economic efficiency, which in this context demands that the good is sold
to the bidder with the highest valuation. This goal is trivial to accomplish if
the valuations are known a priori. Can it be achieved when the valuations are
private?

Vickrey [34] provided an elegant solution. First, each player submits a sealed
bid bi to the seller, which is a proxy for its true valuation vi. Second, the seller
awards the good to the highest bidder. This achieves the efficient allocation if
we can be sure that players bid their true valuations—if bi = vi for every i.
To encourage players to bid truthfully, we must charge the winner a non-zero
price. (Otherwise, all players will bid gargantuan amounts in an effort to be the
highest.) On the other hand, if we charge the winning player its bid, it encour-
ages players to underbid. (Bidding your maximum willingness to pay ensures a
net gain of zero, win or lose.) Vickrey [34] suggested charging the winner the
value of the second-highest bid, and proved that this price transforms truthful
bidding into an optimal strategy for each bidder, independent of the bids of the
other players. In turn, the Vickrey auction is guaranteed to produce an efficient
allocation of the good, provided all players bid in the obvious, optimal way.

Cost-Sharing Mechanisms. Economic efficiency is not the only important ob-
jective in mechanism design. Revenue is a second obvious concern, especially in
settings where the mechanism designer incurs a non-trivial cost. This cost can
represent production costs, or more generally some revenue target.

A cost-sharing problem is defined by a set U of players vying to receive some
good or service, and a cost function C : 2U → R+ describing the cost incurred
by the mechanism as a function of the auction outcome—the set S of winners.
We assume that C(S) is nonnegative for every set S ⊆ U , that C(∅) = 0, and
that C is nondecreasing (S ⊆ T implies C(S) ≤ C(T )). Note that there is no
explicit limit on the number of auction winners, although a large number of
winners might result in extremely large costs. With outcome-dependent costs,
the efficient allocation is the one that maximizes the social welfare W (S) =
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∑
i∈S vi −C(S)—the outcome that trades offs the valuations of the winners and

the cost incurred in an optimal way. The problem of selling a single good can
be viewed as the special case in which C(S) = 0 if |S| ≤ 1 and C(S) = +∞
otherwise.

In this paper, we focus on cost functions that are defined implicitly by an in-
stance of a combinatorial optimization problem. For example, U could represent
a set of potential clients, located in an undirected graph with fixed edge costs,
that want connectivity to a server r [7,17]. In this application, C(S) denotes the
cost of connecting the terminals in S to r—the cost of the minimum-cost Steiner
tree that spans S ∪ {r}.

A cost-sharing mechanism, given a set U and a function C, is a protocol that
decides which players win the auction and at what prices. Typically, such a
mechanism is also (perhaps approximately) budget-balanced, meaning that the
cost incurred is passed on to the auction’s winners. Budget-balanced cost-sharing
mechanisms provide control over the revenue generated, relative to the cost in-
curred by the mechanism designer.

Summarizing, we have identified three natural goals in auction and mechanism
design: (1) incentive-compatibility, meaning that every player’s optimal strategy
is to bid its true private value vi for receiving the service; (2) budget-balance,
meaning that the mechanism recovers its incurred cost with the prices charged;
and (3) efficiency, meaning that the cost and valuations are traded off in an
optimal way.

Unfortunately, properties (1)–(3) cannot be simultaneously achieved, even in
very simple settings [10,30]. This impossibility result motivates relaxing at least
one of the these properties. Until recently, nearly all work in cost-sharing mecha-
nism design completely ignored either budget-balance or efficiency. If the budget
balance constraint is discarded, then there is an extremely powerful and flexi-
ble mechanism that is incentive-compatible and efficient: the VCG mechanism
(see e.g. [26]). This mechanism specializes to the Vickrey auction in the case
of selling a single good, but is far more general. Since the VCG mechanism is
typically not approximately budget-balanced for any reasonable approximation
factor (see e.g. [6]), it is not suitable for many applications.

The second approach is to insist on incentive-compatibility and budget-
balance, while regarding efficiency as a secondary objective. The only general
technique for designing mechanisms of this type is due to Moulin [25]. Over
the past five years, researchers have developed approximately budget-balanced
Moulin mechanisms for cost-sharing problems arising from numerous different
combinatorial optimization problems, including fixed-tree multicast [1,6,7]; the
more general submodular cost-sharing problem [25,26]; Steiner tree [17,18,20];
Steiner forest [21,22]; facility location [23,29]; rent-or-buy network design [14,29],
and various covering problems [5,16]. Most of these mechanisms are based on
novel primal-dual approximation algorithms for the corresponding optimization
problem. With one exception discussed below, none of these works provided any
guarantees on the efficiency achieved by the proposed mechanisms.
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Approximately Efficient Cost-Sharing Mechanisms. Impossibility results are,
of course, common in optimization. From conditional impossibility results like
Cook’s Theorem to information-theoretic lower bounds in restricted models of
computation, as with online and streaming algorithms, algorithm designers are
accustomed to devising heuristics and proving worst-case guarantees about them
using approximation measures. This approach can be applied equally well to
cost-sharing mechanism design, and allows us to quantify the inevitable effi-
ciency loss in incentive-compatible, budget-balanced cost-sharing mechanisms.
As worst-case approximation measures are rarely used in economics, this research
direction has only recently been pursued.

Moulin and Shenker [26] were the first to propose quantifying the efficiency
loss in budget-balanced Moulin mechanisms. They studied an additive notion of
efficiency loss for submodular cost functions. This notion is useful for ranking
different mechanisms according to their worst-case efficiency loss, but does not
imply bounds on the quality of a mechanism’s outcome relative to that of an
optimal outcome. A more recent paper [31] provides an analytical framework for
proving approximation guarantees on the efficiency attained by Moulin mech-
anisms. The present paper builds on this framework. (See [4,11] for other very
recent applications.)

Several definitions of approximate efficiency are possible, and the choice of
definition is important for quantifying the inefficiency of Moulin mechanisms.
Feigenbaum et al. [6] showed that, even for extremely simple cost functions,
budget-balance and social welfare cannot be simultaneously approximated to
within any non-trivial factor. This negative approximation result is characteristic
of mixed-sign objective functions such as welfare.

An alternative formulation of exact efficiency is to choose a subset mini-
mizing the social cost, where the social cost π(S) of a set S is the sum of
the incurred service cost and the excluded valuations: C(S) +

∑
i/∈S vi. Since

π(S) = −W (S)+
∑

i∈U vi for every set S, where U denotes the set of all players,
a subset maximizes the social welfare if and only if it minimizes the social cost.
The two functions are not, of course, equivalent from the viewpoint of approxi-
mation. Similar transformations have been used for “prize-collecting” problems
in combinatorial optimization (see e.g. [3]). We call a cost-sharing mechanism
α-approximate if it always produces an outcome with social cost at most an α
factor times that of an optimal outcome. Also, a mechanism is β-budget-balanced
if the sum of prices charged is always at most the cost incurred and at least a
1/β fraction of this cost.

Previouswork [31] demonstrated thatO(polylog(k))-approximate,O(1)-budget
-balanced Moulin mechanisms exist for two important types of cost-sharing prob-
lems: submodular cost functions, and Steiner tree cost functions. (Here k denotes
thenumber ofplayers.)Thiswas thefirst evidence thatproperties (1)–(3) above can
be approximately simultaneously satisfied, and motivates the following fundamen-
tal question: which cost-sharing problems admit incentive-compatible mechanisms
that are approximately budget-balanced and approximately efficient?
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Our Results. This paper presents three contributions. We first consider metric
uncapacitated facility location (UFL) cost-sharing problems, where the input
is a UFL instance, the players U are the demands of this instance, and the
cost C(S) is defined as the cost of an optimal solution to the UFL sub-instance
induced by S. The only known O(1)-budget-balanced Moulin mechanism for this
problem is due to Pál and Tardos [29] (the PT mechanism). The PT mechanism
is 3-budget-balanced [29], and no Moulin mechanism for the problem has bet-
ter budget balance [16]. We provide the first efficiency guarantee for the PT
mechanism by proving that it is O(log k)-approximate, where k is the number of
players. Simple examples show that every O(1)-budget-balanced Moulin mecha-
nism for UFL is Ω(log k)-approximate. Thus the PT mechanism simultaneously
optimizes both budget balance and efficiency over the class of Moulin mecha-
nisms for UFL.

Second, we design and analyze Moulin mechanisms for rent-or-buy network
design cost-sharing problems. For example, the single-sink rent-or-buy (SSRoB)
problem is a generalization of the Steiner tree problem in which several source
vertices of a network (corresponding to the players U) want to simultaneously
send one unit of flow each to a common root vertex. For a subset S ⊆ U of
players, the cost C(S) is defined as the minimum-cost way of installing sufficient
capacity for the players of S to simultaneously send flow to the root. Capacity on
an edge can be rented on a per-unit basis, or an infinite amount of capacity can
be bought for M times the per-unit renting cost, where M ≥ 1 is a parameter.
(Steiner tree is the special case where M = 1.) Thus the SSRoB problem is a
simple model of capacity installation in which costs obey economies of scale. The
multicommodity rent-or-buy (MRoB) problem is the generalization of SSRoB in
which each player corresponds to a source-sink vertex pair, and different players
can have different sink vertices.

Gupta, Srinivasan, and Tardos [14] and Leonardi and Schäfer [23] indepen-
dently showed how to combine the SSRoB algorithm of [13] with the Jain-
Vazirani Steiner tree mechanism [17] to obtain an O(1)-budget-balanced SSRoB
mechanism. (Earlier, Pál and Tardos [29] designed an O(1)-budget-balanced SS-
RoB mechanism, but it was more complicated and its budget balance factor
was larger.) We note that the mechanism design ideas in [14,23], in conjunction
with the recent 2-budget-balanced Steiner forest mechanism due to Könemann,
Leonardi, and Schäfer [21], lead to an O(1)-budget-balanced MRoB mechanism.
Much more importantly, we prove that this SSRoB mechanism and a variant
of this MRoB mechanism are O(log2 k)-approximate, the first efficiency guaran-
tees for any approximately budget-balanced mechanisms for these problems. Our
third result below implies that these are the best-achievable efficiency guarantees
for O(1)-budget-balanced Moulin mechanisms for these problems.

Third, we prove a new lower bound that exposes a non-trivial, latent hierarchy
among different cost-sharing problems. Specifically, we prove that every O(1)-
budget-balanced Moulin mechanism for Steiner tree cost functions is Ω(log2 k)-
approximate. This lower bound trivially also applies to Steiner forest, SSRoB,
and MRoB cost functions.
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This lower bound establishes a previously unobservable separation between
submodular and facility location cost-sharing problems on the one hand, and
the above network design cost-sharing problems on the other. All admit O(1)-
budget-balanced Moulin mechanisms, but the worst-case efficiency loss of Moulin
mechanisms is provably larger in the second class of problems than in the first
one.

All previous lower bounds on the efficiency of Moulin mechanisms were derived
from either budget-balance lower bounds or, as for the problems considered in
this paper, from a trivial example equivalent to a cost-sharing problem in a
single-link network [31]. This type of example cannot prove a lower bound larger
than the kth Harmonic number Hk = Θ(log k) on the approximate efficiency of a
Moulin mechanism. We obtain the stronger bound of Ω(log2 k) by a significantly
more intricate construction that exploits the complexity of Steiner tree cost
functions.

2 Preliminaries

Cost-Sharing Mechanisms. We consider a cost function C that assigns a cost
C(S) to every subset S of a universe U of players. We assume that C is nonneg-
ative and nondecreasing (i.e., S ⊆ T implies C(S) ≤ C(T )). We sometimes refer
to C(S) as the service cost, to distinguish it from the social cost (defined below).
We also assume that every player i ∈ U has a private, nonnegative valuation vi.

A mechanism collects a nonnegative bid bi from each player i ∈ U , selects a set
S ⊆ U of players, and charges every player i a price pi. In this paper, we focus
on cost functions that are defined implicitly as the optimal solution of an instance
of a (NP-hard) combinatorial optimization problem. The mechanisms we consider
also produce a feasible solution to the optimization problem induced by the served
set S, which has cost C′(S) that in general is larger than the optimal cost C(S).
We also impose the following standard restrictions and assumptions. We only
allow mechanisms that are “individually rational” in the sense that pi = 0 for
players i /∈ S and pi ≤ bi for players i ∈ S. We require that all prices are nonneg-
ative (“no positive transfers”). Finally, we assume that players have quasilinear
utilities, meaning that each player i aims to maximize ui(S, pi) = vixi−pi, where
xi = 1 if i ∈ S and xi = 0 if i /∈ S.

Our incentive-compatibility constraint is the well-known strategyproofness
condition, which intuitively requires that a player cannot gain from misreporting
its bid. Formally, a mechanism is strategyproof (SP) if for every player i, every bid
vector b with bi = vi, and every bid vector b′ with bj = b′j for all j 
= i, ui(S, pi) ≥
ui(S′, p′i), where (S, p) and (S′, p′) denote the outputs of the mechanism for the
bid vectors b and b′, respectively.

For a parameter β ≥ 1, a mechanism is β-budget balanced if C′(S)/β ≤∑
i∈S pi ≤ C(S) for every outcome (set S, prices p, feasible solution with service

cost C′(S)) of the mechanism. In particular, this requirement implies that the
feasible solution produced by the mechanism has cost at most β times that of
optimal.
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As discussed in the Introduction, a cost-sharing mechanism is α-approximate
if, assuming truthful bids, it always produces a solution with social cost at most
an α factor times that of an optimal solution. Here, the social cost incurred by
the mechanism is defined as the service cost C′(S) of the feasible solution it pro-
duces for the instance corresponding to S, plus the sum

∑
i/∈S vi of the excluded

valuations. The optimal social cost is minS⊆U [C(S) +
∑

i/∈S vi]. A mechanism
thus has two sources of inefficiency: first, it might choose a suboptimal set S of
players to serve; second, it might produce a suboptimal solution to the optimiza-
tion problem induced by S.

Moulin Mechanisms and Cross-Monotonic Cost-Sharing Methods. Next we re-
view Moulin mechanisms, the preeminent class of SP, approximately budget-
balanced mechanisms. Such mechanisms are based on cost sharing methods, de-
fined next.

A cost-sharing method χ is a function that assigns a non-negative cost share
χ(i, S) for every subset S ⊆ U of players and every player i ∈ S. We consider
cost-sharing methods that, given a set S, produce both the cost shares χ(i, S) for
all i ∈ S and also a feasible solution for the optimization problem induced by S.
A cost-sharing method is β-budget balanced for a cost function C and a parameter
β ≥ 1 if it always recovers a 1/β fraction of the cost: C′(S)/β ≤

∑
i∈S χ(i, S) ≤

C(S), where C′(S) is the cost of the produced feasible solution. A cost-sharing
method is cross-monotonic if the cost share of a player only increases as other
players are removed: for all S ⊆ T ⊆ U and i ∈ S, χ(i, S) ≥ χ(i, T ).

A cost-sharing method χ for C defines the following Moulin mechanism Mχ

for C. First, collect a bid bi for each player i. Initialize the set S to all of U and
invoke the cost-sharing method χ to define a feasible solution to the optimization
problem induced by S and a price pi = χ(i, S) for each player i ∈ S. If pi ≤ bi

for all i ∈ S, then halt, output the set S, the corresponding feasible solution, and
charge prices p. If pi > bi for some player i ∈ S, then remove an arbitrary such
player from the set S and iterate. A Moulin mechanism based on a cost-sharing
method thus simulates an iterative auction, with the method χ suggesting prices
for the remaining players at each iteration. The cross-monotonicity constraint
ensures that the simulated auction is ascending, in the sense that the prices
that are compared to a player’s bid are only increasing with time. Note that if
χ produces a feasible solution in polynomial time, then so does Mχ. Also, Mχ

clearly inherits the budget-balance factor of χ. Finally, Moulin [25] proved the
following.

Theorem 1 ([25]). If χ is a cross-monotonic cost-sharing method, then the
corresponding Moulin mechanism Mχ is strategyproof.1

Theorem 1 reduces the problem of designing an SP, β-budget-balanced cost-
sharing mechanism to that of designing a cross-monotonic, β-budget-balanced
cost-sharing method.

1 Moulin mechanisms also satisfy a stronger notion of incentive compatibility called
groupstrategyproofness (GSP), which is a form of collusion resistance [26].
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Summability and Approximate Efficiency. Roughgarden and Sundararajan [31]
showed that the approximate efficiency of a Moulin mechanism is completely
controlled by its budget-balance and one additional parameter of its underlying
cost-sharing method. We define this parameter and the precise guarantee next.

Definition 1 (Summability [31]). Let C and χ be a cost function and a cost-
sharing method, respectively, defined on a common universe U of players. The
method χ is α-summable for C if

|S|∑

�=1

χ(i�, S�) ≤ α · C(S)

for every ordering σ of U and every set S ⊆ U , where S� and i� denote the set of
the first 	 players of S and the 	th player of S (with respect to σ), respectively.

Theorem 2 ([31]). Let U be a universe of players and C a nondecreasing cost
function on U with C(∅) = 0. Let M be a Moulin mechanism for C with un-
derlying cost-sharing method χ. Let α ≥ 0 and β ≥ 1 be the smallest numbers
such that χ is α-summable and β-budget-balanced. Then the mechanism M is
(α + β)-approximate and no better than max{α, β}-approximate.

In particular, an O(1)-budget-balanced Moulin mechanism is Θ(α)-approximate
if and only if the underlying cost-sharing method is Θ(α)-summable. Analyzing
the summability of a cost-sharing method, while non-trivial, is a tractable prob-
lem in many important cases. Because summability is defined as the accrued
cost over a worst-case “insertion order” of the players, summability bounds are
often reminiscent of performance analyses of online algorithms.

3 An Optimal Facility Location Cost-Sharing Mechanism

In this section we consider the metric uncapacitated facility location (UFL)
problem.2 The input is given by a set U of demands (the players), a set F of
facilities, an opening cost fq for each facility q ∈ F , and a metric c defined
on U ∪ F . The cost C(S) of a subset S ⊆ U of players is then defined as
the cost of an optimal solution to the UFL problem induced by S. In other
words, C(S) = min∅�=F ∗⊆F [

∑
q∈F ∗ fq +

∑
i∈S minq∈F ∗ c(q, i)]. We seek an O(1)-

budget-balanced Moulin mechanism for UFL with the best-possible approximate
efficiency. Theorems 1 and 2 reduce this goal to the problem of designing an O(1)-
budget-balanced cross-monotonic cost-sharing method with the smallest-possible
summability.

We begin with a simple lower bound, similar to that given in [31] for submod-
ular cost-sharing problems.

Proposition 1 (Lower Bound on UFL Approximate Efficiency). For
every k ≥ 1, there is a k-player UFL cost function C with the following property:
for every β ≥ 1 and every β-budget-balanced Moulin mechanism M for C, M is
no better than Hk/β-approximate.
2 Due to space constraints, we omit all proofs. Details are in [32].
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Pál and Tardos [29] showed that every UFL cost function admits a 3-budget-
balanced cross-monotonic cost-sharing method χPT . We call this the PT method,
and the induced Moulin mechanism the PT mechanism. (See [29] or [32] for
details.) Our main result in this section shows that the PT mechanism matches
the lower bound in Proposition 1, up to a constant factor.

Theorem 3 (Upper Bound on PT Summabilitity). Let C be a k-player
UFL cost function and χPT the corresponding PT method. Then χPT is Hk-
summable for C.

Applying Theorem 2 yields an efficiency guarantee for the PT mechanism.

Corollary 1 (Upper Bound on PT Approximate Efficiency). Let C be a
k-player UFL cost function and MPT the corresponding PT mechanism. Then
MPT is (Hk + 3)-approximate.

Theorem 3 follows from two lemmas. The first states that single-facility instances
supply worst-case examples for the summability of the PT method.

Lemma 1. For every k ≥ 1, the summability of PT methods for k-player UFL
cost functions is maximized by the cost functions that correspond to single-facility
instances.

Lemma 1 is based on a monotonicity property that we prove for the PT method:
increasing the distance between a demand and a facility can only increase cost
shares. This monotonicity property allows us to argue that in worst-case UFL
instances, players are partitioned into non-interacting groups, each clustered
around one facility. We complete the proof of Lemma 1 by arguing that the
summability of the PT method for one of these single-facility clusters in at least
that in the original facility location instance.

Our second lemma bounds the summability of PT methods in single-facility
instances.

Lemma 2. Let C be a k-player UFL cost function corresponding to a single-
facility instance. If χPT is the corresponding PT method, then χPT is Hk-
summable for C.

4 Optimal Rent-or-Buy Cost-Sharing Mechanisms

Single-Sink Rent-or-Buy: Next we consider single-sink rent-or-buy (SSRoB) cost-
sharing problems. The input is given by a graph G = (V, E) with edge costs that
satisfy the Triangle Inequality, a root vertex t, a set U of demands (the players),
each of which is located at a vertex of G, and a parameter M ≥ 1. A feasible
solution to the SSRoB problem induced by S is a way of installing sufficient ca-
pacity on the edges of G so that every player in S can simultaneously route one
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unit of flow to t. Installing x units of capacity on an edge e costs ce ·min{x, M}; the
parameter M can be interpreted as the ratio between the cost of “buying” infinite
capacity for a flat fee and the cost of “renting” a single unit of capacity. The cost
C(S) of a subset S ⊆ U of players is then defined as the cost of an optimal solution
to the SSRoB problem induced by S. We sometimes abuse notation and use i ∈ U
to denote both a player and the vertex of G that hosts the player.

Gupta, Srinivasan, and Tardos [14] and Leonardi and Schäfer [23] indepen-
dently designed the following O(1)-budget-balanced cross-monotonic cost-
sharing method for SSRoB, which we call the GST method. Given an SSRoB
cost function and a set S ⊆ U of players, we use the randomized algorithm
of [13] to produce a feasible solution. This algorithm first chooses a random sub-
set D ⊆ S by adding each player i ∈ S to D independently with probability
1/M . Second, it computes an approximate Steiner tree spanning D ∪ {t} using,
for example, the 2-approximate MST heuristic [33], and buys infinite capacity
on all of the edges of this tree. Third, for each player i /∈ D, it rents one unit of
capacity for exclusive use by i on a shortest path from its vertex to the closest
vertex in D ∪ {t}. This defines a feasible solution with probability 1, and the
expected cost of this solution at most 4 times that of an optimal solution to the
SSRoB instance induced by S [13].

The GST cost share χGST (i, S) is defined as the expectation of the following
random variable Xi, over the random choice of the set D in the above algo-
rithm: if i /∈ D, then Xi equals one quarter of the length of the shortest path
used to connect i to a vertex in D ∪ {t}; if i ∈ D, then Xi equals M/2 times the
Jain-Vazirani cost share χJV (i, D) of i with respect to the Steiner tree instance
defined by G, c, t, and the players D (see [17] for the details of χJV ). These
cost shares are 4-budget-balanced with respect to the optimal cost of the SSRoB
instance induced by S, as well as the expected cost of the above randomized al-
gorithm that produces a feasible solution to this instance. We prove the following
result.

Theorem 4. For every k-player SSRoB cost function, the corresponding GST
mechanism is O(log2 k)-approximate.

Theorem 6 below implies that this is the best efficiency guarantee possible for
an O(1)-budget-balanced SSRoB Moulin mechanism.

With an eye toward extending Theorem 4 to the MRoB problem, we sum-
marize very briefly the main steps in the proof (details are in [32]). First, we
decompose each GST cost share χGST (i, S) into two terms, a term χbuy(i, S)
for the contributions of samples D ⊆ S in which i ∈ D, and a term χrent(i, S)
for the contributions of the remaining samples. Proving Theorem 4 reduces to
proving that both χbuy and χrent are O(log2 k)-summable. Second, we use the
O(log2 k)-summability of χJV [31] together with a counting argument inspired
by [13,19] to prove that χbuy is O(log2 k)-summable. Third, we prove that the
cost-sharing method χJV is O(1)-strict in the sense of [12]. This roughly means
that whenever a player i is included in the random sample D, then the cost
share χJV (i, D) is at least a constant factor times the cost share it would have
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received had it not been included.3 We leverage the strictness of χJV to prove
that the summability of χrent is at most a constant times that of χbuy.

Multicommodity Rent-or-Buy. We next extend Theorem 4 to the MRoB prob-
lem, where each player i corresponds to a vertex pair (si, ti). (All other aspects
of the problem are the same.) The high-level approach is similar, but the tech-
nical challenges are much more formidable. In the proof of Theorem 4, the Jain-
Vazirani cost-sharing method χJV played a heroic role: it is cross-monotonic,
which is necessary for the GST cost-sharing method to be cross-monotonic; it is
O(log2 k)-summable, which is necessary for χbuy to be O(log2 k)-summable; and
it is O(1)-strict in the sense of [12] with respect to the MST heuristic for Steiner
tree, which is necessary for χrent to be O(log2 k)-summable. Is there a compara-
bly all-purpose cost-sharing method for the Steiner Forest problem—the problem
of finding the min-cost subgraph of a given graph that includes a path between
every given vertex pair (si, ti)? The only known cross-monotonic cost-sharing
method χKLS for Steiner Forest cost-sharing problems was recently given by
Könemann, Leonardi, and Schäfer [21]. This method is defined by a primal-dual
algorithm; the cost shares are a natural byproduct of a dual growth process,
and the primal is a 2-approximate feasible solution to the given Steiner Forest
instance. Using the ideas in [9,12,14,23], these facts suffice to define an O(1)-
budget-balanced Moulin mechanism for MRoB cost-sharing problems. Moreover,
the KLS method was very recently shown to be O(log2 k)-summable [4]; thus, the
corresponding cost-sharing method χbuy is O(log2 k)-summable. Unfortunately,
the KLS cost-sharing method is Ω(k)-strict with respect to the corresponding
primal solution [12], which precludes bounding the summability of χrent in terms
of χbuy. While several strict cost-sharing methods are known for different Steiner
Forest approximation algorithms [2,9,12,28], none of these are cross-monotonic
methods.

Our high-level approach is to modify the above composition of the KLS
method with the mechanism design techniques of [14,23] in a way that achieves
O(1)-strictness while sacrificing only a small constant factor in the budget bal-
ance. Similar ideas have been used previously to obtain strictness guarantees for
other Steiner forest algorithms [2,12,28].

Theorem 5. Every k-player MRoB cost function admits an O(1)-budget-
balanced, O(log2 k)-approximate Moulin mechanism.

5 An Ω(log2 k) Lower Bound for Steiner Tree Problems

An instance of the Steiner tree cost-sharing problem [17] is given by an undi-
rected graph G = (V, E) with a root vertex t and nonnegative edge costs, with
each player of U located at some vertex of G. For a subset S ⊆ U , the cost
C(S) is defined as that of a minimum-cost subgraph of G that spans all of the

3 Formally, strictness of a cost-sharing method is defined with respect to some primal
algorithm; see [12] for a precise definition.
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players of S as well as the root t. There are O(1)-budget-balanced, O(log2 k)-
approximate Moulin mechanisms for such problems [4,17,21,31]. The main result
of this section is a matching lower bound on the approximate efficiency of every
O(1)-budget-balanced Moulin mechanism.

Theorem 6. There is a constant c > 0 such that for every constant β ≥ 1, every
β-budget-balanced Moulin mechanism for Steiner tree cost-sharing problems is at
least (β−1c log2 k)-approximate, where k is the number of players served in an
optimal outcome.

Theorem 6 implies that Steiner tree cost-sharing problems and their general-
izations are fundamentally more difficult for Moulin mechanisms than facility
location (Theorem 3) and submodular cost-sharing problems (see [31]).

We now outline the proof of Theorem 6. Fix values for the parameters k ≥ 2
and β ≥ 1. We construct a sequence of networks, culminating in G. The network
G0 consists of a set V0 of two nodes connected by an edge of cost 1. One of these
is the root t. The player set U0 is

√
k players that are co-located at the non-root

node. (Assume for simplicity that k is a power of 4.) For j > 0, we obtain the
network Gj from Gj−1 by replacing each edge (v, w) of Gj−1 with m internally
disjoint two-hop paths between v and w, where m is a sufficiently large function
of k of β. (We will choose m ≥ 8β

√
k · (2β)

√
k.) See Figure 1. The cost of each

of these 2m edges is half of the cost of the edge (v, w). Thus every edge in Gj

has cost 2−j.

root t

Fig. 1. Network G2 in the proof of Theorem 6, with m = 3. All edges have length 1/4

Let Vj denote the vertices of Gj that are not also present in Gj−1. We augment
the universe by placing

√
k new co-located players at each vertex of Vj ; denote

these new players by Uj . The final network G is then Gp, where p = (log k)/2.
Let V = V0 ∪ · · · ∪ Vp and U = U0 ∪ · · · ∪ Up denote the corresponding vertex
and player sets. Let C denote the corresponding Steiner tree cost function.

Now fix β ≥ 1 and an arbitrary cross-monotonic, β-budget balanced Steiner
tree cost-sharing method χ. By Theorem 2, we can prove Theorem 6 by exhibit-
ing a subset S ⊆ U of size k and an ordering σ of the players of S such that∑k

�=1 χ(i�, S�) ≥ (c log2 k/β) · C(S), where i� and S� denote the 	th player and
the first 	 players with respect to σ.
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We construct the set S iteratively. For j = 0, 1, . . . , p, we will identify a subset
Sj ⊆ Uj of players; the set S will then be S0 ∪ · · · ∪ Sp. Recall that Uj consists
of groups of

√
k players, each co-located at a vertex of Vj , with m such groups

for each edge of Gj−1. The set Sj will consist of zero or one such group of
√

k
players for each edge of Gj−1.

The set S0 is defined to be U0. For j > 0, suppose that we have already defined
S0, . . . , Sj−1. Call a vertex v ∈ V0 ∪ · · · ∪ Vj−1 active if v is the root t or if the√

k players co-located at v were included in the set S0 ∪ · · · ∪Sj−1. Call an edge
(v, w) of Gj−1 active if both of its endpoints are active and inactive otherwise.

To define Sj , we consider each edge (v, w) of Gj−1 in an arbitrary order. Each
such edge gives rise to m groups of

√
k co-located players in Gj . If (v, w) is

inactive in Gj−1, then none of these m
√

k players are included in Sj . If (v, w) is
active in Gj−1, then we will choose precisely one of the m groups of players, and
will include these

√
k co-located players in Sj . We first state two lemmas that

hold independently of how this choice is made; we then elaborate on our criteria
for choosing groups of players.

Lemma 3. For every j ∈ 1, 2, . . . , p, |Sj| = 2j−1
√

k. Also, |S0| =
√

k.

Lemma 3 implies that |S| =
√

k(1 +
∑p−1

j=0 2j) = k. The next lemma states that
our construction maintains the invariant that the players selected in the first j
iterations lie “on a straight line” in G.

Lemma 4. For every j ∈ 0, 1, . . . , p, C(S0 ∪ · · · ∪ Sj) = 1.

Lemmas 3 and 4 both follow from straightforward inductions on j.
We now explain how to choose one out of the m groups of co-located players

that arise from an active edge. Fix an iteration j > 0 and let Ŝ denote the set
of players selected in previous iterations (S0, . . . , Sj−1) and previously in the
current iteration. Let (v, w) be the active edge of Gj−1 under consideration and
A1, . . . , Am ⊆ Uj the corresponding groups of co-located players. We call the
group Ar good if the

√
k players of Ar can be ordered i1, i2, . . . , i√k so that

χ(i�, Ŝ ∪ {i1, . . . , i�}) ≥ 1
4β

· 2−j

	
(1)

for every 	 ∈ {1, 2, . . . ,
√

k}. We then include an arbitrary good group Ar in the
set Sj . See [32] for a proof of the following lemma.

Lemma 5. Provided m is a sufficiently large function of k and β, for every
j ∈ {1, . . . , p}, every ordering of the active edges of Gj−1, and every edge (v, w)
in this ordering, at least one of the m groups of players of Uj that corresponds
to (v, w) is good. Also, the group S0 is good.

We conclude by using the lemma to finish the proof of Theorem 6.
We have already defined the subset S ⊆ U of players. We define the ordering

σ of the players in S as follows. First, for all j ∈ {1, . . . , p}, all players of Sj−1
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precede all players of Sj in σ. Second, for each j ∈ {1, . . . , p}, the players of
Sj are ordered according to groups, with the

√
k players of a group appearing

consecutively in σ. The ordering of the different groups of players of Sj is the
same as the corresponding ordering of the active edges of Gj−1 that was used to
define these groups. Third, each (good) group of

√
k co-located players is ordered

so that (1) holds.
Now consider the sum

∑k
�=1 χ(i�, S�), where i� and S� denote the 	th player

and the first 	 players of S with respect to σ, respectively. Since (1) holds for
every group of players, for every j ∈ {0, 1, . . . , p}, every group of players in Sj

contributes at least √
k∑

�=1

1
4β

· 2−j

	
=

2−jH√
k

4β

to this sum. By Lemma 3, for each j ∈ {1, . . . , p}, there are 2j−1 such groups.
There is also the group S0. Thus the sum

∑k
�=1 χ(i�, S�) is at least

H√
k

4β

⎛

⎝1 +
(log k)/2∑

j=1

2j−1 · 2−j

⎞

⎠ ≥ c

β
log2 k =

(
c

β
log2 k

)
· C(S)

for some constant c > 0 that is independent of k and β. This completes the proof
of Theorem 6.
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Abstract. Given a graph G = (V, E) with an edge cost and families
Vi ⊆ 2V , i = 1, 2, . . . , m of disjoint subsets, an edge subset F ⊆ E
is called a set connector if, for each Vi, the graph (V, F )/Vi obtained
from (V, F ) by contracting each X ∈ Vi into a single vertex x has
a property that every two contracted vertices x and x′ are connected
in (V, F )/Vi. In this paper, we introduce a problem of finding a mini-
mum cost set connector, which contains several important network de-
sign problems such as the Steiner forest problem, the group Steiner tree
problem, and the NA-connectivity augmentation problem as its special
cases. We derive an approximate integer decomposition property from
a fractional packing theorem of set connectors, and present a strongly
polynomial 2α-approximation algorithm for the set connector problem,
where α = max1≤i≤m(

∑
X∈Vi

|X|) − 1.

1 Introduction

Let G = (V, E) be an undirected graph with vertex set V and edge set E. For
a family V ⊆ 2V of disjoint vertex subsets, we let G/V stand for the graph
obtained from G by contracting each X ∈ V into a single vertex x, which is
called a V-terminal. As a general concept of the edge connectivity between two
vertices, we define the edge-connectivity λ(V ; G) for V ⊆ 2V as the minimum
edge-connectivity of two V-terminals in G/V . If V consists of two singletons {u}
and {v}, then λ(V ; G) is equivalent to the edge-connectivity between two vertices
u and v.

Let X ⊆ V be a vertex subset. We define δ(X) as the set of edges in E that
join a vertex in X and another in V −X , where we let δ(V ) = ∅ for convenience.
We say that X separates V if either Y ⊆ X or Y ⊆ V −X holds for each Y ∈ V ,
and Y ⊆ X ⊆ V − Y ′ for some Y, Y ′ ∈ V . We note that λ(V ; G) is also defined
as min{|δ(X)| | X ⊂ V separates V}.

In this paper, we consider the set connector problem, which is defined as
follows.

Set connector problem
Given a simple undirected graph G = (V, E), an edge cost c : E → Q+, and
families V1, . . . , Vm ⊆ 2V of disjoint vertex subsets, find a minimum cost edge
subset F ⊆ E such that λ(Vi; GF ) ≥ 1 for 1 ≤ i ≤ m, where GF denotes the
graph (V, F ).

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 484–498, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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U

W
X

Y

Z

Fig. 1. An instance of the set connector problem with V1 = {U, W, Z} and V2 =
{U, X, Y }, where a set connector F consists of the edges depicted by dashed lines

We call a feasible solution for the set connector problem a set connector.
Notice that a minimal set connector is a forest. Figure 1 shows an instance
(G, V1 = {U, W, Z}, V2 = {U, X, Y }) of the set connector problem, where the
subsets U, W, X, Y, Z ⊆ V are respectively depicted by gray areas, and a set
connector F is given by the edges represented by dashed lines.

The set connector problem contains many fundamental problems. For ex-
ample, it is equivalent to the Steiner forest problem when each Vi consists of
singletons. Besides this, it contains the group Steiner tree problem, which is an-
other generalization of the Steiner tree problem. As will be stated in Section 5,
the group Steiner tree problem contains the set cover problem, the tree cover
problem, and the terminal Steiner tree problem as its special cases.

Our main contribution of this paper is to present a 2α-approximation algo-
rithm for the set connector problem, where α = max1≤i≤m(

∑
X∈Vi

|X |) − 1. To
the best of our knowledge, this is the first approximation algorithm that approx-
imates the Steiner forest problem and the group Steiner tree problem simulta-
neously. The approximation ratio of our algorithm to the set connector problem
matches with the best approximation ratios of several special cases such as the
Steiner forest problem, as will be discussed in Section 5. Our algorithm is based
on the approximate integer decomposition property [5]. A polyhedron P has an f -
approximate integer decomposition property for a real f > 0 if, for every rational
vector x ∈ P and every integer k such that kx is an integer vector, there exist k
integer vectors x1, . . . , xk ∈ P such that fkx ≥ x1 + · · ·+xk holds. This property
implies that the integrality gap of polyhedron P is at most f for any non-negative
cost vector c, since an integer vector xj attaining min{cT xi | i = 1, . . . , k} satis-
fies fcT x ≥ cT xj . C. Chekuri and F. B. Shepherd [5] showed the 2-approximate
integer decomposition property of an LP relaxation for the Steiner forest prob-
lem via the following Steiner packing theorem, which generalizes a well-known
spanning tree packing theorem due to Gusfield [12] in Eulerian graphs.

Theorem 1. [5] Let G be an Eulerian multigraph. Then G contains k edge-
disjoint forests F1, . . . , Fk such that λ(u, v; GFi ) ≥ 1, 1 ≤ i ≤ k holds for ev-
ery two vertices u and v that belong to the same 2k-edge-connected component
in G. 	
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For an |E|-dimensional real vector x and an edge subset F ⊆ E, we let x(F )
denote the sum of elements of x corresponding to edges in F . The set connector
problem can be formulated as the following integer programming.

minimize cT x
subject to x(δ(X)) ≥ 1 for every X ⊂ V separating some Vi ∈ {V1, . . . , Vm}

x ∈ {0, 1}E.

Let LPsc be the linear programming obtained by relaxing the integrality con-
straint x ∈ {0, 1}E of this problem into x ∈ R

E
+, and let Psc denote its feasible

region. For obtaining the 2α-approximate integer decomposition property of Psc,
it suffices to show the following set connector packing theorem, which is a gen-
eralization of Theorem 1.

Theorem 2. Let G be an Eulerian multigraph, V1, . . . , Vm be families of disjoint
vertex subsets, and α = max1≤i≤m(

∑
X∈Vi

|X |) − 1. If λ(Vi; G) ≥ 2αk for 1 ≤
i ≤ m, then G contains k edge-disjoint set connectors. 	


The approximate integer decomposition property depends on the fact that x ∈ P
is a rational vector. Hence we actually prove the following fractional packing
theorem instead of Theorem 2. The proof of the theorem can be easily modified
to imply Theorem 2.

Theorem 3. Let x ∈ Psc and α = max1≤i≤m(
∑

X∈Vi
|X |) − 1 for a simple

undirected graph G = (V, E) and families V1, . . . , Vm of disjoint vertex subsets.
Then there exist set connectors C1, . . . , Ck with positive weights w1, . . . , wk such
that 2αx ≥

∑k
i=1 wiXCi and

∑k
i=1 wi = 1, where XCi ∈ {0, 1}E denotes the

incidence vector of Ci. 	


This paper is organized as follows. Section 2 introduces notations and induction
techniques. Section 3 provides a proof of Theorem 3, and Section 4 describes
a 2α-approximation algorithm for the set connector problem. Section 5 shows
applications of the set connector problem. Section 6 concludes this paper with
some remarks.

2 Preliminaries

2.1 Notations

Let R+, Q+ and Z+ stand for the sets of non-negative reals, rationals, and
integers, respectively. Let G = (V, E) be an undirected graph and x ∈ R

E
+.

For an edge e ∈ E, x(e) denotes the element of x corresponding to e. Let Ex

represent the support for x, i.e., Ex = {e ∈ E | x(e) > 0}. For an edge subset
F ⊆ E, let x(F ) =

∑
e∈F x(e), where we define x(∅) = 0 for convenience. Let

GF = (V, F ), xF ∈ R
F
+ denote the projection of x onto F , and XF ∈ {0, 1}E

denote the incidence vector of F .
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For a vertex subset U ⊆ V , E[U ] denotes the set of edges whose both end
vertices are in U , and G[U ] denotes the subgraph (U, E[U ]) of G induced by
U . Moreover δ(U) represents the set of edges in G that join a vertex in U and
another in V − U . A singleton set U = {u} may be written as u. For a partition
P = {V1, . . . , Vp} of V into non-empty subsets, δ(P) denotes ∪p

i=1δ(Vi). For a
family V ⊆ 2V of disjoint vertex subsets, G/V denotes a graph obtained by
contracting each X ∈ V into a single vertex.

In this paper, we often discuss the edge-connectivity of a simple graph G =
(V, E) whose edges are weighted by a vector x ∈ R

E
+. In this case, we assume

without loss of generality that G is the complete graph on V by augmenting E with
edges e ∈

(
V
2

)
− E, where we let x(e) = 0, e ∈

(
V
2

)
− E. We denote such an edge-

weighted graph by (V, x). We define the edge-connectivity λ(V ; V, x) of a family
V ⊆ 2V of disjoint vertex subsets in (V, x) as min{x(δ(X)) | X ⊂ V separates V}.
If V consists of two elements X and Y , we may denote λ(V ; V, x) by λ(X, Y ; V, x).
A k-edge-connected component of (V, x) is an inclusion-wise maximal subset U ⊆
V that satisfies λ(u, v; V, x) ≥ k for all u, v ∈ U .

For F ⊆
(
V
2

)
and a positive real w, we let (F, w) stand for a subgraph (V, F )

weighted by w. A set of weighted subgraphs (F1, w1), (F2, w2), . . . , (Fk, wk) is
called a fractional forest packing of an edge-weighted graph (V, x) if Fi is a forest,
1 ≤ i ≤ k, x ≥

∑
1≤i≤k wiXFi , and

∑
1≤i≤k wi = 1. Notice that Fi ⊆ Ex holds

for 1 ≤ i ≤ k here. If each of F1, . . . , Fk is a spanning tree on V (resp., set con-
nector), we especially call it fractional spanning tree packing (resp., fractional set
connector packing). We may simply say that a set of edge subsets F1, F2, . . . , Fk

is a fractional forest packing of (V, x) if there are weights w1, w2, . . . , wk such
that (Fi, wi), i = 1, 2, . . . , k is a fractional forest packing of (V, x).

2.2 Induction Techniques

In this subsection, we review graph operations called contraction and splitting.
In this paper, we use these operations in order to prove some claims inductively.

First, let us see the contraction. Contracting a vertex set S ⊆ V into a single
vertex s means that S is replaced by s, resultant loops are deleted, and one end
vertex of every edge in δ(S) is changed from a vertex in S to s. Let V ′ denote
the vertex set obtained by the contraction, i.e., V ′ = (V − S) ∪ s. If we execute

the contraction in (V, x), then x is modified into x′ ∈ R
(V ′

2 )
+ so that x′(e) = x(e)

for each e ∈
(
V ′

2

)
− δ(s), and x′(e) =

∑
u∈S x(uv) for each e = sv ∈ δ(s).

Lemma 1. Let (V ′, x′) be an edge-weighted undirected graph obtained from
(V, x) by contracting S ⊆ V into a single vertex s. If there exists a fractional
forest packing C′ of (V ′, x′), then we can obtain a fractional forest packing C of
(V, x), every forest in which consists of edges in Ex −

(
S
2

)
. Every two vertices

in V − S connected by all forests in C′ are also connected by the union of every
forest in C and every spanning tree on S. 	
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Next, let us see the splitting. Splitting a pair {sa, sb} of edges by ε > 0 is an oper-
ation that decreases x(sa) and x(sb) by ε and increases x(ab) by ε, where possibly
a = b and ε is supposed to be at most min{x(su), x(sv)}. Historically, this oper-
ation was introduced by L. Lovász to study the edge-connectivity of multigraphs
G (i.e., x ∈ Z

E
+ and ε ∈ Z+). W. Mader [21] showed that if |δ(s; G)| �= 3, there

always exists a pair of edges incident to s such that splitting them by 1 pre-
serves the edge-connectivity between every two vertices in V − s. Furthermore,
A. Frank [7] showed that for any edge incident to s, there always exists such
a pair that contains the edge if |δ(s; G)| is even. A proof of his theorem uses
the fact that splitting {sa, sb} by a real ε ∈ R+ preserves the edge-connectivity
between every two vertices in V − s if and only if

ε ≤ 1
2

min{x(δ(X)) − λ(u, v; V, x) | a, b, u ∈ X ⊆ V − (s ∪ v), s �= v}. (1)

This fact can be derived from the observation that splitting {sa, sb} by ε de-
creases x(δ(X)) by 2ε if a, b ∈ X ⊂ V − s, and does not change x(δ(X))
otherwise. We let qx(a, b) denote the right hand side of inequality (1), and
εa,b = min{x(sa), x(sb), qx(a, b)}. Notice that εa,b can be regarded as the max-
imum value such that splitting {sa, sb} by εa,b preserves the edge-connectivity
between every two vertices in V − s.

In this paper, we use the splitting in order to isolate a vertex s ∈ V in (V, x),
i.e., x(sv) = 0 for every v ∈ V −s. A complete splitting at s denotes an operation
that isolates s by repeating splitting edges incident to s. The following theorem
tells that it always can be executed in strongly polynomial time while preserving
the edge-connectivity between every two vertices in V − s.

Theorem 4. Let s be an arbitrary vertex in (V, x). There exists a complete
splitting at s such that λ(u, v; V, x) = λ(u, v; V −s, x′) holds for every u, v ∈ V −s,

where x′ ∈ R
(V −s

2 )
+ is the resulting edge weight from the complete splitting. Such

a complete splitting can be found in strongly polynomial time. 	


We note that splitting every pair {sa, sb} of edges incident to s by εa,b gives
the complete splitting in the theorem. The strong polynomiality of the complete
splitting comes from the fact that εa,b can be computed in strongly polynomial
time. We use the splitting for the induction as described below.

Lemma 2. Let x′ ∈ R
(V −s

2 )
+ be the edge-weight obtained from x ∈ R

(V
2)

+ by a
complete splitting at s. If there exists a fractional forest packing C′ of (V, x′),
then we can construct a fractional forest packing C of (V, x). Every two vertices
in V − s connected by all forests in C′ are also connected by all in C. 	


3 Proof of the Fractional Set Connector Packing
Theorem

In this section, we give a proof of Theorem 3. First of all, let us review a fractional
version of Tutte’s tree packing theorem [25].
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Theorem 5. [25] Let G = (V, x) be an edge-weighted undirected graph. Then
there exits a fractional spanning tree packing of G if and only if

x(δ(P)) ≥ |P| − 1 for every partition P of V into nonempty classes. (2)

	


We can derive the following lemma from the above theorem.

Lemma 3. Let G = (V, x) be an edge-weighted undirected graph, and K ⊂ V
be an inclusion-wise minimal subset such that x(δ(K)) < 2. Then there exists a
fractional spanning tree packing of (K, x(K

2 )).

Proof. We show that (2) holds for graph (K, x(K
2 )). Let P be a partition of

K into nonempty classes. Then for any X ∈ P (i.e., X ⊂ K), it holds that
x(δ(X)) ≥ 2 by the minimality of K. Therefore x(K

2 )(δ(P)) = (
∑

X∈P x(δ(X))−
x(δ(K)))/2 > |P| − 1 holds. Then by applying Theorem 5 to (K, x(K

2 )), we can
obtain a fractional spanning tree packing of (K, x(K

2 )). 	


To prove Theorem 3, we use a result on the Steiner forest packing due to
C. Chekuri and F. B. Shepherd [5]. Here we state a fractional packing version of
Theorem 1. The proof is based on that of C. Chekuri and F. B. Shepherd [5].

Theorem 6. Let G = (V, x) be an edge-weighted undirected graph. Then there
exists a fractional forest packing C of G such that λ(u, v; GF ) ≥ 1 for every
F ∈ C and u, v ∈ V with λ(u, v; V, x) ≥ 2.

Proof. We prove this theorem by an induction on the number N of 2-edge-
connected components in (V, x). First, let us consider the case of N = 1. Then
for any nonempty X ⊂ V , it holds that x(δ(X)) ≥ 2, which implies that (2) holds
for x because x(δ(P)) =

∑
X∈P x(δ(X))/2 ≥ |P|. Therefore, we can obtain a

required fractional forest packing by Theorem 5.
Next, consider the case of N ≥ 2. Let K ⊂ V be an inclusion-wise minimal

subset such that x(δ(K)) < 2 (such K exists since the edge-connectivity between
two vertices in different components is less than 2). Then K is the union of some
2-edge-connected components. By Lemma 3, there exists a fractional spanning
tree packing {(Ti, βi) | 1 ≤ i ≤ p} of (K, x(K

2 )). Let G′ = (V ′ = (V − K), x′ ∈
(
V ′

2

)
) be the graph obtained by contracting K into a single vertex vK , executing

the complete splitting at vK , and removing isolated vK . Note that any two
vertices u, v ∈ V ′ that belong to the same 2-edge-connected component in (V, x)
remains 2-edge-connected in (V ′, x′).

By the inductive hypothesis, (V ′, x′) has a fractional forest packing {(Hi, θi) |
1 ≤ i ≤ q} such that each of H1, . . . , Hq connects every two vertices u, v ∈ V ′

with λ(u, v; V ′, x′) ≥ 2 (and hence λ(u, v; V, x) ≥ 2). Let {(H ′
i, θ

′
i) | i = 1, . . . , q′}

be the fractional forest decomposition of (V, x) obtained from {(Hi, θi) | i =
1, . . . , q} by applying Lemmas 1 and 2. Then clearly {(Ti ∪ H ′

j , βiθ
′
j) | 1 ≤ i ≤

p, 1 ≤ j ≤ q′} is a required fractional forest packing. 	
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Lemma 4. Let G=(V, x) be an edge-weighted undirected graph, and V1,. . . ,Vm ⊆
2V be families of disjoint vertex subsets such that λ(Vi; V, x) ≥ 2(

∑
X∈Vi

|X |)−2
for every i = 1, . . . , m. If F ⊆

(
V
2

)
satisfies λ(u, v; GF ) ≥ 1 for all u, v ∈ V with

λ(u, v; V, x) ≥ 2, then F is a set connector for V1, . . . , Vm.

Proof. Consider a family Vi ∈ {V1, . . . , Vm}, and let {{X1, . . . , Xq}, {Y1, . . . , Yr}}
be a partition of Vi into two classes. We denote ∪q

j=1Xj by X and ∪r
j=1Yj by Y .

In the following, we show that there exists two vertices u ∈ X and v ∈ Y with
λ(u, v; G, x) ≥ 2. This implies the lemma since an edge set that connects such
vertices is a set connector in this case.

Now we suppose conversely that λ(u, v; V, x) < 2 holds for every u ∈ X and
v ∈ Y . We construct a partition P of V and a family Q ⊆ 2V of vertex subsets as
follows. First we set P = {V } and Q = ∅. Let us consider the moment at which
some two vertices u ∈ X and v ∈ Y belong to the same class of P . Then choose
W ⊂ V such that u ∈ W , v ∈ V − W and x(δ(W )) < 2 (such W exists since
λ(u, v; G, x) < 2) and update P := ∪Z∈P{Z ∩ W, Z − W} and Q := Q ∪ {W}.
Repeat this procedure until every two vertices in X and in Y belong to different
classes of P .

We can see that the number of the repetitions is at most |X | + |Y | − 1 by the
induction on |X |+|Y | as follows. Let W be chosen as a member of Q after running
the procedure once. For separating vertices in W∩X from those in W∩Y , at most
|W ∩ (X ∪ Y )| − 1 repetitions are enough by the inductive hypothesis. Similarly,
at most |(X ∪Y )−W |−1 repetitions separates vertices in X −W from those in
Y −W . Since W separates vertices in W from those in (X∪Y )−W , the number of
the repetitions is at most 1+(|W∩(X∪Y )|−1)+(|(X∪Y )−W |−1) = |X |+|Y |−1.

From this fact, |Q| ≤ |X | + |Y | − 1 = (
∑

Z∈Vi
|Z|) − 1 holds. Moreover,

we can see that δ(P) ⊆ ∪W∈Qδ(W ). Now let U = ∪p
j=1Vj , where V1, . . . , Vp

be the classes of P that contain vertices in X . Notice that U separates Vi.
Since x(∪W∈Qδ(W )) < 2|Q| ≤ 2(

∑
Z∈Vi

|Z|) − 2, it holds that x(δ(U)) ≤
x(∪p

j=1δ(Vj)) ≤ x(δ(P)) < 2(
∑

Z∈Vi
|Z|)−2. These facts imply that λ(Vi; V, x) <

2(
∑

Z∈Vi
|Z|) − 2, a contradiction. 	


Now we are ready to prove Theorem 3. In the proof, we show the following
observation together with Theorem 3.

Observation 1. Set connectors in Theorem 3 can be given as forests connecting
all vertices in each 2-edge-connected component of (V, 2αx). 	


Proof (Proof of Theorem 3 and Observation 1). Since x ∈ Psc, we see that
λ(Vi; V, x) = min{x(δ(X)) | X separates Vi} ≥ 1 holds for every 1 ≤ i ≤ m.
Therefore, λ(Vi; G, 2αx) = 2αλ(Vi; G, x) ≥ 2α ≥ 2(

∑
X∈Vi

|X | − 1) holds for
1 ≤ i ≤ m. By Lemma 4, at least one pair {u, v} of vertices u ∈ ∪q

i=1Xi and
v ∈ ∪r

i=1Yi is contained in the same 2-edge-connected component of (V, 2αx) for
any partition {{X1, . . . , Xq}, {Y1, . . . , Yr}} of Vi into two classes. Hence every
forest that connects all vertices in each 2-edge-connected component of (V, 2αx)
is a set connector.
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By Theorem 6, there exist a fractional forest packing {F1, . . . , Fk} of (V, 2αx)
such that every two vertices u, v ∈ V with λ(u, v; V, 2αx) are connected by each
of F1, . . . , Fk. By the above observation, this is a desired factional set connector
packing. 	


As a corollary of Theorem 3, we can see that the integrality gap of LPsc is at
most 2α.

Corollary 1. For any vectors x ∈ Psc and c ∈ Q
E
+, there always exists a set

connector F ⊆ E such that 2αcT x ≥ c(F ). Such F can be given as a forest
connecting all vertices in each 2-edge-connected component of (V, 2αx). 	


This gap is tight in the following instance. Given an integer d ≥ 1, let G = (V, E)
be the complete graph on a vertex set V of cardinality n > 2d, and c(e) = 1 for
all e ∈ E. Moreover specify a vertex s ∈ V and define V1, . . . , Vm as the families
{{s}, U} for all subsets U ⊆ V − s with |U | = α, where m =

(|V |−1
α

)
. In this

instance, α = max1≤i≤m(
∑

X∈Vi
|X |) − 1 holds.

Define a rational vector x ∈ Q
E
+ as x(e) = 1/(n − 1) if e is incident to s, and

x(e) = 1/(a(n−1)) otherwise. Then we can verify that x ∈ Psc holds. Hence the
optimal cost of rational solutions is at most cT x = (n−1)/(n−1)+

(
n−1

2

)
/(α(n−

1)) = (n + 2α − 2)/(2α). On the other hand, let us consider an optimal integral
solution F ⊆ E. Consider the connected component S that contains s in GF . If
|S| < n − α + 1, i.e., |V − S| ≥ α, then 0 = δ(S; GF ) ≥ λ(Vi; GF ) would hold
for some Vi = {{s}, U} with a set U ⊆ V − S. Hence |S| ≥ n − α + 1. By this,
|F | ≥ |S| − 1 ≥ n − α + 1 − 1 = n − α. Therefore the integrality gap of this
instance is

The optimal cost of integer solutions
The optimal cost of rational solutions

≥ c(F )
cT x

≥ n − α

(n + 2α − 2)/(2α)
.

We can see that the most right term approaches 2α as n gets larger.

4 Approximation Algorithm

In Corollary 1, we saw that any vector x ∈ Psc can be rounded to a set connec-
tor F with c(F ) ≤ 2αcT x, and that such F can be given as a forest connect-
ing all vertices in each 2-edge-connected component of (V, 2αx) (i.e., 1/α-edge-
connected component of (V, x)). Hence by applying a ρ-approximation algorithm
of the Steiner forest problem to constructing such a forest in G, we have a 2αρ-
approximation algorithm for the set connector problem, where currently ρ ≤ 2
is known [11]. However, the arguments in Section 3 indicate a 2α-approximation
algorithm for the set connector problem. In this section, we describe this.

In the first step, our algorithm computes an optimal solution x of LPsc for the
given instance consisting of G = (V, E), c ∈ Q

E
+, and V1, . . . , Vm ⊆ 2V . We then

augment x into R
(V

2)
+ by adding 0’s, and c into Q

(V
2)

+ by adding +∞’s if G is not
complete. Then our algorithm constructs a forest F ⊆ Ex ⊆ E that connects all
vertices in each 1/α-edge-connected component of (V, x) as follows.
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Let K ⊆ V be an inclusion-wise minimal vertex set such that x(δ(K)) <
1/α. Recall that the proof of Theorem 6 computes a fractional tree packing of
(K, x(K

2 )) by applying Lemma 3. Instead of this, our algorithm computes a min-
imum cost tree TK ⊆ Ex ∩ E[K] spanning K. Then we contract K into a single
vertex vK , and execute a complete splitting at vK . When our algorithm executes
contraction or splitting, it modifies the edge cost simultaneously. After this, it
recursively computes a sequence of trees in the resulting edge-weighted graph
and edge cost until the vertex set becomes a singleton. As reverse operations
of contraction and splitting, our algorithm modifies the forest and output the
sum of TK and the modified forest as a solution. Below, we describe how to
modify the edge cost and how to modify the forest in the reverse operations of
contraction and splitting.

First, let us consider the contraction. Let x′ ∈ R
(V ′

2 )
+ be the vector obtained

from x by the contracting K into vK , where V ′ = (V − K) ∪ vK . Together

with this contraction, our algorithm modifies edge cost c into c′ ∈ Q
(V ′

2 )
+ so that

c′(uvK) = min{c(us) | s ∈ K, x(us) > 0} for each u ∈ V −K and c′(uv) = c(uv)
for each u, v ∈ V − K. Suppose our algorithm has computed a forest F ′ ⊆ Ex′

for (V ′, x′) and c′. Then it constructs a forest F ⊆ Ex −
(

K
2

)
for (V, x) and c

from F ′ in the reverse operation of the contraction as follows. If F ′ contains
no edge in δ(vK), we set F to F ′. Otherwise, prepare an edge uv such that
c(uv) = c′(uvK) for each uvK ∈ F ′ ∩ δ(vK), and let F ′′ be the set of those
edges. Then F is defined as (F ′ − δ(vK)) ∪ F ′′. Notice that c(F ) = c′(F ′) holds.
Moreover, F ′ ∪ TK connects every two vertices connected by F .

Next, let us consider the splitting. Let x′ ∈ R
(V ′

2 )
+ be the vector from x ∈ R

(V ′
2 )

+
by splitting a pair {vKa, vKb} of edges by εvKa,vKb > 0 in the complete splitting
at vK . Together with this splitting, our algorithm modifies the edge cost c into

a new cost c′ ∈ Q
(V ′

2 )
+ so that c′(ab) = min{c(ab), c(vKa) + c(vKb)} if x(ab) > 0

and c′(ab) = c(vKa) + c(vKb) otherwise while c′(e) = c(e) for e ∈
(
V ′

2

)
− ab.

Suppose our algorithm has computed a forest F ′ ⊆ Ex′ for (V ′, x′) and c′.
Then it constructs a forest F ⊆ Ex for (V, x) and c from F ′ in the reverse
operation of the splitting as follows. If c′(ab) = c(vKa) + c(vKb), then F is set
to (F ′ − ab) ∪ {vKa, vKb} Otherwise, F is set to F ′. Notice that c(F ) = c′(F ′)
holds in both cases.

We note that the reverse operation of contraction and splitting described
above can be easily executed by maintaining p(e) for each e ∈

(
V
2

)
. At the

beginning of our algorithm, p(e) is set to {e}. Our algorithm then updates
p(uvK) := p(uv) when a set K containing v is contracted into vK and c′(uvK) is
defined as c(uv), and p(ab) := p(vKa) ∪ p(vKb) when a pair {vKa, vKb} is split
and c′(ab) is updated to c(vKa)+ c(vKb). Observe that ∪e∈F ′p(e) represents the
edge set constructed from a forest F ′ in both reverse operations.

Now we are ready to see the entire algorithm. The following describes how to
compute a solution after an optimal solution x of LPsc is given.
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Algorithm SETCONNECT

Input: A vertex set V , a vector x ∈ R
(V

2)
+ , and an edge cost c ∈ Q

(V
2)

+

Output: A forest F ⊆
(
V
2

)

1: K := an inclusion-wise minimal X ⊆ V with x(δ(X)) < 1/α;
2: Compute a minimum cost tree TK ⊆ Ex ∩

(
K
2

)
spanning K; # possibly

|K| = 1 or K = V
3: if |V | − 1 ≤ |K| ≤ |V | then
4: Return F := TK as a solution and halt
5: end if;

# contract K into vK

6: c′ := c;
7: For each e ∈

(
V
2

)
, define p(e) := {e};

8: V ′ := (V − K) ∪ vK ; x′
(V −K

2 ) := x(V −K
2 );

9: for u ∈ V − K do
10: x′(uvK) :=

∑
v∈K x(uv);

11: if x′(uvK) > 0 then
12: e := an edge attaining min{c(uv) | v ∈ K, x(uv) > 0};
13: c′(uvK) := c(e); p(uvK) := p(e)
14: end if
15: end for;

# complete splitting at vK

16: for distinct a, b ∈ V ′ − vK do
17: Compute εa,b in (V ′, x′);
18: if εa,b > 0 and x′(ab) = 0 or c′(ab) > c′(vKa) + c′(vKb) then
19: c′(ab) := c′(vKa) + c′(vKb); p(ab) := p(vKa) ∪ p(vKb)
20: end if;
21: x′(vKa) := x′(vKa)−εa,b; x′(vKb) := x′(vKb)−εa,b; x′(ab) := x′(ab)+εa,b

22: end for;
23: V ′ := V ′ − vK ;
24: F ′ := A solution output by SETCONNECT applied to V ′, x′

(V ′
2 )

and c′;

25: Return F := TK ∪e∈F ′ p(e) as a solution;

Theorem 7. The set connector problem can be approximated within factor of
2α by applying algorithm SETCONNECT to an optimal solution x of LPsc.

Proof. connecting all vertices in a 1/α-edge-connected component of (V, x) by
the induction on |V |, the combination of which and Lemma 4 implies that F is
a set connector for G and V1, . . . , Vm.

By the choice of TK , it holds that TK ⊆ Ex . By the induction hypothesis,
F ′ ⊆ Ex′ , and then ∪e∈F ′p(e) ⊆ Ex. Since F = TK ∪e∈F ′ p(e), F ⊆ Ex holds. On
the other hand, let u and v be two vertices in V such that λ(u, v; V, x) ≥ 1/α.
Then these are contained either in K or in V − K during the algorithm. If
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u, v ∈ K, these are connected by F since F contains a tree TK spanning K.
In what follows, we suppose that u, v ∈ V − K. Let x′ represent the vector
maintained in the end of the algorithm. Since contracting K into vK and the
complete splitting at vK does not decrease the edge-connectivity between u
and v, it follows that λ(u, v; V ′, x′

(V ′
2 )

) ≥ 1/α. By the inductive hypothesis, F ′

connects u and v, and thereby F = TK ∪e∈F ′ p(e) connects such u and v.
Next, let {(Ci, wi) | i = 1, . . . , k} be a fractional set connector packing of

(V, 2αx) and V1, . . . , Vm appeared in Theorem 3. In the following, we show that
c(F ) ≤ c(Ci) for every i = 1, . . . , k by the induction on |V | again. This implies
that F is a 2α-approximate solution for the set connector problem.

Recall that the proof of Theorem 3 constructs Ci as the union of T and
∪e∈Hp(e), where T ⊆ Ex ∩

(
K
2

)
is a spanning tree on K and H ⊆ Ex′ ∩

(
V −K

2

)

is a forest in a fractional forest packing of (V ′, x′). By the choice of TK , obvi-
ously c(TK) ≤ c(T ) holds. On the other hand, c′(F ′) ≤ c′(H) by the inductive
hypothesis. As observed in the above, it holds that c′(F ′) = c(∪e∈F ′p(e)) and
c′(H) = c(∪e∈Hp(e)). Since F = TK ∪e∈F ′ p(e) and Ci = T ∪e∈H p(e), we have
obtained c(F ) ≤ c(Ci). 	


We note that running time of algorithm SETCONNECT is strongly polyno-
mial, where we use Tardos’ algorithm [27] to solve LPsc. All steps of algorithm
SETCONNECT except solving LPsc are combinatorial.

5 Applications

In this section, we review some problems related to the set connector problem.

5.1 NA-Connectivity

Herewemention thepriorworks on thenode toareaconnectivity (NA-connectivity).
H. Ito [16] considered the edge-connectivity λ(v, X) between a vertex v ∈ V and
a vertex subset X ⊆ V , and called it NA-connectivity. Then augmentation-type
problem of NA-connectivity was considered by some researchers [15,17,22]. For ex-
ample, the following problem was shown to be NP-hardby H. Miwa and H. Ito [22].

1-NA-connectivity augmentation problem
Given an undirected graph G = (V, E) and a family V ⊆ 2V , find an edge set
F ⊆

(
V
2

)
− E of minimum cardinality such that λ(v; X ; GE∪F ) ≥ 1 holds for all

X ∈ V and v ∈ V − X .

By using an algorithm due to Z. Nutov [23], this problem can be approximated
within 7/4.

The edge-connectivity for a family of vertex subsets we defined in this paper
generalizes the NA-connectivity since λ(v, X ; G) = λ(VX ; G) holds if we set
VX = {{v}, X} for X ∈ V . Hence the above augmentation problem is contained
in the set connector problem even if it is generalized so that an edge cost c :(
V
2

)
− E → Q+ is also given and c(F ) is minimized.
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Theorem 8. The 1-NA-connectivity augmentation problem with an edge cost
can be approximated within a factor of 2 maxX∈V |X |. 	


5.2 Steiner Forest Problem

The Steiner forest problem is formulated as follows.

Steiner forest problem
Given an undirected graph G = (V, E) and disjoint vertex subsets X1, . . . , X� ⊆
V , find a minimum cost edge set F ⊆ E that connects every two vertices in Xi

for every i = 1, . . . , 	.

The Steiner forest problem can be formulated as the set connector problem
by setting each family Vi of vertex subsets as {{u}, {v}}, where u, v ∈ Xj, j =
1, . . . , 	. Our algorithm to the set connector problem attains the approximation
factor of 2α = 2, which coincides with the prior best result on the Steiner forest
problem [11].

5.3 Group Steiner Tree Problem

The group Steiner tree problem is a generalization of the Steiner tree problem.
It is formulated as follows.

Group Steiner tree problem
Given an undirected graph G = (V, E), an edge cost c : E → Q+, and a family
U ⊆ 2V of vertex subsets, find a minimum cost tree T ⊆ E which spans at least
one vertex in every X ∈ U .

The group Steiner tree problem was introduced by G. Reich and P. Wid-
mayer [24]. Their motivation came from the wire routing with multi-port ter-
minals in VLSI design. After their work, it turned out that this problem has a
close relationship with the Steiner tree problem both in undirected graphs and
in directed graphs [13,28]. In addition to the Steiner tree problem, the problem
is known to generalize several important other problems such as the tree cover
problem [1,8,9,18], the terminal (full) Steiner tree problem [6,19,20], and the
set cover problem. Especially a reduction from the set cover problem implies
that the group Steiner tree problem does not admit any approximation factor of
(1−o(1)) lnm unless NP ⊆ DTIME(nlog log n), where m = |U| and n = |∪X∈UX |.
Besides this, E. Halperin and R. Krauthgamer [14] proved that the group Steiner
tree problem is hard to approximate within a factor better than Ω(log2−ε m) for
every ε > 0 unless NP problems have quasi-polynomial time Las-Vegas algo-
rithms. On the other hand, a (1 + lnm/2)

√
m-approximation algorithm was

proposed by C. D. Bateman et. al. [2]. Currently the best approximation factors
are O(log m log |V | log N) due to [3,4,10], and 2N(1− 1/n) due to P. Slav́ık [26],
where N = maxX∈U |X |.

Although the set connector problem resembles the group Steiner tree problem,
they are different in the fact that the set connectors may be forests. However,
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the group Steiner tree problem can be reduced to the set connector problem as
follows. Pick up a designated subset S ∈ U . For each s ∈ S, run the algorithm of
the set connector problem for the instance with G, c, and VU = {s, U}, U ∈ U−S.
Then this provides the approximation factor of 2α = 2N . This approximation
factor almost coincides with Slav́ık’s result [26].

Theorem 9. The group Steiner tree problem can be approximated within a fac-
tor of 2 maxX∈V |X |. 	


6 Concluding Remarks

In this paper, we have introduced the set connector problem as an important
generalization of previously known fundamental problems such as the Steiner
forest problem, and have presented a 2α-approximation algorithm to the prob-
lem, where α = max1≤i≤m(

∑
X∈Vi

|X |) − 1. Our algorithm is based on the
2α-approximate integer decomposition property, which is proven via the set con-
nector decomposition theorem.

Some problems remain open yet. One is whether the set connector problem
admits the approximation factor better than 2α. In the example presented in
Section 4 for the tightness of the integrality gap, Vi consists of two vertex sub-
sets one of which is always singleton. Hence this does not deny the possibility
of a better approximation factor than 2 max1≤i≤m maxX∈Vi |X |. Constructing
combinatorial approximation algorithms for the set connector problem is also an
interesting and important issue.
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