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Abstract. Local search achieves good results on a variety of SAT prob-
lems and often scales up better than backtrack search. But despite recent
advances in local search heuristics it has failed to solve some structured
problems, while backtrack search has advanced greatly on such prob-
lems. We conjecture that current modelling practices are unintentionally
biased in favour of solution by backtrack search. To test this conjecture
we remodel two problems whose large instances have long resisted so-
lution by local search: parity learning and Towers of Hanoi as STRIPS
planning. By reducing variable dependencies and using other techniques
we boost local search performance by several orders of magnitude in both
cases, and we can now solve 32-bit and 6-disk instances for the first time
using a standard SAT local search algorithm.

1 Introduction

Local search is often more scalable than backtrack search, and in some areas of
combinatorial optimisation is the only practical way of obtaining good solutions.
Yet it currently has the reputation of being inferior to DPLL (the Davis-Putnam-
Logemann-Loveland SAT backtracking algorithm) on structured SAT instances
and only good for random problems. Nevertheless, it cannot be denied that local
search generally performs badly on problems classed as industrial in SAT solver
competitions, and the winners are all DPLL variants (see for example [35]).
Hybridising local search with unit propagation [11,24] or explicitly handling
variable dependencies [15,23] helps, but DPLL is still unbeaten on these prob-
lems. Improving local search on structured problems would have many practical
applications, perhaps solving larger instances of real-world applications than is
currently possible, but we cannot begin to improve it until we understand the
cause of its poor performance.

We conjecture that current SAT-encodings are unintentionally designed to
favour DPLL, and that this explains the poor ranking of local search algo-
rithms in solver competitions. For example, in SAT modelling we often eliminate
symmetrical solutions. But when applying local search, symmetry appear to be
harmless or even helpful, and eliminating it can adversely affect performance
[25,27]. Moreover, SAT encodings of specific constraints have been explored by
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[1,2,7,8,9,13] with the aim of improving the consistency reasoning of unit propa-
gation in DPLL. But unit propagation is not used in most local search algorithms
so consistency reasoning is not necessarily relevant. In fact it was shown in [26]
that the ladder structure introduced in some of these encodings has a harmful
effect on local search performance. We also make a more specific conjecture:
that the model feature to blame for local search’s poor performance is in many
cases dependent variables. These are known to slow down local search [15], and
when they form long chains they may cause local search to take polynomial or
exponential time to propagate effects [24,33].

Our conjectures can be tested empirically by devising new SAT encodings with
reduced variable dependency, and comparing local search on the old and new
encodings. We do this for two problems whose large instances have so far resisted
solution by local search. In Section 2 we reformulate the parity learning problem
to avoid dependency chains, via new SAT-encodings of parity and cardinality
constraints, and show that local search can solve 32-bit instances. In Section 3
we reformulate the Towers of Hanoi problem expressed as a planning problem,
breaking up long dependency chains into short ones and artificially increasing
solution density, and show that local search can solve the 6-disk instance. Both
results are firsts for an off-the-shelf SAT local search algorithm.1 demonstrating
the power of the remodelling approach. Section 4 discusses further applications
and concludes the paper.

All our experiments are performed on a 733 MHz Pentium II under Linux. We
use only one local search algorithm: RSAPS [12] implemented in the UBCSAT
system [30]. RSAPS is a state-of-the-art dynamic local search algorithm, and
was chosen after preliminary experiments indicated that it was one of the best
algorithms for these problem. It also has the advantage that its default parameter
settings give good results over a wide range of SAT problems, so we did not need
to tune them.

2 Minimal Disagreement Parity Learning

This problem description is taken from [4]. Given vectors xi = (xi1, . . . , xin) (i =
1 . . .m) with each xij ∈ {0, 1}, a vector y = (y1, . . . , ym) and an error tolerance
integer k. Find a vector a = (a1, . . . , an) such that |{i : parity(a ·xi) �= yi}| ≤ k.
To make hard instances set m = 2n and k = 7n/8. n is referred to as the number
of bits, and 32-bit instances of this problem have proved intractable for both
DPLL and local search. They have been solved by paying special attention to the
parity constraints, either by transforming many of them away in a preprocessing
phase or by augmenting DPLL with equivalence reasoning [2,3,19,32].

Until recently local search has never solved 32-bit instances [16]. A special
version of the DLM local search algorithm was created for these and other very
hard benchmarks [34] but fails on 32-bit instances, as does a more recent algo-
rithm [22]. It was not until this year that an extended local search algorithm
solved them by exploiting knowledge about variable dependencies [23]. Why is
1 But a recent extended algorithm [23] has solved 32-bit problems — see Section 2.4.
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this problem so hard for local search? An explanation suggested by [16] is the
existence of local minima in which a small subset of clauses is never satisfied
simultaneously. We conjecture that chains of dependent variables are the culprit
(this does not necessarily contradict the explanation of [16]) and define a new
encoding of parity constraints that contains no such chains.

What we shall call the standard encoding is that used in [4] and SATLIB2

parX-Y-c instances (which are improved versions of the much harder parX-Y
instances) and described in [4]. It contains three families of clauses: the first
calculates the parities of a · xi; the second computes disagreements in parities;
the third encodes a cardinality constraint to limit the disagreements (n is set to a
power of 2 so that cardinality is easy to enforce). We start with a slightly different
model of parity learning that allows experimentation with different encodings of
parity constraints. If we can find improved encodings then these may be useful
when modelling other problems.

2.1 A Constraint-Based Model

Define variables Ai to contain the solution and Pj to denote parities. Force each
scalar product a · xj to have parity Pj :

Pj ≡
⊕

i∈τj

Ai

where τj = {i |xij = T }. Then at most k of m literals are true:

LE(k, π1, . . . , πm)

where literal πj is P̄j if yj = T and Pj if yj = F . By using a cardinality constraint
we can encode parity learning instances of any size, not just with n a power of
2. We now discuss encodings for the

⊕
and LE constraints.

2.2 Encoding Parity Constraints

It is possible to SAT-encode a parity constraint
⊕p

i=1 Pi = k simply by enu-
merating all possible combinations of Pi truth values, together with their parity
k. But this creates exponentially many clauses and is only reasonable for small
constraints. We shall call it the exponential encoding. A more practical method
due to [19] decomposes the constraint by introducing new variables:

P1 ⊕ z1 ≡ k P2 ⊕ z2 ≡ z1 . . . Pp−3 ⊕ zp−3 ≡ zp−2 Pp ≡ zp−1

The remaining binary and ternary constraints are then expanded via the expo-
nential encoding. We shall call this the linear encoding. It has O(p) new variables
and literals and is essentially the method used to encode the parities of a · xi in
the standard encoding of parity learning.

2 http://www.cs.ubc.ca/˜hoos/SATLIB/
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A drawback with the linear encoding is that it creates a long chain of vari-
able dependencies, which has been shown to be bad for local search performance
[24,33]. An obvious alternative is a divide-and-conquer approach: bisect the con-
straint, solve the two subproblems, and merge the two results by a ternary
constraint. That is, express

⊕p
i=1 Pi = k as

⊕p/2
i=1 Pi = k1,

⊕p
i=p/2+1 Pi = k2

and k = k1 ⊕ k2, and recursively decompose until reaching a base case of size 2
or 3. All binary and ternary parity constraints are expanded into clauses via the
exponential encoding. We shall call this the bisection encoding. It replaces the
chains of dependency of length p by a tree of depth log p.

We also try a third technique. Decompose
⊕p

i=1 Pi = k into

α⊕

i=1

Pi ≡ k1

2α⊕

i=α+1

Pi ≡ k2 . . .

p⊕

i=p−α+1

Pi ≡ kβ and
β⊕

i=1

ki ≡ k

where β = �p/α� and the tree branching factor α is a number in the range
1 < α < p. Expand the β + 1 parity constraints into clauses via the exponential
encoding. This creates O(β) new variables and O(β2α + 2β) literals. This still
gives a tree of variable dependencies but only of depth 2. We exponentially
increase the number of clauses but the number is quite manageable for (say)
p ≤ 100. For larger p it can use a slightly less shallow tree of depth (say) 3
or 4. We shall call this the shallow encoding and use trees of depth 2 in our
experiments.

2.3 Encoding Cardinality Constraints

We use a new SAT encoding of a cardinality constraints LE(k, π1, . . . , πm) that
places an upper bound on the number of literals in a given set that are allowed
to be true. We use this encoding mainly for convenience (it is very easy to
implement).

First consider the special case where the upper bound is 1, so that we have
an at-most-one (AMO) constraint. Define new Boolean variables bk where k =
1 . . . �log2 m�. Add clauses

π̄i ∨ bk [or b̄k]

if bit k of the binary representation of i − 1 is 1 [or 0], where k = 1 . . . �log2 m�.
This encoding has O(log m) new variables and O(m log m) binary clauses. This
bitwise encoding was defined in [26] and shown to work well with local search;
other known encodings either have higher space complexity or interact poorly
with local search (because of chains of dependent variables).

Now suppose we want to prevent more than k of literals π1 . . . πm from being
true. Suppose we have k bins. Define xij = T if πi is placed in bin j. Every true
πi must be placed in a bin:

πi →
⎛

⎝
∨

j

xij

⎞

⎠

and no more than one πi may be placed in a bin:
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AMOi(xij)

using the bitwise encoding. Of course this encoding introduces a great deal of
symmetry, as the πi can be permuted among the bins. Here we invoke [25,27]:
symmetry does not necessarily harm local search performance, and may even
improve it.

This cardinality encoding has already been used in [26] to solve clique prob-
lems by SAT local search, but the bin structure was entangled in the clique
model and a cardinality encoding was not explicitly described. In future work
we will compare it with other known encodings such as that of [2], which create
trees of dependent variables that may slow down local search.

2.4 Experiments

We do not have access to the original parity learning instances, only their stan-
dard SAT encodings. Instead we generate 30 random instances (using the method
described in [4]) of each required size and take the median of 30 runs of RSAPS,
one run per instance (except for the expensive 28- and 32-bit instances which
use only 10 runs). The aim is to estimate typical local search performance on a
typical problem.

par8-X-c

X flips secs

1 1,144 0.0014
2 1,518 0.0017
3 3,060 0.0034
4 1,477 0.0018
5 2,339 0.0028

par16-X-c

X flips secs

1 13,377,611 20
2 16,533,206 24
3 12,863,749 19
4 8,601,612 13
5 13,505,657 20

par32-X-c

X flips secs

1 — —
2 — —
3 — —
4 — —
5 — —

Fig. 1. Local search results on SATLIB parity learning instances

Median results for the SATLIB instances are shown in Figure 1 and our en-
coding results are shown in Figure 2. An entry “—” denotes that more than 1
billion flips are needed while “?” denotes experiments not done. The 8- and 16-
bit results for the linear encoding are similar to those for the standard encoding
(perhaps slightly better). This is a good sanity check: the linear encoding has
similar characteristics to the standard encoding, so any major improvements we
obtain will be due to improvements in parity constraint encoding. Extrapolating
by applying linear regression to the logarithms of the four flip results, and using
a measured flip rate of 373,134 flips per second for 32-bit instances under the
linear encoding, we expect RSAPS to take approximately 20 trillion flips and 2
years to solve them: it is unsurprising that no successes have been reported with
the standard encoding.

The bisection encoding is hardly better than the linear encoding, which is a
surprise: the failure of local search does not seem to be caused purely by the
length of the chains of dependency, and trees of dependencies may be almost
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flips needed to find a solution

shallow
n linear bisecting β = 6 β = 8 β = 10 β = 12 β = 14

8 2,517 2,836 1,119 747 904 955 891
12 157,433 83,708 10,089 4,494 4,929 3,905 2,265
16 7,139,810 5,326,518 599,662 59,051 23,630 18,457 25,038
20 223,090,992 156,378,976 11,381,251 3,283,580 460,165 167,936 173,826
24 — — 282,226,496 35,025,380 16,078,792 3,647,108 ?
28 — — ? 251,928,288 131,614,608 ? ?
32 — — ? ? 1,454,529,796 ? ?

seconds needed to find a solution

shallow
n linear bisecting β = 6 β = 8 β = 10 β = 12 β = 14

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.02 0.12 0.02 0.02 0.03 0.02 0.01
16 11 8.5 1.2 0.22 0.47 0.83 1.03
20 408 297 29 13 11 27 69
24 — — 788 149 272 693 ?
28 — — ? 2,386 3,640 ? ?
32 — — ? ? 49,633 ? ?

Fig. 2. Local search results on new parity learning encodings

as harmful. More research is clearly required into what types of structure are
bad for local search performance, but if trees of dependency are harmful then
standard cardinality encodings seem to be unsuitable for local search.

The shallow encoding gives much better results and is able to solve 32-bit
instances in a few hours. The choice of β has a large effect on performance:
roughly speaking, the greater the value of β the fewer flips are required to solve
the problems; but higher β also means larger models and thus lower flip rates, so
in terms of CPU time there is a trade-off. A reasonable value for these instances
is β = 10. We also experimented on 16-bit instances with two other automated
local search algorithms: AdaptNovelty+ was also faster on the new (β = 10)
encoding than on the standard encoding, though less so than RSAPS, while VW
behaved similarly on both. In contrast, the DPLL algorithms ZChaff, SATO
and SATZ were all slowed down by a factor of at least 100 on the new encoding.
Modelling for local search is clearly distinct from modelling for backtrack search.

Though our local search results are vastly improved we have not yet matched
the best DPLL performance. But local search performance might be further
improved by using similar techniques: directly handling parity constraints during
search, or preprocessing the problems to eliminate them. Recently Pham et al.
[23] solved the standard encodings of the 32-bit instances, using a new non-CNF
local search algorithm that exploits problem structure analysis. Their execution
times are similar to ours (though on an unspecified machine) and they use an
order of magnitude fewer flips than we do on 16-bit instances (but do not provide
flip figures for 32-bit instances).
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3 Towers of Hanoi as STRIPS Planning

Planning problems expressed in the STRIPS language have been SAT-encoded
many times [5,14,17,18]. SAT-based planning has achieved state-of-the-art re-
sults on STRIPS [6] planning problems and is one of the success stories of SAT
research. We study the Towers of Hanoi (ToH) problem modelled as a STRIPS
planning problem. ToH is perhaps not a very interesting problem in itself, and
solving it via STRIPS and SAT is certainly not the best approach. Its interest
lies in the fact that ToH makes very hard planning problems for local search:
harder than the Blocks World instances, which are in turn harder than the logis-
tics instances [28]. In the 2002 SAT solver competition, no local search algorithm
solved the ToH problems with 4, 5 and 6 disks, while the BerkMin backtracker
solved the 6-disk problem in 2551 sec. A special version of the DLM local search
algorithm was created for these and other very hard benchmarks, and solved 4
disks in almost 1 billion flips and over 2 hours [34].

Why is ToH so hard for local search? It may be because it has only one solution
[28]. We believe that the explanation is a combination of low solution density
and the chain-like structure of dependent variables in SAT-encoded planning
problems. We modify both the STRIPs model and the SAT-encoding, increasing
solution density and breaking up variable chains, to obtain huge improvements
in local search performance. First we define what we shall refer to as a standard
approach to SAT-encoding ToH as a STRIPS planning problem. There is of
course no single standard approach but ours is based on published techniques.

3.1 ToH as STRIPS

The ToH problem consists of P pegs (or towers) and D disks of different sizes;
usually P = 3. All d disks are initially on the first peg. A solution is a plan that
moves all disks to the third peg with the help of the second peg so that (i) only
one disk can be moved at a time; (ii) only the disk on top can be moved; (iii) no
disk can be put onto a smaller disk. There is always a plan with 2D − 1 steps.

We have two fluents on(d, dp) and clear(dp), where d denotes a disk and
dp either a disk or a peg. We also have an action move(d, dp, dp′) that moves
d from dp to dp′ with preconditions {clear(d), clear(dp′), on(d, dp)}, add ef-
fects {on(d, dp′), clear(dp))} and delete effects {on(d, dp), clear(dp′)}. In the
initial state fluents {on(disk1, disk2), . . ., on(diskD−1, diskD), on(diskD, peg1),
clear(disk1), clear(peg2), . . ., clear(pegP )} are true and all others are false. In
the goal state fluents {on(disk1, disk2), . . ., on(diskD−1, diskD), on(diskD, pegP )}
are true and all others have unspecified truth values.

3.2 STRIPS as SAT

We start from an encoding similar to those used in [14,17,18]. First we set an
upper bound on the plan length of discrete times t = 0 . . .N −1. Define two sets
of variables: τpt (t = 0 . . .N where N denotes the state after the last action) and
predicate p, where τpt = T iff p is true at the start of time t; and αat (t = 0 . . .N)
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where αat = T iff action a occurs at time t. The clauses are as follows. Exclusion
axioms restrict the plan to be linear, in which at most one action occurs at any
time t:

αat ∨ αa′t

We do not force actions to occur at every time, which creates additional solutions
(if the plan length is overestimated) that may help local search. Actions imply
preconditions:

αat → τpt or αat → τpt

and effects:
αat → τp t+1 or αat → τp t+1

Frame axioms preserve fluents that are unaffected by actions. These may be in
either classical or explanatory form. We use the explanatory form [10] which is
more compact [5,14] and also obviates the need for every time slot to contain an
action:

τpt ∧ τp t+1 →
⎛

⎝
∨

a∈Ep̄

αat

⎞

⎠ or τpt ∧ τp t+1 →
⎛

⎝
∨

a∈Ep

αat

⎞

⎠

where Ep (Ep̄) denotes the set of actions with add (delete) effect p. The initial
state is represented by unit clauses:

τp0 or τp0

as is the goal state:
τpN or τpN

We now try to improve the standard approach in several ways.

3.3 Exploiting Domain Knowledge

ToH has been modelled in the same way as a Blocks World problem, but its
special form allows a simpler STRIPS model. We retain the move operator and
on predicate as before, but drop the clear predicate and only specify which
peg a disk is on, not which disk or peg. The action move(d, x, y, t) now has
preconditions {on(d, x), ¬on(1, x, t), . . ., ¬on(d − 1, x, t), ¬on(1, y, t), . . ., ¬on
(d − 1, y, t)} for all d′ < d, add effects {on(d, y, t + 1)} and delete effects {on
(d, x, t + 1)}. In the initial state fluents {on(1, 1), . . ., on(D, 1)} are true and all
others are false, while in the goal state {on(1, P ), . . ., on(D, P )} are true and
the others unspecified.

Besides having fewer predicates, this model has fewer actions because each
disk can only be on P pegs instead of D + P disks or pegs. In effect we are
using the domain knowledge that disks are stacked in decreasing order of size;
this trick would not work on general Blocks World problems.
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3.4 Superparallelism

An important technique in planning is the use of parallel plans in which more
than one action may occur at a given time. Besides being more appropriate for
some applications, this allows the plan length to be shorter and thus the SAT
problem to be smaller. As the size of the SAT problem can be a bottleneck for
real-world planning problems, this benefits both DPLL and local search algo-
rithms. Parallelism may have another advantage for local search: it increases
the solution density of the SAT problem. This is because any linear plan has
multiple representations as a parallel plan, typically an exponential number of
them. It has been shown that increasing the solution density of a SAT problem
can boost local search performance (though this is not guaranteed).

Unfortunately there is no natural parallelism in ToH. But we can allow some
actions to be performed in parallel in the new model, by removing some exclusion
axioms:

– Allow (say) disk 1 to move from peg 1 to peg 2, and disk 2 to move from
peg 3 to peg 2, at the same time: this can be uniquely transformed to: move
the larger disk to peg 2 then the smaller one.

– Allow (say) disk 1 to move from peg 1 to peg 2, and disk 2 to move from
peg 2 to peg 3, at the same time. This can be uniquely transformed to: move
disk 2 then disk 1. There is no danger of an illegal cycle of three moves as
the preconditions will prevent one of the disks from moving onto a peg with
a smaller one.

We shall call this superparallelism because it adds parallelism beyond any that
is naturally present in the model (in this case none). Superparallel moves are
illegal and must be transformed away after finding a plan. A drawback with
superparallelism is that we can no longer force the search to find optimal plans.
Even if we reduce the number of times to the smallest possible value, after
transformation we may obtain a very suboptimal linear plan. But it may be a
useful technique for applications in which any feasible plan will do, or for quickly
obtaining an initial plan for subsequent improvement. Another possibility is to
place an upper limit on the total number of actions via a SAT-encoded cardinality
constraint.

It is not possible to force parallelism in the standard STRIPS model of Blocks
World by dropping exclusion axioms, because performing any two actions at the
same time would lead to an inconsistent state. However, it would be possible to
define new actions that move more than one disk at a time; we leave this for
future work.

3.5 Long-Range Dependencies

The encoding of Section 3.2 has a potential drawback for local search: the frame
axioms create chains of dependent variables τpt . . . τpt′ for each p and pair t, t′. As
noted above, dependent variables are known to be a major source of slowdown
in local search [15], especially when they occur in chains [24,33].
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At first glance there seems to be no way to avoid these chains, as they are a
property of the problem itself and not the encoding. However, it is possible to
break up the chain structure by using the method of [33]: add implied clauses
to cause long-range dependencies between times further apart than 1 unit. The
clauses we add are a generalisation of explanatory frame axioms to time differ-
ences ≥ 1:

τpt ∧ τpt′ →
⎡

⎣
t′−1∨

t′′=t

⎛

⎝
∨

a∈Ep̄

αat′′

⎞

⎠

⎤

⎦ or τpt ∧ τpt′ →
⎡

⎣
t′−1∨

t′′=t

⎛

⎝
∨

a∈Ep

αat′′

⎞

⎠

⎤

⎦

where t′ > t. We shall call these generalised explanatory frame (GEF) axioms.
The usual explanatory frame axioms are given by the case t′ = t + 1.

Adding all GEF axioms increases the space complexity, but we can add a
randomly-chosen subset of them (but including the usual explanatory frame
axioms), by analogy with [33] who found that adding a relatively small number
of implied clauses gave optimal improvement.

Unlike the fixed-length added clauses of [33] ours grow with n, so their effect
on search time may be inferior. We could reduce their length by defining new
variables εpt →

(∨
a∈Ep

αat

)
where εpt = T only if an action with effect p occurs

at time t. This allows us to simplify the GEF axioms but in experiments it made
the problems harder to solve.

3.6 Implied Clauses

Besides the GEF axioms we add another set of implied clauses: exclusion axioms
corresponding to two disks making the same move. This can never occur because
the larger disk’s preconditions are unsatisfied if the smaller one is on the same
peg, so these clauses are redundant.

3.7 Experiments

We compare four models: the standard model, the compact model (using spe-
cial domain knowledge), the compact model with parallelism, and the compact
model with parallelism and GEF axioms. All models use the implied constraints
described above. In experiments 5% was approximately the best proportion of
randomly-selected GEF axioms, which is less than the 20% figure of [33].3 All
results are medians of 30 runs. In each case the number of times was set to
2D − 1, the optimum for a linear ToH plan. The results are shown in Figure 3,
with “—” denoting that RSAPS failed to find a solution after 1 billion flips.

The hardness of ToH grows extremely rapidly with D in all models. The com-
pact model gives much better results than the standard model, and parallelism
and GEF axioms greatly improve performance. By combining several modelling
3 Actually, this was for the largest instances, and a higher percentage was better for

smaller instances, possibly indicating that the optimum number of GEF axioms is
less than linear in the problem size.
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local moves (flips)

D standard compact parallel GEF

3 38,271 3,730 546 410
4 — 2,757,378 4,866 5,985
5 — — 532,488 51,453
6 — — — 40,163,929

execution time (seconds)

D standard compact parallel GEF

3 0.096 0.0058 0.0010 0.0010
4 — 5.8 0.0093 0.017
5 — — 1.8 0.30
6 — — — 980

Fig. 3. Results of experiments

techniques we have obtained the best-reported SAT local search results for 4, 5
and 6 disks, and they are comparable to the best DPLL results (though at the
price of reducing plan quality through superparallelism). We also added GEF
axioms to the standard model but were still unable to solve 4 disks. We expect
further improvements by using the well-known techniques of operator splitting
(which reduces the space complexity of SAT-encoded planning problems) and
preprocessing by unit propagation and subsumption.

In further local search experiments, AdaptNovelty+ and VW were faster on
compact model than on the standard model, and even faster with superpar-
allelism. AdaptNovelty+ was faster with GEF axioms, while VW was hardly
affected (apart from the overhead of maintaining the additional clauses). The
DPLL algorithms ZChaff, SATZ and SATO were all improved by the compact
encoding, ZChaff was faster with superparallelism while SATZ and SATO were
slower, and SATO was faster with GEF axioms while ZChaff and SATZ were
slower. Thus the compact encoding helps all the algorithms, while the other
techniques mostly help local search but have an erratic effect on DPLL. Again,
modelling for local search is shown to be distinct from modelling for DPLL.

4 Conclusion

We showed that local search performance on two hard problems can be boosted
by several orders of magnitude, simply by remodelling the problems. The aims
of our remodelling were to reduce variable dependency chains and to increase
solution density, and we believe that these aims should be borne in mind when
modelling a problem for solution by local search. They are quite different from
the aims of modelling for DPLL, such as symmetry elimination and the level
of consistency achieved by unit propagation. Thus modelling for local search
is distinct from modelling for DPLL and is worth studying in its own right.
Increased solution density might also be expected to aid backtrack search but
this is not necessarily true. Structured SAT problems are likely to contain clusters
of solutions, and Minton et al.’s nonsystematic search hypothesis [21] is that local
search may benefit more than backtrack search from high solution density. This is
because local search is largely immune to solution clustering, whereas backtrack
search may start from a point that is very far from any cluster.

The remodelling approach can be seen as complementary to the preprocess-
ing/algorithmic approaches of [15,23]. We are able to use an off-the-shelf local
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search algorithm instead of a more complex new algorithm, and do not incur the
runtime overhead of maintaining additional information. On the other hand, we
require larger SAT encodings that also incur runtime overheads, and may use a
prohibitive amount of memory in some cases. It would be interesting to combine
the two approaches, by removing some structure via remodelling then handling
what remains via dependency analysis.

Our new modelling techniques should find application to other problems. The
parity constraint shallow encoding should be useful on other problems containing
both clauses and parity constraints, such as the cryptanalysis problems of [20].
The new cardinality constraint encoding has many potential applications but we
have not yet compared it empirically to known encodings. The superparallelism
technique used to improve Towers of Hanoi can be applied to STRIPS models of
other planning problems. Long-range dependencies based on explanatory frame
axioms can be added to planning-as-SAT systems. Bounded model checking has
a similar structure to planning and contains parity constraints, so it may also
benefit from these techniques.

Finally, recall SAT challenge number six from [29]: to handle variable de-
pendencies in local search. Our results further confirm the importance of this
challenge, and show that a powerful alternative to modifying local search heuris-
tics is to reduce or eliminate dependencies by remodelling the problem. In fact
avoiding variable dependency by remodelling gives better results than (at least
some) attempts to handle dependencies during search. Prevention does seem to
be better than cure.
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