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Abstract. We present an algorithm for finding a smallest Resolution
refutation of any 2CNF in polynomial time.

1 Introduction

The problem of deciding satisfiability of propositional 2-CNF formulas (2-SAT),
is an important tractable case of SAT. The first polynomial-time algorithm for
2-SAT was given by Cook [4]. Linear time algorithms were given by Even, Itai
and Shamir [6] and, subsequently, Aspvall, Plass and Tarjan [2]. For an unsat-
isfiable formula, a small and simple certificate, or proof of unsatisfiability, may
be interpreted as an explanation for its unsatisfiability. Such explanations are
central in a number of applications. Cook’s algorithm constructs a tree-like Res-
olution refutation of an unsatisfiable formula. The algorithm of [6], and a later
algorithm by del Val [5], involve schemes for applying unit Resolution, and can
easily be modified to output tree-like Resolution refutations. The algorithm of [2]
provides a certificate in the form of a graph labelled with clauses which are eas-
ily seen to be an unsatisfiable subset of the given clauses. A tree-like Resolution
refutation can easily be extracted from this graph.

In [3] we gave polytime algorithms for finding a smallest tree-like Resolution
refutation and a smallest unsatisfiable subformula of an unsatisfiable 2CNF (the
latter is itself an efficiently verifiable certificate since 2SAT is in linear time).
Here we give a polytime algorithm for finding a smallest general Resolution refu-
tation. All three algorithms are dynamic programming algorithms based on the
implication graph associated with a 2CNF. The algorithm for finding a tree-like
refutation runs in time O(n2m), where n is the number of underlying variables
and m is the number of clauses, while the algorithm presented here for general
refutations runs in time O(n6m). In [3] we showed that minimum tree-like Res-
olution refutations provide a 2-approximation of the smallest general Resolution
refutation. Hence, in practice it may often be better to use the faster algorithm
to obtain an approximation. Nonetheless, we consider solving the general case
an interesting theoretical problem. In particular, we note the contrast with the
case of Horn formulas, for which the size of the smallest Resolution refutation
is NP-hard to determine, or even to approximate within any constant factor [1].
This difference is especially interesting in light of the similarities in standard
algorithms for 2-SAT and Horn-SAT. One may observe that we make essential
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use of the symmetries in 2-CNFs derivations, as exhibited by the “dual” paths
in the implication graph, that do not exist in the Horn case.

The algorithms for finding minimum-size certificates provided here and in
[3] are more complicated, and of higher time-complexity, than the linear-time
algorithms. However, in some applications the size and simplicity of the certifi-
cates provided may justify the extra cost. For example, if we have a very large
formula and the certificate must be interpreted by a human user, or we have
plenty of time to preprocess the formula and the certificate produced will be
used repeatedly in the future, then finding a sublinear size certificate, even if
it takes a relatively long time, may be better than finding a linear size certifi-
cate quickly. Another example is provided by certain abstraction-based model
checking techniques in hardware and software verification. At each stage in a
sequence of stages a certificate of unsatisfiablility of one formula is used in the
creation of a new, larger formula. The size and complexity of the certificates
produced is very important in the success of the overall process. In general, the
formulas used in this application are not 2CNF formulas, but they often have a
very large fraction of 2-clauses. We envision being able to take advantage of the
methods for constructing minimum refutations of 2CNF formulas in developing
more effective algorithms than currently available for this context.

2 Preliminaries

Throughout, let C be a collection of 2-clauses (that is, clauses with at most
two literals) over an ordered set of variables {x1, ..., xn}. Say |C| = m. As first
suggested by [2], C can be represented as a directed graph GC on 2n nodes,
one for each literal. If (a∨ b) ∈ C for literals a, b, then the edges (ā, b) and (b̄, a)
appear in GC (note that literals a and b can be the same). Both of these edges are
labelled by the clause (a∨b). For an edge e = (a, b), let dual(e), the dual edge of
e, be the edge (b̄, ā). For literals a, b, define Pab to be the set of all directed paths
from a to b in GC . If c is also a literal, let Pabc be the set of all directed paths
that start at a, end at c and visit b at some point. For P1 ∈ Pab and P2 ∈ Pbc,
we denote by P1 ◦ P2 ∈ Pabc the concatenation of the two paths. For a path
P = (e1, ..., ek) ∈ Pab, let dual(P ) ∈ Pb̄ā be the path (dual(ek), ..., dual(e1)).

Proposition 1 ([2]). C is unsatisfiable if and only if there is a variable x such
that both Pxx̄ and Px̄x are not empty.

Actually, note that for any literals a, b and variable x, a pair of paths P1 ∈ Paāx

and P2 ∈ Pbb̄x̄ are contradictory (for one thing, they imply the existence of a
pair of paths such as those in the proposition). This motivates the following
definition: Two paths P1 and P2 are called end-contradictory if there are literals
a and b and a variable x (x, x̄ need not be distinct from ā, b̄) such that P1 ∈ Paāx

and P2 ∈ Pbb̄x̄.
We will be interested in finding such pairs of paths of a particularly simple

form. First we will need to establish several definitions about directed paths in
GC . Note that in GC even a simple path may contain two edges with the same
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clause label. Let clauses(P ) denote the set of clause-labels underlying the edges
of a directed path P . We define |P |, the size of the path P , to be |clauses(P )|.
In contrast, let length(P ) denote the length of P as a sequence. Call a path
P singular if it does not contain two edges that have the same clause label.
Therefore, a path P is singular if and only if |P | = length(P ). Given two paths
P1, P2, let �(P1, P2) denote the quantity |clauses(P1) ∪ clauses(P2)|.
Definition 1. Let suf(P ) be the maximal singular suffix of P . For a path P ∈
Paāb (ā and b need not be distinct), let extend(P ) be the following path in Pb̄b:
let P ′ be the portion of P that starts at the last occurrence of ā and goes to the
end. Then extend(P ) is dual(P ′) ◦ P .

Definition 2. Given a path P ∈ Paāb, let sing(P ) be the following operation:
first let P ′ = extend(P ). Now, while there is a repeated edge in P ′, remove the
segment of P ′ after the first occurrence of the edge through the second occurrence.
When there is no longer a repeated edge, take the suffix of the resulting path.

It is clear that sing(P ) is singular and that clauses(sing(P )) ⊆ clauses(P ).
Also, if P1 and P2 are end-contradictory, then so are sing(P1) and sing(P2) and
�(sing(P1), sing(P2)) ≤ �(P1, P2).

Definition 3. Let P be a singular path that starts at literal a. Define core(P )
as the subpath of P that starts at a and ends at the first occurrence of ā (or at
the end of P if there is none).

A segment of a path is a consecutive subsequence of the path’s sequence. For
two singular paths P1 and P2, a primal shared segment is a common segment.
A dual shared segment of P1 with respect to P2 is a segment t of P1 such that
dual(t) is a segment of P2. A shared segment is either a primal or dual shared
segment. For two disjoint segments s and t of P , say s ≺P t if s appears before t
in P . For two singular paths P1 and P2, let k(P1, P2) be the number of maximal
shared segments (primal or dual) of P1 and P2.

We assume the reader is familiar with Resolution derivations. We simply men-
tion that Resolution derivations can be viewed as DAGs whose nodes are the
clauses in the derivation (we assume all occurrences of a particular clause are
identified to one node). In a derivation of a single clause C, C is the only source
and the sinks are the axioms used in the derivation. Each non-axiom clause
has fanout two: it points to the two clauses whose resolvent it is. A Resolution
refutation is a derivation of the empty clause Λ. The size of a derivation is the
number of clauses (nodes) in it.

Proposition 2. Any Resolution derivation of a single clause that uses � axioms
must have size at least 2� − 1.

Let P ∈ Pab. Let IR(P ) be the Input Resolution derivation that starts by
resolving the clauses labelling the first two edges in P and then proceeds by
resolving the latest derived clause with the clause labelling the next edge in the
sequence P . This is a derivation of either (ā ∨ b) or simply (b) (if the path goes
through literal ā). It is not hard to see that the size of the derivation IR(P ) is
2 · length(P )− 1.
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3 Characterizing Minimum Resolution Refutations

Let π be a Resolution derivation from C that includes the clause (ā∨ b). Then π
defines a path in GC from a to b (and from b̄ to ā). The underlying edges of this
path are exactly the elements of C that appear as sinks in π and are reachable
from (ā ∨ b). More formally, we have the following definition:

Definition 4. Let a, b be literals over distinct variables. Let π be a Resolution
derivation containing (ā ∨ b). If (ā ∨ b) is a sink in π, then let ResPath(π, (ā ∨
b), a → b) equal the edge (a, b), and let ResPath(π, (ā ∨ b), b̄ → ā) equal the
edge (b̄, ā). Otherwise, assume (ā ∨ b) has children (ā ∨ c) and (c̄ ∨ b), for some
literal c, in π. Then set ResPath(π, (ā ∨ b), a → b) to ResPath(π, (ā ∨ c), a →
c)◦ResPath(π, (c̄∨b), c → b). Set ResPath(π, (ā∨b), b̄ → ā) to ResPath(π, (c̄∨
b), b̄ → c̄) ◦ ResPath(π, (ā ∨ c), c̄ → ā). If the variable underlying a precedes the
variable underlying b in the order of variables, then let ResPath(π, (ā ∨ b)) =
ResPath(π, (ā ∨ b), a → b).

Now assume that the clause (a) appears in some Resolution derivation π. Again,
if (a) is a sink, let ResPath(π, (a)) be the edge (ā, a). Otherwise, if the children
of (a) are (a ∨ x) and (a ∨ x̄) for some variable x, then set ResPath(π, (a)) to
ResPath(π, (a ∨ x), ā → x) ◦ ResPath(π, (a ∨ x̄), x → a). Otherwise, if the
children of (a) are (a ∨ b) and (b̄) for some literal b, then set ResPath(π, (a)) to
ResPath(π, (b̄)) ◦ ResPath(π, (a ∨ b), b̄ → a).

Finally, given a Resolution refutation π that ends by resolving (x) and (x̄),
let ResPath(π) be the pair (ResPath(π, x), ResPath(π, x̄)).

Notice that, for a Resolution refutation π, the pair of paths in ResPath(π)
are end-contraditory. This justifies our strategy of reducing the search for a
minimum Resolution refutation to a search for a pair of end-contradictory paths
that satisfy certain criteria.

Definition 4 demonstrates that there is a pretty deep correspondence between
Resolution derivations over C and paths in GC . Will we exploit this correspon-
dence heavily throughout, but here we pause to illustrate one salient aspect of
it. Consider a fragment of a Resolution derivation π such as that in figure 1.
Let Q = ResPath(π, C). Then, going backwards along the main path in the
derivation, each successive clause Ci corresponds to an extension of the segment
Q, called Qi. In particular, the resolution with each clause Di extends Qi either
from its beginning or from its end.

Definition 5. A joint derivation of two clauses (ā ∨ b) and (c̄ ∨ d) (again, ā, c̄
need not be distinct from b, d) from C is a Resolution derivation that uses C as
axioms and such that (ā ∨ b) and (c̄ ∨ d) appear in the derivation and are the
only clauses with fanin 0.

Definition 6. Consider a joint derivation π of (ā ∨ b) and (c̄ ∨ d) from C. A
shared clause in this derivation is any clause C in π such that there are paths
in π from (ā ∨ b) to C and from (c̄ ∨ d) to C, respectively. A top-shared clause
is a shared clause C such that there is a path from (c̄∨ d) to C that contains no
other shared clause.
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Fig. 1. Extending a path through Resolution

Lemma 1. Let π be a joint derivation of (ā∨ b) and (c̄∨d) from C containing �
sinks. Assume further that π has k top-shared clauses. Then π has size at least
2� + k − 2.

Proof. Consider the sinks that are descendants of (ā∨b); say there are �1 of them
(and �2 = � − �1 remaining sinks). Let S be the set of top-shared clauses. All of
the descendant sinks of S are among these �1 sinks. The subgraph induced by all
clauses in π reachable from (ā ∨ b) constitutes a Resolution derivation of (ā∨ b)
from �1 sinks. Therefore, by Proposition 2, this subgraph must contain at least
2�1−1 clauses. Now consider the subgraph induced by all clauses reachable from
(c̄∨ d) where we exclude any shared clause that is not a top-shared clause. This
constitutes a Resolution derivaton of (c̄∨d) from �2+k sinks (modulo removal of
edges between top-shared clauses). Therefore, it must contain at least 2(�2+k)−1
clauses. These two derivations (of (ā ∨ b) and (c̄ ∨ d)) are clause disjoint except
for the k clauses in S. Therefore, the entire joint derivation contains at least
(2�1 − 1) + (2(�2 + k) − 1) − k = 2� + k − 2 clauses. 
�
Let P1 ∈ Pab and P2 ∈ Pcd and assume that the sum of the lengths of these
paths is L. Let t1, ..., tk be shared segments (primal or dual) of P1 and P2.
Define JointDerive(P1, P2, t1, ..., tk) to be the following joint derivation of ā∨ b
(or possibly just (b)) and c̄∨d (or possibly just (d)) from C: for each i, construct
IR(ti); assume this is a derivation of the clause x̄i ∨ yi. Assume that removing
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the ti segments from P1 yields h1 intermediate nonempty segments {rj}h1
j=1.

Likewise, there are h2 intermediate nonempty segments {sj}h2
j=1 in P2. Derive

each rj and sj using IR(rj) and IR(sj). These k + h1 + h2 derivations have
combined size 2(L − ∑k

i=1 length(ti)) − (k + h1 + h2). Now use the results of
the ti and rj derivations to derive (ā ∨ b) (or (b)) in an input fashion by adding
k +h1− 1 new clauses. Likewise, derive (c̄∨d) (or just (d)) by adding k +h2 − 1
new clauses. In total, we have 2(L − ∑k

i=1 length(ti)) + k − 2 clauses.
Let P1 ∈ Pab and P2 ∈ Pcd be singular. Let t1, ..., tk be the maximal shared

segments (primal or dual) of P1 and P2. Define the canonical joint derivation
CJD(P1, P2) to be JointDerive(P1, P2, t1, ..., tk).

Lemma 2. Let P1 ∈ Pab and P2 ∈ Pcd be singular paths and assume that if
a and b have distinct underlying variables, then a’s variable precedes b’s in the
ordering (likewise for c and d). CJD(P1, P2) is a joint derivation of clauses C1

and C2, where C1 is either (ā ∨ b) or just (b), and C2 is either (c̄ ∨ d) or just
(d). Moreover, CJD(P1, P2) has minimum size over all joint derivations π of
C′

1 and C′
2 where ResPath(π, C′

1) = P1 and ResPath(π, C′
2) = P2.

Proof. Consider any joint derivation π of C′
1 and C′

2. Let � be the number of
distinct axioms underlying P1 and P2 and let k be the number of maximal
shared segments. π must have at least � sinks. If π has at least k top-shared
clauses it cannot have size smaller than CJD(P1, P2) by Lemma 1. Now assume
it has k′ < k top-shared clauses. Each top-shared clause corresponds to a shared
segment of P1 and P2. The other shared clauses correspond to subsegments of
these shared segments. Therefore, there must be k−k′ maximal shared segments
such that no subsegment is represented by a shared clause in π. Each such
maximal shared segment contains at least one axiom which is not shared in π.
Therefore, the number of sinks in π is at least � + k − k′, so π must have size at
least 2(� + k − k′) + k′ − 2 = 2� + k − 2 + (k − k′) > 2� + k − 2. 
�

We now show the crucial fact that the paths underlying a minimum Resolution
refutation are, without loss of generality, singular. The proof goes by a fairly
intense case analysis, which we only sketch here. We do, however, offer some
intuition. In [3], we show that, for any derivable, nonempty clause C, there is
a smallest derivation of C that is IR(P ) for some singular path P in GC . In
other words, multiple use of clauses, even axioms, is not helpful. A Resolution
refutation is essentially a joint derivation of (x) and (x̄) for some variable x. As
also shown in [3], independent minimum derivations of (x) and (x̄) are sometimes
almost twice as large as the minimum joint derivation of the two, so the sharing
of clauses between the two derivations can be crucial. Here we simply rule out
any benefit of sharing a clause within one side (e.g. the portion used to derive
(x)) of the joint derivation.

Lemma 3. Assume there is a Resolution refutation, π, of C of size s. Then
there is a Resolution refutation of C, π′, of size ≤ s, such that both paths in
ResPath(π′) are singular.
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Proof (sketch). Assume π ends by resolving x and x̄. If either ResPath(π, (x))
or ResPath(π, (x̄)) is not singular, then there is a clause C in π such that there
are at least two paths from x to C or from x̄ to C, respectively. Call such a clause
repeated. If there are k distinct paths from x to C, we say that C is repeated k
times with respect to x, or that C has k occurrences with respect to x.

Let C be a repeated clause in π that has no repeated ancestor (if there are
no repeated clauses, we are done). We will show how to locally transform π so
that we eliminate one occurrence of C and do not add occurrences of any other
clause.

Assume without loss of generality that C is repeated with respect to x. Let
D be an ancestor of C in π such that there are exactly two distinct paths from
D to C and such that no descendant of D has two distinct paths to C. Let r1

and r2 denote the two paths from D to C. C must have two distinct literals,
say, (c̄ ∨ d). It may be the case that there is one clause, C2, on r2 such that
there is one path from x̄ to C2 that is edge-disjoint from r2 (likewise for C1 and
r1). There cannot be more than one such clause or one such path by the way
we chose C. We will generally assume that C1 and C2 exist since the proof is
simpler if they don’t. Therfore, let D′ be a clause reachable from x̄ such that
there is a path from D′ to C1 (call it r3) and a node-disjoint path from D′ to C2

(call it r4). Let r31 be r3 concatenated with the suffix of r1 from C1 to C, and
let r42 be r4 concatenated with the suffix of r2 from C2 to C. So r31 and r42 are
the two distinct paths from D′ to C. This entire setup is illustrated in figure 2.
We will assume for simplicity that both D and D′ contain two distinct literals;
the proof is similar if they don’t.

Let Q = ResPath(π, C), P = ResPath(π, D) and P ′ = ResPath(π, D′).
There are several cases based on how C occurs in P and P ′. For instance, the
r1 occurrence of C corresponds to a segment of P that is either Q or dual(Q).
Also, the r1 occurrence of C could either precede or succeed the r2 occurrence
in P . We illustrate one case: assume that the r2 occurrence of C succeeds the
r1 occurrence in P and that both are Q. Assume that the r42 occurrence of C
succeeds the r31 occurrence in P ′ and that the r42 occurrence is Q while the r31

occurrence is dual(Q) (see figure 3).
As described above (after Definition 4), each resolution along, say, path r2

from C to D corresponds to an extension of (an extension of) the r2 occurrence
of Q. Call a clause in π a neighbor of r2 if it is a child of any clause in r2

(except C), but is not in r2 itself. Let B2
1 , B2

2 , ..., B2
b2

be the neighbors of r2

that correspond to extending the r2 occurrence of Q towards the beginning of
P and let E2

1 , ..., E2
e2

be the neighbors of r2 that correspond to extending the
r2 occurrence of Q towards the end of P . Likewise for r1 and B1

1 , ..., B1
b1

and
E1

1 , ..., E1
e1

, respectively. Let B3
1 , ..., B3

b3
and E3

1 , ..., E3
e3

be the neighbors of r3

that extend the r31 occurrence of dual(Q) towards the beginning and end of P ′,
respectively (likewise for B4

1 , ..., B4
b4

, E4
1 , ..., E4

e4
and the r41 occurrence of Q).

Let IR(B1) be the input derivation that proceeds by resolving B1
1 , ..., B1

b1
in

order and let B1 denote the final clause in this derivation (likewise for all the Bi’s
and Ei’s). It must be the case that D is the result of resolving C with B1 and E2
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Fig. 2. Original derivation

(see figure 4). To derive D′ (or, in fact, something stronger), let B1(c1) denote
the (c1 − 1)th derived clause in B1 and let E31 denote the result of resolving
B1(c1) with E3. Likewise, let B42 denote the result of resolving B2(c2) with B4.
Finally, let E42 denote the result of resolving E2(c′2) with E4. The clause that
results from resolving C with E31, B42 and E42 successively must be a subclause
of D′. Now we must compare the size of the modified derivation with the size
of the original derivation. In the original, each Bi

j and Ei
j clause gives rise to

a new derived clause, so there are K =
∑4

i=1 bi + ei derived clauses along the
paths r1, ..., r4. In the modified derivation, the total number of derived clauses
in the input derivations Bi and Ei is

∑4
i=1(bi − 1) + (ei − 1) = K − 8. To finish

deriving D, we create one intermediate derived clause; to finish D′, we create
five. Therefore the modified derivation is no bigger. 
�
Now we show that we can assume the pair of singular paths underlying a mini-
mum Resolution refutation obeys special properties. In light of Lemma 2, we call
a pair of singular, end-contradictory paths P1, P2 minimum if they minimize the
expression f(P1, P2) ≡ 2�(P1, P2) + k(P1, P2)− 1. In other words, they generate
a minimum size refutation (the -1 term in the expression replaces the -2 in the
size of CJD(P1, P2) because we count the empty clause).
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Fig. 3. Transformation of paths

Consider the following properties of two singular paths P1 and P2.
Property I: Let s1 ≺P1 · · · ≺P1 sk be the maximal primal shared segments of
P1 and P2. Then sk ≺P2 · · · ≺P2 s1.
Property II: Let t1 ≺P1 · · · ≺P1 t� be the maximal dual shared segments of P1

with respect to P2. Then dual(t1) ≺P2 · · · ≺P2 dual(t�).
Property III: Let s1 ≺P1 · · · ≺P1 sk be the maximal primal shared segments
of P1 and P2 and let t1 ≺P1 · · · ≺P1 t� be the maximal dual shared segments of
P1 with respect to P2. For any i, j, ti ≺P1 sj if and only if dual(ti) ≺P2 sj.
Property IV: All shared segments of P1 and P2 occur in core(P1) and core(P2).

Lemma 4. Every minimum pair of singular, end-contradictory paths must sat-
isfy Properties I-IV.



Minimum 2CNF Resolution Refutations in Polynomial Time 309

D′x

D

B1

b1

E1

1

E1

e1

B2

1

B2

b2

E2

1

E2

e2

C

E1

c′
1

E1

2

B2

c2

B2

2

E2

c′
2

E2

2
B1

1
B1

2

B1

c1

B3

1

B3

2

B3

b3

E3

1

E3

2

E3

e3

B4

1

B4

2

B4

b4
E4

b4

E4

2E4

1

x̄

Fig. 4. Modified derivation

Proof. Our general strategy is to take a pair of singular, end-contradictory paths
P1, P2 that violate one of the properties and transform them into a pair of
singular, end-contradictory paths P ′

1, P
′
2 such that f(P ′

1, P
′
2) < f(P1, P2).

Consider Property I. If P1 and P2 violate the property, then there is some i < j
such that si ≺P2 sj . Let P ′

1 be the segment of P1 starting at the beginning of si

and ending at the end of sj . Likewise, let P ′
2 be the segment of P2 that starts at

the beginning of si and ends at the end of sj . Assume, without loss of generality,
that length(P ′

1) ≤ length(P ′
2). Let P ′′

2 be the path P2 with P ′
2 replaced by P ′

1.
It must be the case that P ′′

2 is singular since otherwise there would have been a
shared segment in between si and sj in P2. Futhermore, P1 and P ′′

2 are clearly end-
contradictory. Finally, f(P1, P

′′
2 ) < f(P1, P2) since both the number of underlying

clauses and the number of maximal shared segments have gone down. Property II
follows in the same way by looking at P1 and dual(P2).

Consider Property IV. Let P1, P2 be singular, end-contradictory paths. As-
sume, without loss of generality, that core(P1) 
= P1. Let core(P1) go from a to
ā and let P1 end at x. Assume P2 starts at b and ends at x̄ (b may equal x). Let
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1P1

P ′′
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Fig. 5. Forcing Property I

s be the maximal shared segment that ends as late as possible in P1. Assume s
goes from c to d such that d occurs after ā in P1. If s is a primal shared segment,
then let P ′

1 be the segment of P1 that goes from a to d. Let Q1 be the segment
of P1 that goes from d to x and let Q2 be the segment of P2 that goes from d
to x̄. Let P ′

2 = Q2 ◦ dual(Q1). Note that P ′
1 and P ′

2 are end-contradictory and
singular. Also, f(P ′

1, P
′
2) < f(P1, P2) since the number of shared segments has

gone down. If s is a dual shared segment, then again let P ′
1 be the segment of P1

that goes from a to d. If d̄ occurs at or after b̄ in P2, then let P ′
2 be the segment

of P2 that goes from b to d̄. Otherwise, let Q1 be the segment of P1 from d to
x. Let Q2 be the (possibly empty) segment of P2 from b̄ to x̄, and let Q3 be the
segment of P2 from b to d̄. Set P ′

2 = Q1 ◦ dual(Q2) ◦ Q3. Again, P ′
1 and P ′

2 are
singular and end-contradictory and f(P ′

1, P
′
2) < f(P1, P2).

P ′
2

a

ā

s
x

x̄

s

a

ā

x

P1

P2

s
P ′

1d d

d

x

d̄

Fig. 6. Forcing Property IV

Finally, consider Property III. We assume that Properties I, II and IV hold.
If P1 and P2 violate the property, then there is a primal shared segment s and
a dual shared segment t such that, without loss of generality, t ≺P1 s, but
s ≺P2 dual(t), and furthermore there are no shared segments between t and s
in P1. Let c, d be the endpoints of t, and g, h the endpoints of s. Let Q1 be the
segment of P1 from d to h, and let Q2 be the segment of P2 from h to c̄. Let
P ′

1 = Q1 ◦ Q2. Note that P ′
1 is singular. Let Q3 be the segment of P1 from the

end of core(P1) to the end of P1 (say P1 ends at x). Let Q4 be the segment of P2

from c̄ to the end and let Q5 be the segment of P1 from the beginning to c. Let
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Fig. 7. Forcing Property III

P ′
2 = Q4 ◦ dual(Q3) ◦Q5. P ′

2 may not be singular, so let P ′′
2 = sing(P ′

2). Clearly
P ′

1 and P ′′
2 are end-contradictory and singular. Also, f(P ′

1, P
′′
2 ) < f(P1, P2). 
�

4 The Algorithm

Our algorithm for finding a minimum Resolution refutation will use dynamic
programming in a similar way that, say, the Bellman-Ford algorithm does. It
would be sufficient to find a minimum pair of singular, end-contradictory paths
P1, P2, but it is unclear how to limit our search to singular paths, since arbitrary
extensions of singular paths are not necessarily singular. On the other hand,
if we have two non-singular, end-contradictory paths, there does not seem to
be a simple characterization of the size of a smallest Resolution refutation in
terms of the lengths of the paths and the lengths of any shared segments. We
get around this problem by defining a generalized cost of two arbitrary paths
such that the cost is at least the size of the minimum joint derivation based on
the paths, but is equal to this size in the case where both paths are singular.
Therefore, optimizing over all pairs of end-contradictory paths with respect to
this generalized cost must find a minimum since we know that the minimum is
achieved by a pair of singular paths.

Another ingredient to the algorithm is that we can focus on pairs of paths
that obey properties I-IV (we will explain what this means for non-singular paths
shortly). In particular, the structure provided by these properties allows us to do
dynamic programming where the recursion is on the number of shared segments
between a pair of paths. The recursion is based on the following idea. The reason
a pair of paths P1 and P2 that minimize the cost function may not each be of
minimum length is that, while longer, they benefit by sharing more clauses. If we
demand that P1 and P2 have a shared segment with specified endpoints, however,
then that segment should be as short as possible; likewise, for any segment of,
say, P1 with specified endpoints that is guaranteed not to overlap any shared
segment. By doing this, we isolate segments of P1 and P2 that we can locally
optimize and then concentrate on the remainder of the paths.
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For two paths P1 and P2, define cost(P1, P2, k) to be the minimum of the
expression

length(P1) + length(P2) −
r∑

i=1

length(si) −
q∑

j=1

length(tj)

over all choices of s1, ..., sr, t1, ..., tq, r + q = k, such that s1 ≺P1 · · · ≺P1 sr are
(possibly empty) primal shared segments of P1 and P2, t1 ≺P1 · · · ≺P2 tq are
(possibly empty) dual shared segments of P1 with respect to P2, all of the si’s
and tj ’s are edge-disjoint from one another and they obey Properties I-III. Given
four literals a, b, c, d and a natural number k, define cost(a, b, c, d, k) to be the
minimum over all paths P1 ∈ Pab and P2 ∈ Pcd of cost(P1, P2, k).

The algorithm will compute cost(a, b, c, d, k) for all literals a, b, c, d and all
0 ≤ k ≤ m, and will store with each entry a pair of paths and set of shared
segments that achieve that cost. To find a minimum Resolution refutation, we
search for litarals a, b, x and a number k that minimize

2(cost(a, ā, b, b̄, k) + cost(ā, x, b̄, x̄, 0)) + k − 1.

The reason for the two cost terms is Property IV, which assures us that we need
not consider any shared segments outside of the cores of the paths. For fixed k, let
P1, P2 be the pair of paths that minimize the first term in this expression and let
s1, ..., sr, t1, ..., tq be the shared segments. Let P ′

1, P
′
2 be the paths that minimize

the second term in this expression. Let Q1 = P1 ◦P ′
1 and let Q2 = P2 ◦P ′

2. Then
JointDerive(Q1, Q2, s1, ..., sr, t1, ..., tq) is minimum for this value of k. We then
simply optimize over all values of k.

To begin, for all literals a, b, set B[a, b] to the length of a shortest path in Pab.
This can be done using Bellman-Ford, for example. For all literals a, b, c, d, set
cost(a, b, c, d, 0) to B[a, b]+B[c, d]. To compute a general entry in cost() where k
is nonzero, let P1 and P2 be the paths that achieve the minimum corresponding

For all literals a, b
B[a, b]←− min{length(P ) | P ∈ Pab}

For all literals a, b, c, d
cost(a, b, c, d, 0)←− B[a, b] + B[c, d]

For k = 1 to m do
For all literals a, b, c, d

For all literals x, y
tmp←− min{B[a, x] + B[y, d] + B[x, y] + cost(y, b, c, x, k − 1),

B[a, x] + B[b, ȳ] + B[x, y] + cost(y, b, x̄, d, k − 1),
B[y, b] + B[x̄, d] + B[x, y] + cost(a, x, c, ȳ, k − 1)}

If tmp < cost(a, b, c, d, k) then cost(a, b, c, d, k)←− tmp

Output min0≤k≤m mina,b,x 2(cost(a, ā, b, b̄, k) + cost(ā, x, b̄, x̄, 0)) + k− 1

Fig. 8. Computing the size
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to the entry in question. By Properties I-III, there are three cases. (1) There
are no dual shared segments of P1 with respect to P2. Therefore, the first shared
segment in P1 (in order of appearance) is a primal shared segment s1 that is the
last shared segment in P2. (2) The first shared segment in P1 is a dual shared
segment t1 and dual(t1) is the first shared segment in P2. (3) The last shared
segment in P1 is a dual shared segment tq and dual(tq) is the last shared segment
in P2.

Therefore, to compute cost(a, b, c, d, k), we take the minimum over all literals
x, y of the minimum of (1) B[a, x] + B[y, d] + B[x, y] + cost(y, b, c, x, k − 1); (2)
B[a, x] + B[b, ȳ] + B[x, y] + cost(y, b, x̄, d, k− 1); (3) B[y, b] + B[x̄, d] + B[x, y] +
cost(a, x, c, ȳ, k − 1). The algorithm for computing the size of a smallest Reso-
lution refutation is summarized in figure 8. It is not hard to see that it runs in
time O(n6m). As mentioned above, one can produce a minimum refutation by
keeping track of the paths and shared segments that achieve the minima. This
adds nothing to the asymptotic complexity.
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