

Lecture Notes in Computer Science 4501
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

João Marques-Silva Karem A. Sakallah (Eds.)

Theory and Applications
of Satisfiability Testing –
SAT 2007

10th International Conference
Lisbon, Portugal, May 28-31, 2007
Proceedings

13

Volume Editors

João Marques-Silva
University of Southampton
School of Electronics and Computer Science
Highfield, Southampton, S017 1BJ, UK
E-mail: jpms@ecs.soton.ac.uk

Karem A. Sakallah
University of Michigan
Department of Electrical and Computer Science
4603 CSE Building, 2260 Hayward Ave, Ann Arbor, MI 48109-2121, USA
E-mail: karem@umich.edu

Library of Congress Control Number: 2007927094

CR Subject Classification (1998): F.4.1, I.2.3, I.2.8, I.2, F.2.2, G.1.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-72787-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72787-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12069392 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at SAT 2007: 10th International
Conference on Theory and Applications of Satisfiability Testing.

The International Conferences on Theory and Applications of Satisfiability
Testing (SAT) originated in 1996 as a series of workshops “on Satisfiability.”
By the third meeting in 2000, the workshop had attracted a mix of theorists
and experimentalists whose common interest was the enhancement of our basic
understanding of the theoretical underpinnings of the Satisfiability problem as
well as the development of scalable algorithms for its solution in a wide range
of application domains. In 2002 a competition of SAT solvers was inaugurated
to spur further algorithmic and implementation developments, and to create
an eclectic collection of benchmarks. The competition—expanded in subsequent
years to include pseudo Boolean, QBF, and MAX-SAT solvers—has become an
integral part of these meetings, adding an element of excitement and anticipation.
The interplay between theory and application, as well as the increased interest in
Satisfiability from a wider community of researchers, led to the natural evolution
of these initial workshops into the current conference format. The annual SAT
conference is now universally recognized as “the venue” for publishing the latest
advances in SAT research.

This year marks the tenth SAT meeting. SAT is now interpreted in a broad
sense to include not just propositional satisfiability, but also pseudo-Boolean
constraint solving and optimization (PB), quantified Boolean formulae (QBF),
constraint programming techniques (CP) for word-level problems and their
propositional encoding, and satisfiability modulo theories (SMT). Submissions
were solicited for original research on proof systems and proof complexity, search
algorithms and heuristics, analysis of algorithms, hard instances, randomized for-
mulae, problem encodings, industrial applications, solvers, simplifiers and tools,
case studies and empirical results. A total of 74 submissions were received and
rigorously reviewed by a 35-member international Technical Program Committee
(TPC), with each paper receiving at least four independent reviews. Of these
submissions, the TPC decided to accept 22 as regular papers (14 pages, 25-
minute presentation) and 12 as short papers (6 pages, 12-minute presentation).
The accepted papers were organized into nine sessions and their full text is
included in these proceedings.

The conference program also featured two invited presentations. The first,
by Martin Davis, chronicled the original development of the “DPLL” algorithm
and proposed an unorthodox take on the P=NP problem. The second, by Andrei
Voronkov, addressed new encodings that enable succinct representations of cer-
tain combinatorial problems in the Bernays – Schonfinkel fragment of first-order
logic.

VI Preface

A number of additional events were associated with the SAT conference,
including the SAT competition, the QBF evaluation, the PB evaluation, the
MAX-SAT evaluation, and a special session on trends in modern SAT solvers.

We would like to acknowledge several people for their help: the SAT Lo-
cal Chair, Ines Lynce; the organizers of the SAT competition, Daniel Le Berre,
Laurent Simon, Ewald Speckenmeyer, Geoff Sutcliffe and Lintao Zhang; the or-
ganizers of the QBF evaluation, Massimo Narizzano, Luca Pulina and Armando
Tacchella; the organizers of the PB evaluation, Vasco Manquinho and Olivier
Roussel; and finally the organizers of the Max-SAT evaluation, Josep Argelich,
Chu-Min Li, Felip Manyà and Jordi Planes. Last, but not least, we thank the
Program Committee and the additional external reviewers for their careful and
thorough work, without which it would not have been possible for us to put
together such a high-quality conference program.

We also thank Andrei Voronkov for the EasyChair system. EasyChair was in-
strumental in handling of paper submissions, paper reviewing, paper discussion,
and assembly of the proceedings. Finally, we would like to thank the follow-
ing sponsors for their generous support of SAT 2007: Cadence Design Systems,
Cornell’s Intelligent Information Systems Institute, Intel Corporation, Luso-
American Foundation, Magma Design Automation, Microsoft Corporation, NEC
Laboratories, and Synopsys Inc. A number of other institutions provided critical
logistical support for managing the organization of the conference: INESC-ID,
Instituto Superior Técnico, the University of Michigan, and the University of
Southampton.

May 2007 Joao Marques-Silva
Karem Sakallah

Organization

Conference Chairs

Joao Marques-Silva
Karem Sakallah

Local Chair

Ines Lynce

Technical Program Committee

Fahiem Bacchus
Paul Beame
Armin Biere
Adnan Darwiche
Leonardo de Moura
Niklas Een
John Franco
Ian Gent
Enrico Giunchiglia
Carla Gomes
Aarti Gupta
Ziyad Hanna

Edward Hirsch
Joonyoung Kim
Hans Kleine-Büning
James Kukula
Oliver Kullmann
Daniel Le Berre
Chu-Min Li
Ines Lynce
Panagiotis Manolios
Vasco Manquinho
Slawomir Pilarski
Steve Prestwich

Roberto Sebastiani
Hossein Sheini
Laurent Simon
Ewald Speckenmeyer
Ofer Strichman
Stefan Szeider
Armando Tacchella
Allen Van Gelder
Hans van Maaren
Toby Walsh
Lintao Zhang

External Reviewers

Dimitris Achlioptas
Johan Alfredsson
Fadi Aloul
Anbulagan Anbulagan
Josep Argelich
Gilles Audemard
Ritwik Bhattacharya
Jesse Bingham
Per Bjesse
Nikolaj Bjorner
Roberto Bruttomesso
Uwe Bubeck
Arthur Choi

Alessandro Cimatti
Stefan Dantchev
Jessica Davies
Gilles Dequen
Laure Devendeville
Peter Dillinger
Kutsy Ekaterina
Yulik Feldman
Anders Franzen
Zhaohui Fu
Roman Gershman
Eugene Goldberg
Dan Goldwasser

Alberto Griggio
Marijn Heule
Jinbo Huang
Dmitry Itsykson
Attila Jurecska
Toni Jussila
Zurab Khasidashvili
Matthew Kitching
Arist Kojevnikov
Andrei Krokhin
Alexander Kulikov
Elitza Maneva
Felip Manya

VIII Organization

Marco Maratea
Igor Markov
Arie Matsliah
Bertrand Mazure
Thomas Meyer
Alan Mishchenko
António Morgado
Alexander Nadel
Naren Narasimhan
Massimo Narizzano
Peter Nightingale
Sergey Nikolenko
Cedric Piette

Knot Pipatsrisawat
Stefan Porschen
Olivier Roussel
Bert Randerath
Federico Ricci-Tersenghi
Michael Ryavchev
Vadim Ryvchin
Ashish Sabharwal
Marko Samer
Horst Samulowitz
Tian Sang
Carsten Sinz
Sudarshan Srinivasan

Ted Stanion
Baruch Sterin
Peter Stuckey
Niklas Sörensson
Heather Trumbower
Bubeck Uwe
Michael Veksler
Michele Vescovi
Daron Vroon
Sean Weaver
Wanxia Wei
Jesse Whittemore
Hans Zantema

Sponsoring Institutions

Cadence Design Systems
Intel Corp.
Intelligent Information Systems Institute, Cornell
Luso-American Foundation
Magma Design Automation
Microsoft Research
NEC Research Laboratories
Synopsys Inc.
INESC-ID
Instituto Superior Técnico
The University of Michigan
The University of Southampton

Table of Contents

SAT: Past and Future . 1
Martin Davis

Encodings of Problems in Effectively Propositional Logic 3
Juan Antonio Navarro-Pérez and Andrei Voronkov

Efficient Circuit to CNF Conversion . 4
Panagiotis Manolios and Daron Vroon

Mapping CSP into Many-Valued SAT . 10
Carlos Ansótegui, Maŕıa Luisa Bonet, Jordi Levy, and Felip Manyà

Circuit Based Encoding of CNF Formula . 16
Gilles Audemard and Lakhdar Säıs

Breaking Symmetries in SAT Matrix Models . 22
Inês Lynce and Joao Marques-Silva

Partial Max-SAT Solvers with Clause Learning . 28
Josep Argelich and Felip Manyà

MiniMaxSat: A New Weighted Max-SAT Solver . 41
Federico Heras, Javier Larrosa, and Albert Oliveras

Solving Multi-objective Pseudo-Boolean Problems . 56
Martin Lukasiewycz, Michael Glaß, Christian Haubelt, and
Jürgen Teich

Improved Lower Bounds for Tree-Like Resolution over Linear
Inequalities . 70

Arist Kojevnikov

Horn Upper Bounds and Renaming . 80
Marina Langlois, Robert H. Sloan, and György Turán

Matched Formulas and Backdoor Sets . 94
Stefan Szeider

Short XORs for Model Counting: From Theory to Practice 100
Carla P. Gomes, Joerg Hoffmann, Ashish Sabharwal, and
Bart Selman

Variable Dependency in Local Search: Prevention Is Better Than
Cure . 107

Steven Prestwich

X Table of Contents

Combining Adaptive Noise and Look-Ahead in Local Search for SAT . . . 121
Chu Min Li, Wanxia Wei, and Harry Zhang

From Idempotent Generalized Boolean Assignments to Multi-bit
Search . 134

Marijn Heule and Hans van Maaren

Satisfiability with Exponential Families . 148
Dominik Scheder and Philipp Zumstein

Formalizing Dangerous SAT Encodings . 159
Alexander Hertel, Philipp Hertel, and Alasdair Urquhart

Algorithms for Variable-Weighted 2-SAT and Dual Problems 173
Stefan Porschen and Ewald Speckenmeyer

On the Boolean Connectivity Problem for Horn Relations 187
Kazuhisa Makino, Suguru Tamaki, and Masaki Yamamoto

A First Step Towards a Unified Proof Checker for QBF 201
Toni Jussila, Armin Biere, Carsten Sinz, Daniel Kröning, and
Christoph M. Wintersteiger

Dynamically Partitioning for Solving QBF . 215
Horst Samulowitz and Fahiem Bacchus

Backdoor Sets of Quantified Boolean Formulas . 230
Marko Samer and Stefan Szeider

Bounded Universal Expansion for Preprocessing QBF 244
Uwe Bubeck and Hans Kleine Büning

Effective Incorporation of Double Look-Ahead Procedures 258
Marijn Heule and Hans van Maaren

Applying Logic Synthesis for Speeding Up SAT . 272
Niklas Een, Alan Mishchenko, and Niklas Sörensson

Towards a Better Understanding of the Functionality of a
Conflict-Driven SAT Solver . 287

Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel

A Lightweight Component Caching Scheme for Satisfiability Solvers 294
Knot Pipatsrisawat and Adnan Darwiche

Minimum 2CNF Resolution Refutations in Polynomial Time 300
Joshua Buresh-Oppenheim and David Mitchell

Polynomial Time SAT Decision for Complementation-Invariant
Clause-Sets, and Sign-non-Singular Matrices . 314

Oliver Kullmann

Table of Contents XI

Verifying Propositional Unsatisfiability: Pitfalls to Avoid 328
Allen Van Gelder

A Simple and Flexible Way of Computing Small Unsatisfiable Cores in
SAT Modulo Theories . 334

Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani

SAT Solving for Termination Analysis with Polynomial
Interpretations . 340

Carsten Fuhs, Jürgen Giesl, Aart Middeldorp,
Peter Schneider-Kamp, René Thiemann, and Harald Zankl

Fault Localization and Correction with QBF . 355
Stefan Staber and Roderick Bloem

Sensor Deployment for Failure Diagnosis in Networked Aerial Robots:
A Satisfiability-Based Approach . 369

Fadi A. Aloul and Nagaragan Kandasamy

Inversion Attacks on Secure Hash Functions Using SAT Solvers 377
Debapratim De, Abishek Kumarasubramanian, and
Ramarathnam Venkatesan

Author Index . 383

SAT: Past and Future

Martin Davis

Part I. Davis-Putnam: An Accidental Algorithm

During the summer of 1957, Hilary Putnam and I, both junior faculty, were attending
an unprecedented month-long “institute” devoted to logic at Cornell University along
with 82 other logicians. Our families were sharing a house and the two of us were to-
gether every day working together and separately on a number of things, but not on the
satisfiability problem. After we had made some progress towards a negative solution of
Hilbert’s 10th Problem (H10: the question of the existence of an algorithm for deter-
mining whether a given polynomial equation has an integer solution), we were eager
to continue collaborating. Our idea was to seek funding through my institution which
was a branch of Rensselaer Polytechnic in Eastern Connecticut so Hilary and his family
could escape steamy summers in Princeton for the attractive lakeside accommodations
available in my locale. Not believing that anyone would pay us to work on H10, con-
sidered a super long shot, we patched together a proposal to investigate procedures for
theorem-proving in first-order logic. Because it was too late for the usual funding agen-
cies, following a tip we submitted our proposal to the National Security Agency. They
funded it on condition that our report not mention them, and that we forget about first-
order logic, and just concentrate on satisfiability. Our report, which was submitted at the
end of the summer of 1958, contained all the procedures that were eventually combined
in the algorithms later designated as DP and DPLL. During the summer of 1959, we
were supported by the US Air Force Office of Scientific Research. We worked very hard
on H10 and made some significant progress. But because our proposal had emphasized
theorem-proving procedures, we hastily concocted one using some of the work from the
previous summer, and submitted it to the JACM. That was the origin of Davis-Putnam.
After I moved to New York, I wanted to see our procedure implemented, and NYU
put two very talented student programmers at my disposal for the purpose: Donald
Loveland (who later became one of my first doctoral students) and George Logemann.
The crude search we implemented led to satisfiability questions involving thousands of
clauses and the original DP swamped the memory of the IBM 704. So we replaced the
“rule for eliminating propositional variables” (i.e. ground binary resolution) with the
splitting rule giving the algorithm a “divide and conquer” form with instances waiting
to be processed swapped out onto a tape. This was the DPLL algorithm.

Part II. SAT �∈ P ?

Although everyone seems to believe that P �= NP , the evidence is scant and somewhat
circular. There is the fact that the problems for which good feasible worst-case algo-
rithms are known, are solvable in poly-time. But in practice, “poly-time” really means
O(n log n) or maybe O(n2) and with a manageable multiplicative constant. No-one
would regard an algorithm that runs in time 101010

n2 or O(n1000) as “feasible”. But

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 1–2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 M. Davis

it is only the identification of poly-time computability with feasibility, in analogy with
the identification of Turing computability with effective computability, that makes the
existence of so many NP-complete problems seem to be evidence for P �= NP . If there
are horrendous poly-time algorithms for these NP-complete problems, how might we
come to know it? Is anyone seeking such algorithms? Theorists have built their poly-
time hierarchy in stages mimicking the arithmetic hierarchy of the logicians with P at
the bottom and P -SPACE at the top. But they have been unable to prove a single sep-
aration theorem between the levels. For all we know, the entire edifice could collapse
with P = P -SPACE. Computer science is a very young subject. Mathematicians know
from hard experience that problems easy to state can take hundreds of years to resolve.
But theorists blithely conclude from an implication A⇒ P = NP that the proposition
A must be false. The case of linear programming provides a good example which can
well resonate with experts on SAT. The very useful simplex method runs in exponential
time in the worst case. It was thought for years that there is no poly-time algorithm for
linear programming. Experts were astounded when it turned out that in fact poly-time
algorithms for linear programming do exist. However, ironically enough in practice the
old reliable exponential-time simplex method does better than these poly-time time al-
gorithms. So what do we know about the question: Is SAT ∈ P ? Almost nothing! It
could go either way. But if it should turn out that the answer is “Yes”, that would of
course imply that P = NP , and so would entitle the person who succeeded in proving
it to receive the million dollar prize the Clay Institute of Mathematics is offering. If I
were 60 years younger, I’d be tempted to try!

Encodings of Problems in Effectively Propositional
Logic

Juan Antonio Navarro-Pérez and Andrei Voronkov

The University of Manchester
School of Computer Science

{navarroj,voronkov}@cs.manchester.ac.uk

Solving various combinatorial problems by their translation to the propositional satis-
fiability problem has become commonly accepted. By optimising such translations and
using efficient SAT solvers one can often solve hard problems in various domains, such
as formal verification and planning.

This approach to solving combinatorial problems is usually implemented by a trans-
lation procedure turning a formal description of the problem written in a domain-
specific language L (for example, SMV for model checking problems [3] or STRIPS
[2] for planning problems) into a SAT problem. Such translation procedures share the
following common features:

1. They contain many isomorphic or nearly isomorphic subsets of clauses obtained by
the translation of the same expression of L.

2. The size of the resulting SAT problem is dominated by these copies.

In this talk the second author will present encodings able to specify some combi-
natorial problems, namely LTL bounded model checking [1] and planning within the
Bernays-Schönfinkel fragment of first-order logic. This fragment, which also corre-
sponds to the category of effectively propositional problems (EPR) of the CASC sys-
tem competitions [4], allows a natural and succinct representation of both the transition
systems corresponding to the problems and the property that one wants to verify, while
avoiding the problem of creating isomorphic copies.

Our technique provides a rich collection of benchmarks with close links to real-life
applications for the automated reasoning community and may boost development of
new translation techniques and solvers for effectively propositional problems.

References

[1] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model checking without BDDs.
In R. Cleaveland, editor, Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’99), volume 1579 of Lecture Notes in Computer Science, pages 193–207, 1999.

[2] R. Fikes and N.J. Nilsson. A new approach to the application of theorem proving to problem
solving. Artificial Intelligence, 2(3/4):189–208, 1971.

[3] K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
[4] G. Sutcliffe and C.B. Suttner. The state of CASC. AI Communications, 19(1):35–48, 2006.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, p. 3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Circuit to CNF Conversion

Panagiotis Manolios and Daron Vroon

College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA
http://www.cc.gatech.edu/home/{manolios,vroon}

Abstract. Modern SAT solvers are proficient at solving Boolean satis-
fiability problems in Conjunctive Normal Form (CNF). However, these
problems mostly arise from general Boolean circuits that are then trans-
lated to CNF. We outline a simple and expressive data structure for
describing arbitrary circuits, as well as an algorithm for converting cir-
cuits to CNF. Our experimental results over a large benchmark suite
show that the CNF problems we generate are consistently smaller and
more quickly solved by modern SAT solvers than the CNF problems
generated by current CNF generation methods.

1 Introduction

The recent drastic improvements to SAT solving technology have led to its wide
applicability in domains ranging from hardware and software verification to com-
putational biology to AI planning. While the actively developed SAT solvers
overwhelmingly require input to be in CNF, most of the applications that use
SAT technology have problems that are more naturally expressed as Boolean
combinational circuits. In order to use current SAT solvers, users are therefore
required to generate CNF and they tend to do this using variants of the Tseitin
algorithm, e.g., this is the case with Barcelogic Tools [8] and Yices [2].

In this paper we introduce NICE dags, a new data structure for representing
circuits. We also introduce a new algorithm for translating from NICE dags
to CNF. We have compared our algorithm to both the Tseitin algorithm and
to Jackson and Sheridan’s state-of-the-art algorithm, using a benchmark suite
containing over 8,000 problems from various domains. Our extensive evaluations
show that the translation from circuits to CNF can significantly impact overall
SAT solving time and that our algorithm leads to significant time savings over
the other two approaches. In fact, for numerous problems that our approach can
easily handle, both algorithms generate CNF on which SAT solvers time out.

The work reported in this paper is implemented in the publicly available Bit-
level Analysis Tool (BAT) [7]. BAT provides a high-level, feature-rich, type-safe
language that includes user-defined functions, arbitrary sized bit vectors and
operations on them, existential arrays, etc. With the results reported in this
paper, we are able to provide potential users of SAT technology a much higher-
level interface than current CNF-based SAT solvers. This makes it much easier
to experiment with, use, and deploy SAT technology, while still being able to
take advantage of improvements to the actively developed SAT solvers, which
are mostly CNF-based.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 4–9, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Circuit to CNF Conversion 5

�������	∧
�����

��
�

���
��

��
�

������↔
�� ���

��
��

�
������↔
����

��
��

��
�������	x �������	y �������	z

�������	¬
��
��������ite

test

����
��

��
then

��

else �� �������	¬
��

�������	x �������	z �������	y

Fig. 1. Two examples of NICE dags

2 Related Work

Most modern CNF conversion algorithms are variations of the one originally
discovered by Tseitin [9]. This algorithm converts dags composed of internal
vertices labeled with ∧, ∨, and ¬, as well as external vertices labeled with variable
names. The algorithm introduces a new variable, x, for each internal node, v that
is a child of a ∨ node, and adds the constraint x↔ v to the original SAT problem.
This is a linear algorithm.

The Jackson-Sheridan algorithm for conversion to CNF was introduced in
2004 [5]. It takes a Reduced Boolean Circuit (RBC) as input, and is built around
a heuristic that is used to decide when to introduce variables for internal vertices.
The aim is to minimize the number of clauses in the resulting CNF. However,
↔ vertices are rewritten into conjunctions of disjunctions before conversion into
CNF, which results in the loss of information that can lead to the generation of
fewer intermediate variables. The algorithm is quadratic.

Brummayer and Biere have recently introduced an algorithm for translating
from AIGs (And-Inverter Graphs) to CNF [1]. The techniques used are mostly
orthogonal to ours, and, for future work, it would be interesting to explore the
incorporation of some of their ideas into our algorithm.

Another CNF translation that deals directly with ite vertices is presented
by Velev in [10]. Our algorithm subsumes this algorithm, e.g., we merge nested
ite vertices in all the ways that Velev’s algorithm does and more. Also, unlike
Velev’s algorithm, we constrain intermediate variables with implications rather
than equivalences, which significantly reduces the number of clauses created
when a new variable is introduced.

3 NICE Dags

The circuit representation that our CNF translation algorithm takes as input is
the Negation, Ite, Conjuction, and Equivalence dag (NICE dag), which contains
external variable nodes, and as the name suggests, internal nodes labeled with
¬, ↔, ∧, and ite. The three outgoing edges of an ite are labeled with test, then,
or else, as appropriate. As with RBCs, NICE dags are further constrained to
maximize sharing. For example, no two nodes in the dag are allowed to have the
same label and children, and no ite node can have a test or then child labeled
with ¬. Two example NICE dags are given in Figure 1.

6 P. Manolios and D. Vroon

cnf ((V, E))

pseudo-expand ((V, E))
count-shares ((V, E))
CL := ∅
for all v ∈ V do

clauses+ (v) := null
clauses- (v) := null

C := cnf+ (source((V, E)))
return C ∪ CL

Fig. 2. Main CNF conversion function

4 CNF Conversion

In order to understand our CNF conversion algorithm, it is important to under-
stand the following terminology. The number of shares of a node is the number
of incoming edges the node has. A path is a sequence of vertices, v1, v2, . . . , vn

such that v1 is the root of the dag and each consecutive pair of vertices forms an
edge. The path polarity of a given path is negative if it contains an odd number
of ¬ nodes, and positive otherwise. The number of negative (positive) shares for
a node is the number of predecessors of the node that are the last vertex in a
path of negative (positive) polarity. Note that a predecessor vertex can appear
in a path of negative polarity and a path of positive polarity, so the the number
of negative and positive shares can add up to more than the total number of
shares.

Our central CNF conversion algorithm is given in Figure 2. It takes a NICE
dag as input and returns a set of clauses that are equisatisfiable to the input.
The algorithm begins with the pseudo-expansion of the the ite and ↔ nodes of
the NICE dag. We will return to this function momentarily.

The next function, count-shares, marks each node with its number of neg-
ative and positive shares. This is followed by initialization. A global variable,
CL, is initialized to ∅. CL will contain the clauses constraining the variables
introduced for internal vertices. All of the vertices, v ∈ V are marked with a
clauses+ and clauses- value of null . These will eventually contain the clauses
generated for v and ¬v, respectively.

The core of the algorithm, which is too long to give here, consists of two
functions, cnf+ and cnf-, which take a vertex, v, and compute clauses+(v)
and clauses-(v) respectively. These functions recursively visit the children of
v to compute their clause representations, and then combine the resulting clause
sets in the appropriate way. For example, when applied to a ∧ node, u, cnf+
calls cnf+ on all the children of u and then unions their clause lists together to
form the clause list for u. A ¬ node, w, is processed by cnf+ (cnf-) by applying
cnf- (cnf+) to its child. Another way to see this is that cnf+ and cnf- process
the NICE dag using depth-first search, keeping track of the polarity of the path
that led to the current node, and post-processing the node accordingly. The cnf+
and cnf- algorithms have the following key features:

Efficient Circuit to CNF Conversion 7

– The decision to introduce variables is made separately for a vertex and its
negation, and the variable is constrained with an implication rather than an
equivalence if it only represents a vertex or its negation, and not both. For
example, if a variable, x is introduced for v, then the constraint x → v is
added to CL. If we later decide that a variable is needed for ¬v, we add the
constraint ¬x→ ¬v.

– When forming disjunctions, we use a similar heuristic to Jackson-Sheridan
for deciding when to introduce new variables [5].

– A variable is always introduced for v (¬v) if the number of positive (negative)
shares for v is more than 1 and |clauses+(v)| > 1 (|clauses-(v)| > 1).

– ite and ↔ are interpreted as conjunctions of disjunctions regardless of their
polarity. For example, cnf+(if u then v else w) is computed by comput-
ing cnf+((¬u∨ v)∧ (u∨w)) and cnf-(if u then v else w) is computed
by computing cnf+((¬u ∨ ¬v) ∧ (u ∨ ¬w)). This leads to a smaller CNF
translation.

Note that this last case introduces some extra complexity to the algorithm. On
the one hand, we want to translate ite and ↔ nodes, as well as their negations,
as conjunctions of disjunctions. This means that the translations of these nodes
and their negations are no longer syntactic negations of each other. That is, the
negation of an ite node, does not simply translate to a ¬ node whose child is the
positive translation of the ite, since this would be a disjunction of conjunctions.
That is why we do not expand ite and↔ nodes before the translation. This way,
we can keep track of the fact that these translations are negations of each other
by maintaining clauses+ and clauses- for the original ite or ↔ node.

On the other hand, in the example above, what if u ∨ w appears elsewhere
in the dag? In this case, we will lose some sharing information if we do not
expand the ite node before CNF conversion, since we will have another instance
of u∨w when we do expand it. This is why we have the pseudo-expand function
that starts our CNF translation algorithm. This function will mark the example
above with new “pseudo-arguments” called args+ and args-. The args+ mark
is set to the pair of vertices representing (¬u ∨ v), (u ∨ w). The args- mark is
set to the pair of vertices representing (¬u∨¬v), (u∨¬w). Then, when counting
shares, we count the shares of the “pseudo-arguments” of ite and ↔ formulas
rather than the actual arguments. This allows us to capture the appropriate
sharing information without losing the negation information for ite and ↔ and
nodes.

In general, cnf ((V, E)) has a running time of O(|V |2). However, as we will see
in our experimental results, our algorithm runs faster than Tseitin’s algorithm,
which is linear, showing that our algorithm is linear is practice, at least for the
benchmarks tested.

5 Experimental Evaluation

We implemented Tseitin’s algorithm [9], Jackson and Sheridan’s algorithm [5],
and our algorithm in the Bit-level Analysis Tool (BAT). BAT is a tool for solving

8 P. Manolios and D. Vroon

 0.1

 1

 10

 100

 0.1 1 10 100

T
se

iti
n

Our Algorithm

Benchmarks

 1

 10

 100

 1 10 100

Ja
ck

so
n-

S
he

rid
an

Our Algorithm

Benchmarks

Fig. 3. Scatter plots comparing our algorithm to Tseitin and Jackson-Sheridan

formulas over the theory of bit vectors and existential arrays [7,6]. After process-
ing arrays, BAT converts the resulting circuit into a NICE dag, which it uses to
perform further simplifications. Finally, it converts the NICE dag to CNF.

We ran all three algorithms over a suite composed of 8,284 benchmarks. These
include refinement theorems for two, three, and five stage pipeline machines, a
correctness theorem for the Instruction Cache RAM unit from the Sun PicoJava
II microprocessor, a theorem involving the out-of-order retirement of instruc-
tions, and benchmarks from the 2006 SMT competition for the quantifier-free
theory of uninterpreted functions over 32-bit bit-vectors. We used the latest
version of MiniSat2 with simplification enabled to solve the resulting CNF prob-
lems [4]. The BAT time never exceeded 25 seconds for any benchmark, and
MiniSat2 was given a timeout of 10 minutes. Experiments were run on an 2.4
GHz Intel Pentium 4 machine with a 512K cache and 1 GB of memory.

Scatter plots comparing our algorithm to the Tseitin and Jackson-Sheridan
algorithms are given in Figure 3. Times reported are the total time taken for BAT
and MiniSat2. Represented here are all benchmarks that took at least 0.1 second
for Tseitin or Jackson-Sheridan to complete. Those taking less than a 0.1 second
had comparable running times for all algorithms. Points above the diagonal
indicate that our algorithm resulted in a faster overall solving time. Points along
the top edge indicate time-outs for the competing algorithm. Based on these
numbers, our algorithm clearly out-performs Tseitin and Jackson-Sheridan on
almost all problems, often by orders of magnitude. Since this improvement is
observed in the presence of CNF preprocessing (as performed by Minisat2), our
view is that preprocessing techniques are not a satisfactory alternative to CNF
translation [3]; rather these two approaches can be complementary.

Also, as noted earlier, despite the fact that our CNF translation is quadratic
in the worst case, in practice it is faster that the linear-time Tseitin translation.
The total time spent translating the benchmarks to CNF was 3,725 seconds for
Tseitin and 3,409 seconds for our algorithm.

Efficient Circuit to CNF Conversion 9

6 Conclusions

We presented the notion of NICE dags, a data structure that can be used to
represent arbitrary circuits and outlined an algorithm that converts NICE dags
to CNF. As our extensive experiments on over 8,000 benchmark problems show,
our algorithm leads to very large efficiency gains in total SAT times over both
an efficient variant of the widely used Tseitin translation algorithm and the
Jackson-Sheridan algorithm, even in the presence of CNF preprocessing.

References

1. R. Brummayer and A. Biere. Local two-level and-inverter graph minimization
without blowup. In Proc. 2nd Doctoral Workshop on Mathematical and Engineering
Methods in Computer Science (MEMICS ’06), October 2006.

2. B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for DPLL(T). In
T. Ball and R. B. Jones, editors, Computer Aided Verification, CAV 2006, volume
4144 of LNCS, pages 81–94, 2006.

3. N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause
elimination. In F. Bacchus and T. Walsh, editors, Theory and Applications of Sat-
isfiability Testing, 8th International Conference, SAT 2005, volume 3569 of LNCS,
pages 61–75. Springer, 2005.

4. N. Eén and N. Sörensson. MiniSat - a SAT solver with conflict-clause minimization.
In F. Bacchus and T. Walsh, editors, Posters of the 8th international Conference
on Theory and Applications of Satisfiability Testing, 2005.

5. P. Jackson and D. Sheridan. Clause form conversions for Boolean circuits. In
H. H. Hoos and D. G. Mitchell, editors, Theory and Applications of Satisfiability
Testing, 7th International Conference, SAT 2004, volume 3542 of LNCS, pages
183–198. Springer, 2004.

6. P. Manolios, S. K. Srinivasan, and D. Vroon. Automatic memory reductions for
RTL-level verification. In ICCAD 2006, ACM-IEEE International Conference on
Computer Aided Design. ACM, 2006.

7. P. Manolios, S. K. Srinivasan, and D. Vroon. BAT: The Bit-level Analysis Tool.
2006. Available from http://www.cc.gatech.edu/∼manolios/bat/.

8. R. Nieuwenhuis and A. Oliveras. On SAT Modulo Theories and Optimization
Problems. In A. Biere and C. P. Gomes, editors, 9th International Conference on
Theory and Applications of Satisfiability Testing, SAT’06, volume 4121 of LNCS,
pages 156–169. Springer, 2006.

9. G. S. Tseitin. On the complexity of derivation in propositional calculus. In A. O.
Slisenko, editor, Studies in Constructive Mathematics and Mathematical Logic,
Part2, pages 115–125. Consultants Bureau, New York-London, 1962.

10. M. N. Velev. Efficient translation of boolean formulas to cnf in formal verification
of microprocessors. In ASP-DAC ’04: Proceedings of the 2004 conference on Asia
South Pacific design automation, pages 310–315, 2004. IEEE Press.

Mapping CSP into Many-Valued SAT�

Carlos Ansótegui1, Maŕıa Luisa Bonet2, Jordi Levy3, and Felip Manyà1

1 Universitat de Lleida (DIEI, UdL)
2 Universitat Politècnica de Catalunya (LSI, UPC)

3 Artificial Intelligence Research Institute (IIIA, CSIC)

Abstract. We first define a mapping from CSP to many-valued SAT
which allows to solve CSP instances with many-valued SAT solvers. Sec-
ond, we define a new many-valued resolution rule and prove that it is
refutation complete for many-valued CNF formulas and, moreover, en-
forces CSP (i, j)-consistency when applied to a many-valued SAT encod-
ing of a CSP. Instances of our rule enforce well-known local consistency
properties such as arc consistency and path consistency.

1 Introduction

SAT and CSP are problem solving paradigms which have been shown to be
competitive in a wide range of domains. Both the SAT community and the
CSP community have devised a number of solving techniques that have been
incorporated into state-of-the-art solvers. SAT techniques are better than CSP
techniques for some problems, and vice versa. In this paper, we focus on inference
and our goal is to explore how CSP inference can be defined in a way similar to
SAT inference, which is usually defined via resolution-like inference rules. To this
end, we use the formalism provided by the many-valued clausal forms known as
signed CNF formulas, and define a number of resolution rules that enforce the
most important local consistency properties defined in the literature.

First, we define a mapping from CSP to signed-SAT, which is the satisfi-
ability problem of the many-valued clausal forms known as signed CNF for-
mula [BHM00]. A CSP instance is now represented as a list of clauses, where
each clause represents a no-good of a constraint. We use signed-SAT instead of
SAT to capture in a natural way the information provided by the domains of
CSP variables. Second, we define a new resolution rule and prove that it is refuta-
tion complete for signed CNF formulas and, moreover, enforces (i, j)-consistency
when applied to a signed-SAT encoding of a CSP. Third, we show how instances
of the (i, j)-consistency rule enforce well-known local consistency properties such
as arc consistency and path consistency.

The fact of reformulating the main CSP consistency properties as resolution-
like inference rule has some advantages: (i) they are easier to understand, at
least for the SAT community; (ii) the machinery and techniques for resolution

� Research partially supported by projects iDEAS (TIN2004-04343), Mulog (TIN2004-
07933-C03-01/03) and IEA (TIN2006-15662-C02-02) funded by the MEC.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 10–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Mapping CSP into Many-Valued SAT 11

developed by the automated deduction community can be easily applied to CSP;
(iii) CSP and SAT inference can be compared by restricting to domains of car-
dinality two; and (iv) a signed-SAT solver allowing to apply different resolution
rules at each node of the search tree provides a framework for analysing CSP lo-
cal consistency, as well as for comparing SAT and CSP inference and eventually
devise new solvers.

Our work is closely related to previous attempts to understand the relation
between CSP and SAT, and vice versa (see [BHW04, Gen02, Wal00]). The ad-
vantage of our approach is the use of a formalism in which we can reformulate
the inference of both SAT and CSP, instead of mapping CSP into SAT and SAT
into CSP as in [AM04, BHM99, BHW04, FP01].

The results of this paper can provide new insights to the existing results about
exploiting the structure of CSPs into SAT solvers [ALM03, Bac06, DS06].

2 Preliminaries

2.1 Signed CNF Formulas

Definition 1. A truth value set, or domain, N is a non-empty finite set. A
sign is a subset S ⊆ N of truth values. The complement of a sign S, denoted
by S, is N \ S. A signed literal is an expression of the form S :x , where S is a
sign and x is a propositional variable. The set S is also called the support of x.
The complement of a signed literal l of the form S :x , denoted by l, is S :x . A
signed clause is a disjunction of signed literals. A signed CNF formula is a set
of signed clauses (or a conjunction of clauses).

Definition 2. An assignment for a signed CNF formula is a mapping that as-
signs to every propositional variable an element of the truth value set.
An assignment I satisfies a signed literal S :x , if I(x) ∈ S. It satisfies a signed
clause C, if it satisfies at least one of the signed literals in C. It satisfies a signed
CNF formula Γ , if it satisfies all clauses in Γ .

A signed CNF formula is satisfiable, if it is satisfied by at least one assign-
ment; otherwise it is unsatisfiable. The signed-SAT problem for a signed CNF
formula φ consists of determining whether φ is satisfiable.

We give now two refutationally complete inference systems for signed-SAT. The
first one is defined by the next two rules on the left [Häh93], while the second
one is defined by the rule on the right [Häh94].

Signed Binary Resolution

S :x ∨A
S′ :x ∨B

S ∩ S′ :x ∨A ∨B

Simplification

∅:x ∨D
D

Signed Parallel Resolution

S1 :x ∨A1

· · ·
Sk :x ∨Ak

A1 ∨ · · · ∨Ak

whenever
⋂k

i=1 Si = ∅
Also we assume w.l.o.g. that every variable in a clause appears only once

collapsing different occurrences of a literal making the union of the supports.

12 C. Ansótegui et al.

2.2 Constraint Satisfaction Problems

Definition 3. A constraint satisfaction problem (CSP) instance, or constraint
network, is defined as a triple 〈X, D, C〉, where X = {x1, . . . , xn} is a set of
variables, D = {d(x1), . . . , d(xn)} is a set of domains containing the values
the variables may take, and C = {C1, . . . , Cp} is a set of constraints. Each
constraint Ci = 〈Si, Ri〉 is defined as a relation Ri over a subset of variables Si =
{xi1 , . . . , xik

}, called the constraint scope. The relation Ri may be represented
extensionally as a subset of the Cartesian product d(xi1)× · · · × d(xik

).

Definition 4. An assignment for a CSP instance 〈X, D, C〉 is a mapping that
assigns to each variable xi ∈ Y , where Y ⊆ X, a value from d(xi). An assignment
I satisfies a constraint 〈{xi1 , . . . , xik

}, Ri〉 ∈ C, if 〈I(xi1), . . . , I(xik
)〉 ∈ Ri. An

assignment I over the set of variables Y is consistent, if for every constraint
Ci ∈ C defined on variables Y ′ ⊆ Y , I restricted to Y ′ satisfies Ci.

The Constraint Satisfaction Problem (CSP) consists of, given a CSP instance,
finding an assignment that satisfies the instance, if it exists, or showing that it
is unsatisfiable.

We next define the main local consistency properties that have been defined in
the literature.

Definition 5. A CSP is (i, j)-consistent, for i ≥ 0 and j ≥ 1, if it has non-
empty domains and any consistent instantiation of i variables can be extended
to a consistent instantiation of j additional variables.

A CSP is node consistent if it is (0, 1)-consistent, it is arc consistent if it is
(1, 1)-consistent, and it is path consistent if it is (2, 1)-consistent.

A CSP is k-consistent, for k ≥ 1, if it is (k − 1, 1)-consistent.
A CSP is strong k-consistent, for k ≥ 1, if it is i-consistent for every

i ∈ {1, . . . , k}.

2.3 Mapping CSP into Signed-SAT

We define a mapping that translates a CSP instance P into a signed-SAT in-
stance P ′ in such a way that P is satisfiable iff P ′ is satisfiable [ABLM07]. The
encoding basically translates no-goods into clauses.

Definition 6. The signed encoding of a CSP instance 〈X, D, C〉 is the
signed CNF formula over the truth value set N =

⋃
xi∈D d(xi) that con-

tains, for every constraint 〈{x1, . . . , xk}, R〉 ∈ C and every possible tuple
〈b1, . . . , bk〉 ∈ d(x1)× · · · × d(xk) such that (b1, . . . , bk)
∈ R, the clause:

{b1}:x1 ∨ · · · ∨ {bk}:xk

Moreover, for every variable x and every value b ∈ N such that x
∈ d(x), we
add the unary clause {b}:x .

Mapping CSP into Many-Valued SAT 13

3 CSP Inference as Signed Resolution

In this section we define a sound and complete signed resolution rule, called
signed (i, j)-consistency, that enforces CSP (i, j)-consistency when applied to a
signed-SAT encoded CSP. Then, we show that instances of the rule enforce arc
consistency and path consistency. The next lemma will help us understand the
rule.

Lemma 1. Let φ = {S1,1 :y1 ∨ · · · ∨ S1,p :yp , . . . , Sk,1 :y1 ∨ · · · ∨ Sk,p :yp } be a
set of signed clauses. Then, the set of assignments that satisfies all the clauses
of φ can be characterized by the set

⋂k
r=1 Sr,1 × · · · × Sr,p.

Proof: The set Sr,1×· · ·×Sr,p is exactly the set of assignments that falsify the
clause Sr,1 :y1 ∨· · ·∨ Sr,p :yp . Therefore Sr,1 × . . .× Sr,p is the set of assignments
that satisfy it. As a conclusion, the set of assignments that satisfy all the clauses
is

⋂k
r=1 Sr,1 × · · · × Sr,p.

Signed (i,j)-Consistency Rule:

S1,1 :x1 ∨ · · · ∨ S1,i :xi ∨S1,i+1 :xi+1 ∨ · · · ∨ S1,i+j :xi+j

· · ·
Sk,1 :x1 ∨ · · · ∨ Sk,i :xi ∨Sk,i+1 :xi+1 ∨ · · · ∨ Sk,i+j :xi+j

k⋃

r=1

Sr,1 :x1 ∨ · · · ∨
k⋃

r=1

Sr,i :xi

whenever
⋂k

r=1 Sr,i+1 × · · · × Sr,i+j = ∅, i ≥ 0 and j ≥ 1

Remark 1. Since we start with a no-good representation of the constraints, the
initial clauses will have all the supports of the form {b}, for some b ∈ N . Then,
when we apply the rule, for every l = 1, . . . , i, there exists a b ∈ N such that,
for all r = 1, . . . , k, we have either Sr,l = {b} or Sr,l = ∅; otherwise the rule
concludes a tautology. Therefore, in the conclusion of the rule

⋃k
r=1 Sr,l :xl is

either empty or has the form {b} for some b ∈ N ; thus, the conclusion of the
rule also preserves the no-good representation form.

In the (i, j)-consistency rule, the last j variables xi+1, . . . , xi+j are called
resolving variables. In the (i, j)-consistency rule we can add the restriction that
all variables appear in at least one clause (

⋃k
r=1 Sr,l
= ∅, for l = 1, . . . , i + j).

We call this version of the rule non-strong.

Lemma 2. The signed (i, j)-consistency rule enforces CSP (i, j)-consistency,
i.e. if the signed encoding of a CSP instance is closed by the (i, j)-consistency
rule, then the CSP is (i, j)-consistent.

The [non] strong signed (i− 1, 1)-consistency rule enforces CSP [non] strong
i-consistency.

14 C. Ansótegui et al.

Proof: Suppose that a set of clauses is closed by the rule, but its corresponding
constraint network is not (i, j)-consistent. We have some tuple of i variables x and
i consistent values a of their domains, and there exists also a tuple of j variables
y, such that a can not be extended to these new variables consistently. I.e. for any
tuple of j values b, the tuple of i+ j values a, b for the variables x, y falsifies some
constraint about a subset of such variables (where at leas one of the y variables
is present). Therefore, for any tuple 〈b1, . . . , bj〉, the tuple 〈a1, . . . , ai, b1, . . . , bj〉
for 〈x1, . . . , xi, y1, . . . , yj〉 is not good, and there is a clause whose literals are
a subset of {a1}:x1 ∨ · · · ∨ {ai}:xi ∨ {b1}:y1 ∨ · · · ∨ {bj}:yj . Since the set

of clauses is closed by the rule, and we have
⋂

b1∈N,...,bj∈N {b1} × · · · × {bj} =
⋂

b1∈N,...,bj∈N {b1} × · · · × {bj} = ∅ our set of clauses also contains a subclause
of {x1}:a1 ∨· · ·∨ {x1}:ai witch means that the tuple 〈a1, . . . , ai〉 is not good for
〈x1, . . . , xi〉 and this contradicts the assumption. The proof of the second part of
the lemma has the same ingredients as the first.

Theorem 1. The signed (i, j)-consistency rule defines a sound and complete
resolution system for signed CNF formulas.

Proof: When j = 1, the signed (i, 1)-consistency rule is the signed parallel
resolution rule. So, already the signed (i, 1)-consistency rule is complete.

To see that it is a sound rule, notice that, by Lemma 1, since
⋂k

r=1 Sr,i+1 × · · · × Sr,i+j = ∅, the set of clauses {S1,i+1 : xi+1 ∨ · · · ∨ S1,i+j :
xi+j , . . . , Sk,i+1 : xi+1∨· · ·∨Sk,i+j : xi+j} is unsatisfiable. By the completeness of
the parallel resolution rule we can obtain the empty clause from them. Now, from
this refutation we do the following transformation. We change the set of premises
by {S1,1 :x1 ∨· · ·∨ S1,i :xi ∨ S1,i+1 :xi+1 ∨· · ·∨ S1,i+j :xi+j , . . . , Sk,1 :x1 ∨· · ·∨
Sk,i :xi ∨ Sk,i+1 :xi+1 ∨· · ·∨ Sk,i+j :xi+j }. The rest of the proof is identical, but
keeping the appended parts along. At this point we will not produce the empty
clause, but the clause

⋃k
r=1 Sr,1 :x1 ∨ · · · ∨

⋃k
r=1 Sr,i :xi .

Arc Consistency Rule:

{a}:x ∨ {j1}:y
· · ·

{a}:x ∨ {js}:y

{js+1}:y
· · ·

{jm}:y

{a}:x

where s ≥ 1 and {j1, . . . , jm} = N

Path Consistency Rule:

{a}:x∨ {j1}:z
· · ·

{a}:x∨ {js}:z

{b}:y ∨ {js+1}:z
· · ·

{b}:y ∨ {jr}:z

{jr+1}:z
· · ·

{jm}:z

{a}:x∨{b}:y

where r > s ≥ 1 and {j1, . . . , jm} = N

Fig. 1. Instances of the non-strong signed (i, j)-consistency rule

Mapping CSP into Many-Valued SAT 15

In Figure 1 we present instances of the non-strong signed (i, j)-consistency rule
that enforce local consistency properties like arc consistency and path consis-
tency. We use supports of the form {b} given that we have already shown that
this form of signs is preserved by inferences (see Remark 1). Basically, the arc
consistency rule reduces the domain of the variable x to exclude the value a
when it does not have support in y. The algorithm that enforces path consis-
tency works by removing all the satisfying pairs of a constraint that cannot be
extended to another variable in the way just defined.

References

[ABLM07] C. Ansótegui, M. Bonet, J. Levy, and F. Manyà. The logic behind weighted
CSP. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence, IJ-
CAI’07, pages 32–37, 2007.

[ALM03] C. Ansótegui, J. Larrubia, and F. Manyà. Boosting Chaff’s performance by
incorporating CSP heuristics. In Proc. of the 9th Int. Conf. on Principles
and Practice of Constraint Programming, CP’03, pages 96–107. Springer
LNCS 2833, 2003.

[AM04] C. Ansótegui and F. Manyà. Mapping problems with finite-domain vari-
ables into problems with boolean variables. In Proc. of the 7th Int. Conf.
on Theory and Applications of Satisfiability Testing, SAT’04, pages 1–15.
Springer LNCS 3542, 2004.

[Bac06] F. Bacchus. CSPs: Adding structure to SAT. In Proc. of the 9th Int. Conf.
on Theory and Applications of Satisfiability Testing, SAT’06, page 10.
Springer LNCS 4121, 2006.

[BHM99] B. Beckert, R. Hähnle, and F. Manyà. Transformations between signed and
classical clause logic. In Proc. of the 29th Int. Symp. on Multiple-Valued
Logics, ISMVL’99, pages 248–255, 1999.

[BHM00] B. Beckert, R. Hähnle, and F. Manyà. The SAT problem of signed CNF
formulas. In Labelled Deduction, volume 17 of Applied Logic Series, pages
61–82. Kluwer, Dordrecht, 2000.

[BHW04] C. Bessière, E. Hebrard, and T. Walsh. Local consistencies in SAT. In
Proc. of the 6th Int. Conf. on Theory and Applications of Satisfiability
Testing, SAT’03, pages 299–314. Springer LNCS 2919, 2004.

[DS06] Y. Dimopoulos and K. Stergiou. Propagation in CSP and SAT. In Proc. of
the 12th Int. Conf. on Principles and Practice of Constraint Programming,
CP’06, pages 137–151. Springer LNCS 4204, 2006.

[FP01] A. M. Frisch and T. J. Peugniez. Solving non-boolean satisfiability prob-
lems with stochastic local search. In Proc. of the Int. Joint Conf. on
Artificial Intelligence, IJCAI’01, pages 282–288, 2001.

[Gen02] I. P. Gent. Arc consistency in SAT. In Proc. of the 15th European Conf.
on Artificial Intelligence, ECAI’02, pages 121–125, 2002.

[Häh93] R. Hähnle. Short CNF in finitely-valued logics. In Proc., Int. Symp. on
Methodologies for Intelligent Systems, ISMIS’93, pages 49–58. Springer
LNCS 689, 1993.

[Häh94] R.Hähnle.Efficientdeductioninmany-valuedlogics. InProc.oftheInt.Symp.
on Multiple-Valued Logics, ISMVL’94, pages 240–249. IEEE Press, 1994.

[Wal00] T. Walsh. SAT v CSP. In Proc. of the 6th Int. Conf. on Principles of Con-
straint Programming, CP’00, pages 441–456. Springer LNCS 1894, 2000.

Circuit Based Encoding of CNF Formula

Gilles Audemard and Lakhdar Saı̈s

CRIL CNRS – Université d’Artois
{audemard,sais}@cril.univ-artois.fr

Abstract. In this paper a new circuit SAT based encoding of boolean formula is
proposed. It makes an original use of the concept of restrictive models introduced
by Boufkhad to polynomially translate any formula in conjunctive normal form
(CNF) to a circuit SAT representation (a conjunction of gates and clauses). Our
proposed encoding preserves the satisfiability of the original formula. The set of
models of the obtained circuit w.r.t. the original set of variables is a subset of the
models (with special characteristics) of the original formula. We also provided
a connection between our encoding and the satisfiability of the original formula
i.e. when the input formula is satisfiable, our proposed translation delivers a full
circuit formula. A new incremental preprocessing process is designed leading to
interesting experimental improvements of the Minisat satisfiability solver.

1 Introduction

Propositional satisfiability (SAT) is the problem of deciding whether a boolean for-
mula in conjunctive normal form (CNF) is satisfiable. Traditionally, most solvers work
on a formula encoded in conjunctive normal form (CNF). However, encoding knowl-
edge under CNF can flatten some structural knowledge that would be more apparent
in more expressive propositional logic representation formalisms [11]. To take benefit
from such structural knowledge, recent works have addressed this issue following two
different paths of research. The first one use extended boolean formula for problem en-
coding (e.g. [11]). Whereas the second one tries to recover and/or to deduce structural
knowledge from CNF encoding (e.g. [6]).

We follow the second approach which consists in detecting hidden structures of CNF
formula. More precisely, based on two previous related works proposed by Purdom [8]
(complementary search) to avoid search redundancies and by Boufkhad [2] on exploit-
ing the restrictive solution (solution that has special characteristics), we propose a new
and original encoding of any formula in conjunctive normal form as a conjunction of
boolean functions (gates) and clauses. Each gate represents both a subset of clauses
from the original CNF formula and a set of new additional clauses. Using auxiliary
variables, we obtain a polynomial circuit SAT based encoding which preserves the sat-
isfiability of the original formula. Using two restrictive variants of models, we derive
a circuit SAT formula where the remaining clauses belong to a tractable class (horn or
reverse-horn).

Our proposed translation delivers a circuit sat formula where the circuit part contains
a set of covered gates (i.e. the clauses representing such gates appears in the original
formula) and a set of derived gates from the interaction between different parts of the

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 16–21, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Circuit Based Encoding of CNF Formula 17

formula. The circuit SAT formula obtained by our encoding can be exploited in differ-
ent ways. First as proposed recently, particularly when dealing with instances encoding
EDA applications, one can exploit promising circuit SAT solver as in [7,11]. Secondly,
SAT solvers can be used on the new CNF formula obtained from the circuit SAT for-
mula. We can also exploit the derived circuit SAT formula to compute a strong backdoor
set of variables [6,12].

2 Technical Background and Related Works

We use classical notations and definitions of the satisfiability problem. Let Σ be a CNF,
V(Σ) (resp. L(Σ)) denotes the set of variables (resp. literals) occurring in Σ. The set
L(Σ) is the union of positive literals L+(Σ) and negative literals L−(Σ). For a literal
l ∈ L(Σ), we can rewrite Σ as (l∨α(l))∧ (¬l∨α(¬l))∧Γ , where α(l) = ∀c∈Σ|l∈c∪
c−{l} (resp. α(¬l) = ∀c∈Σ|¬l∈c∪ c−{¬l}) and Γ = {c|c ∈ Σ, c∩ {l,¬l} = ∅}. We
define Σ ∧ x noted Σ(x) as a formula obtained from Σ by assigning x the truth-value
true. Formally Σ(x) = {C|C ∈ Σ, {x,¬x} ∩ C = ∅} ∪ {C\{¬x}|C ∈ Σ,¬x ∈ C}.
A (boolean) gate is an expression of the form y = f(x1, . . . , xk), where f is a standard
connective among {∨, ∧} and where y and xi are propositional literals. For a given
gate g, we define CNF (g) as the set of clauses encoding g. A propositional variable y
(resp. x1, . . . , xk) is an output variable (resp. are input variables) of a gate of the form
y = f(x′

1, . . . , x
′
k), where x′

i ∈ {xi,¬xi}. Finally, we define a circuit sat formula as a
conjunction of gates (G) and clauses (C). It is called a full circuit, when C = ∅.

Our approach is inspired by two related works of Purdom [8] and Boufkhad [2].
In [8], P. Purdom has proposed an original branching criterion (called complementary
search) to avoid redundancy during search.

Property 1 (Purdom [8]). Let Σ be a CNF formula, l be a branching literal then Σ is
satisfiable iff Σ(l) is satisfiable or Σ(¬l) ∧ ¬α(¬l) is satisfiable.

As noted by Purdom, the exploitation of the property 1 requires additional clauses that
can be derived by translating the formula ¬α(¬l) in Disjunctive Normal Form (DNF)
to a CNF formula. This drawback was also noted by Gallo and Urbani [4] :”Purdom’s
branching criterion succeeds in reducing the size of the search tree but a price must be
paid. In fact, the formula must be transformed into the standard form of set of clauses,
which might be quite costly”. For this reason, the property above is only exploited when
α(¬l) is reduced to a single clause (the literal ¬l occurs only once in Σ). The negation
of such a clause is a set of unit clauses.

In [2], Boufkhad has defined a concept of restrictive solution. This kind of solution
has special characteristics that can be checked in polynomial time and each satisfiable
formula has at least one of these special solution. Three variants of these solutions
have been proposed : Negative Prime Solution (NPS), Positive Prime Solution (PPS)
and Locally Optimized Solution (LOS). Using such restrictive models, Boufkhad et. al.
obtained a new theoretical upper bound of the threshold of random 3-SAT formula [3].
Similarly to Purdom, another use proposed by Boufkhad [2] is to add new clauses to the
formula in order to restrict its set of models to only those with special characteristics.

18 G. Audemard and L. Saı̈s

Definition 1 (NPS, PPS [2]). An NPS (resp. PPS) is a solution such that variables as-
signed the value false (resp. true) cannot be individually inverted to true (resp. false)
without contradicting the formula.

Furthermore, Boufkhad [2] introduced the notion of Locally Optimized Solution (LOS)
relative to a truth assignment S. It is called optimized in the sense that no better solution
can be found by just inverting the value of a variable. It is said locally optimized relative
to a truth assignment S because the value assigned to any variable x in S (called the
reference value of x in S) is preferred to the opposite one. Any satisfiable formula has
at least one LOS relative to any truth assignment S [2].

Property 2 (Boufkhad [2]). Let Σ be a CNF, S ∈ L(Σ) a consistent set of literals and
C =

∧
l∈S(l ∨ ¬α(¬l)). Σ is satisfiable if and only if Σ ∧ C is satisfiable.

From the proof of the property [2], it follows that any solution to Σ ∧ C is a LOS
relative to S of Σ. Obviously, the two properties 1 and 2 are very similar. For the same
reasons as in Purdom, only literals that occur at most twice are considered in [2] leading
to additional clauses with at most three literals.

3 Circuit Based Encoding

The results presented in this section can be summarized as follows. First, using auxiliary
variables, we avoid the main drawback of Purdom and Boufkhad approaches i.e. the ad-
ditional constraints can be obtained using linear time approach. Second, the conjunction
of the original formula and the additional constraint lead to a circuit SAT formula.

Property 3

1. Let Σ = (l∨α(l))∧ (¬l∨α(¬l))∧Γ be a CNF. Σ is satisfiable iff (l = α(¬l))∧
(l ∨ α(l)) ∧ Γ is satisfiable

2. Let l = α(¬l) = ∧(l1, . . . , lm, c1 . . . , ck) be a boolean equation, where |ci| > 1.
Let yi be an auxiliary variable representing a clause ci. The gate (l = α(¬l)) and
{l = ∧(l1, . . . , lm, y1, . . . , yk), y1 = ∨(c1), . . . , yk = ∨(ck)} are equivalent for
SAT.

Property 3.1 illustrates how the added clauses in conjunction with the original ones
can be encoded with a boolean gate, whereas, the property 3.2 shows how the gate
l = α(¬l) can be translated in linear time to a set of boolean gates using auxiliary
variables.

Example 1. Let Σ = Γ ∧(¬x1∨¬x2∨¬x3∨x4)∧(¬x4∨x1)∧(¬x4∨x2)∧(¬x4∨x3)
be a CNF formula encoding the gate g (x4 = ∧(x1, x2, x3)). To illustrate the detection
of such explicit gate, we consider two distinct case. First, if ¬x4 /∈ L(Γ), applying the
properties 3.1 and 3.2 to literal x4 we detect the same gate g. In the second case, where
¬x4 ∈ L(Γ) i.e. {(¬x4∨γ(¬x4))} ⊂ Γ , we detect a gate g′ (x4 = ∧(x1, x2, x3, . . .)),
the gate g′ include the gate g and other auxiliary variables introduced to represent the
clauses in γ(¬x4).

Circuit Based Encoding of CNF Formula 19

The example 1 shows that when some clauses of the original formula express a gate
(explicit gate), our approach can recover such gates in a very simple way. The question
of recovering explicit gates has been subject of interesting works by [6,9]. Properties
3.1 and 3.2 describe one step in our encoding. Given a consistent set of literals S, our
proposed translation iterates the application of the above properties on each literal of
S. The Algorithm 1 describes the encoding of any CNF as a circuit SAT formula. It
produces a new formula made of a set of gates and clauses, equivalent w.r.t. SAT to the
original formula. Let uncov(Σ,G) be the set of clauses of Σ uncovered by G. Condition
of while loop avoids multiple clause covering. Second condition in foreach loop avoids
the introduction of unnecessary auxiliary variables. Let us remark that the obtained
circuit SAT formula is dependent on the ordering of the considered set of literals.

Algorithm 1. CircuitSat(in Σ : CNF, in S : set of literals, out G : set of gates)

begin
G = ∅;
while (S ∩ L(uncov(Σ, G)) �= ∅) do

choose l ∈ S ; In = ∅;
foreach ci ∈ α(¬l) do

if |ci| < 2 then In = In ∪ {ci} else
if (∃yj ∈ G|yj = ∨(ci) then In = In ∪ {yj} else

G = G ∪ {yi = ∨(ci)}; In = In ∪ {yi}
G = G ∪ {l = ∧(In)}; S = S − {l};

end

Property 4. Let Σ be a CNF. S is a model of Σ iff the set of gates G obtained by
CircuitSat(Σ, S) is a full circuit encoding i.e. uncov(Σ,G) = ∅
From the Property 4, we can deduce several interesting results: First, for unsatisfiable
formula, our circuit sat encoding can not lead to a full circuit encoding. Second, if a
formula is entirely covered using CircuitSat, then the formula is satisfiable. Finally,
in the general case, finding a full circuit encoding is intractable.

As our proposed algorithm is based on the property 3, if we consider S as a complete
assignment of the variables of Σ, it is important to note that any model of the circuit
SAT formula is a LOS of Σ with respect to S. Obviously, if we consider S = L+

(resp. S = L−), then any model of the circuit formula is an NPS (resp. PPS) of the
original formula Σ. In these last two cases, the obtained circuit SAT is described by the
following property.

Property 5. Let Σ be a CNF. If S = L+ (resp. S = L−) then CircuitSat(Σ, S)
delivers a set of gates G such that all clauses of Σ not covered by G are positive (resp.
negative).

In the following example, we show that on structured SAT instances, our algorithm
CircuitSAT (Σ, S) can deliver interesting new constraints.

20 G. Audemard and L. Saı̈s

Example 2 (Pigeon hole). Let us consider the pigeon hole problem. The problem PH(n)
consists in putting all the n pigeons into n−1 different holes such that each hole contain
at most one pigeon. To encode this problem in CNF formula we need n × (n − 1)
propositional variables pj

i with i ∈ {1, . . . , n}, j ∈ {1, . . . , n − 1}. Each variable pj
i

expresses that the pigeon i is in the hole j. The CNF formula PH(n) contains two kind
of clauses. (i)

∧
(p1

i ∨ p2
i . . . pn−1

i), 1 ≤ i ≤ n encoding that the pigeon i is not left free
(must be put in a hole) and

∧
(¬pj

i ∨ ¬pj
k), 1 ≤ j ≤ n− 1, 1 ≤ i < k ≤ n expressing

that two different pigeons (i and k) can not be put in the same hole j. Applying the
algorithm 1 using positive literals (L+(Σ)), we obtain n × (n − 1) gates. Each gate
g is of the form pi

j = ∧(¬pi
1,¬pi

2 . . .¬pi
j−1,¬pi

j+1, . . .¬pi
n) which expresses a new

implicit information: “each hole contains exactly one pigeon”. On real world problem,
we expect that our approach might deduce interesting and meaningful knowledge.

4 Handling Circuit SAT Formula

Circuit SAT and backdoor sets
Circuit SAT formula can be exploited for deriving useful hidden structure of a given
problem instance. Following the recent approach proposed in [6] (LSAT) for computing
backdoor sets, we show that our circuit SAT representation is suitable for computing
such structure. The notion of (strong) Backdoor introduced by Williams et. al. in [12]
is an active research topic because of its connection to problem hardness. A set of
variables forms a backdoor for a given formula if there exists an assignment to these
variables such that the simplified formula can be solved in polynomial time. Such a set
of variables is called a strong backdoor if any assignment to these variables leads to
a tractable sub-formula. This kind of structure is related to the notion of independent
variables (see section 2) [10,5].

Since our algorithm is dependent on the chosen set S of literals, one can try to cover
in priority clauses that do not belong to the targeted polynomial fragment (e.g. a set of
non-horn clauses). Then, our proposed encoding delivers a set of gates and a horn CNF
part. Consequently, as unit propagation is complete for horn clauses, only the circuit
part is considered in the computation of the strong backdoor.

Circuit SAT based preprocessing
Our circuit encoding delivers an interesting polynomial preprocessing technique. In-
deed, the circuit formula, encoding a given instance is more constrained than the origi-
nal one. Our preprocessing technique is made of two different steps: First, generating a
circuit formula using our circuit encoding obtained by processing a set of literals S with
a number of occurrences bounded by a given constant k. Then, translating the circuit
formula (obtained in the first step) to CNF. Because of space limitation, more details and
experimental results are described in a technical report available from the authors [1].

5 Conclusion

We have proposed an original new circuit sat based encoding of CNF formula. It makes
an original use of the concept of restrictive models introduced by Boufkhad to

Circuit Based Encoding of CNF Formula 21

polynomially translate any formula in conjunctive normal form (CNF) to a circuit sat
representation (a conjunction of gates and clauses). The derived circuit SAT formula is
equivalent with respect to SAT to the original CNF. Our encoding can be used to recover
explicit gates and other meaningful structural knowledge and as a preprocessing step to
speed up SAT solvers.

References

1. G. Audemard and L. Sais. Circuit Based Encoding of CNF formulas. Technical report, CRIL,
2007.

2. Y. Boufkhad. Aspects probabilistes et algorithmiques du problème de satisfiabilité. phd
thesis, Université de Paris 6, Laboratoire d’ Informatique de Paris 6, 1996.

3. O. Dubois and Y. Boufkhad. A general upper bound for the satisfiability threshold of random
r-SAT formulae. Journal of Algorithms, 24(2):395–420, August 1997.

4. G. Gallo and G. Urbani. Algorithms for testing the satisfiability of propositional formulae.
journal of logic programming, 7(1):45–61, July 1989.

5. E. Giunchiglia, M. Maratea, and A. Tacchella. Dependent and independent variables in
propositional satisfiability. In proceedings of JELIA, volume 2424 of LNCS, pages 296–307,
2002.

6. E. Gregoire, B. Mazure, R. Ostrowski, and L. Sais. Automatic extraction of functional de-
pendencies. In proc. of SAT, volume 3542 of LNCS, pages 122–132,2005.

7. F. Lu, L. Wang, K. Cheng, and R. Huang. A circuit sat solver with signal correlation guided
learning. In proceedings of international conference DATE, pages 892–897, 2003.

8. P. W. Purdom. Solving satisfiability with less searching. IEEE transactions on pattern
analysis ans machine intelligence, PAMI-6(4):510–513, July 1984.

9. J Roy, I. Markov, and V. Bertacco. Restoring circuit structure from SAT instances. In pro-
ceedings of international workshop on Logic and synthesis, 2004.

10. B. Selman, H. Kautz, and D. McAllester. Ten challenges in propositional reasoning and
search. In proceedings of IJCAI, 1997.

11. C. Thiffault, F. Bacchus, and T. Walsh. Solving non-clausal formulas with DPLL search. In
proceedings of international conference CP, pages 663–678, 2004.

12. R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In proceedings
of IJCAI, pages 1173–1178, 2003.

Breaking Symmetries in SAT Matrix Models

Inês Lynce1 and Joao Marques-Silva2

1 IST/INESC-ID, Technical University of Lisbon, Portugal
ines@sat.inesc-id.pt

2 School of Electronics and Computer Science, University of Southampton, UK
jpms@ecs.soton.ac.uk

Abstract. Symmetry occurs naturally in many computational prob-
lems. The use of symmetry breaking techniques for solving search prob-
lems reduces the search space and therefore is expected to reduce the
search time. Recent advances in breaking symmetries in SAT models are
mainly focused on the identification of permutable variables via graph
automorphism. These symmetries are denoted as instance-dependent,
and although shown to be effective for different problem instances, the
advantages of their generalised use in SAT are far from clear. Indeed, in
many cases symmetry breaking predicates can introduce significant com-
putational overhead, rendering ineffective the use of symmetry breaking.
In contrast, in other domains, symmetry breaking is usually achieved by
identifying instance-independent symmetries, often with promising ex-
perimental results. This paper studies the use of instance-independent
symmetry breaking predicates in SAT. A concrete application is con-
sidered, and techniques for symmetry breaking in matrix models from
CP are used. Our results indicate that instance-independent symmetry
breaking predicates for matrix models can be significantly more effective
than instance-dependent symmetry breaking predicates.

1 Introduction

In the recent past, symmetry breaking has been proposed as a technique that may
be essential for solving hard computational problems. Indeed, successful results
have been reported in different areas, including satisfiability (SAT), constraint
programming (CP), planning and model checking. Nonetheless, whereas in most
areas symmetries are broken according to specific properties of each problem
instance, in Boolean satisfiability a more generic approach is often followed [1].
Instead of breaking symmetries when modelling a problem instance with SAT,
generic symmetry breaking tools read a CNF formula and output the given
formula extended with symmetry breaking clauses, which result from a graph
automorphism analysis.

State-of-the-art SAT solvers are currently able to deal with very large formulae
and to perform hundreds of thousands of propagations per second. Hence, one
may think that augmenting the formula with symmetry breaking clauses in a
preprocessing step does not represent a significant overhead to a SAT solver.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 22–27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Breaking Symmetries in SAT Matrix Models 23

However, this is not the case for preprocessing techniques in general. Only specific
techniques applied to specific problems have been shown to be effective.

On the other hand, mainly due to the effectiveness of SAT solvers learning
techniques, modelling has not been much developed in SAT, at least when com-
pared with other areas such as CP. Jointly with dynamic heuristics, learning is
able to extend the formula in such a way that strategic resolution steps are per-
formed. So, it is a reasonable approach to let the SAT solver learn intelligently
rather than telling in advance what it should be able to learn during search. How-
ever, learning can hardly replace symmetry breaking predicates. For example,
symmetry breaking predicates may reduce the number of solutions and learn-
ing does not. This paper compares the use of generalised CNF-based symmetry
breaking predicates, also known as instance-dependent predicates, with the use
of specific symmetry breaking predicates, i.e. instance-independent predicates, in
the context of SAT matrix models1.

2 Symmetry Breaking in SAT

The first complete framework suggesting a symmetry extraction mechanism for
satisfiability based on a reduction to graph automorphism was proposed in [2].
This approach has been recently adapted and made practical for satisfiability in
shatter [1]. For single variable permutations, shatter generates CNF formu-
lae linear in the number of variables. In addition, shatter proposes a number
of optimisations to the implementation of the graph automorphism algorithm.
(Observe, however, that graph automorphism is believed not to be in P, even
though it is not known whether it is NP-complete.)

The same authors have compared the efficiency of breaking instance-dependent
symmetries against the efficiency of breaking instance-independent symmetries [7].
For the concrete problem of exact graph colouring, the use of instance-dependent
symmetries is significantly more efficient. Instance-dependent symmetries are
identified automatically via graph automorphism, whereas instance-independent
symmetries are specific to the problem and are usually identified manually at
the time the encoding is done. Before the existence of an efficient tool such as
shatter, the generation of effective instance-independent symmetries was stud-
ied for several classes of combinatorial objects [8]. However, this approach was
not evaluated against a generic one. Moreover, the use of symmetry breaking
predicates in local search consistently has a negative effect in local search al-
gorithms [6]. Interestingly, this observation has motivated an opposite strategy
when applying local search: maximising symmetry in the SAT model.

3 Symmetry Breaking in Matrix Models

Symmetry in matrix models is usually broken by using lexicographic constraints
[3]. If permutations in rows and/or columns can be made without affecting the

1 The paper follows the classification of predicates proposed in [1].

24 I. Lynce and J. Marques-Silva

1 2 3 4
2
3
4

2
2

2
2

2
2 2

2 2
2

2
22

2
2
2

1
1
1
1

1
1

1
1 1

1
1

1 1
1

1
1

3
3

3
3 3

3
3

3 3

3
3

3
3

3
3

34
4
4
4 4

4
4

4 4
4
4
4

4
4

4
4

Fig. 1. A 4x4 Latin square with the first row and column fixed and its 4 solutions

existence of solutions, then an ordering should be fixed to eliminate these sym-
metries. Although different orderings may be used, lexicographic ordering is
considered to be the most intuitive. The resulting predicates are not guaranteed
to eliminate all symmetries, since the problem instance may contain other sym-
metries. Also, ordering constraints do not break all symmetries when matrices
have both row and column symmetries [3]. Nevertheless, symmetries in matrix
models have the advantages of being easily identified and broken at a small cost.

Example 1. Consider a 4x4 Latin square, i.e. a 4x4 matrix to be filled with 4
different symbols in such a way that each symbol occurs exactly once in each row
and exactly once in each column. This problem has 576 solutions. Clearly, most
symmetries can be easily eliminated by forcing the first row and the first column
to be lexicographically ordered. Nonetheless, these constraints do not prevent
this problem from having more than one solution: there are still 4 possible so-
lutions. Figure 1 illustrates a 4x4 Latin square after adding the lexicographic
constraints and the four possible solutions. Shatter is able to identify further
symmetries such that only two of these solutions can be found.

We now focus on the SHIPs SAT model [4,5]. SHIPs is a SAT-based approach
for solving the problem of haplotype inference by pure parsimony (HIPP). (A
detailed description of SHIPs can be found in [4,5].) Given a set G of n genotypes,
each of length m, the haplotype inference problem consists in finding a set H
of 2 · n haplotypes, not necessarily different, such that for each genotype gi ∈ G
there is at least one pair of haplotypes (hj , hk), with hj and hk ∈ H such that
the pair (hj , hk) explains gi. The pure parsimony approach finds a solution that
minimises the total number of distinct haplotypes used.

The organisation of the SHIPs algorithm considers increasing values r of can-
didate haplotypes, with 1 ≤ r ≤ 2 · n, such that a solution is found when r
haplotypes suffice to explain the n genotypes. The SHIPs model [4,5] can be
described by the matrix formulation G = Sa ·H ⊕ Sb ·H , where G is a n ×m
matrix describing the genotypes, H is a r × m matrix of haplotype variables,
Sa and Sb are n × r matrices of selector variables, and ⊕ is the explanation
operation. One of the contributions of the SHIPs model are the techniques for
breaking key symmetries in the problem formulation. If matrix H is interpreted
as a vector of strings of size m, H = [h1h2 . . . hr]T , then we can impose the con-
dition h1 < h2 < . . . < hr, i.e. the haplotypes are lexicographically sorted.An
additional form of symmetry is due to the S variables. If Sa = [sa

1 . . . sa
n]T and

Sb = [sb
1 . . . sb

n]T , then we can impose the condition sa
i ≤ sb

i , 1 ≤ i ≤ n, i.e. for

Breaking Symmetries in SAT Matrix Models 25

each genotype i, the strings representing the selector variables a and the selector
variables b are lexicographically ordered.

4 Experimental Results

This section provides empirical evidence that breaking instance-independent sym-
metry in SAT matrix models can be more effective than breaking instance-
dependent symmetries. Different encodings for the SHIPs matrix model are
evaluated. Also, due to the incremental approach implemented in SHIPs, both sat-
isfiable and unsatisfiable problem instances are obtained. Consider a solution with
size s: then iterations with r < s represent unsatisfiable instances, and the itera-
tion with r = s represents a satisfiable instance. A set of 1183 problem instances
obtained from http://www.stats.ox.ac.uk/∼marchini/phaseoff.html and
from [5] were evaluated. The results were obtained on an Intel Xeon 5160 (3.0GHz
with 4GB of RAM) and a timeout of 1000s.

From an initial universe of 1183 instances, we removed 348 instances with
equal computed lower and upper bounds [4]. Of the remaining instances, 134
are aborted when symmetry breaking is not used and 74 are aborted when
symmetry breaking is used. Moreover, the run times with symmetry breaking
are also consistently smaller. Figure 2 provides two plots comparing the effect
of breaking instance-independent symmetries in terms of the total CPU time
for unsatisfiable and satisfiable instances, respectively. Clearly, for unsatisfiable
instances it is always useful to break symmetries, whereas for satisfiable instances
it is useful in most cases. Next, we compare the use of shatter [1] on each set
of unsatisfiable and satisfiable instances. Shatter may be applied either to the
CNF formula resulting from the SHIPs model, for which instance-independent
symmetry breaking predicates have been included, or to the plain model, for
which no symmetries are broken. Figure 3 compares both approaches. Even

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

W
it
h
o
u
t

S
B

P

With SBP

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

W
it
h
o
u
t

S
B

P

With SBP

Fig. 2. CPU times with and without instance-independent symmetry breaking predi-
cates (SBP) on unsatisfiable and satisfiable instances

26 I. Lynce and J. Marques-Silva

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

S
H

IP
s+

S
h
a
tt

er

Shatter

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

S
H

IP
s+

S
h
a
tt

er

Shatter

Fig. 3. Shatter vs SHIPS+Shatter on unsatisfiable and satisfiable instances

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

S
H

IP
s+

S
h
a
tt

er

SHIPs

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

S
H

IP
s+

S
h
a
tt

er

SHIPs

Fig. 4. SHIPs vs SHIPS+Shatter on unsatisfiable and satisfiable instances

though shatter performs better on the SHIPs model rather than on the plain
model, the difference is not significant, in particular for satisfiable instances.

Finally, Figure 4 compares the use of instance-independent symmetry breaking
predicates (i.e. SHIPs) with the use of both instance-independent and instance-
dependent symmetry breaking predicates (i.e. SHIPs+Shatter) in terms of CPU
time. The use of instance-independent symmetry breaking predicates is consis-
tently more efficient than the use of both types of symmetry breaking predicates.
Moreover, Shatter in unable to break all the symmetries in the allowed CPU
time (1000s) for many instances. This is probably due to these instances having
many symmetries, which can be easily identified beforehand.

One additional question is: “If there was an oracle giving the CNF formula
computed by shatter what would be the SAT solver performance?” With this
purpose, the formula computed by shatter within 1000s was given to the SAT

Breaking Symmetries in SAT Matrix Models 27

solver. Then we compared the time required by SHIPs with the time required by
the SAT solver on the formula computed by shatter. If shatter is run on the
plain model, i.e. without symmetry breaking predicates, then the SAT solver
is able to solve more problem instances than using the plain model, but still
less 45 instances than SHIPs. Also, the instances not solved by SHIPs are also
not solved after using shatter. If shatter is run on the SHIPs model, which
includes symmetry breaking predicates, then exactly the same instances are not
solved. For the instances solved, the use of shatter yields a negligible speedup.

5 Conclusions and Future Work

Despite its impact in CP, symmetry breaking is seldom used in SAT. The main
reason is that symmetry breaking can be time-consuming and not always effective
in modern SAT solvers. This paper explores a different line of research, which has
been quite successful in CP: instead of considering instance-dependent symmetry
breaking, we propose problem-specific instance-independent symmetry breaking.
Clearly, this necessarily depends on the application domain. The paper focus on
symmetry breaking techniques for SAT matrix models, and more concretely for
the HIPP problem. The experimental results show that more careful modelling
of computational problems with SAT techniques, and exploring well-established
symmetry breaking techniques, can be a quite effective approach, and can signif-
icantly outperform existing instance-dependent symmetry breaking approaches.

References

1. F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Solving difficult instances
in the presence of symmetry. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 22(9):1117–1137, 2003.

2. J. M. Crawford, M. L. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates
for search problems. In Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning, 1996.

3. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetries in matrix models. In International Conference
on Principles and Practice of Constraint Programming (CP), 2002.

4. I. Lynce and J. Marques-Silva. Efficient haplotype inference with Boolean satisfia-
bility. In National Conference on Artificial Intelligence (AAAI), 2006.

5. I. Lynce and J. Marques-Silva. SAT in bioinformatics: Making the case with haplo-
type inference. In International Conference on Theory and Applications of Satisfi-
ability Testing (SAT), 2006.

6. S. Prestwich. First-solution search with symmetry breaking and implied constraints.
In CP Workshop on Modelling and Problem Formulation, 2001.

7. A. Ramani, I. L. Markov, K. A. Sakallah, and F. A. Aloul. Breaking instance-
independent symmetries in exact graph coloring. Journal of Artificial Intelligence
Research, 26:289–322, 2006.

8. I. Shlyakhter. Generating effective symmetry-breaking predicates for search prob-
lems. In LICS Workshop on Theory and Applications of Satisfiability Testing, 2001.

Partial Max-SAT Solvers with Clause Learning�

Josep Argelich and Felip Manyà

Computer Science Department
Universitat de Lleida

Jaume II, 69, E-25001 Lleida, Spain
{jargelich,felip}@diei.udl.es

Abstract. We describe three original exact solvers for Partial Max-SAT:
PMS, PMS-hard, and PMS-learning. PMS is a branch and bound solver
which incorporates efficient data structures, a dynamic variable selec-
tion heuristic, inference rules which exploit the fact that some clauses
are hard, and a good quality lower bound based on unit propagation.
PMS-hard is built on top of PMS and incorporates clause learning only
for hard clauses; this learning is similar to the learning incorporated into
modern SAT solvers. PMS-learning is built on top of PMS-hard and in-
corporates learning on both hard and soft clauses; the learning on soft
clauses is quite different from the learning on SAT since it has to use
Max-SAT resolution instead of SAT resolution. Finally, we report on
the experimental investigation in which we compare the state-of-the-art
solvers Toolbar and ChaffBS with PMS, PMS-hard, and PMS-learning.
The results obtained provide empirical evidence that Partial Max-SAT is
a suitable formalism for representing and solving over-constrained prob-
lems, and that the learning techniques we have defined in this paper can
give rise to substantial performance improvements.

1 Introduction

In recent years we have seen an increasing interest in designing and implementing
Max-SAT solvers [1,11,15,16,17,20,21], as well as on studying inference systems
for Max-SAT [6,7,15]. Significant progress has been made, and state-of-the-art
Max-SAT solvers are able to solve a large number of instances that were beyond
the reach of the solvers developed just five years ago. As a proof of the interest
in Max-SAT, we highlight the First Max-SAT Evaluation which was held as a
colocated event of SAT-2006.

In this paper we focus on Partial Max-SAT, which is a problem between
SAT and Max-SAT which is more well-suited for representing and solving over-
constrained problems, and has not received yet so much attention by our scientific
community. A Partial Max-SAT instance is a CNF formula in which some clauses
are relaxable or soft and the rest are non-relaxable or hard. Solving a Partial Max-
SAT instance amounts to find an assignment that satisfies all the hard clauses
and the maximum number of soft clauses.
� Research partially supported by projects TIN2004-07933-C03-03 and TIN2006-

15662-C02-02 funded by the Ministerio de Educación y Ciencia.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 28–40, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Partial Max-SAT Solvers with Clause Learning 29

Let us illustrate with an example the expressive power of Partial Max-SAT.
Assume we want to solve the problem of coloring a graph with two colors in
such a way that the minimum number of adjacent vertices are colored with the
same color. If we consider the graph with vertices {v1, v2, v3} and with edges
{(v1, v2), (v1, v3), (v2, v3)}, that problem is encoded as a Partial Max-SAT in-
stance as follows: (i) the set of propositional variables is {v1

1 , v
2
1 , v1

2 , v
2
2 , v

1
3 , v2

3};
the intended meaning of variable vj

i is that vertex vi is colored with color j;
(ii) the hard clauses are the following at-least-one and at-most-one clauses:

[v1
1 ∨ v2

1], [¬v1
1 ∨ ¬v2

1], [v1
2 ∨ v2

2], [¬v1
2 ∨ ¬v2

2], [v
1
3 ∨ v2

3], [¬v1
3 ∨ ¬v2

3];

and (iii) there are the following soft clauses:

(¬v1
1 ∨ ¬v1

2), (¬v2
1 ∨ ¬v2

2), (¬v1
1 ∨ ¬v1

3), (¬v2
1 ∨ ¬v2

3), (¬v1
2 ∨ ¬v1

3), (¬v2
2 ∨ ¬v2

3).

Note that we write hard clauses between square brackets in order to distin-
guish hard clauses from soft clauses.

In this paper we describe three original exact solvers for Partial Max-SAT:
PMS, PMS-hard, and PMS-learning. PMS is a branch and bound solver which
incorporates efficient data structures, a dynamic variable selection heuristic, in-
ference rules which exploit the fact that some clauses are hard, and a good
quality lower bound based on unit propagation. PMS-hard is built on top of
PMS and incorporates clause learning only for hard clauses; this learning is sim-
ilar to the learning incorporated into modern SAT solvers. PMS-learning is built
on top of PMS-hard and incorporates learning on both hard and soft clauses; the
learning on soft clauses is quite different from the learning on SAT since it has
to use Max-SAT resolution instead of SAT resolution. SAT resolution preserves
satisfiability but does not preserve the number of unsatisfied clauses as in Max-
SAT resolution. Finally, we report on the experimental investigation in which we
compare the state-of-the-art solvers Toolbar [11,15] and ChaffBS [9] with PMS,
PMS-hard, and PMS-learning. The results obtained provide empirical evidence
that Partial Max-SAT is a suitable formalism for representing and solving over-
constrained problems, and that the learning techniques we have defined in this
paper can give rise to substantial performance improvements.

It is worth to point out that, to the best of our knowledge, learning of soft
clauses has not been defined and incorporated into any Max-SAT or Partial
Max-SAT solver. The learning mechanism of soft clauses defined in this paper
can be applied to Max-SAT solvers too.

The paper is structured as follows. In Section 2 we present the most relevant
related work. In Section 3 we describe in detail PMS, PMS-hard and PMS-
learning. In Section 4 we report on the experimental investigation. Finally, we
present some concluding remarks.

2 Previous Work

The first local search solvers for Partial Max-SAT were defined by Jiang et
al. [14] and Cha et al. [8]. In SAT-2006, Fu and Malik [9] presented two exact

30 J. Argelich and F. Manyà

Partial Max-SAT algorithms which use the SAT solver zChaff to solve Partial
Max-SAT: the first algorithm, which is diagnosis based, iteratively analyzes the
UNSAT core of the current SAT instance and eliminates the core through a
modification of the problem instance by adding relaxation variables. The second
algorithm, which is encoding based, constructs an efficient auxiliary counter that
constraints the number of relaxed clauses and supports binary search or linear
scan for the optimal solution.

Argelich and Manyà [2,3] defined branch and bound solvers for solving the
Partial Max-SAT problem for a formalism, called soft CNF formulas, in which
blocks of soft clauses are considered instead of individual clauses. Their solvers
do not incorporate any clause learning technique.

Argelich and Manyà [4] defined the first learning scheme of hard clauses for
a specialized partial Max-SAT solvers. This learning scheme is the learning of
hard clauses described in the present paper.

3 Partial Max-SAT Solvers

We first define a basic branch and bound Partial Max-SAT solver and then
explain the main features we added to the basic solver in order to obtain PMS,
PMS-hard and PMS-learning.

The space of all possible assignments for a Partial Max-SAT instance φ can be
represented as a search tree, where internal nodes represent partial assignments
and leaf nodes represent complete assignments. A branch and bound (BnB)
algorithm explores that search tree in a depth-first manner. At each node, the
algorithm backtracks if the current partial assignment violates some hard clause,
and applies the one-literal rule [18] to the literals that occur in unit hard clauses;
i.e., given a literal ¬p (p), it deletes all the clauses containing the literal ¬p (p)
and removes all the occurrences of the literal p (¬p). If the current partial as-
signment does not violate any hard clause, the algorithm compares the number
of soft clauses unsatisfied by the best complete assignment found so far, called
upper bound (ub), with the number of soft clauses unsatisfied by the current
partial assignment, called lower bound (lb). Obviously, if ub ≤ lb, a better as-
signment cannot be found from this point in search. In that case, the algorithm
prunes the subtree below the current node and backtracks to a higher level in
the search tree. If ub > lb, it extends the current partial assignment by instan-
tiating one more variable, say p, which is selected using the following heuristic:
it instantiates first the variables that appear most often; ties are broken using
the lexicographical order. The instantiation of p leads to the creation of two
branches from the current branch: the left branch corresponds to instantiating p
to false, and the right branch corresponds to instantiating p to true. In that case,
the formula associated with the left (right) branch is obtained from the formula
of the current node by applying the one-literal rule using the literal ¬p (p). The
value that ub takes after exploring the entire search tree is the minimum number
of soft clauses that cannot be satisfied by a complete assignment that satisfies
all the hard clauses.

Partial Max-SAT Solvers with Clause Learning 31

In contrast to Max-SAT solvers, Partial Max-SAT solvers enforce unit prop-
agation on unit hard clauses. This is not possible in Max-SAT because unit
propagation on soft clauses is unsound; i.e., the number of clauses in the original
formula unsatisfied by any assignment can be different from the number of un-
satisfied clauses in the simplified formula obtained by applying unit propagation.
Moreover, a branch of the search tree can be pruned as soon as a hard clause is
violated, independently if the lower bound has reached the upper bound.

3.1 PMS

PMS adds to the previous algorithm the following features:

– Variable selection heuristic: it uses the two-sided Jeroslow-Wang rule [13].
– Lower bound: it implements a variant of lower bound UP [16,17] adapted

to Partial Max-SAT. In lower bound UP for Max-SAT, the lower bound
is the current number of unsatisfied clauses plus an underestimation of the
minimum number of clauses that will become unsatisfied if the current partial
assignment is extended to a complete assignment. Such an underestimation
is the number of disjoint unsatisfiable subsets that can be detected using
unit propagation.
In lower bound UP for Partial Max-SAT, the underestimation is the number
of unsatisfiable subsets that can be derived by applying unit propagation in
such a way that soft clauses appear only in one subset. In UP for Max-SAT,
the clauses in unsatisfiable subsets can appear just in one subset. In Partial
Max-SAT, hard clauses can appear in more than one subset. This is a crucial
point for obtaining a better performance profile than in Max-SAT for some
instances. We implement UP using the data structure formed by two queues
as described in [17].

– The initial upper bound is computed with a local search solver.
– Inference rules: the algorithm applies the complementary unit clause rule:

it replaces two complementary unit clauses with an empty clause. It also
applies the almost common clause rule [5] as a preprocessing: it replaces any
two clauses of the form x ∨ y,¬x ∨ y with y. In both cases, if some of the
premises is hard, it is not removed.

3.2 PMS-Hard

PMS-hard extends PMS with a learning module that analyzes the conflicts de-
tected in hard clauses. When a conflict is detected, it analyzes the conflicting
clause detected using the 1-UIP learning scheme [19] implemented in zChaff [22],
and learns a hard clause. The mission of the conflict clauses added is to avoid
visiting regions of the search space that cannot lead to an optimal solution due
to fact that some hard clause is violated.

Since any optimal solution to a Partial Max-SAT instance satisfies all the
hard clauses, the fact of adding redundant clauses does not affect the number
of unsatisfied soft clauses. So, we can guarantee that the number of unsatisfied
clauses is preserved by our clause learning module.

32 J. Argelich and F. Manyà

As we will see in the experimental investigation, that learning scheme produces
significant performance improvements. We introduced first this learning scheme
in [4]. It was, to the best of our knowledge, the first time that learning was
incorporated into a a branch and bound Partial Max-SAT solver.

3.3 PMS-Learning

PMS-learning extends PMS-hard with a module that analyzes the conflicts de-
tected in which at least one of the conflict clauses is soft. For the time being,
our soft learning consist of applying Max-SAT resolution to two conflict clauses.
These clauses are selected as follows: between all the conflict clauses, we choose
the pairs of clauses x∨A and ¬x∨B that have the minimum number of literals
and, finally, we choose the pair that has the minimum number of different literals
among A and B. We give priority to resolve a hard clause and a soft clause.

The Max-SAT resolution rule [6,11,15] corresponds to Rule 1 of Figure 1. The
application of the rule consists of replacing the premises with the conclusions;
this way the number of unsatisfied clauses is preserved. Moreover, it has been
shown that the rule provides a complete calculus for Max-SAT [6,7].

In the case of partial Max-SAT, Max-SAT resolution can be simplified when
at least one of the premises is hard by applying the next rule, which is called
absorption rule in [15]:

[D]
D ∨D′

[D]

where D and D′ are disjunctions of literals.

Rule 1
x ∨ a1 ∨ · · · ∨ as

x ∨ b1 ∨ · · · ∨ bt

a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt

x ∨ a1 ∨ · · · ∨ as ∨ b1

x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2

· · ·
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt

x ∨ b1 ∨ · · · ∨ bt ∨ a1

x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ a2

· · ·
x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ · · · ∨ as−1 ∨ as

Rule 2
x ∨ a1 ∨ · · · ∨ as

[x ∨ b1 ∨ · · · ∨ bt]

[x ∨ b1 ∨ · · · ∨ bt]
a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt

x ∨ a1 ∨ · · · ∨ as ∨ b1

x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2

· · ·
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt

Rule 3
[x ∨ a1 ∨ · · · ∨ as]
[x ∨ b1 ∨ · · · ∨ bt]

[x ∨ a1 ∨ · · · ∨ as]
[x ∨ b1 ∨ · · · ∨ bt]
[a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt]

Fig. 1. Resolution for Partial Max-SAT

Partial Max-SAT Solvers with Clause Learning 33

The calculus formed by Max-SAT resolution rule and the absorption rule is
complete for partial Max-SAT. This follows from the fact that Max-SAT resolu-
tion is complete for Max-SAT and the absorption rule is sound (i.e., it preserves
the number of unsatisfied clauses). An alternative way of expressing this calculus
is by means of Rule 1, Rule 2, and Rule 3 in Figure 1. We follow this approach
because it is easy to understand in our context.

Actually, our soft learning mechanism applies Rule 1 when both conflict
clauses are soft, and Rule 2 when one conflict clause is hard and the other is soft.
When both conflict clauses are hard, it applies the 1-UIP learning scheme [19].

Another learning scheme that could be implemented consists of learning a
clause c for every conflict detected in every failed branch, where c is a reason
of the conflict. When the lower bound is greater than or equal to the upper
bound, we learn one clause for every conflict. Then, we add as a hard clause the
disjunction of all the clauses learned in the branch. The main drawback of this
approach is that the learned clauses are too big when the minimum number of
unsatisfied clauses is not small.

4 Experimental Investigation

We next report the experimental investigation we conducted to compare our
solvers (PMS, PMS-hard and PMS-learning) with the following solvers:

– Toolbar: it is the best performing Partial Max-SAT solver according to the
results of the Max-SAT Evaluation 2006. We used the last version of Toolbar
(version 3.1) 1, which exploits the fact of having hard and soft clauses. We
used the default parameters.
It is worth to mention that even when Toolbar is typically presented as a
weighted Max-SAT solver, it is actually a weighted Partial Max-SAT solver.

– ChaffBS: it is a Partial Max-SAT solver implemented on top of the SAT
solver zChaff that was presented at SAT-2006 [9]. It solves Partial Max-SAT
by encoding it into SAT. This solver is used on the more structured instances,
where it has a good performance profile. We do not give experimental results
for random Partial Max-2-SAT, random Partial Max-3-SAT and random 2-
SoftSAT because it is not competitive for these problems.

On some experiments we also give results with PMS-noLB, which is PMS-hard
without computing any underestimation in the lower bound.

All the experiments were performed on a Linux Cluster where the nodes have
a 2GHz AMD Opteron processor with 1Gb of RAM.

We used four sets of benchmarks:

– Random Partial Max-2-SAT instances with a number of clauses ranging from
1000 to 3000 and with 100 variables, and Partial Max-3-SAT instances with a
number of clauses ranging from 200 to 700 and with 100 variables. These are
typical random 2-SAT/3-SAT instances in which 100 clauses are declared,
at random, as hard and the rest are declared as soft.

1 Available at http://mulcyber.toulouse.inra.fr/projects/toolbar/

34 J. Argelich and F. Manyà

 0.1

 1

 10

 100

 1000

 1000 1500 2000 2500 3000

C
P

U
 ti

m
e

in
 s

ec
on

ds
 (

lo
gs

ca
le

)

Number of clauses

Random Partial Max-2-SAT with 100 variables

PMS
PMS-hard

PMS-learning
Toolbar

 1000

 10000

 100000

 1e+06

 1000 1500 2000 2500 3000

N
um

be
r

of
 n

od
es

 (
lo

gs
ca

le
)

Number of clauses

Random Partial Max-2-SAT with 100 variables

PMS
PMS-hard

PMS-learning

 0.01

 0.1

 1

 10

 100

 1000

 10000

 200 300 400 500 600 700

C
P

U
 ti

m
e

in
 s

ec
on

ds
 (

lo
gs

ca
le

)

Number of clauses

Random Partial Max-3-SAT with 100 variables

PMS
PMS-hard

PMS-learning
Toolbar

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 200 300 400 500 600 700

N
um

be
r

of
 n

od
es

 (
lo

gs
ca

le
)

Number of clauses

Random Partial Max-3-SAT with 100 variables

PMS
PMS-hard

PMS-learning

Fig. 2. Random Partial Max-2-SAT and Max-3-SAT instances

– Random 2-SoftSAT instances generated with the algorithm described in [10].
These instances are harder than random Partial Max-2-SAT instances. We
solved instances with 150 variables and 150 hard clauses varying the density
from 5 to 15. By density we mean the ratio of number of clauses to number
of variables.

– Benchmarks from the SAT-2002 Competition 2. We used benchmarks from
the SAT-2002 Competition because they are not so hard as the benchmarks
from subsequent competitions. These are satisfiable instances to which we
solved the Max-One problem (i.e., compute the maximum number of vari-
ables that can be assigned to true by any satisfying assignment).

– Weighted Max-SAT instances from the Max-SAT Evaluation 2006, submit-
ted by the developers of Toolbar, which are Partial Max-SAT instances 3.

The results of solving random Partial Max-2-SAT and random Partial Max-
3-SAT instances are shown in Figure 2. We solved 100 instances for each data
point. The left plots display the mean time needed to solve an instance with
2 http://www.satlib.org/Benchmarks/SAT/New/Competition-02/sat-2002-beta.tgz
3 We mean that they are weighted Max-SAT instances in which some clauses have

weight 1 and the rest of clauses have a weight which is bigger than the total number
of clauses. These weighted instances are equivalent to Partial Max-SAT instances
in which clauses with weight 1 are declared to be soft and the rest of clauses are
declared to be hard.

Partial Max-SAT Solvers with Clause Learning 35

 0.1

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14 16

C
P

U
 ti

m
e

in
 s

ec
on

ds
 (

lo
gs

ca
le

)

Density

Random 2-SoftSAT with 150 variables

PMS
PMS-hard

PMS-learning
Toolbar

 1000

 10000

 100000

 1e+06

 1e+07

 4 6 8 10 12 14 16

N
um

be
r

of
 n

od
es

 (
lo

gs
ca

le
)

Density

Random 2-SoftSAT with 150 variables

PMS
PMS-hard

PMS-learning

Fig. 3. Random 2-SoftSAT instances

PMS, PMS-hard, PMS-learning and Toolbar. The right plots display the mean
number of nodes traversed by our solvers. We observe that the best performing
solver for Partial Max-2-SAT is Toolbar while the best performing solvers for
Partial Max-3-SAT are PMS and PMS-hard. We believe that the good behavior
of Toolbar on Partial Max-2-SAT is due to the incorporation of several Max-SAT
inference rules which perform very well for binary clauses. In this example, it is
particularly interesting to observe the performance improvements achieved on
Partial Max-2-SAT by incorporating our learning scheme of soft clauses.

The results of solving random 2-SoftSAT instances are shown in Figure 3. We
solved 100 instances for each data point. The left plot displays the mean time
needed to solve an instance with PMS, PMS-hard, PMS-learning and Toolbar.
The right plot displays the mean number of nodes traversed by our solvers. We
observe that the best performing solver is Toolbar, and that when we apply soft
learning we get important gains both in time and in number of nodes. The gains
in number of nodes are superior to the gains in time due to the overhead of
applying learning.

The results of solving the benchmarks from the SAT-2002 Competition, using
a cutoff of 3600 seconds, are shown in Table 1 and Table 2. The first column
of Table 1 shows the name of the set of instances, the second column shows
the number of instances in the set, the rest of columns show the median time

Table 1. Benchmarks from the SAT-2002 Competition solving the Max-One problem.
Time in seconds.

Instance set # Toolbar ChaffBS PMS-noLB PMS PMS-hard PMS-learning

3-coloring 30 662.95(20) 3.77(30) 31.45(30) 818.62(19) 241.74(30) 53.54(20)

AIM 12 317.28(8) 0.25(12) 0.35(12) 91.98(10) 0.41(12) 0.37 (12)

CNT 6 0.00(0) 143.11(4) 30.87(3) 86.05(1) 155.26(2) 137.96(2)

DP 11 1035.65(1) 411.68(4) 131.79(6) 594.71(3) 598.21(4) 638.60(4)

EZFACT 10 0.00(0) 2.56(10) 9.11(10) 2739.14(1) 214.10(10) 69.26(8)

MED 4 0.00(0) 52.72(1) 1.93(1) 4.25(1) 4.10(1) 6.72 (1)

36 J. Argelich and F. Manyà

Table 2. Benchmarks from the SAT-2002 Competition solving the Max-One problem.
Number of nodes.

Instance set # PMS-noLB PMS PMS-hard PMS-learning

3-coloring 30 429157(30) 2714206(19) 425872(30) 93769(20)

AIM 12 2988(12) 3414797(10) 1842(12) 1929(12)

CNT 6 519660(3) 650615(1) 137756(2) 119154(2)

DP 11 4513674(6) 99533(3) 140412(4) 178220(4)

EZFACT 10 395677(10) 5774450(1) 395677(10) 119923(8)

MED 4 56050(1) 32278(1) 28881(1) 16236(1)

(among the instances solved within the cutoff) needed to solve an instance,
and the number of instances solved (in brackets). Table 2 is like Table 1 but
shows number of nodes instead of time for PMS-noLB, PMS, PMS-hard and
PMS-learning. We observe that the best performing solver is ChaffBS and then
PMS-noLB. The underestimation of the lower bound seem not to be very useful
for these Max-One instances. Among PMS, PMS-hard and PMS-learning, the
best option is PMS-hard.

Figure 4 displays the number of instances x from the SAT-2002 Competition
that can be solved in y seconds. In this case, the best solvers are PMS-noLB and
ChaffBS, and then PMS-hard and PMS-learning.

The results of solving the benchmarks from the Max-SAT 2006 Evaluation,
using a cutoff of 3600 seconds, are shown in Table 3 and Table 4. The best
performing solvers are ChaffBS, PMS-hard and PMS-learning. We observe that
PMS-learning gives rise to substantial gains in number of nodes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds (SAT-2002 Competition)

PMS-noLB
PMS-hard

PMS-learning
PMS

ChaffBS
Toolbar

Fig. 4. Number of instances x that can be solved in y seconds. Instances from the
SAT-2002 Competition.

Partial Max-SAT Solvers with Clause Learning 37

Table 3. Benchmarks from the Max-SAT 2006 Evaluation. Time in seconds.

Instance set # Toolbar ChaffBS PMS PMS-hard PMS-learning

Max-Clique 62 368.18(30) 294.36(19) 277.94(28) 363.13(29) 412.22(13)

Max-One (3-SAT) 45 237.49(45) 354.04(15) 1.88(45) 2.28 (45) 31.00(31)

Max-CSP (Dense Loose) 40 377.42(37) 600.41(36) 1.66 (40) 1.64 (40) 0.69 (40)

Max-CSP (Dense Tight) 60 46.95(30) 239.64(60) 103.65(50) 101.69(50) 145.98(50)

Max-CSP (Sparse Loose) 40 257.09(38) 20.54(40) 0.39 (40) 0.39 (40) 0.33 (40)

Max-CSP (Sparse Tight) 40 236.31(20) 596.19(38) 111.68(40) 109.70(40) 112.07(40)

WCSP (N Queens) 7 469.82(6) 13.96(7) 18.37(7) 15.17(7) 2.51 (6)

Table 4. Benchmarks from the Max-SAT 2006 Evaluation. Number of nodes.

Instance set # PMS PMS-hard PMS-learning

Max-Clique 62 3407445(28) 3492585(29) 591131(13)

Max-One (3-SAT) 45 32570(45) 27209(45) 60028(31)

Max-CSP (Dense Loose) 40 59404(40) 59404(40) 9736(40)

Max-CSP (Dense Tight) 60 896789(50) 896789(50) 283525(50)

Max-CSP (Sparse Loose) 40 6554(40) 6554(40) 3060(40)

Max-CSP (Sparse Tight) 40 385894(40) 385894(40) 266831(40)

WCSP (N Queens) 7 239005(7) 199738(7) 43761(6)

Figure 5 displays the number of instances x from the Max-SAT 2006 Evalua-
tion that can be solved in y seconds. In this case, the best solvers are PMS-hard
and PMS, and then PMS-learning and ChaffBS.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds (Max-SAT 2006 Evaluation)

PMS-hard
PMS-learning

PMS
ChaffBS
Toolbar

Fig. 5. Number of instances x that can be solved in y seconds. Instances from the
Max-SAT Evaluation 2006.

38 J. Argelich and F. Manyà

5 Concluding Remarks

In this paper we have designed and implemented three new Partial Max-SAT
solvers, and provided empirical evidence that they are competitive. These solvers
exploit the fact of knowing which clauses are declared hard and which clauses
are declared soft, and incorporate conflict clause learning.

One contribution of this paper is that we have show the advantages of using
Partial Max-SAT solvers over weighted Max-SAT solvers when solving problems
with hard and soft constraints. On the one hand, we can exploit the learning
of modern SAT solvers in the Max-SAT context. As we have seen in the ex-
perimental investigation, learning hard clauses produces significant performance
improvements on a variety of instances. On the other hand, hard clauses al-
low to apply a more efficient inference, as well as to compute lower bounds of
better quality: (i) the Max-SAT resolution rule is simpler when at least one of
the premises is hard; (ii) unit propagation can be enforced on unit hard clauses
(while unit propagation on soft clauses is unsound); (iii) a branch of the proof
tree can be pruned as soon as a hard clause is violated; (iv) further inconsisten-
cies can be detected in lower bound UP due to the fact that hard clauses used to
derive one contradiction can be used again to derive additional contradictions.

Another contribution is that we have defined, to the best of our knowledge,
the first learning scheme for soft clauses, and shown that it accelerates the search
for an optimal solution on some instances. As we can see in the experiments, it
has been particularly useful when solving Partial Max-2-SAT instances. When
we look at number of nodes instead of time, we observe that learning soft clauses
is superior to learning just hard clauses in a number of instances. We believe
that it is worth to design and implement more efficient procedures for learning
soft clauses.

It is worth to notice that we have also discussed how Max-SAT resolution can be
simplified in the context of PartialMax-SAT, obtaining a complete resolution-style
calculus for Partial Max-SAT which is simpler than the calculus for Max-SAT.

As future work, we plan to incorporate into PMS, PMS-hard and PMS-
learning additional Max-SAT inference rules like those incorporated into
MaxSatz [17] and Toolbar [11], as well as to define new learning schemes for
soft clauses. It would be also interesting to evaluate the impact of incorporating
into our solvers the non-chronological backtracking and the inference techniques
described for Partial Max-SAT in the paper of Heras et al. in this volume [12].

References

1. T. Alsinet, F. Manyà, and J. Planes. Improved exact solver for weighted Max-SAT.
In Proceedings of the 8th International Conference on Theory and Applications of
Satisfiability Testing, SAT-2005, St. Andrews, Scotland, pages 371–377. Springer
LNCS 3569, 2005.

2. J. Argelich and F. Manyà. Solving over-constrained problems with SAT technology.
In Proceedings of the 8th International Conference on Theory and Applications of
Satisfiability Testing, SAT-2005, St. Andrews, Scotland, pages 1–15. Springer LNCS
3569, 2005.

Partial Max-SAT Solvers with Clause Learning 39

3. J. Argelich and F. Manyà. Exact Max-SAT solvers for over-constrained problems.
Journal of Heuristics, 12(4–5):375–392, 2006.

4. J. Argelich and F. Manyà. Learning hard constraints in Max-SAT. In Proceedings of
the Workshop on Constraint Solving and Constraint Logic Porgramming, CSCLP-
2006, Lisbon, Portugal, pages 1–12, 2006.

5. N. Bansal and V. Raman. Upper bounds for MaxSat: Further improved. In
Proc 10th International Symposium on Algorithms and Computation, ISAAC’99,
Chennai, India, pages 247–260. Springer, LNCS 1741, 1999.

6. M. Bonet, J. Levy, and F. Manyà. A complete calculus for Max-SAT. In Proceedings
of the 9th International Conference on Theory and Applications of Satisfiability
Testing, SAT-2006, Seattle, USA, pages 240–251. Springer LNCS 4121, 2006.

7. M. Bonet, J. Levy, and F. Manyà. Resolution for Max-SAT. Artificial Intelligence,
2007. doi:10.1016/j.artint.2007.03.001.

8. B. Cha, K. Iwama, Y. Kambayashi, and S. Miyazaki. Local search algorithms for
partial MAXSAT. In Proceedings of the 14th National Conference on Artificial
Intelligence, AAAI’97, Providence/RI, USA, pages 263–268. AAAI Press, 1997.

9. Z. Fu and S. Malik. On solving the partial MAX-SAT problem. In Proceedings
of the 9th International Conference on Theory and Applications of Satisfiability
Testing, SAT-2006, Seattle, USA, pages 252–265. Springer LNCS 4121, 2006.

10. V. Heinink, M. Seckington, and F. van der Werf. Experiments on Random 2-
SoftSAT. Technical report, Delft University of Technology, 2006.

11. F. Heras and J. Larrosa. New inference rules for efficient Max-SAT solving.
In Proceedings of the National Conference on Artificial Intelligence, AAAI-2006,
Boston/MA, USA, pages 68–73, 2006.

12. F. Heras, J. Larrosa, and A. Oliveras. Minimaxsat: A new weighted Max-SAT
solver. In Proceedings of the 10th International Conference on Theory and Appli-
cations of Satisfiability Testing, SAT-2007, Lisbon, Portugal, 2007.

13. R. G. Jeroslow and J. Wang. Solving propositional satisfiability problems. Annals
of Mathematics and Artificial Intelligence, 1:167–187, 1990.

14. Y. Jiang, H. Kautz, and B. Selman. Solving problems with hard and soft constraints
using a stochastic algorithm for MAX-SAT. In Proceedings of the 1st International
Workshop on Artificial Intelligence and Operations Research, 1995.

15. J. Larrosa and F. Heras. Resolution in Max-SAT and its relation to local consis-
tency in weighted CSPs. In Proceedings of the International Joint Conference on
Artificial Intelligence, IJCAI-2005, Edinburgh, Scotland, pages 193–198. Morgan
Kaufmann, 2005.

16. C. M. Li, F. Manyà, and J. Planes. Exploiting unit propagation to compute lower
bounds in branch and bound Max-SAT solvers. In Proceedings of the 11th Inter-
national Conference on Principles and Practice of Constraint Programming, CP-
2005, Sitges, Spain, pages 403–414. Springer LNCS 3709, 2005.

17. C. M. Li, F. Manyà, and J. Planes. Detecting disjoint inconsistent subformulas
for computing lower bounds for Max-SAT. In Proceedings of the 21st National
Conference on Artificial Intelligence, AAAI-2006, Boston/MA, USA, pages 86–91,
2006.

18. D. W. Loveland. Automated Theorem Proving. A Logical Basis, volume 6 of Fun-
damental Studies in Computer Science. North-Holland, 1978.

19. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient sat solver. In 39th Design Automation Conference, 2001.

40 J. Argelich and F. Manyà

20. H. Shen and H. Zhang. Study of lower bound functions for max-2-sat. In Proceed-
ings of AAAI-2004, pages 185–190, 2004.

21. Z. Xing and W. Zhang. An efficient exact algorithm for (weighted) maximum
satisfiability. Artificial Intelligence, 164(2):47–80, 2005.

22. L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven
learning in a Boolean satisfiability solver. In International Conference on Computer
Aided Design, ICCAD-2001, San Jose/CA, USA, pages 279–285, 2001.

MiniMaxSat: A New Weighted Max-SAT Solver

Federico Heras, Javier Larrosa, and Albert Oliveras

Universitat Politecnica de Catalunya,
Jordi Girona 1-3, 08034 Barcelona, Spain

Abstract. In this paper we introduce MINIMAXSAT, a new Max-SAT solver that
incorporates the best SAT and Max-SAT techniques. It can handle hard clauses
(clauses of mandatory satisfaction as in SAT), soft clauses (clauses whose falsifi-
cation is penalized by a cost as in Max-SAT) as well as pseudo-boolean objective
functions and constraints. Its main features are: learning and backjumping on
hard clauses; resolution-based and subtraction-based lower bounding; and lazy
propagation with the two-watched literals scheme. Our empirical evaluation on
a wide set of optimization benchmarks indicates that its performance is usually
close to the best specialized alternative and, in some cases, even better.

1 Introduction

Max-SAT is the optimization version of SAT where the goal is to satisfy the maximum
number of clauses. It is considered one of the fundamental combinatorial optimization
problems and many important problems can be naturally expressed as Max-SAT. They
include academic problems such as max cut or max clique, as well as real problems in
domains like routing, bioinformatics, scheduling, electronic markets, etc...

There is a long tradition of theoretical work about the structural complexity [1] and
approximability [2] of Max-SAT. Most of this work is restricted to the simplest case in
which all clauses are equally important (i.e., unweighted Max-SAT) and have a fixed
size (mainly binary or ternary clauses). From a practical point of view, a significant
progress has been made in the last 3 years [3,4,5,6,7,8]. As a result, there is a handful
of new solvers that can deal, for the first time, with medium-sized instances.

The main motivation of our work comes from the study of Max-SAT instances mod-
elling real-world problems. We usually encounter three features:

– The satisfaction of all clauses does not have the same importance, so each clause
needs to be associated with a weight that represents the cost of its violation. In the
extreme case, which often happens in practice as observed in [9], there are clauses
whose satisfaction is mandatory. They are usually modelled by associating a very
high weight with them.

– Literals do not appear randomly along the clauses. On the contrary, it is easy to
identify patterns, symmetries or other kinds of structures.

– In some problems there are mandatory clauses that reduce dramatically the num-
ber of feasible assignments, so the optimization part of the problem only plays a
secondary role. However, in some other problems mandatory clauses are trivially
satisfiable and the real difficulty lays on the optimization part.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 41–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

42 F. Heras, J. Larrosa, and A. Oliveras

When we look at current Max-SAT solvers, we find that none of them is robust over
these three features. For instance, [7,8] are restricted to formulas in which all clauses
are equally important, [3] is restricted to binary clauses, [5] seems to be efficient on very
overconstrained problems (i.e., only a small fraction of the clauses can be simultane-
ously satisfied), while [10] seems to be efficient on slightly overconstrained problems
(i.e. almost all the clauses can be satisfied). The solver proposed in [11] is the only
one that incorporates some learning, so it will presumably perform well on structured
problems, but its lower bound computation is relatively weak, so it does not seem to be
competitive in pure optimization problems.

In this paper we introduce MINIMAXSAT, a new weighted Max-SAT solver that
incorporates the current best SAT and Max-SAT techniques. It is build on top of Min-
iSAT+ [12], so it borrows its capability to deal with pseudo-boolean problems and all
the MiniSAT [13] features processing mandatory clauses such as learning and back-
jumping. We have extended it allowing it to deal with weighted clauses, while preserv-
ing the two-watched literals lazy propagation method. The main original contribution of
MINIMAXSAT is that it implements a very efficient lower bounding technique. Specif-
ically, it applies unit propagation in order to detect disjoint inconsistent clauses like in
[8] and then it transforms the problem like in [4,14,5] to increment the lower bound.
However, while in [4,14,5] only the clauses that accomplish specific patterns are trans-
formed, in MINIMAXSAT there is no need to define such patterns.

The structure of the paper is as follows: Section 2 provides preliminary definitions,
Section 3 overviews MINIMAXSAT, Sections 4 and 5 focus on its lower bounding and
additional features, respectively. Section 6 reports experimental results and Section 7
presents related work. Finally, Section 8 concludes and points out possible future work.

2 Preliminaries

In the sequel X = {x1,x2, . . . ,xn} is the set of boolean variables. A literal is either a
variable xi or its negation x̄i. The variable to which literal l refers is noted var(l). Given
a literal l, its negation l̄ is x̄i if l is xi and is xi if l is x̄i. A clause C is a disjunction
of literals. In the following, possibly subscripted capital letters A, B, C, D, and E will
always represent clauses. The size of a clause, noted |C|, is the number of literals that
it has. The set of variables that appear in C is noted var(C). An assignment is a set of
literals not containing a variable and its negation. Assignments of maximal size n are
called complete, otherwise they are called partial. An assignment satisfies a literal iff it
belongs to the assignment, it satisfies a clause iff it satisfies one or more of its literals
and it falsifies a clause iff it contains the negation of all its literals. In the latter case we
say that the clause is conflicting as it always happens with the empty clause, noted �.

A weighted clause is a pair (C,w), where C is a clause and w is the cost of its falsifi-
cation, also called its weight. Many real problems contain clauses that must be satisfied.
We call such clauses mandatory or hard and associate with them a special weight �.
Non-mandatory clauses are also called soft. A weighted formula in conjunctive normal
form (WCNF) is a multiset of weighted clauses. A model is a complete assignment that
satisfies all mandatory clauses. The cost of an assignment is the sum of weights of the
clauses that it falsifies. Given a WCNF formula, Weighted Max-SAT is the problem

MiniMaxSat: A New Weighted Max-SAT Solver 43

of finding a model of minimum cost. Note that if a formula contains only mandatory
clauses, weighted Max-SAT is equivalent to classical SAT. If all the clauses have weight
1, we have the so-called (unweighted) Max-SAT problem. In the following, we will as-
sume weighted Max-SAT.

We say that formula F ′ is a relaxation of formula F (noted F ′ � F) if they are
defined over the same set of variables and the cost of any complete assignment in F ′ is
less than or equal to the cost in F (non-models are considered to have cost infinity). We
say that two formulas F ′ and F are equivalent (noted F ′ ≡ F) if F ′ � F and F � F ′.

If a formula contains clauses (C,u) and (C,v), they can be replaced by (C,u+v) and
if it contains a clause (C,0), this may be removed. Both these transformation preserve
equivalence. The empty clause may appear in a formula. If its weight is �, it is clear
that the formula does not have any model. If its weight is w, the cost of any assignment
will include that weight, so w is an obvious lower bound of the formula optimal cost.
Weighted empty clauses and their interpretation in terms of lower bounds will become
relevant in Section 4.

Mandatory clauses of size 1 (namely, (l,�)) are called facts. When a formula con-
tains a fact (l,�), it can be simplified by removing all clauses containing l and removing
l̄ from all the clauses where it appears. The application of this rule until quiescence is
called unit propagation (UP) and it is well recognized as a fundamental propagation
technique in all current SAT solvers. Note that most of them use a lazy implementation
of UP based on the two-watched literals scheme [15].

3 Overview of MINIMAXSAT

MINIMAXSAT performs a depth-first branch-and-bound search on the tree of possible
assignments, where internal nodes represent partial assignments and leaf nodes rep-
resent complete assignments. Each internal node has two children: the two possible
extensions of its associated assignment with respect to one of the unassigned variables.
At an arbitrary search point, the algorithm tries to detect a conflict, which means that the
current partial assignment cannot be successfully extended. We distinguish two types
of conflicts: hard conflicts indicate that there is no model extending the current partial
assignment (namely, all the mandatory clauses cannot be satisfied), and soft conflicts
indicate that the current partial assignment cannot be extended to an optimal assign-
ment. Hard conflicts are detected when unit propagation leads to the empty mandatory
clause (�,�). The detection of soft conflicts requires that the algorithm maintains two
values during search:

– The cost of the best model found so far, which is an upper bound ub of the optimal
solution.

– An underestimation of the best cost that can be achieved extending the current par-
tial assignment into a model, which is a lower bound lb of the current subproblem.

A soft conflict is detected when lb ≥ ub, because it means that the current assignment
cannot lead to an optimal model. Note that any soft clause (C,w) with w ≥ ub must be
satisfied in an optimal assignment. Therefore, in the following we assume that such soft
clauses are automatically transformed into hard clauses.

44 F. Heras, J. Larrosa, and A. Oliveras

An algorithmic description of MINIMAXSAT is presented in Algorithm 1. The algo-
rithm uses a propagation queue Q which contains all facts pending propagation. Once
propagated, literals are not removed from Q, but rather marked as such. The algorithm
also uses an arrayV (l) which accumulates the weight of all soft clauses that have become
unit over l (namely, clauses (A∨ l,w) such that the current assignment falsifies A).

Before starting the search, a good initial upper bound is obtained with a local search
method (line 1) which may yield the identification of some new hard clauses. In our cur-
rent implementation we use UBCSAT [16] with default parameters. The selected local
search algorithm is IROTS (Iterated Robust Tabu Search). Next, the queue Q is initial-
ized with all the facts in the resulting formula (line 2). The main loop starts in line 3 and
each iteration is in charge of propagating all pending facts (line 4) and, if no conflict is
detected, attempting the extension of the current partial assignment (line 10). Pending
facts in Q are propagated in function Propagate (line 4), which may return a hard or
soft conflict (see next Section for details). If a hard conflict is encountered (line 5) the
conflict is analyzed, a new hard clause is learnt and backjumping is performed. This is
done as it is customary in classical SAT solvers such as CHAFF [15]. If a soft conflict
is encountered (line 6) chronological backtracking is performed. Note that this does not
affect the overall completeness of the procedure, but some subtle implementation de-
tails are necessary. If no conflict is found (line 10), a literal is heuristically selected and
added to Q for propagation in the next iteration. However, if the current assignment is
complete (line 7), the upper bound is updated. Search stops if a zero-cost solution is
found because it cannot be further improved (line 8). Else, chronological backtracking
is performed (line 9). Note that backjumping leads to termination if a top level hard con-
flict is found, while chronological backtracking leads to termination if the two values
for the first assigned variable have been tried.

Algorithm 2 describes function Propagate that performs unit propagation (UP)
which propagates facts (line 18). It iterates over the non-propagated literals l in Q (line
11). Firstly, the cost of falsifying l̄ (which is recorded in V (l̄)) is added to the lower
bound (line 12). Secondly, if a hard clause becomes a fact (line 13), the corresponding
literal is added to Q for future propagation (line 14). Finally, if a soft clause becomes
unit (q,u) (line 16), its weight u is added to V (q) (line 17). If during this process a
hard conflict is detected, the function returns it (line 15). Else, the algorithm attempts
to detect a soft conflict with a call to procedure improveLB (line 20, see Section 4 for
details), and it returns the soft conflict if it is found (line 21). Finally, if no conflict is
detected, the function returns None (line 22).

Note that Propagate only needs to identify when original (soft or hard) clauses
have all their literals but one falsified. Thus, we use the two-watched literals scheme
[15] in both hard and soft clauses. Note that any changes to lb or V (l) must be restored
upon backtracking.

4 Lower Bounding in MINIMAXSAT

In the following, we consider an arbitrary search state of MINIMAXSAT before the
call to improveLB. Such a search state is uniquely characterized by the current as-
signment. The current assignment determines the current subformula which is the

MiniMaxSat: A New Weighted Max-SAT Solver 45

Algorithm 1. MINIMAXSAT basic structure
Function Search() : integer

1 ub := LocalSearch() ;
2 InitQueue(Q) ;
3 Loop
4 Propagate() ;
5 if Hard Conflict then

Analyze() ;
if Top Level Hard Conflict then return ub ;
else

LearnClause() ;
Backjumping() ;

else
6 if Soft Conflict then

ChronologicalBactracking() ;
if End of Search then return ub ;

else
7 if all variables assigned then

ub := lb ;
8 if ub = 0 then return ub ;
9 ChronologicalBactracking() ;

if End of Search then return ub ;

10 else
l := SelectLiteral() ;
Enqueue(Q, l) ;

original formula conditioned by the current assignment. The current subformula has
the lower bound as the weight of the empty clause (�, lb). Similarly, value V (l) de-
fines unit clause (l,V (l)). Recall that such a unit clause is the aggregation of all the
original clauses that have become unit over l due to the current partial
assignment.

MINIMAXSAT improves its lower bound in procedure improveLB (called in line
20 of Algorithm 2). It does so by deriving new soft empty clauses (�,w) through a
weighted resolution process. Such clauses are added to the original (�, lb) clause pro-
ducing an increment of the lower bound. Weighted resolution (also called Max-RES)
[4], is a rule that replaces two clashing clauses (x∨A,u) and (x̄∨B,w) by the following
set of clauses {(A∨B,m),(x∨A,u−m),(x̄∨B,w−m),(x∨A∨ B̄,m),(x̄∨ Ā∨B,m)}, 1

where m = min{u,w} and hard clauses are treated as if their cost was infinity (i.e.
�−u =�). The first clause is called the resolvent and the other clauses are called com-
pensation clauses. The transformation preserves equivalence as defined in Section 2.

1 When A is the empty clause, A represents a tautology.

46 F. Heras, J. Larrosa, and A. Oliveras

Algorithm 2. Functions related with the search algorithm
Function UP() : conflict

while (Q contains non-propagated literals) do
11 l := PickNonPropagatedLiteral(Q); MarkAsPropagated(l) ;
12 lb := lb+V (l̄)) ;
13 foreach Hard clause that has become unit over literal q do
14 Enqueue(Q,q) ;
15 if {q̄} ∈Q then return Hard Conflict ;

16 foreach Soft clause with weight u that has become unit over literal q do
17 V (q) = V (q)+u ;

return None ;

Function Propagate() : conflict
18 c := UP() ;
19 if c = Hard Conflict then return c ;
20 improveLB() ;
21 if lb≥ ub then return Soft Conflict ;
22 return None ;

The last two compensation clauses may lose the clausal form, so the following rule [5]
may be needed to recover it:

CNF(A∨ l∨B,u) =
{

A∨ l̄ : |B|= 0
{(A∨ l̄∨B,u)}∪CNF(A∨ B̄,u) : |B|> 0

Example 1. If we apply weighted resolution to the following clauses {(x∨y,3),(x̄∨y∨
z,4)} we obtain {(y∨y∨ z,3),(x∨y,3−3),(x̄∨y∨ z,4−3),(x∨y∨ (y∨ z),3),(x̄∨ ȳ∨
y∨z,3)}. The first and fourth clauses can be simplified. The second clause can be omitted
because it weight is zero. The fifth clause can be omitted because it is a tautology. We
apply CNF rule to the fourth clause to obtain two new clauses CNF(x∨y∨(y∨ z),3) =
{(x∨y∨ ȳ∨z),3),(x∨y∨ z̄,3)}. Note that the first new clause is a tautology. Therefore,
we obtain the equivalent formula {(y∨ z,3),(x̄∨ y∨ z,1),(x∨ y∨ z̄,3)}.
As a first step, improveLB performs unit neighborhood resolution (UNR) [17,4],
which only resolves on pairs of clashing unit clauses. It produces an immediate in-
crement of the lower bound (i.e., the weight of the empty clause) as it is illustrated in
the following example,

Example 2. Consider a search state with two unassigned variables x and y in which the
lower bound is lb = 3, V (x) = V (y) = 1, V (x̄) = V (ȳ) = 2 and a clause (x∨ y,3). This
is equivalent to the formula {(�,3),(x,1),(y,1),(x̄,2),(ȳ,2),(x∨y,3)}. UNR would re-
solve on clauses (x,1) and (x̄,2) replacing them by (x̄,1) and (�,1) (all other compen-
sation clauses are removed because their weight is zero or they are tautologies). The two
empty clauses can be grouped into (�,3 + 1 = 4). UNR would also resolve on clauses
(y,1) and (ȳ,2) replacing them by (ȳ,1) and (�,1). The two empty clauses can be
grouped into (�,4+1 = 5). So, the new equivalent formula is {(�,5),(x̄,1),(ȳ,1),(x∨
y,3)} with a higher lower bound of 5.

MiniMaxSat: A New Weighted Max-SAT Solver 47

As a second step we execute a simulation of unit propagation (SUP) in which soft clauses
are treated as if they were hard. As seen in the previous section, unit propagation uses a
propagation queue Q. In the following, we assume that together with each literal l, the
queue Q also contains its reason: the clause (A∨ l,w) that cause its unit propagation. If
SUP yields a conflict, it means that there is a subset of (soft or hard) clauses that cannot be
simultaneously satisfied. Let m be the minimum weight among these clauses. It is easy
to see that the extension of the current partial assignment to the unassigned variables
will have a cost of at least m. Besides, such a cost can be made explicit by a sequence of
resolution steps. A resolution tree is built from the propagation queue Q as follows: let
C0 be the conflicting clause. Traverse Q from tail to head until a clashing clause D0 is
found. Then resolution is applied between C0 and D0, obtaining resolvent C1. Next, the
traversal of Q continues until a clause D1 that clashes with C1 is found, giving resolvent
C2 and we iterate the process until the resolvent we obtain is the empty clause �. Once the
resolution tree is computed, weighted resolution can actually be done with the actual soft
clauses and, as a result, the empty clause (�,m) will be derived. Finally, all clauses used
in the process will be replaced by (�,m) and the corresponding compensation clauses,
thus obtaining an equivalent formula with a lower bound increment of m. It is important
to remark that this transformation preserves equivalence since all clauses are used at most
once in the resolution process but we have to undo the transformation upon backtracking.
We call this procedure resolution-based lower bounding.

Example 3. Consider formula F = {(x̄,2)A,(x ∨ w,1)B,(x ∨ y,�)C,(x ∨ z,2)D,
(ȳ∨ z̄,3)E}, where each clause is identified by a subindex for future reference.

Step 1. Apply SUP. Initially, the unit clause A is enqueued producing Q = [x̄(A)]
(within parenthesis, we indicate the reason of a literal). Then x̄ is propagated. The re-
sulting formula is {(w,1)B,(y,�)C,(z,2)D,(ȳ ∨ z̄,3)E} and Q becomes
[x̄(A),w(B),y(C),z(D)]. Literal w is propagated. The resulting formula is {(y,�)C,
(z,2)D,(ȳ∨ z̄,3)E} and no new unit clauses are generated. Literal y is propagated.
The resulting formula is {(z,2)D,(z̄,3)E} and a new unit clause is enqueued producing
Q = [x̄(A),w(B),y(C),z(D), z̄(E)]. Since z and z̄ are inside Q, a conflict is detected and
SUP stops. Note that E is the conflicting clause. Figure 1.a shows the state of Q after
the propagation.

Step 2. Build the resolution tree. Starting from the tail of Q the first clause clashing
with the conflicting clause E is D. Resolution between E and D generates the resolvent
x∨ ȳ. The first clause clashing with it is C, producing resolvent x. The next clause clash-
ing with it is A and resolution generates �. Figure 1.b shows the resulting resolution
tree. The minimum weight among the involved clauses is 2.

Step 3. Transform the problem. We apply weighted resolution as indicated by the tree
computed in Step 2. Figure 1.c graphically shows the result of the process. Leaf clauses
are the original clauses involved in the resolution. Each internal node indicates a res-
olution step. The resolvents appear in the junction of the edges. Beside each resolvent,
inside a box, there are the compensation clauses that must be added to the formula
to preserve equivalence. Since clauses that are used in resolution must be removed,
the resulting formula F ′ consists of the root of the tree ((�,2)) and all compensation
clauses. That is, the resulting formula is F ′= {(x∨w,1),(x∨y,�),(ȳ∨ z̄,1),(�,2),(x∨
y∨ z,2),(x̄∨ ȳ∨ z̄,2)}. Note that F ≡ F ′.

48 F. Heras, J. Larrosa, and A. Oliveras

z̄(E)

x̄(A)

z(D)

y(C)

w(B)

E D

C

A

�

F ′ = {(x∨w,1),(x∨ y,�),(ȳ∨ z̄,1),(�,2),(x∨ y∨ z,2),(x̄∨ ȳ∨ z̄,2)}
F ′′ = {(x∨w,1),(x∨ y,�),(ȳ∨ z̄,1),(�,2)}

a) b) c)

(�,2)

(x∨ y∨ z,2)

(ȳ∨ z̄,1)
(x̄∨ ȳ∨ z̄,2)

(x∨ y,�)

(x∨ ȳ,2) (x∨ y,�)C

(x,2) (x̄,2)A

(ȳ∨ z̄,3)E (x∨ z,2)D

F = {(x̄,2)A,(x∨w,1)B,(x∨ y,�)C,(x∨ z,2)D,(ȳ∨ z̄,3)E}

Fig. 1. Graphical representation of MINIMAXSAT lower bounding. On the top, the original for-
mula F . On the left, the propagation Q after step 1. In the middle, the structure of the resolution
tree computed in step 2. On the right, the effect of actually executing the resolution (step 3). The
resulting formula F ′ appears bellow. If subtraction-based lower bounding is performed, step 3 is
replaced by a subtraction of weights, producing formula F ′′.

An alternative to problem transformation through resolution is to identify the lower
bound increment m and then subtract it from all the clauses that would have participated
in the resolution tree. This procedure is reminiscent of the lower bound computed in [7]
and we call it subtraction-based lower bounding.

Example 4. Consider formula F from the previous example. Steps 1 and 2 are identi-
cal. However, subtraction-based lower bounding would replace Step 3 by Step 3’ that
subtracts weight 2 from the clauses that appear in the resolution tree and then adds
(�,2) to the formula. The result is F ′′ = {(x∨w,1),(x∨ y,�),(ȳ∨ z̄,1),(�,2)}. Note
that F ′′ �F , so its lower bound is also a lower bound of F , but they are not equivalent.
Hence, F ′′ cannot be used in the subsequent search and if no soft conflict is immediately
detected, this transformation has to be undone before continuing the search.

After the increment of the lower bound with either technique, procedure SUP can be
executed again, which may yield new lower bound increments. The process is repeated
until SUP does not detect any conflict.

When comparing the two previous approaches, we find that resolution-based lower
bounding has a larger overhead, because resolution steps need to be actually computed

MiniMaxSat: A New Weighted Max-SAT Solver 49

and their consequences must be added to the current formula and removed upon back-
tracking. However, the effort invested in the transformation is usually amortized be-
cause the increment obtained in the lower bound becomes part of the current formula,
so it does not have to be discovered again and again by all the descendent nodes of
the search as it would happen with the subtraction-based approach. In our experiments,
we found that no scheme was systematically better than the other. We also found that
resolution-based lower bounding seems to be more effective if resolution is only ap-
plied to low arity clauses. As a consequence, after the identification of the resolution
tree, MINIMAXSAT only applies resolution-based lower bounding if the largest resol-
vent in the resolution tree has arity less than 4. Observe that compensation clauses will
contain at most 4 literals. Otherwise, it applies subtraction-based lower bounding.

5 Additional Features of MINIMAXSAT

5.1 Probing

Probing is a well-known SAT technique that allows the formulation of hypothetical
scenarios [18]. The idea is to temporarily assume that l is a fact and then execute unit
propagation. If UP yields a conflict, we know that l̄ is indeed a fact. The process is
iterated over all the literals until quiescence. Exhaustive experiments in the SAT context
indicate that it is too expensive to probe during search, so it is normally done as a pre-
process in order to reduce the initial number of branching points.

We can easily extend this idea to Max-SAT. In that context, besides the discovery
of facts, it may be used to make explicit weighted unit clauses. As in SAT, the idea is
to temporarily assume that l is a fact and then simulate unit propagation (i.e., execute
SUP()). Then, we build the resolution tree T from the propagation queue Q. If all the
clauses in T are hard, we know that l̄ is indeed a fact. Else, we can reproduce T applying
Max-RES with the actual clauses and derive a unit clause (l̄,m) where m is the mini-
mum weight among the clauses in T . Having unit soft clauses upfront makes the future
executions of improveLB much more effective in the subsequent search. Besides, if
we derive both (l,u) and (l̄,w), we can generate via unit neighborhood resolution (see
Example 2) an initial non-trivial lower bound of min{u,w}. We tested probing during
search and as a preprocessing in several benchmarks. We observed empirically that
probing as a preprocessing was the best option as it is in SAT.

Example 5. Consider formula F = {(x∨y,1)A,(x∨ z,1)B,(ȳ∨ z̄,1)C}. If we assume x̄
by adding it to Q and then execute SUP a conflict is reached. We obtain Q = [x̄(∅),y(A),
z(B), z̄(C)] and we detect that C is a conflicting clause. The clauses involved in the refu-
tation are C, B, and A. Resolving clauses C and B results in {(x∨ y,1)A,(x∨ ȳ,1),(x∨
y∨ z,1),(x̄∨ ȳ∨ z̄,1)}. The resolution of the previous resolvent and A produces the
(equivalent) formula F ′ = {(x,1),(x∨ y∨ z,1),(x̄∨ ȳ∨ z̄,1)}.

5.2 Branching Heuristic

For problems where all literals appear in hard clauses in only one polarity, a weighted
version of the Two-sided Jeroslow Wang heuristic [14] is computed in the root node

50 F. Heras, J. Larrosa, and A. Oliveras

and used in the subsequent search (the importance of each clause is multiplied by its
weight). For problems where literals appear in hard clauses with both polarities it ap-
plies the native VSIDS-like heuristic [15] of MiniSat. In both cases, if some literal l
accomplishes V (l) + lb ≥ ub at some node of the search tree, then l̄ is the selected
literal to assign and l is never assigned.

5.3 Pseudo-boolean Optimization

MINIMAXSAT can solve pseudo-boolean optimization problem [19,12] of the form:
(1) minimize ∑n

j=1 c j · x j

(2) subject to ∑n
j=1 ai jl j ≥ bi, i = 1 . . .m

where x j ∈ {0,1}, l j is either x j or 1−x j, and c j, ai j and bi are non-negative integers. (1)
is the objective function and (2) is the set of pseudo-boolean constraints. MINIMAXSAT

uses MINISAT+ to transform pseudo-boolean constraints into hard clauses. That is, it
determines heuristically the most appropriate encoding to hard clauses through adders,
sorters or BDDs. Regarding the objective function, for each pair c j · x j, a new soft unit
clause (x̄ j,c j) is added.

6 Experimental Results

We compare MINIMAXSAT with several optimizers from different communities:

– MAXSATZ [8,20]. Specialized unweighted Max-SAT solver. It applies a powerful
subtraction lower bounding [8] plus limited transformation rules [20].

– MAX-DPLL [14,5] is a Weighted Max-SAT solver that performs a restricted form
of resolution lower-bounding. MAX-DPLL is part of the TOOLBAR package.

– TOOLBAR [17,21,22,23]. It is a state-of-the-art Weighted CSP solver.
– PUEBLO 1.5 [19] is a pure pseudo-boolean solver.
– MINISAT+ [12] is a pseudo-boolean solver that translates pseudo-boolean problems

into SAT and solves them with MiniSAT.

When reporting results, we will omit a solver if it cannot deal with the corresponding
instances or it performs extremely bad. Results are presented in plots and tables. The
first column of each table contains the name of the set of problems and the second shows
the number of instances. The rest of columns report the performance of the solvers.
Each cell contains the average CPU time that the solver required to solve all instances.
If not all the instances were solved within the time limit (600 seconds), a number inside
brackets indicates the number of solved instances and the average CPU time only takes
into account solved instances. Note that in the plots the order of the legend goes in
accordance with the performance of the solvers. All experiments were conducted on a
3.2 Ghz Pentium 4 computer with Linux.

The following benchmarks were considered:

– Random Max-2-SAT instances with 100 variables and clauses ranging from 200 to
900. Max-3-SAT instances with 80 variables and clauses ranging from 300 to 700.
See [14].

MiniMaxSat: A New Weighted Max-SAT Solver 51

– Random Max-CUT instances [14] with 60 nodes and the number of edges ranging
from 300 to 500.

– Random and structured Max-Clique instances [5]. The random instances have 150
nodes and the edge density is ranged from 0 to 100 per cent. The structured in-
stances correspond to the 66 instances of Dimacs Challenge.

– Combinatorial Auctions [5]. The instances were generated with CATS [24]. Three
distributions were considered: paths, scheduling and regions. The number of goods
is fixed to 60 and the number of bids is varied differently for each distribution.

– Max-One instances [5]. We have selected some SAT instances for which we have
solved the Max-One problem. We considered structured instances coming from the
2002 SAT Competition [11] and random 3-SAT instances with 120 variables and
ranging the number of clauses from 150 to 550.

– WCSP instances. Structured Planing instances [25] containing both boolean and
non-boolean variables and hard and soft constraints. Random binary Max-CSP in-
stances have three or four values per variable and only soft constraints. Depending
on the number of constraints and the number of forbidden tuples, 4 distributions
were generated: Dense Loose (DL), Dense Tight (DT), Sparse Loose (SL) and
Sparse Tight (ST) [21]. WCSP instances were translated to Weighted Max-SAT
using the direct encoding [26].

– Small integer optimization pseudo-boolean instances coming from the 2006
Pseudo-Boolean Evaluation. We considered some industrial instances correspond-
ing to logic synthesis , and some handmade instances including Misc (garden), min
prime and MPS (miplib).

Figure 2 contains plots with the results on different benchmarks. Plots a and b reports
results on random unweighted Max-SAT instances. PUEBLO and MINISAT+ are orders
of magnitude slower, so they are not included in the graphics. On Max-2-SAT (plot a),
MINIMAXSAT lays between MAX-DPLL and MAXSATZ, which is the best option. On
Max-3-SAT (plot b) MINIMAXSAT clearly outperforms MAX-DPLL and is very close
to MAXSATZ, which is again the best. In both Max-2-SAT and Max-3-SAT MAXSATZ

is no more than 3 times faster than MINIMAXSAT. Plot c reports results on Max-CUT
instances. In these problems, MINIMAXSAT performs slightly better than MAXSATZ,
which is the second alternative.

Plot e reports the results on Random Max-Clique instances. MINIMAXSAT is the
best solver, up to an order of magnitude faster than MAX-DPLL, the second option.
PUEBLO and MINISAT+ perform poorly again. Regarding the structured Dimacs in-
stances, MINIMAXSAT is again the best option. It solves 34 instances within the time
limit, while TOOLBAR,MINISAT+ and PUEBLO solve 29, 19 and 14 respectively.

Plots f , g and h present the results on Combinatorial Auctions following different
distributions. On the paths distribution, MINIMAXSAT is the best solver, twice faster
than MAX-DPLL, which ranks second. On the regions distribution, MAX-DPLL is
the best solver while MINIMAXSAT is the second best solver requiring double time.
On the paths and regions distributions, PUEBLO and MINISAT+ perform very poorly.
On the scheduling distribution, MINISAT+ is the best solver while MAX-DPLL and
MINIMAXSAT are about one order of magnitude slower.

52 F. Heras, J. Larrosa, and A. Oliveras

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 200 300 400 500 600 700 800 900

cp
u

tim
e

number of clauses

(a) Max-2-SAT, 100 variables

Max-DPLL
MiniMaxSat

Maxsatz

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

 300 350 400 450 500 550 600 650 700

cp
u

tim
e

number of clauses

(b) Max-3-SAT, 80 variables

Max-DPLL
MiniMaxSat

Maxsatz

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 300 350 400 450 500

cp
u

tim
e

number of edges

(c) Max-CUT, 60 nodes

Max-DPLL
Maxsatz

MiniMaxSat

 0

 10

 20

 30

 40

 50

 150 200 250 300 350 400 450 500 550

cp
u

tim
e

number of hard clauses

(d) Max-ONE, random 3-SAT, 120 variables

Minisat+
Pueblo

Max-DPLL
MiniMaxSat

 0

 20

 40

 60

 80

 100

0 25 50 75 100

cp
u

tim
e

connectivity (%)

(e) Max-Clique, 150 nodes

Minisat+
Pueblo

Max-DPLL
MiniMaxSat

 0

 20

 40

 60

 80

 100

 70 80 90 100 110 120 130 140 150

cp
u

tim
e

number of bids

(f) C. Auctions PATHS, 60 Goods

Pueblo
Minisat+

Max-DPLL
MiniMaxSat

 0

 20

 40

 60

 80

 100

 70 80 90 100 110 120 130 140 150

cp
u

tim
e

number of bids

(g) C. Auctions SCHEDULING, 60 Goods

Pueblo
Max-DPLL

MiniMaxSat
Minisat+

 0

 20

 40

 60

 80

 100

 100 120 140 160 180 200

cp
u

tim
e

number of bids

(h) C. Auctions REGIONS, 60 Goods

Minisat+
Pueblo

MiniMaxSat
Max-DPLL

Fig. 2. Plots of different benchmarks. Note that the order in the legend goes in accordance with
the performance of the solvers.

On random Max-One (plot d) MINIMAXSAT is the best solver by far. Almost all in-
stances are solved instantly while PUEBLO and MAX-DPLL require up to 20 seconds
in the most difficult instances. MINISAT+ performs very poorly. The results on struc-
tured Max-One instances are reported in Figure 3. MINISAT+ seems to be the fastest in
general. MINIMAXSAT is close in performance to PUEBLO. Note, however, that in the
d p instances, MINIMAXSAT is the system solving more instances.

On structured Planning WCSP instances (Fig. 4) PUEBLO is the best solver. MIN-
IMAXSAT is the second best solver, TOOLBAR is the third and the last one is MIN-
ISAT+. This is not surprising since TOOLBAR does not perform learning over the hard
constraints. However, on pure optimization Max-CSP problems (Fig. 4) TOOLBAR

solves all the instances instantly while PUEBLO performs very poorly. MINIMAXSAT

is clearly the second best solver on DL instances, while MINISAT+ is the second best
option on DT and ST tight instances.

Results regarding pseudo-boolean instances can be found in Figure 5. Note that this
is the first time that a Max-SAT solver is tested on pseudo-boolean instances. Results
indicate that no solver consistently outperforms the other and that MINIMAXSAT is
fairly competitive with PUEBLO and MINISAT+.

We can conclude that MINIMAXSAT is the most robust Weighted Max-SAT solver.
It is very competitive for pure optimization problems and for problems with lots of hard
clauses and, sometimes, it is the best option.

MiniMaxSat: A New Weighted Max-SAT Solver 53

Problem n. inst. MINIMAXSAT Pueblo Minisat+
3col80 10 0.25 0.15 0.05
3col100 10 2.90 2.55 0.26
3col120 10 28.77 21.23 1.50
3col140 10 56.57 122.59 3.86

cnt 3 9.30 0.25 0.25
dp 6 11.75(5) 1.82(3) 2.40(4)

ezfact32 10 1.49 0.69 0.65

Fig. 3. Structured Max-one instances

Problem n. inst. Toolbar MINIMAXSAT Pueblo Minisat+
Planning 71 8.22 2.19 0.28 13.64

DL 20 0.14 2.20 302.85(8) 27.17
DT 20 0.00 7.48 0(0) 5.33
SL 20 0.01 33.08 83.30(18) 1.30
ST 20 0.00 18.04 0(0) 4.29

Fig. 4. Results for WCSP instances

Problem n. inst. MINIMAXSAT Pueblo Minisat+
Garden 7 2.87(5) 13.60(5) 0.28(5)

Logic synthesis 17 26.33(2) 57.60(5) 4.21(2)
Min prime 156 20.94(111) 13.20(106) 7.58(112)

Miplib 17 34.50(5) 51.84(9) 21.48(9)

Fig. 5. Results for pseudo-boolean instances

7 Related Work

Some previous work has been done about incorporating SAT-techniques inside a Max-
SAT solver. In [10] a lazy data structure to detect when clauses become unit is pre-
sented but it requires a static branching heuristic, so it is not as general as our exten-
sion of the two-watched literals. As far as we know, the rest of Max-SAT solvers are
based on adjacency lists that are inefficient for unit propagation [27]. In [11] a Max-
SAT branch and bound is powered with learning over hard constraints, but it is used
in combination of simple lower bounding techniques. To the best of our knowledge,
no Max-SAT solver incorporates backjumping. Note that MINIMAXSAT restricts back-
jumping to the ocurrence of hard conflicts. Related frameworks that backjump after
soft conflicts include [28] for WCSP, [29] for pseudo-boolean optimization and [30] for
SMT.

Most Max-SAT solvers use what we call subtraction-based lower bounding. In most
cases, they search for special patterns of mutually inconsistent subsets of clauses
[3,6,10]. For efficiency reasons, these patterns are always restricted to small sets of
small arity clauses (2 or 3 clauses or arity less than 3). MINIMAXSAT uses a natural
weighted extension of the approach proposed in [7]. It was the first one able to detect
inconsistencies in arbitrarily large sets of arbitrarily large clauses.

The idea of what we call resolution-based lower bounding was inspired from the
WCSP domain [17,21,22,23] and it was first proposed in the Max-SAT context in [4]
and further developed in [20,14,5]. In these works, only special patterns of fixed-size
resolution trees were executed. The use of simulated unit propagation allows MINI-
MAXSAT to identify arbitrarily large resolution trees.

Our probing method to derive weighted unit clauses is related to the 2−RES and
cycle rule of [14,5] and to failed literals in [8]. Again, the use of simulated unit propa-
gation allows MINIMAXSAT to identify arbitrarily large resolution trees.

54 F. Heras, J. Larrosa, and A. Oliveras

8 Conclusions and Future Work

MINIMAXSAT is an efficient and very robust Max-SAT solver that can deal with hard
and soft clauses as well as pseudo-boolean functions. It incorporates the best techniques
for each type of problems, so its performance is similar to the best specialized solver.
Besides the development of MINIMAXSAT combining, for the first time, known tech-
niques from different fields, the main original contribution of this paper is a novel lower
bounding technique based on resolution. MINIMAXSAT lower bounding subsumes in
a very clean an elegant way most of the approaches that have been proposed in the last
years. Future work concerns the development of VSIDS-like heuristics for soft clauses,
backjumping techniques for soft conflicts and the study of domain-specific branching
heuristics.

References

1. Papadimitriou, C.: Computational Complexity. Addison-Wesley, USA (1994)
2. Karloff, H.J., Zwick, U.: A 7/8-Approximation Algorithm for MAX 3SAT. In: FOCS. (1997)
3. Shen, H., Zhang, H.: Study of lower bounds for Max-2-SAT. In: AAAI. (2004)
4. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency for

weighted CSPs. In: IJCAI. (2005)
5. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving. In:

Available at the Computing Research Repository
(http://arxiv.org/PS cache/cs/ps/0611/0611025.ps.gz). (2006)

6. Xing, Z., Zhang, W.: MaxSolver: An efficient exact algorithm for (weighted) maximum
satisfiability. Artificial Intelligence 164 (2005) 47–80

7. Chu Min Li, F.M., Planes, J.: Exploiting unit propagation to compute lower bounds in branch
and bound max-sat solvers. In: Proc. of the 11th CP, Sitges, Spain (2005)

8. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing
lower bounds for max-sat. In: AAAI. (2006)

9. Cha, B., Iwama, K., Kambayashi, Y., Miyazaki, S.: Local search algorithms for partial
MAXSAT. In: AAAI/IAAI. (1997) 263–268

10. Alsinet, T., Manya, F., Planes, J.: Improved exact solver for weighted max-sat. In SAT’05.
11. Argelich, J., Manyà, F.: Learning hard constraints in max-sat. In: CSCLP-2006. (2006) 1–12
12. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. Journal on Satisfia-

bility, Boolean Modeling and Computation 2 (2006) 1–26
13. Eén, N., Sörensson, N.: An extensible sat-solver. In: Proceedings of SAT03. (2003) 502–518
14. Heras, F., Larrosa, J.: New inference rules for efficient max-sat solving. In: AAAI. (2006)
15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an

efficient sat solver. In: DAC. (2001) 530–535
16. Tompkins, D.A.D., Hoos, H.H.: Ubcsat: An implementation and experimentation environ-

ment for sls algorithms for sat & max-sat. In: SAT. (2004)
17. Larrosa, J.: Node and arc consistency in weighted CSP. In: AAAI. (2002) 48–53
18. Lynce, I., Silva, J.P.M.: Probing-based preprocessing techniques for propositional satisfia-

bility. In: ICTAI. (2003) 105–
19. Sheini, H.M., Sakallah, K.A.: Pueblo: A hybrid pseudo-boolean sat solver. Journal on Satis-

fiability, Boolean Modeling and Computation 2 (2006) 165–189
20. Li, C.M., Manyà, F., Planes, J.: New inference rules for max-sat. In: Submitted. (2006)
21. Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for weighted CSP.

In: Proc. of the 18th IJCAI, Acapulco, Mexico (2003)

MiniMaxSat: A New Weighted Max-SAT Solver 55

22. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving max-SAT as weighted CSP. In:
Proc. of the 9th CP, Kinsale, Ireland, LNCS 2833. Springer Verlag (2003) 363–376

23. de Givry, S., Heras, F., Larrosa, J., Zytnicki, M.: Existential arc consistency: getting closer to
full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI, Edinburgh, U.K. (2005)

24. K. Leyton-Brown, M.P., Shoham, Y.: Towards a universal test suite for combinatorial auction
algorithms. ACM E-Commerce (2000) 66–76

25. Cooper, M., Cussat-Blanc, S., de Roquemaurel, M., Régnier, P.: Soft arc consistency applied
to optimal planning. In: CP. (2006) 680–684

26. Walsh, T.: SAT v CSP. In: CP. (2000) 441–456
27. Lynce, I., Silva, J.P.M.: Efficient data structures for backtrack search sat solvers. Ann. Math.

Artif. Intell. 43 (2005) 137–152
28. Zivan, R., Meisels, A.: Conflict directed backjumping for maxcsps. In: IJCAI. (2007)
29. Manquinho, V.M., Silva, J.P.M.: Satisfiability-based algorithms for boolean optimization.

Ann. Math. Artif. Intell. 40 (2004) 353–372
30. Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In:

SAT. (2006) 156–169

Solving Multi-objective Pseudo-Boolean Problems�

Martin Lukasiewycz, Michael Glaß, Christian Haubelt, and Jürgen Teich

Hardware-Software-Co-Design
Department of Computer Science 12

University of Erlangen-Nuremberg, Germany
{martin.lukasiewycz,glass,haubelt,teich}@cs.fau.de

Abstract. Integer Linear Programs are widely used in areas such as routing
problems, scheduling analysis and optimization, logic synthesis, and partitioning
problems. As many of these problems have a Boolean nature, i.e., the variables
are restricted to 0 and 1, so called Pseudo-Boolean solvers have been proposed.
They are mostly based on SAT solvers which took continuous improvements over
the past years. However, Pseudo-Boolean solvers are only able to optimize a sin-
gle linear function while fulfilling several constraints. Unfortunately many real-
world optimization problems have multiple objective functions which are often
conflicting and have to be optimized simultaneously, resulting in general in a set
of optimal solutions. As a consequence, a single-objective Pseudo-Boolean solver
will not be able to find this set of optimal solutions. As a remedy, we propose
three different algorithms for solving multi-objective Pseudo-Boolean problems.
Our experimental results will show the applicability of these algorithms on the
basis of several test cases.

1 Introduction

Solving 0-1 Integer Linear Programs (0-1 ILP) came to the field of vision over the past
years. This problem class is a special case of Integer Linear Programs (ILP) and is
also termed as Pseudo-Boolean (PB) [1]. In particular a Pseudo-Boolean problem is an
optimization problem with a linear objective function and a set of linear constraints in
which the coefficients are integers and the variables are restricted to 0 and 1. Despite the
restriction of the variables to Boolean values the expressiveness is equal to ILPs which
can be formulated as Pseudo-Boolean problems by using a binary encoding.

The Boolean nature of Pseudo-Boolean problems is connecting these strongly to the
Satisfiability problem (SAT) in conjunctive normal form [2]. The Satisfiability problem
can easily be converted to a Pseudo-Boolean problem with an empty objective function
in which for each clause a greater-zero constraint is added. The 0-1 Integer Linear
Programming is, in fact, one of KARP’S 21 NP-complete problems [3]. On the other
hand, converting efficiently PB constraints into clauses is a non-trivial problem that can
result in an exponential number of clauses.

There are several PB solvers that are borrowing techniques from state-of-the-art SAT
solvers which became essential in the field of Electronic Design Automation [4]. These
specialized PB solvers are based on the DPLL backtracking algorithm [5] and benefit

� Supported in part by the German Science Foundation (DFG), SFB 694.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 56–69, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Solving Multi-objective Pseudo-Boolean Problems 57

1p

p2

p3

4p

2f2f
feasible region

(b)(a) dominates

is dominated

p

Pareto−optim
al front

0 0

incomparable

incomparable

1f1f

Fig. 1. Objective space showing (a) a Pareto-optimal front of solutions and (b) a solution p and
the areas with dominating, non-dominating and incomparable solutions

from the improvements on the field of SAT-solving of the recent years like the non-
chronological backtracking [6], watched literals [7], or an efficient conflict learning
scheme [8]. As a matter of fact it is validated that specialized PB solvers are superior to
generic ILPs, mostly if the underlying problem has a Boolean nature [9].

PB solvers have their applications among many real-world applications like routing
problems, scheduling analysis and optimization, logic and system level synthesis, and
partitioning problems. Some of these applications like the problem of system level syn-
thesis [10] can contain more than one objective function, e.g., if the system is optimized
by its power consumption, area usage, and the monetary costs. In the case of multi-
objective optimization the goal is not to find optimal solutions corresponding to each
objective function, but to find the set of optimal solutions the so called Pareto-optimal
solutions. A solution is called Pareto-optimal if there exists no other solution that is
better or equal in all objectives and at least better in one objective, i.e., no other solution
dominates the Pareto-optimal one. As the search space in Pseudo-Boolean problems is
finite the number of Pareto-optimal solutions is also finite. Figure 1(a) illustrates the
Pareto-optimal solutions of a problem with two objective functions. A PB solver opti-
mizes at most one objective function and will not find these Pareto-optimal solutions as
preference-based approaches do not find the trade-off solutions. In the case of system
level synthesis a designer is interested in the full set of Pareto-optimal solutions con-
taining the trade-off solutions to make an appropriate choice for one implementation.

This paper is dedicated to the multi-objective Pseudo-Boolean problem in which we
propose three different algorithms for solving multi-objective Pseudo-Boolean prob-
lems and compare them on the basis of several test cases. The first algorithm is an iter-
ative search with a common PB solver by restricting the search space by upper bounds.
The second algorithm extends a DPLL backtracking algorithm such that it sifts through
the valid search space and at the same time prunes evidently not optimal solutions. The
third algorithm is using a translation into the Satisfiability problem such that a common
SAT solver finds one solution that fulfills the constraints. To ensure a convergence to
the Pareto-optimal solutions, the found and dominated solutions are excluded from the
ongoing search by appending additional clauses.

The rest of the paper is organized as follows: Section 2 gives a short introduction to
the functionality of modern PB solvers, and Section 3 will formally state the problem
this paper is dedicated to. In Section 4 the three algorithms for solving multi-objective

58 M. Lukasiewycz et al.

Pseudo-Boolean problem are presented. The comparison of the algorithms on the basis
of several experimental results is made in Section 5, before we conclude the paper in
Section 6.

2 Specialized PB Solvers

Mathematically a Pseudo-Boolean problem is defined as1

min{cT x | Ax ≤ b}
with c ∈ Z

n, A ∈ Z
m,n, b ∈ Z

m, and x ∈ {0, 1}n. The objective function is given as
the linear function cT x, whereas the constraints that are linear equalities and inequali-
ties are summarized in Ax ≤ b. The goal is to find one optimal solution x for which the
objective function is minimal.

Specialized PB solvers are based on a backtracking search algorithm similar to mod-
ern SAT solvers. The algorithm starts by searching for a solution that fulfills all con-
straints. If there exists a solution x the objective function is calculated and a ’<’ con-
straints is added with left hand side the objective function and right hand side the calcu-
lated objective value. This procedure is carried out iteratively and ensures the conver-
gence to the optimal value. If the constraints are not satisfiable the last found solution
is the optimal solution.

These specialized PB solvers are divided into two categories: First are enhanced
SAT solvers that beside clauses in the conjunction normal form also support natively
PB constraints, e.g., PBS [9], PUEBLO [11], or GALENA [12]. The second category are
PB solvers which translate the PB constraints into clauses such that a common SAT
solver is used to find a solution. By introducing additional variables an exponential
number of resulting clauses is prevented. The proceeding as described in [13] is two-
staged and is implemented in the PB solver MINISAT+ [13,14]. Each PB constraint is
first converted into a hardware circuit by using BDDs, Adders, or Sorters. The resulting
hardware circuits are then converted linearly into a set of clauses by using the TSEITIN-
transformation [15] that introduces additional variables.

3 Problem Formulation

Extending a 0-1 ILP for multiple objective functions results in a new problem class.
Mathematically we define a multi-objective Pseudo-Boolean problem as

min{CT x | Ax ≤ b}
with C ∈ Z

n,z , A ∈ Z
m,n, b ∈ Z

m, and x ∈ {0, 1}n. We are considering an optimiza-
tion problem with z objective functions which, without loss of generality, all have to be
minimized. The objective vectors are calculated by f(x) = CT x with C = (c1, ..., cz)
where a single objective function is fi(x) = cT

i x with i ∈ {1, ..., z}.
The optimization for a multi-objective problem is not a search for a single optimal

objective value but instead for the set of Pareto-optimal solutionsXp ⊆ Xf or the Pareto-
optimal frontYp = {f(x)|x ∈ Xp}, respectively.Thevalid search spaceXf is containing

1 Maximization problems can be converted to a minimization by negating the objective function.

Solving Multi-objective Pseudo-Boolean Problems 59

all solutions that are fulfilling the constraints Ax ≤ b, we are also speaking of feasible
solutions. A solution xp ∈ Xp is said to be Pareto-optimal if its objective vector f(xp) is
not dominated by any other objective vector f(x) with x ∈ Xf , cf. Definition 1.

Relating to Definition 1 the terms for Pareto dominance are applied to the objective
vector or the solution vectors, respectively. The solution vectors are termed by Defini-
tion 1 with respect to their calculated objective vectors, e.g., x dominates x̃ if and only
if f(x) � f(x̃).

Definition 1 (Pareto dominance (cf. [16])). For any two objective vectors a and b,

a �� b (a strictly dominates b) if ∀i : ai < bi

a � b (a dominates b) if ∀i : ai ≤ bi ∧ ∃j : aj < bj

a 	 b (a weakly dominates b) if ∀i : ai ≤ bi

a ‖ b (a is incomparable to b) if ∃i, j : ai > bi ∧ aj < bj.

In general, a common iteratively working PB solver as described in Section 2 will not be
able to find the set of Pareto-optimal solutions of the multi-objective Pseudo-Boolean
problem. By adding a PB constraint each time a solution is found these PB solvers
are restricting the search space such that weakly dominated solutions are not found
in the ongoing search. Using this approach for a multi-objective problem it would be
necessary to add a PB constraint for each objective. These constraints would have to
be joined by a logical OR as an improvement in only one dimension is mandatory to
find the next not dominated solution. It is obvious that a common PB solver can not be
simply adapted to solve multi-objective Pseudo-Boolean problems as all constraints are
joined by a logical AND unless additional variables are added for each iteration.

4 Algorithms

4.1 Algorithm 1

The first algorithm, given in Algorithm 1, enables the usage of a common PB solver to
find all Pareto-optimal solutions iteratively. In order to find these solutions the upper
bounds for the objective functions are set adequately as constraints for the PB solver.

The algorithm fills the archive A with the non-dominated solutions. These are solu-
tions that are not dominated by any other solution that was found during the ongoing
search. The property of non-dominanceproves that there is no solution inside the archive
that is better or equal in all objectives compared to another solution in the archive, cf.
Definition 1 on weak domination. The set D contains the domains where a domain is
a vector of the upper bounds for the objective functions. The algorithm starts with an
empty archive (line 1) and the set of domains containing an initial vector of the length
z, where the initial values are set to∞ (line2) corresponding the whole search space.

While the set of domains is not empty (line 3) one domain is chosen randomly (line 4)
and a solution that both fulfills the constraints and is located inside the selected domain
is searched with a common PB solver (line 5). At the same time the objective function is
empty. If the PB solver does not find a solution, the current domain is removed from the
set of domains since there is no feasible solution inside (line 6,7). In case that a solution

60 M. Lukasiewycz et al.

Algorithm 1. Algorithm for multi-objective optimization of Pseudo-Boolean
problems based on the iterative usage of a common PB solver

A = {}1

D = {(max1, ..., maxz)}2

while |D| > 0 do3

choose h ∈ D4

min{0 | Ax ≤ b ∧ CT x ≤ h}5

if UNSATISFIABLE then6

D = D\h7

else8

y = CT x9

A = x ∪ {a | a ∈ A ∧ y � CT a}10

foreach e ∈ D ∧ y � e do11

D = D\e12

for i ∈ {1, ..., z} do13

D = D ∪ (e1, ..., yi − 1, ..., ez)14

end15

end16

foreach e, ẽ ∈ D ∧ e �≡ ẽ ∧ e � ẽ do17

D = D\e18

end19

end20

end21

is found in the domain, the objective vector is calculated (line 9) and the archive is
updated such that it just contains non-dominated solutions (line 10).

Each domain that contains the found solution needs to be split (line 11). This is done
by removing that domain and adding new domains whereas an improvement in at least
one dimension has to be achieved (line 12-15). Concluding, the set D is cleaned up in
which sub-domains of other domains are removed (line 17-19).

The advantage of this methodology is the independence of the used PB solver. Any
common PB solver can be extended to a multi-objective PB solver by this algorithm.
Moreover, this straightforward method is not restricted to Pseudo-Boolean problems, by
using an ILP solver it is possible to solve also multi-objective Integer Linear Programs.

4.2 Algorithm 2

The second method is an extension of the DPLL backtracking algorithm. More pre-
cisely, it is a modification of the DPLL algorithm as it is used in specialized PB solvers.
Thereby, it is not important which category of specialized PB solver is used, the ones
that natively support PB constraint or the other category that translates the PB con-
straints completely into clauses. The DPLL algorithm is used to stay in the valid search
space Xf and obtain only feasible solutions. For the first category of PB solvers, the
PB constraints are given directly, while for the second category the PB constraints are
converted into clauses. The complete algorithm is given in Algorithm 2.

Solving Multi-objective Pseudo-Boolean Problems 61

Algorithm 2. Algorithm for multi-objective optimization of Pseudo-Boolean
problems based on a DPLL backtracking algorithm

A = {}1

while true do2

branch()3

status = deduce()4

if status ==CONFLICT then5

blevel = analyze conflict()6

if blevel < 0 then7

break8

else9

backtrack(blevel)10

end11

else if status ==SATISFIABLE ∧ ∀a ∈ A : (a � CT x) then12

y = CT x13

A = x ∪ {a | a ∈ A ∧ y � CT a}14

end15

if ∃ a ∈ A : CT a � (cT
1 x1, ..., c

T
z xz)

T then16

blevel = ’level of the most recent decision tried not both ways’17

if blevel < 0 then18

break19

else20

backtrack(blevel)21

end22

end23

end24

The archive A is holding the set of non-dominated solutions (line 1). The archive is
filled and updated throughout the backtracking process until the algorithm aborts and
the archive contains the optimal non-dominated solutions, which are the Pareto-optimal
solutions.

In a nutshell, line 3 to 11 is identical to a DPLL backtracking algorithm, it ensures
that the search process stays in the valid search space Xf : The operation branch()
chooses an unassigned variable and assigns it a value. The rules which decide which
variable is chosen and value is assigned is called decision strategy. The operation
deduce() recognizes if any variable assignment is required to keep the constraints satis-
fiable or a conflict occurred. One has to keep in mind that every single constraint has to
be satisfied in order to find a feasible solution. Therefore, one decision can cause several
necessary assignments, the so called implications. If an implication of the same variable
occurs to 0 and 1, a conflict is recognized and analyzed in analyze conflict() such that
a backtracking is triggered. If the backtrack level is less than 0, the first decision was
already tested in both ways 0 and 1 and the algorithm is aborted.

In case that all variables have an assignment (decide() returns SATISFIABLE) and
the current solution is not weakly dominated by any solution inside the archive (line
12), it is added to this archive. At the same time all solutions inside the archive which
are weakly dominated by the new solution are removed (line 14).

62 M. Lukasiewycz et al.

A backtracking is also triggered if a partial solution is recognized to be weakly dom-
inated by some solutions in the archive independently of its completion. This operation
prunes the search space and prevents that the algorithm equals an enumeration of the
feasible solutions in Xf . Hence, a lower bound for each objective function has to be
calculated and compared for weak domination with the archive (line 16). The lower
bounds for the objective functions for a partial solution are calculated separately in each
dimension, i.e., a lower bound vector is calculated by (cT

1 x1, ..., c
T
z xz)T . Therefore, the

vector xi contains the values of the assigned variables and for unassigned variables a
0 (1) is used if the corresponding coefficient of the vector ci is positive (negative). The
backtracking will take place to the level of the most recent decision that was not tried in
both ways 0 and 1 unless this level is lower than 0 what causes an abort of the algorithm
(line 17-22).

The used decision strategy is crucial for the success of this algorithm. It is obvi-
ous that with good solutions early in the search process and an accurate lower bound
calculation large parts of the search space can be pruned. A good approach is a deci-
sion strategy that is guided by the coefficients of the objective functions: Focusing on
a single-objective problem, variables with a big corresponding coefficient should be fa-
vored by the decision strategy to increase the accuracy of the calculated lower bound.
This takes place as only variables with small coefficients will be unassigned later in the
search process. Moreover, it is desirable to obtain good solutions early in the search pro-
cess and, as a minimization problem is given, the favored decision phase for a variable
with a positive (negative) coefficient should be 0 (1). For multi-objective problems, a
more sophisticated decision strategy is needed because variables have different effects
in different objective functions. We will propose a static decision strategy based on
distribution functions. For each dimension a distribution function Fi : N → [0, 1] is
approximated by the absolute values of the vector containing the coefficients ci, thus
also a normalization of the coefficients is achieved. We will use a uniform distribu-
tion between 0 and the highest value of each dimensions coefficient. For instance, it is
also possible to sample the values to a normal or any other distribution. With the given
distributions a specific value for each variable can be calculated as follows:

∀i = 1, ..., n :
z∑

j=1

Fi(|Cij |)sign(Cij)

According to the rules of the single objective problem the decision strategy uses these
values as follows: Variables with a high absolute value calculated by this formula are
prioritized in the decision strategy. For a positive (negative) value, the decision takes
place to 0 (1). This decision strategy will only work properly if the coefficients are
distributed with an adequate variance.

In future work we will extend the algorithm by a dynamic variable order, random
restarts, and more precise, but on the other hand slower, lower bound estimation
strategies [17].

4.3 Algorithm 3

The third algorithm is an extension of a common iteratively working PB solver. As
mentioned before the PB constraints in a PB solver are usually joined by a logical AND.

Solving Multi-objective Pseudo-Boolean Problems 63

Instead, the constrained objective function in multi-objective problems have to be joined
by logical ORs. To overcome this restriction we will modify the category of specialized
PB solvers which translate the PB constraints into clauses and use a common SAT solver
to converge to the optimal value. This category of PB solvers is working two-staged as
described in [13] and implemented in the PB solver MINISAT+. In the first step each PB
constraint is translated into a hardware circuit. In the second step the hardware circuits
are translated into a set of clauses. It it obvious that the clauses that are added to a
common SAT solver can not be joined by a logical OR as a SAT solver is expecting a
conjunctive normal form. As the constrained objective functions need to be joined by a
logical OR each time a solution is found, we connect the hardware circuits by ORs and
then translate the full circuit to clauses. The complete algorithm is given in Algorithm 3.

Algorithm 3. Algorithm for multi-objective optimization of Pseudo-Boolean
problems based on the translation into the Satisfiability problem

A = {}1

SATSolver.addClauses(toClauses(toCircuit(′Ax ≤ b ′)))2

while SATSolver.solve()==SATISFIABLE do3

x =SATSolver.x()4

y = CT x5

A = x ∪ {a | a ∈ A ∧ y � CT a}6

h = false7

foreach i ∈ {1, ..., z} do8

h = h ∨ toCircuit(′cT
i x < yi

′)9

end10

SATSolver.addClauses(toClauses(h));11

end12

Like in the other algorithms the archive A is holding the set of non-dominated so-
lutions (line 1). It is updated throughout the search process and contains the Pareto-
optimal solutions when the algorithm terminates.

Primarily, the PB constraints are translated into clauses (line 2). The translation is
two-staged: Each PB constraint is translated into a hardware circuit and afterwards the
hardware circuits are translated into clauses. The translation of a PB constraint into a
hardware circuit is done by using BDDs, Adders, or Sorters, while the translation of
one hardware circuit into a set of clauses is done by using the TSEITIN-transformation,
which prevents an exponential number of clauses by introducing additional variables.
For a further explanation we strongly recommend [13].

The SAT solver is used iteratively just like in specialized PB solvers to search for
non-dominated solutions (line 3). If a non-dominated solution is found, it is added to
the archive (line 4-6). Additionally, before the next start of the SAT solver all by this
current solution weak dominated solutions have to be excluded from the further search
process to guarantee a convergence to the Pareto-optimal solutions. Following Defini-
tion 1 of weak dominance this exclusion is done by the formula

(f1(x) ≥ y1 ∧ ... ∧ fz(x) ≥ yz)

64 M. Lukasiewycz et al.

for the current found solution y. By using DEMORGAN’S law this can also be
interpreted as

(f1(x) < y1 ∨ ... ∨ fz(x) < yz),

which are PB constraints connected by logical ORs. Therefore, the two-staged transla-
tion is split as following: The PB constraints are translated into hardware circuits and
these circuits are connected by an OR-gate to one hardware circuit (line 7-10). This
hardware circuit is then translated into a set of clauses which are added to the SAT
solver (line 11).

This approach is showing the high versatility of the category of PB solvers which are
translating the PB constraints into SAT. The success of this algorithm depends strongly
on the translation of the PB constraints and objective functions into clauses, and the
performance of the used SAT solver.

5 Experimental Results

For the experimental results the three algorithms were implemented on the basis of
the PB solver MINISAT+ [13] or SAT solver MINISAT [14], respectively, which par-
ticipated very successful in the past SAT Competition [18] and PB Evaluation [19].
Through using the same PB solver as the basis for all three algorithms, we have the
chance for a fair comparison on the basis of runtime. To compare the algorithms, we
will use several modifications of the famous queens puzzle and synthetic industrial
multi-objective problems from the field of system level synthesis [10]. All test cases
were carried out on an Intel Pentium 4 3.20 GHz machine with 1 GB RAM. For each
handmade test case 10 instances were created and a representative average was calcu-
lated. The timeout bound was set to 1800 seconds.

5.1 Queens Puzzle

Problem Statement. The common queens puzzle is about putting eight queens on a
chessboard such that no pair of queens attacks one another. Though a single solution can
be obtained by a construction scheme, finding one solution that fulfills the conditions is a
non-trivial problem. The problem can easily be converted into a Satisfiability or Pseudo-
Boolean problem, respectively, by introducing one variable for each field defining if a
queen is located on it or not, and adding the conditions such that in each row and column
of the chessboard has to be exactly one queen and in each diagonal at most one queen.
Moreover, the queens puzzle can be extended to an n×n chessboard in which n queens
have to be put on this chessboard. The advantage of these handmade problems is that
the scaling of the problem size is done by a single variable n instead of many variables,
as is the case, e.g., in graph problems where nodes and edges are varied.

To achieve representative test cases we will use the n queens puzzle with appropriate
objective functions. The objective functions should have the property to be applicable in-
dependently on any numberofdimensions.For instance theminimalvertexcoverproblem
can not be scaled to a multi-objective problem. Therefore, we will focus on two optimiza-
tion classes: the weighted costs optimization and the minimal token optimization. These
optimization problems can be extended to any number of dimensions.

Solving Multi-objective Pseudo-Boolean Problems 65

Weighted Costs Optimization. Each field of the chessboard gets a cost that is an
integer value. The overall costs are a sum of the costs of the fields where a queen is
located on, which equals a linear function that has to be minimized. In our examples we
will create the single costs randomly as an integer from a uniform distribution between
a lower and an upper bound given as integers. The weighted costs optimization problem
is denoted as w(l, h) with the lower bound l and the upper bound h. We will analyze
two problem classes namely w(1, 100) which we will refer to as strongly weighted and
w(0, 1) as weakly weighted.

Minimal Token Optimization. For each token one variable is introduced. One token
exists several times and is distributed randomly on the chessboard. If one field of the
chessboard is taken by a queen, the tokens of the field are used which is realized by
an implication2. The goal is the minimization of the used tokens which is the sum of
the variables of the tokens or a linear function with the coefficients 1, respectively. If
there are n tokens and one token exists m times and is randomly distributed on the
chessboard, we will denote this optimization problem as t(n, m). Instead of some min-
imization problems where the coefficients are uniquely 1 like the minimal vertex cover,
minimal dominating set, or set covering, this problem can be extended to several di-
mensions by using disjunctive sets of tokens for each dimension.

Analysis of Experimental Results. Several combinations of test cases were carried
out and summarized in Table 1. We varied the size, the number of objective functions
and the sort of objective function. As one can expect, the problem size and number of
objectives affect the runtime of all algorithms. In the strongly weighted problems Al-
gorithm 2 is superior to the other algorithms because an appropriate decision strategy
could be calculated. In the weakly weighted problems the decision strategy for Algo-
rithm 2 can not be calculated clearly, which leads to a decline of the runtime. In fact,
no algorithm is clearly the best in that problem class. In the minimal token problems
Algorithm 3 is superior to the other algorithms. Algorithm 2 is not able to calculate a
proper decision strategy as all coefficients are 1 and the algorithm decays to a simple
enumeration. Therefore, in all combined problems where at least one objective function
is a minimal token optimization Algorithm 2 fails and the best results are provided by
Algorithm 3.

5.2 System Level Synthesis

Problem Statement. The task of system level synthesis is to bind a set of communi-
cating processes on a set of interconnected resources and generate feasible implementa-
tions w.r.t. to a correct communication on the given architecture. Corresponding to the
objectives, the goal of design space exploration is to find all optimal implementations
which satisfy the specification. For a further explanation we refer to [10]. Searching a
single feasible implementation can be formulated as a Satisfiability problem [20]. If the
objective functions are linear or linearizable, the resulting problem is a multi-objective
Pseudo-Boolean problem.

2 The field x labeled by a token t leads to an implication (x → t), a clause (x ∨ t), or a PB
constraint x − t ≤ 0, respectively.

66 M. Lukasiewycz et al.

Table 1. Results on several queen puzzle problems. Given is the size of the chessboard and the
used objective functions. The runtime of the algorithms were calculated as an average each with
10 instances in which the variance is given in the brackets.

Problem Size Objective functions Runtime [s]
Algorithm 1 Algorithm 2 Algorithm 3

Queens 10 × 10 w(1,100) 1.95 (0.49) 0.28 (0.07) 2.10 (0.28)

Queens 12 × 12 w(1,100) 37.9 (7.80) 5.00 (2.07) 51.9 (25.5)

Queens 14 × 14 w(1,100) 1800 (0) 210 (113) 1229 (441)

Queens 10 × 10 w(1,100),w(1,100) 11.3 (4.28) 0.38 (0.03) 8.36 (1.14)

Queens 12 × 12 w(1,100),w(1,100) 699 (176) 16.7 (2.66) 227 (25.9)

Queens 14 × 14 w(1,100),w(1,100) 1800 (0) 1443 (241) 1800 (0)

Queens 10 × 10 w(1,100),w(1,100),w(1,100) 92.3 (22.1) 0.39 (0.02) 22.7 (4.18)

Queens 12 × 12 w(1,100),w(1,100),w(1,100) 1800 (0) 17.9 (2.76) 468 (44.8)

Queens 14 × 14 w(1,100),w(1,100),w(1,100) 1800 (0) 1800 (0) 1800 (0)

Queens 12 × 12 w(0,1) 0.39 (0.07) 0.08 (0.01) 0.09 (0.01)

Queens 14 × 14 w(0,1) 0.68 (0.13) 0.12 (0.01) 0.13 (0.01)

Queens 16 × 16 w(0,1) 1.05 (0.20) 0.17 (0.01) 0.19 (0.01)

Queens 12 × 12 w(0,1),w(0,1) 1.97 (0.81) 0.79 (0.60) 0.72 (0.37)

Queens 14 × 14 w(0,1),w(0,1) 5.80 (3.71) 8.48 (10.7) 3.47 (3.87)

Queens 16 × 16 w(0,1),w(0,1) 24.6 (28.3) 62.5 (124) 35.1 (83.6)

Queens 12 × 12 w(0,1),w(0,1),w(0,1) 14.5 (7.11) 6.20 (1.70) 7.18 (3.45)

Queens 14 × 14 w(0,1),w(0,1),w(0,1) 131 (135) 258 (199) 169 (189)

Queens 16 × 16 w(0,1),w(0,1),w(0,1) 1197 (629) 1800 (0) 1224 (716)

Queens 8 × 8 t(24,8) 0.23 (0.11) 0.23 (0.8) 0.05 (0.01)

Queens 10 × 10 t(30,10) 0.58 (0.13) 11.5 (5.46) 0.24 (0.04)

Queens 12 × 12 t(36,12) 6.10 (2.59) 1800 (0) 4.20 (1.18)

Queens 8 × 8 t(24,8),t(24,8) 0.87 (0.23) 88.0 (20.8) 0.08 (0.01)

Queens 10 × 10 t(30,10),t(30,10) 3.38 (0.80) 1800 (0) 0.44 (0.03)

Queens 12 × 12 t(36,12),t(36,12) 81.7 (15.1) 1800 (0) 16.1 (1.66)

Queens 8 × 8 t(24,8),t(24,8),t(24,8) 1.98 (0.61) 1800 (0) 0.14 (0.01)

Queens 10 × 10 t(30,10),t(30,10),t(30,10) 15.8 (3.35) 1800 (0) 0.77 (0.03)

Queens 12 × 12 t(36,12),t(36,12),t(36,12) 570 (149) 1800 (0) 22.3 (2.46)

Queens 10 × 10 w(1,100),w(0,1) 3.96 (1.51) 0.35 (0.05) 3.52 (0.66)

Queens 12 × 12 w(1,100),w(0,1) 126 (45.7) 13.9 (2.56) 97.5 (20.3)

Queens 10 × 10 w(1,100),t(30,10) 6.45 (1.96) 1800 (0) 3.52 (0.70)

Queens 12 × 12 w(1,100),t(30,10) 284 (79.4) 1800 (0) 119 (10.1)

Queens 10 × 10 w(0,1),t(30,10) 1.72 (0.66) 1800 (0) 0.33 (0.03)

Queens 12 × 12 w(0,1),t(30,10) 26.2 (8.72) 1800 (0) 10.2 (1.69)

The first test case group consists of graphs with 56 processes and 25 resource nodes.
For each process the number of mapping edges varies from 3 to 6. This leads to approx-
imately 2117 possible solutions. For the second test case group the number of processes
was increased to 101 and resources to 50. The mapping edges per process vary from 4
to 8. That leads to about 2256 possible solutions. Additionally, the number of feasible
solutions was varied from small over medium to big. This is done by specifying the

Solving Multi-objective Pseudo-Boolean Problems 67

Table 2. Results on several system level synthesis problems. Given is the number of processes and
resources and the number of feasible solutions or size of the valid search space Xf , respectively.
The runtime of the algorithms were calculated as an average each with 10 instances in which the
variance is given in the brackets.

Problem Processes Resources |Xf | Runtime [s]
Algorithm 1 Algorithm 2 Algorithm 3

System level Synthesis 56 25 small 226 (332) 0.20 (0.08) 4.11 (3.21)

System level Synthesis 56 25 medium 1121 (721) 0.57 (0.37) 29.2 (17.8)

System level Synthesis 56 25 big 1800 (0) 0.94 (1.17) 55.6 (64.2)

System level Synthesis 101 50 small 1800 (0) 845 (673) 1226 (626)

System level Synthesis 101 50 medium 1800 (0) 1800 (0) 1800 (0)

System level Synthesis 101 50 big 1800 (0) 1800 (0) 1800 (0)

H.264 Video Decoder 68 15 - 5.55 0.05 1.65

possibility of a connection between two resources. The optimized objectives were the
power consumption and the area usage.

Analysis of Experimental Results. The results of the test cases are given in Table
2. As these problems are handling with weighted costs, Algorithm 2 is superior to the
other algorithms. The interesting fact is that for a growing number of feasible imple-
mentations the complexity is also growing. As typical problems known from real-world
applications show hard constrained search spaces containing only a small fraction of
feasible solutions [21], this turns out to be advantageous.

H.264 Video Decoder. Concluding we will use an industrial system level synthesis ex-
ample namely a H.264 Video Decoder. The specification graph contains 68 processes,
15 resources and 276 mapping edges what leads to approximately 2136 possible solu-
tions. The proposed algorithms are solving this problem easily, the runtimes are stated
in Table 2. Moreover, a multi-objective Evolutionary Algorithm (MOEA) that is usually
used to solve these problems will not find the Pareto-optimal solutions even after one
hour whereas Algorithm 2 needs just a fraction of one second. The Pareto-optimal so-
lutions and the best solutions of the MOEA after one hour of exploration are illustrated
in Figure 2.

 150

 200

 250

 300

 350

 400

 160 180 200 220 240 260

po
w

er

area

MOEA
ILP

Fig. 2. Pareto-optimal front for the Pareto-optimal solutions and the best non-dominated solutions
from a MOEA of the H.264 Video Decoder example. The values area and power are given in
abstract units.

68 M. Lukasiewycz et al.

6 Conclusions

In this paper we have proposed three algorithms for solving multi-objective Pseudo-
Boolean problems. Comparing the algorithms on several examples shows that none of
these algorithms is generally superior to the others. Instead of that, the success of the
methodologies depends on the given problem and the implementation of the algorithm.
The algorithms are, in fact, modifications and extensions of common SAT- and PB solvers,
respectively. Therefore, improvements on the field of PB-solving and SAT-solving will
consequently also lead to a speed up of the proposed algorithms.

Moreover, we have shown that a typical industrial system level synthesis problem,
can be solved in a reasonable amount of time. The example of an H.264 Video Decoder
was solved in less than a second what, in this particular case, makes the multi-objective
Pseudo-Boolean solvers outstanding in comparison to common multi-objective
heuristics like Evolutionary Algorithms.

References

1. Barth, P.: A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimiza-
tion. Research Report MPI-I-95-2-003, Max-Planck-Institut für Informatik, Im Stadtwald,
D-66123 Saarbrücken, Germany (1995)

2. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC ’71: Proceedings
of the third annual ACM symposium on Theory of computing, New York, NY, USA, ACM
Press (1971) 151–158

3. Karp, R.M.: Reducibility among combinatorial problems. In Miller, R.E., Thatcher, J.W.,
eds.: Complexity of Computer Computations. Plenum Press (1972) 85–103

4. Marques-Silva, J.P., Sakallah, K.A.: Boolean satisfiability in electronic design automation.
In: DAC ’00: Proceedings of the 37th conference on Design automation, New York, NY,
USA, ACM Press (2000) 675–680

5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun.
ACM 5(7) (1962) 394–397

6. Marques-Silva, J.P., Sakallah, K.A.: Grasp - a new search algorithm for satisfiability. In:
ICCAD ’96: Proceedings of the 1996 IEEE/ACM international conference on Computer-
aided design, Washington, DC, USA, IEEE Computer Society (1996) 220–227

7. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient sat solver. In: DAC ’01: Proceedings of the 38th conference on Design automation,
New York, NY, USA, ACM Press (2001) 530–535

8. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in
a boolean satisfiability solver. In: ICCAD ’01: Proc. of the 2001 IEEE/ACM international
conference on Computer-aided design, Piscataway, NJ, USA, IEEE Press (2001) 279–285

9. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ilp versus specialized 0-1 ilp:
an update. In: ICCAD ’02: Proceedings of the 2002 IEEE/ACM international conference on
Computer-aided design, New York, NY, USA, ACM Press (2002) 450–457

10. Teich, J., Blickle, T., Thiele, L.: An evolutionary approach to system-level synthesis. In:
CODES ’97: Proceedings of the 5th International Workshop on Hardware/Software Co-
Design, Washington, DC, USA, IEEE Computer Society (1997) 167

11. Sheini, H.M., Sakallah, K.A.: Pueblo: A modern pseudo-boolean sat solver. In: DATE ’05:
Proc. of the conf. on Design, Automation and Test in Europe, Washington, DC, USA, IEEE
Computer Society (2005) 684–685

Solving Multi-objective Pseudo-Boolean Problems 69

12. Chai, D., Kuehlmann, A.: A fast pseudo-boolean constraint solver. In: DAC ’03: Proc. of the
40th conference on Design automation, New York, NY, USA, ACM Press (2003) 830–835

13. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal on Sat-
isfiability, Boolean Moelding and Computation 2 (2006) 1–25

14. Eén, N., Sörensson, N.: An extensible sat-solver. In: Conference on Theory and Application
of Satisfiability Testing SAT. (2003) 502–518

15. Tseitin, G.: On the Complexity of Derivations in Propositional Calculus. Studies in Contr.
Math. and Math. Logic (1968)

16. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance as-
sessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evolutionary
Computation 7(2) (2003) 117–132

17. Manquinho, V.M., Marques-Silva, J.: Effective lower bounding techniques for pseudo-
boolean optimization. In: DATE ’05: Proceedings of the conference on Design, Automation
and Test in Europe, Washington, DC, USA, IEEE Computer Society (2005) 660–665

18. Berre, D.L., Simon, L.: Sat competition 2005. Website (2005) Available online at
http://www.satcompetition.org/2005/.

19. Manquinho, V., Roussel, O.: Pseudo boolean evaluation 2006. Website (2006) Available
online at http://www.cril.univ-artois.fr/PB06/.

20. Haubelt, C., Teich, J., Feldmann, R., Monien, B.: SAT-Based Techniques in System De-
sign. In Wehn, N., Verkest, D., eds.: Proceedings of Design, Automation and Test in Europe,
Munich, Germany, IEEE Computer Society (2003) 1168–1169

21. Deb, K., ed. In: Optimization for Engineering Design. Prentice-Hall of India Pvt.Ltd (1995)

http://www.satcompetition.org/2005/
http://www.cril.univ-artois.fr/PB06/

Improved Lower Bounds for Tree-Like

Resolution over Linear Inequalities�

Arist Kojevnikov

St.Petersburg Department of Steklov Institute of Mathematics
27 Fontanka, 191023 St.Petersburg, Russia

http://logic.pdmi.ras.ru/ arist/

Abstract. We continue a study initiated by Kraj́ıček of a Resolution-
like proof system working with clauses of linear inequalities, R(CP). For
all proof systems of this kind Kraj́ıček proved in [1] an exponential lower
bound of the form:

exp(nΩ(1))

MO(W log2 n)
,

where M is the maximal absolute value of coefficients in a given proof
and W is the maximal clause width.

In this paper we improve this lower bound. For tree-like R(CP)-like
proof systems we remove a dependence on the maximal absolute value
of coefficients M , hence, we give the answer to an open question from
[2]. Proof follows from an upper bound on the real communication com-
plexity of a polyhedra.

Keywords: propositional proof complexity, integer programming, cut-
ting planes.

Many well known methods in an area of pseudo-boolean constraints optimization
like a branch-and-bound [3] and Cutting Planes with the deduction rule [4] can be
defined in terms of Resolution proof system that operates with clauses of linear
inequalities, R(CP) [1]. This proof system is a natural extension of Resolution
and can be viewed as a generalization of Resolution over formulas in k-DNF,
Res(k), that was introduced in [5]. In the last few years much attention was paid
to complexity of Res(k) [6,7,8]. On the other hand, it is not much known about
the complexity of R(CP), while it and similar proof systems are often used in
practice [9,10,11].

Consider a R(CP)-like proof system as a system that works with clauses of
linear inequalities using a finite set of tautologically valid axiom and sound
derivation rules with at most two hypotheses. The main goal of this paper is to
improve lower bounds on restricted but still very important family of R(CP)-like
proof systems. Namely, we proved better lower bounds for tree-like R(CP)-like
proof systems.
� Supported in part by Russian Science Support Foundation, INTAS (grant 04-83-

3836) and RFBR (grants 05-01-00932, 06-01-00502). The paper was done during the
stay of the author at the Max-Planck-Institut für Mathematik, Bonn, Germany.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 70–79, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improved Lower Bounds for Tree-Like Resolution over Linear Inequalities 71

The main idea of exponential lower bounds that are based on monotone in-
terpolation theorems is a transformation of a proof P of the formula F into a
monotone circuit C of size polynomial in |P |. If the formula F formalizes that
the intersection of two disjoint NP-sets is not empty, then the circuit C separates
these two disjoint NP-sets. For example, the pair of disjoint NP-sets, consisting
of a set of graphs with a k-clique and the set of (k − 1)-colorable graphs, the
monotone circuit that separates one set from another has at least exponential
size [12]. Hence, the size of proof P is exponential.

There is a very nice connection between boolean circuits and communication
complexity [13], and sometimes it is easier to think in terms of communication
complexity then in terms of circuits. This idea was used by Kraj́ıček to prove
many important exponential lower bounds in [14,1,2]. He reduced the proof-
into-circuit transformation problem into a problem of proving upper bounds on
communication complexity of specific decision problems.

In this paper we give an answer to one of the open questions from [2]: we prove
new upper bound on real monotone communication complexity of a polyhedra
and, hence, a better lower bound for tree-like R(CP)-like proof systems. The
proof is straightforward. The basic techniques are the same as in [14,1,2].

The paper is organized as follows. In Sect. 1 we give all necessary definitions,
in Sect. 2 we recall the notion of interpolation and prove new lower bound on
tree-like R(CP)-like proof systems. In Sect. 3 we discuss related open questions.

1 Definitions

In this paper we use the following notation: we typically denote integer vec-
tors with letters a, b, c, their coordinates with ai, bi, ci, vectors of Boolean vari-
ables with u, v, w, x, y, z and integers with A, B, C. We will write a ·x instead of∑

i aixi.

1.1 Resolution over Linear Inequalities

Now we describe several propositional proof systems for the language of sys-
tems of linear inequalities that have no 0/1-solutions. A proof system R(CP)
was defined in [1] as follows. The lines of the system are disjunctions of linear
inequalities: a · x ≥ A ∨ . . . ∨ b · x ≥ B. The derivation rules are (we denote by
Γ an arbitrary disjunction of linear inequalities)

a · x ≥ A ∨ Γ b · x ≥ B ∨ Γ

(a + b) · x ≥ A + B ∨ Γ
,

a · x ≥ A ∨ Γ

Ca · x ≥ CA ∨ Γ
, where C ≥ 0 ,

Ca · x ≥ A ∨ Γ

a · x ≥ �A/C� ∨ Γ
,

xi ≥ 0 −xi ≥ −1
for all variables xi ,

a · x ≥ A ∨ (−a) · x ≥ 1−A
,

Γ

a · x ≥ A ∨ Γ
,

a · x ≥ A ∨ a · x ≥ A ∨ Γ

a · x ≥ A ∨ Γ
.

Note that one can omit 0 ≥ 1 from 0 ≥ 1∨ Γ because the contradiction 0 ≥ 1 is
easily transformable into any other inequality. The goal is to derive 0 ≥ 1.

72 A. Kojevnikov

We also define a family of R(CP)-like proof systems, that operate with dis-
junctions of linear inequalities by finite set of tautologically valid axioms and
sound derivation rules that have at most two hypotheses. We are interested in
its sub-family of p-passive R(CP)-like proof systems, where all derivation rules
are of the form

Δ1 ∨ Γ1 Δ2 ∨ Γ2

Δ3 ∨ Γ1 ∨ Γ2
,

where Δi and Γi are arbitrary disjunctions of linear inequalities and |Δi| ≤ p,
for i = 1, 2.

1.2 Real Communication Complexity

The following set of definitions is an extension of boolean communication com-
plexity [13,15], that allows players to communicate with each other not only by
bits, but with real numbers. It was introduced in [2].

Let I be finite set, U, V ⊂ {0, 1}∗, R ⊆ U × V × I be such that

∀u ∈ U, v ∈ V ∃i ∈ I R(u, v, i) .

We will call relations satisfying this condition multifunctions.
The following two definitions were given in [16].

Definition 1. A real communication protocol P over U × V with range I is a
binary tree where each internal node v is labeled by two functions av : U → R,
giving player A move, and bv : V → R, giving player B move, and each leaf is
labeled by an element i ∈ I.

On input (x, y), the players construct a path thought the tree according to the
following rule: At each internal node v labeled by (av, bv), if av(x) > bv(y), then
the next node is the left son of v and otherwise the right son of v. If for every
u ∈ U and v ∈ V the value i of P satisfies R(u, v, i), we say that P computes R.

Definition 2. The real communication complexity of a multifunction R,
CCR(R), is the minimal depth of a real communication protocol P , over all
P that compute R.

Usually, sets U , V are defined by some partial Boolean function f that maps
W ⊆ {0, 1}n to {0, 1}. We take U := f−1(1), V := f−1(0) and I := {1, . . . , n}.
Relation R(u, v, i) is true if strings u and v differ in position i. We are interested
in monotone partial Boolean functions, that have at least one extension to a
monotone Boolean function [13]. For such a function f define Rmono

f ⊆ U×V ×I
by

Rmono
f (u, v, i) iff u ∈ U ∧ v ∈ V ∧ ui = 1 ∧ vi = 0 .

As it happens with monotone boolean functions and Boolean communication
complexity, there is a relation between the real communication complexity of
Rmono

f and the depth of monotone real circuit computing f .

Improved Lower Bounds for Tree-Like Resolution over Linear Inequalities 73

1.3 Monotone Real Circuits

A monotone real circuit is a circuit of fan-in 2 computing with real numbers
where every gate computes a nondecreasing real function [17]. Since monotone
real circuits are generalization of monotone boolean circuits, we require that they
output 0 or 1 on every input from {0, 1}∗. The depth and size of the monotone
real circuit are defined as for boolean circuits.

Lemma 1 (Lemma 1.4, [2]). Let f be a partial monotone boolean function.
Then CCR(Rmono

f) is at most the minimal depth of a monotone real circuit C
that computes the function f . Moreover,

CCR(Rmono
f) ≤ log3/2 SR(f) ,

where SR(f) is the minimal size of a monotone real formula computing f .

There is an important open question about the converse statement. A positive
answer on it would immediately imply an extension of lower bound proved in
this paper from tree-like R(CP) to general R(CP) [2].

1.4 Local Search Protocols

The notions of local search protocol and monotone local search protocol were
defined in [14] and they generalize the notion of real communication protocol.
We need them for transformation of a refutation in some proof system into the
real circuit in a natural and intuitive way.

Definition 3 (Definition 2.1, [2]). Let U, V ⊆ {0, 1}n be two sets and let
R ⊆ U × V × I be a multifunction. A local search protocol for R is a labeled
directed graph G satisfying the following conditions:

1. Graph G is acyclic and has one source denoted by ∅. The nodes with zero out-
degree are leaves, all other are inner nodes. All inner nodes have out-degree
2.

2. All leaves are labeled by elements of I.
3. There is a strategy S(u, v, x) that assigns to a node x and a pair u ∈ U and

v ∈ V one of the two children S(u, v, x) of x.
4. For every pair u ∈ U , v ∈ V there is a set F (u, v) of nodes of G satisfying:

(a) ∅ ∈ F (u, v).
(b) x ∈ F (u, v)→ S(u, v, x) ∈ F (u, v).
(c) If i is the label of a leaf from F (u, v) then R(u, v, i) holds.
We call such set F the consistency condition.

The local search protocol is tree-like iff the underlying graph is a tree.
A local search protocol for a particular multifunction R = {(u, v, i)|ui = 1 ∧

vi = 0} is called a monotone local search protocol for U , V .

74 A. Kojevnikov

Definition 4 (Definition 2.2, [2]). Let G be a local search protocol for R. Let
S(u, v, x) be the strategy and F (u, v) be the consistency condition of G.

The real communication complexity of G, denoted CCR(G), is the minimal t
such that for every x ∈ G the players (first knows pair (u, x), the second knows
(v, x)) decide x ∈ F (u, v) and compute S(u, v, x) by real communication protocol
by depth at most t.

For tree-like local search protocol it is possible to prove an exponential lower
bounds on the following set of functions:

Let I, J be sets of size n. Consider a monotone Boolean function BPM that
gives to a bipartite graph Γ ⊆ I×J the value 1 iff Γ contains a perfect matching.
Inputs to BPM are n2 variables xij , i ∈ I, j ∈ J . Their truth evaluations are in
one to one correspondence with bipartite graphs.

Theorem 1 (Theorem 2.5, [2]). Let G be a tree-like local search protocol for
BPM of size S, such that CCR(G) = t. Then

S = exp(Ω((
n

t log n
)1/2)) .

2 Lower Bound for Tree-Like R(CP)-Like Proof Systems

The following definition was introduced in [14] and is a generalization of usual
derivation in a proof system. A sequence of sets D1, . . . , Dk ⊆ {0, 1}N is a
semantic derivation of Dk from A1, . . . , Am if each Di is either one of Aj , or
contains Di1 ∩Di2 for some i1, i2 < i. Till the end of this section we use N =
n + s + t. Let us consider the following problem for two players:

Definition 5 (Definition 3.1, [2]). For set A ⊆ {0, 1}N we fix u, v ∈ {0, 1}n,
y ∈ {0, 1}s and z ∈ {0, 1}t. Consider the following three tasks:

1. Decide whether (u, y, z) ∈ A.
2. Decide whether (v, y, z) ∈ A.
3. If (u, y, z) ∈ A and (v, y, z) �∈ A, then find such i ≤ n that

ui = 1 ∧ vi = 0

or find some u′ satisfying

u′ ≥ u ∧ (u′, y, z) �∈ A (where u′ ≥ u means
∧

i≤n(u′
i ≥ ui)) .

These tasks can be solved by two players, one knowing (u, y) and another one
knowing (v, z).

A monotone real communication complexity of A, MCCR(A) is the minimal
t such that tasks 1-3 have real communication complexity at most t.

We define subset Q(b) of Z
W as follows

Q(b) = {a ∈ Z
W |∀i ≤W (ai ≤ bi − 1)} .

Improved Lower Bounds for Tree-Like Resolution over Linear Inequalities 75

We need to prove the following lemma to improve the lower bound for tree-like
R(CP)-like proof systems. It extends Lemma 5.1, [14] to real communication
complexity.

Lemma 2. Let linear mapping

H : {0, 1}N → Z
W

be defined by a matrix with elements from Z.
Let Y ⊆ Z

W be any set defined as

Y = Z
W \Q(b) ,

for some b ∈ Z
W . We fix X := H−1(Y).

Then
MCCR(X) = O(W) + O(log(n)) .

Proof. 1. To decide whether (u, y, z) ∈ X we need to find such i ∈ 1, ..., W that

n∑

j=1

hij · uj +
n+s∑

j=n+1

hij · yj +
n+s+t∑

j=n+s+1

hij · zj ≥ bi . (1)

Player A knows all elements in this sum except z. Let integer zi satisfy the
equality

n∑

j=1

hij · uj +
n+s∑

j=n+1

hij · yj + zi = bi .

The players compare zi and z′i =
∑n+s+t

j=n+s+1 hij · zj for all i ∈ 1, ..., W and
if for some i the inequality zi ≤ z′i holds, then (1) also holds and therefore
(u, y, z) ∈ X . Otherwise, (u, y, z) �∈ X .

To decide whether (u, y, z) ∈ X players use the real communication pro-
tocol of depth W .

2. Similarly, by real communication protocol of depth W , players can decide
whether (v, y, z) ∈ X .

3. Assume that (u, y, z) ∈ X and (v, y, z) �∈ X . It means that for some i ∈
1, ..., W is

n∑

j=1

hij · uj +
n+s∑

j=n+1

hij · yj +
n+s+t∑

j=n+s+1

hij · zj ≥ bi ,

and also

n∑

j=1

hij · vj +
n+s∑

j=n+1

hij · yj +
n+s+t∑

j=n+s+1

hij · zj < bi .

76 A. Kojevnikov

From the last two inequalities it follows that

∑

j∈J

hij · uj >
∑

j∈J

hij · vj ,

where J = {1, . . . , n}.
For all j such that hij < 0 first player assigns 1 to uj . If for some u′ ≥ u

the triple (u′, y, z) �∈ X , then he communicates one bit of the answer to
second player, and they stop if it is equal to 1. Otherwise,

∑

j∈J

hij · u′
j >

∑

j∈J

hij · vj , (2)

where J = {1, . . . , n}.
Let fix J1 = {1, . . . , �n/2�} and J2 = {�n/2� + 1, . . . , n}. Note that it

holds either
∑

j∈J1

hij · u′
j >

∑

j∈J1

hij · vj or
∑

j∈J2

hij · u′
j >

∑

j∈J2

hij · vj ,

otherwise (2) is not satisfying. Continue with one of the satisfied inequalities
and find such j that (u′

j = 1 ∧ vj = 0) or (u′
j = 0 ∧ vj = 1). Since in this

case, hij > 0 (otherwise u′
j is equal to 1), we have that u′

j = uj = 1∧vj = 0.
The real communication complexity of described binary search procedure

is equal to O(log(n)). ��

Following [2] we define a set Ã for the A ⊆ {0, 1}n+s as follows:

Ã :=
⋃

(a,b)∈A

{(a, b, c) | c ∈ {0, 1}t} ,

where a, b, c are from {0, 1}n, {0, 1}s and {0, 1}t respectively. For B ⊆ {0, 1}n+t

we define in the same way B̃:

B̃ :=
⋃

(a,c)∈B

{(a, b, c) | b ∈ {0, 1}s} .

Theorem 2 (Theorem 3.2, [2]). Let A1, . . . , Am ⊆ {0, 1}n+s and B1, . . . , B�

⊆ {0, 1}n+t be two set families. Assume that there is a semantic derivation
π = D1, . . . , Dk of the empty set ∅ = Dk from A1, . . . , Am, B1, . . . , B�. Assume
also that all the sets A1, . . . , Am satisfy the following monotone condition:

(u, y) ∈
⋂

j≤m

Aj ∧ u ≤ u′ → (u′, y) ∈
⋂

j≤m

Aj

and MCCR(Di) ≤ t for all i ≤ k.

Improved Lower Bounds for Tree-Like Resolution over Linear Inequalities 77

Define sets U and V as follows:

U = {u ∈ {0, 1}n | ∃y ∈ {0, 1}s; (u, y) ∈
⋂

j≤m

Aj}

and
V = {v ∈ {0, 1}n | ∃z ∈ {0, 1}t; (v, z) ∈

⋂

j≤�

Bj} .

Then there is a monotone local search protocol G for the sets U, V of size at most
k + n with real communication complexity CCR at most t.

Moreover, if the semantic derivation π is tree-like, then local search protocol
G is also tree-like.

The following theorem extends [2, Theorem 3.3] from CP-like proof systems to
R(CP)-like proof systems.

Theorem 3. Let a system of linear inequalities E1(x, y), . . . , Em(x, y), F1(x, z),
. . ., F�(x, z) contain only variables (x1, . . . , xn), (y1, . . . , ys) and (z1, . . . , zt). As-
sume that there is a refutation π of the system in R(CP)-like proof system with
k lines. Let every clause in π have at most W occurrences of linear inequalities.
Assume also that xi occur in all E1, . . . , Em only with non-negative coefficients.

Then there is a monotone local search protocol G for U, V :

U = {u ∈ {0, 1}n | ∃y ∈ {0, 1}s; (u, y) satisfying
∧

i≤m

Ei(u, y)} ,

V = {v ∈ {0, 1}n | ∃z ∈ {0, 1}t; (v, z) satisfying
∧

j≤�

Fj(v, z)} ,

such that the size of G is at most k + n and its real communication complexity
is O(W) + O(log(n)).

Moreover, if the refutation π is tree-like, then local search protocol G is also
tree-like.

Proof. Consider a clause D = {hi · (x, y, z)T ≥ bi | i ≤ W} in the refutation π.
Then assignment (x, y, z) satisfies it iff

H · (x, y, z) ∈ Z
W \Q((b1, . . . , bW)) ,

where H is a N × W -matrix with strings hi. Replace each clause D in π by
D̃ ⊆ {0, 1}N of assignments satisfying it to obtain a semantic refutation of Ẽi

and F̃i. By Lemma 2 for every set S occurring in the refutation it holds that
MCCR(S) = O(W) + O(log(n)). To complete the proof apply Theorem 2. ��

2.1 Exponential Lower Bounds

In [2] the following set of inequalities was introduced, Halln, that formalize
Hall’s theorem.

Let |I| = |J | = n.

78 A. Kojevnikov

1.
∑

i yki ≥ 1, for all 1 ≤ k ≤ n.
2. yki + yk′i ≤ 1, for all 1 ≤ k < k′ ≤ n.
3.

∑
j y′

kj ≥ 1, for all 1 ≤ k ≤ n.
4. y′

kj + y′
k′j ≤ 1, for all 1 ≤ k < k′ ≤ n.

5. y′
kj + yki − xij ≤ 1, for all 1 ≤ k ≤ n, i ∈ I, j ∈ J .

Let Ei(x, y, y′) be all these linear inequalities. Note, that the set

U := {x ∈ {0, 1}n2 | ∃y, y′(
∧

i

Ei(x, y, y′))}

determines a set of graphs with BPM equal to 1.
The set V of graphs with BPM equal to 0 can be defined analogously by

inequality system Fj(x, z, z′). The union set of all inequalities Ei and Fj is
denoted by Halln.

Theorem 4. Let π be a tree-like refutation of Halln in any R(CP)-like proof
system. Then |π| ≥ exp(Ω((n

W log(n)+(log(n))2)1/2)).

Proof. By Theorem 3 there is a tree-like monotone local search protocol G for
BPM problem of size k + n and real communication complexity t = O(W) +
O(log(n)). The required lower bound follows from Theorem 1. ��

3 Open Questions

In this section we formulate some important open questions.

1. Remove a dependence on maximal absolute value of coefficient in Kraj́ıček’s
exponential lower bound for general R(CP)-like proof system or prove that
it is impossible.

2. Remove a dependence on maximal number of inequalities in clauses for tree-
like R(CP)-like proof systems or prove that it is impossible.

Remark 1 (Iddo Tzameret). We cannot remove a dependence on the maximal
number of inequalities in clauses for general R(CP)-like proof systems, since in
[18] it was proved that Res(2) (a subsystem of R(CP) with polynomially bounded
coefficients) does not have monotone interpolation in almost exponential time.

Acknowledgments

The author is very grateful to Dima Grigoriev, Jan Kraj́ıček, Alexander S. Ku-
likov and Iddo Tzameret for helpful comments and is indebted to Edward A.
Hirsch for enlightening discussions.

References

1. Kraj́ıček, J.: Discretely ordered modules as a first-order extension of the cutting
planes proof system. Journal of Symbolic Logic 63(4) (1998) 1582–1596

2. Kraj́ıček, J.: Interpolation by a game. Mathematical Logic Quarterly 44(40) (1998)
450–458

Improved Lower Bounds for Tree-Like Resolution over Linear Inequalities 79

3. Land, H., Doig, A.G.: An automatic method for solving discrete programming
problems. Econometrica 28 (1960) 497–520

4. Bonet, M., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small
coefficients. The Journal of Symbolic Logic 62(3) (1997) 708–728

5. Kraj́ıček, J.: On the weak pigeonhole principle. Fundamenta Mathematicæ170
(1-3) (2001) 123–140

6. Atserias, A., Bonet, M.L., Esteban, J.L.: Lower bounds for the weak pigeonhole
principle and random formulas beyond resolution. Information and Computation
176(2) (2002) 136–152

7. Segerlind, N., Buss, S.R., Impagliazzo, R.: A Switching Lemma for Small Restric-
tions and Lower Bounds for k-DNF Resolution. SIAM Journal on Computing 33(5)
(2004) 1171–1200

8. Alekhnovich, M.: Lower bounds for k-DNF resolution on random 3-CNFs. In:
STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing, New York, NY, USA, ACM Press (2005) 251–256

9. Prestwich, S.: Incomplete dynamic backtracking for linear pseudo-boolean prob-
lems. Annals of Operations Research 130 (2004) 57–73

10. Chai, D., Kuehlmann, A.: A fast pseudo-boolean constraint solver. IEEE Trans.
on CAD of Integrated Circuits and Systems 24(3) (2005) 305–317

11. Manquinho, V.M., Marques-Silva, J.: On using cutting planes in pseudo-boolean
optimization. Journal of Satisfiability, Boolean Modeling and Computation 2
(2006) 209–219

12. Razborov, A.A.: Lower bounds on the monotone complexity of some Boolean
functions. Dokl. Akad. Nauk SSSR 281(4) (1985) 798–801 In Russian: English
translation in Soviet Math. Dokl. 31:354–357, 1985.

13. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-
logarithmic depth. SIAM Journal on Discrete Mathematics 3(2) (1990) 255–265

14. Kraj́ıček, J.: Interpolation theorems, lower bounds for proof systems, and inde-
pendence results for bounded arithmetic. Journal of Symbolic Logic 62(2) (1997)
457–486

15. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press (1997)

16. Bonet, M.L., Esteban, J.L., Galesi, N., Johannsen, J.: On the relative complexity
of resolution refinements and cutting planes proof systems. SIAM J. Comp. 30(5)
(2000) 1462–1484

17. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal of Symbolic Logic 62(3) (1997) 981–998

18. Atserias, A., Bonet, M.L.: On the automatizability of resolution and related propo-
sitional proof systems. Information and Computation 189(2) (2004) 182–201

Horn Upper Bounds and Renaming�

Marina Langlois, Robert H. Sloan, and György Turán��

University of Illinois at Chicago
Chicago, IL 60607, USA

{mirodo1, sloan, gyt}@uic.edu

Abstract. We consider the problem of computing tractable approxima-
tions to CNF formulas, extending the approach of Selman and Kautz
to compute the Horn-LUB to involve renaming of variables. Negative
results are given for the quality of approximation in this extended ver-
sion. On the other hand, experiments for random 3-CNF show that the
new algorithms improve both running time and approximation quality.
The output sizes and approximation errors exhibit a ‘Horn bump’ phe-
nomenon: unimodal patterns are observed with maxima in some inter-
mediate range of densities. We also present the results of experiments
generating pseudo-random satisfying assignments for Horn formulas.

1 Introduction

A general formulation of the reasoning problem in propositional logic is to decide
if a clause C is implied by a CNF expression ϕ. Here ϕ is often viewed as
a fixed knowledge base, and it is assumed that a large number of queries C
have to be answered for the same knowledge base. Therefore, it may be useful to
preprocess ϕ into a more tractable form, resulting in a new knowledge base which
may be only approximately equivalent to the original one. This approach, called
knowledge compilation, goes back to the seminal work of Selman and Kautz [22]
(see also [5, 7, 24]).

Selman and Kautz suggested considering Horn formulas approximating the
initial knowledge base from above and below, and using these formulas to an-
swer the queries. In particular, they gave an algorithm (outlined in Section 4)
computing a Horn least upper bound (Horn-LUB) of ϕ which is equivalent to the
conjunction of all its Horn prime implicates.1 The set of truth assignments sat-
isfying the Horn-LUB of ϕ has a natural combinatorial characterization which
suggests that this notion may be of interest in itself. The intersection of two
truth assignments is obtained by taking their componentwise conjunction. In

� This material is based upon work supported by the National Science Foundation
under grant CCF-0431059. A preliminary version of this work appeared in [14].

�� Also affiliated with Hungarian Academy of Sciences and University of Szeged, Re-
search Group on Artificial Intelligence, Szeged, Hungary.

1 We omit the definition of Horn greatest lower bounds, as those will not be discussed
in this paper.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 80–93, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Horn Upper Bounds and Renaming 81

other words, the intersection is the greatest lower bound of the two truth assign-
ments in the componentwise partial ordering of the hypercube. The set of truth
assignments satisfying the Horn-LUB of ϕ, then, can be obtained as the closure
under intersections of the set of satisfying truth assignments of ϕ.

Queries to Horn formulas can be answered efficiently, but the approach can have
the following drawbacks: it may be inefficient as the resulting Horn upper bound
may be large, and it may fail to answer certain queries (those implied by the lower
bound, but not implied by the upper bound). Indeed, such theoretical negative re-
sults on the worst-case performance of the approach have been obtained in Selman
and Kautz [22] and del Val [8]. Another interesting question is the performance of
the algorithms on random examples. Initial experiments in this direction were per-
formed by Kautz and Selman [12]. Boufkhad [4] gives the results of experiments for
Horn lower bounds using an extension to renamable Horn formulas. The main test
examples were random 3-CNF formulas with density around 4.2, which are well
known to be hard for satisfiability algorithms.2 In other related work, Van Maaren
and van Norden [25] considered the connection between the efficiency of satisfia-
bility algorithms and the size of a largest renamable sub-CNF for random 3-CNF.

In this paper we introduce new variants of the Horn-LUB algorithm and
present theoretical and experimental results on their performance. The new vari-
ants involve the construction of a renaming of some variables, i.e., switching some
variables and their complements. Thereby one hopes to bring the original for-
mula closer to being a Horn formula, possibly resulting in a smaller Horn-LUB
with better approximation quality. We use an algorithm of Boros [3] to find a
large renamable subformula of the original knowledge base. Another possibility
we consider is the use of resolvents of bounded size only. This is expected to
speed up the algorithm and decrease the size of the Horn upper bound at the
price of decreasing approximation quality. Thus it may be of interest to explore
the trade-offs to find an optimal size bound. The combinatorial interpretation
of the Horn-LUB mentioned above carries over to the case of renaming. Infor-
mally, a renaming corresponds to a reorientation of the hypercube, by choosing
an arbitrary vector as the ‘bottom’ of the hypercube instead of the all 0’s vector.
In order to obtain the Horn-LUB after the renaming, intersections have to be
taken with respect to this new orientation.

The theoretical results show similar worst-case behavior as in the original case.
In particular, 3-CNF expressions are presented with only a polynomial number of
truth assignments such that for every renaming of the variables, the Horn-LUB
obtained after the renaming has superpolynomially many satisfying truth assign-
ments. We also construct a polynomial size CNF expression such that for every
renaming, only a superpolynomially small fraction of the prime implicates are
Horn, and therefore most of the prime implicate queries are answered incorrectly
by the renamed Horn-LUB.

In the second part of the paper we present experiments indicating that, on
the other hand, the new algorithms give improvements in both efficiency and

2 Kautz and Selman also considered a class of planning problems, and Boufkhad also
considered 4-CNF formulas.

82 M. Langlois, R.H. Sloan, and G. Turán

approximation quality. We have compared Selman and Kautz’s original algo-
rithm and three variants. The best one appears to be the one that uses both
renaming and bounded size resolvents. As the performance of the algorithms
is evaluated by exhaustive testing over all truth assignments, we have chosen
to run the experiments for 20 variables. In order to consider a larger number of
variables, it would be necessary to be able to efficiently sample random satisfying
truth assignments of a Horn formula. It appears to be an open question whether
this is possible. We have run experiments with some natural candidates for such
a sampling algorithm. The results of these experiments are also included in the
paper.

In contrast to previous work, in the experiments we have considered 3-CNF
formulas of different densities, in particular, for densities well below the critical
range. Here we have observed an interesting phenomenon—the Horn bump: the
performance of each algorithm is the worst in an intermediate range of densities.
This phenomenon may be of interest for the study of the evolution of random
3-CNF formulas [19, 18, 21].

2 Preliminaries

A clause is a disjunction of literals; a clause is Horn (resp., definite, negative)
if it contains at most one (resp., exactly one, no) unnegated literal. A CNF is
a conjunction of clauses; it is a 3-CNF if each clause contains exactly 3 literals.
A clause C is an implicate of a CNF expression ϕ if every truth assignment or
vector in {0, 1}n satisfying ϕ also satisfies C; it is a prime implicate if none of
its sub-clauses is an implicate. An n-variable random 3-CNF formula of density
α is obtained by selecting α · n clauses of size 3, selecting each clause from the
uniform distribution over all such clauses. A Horn formula or Horn-CNF is a
conjunction of Horn clauses.

The set of satisfying truth assignments of a formula ϕ is denoted by T (ϕ). The
weight of a 0-1 vector is number of its 1 components. The intersection of vectors
(x1, . . . , xn), (y1, . . . , yn) ∈ {0, 1}n is (x1 ∧ y1, . . . , xn ∧ yn). A Boolean function
can be described by a Horn formula if and only if its set of satisfying truth
assignments is closed under intersection [10, 17]. The (ordinary) Horn closure
H(S) of any set S of truth assignments is the smallest intersection-closed set of
truth assignments containing S.

A Horn least upper bound of ϕ (Horn-LUB(ϕ)) is any conjunction of Horn
clauses logically equivalent to the conjunction of all Horn prime implicates of
ϕ. The set of satisfying truth assignments of Horn-LUB(ϕ) is H(T (ϕ)), the
Horn closure of T (ϕ). Selman and Kautz [22] give an algorithm for computing a
Horn-LUB(ϕ).

Renaming a variable x in a CNF is the operation of simultaneously switching
every occurrence of x to x̄ and of x̄ to x. A renaming (function) with respect to
vector d ∈ {0, 1}n, denoted by Rd, maps a CNF formula ϕ to Rd(ϕ), obtained
by switching every pair of literals xi and x̄i such that di = 1. The following easily
verified proposition shows that the operation on truth assignments corresponding

Horn Upper Bounds and Renaming 83

to renaming w.r.t. vector d is taking the exclusive or with d, and one can use
renaming to solve the reasoning problem formulated in the introduction.

Proposition 1. a) A truth assignment a satisfies CNF ϕ iff the truth assign-
ment a⊕ d satisfies Rd(ϕ).

b) For any CNF ϕ, clause C, and vector d, we have ϕ |= C if and only if
Rd(ϕ) |= Rd(C).

A CNF ϕ is Horn renamable if Rd(ϕ) is a Horn formula for some vector d. It can
be decided in polynomial time if a CNF is Horn renamable [1,16], but finding a
largest Horn renamable sub-CNF of a given CNF is NP -hard [6]. Boros [3] gave
an approximation algorithm for finding a large Horn renamable sub-CNF in an
arbitrary CNF in linear time. Given a direction d ∈ {0, 1}n, the d-Horn closure
of a set S of truth assignments is

Hd(S) = H({a⊕ d : a ∈ S}).
With an abuse of notation, we refer to Hd(T (ϕ)) = H(T (Rd(ϕ))) as the d-Horn
closure of ϕ.

3 Negative Results for Horn Upper Bounds with
Renaming

In this section we present negative results for Horn closures and Horn-LUB with
renaming, analogous to those for the ordinary Horn closure and Horn-LUB.

Theorem 1. There are 3-CNF formulas ϕ with a polynomial number of satis-
fying truth assignments such that for every direction d, the size of the d-Horn
closure of ϕ is superpolynomial.

Proof. The construction uses the following lemma.

Lemma 1. There is a set S ⊆ {0, 1}m with |S| = 2m such that for every
direction d ∈ {0, 1}m it holds that

|Hd(S)| ≥ 2�m/2�.

Proof. Let S be the set of vectors of weight 1 and (m − 1) and let d ∈ {0, 1}m
be any direction. Then d has at least �m/2� 0’s or �m/2� 1’s. Assume w.l.o.g.
that the first �m/2� components of d are 0 (resp., 1). Consider those vectors
from S which have a single 0 (resp. 1) in one of the first �m/2� components. All
possible intersections of these vectors (resp., the complements of these vectors)
are contained in the d-Horn closure of S. Thus all possible vectors on the first
�m/2� components occur in the d-Horn closure and the bound of the lemma
follows. 	

Now consider the 4-CNF ϕ formed by taking the conjunction of all possible
clauses of size 4 containing two unnegated and two negated literals over m vari-
ables. The vectors satisfying this formula are those in the set S in the proof of

84 M. Langlois, R.H. Sloan, and G. Turán

Lemma 1 plus the all 0’s and the all 1’s vectors. Hence by Lemma 1, ϕ’s Horn
closure with respect to any direction has size at least 2�m/2�.

In order to obtain a 3-CNF ψ, introduce a new variable z for each clause
(a∨ b∨ c∨d) in ϕ, and replace the clause by five new clauses: (a∨ b∨ z̄), (c∨d∨
z), (ā∨ b̄∨z), (ā∨b∨z) and (a∨ b̄∨z). It follows by a standard argument (omitted
for brevity) that ψ has the same number of satisfying truth assignments as ϕ,
and every truth assignment of ϕ has a unique extension to a satisfying truth
assignment of ψ. Hence the Horn closure of ψ in any direction has size at least
2�m/2�. Thus ψ has n = Θ(m4) variables, Θ(m) satisfying truth assignments
and its Horn closure in every direction has size at least 2�m/2�, so the theorem
follows. 	

It may be of interest to note that the bound of Lemma 1 is fairly tight.

Theorem 2. For every polynomial p and every ε > 0, for all sufficiently large
m, for every set S of at most p(m) binary vectors of length m, there exists a
direction d such that the size of the d-Horn closure of S is at most 2

m
2 (1+ε).

Proof. We show that a randomly chosen direction d ∈ {0, 1}m has nonzero prob-
ability of having the desired property. For every vector a ∈ S, the probability that
a⊕d has more than m

2 (1+ ε
2) 1’s is at most e−ε2m/8 using a Chernoff bound [13,

Additive Form, page 190]. If m is sufficiently large then p(m)e−ε2m/8 < 1. In
this case there is a direction d such that a ⊕ d has at most m

2 (1 + ε
2) 1’s for

every a ∈ S. Every vector in the d-Horn closure of S is below one of the vectors
a⊕ d. Hence the size of the d-closure is at most p(m)2

m
2 (1+ ε

2), which is less than
2

m
2 (1+ε) for all sufficiently large m. 	

The following result shows the existence of CNF formulas for which the Horn-
LUB in every direction d gives an incorrect answer to a large fraction of the prime
implicate queries. The construction is based on a construction of Levin [15] of
a DNF formula with a bounded number of terms, having the maximal number
of prime implicants. In [23], we showed that all bounded term DNF with the
maximal number of prime implicants can be obtained as a natural generalization
of this example.

Theorem 3. There are polynomial size CNF formulas ϕ such that for every
direction d, the ratio of the number of non-Horn and Horn prime implicates of
Rd(ϕ) is superpolynomial.

Proof. To construct ϕ, we begin with a complete binary tree of the height k and
put n = 2k. The variables of ϕ are x1, . . . , xn−1 and y1, . . . , yn. Each internal
node of the tree is labeled with a distinct x variable and the ith leaf is labeled
with ȳi. The formula ϕ has n clauses, one for each leaf. The clause corresponding
to a leaf is the disjunction of all the variables on the root-to-leaf path to the
leaf, with each x variable being negated if and only if the path went left when
leaving that node. Thus the depth-1 tree pictured in Figure 1 corresponds to
(x̄1 ∨ ȳ1) ∧ (x1 ∨ ȳ2).

Horn Upper Bounds and Renaming 85

The formula ϕ has a distinct prime implicate for each of the 2n−1 nonempty
subsets of the leaves [15, 23]. The prime implicate corresponding to a particular
subset S of leaves is the disjunction of x variables corresponding to any inner
node such that exactly one of the two subtrees of the node contains a leaf in
S, and the negated y variables corresponding to the leaves in S. An x variable
in the prime implicate is negated iff its left subtree is the one containing leaves
in S. Thus, for example, the formula corresponding to the tree in Figure 1 has
three prime implicates, one for each nonempty subset of the two leaves. For {ȳ1}
we have (x̄1 ∨ ȳ1); for {ȳ2} we have (x1 ∨ ȳ2); for {ȳ1, ȳ2} we have (ȳ1 ∨ ȳ2).

x1

0

y1 y2

1

Fig. 1. Tree of depth 1

We give an upper bound for the number of Horn prime implicates under any
renaming d. Notice that by symmetry, renaming internal nodes does not change
the number of Horn or non-Horn prime implicates. At the leaves, making all the
y’s negated maximizes the number of the prime implicates that are Horn. Thus
it is in fact sufficient to estimate the number of Horn prime implicates of the
original formula.

Let Hk (resp., Nk, Dk) be the number of Horn (resp., negative, definite)
prime implicates of the formula built from a binary tree of height k. Then Hk =
Nk + Dk. The numbers Hk satisfy the following recurrence: H1 = 3 and

Hk = Hk−1 + Nk−1 + Hk−1 ·Nk−1 + Nk−1 ·Dk−1 . (1)

Here the first item is the number of Horn implicates of the left subtree. The
second term is the number of negative Horn implicates of the right subtree: by
adding the unnegated variable from the root, those correspond to definite Horn
implicates. The third (resp, the fourth) term corresponds to prime implicates
obtained from an arbitrary Horn (resp., a negative) prime implicate of the left
subtree and a negative (resp., a definite) one form the right subtree. Note that
two definite prime implicates from the two subtrees will form a non-Horn prime
implicate. In order to use (1) to get an upper bound on Hk, we must bound Nk.
Similarly to (1), one can derive the following recurrence: N1 = 2 and

Nk = (Nk−1)2 + Nk−1.

It can be shown that Nk < 2
11
16 n and Hk ≤ 3k−4 · 214 · 2 11

16 n. 	

4 Computational Results

Selman and Kautz’s original Horn-LUB algorithm for a set of clauses (i.e., a
CNF) proceeds by repeatedly performing resolution steps between two clauses,

86 M. Langlois, R.H. Sloan, and G. Turán

at least one of which must be non-Horn. Any clauses in the set that are subsumed
by the new resolvent are removed, and the new resolvent is added to the set.
This process continues until it becomes impossible to find two clauses to resolve
such that at least one is non-Horn and their resolvent is not subsumed by some
clause already in the set.

In addition to Selman and Kautz’s original Horn-LUB algorithm, we consid-
ered three other algorithms to compute Horn approximations, which are modi-
fications of the original algorithm:

Renamed-Horn-LUB finds a renaming of the variables using a heuristic algo-
rithm of [3], and then applies the Horn-LUB algorithm. Notice that we need
only linear time to find a renaming.

4-Horn-UB works as the Horn-LUB algorithm, but only performs resolution
steps that produce clauses of size at most 4.

Renamed-4-Horn-UB is the combination of the first two algorithms: it first
performs a renaming, and then does those resolution steps that produce
clauses of size at most 4.

It turns out that Renamed-4-Horn-UB gives the best performance, so we give
a snapshot of its running time and of the size of its output versus that of the
original Horn-LUB in Table 1. (All running times reported in this paper were
measured on a Dell laptop with a 2.40 GHz CPU and 256MB RAM.)

Table 1. Mean running time in CPU seconds and number of clauses in the output for
Horn-LUB and Renamed-4-Horn-UB on random 3-CNF formulas on 20 variables as a
function of density α, averaged over 50 runs

Original LUB Renamed-4
α Time Size Time Size

1 0.96 96.1 0.00 28.2
2 50.49 1044.7 0.16 236.2
3 126.81 889.8 1.49 704.8
4 224.56 409.3 0.91 452.7

As mentioned in the introduction, we chose to make most of our measurements
on formulas on n = 20 variables. We restricted n to 20 for two main reasons.
First, the running time of the original Horn-LUB algorithm increased by roughly
a factor of 5–10 for every additional two variables. So, while by using significantly
greater computational resources we could have computed the original Horn-LUB
for formulas with 25 variables, it would have been completely infeasible to do so
for, say, 75 variables. (Selman and Kautz reported empirical data only on such
things as the unit clauses within the Horn-LUB, which can be computed much
more quickly by using a SAT solver, not by the Horn-LUB algorithm itself.)
Second, in several cases we needed to perform exhaustive testing over all 2n

vectors, and this testing becomes impractical for values much above n = 20.
(More discussion of this issue is given at the end of this section.)

Horn Upper Bounds and Renaming 87

We observe that the running time of Renamed-4-Horn-UB is significantly
smaller than for Horn-LUB, and the size of the output formulas is smaller for
Renamed-4-Horn-UB for density α ≤ 3, and modestly larger for density 4. The
output sizes for both algorithms are unimodal as a function of CNF density.
More detailed data show that the maximum size occurs around density 2.5.

As all these algorithms produce a conjunction of some implicates of the origi-
nal formula ϕ, their output is implied by ϕ; that is, each algorithm’s output has
a one-sided error. The relative error of such an algorithm A on an input formula
ϕ is measured by

rA(ϕ) =
|T (A(ϕ))| − |T (ϕ)|

|T (ϕ)| ,

where A(ϕ) denotes the formula output by A on ϕ.
Figure 2 presents computational results for the relative errors of the four

algorithms for different densities on 20 variables. Statistical values on all the
figures are median, max and min values; the values at the ends of the white bars
are 25% and 75%. The error curves are again unimodal, with maxima around
density 2.4. Experiments for fewer variables show similar values of the maxima.

Of the two heuristics taken alone, renaming improves the relative error more
dramatically than limiting clauses to size 4; notice that the relative errors were
sufficiently different that the two parts of Figure 2 for the renaming heuristic
use a different scale. The overall conclusion is that Renamed-4-Horn-UB is the
best algorithm for 20 variables.3 It is significantly faster than either Horn-LUB
or Renamed-Horn-LUB, and it is even somewhat faster than 4-Horn-UB. Its
output size is significantly smaller than those of Horn-LUB or Renamed-Horn-
LUB, but larger than that of 4-Horn-UB. On the other hand, its relative error
is only slightly worse than that of Renamed-Horn-LUB, which has the smallest
relative error. Replacing the limit 4 on clause size with 3, or even using all
implicates of size at most 3, results in a large increase in the relative error for
densities below the satisfiability threshold.

It is to be expected, and it is supported by some experimental evidence, that
as the number of variables increases, the limit on the clause size required for
producing reasonable relative error will also increase.

Another way to evaluate the algorithms is to consider the number of queries
that are answered incorrectly by their output. Notice that by Proposition 1, if
we have used renaming, we can simply query the renamed clause. We will use the
prime implicates of the original formula ϕ as our test set of clauses. The original
Horn-LUB algorithm gives the correct answer for any Horn clause query, and
the wrong answer for any non-Horn prime implicate query. Thus the renaming
heuristic will improve the query-answering accuracy of the LUB. Restricting
the length of resolvents in the upper bound, on the other hand, will worsen
the accuracy, as some Horn prime implicates may receive the wrong answer.
We show the performance of the four algorithms in Figure 3; these are error

3 Preliminary experiments show Renamed-4-Horn-UB also performing relatively well
for up to at least 40 variables, but for 40 variables, simply measuring performance
is computationally expensive.

88 M. Langlois, R.H. Sloan, and G. Turán

0

5

10

15

20

25

30

35

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6

0

5

10

15

20

25

30

35

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6

0

2

4

6

8

10

12

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6

0

2

4

6

8

10

12

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6

Fig. 2. Relative errors rA(ϕ) of the algorithms for random 3-CNF with 20 variables
as function of density. Measured by exhaustive examination of all length 20 vectors.
Averaged over 100 runs. From top to bottom: Horn-LUB, 4-Horn-UB, Renamed-Horn-
LUB, Renamed-4-Horn-UB. The scales for the relative error run from 0–35 for the first
two algorithms, but from 0–12 for the Renamed variants.

Horn Upper Bounds and Renaming 89

ratios, and all are fairly high for densities significantly below the critical density
of α ≈ 4.2. We again observe unimodal behavior, with the maximum around
a density of 1.6, with some variation by algorithm. The best performance is
indeed for Renamed-Horn-LUB, but Renamed-4-Horn-UB is only a little worse
than Renamed-Horn-LUB.

For a larger number of variables it is not feasible to exhaustively measure
the behavior of a Horn approximation on all truth assignments. In order to
estimate the relative error, one could try to use random sampling by generating
a random satisfying truth assignment of the Horn upper bounds. This raises the
question whether a random satisfying truth assignment of a Horn formula can be
generated (almost) uniformly in polynomial time. As far as we know, this is open.
In related work, Roth [20] showed that it is NP -hard to approximate the number
of satisfying truth assignments of a Horn formula within a multiplicative factor
of 2n1−ε

(for any ε) in polynomial time, even if the clauses have size 2 and every
variable occurs at most 3 times, and Jerrum et al. [11] established a connection
between almost uniform generation and randomized approximate counting.

Table 2. Percentage error in measuring rA(ϕ) using “pseudo-random” sampling of
vectors versus exhaustive. Generates 100,000 “pseudo-random” length 20 vectors; stops
early if 50,000 distinct vectors obtained; uses only distinct vectors to measure error.
Averaged over 10 runs.

α 0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2

% 1.3 5.4 12 12.9 11.8 8.4 4.2 2.3 1.3 0.0 0.0

Table 3. Percentage error in measuring rA(ϕ) using “pseudo-random” sampling of vec-
tors using weighted selection of variables versus exhaustive. Generates 100,000 “pseudo-
random” length 20 vectors; stops early if 50,000 distinct vectors obtained; uses only
distinct vectors to measure error. Averaged over 10 runs.

α 0.25 0.65 1.05 1.45 1.85 2.25 2.65 3.05 3.45 3.85 4.25

% 3.3 9.1 11.57 11.5 13.4 9.5 3.3 0.4 0.1 0.0 0.0

We have started to do some initial experiments with various heuristics for
generating a satisfying truth assignment of a Horn formula. Table 2 compares
the relative error of the Horn-LUB algorithm with the estimate of the relative
error obtained by “pseudo-random” sampling. The algorithm is a naive one,
randomly selecting variables to be fixed (assigning the same probability to each
variable), and deriving all assignments that are forced by the previous choices.

The second algorithm is similar to the first but using a different probability
distribution over the variables: the probability assigned to each variable is pro-
portional to the number of its occurrences in the formula. Table 3 also compares
the relative error of the Horn-LUB algorithm with the estimate of the relative
error obtained by the second algorithm.

90 M. Langlois, R.H. Sloan, and G. Turán

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2

Fig. 3. Fraction of all prime implicate queries to a random 3-CNF formula on 20
variables that would receive the wrong answer from the particular type of Horn upper
bound, as a function of density. Averaged over 50 runs. From top to bottom: Horn-LUB,
4-Horn-UB, Renamed-Horn-LUB, Renamed-4-Horn-UB.

Horn Upper Bounds and Renaming 91

Note that truly uniform random generation would require weighting the choi-
ces of the two values by the number of satisfying truth assignments corresponding
to each value. As Tables 2 and 3 show, the error estimates obtained by “pseudo-
random” sampling are rather close to the actual values.

5 Further Remarks

We have given negative results on the approximation quality of Horn upper
bounds using renaming, and we have presented experimental results for al-
gorithms generating Horn upper bounds. Based on experiments with random
3-CNF for different densities, we have concluded that for 20 variables the algo-
rithm Renamed-4-Horn-UB provides the best compromise in terms of running
time, output size and relative error. Also, a Horn bump was observed for the
different performance measures in an intermediate range of densities.

There are several directions for further work. An interesting theoretical prob-
lem is to construct CNF expressions having superpolynomially large Horn-LUB
for every direction (an example for the ordinary Horn closure is given in [22]).
The question of almost uniform random generation of a satisfying truth assign-
ment of a Horn formula seems to be of interest from the point of view of extending
the experiments to more variables, and also as a question in itself.

The interpretation of the Horn least upper bound as the intersection closure of
the set of satisfying truth assignments for a Horn formula leads to the following
general question: what is the expected size of the intersection closure of a random
subset of {0, 1}n, given a probability distribution on the subsets? We are not
aware of results of this kind. (Another closure problem, the dimension of the
subspace spanned by a random set of vectors, has been studied in great detail.)
A basic case to consider would be when m random vectors are generated, each
component of which is set to 1 with probability p. The size of the Horn-LUB of
a random 3-CNF with a given density is a special case of the general question,
when the distribution is generated by picking a random formula.

A much studied problem related to the phase transition of random 3-CNF
is the evolution of random 3-CNF, in analogy to the classic work of Erdős and
Rényi [9] on the evolution of random graphs, and to the study of the evolution
of random Boolean functions (see, e.g., Bollobás et al. [2]). In this direction,
all of Mora et al. [19], Mézard and Zecchina [18], and San Miguel Aguirre and
Vardi [21] show some interesting behavior at densities below the critical density
(clustering of the solutions in the case of Mora et al., a particular behavior
of a class of local search algorithms in the case of Mézard and Zecchina, and
running times for various solvers in the case of San Miguel Aguirre and Vardi).
It would be interesting to know if the Horn bump has any connections to these
phenomena.

Acknowledgment. We would like to thank Eli Ben-Sasson and Bart Selman for
useful comments.

92 M. Langlois, R.H. Sloan, and G. Turán

References

1. B. Aspvall. Recognizing disguised NR(1) instances of the satisfiability problem.
Journal of Algorithms, 1:97–103, 1980.

2. B. Bollobás, Y. Kohayakawa, and T. �Luczak. On the evolution of random Boolean
functions. In P. Frankl, Z. Füredi, G. Katona, and D. Miklós, editors, Extremal
Problems for Finite Sets (Visegrád), volume 3 of Bolyai Society Mathematical Stud-
ies, pages 137–156, Budapest, 1994. János Bolyai Mathematical Society.

3. E. Boros. Maximum renamable Horn sub-CNFs. Discrete Appl. Math., 96-97:
29–40, 1999.

4. Y. Boufkhad. Algorithms for propositional KB approximation. In Proceedings of
the 15th National Conference on Artificial Intelligence (AAAI-98) and of the 10th
Conference on Innovative Applications of Artificial Intelligence (IAAI-98), pages
280–285, 1998.

5. M. Cadoli and F. M. Donini. A survey on knowledge compilation. AI Communi-
cations, 10(3–4):137–150, 1997.

6. Y. Crama, O. Ekin, and P. L. Hammer. Variable and term removal from Boolean
formulae. Discrete Applied Mathematics, 75(3):217–230, 1997.

7. A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial
Intelligence Research, 17:229–264, 2002.

8. A. del Val. First order LUB approximations: characterization and algorithms.
Artificial Intelligence, 162(1-2):7–48, 2005.

9. P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci, 5:17–61, 1960.

10. A. Horn. On sentences which are true on direct unions of algebras. J. Symbolic
Logic, 16:14–21, 1951.

11. M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combi-
natorial structures from a uniform distribution. Theor. Comput. Sci., 43:169–188,
1986.

12. H. Kautz and B. Selman. An empirical evaluation of knowledge compilation by
theory approximation. In Proceedings of the 12th National Conference on Artificial
Intelligence, pages 155–161, 1994.

13. M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, Cambridge, Massachusetts, 1994.

14. M. Langlois, R. H. Sloan, and G. Turán. Horn upper bounds of random 3-CNF: A
computational study. In Ninth Int. Symp. Artificial Intelligence and Mathematics,
2006. Available on-line from URL http://anytime.cs.umass.edu/aimath06/.

15. A. A. Levin. Comparative complexity of disjunctive normal forms. Metody Discret.
Analiz., 36:23–38, 1981. In Russian.

16. H. R. Lewis. Renaming a set of clauses as a Horn set. J. ACM, 25:134–135, 1978.
17. J. C. C. McKinsey. The decision problem for some classes without quantifiers. J.

Symbolic Logic, 8:61–76, 1943.
18. M. Mézard and R. Zecchina. The random K-satisfiability problem: from an analytic

solution to an efficient algorithm. Physical Review E, 66:056126, 2002.
19. T. Mora, M. Mézard, and R. Zecchina. Pairs of SAT assignments and clus-

tering in random Boolean formulae, 2005. Submitted to Theoretical Computer
Science, available from URL http://www.citebase.org/cgi-bin/citations?id=

oai:arXiv.org:cond-mat/0506053.
20. D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82:

273–302, 1996.

http://anytime.cs.umass.edu/aimath06/
http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:cond-mat/0506053
http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:cond-mat/0506053

Horn Upper Bounds and Renaming 93

21. A. San Miguel Aguirre and M. Y. Vardi. Random 3-SAT and BDDs: The plot
thickens further. In Proc. Seventh Int. Conf. Principles and Practice of Constraint
Programming (CP), pages 121–136, 2001.

22. B. Selman and H. Kautz. Knowledge compilation and theory approximation.
J. ACM, 43:193–224, 1996.

23. R. H. Sloan, B. Szörényi, and G. Turán. On k-term DNF with the maximal number
of prime implicants. Submitted for publication. Preliminary version available as
Electronic Colloquium on Computational Complexity (ECCC) Technical Report
TR05-023, available on-line at http://www.eccc.uni-trier.de/eccc/.

24. K. Truemper. Effective Logic Computation. Wiley-Interscience, 1998.
25. H. van Maaren and L. van Norden. Hidden threshold phenomena for fixed-density

SAT-formulae. In Proc. Int. Conf. Theory and Applications of Satisfiability Testing
(SAT 2003), volume 2219 of Springer LNCS, pages 135–149, 2004.

http://www.eccc.uni-trier.de/eccc/

Matched Formulas and Backdoor Sets�

Stefan Szeider

Department of Computer Science, Durham University,
Durham DH1 3LE, England, United Kingdom
stefan.szeider@durham.ac.uk

Abstract. We study parameterizations of the satisfiability problem for proposi-
tional formulas in conjunctive normal form. In particular, we consider two pa-
rameters that generalize the notion of matched formulas: (i) the well studied
parameter maximum deficiency, and (ii) the size of smallest backdoor sets with
respect to certain base classes of bounded maximum deficiency. The simplest
base class considered is the class of matched formulas. Our main technical con-
tribution is a hardness result for the detection of weak, strong, and deletion back-
door sets. This result implies, subject to a complexity theoretic assumption, that
small backdoor sets with respect to the base classes under consideration cannot
be found significantly faster than by exhaustive search.

1 Introduction and Background

A CNF formula is matched if one can match each clause to a “private” variable that oc-
curs in the clause such that different clauses are matched to different variables. Matched
CNF formulas are satisfiable since one can satisfy each clause independently by choos-
ing the right truth value for its private variable. Moreover, such formulas can be recog-
nized efficiently by bipartite matching algorithms. Matched formulas play a prominent
role in several theoretical investigations. For example, they were used in Tovey’s clas-
sical paper on 3SAT with bounded occurrence of variables [15], and in Tarsi’s Lemma
on the clause-variable difference of minimal unsatisfiable formulas [1].

The notion of maximum deficiency (first used by Franco and Van Gelder [7] in the
context of CNF formulas) allows to gradually extend the nice properties from matched
CNF formulas to more general classes of formulas. The maximum deficiency of a CNF
formula F , denoted by md(F), is the smallest number of clauses remaining without a
private variable in an optimal matching. The term “maximum deficiency” is motivated
by the equality md(F) = maxF ′⊆F d(F ′) which follows from Hall’s Theorem; here
d(F ′) denotes the deficiency of F ′, the difference between the number of clauses and
the number of variables of F ′. Let us denote the class of CNF formulas with maximum
deficiency at most r byMr (thusM0 is the class of matched formulas).

For minimal unsatisfiable formulas (that is, unsatisfiable formulas that become sat-
isfiable by removing any clause), deficiency and maximum deficiency agree. Kleine
Büning [9] initiated the study of minimal unsatisfiable formulas parameterized by de-
ficiency. Fleischner, Kullmann, and Szeider [5] showed that for every constant r, one

� Research supported by the EPSRC, project EP/E001394/1.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 94–99, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Matched Formulas and Backdoor Sets 95

can decide the satisfiability of CNF formulas with maximum deficiency r in polyno-
mial time (as a consequence, minimal unsatisfiable formulas with deficiency bounded
by a constant can be recognized in polynomial time). The order of the polynomial that
bounds the running time of Fleischner et al.’s algorithm depends on r, which makes
the algorithm infeasible for larger inputs, even if r is small. Szeider [13] developed
an algorithm that overcomes this limit: it decides satisfiability of CNF formulas with n
variables and maximum deficiency r in time O(2rn3) and recognizes minimal unsatisfi-
able formulas with deficiency r in time O(2rn4). Thus, satisfiability is fixed-parameter
tractable with respect to the parameter maximum deficiency, since the degree of the
polynomial is independent of the parameter r. We provide some basic concepts of pa-
rameterized complexity in Appendix B; for more background information we refer the
reader to other sources [4,6,10].

Backdoor Sets

The notion of backdoor sets, introduced by Williams, Gomes, and Selman [16], allows
a gradual generalization of any tractable base class C of CNF formulas. In this paper
we consider backdoor sets with respect to the base classesMr as defined above. The
size of such backdoor sets together with the base class level r provide a two-layered
parameterization of the satisfiability problem. A somewhat similar two-layered param-
eterization of Bayesian reasoning problems was studied by Bidyuk and Dechter [2].

Our results indicate that backdoor sets provide a more general parameterization than
maximum deficiency, but one has to pay for more generality with a significantly higher
computational cost.

Let us briefly give the definition of backdoor sets (our notational conventions for
formulas and truth assignments are given in Appendix A). Let F be a CNF formula and
B a set of variables of F . If for every truth assignment τ : B → {0, 1}, the restriction
F [τ] belongs to C, then B is called a strong backdoor set with respect to the tractable
class C under consideration (or strong C-backdoor set, for short). If for at least one
τ : B → {0, 1} the formula F [τ] is satisfiable and belongs to C, then B is called a weak
backdoor set.

A variant of strong backdoor sets are deletion backdoor sets: B is a deletion backdoor
set if the formula F − B belongs to C; F − B denotes the formula obtained from F
by removing all literals x,¬x with x ∈ B from the clauses of F . If the base class is
clause-induced (i.e., if F ∈ C implies F ′ ∈ C for all F ′ ⊆ F), then every deletion
backdoor set is a strong backdoor set [12].

If we know a strong or weak backdoor set B of F (or a deletion backdoor set B if
the base class is clause-induced), then we can decide satisfiability of F by checking
the satisfiability of at most 2|B| formulas F [τ] that belong to the tractable base class.
Thus it is interesting to find for a given formula a small backdoor set, say of size at
most k. Of course we can consider all sets of variables up to size k, and check whether
it is indeed a backdoor set. This exhaustive search requires time of order nk, thus it
becomes infeasible for large n. Whether we can do significantly better than exhaustive
search can be studied within the framework of parameterized complexity. To this aim,
we formulate the following parameterized decision problems.

96 S. Szeider

WEAK/STRONG/DELETION C-BACKDOOR SET

Instance: A CNF formula F and a non-negative integer k.
Parameter: k.
Question: Does F have a weak/strong/deletionC-backdoor set of size at most k?

Nishimura, Ragde, and Szeider [11] show that for C = HORN and C = 2CNF strong
and deletion backdoor sets actually are the same. Furthermore, they show that WEAK C-
BACKDOOR SET is W[2] hard and that STRONG C-BACKDOOR SET is fixed-parameter
tractable for these two classes.

2 Results

First we considerM0, the class of matched formulas, as the base class. Since all formu-
las inM0 are satisfiable, it follows that every strongM0-backdoor set is also a weak
M0-backdoor set. Our first result shows that the size of smallest weakM0-backdoor
sets is a parameter that properly generalizes the maximum deficiency parameter.

Theorem 1. Every satisfiable CNF formula with maximum deficiency k has a weak
M0-backdoor set of size at most k, whereas the difference between the maximum defi-
ciency and the size of a smallest weakM0-backdoor set can be arbitrarily large.

Proof. The first part of the theorem follows immediately from a nontrivial result of
Fleischner et al. [5] regarding “matching assignments,” see also Theorem 1 of [13].

For the second part of Theorem 1 we construct for every positive integer n a CNF
formula F such that md(F)−|B| > n for a smallestM0-backdoor set B of F . We take
variables x, y1, . . . , yn+3 and consider the formula F consisting of the clauses {x, yi},
{x, yi}, for i = 1, . . . , n+3. The maximum deficiency of F is 2(n+3)−(n+3)−1 =
n + 2, however B = {x} is evidently a weakM0-backdoor set of F . ��

Now we turn our attention to classes Mr for r ≥ 0. Note that already M1 contains
unsatisfiable formulas (e.g., {∅} or {{x}, {¬x}}), thus not every strongMr-backdoor
set is a weakMr-backdoor set.

If r and k are fixed constants, then we can detect strong/weak/deletionMr-back-
door sets of size at most k in polynomial time, since we can search through all sets
of variables of size at most k and check the respective conditions. Thus, in contrast to
other approaches [14], the backdoor set approach allows a (non-uniformly) tractable
generalization of matched CNF formulas. As our main technical contribution, we show
that we cannot improve significantly upon exhaustive search, subject to the complexity
theoretic assumption FPT 	= W[2]. There are several reasons to believe that the latter
assumption holds. For example FPT = W[2] would imply that the Exponential Time
Hypothesis fails [6] (i.e., the existence of a 2o(n) algorithm for n-variable 3SAT). Fur-
ther reasons that support the assumption are discussed in a recent work of Dantchev,
Martin, and Szeider [3].

Theorem 2. Let r be a fixed non-negative integer. The problems WEAK, STRONG, and
DELETIONMr-BACKDOOR SET are W[2]-hard.

Matched Formulas and Backdoor Sets 97

Proof. We give a parameterized reduction from the following W[2]-complete problem
(cf. [4]).

HITTING SET

Instance: A collection of sets S = {S1, . . . , Sm}, a non-negative integer k.
Parameter: k.
Question: Is there a set H ⊆ ⋃m

i=1 Si of size at most k that hits (i.e., intersects
with) each Si, 1 ≤ i ≤ m?

Let (S, k) be an instances of HITTING SET with S = {S1, . . . , Sm}, Si =
{v1

i , . . . , vqi

i } with |Si| = qi for 1 ≤ i ≤ m, and V =
⋃m

i=1 Si.
We are going to construct a CNF formula F such that S has a hitting set of size k if

and only if F has strong/weak/deletionMr-backdoor set of size at most k. Our general
strategy is to construct for each set Si a formula F ′

i with md(F ′
i) = r + 1, where

Si ⊆ var(F ′
i), and to consider the union F of all the formulas F ′

i . Every backdoor set
of F must involve a variable of F ′

i since md(F ′
i) = r + 1. On the other hand, F ′

i will
be constructed in such a way, that deleting any variable of Si ⊆ var(F ′

i) reduces the
maximum deficiency of F ′

i to 0.
For our construction we use three types of variables: starting variables, hitting vari-

ables, and matching variables. As hitting variables we use the elements of V , for the
other two types we use new variables. For each i ∈ {1, . . . , m} we proceed as follows.
Let s denote the smallest integer such that 2s − s > r. We take new starting variables
y1

i , . . . , ys
i and form the set Fi of all 2s different clauses over these variables. Next we

define recursively CNF formulas F j
i , j = 0, . . . , qi by setting

F 0
i := Fi, and

F j
i := {C ∪ {vj

i } : C ∈ F j−1
i } ∪ {C ∪ {¬v1

i , . . . ,¬vj
i } : C ∈ F i } for j > 0.

By construction md(Fi) ≥ d(Fi) > r, hence also md(F qi

i) > r as can be easily
verified. We take a set Mi = {z1

i , . . . , zdi

i } of di = md(F qi

i) − r − 1 new matching
variables and put

F ′
i = {C ∪Mi : C ∈ F qi

i }.
The maximum deficiency of F ′

i is by construction exactly r + 1 since every matching
variable of F ′

i can be matched to any clause in F ′
i . Finally, we obtain the CNF formula

F =
⋃m

i=1 F ′
i . Observe that for i 	= j, Fi and Fj do possibly share hitting variables,

but do not share any starting variables or matching variables. Note also that since r is a
constant, the construction of F can be carried out in polynomial time.

We show that the following statements are equivalent:

1. S has a hitting set of size at most k.
2. F has a weakMr-backdoor set of size at most k.
3. F has a strongMr-backdoor set of size at most k.
4. F has a deletionMr-backdoor set of size at most k.

Suppose that H ⊆ V is a hitting set of S. We claim that H is a deletion, strong, and
weakMr-backdoor set of F . Actually, it suffices to show that H is deletionMr-back-
door set: sinceMr is clause-induced, every deletion backdoor set is also a strong one,

98 S. Szeider

and since F is satisfiable (say, by setting all matching variables true) every strong back-
door set is also a weak one.

For every i ∈ {1, . . . , m}, H contains a hitting variable v of F ′
i . If we delete v, the

number of clauses in F ′
i gets reduced by 2s, but the number of variables gets reduced

by 1 only. Since 2s > r by assumption and since md(F ′
i) = r + 1, it follows md(F ′

i −
{v}) = 0 and therefore md(F ′

i −H) = 0. Hence we can find for each of the remaining
clauses in F ′

i −H a private variable, and we can choose private variables from the set
Mi of matching variables only. Thus F ′

i −H is a matched formula. It follows now that
also F −H is a matched formula since by construction, F ′

i and F ′
j (i 	= j) use different

matching variables. Whence F − H ∈ M0 ⊆ Mr, and so H is indeed a deletion
Mr-backdoor set of F . Thus we have shown that statement 1 implies statements 2, 3,
and 4.

Now let B be a set of variables of F and let τ : B → {0, 1} be a truth assignment.
Let F ∗ ∈ {F [τ], F − B}, and assume that F ∗ ∈ Mr. We show that there exists a
hitting set H of S with |H | ≤ |B|. Suppose that there is some i ∈ {1, . . . , m} such
that no variable of F ′

i belongs to B. Consequently, Fi must be a subset of F ∗. However,
since md(F ′

i) = r + 1, md(F ∗) > r follows, a contradiction to F ∗ ∈ Mr. Hence
for every i ∈ {1, . . . , m}, some variable xi of F ′

i belongs to B (possibly xi = xj for
i 	= j). We define a set of variables H = {y1, . . . , yn} as follows. If xi ∈ V , we put
yi = xi, otherwise we pick yi ∈ Si arbitrarily. It follows now that H is a hitting set of
S, and |H | ≤ |B| by construction. Whence each of the statements 2, 3, and 4 implies
statement 1. This concludes the proof of Theorem 2. ��

The reduction in the proof above is actually a polynomial-time many-to-one reduction
and does not use the full power available for parameterized reductions. Since the non-
parameterized version of HITTING SET (where k is part of the input and is not consid-
ered as a parameter) is NP-complete [8], it follows that the non-parameterized versions
of the problems mentioned in Theorem 2 are NP-hard.

Appendix A. Notation. We consider propositional formulas in conjunctive normal
form, CNF formulas, represented as sets of clauses. Each clause is a set of literals,
each literal is a variable or a negated variable. A (partial) truth assignment is a mapping
τ : X → {0, 1} defined for some set X of variables. It extends to literals by putting
τ(¬x) = 1 − τ(x). The restriction of F to τ is the CNF formula F [τ] that is obtained
from F by removing all clauses that contain a literal � with τ(�) = 1 and by removing
all literals � with τ(�) = 0 from the remaining clauses. F is satisfiable if F [τ] = ∅ for
some truth assignment τ . For a set X of variables we write X = {¬x : x ∈ X }. By
deleting X from a formula F we obtain the formula F−X = {C \(X∪X) : C ∈ F }.

Appendix B. Parameterized Complexity. An instance of a parameterized problem
is a pair (I, k) where I is the main part and k is the parameter; the latter is usually
a non-negative integer. A parameterized problem is fixed-parameter tractable if it can
be solved by a fixed-parameter algorithm, i.e., if instances (I, k) can be solved in time
O(f(k)‖I‖c) where f is a computable function, c is a constant, and ‖I‖ represents the
size of I in a reasonable encoding. FPT denotes the class of all fixed-parameter tractable
decision problems.

Matched Formulas and Backdoor Sets 99

A parameterized reduction is a straightforward extension of a polynomial-time
many-one reduction that ensures a parameter for one problem maps into a parameter
for another. More specifically, problem L reduces to L′ if there is a mapping R from
instances of L to instances of L′ such that (i) (I, k) is a yes-instance of L if and only
if (I ′, k′) = R(I, k) is a yes-instance of L′, (ii) k′ = g(k) for a computable func-
tion g, and (iii) R can be computed by a fixed-parameter algorithm, that is, in time
O(f(k)‖I‖c) where f is a computable function and c is a constant. The reduction de-
fined in the proof of Theorem 2 is actually computable in polynomial time and g(k) is
the identity mapping.

References

1. R. Aharoni and N. Linial. Minimal non-two-colorable hypergraphs and minimal unsatisfiable
formulas. J. Combin. Theory Ser. A, 43:196–204, 1986.

2. B. Bidyuk and R. Dechter. On finding minimal w-cutset problem. UAI 2004, 20th Conference
on Uncertainty in Artificial Intelligence, 2004.

3. S. Dantchev, B. Martin, and S. Szeider. Parameterized proof complexity: a complexity gap
for parameterized tree-like resolution. Technical Report TR07-001, Electronic Colloquium
on Computational Complexity (ECCC), Jan. 2007.

4. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer Verlag, 1999.
5. H. Fleischner, O. Kullmann, and S. Szeider. Polynomial-time recognition of minimal unsatis-

fiable formulas with fixed clause-variable difference. Theoret. Comput. Sci., 289(1):503–516,
2002.

6. J. Flum and M. Grohe. Parameterized Complexity Theory, Springer Verlag, 2006.
7. J. Franco and A. Van Gelder. A perspective on certain polynomial time solvable classes of

satisfiability. Discr. Appl. Math., 125:177–214, 2003.
8. M. R. Garey and D. R. Johnson. Computers and Intractability. Freeman & Co., 1979.
9. H. Kleine Büning. On subclasses of minimal unsatisfiable formulas. Discr. Appl. Math.,

107(1–3):83–98, 2000.
10. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
11. N. Nishimura, P. Ragde, and S. Szeider. Detecting backdoor sets with respect to Horn and

binary clauses. In SAT 2004, Informal Proceedings, pages 96–103, 2004.
12. N. Nishimura, P. Ragde, and S. Szeider. Solving #SAT using vertex covers. In Proc. SAT

2006, volume 4121 of LNCS, pages 396–409, 2006.
13. S. Szeider. Minimal unsatisfiable formulas with bounded clause-variable difference are fixed-

parameter tractable. J. of Computer and System Sciences, 69(4):656–674, 2004.
14. S. Szeider. Generalizations of matched CNF formulas. Ann. Math. Artif. Intell., 43(1-4):

223–238, 2005.
15. C. A. Tovey. A simplified NP-complete satisfiability problem. Discr. Appl. Math., 8(1):

85–89, 1984.
16. R. Williams, C. Gomes, and B. Selman. On the connections between backdoors, restarts,

and heavy-tailedness in combinatorial search. In SAT 2003, Informal Proceedings, pages
222–230, 2003.

Short XORs for Model Counting:

From Theory to Practice

Carla P. Gomes1,�, Joerg Hoffmann2, Ashish Sabharwal1,∗, and Bart Selman1,∗

1 Dept. of Computer Science, Cornell University, Ithaca NY 14853-7501, U.S.A
{gomes,sabhar,selman}@cs.cornell.edu

2 University of Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria
joerg.hoffmann@deri.org

Abstract. A promising approach for model counting was recently in-
troduced, which in theory requires the use of large random xor or parity
constraints to obtain near-exact counts of solutions to Boolean formu-
las. In practice, however, short xor constraints are preferred as they
allow better constraint propagation in SAT solvers. We narrow this gap
between theory and practice by presenting experimental evidence that
for structured problem domains, very short xor constraints can lead to
probabilistic variance as low as large xor constraints, and thus provide
the same correctness guarantees. We initiate an understanding of this
phenomenon by relating it to structural properties of synthetic instances.

1 Introduction

The dramatic advances in Boolean satisfiability or SAT technology have led
to the exploration of new possible applications of SAT solvers. Some of the
most exciting such applications go beyond pure satisfiability testing. For exam-
ple, they involve random sampling from the set of satisfying truth assignments
and counting the total number of satisfying assignments. These techniques are
particularly promising in the context of applications to probabilistic reasoning.
Computationally speaking, counting and sampling are considerably harder than
satisfiability testing per se. We recently introduced an approach to counting [1]
and sampling [2] that relied on adding xor or parity constraints [3] (converted
to the usual CNF form) to the original problem instance. We showed how one
can then use standard state-of-the-art SAT solvers running on the augmented
problem instance to compute bounds on the model count of the original problem
instance, and to sample near-uniformly from the solution space.

This xor framework provides probabilistic correctness guarantees for xor
constraints of any length. However, the best results are obtained by using “full-
length” xors, i.e., xors containing half of the variables of the formula. In our
experiments with available SAT solvers, we consistently observed that reason-
ing with long xors is computationally much more expensive than reasoning

� Supported by IISI, Cornell University, AFOSR grant F49620-01-1-0076.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 100–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Short XORs for Model Counting: From Theory to Practice 101

with short xors. This appears to be because long xor constraints hamper unit
propagation on which SAT solvers rely heavily. Therefore, for the practical ap-
plicability of our xor techniques, a key question is whether relatively short xor
constraints can already provide much of the power of full-length xors, when
considering purely the quality of model count bounds and solution samples.

Fortunately, this is the case, as we demonstrate in this paper. In particular, we
show that while random 1-xors (single literals) or random 2-xors (2 variable
xors) may lead to rather weak bounds on solution counts or sample quality
due to large variance, the situation improves dramatically when one considers
only slightly longer xors. In fact, good quality bounds and samples can often
be obtained with xors of 5 to 10 variables, even when the original formula has
several hundred variables. To demonstrate this, we systematically consider the
variance — which directly determines the bound quality — of solution counts
obtained in repeated runs with xors of different lengths. We show that the
variance decreases drastically beyond length 1 or 2 xors. We first demonstrate
this phenomenon on a range of practical problem instances, and then provide
further insights into the trade-offs between solution space structure and the
required length of xors by considering a class of synthetic problem instances.

2 Background

An xor constraint D over a set of Boolean variables V is the logical “xor” or
parity of a subset of V ∪ {1}; a truth assignment for V satisfies D iff it sets an
odd number of elements in D to true. The value 1 allows us to express even
parity. For instance, D = {a, b, c, 1} is true as an xor constraint when an even
number of a, b, c are true. Our focus will be on formulas which are a logical
conjunction of a formula in Conjunctive Normal Form (CNF) and some xor
constraints. The latter are translated into CNF using additional variables.

xor-based model counting and sampling methods [1,2] work as follows. Given
a formula F , one adds (i.e., conjoins) an appropriate number s of randomly cho-
sen xor constraints to F to create a new formula F ′. F ′, which in expectation
can be shown to have a factor 2s fewer satisfying assignments than F , is then
fed to either an off-the-shelf complete SAT solver or to an exact model counter.
When large xors are used, one can use certain probabilistic independence con-
ditions and transform the result into (a bound on) the model count of F or
a random solution sample for F , with guarantees. The length of xors influ-
ences the independence assumption and thus affects the quality of the process;
formally, with “short” xors, only a lower bound model count can be guaranteed.

For one of our analytic computations for the “ideal” case of large xors, we
will use random variables which are the sum of indicator random variables:
Y =

∑
σ Yσ, Yσ ∈ {0, 1}. Linearity of expectation says that E [Y] =

∑
σ E [Yσ].

When various Yσ are pairwise independent, i.e., knowing Yσ2 tells us nothing
about Yσ1 , even variance behaves linearly: Var [Y] =

∑
σ Var [Yσ].

102 C.P. Gomes et al.

3 The Setup for Empirical Evaluation

In all our experiments, we vary a parameter k, 1 ≤ k ≤ n/2, and study the
standard deviation of the quantity X = 2s×residualSolutionCount after a certain
number s of random xors of length k are added to a formula F . The expected
value of X is known to be the true model count of F . When the probabilistic
variance of X is small (specifically, when Var [X] ≤ E [X]), algorithm MBound [1]
is able to provide much more than lower bounds: it can compute near-exact
model counts by computing both a lower bound and an upper bound. This
condition was formally proved to hold when k = n/2. In this empirical study,
we define k ∈ {1, 2, . . . , n/2} to be (empirically) good or sufficient for F when
Vars [X] ≤ E [X] even for xors of length k, where Vars [X] denotes the sample
standard deviation (s.s.d. for short) of X obtained experimentally.

Since formulas vary in the number of variables and the number of solutions,
one must normalize for this when comparing the behavior of xors on differ-
ent formulas in the same plot. We do so by two means: (1) we plot the s.s.d.
of the normalized solution counts, X ′ = X/trueCount, and (2) the number of
xors we use is fewer than log2 trueCount by a constant amount. The first condi-
tion guarantees consistent expected values, namely, E [X ′] = 1 for all formulas.
The second condition, as we will see shortly, ensures that as k approaches n/2,
s.s.d. [X] approaches the same ideal value for all formulas under consideration.

The ideal curve in all our plots corresponds to the standard deviation of the
normalized obtained solution count, X ′, when full-length xors are used. Note
that this is really a single ideal value to which all s.s.d. plots should converge as
the length k increases. We plot it as a horizontal line to easily visually infer for
what k are xors of length k already good for the formula under consideration.

We compute the ideal curve analytically as follows. For concreteness, let Y
denote the residual model count obtained after adding s random xors of length
n/2 to a formula F with 2s∗

solutions. In the notation above, X = 2s × Y , so
that Var [X] = 22s×Var [Y]. Following our earlier analysis [1], we can write Y =∑

σ Yσ, where the summation is over all solutions σ of F and Yσ is a 0-1 random
variable indicating whether σ is present in the residual solutions. As argued in
that analysis, random variables Yσ are pairwise independent. Also, E [Yσ] = 2−s

and Var [Yσ] = 2−s(1−2−s) ≈ 2−s. Because of pairwise-independence, Var [Y] =∑
σ Var [Yσ] = 2s∗−s(1 − 2−s) ≈ 2s∗−s. It follows that Var [X] ≈ 2s∗+s. For

the variance of the normalized model count, we get Var [X ′] = Var [X] /22s∗ ≈
2−(s∗−s) = 2−remainingXors , where remainingXors is defined as (s∗ − s), i.e.,
the amount by which the number of xors added was fewer than the number
needed to get down to a single solution. The corresponding s.s.d. is s.s.d. [X ′] =√

2−(s∗−s), ignoring the relatively tiny (1− 2−s) term.
The ideal curve depicting the behavior of xors of length n/2 is therefore

shown as the horizontal line s.s.d. [X ′] =
√

1/2s∗−s. We note that when s = s∗,
so that a single solution is expected to survive, s.s.d. [X ′] becomes 1. The quan-
tity s∗− s, which plays an important role in our experiments, will be referred to
as the number of remaining xors. As mentioned above, all formulas plotted in a

Short XORs for Model Counting: From Theory to Practice 103

single figure for comparison will have the same number of remaining xors, and
will therefore converge to the same ideal value as the length of xors increases.1

4 Experimental Results and Discussion

For each formula F on n variables that we consider, we will vary a param-
eter k within a sub-range of {1, 2, . . . , n/2} on the horizontal axis, and plot
on the vertical axis the sample standard deviation of the normalized quantity
X ′ = (2s × residualSolutionCount)/totalSolns after a certain number s of ran-
dom xors of length k are added to F . For each s.s.d. computation (i.e., for each
data point in the plots to follow), we used 1,000 samples in most cases to get
a reasonable estimate of the true standard deviation for that length, and up
to 50,000 samples in some cases for very short xors. The number of residual
solutions was computed using the exact model counter Relsat [4].

We present results on formulas from four domains: Latin squares, logistics
planning, circuit synthesis, and random formulas (Figs. 1-4). In each case, there
is a dramatic drop in the s.s.d. as the length of xors is increased even slightly.

The Latin square formulas considered have 100 to 150 variables each. The
most constrained formula, ls7R30, has less than 25 solutions, while the least
constrained one, ls7R36, has 214 solutions. These formulas theoretically require
xors of length 50-75 for near-exact model counting with MBound. We performed
experiments with 3 remaining xors. Interestingly, we see from Fig. 1 that at
lengths 6 to 8, the s.s.d. already drops to the ideal value. The logistics planning
problem here has 352 variables and roughly 219 solutions. We again see from
Fig. 2 that the variance drops sharply till xor length 25. At lengths 40 to 50, we
are already very close to the ideal behavior. The circuit synthesis formulas
are for finding minimal size circuits for a given Boolean function. We consider the
instance 2bitmax 6 with 252 variables and ideal xor length 126. This formulas
has roughly 297 solutions and we used 87 xors. Fig. 3 shows that while the s.s.d.
is fairly high for very short xors, it drops dramatically as the length increases
to 7, and gets very close to the ideal value at around length 10.

Our random 3-CNF formulas are selected from the under-constrained re-
gion where model counting is known to be computationally hard [4], i.e., with
clause-to-variable ratios significantly below the satisfiability threshold of ≈ 4.26.
We consider four 100 variable formulas at ratios 3.3, 3.8, 3.96, and 4.2, respec-
tively. The number of solutions ranges from 232 to 214. The plots in Fig. 4
indicate that random formulas in general show much higher variance than more
structured, real-world formulas considered earlier. In particular, the ratio 4.2
formula achieves ideal behavior at xor length more than 40. On the positive
side, as these formulas become less and less constrained, shorter and shorter
xors surprisingly begin to be sufficient. E.g., the ratio 3.3 formula works well
1 One could alternatively consider plotting various formulas while keeping the number

of xors fixed, rather than keeping the number of remaining xors fixed. As the above
calculation shows, their s.s.d. plots will then eventually converge to different values,
making formula-to-formula comparison not very meaningful.

104 C.P. Gomes et al.

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

S
ta

nd
ar

d
de

vi
at

io
n

(n
or

m
al

iz
ed

 m
od

el
 c

ou
nt

)

Length of XOR constraints

ls7R30 to ls7R36: num_xors = log(num_solns) - 3

"ls7R30med-ssd2n.data"
"ls7R31med-ssd3n.data"
"ls7R32med-ssd4n.data"
"ls7R33med-ssd6n.data"
"ls7R34med-ssd7n.data"
"ls7R35med-ssd9n.data"

"ls7R36med-ssd11n.data"
Ideal case: sqrt(1 / 2^3)

Fig. 1. Latin square formulas of order 7
(100-150 variables)

 0

 5

 10

 15

 20

 0 20 40 60 80 100

S
ta

nd
ar

d
de

vi
at

io
n

(n
or

m
al

iz
ed

 m
od

el
 c

ou
nt

)

Length of XOR constraints

Logistics formula: num_xors = log(num_solns) - 9

"log.c.reduced.upd-ssd10n-both.data"
Ideal case: sqrt(1 / 2^9)

Fig. 2. A logistics planning problem (352
variables after simplification)

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

S
ta

nd
ar

d
de

vi
at

io
n

(n
or

m
al

iz
ed

 m
od

el
 c

ou
nt

)

Length of XOR constraints

2bitmax_6 formula: num_xors = log(num_solns) - 10

"2bitmax_6-ssd87n-both.data"
Ideal case: sqrt(1 / 2^10)

Fig. 3. A circuit synthesis problem (252
variables)

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45 50

S
ta

nd
ar

d
de

vi
at

io
n

(n
or

m
al

iz
ed

 m
od

el
 c

ou
nt

)

Length of XOR constraints

Random formulas with 100 vars: num_xors = log(num_solns) - 7

"wff-3-100-330-ssd25n.data"
"wff-3-100-380-ssd15n.data"
"wff-3-100-396-ssd11n.data"
"wff-3-100-420-ssd7n.data"

Ideal case: sqrt(1 / 2^7)

Fig. 4. Random formulas at ratios 3.3,
3.8, 3.96, and 4.2 (100 variables)

even at length 15. This trend suggests that random formulas interestingly be-
come more suitable for shorter xors as we go into the highly under-constrained
region, which is traditionally seen as the harder region for model counting.

In order to better understand the behavior of xor constraints of various
lengths, we explore hand-crafted families of formulas which will help us relate
xors to an intrinsic structural feature of formulas, namely their backbone: the
set of variables each of which takes the same value in every solution to the
formula. We first consider very simple fixed-backbone formulas string-n-t,
with n variables and backbone size n − t. The first t variables of the formula
are completely unconstrained, while the last n− t variables are fixed to 1. This
formula has exactly 2t solutions, which we will denote by: 1n−t ∗t.

Fig. 5 plots the s.s.d. for these formulas with n = 50 variables, t = 20, 30, 40, or
49 unconstrained variables, and the corresponding backbone size 30, 20, 10, or 1.
We see that formulas with larger backbone size clearly require larger xors. This
is explained qualitatively by the fact that randomly chosen xors become more
likely to only involve backbone variables as the backbone size increases. When
an xor constraint only involves backbone variables, we encounter unwanted

Short XORs for Model Counting: From Theory to Practice 105

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14

S
ta

nd
ar

d
de

vi
at

io
n

(n
or

m
al

iz
ed

 m
od

el
 c

ou
nt

)

Length of XOR constraints

String formulas: num_xors = log(num_solns) - 10

"string-50-20-ssd10n-both.data"
"string-50-30-ssd20n-both.data"
"string-50-40-ssd30n-both.data"
"string-50-49-ssd39n-both.data"

Ideal case: sqrt(1 / 2^10)

Fig. 5. Fixed-backbones formulas (50 va-
riables)

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

S
ta

nd
ar

d
de

vi
at

io
n

(n
or

m
al

iz
ed

 m
od

el
 c

ou
nt

)

Length of XOR constraints

Block formulas: num_xors = log(num_solns) - 10

"string-50-20-ssd10n.data"
"block-50-3-10-20-ssd13n.data"
"block-50-6-5-20-ssd16n.data"

"block-50-10-3-20-ssd20n.data"
Ideal case: sqrt(1 / 2^10)

Fig. 6. Interleaved-backbones formulas
(50 variables)

behavior: the constraint is either satisfied by all solutions or falsified by all so-
lutions. While this still cuts down the solution space in half on average, there is
high variance in the residual count. On the other hand, with small backbones,
randomly chosen xors are very likely to involve at least one non-backbone vari-
able (in this case, one unconstrained variable). When this happens, some of the
solutions satisfy the constraint and others don’t. This still cuts down the solution
space in half on average, but now with lower variance.

The interleaved-backbones formulas we consider next attempt to replace
a large global backbone for all solutions into many overlapping (and conflicting)
local backbones for solution clusters. These local backbones are interleaved to-
gether, allowing all possible combinations of their constituent “blocks,” thereby
giving the xors more freedom. These formulas are block-n-m-k-t, constructed
as follows. There are n variables divided up into m blocks of size k each, and t
unconstrained variables (n = mk + t). Each block is constrained to have all its
variables take the same value. The blocks themselves are, however, independent
of each other. We can represent this formula by its solution space: ak

1 ak
2 . . . ak

m ∗t,
where each ai ∈ {0, 1}. Recall that the formula, string-n-t, has exactly 2t solu-
tions. The number of solutions of block-n-m-k-t is 2t+m, which increases as the
number of blocks in the backbone split is increased, allowing more freedom.

Fig. 6 gives the results for 50 variable block formulas with 30 unconstrained
variables and the rest split into 3, 6, and 10 blocks. We see that as the backbone
is split into more and more blocks, the variance decreases. In particular, the
variance is the highest when there are no blocks (the string formula at the top)
and the lowest when the backbone is split into 10 blocks.

5 Concluding Remarks

xor-streamlining is a promising approach for model counting and sampling. We
provided evidence that relatively short xors can be surprisingly powerful on
practical problem instances. While large global backbones are bad for xors, our
synthetic formulas based on interleaved backbones provide intuitive explanation

106 C.P. Gomes et al.

that solution spaces consisting of many clusters with large local backbones are
still fine. We believe that this latter structure is more likely to be present in real-
world formulas than large global backbones or uniformly distributed solutions.

References

1. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: A new strategy for ob-
taining good bounds. In: 21th AAAI, Boston, MA (2006) 54–61

2. Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using XOR constraints. In: 20th NIPS, Vancouver, B.C. (2006)

3. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theoret-
ical Comput. Sci. 47(3) (1986) 85–93

4. Bayardo Jr., R.J., Pehoushek, J.D.: Counting models using connected components.
In: 17th AAAI, Austin, TX (2000) 157–162

Variable Dependency in Local Search:

Prevention Is Better Than Cure

Steven Prestwich

Cork Constraint Computation Centre
Department of Computer Science, University College, Cork, Ireland

s.prestwich@cs.ucc.ie

Abstract. Local search achieves good results on a variety of SAT prob-
lems and often scales up better than backtrack search. But despite recent
advances in local search heuristics it has failed to solve some structured
problems, while backtrack search has advanced greatly on such prob-
lems. We conjecture that current modelling practices are unintentionally
biased in favour of solution by backtrack search. To test this conjecture
we remodel two problems whose large instances have long resisted so-
lution by local search: parity learning and Towers of Hanoi as STRIPS
planning. By reducing variable dependencies and using other techniques
we boost local search performance by several orders of magnitude in both
cases, and we can now solve 32-bit and 6-disk instances for the first time
using a standard SAT local search algorithm.

1 Introduction

Local search is often more scalable than backtrack search, and in some areas of
combinatorial optimisation is the only practical way of obtaining good solutions.
Yet it currently has the reputation of being inferior to DPLL (the Davis-Putnam-
Logemann-Loveland SAT backtracking algorithm) on structured SAT instances
and only good for random problems. Nevertheless, it cannot be denied that local
search generally performs badly on problems classed as industrial in SAT solver
competitions, and the winners are all DPLL variants (see for example [35]).
Hybridising local search with unit propagation [11,24] or explicitly handling
variable dependencies [15,23] helps, but DPLL is still unbeaten on these prob-
lems. Improving local search on structured problems would have many practical
applications, perhaps solving larger instances of real-world applications than is
currently possible, but we cannot begin to improve it until we understand the
cause of its poor performance.

We conjecture that current SAT-encodings are unintentionally designed to
favour DPLL, and that this explains the poor ranking of local search algo-
rithms in solver competitions. For example, in SAT modelling we often eliminate
symmetrical solutions. But when applying local search, symmetry appear to be
harmless or even helpful, and eliminating it can adversely affect performance
[25,27]. Moreover, SAT encodings of specific constraints have been explored by

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 107–120, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

108 S. Prestwich

[1,2,7,8,9,13] with the aim of improving the consistency reasoning of unit propa-
gation in DPLL. But unit propagation is not used in most local search algorithms
so consistency reasoning is not necessarily relevant. In fact it was shown in [26]
that the ladder structure introduced in some of these encodings has a harmful
effect on local search performance. We also make a more specific conjecture:
that the model feature to blame for local search’s poor performance is in many
cases dependent variables. These are known to slow down local search [15], and
when they form long chains they may cause local search to take polynomial or
exponential time to propagate effects [24,33].

Our conjectures can be tested empirically by devising new SAT encodings with
reduced variable dependency, and comparing local search on the old and new
encodings. We do this for two problems whose large instances have so far resisted
solution by local search. In Section 2 we reformulate the parity learning problem
to avoid dependency chains, via new SAT-encodings of parity and cardinality
constraints, and show that local search can solve 32-bit instances. In Section 3
we reformulate the Towers of Hanoi problem expressed as a planning problem,
breaking up long dependency chains into short ones and artificially increasing
solution density, and show that local search can solve the 6-disk instance. Both
results are firsts for an off-the-shelf SAT local search algorithm.1 demonstrating
the power of the remodelling approach. Section 4 discusses further applications
and concludes the paper.

All our experiments are performed on a 733 MHz Pentium II under Linux. We
use only one local search algorithm: RSAPS [12] implemented in the UBCSAT
system [30]. RSAPS is a state-of-the-art dynamic local search algorithm, and
was chosen after preliminary experiments indicated that it was one of the best
algorithms for these problem. It also has the advantage that its default parameter
settings give good results over a wide range of SAT problems, so we did not need
to tune them.

2 Minimal Disagreement Parity Learning

This problem description is taken from [4]. Given vectors xi = (xi1, . . . , xin) (i =
1 . . .m) with each xij ∈ {0, 1}, a vector y = (y1, . . . , ym) and an error tolerance
integer k. Find a vector a = (a1, . . . , an) such that |{i : parity(a ·xi) �= yi}| ≤ k.
To make hard instances set m = 2n and k = 7n/8. n is referred to as the number
of bits, and 32-bit instances of this problem have proved intractable for both
DPLL and local search. They have been solved by paying special attention to the
parity constraints, either by transforming many of them away in a preprocessing
phase or by augmenting DPLL with equivalence reasoning [2,3,19,32].

Until recently local search has never solved 32-bit instances [16]. A special
version of the DLM local search algorithm was created for these and other very
hard benchmarks [34] but fails on 32-bit instances, as does a more recent algo-
rithm [22]. It was not until this year that an extended local search algorithm
solved them by exploiting knowledge about variable dependencies [23]. Why is
1 But a recent extended algorithm [23] has solved 32-bit problems — see Section 2.4.

Variable Dependency in Local Search: Prevention Is Better Than Cure 109

this problem so hard for local search? An explanation suggested by [16] is the
existence of local minima in which a small subset of clauses is never satisfied
simultaneously. We conjecture that chains of dependent variables are the culprit
(this does not necessarily contradict the explanation of [16]) and define a new
encoding of parity constraints that contains no such chains.

What we shall call the standard encoding is that used in [4] and SATLIB2

parX-Y-c instances (which are improved versions of the much harder parX-Y
instances) and described in [4]. It contains three families of clauses: the first
calculates the parities of a · xi; the second computes disagreements in parities;
the third encodes a cardinality constraint to limit the disagreements (n is set to a
power of 2 so that cardinality is easy to enforce). We start with a slightly different
model of parity learning that allows experimentation with different encodings of
parity constraints. If we can find improved encodings then these may be useful
when modelling other problems.

2.1 A Constraint-Based Model

Define variables Ai to contain the solution and Pj to denote parities. Force each
scalar product a · xj to have parity Pj :

Pj ≡
⊕

i∈τj

Ai

where τj = {i |xij = T }. Then at most k of m literals are true:

LE(k, π1, . . . , πm)

where literal πj is P̄j if yj = T and Pj if yj = F . By using a cardinality constraint
we can encode parity learning instances of any size, not just with n a power of
2. We now discuss encodings for the

⊕
and LE constraints.

2.2 Encoding Parity Constraints

It is possible to SAT-encode a parity constraint
⊕p

i=1 Pi = k simply by enu-
merating all possible combinations of Pi truth values, together with their parity
k. But this creates exponentially many clauses and is only reasonable for small
constraints. We shall call it the exponential encoding. A more practical method
due to [19] decomposes the constraint by introducing new variables:

P1 ⊕ z1 ≡ k P2 ⊕ z2 ≡ z1 . . . Pp−3 ⊕ zp−3 ≡ zp−2 Pp ≡ zp−1

The remaining binary and ternary constraints are then expanded via the expo-
nential encoding. We shall call this the linear encoding. It has O(p) new variables
and literals and is essentially the method used to encode the parities of a · xi in
the standard encoding of parity learning.

2 http://www.cs.ubc.ca/˜hoos/SATLIB/

110 S. Prestwich

A drawback with the linear encoding is that it creates a long chain of vari-
able dependencies, which has been shown to be bad for local search performance
[24,33]. An obvious alternative is a divide-and-conquer approach: bisect the con-
straint, solve the two subproblems, and merge the two results by a ternary
constraint. That is, express

⊕p
i=1 Pi = k as

⊕p/2
i=1 Pi = k1,

⊕p
i=p/2+1 Pi = k2

and k = k1 ⊕ k2, and recursively decompose until reaching a base case of size 2
or 3. All binary and ternary parity constraints are expanded into clauses via the
exponential encoding. We shall call this the bisection encoding. It replaces the
chains of dependency of length p by a tree of depth log p.

We also try a third technique. Decompose
⊕p

i=1 Pi = k into

α⊕

i=1

Pi ≡ k1

2α⊕

i=α+1

Pi ≡ k2 . . .

p⊕

i=p−α+1

Pi ≡ kβ and
β⊕

i=1

ki ≡ k

where β = �p/α� and the tree branching factor α is a number in the range
1 < α < p. Expand the β + 1 parity constraints into clauses via the exponential
encoding. This creates O(β) new variables and O(β2α + 2β) literals. This still
gives a tree of variable dependencies but only of depth 2. We exponentially
increase the number of clauses but the number is quite manageable for (say)
p ≤ 100. For larger p it can use a slightly less shallow tree of depth (say) 3
or 4. We shall call this the shallow encoding and use trees of depth 2 in our
experiments.

2.3 Encoding Cardinality Constraints

We use a new SAT encoding of a cardinality constraints LE(k, π1, . . . , πm) that
places an upper bound on the number of literals in a given set that are allowed
to be true. We use this encoding mainly for convenience (it is very easy to
implement).

First consider the special case where the upper bound is 1, so that we have
an at-most-one (AMO) constraint. Define new Boolean variables bk where k =
1 . . . �log2 m�. Add clauses

π̄i ∨ bk [or b̄k]

if bit k of the binary representation of i− 1 is 1 [or 0], where k = 1 . . . �log2 m�.
This encoding has O(log m) new variables and O(m log m) binary clauses. This
bitwise encoding was defined in [26] and shown to work well with local search;
other known encodings either have higher space complexity or interact poorly
with local search (because of chains of dependent variables).

Now suppose we want to prevent more than k of literals π1 . . . πm from being
true. Suppose we have k bins. Define xij = T if πi is placed in bin j. Every true
πi must be placed in a bin:

πi →
⎛

⎝
∨

j

xij

⎞

⎠

and no more than one πi may be placed in a bin:

Variable Dependency in Local Search: Prevention Is Better Than Cure 111

AMOi(xij)

using the bitwise encoding. Of course this encoding introduces a great deal of
symmetry, as the πi can be permuted among the bins. Here we invoke [25,27]:
symmetry does not necessarily harm local search performance, and may even
improve it.

This cardinality encoding has already been used in [26] to solve clique prob-
lems by SAT local search, but the bin structure was entangled in the clique
model and a cardinality encoding was not explicitly described. In future work
we will compare it with other known encodings such as that of [2], which create
trees of dependent variables that may slow down local search.

2.4 Experiments

We do not have access to the original parity learning instances, only their stan-
dard SAT encodings. Instead we generate 30 random instances (using the method
described in [4]) of each required size and take the median of 30 runs of RSAPS,
one run per instance (except for the expensive 28- and 32-bit instances which
use only 10 runs). The aim is to estimate typical local search performance on a
typical problem.

par8-X-c

X flips secs

1 1,144 0.0014
2 1,518 0.0017
3 3,060 0.0034
4 1,477 0.0018
5 2,339 0.0028

par16-X-c

X flips secs

1 13,377,611 20
2 16,533,206 24
3 12,863,749 19
4 8,601,612 13
5 13,505,657 20

par32-X-c

X flips secs

1 — —
2 — —
3 — —
4 — —
5 — —

Fig. 1. Local search results on SATLIB parity learning instances

Median results for the SATLIB instances are shown in Figure 1 and our en-
coding results are shown in Figure 2. An entry “—” denotes that more than 1
billion flips are needed while “?” denotes experiments not done. The 8- and 16-
bit results for the linear encoding are similar to those for the standard encoding
(perhaps slightly better). This is a good sanity check: the linear encoding has
similar characteristics to the standard encoding, so any major improvements we
obtain will be due to improvements in parity constraint encoding. Extrapolating
by applying linear regression to the logarithms of the four flip results, and using
a measured flip rate of 373,134 flips per second for 32-bit instances under the
linear encoding, we expect RSAPS to take approximately 20 trillion flips and 2
years to solve them: it is unsurprising that no successes have been reported with
the standard encoding.

The bisection encoding is hardly better than the linear encoding, which is a
surprise: the failure of local search does not seem to be caused purely by the
length of the chains of dependency, and trees of dependencies may be almost

112 S. Prestwich

flips needed to find a solution

shallow
n linear bisecting β = 6 β = 8 β = 10 β = 12 β = 14

8 2,517 2,836 1,119 747 904 955 891
12 157,433 83,708 10,089 4,494 4,929 3,905 2,265
16 7,139,810 5,326,518 599,662 59,051 23,630 18,457 25,038
20 223,090,992 156,378,976 11,381,251 3,283,580 460,165 167,936 173,826
24 — — 282,226,496 35,025,380 16,078,792 3,647,108 ?
28 — — ? 251,928,288 131,614,608 ? ?
32 — — ? ? 1,454,529,796 ? ?

seconds needed to find a solution

shallow
n linear bisecting β = 6 β = 8 β = 10 β = 12 β = 14

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.02 0.12 0.02 0.02 0.03 0.02 0.01
16 11 8.5 1.2 0.22 0.47 0.83 1.03
20 408 297 29 13 11 27 69
24 — — 788 149 272 693 ?
28 — — ? 2,386 3,640 ? ?
32 — — ? ? 49,633 ? ?

Fig. 2. Local search results on new parity learning encodings

as harmful. More research is clearly required into what types of structure are
bad for local search performance, but if trees of dependency are harmful then
standard cardinality encodings seem to be unsuitable for local search.

The shallow encoding gives much better results and is able to solve 32-bit
instances in a few hours. The choice of β has a large effect on performance:
roughly speaking, the greater the value of β the fewer flips are required to solve
the problems; but higher β also means larger models and thus lower flip rates, so
in terms of CPU time there is a trade-off. A reasonable value for these instances
is β = 10. We also experimented on 16-bit instances with two other automated
local search algorithms: AdaptNovelty+ was also faster on the new (β = 10)
encoding than on the standard encoding, though less so than RSAPS, while VW
behaved similarly on both. In contrast, the DPLL algorithms ZChaff, SATO
and SATZ were all slowed down by a factor of at least 100 on the new encoding.
Modelling for local search is clearly distinct from modelling for backtrack search.

Though our local search results are vastly improved we have not yet matched
the best DPLL performance. But local search performance might be further
improved by using similar techniques: directly handling parity constraints during
search, or preprocessing the problems to eliminate them. Recently Pham et al.
[23] solved the standard encodings of the 32-bit instances, using a new non-CNF
local search algorithm that exploits problem structure analysis. Their execution
times are similar to ours (though on an unspecified machine) and they use an
order of magnitude fewer flips than we do on 16-bit instances (but do not provide
flip figures for 32-bit instances).

Variable Dependency in Local Search: Prevention Is Better Than Cure 113

3 Towers of Hanoi as STRIPS Planning

Planning problems expressed in the STRIPS language have been SAT-encoded
many times [5,14,17,18]. SAT-based planning has achieved state-of-the-art re-
sults on STRIPS [6] planning problems and is one of the success stories of SAT
research. We study the Towers of Hanoi (ToH) problem modelled as a STRIPS
planning problem. ToH is perhaps not a very interesting problem in itself, and
solving it via STRIPS and SAT is certainly not the best approach. Its interest
lies in the fact that ToH makes very hard planning problems for local search:
harder than the Blocks World instances, which are in turn harder than the logis-
tics instances [28]. In the 2002 SAT solver competition, no local search algorithm
solved the ToH problems with 4, 5 and 6 disks, while the BerkMin backtracker
solved the 6-disk problem in 2551 sec. A special version of the DLM local search
algorithm was created for these and other very hard benchmarks, and solved 4
disks in almost 1 billion flips and over 2 hours [34].

Why is ToH so hard for local search? It may be because it has only one solution
[28]. We believe that the explanation is a combination of low solution density
and the chain-like structure of dependent variables in SAT-encoded planning
problems. We modify both the STRIPs model and the SAT-encoding, increasing
solution density and breaking up variable chains, to obtain huge improvements
in local search performance. First we define what we shall refer to as a standard
approach to SAT-encoding ToH as a STRIPS planning problem. There is of
course no single standard approach but ours is based on published techniques.

3.1 ToH as STRIPS

The ToH problem consists of P pegs (or towers) and D disks of different sizes;
usually P = 3. All d disks are initially on the first peg. A solution is a plan that
moves all disks to the third peg with the help of the second peg so that (i) only
one disk can be moved at a time; (ii) only the disk on top can be moved; (iii) no
disk can be put onto a smaller disk. There is always a plan with 2D − 1 steps.

We have two fluents on(d, dp) and clear(dp), where d denotes a disk and
dp either a disk or a peg. We also have an action move(d, dp, dp′) that moves
d from dp to dp′ with preconditions {clear(d), clear(dp′), on(d, dp)}, add ef-
fects {on(d, dp′), clear(dp))} and delete effects {on(d, dp), clear(dp′)}. In the
initial state fluents {on(disk1, disk2), . . ., on(diskD−1, diskD), on(diskD, peg1),
clear(disk1), clear(peg2), . . ., clear(pegP)} are true and all others are false. In
the goal state fluents {on(disk1, disk2), . . ., on(diskD−1, diskD), on(diskD, pegP)}
are true and all others have unspecified truth values.

3.2 STRIPS as SAT

We start from an encoding similar to those used in [14,17,18]. First we set an
upper bound on the plan length of discrete times t = 0 . . .N −1. Define two sets
of variables: τpt (t = 0 . . .N where N denotes the state after the last action) and
predicate p, where τpt = T iff p is true at the start of time t; and αat (t = 0 . . .N)

114 S. Prestwich

where αat = T iff action a occurs at time t. The clauses are as follows. Exclusion
axioms restrict the plan to be linear, in which at most one action occurs at any
time t:

αat ∨ αa′t

We do not force actions to occur at every time, which creates additional solutions
(if the plan length is overestimated) that may help local search. Actions imply
preconditions:

αat → τpt or αat → τpt

and effects:
αat → τp t+1 or αat → τp t+1

Frame axioms preserve fluents that are unaffected by actions. These may be in
either classical or explanatory form. We use the explanatory form [10] which is
more compact [5,14] and also obviates the need for every time slot to contain an
action:

τpt ∧ τp t+1 →
⎛

⎝
∨

a∈Ep̄

αat

⎞

⎠ or τpt ∧ τp t+1 →
⎛

⎝
∨

a∈Ep

αat

⎞

⎠

where Ep (Ep̄) denotes the set of actions with add (delete) effect p. The initial
state is represented by unit clauses:

τp0 or τp0

as is the goal state:
τpN or τpN

We now try to improve the standard approach in several ways.

3.3 Exploiting Domain Knowledge

ToH has been modelled in the same way as a Blocks World problem, but its
special form allows a simpler STRIPS model. We retain the move operator and
on predicate as before, but drop the clear predicate and only specify which
peg a disk is on, not which disk or peg. The action move(d, x, y, t) now has
preconditions {on(d, x), ¬on(1, x, t), . . ., ¬on(d − 1, x, t), ¬on(1, y, t), . . ., ¬on
(d − 1, y, t)} for all d′ < d, add effects {on(d, y, t + 1)} and delete effects {on
(d, x, t + 1)}. In the initial state fluents {on(1, 1), . . ., on(D, 1)} are true and all
others are false, while in the goal state {on(1, P), . . ., on(D, P)} are true and
the others unspecified.

Besides having fewer predicates, this model has fewer actions because each
disk can only be on P pegs instead of D + P disks or pegs. In effect we are
using the domain knowledge that disks are stacked in decreasing order of size;
this trick would not work on general Blocks World problems.

Variable Dependency in Local Search: Prevention Is Better Than Cure 115

3.4 Superparallelism

An important technique in planning is the use of parallel plans in which more
than one action may occur at a given time. Besides being more appropriate for
some applications, this allows the plan length to be shorter and thus the SAT
problem to be smaller. As the size of the SAT problem can be a bottleneck for
real-world planning problems, this benefits both DPLL and local search algo-
rithms. Parallelism may have another advantage for local search: it increases
the solution density of the SAT problem. This is because any linear plan has
multiple representations as a parallel plan, typically an exponential number of
them. It has been shown that increasing the solution density of a SAT problem
can boost local search performance (though this is not guaranteed).

Unfortunately there is no natural parallelism in ToH. But we can allow some
actions to be performed in parallel in the new model, by removing some exclusion
axioms:

– Allow (say) disk 1 to move from peg 1 to peg 2, and disk 2 to move from
peg 3 to peg 2, at the same time: this can be uniquely transformed to: move
the larger disk to peg 2 then the smaller one.

– Allow (say) disk 1 to move from peg 1 to peg 2, and disk 2 to move from
peg 2 to peg 3, at the same time. This can be uniquely transformed to: move
disk 2 then disk 1. There is no danger of an illegal cycle of three moves as
the preconditions will prevent one of the disks from moving onto a peg with
a smaller one.

We shall call this superparallelism because it adds parallelism beyond any that
is naturally present in the model (in this case none). Superparallel moves are
illegal and must be transformed away after finding a plan. A drawback with
superparallelism is that we can no longer force the search to find optimal plans.
Even if we reduce the number of times to the smallest possible value, after
transformation we may obtain a very suboptimal linear plan. But it may be a
useful technique for applications in which any feasible plan will do, or for quickly
obtaining an initial plan for subsequent improvement. Another possibility is to
place an upper limit on the total number of actions via a SAT-encoded cardinality
constraint.

It is not possible to force parallelism in the standard STRIPS model of Blocks
World by dropping exclusion axioms, because performing any two actions at the
same time would lead to an inconsistent state. However, it would be possible to
define new actions that move more than one disk at a time; we leave this for
future work.

3.5 Long-Range Dependencies

The encoding of Section 3.2 has a potential drawback for local search: the frame
axioms create chains of dependent variables τpt . . . τpt′ for each p and pair t, t′. As
noted above, dependent variables are known to be a major source of slowdown
in local search [15], especially when they occur in chains [24,33].

116 S. Prestwich

At first glance there seems to be no way to avoid these chains, as they are a
property of the problem itself and not the encoding. However, it is possible to
break up the chain structure by using the method of [33]: add implied clauses
to cause long-range dependencies between times further apart than 1 unit. The
clauses we add are a generalisation of explanatory frame axioms to time differ-
ences ≥ 1:

τpt ∧ τpt′ →
⎡

⎣
t′−1∨

t′′=t

⎛

⎝
∨

a∈Ep̄

αat′′

⎞

⎠

⎤

⎦ or τpt ∧ τpt′ →
⎡

⎣
t′−1∨

t′′=t

⎛

⎝
∨

a∈Ep

αat′′

⎞

⎠

⎤

⎦

where t′ > t. We shall call these generalised explanatory frame (GEF) axioms.
The usual explanatory frame axioms are given by the case t′ = t + 1.

Adding all GEF axioms increases the space complexity, but we can add a
randomly-chosen subset of them (but including the usual explanatory frame
axioms), by analogy with [33] who found that adding a relatively small number
of implied clauses gave optimal improvement.

Unlike the fixed-length added clauses of [33] ours grow with n, so their effect
on search time may be inferior. We could reduce their length by defining new
variables εpt →

(∨
a∈Ep

αat

)
where εpt = T only if an action with effect p occurs

at time t. This allows us to simplify the GEF axioms but in experiments it made
the problems harder to solve.

3.6 Implied Clauses

Besides the GEF axioms we add another set of implied clauses: exclusion axioms
corresponding to two disks making the same move. This can never occur because
the larger disk’s preconditions are unsatisfied if the smaller one is on the same
peg, so these clauses are redundant.

3.7 Experiments

We compare four models: the standard model, the compact model (using spe-
cial domain knowledge), the compact model with parallelism, and the compact
model with parallelism and GEF axioms. All models use the implied constraints
described above. In experiments 5% was approximately the best proportion of
randomly-selected GEF axioms, which is less than the 20% figure of [33].3 All
results are medians of 30 runs. In each case the number of times was set to
2D − 1, the optimum for a linear ToH plan. The results are shown in Figure 3,
with “—” denoting that RSAPS failed to find a solution after 1 billion flips.

The hardness of ToH grows extremely rapidly with D in all models. The com-
pact model gives much better results than the standard model, and parallelism
and GEF axioms greatly improve performance. By combining several modelling
3 Actually, this was for the largest instances, and a higher percentage was better for

smaller instances, possibly indicating that the optimum number of GEF axioms is
less than linear in the problem size.

Variable Dependency in Local Search: Prevention Is Better Than Cure 117

local moves (flips)

D standard compact parallel GEF

3 38,271 3,730 546 410
4 — 2,757,378 4,866 5,985
5 — — 532,488 51,453
6 — — — 40,163,929

execution time (seconds)

D standard compact parallel GEF

3 0.096 0.0058 0.0010 0.0010
4 — 5.8 0.0093 0.017
5 — — 1.8 0.30
6 — — — 980

Fig. 3. Results of experiments

techniques we have obtained the best-reported SAT local search results for 4, 5
and 6 disks, and they are comparable to the best DPLL results (though at the
price of reducing plan quality through superparallelism). We also added GEF
axioms to the standard model but were still unable to solve 4 disks. We expect
further improvements by using the well-known techniques of operator splitting
(which reduces the space complexity of SAT-encoded planning problems) and
preprocessing by unit propagation and subsumption.

In further local search experiments, AdaptNovelty+ and VW were faster on
compact model than on the standard model, and even faster with superpar-
allelism. AdaptNovelty+ was faster with GEF axioms, while VW was hardly
affected (apart from the overhead of maintaining the additional clauses). The
DPLL algorithms ZChaff, SATZ and SATO were all improved by the compact
encoding, ZChaff was faster with superparallelism while SATZ and SATO were
slower, and SATO was faster with GEF axioms while ZChaff and SATZ were
slower. Thus the compact encoding helps all the algorithms, while the other
techniques mostly help local search but have an erratic effect on DPLL. Again,
modelling for local search is shown to be distinct from modelling for DPLL.

4 Conclusion

We showed that local search performance on two hard problems can be boosted
by several orders of magnitude, simply by remodelling the problems. The aims
of our remodelling were to reduce variable dependency chains and to increase
solution density, and we believe that these aims should be borne in mind when
modelling a problem for solution by local search. They are quite different from
the aims of modelling for DPLL, such as symmetry elimination and the level
of consistency achieved by unit propagation. Thus modelling for local search
is distinct from modelling for DPLL and is worth studying in its own right.
Increased solution density might also be expected to aid backtrack search but
this is not necessarily true. Structured SAT problems are likely to contain clusters
of solutions, and Minton et al.’s nonsystematic search hypothesis [21] is that local
search may benefit more than backtrack search from high solution density. This is
because local search is largely immune to solution clustering, whereas backtrack
search may start from a point that is very far from any cluster.

The remodelling approach can be seen as complementary to the preprocess-
ing/algorithmic approaches of [15,23]. We are able to use an off-the-shelf local

118 S. Prestwich

search algorithm instead of a more complex new algorithm, and do not incur the
runtime overhead of maintaining additional information. On the other hand, we
require larger SAT encodings that also incur runtime overheads, and may use a
prohibitive amount of memory in some cases. It would be interesting to combine
the two approaches, by removing some structure via remodelling then handling
what remains via dependency analysis.

Our new modelling techniques should find application to other problems. The
parity constraint shallow encoding should be useful on other problems containing
both clauses and parity constraints, such as the cryptanalysis problems of [20].
The new cardinality constraint encoding has many potential applications but we
have not yet compared it empirically to known encodings. The superparallelism
technique used to improve Towers of Hanoi can be applied to STRIPS models of
other planning problems. Long-range dependencies based on explanatory frame
axioms can be added to planning-as-SAT systems. Bounded model checking has
a similar structure to planning and contains parity constraints, so it may also
benefit from these techniques.

Finally, recall SAT challenge number six from [29]: to handle variable de-
pendencies in local search. Our results further confirm the importance of this
challenge, and show that a powerful alternative to modifying local search heuris-
tics is to reduce or eliminate dependencies by remodelling the problem. In fact
avoiding variable dependency by remodelling gives better results than (at least
some) attempts to handle dependencies during search. Prevention does seem to
be better than cure.

Acknowledgements. This material is based in part upon works supported by
the Science Foundation Ireland under Grant No. 00/PI.1/C075. Thanks to the
anonymous referees for helpful comments.

References

1. C. Ansótegui, F. Manyà. Mapping Problems With Finite-Domain Variables into
Problems With Boolean Variables. Seventh International Conference on Theory
and Applications of Satisfiability Testing, Lecture Notes in Computer Science vol.
3542, Springer, 2004, pp. 1–15.

2. O. Bailleux, Y. Boufkhad. Efficient CNF Encoding of Boolean Cardinality Con-
straints. Ninth International Conference on Principles and Practice of Constraint
Programming, Lecture Notes in Computer Science vol. 2833, Springer, 2003, pp.
108–122.

3. P. Baumgartner, F. Massacci. The Taming of the (X)OR. Computational Logic,
2000.

4. J. M. Crawford, M. J. Kearns, R. E. Shapire. The Minimal Disagreement Parity
Problem as a Hard Satisfiability Problem. Technical report, Computational Intel-
ligence Research Laboratory and AT&T Bell Labs, 1994.

5. M. Ernst, T. Millstein, D. S. Weld. Automatic SAT-Compilation of Planning Prob-
lems. Fifteenth International Joint Conference on Artificial Intelligence, Morgan
Kaufmann, 1997.

Variable Dependency in Local Search: Prevention Is Better Than Cure 119

6. R. E. Fikes, N. J. Nilsson. STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelligence 2(3-4):189–208, 1971.

7. I. P. Gent. Arc Consistency in SAT. Fifteenth European Conference on Artificial
Intelligence, IOS Press, 2002, pp. 121–125.

8. I. P. Gent, P. Prosser. SAT Encodings of the Stable Marriage Problem With Ties
and Incomplete Lists. Fifth International Symposium on Theory and Applications
of Satisfiability Testing , 2002.

9. I. P. Gent, P. Prosser, B. Smith. A 0/1 Encoding of the GACLex Constraint for
Pairs of Vectors. International Workshop on Modelling and Solving Problems With
Constraints, ECAI, 2002.

10. A. Haas. The Case for Domain-Specific Frame Axioms. The Frame Problem in Arti-
ficial Intelligence: Proceedings of the 1987 Workshop, F. M. Brown (ed.), Lawrence,
KS, 1987. Morgan Kaufmann, 1987.

11. E. A. Hirsch, A. Kojevnikov. Solving Boolean Satisfiability Using Local Search
Guided by Unit Clause Elimination. Seventh International Conference on Princi-
ples and Practice of Constraint Programming, Lecture Notes in Computer Science
vol. 2239, Springer, 2001, pp. 605–609.

12. F. Hutter, D. A. D. Tompkins, H. H. Hoos. Scaling and Probabilistic Smooth-
ing: Efficient Dynamic Local Search for SAT. Eighth International Conference on
Principles and Practice of Constraint Programming, Lecture Notes in Computer
Science vol. 2470, Springer, 2002, pp. 233–248.

13. S. Kasif. On the Parallel Complexity of Discrete Relaxation in Constraint Satis-
faction Networks. Artificial Intelligence vol. 45, Elsevier, 1990, pp. 275–286.

14. H. Kautz, D. McAllester, B. Selman. Encoding Plans in Propositional Logic. Fifth
International Conference on Principles of Knowledge Representation and Reason-
ing , 1996.

15. H. Kautz, D. McAllester, B. Selman. Exploiting Variable Dependency in Local
Search. Poster Sessions of the Fifteenth International Joint Conference on Artifi-
cial Intelligence, 1997.

16. H. Kautz, B. Selman. Ten Challenges Redux : Recent Progress in Propositional Rea-
soning and Search. Ninth International Conference on Principles and Practice of
Constraint Programming, Lecture Notes in Computer Science vol. 2833, Springer,
2003, pp. 1–18.

17. H. Kautz, B. Selman. Planning as Satisfiability. Tenth European Conference on
Artificial Intelligence, Wiley, 1992, pp. 359–363.

18. H. Kautz, B. Selman. Pushing the Envelope: Planning, Propositional Logic and
Stochastic Search. National Conference on Artificial Intelligence, AAAI Press /
The MIT Press, 1996, pp. 1194–1201.

19. C. Li. Integrating Equivalence Reasoning into Davis-Putnam Procedure. Seven-
teenth National Conference on Artificial Intelligence, AAAI/MIT Press, 2000, pp.
291–296.

20. F. Massacci. Using Walk-SAT and Rel-SAT for Cryptographic Key Search. Inter-
national Joint Conference on Artificial Intelligence, 1999, pp. 290–295.

21. S. Minton, M. D. Johnston, A. B. Philips, P. Laird. Minimizing Conflicts: a Heuris-
tic Repair Method for Constraint Satisfaction and Scheduling Problems. Artificial
Intelligence 58(1-3):161–205, 1992.

22. R. Muhammad, P. J. Stuckey. A Stochastic Non-CNF SAT Solver. Trends in Arti-
ficial Intelligence, Ninth Pacific Rim International Conference on Artificial Intel-
ligence, Lecture Notes in Computer Science vol. 4099, Springer, 2006, pp. 120–129.

120 S. Prestwich

23. D. N. Pham, J. R. Thornton, A. Sattar. Building Structure into Local Search for
SAT. Twentieth International Joint Conference on Artificial Intelligence, Hyder-
abad, India, 2007, pp. 2359–2364.

24. S. D. Prestwich. SAT Problems With Chains of Dependent Variables. Discrete
Applied Mathematics vol. 3037, Elsevier, 2002, pp. 1–22.

25. S. D. Prestwich. Negative Effects of Modeling Techniques on Search Performance.
Annals of Operations Research vol. 118, Kluwer Academic Publishers, 2003, pp.
137–150.

26. S. D. Prestwich. Modelling Clique Problems for SAT Local Search. Third Interna-
tional Workshop on Local Search Techniques in Constraint Satisfaction, 2006 (to
appear).

27. S. D. Prestwich, A. Roli. Symmetry Breaking and Local Search Spaces. Second
International Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, Lecture Notes in Com-
puter Science vol. 3524, Springer, 2005, pp. 273-287.

28. B. Selman, personal communication.
29. B. Selman, H. A. Kautz, D. A. McAllester. Ten Challenges in Propositional Reason-

ing and Search. Fifteenth International Joint Conference on Artificial Intelligence,
Morgan Kaufmann, 1997, pp. 50–54.

30. D. A. D. Tompkins, H. H. Hoos. UBCSAT: An Implementation and Experimen-
tation Environment for SLS Algorithms for SAT and MAX-SAT. Seventh Inter-
national Conference on Theory and Applications of Satisfiability Testing, Lecture
Notes in Computer Science vol. 3542, 2005, pp. 306–320.

31. J. P. Warners. A Linear-Time Transformation of Linear Inequalities Into Conjunc-
tive Normal Form. Information Processing Letters 68:63–69, 1998.

32. J. Warners, H. van Maaren. A Two Phase Algorithm for Solving a Class of Hard
Satisfiability Problems. Operations Research Letters 23(3–5):81–88, 1999.

33. W. Wei, B. Selman. Accelerating Random Walks. Eighth International Conference
on Principles and Practice of Constraint Programming, Lecture Notes in Computer
Science vol. 2470, Springer, 2002, pp. 216–232.

34. Z. Wu, B. Wah. An Efficient Global-Search Strategy in Discrete Lagrangian Meth-
ods for Solving Hard Satisfiability Problems. Seventeenth National Conference on
Artificial Intelligence, 2000, pp. 310–315.

35. E. Zarpas. Back to the SAT05 Competition: an a Posteriori Analysis of Solver
Performance on Industrial Benchmarks. Journal on Satisfiability, Boolean Modeling
and Computation vol. 2, 2006, research note, pp. 229–237.

Combining Adaptive Noise and Look-Ahead in Local
Search for SAT�,��

Chu Min Li1, Wanxia Wei2, and Harry Zhang2

1 LaRIA, Université de Picardie Jules Verne
33 Rue St. Leu, 80039 Amiens Cedex 01, France

chu-min.li@u-picardie.fr
2 Faculty of Computer Science, University of New Brunswick, Fredericton, NB,

Canada, E3B 5A3
{wanxia.wei,hzhang}@unb.ca

Abstract. The adaptive noise mechanism was introduced in Novelty+ to au-
tomatically adapt noise settings during the search [4]. The local search algo-
rithm G2WSAT deterministically exploits promising decreasing variables to
reduce randomness and consequently the dependence on noise parameters. In
this paper, we first integrate the adaptive noise mechanism in G2WSAT to
obtain an algorithm adaptG2WSAT , whose performance suggests that the
deterministic exploitation of promising decreasing variables cooperates well
with this mechanism. Then, we propose an approach that uses look-ahead for
promising decreasing variables to further reinforce this cooperation. We imple-
ment this approach in adaptG2WSAT , resulting in a new local search algo-
rithm called adaptG2WSATP . Without any manual noise or other parameter
tuning, adaptG2WSATP shows generally good performance, compared with
G2WSAT with approximately optimal static noise settings, or is sometimes
even better than G2WSAT . In addition, adaptG2WSATP is favorably com-
pared with state-of-the-art local search algorithms such as R+adaptNovelty+
and V W .

1 Introduction

The performance of a Walksat family algorithm crucially depends on noise p and
sometimes wp (random walk probability) or dp (diversification probability). For exam-
ple, it is reported in [9] that running R-Novelty [9] with p = 0.4 instead of p = 0.6
degrades its performance by more than 50% for random 3-SAT instances. However, to
find the optimal noise settings for each heuristic, extensive experiments on various val-
ues of p and sometimes wp or dp are needed because the optimal noise settings vary
widely and depend on the types and sizes of the instances.

� A preliminary version of this paper was presented at the 3th International Workshop on LSCS
[6], and an extended abstract of this preliminary version will appear in a book, entitled “Trends
in Constraint Programming” [7].

�� The work of the second author is partially supported by an NSERC (Natural Sciences and
Engineering Research Council of Canada) PGS-D scholarship.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 121–133, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

122 C.M. Li, W. Wei, and H. Zhang

To avoid manual noise tuning, two approaches were proposed. Auto-Walksat [10]
exploits the invariants observed in [9] to estimate the optimal noise settings for an al-
gorithm on a given problem, based on several preliminary unsuccessful runs of the
algorithm on this problem. This algorithm then rigorously applies the estimated opti-
mal noise setting to the problem. The adaptive noise mechanism [4] was introduced
in Novelty+ [3] to automatically adapt noise settings during the search, yielding the
algorithm adaptNovelty+. This algorithm does not need any manual noise tuning and
is effective for a broad range of problems.

One way to diminish the dependence of problem solving on noise settings is to re-
duce randomness in local search. The local search algorithm G2WSAT deterministi-
cally selects the best promising decreasing variable to flip, if such variables exist [5].
Nevertheless, the performance of G2WSAT still depends on static noise settings, since
when there is no promising decreasing variable, a heuristic, such as Novelty++, is
used to select a variable to flip, depending on two probabilities, p and dp. Furthermore,
G2WSAT does not favor those flips that will generate promising decreasing variables
to minimize its dependence on noise settings.

In this paper, we first incorporate the adaptive noise mechanism of adaptNovelty+
in G2WSAT to obtain an algorithm adaptG2WSAT . Experimental results sug-
gest that the deterministic exploitation of promising decreasing variables in
adaptG2WSAT enhances this mechanism. Then, we integrate a look-ahead approach
in adaptG2WSAT to favor those flips that can generate promising decreasing vari-
ables, resulting in a new local search algorithm called adaptG2WSATP . Without any
manual noise or other parameter tuning, adaptG2WSATP shows generally good per-
formance, compared with G2WSAT with approximately optimal static noise settings,
or is sometimes even better than G2WSAT . Moreover, adaptG2WSATP compares
favorably with state-of-the-art algorithms such as R+adaptNovelty+ [1] and V W [11].

2 G2WSAT and adaptG2WSAT

2.1 G2WSAT

Given a CNF formula F and an assignment A, the objective function that local search
for SAT attempts to minimize is usually the total number of unsatisfied clauses in F un-
der A. Let x be a variable. The break of x, break(x), is the number of clauses in F that
are currently satisfied but will be unsatisfied if x is flipped. The make of x, make(x),
is the number of clauses in F that are currently unsatisfied but will be satisfied if x is
flipped. The score of x with respect to A, scoreA(x), is the improvement of the objec-
tive function if x is flipped. The score of x should be the difference between make(x)
and break(x). We write scoreA(x) as score(x) if A is clear from the context.

Heuristics Novelty [9] and Novelty++ [5] select a variable to flip from a randomly
selected unsatisfied clause c as follows.

Novelty(p): Sort the variables in c by their scores, breaking ties in favor of the least re-
cently flipped variable. Consider the best and second best variables from the sorted
variables. If the best variable is not the most recently flipped one in c, then pick it.
Otherwise, with probability p, pick the second best variable, and with probability
1-p, pick the best variable.

Combining Adaptive Noise and Look-Ahead in Local Search for SAT 123

Novelty++(p, dp): With probability dp (diversification probability), pick the least re-
cently flipped variable in c, and with probability 1-dp, do as Novelty.

Given a CNF formula F and an assignment A, a variable x is said to be decreasing
with respect to A if scoreA(x) > 0. Promising decreasing variables are defined in [5]
as follows:

1. Before any flip, i.e., when A is an initial random assignment, all decreasing vari-
ables with respect to A are promising.

2. Let x and y be two different variables and x be not decreasing with respect to A. If,
after y is flipped, x becomes decreasing with respect to the new assignment, then x
is a promising decreasing variable with respect to the new assignment.

3. A promising decreasing variable remains promising with respect to subsequent as-
signments in local search until it is no longer decreasing.

G2WSAT [5] deterministically picks the promising decreasing variable with the
highest score to flip, if such variables exist. If there is no promising decreasing variable,
G2WSAT uses a heuristic, such as Novelty [9], Novelty+ [3], or Novelty++ [5], to
pick a variable to flip from a randomly selected unsatisfied clause.

Promising decreasing variables might be considered as the opposite of tabu variables
defined in [8,9]; the flips of tabu variables are refused in a number of subsequent steps.
Promising decreasing variables are chosen to flip since they probably allow local search
to explore new promising regions in the search space, while tabu variables are forbidden
since they probably make local search repeat or cancel earlier moves.

2.2 Algorithm adaptG2WSAT

The adaptive noise mechanism [4] in adaptNovelty+ can be described as follows. At
the beginning of a run, noise p is set to 0. Then, if no improvement in the objective
function value has been observed over the last θ × m search steps, where m is the
number of the clauses of the input formula, and θ is a parameter whose default value
in adaptNovelty+ is 1/6, noise p is increased by p := p + (1 − p) × φ, where φ
is another parameter whose default value in adaptNovelty+ is 0.2. Every time the
objective function value is improved, noise p is decreased by p := p− p× φ/2.

We implement this adaptive noise mechanism of adaptNovelty+ in G2WSAT to
obtain an algorithm adaptG2WSAT , and confirm that φ and θ need not be tuned for
each problem instance or instance type to achieve good performances. That is, like
adaptNovelty+, adaptG2WSAT is an algorithm in which no parameter has to be
manually tuned to solve a new problem.

2.3 Performances of the Adaptive Noise Mechanism for adaptG2WSAT and
for adaptNovelty+

We evaluate the performance of the adaptive noise mechanism for adaptG2WSAT on
9 groups of benchmark SAT problems.1 Structured problems come from the SATLIB

1 All experiments reported in this paper are conducted in Chorus, which consists of 2 dual pro-
cessor master nodes (Sun V65) with hyperthreading enabled and 80 dual processor compute
nodes (Sun V60). Each compute node has two 2.8GHz Intel Xeon processors with 2 to 3
Gigabytes of memory.

124 C.M. Li, W. Wei, and H. Zhang

repository2 and Miroslav Velev’s SAT Benchmarks.3 These structured problems in-
clude bw large.c and bw large.d in Blocksworld, 3bit*31, 3bit*32, e0ddr2*1, e0ddr2*4,
enddr2*1, enddr2*8, ewddr2*1, and ewddr2*8 in Beijing, the first 5 instances in
Flat200-479, logistics.c and logistics.d in logistics, par16-1, par16-2, par16-3, par16-4,
and par16-5 in parity, the 10 satisfiable instances in QG, and all satisfiable formulas in
Superscalar Suite 1.0a (SSS.1.0a) except for *bug54.4 Since these 10 QG instances con-
tain unit clauses, we simplify them using my compact5 before running every algorithm.
Random problems consist of unif04-52, unif04-62, unif04-65, unif04-80, unif04-83,
unif04-86, unif04-91, and unif04-99, from the random category in the SAT 2004 com-
petition benchmark.6 Industrial problems comprise v*1912, v*1915, v*1923, v*1924,
v*1944, v*1955, v*1956, and v*1959, from the industrial category in the SAT 2005
competition benchmark.7

Table 1 shows the performances of adaptG2WSAT and G2WSAT , both using
heuristic Novelty+, compared with those of adaptNovelty+ and Novelty+. This ta-
ble presents the results of these algorithms for only one instance from each group.
The random walk probability (wp) is not adjusted and takes the default value 0.01 for
the original Novelty+, in each algorithm for each instance. G2WSAT (version 2005)
is downloaded from http://www.laria.u-picardie.fr/˜cli. Novelty+ and adaptNovelty+

Table 1. Performance of the adaptive noise mechanism for adaptG2WSAT using Novelty+
and for adaptNovelty+. Results in bold indicate the lower degradation in success rate.

algorithm cutoff Novelty+ adaptNovelty+ G2WSAT adaptG2WSAT

heuristic Novelty+ Novelty+

parameters wp=0.01 θ=1/6,φ=0.2 wp=0.01 θ=1/6,φ=0.2

p suc suc suc degr p suc suc suc degr
bw large.d 108 .17 100% 92.80% 7.20% .20 100% 100% 0%
ewddr2*8 107 .78 100% 5.20% 94.80% .52 100% 100% 0%
flat200-5 108 .54 99.60% 99.20% 0.40% .60 100% 100% 0%
logistics.c 105 .41 58.00% 43.20% 25.52% .52 81.20% 73.20% 9.85%
par16-1 109 .80 98.00% 42.80% 56.33% .63 100% 100% 0%
qg5-11 106 .29 100% 97.20% 2.80% .32 100% 92.40% 7.60%
*bug17 107 .82 100% 32.80% 67.20% .29 66.00% 66.00% 0%

unif04-52 108 .51 99.60% 94.40% 5.22% .52 100% 99.20% 0.80%
v*1912 107 .16 56.00% 50.80% 9.29% .22 84.00% 81.20% 3.33%

are from UBCSAT [13]. The static noise p of G2WSAT is approximately optimal
for G2WSAT on each instance, and is obtained by comparing p = 0.10, 0.11, ...,
0.89, and 0.90 for each instance. The static noise p of Novelty+ is different from
that of G2WSAT because Novelty+ with its own noise p can perform better than

2 http://www.satlib.org/
3 http://www.ece.cmu.edu/∼mvelev/sat benchmarks.html
4 The instance *bug54 is hard for every algorithm discussed in this paper.
5 available at http://www.laria.u-picardie.fr/˜cli
6 http://www.lri.fr/∼simon/contest04/results/
7 http://www.lri.fr/∼simon/contest/results/

Combining Adaptive Noise and Look-Ahead in Local Search for SAT 125

Novelty+ with the noise p of G2WSAT . Each instance is executed 250 times. The
success rate of an algorithm for an instance is the number of successful runs divided
by 250, and the success rate is intended to be the empirical probability with which
the algorithm finds a solution for the instance within the cutoff. For each algorithm on
each instance, we report the cutoff (“cutoff”) and success rate (“suc”). Let sr be the
success rate of G2WSAT or Novelty+ with static noise for an instance, and ar the
success rate of adaptG2WSAT or adaptNovelty+ for the same instance. For each in-
stance, we also report the degradation (“suc degr”) in success rate of adaptG2WSAT ,
((sr-ar)/sr)*100, compared with that of G2WSAT , and the degradation (“suc degr”)
in success rate of adaptNovelty+, ((sr-ar)/sr)*100, compared with that of Novelty+.

According to Table 1, without manual noise tuning, adaptG2WSAT and
adaptNovelty+, with the adaptive noise mechanism, achieve good performances, θ
and φ taking the same fixed values for all problems. Nevertheless, with instance spe-
cific noise settings, G2WSAT and Novelty+ achieve success rates the same as or
higher than adaptG2WSAT and adaptNovelty+, respectively, for all instances. For
all instances except for qg5-11, the degradation in success rate of adaptG2WSAT
compared with that of G2WSAT is lower than the degradation in success rate
of adaptNovelty+ compared with that of Novelty+. Especially, for bw large.d,
ewddr2*8, par16-1, and *bug17, the degradation in success rate of adaptG2WSAT
compared with that of G2WSAT is significantly lower than the degradation in success
rate of adaptNovelty+ compared with that of Novelty+.

In Table 1, both adaptG2WSAT and G2WSAT use Novelty+ to select a variable
to flip when there is no promising decreasing variable. Furthermore, adaptG2WSAT
uses the same default values for parameters θ and φ as adaptNovelty+, to adapt noise.
So, it appears that, apart from the implementation details, the only difference between
G2WSAT and Novelty+, and between adaptG2WSAT and adaptNovelty+, in Ta-
ble 1, is the deterministic exploitation of promising decreasing variables in G2WSAT
and adaptG2WSAT . From this table, we observe that the degradation in performance
of adaptG2WSAT compared with that of G2WSAT is lower than the degradation
in performance of adaptNovelty+ compared with that of Novelty+. This observation
suggests that the deterministic exploitation of promising decreasing variables enhances
the adaptive noise mechanism. We then expect that better exploitation of promising
decreasing variables will further enhance this mechanism.

3 Look-Ahead for Promising Decreasing Variables

3.1 Promising Score of a Variable

Given a CNF formula F and an assignment A, let x be a variable, let B be obtained
from A by flipping x, and let x′ be the best promising decreasing variable with respect
to B. We define the promising score of x with respect to A as

pscoreA(x) = scoreA(x) + scoreB(x′)
where scoreA(x) is the score of x with respect to A and scoreB(x′) is the score of x′

with respect to B.8

8 x′ has the highest scoreB(x′) among all promising decreasing variables with respect to B.

126 C.M. Li, W. Wei, and H. Zhang

If there are promising decreasing variables with respect to B, the promising score
of x with respect to A represents the improvement in the number of unsatisfied clauses
under A by flipping x and then x′. In this case, pscoreA(x) > scoreA(x).

If there is no promising decreasing variable with respect to B,
pscoreA(x) = scoreA(x)

since adaptG2WSAT does not know in advance which variable will be flipped for B
(the choice of the variable to flip is made randomly by using Novelty++).

Given F and two variables x and y in F , y is said to be a neighbor of x with re-
spect to F if y occurs in some clause containing x in F . According to Equation 6 in
[5], the flipping of x can only change the scores of the neighbors of x. Given an initial
assignment, G2WSAT or adaptG2WSAT computes the scores for all variables, and
then uses Equation 6 in [5] to update the scores of the neighbors of the flipped variable
after each step and maintains a list of promising decreasing variables. This update takes
time O(L), where L is the upper bound for the sum of the lengths of all clauses con-
taining the flipped variable and is almost a constant for a random 3-SAT problem when
the ratio of the number of clauses to the number of variables is a constant. The com-
putation of pscoreA(x) involves the simulation of flipping x and the searching for the
largest score of the promising decreasing variables after flipping x. This computation
takes time O(L + γ), where γ is the upper bound for the number of all the promising
decreasing variables in F after flipping x.

3.2 Integrating Limited Look-Ahead in adaptG2WSAT

We improve adaptG2WSAT in two ways. The algorithm adaptG2WSAT maintains
a stack, DecV ar, to store all promising decreasing variables in each step. When there
are promising decreasing variables, the improved adaptG2WSAT chooses the least re-
cently flipped promising decreasing variable among all promising decreasing variables

Function: Novelty+P (p, wp, c)

1: with probability wp do y← randomly choose a variable in c;
2: otherwise
3: Determine best and second, breaking ties in favor of the least recently flipped variable;

/*best and second are the best and second best variables in c according to the scores*/
4: if best is the most recently flipped variable in c
5: then
6: with probability p do y ← second;
7: otherwise if pscore(second)>=pscore(best) then y ← second else y ← best;
8: else
9: if best is more recently flipped than second

10: then if pscore(second)>=pscore(best) then y ← second else y ← best;
11: else y ← best;
12: return y;

Fig. 1. Function Novelty+P

Combining Adaptive Noise and Look-Ahead in Local Search for SAT 127

in |DecV ar| to flip. Otherwise, the improved adaptG2WSAT selects a variable to flip
from a randomly chosen unsatisfied clause c, using heuristic Novelty+P (see Fig. 1),
which extends Novelty+ [3], to exploit limited look-ahead.

Let best and second denote the best and second best variables respectively, mea-
sured by the scores of variables in c. Novelty+P computes the promising scores for
only best and second, only when best is more recently flipped than second (including
the case in which best is the most recently flipped variable, where the computation is
performed with probability 1− p), in order to favor the less recently flipped second. In
this case, score(second) < score(best). As is suggested by the success of HSAT [2]
and Novelty [9], a less recently flipped variable is generally better if it can improve
the objective function at least as well as a more recently flipped variable does. Accord-
ingly, Novelty+P prefers second if second is less recently flipped than best and if
pscore(second) ≥ pscore(best).

The improved adaptG2WSAT is called adaptG2WSATP and is sketched in
Fig. 2. Note that wp (random walk probability) is also automatically adjusted and
wp = p/10. The reason for adjusting wp this way is that, when noise needs to be
high, local search should also be well randomized, and when low noise is sufficient,
random walks are often not needed. The setting wp = p/10 comes from the fact that
p = 0.5 and dp = 0.05 give the best results for random 3-SAT instances in G2WSAT .

Given a CNF formula F and an assignment A, the set of assignments obtained
by flipping one variable of F is called the 1-flip neighborhood of A, and the set of
assignments obtained by flipping two variables ofF is called the 2-flip neighborhood of

Algorithm. adaptG2WSATP (SAT-formula F)

1: for try=1 to Maxtries do
2: A← randomly generated truth assignment; p=0; wp=0;
3: Store all decreasing variables in stack DecVar;
4: for flip=1 to Maxsteps do
5: if A satisfies F then return A;
6: if |DecV ar| > 0
7: then
8: y←the least recently flipped promising decreasing variable among
9: all promising decreasing variables in |DecV ar|;

10: else
11: c←randomly selected unsatisfied clause under A;
12: y ← Novelty+P (p, wp, c);
13: A ← A with y flipped;
14: Adapt p and wp;
15: Delete variables that are no longer decreasing from DecVar;
16: Push new decreasing variables into DecVar which are different from
17: y and were not decreasing before y is flipped;
18: return Solution not found;

Fig. 2. Algorithm adaptG2WSATP

128 C.M. Li, W. Wei, and H. Zhang

A. The algorithm adaptG2WSATP exploits only the 1-flip neighborhoods, since the
limited look-ahead is just used as a heuristic to select the next variable to flip.

We find that in adaptG2WSAT and adaptG2WSATP , which use heuristics
Novelty++ and Novelty+P , respectively, θ = 1/5 and φ = 0.1 give slightly better
results on the 9 groups of instances presented in Section 2.3 than θ = 1/6 and φ = 0.2,
their original default values in adaptNovelty+. So, in adaptG2WSATP , θ = 1/5 and
φ = 0.1.

In this paper, adaptG2WSATP is improved in two ways, based on the preliminary
adaptG2WSATP described in the preliminary version of this paper [6,7]. The first
improvement is that, when promising decreasing variables exist, adaptG2WSATP no
longer computes the promising scores for the δ promising decreasing variables with
higher scores in |DecV ar|, where δ is a parameter, but chooses the least recently
flipped promising decreasing variable among all promising decreasing variables in
|DecV ar| to flip. As a result, adaptG2WSATP no longer needs parameter δ. The
reasons for this first improvement are that, usually the scores of promising decreasing
variables are close and so such variables can improve the objective function roughly
the same, and that flipping the least recently flipped promising decreasing variable
can increase the mobility and coverage [12] of a local search algorithm in the search
space. The second improvement is that, when there is no promising decreasing variable,
adaptG2WSATP uses Novelty+P instead of Novelty++P [6,7], to select a variable
to flip from a randomly chosen unsatisfied clause c. The difference between Novelty+P

and Novelty++P is that, with wp (random walk probability), Novelty+P randomly
chooses a variable to flip from c, but with dp (diversification probability), Novelty++P

chooses a variable in c, whose flip will falsify the least recently satisfied clause. Consid-
ering that adaptG2WSATP deterministically uses both promising decreasing variables
and promising scores, adding a small amount of randomness9 to the search may help
find a solution.

4 Evaluation

We evaluate adaptG2WSATP on the 9 groups of instances, or the 56 instances, pre-
sented in Section 2.3. For an instance and an algorithm, we report the median flip num-
ber (“#flips”) and the median run time (“time”) in seconds, for this algorithm to find a
solution for this instance. Each instance is executed 250 times. If an algorithm can suc-
cessfully find a solution for an instance in at least 126 runs, the median flip number and
median run time are calculated based on these 250 runs. If an algorithm cannot achieve
a success rate greater than 50% on an instance even if the cutoff is greater than or equal
to the maximum value among the cutoffs of all other algorithms, the median flip num-
ber and median run time cannot be calculated; we use “> Maxsteps” (greater than
Maxsteps) to denote the median flip number and use “n/a” to denote the median run
time, where Maxsteps is the cutoff for this algorithm on this instance. If the median
flip number and median run time of G2WSAT with any noise settings for an instance
cannot be calculated, we also use n/a to denote the optimal noise setting. Results in bold
indicate the best performance for an instance.

9 In general, wp ranges from 0% to 10%.

Combining Adaptive Noise and Look-Ahead in Local Search for SAT 129

4.1 Comparison of Performances of adaptG2WSATP , G2WSAT , and
adaptG2WSAT

We compare the performances of adaptG2WSATP , G2WSAT with approximately
optimal noise settings, and adaptG2WSAT in Table 2, where adaptG2WSATP uses
Novelty+P , and G2WSAT and adaptG2WSAT use Novelty++, to pick a variable
to flip, when there is no promising decreasing variable. On the instances that G2WSAT
can solve in reasonable time, except for qg7-13, the performance of adaptG2WSATP

is comparable to that of G2WSAT with approximately optimal noise settings. More-
over, adaptG2WSATP can solve 3bit*31, 3bit*32, *bug5, *bug38, *bug39, and
*bug40, which are hard for G2WSAT with any static noise settings. More importantly,
adaptG2WSATP does not need any manual tuning of p and wp for each instance
while G2WSAT needs manual tuning of p and dp for each instance. In other words,
G2WSAT cannot achieve the performance shown in this table by using the same p and
dp for the broad range of instances.

On the instances that adaptG2WSAT can solve in reasonable time, the perfor-
mance of adaptG2WSATP is comparable to that of adaptG2WSAT . Furthermore,
adaptG2WSATP can solve 3bit*31, 3bit*32, *bug5, *bug38, *bug39, and *bug40,
which are hard for adaptG2WSAT . In addition, among the 56 instances presented in
this table, adaptG2WSATP exhibits the best run time performance and/or the best flip
number performance on the 13 instances among adaptG2WSATP , G2WSAT with
approximately optimal noise settings, and adaptG2WSAT , while adaptG2WSAT is
never the best.

4.2 Comparison of Performances of adaptG2WSATP , R+adaptNovelty+,
and V W

R+adaptNovelty+ is adaptNovelty+ with preprocessing to add a set of resolvents
of length ≤ 3 into the input formula [1]. V W [11] is an extension of Walksat. V W
adjusts and smoothes variable weights, and takes variable weights into account when
selecting a variable to flip. R+adaptNovelty+, G2WSAT with p=0.50 and dp=0.05,
and V W won the gold, silver, and bronze medals, respectively, in the satisfiable random
formula category in the SAT 2005 competition.10

Table 3 compares the performance of adaptG2WSATP with the performances
of R+adaptNovelty+ and V W . We download R+adaptNovelty+ and V W from
http://www.satcompetition.org/. We use the default value 0.01 for the random walk
probability in R+adaptNovelty+, when running this algorithm. In this table, instances
with † on the right constitute the entire set of instances that were used to originally eval-
uate R+adaptNovelty+ in [1]. Among the 56 instances presented in this table, in terms
of run time, adaptG2WSATP , R+adaptNovelty+, and V W are the best algorithms
on the 32, 16, and 13 instances, respectively. Also, among the 56 instances, in terms of
run time, adaptG2WSATP outperforms R+adaptNovelty+ and V W on the 38 and
42 instances, respectively.

10 http://www.satcompetition.org/

130 C.M. Li, W. Wei, and H. Zhang

Table 2. Performance of adaptG2WSATP , adaptG2WSAT , and G2WSAT with approxi-
mately optimal noise settings

adaptG2WSATP adaptG2WSAT G2WSAT
#flips time #flips time optimal #flips time

bw large.c 1083947 3.650 3553694 10.175 (.21, 0) 2119497 3.699
bw large.d 1542898 8.590 9626411 49.635 (.16, 0) 3237895 7.180
3bit*31 87158 0.780 > 107 n/a n/a > 107 n/a
3bit*32 60518 0.565 > 107 n/a n/a > 107 n/a
e0ddr2*1 4520164 19.275 831073 2.595 (.14, .09) 254182 0.910
e0ddr2*4 641587 2.855 208815 0.805 (.23, .1) 117266 0.540
enddr2*1 982540 4.570 153905 0.640 (.18, .1) 97451 0.535
enddr2*8 412624 2.385 135332 0.585 (.16, .09) 90076 0.480
ewddr2*1 492907 2.470 137430 0.600 (.18, .1) 89420 0.505
ewddr2*8 262177 1.385 116917 0.535 (.16, .1) 67854 0.425
flat200-1 36764 0.025 42053 0.020 (.49, .08) 25358 0.010
flat200-2 288521 0.160 303515 0.135 (.49, .07) 171487 0.085
flat200-3 71324 0.045 89515 0.040 (.51, .05) 51037 0.025
flat200-4 314273 0.180 323353 0.145 (.49, .05) 178842 0.095
flat200-5 4963846 2.675 4173580 1.810 (.49, .08) 3008035 1.455
logistics.c 54777 0.075 46875 0.060 (.24, .07) 38177 0.040
logistics.d 83894 0.185 102575 0.165 (.2, .08) 78013 0.105
par16-1 58937999 27.955 76985828 29.870 (.51, .01) 48342381 20.835
par16-2 130634181 64.300 140615726 57.170 (.59, .01) 73324801 32.460
par16-3 104764223 50.865 112297525 44.885 (.58, .01) 80700698 33.223
par16-4 133899858 63.595 174053106 68.735 (.5, .02) 89662042 39.256
par16-5 124873168 59.865 133250726 53.385 (.54, .02) 83818097 35.688
qg1-07 6413 0.025 7370 0.020 (.38, 0) 4599 0.010
qg1-08 361229 4.740 448660 3.635 (.11, .03) 339312 1.350
qg2-07 3869 0.020 4708 0.025 (.33, .01) 2648 0.005
qg2-08 1262398 8.960 1473258 9.565 (.22, 0) 1449931 6.270
qg3-08 36322 0.125 36046 0.040 (.44, .05) 20517 0.015
qg4-09 68472 0.310 70659 0.100 (.37, 0) 48741 0.075
qg5-11 20598 0.210 23431 0.275 (.38, .01) 12559 0.080
qg6-09 414 0.005 441 0.005 (.41, .08) 340 0.000
qg7-09 392 0.005 318 0.005 (.41, .1) 316 0.015
qg7-13 > 108 n/a > 108 n/a (.33, 0) 4768987 50.809
*bug3 > 108 n/a > 108 n/a n/a > 108 n/a
*bug4 > 108 n/a > 108 n/a n/a > 108 n/a
*bug5 1460519 6.050 > 108 n/a n/a > 108 n/a
*bug17 107501 1.170 425730 5.130 (.15, .15) 63582 1.355
*bug38 181666 0.745 > 108 n/a n/a > 108 n/a
*bug39 75743 0.390 > 108 n/a n/a > 108 n/a
*bug40 182279 0.890 > 108 n/a n/a > 108 n/a
*bug59 102853 1.080 268332 2.475 (.62, .06) 52276 0.408
unif04-52 5588325 6.065 6763462 5.570 (.4, .07) 4991465 4.295
unif04-62 530432 0.590 768215 0.640 (.49, .03) 386031 0.335
unif04-65 1406786 1.560 1566427 1.315 (.48, .06) 1289658 0.918
unif04-80 3059121 3.575 3751125 3.300 (.45, .1) 1908125 1.760
unif04-83 8370126 9.930 6589739 5.860 (.43, .09) 4370302 3.112
unif04-86 6288398 7.450 5817258 5.250 (.43, .09) 3429233 2.442
unif04-91 659313 0.780 789717 0.730 (.5, .05) 414399 0.324
unif04-99 4054201 4.985 7746102 7.205 (.45, .02) 4931360 4.530
v*1912 3454184 84.115 3683237 78.625 (.16, 0) 3554771 65.509
v*1915 12928287 409.480 14636382 328.450 (.19, .02) 12510065 288.966
v*1923 1200896 25.030 1358055 16.630 (.42, 0) 1065848 13.386
v*1924 1389813 28.040 1756779 29.855 (.21, .04) 1613496 23.019
v*1944 4248279 216.700 4386535 156.67 (.20, 0) 3667138 126.398
v*1955 1404357 56.240 1417356 32.195 (.29, .01) 1152386 28.669
v*1956 1762589 71.100 1849539 68.365 (.26, .02) 1599232 46.434
v*1959 612589 27.985 786925 32.815 (.37, .01) 498563 16.276

Combining Adaptive Noise and Look-Ahead in Local Search for SAT 131

Table 3. Experimental results for R+adaptNovelty+, adaptG2WSATP , and V W

R+adaptNovelty+ adaptG2WSATP V W
#flips time #flips time #flips time

bw large.c† 9489817 29.140 1083947 3.650 1868393 5.960
bw large.d 27179763 152.160 1542898 8.590 2963500 18.120
3bit*31 152565 1.645 87158 0.780 37487 0.290
3bit*32 133945 1.640 60518 0.565 21858 0.160
e0ddr2*1† 2488226 10.630 4520164 19.275 6549282 22.530
e0ddr2*4† 355044 1.530 641587 2.855 1894243 7.850
enddr2*1† 331420 1.555 982540 4.570 4484178 17.605
enddr2*8† 11753 0.020 412624 2.385 3493986 15.505
ewddr2*1† 154825 0.675 492907 2.470 4714786 18.410
ewddr2*8† 32527 0.100 262177 1.385 4956356 21.785
flat200-1 50600 0.030 36764 0.025 187053 0.085
flat200-2 535300 0.280 288521 0.160 1318485 0.650
flat200-3 161169 0.085 71324 0.045 664550 0.330
flat200-4 577180 0.290 314273 0.180 2747696 1.345
flat200-5 15841761 8.366 4963846 2.675 26137279 13.119
logistics.c† 57693 0.075 54777 0.075 70446 0.085
logistics.d 162737 0.220 83894 0.185 340379 0.395
par16-1† 80339283 37.645 58937999 27.955 > 109 n/a
par16-2† 324826713 157.455 130634181 64.300 > 109 n/a
par16-3† 224140856 107.410 104764223 50.865 > 109 n/a
par16-4† 274054172 129.660 133899858 63.595 > 109 n/a
par16-5† 264871971 125.025 124873168 59.865 > 109 n/a
qg1-07† 9882 0.015 6413 0.025 21304 0.055
qg1-08† 676122 2.300 361229 4.740 2548200 69.325
qg2-07† 6147 0.010 3869 0.020 9181 0.035
qg2-08† 2200276 8.440 1262398 8.960 8843525 277.735
qg3-08† 53998 0.070 36322 0.125 137354 0.185
qg4-09† 105386 0.165 68472 0.310 264297 0.505
qg5-11† 36856 0.215 20598 0.210 39907 0.410
qg6-09† 542 0.000 414 0.000 1014 0.000
qg7-09† 531 0.000 392 0.000 1037 0.000
qg7-13† 5113772 66.680 > 108 n/a 8843466 307.620
*bug3 62148492 360.920 > 108 n/a 1974994 4.875
*bug4 > 108 n/a > 108 n/a 177511 0.460
*bug5 66283256 431.395 1460519 6.050 280071 0.735
*bug17 6020734 141.875 107501 1.170 32999 0.275
*bug38 4699436 32.735 181666 0.745 157834 0.385
*bug39 9693455 54.345 75743 0.390 83287 0.220
*bug40 17465338 125.010 182279 0.890 98834 0.290
*bug59 389865 4.150 102853 1.080 66090 0.345
unif04-52† 24720067 21.335 5588325 6.065 22594215 17.115
unif04-62† 1484946 1.280 530432 0.590 3321105 2.605
unif04-65† 9043996 7.885 1406786 1.560 4505318 3.520
unif04-80† 5432957 4.780 3059121 3.575 20083928 16.515
unif04-83† 291310536 255.685 8370126 9.930 25897048 21.590
unif04-86† 38667651 34.045 6288398 7.450 8536496 7.170
unif04-91† 1581843 1.370 659313 0.780 3097695 2.725
unif04-99† 16856278 14.850 4054201 4.985 17422353 15.400
v*1912 6812718 148.735 3454184 84.115 61152892 3037.695
v*1915 78909897 2208.900 12928287 409.480 > 108 n/a
v*1923 2736569 51.662 1200896 25.030 9820793 340.430
v*1924 2931225 60.319 1389813 28.040 13744232 515.720
v*1944 6153990 373.905 4248279 216.700 58541545 7971.731
v*1955 2755333 89.455 1404357 56.240 10396220 1073.960
v*1956 2865074 114.685 1762589 71.100 13419375 1437.035
v*1959 2420412 118.335 612589 27.985 11433482 1377.245

132 C.M. Li, W. Wei, and H. Zhang

Table 4. Experimental results for the preliminary adaptG2WSATP and adaptG2WSATP

preliminary adaptG2WSATP adaptG2WSATP

#flips time #flips time
*bug5 > 108 n/a 1460519 6.050
*bug17 133691 2.820 107501 1.170
*bug38 > 108 n/a 181666 0.745
*bug39 > 108 n/a 75743 0.390
*bug40 > 108 n/a 182279 0.890
*bug59 179091 4.965 102853 1.080

4.3 Comparison of Performances of adaptG2WSATP and Preliminary
adaptG2WSATP

Our experimental results show that adaptG2WSATP exhibits better performance than
the preliminary adaptG2WSATP on some instances from SSS.1.0a presented in Sec-
tion 2.3. According to our experimental results, on the remaining instances presented
in Section 2.3, the overall performance of adaptG2WSATP is close to that of the
preliminary adaptG2WSATP . Table 4 indicates that adaptG2WSATP exhibits good
performance on the 6 instances from SSS.1.0a while the preliminary adaptG2WSATP

has difficulty on 4 out of these 6.

5 Conclusion

We have found that the deterministic exploitation of promising decreasing variables
can enhance the adaptive noise mechanism in local search for SAT, and thus integrated
this adaptive noise mechanism in G2WSAT to obtain the algorithm adaptG2WSAT .
We then have proposed a limited look-ahead approach to favor those flips generating
promising decreasing variables to further improve the adaptive noise mechanism. The
look-ahead approach is based on the promising scores of variables, meaning that after
flipping a variable x, the score of the best promising decreasing variable should be
added to the score of x to improve the objective function. The resulting algorithm is
called adaptG2WSATP .

There are two new parameters in adaptG2WSATP , θ and φ, which are from
adaptNovelty+ and are used to implement the adaptive noise mechanism. How-
ever, noise p and random walk probability wp are entirely automatically adapted.
Our experimental results confirm that, like θ and φ in adaptNovelty+, θ and φ in
adaptG2WSATP are substantially less sensitive to problem instances and problem
types than are p and wp [4], and our results also show that the same fixed default values
of θ and φ allow adaptG2WSATP to achieve good performances for a broad range of
SAT problems. Moreover, our experimental results show that, without any manual noise
or other parameter tuning, adaptG2WSATP shows generally good performance, com-
pared with G2WSAT with approximately optimal static noise settings, or is sometimes
even better than G2WSAT , and that adaptG2WSATP compares favorably with state-
of-the-art algorithms such as R+adaptNovelty+ and V W .

Combining Adaptive Noise and Look-Ahead in Local Search for SAT 133

We plan to optimize the computation of promising scores, which actually is not
incremental. In addition, the efficient implementation techniques of UBCSAT , the
variable weight smoothing technique proposed in V W , and the preprocessing used in
R+adaptNovelty+ could be integrated into adaptG2WSATP .

References

1. Anbulagan, D. N. Pham, J. Slaney, and A. Sattar. Old Resolution Meets Modern SLS. In
Proceedings of AAAI-2005, pages 354–359. AAAI Press, 2005.

2. I. P. Gent and T. Walsh. Towards an Understanding of Hill-Climbing Procedures for SAT. In
Proceedings of AAAI-1993, pages 28–33. AAAI Press, 1993.

3. H. Hoos. On the Run-Time Behavior of Stochastic Local Search Algorithms for SAT. In
Proceedings of AAAI-1999, pages 661–666. AAAI Press, 1999.

4. H. Hoos. An Adaptive Noise Mechanism for WalkSAT. In Proceedings of AAAI-2002, pages
655–660. AAAI Press, 2002.

5. C. M. Li and W. Q. Huang. Diversification and Determinism in Local Search for Satisfiabil-
ity. In Proceedings of SAT-2005, pages 158–172. Springer, LNCS 3569, 2005.

6. C. M. Li, W. Wei, and H. Zhang. Combining Adaptive Noise and Look-Ahead in Local
Search for SAT. In Proceedings of LSCS-2006, pages 2–16, 2006.

7. C. M. Li, W. Wei, and H. Zhang. Combining Adaptive Noise and Look-Ahead in Local
Search for SAT. In F. Benhamou, N. Jussien, and B. O’Sullivan, editors, Trends in Constraint
Programming, chapter 2. Hermes Science, 2007 (to appear).

8. B. Mazure, L. Sais, and E. Gregoire. Tabu Search for SAT. In Proceedings of AAAI-1997,
pages 281–285. AAAI Press, 1997.

9. D. A. McAllester, B. Selman, and H. Kautz. Evidence for Invariant in Local Search. In
Proceedings of AAAI-1997, pages 321–326. AAAI Press, 1997.

10. D. J. Patterson and H. Kautz. Auto-Walksat: A Self-Tuning Implementation of Walksat.
Electronic Notes on Discrete Mathematics 9, 2001.

11. S. Prestwich. Random Walk with Continuously Smoothed Variable Weights. In Proceedings
of SAT-2005, pages 203–215. Springer, LNCS 3569, 2005.

12. D. Schuurmans and F. Southey. Local Search Characteristics of Incomplete SAT Procedures.
In Proceedings of AAAI-2000, pages 297–302. AAAI Press, 2000.

13. D. A. D. Tompkins and H. H. Hoos. UBCSAT: An Implementation and Experimentation
Environment for SLS Algorithms for SAT and MAX-SAT. In Proceedings of SAT-2004,
pages 306–315. Springer, LNCS 3542, 2004.

From Idempotent Generalized Boolean

Assignments to Multi-bit Search

Marijn Heule� and Hans van Maaren

Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Sciences

Delft University of Technology
marijn@heule.nl, h.vanmaaren@tudelft.nl

Abstract. This paper shows that idempotents in finite rings of inte-
gers can act as Generalized Boolean Assignments (GBA’s) by providing
a completeness theorem. We introduce the notion of a generic General-
ized Boolean Assignment. The mere propagation of such an assignment
reveals feasibility (existence of a solution) of a formula in propositional
logic. Then, we demystify this general concept by formulating the pro-
cess on the bit-level: It turns out that propagation of a GBA only simu-
lates bitwise (non-communicating) parallel computing. We capitalize on
this by modifying the state-of-the-art local search Sat solver UnitWalk
accordingly. This modification involves a more complicated parallelism.

1 Introduction

Propositional Logic and Elementary Arithmetic are - in some sense - similar sys-
tems. We provide additional evidence of this by introducing Generalized Boolean
Models (GBM’s) as certain sets of idempotents in finite residue class rings of in-
tegers, and a completeness theorem. We also offer a construction of so-called
generic Generalized Boolean Assignments (generic GBA’s). We show that for-
mula feasibility can be checked by evaluating its “truth” value under one single
generic assignment. These modeling possibilities feature an attractive mathe-
matical simplicity. However, analysis of the proof of the completeness theorem
and the process of constructing generic GBA’s shows that the above modeling
possibility only simulates (non-communicating) parallel computing.

Current Satisfiability (Sat) solvers do not use the opportunity of a k-bit pro-
cessor to simulate parallel 1-bit (Boolean) search on k 1-bit processors. Conven-
tional parallel Sat solving [3,4,9] differs from the proposed method in section 3:
The former realizes performance gain by dividing the workload over multiple
processors and some minor changes to the solving algorithm, while the latter
uses a single processor and requires significant modifications to the algorithm.

Sat solvers that use multi-bit heuristics frequently (counters for instance), are
not very suitable for modification in this respect. However, Sat solvers whose
� Supported by the Dutch Organization for Scientific Research (NWO) under grant

617.023.306.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 134–147, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

From Idempotent Generalized Boolean Assignments to Multi-bit Search 135

computational “center of gravity” consists of propagating truth values (or other
1-bit operations) may profit from this opportunity. One of such is the state-
of-the-art local search Sat solver UnitWalk [6]. We show that UnitWalk can be
upgraded using a single k-bit processor. This results in a considerable speed-up.

2 Idempotents and Generalized Boolean Assignments

The concepts in this section could have been cast into the format of Boolean
Algebras [5]. As such, we do not claim that the ideas and results are completely
new. However, using a little bit of elementary number theory it is possible to
directly relate the concepts needed to familiar arithmetical operations. We pre-
ferred to do the latter. On the other hand, to understand the essentials of the
next sections, it does not hurt the reader much to continue reading from Back
to Booleans at the end of this section.

An idempotent x in the ring of integers modulo m is an element satisfying
x2 ≡ x (modulo m). For given m, a Generalized Boolean Model (GBM) I is a
set of idempotents modulo m obeying the three closure rules:

– 0, 1 ∈ I;
– If x ∈ I then 1− x ∈ I. Notice that (1− x)2 ≡ 1− x (modulo m).
– If x, y ∈ I then xy ∈ I. Notice that (xy)2 ≡ xy (modulo m).

Given a formula F in Propositional Logic a Generalized Boolean Assignment
(GBA) is a mapping from its set of variables to a GBM I. Evaluating the
“truth” value of F under a GBA simply follows the rule of translating ¬x by
the arithmetic operation 1 - value(x) and conjunction x ∧ y by the operation
value(x)·value(y) (both modulo m), recursively.

Example 1. Consider Z6, the ring of integers modulo 6. Idempotents modulo
6 are 0, 1, 3 and 4. Let F be the formula

¬(x→ (y ∨ (x ∧ z))) (1)

which is equivalent to

x ∧ (¬y ∧ ¬(x ∧ z)) (2)

and assigning x := 3, y := 4 and z := 1, we calculate

3× ((1− 4)× (1− (3× 1))) ≡ 0 (modulo 6) (3)

By assigning x := 3, y := 4 and z := 0 however, F evaluates to the value 3, as
the reader may verify. Following from the above, each evaluation of a formula
under a GBA results in an idempotent in I, due to the closure rules posed on I.

Example 2. Again consider Z6 and the formula x ∧ y. The reader may check
that there are 16 possible GBA’s of which 7 evaluate to a non-zero idempotent.

136 M.J.H. Heule and H. van Maaren

Drawing GBA’s randomly, the probability of hitting a non-zero idempotent out-
come is 7

16 , while in the standard Boolean situation this probability is 1
4 .

The above example shows that random sampling GBA’s (or, equivalently, multi-
bit Boolean patterns) may hit solutions earlier, in about the same time. As
such this is done in [7], where Boolean “patterns” (rather than Booleans) are
propagated through a circuit in the order to increase the probability of hitting
a solution - indicating an error in their application.

Although this random sampling can be viewed as a rather straight forward
parallelism, we claim that to perform efficient multi-bit propagation for Sat
solving is not straight forward at all: In [7] at each step, variables are either
unassigned or assigned a full Boolean pattern, while in the proposed propaga-
tion variables can also be assigned a partial Boolean assignment.

Theorem 1 (Completeness Theorem). If F is a formula and I a Generalized
Boolean Model, F is Satisfiable if and only if there exists a GBA under which
F evaluates to a non-zero idempotent.

Proof: If F is Satisfiable, then a {0, 1}-assignment exists under which F evalu-
ates to 1. This evaluation remains valid in each I. If F evaluates to a non-zero
idempotent w modulo m, there must be a prime factor of m, say p, such that
w is non-zero modulo p. Modulo a prime however, the only existing idempotents
are 0 and 1, since x2 ≡ x (modulo p) reduces to x ≡ 0 or x ≡ 1 (modulo p).
Under these circumstances there must be a prime number p which reduces, when
calculating modulo p, the GBA to a simple Boolean assignment that satisfies F .

Construction of generic GBM’s. GBM’s are constructed as follows: Let m
be the product of the first k primes. Let A be the product of a subset of these
primes and B the product of the complementary subset. Since A and B are
relatively prime, integers r and s exists such that

rA + sB = 1 (4)

Set x ≡ rA (modulo m). Then 1 − x ≡ sB (modulo m) and thus x(1 − x) ≡ 0
(modulo m). The above observation shows that precisely 2k different idempotents
modulo m exist.

Generic GBA’s. Let F be a formula on n variables and m be the product of
the first 2n primes. As we have seen above, there are 22n

different idempotents
modulo m. This is the same amount as the number of logically independent
Boolean functions on n variables. In fact, it is not hard to demonstrate that in
the above situation a GBA to the variables exists such that each formula on
n variables evaluates to its associated idempotent modulo m, each idempotent
representing an equivalence class of Boolean functions. For example:

Example 3. Consider the Boolean functions with n = 2, m = 2 · 3 · 5 · 7 = 210.
The full GBM is {0, 1, 15, 21, 36, 70, 85, 91, 105, 106, 120, 126, 141, 175, 190, 196}.

From Idempotent Generalized Boolean Assignments to Multi-bit Search 137

A generic GBA is for instance x = 15, y = 21. In this case x∧¬y evaluates to 120,
¬(¬x ∧ y) to 85, x ⇔ y to 175 and ¬(x ⇔ y) to 36. In this case, every formula
on 2 variables can be checked on feasibility by propagating the values x = 15
and y = 21, and only the outcome 0 (modulo 210) reflects a contradiction. That
(15, 21) is generic follows from the fact that (15, 21) is (1, 1) modulo 2, (0, 0)
modulo 3, (0, 1) modulo 5 and (1, 0) modulo 7. Notice that - in some sense - we
are just doing ordinary Sat in the exponents of the prime factors involved.

Working with GBA’s could be beneficial in situations when the arithmetic
operations involved can be performed in a small number of clock cycles. More
specifically: If we have a 32-bit processor available, formulas with up to 5 vari-
ables can be resolved in one propagation run using generic GBA’s in about the
same time an ordinary Boolean assignment is propagated.

Back to Booleans. Despite the arithmetic elegance of generic GBM’s in their
capability of representing Boolean functions, it is clear that on the level of im-
plementation integers are not a very welcome ingredient. In fact, the processes
explained above are even easier to understand if we return to the Boolean level.
To see this, consider the case of functions on 3 variables and the following table:

x := 0 1 0 0 1 1 0 1
y := 0 0 1 0 1 0 1 1
z := 0 0 0 1 0 1 1 1

Consider the rows as 8 parallel Boolean assignments to the individual vari-
ables (using 8 1-bit processors). We refer to such an assignment as a multi-bit
assignment (MBA). Notice that the 8 different columns represent the 8 different
Boolean assignments in total. Therefore, the above MBA is a generic MBA -
analogue to generic GBA’s. Having an 8-bit processor at our disposal the eval-
uation of the and-gate x ∧ y results in 01001101 ∧ 00101011 = 00001001, an
operation performed in one clock cycle. Bits 5 and 8 certify feasibility. In general,
any formula on n variables - based on the primitive operations AND (∧) and NOT
(¬) - can be resolved, using a generic MBA of 2n bits (and a k-bit processor with
2n ≤ k), in as many clock cycles as there are logical operators to perform. The
formula is Satisfiable if and only if in the end there is at least one bit equal to
1. In terms of generic GBM’s the above 8-bit example would involve calculating
modulo 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 = 9699690.

3 Multi-bit Unit Propagation

This section describes the use of MBA’s to parallelize a Sat solving algorithm.
However, this differs from conventional parallelism: Modifications of MBA’s can
be processed in parallel, while, for instance, operations on counters cannot. In
general, only 1-bit operations can be parallelized. Therefore, algorithms that po-
tentially benefit from MBA’s should have their computational “center of gravity”
on assignment modifications.

138 M.J.H. Heule and H. van Maaren

A widely used procedure for assignment modifications is unit propagation:
Given a formula F and an assignment ϕ. If ϕ applied to F (denoted by ϕ ◦ F)
contains unit clauses (clauses of size 1) then the remaining literal in each unit
clause is forced to be true - thereby expanding ϕ. This procedure continues until
there are no unit clauses in ϕ ◦ F . This section describes a Sat solving algorithm
that uses unit propagation at its computational “center of gravity”.

The UnitWalk algorithm. For a possible application we focused on local
search (incomplete) Sat solvers. In contrast to complete Sat solvers, they are
less complicated and work with full assignments. A generic structure of local
search Sat solvers is as follows: An assignment ϕ is generated, earmarking a
random Boolean value to all variables. By flipping the truth values of variables,
ϕ can be modified to satisfy as many clauses as possible of the formula at hand.
If after a multitude of flips ϕ still does not satisfy the formula, a new random
assignment is generated.

Most local search Sat solvers use counting heuristics to flip the truth value of
the variables in a turn-based manner. These heuristics appear hard to parallelize
on a single processor. However, the UnitWalk algorithm [6] is an exception.
Instead of counting heuristics, it uses unit propagation to flip variables. The
UnitWalk Sat solver - based on this algorithm - is the fastest local search Sat
solver on many structured instances and won the Sat 2003 competition in the
category All random SAT [2].

The UnitWalk algorithm (see algorithm 1) flips variables in so-called pe-
riods: Each period starts with an initial assignment (referred to as master as-
signment ϕmaster), an empty assignment ϕactive and an ordering of the variables
π. First, unit propagation is executed on the empty assignment. Second, the
first unassigned variable in π is assigned to its value in ϕmaster, followed by unit
propagation of this value. A period ends when all variables are assigned a value
in ϕactive. Notice that conflicts - clauses with all literals assigned to false - are
more or less neglected, depending on the implementation. A new period starts
with the resulting ϕactive as initial ϕmaster and a new ordering of the variables.

Example 4. Consider the example formula and initial settings below. Unas-
signed values in ϕactive are denoted by *.

Fexample := (x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)
(¬x2 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x3 ∨ ¬x4)

ϕmaster := {x1 = 0, x2 = 1, x3 = 1, x4 = 0}
ϕactive := {x1 = ∗, x2 = ∗, x3 = ∗, x4 = ∗}

π := (x2, x1, x4, x3)

Since the formula contains no unit clauses, the algorithm starts by selecting
the first variable from the ordering - x2. We assign this variable to true (as in
ϕmaster) and perform unit propagation. Due to ¬x2∨¬x3 this results in one unit
clause ¬x3. Propagation of this unit clause - assigning x3 to false - results in

From Idempotent Generalized Boolean Assignments to Multi-bit Search 139

Algorithm 1. Flip UnitWalk(ϕmaster)

1: for i in 1 to MAX PERIODS do
2: if ϕmaster satisfies F then
3: break
4: end if
5: π := random ordering of the variables
6: ϕactive := ∅
7: for j in 1 to n do
8: while unit clause u ∈ ϕactive ◦ F do
9: ϕactive[VAR(u)] := TRUTH(u)

10: end while
11: if π(j) not assigned in ϕactive then
12: ϕactive[π(j)] := ϕmaster[π(j)]
13: end if
14: end for
15: if ϕactive = ϕmaster then
16: random flip variable in ϕactive

17: end if
18: ϕmaster := ϕactive

19: end for
20: return ϕmaster

unit clauses x4, and ¬x4. Because two complementary unit clauses have been
generated we found a conflict. However, the UnitWalk algorithm does not
resolve this conflict.

Instead, it continues by selecting1 one of them, say ¬x4, and assign x4 to
false. After this assignment ϕactive ◦F does not contain unit clauses anymore.
We conclude this period by assigning x1 to its value in ϕmaster. This results in
the full assignment ϕactive = {x1 = 0, x2 = 1, x3 = 0, x4 = 0}. Notice that the
new assignment does not satisfy clause ¬x2 ∨ x3 ∨ x4.

Now, consider the same example, this time using a 4-bit assignment to all
the variables. The reader must keep in mind that by parallelizing the former,
we try to satisfy clauses in each bit position! Hence, variables may be flipped in
multiple bits, and “conflict” means a conflict in some bit position. For the latter
we shall use the term bit-conflict. Further, we keep using the term “truth value”
for its multi-valued analogue. Notice that in the initial settings below, the first
bit in ϕmaster equals the 1-bit example and that the ordering is the same.

ϕmaster := {x1 = 0110, x2 = 1100, x3 = 1010, x4 = 0110}
ϕactive := {x1 = ∗∗∗∗, x2 = ∗∗∗∗, x3 = ∗∗∗∗, x4 = ∗∗∗∗}

π := (x2, x1, x4, x3)

1 In [6] the authors suggest to select the truth value used in ϕmaster. However, this is
not implemented in the latest version of the solver and we consider it as a choice.

140 M.J.H. Heule and H. van Maaren

Again, we start by assigning x2 to its value in ϕmaster followed by unit propaga-
tion. This will result in two unit clauses :

(x1 = ∗∗∗∗ ∨ x2 = 1100) ⇒ x1 := ∗∗11
(¬x2 = 0011∨ ¬x3 = ∗∗∗∗) ⇒ x3 := 00∗∗

One of them is selected, say x1 and assigned to its value, resulting in:

(¬x1 = ∗∗00 ∨ x2 = 1100 ∨ x3 = 00∗∗) ⇒ x3 := 0011

Now we assign x3 which triggers three clauses:

(¬x2 = 0011 ∨ x3 = 0011 ∨ ¬x4 = ∗∗∗∗) ⇒ x4 := 00∗∗
(¬x2 = 0011 ∨ x3 = 0011 ∨ x4 = 00∗∗) ⇒ bit−conflict

(¬x3 = 1100 ∨ ¬x4 = 11∗∗) ⇒ x4 := 0000

When unit propagation stops, only the first two bits of x1 are still undefined.
These bits are set to their value in ϕmaster assigning all variables. The period
ends with ϕactive = {x1 = 0111, x2 = 1100, x3 = 0011, x4 = 0000} - which
satisfies the formula in the third and fourth bit.

The reader may check that: (1) The order in which unit clauses are propa-
gated, as well as the order in which clauses are evaluated is not fixed. The order
influences ϕactive in case of conflicts. For example, evaluating ¬x2∨x3∨x4 before
¬x2 ∨ x3 ∨ ¬x4 results in a different final ϕactive. (2) In the 4-bit example the
third and fourth bit are the same for all variables. This effect could reduce the
parallelism, because the algorithm as such does not intervene here and in fact
maintains this collapse. This effect is not restricted to formulas with few vari-
ables. During our experiments we frequently detected a convergence to identical
assignments over a considerable number of bit positions (sometimes even over all
32 positions, when using a 32-bit processor). We implemented a fast detection
algorithm which replaces a duplicate with a new random assignment. Due to
page limitations we cannot go into detail at this stage. Notice however that by
doing so the first “communication” aspect is introduced.

4 Implementation UnitMarch

4.1 Unit Propagation

The UnitPropagation procedure within the UnitWalk algorithm is not con-
fluent: Different implementations yield different results. In short, two design
decisions have to be made:

– In case of multiple unit clauses: which one to select for propagation;
– In case of a conflict: whether or how to act.

From Idempotent Generalized Boolean Assignments to Multi-bit Search 141

The most recent UnitWalk (version 1.003) implements the following UnitProp-
agation procedure: Unit clauses are stored in a multi-set (a set that can contain
duplicate elements) data-structure. For each iteration a random element from
the multi-set is selected. If the complement of the selected unit clause also occurs
in the multi-set - meaning a conflict - all occurrences of x and ¬x are removed
from the multi-set. The algorithm continues with the next random element - see
algorithm 2. Notice that this is a defensive flip strategy: Because of the removal,
the truth value for x in ϕactive tends to be the one copied from ϕmaster.

Algorithm 2. UnitPropagation MultiSet ()

1: while UnitMultiSet is not empty do
2: x := random element from UnitMultiSet
3: remove all occurrences of x in UnitMultiSet
4: if unit clause ¬x also occurs in UnitMultiSet then
5: remove all occurrences of ¬x in UnitMultiSet
6: else
7: ϕactive[VAR(x)] := TRUTH(x)
8: for all clauses Ci in which ¬x occurs do
9: if Ci becomes a unit clause then

10: add Ci to UnitMultiSet
11: end if
12: end for
13: end if
14: end while

In our implementation we took a slightly different approach, since the above
algorithm was hard to implement efficiently in a multi-bit version. Instead of the
multi-set we used a queue (first in, first out) data-structure - see algorithm 3:
Unit clauses are selected in the order they are added to the queue. In general,
“early” generated unit clauses will have more bits assigned (at time of propa-
gation) compared to “recent” unit clauses. Therefore the queue seems a useful
data-structure since it always propagates the “earliest” unit clause left.

In addition, conflicts are handled differently: The queue is not allowed to
contain complementary or duplicate unit clauses. The truth value of the first
generated unit clause will be used during the further propagation. Notice that
this flip strategy is more offensive: Given a bit-conflict, the truth value of the
variable is flipped in approximately half of the cases. As we will see in the results
(section 5), both implementations yield comparable results.

4.2 Detection of Unit Clauses

The UnitWalk algorithm spends most computational time in detecting which
clauses became unit clauses given an expansion of ϕactive. If a variable is assigned
a Boolean value, all clauses in which it occurs with complementary polarity are
potential unit clauses. In a 1-bit implementation, only one unit clause could be
detected in such a potential clause, while in a multi-bit implementation multiple
unit clauses could be detected:

142 M.J.H. Heule and H. van Maaren

Algorithm 3. UnitPropagation Queue ()

1: while UnitQueue is not empty do
2: x := removed front element from UnitQueue
3: for all clauses Ci in which ¬x occurs do
4: if Ci becomes a unit clause then
5: y := remaining literal in Ci

6: ϕactive[VAR(y)] := TRUTH(y)
7: if y not in UnitQueue then append y to UnitQueue
8: end if
9: end for

10: end while

Example 6. Given ϕactive = {x1 =010∗, x2 = 10∗1, x3 = 101∗, x4 = ∗001} with
x3 as unit clause to be propagated and potential clause x1 ∨ ¬x2 ∨ ¬x3 ∨ x4.

(x1 = 010∗∨¬x2 = 01∗0∨¬x3 = 010∗∨x4 = ∗001) ⇒ x2 := 1001, x4 := 1001

In general, all literals besides the propagation literal are potential unit clauses.

Encoding. Since each bit in ϕactive consists of three possible values (*,0,1),
we used two bits to encode each value: 00 = *, 01 = 0, 10 = 1, and 11 = bit-
conflict.2 We used an array ϕ+

− in which both xi and ¬xi have a separate
assignment: The first bit of each value is stored in xi while the second bit is
stored in ¬xi. For example:

ϕactive[x] = 101∗∗0∗1 is stored as
{

ϕ+
−[x] = 10100001

ϕ+
−[¬x] = 01000100

Using ϕ+
− we can compute the unit clauses as below. Conflicts are ignored by

only allowing unassigned bits - computed by NOT(ϕ+
−[xi] OR ϕ+

−[¬xi]) - to be
assigned. Back to the example:

x1 := ϕ+
−[x3] AND NOT(ϕ+

−[x1] OR ϕ+
−[¬x1]) AND ϕ+

−[x2] AND ϕ+
−[¬x4]

¬x2 := ϕ+
−[x3] AND ϕ+

−[¬x1] AND NOT(ϕ+
−[x2] OR ϕ+

−[¬x2]) AND ϕ+
−[¬x4]

x4 := ϕ+
−[x3] AND ϕ+

−[¬x1] AND ϕ+
−[x2] AND NOT(ϕ+

−[x4] OR ϕ+
−[¬x4])

The above shows a potential disadvantage of the multi-bit propagation: To check
whether a clause of size k becomes a unit clause and to determine the remain-
ing literal is not trivially computed in O(k) steps - as is the case with 1-bit
propagation. However, a O(k) implementation can be realized by splitting the
computation:

– Compute the unit mask - a multi-bit Boolean which is true on all positions
with exactly one not falsified literal (denoted by MNF= 1);

2 The bit-conflict value is not possible within our implementation.

From Idempotent Generalized Boolean Assignments to Multi-bit Search 143

– Use the unit mask to quickly determine the newly created unit clauses: All
literals that are unassigned at a true position in the unit mask became unit.

To compute MNF= 1, we use two auxiliary masks, MNF≥ 1 and MNF≥ 2. The
masks denote multi-bit Booleans which are true on all positions with at least
one (and two, respectively) falsified literals and false elsewhere. Notice that
MNF =1:=MNF≥ 1 XOR MNF≥ 2. For each literal li in a clause we update MNF≥ 1

and MNF≥ 2 by the following two rules:

MNF≥ 2 := (MNF≥ 2 OR NOT(ϕ+
−[¬li])) AND MNF≥ 1

MNF≥ 1 := MNF≥ 1 OR NOT(ϕ+
−[¬li])

By negating the operations above, the computation becomes more efficient.
Algorithm 4 shows the proposed implementation.

Algorithm 4. ComputeUnitMask (clause Cy)

1: MI := ALL BITS TRUE, MII := ALL BITS TRUE

2: for i in 1 to |Cy | do
3: MII := (MII AND ϕ+

−[¬ly,i]) OR MI

4: MI := MI AND ϕ+
−[¬ly,i]

5: end for
6: return MI XOR MII

Once MNF =1 is computed (MNF =1 = 1010 in the example) we can determine
the newly create unit clauses. For the example we only need the computations:

x1 := MNF =1 AND NOT(ϕ+
−[x1] OR ϕ+

−[¬x1])
¬x2 := MNF =1 AND NOT(ϕ+

−[x2] OR ϕ+
−[¬x2])

x4 := MNF =1 AND NOT(ϕ+
−[x4] OR ϕ+

−[¬x4])

5 Results

We implemented the UnitWalk algorithm as a multi-bit local search solver
using UnitPropagation Queue. The resulting solver, called UnitMarch, can
be used for any number of bits. We added a method which replaces double
assignments with new random assignments (see section 3). The performance of
UnitMarch is compared with the latest version of UnitWalk3.

The latter is a hybrid solver: If after a number of periods the number of
unsatisfied clauses is not reduced the solver switches to WalkSat [8]. If that
algorithm does not find a solution after a multitude of flips it switches back,
etc. Because we wanted to compare the influence of multi-bit search on the pure
UnitWalk algorithm, the switching was disabled.
3 version 1.003 available from http://logic.pdmi.ras.ru/∼arist/UnitWalk/

http://logic.pdmi.ras.ru/~arist/UnitWalk/

144 M.J.H. Heule and H. van Maaren

Table 1. Comparison between the performance - in average number of periods and
average time and standard deviation - of UnitWalk, UnitMarch 1-bit, and UnitMarch
32-bit on various benchmarks. The presented data averages runs using 100 different
random seeds.

UnitWalk 1.003 UnitMarch 1-bit UnitMarch 32-bit
periods time periods time periods time

aim-2-1-1 119336 6.13 (6.36) 37520 1.62 (1.65) 1339 0.32 (0.33)

aim-2-1-2 1395975 73.56 (71.97) 1001609 44.67 (43.37) 45934 11.35 (10.68)

aim-2-1-3 26487 1.40 (1.39) 12147 0.53 (0.60) 646 0.16 (0.15)

aim-2-1-4 57794 3.13 (3.01) 30708 1.38 (1.58) 945 0.23 (0.22)

aim-3-4-1 89923 7.57 (7.05) 62191 3.19 (3.07) 2134 1.40 (1.42)

aim-3-4-2 99744 8.43 (7.98) 181623 9.33 (8.51) 5838 3.81 (3.33)

aim-3-4-3 51898 4.33 (4.07) 20870 1.7 (0.90) 738 0.48 (0.45)

aim-3-4-4 264125 21.96 (17.79) 240856 21.21 (13.43) 6234 4.29 (3.15)

bw-large.b 441 0.32 (0.33) 311 0.18 (0.13) 13 0.05 (0.03)

bw-large.c 13870 47.61 (40.90) 9342 19.85 (22.05) 498 7.63 (7.44)

dlx2-bug17 1102 6.40 (9.53) 432 2.31 (2.80) 7 0.43 (0.41)

dlx2-bug39 2830 6.78 (6.13) 1899 4.38 (3.72) 69 1.33 (1.76)

dlx2-bug40 1632 3.96 (4.02) 988 2.34 (2.20) 26 0.55 (0.55)

flat200-05 19384 3.46 (3.40) 19880 2.19 (2.35) 704 0.81 (0.75)

flat200-24 5247 0.98 (1.02) 5145 0.56 (0.56) 130 0.16 (0.18)

flat200-39 12142 2.16 (2.29) 12048 1.31 (1.21) 391 0.44 (0.45)

flat200-48 2941 0.52 (0.54) 2346 0.26 (0.25) 84 0.10 (0.10)

flat200-64 6406 1.14 (1.03) 6799 0.75 (0.75) 268 0.34 (0.35)

logistics-a 1970338 636.47 (563.21) 863165 369.09 (383.97) 25100 55.97 (43.53)

logistics-b 6313 1.91 (2.24) 11878 5.43 (5.76) 354 0.73 (0.63)

logistics-c 133572 72.16 (69.36) 310450 228.49 (224.92) 9803 34.19 (31.75)

logistics-d 23 0.11 (0.07) 24 0.08 (0.04) 5 0.11 (0.03)

par16-1 14245 4.97 (4.73) 11267 2.65 (2.85) 365 0.21 (0.20)

par16-2 21417 7.43 (8.08) 20601 5.05 (5.18) 702 0.42 (0.34)

par16-3 17913 6.31 (7.04) 16872 3.98 (3.93) 551 0.33 (0.42)

par16-4 16955 5.94 (5.77) 14087 3.33 (3.47) 523 0.34 (0.32)

par16-5 18889 6.60 (6.70) 23028 5.41 (5.00) 640 0.36 (0.36)

qg1-08 101390 424.17 (399.59) 121127 362.74 (377.55) 4229 127.57 (120.87)

qg2-08 803258 3404.49 (3501.46) 1005351 4360.92 (4518.23) 26223 991.23 (967.20)

qg3-08 165 0.08 (0.06) 166 0.10 (0.10) 5 0.03 (0.03)

qg4-09 1344 1.10 (0.96) 2098 1.82 (1.66) 66 0.53 (0.53)

qg5-11 591 1.92 (1.82) 670 2.13 (2.00) 23 0.82 (0.68)

qg7-13 92600 492.66 (465.71) 98172 408.35 (419.56) 2937 171.63 (146.69)

uf250-054 307317 33.69 (35.84) 472970 30.03 (27.82) 14851 10.74 (11.57)

uf250-062 42137 4.60 (4.85) 88670 5.61 (5.44) 2427 1.74 (1.84)

uf250-071 135296 14.49 (12.79) 218375 13.92 (13.70) 6404 4.59 (4.66)

uf250-072 126387 13.91 (13.33) 172789 10.95 (9.81) 5624 4.10 (4.28)

uf250-093 92110 9.78 (9.71) 146132 9.23 (8.37) 4521 3.25 (2.94)

From Idempotent Generalized Boolean Assignments to Multi-bit Search 145

105

104

103

102

10
32168

bits
421

aim-200-2-1-1.cnf
flat200-11.cnf

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+
+

+

+

+
+ +

+ +
+

+ +

+

+

+

+ +

+

parity16-1.cnf
qg5-11.cnf

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+
+

+

+

+
+

+ + +

+
+

+ +

+
+

+

+

Fig. 1. Average number of periods by UnitMarch using different number of bits. Aver-
ages are computed using 1000 random seeds. Two logarithmic axes are used.

0.1

1

32168
bits

421

aim-200-2-1-1.cnf
flat200-11.cnf

+

+

+

+ +

+ + + + + + +

+ + + + + + + + + + + + + + + + + + + +

+

parity16-1.cnf
qg5-11.cnf+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+ + +
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

Fig. 2. Average time (in seconds) by UnitMarch using different number of bits. Averages
are computed using 1000 random seeds. Two logarithmic axes are used.

146 M.J.H. Heule and H. van Maaren

Table 1 shows a comparison between UnitWalk, UnitMarch 1-bit and Unit-
March 32-bit on various benchmarks. Besides the dlx2-bugXX family,4 all bench-
marks can be found on SATlib5 along with a description. For each solver, we set
MAX PERIODS := ∞. We used 100 random seeds for all benchmarks.

The solvers UnitWalk and UnitMarch 1-bit show comparable performance.
First, the number of periods executed per second is almost equal for all checked
benchmarks. This shows that our implementation, with some overhead for paral-
lelization, is fast enough on the benchmarks at hand. Second, the average number
of periods between the two versions is comparable. Although they
differ slightly between instances, no clear winner shows itself. Hence, the Unit-
Propagation Queue procedure shows comparable to the UnitPropagation
MultiSet procedure in terms of performance.

Comparing the 1-bit solvers with UnitMarch 32-bit shows that the latter is the
clear winner on almost all experimented instances. We found few exceptions (see
logistics-d); all having less than 100 periods on the three solvers. Apparently,
multi-bit search as implemented is not effective on these easy instances. Figures 1
and 2 present the effect of using different numbers of bits in more detail. Both
figures use logarithmic axes - thus f(x) = c

x is represented as a straight line.
Four benchmarks are tested for all bits sizes 1 to 32. Using double logarithmic
scaling, these instances show a linear dependency between the average number of
periods and the number of used bits. The average time is also diminished on
all these instances, although this reduction varies per instance. Notice that on
all these instances the trend is strictly decreasing. It could be expected that
computers with a k-bit architecture with k > 32 will boost performance even
further.

6 Conclusions and Future Work

Our first observation is that propositional Boolean formulas with n variables
can be mathematically elegantly checked on feasibility with a single assignment
using the idempotents modulo the product of the first 2n primes. Compared
to conventional checking algorithms, the above just exchanges time for space.
However, the architecture of today’s computers is 32- or 64-bit - which enables
execution of 32 (64) 1-bit operations simultaneously. Although many algorithms
do not seem suitable for this kind of parallelism, the UnitWalk algorithm
appears to be a good first candidate, as well as a state-of-the-art Sat solver [2].

Our multi-bit implementation of this algorithm, called UnitMarch, shows that
this algorithm can be parallelized in such a way that the 1-bit version has com-
parable performance with the UnitWalk solver. Using double logarithmic scaling,
these instances show a linear dependency between the average number of peri-
ods and the number of used bits. Most importantly, the average time to solve
instances is largely reduced by using the 32-bit version.

4 available from http://www.miroslav-velev.com/sat benchmarks.html
5 http://www.satlib.org

http://www.miroslav-velev.com/sat_benchmarks.html
http://www.satlib.org

From Idempotent Generalized Boolean Assignments to Multi-bit Search 147

The implementations of UnitWalk and UnitMarch are currently comparable
(regardless the multi-bit feature) but are far from optimal: For instance, in both
solvers unit clauses in the original CNF are propagated in each period. Another
performance boost is expected by adding (redundant) clauses - for instance as
implemented in the local search solver R+AdaptNovelty+ [1] - because they will
increase the number of unit propagations. Finally, further experiments (not pre-
sented in this paper) showed that by ordering the variables less randomly and
more based on multi-bit heuristics results in improved performance on many
benchmarks. Developing enhancements (like replacement of duplicate assign-
ments) and effective multi-bit heuristics is under current research.

Acknowledgments

The authors would like to thank Denis de Leeuw Duarte for his contributions in
the development of UnitMarch and Sean Weaver for his comments.

References

1. Anbulagan, Duc Nghia Pham, John K. Slaney, Abdul Sattar, Old Resolution Meets
Modern SLS. AAAI-05 (2005), 354–359.

2. D. Le Berre and L. Simon, The essentials of the SAT03 Competition. Springer Ver-
lag, Lecture Notes in Comput. Sci. 2919 (2004), 452–467.

3. W. Blochinger, C. Sinz, and W. Kuchlin, Parallel propositional satisfiability checking
with distributed dynamic learning. Parallel Computing, 29(7) (2003), 969-994.

4. M. Boehm and E. Speckenmeyer, A fast parallel SAT-solver - efficient workload
balancing. Ann. Math. Artif. Intell. 17(3-4) (2006), 381-400.

5. Frank M. Brown. Boolean Reasoning: The Logic of Boolean Equations.Kluwer Aca-
demic Publishers, Dordrecht (1990)

6. E. A. Hirsch and A. Kojevnikov, UnitWalk: A new SAT solver that uses local search
guided by unit clause elimination. Ann. Math. Artif. Intell. 43(1) (2005), 91–111.

7. F. Krohm, A. Kuehlmann, and A. Mets. The Use of Random Simulation in Formal
Verification. Proc. of Int’l Conf. on Computer Design (1996), 371–376.

8. Bart Selman, Henry Kautz, and Bram Cohen. Local search strategies for satisfiability
testing. In David S. Johnson and Michael A. Trick, editors, Cliques, Coloring, and
Satisfiability: the Second DIMACS Implementation Challenge (1996), 521-532.

9. H. Zhang, M. P. Bonacina, and J. Hsiang. PSATO: A distributed propositional prover
and its application to quasigroup problems. Journal of Symbolic Computation 21
(1996), 543-560.

Satisfiability with Exponential Families

Dominik Scheder and Philipp Zumstein

Institute of Theoretical Computer Science, ETH Zürich
8092 Zürich, Switzerland

dscheder@inf.ethz.ch, zuphilip@inf.ethz.ch

Abstract. Fix a set S ⊆ {0, 1}∗ of exponential size, e.g. |S ∩ {0, 1}n| ∈
Ω(αn), α > 1. The S-SAT problem asks whether a propositional formula
F over variables v1, . . . , vn has a satisfying assignment (v1, . . . , vn) ∈
{0, 1}n ∩S. Our interest is in determining the complexity of S-SAT. We
prove that S-SAT is NP-complete for all context-free sets S. Further-
more, we show that if S-SAT is in P for some exponential S, then SAT
and all problems in NP have polynomial circuits. This strongly indicates
that satisfiability with exponential families is a hard problem. However,
we also give an example of an exponential set S for which the S-SAT
problem is not NP-hard, provided P �= NP.

Keywords: satisfiability, context-free grammars, VC-dimension, NP-
hardness, polynomial circuits.

1 Introduction

Given a set S ⊆ {0, 1}∗ of all assignments, the S-SAT problem asks whether for
a formula F over n variables there is an assignment x ∈ Sn := S ∩ {0, 1}n that
satisfies F (F is then called S-satisfiable). The other assignments {0, 1}n \S can
be seen as assignments which are a priori forbidden. If |Sn| is polynomial in n
and Sn can be enumerated in polynomial time then S-SAT is in P. To exclude
this case we concentrate on exponential families, which are defined next.

Definition 1.1. A monotonically increasing sequence Q = (nj)j∈N ⊆ N has
polynomial gaps if there is a polynomial p(n) such that

nj+1 ≤ p(nj)

for all j ∈ N.

For example, define nj = 2j. Then nj+1 = 2nj, so p(n) := 2n shows that
this sequence has polynomial gaps. This means, a sequence (nj) can increase
exponentially in j and still have polynomial gaps. Note that we can always
assume w.l.o.g. that p(n) is strictly increasing.

Definition 1.2. The family (Sn)n≥0 is called exponential if there exists α > 1
and a sequence Q with polynomial gaps such that

∀n ∈ Q : |Sn| ≥ αn .

We also say S =
⋃

n≥1 Sn has exponential size.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 148–158, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Satisfiability with Exponential Families 149

For example families with |Sn| ∈ Ω(αn) are exponential (but we additionally al-
low to have some “gaps”). There are some subtleties involved with the definition
of S-SAT. First, observe that we can interpret x ∈ {0, 1}∗ as a truth assignment
only if V , the set of variables, is ordered. Second, we require that V is given
explicitly as a part of the input together with the formula F . To see why this
is necessary, define Sn = {x ∈ {0, 1}n | xn = 0}. Then the formula v1 ∧ v2 ∧ v3

with V = (v1, v2, v3) is not S-satisfiable, but with V = (v1, v2, v3, v4) it is. Note
that we do not require every variable in V to occur in F (this does not affect
our results but turns out to be a useful convention). For simplicity of notation,
we agree that the variables of V are named v1, . . . , vn, in this order. Finally we
want to point out that S is some fixed language and therefore it is not part of
the input.

The question whether S-SAT is NP-hard for all exponential S was first stated
by Cooper [1] on his web page, though we are working with a more general notion
of exponential. As far as we know, there have not been any further considerations
about S-SAT neither by Cooper nor by anybody else.

Our Results

We prove that S-SAT is NP-complete for all exponential S that are context-free
(Section 4). Further, we show that if S-SAT is in P for some exponential S, then
SAT, and thus every problem in NP, has polynomial circuits (Section 5). This
would imply that the polynomial hierarchy collapses to its second level [2]. Since
this is widely believed to be false, it is a strong indication that S-SAT is a hard
problem in general. However, we construct an exponential S such that S-SAT
is not NP-hard, provided P 	= NP (Section 6).

2 Some Observations

It is easy to show NP-hardness of S-SAT for Sn = {x ∈ {0, 1}n | x1 = 0} (and
similar simple families): Let the formula F be an instance of SAT. We construct
the formula F ′ which is identical to F but with every occurrence of x1 replaced
by x̄1 and vice versa. The formula F is satisfiable iff the formula F ∨ F ′ is
S-satisfiable. This is a polynomial reduction from SAT to S-SAT.

If we view S itself as a language over the alphabet {0, 1}, and therefore as a
decision problem, we get the following connection:

Proposition 2.1. S can be reduced to S-SAT in polynomial time.

Proof. Given some x = (x1, . . . , xn) ∈ {0, 1}n. Write v1 := v and v0 := v̄,
respectively. Then x is the unique assignment in {0, 1}n that satisfies the formula
Fx := vx1

1 ∧ vx2
2 ∧ · · · ∧ vxn

n over V with |V | = n. Hence, Fx is S-satisfiable if and
only if x ∈ Sn. Clearly, this is a polynomial reduction from S to S-SAT. ��
Hence, S-SAT can have arbitrarily high complexity; it may even be undecidable.
The next proposition demonstrates how we can employ a fast S-SAT algorithm,
if existent, to solve SAT in significantly less than 2n steps. We write O∗(f(n))
if we neglect polynomial factors.

150 D. Scheder and P. Zumstein

Proposition 2.2. Suppose there is some S with |Sn| ≥ αn for α > 1 and all
sufficiently large n. If S-SAT can be decided in time O∗(βn), then there is a
randomized Monte Carlo algorithm for SAT with running time O∗((2β/α)n).

Proof. Let F be a satisfiable formula over a set V of variables, and let x be a
satisfying assignment. For each variable v ∈ V , switch v with probability 1/2,
i.e. invert all its occurrences in F and its value according to the assignment x,
resulting in a new formula F ′ and a new assignment x′. The assignment x′ satis-
fies F ′ if and only if x satisfies the original formula F . Moreover, x′ is uniformly
distributed over {0, 1}n. Therefore, with probability p := Pr [x′ ∈ Sn] ≥ (α/2)n

the formula F ′ is S-satisfiable. This can be tested in time O∗(βn). After repeat-
ing this process (2/α)n times, the probability that at least one of the randomly
generated formulas is S-satisfiable, is at least 1 − 1/e, hence constant. On the
other hand, if F is unsatisfiable, it will not become satisfiable by switching. We
therefore have a Monte Carlo algorithm with running time (2/α)nO∗(βn). ��

There are no known algorithms for SAT running in time O∗(γn) for γ < 2, not
even randomized ones. Proposition 2.2 with β < α, therefore, is a first indication
that S-SAT is a difficult problem.

In fact, the currently best known deterministic algorithm for 3-SAT (satisfia-
bility of formulas in conjunctive normal form where every disjunction consists of
at most 3 literals) can be viewed as a derandomized version of the randomized
algorithm in the proof of Proposition 2.2: Let the Hamming distance d(x, y) of
two vectors x, y ∈ {0, 1}n be the number of bits in which they differ. The Ham-
ming Ball of radius r around x is, in analogy to the usual definition of a ball,
the set Br(x) := {y ∈ {0, 1}n | d(x, y) ≤ r}. We look at the family Sn = Bρn(0)
where ρ is some constant. Then

|Sn| =
ρn∑

i=0

(
n

i

)

≈ 2H(ρ)n , H(t) = −t log t− (1− t) log(1 − t) .

Therefore S = (Sn)n≥0 is an exponential family. For 3-CNFs, S-SAT can be
decided in 3ρn steps (by splitting on 3-clauses), which for appropriately chosen
ρ is much smaller than 2H(ρ)n. By choosing many Hamming balls centered at
different points (randomly) and by choosing the optimal value of ρ this yields an
algorithm deciding 3-SAT in O∗(1.5n) steps. Note that choosing a random point
as center of the Hamming ball is equivalent to switching the formula randomly
and keeping the Hamming ball centered at (0, . . . , 0) all time. It takes some
additional effort to derandomize the algorithm. For details, see Dantsin et al. [3].

3 S-SAT and the VC-Dimension

To obtain a systematical way of proving NP-hardness of S-SAT (if possible),
we exploit the notion of shattering and the Vapnik-Chervonenkis-dimension
dVC(Sn), short VC-dimension, of a set Sn ⊆ {0, 1}n. These concepts were first

Satisfiability with Exponential Families 151

introduced by Vapnik and Chervonenkis [4]. Let V with |V | = n be an or-
dered set of variables. We say I ⊆ [n] is shattered by Sn if any assignment to
VI := {vi | i ∈ I} can be realized by Sn. Formally, for every x ∈ {0, 1}|I| there
is a y ∈ Sn with y|I = x, where y|I denotes the |I|-bit vector (yi)i∈I . The VC-
dimension dVC is the size of a largest shattered set. Obviously, 0 ≤ dVC(Sn) ≤ n.
The intuition is that large sets have large VC-dimensions. This is quantified by
the following lemma, which was proven several times independently, e. g. by
Sauer [5].

Lemma 3.1. Suppose dVC(Sn) ≤ d ≤ n/2. Then

|Sn| ≤
d∑

i=0

(
n

i

)

≤ 2H(d
n)n

where H(x) = −x log(x)− (1 − x) log(1 − x) is the binary entropy function.

Corollary 3.2. Suppose S ⊆ {0, 1}∗ has exponential size. Then there is a poly-
nomial q(n) such that for each n ∈ N there exists N ≤ q(n) and an index set
I ⊆ [N] with |I| ≥ n such that I is shattered by SN .

Proof. Let (nj)j∈N be the sequence with polynomial gaps corresponding to the
exponential family S, i.e. there is an α > 1 and a polynomial p(n) such that
nj+1 ≤ p(nj) and |Snj | ≥ αnj for all j. Choose δ ∈ (0, 1/2] such that H(δ) =
log α and k such that nk ≤ n

δ ≤ nk+1 =: N . By Lemma 3.1, dVC(SN) ≥ δN ≥ n,
so there exists a shattered set I ⊆ [N] with |I| ≥ n. Note that N = nk+1 ≤
p(nk) ≤ p(n/δ) =: q(n), as required. ��

Although we know that a large shattered set exists, it is not clear how we can
compute it efficiently. Let us for the moment assume that we can. Then there is
a polynomial reduction from SAT to S-SAT:

Theorem 3.3. Let S ⊆ {0, 1}∗ be of exponential size and let p(n) be a poly-
nomial. Suppose that for all n, we can compute, in time polynomial in n, some
number N ≤ p(n) and some index set I ⊆ [N] with |I| ≥ n that is shattered by
SN . Then S-SAT is NP-hard.

Proof. The existence of such a I is guaranteed by Corollary 3.2. Suppose it can
be computed efficiently. Let F be a formula over the variables Vn = {v1, . . . , vn}.
We construct a new formula F ′ over VN by renaming each vj occurring in F into
vij where I ⊇ {i1, . . . , in}. We claim that F is satisfiable iff F ′ is S-satisfiable.
Suppose x ∈ {0, 1}n satisfies F . Clearly, there is some x′ ∈ {0, 1}N satisfying
F ′, since F and F ′ differ only in the names of their variables. Every assignment
y ∈ {0, 1}N that agrees with x′ in the variables (vi1 , . . . , vin) also satisfies F ′. It
follows from the definition of shattering that SN contains such a y. Hence, F ′

is S-satisfiable. The reverse direction is clear. This polynomial reduction shows
that S-SAT is NP-hard, under these conditions. ��

152 D. Scheder and P. Zumstein

Why does this method not work general? The difficulty is that we do not know
which subset of variables is shattered, we only know that there is one. It is also
futile to try to compute a large shattered set directly from Sn, since a polynomial
reduction cannot deal with Sn explicitly, as |Sn| is exponential in n (at least the
Sn we are interested in is). Note that the brute force approach to computing the
VC-dimension of a set will take time polynomial in |Sn|, if |Sn| is exponentially
in n. This is in contrast to the result of Papadimitriou and Yannakakis [6] that
computing the VC-dimension of an explicitly given Sn (of size not necessarily
exponential in n) is LOGNP-complete, hence unlikely to be in P. But this is no
help to us: though computing the VC dimension takes time polynomial in |Sn|,
observe that |Sn| is itself exponential in n.

We see that a polynomial reduction from SAT to S-SAT must somehow have
certain implicit knowledge of S = ∪Sn. One way would be a (regular, context-
free, . . .) grammar of S (if there is one).

Theorem 3.4. If S ⊆ {0, 1}∗ is a regular language and Sn := S ∩ {0, 1}n,
then dVC(Sn) and a shattered set I ⊆ [n] of this size can be computed in O(n2)
(where the hidden constant factor is doubly exponential in the size of the regular
grammar).

The proof of this theorem is quite technical and is therefore omitted here. In-
stead, we will prove a similar theorem for context-free languages where we do
not insist on computing a largest shattered index set, but only a sufficiently large
one.

4 NP-Completeness of Context-Free S-SAT

In this section, we prove that S-SAT is NP-complete if S is a context-free lan-
guage and has exponential size. It suffices to show how to find a large shattered
index set. To be more precise, for any given n, we will find some N ∈ O(n)
and I ⊆ [N] with |I| ≥ n such that I is shattered by SN . In combination with
the results from Section 3, this proves NP-hardness. It is clear that S-SAT is
in NP if S is context-free, since deciding whether x ∈ S and verifying that x is
satisfying can be done in polynomial time.

In the following, we denote the nonterminal symbols appearing in the context-
free grammar for S by upper case letters S0, A, B, C, . . . , where S0 is the starting
symbol. The only terminal symbols are 0, 1. All rules in a context-free grammar
are of the form A � w for a word w possibly containing nonterminals. A �∗ w
means that w can be derived from A in finitely many steps. Finally, the length
of a word x is denoted by |x|.

Let S be a context-free, exponential language which is generated by the gram-
mar G. All calculations on the grammar can be done in advance and therefore
do not contribute to the running time. In particular, we may assume that G does
not contain useless nor unreachable nonterminal symbols, i.e. for every nonter-
minal A, we have A �∗ x for some x ∈ {0, 1}∗, and S �∗ w for some w with

Satisfiability with Exponential Families 153

A ∈ w. We call such a grammar reduced. For a nonterminal A, define

�(A) := {x ∈ {0, 1}∗ | ∃y ∈ {0, 1}∗ : A �∗ xAy} ,

r(A) := {y ∈ {0, 1}∗ | ∃x ∈ {0, 1}∗ : A �∗ xAy} .

Call some X ⊆ {0, 1}∗ commutative if xy = yx for all x, y ∈ X .

Lemma 4.1 (Ginsburg [7], Theorem 5.5.1). Let G be a reduced context-free
grammar and let L(G) be the language generated by G. Then |L(G) ∩ {0, 1}n|
is polynomial in n if and only if for every nonterminal A, �(A) and r(A) are
commutative.

Theorem 4.2. Suppose S ⊆ {0, 1}∗ has exponential size and is a context-free
language. Then S-SAT is NP-complete.

Proof. We will show how to compute large shattered sets, for every n. Let G be a
reduced context-free grammar for S. Since S has exponential size, |Sn| is surely
not polynomial in n. Therefore, Lemma 4.1 implies that there is a nonterminal
A such that �(A) or r(A) is not commutative. Suppose w.l.o.g. that �(A) is not
commutative, and let x1, x2 ∈ �(A) such that x1x2 	= x2x1. Hence, there is a
position i such that w.l.o.g. (x1x2)i = 0 and (x2x1)i = 1. By definition, there
are y1, y2 ∈ {0, 1}∗ such that A �∗ x1Ay1 and A �∗ x2Ay2. By applying k times
either A �∗ x1x2Ay2y1 or A �∗ x2x1Ay1y2, we can create arbitrary 0s and 1s
at the positions i + k · |x1x2| for any k. In order to reach A from S0, we use
S0 �∗ aAb, and in the end we use A �∗ w to obtain a word in {0, 1}∗ for some
a, b, w ⊆ {0, 1}∗. Hence if we set N := |a| + |b| + |w| + n(|x1x2| + |y1y2|), then
I := {|a|+ k|x1x2| + i : 0 ≤ k ≤ n− 1} is of size n, and it is shattered by SN .
All these calculations can be done in time O(n) and N is linear in n. Thus, by
Theorem 3.3, S-SAT is NP-hard. Since S-SAT ∈ NP, it is NP-complete. ��

5 S-SAT and Polynomial Circuits

In the previous section, we have seen that if we can efficiently compute large
shattered sets, then S-SAT is NP-hard. If we cannot compute those sets, then
we do not have a systematic way of proving NP-hardness (although there are
simple examples where large shattered sets of Sn cannot be computed at all,
and still S-SAT is NP-hard). However, we will prove a result that is “almost
as good” as proving NP-completeness: if S-SAT is in P for some exponential S,
then SAT has polynomial circuits.

Since boolean circuits are standard terminology in complexity theory, we do
not give a formal definition. Furthermore, because we are interested in the size
of a circuit, i.e. the number of its gates, and not in the depth, it does make a
difference whether we allow bounded fan-in or not. For an overview of boolean
circuits in complexity theory, see [8].

Definition 5.1. A circuit family is a sequence C = (C1, C2, . . .) of boolean cir-
cuits, where each Cn has n input gates. If each Cn has exactly one output gate,

154 D. Scheder and P. Zumstein

then C computes a function f : {0, 1}∗ → {0, 1}, or equivalently, decides a lan-
guage L ⊆ {0, 1}∗.

If the size of Cn grows polynomially in n, then C is a polynomial circuit family.
If there exists an algorithm that computes and outputs Cn in time polynomial in
n, we call C a uniform polynomial circuit family.

It is not hard to show that a language L ∈ {0, 1}∗ can be decided by uni-
form polynomial circuits if and only if it is in P. There are even undecidable
languages with (nonuniform, of course) polynomial circuits. However, there are
good reasons to believe that NP-complete problems do not have polynomial cir-
cuits, whether uniform or not: Karp and Lipton [2] showed that if NP-complete
problems have polynomial circuits, then the polynomial hierarchy collapses to
its second level. The connection to S-SAT is immediate:

Theorem 5.2. If S-SAT is in P for some exponential S, then SAT has (pos-
sibly nonuniform) polynomial circuits.

Proof. From Corollary 3.2, we know that for each n there exists an N ≤ q(n)
and an index set I ⊆ [N] with |I| ≥ n such that I is shattered by SN . For
each n, there is a boolean circuit of polynomial size that takes a formula F over
n variables as input and outputs a formula F ′ over N variables, where F ′ is
identical to F , but with the all variables from F replaced by variables in I. Note
that the circuit exists, though it might not be constructible in polynomial time.
By assumption, there is a second circuit of polynomial size deciding S-SAT for
formulas with N variables. This circuit can be constructed in polynomial time.
Combining these two circuits yields a polynomial circuit deciding SAT. ��
It might be possible that NP has polynomial circuits and still P 	= NP. Hence,
this result is weaker than proving NP-hardness for S-SAT in general.

6 Some S-SAT Which Is Not NP-hard

In this section we will prove—under reasonable assumptions—that there is an
exponential S such that S-SAT is not NP-hard. We will use a classical tool of
complexity theory: diagonalization. Let us first introduce some notation. As we
stated in Section 1, we assume that an instance of S-SAT always comes with
an explicitly given set of variables V = {v1, . . . , vn}. For a formula F , let n(F)
denote the size of this variable set, not the number of variables actually present
in F . These sets can differ, as we have seen.

Definition 6.1. A function ϕ mapping formulas to formulas is called a SAT-
reduction if, for all satisfiable formulas F and unsatisfiable formulas F ′, we have
ϕ(F) 	= ϕ(F ′). If there exists an algorithm which computes ϕ in polynomial time,
then we say that it is a polynomial SAT-reduction.

Consider for example the mapping ϕ which maps every satisfiable formula to 1
and every unsatisfiable formula to 0. This ϕ is a SAT-reduction but it is not

Satisfiability with Exponential Families 155

polynomial (provided NP	= P). It should be clear that any function ϕ, that does
not fulfill the condition of being a SAT-reduction, is disqualified from being a
reduction from SAT to any S-SAT in the first place.

Theorem 6.2. Provided that P 	= NP, there is an S with |Sn| = 2n for at least
every second n, and SAT 	≤p S-SAT. Thus, S has exponential size and S-SAT
is not NP-hard.

Provided that P 	= NP, we will show that there are arbitrarily large formulas
having preimages that are satisfiable for every polynomial SAT-reduction ϕ.
Nnote that F might have several preimages, but according to the definition of
a SAT-reduction, they are either all satisfiable or all unsatisfiable. If such a
formula F has n variables, and G is one of its satisfiable preimages, then setting
Sn = ∅ prevents ϕ from being a polynomial reduction from SAT to S-SAT,
since G is satisfiable but F = ϕ(G) is not S-satisfiable. We then choose such
ni for each polynomial SAT-reduction ϕi and set Sn = {0, 1}n for all other
remaining values of n. By leaving gaps between the ni, we guarantee that S has
exponential size.

Lemma 6.3. Provided that P 	= NP, then for every polynomial SAT-reduction
ϕ, there are arbitrarily large formulas (in terms of n(F)) with satisfiable preim-
ages.

Proof. For the sake of contradiction, suppose that there is some SAT-reduction
ϕ and some n0 such that n(ϕ(F)) ≤ n0 for all satisfiable F . Consider

F0 := {ϕ(F) | F is a satisfiable formula}
the image of all satisfiable formulas. By assumption, all formulas in F0 have no
more than n0 variables, implying that F0 is finite. Clearly, F is satisfiable iff
ϕ(F) ∈ F0. Thus, ϕ reduces SAT to the finite language F0. Since every finite
language is in P, SAT is in P, too. This contradicts our assumption. ��
Proof (of Theorem 6.2). The Lemma gives us functions n(ϕ, n0), F (ϕ, n0) such
that n(ϕ, n0) ≥ n0, and F (ϕ, n0) has exactly n(ϕ, n0) variables and has satisfi-
able preimages.

Let ϕ1, ϕ2, . . . be an enumeration of all polynomial SAT-reductions (there
are countably many) and define

n1 := n(ϕ1, 0) ,
ni+1 := n(ϕi+1, ni + 2) .

Sn :=
{∅ if n = ni for some i;
{0, 1}n otherwise.

First, note that ni+1 − ni ≥ 2. Therefore, if Sn = ∅, then |Sn−1| = 2n−1. Hence
at least half of the levels are “full”. Second, suppose some ϕi reduces SAT to
S-SAT. By construction, there is a satisfiable formula F such that ϕi(F) has
exactly ni variables. Unfortunately, Sni is empty, so ϕi(F) is not S-satisfiable,
hence ϕi is not a reduction, which is a contradiction. Since every SAT-reduction
appears as some ϕi in our sequence, the proof is complete. ��

156 D. Scheder and P. Zumstein

This is nice, but has the drawback that S might have gaps, i.e. not every level
has exponential size. The next construction gives us an S that overcomes this
deficiency.

Theorem 6.4. Provided that RP 	= NP, there is an S with |Sn| ≥ 2n−1 for all
n such that S-SAT is not NP-hard.

The problem above was that, in order to ensure that for the satisfiable formula
F = F (ϕ, n0), ϕ(F) is not S-satisfiable, we had to set Sn = ∅ for n = n(ϕ, n0),
creating a “gap” in S. Alternatively, we could set Sn := {0, 1}n\sat(ϕ(F)), where
sat(ϕ(F)) is the set of all assignment which satisfy ϕ(F). Clearly this suffices to
ensure that ϕ(F) is not S-satisfiable, preventing ϕ from being a reduction from
SAT to S-SAT. If, in addition, sat(ϕ(F)) is small, |Sn| will be exponential in
n. Let us now first focus on what happens when it is never small.

Definition 6.5. A SAT-reduction ϕ is referred to sharp, if there is some n0

such that for all F with n := n(ϕ(F)) ≥ n0, the following two statements hold:

(i) F and ϕ(F) are SAT-equivalent, that is, either both are satisfiable, or both
are not

(ii) if ϕ(F) is satisfiable, then |sat(ϕ(F))| > 2n−1

The choice of 2n−1 is arbitrary. Any number x with x/2n > ε > 0 and 2n − x
being exponential would be good as well. The image of a sharp reduction consists
of formulas with at most n0 variables, unsatisfiable formulas, and formulas with
a huge number of satisfying assignments.

Lemma 6.6. If there is a polynomial sharp SAT-reduction ϕ, then RP = NP.

Proof. We give a randomized algorithm for SAT with a bounded error proba-
bility. Similar to the proof of Lemma 6.3, define

F0 := {ϕ(F) | F is satisfiable and n(ϕ(F)) ≤ n0}

Again, this set is finite. We compute satisfiability of some input formula F with
n(F) = n as follows: if n(ϕ(F)) ≤ n0, we simply check whether ϕ(F) ∈ F0,
which can be done in constant time. Otherwise, either both F and ϕ(F) are
unsatisfiable, or both are satisfiable, but then sat(ϕ(F)) is huge. Let x be a uni-
formly at random chosen assignment out of {0, 1}n for n = n(ϕ(F)) and return
satisfiable if x satisfies ϕ(F) and unsatisfiable otherwise. If F is unsatisfiable,
the algorithm always answers correctly, otherwise the answer is wrong with a
probability p ≤ 1/2. Thus SAT is in RP, and hence RP = NP. ��
The contrapositive of Lemma 6.6 reads as follows: Provided that RP 	= NP, no
polynomial SAT-reduction ϕ is sharp, which means that for all ϕ, n0, there exist
n = n(ϕ, n0) ≥ n0, F = F (ϕ, n0), such that ϕ(F) has n variables and one of
the following holds:

Satisfiability with Exponential Families 157

(i) F and ϕ(F) are not SAT-equivalent
(ii) they are SAT-equivalent, ϕ(F) is satisfiable, and |sat(ϕ(F))| ≤ 2n−1

Proof (of Theorem 6.4). Using the function n(ϕ, n0) and our sequence ϕ1, ϕ2, . . .
of polynomial SAT-reductions, we define

n1 := n(ϕ1, 0) , F1 := F (ϕ1, 0) ,
ni+1 := n(ϕi+1, ni + 1) , Fi+1 := F (ϕi+1, ni + 1) .

So the Fi are the formulas with ni variables provided by the contrapositive of
Lemma 6.6, and the ni are all distinct. If case (i) above applies to Fi, we say ni

is of type (i), if case (ii) applies, ni is of type (ii). We define S by

Sn :=
{{0, 1}n \ sat(ϕi(Fi)) if n = ni is of type (ii);
{0, 1}n otherwise.

We claim that every ϕ fails to be a reduction from SAT to S-SAT. Take any
ϕi. If ni is of type (i), then Fi and ϕi(Fi) are not SAT-equivalent, and since
Sni = {0, 1}ni, ϕi(Fi) is S-satisfiable iff Fi is not satisfiable. Thus, ϕ is not
a reduction from SAT to S-SAT. If ni is of type (ii), then Fi and ϕi(Fi) are
both satisfiable, but ϕi(Fi) is not S-satisfiable, since Sni = {0, 1}ni \sat(ϕi(Fi)).
Hence ϕi fails also in this case. Finally, note that |Sn| ≥ 2n−1 for all n. ��
As one referee pointed out, Theorem 6.2 looks like a weaker version of Ladner’s
theorem [9], which states that there are intermediate languages L ∈ NP\P which
are not NP-complete, provided that P 	= NP. In fact, we could use Ladner’s the-
orem to define a set S ⊆ {0, 1}∗ such that S-SAT is an intermediate language.
Unfortunately, it is not clear whether such S is exponential according to Def-
inition 1.2. Certainly, it is much less “dense” than the languages S defined in
the proofs of Theorem 6.2 and Theorem 6.4, for which it holds that for all n
|⋃i≤n Si| ∈ Ω(2n) and |Sn| ≥ 2n−1, respectively.

7 Conclusion

Let us go back to where we started. We were interested in the complexity of
S-SAT, for some given S ⊆ {0, 1}∗. We can restate the question:

Problem: Find a large natural class S ⊆ 2{0,1}∗
of sets of assignments,

such that S-SAT is NP-hard (or even NP-complete) for all S ∈ S.

As we have seen, the set of all exponential context-free languages is such a class,
while the class of all exponential languages is not such a class. Might it be
that S-SAT is NP-complete for all exponential S in P? In the light of Ladner’s
theorem [9], this seems unlikely.

158 D. Scheder and P. Zumstein

References

1. Cooper, J.: Josh Cooper’s Math Pages: Combinatorial problems I like
http://www.math.sc.edu/~cooper/combprob.html.

2. Karp, R., Lipton, R.J.: Some connections between nonuniform and uniform com-
plexity classes. In: Enseign. Math. 28. (1982) 191–201

3. Dantsin, E., Goerdt, A., E. A.H., Kannan, R., Kleinberg, J., Papadimitriou, C.,
Raghavan, O., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT
based on local search. In: Theoretical Computer Science 289. (2002) 69–83

4. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies
of events to their probabilities. Theory Prob. Appl. 16 (1971) 264–280

5. Sauer, N.: On the density of families of sets. In: J. Comb. Theory, Ser. (A). Vol-
ume 13. (1973) 145–147

6. Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the com-
plexity of the V-C dimension. J. Comput. Syst. Sci. 53(2) (1996) 161–170

7. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill,
Inc., New York, NY, USA (1966)

8. Papadimitriou, C.: Computational Complexity. Addison Wesley (1994)
9. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1)

(1975) 155–171

Formalizing Dangerous SAT Encodings

Alexander Hertel, Philipp Hertel, and Alasdair Urquhart�

Department of Computer Science,
University of Toronto, Toronto ON M5S 3G4, Canada

{ahertel,philipp,urquhart}@cs.toronto.edu

Abstract. In this paper we prove an exponential separation between
two very similar and natural SAT encodings for the same problem,
thereby showing that researchers must be careful when designing en-
codings, lest they accidentally introduce complexity into the problem
being studied. This result provides a formal explanation for empirical
results showing that the encoding of a problem can dramatically affect
its practical solvability.

We also introduce a domain-independent framework for reasoning
about the complexity added to SAT instances by their encodings. This
includes the observation that while some encodings may add complexity,
other encodings can actually make problems easier to solve by adding
clauses which would otherwise be difficult to derive within a Resolution-
based SAT-solver. Such encodings can be used as polytime preprocessing
to speed up SAT algorithms.

1 Introduction

Satisfiability, or SAT, is the archetypal NP-Complete problem. It has long been
known that every problem in NP can be reduced to SAT using Cook’s Theorem
[Coo71]. Since propositional formulas are very expressive, instances of many
problems in NP can also be encoded as SAT instances in a much more direct
and intuitive way than via Cook’s Theorem. This has allowed research into
solving these varied problems to be concentrated on SAT-solving. In fact, many
problems have numerous different SAT encodings to choose from. Building a
framework for comparing the effectiveness of competing encodings is the main
focus of this paper.

The strategy of translating problems from other domains to SAT has proved
to be fruitful. Nevertheless, this technique is not without its dangers. Empirical
evidence suggests that natural encodings which seem to conserve much of the
structure of the original problem can actually convert simple instances of the
original problem to very difficult SAT formulas. For example, in [KMS96] nu-
merous approaches for translating planning problems to SAT are investigated.
Some are found to result in formulas which are much harder to solve than others.
� This research supported by NSERC and the University of Toronto Department of

Computer Science.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 159–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

160 A. Hertel, P. Hertel, and A. Urquhart

This suggests that a great deal of care must be taken in designing encodings since
one cannot assume that they will conserve the simplicity of input instances.

This danger is so well-known to the Propositional Reasoning community that
the authors of [KMS97] list understanding it as one of ten important and chal-
lenging open problems in the area. A more recent follow-up paper [KS03] reaf-
firms this problem’s importance and notes that although some progress has been
made, there is still much more work to be done.

We address this problem in two ways. Firstly, we provide a formal example
of a natural encoding which translates a trivial instance of the Hamiltonian
Cycle problem to an intractably difficult one for any Resolution-based SAT-
solver. We also show that very minor modifications to this encoding can make it
produce easy SAT instances, thereby formally proving an exponential separation
between two very similar and natural encodings. Secondly, we provide a domain-
independent framework for comparing the effectiveness of competing encodings,
in terms of how easy it is to solve their outputs. This framework relies on the
existence of a proof-system hierarchy and the close relationship between SAT-
solving and propositional proof complexity.

This paper is organized as follows: In Sections 2 - 4, we provide examples of
two very similar and natural SAT encodings for the NP-Complete Hamiltonian
Cycle problem, and use them to encode a family of trivially non-Hamiltonian
graphs. These encodings are not pathologically designed to create problems, but
rather are very intuitive and straightforward. The result of the first encoding is
the family of formulas from Theorem 1, which we show has exponential lower
bounds for AC0-Frege proof systems, which immediately imply exponential lower
bounds for Resolution (RES), and all RES-based SAT-solvers, including Clause
Learning.

The result of the second encoding is the family of formulas from Theorem 2,
which we show to have polynomial upper bounds for Tree Resolution (T-RES)
/ DPLL, one of the weakest Resolution-based proof systems. This shows that
the results of these encodings are respectively very hard and very easy to solve
in practice, even though they are very similar and came from the same graph.
This result is relevant to the eighth open problem in [KMS97, KS03] because as
already mentioned, the Propositional Reasoning community is aware of empir-
ically tested instances where different reductions can have a significant impact
on the complexity of a problem, but this is the first formal example.

In addition, researchers have noted empirically that adding redundant clauses
to formulas can transform very difficult instances of SAT into very easy ones. We
can further weaken the easy formulas from Theorem 2 to obtain the formulas of
Corollary 2 which contain the clauses of the hard formula from Theorem 1 as a
proper subset and still have T-RES refutations of polynomial size. This provides
a formal example of hard instances which can be converted to easy instances by
the addition of redundant clauses.

In Section 5, we provide a formal domain-independent framework which cap-
tures our intuitive notions of what constitute dangerous and safe reductions. We
show that not only can reductions increase the complexity of problems but they

Formalizing Dangerous SAT Encodings 161

can beneficially reduce their complexity by applying polytime reasoning which
is unavailable to the target proof system.

For the purposes of this paper, we assume that the reader is familiar with the
basics of proof complexity and general complexity theory. We shall use [CK01]
as our reference for proof complexity. There is a very close relationship between
proof-complexity lower bounds and lower bounds for their corresponding algo-
rithms. For example, DPLL is almost identical to the T-RES proof system. Since
RES subsumes T-RES, and since RES has exponential lower bounds for the pi-
geonhole principle [Hak85], it follows that T-RES and therefore DPLL must also
have exponential lower bounds for the pigeonhole formulas. In effect, no RES-
based SAT-solver will ever be able to solve pigeonhole formulas in polynomial
time. Since almost all SAT-solvers are based on refinements of RES, this gives us
immediate lower bounds for algorithms such as DPLL and Clause Learning. We
use the framework of proof-complexity to categorize encodings as being harmful,
neutral, or beneficial.

2 A SAT Encoding for the Hamiltonian Cycle Problem

Consider the following Hamiltonian Cycle to SAT reduction: take a graph G =
(V, E) and create a formula F which enforces a mapping from V to the positions
p1, p2, ..., p|V | of a Hamiltonian Cycle H . Intuitively, H can be thought of as a
cyclic ordering on the |V | vertices of G, where vertex i can be mapped to the
jth position in H if i is adjacent in G to the vertices mapped to positions j − 1
and j + 1. F contains variables of the form mi,j , each of which is interpreted
as meaning that element i from G (the domain) is mapped to position j in the
Hamiltonian Cycle H (the range). F partially consists of clauses which enforce
a bijection between V and H . A conjunction of the following groups of clauses
ensure such a bijection:

Total:
|V |∧

i=1

(
|V |∨

j=1

mi,j) i.e. Every vertex in V maps to at least one position in H.

Onto:
|V |∧

j=1

(
|V |∨

i=1

mi,j) i.e. Every position in H has at least one vertex mapped to it.

1-1:
|V |∧

j=1

|V |∧

i1=1

|V |∧

i2=1
i1 �=i2

(¬mi1,j ∨ ¬mi2,j) i.e. At most one vertex maps to each position.

Fn.:
|V |∧

i=1

|V |∧

j1=1

|V |∧

j2=1
j1 �=j2

(¬mi,j1 ∨ ¬mi,j2) i.e. Every vertex maps to at most one position.

To ensure that F is satisfiable if and only if G is Hamiltonian, we need only
add the following clauses which place constraints on the bijection corresponding
to the structure of G:

162 A. Hertel, P. Hertel, and A. Urquhart

Edge:
|V |∧

j=1

|V |∧

i=1

∧

k:(i,k)�∈E

i�=k

(¬mi,j ∨ ¬mk,(j+1) mod |V |)

Informally, the edge constraint clauses are ensuring that for every non-edge
(i, k), if vertex i has been mapped to the jth position in the cycle H , then vertex
k cannot be mapped to position j + 1 (mod |V |). It is not hard to see that
the reduction is correct: if G is Hamiltonian, then these edge constraints will
not cause a contradiction with the clauses enforcing the bijection, so F will be
satisfiable. Likewise, if F is satisfiable, then it means that there is a bijection
from V to H which respects the constraints enforced by the edge clauses, so G
must be Hamiltonian.

Of course, the total, onto, 1-1, and function clauses are more than enough to
ensure a bijection. In fact, the total and 1-1 clauses by themselves are sufficient,
as are the onto and function clauses by themselves. This leads us to define some
notation. Let H(G) be the formula resulting from the above reduction. To this
we add a subscript showing which clause groups were used in its construction.
We abbreviate total as T , onto as O, 1-1 as 1, and function as F . For example,
if we used clauses from the total and 1-1 groups, then the formula is labeled as
H(G)T,1. There is no need to specify that edge clauses were used, because all of
our encodings require them.

An Interesting Family of Graphs

Consider the complete graph on n vertices, Kn. Let K∗
n be Kn with the addi-

tion of a single degree-0 vertex. We shall apply the reductions from the previous
section to graphs from this family. Since each K∗

n is disconnected, it is trivially
non-Hamiltonian, which in turn means that every formula H(K∗

n) is unsatisfi-
able.

We will show that K∗
n is interesting because proofs of H(K∗

n) either have
polynomial upper bounds for T-RES (and therefore all stronger systems), or
exponential lower bounds for AC0-Frege (and therefore all weaker systems), de-
pending on which clauses are used in its construction. This provides us with a
formal example of two very similar and natural encodings whose outputs have
drastically different complexities.

3 Exponential Lower Bounds for H(K∗
n)T,1,F

In this section we show that the version of the encoding which uses Total, 1-1,
and Function clauses, when applied to K∗

n graphs, results in a formula which no
Resolution-based SAT-solver can efficiently solve, even though the K∗

n graphs are
trivially non-Hamiltonian. In other words, even though the encoding is very nat-
ural, it injects an exponential amount of unwanted complexity into our original
problem instance.

Formalizing Dangerous SAT Encodings 163

Theorem 1. Lengths of AC0-Frege proofs for the unsatisfiability of H(K∗
n)T,1,F

formulas have Ω(2
5d√

n) lower bounds, where d is the depth of the Frege proof,
and if there exist size-N AC0-Frege proofs restricted by mx,n = 1 of H(K∗

n)T,1,F ,
then there exist size-N + O(n3) proofs of fPHPn

n−2.

Proof: The high-level overview of this proof is as follows: Assume that we
have a size-N AC0-Frege proof of H(K∗

n). We show that this proof can be re-
stricted with a specially-chosen truth assignment α to get a new, smaller proof
of H(K∗

n) �α. After unit propagation, this formula becomes fPHPn
n−2 which

is already known to have exponential AC0-Frege lower bounds. For those unfa-
miliar with AC0-Frege, it suffices to think of this proof in terms of RES, ie. any
size-N RES proof of H(K∗

n) can also be restricted to yield fPHPn
n−2. Since the

lower bound is proved for AC0-Frege proof systems, we show how to model the
unit propagations using O(n3) steps of AC0-Frege reasoning. Therefore, if there
exists a sub-exponential AC0-Frege (resp. RES) proof of H(K∗

n) �α, then there
exists a sub-exponential AC0-Frege (resp. RES) proof of fPHPn

n−2, which is a
contradiction, since fPHPn

n−2 has exponential lower bounds [BT88].
The details of the proof are as follows: The restriction that we apply to

H(K∗
n)T,1,F is mx,n = 1. Intuitively, this will guarantee via the edge clauses

that we cannot map any vertex to positions n − 1 or n + 1 because x has no
edges incident on it. If we interpret the variables as mappings from pigeons
to holes, we now have two more pigeons than holes. The restriction mx,n = 1
propagates as follows:

– For every function clause of the form (¬mx,n ∨ ¬mx,j), since we have set
mx,n to 1, we must set all of mx,1, mx,2, ..., mx,n−1 as well as mx,n+1 to 0.

– For every 1-1 clause of the form (¬mx,n ∨ ¬mi,n), propagating mx,n = 1
causes us to set all of m1,n, m2,n, ..., mn,n to 0.

– Finally, for every edge clause of the form (¬mx,n∨¬mk,n+1) where (x, k) is a
non-edge in G, propagating mx,n = 1 causes us to set all of m1,n+1, m2,n+1,
..., mn,n+1 to 0. Similarly, for each edge clause of the form (¬mi,n−1∨¬mx,n),
propagating causes us to set all of m1,n−1, m2,n−1, ..., mn,n−1 to 0.

The effect of these propagations on the various groups is as follows:

– Total Clauses: The restriction mx,n = 1 satisfies the clause (mx,1∨mx,2∨...∨
mx,n∨mx,n+1). Combined with this, the propagations mi,n−1 = 0, mi,n = 0,
and mi,n+1 = 0 for all i causes the total clauses to become:
n∧

i=1

(
n−2∨

j=1

mi,j)

– 1-1 Clauses: For each 1 ≤ i ≤ n+1, i �= x, there is a clause (¬mx,n∨¬mi,n).
Since every mi,n was set to 0, every 1-1 clause involving any mi,n will be
satisfied and eliminated. Due to the edge clause propagations, for every i �= x,
every clause involving mi,n−1 or mi,n+1 will also be eliminated. The 1-1
clauses therefore become:
n−2∧

j=1

n∧

i1=1

n∧

i2=1
i2 �=i1

(¬mi1,j ∨ ¬mi2,j)

164 A. Hertel, P. Hertel, and A. Urquhart

– Function Clauses: For each 1 ≤ j ≤ n + 1, j �= n there is a clause (¬mx,n ∨
¬mx,j). Since every mx,j was set to 0, every function clause involving any
mx,j will be satisfied and eliminated. Due to edge clause propagations, for
every i �= x, every clause involving mi,n−1 or mi,n+1 will also be eliminated.
Due to the 1-1 clause propagations, for every i �= x, every clause/ involving
mi,n will also be eliminated. The function clauses therefore become:
n∧

i=1

n−2∧

j1=1

n−2∧

j2=1
j2 �=j1

(¬mi,j1 ∨ ¬mi,j2)

– Edge Clauses: There are two types of edge clauses: those which contain the
literal ¬mx,n, and those which contain the literal ¬mx,j, j �= n. Note that
this covers all edge clauses because vertex x is involved in every non-edge of
K∗

n. Clauses of the first type are satisfied by unit propagation which forces
the other literal in each such clause to be set to 1. Those of the second type
are satisfied by the mx,j propagations from the function clauses. All edge
clauses are therefore eliminated.

These remaining clause groups when simplified by unit propagation are ex-
actly the clauses from fPHPn

n−2. In effect, the restricted proof of H(K∗
n)T,1,F

has been turned into a proof of fPHPn
n−2. It is not hard to show that AC0-Frege

can perform unit propagations in polynomial size for some polynomial p(n). This
turns our size-N proof of H(K∗

n)T,1,F to a size N + p(n) proof of fPHPn
n−2.

Let d be the depth bound imposed on a Frege system. Since AC0-Frege proof
systems are closed under restriction (ie. restricting a proof yields a smaller proof),
and since they have Ω(2

5d√
n) size lower bounds for fPHPn

n−2 formulas [UF96],
we may conclude that the H(K∗

n)T,1,F formulas also require proofs of size at

least Ω(2
5d√

n). Specifically, if there exist size-N AC0-Frege proofs restricted by
mx,n = 1 of H(K∗

n)T,1,F , then there exist size-N +p(n) proofs of fPHPn
n−2. ��

Clearly, this result holds for all formulas such as H(K∗
n)T,1 which are composed

of proper subsets of the clauses from H(K∗
n)T,1,F .

Corollary 1. No SAT algorithm based on AC0-Frege nor any weaker proof sys-
tem can efficiently solve H(K∗

n)T,1,F formulas. This includes DPLL as well as
Clause-Learning based SAT-solver algorithms.

Therefore we have shown that the H(G)T,1,F encoding can convert trivial in-
stances of the Hamiltonian Cycle problem to intractable SAT instances.

4 Polynomial Upper Bounds for H(K∗
n)T,O,F

In this section we show that the version of the encoding which uses Total, Onto,
and Function clauses, when applied to K∗

n graphs, results in a formula which has
short DPLL proofs. This is particularly interesting because both H(K∗

n)T,O,F

and H(K∗
n)T,1,F are natural encodings of the Hamiltonian Cycle problem, and

neither is a subset of the clauses of the other, but H(K∗
n)T,O,F is easy to solve,

while H(K∗
n)T,1,F is intractably difficult.

Formalizing Dangerous SAT Encodings 165

Theorem 2. T-RES proofs for the unsatisfiability of H(K∗
n)T,O,F formulas have

O(n2) size upper bounds, where n is the number of distinct variables contained
in the formulas.

Proof: For the following argument, please refer to the T-RES proof template
shown in Figure 1. Note that some of the leaves are labelled with the clauses
which are falsified at that position. In addition, the remaining leaves are labelled
with the groups containing the clauses which are falsified.

We initially branch on mx,1. Since x is an isolated vertex in K∗
n, setting

mx,1 = 1 ensures that assigning any future vertex to position 2 (ie. setting
mi,2 = 1 for any i �= x) will falsify an edge clause, and therefore falsify the
formula. Setting mx,2 = 1 also falsifies H(K∗

n)T,O,F by falsifying a function
clause, because no vertex may be assigned to more than one position. Finally,
setting mi,2 = 0 for i = 1, 2, ..., n, x will falsify the onto clause requiring that
some vertex be mapped to position 2. This subtree requires 2n + 3 nodes.

When we set mx,1 = 0, we next branch on mx,2. Clearly, the formula rooted
by setting mx,2 = 1, can be shown to be unsatisfiable with a tree of size 2n + 3
for the same reasons as above.

For each i, after setting mx,i−1 = 0, we branch on mx,i. Each positive branch-
ing will result in a subtree of size 2n + 3 as described above.

The all-negative assignment to every mx,i falsifies the total clause ensuring
that vertex x is mapped to some position, after which all branching is complete.
This T-RES proof therefore has size (n + 1)(2n + 3) + 1, which is O(n2), as
required. ��

mx,1

mx,2

¬mx,1

¬mx,2

¬mx,n

¬mn−1,3
m2,1

¬m1,1m1,1

¬m2,3
m2,3

¬m1,3m1,3

m1,2 ¬m1,2

m2,2 ¬m2,2

mn,2 ¬mn,2

mx,2 ¬mx,2

mn,3

mx,3 ¬mx,3

¬mn,3

¬m2,1
(¬mx,1 ∨ ¬m2,2)

(¬mx,1 ∨ ¬mn,2)

(¬mx,1 ∨ ¬mx,2) (m1,2 ∨ m2,2 ∨ ... ∨ mn,2 ∨ mx,2)

(mx,1 ∨ ... ∨ mx,n ∨ mx,n+1)

F unction Onto

Edge

¬mn−1,1

mn,1 ¬mn,1

mx,1 ¬mx,1

F unction

F unction

Total

Onto

Onto

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

¬mn−1,2

mx,n+1 ¬mx,n+1

Fig. 1. A Template for Polynomially-Sized T-RES Proofs for the Unsatisfiability of
H(K∗

n)T,O,F Formulas

166 A. Hertel, P. Hertel, and A. Urquhart

Corollary 2. The size of T-RES proofs for the unsatisfiability of H(K∗
n)T,O,1,F

formulas have polynomial upper bounds.

Proof: The same T-RES proof which proves the unsatisfiability of H(K∗
n)T,O,F

proves the unsatisfiability of H(K∗
n)T,O,1,F . ��

Corollary 3. For any H(K∗
n)T,O,1,F formula, there is a polynomially-bounded

DPLL computation which solves it.

5 Domain Independent Framework for Comparing
Encodings

Currently, no system exists to classify encodings according to whether they make
problem instances harder or easier. Such a classification system might prove to be
very beneficial for researchers who are actively using SAT-solvers to tackle NP-
Complete problems. It might also prove to be beneficial for researchers who are
interested in studying the phenomenon of dangerous encodings more abstractly
with an eye to finding general principles for predicting which encodings will
lead to complexity blow-ups on certain families of formulas. In this section, we
provide a framework for such a system.

Although no system for classifying encodings has yet been devised, a lot of
work has gone into classifying the power of proof systems. These proof systems
have been organized into a hierarchy based on polynomial simulations and expo-
nential separations. Briefly, a proof system α is said to p-simulate another proof
system β if for every unsatisfiable CNF formula f , there exists an α refutation of
f which is at most a polynomial factor larger than f ’s smallest β refutation. A
proof system α is said to be exponentially separated from another proof system
β if there exists some class of formulas F such that for all f ∈ F there exists an
α refutation of f with polynomial size, but the smallest β refutation of f has
exponential size. Such a separation clearly implies that β cannot p-simulate α.
If α p-simulates β and is also exponentially separated from β, then we say that
α is strictly stronger than β, and there is always a (nondeterministically chosen)
computation of a SAT-solving algorithm based on the principles of α which will
finish within a polynomial factor of the time it would take any SAT-solver based
on the principles of β to finish.

Much work has gone into establishing a proof system hierarchy especially for
systems based on the Resolution rule. Please refer to Figure 2 below for the
portion of the hierarchy which is particularly relevant to propositional reasoning
and SAT solving.

Each node in the diagram represents all of the families of formulas which have
polynomial size refutations in the system labeling the node. Arrows represent
p-simulation relationships between systems. An arrow from system α to system
β means that α p-simulates β. A slash through an arrow from α to β represents
an exponential separation between β and α. An arrow labeled with a question
mark denotes an unknown relationship. Systems to the left in the diagram are
generally stronger than systems to the right. Though short refutations exist for

Formalizing Dangerous SAT Encodings 167

?

???

AC0−F rege

Resolution
Linear

Ordered

(DPLL)
Resolution
Tree

Resolution
(DP)

Resolution
Regular

Learning
ClausePool

ResolutionResolution
General

Fig. 2. Part of the Proof Complexity Hierarchy

larger classes of formulas in stronger systems, finding them is generally more
difficult than finding refutations in weaker systems. Hence SAT-solvers based
on the Resolution rule generally do not have the full power of RES, but instead
implement some form of DPLL which is equivalent to T-RES and is very low in
the hierarchy. It is therefore desirable for instances which we want to solve to
exist in nodes that are low down in the hierarchy. This gives us a better chance
of deterministically finding a refutation in a short amount of time.

We can use this hierarchy to judge the quality of SAT encodings. If some input
to an encoding is at one level of the hierarchy and its corresponding output only
exists in higher levels, then the encoding is dangerous with respect to that input
since its result requires more power to solve. If the input and output of an encod-
ing exist in all of the same levels of the hierarchy, then the encoding is neutral
with respect to that input. If some input to an encoding exists nowhere below
a certain level in the hierarchy, but its output does, then that encoding actually
makes a potentially exponential contribution towards solving the instance. Since
every encoding only takes polynomial time to compute, such beneficial encod-
ings can be used as efficient preprocessing steps and identifying them is of great
practical interest. We coin the terms explosive, stable, and implosive to refer
to encodings which are harmful, neutral, and beneficial with respect to certain
families of formulas and certain proof systems. These are defined formally below
and examples of each are given.

5.1 Explosivity

Definition 1. Let α be a proof system for a language L1, let β be a proof system
for a language L2, and let R : L1 → L2 be a reduction from L1 to L2. If there
exists some family of strings X = {x1, x2, ...}, X ⊆ L1 such that for all k and
for all xi ∈ X there exists an α-proof P1 of xi, but there exists no β-proof P2 of
R(xi) such that |P2| ≤ |P1|k, then we say that the reduction R is (α, β)-Explosive
on the set X.

This definition corresponds to our intuitive notion of what constitutes a danger-
ous reduction, and we can immediately apply it to our main result:

Corollary 4. The Hamiltonian Cycle to SAT reduction above which uses the T,
1, and F clauses is (α,AC0-Frege)-Explosive on the set containing the K∗

n graphs

168 A. Hertel, P. Hertel, and A. Urquhart

for any non-Hamiltonicity proof system α which has polynomially-bounded proofs
of the K∗

n graphs.

An example of such a non-Hamiltonicity proof system is NHPS, given in [Her06].
This example is interesting, since tree-like NHPS seems to be weaker than RES,
let alone any AC0-Frege system. We therefore have an example of a reduction
that injects enough complexity to send its outputs’ difficulty several levels up
the proof complexity hierarchy.

Another formal example of Explosivity comes from a corollary of the main
result of [HU06a] which proves that the reduction from QBF to Intuitionistic
Propositional Logic (IPL) given by Statman in [Sta79] is probably Explosive:

Corollary 5.Unless NP = coNP , Statman’s reduction is (α,LJ[ES])-Explosive
for any QBF proof system α which has polynomially-bounded proofs for any
prenex instance of the law of excluded middle (i.e. formulas of the form p∨¬p).
Explosivity is caused when an encoding increases the proof complexity of the
input instance. In the case of RES, if a reduction fails to introduce clauses which
are needed in order to provide a short RES proof, then the reduction is Explosive,
and there is no hope of solving the translation. The ‘onto’ clauses discussed in
Section 2 are an example of such clauses which have no short RES derivations
themselves and can make an exponential difference to the proof complexity of
the reduction’s output.

Those interested in proof complexity will note that Explosivity is trivially
associated with exponential separations between proof systems. Every example
of p-simulation between two proof systems on the same language for which there
is a superpolynomial separation implicitly gives an example of (α, β)-Explosivity.
If proof system β p-simulates proof system α, but α can not p-simulate β, then
the trivial reduction of doing nothing is (α, β)-Explosive on the set of formulas
which provides the separation. For this reason, (α, β)-Explosive reductions where
α is a strictly stronger proof system than β (for example, (AC0-Frege, T-RES)-
Explosive reductions) are not nearly as interesting as (α, β)-Explosive reductions
in which α is a strictly weaker proof system than β.

5.2 Stability

Definition 2. Let α, β, L1, L2, and R be as in Definition 1. If there exist
constants k1 and k2 and a family of strings X = {x1, x2, ...}, X ⊆ L1 such that
for any α-proof P1 of xi there exists a β-proof P2 of R(xi) where |P2| ≤ |P1|k1

and |P1| ≤ |P2|k2 then we say that the reduction R is (α, β)-Stable on the set X.

From a proof-complexity point of view, every example of p-equivalence implicitly
gives an example of (α, β)-Stability. If α and β are two p-equivalent proof systems
for the same language L, then the trivial reduction of doing nothing is both
(α, β)-Stable and (β, α)-Stable for the entire language L. For this reason, (α, β)-
Stable reductions for p-equivalent proof systems are not nearly as interesting as
ones for proof systems for which there is a superpolynomial separation.

Formalizing Dangerous SAT Encodings 169

A more interesting example of stability not associated with p-equivalence is
the relationship between RES and Linear Resolution (L-RES) given in [BOP03].
More specifically, the authors provide a very simple reduction R which consists
of adding trivial clauses of the form (p ∨ ¬p) for each variable p of the original
formula, and show that for every RES proof, there exists an L-RES proof of R(w)
which is only polynomially larger. In other words, R is (RES,L-RES)-Stable on
the entire SAT language.

Another example of stability comes from Theorem 2 above:

Corollary 6. The Hamiltonian Cycle to SAT reduction above which uses the
T, O, 1, and F clauses is (α,T-RES)-Stable on the set of K∗

n graphs for any
non-Hamiltonicity proof system α which has polynomially-bounded proofs for the
K∗

n graphs.

As already mentioned, NHPS from [Her06] is such an α.

5.3 Implosivity

In practical terms, an even more helpful characteristic for encodings is that of
Implosivity. Intuitively, an encoding which takes hard formulas for one proof
system and converts them into easy ones for another is Implosive. In other
words, Implosive reductions can make otherwise hard instances more accessi-
ble to SAT-solvers. Examples of such beneficial reductions are already known to
the Propositional Reasoning community; it has been shown that SAT encodings
of Constraint Satisfiability Problem (CSP) instances can be optimized with re-
spect to local consistency checking and unit propagation [KS03]. In this case the
reduction from CSP to SAT actually has beneficial properties, namely that it
reduces the proof complexity of its inputs with respect to the consistency condi-
tions. Another good example of this phenomenon is shown in [BB03], where an
encoding is provided that transforms the parity problem, which for many years
was considered to be a hard DIMACS instance, into formulas that are easy for
DPLL-based solvers.

More formally, the beneficial property of Implosivity is defined as follows:

Definition 3. Let α, β, L1, L2, and R be as in Definition 1. If there exists
some family of strings X = {x1, x2, ...}, X ⊆ L1 such that for all k and for all
xi ∈ X there exists a β-proof P2 of R(xi) but there exists no α-proof P1 of xi

such that |P1| ≤ |P2|k, then we say that the reduction R is (α, β)-Implosive on
the set X.

As with Explosivity, Implosivity is trivially associated with p-simulation.
Every example of p-simulation between two proof systems on the same lan-
guage for which there is a superpolynomial separation implicitly gives an ex-
ample of (α, β)-Implosivity. If proof system β p-simulates proof system α, but
α can not p-simulate β, then the trivial reduction of doing nothing is (α, β)-
Implosive on the set of formulas which gives the separation. For this reason,
(α, β)-Implosive reductions where α is a strictly weaker proof system than β

170 A. Hertel, P. Hertel, and A. Urquhart

(for example, (T-RES, AC0-Frege)-Implosive reductions) are not nearly as inter-
esting as (α, β)-Implosive reductions in which α is strictly stronger than β.

Again, a non-trivial example of Implosivity comes from the NHPS proof
system. Let Gn

2 , n
2

be the graph consisting of two disjoint cliques of size n
2 .

These graphs have exponential NHPS lower bounds [Her06]. However, the for-
mulas resulting from applying the reduction from Section 2 which uses the T,
O, 1, and F clauses have polynomial T-RES upper bounds [HU06b]. In other
words, this reduction is (NHPS, T-RES)-Implosive on the Gn

2 , n
2

graphs, which
is interesting because the T, 1, F version of the reduction from Corollary 4 is
(NHPS,AC0-Frege)-Explosive on the K∗

n graphs. This gives a clear example of
how different inputs to the same system can be simplified or complicated de-
pending on encoding.

An interesting potential example of Implosivity is the L-RES reduction R from
[BOP03] mentioned above. As already stated, R is (RES,L-RES)-Stable on the
entire SAT language. However, it is unknown whether there is an exponential
separation between L-RES and RES. If so, then R is (L-RES,L-RES)-Implosive on
the inputs which give the separation. Such examples of reflexive implosivity are
good candidates for beneficial preprocessing.

Generally speaking, non-trivial Implosivity arises when polytime reductions
make use of reasoning which is not available to their target proof system. A
polytime reduction in RES might add clauses to the instance which could not
otherwise be derived concisely in RES. Given these clauses, Resolution-based
solvers can easily solve the problem, but without them, they require exponential
time. In effect, such reductions allow solvers to ‘cheat’ and do work that cannot
be done by their underlying proof systems.

5.4 Alternate Hierarchies

Though this the proof system hierarchy may prove to be useful for classifying
encodings, we could also produce alternative hierarchies for which the notions
of explosivity, stability, and implosivity could be used to classify encodings. In
order to use the proof system hierarchy for this task we need to perform a fairly
robust analysis of the family of problem instances being studied, as we did in
Sections 3 & 4. A more empirical hierarchy based on the real world performance
of specific implementations on families of inputs may be preferred.

6 Implications for Proof Complexity

Whenever the relationship between two proof systems on different languages is
studied, there must necessarily be a reduction involved. Weak proof systems
such as RES and its refinements are not powerful enough to perform polytime
reductions. This necessitates the use of a separate polytime algorithm to perform
the reduction. Since the details of the reduction can affect the proof complexity
of its output, it does not make sense to talk about p-simulation or exponential
separation between two weak proof systems over different languages. Rather, one

Formalizing Dangerous SAT Encodings 171

must talk about p-simulation or exponential separation with respect to a specific
reduction. If a reduction exists which allows one proof system to p-simulate
another, we say that the first proof system effectively p-simulates the second.
We formally define this notion as follows.

Definition 4. Let f1 : S∗
1 → L and f2 : S∗

2 → L be proof systems. If there exists
a k and a polytime reduction r : L1 → L2 such that y ∈ L1 if and only if r(y) ∈
L2 and for all x1 ∈ S∗

1 there exists an x2 ∈ S∗
2 such that r(f1(x1)) = f2(x2) and

|x2| ≤ |x1|k, then we say that f2 effectively polynomially-simulates f1.
If there also exists a polytime computable function t : S∗

1 → S∗
2 such that for

all x ∈ S∗
1r(f1(x)) = f2(t(x)), then f2 effectively p-simulates f1.

We can just as easily consider this definition applied to two proof systems
over the same language. This yields a generalization of the normal notion of
p-simulation. For example, though L-RES is not known to p-simulates RES,
it does effectively p-simulate RES since the polytime reduction in [BOP03] is
(RES,L-RES)-Stable on the entire SAT language.

7 Concluding Remarks

The idea that encodings can inject complexity into a problem is disconcerting.
It is worrisome to think that a reduction from one problem to another can
negatively affect the proof complexity of the result and potentially make the
instance difficult for proof systems which are located several levels higher in the
proof complexity hierarchy than the intended system. Furthermore, as we have
shown in this paper, this phenomenon can happen with very natural and even
obvious encodings. Even more worrisome is that it does not seem to be at all
obvious which types of reductions have this property. With our example, we were
lucky enough to see that the input graph was translated to a formula which is
very similar to the pigeonhole formulas, but in general we cannot expect to be
so lucky. There are probably infinitely many families of formulas which have no
short RES proofs and it would not be easy to identify them lurking within the
output of an encoding. Random formulas, which are very hard to categorize, as
well as other combinatorial problems which have never even been investigated
could act very much like the pigeonhole formulas do in our example. If we do
not even know what these formulas look like, then it is probably very difficult
to predict and avoid reductions which might produce them or something similar
to them. Further research is needed in order to characterize which types of
reductions have this property.

As a first step towards a characterization, we have outlined a framework for
comparing encodings based on the proof complexity hierarchy. The key idea be-
hind the framework is that encodings can affect the proof complexity of the result
either beneficially or adversely by overcoming the superpolynomial separation
between two proof systems through the use of reasoning that is unavailable to
the proof system or by requiring the proof system to derive clauses which cannot
be derived concisely.

172 A. Hertel, P. Hertel, and A. Urquhart

Acknowledgements

We would like to thank Fahiem Bacchus and Toni Pitassi for their many valuable
comments and suggestions regarding this paper.

References

[BB03] O. Bailleux and Y. Boufkhad. Efficient CNF Encodings of Boolean Cardi-
nality Constraints. International Conference on the Principles and Practice
of Constraint Programming, pages 102 – 122, 2003.

[BOP03] J. Buresh-Oppenheim and T. Pitassi. The Complexity of Resolution Re-
finements. Proceedings of the 18th Annual IEEE Symposium on Logic in
Computer Science, 2003.

[BT88] S. Buss and G. Turán. Resolution Proofs of Generalized Pigeonhole Princi-
ples. Theoretical Computer Science, 62:311 – 317, 1988.

[CK01] P. Clote and E. Kranakis. Boolean Functions and Computation Models.
Springer-Verlag, Berlin, 2001.

[Coo71] S.A. Cook. The Complexity of Theorem-Proving Procedures. Proceedings
of the Third Annual ACM Symposium on the Theory of Computation, pages
151 – 158, 1971.

[Hak85] A. Haken. The Intractability of Resolution. Theoretical Computer Science,
39:297 – 308, 1985.

[Her06] A. Hertel. A Non-Hamiltonicity Proof System. Unpublished Manuscript,
2006.

[HU06a] A. Hertel and A. Urquhart. Proof Complexity of Intuitionistic Propositional
Logic. Unpublished Manuscript, 2006.

[HU06b] A. Hertel and A. Urquhart. Prover / Delayer Game Upper Bounds For Tree
Resolution. Unpublished Manuscript, 2006.

[KMS96] H. Kautz, D. McAllester, and B. Selman. Encoding Plans in Propositional
Logic. Proceedings of the Fifth International Conference on Knowledge Rep-
resentation and Reasoning, 1996.

[KMS97] H. Kautz, D. McAllester, and B. Selman. Ten Challenges in Propositional
Reasoning and Search. Proceedings of the Fifteenth International Joint Con-
ference on Artificial Intelligence, 1997.

[KS03] H. Kautz and B. Selman. Ten Challenges Redux: Recent Progress in Propo-
sitional Reasoning and Search. Ninth International Conference on Principles
and Practice of Constraint Programming, 2003.

[Sta79] R. Statman. Intuitionistic Propositional Logic is Polynomial-Space Com-
plete. Theoretical Computer Science, 9:67 – 72, 1979.

[UF96] A. Urquhart and X. Fu. Simplified Lower Bounds for Propositional Proofs.
Notre Dame Journal of Formal Logic, 37:523 – 545, 1996.

Algorithms for Variable-Weighted 2-SAT and

Dual Problems

Stefan Porschen and Ewald Speckenmeyer

Institut für Informatik, Universität zu Köln,
Pohligstr. 1, D-50969 Köln, Germany

{porschen,esp}@informatik.uni-koeln.de

Abstract. In this paper we study NP-hard variable-weighted satisfia-
bility optimization problems for the class 2-CNF providing worst-case
upper time bounds holding for arbitrary real-valued weights. Moreover,
we consider the monotone dual class consisting of clause sets where all
variables occur at most twice. We show that weighted SAT, XSAT and
NAESAT optimization problems for this class are polynomial time solv-
able using appropriate reductions to specific polynomial time solvable
graph problems.

Keywords: weighted satisfiability, optimization problem, NP-hardness,
edge cover, graph factor, perfect matching.

1 Introduction

Weighted variants of search or decision problems are of certain importance for
computational complexity theory as they can provide a gap from easy to hard.
Consider, e.g., the satisfiability problem for propositional 2-CNF formulas (2-
SAT). As is well known 2-SAT can be decided in linear time and in positive case
even a model for an input formula C can be found in linear time [2]. But asking
for a minimum cardinality model of C, i.e., a model of least number of variables
assigned to true is an NP-hard optimization problem: 2-SAT can be regarded as
a generalization of the minimum vertex cover problem in undirected graphs (see
below). An immediate generalization of minimum cardinality 2-SAT is minimum
weight 2-SAT, where the variables of the input formula are equipped with real-
valued weights. Clearly, if each variable has weight 1, we obtain the minimum
cardinality problem. As shall be seen below, also the problem of maximum weight
2-SAT is NP-hard.

Weighted versions of satisfiability problems have applications e.g. in code
generation where certain problems can be encoded in weighted satisfiability [1].

In this paper we address the NP-hard optimization problems minimum and
maximum weight SAT for arbitrarily variable-weighted 2-CNF formulas. We
provide worst-case upper bounds of O(20.5284n) for these problems extending
results presented in [18,20] only holding for minimum weight 2-SAT, and for
non-negative variable weights only, respectively, for maximum weight 2-SAT, and
for non-positive variable weights only. The latter results are based on techniques

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 173–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

174 S. Porschen and E. Speckenmeyer

provided for mixed Horn formulas introduced and studied in [19]. The main
variants of satisfiability, namely exact satisfiability (XSAT) and not-all-equal
satisfiability (NAESAT) for weighted 2-CNF have been shown to be linear time
solvable in [13]. Moreover, the optimization cases of XSAT for variable weighted
formulas have been shown to be solvable in time O(20.2441n), for arbitrary CNF
[14,16], respectively, in time O(20.16254n) restricted to 3-CNF [11,12]. Exactly
solving NAESAT for arbitrary CNF formulas (or restricted to 3-CNF) exactly
in less than the trivial 2n steps remains an open problem for the decision problem
as well as for its NP-hard variable-weighted optimization variants.

Recently also counting versions of weighted SAT have been considered: #XSAT
for variable weighted CNF formulas can be solved in time O(n2 ·‖C‖+20.40567·n)
as shown in [15,16]. Fürer et al. [5] provided an algorithm for counting all max-
imum weight solutions of SAT for variable weighted 2-CNF formulas. Clearly,
only counting models cannot provide a solution of the underlying optimization
problem, as no solutions are generated explicitly.

We also consider the monotone class CNF+(≤ 2), containing clauses of arbi-
trary length, but each variable occurs in at most two distinct clauses. We show
that the variable-weighted optimization versions of SAT, XSAT, and NAESAT
restricted to CNF+(≤ 2) all are solvable in polynomial time via reductions to
specific graph problems. Only for the XSAT cases we even obtain the same re-
sults also for the whole class CNF(≤ 2) as they appear to be special cases of
results already existing.

Organisation of the paper: Section 2 describes basic definitions and termi-
nology used throughout, followed by explaining useful monotonization tools in
Section 3. Section 4 discusses optimum weight 2-Satisfiability. In Section 5 we
provide polynomial time algorithms for the weighted optimizations of satisfia-
bility and its variants for the dual class of 2-CNF. In Section 6, we finish with
some open problems and concluding remarks.

2 Preliminaries

To fix notation, a literal is a propositional variable x ∈ {0, 1} or its negation
x := ¬x (negated variable). The complement of a literal l is l. A clause c is
the disjunction of different literals and is represented as a literal set. A CNF
formula C is a conjunction of different clauses and is represented as a clause set.
Throughout we use the term formula meaning a clause set as defined. For a given
formula C, clause c, by V (C), V (c) we denote the set of variables contained in
C, c, respectively. Similarly, given a literal l, V (l) denotes the underlying variable.
V+(C) (resp. V−(C)) denotes the set of all variables occuring unnegated (resp.
negated) in C. We distinguish between the length ‖C‖ of a formula C and the
number |C| of its clauses. Let CNF denote the set of all formulas and let CNF+

denote the set of positive monotone formulas, i.e., each clause contains only
variables, no negated variables. Recall that the intersection graph of a monotone
formula C has a vertex for each clause and an edge for each two intersecting
clauses. For each x ∈ V (C), let C(x) := {c ∈ C : x ∈ V (c)}. Let CNF(≤ k) be

Algorithms for Variable-Weighted 2-SAT and Dual Problems 175

the set of formulas C such that each x ∈ V (C) occurs in at most k clauses of C
regardless whether negated or unnegated. Let k-CNF denote the set of formulas
C such that none of its clauses contains more than k literals. A Horn formula is
a member of CNF such that each clause has at most one positive literal.

For X ⊆ V (C), we denote by CX the formula obtained from C by comple-
menting exactly those literals l in C with V (l) ∈ X , and we write Cx := C{x}, for
simplicity. Similarly, for a truth assignment t of C let tX be obtained from t by
complementing exactly the values t(x) for all x ∈ X . Again we write tx := t{x}.
For C ∈ 2-CNF, we denote by P (C) its positive monotone part, i.e., the collec-
tion of exactly all positive monotone clauses in C.

The satisfiability problem (SAT) asks in its decision version, whether there
is a truth assignment t : V (C) → {0, 1} assigning one literal in each clause of
C to 1; such a truth assignment is called a model of C. SAT is known to be
NP-complete [3]. In the search version one has to decide whether C ∈ SAT and
in the positive case one has to find a model t of C.

Exact satisfiability (XSAT) means to find a truth assignment that assigns
exactly one literal in each clause of a formula to 1, called x-model or XSAT-
model. Not-all-equal satisfiability (NAESAT) searches for a truth assignment
assigning at least one literal in each clause of C to 1 and at least one literal
to 0, called nae-model or NAESAT-model. The decision versions of XSAT and
NAESAT are defined analogously, and are known to be NP-complete [21].

An optimization variant of SAT is obtained when weights are assigned to the
variables: Given C ∈ CNF and w : V (C) → R, MINW-SAT asks whether C ∈
SAT and in the positive case one has to find a minimum model of C, i.e., a model
t of the least weight among all models of C. The weight of a model t is defined
by w(t) =

∑
x∈t−1(1) w(x) =

∑
x∈V (C) w(x)t(x). Analogously, the optimization

problems MINW-XSAT and MINW-NAESAT are defined, which all are NP-hard
for the class CNF. Similarly we obtain the maximization versions MAXW-Π ,
when searching for a maximum Π-model, for Π ∈ {SAT, XSAT, NAESAT},
correspondingly.

Given M ⊆ R, let an M -weighted formula be a pair (C, w) where C ∈ CNF
and w : V (C) → M , and let −M := {−m : m ∈ M}. For weight function w,
let −w denote the weight function obtained from w by pointwise multiplying
its values by −1. For Π ∈ {SAT, XSAT, NAESAT}, let T Π(C) denote the set
of all Π-models of C and similarly let T Π

μ (C, w) ⊆ T Π(C) denote the set of all
μ-weight Π-models of (C, w), with μ ∈ {min, max}.

3 Reduction Tools for Variable-Weighted Formulas

Let us collect some useful tools for later considerations. The first assertion
slightly generalizes Lemma 7 in [16] restricted to weighted XSAT, and enabling
us to reduce maximum weight problems to minimum weight problems in specific
cases:

Lemma 1. Let Π ∈ {SAT, XSAT, NAESAT}. If there exists an algorithm A
solving MINW-Π for M -weighted members of a formula class C ⊆ CNF in

176 S. Porschen and E. Speckenmeyer

O(f(‖C‖)) time then A also solves MAXW-Π for (−M)-weighted members of C
and vice versa. Moreover, in case M = −M , algorithm A can easily be modified
to A′ solving MAXW-Π for M -weighted members of C in O(f(‖C‖)) time.

Proof: Let C ⊆ CNF be a fixed formula class for which A is an algorithm solving
MINW-Π for M -weighted input instances C ∈ C. We claim that T Π

min(C, w) =
T Π

max(C,−w). From that claim the first assertion obviously follows. Moreover, if
M = −M , given an M -weighted formula (C, w), let A′ first compute (C,−w) in
linear time which then also is M -weighted, and then A′ performs A on (C,−w)
finding an element t ∈ T Π

min(C,−w), if existing, therefore t ∈ T Π
max(C, w) as

required. Since A at least must have linear running time, A′ also has time bound
O(f(‖C‖)).

To verify the claim let t ∈ T Π
min(C, w), and assume t �∈ T Π

max(C, w′) where w′ :=
−w. Then there exists t0 ∈ T Π(C) with w′(t0) > w′(t) which is equivalent to
−w′(t0) < −w′(t) meaning w(t0) < w(t) contradicting t ∈ T Π

min(C, w). Therefore
T Π

min(C, w) ⊆ T Π
max(C,−w). Analogously, we obtain T Π

max(C,−w) ⊆ T Π
min(C, w).

The vice versa assertion stating that an algorithm solving MAXW-Π for
(−M)-weighted members in C also solves MINW-Π for M -weighted formulas
analogously follows from the claim that T Π

max(C, w) = T Π
min(C,−w) holds, for

an arbitrary (−M)-weighted formula (C, w), C ∈ C. This claim is shown as the
previous one. �	
Next, we state a basic proposition relating bijections between Π-model spaces to
bijections between weighted Π-model spaces, for Π ∈ {SAT, XSAT, NAESAT}.
This result is a slight generalization of the same result restricted to weighted
XSAT shown in [14,16]:

Proposition 1. For arbitrary M -weighted formulas (C, w), (C′, w′) (M ⊆ R),
assume that there exists a bijection

F : T Π(C)
 t �→ t′ := F (t) ∈ T Π(C′)

such that (∗): w(t) = w′(t′)+α, where α ∈ R is a constant independent of t and t′.
Then the restricted mapping Fμ := F |T Π

μ (C, w) is a bijection between T Π
μ (C, w)

and T Π
μ (C′, w′), so we have |T Π

μ (C, w)| = |T Π
μ (C′, w′)|, for μ ∈ {min, max}.

Proof: First consider the minimization case. Let t ∈ T Π
min(C, w) and assume

that t′ := Fmin(t) �∈ T Π
min(C

′, w′). Then there is a Π-model t′0 ∈ T Π(C′) with
w′(t′0) < w′(t′). Let t0 := F−1(t′0) be the corresponding Π-model of C. Applying
(∗) twice we obtain w(t0) = w′(t′0) + α < w′(t′) + α = w(t), contradicting the
assumption that t is minimum. Hence Fmin(t) ∈ T Π

min(C′, w′) holds for each
t ∈ T Π

min(C, w).
Conversely, let t′ ∈ T Π

min(C′, w′) and assume t := F−1(t′) �∈ T Π
min(C, w). Then

there is a Π-model t0 ∈ T Π(C) with w(t0) < w(t). Let t′0 := F (t0) be the
corresponding Π-model of C′. As above, by (∗), we derive w′(t′0) = w(t0)− α <
w(t) − α = w′(t′), contradicting the assumption that t′ is minimum. Hence
F−1(t′) ∈ T Π

min(C, w) holds for each t′ ∈ T Π
min(C

′, w′). Thus, F−1 restricted to
T Π

min(C′, w′) equals F−1
min from which the assertion follows. Proving the assertion

for maximum model spaces proceeds analogously. �	

Algorithms for Variable-Weighted 2-SAT and Dual Problems 177

4 Optimum Weight 2-SAT

As is well known, 2-SAT, i.e., SAT restricted to 2-CNF can be decided and
solved in linear time in the length of the formula [2]. However, a straightforward
reduction from the minimum weight vertex cover problem (MINW-VC) in graphs
tells us that the weighted version MINW-2SAT is NP-hard. To that end simply
observe that the edges of the graph represent clauses of a monotone formula
whose variables correspond to the graph vertices. Obviously a minimum weight
model as defined above is equivalent to a minimum vertex cover, i.e., a smallest
weight subset of vertices covering all graph edges. Therefore, MINW-VC and
MINW-2SAT for monotone formulas are identical. In this section we provide an
algorithm for optimum weight SAT restricted to arbitrarily variable-weighted
2-CNF (also called quadratic) formulas.

For Horn formulas, SAT can be decided and solved in linear time which is a
well-known result [9,10]. The minimization problem for weighted Horn formulas
can also be solved in linear time:

Lemma 2 ([18]). Minimum weight satisfiability for a Horn formula H and
weight function w : V (H)→ R+, can be solved in linear time.

Observe that the maximization problem cannot be reduced to the minimization
case as only non-negative weights are allowed.

If P (C) is empty then C is a 2-CNF Horn formula, we thus obtain immedi-
ately:

Corollary 1. For C ∈ 2-CNF with P (C) = ∅, MINW-XSAT can be solved in
linear time, where w : V (C)→ R+. �	
Only for non-negatively weighted 2-CNF formulas with n variables, MINW-SAT
has been shown to be solvable in time O(20.5284·n) in [18,20] regarding it as a
specific mixed Horn formula which can be represented as the union of a Horn
and a quadratic formula:

Lemma 3 ([20]). Minimum (resp. maximum) weight satisfiability can be solved
in O(20.5284|V (C)|) time, for formulas C ∈ 2-CNF and w : V (C) → R+ (resp.
w : V (C)→ R−).

The proof uses the Johnson-Papadimitriou-Yannakakis algorithm [8] for gener-
ating all maximal independent sets in the graph with polynomial delay yielding
time bound O(20.5284n), for n vertices.

The last result can be generalized to arbitrarily variable-weighted 2-CNF for-
mulas resting on the next assertion stating that optimum weight Π-models are
preserved in a certain sense when variables are complemented.

Lemma 4. Let (C, w) with C ∈ CNF, w : V (C) → R, and X ⊆ V (C) be
arbitrary. Then, for (CX , wX) with wX(x) := w(x), ∀x ∈ V (C) \ X, and
wX(x) := −w(x), ∀x ∈ X, we have for each fixed Π ∈ {SAT, XSAT, NAESAT}:
(i) |T Π(C)| = |T Π(CX)|, given by t �→ tX ,
(ii) |T Π

μ (C, w)| = |T Π
μ (CX , wX)|, μ ∈ {min, max}.

178 S. Porschen and E. Speckenmeyer

Proof: Let Π ∈ {SAT, XSAT, NAESAT} then t obviously is a Π-model of C
iff tX is a Π-model of CX , for each X ⊆ V (C). Indeed, let � be a literal at
any fixed position p in C regarded as a vector of length ‖C‖, then the truth
value at position p is t(�). Now either holds V (�) ∈ X or V (�) /∈ X . In the
first case �̄ is the corresponding literal at position p in CX having truth value
tX(�̄)) = 1−t(�̄) = t(�). In the remaining case the truth value of � is not affected.
Therefore the truth value vectors of C, t, resp. CX , tX , are identical completing
the argumentation and implying that F : T Π(C, w)
 t �→ tX ∈ T Π(CX , wX) is
a bijection of Π-model spaces, hence (i) is true.

Regarding (ii), first observe that tX(x) = 1 − t(x), for each x ∈ X , and
tX(y) = t(y), for each y ∈ V (C)−X . Therefore, we have

wX(tX) =
∑

x∈X

(−w(x))(1 − t(x)) +
∑

x∈V (C)−X

w(x)t(x) = −w(X) + w(t)

Hence wX(tX) = w(t) + α, where α := −w(X) is a constant as X is fixed. So,
assertion (ii) can immediately be derived from Prop. 1. �	
As already mentioned, the last observation helps us to solve minimum weight
2-SAT for arbitrarily weighted formulas:

Theorem 1. Minimum (resp. maximum) weight satisfiability can be solved in
O(20.5284|V (C)|) time, for formulas C ∈ 2-CNF and w : V (C)→ R.

Proof: Let (C, w) with C ∈ 2-CNF and w : V (C) → R be an arbitrary input
for MINW-2SAT. Define X := {x ∈ V (C) : w(x) < 0} ⊆ V (C). Then compute a
minimum weight model t of (CX , wX) due to Lemma 3 which is possible because
wX : V (CX)→ R+.

According to Lemma 4, tX then is a minimum model of (C, w). So the assertion
for the minimization case follows because CX , wX , and tX can be computed in
linear time O(|V (C)|) using appropriate data structures. The maximization case
follows due to Lemma 1. �	
If (C, w) is an R-weighted formula possessing a set X ⊆ V (C) such that CX is
a Horn formula, and only the variables in X are negatively weighted, then by
Lemma 1 we can solve minimum weight SAT for (CX , wX) in linear time: By
the last theorem, we then also obtain a solution for the original input C with
w : V (C) → R, because we only have to complement the model values for the
variables in X .

It should be noted that, via the above approach, we cannot improve on Theo-
rem 9 in [20], i.e., we cannot show that minimum (resp. maximum) weight satis-
fiability for each mixed Horn formula C with arbitrary weights can be solved in
O(20.5284|V (C)|) time. The reason is that a mixed Horn formula does not remain
mixed Horn if a certain subset of variables is complemented. But fortunately
2-CNF formulas remain stable under complementations of arbitrary variable sets.

XSAT resp. NAESAT are the same for 2-CNF formulas containing no unit
clauses: Formulas containing unit clauses obviously do not belong to NAESAT.
However unit clauses are not critical as the corresponding literals must be set

Algorithms for Variable-Weighted 2-SAT and Dual Problems 179

to true regardless of variable weights. The optimization versions minimum and
maximum weight XSAT resp. NAESAT are solvable in linear time for 2-CNF,
cf. [13], Thm. 1.

5 The Weighted Dual Class CNF+(≤ 2)

In this section MINW-Π , resp., MAXW-Π for the case of monotone weighted
input formulas (C, w), i.e. C ∈ CNF+(≤ 2), w : V (C) → R, is treated, for
each fixed Π = {XSAT, SAT, NAESAT}. Recall that, by definition, each variable
occurs in at most two distinct clauses of C, hence |C(x)| ≤ 2, for each x ∈ V (C).
Observe that CNF(≤ 2) can be regarded as dual to 2-CNF in the sense that
assigning a set Sx to each variable x ∈ V (C) defined by Sx := {c ∈ C : x ∈ V (c)}
yields “variable-clauses” of length at most 2: |Sx| ≤ 2.

The algorithmic strategy is as follows focusing first on MINW-Π , for each
fixed Π ∈ {SAT, XSAT, NAESAT}: We reduce MINW-Π in polynomial time to
a corresponding equivalent problem on an edge weighted graph that is closely
related to the (edge-weighted) intersection graph of (C, w). Then we construct a
polynomial time algorithm solving this graph problem, thereby yielding a mini-
mum Π-model of (C, w) or responding that none such exists. An algorithm for
the maximization version then is provided via Lemma 1.

Recall that the intersection graph of a monotone formula C ∈ CNF+ has a
vertex for each clause, and two vertices are joined by an edge iff the corresponding
clauses have non-empty intersection. We will make use of a modification of the
intersection graph that we call the clause graph GC associated to a variable-
weighted C ∈ CNF+(≤ 2) also incorporating variables that uniquely occur in C,
i.e., in only one clause: Thus, if C admits no unique variables the clause graph
simply is the intersection graph, such that each edge is labeled by a variable of
least weight in the intersection and is weighted by that weight.

In case that C admits unique variables, make a copy of its intersection graph,
pose to each edge in either copy its label and its weight as mentioned above.
Finally, join each pair of vertices in either copy that correspond to the same
clause by an edge iff the clause contains a unique variable; label that edge with
a unique variable of least weight, and assign to it that weight value yielding GC .

The clause graph has at most 2|C| vertices and |V (C)| edges, and can obvi-
ously be built in O(|C|2 · |V (C)|) time. Since each variable occurs in at most two
clauses, i.e. ∀x ∈ V (C) : |C(x)| ≤ 2, we have |C| ≤ ‖C‖ =

∑
x∈V (C) |C(x)| ≤

2|V (C)|. If GC is not connected we first compute its components in linear time
then treat each component independently decreasing running times obviously.

For the case Π = XSAT, we have:

Lemma 5 ([13]). A minimum, resp. maximum, XSAT-model of (C, w) with
C ∈ CNF+(≤ 2), w : V (C) → R, can be computed, respectively, it can be
reported that none exists in time O(|V (C)|3).
The proof is based on the fact that a minimum weight perfect matching in the
clause graph is equivalent to a minimum weight XSAT-model of (C, w), if exactly

180 S. Porschen and E. Speckenmeyer

the variables that label the selected matching edges are set to true. The running
time is determined by the matching algorithm. We even have:

Theorem 2. A minimum, respectively, maximum weight XSAT-model of (C,w),
with C ∈ CNF(≤ 2), w : V (C) → R, can be computed, respectively, it can be
reported that none exists in O(|V (C)|3) time. �	
The proof is based on a polynomial time reduction transforming (C, w) to a
weighted monotone formula (C′, w′) such that the induced mapping FXSAT

min :
T XSAT

min (C, w) → T XSAT
min (C′, w′) on the minimum XSAT-model spaces is a bijec-

tion. Then a minimum XSAT-solution t′0 of (C′, w′) can be transformed into a
minimum XSAT-solution of (C, w) via t0 := FXSAT

min
−1(t′0). Hence, we arrive at

a polynomial time algorithm for MINW-XSAT on arbitrarily variable-weighted
members in CNF(≤ 2). From the latter algorithm we obtain a polynomial time
algorithm solving MAXW-XSAT according to Lemma 1.

The next results provide elementary transformation steps for eliminating pure
negative literals, complemented pairs in clauses, and negative literals that have
its positive complement in a different clause. Regarding pure literals we are done
by Lemma 4, for X = {x}:
Corollary 2. For Π ∈ {SAT, XSAT, NAESAT}, and (C, w), with C ∈ CNF,
w : V (C)→ R, let x ∈ V (C) be a variable only occuring negated in C. Then for
(Cx, wx), where wx : V (C)→ R is defined as w except for wx(x) := −w(x), we
have |T Π

μ (C, w)| = |T Π
μ (Cx, wx)|, μ ∈ {min, max}.

Complemented pairs in the same clause can be treated due to:

Lemma 6 ([14,16]). For C ∈ CNF with w : V (C) → R, holds T XSAT = ∅ if
there is c ∈ C containing more than one complemented pairs. Let c ∈ C contain
exactly one complemented pair x, x, and let Cc be the formula obtained from
C by removing c and assigning all literals to 0 that occur in c′ := c − {x, x}
(which can be empty), and by finally removing all duplicate clauses. Let wc be
the restriction of w to V (Cc) = V (C)−V (c′), then there is a bijection providing
|T XSAT

μ (C, w)| = |T XSAT
μ (Cc, wc)|, μ ∈ {min, max}. Moreover the transformation

(C, w) to (Cc, wc) as well as the XSAT-model space bijection can be computed in
polynomial time. �	
And finally, negative literals of complemented pairs occuring in distinct clauses
can be eliminated via:

Lemma 7 ([14,16]). Let C ∈ CNF, w : V (C)→ R such that no clause contains
a complemented pair. Let ci = {x} ∪ u, cj = {x} ∪ v ∈ C where x ∈ V (C) and
u, v are literal sets. Let Cij be obtained from C as follows:
(1) Cij := C − {ci, cj} ∪ {u ∪ v}
(2) set all literals in u∩v to 0, then remove all duplicate clauses from the resulting
formula.
Let wij := V (Cij)→ R be the following weight function: For each y ∈ V (Cij)−
V (u⊕ v), set wij(y) := w(y), and moreover, only in case that u⊕ v �= ∅, define:

Algorithms for Variable-Weighted 2-SAT and Dual Problems 181

(1’) if V+(u⊕ v) ∩ V−(u⊕ v) = {z}, then set

wij(y) :=

⎧
⎨

⎩

w(y) , if y ∈ V (u⊕ v)− {z}
w(z) + w(x), if z = y and z ∈ u, z ∈ v
w(z)− w(x), if z = y and z ∈ u, z ∈ v

(2’) if V+(u⊕ v) ∩ V−(u⊕ v) = ∅, then set

wij(y) :=

⎧
⎨

⎩

w(y) , if y ∈ V (v − u)
w(y) + w(x), if y ∈ V−(u− v)
w(y) − w(x), if y ∈ V+(u− v)

Then we have:
(i) V (Cij) = V (C)− [{x} ∪ V (u ∩ v)], Cij ∈ CNF(≤ 2), and |Cij | ≤ |C| − 1,
(ii) |T XSAT

μ (C, w)| = |T XSAT
μ (Cij , wij)|, for μ ∈ {min, max}.

Moreover the transformation (C, w) to (Cij , wij) as well as the XSAT-model
space bijection can be computed in polynomial time. �	
Next, consider Π = SAT: Since C is monotone we can set to true each variable
that is weighted non-positively, and remove all clauses that are satisfied thereby.
All variables that are removed from the formula and are not yet set have strictly
positive weights and appear only in clauses already satisfied, therefore we can set
them to false. Moreover if the remaining formula has clauses containing unique
variables only, remove these clauses and set to true exactly one variable of least
weight and to false all other variables. All steps above can obviously be done
in linear time O(‖C‖). It remains a monotone formula (C′, w′) such that each
variable has strictly positive weight and occurs in at most two clauses, no clause
exclusively has unique variables. Therefore the clause graph contains no isolated
vertices.

Recall that an edge cover in a graph G = (V, E) of no isolated vertices is a
subset F ⊆ E such that each vertex x ∈ V is incident to at least one edge in F .
It is not hard to see that a minimum weight edge cover F in the clause graph
GC′ yields a minimum weight SAT-model of (C′, w′) by setting exactly those
variables to true that label the edges in F .

It is well known that the minimum cardinality of an edge cover in G is closely
related to the matching number ν(G) of G, i.e., the cardinality of a maximum
matching according to the relation |F | = |V |−ν(G). This is easy to see: all 2ν(G)
vertices in a maximum matching are covered already, all remaining vertices are
independent from each other and only have neighbours in the covered set. So,
for each remaining vertex we have to choose exactly one edge not contained in
the matching.

There is no immediate connection as above between maximum weight match-
ings and minimum weight edge covers [7,22]. However, let (G, w) be a connected
edge weighted graph with w : E → R+ − {0}. Transforming the edge weights
w(e) to ŵ(e), for each e = x− y ∈ E, according to

182 S. Porschen and E. Speckenmeyer

(∗) ŵ(x−y) := −w(x−y)+min{w(x−z) : z ∈ N(x)}+min{w(y−z) : z ∈ N(y)}

where N(v) ⊂ V denotes the set of all neighbours of v ∈ V in G, yields weight
function ŵ : E → R, cf. e.g. [4]. Now, perform a general maximum weight
matching algorithm, for arbitrarily edge-weighted graphs, on (G, ŵ); and let
M ⊆ E, such that ŵ(M) = max{ŵ(M ′) : M ′ ⊂ E is matching in G}, be its
result. Let V (M) ⊂ V denote that part of the vertices in G incident to an edge
in M .

Then we claim (i): for each x ∈ V − V (M) there exists an edge x − y with
y ∈ V (M), and (ii): selecting one such edge of least weight for each x ∈ V −V (M)
collected in M ′ provides a minimum weight edge cover M∪M ′ in (G, w). Observe
that ŵ = w in case w is a constant function, and by the procedure described we
obtain a minimum cardinality edge cover as explained above.

To verify the first claim, let x ∈ V −V (M) be such that all its neighbours are
members in V − V (M) and let E(x) denote the set of corresponding edges. Let
e = x− y ∈ E(x) such that w(e) = min{w(e′) : e′ ∈ E(x)}. Therefore, with (∗)

ŵ(e) := −w(e) + w(e) + min{w(y − z) : z ∈ N(y)} > 0

because at least x ∈ N(y). Hence, e would enlarge w(M) and must be contained
in M yielding a contradiction.

For (ii), clearly an edge e = x − y is included in M only if ŵ(e) ≥ 0, hence
in view of (∗) e is the edge of least weight covering x and y, as all w-values are
strictly positive. Similary, for each x ∈ V − V (M), by (i) there is an edge x− y
of least weight w(x − y) and y ∈ V (M). It remains to show that such an edge
is a cover of least weight for x if there is also e′ = x− z with y ∈ V − V (M) of
least w-weight among all such egdes. Indeed, because e′ is independent of M we
have ŵ(e′) ≤ 0 therefore, by (∗), follows w(e′) > 0. Thus, we have verified that
M ∪M ′ provides an edge of least weight for each x ∈ V and has least possible
cardinality, therefore it is a minimum weight edge cover in (G, w).

Observe that the transformation w → ŵ can be carried out in O(|V | · |E|)
time. Moreover, it is well known that a maximum weight matching in G can be
computed relying on Edmonds blossom algorithm for perfect weighted matchings
in O(|V |2 ·|E|) time [4]. Hence, a minimum weight edge cover in (G, w) of strictly
positive edge weights can be computed in O(|V |2 · |E|) time.

Recalling that the clause graph has O(|C|) vertices, O(|V (C)|) edges, and
|C| ≤ 2|V (C)|, we obtain in summary:

Theorem 3. A minimum, resp. maximum weight SAT model of (C, w), C ∈
CNF+(≤ 2), w : V (C)→ R, can be computed in time O(|V (C)|3). �	
Finally, we consider NAESAT, which for the unweighted case has been solved
in [17] based on Euler tour techniques. Unfortunately, in the weighted case this
approach does not apply.

Let G = (V, E) be a connected graph, and for fixed F ⊆ E let F (x) denote the
set of edges incident to x ∈ V . Now let f, g : V → Z be two functions such that
f ≤ g. Recall that a f -factor in G is a set M ⊆ E such that for each x ∈ V holds

Algorithms for Variable-Weighted 2-SAT and Dual Problems 183

|M(x)| = f(x), which in general does not exist. E.g., for f = 1, an f -factor is a
perfect matching. More generally, an [f, g]-factor in G is an edge subset M ⊆ E
with |M(x)| ∈ [f(x), g(x)] for each x ∈ V . For an edge-weighted graph (G, w)
with w : E → R an optimum weight [f, g]-factor, is an [f, g]-factor M of optimal
weight w(M).

Let (C, w) with C ∈ CNF+(≤ 2) containing no unit clauses (otherwise the
formula a priori admits no NAESAT-models) and w : V (C) → R. Each c ∈
C containing exclusively unique variables can be minimally NAESAT-satisfied
independently: If c has only variables of non-negative weights, then set exactly
one of the smallest weight to 1 and all other variables to 0. If c has only variables
of non-positive weights, then set exactly one of the greatest weight to 0 and all
other variables to 1. Observe that also the case is included where all variables
have weight 0, and we have the convention that the variable with the smallest
(largest) index then, by definition, is that of smallest (largest) weight.

In all remaining cases c contains at least one strictly positive-weighted and at
least one strictly negative-weighted variable, so we set all the latter to 1 and the
remaining variables to 0. It is obvious that in this way we provided a minimal
NAESAT-model for all clauses containing unique variables only, which therefore
can be omitted from the formula.

Next consider a clause c in the remaining formula that contains more than
one unique variable collected in U ⊂ V (c). We intend to assign truth values to
all except one of these unique variables such that the remaining fragment of the
clause is indepent w.r.t. minimum weight NAESAT: If all variables in U have
non-negative weights, set to 0 all except for exactly one of the smallest weight,
which will not yet be assigned. If all variables in U have non-positive weights,
set to 1 all except for exactly one of the greatest weight, which will not yet be
assigned. In all remaining cases c has at least one variable of strictly positive
weight and at least one of strictly negative weight. Set all the latter variables to
1, and set to 0 all of the remaining (non-negative) variables except for exactly
one of the smallest weight, which will not yet be assigned. From each such clause
c, a fragment c′ remains containing only one unique variable.

Observe that the resulting formula (C′, w′), with restricted weight function
w′ := w|V (C′), yields an edge-weighted clause graph GC′ such that each vertex
has at least degree 2. Moreover, each variable in (C′, w′) labels a unique edge in
the clause graph, and vice versa. Finally, the earlier eliminated unique variables
had, for each clause containing them, been set appropriately. Now it easily follows
that a minimum weight NAESAT-model of (C′, w′) is provided by setting to 1
exactly the variables labeling the edges in a minimum weight [1, deg]-factor,
if existing, in GC′ . Here deg : V (GC′) → Z denotes the degree function, i.e.,
deg(x) = |N(x)|, for each x ∈ V (GC′).

With standard linear programming techniques one can solve a related prob-
lem in polynomial time, namely the maximum weight [f, g]-matching problem
[4]: Given an edge-weighted graph (G = (V, E), w), and f, g as above, one
searches for μ : E → Z such that for each x ∈ V holds

∑
y∈N(x) μ(x − y) ∈

[f(x), g(x)] and
∑

e∈E μ(e)w(e) is maximal. The maximum weight [f, g]-factor

184 S. Porschen and E. Speckenmeyer

problem obviously gets the maximum weight [f, g]-factor problem if, one poses
the further constraint 0 ≤ μ(e) ≤ 1 for each e ∈ E, then μ(E) is the charac-
teristic vector of a matching. Hence the latter problem also can be solved in
polynomial time. The minimization version can be derived easily from the max-
imization version in the same manner as described in Lemma 1. So we arrive at:

Theorem 4. A minimum, resp. maximum, NAESAT-model of (C, w) with C ∈
CNF+(≤ 2), w : V (C) → R, can be computed, respectively, it can be reported
that none exists in polynomial time. �	

6 Concluding Remarks and Open Problems

We proved that minimum (and also maximum) weight SAT for 2-CNF formulas
of n arbitrarily weighted variables can be solved in time O(20.5284n). So an open
problem is to construct a faster algorithm for optimum weight 2-SAT. Clearly,
for monotone formulas minimum weight 2-SAT is the same as minimum weight
vertex cover. Thus the question arise whether one can provide an appropriate
polynomial time monotonization scheme also reducing general minimum weight
2-SAT to minimum vertex cover such that the formula does not increase. How-
ever, the monotonization methods discussed in Section 5 unfortunately do not
apply, because simple resolution fails.

Regarding the second part, we leave open the question whether there can
be constructed monotonization schemes, as valid for XSAT [14,16], solving the
optimization versions of SAT and NAESAT even for arbitrary, i.e., not neces-
sarily monotone members of CNF(≤ 2). What is missing, is a weighted version
of the simple resolution rule for the SAT and NAESAT cases (holding in the
unweighted case [17]).

Indeed only simple resolution is missing, because pure literal elimination al-
ready is provided by Lemma 2. And regarding complemented pairs in clauses we
have:

Proposition 2. For Π ∈ {SAT, NAESAT} and C ∈ CNF, w : V (C) → R,
assume there is c ∈ C containing complemented pairs, where W := V (C)−V (C−
{c}), i.e., the set of variables only occuring in c which may be empty. Let Ĉ be the
relevant part of C obtained from C by setting to 0 all x ∈ W with w(x) = 0, let
ŵ be the restriction of w to V (Ĉ). Let Ĉc := Ĉ−{c} and let ŵc be the restriction
of ŵ to V (Ĉc), then we have T Π

μ (Ĉ, ŵ) �= ∅ iff T Π
μ (C, w) �= ∅, and T Π

μ (Ĉ, ŵ) ⊆
T Π

μ (C, w); moreover, there is a bijection providing |T Π
μ (Ĉ, ŵ)| = |T Π

μ (Ĉc, ŵc)|,
μ ∈ {min, max}. Finally, the transformation from (C, w) to (Ĉc, ŵc) as well as
the Π-model space bijection can be computed in polynomial time.

Proof: We distinguish two cases. (1): W = ∅, i.e., each variable in V (c) also
occurs in Cc, then C = Ĉ, w = ŵ, and obviously each t ∈ T Π(C) also is
a member of T Π(Cc) and vice versa, for Π ∈ {SAT, NAESAT} providing a
bijection (namely the identity) between the Π model spaces. As w = wc, in that
case, we also have (∗) of Prop. 1; so we are done.

Algorithms for Variable-Weighted 2-SAT and Dual Problems 185

(2): W �= ∅. Since c contains at least one complemented pair x, x̄, c is Π-
satisfied by any truth assignment. Therefore, and because the variables in W
do not occur in C − {c}, we can set to 0 all x ∈ W with w(x) = 0 implying
T Π

μ (Ĉ, ŵ) �= ∅ iff T Π
μ (C, w) �= ∅, and T Π

μ (Ĉ, ŵ) ⊆ T Π
μ (C, w). Thus it suffices to

consider (Ĉ, ŵ) in the following. If Ŵ denotes the set of all remaining variables
in W we have V (Ĉc) = V (Ĉ)− Ŵ , and claim that

FΠ : T Π
min(Ĉ, ŵ)
 t �→ FΠ(t) := t|V (Ĉc) ∈ T Π

min(Ĉc, ŵc)

is a bijection if the reverse is defined as the extension of t′ ∈ T Π
μ (Cc, wc) to

V (Ĉ) by assigning to 1 exactly all variables in Ŵ with w(x) < 0 and the others
to 1, hence ŵ(Ŵ) = w(W) is minimal. It is easy to see that FΠ is one-to-one,
and indeed is a bijection of minimum Π-model spaces. The maximization case
proceeds analogously. The running time assertions are obvious. �	

References

1. Aho, A.V., Ganapathi, M., Tjiang, S.W.: Code Generation Using Tree Matching
and Dynamic Programming. ACM Trans. Programming Languages and Systems
11 (1989) 491-516

2. Aspvall, B., Plass, M.R., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified Boolean formulas. Inform. Process. Lett. 8 (1979) 121-123

3. Cook, S.: The Complexity of Theorem Proving Procedures. In: Proceedings of
STOC 1971. ACM (1971) 151-158

4. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. Wiley, New York (1998)

5. Fürer, M., Kasiviswanathan, S.P.: Algorithms for Counting 2-SAT Solutions and
Colorings with Applications. ECCC Report No. 33 (2005)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)

7. Gibbons, A.: Algorithmic Graph Theory. Cambridge University Press, Cambridge
(1985)

8. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On Generating All Maximal
Independent Sets. Inform. Process. Lett. 27 (1988) 119-123

9. Lewis, H.R.: Renaming a Set of Clauses as a Horn Set. J. ACM 25 (1978) 134-135

10. Minoux, M.: LTUR: A Simplified Linear-Time Unit Resolution Algorithm for Horn
Formulae and Computer Implementation. Inform. Process. Lett. 29 (1988) 1-12

11. Plagge, G.: Über Variablen-Gewichtete X3SAT Optimierungs-Probleme. Diploma
Thesis, Univ. Köln (2006)

12. Plagge, G., Porschen, S.: Solving optimum variable-weight Exact 3-Satisfiability in
time O(20.16254n). Techn. Report, Univ. Köln (2006), in preparation

13. Porschen, S.: On Some Weighted Satisfiability and Graph Problems. In: Vojtas, P.,
et al. (eds.): Proceedings of SOFSEM 2005. Lecture Notes in Computer Science,
Vol. 3381. Springer-Verlag (2005) 278-287

14. Porschen, S.: Solving Minimum Weight Exact Satisfiability in Time O(20.2441n). In:
Deng, X., Du, D. (eds.): Proceedings of ISAAC 2005. Lecture Notes in Computer
Science, Vol. 3827. Springer-Verlag (2005) 654-664

186 S. Porschen and E. Speckenmeyer

15. Porschen, S.: Counting All Solutions of Minimum Weight Exact Satisfiability. In:
Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.): Proceedings of CIAC 2006. Lec-
ture Notes in Computer Science, Vol. 3998. Springer-Verlag (2006) 50-59

16. Porschen, S.: On variable-weighted exact satisfiability problems. Techn. Report
zaik2006-526, Univ. Köln (2006)

17. Porschen, S., Randerath, B., Speckenmeyer, E.: Linear Time Algorithms for some
Not-All-Equal Satisfiability Problems. In: Giunchiglia, E., Tacchella, A. (eds.): Pro-
ceedings of SAT 2003. Lecture Notes in Computer Science, Vol. 2919. Springer-
Verlag (2004) 172-187

18. Porschen, S., Speckenmeyer, E.: Satisfiability Problems for Mixed Horn Formulas.
In: Kleine Büning, H., Zhao, X. (eds.): Proceedings of the Guangzhou Symposium
on Satisfiability and its Applications (2004) 106-113

19. Porschen, S., Speckenmeyer, E.: Worst case bounds for some NP-complete modified
Horn-SAT problems. In: Hoos, H.H., Mitchell, D. (eds.): Proceedings of SAT 2004.
Lecture Notes in Computer Science, Vol. 3542. Springer-Verlag (2005) 251-262

20. Porschen, S., Speckenmeyer, E.: Satisfiability of Mixed Horn Formulas. To appear
in Discrete Appl. Math. (http://dx.doi.org/10.1016/j.dam.2007.02.010)

21. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of STOC
1978. ACM (1978) 216-226

22. White, L.J.: A parametric study of matchings and coverings in weighted graphs.
PhD Thesis, University of Michigan (1967)

On the Boolean Connectivity Problem

for Horn Relations

Kazuhisa Makino1, Suguru Tamaki2, and Masaki Yamamoto3

1 Graduate School of Information Science and Technology, University of Tokyo,
Tokyo, 113-8656, Japan

makino@mist.i.u-tokyo.ac.jp
2 Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan

tamak@kuis.kyoto-u.ac.jp
3 Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan

masaki.yamamoto@kuis.kyoto-u.ac.jp

Abstract. Gopalan et al. studied in ICALP06 [17] connectivity proper-
ties of the solution-space of Boolean formulas, and investigated complex-
ity issues on the connectivity problems in Schaefer’s framework. A set S
of logical relations is Schaefer if all relations in S are either bijunctive,
Horn, dual Horn, or affine. They conjectured that the connectivity prob-
lem for Schaefer is in P . We disprove their conjecture by showing that
there exists a set S of Horn relations such that the connectivity problem
for S is coNP-complete. We also show that the connectivity problem
for bijunctive relations can be solved in O(min{n|ϕ|, T (n)}) time, where
n denotes the number of variables, ϕ denotes the corresponding 2-CNF
formula, and T (n) denotes the time needed to compute the transitive
closure of a directed graph of n vertices. Furthermore, we investigate a
tractable aspect of Horn and dual Horn relations with respect to char-
acteristic sets.

1 Introduction

The Boolean satisfiability problem (satisfiability problem for short) is one of the
central problems in the computational complexity theory. Schaefer proposed in
[30] a framework for expressing variants of the satisfiability problem, and showed
a dichotomy theorem: the satisfiability problem for certain classes of Boolean
formulas is in P while it is NP-complete for all other classes. From this theorem,
we have that 2-Sat and Horn-Sat are in P , while k-Sat for k ≥ 3, NAE-Sat
(or Not-All-Equal Sat), and XSat (or Exact Sat) are all NP-complete1.
Since then, dichotomies or trichotomies have been established for several aspects
of the satisfiability problem such as optimization [6,8,27], counting [7], inverse
satisfiability [26], minimal satisfiability [19], unique satisfiability [18], 3-valued
satisfiability [4] and propositional abduction [9].
1 There are many classes of formulas that do not fit Schaefer’s framework, but can

be solved in polynomial time. Such examples include renamable Horn [28], extended
Horn [5], and q-Horn [3], for example.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 187–200, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

188 K. Makino, S. Tamaki, and M. Yamamoto

Very recently, Gopalan et al. studied in [17] connectivity properties of the
solution-space of Boolean formulas, and investigated complexity issues on con-
nectivity problems in Schaefer’s framework [30], where the connectivity proper-
ties of disjunctive normal forms (DNFs) were studied by Ekin et al. [14]. The
connectivity problem (Conn) is to decide if the solutions of a given Boolean
formula ϕ on n variables induce a connected subgraph of the n-dimensional hy-
percube, while the st-connectivity problem (st-Conn) is to decide if two specific
solutions s and t of ϕ are connected. As mentioned in [17], connectivity prop-
erties of Boolean satisfiability merit study in their own right, since they shed
light on the structure of the solution-space, and moreover, structural studies
on the solution-space are important to analyze the satisfiability problem and
algorithms for it [2]. They [17] established a dichotomy for the st-connectivity
problem: It is polynomially solvable if given Boolean relations are tight, while it
is PSPACE-complete in all other cases. This reveals that the tractable side is
larger than the one for the satisfiability problem. Namely, the tight class properly
contains Schaefer that consists of the classes of bijunctive, Horn, dual Horn,
and affine relations. For the connectivity problem, they established a dichotomy
with the same boundary: One side is in coNP and the other side is PSPACE-
complete. Furthermore, they showed that the connectivity problem for the class
of non-Schaefer and tight is coNP-complete. However, they did not give us a
complete picture of the complexity status of the connectivity, and conjectured
that the connectivity problem for Schaefer is in P 2.

In this paper, we disprove their conjecture by showing that there exists a set
S of Horn relations such that the connectivity problem for S is coNP-complete.
Notice that this does not mean that the connectivity problem for any set of Horn
relations is intractable. We also give proofs that show it is tractable for bijunctive
and affine relations. In particular, we show that the connectivity problem for
bijunctive relations can be solved in O(min{n|ϕ|, T (n)}) time, where n denotes
the number of variables, ϕ denotes the corresponding 2-CNF formula, and T (n)
denotes the time needed to compute the transitive closure of a directed graph
of n vertices 3. It is known [31] that T (n) = O(nω), where ω ≤ 2.376.

We also investigate a tractable aspect of the intractable side (i.e., Horn and
dual Horn relations). We consider the semantic (i.e., model-based) representation
of Horn relations, instead of the traditional syntactic (i.e., formula-based) one.
The model-based representation has been proposed as an alternative form of rep-
resenting and accessing a logical knowledge base, e.g., [10,11,12,20,21,22,24,25].
In contrast to the formula-based representation, if we have the model-based rep-
resentation, that is, if we are given the characteristic set of Horn relations, the
connectivity problem is solvable in polynomial time. This strengthens the re-
sult in [14] that the connectivity problem for DNF formulas can be solved in

2 Actually, they mentioned (without proofs) that the connectivity problem can be
solved in polynomial time for bijunctive and affine relations. Thus, what remains is
to show the exact complexity of the connectivity problem for Horn and dual Horn
relations.

3 We again note that the polynomiality is only mentioned in [17].

On the Boolean Connectivity Problem for Horn Relations 189

polynomial time, since model-based representation M is more compact than
DNF representation. More precisely, for any DNF formula ψ, we have |M | ≤
n|ψ|, where |M | � |ψ| is expected in most cases.

The rest of the paper is organized as follows. In the next section, we review the
basic Boolean concepts and fix notations. Section 3 presents a polynomial-time
algorithm for bijunctive relations, and shows a proof of coNP-completeness for
a set of Horn relations. Section 4 considers the connectivity problem for model-
based representation of Horn relations.

2 Preliminaries

We review the basic concepts of the classification of Boolean constraint satis-
faction problems, which were introduced by Schaefer [30]. A logical relation R
over k Boolean variables, which is called a k-arity relation, is a mapping from
{0, 1}k to {0, 1}. We say that a k-arity relation R is satisfied by an assignment
t ∈ {0, 1}k if and only if R(t) = 1. Let S be a (finite) set of relations, and X
be a set of Boolean variables. An S-constraint over X is defined as the form of
R(y1, · · · , yk) for some k-arity relation R ∈ S and some {y1, · · · , yk} ⊆ X . We
say that a collection ϕ of S-constraints over n variables is satisfied by an as-
signment t ∈ {0, 1}n, denoted by ϕ(t) = 1, if every S-constraint of ϕ is satisfied
by t. We call such an assignment t a satisfying assignment or a solution for ϕ.
In this framework, the satisfiability problem Sat(S) is to decide if there exists
a solution for a given collection ϕ of S-constraints. In this framework, several
problems have been investigated. In this paper, we consider the connectivity
problem, denoted by Conn(S), which was introduced by [17].

Let Hn be the n-dimensional hypercube. Given a collection ϕ of S-constraints
over n variables, we denote by G(ϕ) = (Vϕ, Eϕ) the subgraph of Hn induced by
the solutions of ϕ, that is, Vϕ = {t ∈ {0, 1}n : ϕ(t) = 1}, and (t, t′) ∈ Eϕ for
t, t′ ∈ V if and only if the Hamming distance d(t, t′) between t and t′ is one.
The connectivity problem Conn(S) is to decide if G(ϕ) is connected for a given
collection ϕ of S-constraints. In this paper, we assume that readers are familiar
with the standard notions and notations of graph theory such as path, cycle and
connected component.

Let X be a set of Boolean variables. A literal is a variable x ∈ X or its
negation x, which are respectively called positive and negative. A clause is a
disjunction of literals, whose length is defined as the number of literals in it. A
clause is called unit if its length is one. A formula is called conjunctive normal
form (CNF) if it is a conjunction of clauses. A CNF formula is called 2-CNF if
each clause is of length at most two, and Horn (resp., dual Horn) if each clause
has at most one positive (resp., negative) literal. Given a formula ϕ over X , a
set of {y1, · · · , yk} ⊆ X , and a1, · · · , ak ∈ {0, 1}, we denote by ϕ|y1=a1,··· ,yk=ak

the formula obtained from ϕ by assigning yi to ai for i = 1, · · · , k.
In this paper, we are interested in the connectivity problem Conn(S) with

respect to the following four types of relations.

190 K. Makino, S. Tamaki, and M. Yamamoto

Definition 1. Let R be a relation. We say that R is (1) bijunctive if it is ex-
pressible as a 2-CNF formula, (2) Horn if it is expressible as a Horn formula,
(3) dual Horn if it is expressible as a dual Horn formula, and (4) affine if it is
expressible as a system of linear equations over GF(2).

Definition 2. A set S of relations is Schaefer if at least one of the following
holds: (1) Every relation in S is bijunctive; (2) Every relation in S is Horn; (3)
Every relation in S is dual Horn; (4) Every relation in S is affine.

Since we are concerned with only these four types of relations, we simply deal
with CNF formulas and systems of linear equations over GF(2), instead of rela-
tions representing them.

Given two assignments t, t′ ∈ {0, 1}n, we define a coordinate-wise partial order
≤ as follows: t ≤ t′ if ti ≤ t′i for all 1 ≤ i ≤ n. Given a formula ϕ, we say that
a satisfying assignment t is locally minimal for ϕ if t has no satisfying neighbor
t′ with t′ ≤ t, i.e., ϕ(t′) = 1, d(t′, t) = 1 and t′ ≤ t. Observe that t is locally
minimal for ϕ if and only if, for each i with ti = 1, there exists a clause C in ϕ
that is falsified by flipping the value of ti from t. In the latter case, we say that
t satisfies the locally minimal condition. A path P = t(0), t(1), · · · , t(k) in G(ϕ)
is called monotone (decreasing) if t(i−1) ≥ t(i) for all i = 1, · · · , k.

For the connectivity of Horn formulas, the following characterization is known.

Lemma 1 (Gopalan et al. [17]). Let ϕ be a Horn formula. Then, every com-
ponent of G(ϕ) contains a unique locally minimal assignment. Moreover, every
satisfying assignment is connected to the locally minimal solution in the same
component by a monotone path.

We make use of the following lemma, which is easily derived from the above.

Lemma 2. Let ϕ be a Horn formula without unit clauses over n variables (i.e.,
a Horn formula such that ϕ(0n) = 1). Then, G(ϕ) is connected if and only if
there exists no locally minimal assignment other than 0n.

3 Complexity of the Boolean Connectivity Problems
Within Schaefer

In this section, we provide a polynomial-time algorithm for bijunctive relations,
and a proof of coNP-completeness for a set of Horn relations.

3.1 Tractable Cases for Conn(S)

This subsection shows that Conn(S) is polynomially solvable, if S is either
bijunctive or affine.

First, we briefly see the affine case. We assume without loss of generality
that the underlying variables of a formula appear in the formula. Given an
affine formula ϕ, we note that d(t, t′) ≥ 2 for every pair of (distinct) satisfying
assignments t and t′ for ϕ. From this observation, G(ϕ) is connected if and only

On the Boolean Connectivity Problem for Horn Relations 191

if ϕ has at most one satisfying assignment. Thus, it suffices to check whether ϕ is
satisfiable and whether ϕ is uniquely satisfiable, if so. Any affine formula ϕ with
n variables and m clauses can be regarded as a linear system Ax = b over the
finite field GF(2), where A is an m×n 0-1 matrix, and x and b are respectively
the transposes of (x1, · · · , xn) and a vector in GF(2)n. We can easily see that ϕ
is satisfiable if and only if rank(A) = rank([A,b]), and ϕ is uniquely satisfiable
if and only if rank(A) = rank([A,b]) = n. Since we can obtain the rank of a
matrix in polynomial time, we have the following result.

Theorem 1. Let S be a set of affine relations. Then Conn(S) is polynomially
solvable.

We next consider the bijunctive case, i.e., 2-CNF formulas. In what follows, we
assume that a given 2-CNF formula is satisfiable, since otherwise, we can easily
decide the connectivity.

We first note that we may assume that a given (not necessarily 2-CNF) for-
mula has no unit clause.

Proposition 1. Let ϕ be a formula over {x1, · · · , xn}. For an i with 1 ≤ i ≤ n
and an a ∈ {0, 1}, if Vϕ = Vϕ|xi=a

× {a} (i.e., unit clause xi is implied by ϕ if
a = 1, and xi is implied by ϕ if a = 0), then G(ϕ) is connected if and only if
G(ϕ|xi=a) is connected.

From this proposition, we deal with formulas without unit clauses: If a given
formula ϕ contains a unit clause, say xi, then we regard ϕ|xi=1 as an input
formula. This can be applied until the resulting formula contains no unit clause.
Note that this is possible in linear time.

We next note that a given 2-CNF formula may be assumed to be Horn.

Proposition 2. Let ϕ be a formula over n variables. For an assignment a ∈
{0, 1}n, let ψ be a formula obtained from ϕ by renaming a, i.e., ψ(x) = ϕ(x⊕a),
where ⊕ denotes the component-wise exclusive-or. Then G(ϕ) is connected if and
only if G(ψ) is connected.

Proof. It follows from the fact that d(t, t′) = 1 if and only if d(t⊕ a, t′ ⊕ a) = 1
for any assignments t and t′. �	
From this proposition, we deal with Horn 2-CNF formulas: If a given 2-CNF
formula ϕ is not Horn, then we construct a Horn formula ψ(x) = ϕ(x ⊕ a) by
computing a satisfying assignment a for ϕ. Since ψ(0n) = 1, we can see that ψ
is Horn, and it can be computed in linear time [1].

In what follows, we assume that a given 2-CNF formula ϕ is satisfiable and
Horn without unit clauses, which is equivalent to the condition that ϕ is satisfied
by 0n. We now present a notion of core set, followed by our key lemma.

Definition 3. Let ϕ be 2-CNF formula over X . We say that a subset Y =
{y1, · · · , yk} of X is a core set for ϕ, if k ≥ 2 and ϕ contains clauses y1∨y2, y2∨
y3, · · · , yk−1∨yk, yk∨y1 that form a cycle called a core cycle for ϕ. Furthermore,
we say that a core set Y is satisfiable if ϕ|y=1:y∈Y is satisfiable.

192 K. Makino, S. Tamaki, and M. Yamamoto

Lemma 3. Let ϕ be a 2-CNF formula, which is satisfiable and Horn without
unit clauses. Then, G(ϕ) is connected if and only if there exists no satisfiable
core set for ϕ.

Proof. Since ϕ(0n) = 1 by assumption, we recall Lemma 2, i.e., G(ϕ) is con-
nected if and only if ϕ has no locally minimal non-zero assignment. We first show
the only-if part. Let X = {x1, . . . , xn} be a variable set, and let Y = {x1, · · · , xk}
be a satisfiable core set for ϕ, We assume that ϕ is satisfied by t ∈ {0, 1}n such
that t1 = 1, · · · , tk = 1, tk+1 = 1, · · · , tl = 1, tl+1 = 0, · · · , tn = 0, where
2 ≤ k ≤ l ≤ n. Let t′ be an assignment such that t′ ≤ t and t′j = 0 for exactly
one j with 1 ≤ j ≤ k. Since ϕ contains a core cycle, this means that t′ does
not satisfy ϕ. Hence we have no monotone path from t to 0n, which proves the
only-if part.

We next show the if part. Assume that G(ϕ) is not connected. Then ϕ has a
locally minimal non-zero assignment t, say, t1 = 1, · · · , tl = 1, tl+1 = 0, · · · , tn =
0. Since ϕ is not satisfied by t − e(j), j = 1, · · · , l, where e(j) is the j-th unit
assignment, ϕ contains a xj ∨ xj′ with 1 ≤ j′ ≤ l. This implies that there exists
a core cycle in these clauses. Hence there is a satisfiable core set Y for ϕ such
that Y ⊆ {x1 · · · , xl}, which completes the if part. �	
By this lemma, it is not difficult to see that the connectivity problem for bijunc-
tive relations is solvable in polynomial time.

Let ϕ be a 2-CNF formula ϕ, where we assume that it is satisfiable and Horn
without unit clauses. We construct a directed graph G = (V, E) from ϕ in the
standard way [1]; i.e., V = {x, x : x ∈ X} and E = {(x, y), (y, x) : x∨y ∈ ϕ}. As
shown in [1], G represents implications for ϕ. Namely if G has a path from x to
y, then x = 1 always implies y = 1, i.e., x ∨ y. Note that, by the assumption on
ϕ, each strongly connected component consists of either only positive literals or
only negative literals. Thus by the symmetricity of G (i.e., (x, y) ∈ E if and only
if (y, x) ∈ E), we write strongly connected components in G by Gi = (Vi, Ei)
and G′

i = (V ′
i , E′

i) for 1 ≤ i ≤ k, where Vi ⊆ X and V ′
i = {x : x ∈ Vi}. We note

that any core cycle is contained in a single connected component Gi, and any
connected component Gi with |Vi| ≥ 2 contains a core cycle. Thus it suffices to
check if, for each component Gi = (Vi, Ei) with |Vi| ≥ 2, ϕ|x=1:x∈Vi is satisfiable.
This simply can be done as follows.

Let H = (VH = {Vi, V
′
i : 1 ≤ i ≤ k}, EH) be a directed graph obtained from

G by identifying each connected component to a single vertex.

Lemma 4. Let ϕ be a 2-CNF formula ϕ, which is satisfiable and Horn without
unit clauses, and let H be defined as above. Then G(ϕ) is connected if and only
if, for every Vi with |Vi| ≥ 2, there exists a path in H from Vi to V ′

i .

Proof. Let us first show the if part. Since H has a path from Vi to V ′
i , x = 1,

x ∈ Vi, always implies x = 1. Thus we have no satisfiable core set for ϕ, which
proves the if part by Lemma 3.

On the other hand, if G(ϕ) is connected, we have no satisfiable core set for ϕ.
Since any core set is contained in a connected component, say Vi, ϕ|x=1:x∈Vi is

On the Boolean Connectivity Problem for Horn Relations 193

unsatisfiable. This means that H contains two directed paths P1 from Vi to Vj

and P2 from Vi to V ′
j for some j. By the symmetricity of H , P2 implies that H

has a path P3 from Vj to V ′
i . Therefore, by concatenating P1 and P3, we have a

path from Vi to V ′
i . �	

It follows from Lemma 4 that the connectivity problem for bijunctive relations
can be solved in O(n|ϕ|) time by checking the existence of n paths in H , where
we note that H can be computed in linear time. If we first compute the transitive
closure H∗ of H , it can be computed in Õ(nω) time, where ω ≤ 2.376 and this
is the current best bound for computing the transitive closure of a graph with
n vertices.

Formally, our algorithm can be described in Figure 1.

two-sat-conn(ϕ) /* ϕ: a 2-CNF formula over X */

If ϕ is not satisfiable, then we output YES and halt.

Update ϕ to a Horn 2-CNF formula without unit clauses by using a satisfying
assignment a for ϕ.

Construct a directed graph G = (V, E) from ϕ by V = {x, x : x ∈ X} and
E = {(x, y), (y, x) : x ∨ y ∈ ϕ}.
/* Let Gi = (Vi, Ei) and G′

i = (V ′
i , E′

i), 1 ≤ i ≤ k, be the strongly connected
components of G, where Vi ⊆ X and V ′

i = {x : x ∈ Vi}. */

Construct H from G by identifying each connected component to a single vertex.

for each Vi of V1, · · · , Vk

if |Vi| ≥ 2 and there is no path in H from Vi to V ′
i , then output NO and halt.

end-for-each

Output YES.

end-of-two-sat-conn

Fig. 1. An algorithm for bijunctive relations

Lemma 5. Let ϕ be a 2-CNF formula of n variables. Then two-sat-conn(ϕ)
correctly solves the connectivity problem for ϕ in O(min{n|ϕ|, T (n)}) time, where
T (n) denotes the time needed to compute the transitive closure of a directed graph
of n vertices.

Therefore, we have the following positive result.

Theorem 2. Let S be a set of bijunctive relations. Then Conn(S) is polyno-
mially solvable.

3.2 CoNP-Hardness for Relations in Horn and Dual Horn

In this subsection, we prove our main theorem.

194 K. Makino, S. Tamaki, and M. Yamamoto

Theorem 3. Let S be a set of Horn (dual Horn) relations of arity 3. Then
Conn(S) is coNP-complete.

We only consider Horn relations S and show that the complement of Conn(S)
is NP-complete, since dual Horn relations are handled in a similar way.

First we give a necessary and sufficient condition for non-connectivity of Horn
relations. In this section, we assume w.o.l.g. formulas contain no unit clause.
By Lemma 2, a Horn formula is not connected if and only if there exists a
locally minimal non-zero satisfying assignment, which can be represented by the
following Boolean formula.

Φ(ϕ) = ϕ ∧
∧

xi∈X

⎛

⎝xi ∨
(∨

C∈ϕ:P (C)={xi}

∧

y∈N(C)

y
)
⎞

⎠ . (1)

Here, for a clause C, P (C) and N(C) respectively denote sets of variables that
occur positively and negatively in C. Note that if {C ∈ ϕ : P (C) = {xi}} is
empty, then (

∨
C∈ϕ:P (C)={xi}

∧
y∈N(C) y) is interpreted as false.

Lemma 6 (Logical formulation of non-connectivity). Let ϕ be a Horn
formula without unit clauses. Then there exists a locally minimal non-zero as-
signment of ϕ if and only if Φ(ϕ) is satisfied by a non-zero assignment.

Proof. For the if part, let t be a non-zero satisfying assignment of Φ(ϕ). Note that
t also satisfies ϕ. To confirm that this t satisfconnected.ies the locally minimal
condition, pick an arbitrary variable xi such that ti = 1. Since t satisfies xi ∨
∨

C∈ϕ:P (C)={xi}
(∧

y∈N(C) y
)
, ϕ contains a clause C such that t satisfies

∧
y∈N(C)

y, which implies that t− e(i) does not satisfy ϕ. Here e(i) denotes the i-th unit
assignment. This completes the if part.

For the only-if part, let t be a locally minimal non-zero assignment of ϕ.
For all xi ∈ X , we show that t satisfies xi ∨

∨
C∈ϕ:P (C)={xi}

(∧
y∈N(C) y

)
. It is

obvious for xi with ti = 0. For xi with ti = 1, we have a clause C in ϕ such that
P (C) = {xi} and N(C) ⊆ {xj ∈ X : tj = 1}. This proves the claim. �	
By Lemmas 2 and 6, we have the following characterization.

Corollary 1 (Characterization of non-connectivity). Let ϕ be a Horn for-
mula without unit clauses. Then G(φ) is non-connected if and only if Φ(ϕ) is
satisfied by a non-zero assignment.

Now we are ready to prove the theorem.

The proof of Theorem 3. It follows from Proposition 1 and Corollary 1 that the
complement of Conn(S) for Horn relations S belongs to NP . To show the NP-
hardness, we reduce to it 3-Uniform Hypergraph 2-Colorability, which
is known to be NP-complete (see SP4 in [16]). Let H = (V, E) be a 3-uniform
hypergraph, where a hypergraph is called 3-uniform if |E| = 3 holds for all E ∈ E .
From H with E = {E1, · · · , Ek}, we construct a 3-CNF Horn formula ϕH over a

On the Boolean Connectivity Problem for Horn Relations 195

variable set X ∪X ′ ∪ Y ∪Z ∪ {q}, where X = {xv : v ∈ V }, X ′ = {x′
v : v ∈ V },

Y = {yE : E ∈ E} and Z = {zi : i = 1, 2, . . . , k − 2}, as follows:

ϕH ≡
∧

E∈E

(
∨

v∈E

xv

)

∧
∧

E∈E

(
∧

v∈E

(yE ∨ xv)

)

(2)

∧ (yE1
∨ yE2

∨ z1) ∧
k−3∧

i=1

(zi ∨ yEi+2
∨ zi+1) ∧ (zk−2 ∨ yEk

∨ q) (3)

∧
∧

v∈V

(

(xv ∨ x′
v ∨ q)(xv ∨ x′

v ∨ q)

)

. (4)

Example 1. LetH = (V, E) be a 3-uniform hypergraph defined by V = {1, 2, 3, 4}
and E = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. Then ϕH is given by

ϕH = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x4)(x1 ∨ x3 ∨ x4)(x2 ∨ x3 ∨ x4)
∧ (yE1 ∨ x1)(yE1 ∨ x2)(yE1 ∨ x3)(yE2 ∨ x1)(yE2 ∨ x2)(yE2 ∨ x4)
∧ (yE3 ∨ x1)(yE3 ∨ x3)(yE3 ∨ x4)(yE4 ∨ x2)(yE4 ∨ x3)(yE4 ∨ x4)
∧ (yE1

∨ yE2
∨ z1)(z1 ∨ yE3

∨ z2)(z2 ∨ yE4
∨ q)

∧ (x1 ∨ x′
1 ∨ q)(x1 ∨ x′

1 ∨ q)(x2 ∨ x′
2 ∨ q)(x2 ∨ x′

2 ∨ q)
∧ (x3 ∨ x′

3 ∨ q)(x3 ∨ x′
3 ∨ q)(x4 ∨ x′

4 ∨ q)(x4 ∨ x′
4 ∨ q).

Lemma 7. Let H be a 3-uniform hypergraph and ϕH be a Horn formula con-
structed from H as above. Then H is 2-colorable if and only if G(ϕH) is non-
connected.

Proof. Since ϕH constructed from a given H contains no unit clause by 3-
uniformity of H, we make use of the characterization of non-connectivity. The
corresponding formula Φ(ϕH) in (1) can be written as follows:

Φ(ϕH) = ϕH ∧
∧

E∈E

(

yE ∨
∨

v∈E

xv

)

(5)

∧ (z1 ∨ yE1 yE2) ∧
k−3∧

i=1

(zi+1 ∨ yEi+2 zi) ∧ (q ∨ yEk
zk−2) (6)

∧
∧

v∈V

(

(xv ∨ x′
vq)(x′

v∨ xvq)

)

. (7)

Example 2. For a 3-uniform hypergraph H in Example 1, we have

Φ(ϕH) = ϕH ∧ (yE1
∨ x1 ∨ x2 ∨ x3)(yE2

∨ x1 ∨ x2 ∨ x4)
∧ (yE3

∨ x1 ∨ x3 ∨ x4)(yE4
∨ x2 ∨ x3 ∨ x4)

∧ (z1 ∨ yE1yE2)(z2 ∨ yE3z1)(q ∨ yE4z2)

196 K. Makino, S. Tamaki, and M. Yamamoto

∧ (x1 ∨ x′
1q)(x′

1 ∨ x1q)(x2 ∨ x′
2q)(x′

2 ∨ x2q)
∧ (x3 ∨ x′

3q)(x′
3 ∨ x3q)(x4 ∨ x′

4q)(x′
4 ∨ x4q).

To see the condition that Φ(ϕH) is satisfied by a non-zero assignment, we consider
two cases depending on the value of q.

Fact 1. Φ(ϕH)|q=0 is satisfied only if all the remaining variables are set to be 0.

Proof. Setting q = 0 induces unit clauses xv, x′
v for every v ∈ V by (7). This,

together with (5) induces unit clause yE for every E ∈ E . Again, this, together
with (6) induces unit clause zi for every i. These imply Fact 1. �	
Fact 2. Φ(ϕH)|q=1 is satisfiable if and only if H is 2-colorable.

Proof. Setting q = 1 induces (z1 ∨ yE1 yE2) ∧
∧k−3

i=1 (zi+1 ∨ yEi+2 zi) ∧ (yEk
zk−2)

by (6), i.e., yEi = zi = 1 for all i. Thus we can simplify Φ(ϕH)|q=1 as follows:

Φ(ϕH)|q=1 =
∧

E∈E

(
(∨

v∈E

xv

)

∧
(
∨

v∈E

xv

)
)

(8)

∧
∧

v∈V

(

(xv ∨ x′
v)(xv ∨ x′

v)

)

. (9)

Here we note that (8) is obtained from (2) and (5), while (9) is obtained from
(7). It is easy to see that (8) is satisfiable if and only if H is 2-colorable. Since
(9) just forces xv = x′

v for every v ∈ V , we have Fact 2. �	
These facts, combined with Corollary 1, prove Lemma 7. �	
This completes the proof of Theorem 3. �	

4 Horn Relations Represented by Characteristic Sets

In this section, we investigate a tractable aspect of Horn and dual Horn relations.
Specifically, we show that if we are given the characteristic set of Horn relations,
the connectivity problem is solvable in polynomial time.

We recall that Horn relations have a well-known semantical characterization.
Let for assignments t, t′ ∈ {0, 1}n denote t

∧
t′ their component-wise AND,

and let for a set of assignment M ⊆ {0, 1}n denote Cl∧(M) the closure of M
under

∧
. Then, for every M ⊆ {0, 1}n, it holds that M is the set of satisfying

assignments for some Horn formula ϕ (i.e, M = Vϕ) if and only if M = Cl∧(M)
[29] (see e.g., [10,24] for proofs). Namely, the set of satisfying assignments of
a Horn formula is closed under the intersection

∧
, and any set of assignments

which is closed under the intersection can be represented by a Horn formula.
By this characterization, it is easy to see that any Horn formula has a unique
minimal satisfying assignment. Here a satisfying assignment t for ϕ is called

On the Boolean Connectivity Problem for Horn Relations 197

minimal (resp., maximal) if there exists no other satisfying assignment t′ for ϕ
such that t′ ≤ t (resp., t′ ≥ t). By definition, minimal assignments for ϕ are
locally minimal, but not vice versa.

As discussed by Kautz et al. [20], a Horn formula ϕ is semantically represented
by its characteristic assignment, where v ∈ Vϕ is called characteristic (or extreme
[10]), if v �∈ Cl∧(Vϕ \ {v}). The set of all characteristic assignments of ϕ, the
characteristic set of ϕ, is denoted by char(ϕ). Note that char(ϕ) is unique and
that char(ϕ) contains all maximal satisfying assignments for ϕ.

Lemma 8. For a Horn formula ϕ, let t∗ be the unique minimal satisfying assign-
ment for ϕ. Then G(ϕ) is connected if and only if, for each maximal satisfying
assignment t for ϕ, G(ϕ) contains a monotone path between t∗ and t.

Proof. Since the only-if part is easily derived from Lemma 1, we only show the
if part. We assume that, for each maximal assignment t of ϕ, G(ϕ) contains a
monotone path from t to t∗. We show that there is no locally minimal assignment
other than t∗. This, together with Lemma 1 implies that G(ϕ) is connected.

Let v be an arbitrary satisfying assignment for ϕ which is neither maximal nor
minimal. Let t be a maximal assignment such that t ≥ v. Since G(ϕ) contains
a monotone path from t to t∗, there exists an edge (u, w) in the path such
that u ≥ v and v � (v ∧ w). Note that v ∧ w is a satisfying assignment, and
d(v, v ∧ w) = 1. This means that v is not locally minimal. �	
By Lemma 8, the following simple algorithm checks the connectivity of Horn
relations represented by the characteristic set.

Since t ∈ Vϕ if and only if t =
∧

v∈char(ϕ):v≥t v, for each assignment t in
char(ϕ) that includes maximal assignments for ϕ, the algorithm checks if G(ϕ)
contains a monotone path between t and t∗. Thus, from Lemma 8, algorithm
horn-sat-conn-from-charset(ϕ) checks the connectivity of Horn functions.

horn-sat-conn-from-charset(char(ϕ))

/* char(ϕ): the characteristic set of a Horn formula ϕ */

Let t∗ :=
∧

t∈char(ϕ) t and M := char(ϕ)

while (M �= {t∗})
Let t be an arbitrary element in M \ {t∗}
if there exists an index j s.t. tj = 1 and t − e(j) =

∧
v∈char(ϕ):v≥t−e(j) v

then M := (M \ {t}) ∪ {t − e(j)}
Otherwise, output NO and halt

end-while

Output YES

end-of-horn-sat-conn-from-charset

Fig. 2. A naive algorithm for the Horn connectivity from the characteristic set

198 K. Makino, S. Tamaki, and M. Yamamoto

Theorem 4. Given the characteristic set char(ϕ) of a Horn formula ϕ, algo-
rithm horn-sat-conn-from-charset(ϕ) checks its connectivity in O(n3|char
(ϕ)|2) time.

Proof. Since the correctness of the algorithm follows from Lemma 8 and the
discussion before the description, we only show its time complexity.

Clearly, we can initialize M and t∗ in O(n|char(ϕ)|) time. For each t ∈ M \
{t∗}, we can test if there exists an index j such that tj = 1 and t − e(j) =∧

w∈char(ϕ):w≥t−e(j) w in O(n2|char(ϕ)|) time. Since we have at most n|char(ϕ)|
such t’s, this requires O(n3|char(ϕ)|2) time. Therefore, in total, the algorithm
requires O(n3|char(ϕ)|2) time. �	
We now improve the complexity. For an assignment t, let St = {j | tj = 0}. It

horn-sat-conn-from-charset2(char(ϕ))

/* char(ϕ): the characteristic set of a Horn formula ϕ */

Let t∗ :=
∧

t∈char(ϕ) t

for each t of char(ϕ)

Let S := {Sv | v ∈ char(ϕ)} and X := St

while (∃S ∈ S with |S \ X| ≤ 1)

Let S be an arbitrary element in S
if |S \ X| = 0, then S := S \ {S}
if |S \ X| = 1, then S := S \ {S} and X := X ∪ S

end-while

if X �= St∗ , then output NO and halt

end-for-each

Output YES

end-of-horn-sat-conn-from-charset2

Fig. 3. A faster algorithm for the Horn connectivity from the characteristic set

is not difficult to see that algorithm horn-sat-conn-from-charset2(char(ϕ))
checks the connectivity of a Horn formula ϕ: In the for-loop, we check if there
exists a monotone path from each t ∈ char(ϕ) to t∗. In the while-loop, we
maintain a variable set X such that the corresponding assignment tX (i.e., tXj = 0
if j ∈ X , and 1 otherwise) is reachable from t by a monotone path. Observe that
tX is not locally minimal if and only if there is a set S in the current S such
that |S \X | = 1. Moreover, the while-loop requires O(n|char(ϕ)|) time, if S is
stored in the proper data structure. Thus we have the following theorem.

Theorem 5. Given the characteristic set char(ϕ) of a Horn formula ϕ, algo-
rithm horn-sat-conn-from-charset2(ϕ) checks its connectivity in O(n|char
(ϕ)|2) time.

On the Boolean Connectivity Problem for Horn Relations 199

Remark 1. This strengthens the result in [14] that the connectivity problem for
DNF formulas can be solved in polynomial time, since the characteristic set
char(ϕ) is more compact than DNF representation ψ. More precisely, for any
DNF formula ψ, we have |char(ϕ)| ≤ n|ψ|, where |char(ϕ)| � |ψ| is expected
in most cases.

Remark 2. For Horn relations, formula-based (i.e., CNFs) and model-based
(characteristic sets) representations are orthogonal in the sense that the one
side may be exponentially larger than the other one. Therefore, the results in
this section do not conflict with Theorem 3 in the previous section. We further
remark that the transformation between a Horn formula ϕ and the characteristic
set char(ϕ) is at least as difficult as the monotone dualization problem [22,23],
which is known to be solved in output quasi-polynomial time [13,15].

Acknowledgement

The authors thank anonymous referees for valuable comments.

References

1. B. Aspvall, M. F. Plass and R. E. Tarjan. A linear-time algorithm for testing the
truth of certain quantified Boolean formulas. Information Processing Letters 8;
pp. 121-123, 1979.

2. D. Achlioptas and F. Ricci-Tersenghi. On the solution-space geometry of random
constraint satisfaction problems. in Proceeding of 38th ACM Symposium on Theory
of Computing, pp. 130–139, 2006.

3. E. Boros, T. Crama, P. L. Hammer, and M. E. Saks, A Complexity Index for
Satisfiability Problems, SIAM J. Comput., 23(1), pp4̇5-49, 1994.

4. A. Bulatov. A dichotomy theorem for constraints on a three-element set. in Proceed-
ing of 43rd IEEE Symposium on Foundations of Computer Science, pp. 649–658,
2002.

5. V. Chandru and J. N. Hooker, Extended Horn sets in propositional logic, J. ACM,
38(1), pp2̇05-221, 1991.

6. N. Creignou. A dichotomy theorem for maximum generalized satisfiability prob-
lems. Journal of Computer and System Sciences, 51: pp. 511-522,1995.

7. N. Creignou and M. Hermann. Complexity of generalized satisfiability counting
problems. Information and Computation, 125: pp. 1-12, 1996.

8. N. Creignou, S. Khanna, and M. Sudan. Complexity classification of Boolean con-
straint satisfaction problems. SIAM Monographs on Discrete Mathematics and Ap-
plications, 2001.

9. N. Creignou and B. Zanuttini. A complete classification of the complexity of propo-
sitional abduction. SIAM Journal on Computing, 36: pp. 207 - 229, 2006.

10. R. Dechter and J. Pearl. Structure identification in relational data. Artificial
Intelligence, 58: pp. 237–270, 1992.

11. T. Eiter, T. Ibaraki and K. Makino. Computing intersections of Horn theories for
reasoning with models. Artificial Intelligence 110: pp. 57-101, 1999.

200 K. Makino, S. Tamaki, and M. Yamamoto

12. T. Eiter and K. Makino. Generating all abductive explanations for queries on propo-
sitional Horn theories, KBS Research Report INFSYS RR-1843-03-09, Institute of
Information Systems, Vienna University of Technology, 2006.

13. T. Eiter, K. Makino, and G. Gottlob. Computational aspects of monotone dualiza-
tion: A brief survey. KBS Research Report INFSYS RR-1843-06-01, Institute of
Information Systems, Vienna University of Technology, 2006.

14. O. Ekin, P. L. Hammer and A. Kogan. On connected Boolean functions. Discrete
Applied Mathematics, 96–97: pp. 337–362, 1999.

15. M. L. Fredman and L. Khachiyan. On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms, 21: pp. 618–628, 1996.

16. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1978.

17. P. Gopalan, P. G. Kolaitis, E. N. Maneva, and C. H. Papadimitriou. The con-
nectivity of Boolean satisfiability: Computational and structural dichotomies. in
Proceeding of 33rd International Colloquium on Automata, Languages and Pro-
gramming (ICALP’06), pp. 346-357, 2006.

18. L. Juban. Dichotomy theorem for the generalize unique satisfiability problem. in
Proceedings of 12ht International Symposium of Fundamentals of Computation
Theory, LNCS 1684: pp. 327-337, 1999.

19. L. Kirousis and P. Kolaitis. The complexity of minimal satisfiability problems.
Information and Computation, 187: pp. 20-39, 2003.

20. H. Kautz, M. Kearns, and B. Selman. Reasoning With characteristic models. In
Proceedings AAAI-93, pp. 34–39, 1993.

21. H. Kautz, M. Kearns, and B. Selman. Horn approximations of empirical data.
Artificial Intelligence, 74: pp. 129–245, 1995.

22. D. Kavvadias, C. Papadimitriou, and M. Sideri. On Horn envelopes and hyper-
graph transversals. In W. Ng, editor, Proceedings 4th International Symposium on
Algorithms and Computation (ISAAC-93), LNCS 762, pages 399–405, Hong Kong,
December 1993.

23. R. Khardon. Translating between Horn representations and their characteristic
models. Journal of AI Research 3: pp. 349-372, 1995.

24. R. Khardon and D. Roth. Reasoning with models. Artificial Intelligence, 87(1/2):
pp. 187–213, 1996.

25. R. Khardon and D. Roth. Defaults and relevance in model-based reasoning. Arti-
ficial Intelligence, 97: pp. 169–193, 1997.

26. D. Kavvadias and M. Sideri. The inverse satisfiability problem. SIAM Journal on
Computing, 28: pp. 152-163, 1998.

27. S. Khanna, M. Sudan, L. Trevisan, and D. Williamson. The approximability of
constraint satisfaction problems. SIAM Journal on Computing, 30: pp. 1863-1920,
2001.

28. H. R. Lewis, Renaming a set of clauses as a Horn set, J. ACM, 25, pp. 134-135,
1978.

29. J. McKinsey. The decision problem for some classes of sentences without quanti-
fiers. Journal of Symbolic Logic, 8: pp. 61–76, 1943.

30. T. J. Schaefer. The complexity of satisfiability problems. in Proceeding of 10th
ACM Symposium of Theory of Computing, pp. 216-226, 1978.

31. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer,
2003.

A First Step Towards

a Unified Proof Checker for QBF

Toni Jussila1, Armin Biere1, Carsten Sinz2,
Daniel Kröning3, and Christoph M. Wintersteiger3

1 Formal Models and Verification, Johannes Kepler University, Linz
2 Wilhelm-Schickard-Institute for Computer Science, University of Tübingen

3 Computer Systems Institute, ETH Zürich

Abstract. Compared to SAT, there is no simple concept of what a solu-
tion to a QBF problem is. Furthermore, as the series of QBF evaluations
shows, the QBF solvers that are available often disagree. Thus, proof
generation for QBF seems to be even more important than for SAT.
In this paper we propose a new uniform proof format, which captures
refutations and witnesses for a variety of QBF solvers, and is based on
a novel extended resolution rule for QBF. Our experiments show the
flexibility of this new format. We also identify shortcomings of our for-
mat and conjecture that a purely resolution based proof calculus is not
powerful enough to trace the most efficient solvers.

1 Introduction

The decision problem for the logic of Quantified Boolean Formulas (QBF) is the
canonical PSPACE-complete problem. A vast number of problems can succinctly
be formulated in QBF. Every finite two-player game can be modeled in QBF
[1, 2]. A multitude of AI planning [3, 4, 5], and modal logic problems [6] can
be formulated in QBF, but also unbounded and bounded model checking for
finite-state systems [7, 8, 9], as well as other formal verification problems [10, 5].

There exist many different flavors of QBF solvers, based on DPLL [11, 12,
13, 14, 15, 16], Q–Resolution [17], BDDs [18], Skolemization [19] or Hyper Bi-
nary Resolution [20]. However, state-of-the-art QBF solvers are not yet reliable
enough. The validity of many hard instances at recent QBF competitions had
to be ‘guessed’ by means of a majority vote of the contestants, and often the
solvers disagree [21].

Certificates for the decision problem of propositional logic (SAT) are easy to
define. For satisfiable instances, solvers provide a satisfying assignment, and in
case of an unsatisfiable instance, a resolution proof is computed. In both cases,
the output can be verified easily by means of efficient (polynomial) and easy-
to-inspect proof checkers. The satisfying assignment, or the resolution proof,
correspond to a certificate of the correctness of the result. In case of SAT, these
certificates serve many additional purposes: for example, satisfying assignments
are often used as counterexamples. Resolution proofs are often used as an input

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 201–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

202 T. Jussila et al.

for other algorithms. As an example, the computation of Craig interpolants relies
on a resolution proof.

A certificate in the context of QBF refers to a proof of validity or invalidity
of a formula. As in the case of unquantified SAT, certificates can serve dual
purposes: first, they establish trust in the correctness of the result. The second
motivation is to use certificates as input to other algorithms. When formulating
a two–player game as a QBF, we wish to determine if there exists a winning
strategy. If so, we are also interested in the strategy itself. Besides knowing that
we can win the game, we also want to know how to win. The same holds for
invalid formulas: not only do we want to know that a formula is invalid, we also
want to find out why there is no solution and we wish to convince ourselves of
that fact in a, preferably, concise way.

As shown by Tseitin [22], allowing definitions of fresh variables in Boolean
formulas can exponentially shorten refutations. In this paper, we extend Tseitin’s
result to the quantified setting. We apply it in our proposal for a certificate
format, which allows variable definitions of predefined structure to simplify the
extension of QBF solvers with certificate generation code.

To the best of our knowledge, there exist only two suggestions for QBF cer-
tificates: One in the form of an “inference log”, from which a BDD–based model
or a refutation for a QBF can be reconstructed [23], and a method to gener-
ate unsatisfiable cores from traces of search–based solvers [24]. (In the QBF
setting—similar to propositional logic—an unsatisfiable core is a subset of the
clauses of a QBF formula in prenex normal form, which is still unsatisfiable.)

The first approach probably does not scale well because of the growth of the
BDDs. For some instances it takes considerably more time to reconstruct the
model from the inference log than it took to generate the model in the first
place [23]. The inference log that is provided can serve as a refutation trace.
However, due to five different inference strategies that the solver can choose,
there are many different kinds of instructions in the inference logs. Among them
are context switches between inference styles, explicit and symbolic variants
of inference rules, such as resolution, substitution, and assignment, but also
rollback and commit operations to undo earlier operations, as well as “other
control information” [23]. This set of instructions, tailored to keep the overhead
of the solver as small as possible, results in the need for a heavyweight proof
checker.

The second approach provides only an unsatisfiable core and depends on the
particular QBF solver used. In essence, both approaches just “trace”, what the
solver is doing and are thus far from a unified format that could be used to
certify the computation of QBF solvers based on totally different algorithms.

However, our proposal is only a first step towards a uniform format. It clearly
lacks the ability to capture important features of certain QBF solvers, such as
long distance resolution [12], and expansion [17, 19]. We conjecture that the
extension rule is not enough to linearly trace the proof process of such solvers.

Our extension rule is described in Section 2, and we discuss how to apply
it to the major QBF solving algorithms. In order to evaluate the overhead of

A First Step Towards a Unified Proof Checker for QBF 203

generating certificates, we extend three different solvers with this capability.
These implementations are described in Sec. 3. We provide the results of the
evaluation in Sec. 4.

2 Theory

We consider closed Quantified Boolean Formulas (QBF) in prenex normal form.
Thus, a formula is the concatenation of a quantifier prefix and a matrix of clauses.
Let V be an infinite set of variables and let Ω : V → {∃, ∀} be a function that
marks variables either as existential (∃) or as universal (∀). We define an order
< over V such that x1 < x2 for x1, x2 ∈ V iff x2 is in the scope of x1, i.e.,
‘larger’ variables are in the scope of ‘smaller’ variables.

The set of literals contains all variables and their negations ¬v with v ∈ V .
As usual, we extend the notion of negation to literals and identify ¬¬v with
v. We also extend the order < and Ω to literals in the natural way (without
ordering the two literals of a variable). A clause is a disjunction of literals. A
clause is trivial if it contains a literal and its negation. An empty clause is a
clause without literals. A quantified formula in conjunctive normal form (CNF)
is a conjunction of clauses. We assume the quantifier prefix Ω to be implicitly
given, and do not mention it explicitly. In the following we just use the term
formula to denote a quantified formula in CNF. A formula without clauses is
called the empty formula.

A variable of a formula is called the innermost (resp. the outermost) variable if
it is maximal (resp. minimal) among all variables of the formula with respect to
the order <. The semantics [[f]] of a formula f is defined recursively by expanding
the outermost variable x of a formula f as follows. If Ω(x) = ∃ then define [[f]]
as [[f{x ← 0}]] ∨ [[f{x ← 1}]], where the cofactor f{x ← c} of f is f in which
every occurrence of x is replaced by the Boolean constant c. More precisely, for
c = 0, clauses containing ¬x are deleted and x is removed from all clauses, and
similarly for c = 1. If Ω(x) = ∀, let [[f]] = [[f{x← 0}]] ∧ [[f{x← 1}]]. Note that
empty clauses (resp. formulas) are equivalent to the Boolean constant 0 (resp. 1)
and are thus invalid (resp. valid).

Two non-trivial clauses C and D can be resolved iff C contains a literal l
and D its negation ¬l. The result of a resolution is the resolvent clause, which
is obtained as a disjunction of all literals in C and D except l and ¬l. This
is the same definition as for unquantified formulas. If a clause C contains a
universal literal l that is larger than all existential literals in C, then it can be
removed from C. The process of removing literals according to this rule is called
forall-reduction [25, 17] and the result obtained from repeated application until
no more literals can be removed is called the forall-reduct of C. A Q-resolution
step consists of a resolution step followed by forall-reduction of the resolvent.

The calculus described above is able to simulate the resolution-based, sound,
and complete refutation calculus of [25]. This also allows tracing refutation proofs
of QBF solvers based on DPLL [15] efficiently, even with further optimizations

204 T. Jussila et al.

such as trivial falsity [15], SAT and QBF based learning [5, 12, 16], and hyper
binary resolution [20].

We conjecture that in order to trace other algorithms – for instance, algo-
rithms that are structural or BDD-based – a much stronger proof system is
necessary. In order to obtain such a stronger proof system, which is one of our
main contributions in this paper, we add the following quantified extension rule.
It is an adaptation of the classical extension rule [22] to the quantified setting.

Definition 1 (Quantified Extension Rule). Let y be a fresh variable, which
does not occur in formula f , and let g be a formula that may only contain y and
variables in f . Furthermore, we demand that for any assignment to variables in
f there exists an assignment to y that satisfies g. We also require Ω(y) = ∃ and
z ≤ y for all variables z in g. Then the Quantified Extension Rule extends f by
g, i.e., it adds g conjunctively to f . We then call y a defined variable and g a
definition for y with respect to f .

Note that g does not need to enforce a functional dependency of y on other
variables in g. As a relation, g has to be total, e.g., it cannot define a partial
function, but it can be non-deterministic, e.g., the value of y does not need
to be unique. This is a slight generalization of the classical extension rule for
propositional logic [22].

In adapting the extension rule to the QBF setting, the crucial question is
where to “put” new variables, e.g., how defined variables are ordered with re-
spect to variables that already occur in the formula. It seems intuitive that new
variables can only be existential. It is also clear that they cannot be moved fur-
ther out than the innermost variable on which they depend. In the experimental
section we show that we actually need this freedom to move defined variables
as far out as possible. Keeping them in the innermost existential scope, as for
instance in the Tseitin encoding of a non–CNF QBF formula, is insufficient.

To enforce that proofs are polynomially checkable, one can fall back to the
original idea of Tseitin [22] and restrict the set of functions that can be defined
and the way they are encoded in to clauses. This is what we suggest to use in
practice. Useful functions are the constants, equality, negation, if-then-else and
conjunction. Conjunction is sufficient:

Definition 2 (Restricted Quantified Extension Rule). Let l, r be two lit-
erals over variables in the formula f , and y be a fresh variable, which does not
occur in f . Let g be the conjunction of the following 3 clauses (y ∨ l), (y ∨ r),
and (y ∨ l∨ r). We also require Ω(y) = ∃ and z ≤ y for all variables z in g. The
formula f can be extended by adding g.

The soundness of the restricted rule follows from the soundness of the generic
rule, which is proved next. It turns out that this rule is enough to produce proofs
from refutations of our BDD-based QBF solver Ebddres in linear time. Refer
to Sec. 4 for details.

For the proof of the following theorem we need the distributivity of substitu-
tion (resp. cofactoring) over Boolean operators, which we formulate for conjunc-
tions as follows without proof:

A First Step Towards a Unified Proof Checker for QBF 205

Lemma 1. (f ∧ g){x← c} ≡ f{x← c} ∧ g{x← c}
Note that the post-fix operator for substitution has greater binding power than
Boolean operators. The right hand side of the equivalence in the Lemma is thus
read as (f{x← c})∧ (g{x← c}). In the following we will omit parenthesis as in
Lemma 1 whenever possible. The next theorem shows that adding definitions is
sound and does not change the semantics of a formula.

Theorem 1 (Soundness of Quantified Extension Rule). Let g be a defi-
nition for y with respect to f . Then [[f]] = [[f ∧ g]].

Proof. The proof is by induction on the number of variables in f∧g. Let x be the
outermost variable in f ∧ g. First assume that x is different from y, the variable
defined by g, and Ω(x) = ∃. The definitions and the lemma imply:

[[f ∧ g]] = [[(f ∧ g){x← 0}]] ∨ [[(f ∧ g){x← 1}]]
= [[f{x← 0} ∧ g{x← 0}]] ∨ [[f{x← 1} ∧ g{x← 1}]]
= [[f{x← 0}]] ∨ [[f{x← 1}]] = [[f]]

In the next to last step we have to apply the induction hypothesis twice for the
definitions g{x← c} with respect to f{x← c}. The second case with Ω(x) = ∀
is identical, except that all the disjunctions ‘∨’ are replaced by conjunctions ‘∧’.

In the base case we assume that x = y. From the definition of the extension
rule, we know that Ω(x) = ∃, and that x does not occur in f . Since all variables
z in g have to be smaller or equal to y, g is either constant or only contains y
as variable. Therefore g is either equivalent1 to the Boolean constant 1, to the
literal ¬x, or to the literal x. Otherwise, it is impossible to satisfy g by assigning
a value to x. If g ≡ 1, then [[f ∧ g]] = [[f ∧ 1]] = [[f]]. Without loss of generality,
assume g ≡ x. Then

[[f ∧ g]] = [[(f ∧ g){x← 0}]] ∨ [[(f ∧ g){x← 1}]]
= [[f{x← 0} ∧ g{x← 0}]] ∨ [[f{x← 1} ∧ g{x← 1}]]
= [[f ∧ g{x← 0}]] ∨ [[f ∧ g{x← 1}]]
= [[f ∧ 0]] ∨ [[f ∧ 1]] = [[f]]

��
Expansions as in Quantor [17] and long distance resolution as in Quaffle [12]
allow some kind of reasoning across quantifier alternations. With expansions
it is in principle possible to resolve clauses on outer variables that stem from
different copies of the expanded clauses. Similarly, long distance resolution allows
to compactly capture in a learned clause the effect of propagating information
from an outer existential scope through an universal quantifier into an inner
existential scope and back to the outer existential scope.

Currently we do not know how to efficiently simulate expansions and long
distance resolution in our proof format. We conjecture that an even stronger
proof system is necessary for this purpose.
1 with respect to equivalence of propositional unquantified formulas [16].

206 T. Jussila et al.

Definition 3 (Model). Let Vi be the set of variables in a formula that have
a quantification level less than or equal to i and let Ei and Ai be the sets of
existentially resp. universally quantified variables in Vi, i.e., Ei ∪ Ai = Vi. A
model M of the formula is then a set of functions

M := {fvk
: B

k−1 → B | vk ∈ En},

where every fvk
depends exactly on the k − 1 variables from Vk−1.2

This definition is essentially the same as the one used by Kleine Büning [26]. It is
also used in sKizzo [27] to certify satisfiable resp. valid instances. The functions
fv are also called Skolem-functions. Using our extension rule we can provide a
model as a set of extensions to the formula by defining new variables representing
the value of the Skolem functions. Our certificate thus contains a list of pairs of
the form (v, fv) where fv is the fresh variable encoding the Skolem-function for
v. With this approach, we have implemented model generation for two solvers,
Ebddres and Squolem, presented in detail in Sect. 3. A general discussion for
model generation with the extension rule for different QBF solvers is presented
below.

As discussed above, new variables have to be ordered carefully. If they are
simply quantified in the innermost scope, the corresponding function could de-
pend on variables with higher quantification level than the one that it serves as
a model for. For example, in a formula with the quantification sequence ∃e∀a∃g,
the newly defined variable g may depend on the value of a, which may turn the
defined function into an invalid model. Therefore our proof checker orders ex-
tension variables as low as possible, i.e., right after the variable with the highest
quantification level occurring in the extension function. Checking that a model
function does not depend on higher quantification levels is then trivial again.

However, checking the validity of a model according to Def. 3 is co-NP com-
plete [26,28]. In general, our approach is to check each clause individually to be
tautological, leveraging incremental SAT solver technology. This can be achieved
by keeping the model functions in the SAT solver and adding the negation of
a clause, i.e., the negations of the clauses literals, as assumptions. The result-
ing problem must then be unsatisfiable, which means that it is impossible to
unsatisfy the given clause with the model provided. It is possible to provide a
refutation proof for each of those sub-problems (or, alternatively, for the whole
formula instead of separate clauses). The complexity of checking this (anno-
tated) model for validity is then polynomial in the size of the certificate. So far,
our certificates only contain the Skolem-functions. In future, we will study how
providing a refutation for each clause in the model affects the model generation
time and model size, as well as the model verification time.

In Skolemization-based solvers constructing a model is easy, since the solvers
basic strategy is to construct a model; it just has to dump the Skolem-functions

2 It is also possible to let the fvk only depend on the universally quantified variables
of Vk−1. However, our definition may result in more compact representations of the
functions fvk .

A First Step Towards a Unified Proof Checker for QBF 207

it generates. DPLL- and search-based solvers split on variables using different
strategies. Assuming the formula is valid, the solver always encounters either unit
clauses, and propagates this information, or splits on a new variable. Whenever
a unit clause (l) occurs under some variable assignment α to other variables, we
can read this as α ⇒ l, which corresponds to one entry in the function table
of the model function for the variable of l. This information can immediately
be dumped as xi = a1 ∧ ... ∧ an, where xi is a fresh variable and the ai are
the literals from α. When the evaluation is finished, the final model-function is
fv = x1 ∨ · · · ∨ xn.

In Q-Resolution-based solvers, particularly [16,20], one can interpret any res-
olution between two clauses c1 and c2 into a resolvent as the generation of a
conflicting clause. For instance, if c1 contains a literal x and c2 contains ¬x,
then ¬(c1\{x}) ∧ ¬(c2\{¬x}) may not happen, because x would have to be 1
and 0 at the same time to satisfy both clauses. One strategy to record a model
is to start with overspecified functions and to refine them whenever resolution
is applied. BDD-based solvers implementing the bucket algorithm [18] (and also
Ebddres) store intermediate BDDs for variables to be eliminated. From these,
it is possible to dump Skolem-functions using the extension rule. The procedure
for Ebddres is presented in more detail in Sect. 3.

An alternative way of providing a model is to provide a refutation for the
negation of a valid formula (which would then be invalid). Experiments that
negate a formula by translation of the resulting DNF back to a CNF using
the Tseitin-transformation have shown that this approach is infeasible. All of
the problems that could be solved within 600 seconds by three different solvers
(Quantor, sKizzo, Squolem) could either not be solved within the same time
when inverted, or took considerably more time to solve.

3 Implementation

We implemented Squolem, a new skolemization-based solver, which generates
both models and refutations. Squolem eliminates quantifiers from the inside
out by explicitly generating Skolem-functions for existential variables. For each
variable that is about to be eliminated, it collects all clauses in which the variable
occurs and interprets them as implications, e.g., (a∨b) is interpreted as ¬a→ b.
The set of these implications essentially forms a function, by which the variable
is replaced.

In case of conflicting implications, e.g., ¬a→ b and ¬a→ ¬b, a clause stating
that this case cannot happen, e.g., (a), is added. In terms of the resolution
calculus, the conflict clause can directly be obtained as a resolvent from the two
conflicting implications. The process is iterated until either a complete model has
been constructed, or conflicting unit clauses occur. In the first case we output the
model, in the second case we output a q-resolution trace constructed from the
information about a clause’s parents, which we record during model construction.

We have instrumented two other already existing solvers, (i) the BDD-based
solver Ebddres [29,30] and (ii) the search-based solver Quaffle [12]. Ebddres

208 T. Jussila et al.

produces both models and refutation traces whereas with Quaffle we are so far
limited to refutation traces. Unfortunately, in case of Quaffle we also had to
disable learning, since we cannot trace long distance resolution steps, as already
discussed above. Ebddres is a BDD-based QBF solver that eliminates variables
starting from the innermost scope. In order to eliminate a variable x, Ebddres
first builds a conjunction of all the clauses containing x and then quantifies x
using one standard BDD OR- resp. AND-operation if the variable is existential
resp. universal. After all variables are eliminated, a constant BDD is obtained.
For simplicity, the variable ordering for the BDDs is the reverse of the QBF
variable order. Thus, root variables are always eliminated.

Ebddres produces refutations by introducing a Tseitin variable for each BDD
node. This Tseitin variable is defined to be an if-then-else gate. Given a BDD
node n, let x be its variable and t, t0, and t1 the Tseitin variables introduced
for n, its left child, and its right child, respectively. Then the definition of t
is t ⇔ (x ? t1 : t0). Thus, if x is true (false), the Tseitin variable t1 (t0)
has to be true. The refutation is constructed by first showing that the Tseitin
variables for the root nodes of the BDDs for every original clause have to be
true. Then the logical operations of the solving algorithm are traced until it is
shown that the Tseitin variable for the constant BDD zero has to be true, a
contradiction. All the details except for universal quantification can be found
in [29, 30]. For universal quantification, the proof rule is as follows. Let x be a
universal variable to be eliminated and t the variable corresponding to the root
node of the BDD which is the conjunction of all the clauses containing x. We
have derived that t must be true. The definition of t introduces (among others)
the clause (¬t ∨ x ∨ t0). Resolving this with (t) yields (x ∨ t0) which, based on
Def. 1, can be forall-reduced to (t0) since t0 is not in the scope of x. The proof
for t1 is similar.

Ebddres produces models as follows. In the bucket algorithm, when variable
x is to be eliminated, a BDD containing precisely all the constraints on x is
built. Going from the root to the child where x is true (right child) gives another
BDD that encodes all the valuations where x has to be true to satisfy all the
constraints. If x is existential, then this is precisely a Skolem-function for x.
Thus the certificate consists of definitions of the Tseitin variables for this BDD
and the Skolem-function is set to be equivalent to Tseitin variable of the root
(analogously, we could have chosen the negation of the left child).

For the search-based solver Quaffle, the refutation is constructed as follows.
Assume (without loss of generality) that the innermost scope is existential. If
the instance is unsatisfiable, both choices for the truth value of an existential
variable lead to a conflict. For a universal variable, at least one choice leads to
a conflict. Whenever a conflict is reached, a conflict clause can be derived.

We produce refutation proofs from these conflict clauses. Consider for instance
the simple search tree example presented in Fig. 1 and let the solid lines denote
paths to conflicts. Let the left (right) arrow from a node mean setting the truth
value of a variable to false (true). Now, the leftmost path (¬x∧¬y∧¬z) leads to
a conflict producing the conflict clause (x∨y∨z). Similarly, the path (¬x∧¬y∧z)

A First Step Towards a Unified Proof Checker for QBF 209

produces the clause (x ∨ y ∨ ¬z). We resolve these, and forall-reduce the result
(x ∨ y) and thus obtain the clause (x). Similarly, from the conflict clauses from
the right-hand side (where x is true) we get (¬x) and resolving the two, the
empty clause. The above representation is simplified. Our experimental work
has revealed that in most cases not a complete conflict clause is obtained but
one that subsumes it. The consequence of this is that it is possible to omit some
resolution steps.

If a formula has a large alternation depth,

∃x

∀y

∃z

Fig. 1. Quaffle search tree

our proof-generation algorithm starts by re-
solving the literals from the innermost existen-
tial scope. Subsequently, the new clauses are
forall-reduced to eliminate the enclosing uni-
versal scope. Then, the proof generation elim-
inates the second innermost existential scope
and thus alternates between resolution and
forall-reduction until the outermost scope.

Note that we have only been able to instru-
ment Quaffle without learning. So far, it is
an open problem how to handle long-distance
resolution in the presented framework. Sec-

ondly, we are not able to create certificates, only refutation traces.
To verify the certificates that we extract, we implemented QBV, the Quan-

tified Boolean Verifier. The implemented algorithm executes applications of our
extension rules and q-resolutions, as listed in the certificate. The last statement
in a certificate is a conclusion line that either provides the index of an empty
clause (for refutations), or a list of equivalences of variables for a model. As
suggested in [27], we check every clause separately against the model. For this
purpose we use MiniSAT (Version 1.14p) in incremental mode, i.e., we load the
model into MiniSAT and then add the negation of a clause as an assumption,
which must result in an unsatisfiable problem. As stated earlier, this problem is
in general Co-NP complete. In a future version we will provide support for refu-
tations for every clause in the original formula, such that the complexity of this
step becomes polynomial (with adverse effects on the certificate generation time).

4 Experimental Results

To show that certificate extraction is feasible we have conducted experiments
on the 2005 fixed instance and the 2006 preliminary QBF-Eval3 datasets, in
total 445 test cases. We used Ebddres, Quaffle, and Squolem to generate
certificates, and verified them using QBV.

The tests for Ebddres and Quaffle were run on a cluster of Intel Pen-
tium IV PCs (3 GHz) with 2 GB RAM each. We set a time limit of 600 seconds
and a memory limit of 1 GB. Ebddres is able to create a model for 80 instances
and a refutation trace for 86 instances. For Quaffle (without learning), 26
3 http://www.qbflib.org/

http://www.qbflib.org/

210 T. Jussila et al.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

So
lv

er
 T

im
e

[s
]

Certificate Generation Time [s]

Valid
Invalid

(a)

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

So
lv

er
 T

im
e

[s
]

Certificate Generation Time [s]

Invalid

(b)

Fig. 2. Certificate Generation Time vs. Solver Time for (a) Ebddres and (b) Quaffle

instances could be refuted. We first compare the time required to solve an in-
stance to the time needed to create the certificate. The results for Ebddres and
Quaffle are shown in Figs. 2(a) and 2(b), respectively. They show that for
both solvers, generating a certificate takes longer than solving the instance. For
Ebddres the overhead for models is about 15% and for refutations 440%. This
behavior is probably due to the fact that the refutation files for Ebddres are
so large, that merely saving them takes a lot of time. The same overhead is also
observed in the propositional case [29, 30].

For Quaffle the overhead is even higher, 1440%. However, this result is
not illustrative since we were only able to solve very few instances and these
instances belong to only 6 families. For one instance, ‘k lin p-4’, the trace gen-
eration overhead is only 1.6%.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

V
al

id
at

io
n

T
im

e
[s

]

Certificate Generation Time [s]

Valid
Invalid

(a)

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

V
al

id
at

io
n

T
im

e
[s

]

Certificate Generation Time [s]

Invalid

(b)

Fig. 3. Certificate Generation Time vs. Validation Time (a) Ebddres and (b) Quaffle

We also compare the time needed to validate certificates to the time it takes to
generate them. The results for Ebddres and Quaffle are shown in Figs. 3(a)
and 3(b). Our experimental results show that, for Ebddres, it takes on average
longer to validate a certificate; again the overhead depends heavily on whether
the instance is valid or invalid. Validating models, takes on average over 100
times longer than to generate them. QBV actually times out on 15 instances

A First Step Towards a Unified Proof Checker for QBF 211

(time limit 600 seconds) where model generation is feasible. Refutations, on the
other hand, can be verified quicker, the ratio is 5.4. For Quaffle, the trace
validation times are neglible (on average < 0.04 seconds), as Fig. 3(b) shows.
The observed behavior is in line with the fact that verifying a model is in general
Co-NP complete whereas a resolution trace can be verified polynomially.

The tests for Squolem were run on an Intel Xeon 3.0 GHz machine with 4
GB RAM. Out of 445 instances in the original dataset, our solver finishes on 142
within 600 seconds and a memory limit of 1 GB; 73 instances were found to be
valid, 69 invalid.

First we compare the time to solve an instance to the time needed to generate
a certificate. Naturally, in a purely Skolemization-based solver, there is a small
difference in those times. Fig. 4(a) shows that the overhead of certificate genera-
tion is usually very small (on average 3.5% for models and 4.5% for refutations,
with respect to solving time).

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

So
lv

er
 T

im
e

[s
]

Certificate Generation Time [s]

Valid
Invalid

(a)

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

V
al

id
at

io
n

T
im

e
[s

]

Certificate Generation Time [s]

Valid
Invalid

(b)

Fig. 4. (a) Certificate Generation Time vs. Solver Time and (b) Certificate Generation
Time vs. Validation Time for Squolem

As a second experiment, we investigate the time taken to validate a certificate.
Fig. 4(b) shows that the time taken to validate a refutation is negligibly small
(on average < 0.01 seconds); certificates of validity, on the other hand, take on
average 2.38 seconds to validate. The main contribution to this time is the in-
stance ‘qshifter 7’, which takes 144 seconds to validate. Excluding this instance,
the average validation time is 0.4 seconds. The reason for this extraordinary high
runtime on just this single instance is that MiniSAT actually runs into a hard
problem: 97% of the runtime is spent on the final model validation.

An interesting property of certificates is the size of the generated files. Table 1
gives an overview of the relative size of the generated certificates, with respect to
the size of the original formula file. We present the traces in the original ASCII
format as well as compressed with gzip. The data indicates that the certificates
generated by Ebddres are very large compared to Quaffle and Squolem.
Furthermore, its refutations (tracing complex BDD operations) are larger than
its models. For Squolem, on the other hand, the numbers suggest that models

212 T. Jussila et al.

Table 1. Relative size of the generated certificates

Normal Compressed

Solver Type Best Avg. Worst Best Avg. Worst

Ebddres Valid <0.1 210.9 3304.3 <0.1 52.3 784.8
Invalid 1.0 6857.6 145414.0 1.0 1594.3 31948.3

Quaffle Valid - - - - - -
Invalid <0.1 3.4 17.0 <0.1 1.3 5.0

Squolem Valid 0.7 10.1 175.6 0.2 2.8 49.6
Invalid <0.1 3.3 55.0 <0.1 0.8 10.4

are considerably larger than refutations. The certificate format is not optimized
for file size, but as the data indicates, the files compress well with gzip, if smaller
files are required.

Finally, we compare our solvers with two state-of-the-art solvers, Quantor
and sKizzo. As Quaffle only produces refutation traces, we have no data on
valid instances for this solver. Thus, we chose to provide the number of invalid
instances that each solver is able to solve within 600 seconds and a 1 GB memory
limit, from the total 205 in the data set. The numbers in Tbl. 2 indicate that
our solvers together can solve about half as many instances.

Table 2. The number of solved instances in the test set

Ebddres Quaffle Squolem Quantor sKizzo

Solved Instances 80 26 69 153 175

Solved Inst. (Union) 90 178

5 Reference Implementations

Ebddres, the instrumented version of Quaffle, and the exprimental data can
be downloaded from http://fmv.jku.at/ebddres. Squolem, the certificate
validator QBV, the experimental data, and a formal specification of the sup-
ported certificate format are available at http://www.verify.ethz.ch/qbv.

6 Conclusion

We show that it is possible to define a proof format for QBF that is applicable to
a wide range of different QBF solvers. Nevertheless, important common features
of other QBF solvers cannot be traced efficiently in this format. Even though it
seems that existential expansion steps of structural QBF solvers can be traced
with our format, we do not know how to trace universal expansion steps with
the current set of rules. The same applies to long distance resolution. This is in
contrast to SAT, where just adding the extension rule generates a proof calculus,
which is as powerful as any other known propositional proof system.

http://fmv.jku.at/ebddres
http://www.verify.ethz.ch/qbv

A First Step Towards a Unified Proof Checker for QBF 213

References

1. Stockmeyer, L.J.: The polynomial–time hierarchy. TCS 3 (1976) 1–22

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

3. Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of
Artificial Intelligence Research 10 (1999) 323–352

4. Otwell, C., Remshagen, A., Truemper, K.: An effective QBF solver for planning
problems. In: MSV/AMCS, CSREA Press (2004) 311–316

5. Giunchiglia, E., Narizzano, M., Tacchella, A.: QBF reasoning on real–world in-
stances. In: Proc. of SAT. LNCS 3542, Springer (2004) 105–121

6. Ladner, R.E.: The computational complexity of provability in systems of modal
propositional logic. SIAM Journal on Computing 6(3) (1977) 467–480

7. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. of TACAS. LNCS 1579, Springer (1999) 193–207

8. Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Proc.
of SAT. LNCS 3569, Springer (2005) 408–414

9. Jussila, T., Biere, A.: Compressing BMC encodings with QBF. In: Proc. 4th
Intl. Work. on Bounded Model Checking (BMC). To be published in ENTCS,
Elsevier (2006)

10. Benedetti, M.: Experimenting with QBF-based formal verification. In: Proc. of
the 3rd International Workshop on Constraints in Formal Verification (CFV). To
be published in ENTCS, Elsevier (2005)

11. Plaisted, D.A., Biere, A., Zhu, Y.: A satisfiability procedure for quantified boolean
formulae. Discrete Appl. Math. 130(2) (2003) 291–328

12. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts
in quantified boolean formula evaluation. In: Proc. of CP. LNCS 2470, Springer
(2002) 200–215

13. Letz, R.: Lemma and model caching in decision procedures for quantified boolean
formulas. In: Proc. of TABLEAUX. LNCS 2381 (2002) 160–175

14. Giunchiglia, E., Narizzano, M., Tacchella, A.: QUBE: A system for deciding quan-
tified boolean formulas satisfiability. In: Proc. of IJCAR. LNCS 2083, Springer
(2001) 364–369

15. Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified
boolean formulae. In: Proc. of AAAI/IAAI, AAAI (1998) 262–267

16. Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: Proc. of CP. LNCS 3709,
Springer (2005) 578–592

17. Biere, A.: Resolve and expand. In: Proc. of SAT. LNCS 3542, Springer (2004)
59–70

18. Pan, G., Vardi, M.Y.: Symbolic decision procedures for QBF. In: Proc. of CP.
LNCS 3258, Springer (2004) 453–467

19. Benedetti, M.: Evaluating QBFs via symbolic skolemization. In: Proc. of LPAR.
LNCS 3452. Springer (2005) 285–300

20. Samulowitz, H., Bacchus, F.: Binary clause reasoning in QBF. In: Proc. of SAT.
LNCS 4121, Springer (2006)

21. Narizzano, M., Tacchella, A., Pulina, L.: Report of the third QBF solvers evalua-
tion. JSAT 2 (2006) 145–164

22. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic 2 (1968) 115–125

214 T. Jussila et al.

23. Benedetti, M.: sKizzo: A suite to evaluate and certify QBFs. In: Proc. of CADE.
LNCS 3632, Springer (2005) 369–376

24. Yu, Y., Malik, S.: Validating the result of a quantified boolean formula (QBF)
solver: theory and practice. In: Proc. of ASP-DAC, ACM Press (2005) 1047–1051

25. Kleine Büning, H., Karpinski, M., Flügel, A.: Resolution for quantified boolean
formulas. Inf. Comput. 117(1) (1995) 12–18

26. Kleine Büning, H., Zhao, X.: On models for quantified boolean formulas. In: Logic
versus Approximation. LNCS 3075, Springer (2004) 18–32

27. Benedetti, M.: Extracting certificates from quantified boolean formulas. In: Proc.
of IJCAI. (2005) 47–53

28. Büning, H.K., Subramani, K., Zhao, X.: On boolean models for quantified boolean
horn formulas. In: Proc. of SAT. LNCS 2919, Springer (2003) 93–104

29. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Proc. of
the 1st Intl. Computer Science Symp. in Russia (CSR 2006). LNCS 3967, Springer
(2006) 600–611

30. Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving
with quantification. In: Proc. of SAT. LNCS 4121, Springer (2006) 54–60

Dynamically Partitioning for Solving QBF

Horst Samulowitz and Fahiem Bacchus

Department of Computer Science, University of Toronto, Canada
{horst,fbacchus}@cs.toronto.edu

Abstract. In this paper we present a new technique to solve Quantified Boolean
Formulas (QBF). Our technique applies the idea of dynamic partitioning to QBF
solvers. Dynamic partitioning has previously been utilized in #SAT solvers that
count the number of models of a propositional formula. One of the main dif-
ferences with the #SAT case comes from the solution learning techniques em-
ployed in search based QBF solvers. Extending solution learning to a partitioning
solver involves some considerable complexities which we show how to resolve.
We have implemented our ideas in a new QBF solver, and demonstrate that dy-
namic partitioning is able to increase the performance of search based solvers,
sometimes significantly. Empirically our new solver offers performance that is
superior to other search based solvers and in many cases superior to non-search
based solvers.

1 Introduction

The variables of a SAT problem are implicitly existentially quantified: SAT asks the
question “does there exist a setting of these variables that satisfies the formula?” QBF
is a generalization of SAT in which the variables are allowed to be universally as well
as existential quantified: QBF asks the question “is the formula true for all settings
of the universal variables.” The ability to nest universal and existential quantification
in arbitrary ways makes QBF considerable more expressive than SAT. While any NP
problem can be encoded in SAT, QBF allows us to encode any PSPACE problem: QBF
is PSPACE-complete.

This expressiveness opens a much wider range of potential application areas for a
QBF solver, including areas like automated planning, non-monotonic reasoning, elec-
tronic design automation, scheduling, and model checking and verification, e.g., [1,2,3].
The difficulty, however, is that QBF is in practice a much harder problem to solve than
SAT. (It is also much harder theoretically assuming that PSPACE �= NP). One indica-
tion of this practical difficulty is the fact that current QBF solvers are typically limited
to problems that are about 1-2 orders of magnitude smaller than the instances solvable
by current SAT solvers (1000’s of variables rather than 100,000’s).

Nevertheless, this limitation in the size of the instances solvable by current QBF
solvers is somewhat misleading. In particular, many problems have a much more com-
pact encoding in QBF than in SAT. For example, in [4] the authors give an innovative
application of QBF to hardware debugging, showing that the QBF encoding of the prob-
lem is many times smaller than an equivalent SAT encoding. Results like this demon-
strate the potential of QBF and the importance of further improving QBF solvers.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 215–229, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

216 H. Samulowitz and F. Bacchus

In this paper we present a new technique for improving QBF solvers. Our technique
extends the idea of dynamic partitioning, prominently utilized in #SAT solvers, to make
it useful in a QBF solver. #SAT is the problem of counting the number of models of a
CNF formula, and the idea of dynamic partitioning for solving #SAT was first utilized
in [5]. That work presented a DPLL based algorithm for #SAT which examined the
remaining CNF theory at each node of the search tree. The algorithm tried to partition
the remaining theory into disjoint components that shared no variables. The disjoint
components could then be solved independently of each other, resulting in a significant
improvement in run time. In particular, since the run time is worst case exponential
in the number of variables, partitioning can move us from O(2n) to kO(2n/k) if the
problem can be broken into k equally sized partitions. Applying this recursively can
potentially yield an exponential speed up. See [6,7] for more detailed theoretical results
characterizing the speedups that can be achieved from partitioning.

Here we apply dynamic partitioning to QBF. We first make the observation that a
QBF theory can be partitioned into independent components as long as these compo-
nents share no existential variables. That is, QBF components do not have to be com-
pletely disjoint as is the case with #SAT, just so long as they are existentially disjoint.
We then show how clause learning in search based QBF solvers can be quite easily
extended to deal with partitioning. Extending cube (solution) learning to deal with par-
titioning is considerable more complex, and is perhaps the key innovation of our work.
We have implemented our ideas in a new QBF solver 2clsP. 2clsP is built on top of
the 2clsQ [8] solver, which with the addition of some preprocessing techniques was
the top scoring solver in the 2006 QBF competition. We show empirically that these
new ideas yield a significant improvement in 2clsQ’s performance. We also demon-
strate that 2clsP offers performance that is superior to other search based solvers and
in many cases superior to non-search based solvers like Quantor [9] and Skizzo [10].
These results underscore the potential that partitioning, when properly augmented with
clause and cube learning, has for helping us improve current QBF solvers.

In the sequel we first present some necessary background, setting the context for our
methods. We then present the details of how clause and particularly cube learning can
be extended to partitioning. Then we provide empirical evidence of the effectiveness of
our approach, and close with a discussion of future work and some conclusions.

2 Background

A quantified boolean formula has the form Q.F , where F is a propositional formula
expressed in CNF and Q is a sequence of quantified variables (∀x or ∃x). We require
that no variable appear twice in Q and that all variables in F appear in Q (i.e., F con-
tains no free variables). Q may have extra variables not mentioned in F . Such variables
can be removed or retained—they do not affect the truth of the QBF.

QBF solvers are interested in answering the question of whether or not Q.F ex-
presses a true or false assertion, i.e., whether or not Q.F is true or false. The reduction
of a CNF formula F by a literal � is the new CNF F |� which is F with all clauses
containing � removed and ¬�, the negation of �, removed from all remaining clauses.

Dynamically Partitioning for Solving QBF 217

The reduction of F by a set of literals L is defined to be the sequential reduction of F
by each literal in L. It can easily be observed that the final reduced CNF is independent
of the order these reductions are performed.

1. If F is the empty set of clauses then Q.F is true.
2. If F contains an empty clause then Q.F is false.
3. ∀vQ.F is true iff both Q.F |v and Q.F |¬v are true.
4. ∃vQ.F is true iff at least one of Q.F |v and Q.F |¬v is true.

A quantifier block qb of Q is a maximal contiguous subsequence of Q where every
variable in qb has the same quantifier type. We order the quantifier blocks by their
sequence of appearance in Q: qb1 ≤ qb2 iff qb1 is equal to or appears before qb2 in Q.
Each variable x in F appears in some quantifier block denoted by qb(x).

Definition 1

1. For two variables x and y, x ≤q y if qb(x) ≤ qb(y) and x <q y if qb(x) < qb(y).
2. Variable x is universal (existential) if its quantifier in Q is ∀ (∃).
3. A variable x is downstream (upstream) of a set of variables V if (1) x �∈ V and

(2) ∀y.y ∈ V → y ≤q x (∀y.y ∈ V → x ≤q y)). That is, x is not a member of
V and appears no sooner (later) in the quantifier sequence Q than the last (first)
quantifier block containing elements of V .

4. A variable x is maximal (minimal) in a set of variables V if (1) x ∈ V and (2)
∀y.y ∈ V → y ≤q x (∀y.y ∈ V → x ≤q y). That is x is a member of V and
appears in the highest (lowest) quantifier block amongst all variables of V .

As a slight abuse of notation we often use a literal � to refer to �’s variable. For example,
when we say that � is maximal in a set of variables V , we mean that �’s variable is
maximal in V . Similarly, we might assert that � is universal if �’s variable is universal,
that �1 <q �2 if �1’s variable is <q than �2’s variable, or that � is added to a set of
variables V if �’s variable is added to V .

For example, ∃e1e2.∀u1u2.∃e3e4.(e1,¬e2, u2, e4)∧ (¬u1,¬e3) is a QBF with Q =
∃e1e2.∀u1u2.∃e3e4 and F equal to the two clauses (e1,¬e2, u2, e4) and (¬u1,¬e3).
The quantifier blocks in order are ∃e1e2, ∀u1u2, and ∃e3e4, and we have, e.g., that,
e1 <q e3, u1 <q e4, u1 is universal, e4 is existential, e4 is downstream of the set
{u2, e3}, e3 is maximal in the set {u2, e3}, and u2 is upstream of the set {u1, e3, e4}.

We make two useful observations about QBFs (an easy proof is given, e.g., in [11]).

Observation 1

A. If F � F ′ then Q.F ⇒ Q.F ′. That is, if every SAT model of F is also a SAT model
of F ′ then if Q.F is true Q.F ′ must also be true. Note that this holds even when
F ′ contains a superset of F ’s variables.

B. A universal variable u is called a tailing universal in a clause c if for every ex-
istential variable e ∈ c we have that e <q u. The universal reduction [12] of a
clause c is the process of removing all tailing universals from c. If F ′ is the result
of applying universal reduction to some clause of F , then Q.F ⇔ Q.F ′.

218 H. Samulowitz and F. Bacchus

2.1 Partitioning QBF

Now we discuss the conditions under which a QBF can be partitioned into a conjunction
of independent sub-formulas. First we recall two standard logical laws for quantifiers.
Let Φ1 and Φ2 be propositional formulas.

1. If Φ1 does not contain x then ∃x.(Φ1 ∧ Φ2)⇔ (Φ1 ∧ ∃x.Φ2) and ∀x.(Φ1 ∧ Φ2)⇔
(Φ1 ∧ ∀x.Φ2).

2. ∀x.(Φ1 ∧ Φ2)⇔ (∀x.Φ1 ∧ ∀x.Φ2)

Observation 2. If F is a CNF formula that can be divided into two CNF’s F1 and
F2 such that the clauses in F1 and F2 share no existential variables, then Q.F ⇔
Q1.F1 ∧Q2.F2, where Qi is the subsequence of Q containing only the variables of Fi.

To see that this is true we first rewrite Q.F as Q.(F1 ∧ F2), then we proceed to use
the above logical laws to distribute the variables of Q to F1 or F2, starting with the
innermost quantified variables of Q. We can apply this observation multiple times to
separate Q.F into a conjunction of k smaller QBFs.

For example,

∀u1∃e1∀u2∃e2e3.
(
(u1,¬e1) ∧ (u2,¬e2) ∧ (u2, e3)

)

⇔ ∀u1∃e1∀u2∃e2.
(
(u1,¬e1) ∧ (u2,¬e2) ∧ ∃e3.(u2, e3)

)

⇔ ∀u1∃e1∀u2.
(
(u1,¬e1) ∧ ∃e2.(u2,¬e2) ∧ ∃e3.(u2, e3)

)

⇔ ∀u1∃e1.
(
(u1,¬e1) ∧ ∀u2∃e2.(u2,¬e2) ∧ ∀u2∃e3.(u2, e3)

)

⇔ ∀u1.
(∃e1.(u1,¬e1) ∧ ∀u2∃e2.(u2,¬e2) ∧ ∀u2∃e3.(u2, e3)

)

⇔ ∀u1∃e1.(u1,¬e1) ∧ ∀u2∃e2.(u2,¬e2) ∧ ∀u2∃e3.(u2, e3)

2.2 Partitioning for a Search Based QBF Solver

Observation 2 immediately yields a partitioning search based QBF solver.

QBF-Prt(Q.F)1

if F contains an [empty clause/is empty] then2

return([FALSE/TRUE])3

for � ∈ {v, v̄} for some v ∈ F with outermost scope in Q do4

success = TRUE5

Partitions = Partition(Q.F |�)77

foreach Qi.Pi ∈ Partitions while success do8

if QBF-Prt(Qi.Pi) = FALSE then1010

success = FALSE11

if [¬success/success] AND v is [universal/existential] then12

return[FALSE/TRUE]13

if v is [universal/existential] then14

return[TRUE/FALSE]15

Dynamically Partitioning for Solving QBF 219

That is, we branch on variables respecting the order of quantification, just as in a
standard search based QBF solver. However, after every variable has been instantiated
(at this stage some propagation can also be preformed to further reduce the remaining
theory) we check if the remaining theory can be broken up into existentially disjoint
partitions (line 7). This can be accomplished in time linear in the size of the remaining
theory with a simple depth-first search or a union-find algorithm. We then solve these
partitions independently (line 10). Since the remaining theory is equivalent to the con-
junction of these partitions, they must all be true for the entire theory to be true. Hence,
we can stop if any of these partitions is false.

Unfortunately, although partitioning is a good idea, our empirical investigations al-
lowed us to conclude that this simple version of partitioning is completely ineffective
in practice. Fundamental to the performance of search based QBF solvers are the tech-
niques of clause and cube learning [13,14]. Without these techniques a partitioning
solver performs much worse than current search based solvers. One of the key contri-
butions of our work is to show how learning can be extended so that it can be applied
in the context of partitioning.

2.3 Quantifier Trees

In [15] Benedetti uses the logical laws for quantifiers mentioned above to build a
Quantifier Tree for a QBF. The quantifier tree specifies, among other things, a static
decomposition of the QBF. That is, it specifies a decomposition that ignores the truth
value assigned to each variable. Benedetti also points out that such trees can be used
in a partitioning search based QBF solver similar to QBF-Prt presented above. There
are two main differences between this work and what we present here. First, as noted
above the simple notion of of partitioning presented in QBF-Prt is ineffective with-
out learning. As we will see adding learning to partitioning is a non-trivial new con-
tribution of our work. Second, the partitioning algorithm presented in QBF-Prt
employs dynamic partitioning. That is, the partitioning generated when we set v =
TRUE can be entirely different to the partitioning generated when v = FALSE. In a
quantifier tree the partitioning will be the same for both truth values. Since this dif-
ference compounds as we set more variables this means that the partitions generated
dynamically can be considerably more refined than those specified in a static quantifier
tree.1

3 Learning with Partitioning

Search based QBF solvers employ the powerful techniques of clause and cube (solution)
learning [13,14]. These techniques are essential for obtaining good performance from
a search based QBF solver. In this section we show how learning can be used with
partitioning.

1 In [7] it was shown that for #SAT dynamic partitioning can yield a super-polynomial speedup
over any static decomposition on some instances. We suspect that a similar result holds for
QBF, but this is not yet proven.

220 H. Samulowitz and F. Bacchus

To facilitate the subsequent discussion the figure on the right shows
a sample path in the QBF-Prt search tree. The black circles correspond
to literals made true along the current path, arcs connecting branches
indicate points where the theory was split into partitions, and the tri-
angles correspond to the other partitions that were generated along this
path. The partitions on the left of the current path have already been
solved, while those on the right of the current path remain to be solved.
We call the partitions that lie off of the current path inactive, and the
partition currently being solved active.

3.1 Clause Learning

For the most part clause learning can be used without modification in a partitioning
solver. For example, if the current path leads to a conflict a conflict clause can be learned
and universal reduction applied—the conflict must be a subset of the literals set along
the current path. This conflict can then be used to backtrack as least far enough to
undo the conflict, as below this point no solution exists for the active partition. Since
the theory is the conjunction of its partitions, the status of the inactive partitions we
backtrack past is irrelevant—falsifying the active partition is sufficient to falsify the
entire theory. Note that backtracking further is also possible, e.g., backtracking to the
1st-UIP point. The search will continue as before from that backtrack point. Similarly,
the learnt clauses can then be used in unit propagation as they normally would be in a
non-partitioning solver.

The main subtleties in using clause learning with partitioning have already been ad-
dressed in [16] who showed how to use clause learning and partitioning in the context
of solving #SAT. It is not difficult to show that their insights also hold for QBF. In par-
ticular, first, we are allowed to ignore the learned clauses when partitioning the theory
since the learned clauses are entailed by the original theory. Second, it is sound to ig-
nore existentials from inactive partitions that might be forced by the learned clauses.
Alternatively we can allow them to be forced: any conflict generated by them will still
be a valid conflict.

3.2 Cube Learning

In order to extend cube learning to allow partitioning we must first develop a new for-
malization of cube learning.

We first define the restriction of a clause c to a set of variables V to be the new clause
c′ formed by restricting c to the variables in V , i.e., removing from c all variables not
mentioned in V . For example, restrict((x,¬y,¬z), {x, y, w, t}) = (x,¬y), where the
literal¬z has been removed since its variable z is not in the set {x, y, w, t}. We restrict a
CNF formula F , restrict(F, V), by restricting each of its clauses. Note that if V contains
all of the variables in c then restrict(c, V) = c, and similarly restrict(F, V) = F if V
contains all variables in F . We say that a QBF Q.F is satisfied by the variables V if
the QBF Q.restrict(F, V) is true.

We observe some facts about restriction and its relationship with reduction (setting a
literal to be true).

Dynamically Partitioning for Solving QBF 221

Observation 3

1. If V ⊆ V ′, then restrict(F, V) � restrict(F, V ′).
2. If Q.F is satisfiable by any set of variables V , then it must also be true.
3. If � �∈ V then restrict(F, V ∪ {�})|� is equal to restrict(F |�, V).
4. If � �∈ V then restrict(F, V) � restrict(F |�, V).

Proof: For item 1, every clause of restrict(F, V ′) is a superclause of a clause in
restrict(F, V). For item 2, this follows from item 1 and Observation 1.A by taking
V ′ to be any superset of V that contains all variables of F . For item 3, this can be
shown by considering what happens to every clause c of F under the stated sequence
of reductions and restrictions. There are three cases to consider (a) � ∈ c, (b) ¬� ∈ c
and (c) all other clauses. For item 4, using the same three cases it can be shown that
restrict(F |�, V) contains a subset of the clauses of restrict(F, V).

Definition 2. A cube for the formula Q.F is a set of literals ρ and a set of variables V
such that (a) Q.F |ρ is satisfied by the variables V , and (b) the variables of V are all
downstream of the variables of ρ. We write cube[ρ, V, F] to indicate that ρ and V is a
cube for Q.F .2

In other words cube[ρ, V, F] iff Q.restrict(F |ρ, V) is true, and V is downstream of ρ.
This definition differs from the standard definition of a cube mainly in its introduction
of the set of downstream variables V .

The following theorem justifies standard cube learning in a non-partitioning QBF
solver.

Theorem 1

1. If π is a set of literals that satisfies every clause of F , then cube[π, {}, F].
2. If cube[ρ, V, F] and � is existential and maximal in ρ, then cube[ρ − {�}, V ∪
{�}, F]

3. If cube[ρ1, V1, F] and cube[ρ2, V2, F] are cubes such that (1) there is a unique
literal � such that {�,¬�} ⊆ ρ1 ∪ ρ2, (2) this clashing literal is universal, (3) � is
maximal in ρ1∪ρ2, and (4) V1∪V2 is downstream of ρ1∪ρ1, then cube[ρ1∪ρ2−
{�,¬�}, V1 ∪ V2 ∪ {�}, F].

Proof: For item 1, we see that Q.F |π is an empty set of clause, thus it is satisfiable
by any set of variables. For item 2, we know that Q.restrict(F |ρ, V) is true, the claim
is that Γ = Q.restrict(F |ρ−{�}, V ∪ {�}) is true and that V ∪ {�} is downstream of
ρ − {�}. Since � ∈ ρ it must be upstream of all of the variables in V by the defi-
nition of a cube. Hence, � appears in the outermost quantifier block among the vari-
ables in Γ and by definition Γ is true iff Γ |� or Γ |¬� are true. In fact, Γ |� = is true:
Γ |� = Q.restrict(F |ρ−{�}, V ∪ {�})|� = Q.restrict(F |ρ, V) by Observation 3.3. To
see that V ∪{�} is downstream of ρ−{�} we observe that � is maximal in ρ, so it must
be downstream of ρ−{�}. For item 3, let ρ = ρ1 ∪ ρ2−{�,¬�} and let V be V1 ∪ V2.

2 In the next section we will consider the case where F (the set of clauses) changes. However,
the quantifier prefix, Q, never changes so we can omit mentioning it in our notation.

222 H. Samulowitz and F. Bacchus

We need to show that Γ = Q.restrict(F |ρ, V ∪{�}) is true. Again we observe that � ap-
pears in the outermost quantifier block among the variables in Γ . Thus Γ is true iff Γ |�
and Γ |¬� are both true. Γ |� = Q.restrict(F |ρ, V ∪ {�})|� = Q.restrict(F |ρ∪{�}, V)
(Observation 3.3). Then we have that Q.restrict(F |ρ1 , V1) is true by assumption, that
Q.restrict(F |ρ1 , V1) ⇒ Q.restrict(F |ρ1 , V) (since V1 ⊆ V and Observation 3.1), and
that Q.restrict(F |ρ1 , V) ⇒ Q.restrict(F |ρ∪{�}, V) (ρ ∪ {�} = ρ1 ∪ (ρ2 − {¬�}), all
of the literals in ρ2 − {¬�} are upstream of V , i.e., not in V , and thus Observation 3.4
applies). The proof for Γ |¬� is similar.

Cubes are used to perform non-chronological solution backtracking that can skip large
parts of the search space. They can also be stored and triggered to short-circuit the
search of a subtree. In particular, if all of the literals in the cube are true, then the
remaining theory is true and we need not descend in the search further.

Partial Cubes. With partitioning the leaf nodes satisfy only some of the clauses of
F (see the sample path diagram at the start of this section). In particular, the clauses
in the inactive partitions need not be satisfied by the assignments along the current
path. Consider the operation of QBF-Prt where each invocation is a node in its search
tree. Say that the search descends along a particular path arriving at node n1 where the
remaining theory partitions into Q0, Q1 and Q2. We then choose to solve Q0 (at line 2)
in the next recursive call, and continue to descend reaching a node n2 where the theory
partitions again into P1 and P2. Continuing with P1 we finally reach a leaf node n�

without further splitting P1.
At n� some subset of the original clauses F1 have been made true by the literals set

along the path to n�, and we can use item 1 of Theorem 1 to select a subset of these
literals sufficient to form a cube for F1: cube[π, {}, F1]. Note that in general this is not
a cube for the original formula. In particular, we have not considered the clauses in the
inactive partitions Q1, Q2 and P2—these clauses have not necessarily been satisfied by
the current path: cube[π, {}, F1] is a partial cube. However, F1 does include all clauses
in the active partition P1.

Now, we continue the search using this cube to backtrack to undo the most deeply
assigned literal in π. If this literal is existential, we use item 2 of Theorem 1 to construct
a new cube and backtrack further. If it is a universal we solve the other side, obtain
another cube, combine the two cubes using item 3, and continue to backtrack further.
At each node n we obtain a cube[ρ, V1, F1] such that ρ is a subset of the literals set
along the path to n, F1 includes all clauses in the active partition P1 along with all other
clauses made true along the path to n, and V1 contains only variables instantiated below
n (only variables backtracked over can be added into the cube). All of these variables
are downstream of the variable instantiated at n which ensures that the conditions of
item 3 of Theorem 1 are meet whenever it is to be applied. We also note that V1 is
always a subset of the variables of P1 as these are the only variables branched on while
solving P1.

With partitioning, however, we cannot backtrack past node n2 where the active par-
tition P1 was created—the remaining theory under n2 is P1∧P2 and we don’t know yet
if P2 is true. Rather, when our search in the subtree solving P1 finally produces a cube
[ρ1, V1, F1] such that all of the literals of ρ1 are true at or above n2, we can backtrack
to n2 and then proceed to solve P2.

Dynamically Partitioning for Solving QBF 223

If P2 is true, the search in P2’s subtree will yield another cube, cube[ρ2, V2, F2],
such that F2 includes all of the clauses of P2 and shares with F1 all clauses made true
along the path to n2, while V2 is a subset of the variables of P2. Now we want to
combine these two cubes to learn a cube which will allow us to backtrack further within
the subtree solving Q0. We claim that [ρ1 ∪ ρ2, V1 ∪ V2, F1 ∪ F2] is the cube we want.

Theorem 2. Given cube[ρ1, V1, F1] and cube[ρ2, V2, F1] such that (1) ρ1 ∪ ρ2 is not
contradictory (i.e., ∀� ∈ ρ1 ∪ ρ2.¬� �∈ (ρ1 ∪ ρ2)), (2) the variables in V1 ∪ V2 are all
downstream of the variables in ρ1 ∪ ρ2 and (3) V1 and V2 share no existentials, then
cube[ρ1 ∪ ρ2, V1 ∪ V2, F1 ∪ F2].

Proof: Since V1∪V2 is downstream of ρ1∪ρ2 by assumption we only need to prove that
Q.restrict(F1 ∪ F2|ρ1∪ρ2 , V1 ∪ V2) is true. For two QBF S1 and S2 we write S1 ⇐ S2

if S2 true implies S1 true.

Q.restrict((F1 ∪ F2)|ρ1∪ρ2 , V1 ∪ V2)
⇐ Q.restrict((F1 ∧ F2)|ρ1∪ρ2 , V1 ∪ V2)
⇐ Q.restrict(F1|ρ1∪ρ2 , V1 ∪ V2) ∧ restrict(F2|ρ1∪ρ2 , V1 ∪ V2)
⇐ Q.restrict(F1|ρ1∪ρ2 , V1) ∧ restrict(F2|ρ1∪ρ2 , V2)
⇐ Q.restrict(F1|ρ1∪ρ2 , V1) ∧Q.restrict(F2|ρ1∪ρ2 , V2)
⇐ Q.restrict(F1|ρ1 , V1) ∧Q.restrict(F2|ρ2 , V2)

Line 1 might involve duplicating some clauses, but yields an equivalent formula. Line
2 is justified by the fact that both restriction and reduction are applied clause by clause.
Line 3 is justified by Observation 3.1: we are restricting the clauses to a smaller set so
the formula becomes stronger. Line 4 is justified because V1 and V2 share no existential
variables so the formula can be partitioned. And finally line 5 is justified by Observa-
tion 3.4: none of the literals in ρ1 ∪ ρ2 appear in V1 ∪ V2. Finally, the conjunction on
the last line is true by assumption.

This theorem says that once we obtain a cube for each partition P1 and P2 under the
node n2 we can form a cube that satisfies all of the clauses in P1 and P2 (Pi ⊆ Fi),
as well as all of the clauses satisfied along the path to n2. In otherwords, the new cube
cube[ρ1 ∪ ρ2, V1 ∪ V2, F1 ∪ F2] satisfies all of the clauses in the partition Q0 and we
can now utilize that cube to backtrack further within the subtree solving Q0.

Note also that (1) all of the literals of ρi are contained in the path to n2 thus ρ1 ∪ ρ2

is not contradictory, (2) if v is the variable branched on at node n2, then we have that
all of the variables of Vi are downstream v and the literals in ρi are upstream of v thus
V1 ∪ V2 is downstream of ρ1 ∪ ρ2, and (3) since P1 and P2 share no existentials neither
do V1 and V2 since Vi is a subset of the variables in Pi.

Finally, we note that we can also trigger cubes [ρ, V, F ′] by storing both ρ and V .
In particular, it can be shown that it is sound to trigger a cube [ρ, V, F ′] (and terminate
the search of a subtree), if (a) all of the literals in ρ are true, (b) none of the existential
variables of V are assigned, and (c) the existential variables of V form a partition at the
current node of the search space. Note that we do not need to keep track of the clauses
the cube covers F ′. However, space precludes proving this result.

224 H. Samulowitz and F. Bacchus

In sum, we have shown in this section how cubes can be used with partitioning for
non-chronological solution backtracking, and that they can also be stored and triggered
to short-circuit the search of a subtree.

4 Implementation

We have implemented dynamic partitioning within the DPLL based QBF solver 2clsQ
[17,8]. In addition to the standard techniques employed in state of the art QBF solvers
(e.g., solution analysis) 2clsQ also applies extensive binary clause reasoning at every
search node [17]. However, 2clsQ also utilizes dynamic equality reduction which we
turned off due to the logical and implementational difficulties that arise when applying
equality reduction and partitioning simultaneously.

Partitions are computed at each decision level by a simple and straight forward depth-
first search on the current theory. The complexity of this operation can be roughly stated
as O(|F | ∗ vars∃(F)) where |F | denotes the size of the theory and vars∃(F) the
number of existentials in F .

We altered cube learning/solution backtracking as described in the previous section
so that it could be used with dynamic partitioning. We also implemented a cube database
and triggered cubes under the conditions described above.

The search requires a number of heuristic choices. Included in these choices are,
deciding how to pick variables that are more likely to break the theory into partitions,
deciding the order in which to solve detected partitions, and deciding when to turn off
partition detection so as to minimize overhead.

A heuristic that selects a literal that satisfies the largest number of clauses can result
in better partitioning since it decreases the overall connectivity. Computing articula-
tion points in the corresponding graphical representation of the theory and branching
accordingly is an alternate strategy for increasing partitioning. However, in our exper-
iments it seemed that the best strategy was to branch on a literal that has the highest
potential to cause a conflict, irrespective of its ability to generate partitions.

Similarly, there exist many ways to sort the computed partitions to decide which par-
tition to process next. We used the following strategy: for each partition we computed
the number of binary clauses that contain an active existentially quantified variable.
Then we computed the ratio of active existentials and binary clauses in each partition
further weighted by the number of active universals in the partition. This weighted ratio
tries to capture the degree to which a partition is constrained. The lower the ratio the
more constrainted are the existentials. The aim was to try to solve the most constrained
partition first: if a partition failed we do not have to solve any of the other partitions as
the conjunction is immediately false.

In our experiments we observed that partitioning can slow down the search process
due to its high overhead. Computing partitions at each decision level is an expensive
operation. Furthermore, it is wasted work if the theory consists of only one partition.

In general, it is unlikely that a theory breaks into multiple partitions when the ratio
between clauses and existentially quantified variables is rather high (e.g., 15). And in
fact empirically it turned out to be the case that when partitioning was turned off on
instances with a high clause/variable ratio the resulting performance was consistently
improved.

Dynamically Partitioning for Solving QBF 225

Furthermore, it seems to be the case that a theory with a rather low clause/variable
ratio (e.g., 3) appears to be unsuitable for dynamic partitioning as well. In this case,
the theory is easily solved without partitioning, so again partitioning is not worth the
overhead. Hence, when the input instance has a low or high clause/variable ratio we
do not bother to try to detect partitions, and simple solve the theory as if it is a single
partition.

5 Experimental Results

To evaluate the empirical effect of our new approach we considered all of the non-
random benchmark instances from QBFLib (2005) [18] (508 instances in total). We
discarded the instances from the benchmark families von Neumann and Z since these
can all be solved very quickly by any state of the art QBF solver (less than 10 sec. for the
entire suite of instances). We also discarded the instances in benchmark families Uclid,
Jmc, and Jmc-squaring. None of these instances can be solved within a time bound of
5,000 seconds by any of the QBF solvers we tested. This left us with 465 instances
from 18 different benchmark families. We tested all of these instances on a Pentium
4 3.60GHz CPU with 6GB of memory (this is a 32 bit processor so only 4GB of this
memory is actually addressable by our program). The time limit for a run of any solver
was set to 5,000 seconds.

5.1 2clsQ vs. 2clsP

We first compared 2clsP with 2clsQ. These two solvers are the most similar, with 2clsP
only adding partitioning to the processing already performed by 2clsQ (and subtracting
equality reduction). Hence this comparison gives the most information on the effective-
ness of partitioning taken in isolation. Table 1 shows the comparison between these two
solvers. The table is broken down by benchmark family as the structural properties of
the families can be quite distinct.

For each solver and benchmark the success rate and the time consumed by the solver
on the successfully solved instances are displayed. Bold values indicate that the partic-
ular solver achieved the highest success rate on that families’ instances, where ties are
broken by CPU time consumed.

On this measure 2clsP is the best solver in 9 out of the 18 benchmark families. There
exists only one benchmark family (toilet) where 2clsQ outperforms 2clsP. On the 8
remaining benchmark families 2clsP achieves the same performance as 2clsQ. On these
benchmarks the clause/variable ratio was unfavorable for partitioning, so 2clsP operated
without it on these families. That is, on these families 2clsP operates exactly the same as
2clsQ does. Normally, the clause/variable ratio stays fairly constant among the problems
of the same benchmark family. However, in the case of the toilet benchmark the ratio
varies across instances, so that some of the problems in this benchmark were solved by
2clsP using partitioning and others without. This also holds for other benchmarks (e.g.,
Adder, S).

The average success rate over all benchmark families is shown in the final row of
the table. A high average displays fairly robust performance across structurally distinct

226 H. Samulowitz and F. Bacchus

Table 1. Results achieved by 2clsQ and 2clsP on all tested benchmark families. Instances were
timed out after 5,000 sec., and for each family the solver with highest success rate is shown in
bold, where ties are broken by time required to solve these instances. The summary line shows
the average success rate over all benchmark families and the total time taken (on solved instances
only).

Benchmark
Families

2clsQ 2clsP

(# instances) Succ.
%

time Succ.
%

time

ADDER (16) 44% 5,267 56% 8,346

adder (16) 19% 0 38% 1,374

Blocks (16) 50% 46 50% 46

C (24) 21% 16 25% 14

Connect (60) 100% 66 100% 66

Counter (24) 33% 4,319 33% 1,220

EV-Pursuer(38) 26% 2,836 34% 2,282

FlipFlop (10) 100% 4 100% 4

K (107) 35% 20,575 36% 20,039

Lut (5) 100% 19 100% 19

Mutex (7) 43% 22 43% 22

Qshifter (6) 33% 59 67% 1,924

S (52) 8% 9 15% 3,405

Szymanski (12) 67% 2,741 67% 2,741

TOILET (8) 75% 528 75% 528

toilet (38) 84% 47 84% 531

Tree (14) 100% 296 100% 0

Summary 58% 36,791 63% 42,502

instances. On this measure 2clsP is superior to 2clsQ solving 63% of all instances on
average compared to 58%.

The total CPU time is lower with 2clsQ than with 2clsP which was expected. Com-
puting partitions at every decision level is an expensive operation. In summary, these
results demonstrate quite convincingly that our new technique offers robust improve-
ments to 2clsQ.

5.2 2clsP vs. Other Solvers

We also compared our new solver 2clsP to five other state of the art QBF solvers Quaffle
[13] (version as of Feb. 2005), Quantor [9] (version as of 2004), Qube (release 1.3)
[19], Skizzo [10] (release 0.82), SQBF [20].

Quaffle, Qube, and SQBF are based on search, whereas Quantor is based on variable
elimination and SAT grounding. Skizzo uses a combination of variable elimination,
SAT grounding, and search, and also applies a variety of other kinds of reasoning on
the symbolic and the ground representations of the instances.

Table 2 shows the performance of 2clsP and all other search based solvers on the 465
problem instances we tested, broken down by benchmark family.

Dynamically Partitioning for Solving QBF 227

Table 2. Results achieved by 2clsP and five other state-of-the-art QBF solvers on all tested
benchmark families. Unsolved instances were timed out after 5,000 sec., and for each family the
solver with highest success rate is shown in bold, where ties are broken by time required to solve
these instances. The summary line shows the average success rate over all benchmark families
and the total time taken (on solved instances only).

Benchmark
Families

Skizzo Quantor 2clsP Quaffle Qube SQBF

(# instances) Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time

ADDER (16) 50% 954 25% 24 56% 8,346 25% 1 13% 72 13% 3

adder (16) 44% 455 25% 29 38% 1,374 42% 5 44% 0 38% 2,678

Blocks (16) 56% 108 100% 308 50% 46 75% 1,284 69% 1774 75% 7,042

C (24) 25% 1,070 21% 140 25% 14 21% 5,356 8% 3 17% 4

Chain (12) 100% 1 100% 0 100% 0 67% 6,075 83% 4,990 58% 4,192

Connect (60) 68% 802 67% 14 100% 7 70% 253 75% 7,013 67% 0

Counter (24) 54% 1,036 50% 217 33% 1,220 38% 5 33% 2 38% 9

EVPursade (38) 29% 1,450 3% 73 34% 2,282 26% 1,962 18% 4,402 32% 4,759

FlipFlop (10) 100% 6 100% 3 100% 4 100% 0 100% 1 80% 5,027

K (107) 88% 1,972 63% 3,839 36% 20,039 35% 21,675 37% 21,801 33% 5,563

Lut (5) 100% 9 100% 3 100% 19 100% 1 100% 3 100% 1,247

Mutex (7) 100% 0 43% 0 43% 22 29% 43 43% 64 43% 1

Qshifter (6) 100% 8 100% 26 67% 1,924 17% 0 33% 29 33% 1,107

S (52) 27% 644 25% 910 15% 3,405 2% 0 4% 401 2% 0

Szymanski (12) 42% 1,147 25% 7 67% 2,741 0% 0 8% 0 0% 0

TOILET (8) 100% 1 100% 4,135 75% 528 75% 61 63% 496 100% 1,307

toilet (38) 100% 84 100% 684 84% 531 97% 115 100% 58 97% 395

Tree (14) 100% 0 100% 0 100% 0 100% 37 100% 0 93% 1,051

Summary 71% 9,747 64% 10,412 63% 42,502 51% 36,873 52% 41,109 51% 34,385

As in the previous table we display for each solver and benchmark the success rate
and the time consumed by the solver on the successfully solved instances. Again, bold
values indicate that the particular solver gained the highest success rate on that families’
instances breaking ties by CPU time consumed.

On this measure 2clsP is the best solver on 7 out of the 18 benchmark families.
Skizzo follows with 6, Quantor with 4, Qube with 4, and Quaffle with 1. SQBF is not
the best performer on any benchmark family.

The average success rate over all benchmark families is shown in the final row of
the table. A high average displays fairly robust performance across structurally distinct
instances. On this measure 2clsP is superior to all other search based solvers with an
average success rate of 63%. It is followed by Qube (−11%), SQBF (−12%) and Quaf-
fle (−12%). However, both Skizzo (+8%) and Quantor (+1%) achieve a better average
success rate. In terms of the total CPU time, 2clsP requires the highest amount of CPU
time.

In total 2clsP is a very competitive QBF solver that achieves the best performance
on more benchmark families than any other solver. In addition, its average success rate
is close to the best achieved by any of the tested solvers. Although the new techniques

228 H. Samulowitz and F. Bacchus

employed in 2clsP are rather complex we see that they pay off in terms of performance
gains.

5.3 State of the Art Solver

The results of the QBF competition 2006 [21] indicate that the “best” QBF solver would
probably use a portfolio approach rather than any single solver. For example, our 2clsQ
entry which won the 2006 competition first applied a hyperbinary preprocessor (Pre-
Quel [11,22]), then it ran the QBF solver Quantor for a fixed period of time. Finally if
the problem was still not solved 2clsQ was invoked on output of PreQuel.

Given the results displayed in [11] a very promising strategy in the competition
would be to apply PreQuel and a time-limited version of Quantor as before, and Skizzo
as final solver. This observation is mainly due to the good standard performance of
Skizzo and the positive impact of preprocessing on Skizzo [11]. It is not clear if the em-
ployment of Quantor in the context of Skizzo is as beneficial as it is for a search-based
solver but given the performance of Quantor it should not turn out to be a drawback
either.

However, depending on the benchmark families in the competition, the results shown
here indicate that 2clsP together with the initial two stage processing of PreQuel and
Quantor would also be able to achieve a high ranking. This is due to the fact that 2clsP
remains to be a competitive solver on several benchmark families even when Skizzo is
supplied with a preprocessed problem instances (e.g., the Adder benchmark family).

6 Conclusions

We have shown how dynamic partitioning can be used to obtain significant improve-
ments to a state of the art QBF solver, 2clsQ. The key to making dynamic partitioning
work is finding a way to utilize clause and cube learning in conjunction with partition-
ing. In this paper we have presented an approach for accomplishing this.

There is, however, much scope for further improvements. These include better
heuristics for promoting the dynamic creation of partitions, and better heuristics for
deciding when to and when not to partition. Also the theory behind partial cubes can
probably be elaborated further and perhaps used to obtain further algorithmic insights.

References

1. Bryant, R., Lahiri, S., Seshia, S.: Convergence testing in term-level bounded model checking.
Technical Report CMU-CS-03-156, Carnegie Mellon University (2003)

2. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks using quanti-
fied boolean formulas. In: AAAI/IAAI. (2000) 417–422

3. Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of Artificial Intel-
ligence Research 10 (1999) 323–352

4. Ali, M., Safarpour, S., Veneris, A., Abadir, M., Drechsler, R.: Post-verification debugging of
hierarchical designs. In: International Conf. on Computer Aided Design (ICCAD). (2005)
871–876

Dynamically Partitioning for Solving QBF 229

5. Jr., R.J.B., Pehoushek, J.D.: Counting models using connected components. In: Proceedings
of the AAAI National Conference (AAAI). (2000) 157–162

6. Darwiche, A.: On the tractable counting of theory models and its application to truth main-
tenance and belief revision. Journal of Applied Non-Classical Logics 11(1-2) (2001) 11–34

7. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and Complexity Results for #SAT and
Bayesian Inference. In: 44th Symposium on Foundations of Computer Science (FOCS).
(2003) 340–351

8. Samulowitz, H., Bacchus, F.: QBF Solver 2clsQ (2006) available at
http://www.cs.toronto.edu/˜fbacchus/sat.html

9. Biere, A.: Resolve and expand. In: Seventh International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT). (2004) 238–246

10. Benedetti, M.: sKizzo: a QBF decision procedure based on propositional skolemization and
symbolic reasoning. Technical Report TR04-11-03 (2004)

11. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Principles and Practice of
Constraint Programming, Springer-Verlag, New York (2006)

12. Büning, H.K., Karpinski, M., Flügel, A.: Resolution for quantified boolean formulas. Inf.
Comput. 117(1) (1995) 12–18

13. Zhang, L., Malik, S.: Towards symmetric treatment of conflicts and satisfaction in quan-
tified boolean satisfiability solver. In: Principles and Practice of Constraint Programming
(CP2002). (2002) 185–199

14. Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for quantified boolean logic satisfi-
ability. In: Eighteenth national conference on Artificial intelligence. (2002) 649–654

15. Benedetti, M.: Quantifier Trees for QBFs. In: Proc. of the Eighth International Conference
on Theory and Applications of Satisfiability Testing (SAT05). (2005)

16. Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining component caching and
clause learning for effective model counting. In: SAT. (2004)

17. Samulowitz, H., Bacchus, F.: Binary clause reasoning in qbf. In: Ninth International Con-
ference on Theory and Applications of Satisfiability Testing (SAT 2006), Lecture Notes in
Computer Science 2919. (2006)

18. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satisfiability
library (QBFLIB) (2001) www.qbflib.org.

19. Giunchiglia, E., Narizzano, M., Tacchella, A.: QUBE: A system for deciding quantified
boolean formulas satisfiability. In: International Joint Conference on Automated Reasoning
(IJCAR). (2001) 364–369

20. Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: Principles and Practice of Constraint
Programming, Springer-Verlag, New York (2005)

21. Giunchiglia, E., Narizzano, M., Tacchella, A.: The qbf2006 competition (2006) available on
line at http://www.qbflib.org/.

22. Samulowitz, H., Davies, J., Bacchus, F.: QBF Preprocessor Prequel (2006) available at
http://www.cs.toronto.edu/˜fbacchus/sat.html.

www.qbflib.org

Backdoor Sets of Quantified Boolean Formulas�

Marko Samer and Stefan Szeider

Department of Computer Science
Durham University, UK

{marko.samer,stefan.szeider}@durham.ac.uk

Abstract. We generalize the notion of backdoor sets from propositional formulas
to quantified Boolean formulas in conjunctive normal form (QCNF). We develop
parameterized algorithms that admit uniform polynomial time QCNF evaluation
parameterized by the size of smallest strong backdoor sets. For our algorithms
we develop a theory of variable dependency which is of independent interest. As
a result, we obtain hierarchies of classes of tractable QCNF formulas with the
classes of quantified Horn and quantified 2CNF formulas, respectively, at their
first level, thus gradually generalizing these two prominent tractable classes. In
contrast to known tractable classes based on bounded treewidth, the number of
quantifier alternations of our classes is unbounded.

1 Introduction

Several important computational tasks like planning, verification, and several questions
of automated reasoning and games can be naturally encoded as the evaluation problem
of quantified Boolean formulas [17,20,22], a generalization of the propositional satis-
fiability problem (SAT). In recent years quantified Boolean formulas have become a
very active research area. The evaluation of quantified Boolean formulas constitutes a
PSPACE-complete problem [24] and is therefore computationally harder than the NP-
complete propositional satisfiability problem. For background information on quanti-
fied Boolean formulas we refer the reader to other sources [11,19]. In the sequel we
make the common assumption that for a given formula all variables are quantified
(i.e., there are no free variables) and that the formula is in prenex normal form with
the propositional part (the matrix) in conjunctive normal form; we will refer to such
formulas as QCNF formulas.

Every propositional CNF formula can be considered as a QCNF formula with all
variables existentially quantified. Thus, every tractable class of CNF formulas (dozens
of such classes are known) gives rise to a tractable class of QCNF formulas. However,
very few tractable classes of quantified Boolean formulas are known where the num-
ber of quantifier alternations is unbounded. For example, the time needed for solving
QCNF formulas of bounded treewidth grows non-elementary in the number of quan-
tifier alternations, as recently shown by Pan and Vardi [18]. Two prominent tractable
classes with unbounded quantifier alternations are QHORN (clauses contain at most
one positive literal) and Q2CNF (clauses contain at most two literals). QHORN formu-
las and Q2CNF formulas can be evaluated in polynomial time due to classic results

� Research supported by the EPSRC project EP/E001394/1.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 230–243, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Backdoor Sets of Quantified Boolean Formulas 231

of Kleine Büning, Karpinski, and Flögel [10] and of Aspvall, Plass, and Tarjan [1],
respectively.

In this paper we define hierarchies of tractable classes of QCNF formulas of the form
C0 ⊆ C1 ⊆ C2 ⊆ · · · where the first class C0 is either QHORN or Q2CNF, and every
QCNF formula belongs to some Ck for k large enough. We develop algorithms which
render membership in Ck as well as evaluation of formulas in Ck feasible in uniform
polynomial time. In other words, our algorithms are fixed-parameter algorithms since
the order of the polynomial that bounds their running time is independent of k. This
feature of fixed-parameter algorithms admits an efficient processing of large instances
as long as the parameter k is kept small (in contrast to non-uniform polynomial-time
algorithms with a running time of, say, O(nk)). We will briefly review some basic
concepts of fixed-parameter complexity in Section 2.2.

Backdoor Sets

Our approach is based on the generalization of the concept of backdoor sets from propo-
sitional satisfiability to quantified Boolean formulas. Backdoor sets for SAT (and sim-
ilarly for constraint satisfaction) were introduced by Williams, Gomes, and Selman as
a tool for analyzing the performance of local search algorithms [27,28]. Backdoor sets
have recently received a lot of attention in satisfiability research [7,8,9,13,15,16,21,26].
The idea is to consider a base class C of CNF formulas for which membership and
satisfiability are both decidable in polynomial time. A set B of variables of an arbi-
trary CNF formula F is a strong C-backdoor set if all formulas that can be obtained
from F by instantiating the variables in B belong to the base class C (in the sequel we
will also discuss the notion of weak backdoor sets which is, however, less relevant for
our considerations). If a strong backdoor set B is known, we can efficiently decide the
satisfiability of F by checking the satisfiability of 2|B| CNF formulas that belong to
the tractable class C. Nishimura, Ragde, and Szeider have studied the algorithmic com-
plexity of finding small strong backdoor sets of CNF formulas with respect to various
base classes including Horn and 2CNF formulas [15], formulas that can be decided by
polynomial-time DLL subsolvers [25], and variable-disjoint unions of hitting formulas
(clustering formulas) [16].

In this paper we generalize the concepts of weak and strong backdoor sets to QCNF
formulas. In the following we discuss some basic principles of our approach, taking the
class of (quantified) Horn formulas as the base class. Consider the CNF formula

F = (¬x ∨ y ∨ ¬w) ∧ (x ∨ ¬y ∨ w) ∧ (¬y ∨ z) ∧ (y ∨ ¬z).

The set B = {x} is a strong HORN-backdoor set of F since for x = 0 we obtain the
clauses (¬y∨w), (¬y∨z), and (y∨¬z) and for x = 1 we obtain the clauses (y∨¬w),
(¬y ∨ z), and (y ∨¬z) which are all Horn. Now let us quantify the variables so that we
obtain the QCNF formula

F = ∀y ∀z ∃x∃w F.

Obviously, the variable x cannot be isolated anymore in a backdoor set as above since
the truth value of x apparently depends on the truth values of y and z. In other words, we
cannot reduce the evaluation of F to the evaluation of some simpler QHORN formula

232 M. Samer and S. Szeider

obtained by fixing the truth value of x while y and z remain universally quantified.
Hence, for QCNF formulas we require that strong backdoor sets are closed with respect
to the dependency of variables: if x belongs to the backdoor set B, also all variables on
which x depends belong to B.

So far we have left open the exact meaning of “x depends on y.” Clearly it would be
safe to assume that a variable x depends on all variables that are quantified left of x.
Thus, in the above example, {x, y, z} certainly constitutes a strong QHORN-backdoor
set of F . However, a closer look at the formula reveals that we can do better. Although
z is quantified left of x we can actually swap the quantification of x and z, reveal-
ing that x does not depend on z. Namely, the matrix F can be split into two parts
F1 = (¬x∨ y ∨¬w) ∧ (x∨¬y ∨w) and F2 = (¬y ∨ z)∧ (y ∨ ¬z) such that x and w
occur only in F1 and z occurs only in F2. Thus, we can rewrite F equivalently as

∀y ∀z ∃x∃w (F1 ∧ F2) ⇔ ∀y
(
(∃x∃w F1) ∧ (∀z F2)

) ⇔ ∀y ∃x∃w ∀z (F1 ∧ F2),

thus shifting x to the left and so showing that x does not depend on z. Consequently, we
can actually form the smaller backdoor set {x, y}. With a more sophisticated reasoning
that we will describe in Section 3, we can shift x to the left of z even if x occurs in F2,
as long as it occurs only positively or only negatively. For the general case we need to
take into account whether variables are connected to each other in a certain way.

Along these lines we develop a scheme of variable dependency that allows us to limit
the blow-up of strong backdoor sets caused by variable dependencies. Variable depen-
dency has been studied in a slightly different context by Egly, Tompits, and Woltran [5]
and by Biere [3]; of related interest is Benedetti’s work on quantifier trees [2]. For a vari-
able dependency scheme one needs to compromise between feasibility and generality:
we show in Section 3 that identifying minimal variable dependencies is PSPACE-hard.
We propose a dependency scheme that is reasonably general and subsumes the scheme
that arises by the methods of Egly et al. [5] and Biere [3]. We formulate our scheme
strictly in terms of QCNF formulas, allowing a direct implementation within the data
structures used by QCNF-based solvers. The application of our dependency scheme is
not limited to backdoor set optimization; we think that it is also useful for other aspects
of the evaluation of quantified Boolean formulas.

Results

We develop algorithms that find strong backdoor sets with respect to the base classes
QHORN and Q2CNF, taking into account any tractable variable dependency scheme.
The algorithms detect strong QHORN-backdoor sets and strong Q2CNF-backdoor sets
of size bounded by a constant in linear time, assuming that the variable dependencies are
provided as an input. Similarly as the algorithms suggested by Nishimura et al. [15], our
algorithms are based on the bounded search tree technique, a fundamental technique for
fixed-parameter algorithms [4,14]. Once a strong backdoor set is found, the formula can
be evaluated by considering all truth assignments to the variables in the backdoor set.
Thus, if we take Ck as the class of QCNF formulas that have strong QHORN-backdoor
sets (respectively strong Q2CNF-backdoor sets) of size at most k, then we have indeed
an infinite hierarchy of tractable classes of QCNF formulas with the base class QHORN

Backdoor Sets of Quantified Boolean Formulas 233

(respectively Q2CNF) at its first level. Every QCNF formula belongs to some Ck for k
large enough, and every class Ck contains formulas with arbitrarily many quantifier
alternations.

Thus, we have fixed-parameter tractability results for a problem that is PSPACE-hard
in the non-parameterized sense. Here, the gain due to parameterization is even more
drastic than it is for most of the known fixed-parameter tractability results where the
non-parameterized problems are “only” NP-complete.

2 Background

2.1 Quantified Boolean Formulas

We consider propositional formulas F in conjunctive normal form (CNF). We identify
each CNF formula with the set of its clauses, e.g., F = (¬x ∨ y ∨ z) ∧ (¬y ∨ ¬z) ∧
(x∨¬y) is identified with the set {{¬x, y, z}, {¬y,¬z}, {x,¬y}}. Moreover, we con-
sider quantified Boolean formulas in quantified CNF (QCNF), for example,

F = ∀x∃y ∀z F = ∀x∃y ∀z (¬x ∨ y ∨ z) ∧ (¬y ∨ ¬z) ∧ (x ∨ ¬y).

We refer to F as the matrix of F . We assume that all variables occurring in the matrix
are bounded by some quantifier, i.e., there are no free variables in F , and that all vari-
ables bounded by some quantifier occur in the matrix. Each clause in F is a finite set
of literals, and a literal is a negated or unnegated propositional variable. For a literal �
we denote by � the literal of opposite polarity, i.e., x = ¬x and ¬x = x; moreover, for
a set X of literals, we put X = { � : � ∈ X }. For a clause C we denote by var(C) the
set of variables that occur (negated or unnegated) in C. For a QCNF formula F and its
matrix F we put var (F) = var (F) =

⋃
C∈F var(C).

For a CNF formula F and a variable x ∈ var (F), we put F−x = {C \{x, x} : C ∈
F }; moreover, for a set X ⊆ var (F), we put F − X = {C \ (X ∪ X) : C ∈ F }.
For a QCNF formula F = Q1x1 . . . Qnxn F and a variable xp ∈ var (F), we denote
byF−xp the QCNF formula obtained fromF by replacing the matrix F by F−xp and
removing the superfluous quantification Qpxp; moreover, we generalize this notation in
a straight-forward way to F − X for sets X ⊆ var(F). We define the depth of xp

in F as δF(xp) = p and we put qF(xp) = Qp. A QCNF formula F ′ is obtained
from F by quantifier reordering, if there is a permutation i1, . . . , in of 1, . . . , n such
that F ′ = Qi1xi1 . . . Qinxin F .

A truth assignment is a mapping τ : X → {0, 1} defined on some set X of variables.
We extend τ to literals by setting τ(¬x) = 1− τ(x) for x ∈ X . For a truth assignment
τ : {x} → {0, 1} we simply write “x = 0” and “x = 1” respectively. For a truth
assignment τ and a CNF formula F , we denote by F [τ] the CNF formula obtained
from F by removing all clauses which contain a literal � with τ(�) = 1 and by removing
literals � with τ(�) = 0 from the remaining clauses; moreover, for a QCNF formulaF =
Q1x1 . . . Qnxn F , we denote byF [τ] the QCNF formula obtained fromF by replacing
the matrix F by F [τ] and removing all superfluous quantifications. A truth assignment τ
satisfies a CNF formula F if F [τ] = ∅.

The evaluation function ν : F �→ {0, 1} on QCNF formulas F is recursively de-
fined by ν(∃xF) = max(ν(F [x = 0]), ν(F [x = 1])), ν(∀xF) = min(ν(F [x = 0]),

234 M. Samer and S. Szeider

ν(F [x = 1])), and, if F has no variables, ν(F) = 1 if F = ∅ and ν(F) = 0 other-
wise. A QCNF formula F is true (or satisfiable) if ν(F) = 1; otherwise it is false (or
unsatisfiable). Two QCNF formulas F and F ′ are equivalent if ν(F) = ν(F ′).

A clause is called Horn if it contains at most one positive literal and it is called binary
if it contains at most two literals. A CNF/QCNF formula is called Horn (resp. binary)
if all its clauses are Horn (resp. binary). The class of Horn (resp. binary) CNF formulas
is denoted by HORN (resp. 2CNF); the class of Horn (resp. binary) QCNF formulas is
denoted by QHORN (resp. Q2CNF).

2.2 Parameterized Complexity

An instance of a parameterized problem is a pair (I, k) where I is the main part and k
is the parameter; the latter is usually a non-negative integer. A parameterized problem
is fixed-parameter tractable if it can be solved by a fixed-parameter algorithm, i.e., if
instances (I, k) can be solved in time O(f(k)nc), where f is a computable function, c
is a constant, and n is the size of I . FPT denotes the class of all fixed-parameter tractable
decision problems [4,6,14].

Parameterized complexity offers a completeness theory, similar to the theory of
NP-completeness, that allows the accumulation of strong theoretical evidence that a
parameterized problem is not fixed-parameter tractable. This completeness theory is
based on the weft hierarchy of complexity classes W[t], t ≥ 1. Each class is the equiv-
alence class of certain parameterized satisfiability problems under parameterized re-
ductions (“fpt-reductions”) which are straightforward extensions of polynomial-time
many-to-one reductions that ensure a parameter of one problem maps into a parameter
of another problem [4,6,14]. If we know that a parameterized problem is W[t]-hard (un-
der parameterized reductions) for some t ≥ 1, then it is very unlikely that the problem
is fixed-parameter tractable. Fixed-parameter tractability of the problem would imply
that the Exponential Time Hypothesis fails [6] (i.e., the existence of a 2o(n) algorithm
for n-variable 3SAT).

3 Dependency Schemes

As already mentioned in the introduction, we consider dependency schemes in order to
obtain smaller backdoor sets. To this aim, we first need the following notions: L and R
assign to each QCNF formulaF and x ∈ var(F) the sets LF(x) = { y ∈ var (F) : 1 ≤
δF(y) ≤ δF (x) } and RF(x) = { y ∈ var (F) : δF(x) ≤ δF(y) ≤ |var (F)| }.
Definition 1 (Up-shifting). Let F be a QCNF formula and D ⊆ var (F). We say the
QCNF formula F ′ is obtained from F by up-shifting D, in symbols F ′ = S↑

D(F), if
F ′ is obtained from F by quantifier reordering and the following holds:

1. LF ′(x) = D for some x ∈ var (F) = var(F ′) and
2. δF ′(x) < δF ′(y) if and only if δF (x) < δF(y) for all x, y ∈ D and
3. δF ′(x) < δF ′(y) if and only if δF (x) < δF(y) for all x, y ∈ var(F) \D.

For example, recall the QCNF formula F = ∀y ∀z ∃x∃w F from the introduction and
let D = {x, y}. Then we have F ′ = S↑

D(F) = ∀y ∃x∀z ∃w F . Note that up-shifting
does not preserve equivalence in general.

Backdoor Sets of Quantified Boolean Formulas 235

Definition 2 (Dependency scheme). A dependency scheme D assigns to each QCNF
formula F and variable x ∈ var(F) a set DF (x) ⊆ var (F) such that F and
S↑

DF (x)(F) are equivalent. A dependency scheme D is tractable if DF(x) can be
computed in time that is polynomial in F .

For a dependency scheme D and X ⊆ var (F), we put DF (X) =
⋃

x∈X DF(x).
This is justified by the following lemma which follows by induction on |X |.

Lemma 1. Let F be a QCNF formula and D be a dependency scheme. Moreover, let
X ⊆ var(F) and Y =

⋃
x∈X DF(x). Then F and S↑

Y (F) are equivalent.

A simple example of a tractable dependency scheme is L as defined above. We call L
the trivial dependency scheme since always F = S↑

LF (x)(F).
Our aim in the following is to find tractable dependency schemes such that the

sets DF(x) are as small as possible. We say that dependency scheme D is more general
than dependency scheme D′ if always DF(x) ⊆ D′

F(x) and if the inclusion is strict in
some cases. The following dependency scheme is tractable and more general than L:

The standard dependency scheme Dstd is based on standard quantifier shifting rules
as considered by Egly et al. [5]. In short, Dstd can be defined by assigning to each
QCNF formula F and x ∈ var(F) the set Dstd

F (x) ⊆ LF(x) consisting of x and all
variables that appear in front of x after shifting the quantifiers down the parse tree of the
formula as far as possible according to quantifier shifting rules. Biere [3] considers a
very similar notion of variable dependency. Note that the standard dependency scheme
is not as general as possible. The following proposition shows that when we want a
dependency scheme to be tractable, we cannot expect it to be optimal.

Proposition 1. Let F be a QCNF formula and x, y ∈ var (F). The problem of decid-
ing whether there exists a dependency scheme D such that y /∈ DF (x) is PSPACE-
complete.

Proof. (Sketch.) The problem belongs to PSPACE as polynomial space suffices to go
through all QCNF formulas F ′ obtained from F by quantifier reordering such that
y /∈ LF ′(x) and to check whetherF andF ′ are equivalent. For showing PSPACE-hard-
ness, we reduce from QBF satisfiability. To this aim, let G = Q1x1 . . . Qnxn G
be an arbitrary QCNF formula and y, z /∈ var (G) be two new variables. We put
F = G ∧ (y ∨ z) ∧ (¬y ∨ ¬z) and F = ∀y ∃z Q1x1 . . . Qnxn F . It follows then
that F and S↑

DF (z)(F) are equivalent if and only if G is false. ��
Next we define a tractable dependency scheme that improves upon the standard depen-
dency scheme, providing a fair compromise between tractability and optimality.

Definition 3 (Dependency triangle). Let F be a QCNF formula with matrix F . Two
clauses C, C′ ∈ F are connected with respect to X ⊆ var (F) if there is a sequence
C1, . . . , Cn with C = C1 and C′ = Cn, such that var(Ci) ∩ var (Ci+1) ∩ X �= ∅
for all 1 ≤ i < n. Three clauses C1, C2, C3 ∈ F form an (x, y)-dependency triangle
with respect to X ⊆ var(F) if (i) qF (x) = ∀ and qF (y) = ∃, (ii) C1 and C2 as
well as C1 and C3 are connected with respect to X ∪ {x}, and (iii) x ∈ var (C1),
y ∈ C2, and ¬y ∈ C3.

236 M. Samer and S. Szeider

To illustrate these definitions, consider the QCNF formula F = ∀u ∃v ∃w ∀x∃y ∀z
(u ∨ y) ∧ (x ∨ y) ∧ (¬v ∨ w ∨ x) ∧ (v ∨ w ∨ ¬z) ∧ (v ∨ ¬y) ∧ (¬w ∨ z). Each pair
of clauses in F is connected with respect to some set. For example, the clauses (x ∨ y)
and (v ∨ w ∨ ¬z) are connected with respect to {v, y} and with respect to {w, x}.
Furthermore, there is a (u, v)-dependency triangle with respect to {x, y} (by choosing
C1 = u ∨ y, C2 = v ∨ ¬y, and C3 = ¬v ∨ w ∨ x) and a (z, w)-dependency triangle
with respect to ∅ (by choosing C1 = C2 = v ∨ w ∨ ¬z and C3 = ¬w ∨ z).

Definition 4 (Triangle dependency scheme). The triangle dependency scheme D�

assigns to each QCNF formula F and x ∈ var(F) the set D�
F(x) = D

δF (x)−1
F (x),

where D
δF (x)−1
F (x) ⊆ LF(x) ⊆ var(F) is recursively defined as follows: (i) D0

F(x) =
{x}, (ii) Di+1

F (x) = Di
F(x) ∪ {y} if y ∈ var(F) such that δF (y) = δF(x) − i and

one of the following two conditions holds, and (iii) Di+1
F (x) = Di

F (x) otherwise.

1. There exists an (x, y)-dependency triangle (i.e., qF (x) = ∀ and qF(y) = ∃)
or a (y, x)-dependency triangle (i.e., qF (y) = ∀ and qF(x) = ∃) with respect
to RF (y) \ (Di

F(x) ∪ {y}).
2. There exists z ∈ Di

F(x) \ {x} such that y ∈ D�
F (z).

Note that this recursive definition is well-founded since LF(z) ⊂ LF(x) for all z ∈
D�

F(x) \ {x}. In particular, for all x ∈ var(F), the set D�
F(x) can be computed by

successively computing D�
F (x1), D�

F (x2), D�
F (x3), etc., where δF (xi) = i.

For example, recall the QCNF formula F from above. It holds that D�
F(u) = {u},

D�
F(v) = {u, v}, D�

F(w) = {u, w}, D�
F(x) = {u, v, x}, D�

F (y) = {y}, and
D�

F(z) = {u, w, z}. In particular, we obtain D�
F(z) = {u, w, z} in the following way:

(i) D0
F(z) = {z}, (ii) D1

F(z) = D0
F (z) = {z} since there is no (z, y)-dependency

triangle with respect to ∅ and D0
F(z) \ {z} = ∅, (iii) D2

F(z) = D1
F (z) = {z} since

D1
F(z) \ {z} = ∅, (iv) D3

F(z) = D2
F (z) ∪ {w} = {w, z} since there is a (z, w)-

dependency triangle with respect to ∅ ⊆ {x, y}, (v) D4
F(z) = D3

F(z) = {w, z} since
there is no (z, v)-dependency triangle with respect to {x, y} and v /∈ D�

F(w) with
D3

F(z) \ {z} = {w}, (vi) D5
F (z) = D4

F (z) ∪ {u} = {u, w, z} since u ∈ D�
F(w) with

w ∈ D4
F(z)\ {z}, and finally (vii) D�

F(z) = D5
F(z) = {u, w, z} since δF(z)− 1 = 5.

Theorem 1. The triangle dependency scheme is indeed a dependency scheme.

Proof. Let F be a QCNF formula and x ∈ var (F). Moreover, let F ′ denote
S↑

D�
F (x)

(F). We have to show that F and F ′ are equivalent. To this aim, note that

F ′ is obtained from F by quantifier reordering, i.e., by a permutation of the quantifi-
cations in the quantifier prefix. It is well known that every permutation of elements
can be achieved by successively swapping adjacent elements such that each pair is
swapped at most once [12]. In particular, this means that we can transform F into F ′

by successively swapping adjacent quantifications of variables v ∈ D�
F (x) with vari-

ables w ∈ LF(x) \ D�
F(x), since the relative ordering of variables within these two

sets remains unchanged according to the definition of an up-shifting. Thus, it suffices
to show that each such elementary transformation step preserves equivalence.

W.l.o.g., let v ∈ D�
F(x) and w ∈ LF(x) \ D�

F (x) be two variables with adja-
cent quantifications in the quantifier prefix that have to be swapped. First note that

Backdoor Sets of Quantified Boolean Formulas 237

w /∈ D�
F (v). Otherwise, we obtain w ∈ D�

F(x) by Definition 4(2), which con-
tradicts our assumption. Thus, we can distinguish between the following cases: If
qF(v) = qF (w), the equivalence follows trivially. Otherwise, if qF(v) �= qF (w), let
us first assume that qF(v) = ∀ and qF (w) = ∃. Let G denote the formula before v
and w are swapped and let G′ denote the formula after v and w have been swapped.
In particular, that means G = · · · ∃w ∀v · · · G and G′ = · · · ∀v ∃w · · · G. Thus, G triv-
ially implies G′. For the other direction, we know by Definition 4(1) that there is no
(v, w)-dependency triangle with respect to RF (w) \ (DδF (v)−δF (w)−1

F (v) ∪ {w}) =
RG(v) \ {v} = RG′(w) \ {w}. This implies that the set of clauses G can be partitioned
into two subsets G1 and G2 such that v ∈ var (G1) \ var (G2), {w,¬w} �

⋃
G1,

and var(G1) ∩ var (G2) ⊆ LG′(w) \ {v}. Now assume for the sake of contradiction
that the truth value of w depends on the truth value of v when evaluating G′, i.e., there
exists a partial truth assignment to the variables in LG′(v) \ {v} such that the remain-
ing formula evaluates to true only if w is assigned different truth values for different
truth values of v. Let G′

1 and G′
2 be the resulting sets of clauses obtained from G1

and G2 respectively after such a partial truth assignment has been applied. Thus, we
know that var(G′

1) ∩ var (G′
2) ⊆ {w}. This, however, implies that the clauses in

G′
2 must be satisfiable independent of the truth value assigned to w. Moreover, since
{w,¬w} �

⋃
G1 ⊇

⋃
G′

1, we know that the clauses in G′
1 must be satisfiable for a

fixed truth value assigned to w, i.e., if w ∈ ⋃
G′

1 then w is assigned 1 and if ¬w ∈ ⋃
G′

1

then w is assigned 0. Thus, the truth value of w can be chosen independently from the
truth value of v, which contradicts our assumption. Consequently, swapping v and w
in the quantifier prefix of G′ does not affect its truth value. Hence, we know that G′
implies G. The case qF (v) = ∃ and qF (w) = ∀ is completely symmetric. ��
Proposition 2. The triangle dependency scheme is tractable. In particular, given a
QCNF formula F with n variables and length N , we can compute all the sets D�

F(x),
with x ∈ var(F), in time O(n2N).

Proof. The definition of the triangle dependency scheme gives rise to a recursive algo-
rithm that searchesO(n2) times for an (x, y)-dependency triangle. The latter search can
be accomplished by breadth-first search in time linear in N if appropriate data struc-
tures are used. ��
Proposition 3. Let F be a QCNF formula and x ∈ var (F). The difference in size of
the set Dstd

F (x) assigned to x by the standard dependency scheme and the set D�
F (x)

assigned to x by the triangle dependency scheme can be arbitrarily large.

Proof. Let n be an arbitrarily large non-negative integer; w.l.o.g., we can assume that
n is odd. Now let F = ∀y1 ∃y2 ∀y3 . . .∃yn−1 ∀yn ∃x ((y1 ∨¬y2)∧ (y2 ∨¬y3)∧ · · · ∧
(yn−2 ∨ ¬yn−1) ∧ (yn−1 ∨ ¬x) ∧ (x ∨ ¬yn)). Then Dstd

F (x) = {x, y1, . . . , yn} and
D�

F(x) = {x}. Hence, |Dstd
F (x)| − |D�

F(x)| = (n + 1)− 1 ≥ n. ��
Let us remark that the set assigned to each variable by the triangle dependency scheme
may be larger than necessary. Of course, this is not surprising in consideration of Propo-
sition 1. However, we believe that there is a considerable potential for future research
to determine dependency schemes which can be computed in a reasonable amount of
time and are more general than the triangle dependency scheme.

238 M. Samer and S. Szeider

4 Backdoor Sets

For this section, we consider an arbitrary but fixed dependency scheme D; the defini-
tions of partial assignment trees and backdoor sets are subject to the choice of D.

Partial truth assignments are key for defining backdoor sets of propositional CNF
formulas. In the following we introduce the concept of assignment trees which allows
us to extend the notions of partial truth assignments and backdoor sets to the quantified
setting. We roughly follow a concept of Samulowitz and Bacchus [23].

An assignment tree T = (T, λ) is a pair of a rooted binary tree T and a node label-
ing λ with the following properties. The labeling λ labels every node t (except the root)
of T with a pair λ(t) = (x, ε), where x is a variable and ε ∈ {0, 1}. Every node has
at most two children. Nodes at the same depth (i.e., distance from the root) are labeled
with the same variable and have the same number of children. A variable does not ap-
pear at different levels. If a vertex has two children t1 and t2, then λ(t1) = (x, ε) and
λ(t2) = (x, 1− ε). This completes the definition of an assignment tree.

Let T = (T, λ) be an assignment tree. We denote by var (T) the set of variables
occurring in labels of T , and for x ∈ var (T) we write δT (x) for the depth of x in T .
A variable x ∈ var (T) is existential or universal in T if the nodes of T at depth
δT (x) − 1 have one or two children, respectively. Every leaf t of T corresponds to a
truth assignment τ : var(T) → {0, 1} consisting of the assignments made along the
path from the root to t. We simply write τ ∈ T if τ is such a truth assignment.

Definition 5 (Partial assignment tree). Let F be a QCNF formula and T be an as-
signment tree. Then T is a partial assignment tree of F if (i) var (T) ⊆ var(F) and
existential (resp. universal) variables of T are existentially (resp. universally) quanti-
fied variables in F , (ii) δT (x) < δT (y) if and only if δF(x) < δF(y) holds for every
pair x, y ∈ var(T), and (iii) var (T) = DF (var(T)).

We define backdoor sets with respect to some base class C of QCNF formulas. We think
of C as a class which can be recognized in polynomial time and for which satisfiability
can be decided in polynomial time.

Definition 6 (Weak backdoor set). Let F be a QCNF formula. The set B = DF(X)
for some X ⊆ var (F) is a weak backdoor set of F with respect to C (or a weak
C-backdoor set, for short) if there exists a partial assignment tree T of F with
var(T) = B such that F [τ] is satisfiable and belongs to C for all τ ∈ T .

Proposition 4. Assume that the dependency scheme under consideration is tractable.
Let C ∈ {QHORN, Q2CNF} and k ≥ 0 be a constant. For a given QCNF formulaF we
can decide in polynomial time whether F has a weak C-backdoor set of size at most k.
If the answer is affirmative, then F is satisfiable.

Proof. (Sketch.) We go through all sets B⊆var (F) of size at most k; for |var(F)|=n
there are O(nk) such sets. For each B we can check in polynomial time whether it
is a weak C-backdoor set of F , since the number of partial assignment trees T with
var(T) = B is a function of k and therefore a constant. ��

Backdoor Sets of Quantified Boolean Formulas 239

The running time of the algorithm outlined in the previous proof is polynomial, but the
order of the polynomial depends on the size of the backdoor set. Thus, the algorithm
is not a fixed-parameter algorithm. We show that it is very unlikely that there exists
a fixed-parameter algorithm for this problem. To that end, we consider the following
parameterized decision problem with respect to an arbitrary base class C.

WEAK C-BACKDOOR

Instance: A QCNF formula F and a non-negative integer k.
Parameter: k.
Question: Does F have a weak C-backdoor set of size at most k?

Proposition 5. Let C ∈ {QHORN, Q2CNF}. The problem WEAK C-BACKDOOR is
W[2]-hard.

Proof. It is easy to see that WEAK C-BACKDOOR for CNF formulas is just a special
case of the corresponding problem for QCNF formulas. Hence, the W[2]-hardness re-
sult of Nishimura et al. [15] establishes the proposition. ��
For the definition of strong backdoor sets, we do not need partial assignment trees as in
the case of weak backdoor sets.

Definition 7 (Strong backdoor set). Let F be a QCNF formula. The set B = DF(X)
for some X ⊆ var(F) is a strong backdoor set of F with respect to C (or a strong
C-backdoor set, for short) if for all truth assignments τ : B → {0, 1} it holds that F [τ]
belongs to C.

By taking the size of the backdoor set as the parameter, we obtain the following param-
eterized decision problem for an arbitrary base class C of QCNF formulas.

STRONG C-BACKDOOR

Instance: A QCNF formula F and a non-negative integer k.
Parameter: k.
Question: Does F have a strong C-backdoor set of size at most k?

For certain base classes it suffices to consider the following variant of backdoor sets.

Definition 8 (Deletion backdoor set). Let F be a QCNF formula. The set
B = DF(X) for some X ⊆ var (F) is a deletion backdoor set of F with respect
to C (or a deletion C-backdoor set, for short) if F −B ∈ C.

Note that the various definitions of backdoor sets in this section coincide with their
propositional analogons. The problems of detecting (weak or strong) backdoor sets can
also be considered as traditional “non-parameterized” problems by taking the parameter
as part of the input. These non-parameterized problems are NP-complete, justifying our
parameterized approach. Membership follows immediately from Lemma 2 and hard-
ness follows by trivial reduction from the non-quantified propositional versions, which
have been shown by Nishimura et al. [15] to be NP-complete.

240 M. Samer and S. Szeider

Lemma 2. Let F be a QCNF formula and C ∈ {QHORN, Q2CNF}. Then a set
B ⊆ var (F) is a strong C-backdoor set of F if and only if B is a deletion
C-backdoor set of F .

Proof. This result follows again directly from the corresponding result for propositional
CNF formulas shown by Nishimura et al. [15]. ��
Using a similar construction as for Proposition 3, we can show that the difference be-
tween the sizes of the smallest strong backdoor sets using the standard dependency
scheme and using the triangle dependency scheme can be arbitrarily large.

5 Detecting Strong Backdoor Sets

In view of Lemma 2, it suffices to develop a fixed-parameter algorithm for detecting
deletion backdoor sets with respect to QHORN and Q2CNF; this algorithm is then also
a fixed-parameter algorithm for detecting strong backdoor sets.

Our first algorithm searches for a deletion QHORN-backdoor set B of size at most k
for a QCNF formula F . For each x ∈ var (F) we are given the set D(x) = DF(x).
If the dependency scheme D is tractable, then the sets can be computed in polynomial
time (see Proposition 2 for the triangle dependency scheme). We can assume that the
matrix of F contains at least one non-Horn clause and that k ≥ 1, since otherwise the
problem has a trivial solution. Consider a non-Horn clause C of F . By definition, C
contains at least two positive literals, say x1 and x2. Thus, by definition of a deletion
backdoor set, we know that either x1 or x2 must belong to B. Consequently, we can
systematically search for a deletion backdoor set by considering the two cases x1 ∈ B
and x2 ∈ B separately. That is, we search for a deletion backdoor set Bi of size ki =
k − |D(xi)| for the formula Fi = F − D(xi), i = 1, 2. If we find such a backdoor
set Bi, then B = Bi ∪D(xi) is a deletion backdoor set of F . If, however, neither F1

norF2 has such a backdoor set, thenF has no deletion backdoor set of size k. Thus, the
problem of finding a deletion backdoor set of size k for F reduces to two problems of
finding deletion backdoor sets of size k1 for F1 or of size k2 for F2. When we proceed
recursively and search for a deletion backdoor set of size at most k′ of a formula F ′,
we must consider variable dependencies with respect to the input formula F in order to
satisfy the closure condition DF(B) = B. Hence we do not need to compute the sets
DF ′(x) and can use D(x) ∩ var (F ′) instead. The pseudo code of the full algorithm
sb-qhorn is displayed in Figure 1. The algorithm explores a binary search tree of height
at most k. Since locating a non-Horn clause and removing variables in D(x) for some
x ∈ var(F) can be done in time linear in the length of the formula, and since the search
tree has at most 2k nodes, we obtain the following result.

Theorem 2. Given a QCNF formula F of length N and the sets DF (x) for x ∈
var(F). Then we can either find a strong QHORN-backdoor set for F of size at most k
or conclude that no such set exists in time O(2kN). Consequently, if the dependency
scheme under consideration is tractable, STRONG QHORN-BACKDOOR is in FPT.

For the detection of a deletion Q2CNF-backdoor set B of size at most k for a QCNF
formulaF , we can proceed in a similar fashion. Consider a clause C of F that contains

Backdoor Sets of Quantified Boolean Formulas 241

Procedure sb-qhorn(F , k)
Input: A QCNF formula F with matrix F , an integer k, and sets D(x) ⊆ var(F) for
x ∈ var(F);
Output: Either a strong QHORN-backdoor set B of size at most k for F , or “no” if such
a B does not exist.

1. If k < 0, then return “no”.
2. If F ∈ QHORN, then return ∅.
3. If k = 0, then return “no”.
4. Pick a non-Horn clause C ∈ F and two variables x1, x2 ∈ var(C) ∩ C.
5. Call sb-qhorn(F − D(x1), k − |D(x1) ∩ var(F)|).
6. If a set B1 is returned, then return B1 ∪ D(x1).
7. Call sb-qhorn(F − D(x2), k − |D(x2) ∩ var(F)|).
8. If a set B2 is returned, then return B2 ∪ D(x2).
9. Return “no”.

Fig. 1. Algorithm for detecting strong QHORN-backdoor sets

more than two literals. Let x1, x2, x3 be three different variables occurring in C. By
definition of a deletion backdoor set, we know that B must contain at least one xi, 1 ≤
i ≤ 3. Consequently, it suffices to consider three cases, searching for deletion Q2CNF-
backdoor sets Bi of size ki = k − |D(xi)| for Fi = F −D(xi), 1 ≤ i ≤ 3. If such a
Bi is found, then B = Bi ∪D(xi) is a deletion Q2CNF-backdoor set of F . Applying
this reasoning recursively yields the algorithm sb-q2cnf displayed in Figure 2.

Procedure sb-q2cnf(F , k)
Input: A QCNF formula F with matrix F , an integer k, and sets D(x) ⊆ var(F) for
x ∈ var(F);
Output: Either a strong Q2CNF-backdoor set B of size at most k for F , or “no” if such
a B does not exist.

1. If k < 0, then return “no”.
2. If F ∈ Q2CNF, then return ∅.
3. If k = 0, then return “no”.
4. Pick a clause C ∈ F with |C| ≥ 3 and three variables x1, x2, x3 ∈ var(C).
5. Call sb-q2cnf(F − D(x1), k − |D(x1) ∩ var(F)|).
6. If a set B1 is returned, then return B1 ∪ D(x1).
7. Call sb-q2cnf(F − D(x2), k − |D(x2) ∩ var(F)|).
8. If a set B2 is returned, then return B2 ∪ D(x2).
9. Call sb-q2cnf(F − D(x3), k − |D(x3) ∩ var(F)|).

10. If a set B3 is returned, then return B3 ∪ D(x3).
11. Return “no”.

Fig. 2. Algorithm for detecting strong Q2CNF-backdoor sets

242 M. Samer and S. Szeider

Theorem 3. Given a QCNF formula F of length N and the sets DF (x) for x ∈
var(F). Then we can either find a strong Q2CNF-backdoor set for F of size at most k
or conclude that no such set exists in time O(3kN). Consequently, if the dependency
scheme under consideration is tractable, STRONG Q2CNF-BACKDOOR is in FPT.

The algorithms outlined above only search for strong backdoor sets but do not decide
whether the given QCNF formula F is true or not. However, if a strong C-backdoor
set B for F of size at most k is found, then we only need to check satisfiability
of F [τ] ∈ C for all 2|B| ≤ 2k possible truth assignments τ : B → {0, 1}. This follows
immediately from the definition of strong backdoor sets. For C ∈ {QHORN, Q2CNF},
satisfiability of F [τ] ∈ C can be decided in polynomial time [10,1].

Theorem 4. Let C ∈ {QHORN, Q2CNF}. The evaluation of QCNF formulas is fixed-
parameter tractable with the size of a smallest strong C-backdoor set as parameter.

6 Conclusion

In this paper we introduced the notion of backdoor sets for quantified Boolean formu-
las, generalizing the notion from propositional formulas. To this aim, we introduced the
notion partial assignment trees, a generalization of partial truth assignments of propo-
sitional formulas. An essential part in this paper was devoted to the investigation of
dependency schemes which limit the dependency among quantified variables. We pro-
posed a dependency scheme that is both tractable and more powerful than dependency
schemes that can be obtained by known methods. We presented fixed-parameter algo-
rithms for detecting strong backdoor sets with respect to quantified Horn and quantified
2CNF formulas. As a consequence, we obtained infinite hierarchies of classes of QCNF
formulas that can be recognized and evaluated in uniform polynomial time, with quan-
tified Horn and quantified 2CNF formulas, respectively, at their first level.

References

1. B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth of
certain quantified Boolean formulas. Information Processing Letters, 8(3):121–123, 1979.

2. M. Benedetti. Quantifier trees for QBFs. In Proc. 8th Int. Conf. on Theory and Applications
of Satisfiability Testing (SAT’05), volume 3569 of LNCS, pages 378–385. Springer-Verlag,
2005.

3. A. Biere. Resolve and Expand. In Proc. 7th Int. Conf. on Theory and Applications of Satis-
fiability Testing (SAT’04), volume 3542 of LNCS, pages 59–70. Springer-Verlag, 2005.

4. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
5. U. Egly, H. Tompits, and S. Woltran. On quantifier shifting for quantified Boolean formulas.

In Proc. SAT’02 Workshop on Theory and Applications of Quantified Boolean Formulas,
pages 48–61. Informal Proceedings, 2002.

6. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.
7. J. Hoffmann, C. Gomes, and B. Selman. Structure and problem hardness: Goal asymmetry

and DPLL proofs in SAT-based planning. In Proc. 16th Int. Conf. on Automated Planning
and Scheduling (ICAPS’06), pages 284–293. AAAI Press, 2006.

8. Y. Interian. Backdoor sets for random 3-SAT. In Proc. 6th Int. Conf. on Theory and Appli-
cations of Satisfiability Testing (SAT’03), pages 231–238. Informal Proceedings, 2003.

Backdoor Sets of Quantified Boolean Formulas 243

9. P. Kilby, J. K. Slaney, S. Thiébaux, and T. Walsh. Backbones and backdoors in satisfiability.
In Proc. 20th National Conf. on Artificial Intelligence (AAAI’05), pages 1368–1373. AAAI
Press, 2005.

10. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for quantified Boolean formulas.
Information and Computation, 117(1):12–18, 1995.

11. H. Kleine Büning and T. Lettman. Propositional logic: Deduction and algorithms. Cam-
bridge University Press, 1999.

12. D. E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching, chapter
5.2.2 Sorting by Exchanging, pages 106–110. Addison-Wesley, 1973.

13. I. Lynce and J. P. Marques-Silva. Hidden structure in unsatisfiable random 3-SAT: An em-
pirical study. In Proc. 16th IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI’04),
pages 246–251. IEEE Computer Society, 2004.

14. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
15. N. Nishimura, P. Ragde, and S. Szeider. Detecting backdoor sets with respect to Horn and

binary clauses. In Proc. 7th Int. Conf. on Theory and Applications of Satisfiability Testing
(SAT’04), pages 96–103. Informal Proceedings, 2004.

16. N. Nishimura, P. Ragde, and S. Szeider. Solving #SAT using vertex covers. In Proc. 9th Int.
Conf. on Theory and Applications of Satisfiability Testing (SAT’06), volume 4121 of LNCS,
pages 396–409. Springer-Verlag, 2006.

17. C. Otwell, A. Remshagen, and K. Truemper. An effective QBF solver for planning problems.
In Proc. Int. Conf. on Modeling, Simulation and Visualization Methods and Int. Conf. on
Algorithmic Mathematics and Computer Science (MSV/AMCS’04), pages 311–316. CSREA
Press, 2004.

18. G. Pan and M. Y. Vardi. Fixed-parameter hierarchies inside PSPACE. In Proc. 21st Annual
IEEE Symposium on Logic in Computer Science (LICS’06), pages 27–36. IEEE Computer
Society, 2006.

19. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
20. J. Rintanen. Constructing conditional plans by a theorem-prover. Journal of Artificial Intel-

ligence Research, 10:323–352, 1999.
21. Y. Ruan, H. A. Kautz, and E. Horvitz. The backdoor key: A path to understanding problem

hardness. In Proc. 19th National Conf. on Artificial Intelligence (AAAI’04), pages 124–130.
AAAI Press, 2004.

22. A. Sabharwal, C. Ansotegui, C. Gomes, J. Hart, and B. Selman. QBF modeling: Exploiting
player symmetry for simplicity and efficiency. In Proc. 9th Int. Conf. on Theory and Appli-
cations of Satisfiability Testing (SAT’06), volume 4121 of LNCS, pages 382–395. Springer-
Verlag, 2006.

23. H. Samulowitz and F. Bacchus. Binary clause reasoning in QBF. In Proc. 9th Int. Conf.
on Theory and Applications of Satisfiability Testing (SAT’06), volume 4121 of LNCS, pages
353–367. Springer-Verlag, 2006.

24. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In Proc. 5th
Annual ACM Symposium on Theory of Computing (STOC’73), pages 1–9. ACM Press, 1973.

25. S. Szeider. Backdoor sets for DLL subsolvers. Journal of Automated Reasoning, 35(1-3):
73–88, 2005.

26. S. Szeider. Generalizations of matched CNF formulas. Ann. Math. Artif. Intell., 43(1-4):
223–238, 2005.

27. R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In Proc. 18th
Int. Joint Conf. on Artificial Intelligence (IJCAI’03), pages 1173–1178. Morgan Kaufmann,
2003.

28. R. Williams, C. Gomes, and B. Selman. On the connections between backdoors, restarts, and
heavy-tailedness in combinatorial search. In Proc. 6th Int. Conf. on Theory and Applications
of Satisfiability Testing (SAT’03), pages 222–230. Informal Proceedings, 2003.

Bounded Universal Expansion
for Preprocessing QBF

Uwe Bubeck1 and Hans Kleine Büning2

1 International Graduate School
Dynamic Intelligent Systems,

Universität Paderborn,
33098 Paderborn, Germany

bubeck@upb.de
2 Department of Computer Science,

Universität Paderborn,
33098 Paderborn, Germany

kbcsl@upb.de

Abstract. We present a new approach for preprocessing Quantified
Boolean Formulas (QBF) in conjunctive normal form (CNF) by expand-
ing a selection of universally quantified variables with bounded expansion
costs. We describe a suitable selection strategy which exploits locality of
universals and combines cost estimates with goal orientation by taking
into account unit literals which might be obtained.

Furthermore, we investigate how Q-resolution can be integrated into
this method. In particular, resolution is applied specifically to reduce the
amount of copying necessary for universal expansion.

Experimental results demonstrate that our preprocessing can success-
fully improve the performance of state-of-the-art QBF solvers on well-
known problems from the QBFLIB collection.

1 Introduction

Quantified Boolean Formulas (QBF) generalize propositional formulas by al-
lowing variables to be quantified either existentially or universally, whereas all
variables are implicitly existentially quantified in propositional logic. This en-
hancement makes QBF a concise and natural modeling language for problems
in many areas, such as planning, scheduling or verification [13, 15], and many
Boolean functions have compact representations in QBF.

On the other hand, however, determining the satisfiability of formulas in QBF
is PSPACE-complete, which is assumed to be significantly harder than the NP-
completeness of the propositional SAT problem. But continued research and
technical advances have already enabled impressive progress [14] towards the
goal of developing powerful QBF solvers suitable for practical use. Some of
those state-of-the-art solvers (e.g. [10] and [18]) are extensions of the well-known
DPLL backtracking search algorithm for propositional logic [8]. Several other
techniques have also been successfully applied to QBF solving, such as symbolic
skolemization [2] or resolution and quantifier expansion [4], to name only a few.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 244–257, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bounded Universal Expansion for Preprocessing QBF 245

There are in particular two characteristics of QBF which make it so difficult
to solve. The first is the fact that for every universal variable, the solver must
consider both possible values the variable might have. This obviously affects
the DPLL-based search algorithms, but also the other approaches like symbolic
skolemization, because an existential variable yi can be assigned different values
depending on the value of a universal whose quantifier precedes the quantifier of
yi. That behavior leads to the second inherent characteristic of QBF : the vari-
able ordering imposed by the nesting of the quantifiers must be respected when
solving the formula. In fact, the order of the quantifiers matters so much that the
complexity of the decision problem for QBF formulas in conjunctive normal form
(CNF) is assumed to become more difficult with each alternation of quantifier
blocks in the prefix, resulting in the so-called polynomial hierarchy [12].

QBF instances from various application domains typically have significantly
less universal quantifiers than existentials. And if those formulas have multiple
alternations of quantifiers, the universal blocks usually tend to be rather short.
It therefore appears rewarding to tackle the problem of solving QBF formulas
by getting rid of the universally quantified variables. After all, a universally
quantified formula ∀x φ(x) is just an abbreviation for φ(0) ∧ φ(1), where the
matrix of the formula is duplicated for x being either 0 or 1. As explained later
in more detail, special care has to be taken for existentials which depend on x:
those have to be duplicated as well.

This expansion of universal quantifiers has been used successfully for QBF
solving by Ayari and Basin in QUBOS [1] and in Biere’s solver Quantor [4].
Both systems are based on the approach of ultimately expanding all universals
and then solving the remaining purely existentially quantified formula with an
ordinary SAT solver. In addition, Quantor can also eliminate existential variables
by Q-resolution whenever this is cheaper than expansion.

Unfortunately, expanding many universals can quickly lead to rapid growth
of the resulting formula. In this paper, we suggest an approach which does not
involve eliminating all universals in the formula. Instead, we restrict ourselves
to preprocessing QBF formulas in CNF form by eliminating certain universally
quantified variables with bounded expansion costs before feeding the resulting
formulas to an ordinary QBF solver. The method is based on the idea that
we can probably make it significantly easier for the solver when we take out
some specially selected cheap or particularly rewarding universals. On the other
hand, we avoid the costs of expanding expensive universals which might each
require copying almost the whole formula and trigger an exponential explosion.
We present a suitable selection strategy which exploits locality of universals
and combines cost estimates with goal orientation. Furthermore, we discuss how
Q-resolution can be integrated into this method. In particular, we apply res-
olution specifically to reduce the amount of copying required in a subsequent
universal expansion step. This adds another strategic element to our variable
elimination procedure. We finish with an experimental evaluation and a conclu-
sion with suggestions for further improvements.

246 U. Bubeck and H. Kleine Büning

The previous work most closely related to ours is Biere’s resolve and expand
method [4] as implemented in Quantor. The most obvious difference is that we
do only preprocessing with selective expansion under bounded expansion costs.
In addition, Quantor only chooses quantifiers from the innermost universal scope
for expansion, and we generalize the idea by selecting universals from the whole
prefix. To make this work, we use tighter cost estimates and add goal orientation
by taking into account unit literals which might be obtained from the expansion.
Another major difference is our use of Q-resolution. While Quantor attempts to
balance resolution and expansion, we focus specifically on expansion and use
resolution only as a strategic means of reducing the expansion costs. Notice that
the solver QUBOS which was also mentioned above is very different from both
our approach and Quantor. It appears to be geared towards non-CNF formulas
or circuits and does not perform cost calculations, but just expands the universals
in the given order starting with the innermost. Furthermore, QUBOS does not
perform Q-resolution at all.

2 Preliminaries

A quantified Boolean formula Φ ∈ QBF in prenex form is a formula

Φ = Q1v1...Qkvk φ(v1, ..., vk)

with quantifiers Qi ∈ {∀, ∃} and a propositional formula φ(v1, ..., vk) over vari-
ables v1, ..., vk. We call Q := Q1v1...Qkvk the prefix and φ the matrix of Φ.

Unless mentioned otherwise, we assume that QBF formulas are always in
prenex form. In addition, we assume that the matrix is in conjunctive normal
form (CNF), where φ is a conjunction of clauses, with each clause being a
disjunction of negated or non-negated variables (literals).

A universally quantified formula ∀x φ(x) is defined to be true if and only if φ(0)
is true and φ(1) is true. Variables which are bound by universal quantifiers are
called universal variables and are usually given the names x1, ..., xn. Similarly,
an existentially quantified formula ∃y φ(y) is true iff φ(0) or φ(1). Variables in
the scope of an existential quantifier are existential variables and have names
y1, ..., ym. We write Φ = Q φ(x,y) or simply Φ = Q φ. Variables which are
not bound by quantifiers are free variables. In this paper, we do not allow free
variables in order to simplify the discussion. But we would like to point out that
universal expansion is in fact an equivalence-preserving transformation when
formulas with free variables are considered.

Without loss of generality, we require that no variable appears twice in Q
(i.e. that all variable names are unique). We call successive quantifiers of the
same kind in Q a quantifier block S. Blocks are defined to be maximal, such
that subsequent blocks Si and Si+1 are always labelled with different kinds
of quantifiers. We usually write Φ = ∀X1∃Y1...∀Xr∃Yr φ(X1, ..., Xr, Y1, ..., Yr)
for a QBF formula with universal quantifier blocks ∀Xi = ∀xi,1, ..., xi,ni and
existential blocks ∃Yi = ∃yi,1, ..., yi,mi .

Bounded Universal Expansion for Preprocessing QBF 247

According to their sequence in the prefix, quantifier blocks are ordered linearly
S1 < ... < Ss. We call Ss the innermost and S1 the outermost block. The order
of the quantifier blocks also induces a partial order on the variables. Let l1 and
l2 be two literals in Φ, then we define l1 < l2 if the variable in l1 occurs in a
quantifier block which precedes the block in which the variable of l2 appears. If
both variables occur in the same block, the order of the literals is undefined.

With |Φ|, we denote the size of a formula Φ = Q φ ∈ QBF , which we calculate
by adding the numbers of literals in all clauses of φ. Based on [4], we also
introduce notation to describe occurrences of variables and literals in the formula.
Given a literal l, we let o(l) denote the number of occurrences of l in a given
formula, and s(l) is defined to be the sum of the sizes of all clauses in which l
occurs. We further extend the latter notation to sets V of variables by letting
s(V) be the sum of the sizes of all clauses in which a variable in V occurs.
Consider the example formula Φ = ∀x1∃y1∃y2 (x1 ∨ ¬y2) ∧ (¬y2 ∨ y1) ∧ ¬y1.
Here, we have o(y1) = 1, s(y1) = 2 and o(¬y2) = 2, s(¬y2) = 4. Furthermore,
s({y1, y2}) = 5.

3 The Basic Preprocessing Algorithm

3.1 Universal Expansion

Consider a QBF formula

Φ = ∀X1∃Y1...∀Xr∃Yr φ(X1, ..., Xr, Y1, ..., Yr)

with universal quantifier blocks ∀Xi = ∀xi,1, ..., xi,ni and existential blocks ∃Yi =
∃yi,1, ..., yi,mi . In order to expand a universal variable xi,j from the i-th universal
block, we have to generate two copies of the matrix φ, one where xi,j is 0, and
one where xi,j is 1. Furthermore, we must take into account that the existentials
in the subsequent blocks Yi, ..., Yr depend on xi,j and can have different truth
values assigned depending on whether xi,j = 0 or xi,j = 1. Accordingly, we
have to duplicate these existentials to reflect that degree of freedom. We get the
expanded formula

Φ′ = Q′ φ(x1,1, ..., xi,j−1, 0, xi,j+1, ..., xr,nr , Y1, ..., Yr) ∧
φ(x1,1, ..., xi,j−1, 1, xi,j+1, ..., xr,nr , Y1, ..., Yi−1, Y

′
i , ..., Y ′

r)

with the new prefix Q′ which we obtain from the original prefix when we drop xi,j

and replace blocks ∃Yk, k = i, ..., r, with ∃Yk, Y ′
k = ∃yk,1, ..., yk,mk

, y′
k,1, ..., y

′
k,mk

.
Of course, not all clauses are affected by the expansion. An implementation of
the algorithm will only have to touch clauses in which xi,j occurs and clauses
which must be copied due to the renaming of the existentials.

Strictly adhering to this algorithm might produce lots of redundant copies
when universal variables and their dependent existentials are only used locally,
which is typical for linearizations of formulas in non-prenex form. Consider the
example Φ = ∀x1∃y1∀x2, x3∃y2, y3 φ(x1, y1, x2, y2) ∧ ψ(x1, y1, x3, y3). The uni-
versal x1 is used globally in the whole formula, but x2 and x3 and the dependent

248 U. Bubeck and H. Kleine Büning

existentials y2 and y3 are only used locally in subformulas φ and ψ. However,
expanding x2 with the given procedure would require us to duplicate not only
y2, but also y3 and clauses in ψ with y3 in them. Of course, this is redundant,
since ψ(x1, y1, x3, y3) and ψ(x1, y1, x3, y

′
3) are clearly satisfiability-equivalent.

What we need to do is take into account how variables are actually connected
in common clauses. In [4], Biere introduces a suitable concept. His original for-
mulation was not meant for expanding universals from the whole prefix, therefore
we have to clarify that universals alone never propagate dependencies (because
∀v (φ ∧ ψ) ≈ (∀v φ) ∧ (∀v′ ψ[v/v′])). Our formulation is as follows:

We denote a variable v locally connected to another variable w if both occur
in a common clause, and we write v ∼ w. Given a universal variable x from the
i-th universal quantifier block, we now define

D
(0)
x := {y ∈ Yi ∪ ... ∪ Yr | y ∼ x}

D
(k+1)
x := {y ∈ Yi ∪ ... ∪ Yr | y ∼ y′ for some y′ ∈ D

(k)
x }, k ≥ 0

Dx :=
⋃

k

D
(k)
x

We call the set Dx the dependent existentials of x. When expanding x, we only
need to duplicate those existentials and the clauses in which they occur.

3.2 Bounded Expansion

Even when observing locality of universals, repeated application of universal
expansion can easily lead to rapid formula growth. It is thus important for our
preprocessing to impose strict bounds:

– a global size limit Cglobal places an upper bound on the size of the prepro-
cessing output. Variables are only expanded while |Φcur| < Cglobal ·|Φ|, where
Φ is the original input formula (after some initial simplifications as described
below) and Φcur the current formula after some expansions.
In our experiments, we found rather small values between 2 and 4 to work
well without blowing up the formula too much.

– an individual cost limit Csingle is enforced for each single expansion step. We
only expand a universal x if the predicted expansion costs cx (see Section 4)
are bounded by cx ≤ Csingle · |Φcur|, where Φcur is the current formula. The
idea here is to expand the cheap universals and leave the expensive ones to
the solver, since the solver might be able to handle them at lower costs with
different strategies.
We achieved best results with Csingle = 0.5. If no universals have expansion
costs below this threshold, the preprocessing will not do anything (except for
the initial simplifications). It is due to this strategy of avoiding unfavorable
steps that our preprocessing usually does not have noticeable negative effects
on the performance of the QBF solver.

Listing 1 shows the basic structure of the preprocessor’s main loop and illustrates
where the bounds are applied. For completeness, we have also included the two
occasions where Q-resolution is invoked. This is discussed in Section 5.

Bounded Universal Expansion for Preprocessing QBF 249

Listing 1. The Main Loop of the Preprocessor

preprocess (Φ, Cglobal, Csingle) {
simplify Φ;
Φcur = Φ;
while (|Φcur| < Cglobal · |Φ|) {
resolve existentials with negative resolution costs;
choose universal x with smallest predicted costs cx;
if ((x �= null) && (cx ≤ Csingle · |Φcur|)) {

reduce dependencies Dx by resolution;
expand x in Φcur;
simplify Φcur;

} else return Φcur;
}
return Φcur;

}

3.3 Simplifications

To reduce the actual costs of universal expansion, we have included the usual
simplification rules: unit propagation, pure literal elimination, universal reduc-
tion, detection of dual binary clauses and subsumption checking. As they are
standard techniques, we do not recall them here and refer the reader to [7, 4].

We apply the rules in a circular fashion where one simplification may trigger
the application of another simplification rule, until we reach closure. Initially,
we attempt to simplify the whole input formula. Later, we check for specific
simplifications as necessary. For the initial simplification, universal reduction is
probably the most important operation and allows us to assume for the remaining
process that all clauses are cleansed from trailing universal variables which do
not dominate any existentials in the same clause. Whenever we later modify
clauses or add new ones, we will make sure they are cleansed as well.

In the beginning, we also perform a full subsumption check. Inside the main
loop, however, we apply only the cheaper backward subsumption where old
clauses are checked for being subsumed by newly generated clauses. The dual
case where old clauses might subsume new clauses is not relevant to universal
expansion, since expansion never produces longer clauses.

4 Selection Strategy

Making good choices for the universals to be expanded is crucial to the success
of the preprocessing. Each expansion of a universal x produces expansion costs
cx = |φ′| − |φ|, where |φ| is the size of the matrix of the formula before the
expansion and |φ′| the size of the matrix afterwards, so cx indicates by how many
literals the size of the formula will increase when expanding x. For unsimplified
formulas, cx may also be negative. Since we want to select the universals with
the lowest expansion costs, we need a tight cost estimate for each universal in
the formula.

250 U. Bubeck and H. Kleine Büning

4.1 Estimation Scheme

Given a QBF formula Φ = ∀X1∃Y1...∀Xr∃Yr φ with universal quantifier blocks
∀Xi = ∀xi,1, ..., xi,ni and existential blocks ∃Yi = ∃yi,1, ..., yi,mi , Quantor [4]
estimates the costs of expanding a universal x from the innermost universal
quantifier block Xr by considering all existentials in Yr as dependent on x.
Then all clauses in which an existential y ∈ Yr occurs need to be duplicated.
Using the notation from Section 2, this means that s(Yr) literals must be added.
Furthermore, clauses from the original matrix φ in which x occurs negatively
are removed from φ(x/0), as well as clauses in φ(x/1) where x occurs positively.
Finally, all occurrences of x in φ(x/0) and ¬x in φ(x/1) are deleted. In total,
Quantor’s cost estimate is

cx ≤ s(Yr)− s(¬x) − s(x)− o(x) − o(¬x)

4.2 Including Locality

In our approach, we do not want to restrict ourselves to the innermost univer-
sal quantifier block. We also want to be able to expand universals from quan-
tifier blocks Xi with i < r. With the cost estimate given above, universals
from further outside have higher expansion costs, because we would need to
add s(Yi ∪ ... ∪ Yr). Accordingly, choosing universals further outside can only
be rewarding if additional factors are considered. For example, it might hap-
pen that the expansion of a universal further outside produces valuable unit
literals. Or we might encounter the linearization of a non-prenex formula like
Φ = ∀x1∃y1 ((∀x2∃y2∀x3∃y3 φ) ∧ (∀x′

2∃y′
2∀x′

3∃y′
3 ψ)). If φ and ψ are not bal-

anced in terms of size or difficulty, it may very well make sense to expand, e.g.
x2 before x′

3, although x2 will be further outside than x′
3 in the linearized prefix.

As described in [4], Quantor’s scheduling cannot take into account the locality
of universals at this point due to performance considerations. It only uses locality
during the actual expansion after a particular universal has already been selected.

Fortunately, our preprocessing scenario requires less frequent scheduling in
comparison to a full solver like Quantor. On the one hand, this is due to the
fact that we do not have to schedule resolutions. On the other hand, the bounds
Cglobal and Csingle are so tight that we will only expand a rather limited number
of universals, therefore we execute much less expansion cycles. Accordingly, we
can spend more time on selecting the variables and afford to actually compute the
sets Dxi of dependent existentials for the universals xi in each expansion cycle.
This needs time O(e·m·|Φ|), where e is the number of expansion cycles (iterations
of the preprocessor’s main loop) and m the number of universals in Φ. Our
experiments show that this is still feasible: the total time spent for preprocessing
is typically only a small fraction of the time required for the successive run of
the solver. Furthermore, we assume that novel data structures like Benedetti’s
quantifier trees [3] might be applied here with great benefit in future versions of
our preprocessor.

Bounded Universal Expansion for Preprocessing QBF 251

Let Dx ⊆ Yi ∪ ... ∪ Yr be the existentials which depend on x. Then we have

cx ≤ s(Dx)− s(¬x) − s(x)− o(x) − o(¬x)

4.3 Goal Orientation

Expanding variables just because it is cheap to do so is a method without much
foresight. It turns out that we can further improve our selection strategy by
taking into consideration not only costs, but also goals which we might reach
by expanding certain universals. A rewarding goal in solving satisfiability prob-
lems is to obtain unit literals. Propagating them helps keeping clauses short
and might lead to discovering even more unit literals. This is in particular true
for formulas with 2-CNF subformulas, which might just collapse. Consider the
following example:

Φ = ∀x1, x2∃y1, y2 (x1 ∨ y1) ∧ (¬y1 ∨ y2) ∧ (x2 ∨ ¬y1 ∨ ¬y2)

The universals are pure variables, but we ignore this here for simplicity (perhaps,
Φ is embedded into a larger formula). Then Dx1 = Dx2 = {y1, y2} and cx1 =
7 − 2 − 1 = 4 and cx2 = 7 − 3 − 1 = 3, so we expand x2. After simplifying by
removing pure existential literals, we obtain the new matrix Φ′ = ∀x1∃y1, y2 (x1∨
y1) ∧ (¬y1 ∨ y2) ∧ (¬y1 ∨ ¬y2) (there are no renamed existentials, because they
were simplified away). Had we expanded x1 instead, the whole matrix would
have collapsed to the empty clause after propagating the unit literals y1 and y2

when x = 0 and removing the pure existentials when x = 1. Of course, the same
happens when we continue on Φ′. But since our preprocessing only expands a
limited number of universals, we might stop after x2 and miss out on this.

We did not want to have separate measures for expansion costs and benefits,
because it would be necessary to balance them somehow. Fortunately, unit liter-
als which are immediately obtained from expanding a universal also have a direct
impact on the expansion costs of that universal, as seen in the example. We can
therefore simply subtract from the expansion costs the reductions through im-
mediate unit literals, making our cost estimates even tighter and allowing us to
continue using costs as our single measure for choosing universals.

In order to do so, we need to know those unit literals. In each iteration of
the preprocessor’s main loop, we have to perform for each universal variable x
a complete unit propagation under the assumption that x = 0, and then under
the assumption x = 1. Since unit propagation can be performed in linear time,
this needs O(e ·m · |Φ|), where e is the number of expansion cycles (iterations)
and m the number of universals in Φ. As with the calculation of the variable
dependencies above, we claim this is still feasible due to the small values of e.

Let U0 be the unit literals induced by assuming x = 0 and U1 the units when
x = 1. Then it might happen that U0 (or analogously U1) contains unit liter-
als li = ±yi with existentials yi whose quantifier precedes the quantifier of x.
But since the yi do not depend on x, such li must also be unit literals when x = 1.

252 U. Bubeck and H. Kleine Büning

Thatmeanswe canpropagate those units immediately (and remove them fromU0),
even without actually expanding x (similar to [16]). Obtaining units in that way
without expansion is a small additional benefit of our unit calculations.

Now let sU0\±x be the sum of the sizes of all clauses in which a unit literal
from U0 occurs, but not ±x (we do not want to count those clauses twice). Those
clauses are removed from the expansion. Furthermore, let o¬U0\¬x be the number
of clauses in which the negation of a unit literal from U0 occurs, but not ¬x. In
those clauses, the negation of the unit literal will be removed. With sU1\±x and
o¬U1\x defined analogously, our cost estimate cx is finally given as

cx ≤ s(Dx)− sU0\±x− sU1\±x− o¬U0\¬x− o¬U1\x− s(¬x)− s(x)− o(x)− o(¬x)

5 Integrating Q-Resolution

Q-Resolution [11] extends the concept of propositional resolution to QBF. We
can use it to eliminate an existential variable y in a formula Φ ∈ QBF by
performing all possible resolutions on y. We can then drop the clauses in which
y occurs positively or negatively and replace them with the set of resolvents
after performing universal reduction. One problem with this approach is that it
may produce large clauses. An even more serious problem is the huge number
of resolvents which might be generated when an existential occurs frequently in
both phases and we must resolve all positive occurrences with all negative ones.

Accordingly, our preprocessing focuses mainly on universal expansion. Never-
theless, a limited amount of resolution has proven helpful as well. There are two
cases when we will apply resolution:

1. Whenever we can eliminate existentials without increasing the formula size.
2. If we can use resolution specifically to reduce costs of a scheduled expansion.

In order to estimate the costs cy of eliminating an existential y by resolution, we
use the upper bound given in [4]:

cy ≤ o(¬y) · (s(y)− o(y)) + o(y) · (s(¬y)− o(¬y)) − (s(y) + s(¬y))

At the beginning of each iteration through the preprocessor’s main loop, we
check whether there are existentials yi for which this cost estimate cyi is negative,
so that we can be sure not to increase the size of the formula. We then choose
the cheapest such existential, i.e. the one for which the cost estimate is the most
negative, and eliminate it by resolution. The process is repeated as long as there
are existentials with negative cost estimates.

Performing those resolutions before a universal expansion cycle is like a general
cleanup that reduces the number of existentials we have to consider and to copy.
But we also suggest a more specific application of resolution which only takes
place after we have chosen a particular universal x for expansion. Our goal is to
reduce its expansion costs cx. A quick glance at the cost estimates from the last
section shows that there are basically two components which determine the value

Bounded Universal Expansion for Preprocessing QBF 253

of cx: the occurrences of ±x itself and the occurrences of dependent existentials.
We are now going to apply resolution to attack the latter.

The idea is to resolve only on dependent existentials in Dx immediately before
expanding x. Eliminating such an y ∈ Dx yields a double benefit, because we
do not only get rid of y itself, but also of its soon-to-be-created copy y′. In
addition, we may also save copying some clauses during the following expansion.
For example, a clause (y ∨ y2) with y ∈ Dx and y2 ∈ Dx must be duplicated
when x is expanded, but when we resolve on y with (¬y∨y3) and y3 ∈ Dx before
expanding x, the resolvent (y2∨y3) does not need copying, since both literals do
not depend on x. Of course, resolution usually produces many resolvents, some
of which probably still require copying. In our example, the formula might also
contain a clause (¬y ∨ y4) with y4 ∈ Dx, so that we obtain a second resolvent
(y2 ∨ y4) which is still dependent on x.

Let δ be an estimate of the average fraction of resolvents which must be
duplicated (0 ≤ δ ≤ 1). Then we can estimate the costs cy|x of resolving an
existential y ∈ Dx before x is expanded:

cy|x ≈ (1 + δ) · (o(¬y) · (s(y) − o(y)) + o(y) · (s(¬y) − o(¬y))) − 2 · (s(y) + s(¬y))

We obtain this estimate from the upper bound for resolution given above. The
factor 2 reflects the assumption that each clause in which y occurs would have
been copied in the subsequent universal expansion (for simplicity, we do not take
into account that y and x might occur in common clauses). The factor (1 + δ)
indicates the costs of duplicating in the expansion a portion δ of the resolvents.
In our experiments, we found δ = 0.5 to work well when we resolve away all
existentials y ∈ Dx for which the cost estimate cy|x is negative before actually
expanding x.

Resolution also reveals an interesting special case. Consider a scenario where
we have a universal xj and two sets D′

xj
and D′′

xj
of existentials which are locally

connected to xj . Further assume that one of those existentials, say ỹ, has the
property that it constitutes the only link which propagates the local connectivity
from xj and D′

xj
on the one hand to D′′

xj
on the other hand.

Can we destroy that link to make the existentials in D′′
xj

independent from
xj? If ỹ occurs positively in clauses with existentials from D′

xj
and negatively in

clauses with existentials from D′′
xj

, resolving on ỹ will directly link D′
xj

and D′′
xj

,
so nothing is gained in this case. But assume ỹ only occurs positively with both
D′

xj
and D′′

xj
. Also assume that all negative occurrences of ỹ are in clauses with

universals other than xj and existentials which do not depend on xj . Now we
can resolve away ỹ, and the existentials in D′

xj
and D′′

xj
will not be connected

anymore, since ỹ has been replaced with variables which do not propagate the
dependency.

In this scenario, the special property is that we have an existential y in Dxj =
D′

xj
∪D′′

xj
where one phase of y occurs only in clauses with variables v ∈ Dxj and

v = xj . A closer investigation of this special case reveals that we do not need
to perform the actual resolution. Instead, we can simply remove y from Dxj ,
because it does in fact not depend on xj : assume that with fixed assignments
to x1, ..., xj−1, a given formula Φ is satisfiable if y is assigned different values in

254 U. Bubeck and H. Kleine Büning

the two cases xj = 0 and xj = 1, i.e. y = ε for xj = 0 and y = ¬ε for xj = 1.
Without loss of generality, assume that ¬y is the phase of y which occurs only in
clauses with variables v ∈ Dxj and v = xj . Then none of those clauses contains
a variable which depends on xj , yet those clauses remain satisfied when y flips
from ε to ¬ε as xj changes. That means those clauses are true regardless of the
value of y. Then we can choose y = 1 for both xj = 0 and xj = 1, and all
clauses with positive y will be satisfied as well, which means the whole formula
is satisfiable. With the obvious argument that if Φ is unsatisfiable when we allow
different values for y depending on xj , this also implies the unsatisfiability of Φ
when y must have the same value for xj = 0 and xj = 1, we have the following
theorem:

Theorem 1. Given Φ ∈ QBF , let x be a universal and y be an existential
variable in the scope of x where one phase of y only occurs in clauses with
v ∈ Dx and v = x. Then universal expansion of x does not need to duplicate the
variable y.

For performance reasons, our implementation does not check this condition while
computing the dependency sets during the scheduling of the expansions, but only
prior to executing a scheduled expansion.

6 Implementation and Experiments

We have implemented our preprocessing approach in Java on top of our existing
logic framework ProverBox [5, 6]. Using the framework’s data structures and ba-
sic algorithms has allowed us to quickly build a working preprocessor, although
we sacrifice some performance for genericity, as the primary goal of the frame-
work is to integrate different logics and different theorem proving algorithms. In
addition, our preprocessor itself it not optimized yet.

The choice of the two bounds Cglobal and Csingle which control the amount of
preprocessing performed (see Section 3.2) obviously has a large impact on the
performance of our preprocessor. For space considerations, we do not compare
different parameter settings against each other. Instead, we have chosen one
successful setting for all of the following experiments.

For the global size limit Cglobal which determines how much larger than the
original formula the preprocessed formula may be, we found a value of 2 to
perform best. We observed that when formulas are growing, the solver perfor-
mance is often increasingly dominated by the sheer formula size rather than its
complexity. By keeping Cglobal quite low, we try to avoid this effect.

While restricting the resulting formula to about twice the size of the input
formula means that in the worst case, only 1 − 2 universals may be expanded,
we can typically expand up to 5−10 of them. For various QBFLIB formulas, the
number of expanded universals is even higher: for example, it is usually around
30 for the ASP problems, and in some Adder formulas, we can expand up to 130
universals. Of course, this number does not include universals merely declared
in the prefix, but not used at all in the formula.

Bounded Universal Expansion for Preprocessing QBF 255

The individual cost limit Csingle determines how expensive a single expansion
can be. We achieved best overall results with a value of 0.5, where each expansion
is allowed to copy at most half of the current formula. Universals with higher
expansion costs are probably better handled by the QBF solver itself.

We have conducted our experiments with two state-of-the-art QBF solvers,
sKizzo [2] and SQBF [17], on an Athlon64 3400+ with 2GB RAM running Win-
dows XP/Cygwin and Java 6. Each solver has been executed under Cygwin in
its latest publicly available release and with default parameters. We have applied
both solvers, each with and without preprocessing, on a selection of 12 families
of benchmarks with a total of 688 instances from the QBFLIB collection [9]. We
tried to choose benchmark families of such a difficulty level that the solvers could
solve most, but not all formulas of a family within a time limit for each formula
of 300 seconds. As expected, when the preprocessor was used, the time limit and
the time recorded were for running both the preprocessor and the solver.

As usual, if an instance cannot be solved, e.g. due to a timeout or an out-
of-memory condition, it is counted as the timeout value. To make the experi-
ments less time-consuming, we have performed them in a give-up mode where
a (sub)family of formulas is quit whenever we encounter an instance solved by
neither the solver nor the solver with preprocessor. For example, neither sKizzo
itself nor sKizzo with preprocessor can solve the instance adder-14-sat, so we skip
adder-16-sat (without counting it as timeout) and continue with adder-2-unsat.
Of course, this requires that the instances are approximately sorted in order of
ascending difficulty. Where this was not already the case by default, we grouped
formulas in obvious subfamilies (e.g. adder-sat, Adder2-sat, ... or cnt, cnt-r, ...).

An overview of the results is given in Table 1. It provides for each benchmark
family the number of instances solved and the time (in seconds) required by the
original solver as well as the combination of preprocessor and solver (sKizzo+pre
resp. SQBF+pre). We can observe that both solvers show noticeable overall gains

Table 1. Benchmark Results

sKizzo sKizzo+pre SQBF SQBF+pre
Benchmark Family #inst solved time solved time solved time solved time
Adder 32 13 1,568 13 1,655 4 1,203 4 1,201
ASP 40 26 5,181 40 1,068 0 12,000 40 1,030
Blocks 13 9 368 9 371 10 309 10 323
Connect3 cf_3_3* 21 7 381 6 610 11 1,816 16 474
Counter 88 52 3,939 56 2,563 37 3,101 38 2,732
CounterFactual ncf_4* 320 108 1,540 109 1,295 87 14,819 124 1,244
Evader-Pursuer 4x4-log 7 1 320 1 319 7 13 7 14
k_branch_n 21 6 661 5 698 4 455 4 356
k_path_n 21 21 164 21 167 5 1063 7 500
RobotsD2 *.2, *.4, *.8 29 10 6,180 29 94 20 2,897 29 110
Sorting_networks 84 24 1,658 26 1,499 9 1,240 11 879
Szymanski 12 4 335 4 348 0 300 0 300
Total 688 281 22,295 319 10,687 194 39,216 290 9,163

256 U. Bubeck and H. Kleine Büning

from the preprocessing: sKizzo+pre could solve 13, 5% more problems in 47, 9%
of the time originally recorded, and SQBF+pre did even 49, 5% more problems
in 23, 4% of the time. This appears to back our basic assumption that QBF
solvers can indeed benefit from selectively removing universals beforehand.

For a closer look at the results, we have marked the numbers of solved in-
stances in bold whenever one contestant could solve more problems than the
other. We observe that there are only two cases (k_branch_n and Connect3
with sKizzo+preprocessing) where the number of solved instances is lower by
one with preprocessing. This seems to justify our hypothesis that enforcing tight
bounds on the expansion can largely prevent negative effects. On the other hand,
there are various families where preprocessing helped solve more problems.

7 Conclusion

Making it easier for QBF solvers by selectively removing universal variables in
a preprocessing step - a simple yet intriguing idea. We have successfully realized
it on the basis of the proven universal expansion method, which we have made
bounded and more general by choosing universals from the whole prefix while
giving consideration to the locality of variables. In addition, we have added an el-
ement of goal orientation to the variable selection by rewarding the generation of
unit literals. We have also integrated Q-resolution into our approach and shown
how it can be applied specifically to reduce the amount of copying necessary for
universal expansion. In concluding experiments with two state-of-the-art solvers
on QBFLIB problems, our preprocessing showed noticeable performance gains.

In the future, we would like to evaluate the inclusion of further strategic el-
ements into our variable selection, such as attempting to eliminate complete
universal quantifier blocks if they are small, or giving preference to universals
that appear in short clauses, or trying to make local areas of the formula com-
pletely free of universals. In addition, we will attempt to further optimize our
implementation.

References

[1] A. Ayari and D. Basin. QUBOS: Deciding Quantified Boolean Logic using Proposi-
tional Satisfiability Solvers. Proc. 4th Intl. Conf. on Formal Methods in Computer-
Aided Design (FMCAD’02). Springer LNCS 2517, 2002.

[2] M. Benedetti. Evaluating QBFs via Symbolic Skolemization. Proc. 11th Intl.
Conf. on Logic for Programming Artificial Intelligence and Reasoning (LPAR’04).
Springer LNCS 3452, 2005.

[3] M. Benedetti. Quantifier Trees for QBFs. Proc. 8th Intl. Conf. on Theory and
Applications of Satisfiability Testing (SAT’05). Springer LNCS 3569, 2005.

[4] A. Biere. Resolve and Expand. Proc. 7th Intl. Conf. on Theory and Applications
of Satisfiability Testing (SAT’04). Springer LNCS 3542, 2005.

[5] U. Bubeck. Design of a Modular Platform for Automated Theorem Proving in
Multiple Logics. M.S. Thesis, San Diego State University, 2003.

Bounded Universal Expansion for Preprocessing QBF 257

[6] U. Bubeck. ProverBox Automated Reasoning Environment.
Website http://www.ub-net.de/cms/proverbox.html, 2006.

[7] M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi. An Algorithm to
Evaluate Quantified Boolean Formulae and Its Experimental Evaluation. Journal
of Automated Reasoning, 28(2):101–142, 2002.

[8] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, 1962.

[9] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas
satisfiability library (QBFLIB). Website http://www.qbflib.org, 2001.

[10] E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: A system for deciding
quantified boolean formulas satisfiability. Proc. 1st Intl. Joint Conf. on Automated
Reasoning (IJCAR’01). Springer LNCS 2083, 2001.

[11] H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean
Formulas. Information and Computation, 117(1):12–18, 1995.

[12] A. Meyer and L. Stockmeyer. The Equivalence Problem for Regular Expressions
with Squaring Requires Exponential Space. Proc. 13th Symp. on Switching and
Automata Theory, 1972.

[13] M. Mneimneh and K. Sakallah. Computing Vertex Eccentricity in Exponentially
Large Graphs: QBF Formulation and Solution. Proc. 6th Intl. Conf. on Theory
and Applications of Satisfiability Testing (SAT’03). Springer LNCS 2919, 2004.

[14] M. Narizzano, L. Pulina, and A. Tacchella. Report of the Third QBF Solvers
Evaluation. Journal of Satisfiability, Boolean Modeling and Computation, 2:145–
164, 2006.

[15] J. Rintanen. Constructing Conditional Plans by a Theorem-Prover. Journal of
Artificial Intelligence Research, 10:323–352, 1999.

[16] J. Rintanen. Improvements to the evaluation of quantified Boolean formulae. Proc.
16th Intl. Joint Conf. on Artificial Intelligence (IJCAI’99). Morgan Kaufmann
Publishers, 1999.

[17] H. Samulowitz and F. Bacchus. Using SAT in QBF. Proc. 11th Intl. Conf. on
Principles and Practice of Constraint Programming. Springer LNCS 3709, 2005.

[18] L. Zhang and S. Malik. Towards Symmetric Treatment of Conflicts and Satisfac-
tion in Quantified Boolean Satisfiability Solver. Proc. 8th Intl. Conf. on Principles
and Practice of Constraint Programming (CP’02), 2002.

http://www.ub-net.de/cms/proverbox.html
http://www.qbflib.org

Effective Incorporation of

Double Look-Ahead Procedures

Marijn Heule� and Hans van Maaren

Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Sciences

Delft University of Technology
marijn@heule.nl, h.vanmaaren@tudelft.nl

Abstract. We introduce an adaptive algorithm to control the use of
the double look-ahead procedure. This procedure sometimes enhances
the performance of look-ahead based satisfiability solvers. Current use
of this procedure is driven by static heuristics. Experiments show that
over a wide variety of instances, different parameter settings result in
optimal performance. Moreover, a strategy that yields fast performance
on one particular class of instances may cause a significant slowdown on
other families. Using a single adaptive strategy, we accomplish perfor-
mances close to the optimal performances reached by the various static
settings. On some families, we clearly outperform even the fastest perfor-
mance based on static heuristics. This paper provides a description of the
algorithm and a comparison with the static strategies. This method is
incorporated in march dl, satz, and kcnfs. Also, the dynamic behavior of
the algorithm is illustrated by adaptation plots on various benchmarks.

1 Introduction

Nowadays state-of-the-art satisfiability (Sat) solving shows two main solving ar-
chitectures: conflict-driven and look-ahead driven. As tuned by the Sat compe-
titions over the last years these two architectures seem to perform in an almost
complementary way. The conflict-driven solvers dominate the so called indus-
trial flavored problems (industrial category) while the look-ahead architecture
dominates on random problems and problems with an intrinsic combinatorial
hardness (part of crafted category). This paper deals with an engineering type
of solver optimization with respect to one of the ingredients of look-ahead Sat
solving.

The look-ahead architecture of (Sat) solvers has two important features: (1)
It selects branching variables that result in a balanced search-tree; and (2) it
detects failed literals to reduce the size of the search-tree. Many enhancements
have been proposed for this architecture in recent years. One of the enhance-
ments for look-ahead Sat solvers is the DoubleLook procedure, which was

� Supported by the Dutch Organization for Scientific Research (NWO) under grant
617.023.306.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 258–271, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Effective Incorporation of Double Look-Ahead Procedures 259

introduced by Li [7]. The usefulness of this procedure is straight forward: By
also performing look-ahead on a second level of propagation, more failed literals
could be detected, resulting in an even smaller search-tree.

By always performing additional look-aheads on the reduced formula, the
computational costs rise drastically. One would like to restrict this enhance-
ment in such a way that the overall computational time will decrease. Early
implementations rely on restrictions based on static heuristics. Although these
implementations significantly reduce the time to solve random 3-Sat formulas,
they yield a clear performance slowdown on many structured instances.

We designed an algorithm for the DoubleLook procedure that adapts to-
wards the (reduced) CNF formula. Our algorithm has some key advantages: 1)
Existing DoubleLook implementations require only minor changes; 2) only
one magic constant is used, which makes it easy to optimize the algorithm for a
specific solver; and 3) this algorithm appears to outperform existing approaches.

In this paper, section 2 provides a general overview of the look-ahead architec-
ture and zooms in on the DoubleLook procedure. Section 3 deals with static
heuristics for this procedure and their effect on the performance. Our algorithm
is introduced in section 4 together with an alternative by Li. It offers detailed
descriptions and motivates the decisions made regarding its design. Section 5
illustrates the usefulness and the behavior of the algorithm by experimental
results and adaptation plots. Finally, we draw some conclusions in section 6.

2 Preliminaries

The look-ahead Sat architecture (introduced in [5]) consists of a DPLL search-
tree [3] using a LookAhead procedure to reduce the formula and to determine
a branch variable xbranch (see algorithm 1). We refer to a look-ahead on literal
l as assigning l to true and performing iterative unit propagation. If a conflict
occurs during this unit propagation (the empty clause is generated), then l is
called a failed literal - forcing l to be fixed on false. The resulting formula after
a look-ahead on l is denoted by F(l = 1).

Algorithm 1. DPLL(F)
1: if F = ∅ then
2: return satisfiable

3: else if empty clause ∈ F then
4: return unsatisfiable

5: end if
6: < F ; xbranch > := LookAhead(F)
7: if empty clause ∈ F then
8: return unsatisfiable

9: else if DPLL(F(xbranch = 1)) = satisfiable then
10: return satisfiable

11: end if
12: return DPLL(F(xbranch = 0))

260 M.J.H. Heule and H. van Maaren

The effectiveness of the LookAhead procedure (see algorithm 2) depends
heavily on the LookAheadEvaluation function which should favor variables
that yield a small and balanced search-tree. Detection of failed literals could
further reduce the size of the search-tree. Additionally, several enhancements are
developed to boost the performance of Sat solvers based on this architecture.

One of these enhancements is the Preselect procedure, which preselects
a subset of the variables (denoted by P) to enter the look-ahead phase. By
performing look-ahead only on variables in P the computational costs of the
LookAhead procedure are reduced. However, this may result in less effective
branching variables and less detected failed literals. All three solvers discussed
in this paper, march dl, satz, and kcnfs, use a Preselect procedure. Yet, their
implementation of this procedure is different.

Another enhancement is the DoubleLook procedure (see algorithm 3), which
was introduced by Li [7]. This procedure checks whether a formula resulting from
a look-ahead on l is unsatisfiable - it detects l as a failed literal by performing
additional look-aheads on the reduced formula. Since the computational costs of
these extra unit-propagations are high, this procedure should not be performed
on each reduced formula. In the ideal case, one would want to apply it only
when the reduced formula could be detected to be unsatisfiable. This requires
an indicator expressing the likelihood to observe a conflict.

Let F2 denote the set of binary clauses of formula F . Li [7] suggests that the
number of newly created binary clauses (denoted by |F2 \ F∗

2 |, with F∗
2 referring

to the set of binary clauses before the reduction) in the reduced formula is an
effective indicator whether or not to perform additional look-aheads: If many
new binary clauses are created during the look-ahead on a literal, the resulting
formula is often unsatisfiable. In algorithm 3 the additional look-aheads are
triggered when the number of newly created binary clauses exceeds the value of
Δtrigger. The optimal value of this parameter is the main topic of this paper.

Algorithm 2. LookAhead(F)
1: P := Preselect(F)
2: for all variables xi ∈ P do
3: F ′ := DoubleLook(F(xi = 0), F)
4: F ′′ := DoubleLook(F(xi = 1), F)
5: if empty clause ∈ F ′ and empty clause ∈ F ′′ then
6: return < F ; ∗ >
7: else if empty clause ∈ F ′ then
8: F := F ′′

9: else if empty clause ∈ F ′′ then
10: F := F ′

11: else
12: H(xi) = LookAheadEvaluation(F , F ′, F ′′)
13: end if
14: end for
15: return < F ; xi with greatest H(xi) >

Effective Incorporation of Double Look-Ahead Procedures 261

Algorithm 3. DoubleLook(F , F∗)
1: if empty clause ∈ F then
2: return F
3: end if
4: if |F2 \ F∗

2 | > Δtrigger then
5: for all variables xi ∈ P do
6: F ′ := F(xi = 0)
7: F ′′ := F(xi = 1)
8: if empty clause ∈ F ′ and empty clause ∈ F ′′ then
9: return F ′

10: else if empty clause ∈ F ′ then
11: F := F ′′

12: else if empty clause ∈ F ′′ then
13: F := F ′

14: end if
15: end for
16: end if
17: return F

3 Static Heuristics

The DoubleLook procedure has been implemented in two look-ahead Sat
solvers. Initially, Li proposed a static value for Δtrigger [7]: In the first implemen-
tation in satz the DoubleLook procedure was triggered using Δtrigger := 65.
(The latest version of satz uses a dynamic algorithm which will be discussed in
the next section.) Dubois and Dequen use a variation in their solver kcnfs [4]:
In their implementation, the DoubleLook procedure is triggered depending on
the original number of variables (denoted by #vars): Δtrigger := 0.18#vars.

Both settings of Δtrigger result from optimizing this parameter towards the
performance on random 3-Sat formulas. On these instances they appear quite
effective. However, on structured formulas - industrial and crafted - these settings
are far from optimal: On some families, practically none of the look-aheads gen-
erate enough new binary clauses to trigger additional look-aheads. Even worse,
on many other instances both Δtrigger settings result in a pandemonium of ad-
ditional look-aheads, which come down hard on the computational costs.

We selected a set of benchmarks from a wide range of families to illustrate
these effects. We generated 20 random 3-Sat formulas with 350 variables with
1491 clauses (10 satisfiable and 10 unsatisfiable formulas) and used 10 random
3color instances from the SAT02 competition [9]. Additionally, we added some
crafted and structured instances from various families:

– the connamacher family (generic uniquely extendible CSPs) contributed by
Connamacher to Sat 2004 [2]. We selected those with n = 600 and d = 0.04;

– the ezfact family (factoring problems) contributed by Pehoushek. We se-
lected the first three benchmarks of 48 bits from Sat 2002 [9];

– the lksat family, subfamily l5k3 (random l-clustered k-Sat instances) con-
tributed by Anton. Sat 2004 [10]. We selected all unsatisfiable instances;

262 M.J.H. Heule and H. van Maaren

– the longmult family (bounded model checking) contributed by Biere [1]. We
used the instances of size 8, 10 and 12;

– the philips family (multiplier circuit) contributed by Heule to Sat 2004 [10];
– a pigeon hole problem (phole10) from www.satlib.org;
– the pyhala braun family (factoring problems) contributed by Pyhala Braun

to Sat 2002 [9]. We selected the unsat-35-4-03 and unsat-35-4-04, the
two smallest instances from this family not solved during Sat 2002;

– the stanion/hwb family (equivalence checking problems) contributed by
Stanion. We selected all three benchmarks of size 24 from Sat 2003 [6];

– Sat-encodings of quasigroup instances contributed by Zhang [11] We selected
the harder unsatisfiable instances - qg3-9, qg5-13, qg6-12, and qg7-12.

Besides the random instances, all selected benchmarks are unsatisfiable to
realize relatively stable performances. On most these families, the performance
of look-ahead Sat solvers is strong1 (compared to conflict-driven Sat solvers).
We performed two tests: One that used constant numbers for Δtrigger - analogue
to early satz - and another used values depending on the original number of
variables - analogue to kcnfs. For both tests we used the march dl Sat solver2.
All experiments were performed on a system with an Intel 3.0 GHz CPU and 1
Gb of memory running on Fedora Core 4. The results of the first test are shown
in table 1 and 2, for the low and high values of Δtrigger, respectively.

Recall that satz uses Δtrigger := 65 - as a result of experiments on random
3-Sat instances. As expected, setting Δtrigger := 65 boosts performances on this
family. However, instances from the pyhala-braun and quasigroup are hard to
solve with this parameter setting: On these families the computational time can
be reduced by 80% by changing the setting to Δtrigger := 1500. In general, we
observe that a parameter setting which results in optimal performance for a
specific family, yields far-from-optimal performances on other families.

Table 3 offers the results of the second test. On random 3-Sat optimal per-
formance is realized by Δtrigger := .20#vars: Indeed close to the setting used
in kcnfs. However, none of the parameter settings result in close-to-optimal per-
formances on all families. Moreover, the optimal performances on the families
3color, connamacher, and quasigroup measured during the first test are about
twice as fast as the optimal performances of the second test. So, all parame-
ter settings used in the second test are far from optimal - at least for these
families.

4 Adaptive DoubleLook

We developed an adaptive algorithm to control the DoubleLook procedure.
This algorithm updates Δtrigger after each look-ahead in such fashion, that it
adapts towards the characteristics of the (reduced) formula. This section deals
with the decisions made regarding the algorithm. First and foremost - for reasons
of elegance and practical testing - we focused on using only one magic constant.
1 based on the results of the Sat competitions, see http://www.satcompetition.org
2 available from http://www.st.ewi.tudelft.nl/sat/

www.satlib.org
http://www.satcompetition.org
http://www.st.ewi.tudelft.nl/sat/

Effective Incorporation of Double Look-Ahead Procedures 263

Table 1. Performance of march dl using various static (low) values for Δtrigger

family 0 10 30 65 100 150

3color (10) 118.69 39.91 31.50 62.87 67.96 70.42
anton (5) 276.74 269.00 184.73 119.99 80.31 62.39
connamacher (3) 5352.55 5407.50 4426.95 4373.89 4559.49 4852.63
ezfact48 (3) 650.01 451.55 287.67 321.70 264.79 187.93
longmult (3) 886.51 578.08 452.34 278.93 219.35 255.99
philips (1) 595.43 547.54 391.43 323.97 273.99 306.71
pigeon(1) 246.62 140.05 141.65 141.45 140.53 140.37
pyhala-braun(2) 4000.0 3024.49 2415.46 2019.37 1481.09 1224.92
quasigroup (4) 2351.98 2102.62 1649.78 1437.39 1362.80 1327.79
stanion (3) 2102.21 1661.80 941.59 971.29 964.34 972.18
random-sat (10) 157.12 136.95 96.04 71.01 75.44 86.09
random-uns (10) 322.68 285.80 199.03 143.04 156.70 178.00

Table 2. Performance of march dl using various static (high) values for Δtrigger

family 250 400 600 850 1150 1500

3color (10) 67.26 70.26 70.24 70.49 72.21 73.52
anton (5) 64.09 73.28 75.02 75.07 77.22 78.98
connamacher (3) 4353.03 2633.67 2642.37 2861.83 4258.05 4099.12
ezfact48 (3) 69.87 47.54 55.78 57.16 54.56 51.91
longmult (3) 272.15 291.85 249.99 243.81 278.86 303.99
philips (1) 313.98 317.23 320.84 325.41 328.31 336.90
pigeon(1) 140.61 141.01 140.86 141.38 142.36 142.73
pyhala-braun(2) 1145.64 941.32 607.76 577.75 449.59 428.26
quasigroup (4) 1225.14 1011.26 849.64 507.18 455.84 358.97
stanion (3) 968.60 963.49 985.46 983.51 988.12 997.59
random-sat (10) 92.53 92.24 93.55 93.20 92.33 91.71
random-uns (10) 186.74 187.64 187.72 189.34 190.04 190.43

The algorithm has three components: (i) The Δtrigger initial value, (ii) an
increment strategy TriggerIncrease and (iii) a decrement strategy Trig-
gerDecrease to update Δtrigger. Both strategies consist of two parts: The
location within the DoubleLook procedure and the size of the update value.

Regarding the first component: An effective initial value for Δtrigger is proba-
bly as hard to determine as an effective global value for this parameter. There-
fore, the algorithm should work on many initial values - even on zero, the most
costly value at the root node. Hence our decision to initialize Δtrigger := 0.

The first aspect of the increment strategy is rather straight-forward: Assuming
a strong correlation between the value of Δtrigger and the detection of a conflict
by the DoubleLook procedure, Δtrigger should always be increased when the
procedure fails to meet this objective. Algorithm 4 shows an adaptive variant of
the DoubleLook procedure with the increment strategy located at line 17, the
first position following a failure.

264 M.J.H. Heule and H. van Maaren

Table 3. Performance of march dl using various static values for Δtrigger. These static
values are based on the original number of variables (denoted by #vars).

family .05 #vars .10 #vars .15 #vars .20 #vars .25 #vars .30 #vars

3color (10) 59.08 67.98 70.19 67.08 68.06 65.87
anton (5) 146.13 83.24 62.67 59.40 64.19 67.15
connamacher (3) 4627.01 4387.70 4392.15 5078.09 4841.21 4807.81
ezfact48 (3) 324.14 202.17 61.19 50.75 43.85 47.64
longmult (3) 205.46 247.89 308.71 285.71 265.31 267.09
philips (1) 288.72 285.43 311.09 312.46 323.28 311.15
pigeon(1) 158.59 147.60 142.02 142.99 143.96 142.15
pyhala-braun(2) 1173.64 1095.74 753.08 590.00 546.79 484.66
quasigroup (4) 1473.65 1201.45 1035.91 1069.18 951.36 837.54
stanion (3) 1885.25 1110.04 938.94 949.83 956.62 973.57
random-sat (10) 118.50 88.57 72.86 70.61 71.55 75.97
random-uns (10) 254.60 185.96 155.18 142.56 150.69 165.46

The largest reasonable increment of Δtrigger appears to make this parame-
ter equal to the number of newly created binary clauses: Since no conflict was
observed, Δtrigger should be at least the number of new binary clauses (|F2 \ F∗

2 |)
- which would have prevented the additional computational costs. The smallest
value of the increment is a value close to zero and would result in a slow adap-
tation. The optimal value will probably be somewhere in between. We prefer a
radical adaptation. For this reason we use the largest reasonable value:

TriggerIncrease() : Δtrigger := |F2 \ F∗
2 | (1)

Within the DoubleLook procedure, two events could suggest that Δtrigger

should be decreased3 : (1) The detection of a conflict and (2) the number of
newly created binary clauses is less than Δtrigger. The first event seems the
most logical: If the DoubleLook procedure detects a conflict, this is a strong
indication that a slightly decreased Δtrigger could increase the number of detected
failed literals by this procedure. However, this may result in a deadlock situation:
The increment strategy could update Δtrigger such that no additional look-ahead
will be executed, thereby making it impossible to decrease this parameter.

Placing the decrement strategy after the second event would guarantee that
additional look-aheads will be executed every once in a while. Assuming that
the computational time could diminish on all benchmarks by the DoubleLook
procedure, then this location (algorithm 4 line 19) seems a more appealing choice.

How much should Δtrigger be decreased if after a look-ahead the number of
newly created binary clauses is less than this parameter? It seems hard to provide
a motivated answer for this question. Therefore, we decided to obtain an effective
value for the decrement using experiments.

These experiments were based on two considerations: First, the tests on static
heuristics (see section 3) showed that effective parameter settings for Δtrigger

3 Δtrigger could also be decreased after lines 12 and 14 of algorithm 4: Each new forced
literal on a second level of propagation increases the chance of hitting a conflict.

Effective Incorporation of Double Look-Ahead Procedures 265

Algorithm 4. AdaptiveDoubleLook(F , F∗)
1: if empty clause ∈ F then
2: return F
3: end if
4: if |F2 \ F∗

2 | > Δtrigger then
5: for all variables xi ∈ P do
6: F ′ := F(xi = 0)
7: F ′′ := F(xi = 1)
8: if empty clause ∈ F ′ and empty clause ∈ F ′′ then
9: TriggerSuccess()

10: return F ′

11: else if empty clause ∈ F ′ then
12: F := F ′′

13: else if empty clause ∈ F ′′ then
14: F := F ′

15: end if
16: end for
17: TriggerIncrease()
18: else
19: TriggerDecrease()
20: end if
21: return F

ranged from 10 to 1500. Therefore, the decrement should not be absolute but
relative. So, it should be of the form Δtrigger := c×Δtrigger for some c ∈ [0, 1].

Second, the size of preselected set P could vary significantly over different
nodes. Therefore, the maximum decrement of Δtrigger in each node depends on
the size of P . We believe this dependency is not favorable, so we decided to
“neutralize” it. Notice that at most 2|P| times in each node Δtrigger could be
decreased. Now, let parameter DLdecrease denote the maximum relative decre-
ment of Δtrigger in a certain node. Then, combining these considerations, the
decrement strategy could be formulated as follows:

TriggerDecrease() : Δtrigger := 2|P|
√

DLdecrease ×Δtrigger (2)

The “optimal” value for parameter DLdecrease is discussed in section 5.1.
The latest version of satz (2.15.2) also uses an adaptive algorithm: (i) It

initializes Δtrigger := .167#vars; (ii) it increases the Δtrigger using the same
TriggerIncrease() placed at the same location. The important difference lies
in the location and size of (iii) the decreasing strategy: The algorithm realized
the decrement at line 9 instead of line 19 of algorithm 4 - so Δtrigger is only
reduced after a successful DoubleLook call instead of slowly decrease after
each look-ahead.

TriggerSuccess() : Δtrigger := .167#vars (3)

A drawback of this approach is that Δtrigger could never be reduced to a value
smaller than .167#vars - although we noticed from the experiments on static

266 M.J.H. Heule and H. van Maaren

heuristics that significant smaller values are optimal in some cases (see table 3).
When a high value of Δtrigger is optimal this approach might frequently alter
between a relative low value (Δtrigger := .167#vars) and a relative high value
(Δtrigger := |F2 \ F∗

2 |) or result in the deadlock situation mentioned above.

5 Results

The adaptive algorithm as described above has been implemented in all look-
ahead Sat solvers that contain a DoubleLook procedure: march dl, satz, and
kcnfs. First, we show the effect of parameter DLdecrease on the computational
time. For this purpose, we use the modified march dl. Second, the performance
is compared between the original versions and the modified variants of satz and
kcnfs. Third, the behavior of the algorithm is illustrated by adaptation plots.
During the experiments we used the benchmarks as described in section 3.

5.1 The Magic Constant

The only undetermined parameter of the adaptive algorithm is DLdecrease. The
computational times resulting from various settings for this parameter are shown
in table 4. The data shows the effectiveness of the adaptive algorithm:

– Different settings for DLdecrease result in comparable performances - gener-
ally close to the optimal values from the experiments using static heuristics.

– We observe that, for DLdecrease := 0.85, performances are realized for the
anton and philips family that are nearly optimal, while on all the other
families this setting outperforms all results using static heuristics.

– The optimal performances achieved by the adaptive heuristics are, on aver-
age, about 20% faster than those that are the result of static heuristics.

Table 4. Influence of parameter DLdecrease on the computational time

family .75 .80 .85 .90 .95 .99

3color (10) 25.77 25.39 25.60 28.98 32.79 44.36
anton (5) 69.22 67.66 64.99 63.26 63.60 66.41
connamacher (3) 2258.59 2723.14 1742.62 3038.68 2872.84 4431.91
ezfact48 (3) 39.00 35.18 37.87 38.66 38.68 46.08
longmult (3) 197.29 197.70 203.03 210.12 241.75 258.90
philips (1) 307.22 288.10 286.31 267.17 280.81 299.71
pigeon(1) 99.31 99.77 103.47 110.91 113.81 115.28
pyhala-braun(2) 369.49 365.51 372.98 366.89 376.89 405.05
quasigroup (4) 162.38 161.95 157.24 154.59 150.63 162.01
stanion (3) 941.94 946.38 950.44 965.30 984.20 1010.71
random-sat (10) 70.04 70.71 69.21 69.95 69.74 74.32
random-uns (10) 147.40 147.19 145.95 148.30 149.17 159.90

Effective Incorporation of Double Look-Ahead Procedures 267

Table 5 shows the average values of Δtrigger for various settings of DLdecrease.
The average for each family is the mean of the averages of its instances, while
for each instance the average is the mean of the averages over all nodes. Because
these values are not very accurate, we present only rounded integers.

Parameter DLdecrease seems to have little impact on these average values.
Note that - except for pyhala-braun and quasigroup instances - the average
values of Δtrigger are very close to the optimal values shown in tables 1 and 2.
In section 5.3 we provide a possible explanation for the two exceptions.

Table 5. Influence of parameter DLdecrease on the average value of Δtrigger

family .75 .80 .85 .90 .95 .99

3color (10) 23 24 25 28 33 42
anton (5) 129 134 141 162 176 220
connamacher (3) 538 575 589 527 462 292
ezfact48 (3) 324 332 357 370 420 538
longmult (3) 76 78 80 90 100 127
philips (1) 99 102 107 110 117 142
pigeon 7 7 8 8 9 9
pyhala-braun(2) 105 108 112 117 127 148
quasigroup (4) 537 530 516 489 529 664
stanion (3) 21 22 23 25 29 36
random-sat (10) 57 58 62 67 77 98
random-uns (10) 57 59 62 67 78 98

5.2 Comparison

To test the general application of the adaptive algorithm, we also implemented it
in both other Sat solvers that use a DoubleLook procedure: satz and kcnfs. We
modified the latest version of the source codes4. All three components were made
according to the proposed adaptive algorithm: First, initialization is changed to
Δtrigger := 0. Second - only for kcnfs - a line is added to increase Δtrigger when
no conflict is detected. Analogue to the march dl and satz, Δtrigger := |F2 \ F∗

2 |.
The third modification is implemented slightly differently, because in satz

and kcnfs the size of the pre-selected set P is computed “on the fly”. Therefore,
2|P|√DLdecrease would not be a constant value in each LookAhead procedure. As
a workaround, we decided to use the average value of march dl for 2|P|√DLdecrease

instead. Additionally, from satz the decrement strategy TriggerSuccess is
removed. While using DLdecrease := 0.85, this average appeared approximately
0.9985, which was used for an alternative decrement strategy:

TriggerDecrease() : Δtrigger := 0.9985×Δtrigger (4)

4 For satz we used version 215.2 (with the adaptive algorithm) which is available at
http://www.laria.u-picardie.fr/∼cli/satz215.2.c and for kcnfs we used the
version available at http://www.laria.u-picardie.fr/∼dequen/sat/kcnfs.zip

http://www.laria.u-picardie.fr/~cli/satz215.2.c
http://www.laria.u-picardie.fr/~dequen/sat/kcnfs.zip

268 M.J.H. Heule and H. van Maaren

Table 6. Comparison between performances of the original and the modified versions
of satz, kcnfs and march dl

satz kcnfs march dl
family original modified original modified prelim final

3color (10) 52.71 36.91 37.89 27.88 72.51 25.60
anton (5) 183.97 123.16 3433.39 2382.96 80.75 64.99
connamacher (3) > 6000 > 6000 4707.51 4705.23 4134.85 1742.62
ezfact48 (3) 39.96 32.98 > 6000 > 6000 54.22 37.87
longmult (3) 2411.36 1582.85 440.34 413.19 265.88 203.03
philips (1) 1126.38 710.75 750.75 443.27 428.52 286.31
pigeon(1) 23.72 24.12 43.39 40.25 145.38 103.47
pyhala-braun(2) 1247.46 881.91 644.84 466.92 380.57 372.98
quasigroup (4) 172.40 171.54 230.59 173.86 351.85 157.24
stanion (3) 3657.49 3810.53 3834.31 3863.13 993.89 950.44
random-sat (10) 93.82 92.56 79.63 80.33 91.63 69.21
random-uns (10) 260.13 266.81 139.67 138.22 189.75 145.95

Notice that using value 1.0 instead of 0.9985 would drastically reduce the number
of additional look-aheads, because Δtrigger would never be decreased.

The performances of the original and the modified versions of satz, kcnfs, and
march dl are shown in table 6. The proposed adaptive algorithm generally out-
performs the one in satz: On most instances from our test, the performance was
improved up to 30%, while on the others only small losses were measured. Signif-
icant performance boosts are also observed in kcnfs, although the stanion/hwb
instances are solved slightly slower. Since we did not optimize the magic con-
stant, additional progress could probably be made.

The double look-ahead is the latest feature of march resulting in version
march dl. The preliminary version used has all features except the DoubleLook-
Ahead procedure. The addition of this feature - using the proposed adaptive
algorithm - boost the performance on the complete test set.

5.3 Adaptation Plots

We selected four benchmarks (due to space limitations) to illustrate the behavior
of the adaptive algorithm. For each benchmark, the first 10.000 (non-leaf) nodes
of the DPLL-tree - using march dl with Δtrigger := .85 - are plotted with a colored
dot. Nodes are numbered in the (depth-first) order they are visited - so for the
first few nodes their number equals their depth. The color is based on the depth
of the node in the DPLL-tree. The horizontal axis shows the number of a certain
node and the vertical axis shows the average value of parameter Δtrigger in this
node. These so-called adaptation plots are shown in figures 1, 3, 2 and 4.

In general, we observed that each family has its own kind of adaptation plot,
while strong similarities between instances from different families were rare.
For none of the tested instances Δtrigger converged to a certain value, which is
probably due to the design of the algorithm.

Effective Incorporation of Double Look-Ahead Procedures 269

0

2

4

6

8

10

12

14

16

18

20

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

..

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

...

.

.

.

.

.

.

.

.

..

.

..

...

.

..

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.....

.

....

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

....

.

.

.

.

..

.

.

..

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

..

.

.

..

..

.

..

.

.

..

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

...

.

.

.

..

.

..

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.

...

..

.

.

..

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

...

.

.

.

..

.

....

.

.

..

..

.

.

...

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

...

...

.

...

.

.

.

.

.

.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

...

.

.

.

.

.

.

..

.

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.....

.

.

.

.

.

..

.

.

.

.

....

.

...

.

.

.

..

.

.

..

.....

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

...

.

.

...

..

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

..

..

.

.

.

.

.

..

.

.

...

.

..

.

.

.

.

....

.

.

.

.

.

.

..

.

.

.

....

.

.

..

.

.

.

..

.

.

.

.

.

.

...

.

.

..

.

..

.

.

.

...

..

.

.

.

.

..

.

..

.

.

..

.

..

.

.

.

..

..

.

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

....

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

....

.

.

.

.

.

..

.

.

..

.

...

..

.

.....

.

..

..

.

..

..

.

.

.

.

.

..

..

..

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

..

.

..

....

.

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

..

..

.

..

.

.

.

.

.

.

.

.

..

..

.

.

.

..

.

..

.

.

.

.

.

...

..

.

.

.

.

.

....

.

.

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

..

.

.

.

.

.

.

..

..

.

..

.

.

.

..

.

.

..

..

.

.

.

.

..

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

..

..

.

.

.

.

.

..

.

.

..

...

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

...

..

.

.

.

..

.

...

.

.

.

.

.

...

.

.

.

..

.

.

...

.

..

.

.

.

.

.

..

.

..

..

..

..

.

..

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.....

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

...

..

......

..

..

.

.

.

.

....

...

..

...

.

...

...

..

..

.

.

.

.

.

...

..

.

.

.....

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

...

.

.

..

.

.

.

..

.

.

.

.

...

.

....

..

..

.

.

.

.

.

.

.

...

...

.

.

.

.

..

.

.

..

.

.

..

..

..

.

.

....

.

.

.

.

.

.

.

..

.

.

..

.

.

...

.

.

.

......

.

.

.

.

.

..

...

.

.

..

.

.

.

..

...

.

.

.

..

.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

...

.

.

..

.

.

.

.

.

.

.

..

.

.

...

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

.

.

..

.

.

.

..

...

..

.

...

.

.

..

..

...

.....

.

.

...

.

.

.

...

.

..

.

.

..

.

.

.

.

...

.

..

.

.

.

.

...

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

...

..

.

.

...

.

..

...

.

..

.

..

..

..

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

.

..

...

..

..

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

..

.

..

.

.

..

..

.

.

.

.

..

.

.

.

....

.

.

.

.

...

.

.

.......

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

..

.

.

.

.............

..

..

....

....

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.....

...

....

...

..

...

.

.

...

.

.

...

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

..

.

...

...

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

...

.

.

..

..

.

.

.

..

..

.

..

.

.

..

...

..

.

.

..

.

.

.

.

.

...

.

.

...

.

.

...

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

..

.....

..

.

.

.

..

.

..

.

..

.....

.

.

.

.

..

...

.

.

..

..

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

....

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

..

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

....

.

..

..

.

.

.

.

..

.

.

..

..

.....

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.....

.

....

..

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

..

....

.

.

.

....

....

.

.

..

..

.

...

.

.

.

...

.

.

..

.

.

.

.

.

.....

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

..

...

..

.

.

.

...

.

.

.

.

.

.

.

.

..

...

.

...

.

.

..

.

...

...

.

.

...

..

.

.

.

.

.

.

.

..

.

.

.

....

..

.

.

...

..

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

..

..

.

...

.

..

.

.

..

.

.

....

..

..

.

.

.

.

.

....

..

.

.

.

.

.

.

..

.

.

...

.

.

.

.

.

..

...

.

...

..

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

..

.

.

.

...

.

..

...

.

.

.

..

.

..

...

..

...

.

.

.

..

..

.

.

.

.

....

...

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

..

.

..

.

.

..

.

.

.

.

.

..

.

..

..

.

.

.

.

..

.

..

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

..

.

.

...

.

.

..

.

.

..

.

...

.

.

.....

..

.

.

.

.

.

.

.

.

..

..

..

..

.

.

..

.

.

.

.

.

.....

...

..

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

..

.

...

.

...

..

.

...

.

..

.

..

.....

.

...

..

..

.

.

.

....

.

..

.

..

.

.

.

...

.

.

..

.

.

...

..

.

..

.

..

....

.

..

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

...

.

.

..

....

.

.

.

.

.

.

.

.

....

.

..

.

.

.

.

...

...

..

.

.

.

..

.

....

.

..

.

.

..

..

.

.

.

..

.

..

..

..

.

.

....

..

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

...

.

.

.

.

.

.

.

.

.

..

..

...

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

...

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

...

....

.

..

..

.......

.

.

.

.

....

.

.......

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

....

.

.

.

.

.

...

.

.

.

.

..

.

.

...

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

....

.

.

.

....

.

.

.

.

.....

.

...

..

.

...

.

.

.

..

..

.

.

.

.

.

...

.

.

...

.

.

..

.

.

.

.

.

..

.

.

.

..

...

...

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

..

.

..

.

.

.

.

.

.

.

.

...

.

...

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

..

..

.

.......

.

..

.

....

.

.

.

.

.

..

....

.

.

...

..

..

.

..

.

..

..

.

....

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

...

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

..

..

.

.

..

.

.....

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

...

.

.

.

.

.

...

.

.

..

.

.

..

.

.

.

..

..

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

....

.

.

.

...

.

.

.

.

..

.

.

...

.

.

.

..

.

..

.

.

..

....

.

..

..

.

.

.

.

...

....

.

..

..

.

.

.

.

..

.

.

.

.

...

.

...

.

...

..

.

...

.

.

.

.

..

.

.

.

.

.

.

.

.....

.

.

.

.

.

.

....

.

...

..

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

...

.

.

.

.

..

.

.

.....

..

.

..

.

..

.

.

....

..

.

.

.

.

..

..

.

.

.

.

.

.

..

.

...

.

..

..

.

...

.

....

.

.

..

..

.

.

..

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

.

.

.

.

.

..

.

..

.

.

.

.

.

..

..

.

.

.

.

.

.....

....

.

.

.

.....

..

..

.

.

.

.

...

.

.

.

.

..

.

.

....

.

....

.

.

.

.

.

....

...

.

.

.

..

.

..

.

.

.

..

..

..

.

.

.

.

.

..

..

...

.

.

.

.

.

.

.

.

...

.

.

.

.

..

.

.

.

.

.

.

.

.

...

...

.

.

..

.

.

.

..

..

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

...

.

..

.

.

......

.

.

.

.

.

...

.

.

...

.

..

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

..

.

.

....

.

.

.

.

..

.

.

.

..

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

....

.

.

.

..

.

..

.

.

.

.

.

..

.

..

.

.

....

.

.

.

.

.

...

.

...

...

.

.

.

.

.

.

.

..

..

..

.

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

..

.

..

.

..

..

.

.

.

.

.

.

.

..

.

.

.

..

..

..

.

..

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

...

.

..

.

.

..

...

.

.

.

.

.

...

..

.

.

....

.

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

.

.

..

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

...

...

.

.

.

.

.

.

...

...

.

..

..

.

.

.

.

.

..

....

.

.

.

....

.

.

.

..

..

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

...

..

...

.

.

...

..

..

.

.

.

.

.

.

.

....

...

.

.

.

...

.

.

.

.

..

.

....

..

..

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

.

.....

.

.

.

..

.

.

....

.

.

.

...

.

.

..

.

...

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

...

.

..

..

.

.

.

.

..

...

.

.

..

.

.

..

.

.

..

.

.

.

..

.

..

..

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

...

.

...

..

....

..

..

..

...

.

.

.

.

..

.

..

.

.

..

.

.

.

..

..

.

.

...

....

..

.

.

......

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

...

.

..

..

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

..

..

.

..

.

.

...

.

.

...

..

.

...

.

.

.

.

.

.

.

..

.

.

.

....

..

......

.

..

..

.

.

.

..

.

.

.

..

.

.

.

..

.

..

.

..

.

.

...

..

.

.

.

.

...

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

....

.

...

.

.

..

.

.

..

.

.

.

.

..

...

..

.

.

.

...

..

.

.

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

..

...

.

.

..

.

.

......

..

.

.

....

.

..

.

...

..

.

..

.

..

.

...

.

..

.

....

.

..

.

.

.

.

..

.

..

...

.

..

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

..

.

..

.

..

....

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

...

.

.

.

...

.

.

.

.

.

..

.

.

.

.

...

.

.

.

..

.

.

..

.

.

..

.

...

.

.

..

.

.

..

.

...

.

.

..

.

.

.

.

..

.

...

.

.

.

.

..

.

.

..

.

.

.

..

...

.

.

....

..

...

..

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

...

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

..

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

...

.

.

.

..

.

...

..

.

.

.

.

..

.

.

..

.

..

....

.

.

.

..

.

.

.

.

.

..

..

...

..

.

.....

.

.

.

.

..

.

...

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

...

..

.

.

.

....

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

......

...

..

...

.

..

.

.

.

.

.

..

.

.

..

...

..

..

.

.

.

.

.

..

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

..

..

.

.

.

.

.

..

.

.

.

.

...

.

.

.

.

..

.

.

.

....

..

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

...

.

....

.

..

.

.

.

..

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

...

...

...

.

.

.

.

.

.

.

.

.

.

.

..

..

.

...

.

.

...

.

..

.

.

.

..

.

..

.

.

..

..

.

.

.

.

..

.

.

..

..

.

..

.

.

..

.

.

.

..

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

...

.

.

.

.

..

.

..

.

.

.

.

..

.

.

.

..

...

.

..

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

....

..

.

..

.

.

.

.

..

..

.....

.

.

.

.

.

..

.

...

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

...

.

.

..

.

.

.

....

.

.

.

....

.

.

.

...

.

.

...

.

.

.

.

.

.

.

..

..

.

.

..

.

.

.

..

..

..

.

...

.....

.

.

...

..

.

..

.

.

.

.

..

...

.

.

.

.

.

.

..

.

..

..

.

.

.

.

...

.

.

..

.

...

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

..

.

..

.

.

.

..

..

.

.

..

.

....

.

..

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

...

.

.

.

.

.

..

.

..

.

..

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

...

..

.

.

..

..

.

.

..

.

.

.

.

.

...

..

.

.

.

...

.

......

...

.

.

......

....

.

.

.

..

..

.

.

..

..

.

.

..

..

.

.

.

.

...

..

..

.

.

.

.

...

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

..

.

...

.

.

...

.

.

.

.

..

.

..

.

.

.

..

..

.

.

..

..

...

.

.

..

.....

..

..

.

.

...

.

.

.

..

.

.

.

....

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

..

...

.

.

....

..

..

.

....

..

.

..

..

.

.

........

..

.

...

...

.

.

.

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

..

.

.

..

..

..

.

.

...

..

.

..

..

.

.

.

...

.

.

.

.

.

.

.

.

.

.

...

..

.

....

..

.

..

...

.

..

.

.

......

..

.

.

.

..

.

..

.

..

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

.

...

.

.

...

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......

.

.

.

.

.

.

.

.

....

.....

.

..

.

..

.

.

..

.

.

..

.

.

..

..

.

.

.

..

...

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

...

.

..

.

.

.

.

.

...

.

.

...

.

.

..

.

..

..

.

.

.

.

...

...

.

.

..

.

.

..

.

.

.

.

.

..

.

..

.

..

.

..

.

.

...

.

.

..

...

..

...

.

.

.

.

.

.

..

.

..

..

...

.

.

.

.

..

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

....

...

.

.

.

.

.

.

.

....

.

.

.

..

.

....

.

.

.

.

..

.

.

.

....

.

.

.

...

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.....

.

.

.

.

.

....

.

.

..

..

.

.

.

.

.

.

.

.

..

..

.

..

.

.

...

.

..

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

....

..

.

...

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

...

..

..

.

.

.

.

..

.

.

..

.

.

..

..

..

.

.

.

.

.

..

.

..

.

...

.

..

.

.....

.

.

..

.

.

..

.

.

.

.....

.

....

.

.

.

..

.

.

..

.

.

.

.

.

.

..

....

..

.

.

.

..

.

....

.

.

.

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

..

..

.

..

.

.

.

..

.

.

..

.

.

....

.

..

...

.

..

.

...

.

...

.

..

.

..

.

.

.

..

.

.

..

..

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

..

..

....

..

.

.

.

.

.

.

..

.....

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

...

...

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

..

.

.

...

..

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.....

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

...

..

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

...

.

..

.

...

.

..

....

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

....

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

..

.

.

...

.

.

.

.

...

..

....

..

.

..

..

.

.

...

.

.

.

.

..

.

.

.

.

.

.

.

.

..

....

.

.

..

.

.

.

..

.

.

....

.

.

.

..

....

..

.

..

....

.....

.....

.....

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

..

...

...

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

..

..

.

.

...

..

..

...

.

.

....

.

.

.

.....

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

..

..

..

.

.

.

.

..

.

.

.

..

..

.

...

.

.

..

.

..

.

.

.

.

.

..

..

...

.

.

.

.

.

..

.

.

...

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

...

.

.

.

...

..

.

.

...

.

.

.

.

.

.

..

....

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

....

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

...

.

..

...

.

..

..

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

...

.

.

..

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.........

.

..

.

.

.

.

.

.

.

...

....

..

.

....

.

...

.

.

.

.

.

.

.

...

.

.

...

..

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

..

..

.

.

...

..

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

..

.

.

.

.

.

...

.

.

..

.

.

.

....

.

.

.

.

.

.

.

..

.

....

..

.

.

.

..

.

.

...

...

.

..

..

.

.

.

.

....

..

.

.

.

...

.

.

.

.

..

.

.

.

.

.

.

..

.

.

...

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

...

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

...

.

.

.

.

..

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

...

.

.

...

.

.

.

..

.

.

.

.

....

.

.......

.

....

..

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

..

.

...

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

.

.....

.

..

..

.

..

.

.

..

.

.

...

.

...

.

..

.....

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

..

.

.

..

..

.

.....

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

...

....

.

.

.

.

..

.

..

.

.

.

.

.

..

.

......

.

..

.

.

.

..

.

..

...

.

.

.

.

.

.

..

.

.

.

..

..

.

..

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

...

..

.

.

.

.

.

..

.

...

...

.

.

.

....

..

.

......

.

...

.

.

.

.

.

..

.

.

.

...

.

...

.

.

.

.

.

..

.

..

.

.

.

.

.

.

...

.

.

..

.

.

..

..

.

.

...

.

.

.

.

.

.

.

....

.

.

.

..

.

.

.

..

....

.

.

.

.

.

.

.

.

..

..

..

.

..

.

.

..

.

...

.

..

..

.....

.

...

.

....

..

.....

..

.

...

..

.

.

.

.

..

.

....

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

....

....

.

.

.

.

..

.

.

......

....

.....

.

.

.

.

.

..

.

.

..

..

.

..

...

..

....

...

..

.

.

..

.

.

..

.

.

.

.

.

...

...

.

..

..

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

...

.

.

.

.

..

.

.

..

..

...

.

..

.

....

...

..

..

..

.

..

.

..

.

....

.

.

.

..

..

..

...

.

.

.

.

....

.

...

.

.

..

.

.

..

.

..

.

..

.

..

.

.

.

.

.

...

.

.

.

...

.

.

..

..

..

.

.

..

.

.

..

....

.

...

.

.

.

.

.

...

.

...

.

...

....

.

.

.

.

..

..

.

.

.

..

..

.

....

.

.

.

.

.

.

.

..

...

.

..

....

..

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

...

.

.

..

..

.

.

.

..

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

..

......

.

.

.

.

.

.

..

..

.

......

.

.

.

..

..

..

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

..

.

.

.

.

.

..

..

.

.

.

...

.

.

.

.

...

..

.

.

..

.

.

.

..

.

.

..

..

.

.

.

...

..

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

..

0 2000 4000 6000 8000 10000

0

50

100

150

200

250

300

350

node number

depth

av
er

ag
e

Δ
tr

ig
g
e
r

Fig. 1. Adaptation plot of philips.cnf

0

5

10

15

20

25

..

.

..

.....

....

..

.

....

.

..

..

..

.

..

.

..

...

.

..

..

.

...

.

....

.....

.....

..

.

.

.

.

..

.

...

.

.

.

.

....

.....

..

...

..

....

.

..

..

...

.

.

.

.

.

.

..

..

.

..

..

...

.

....

.....

...

.

.

..

.

.

.

.

......

....

......

.....

..

..

..

..

.

.

.

.

.

.

.

..

..

.

.

.

...

..

..

.

.

.

.....

.

..

......

.

.

..

.

...

..

...

.

.

.

.

...

.

.

.

..

...

..

.

.

.

..

..

..

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

......

..

..

...

.

.

...

...

.

..

.

.

.

.

....

...

..

..

..

..

.

.

.

...

.

...

.

...

..

.

..

.

..

..

....

..

.

.

.

.

..

..

.

.

.

.

..

...

..

..

..

......

...

...

.

.

.

.

....

.

....

..

..

.

....

...

.

.

.

.

..

.

.

..

.

..

...

....

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

....

.

.

.

....

.

.

.

....

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

...

..

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

..

..

..

.

...

.

.

.

..

..

..

.

..

.

....

.

.

..

...

.

..

.

....

.

.

.

.....

.

.

.

....

.

.

.

.

....

.

.

.

.....

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

....

.

.

.

.....

.

.

.

.

.....

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

.

..

.

.

..

.

.

.

...

..

...

..

...

.

...

..

...

...

..

..

.

.

.

..

.

...

.

..

.

...

....

.

..

...

..

.

..

..

..

.

..

.

.

.

..

..

.

..

..

..

.

..

...

.

..

.

.

.

.

...

..

...

.

..

......

....

.

..

...

.

.

...

...

.

.

.

.

..

...

..

.

..

.

..

.

.

.

....

.

.

.

....

.

.

.

.

....

.

.

.

....

..

.

.

.

....

.

.

.

....

.

.

.

.

....

.

.

.

.....

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

..

..

....

.

..

.

..

....

.

.

.

...

..

.

..

.

.

...

.

..

.....

...

....

.

.

.

.

.

..

.

.

...

.

.

.

..

.

..

.

.

.

.

....

.

..

..

.

.

.

..

.

..

.

.

.

...

.

.

.

.

..

.

.

.

.

.

.

.

.....

.

..

.

.

.

.

.

.

.

.

..

.

.

...

.

.

.

.

..

.

.

.

.

...

..

.

..

..

..

.

.

.

..

..

....

.

.

.

..

.

.

.

.

..

.

.

.

.

...

..

.

..

.

.

.

.

.

.

....

.

.

.

....

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.....

.

.

.

.....

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

.

......

.

.

.

..

.

.

.

..

..

.

.

.

.

..

.

.

..

.

..

.

.

.

.

..

...

..

..

.

.

.

.

.

.

.

...

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

....

..

.

.

..

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

...

.

.

.

.

.

..

..

..

.

..

.

...

.

.

..

..

.

...

..

..

...

.

.

..

..

.

.

.

..

.

....

..

..

..

.

..

..

..

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

....

.

.

..

.

.

.

....

.

...

..

.

.

.

.....

..

.

.

.

..

..

..

.

.

.

.

.

...

.

.

.

....

...

..........

.

.

.

.

....

.

.

.

....

.

....

....

.

....

.

.

.

..

...

.

..

..

..

....

..

.

..

...

.

.

..

...

.

.

.

....

..

.

...

..

..

....

.

.

.

.

.

.

.

..

.

.

..

.

..

...

.

..

..

...

....

.

..

..

..

.

..

...

.

.

.

.

........

.

.

.

.

.

.

.

.

.

.

....

.

.

.

....

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....

.

.

.

.....

.

.

.

.

...

.

.

.

.

.

.

..

.

.

.

.

.

.

....

...

.

.

.

....

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.......

.

.

.

....

.

.

.

....

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

...

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

..

.

...

.

....

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

...

.

.

...

.

.

.

.

..

..

.

..

..

.

.

.

.

.

.

....

.

.

.

...

.

.

..

..

..

.

.

.

.

.

.

..

.

.....

.

.

.

.

.

.

.

...

.

...

.

..

.

.

.

.

.

...

.

..

.

.

.

.

.

.

...

.

.

....

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

.

...

.

.

.

....

..

..

.

..

..

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

....

.

...

.

..

.

.

..

.

...

.

..

..

.

.

.

...

.

.

....

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

..

.

.

.

....

.

.

.

.

.

.

.

......

...

.

.

...

..

....

...

...

....

...

..

...

.

.

...

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

....

...

.

.

...

..

....

...

...

...

.

.

...

..

....

...

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.....

.

.

.

....

.

.

.

....

..

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

....

.

.

.

....

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

....

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

...

..

.

.

.

.

..

.

.

......

.

.

..

.

.....

.

...

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

....

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

...

.

........

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

......

..

.

..

.

.

.

..

.

.

.

.

.

.

..

.....

.

.....

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

....

.

.

.....

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

.

....

..

..

...

.

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

..

....

.

..

...

.

...

..

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

....

.

....

.

.

.

....

.

....

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

....

.

....

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

....

.

....

..

.

.

.

...

.

.

.

.

..

.

...

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

..

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

...

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

....

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

..

......

..

.

..

..

...

..

.

..

.

..

....

.

.

..

...

..

..

...

.

.

....

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

..

...

..

....

.

..

.

.

..

.

..

.

.

....

..

...

..

.

.

.

..

.

.

..

..

.

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

...

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.....

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

...

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.....

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

...

.

..

.

....

..

..

....

.

..

....

.

.

.

......

.

..

.

...

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

...

.

.

.

.

......

.

..

...

...

...

.

.....

.

.

.....

.

.

.

...

.

..

.

..

..

..

..

..

....

.

..

......

.

.

.

...

.

..

.

..

...

...

..

..

....

.

..

....

.

.

.

.

.....

.

..

.

...

...

..

.

.

..

..

.

.

..

..

.

.

.

..

.

.

.

.

......

.

..

.

...

..

.

.

.

.

.

.

.

...

.

.

.

..

.

..

.

...

.

.

.

...

.

..

.

....

..

...

.

.

.

.

.

..

.

..

.

.

.

.

.

.

..

......

.

.

....

.

...

.

...

......

.

.

.

...

.....

.

.

..

.

.

..

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

..

.

.

..

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

...

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

...

.

.

.

.

..

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

...

....

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

.

...

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

...

..

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.....

.

.

.

.

..

.

.

.

.

..

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

..

.

.

..

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

..

.

..

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

...

.

..

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

..

.

.

.

.

..

.

.

..

.

..

.

..

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

...

.

.

...

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

....

..

.

.

..

.

..

.

.

.

.

...

.

.

.

.

.

...

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.....

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

.

.

.

...

.

.

..

.

..

.

...

.

.

..

.

..

.

.

.

.

.

.

.

.

...

.

.

.

..

.

..

.

.

.

.

...

.

.

.

.

.

....

.

..

.

.

.

.

..

.

.

..

.

..

.

.

.

.

..

.

.

...

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

....

..

.

.

.

..

.

.

..

..

.

.

.

..

.

.

...

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.....

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

...

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

...

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

...

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

...

.

...

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.....

.

.

..

.

..

.

.

.

.

...

.

.

.

.

.

...

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

......

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

..

....

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

..

.

....

.

.

..

.

..

.

.

.

.

..

.

.

.

...

...

..

.

..

.

.

.

.

.

.

.

.

.

.

....

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.......

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

...

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

.

..

.

..

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

...

.

.

.

.

..

.

..

.

.

.

.

.

.

..

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....

.

....

..

.

..

..

..

.

..

...

..

.

..

..

..

.

..

....

.

.

.

.

.

.

......

..

.

.

.

.

.

.....

.

....

..

....

.

....

.

.

.......

.

.....

.

......

.

......

.

....

.

...

.

.

.

.

.

.

..

.

.

.......

..

.

.

......

.

.

.

.

.

.

.

......

.

......

.

......

.

.....

.

.

.....

.

....

..

....

.

....

.

.

.

.

.

.

....

.

.....

..

....

.

......

.

.

.

..

.

..

.

.

..

.

..

...

..

.

..

.

..

.

..

.

.

.

.

.....

.

....

..

......

....

.

.

......

....

..

.....

.

.....

.

.

.

.

.

.....

.

.....

..

.....

.

....

.

.

.

.....

.

....

..

....

.

.

......

.

.

.....

.

....

..

....

.

....

.

.

.....

.

....

.

..

....

.

......

.

...

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

...

.

..

.

..

.

.

.

..

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

.

..

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

....

..

.

.

..

.

..

.

.

..

.

...

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

......

..

.

.

..

..

...

.

.

.

.

.

....

...

.

.

.

.

.

.

.....

.

.

.

.

.

....

..

..

.

...

.

.

.

.

..

.....

.

...

...

..

.

...

.

..

..

..

.

....

.

.

.

.

...

..

.

.

.

.

.

.

...

.

.

.

..

.

..

.

...

.

.

.

.

.

..

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

......

.

..

.

.

....

.

.....

.

.

......

.

..........

.

.

..............

..

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

..

..

.

..

..

..

.

.

.

.

.

.

..

.

.

......

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.......

..

.

.

.

.

.

..

.

.

.

.

...

.

.

......

.

......

.

.

......

.

......

..

..

.

..

.

....

.

...

.

...

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

......

.

......

.

.

.

.

.....

.

.

......

..

...

.

.

.

.

.

.

.

.

....

..

....

.

.

.

.

....

.

..

.

.

.

......

...

......

.

.

......

.

......

...

.......

.

...

.

....

.

.

.

.

...

..

.

..

.

.

.

......

.

......

.

.

......

.

..

..

....

..

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

......

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

..

.

.

..

.

..

.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

...

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

..

..

.

.

.

...

...

...

..

.

..

..

..

.

..

...

..

.

..

..

..

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

...

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

..

.

...

..

...

...

..

.

...

.

..

..

.

...

.

...

....

.

..

..

...

.

....

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

....

.

.

.....

.

..

..

.

.

...

.

.

....

.

.

.

.

..

.

..

...

..

.

.

...

.

.

....

.

.

.

.

....

...

...

..

.

...

.

.

....

.

.

.

.

.

.

..

...

..

.

.

.

....

...

.

..

.

....

.

....

.

.

.

.

.

..

.

.

.....

.

.

..

.

.

...

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

..

.

...

.

.

...

.

...

.

..

..

.

...

.

..

.

...

.

.

.

..

.

.

...

.

...

..

.

.

.....

.

.

..

.

.

..

.

.

..

.

....

.

.

.

.

.

..

.

..

.

..

..

.

..

..

.

.

.

...

.

.

.

..

.

.

.

...

.

.

..

.

.

...

.

...

..

.

...

....

.

.

....

.

.

.

.

.

....

..

.

...

.

..

.

..

..

0 2000 4000 6000 8000 10000

0

200

400

600

800

1000

1200

1400

node number

depth

av
er

ag
e

Δ
tr

ig
g
e
r

Fig. 2. Adaptation plot of connm-ue-csp-sat-n600-d0.04-s1211252026.cnf

270 M.J.H. Heule and H. van Maaren

0

5

10

15

20

25

30

....

..

.........

.

..

.

.

.

.

..

.

.

.

....

..

.

.

.

.....

....

.

...

..

...

.

..

.

...

..

..

..

...

.

..

..

.

.

.

.

.

.

...

..

...

.

.

.

.

.

.

.

...

.

.

..

.

.

...

.

.

.

....

..

..

..

.

.

.

.

.

.

...

......

.

...

.

...

..

.

...

.

..

.

...

.

..

..

.

.

.

.

.

.....

.

.

.

.

..

.

...

.

.

..

.

.

...

....

..

.....

.

.

.

.

.

....

...

.....

..

...

.

.

.

.

.

.......

..

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.......

.

..

.

.....

.

.

.

.

.

..

..

..

..

...

..

.

.

..

...

...

.

..

.

...........

.

...

..

.

...

.

.

.

...

.

.

...

.

.

.

...

.

..

.

.

..

.

..

..

..

...

...

...

..

...

.

....

......

.

.

.

..

...

..

..

.

....

.

.

.

..

.

.

.

....

....

....

...........

..

.

.

.

..

..

..

......

.

..

...

....

.

...

.

.

.

.

.

..

...

.

.

..

...

...

.

..

..

.

.

..

..

.

.

.

.

.

.

..

.

..

..

...

..

..

.

.

..

....

.

.

...

...

.

.

.

.

..

.

.

.

.

.

...

.

..

.

..

.

.

.

.

..

..

.

.

.

...

.

.

...

.....

.

..

.

.....

...

.

.

..

..

..

.

.

.

.

..

.

...

.

..

.

..

.

.

.

.

.

.

.

.

...

..

.

.

.

..

.

.

.

.

......

..

.

.

.

..

..

.

.

.

..

.

.

.

...

.

.

..

.

..

.

..

..

..

...

..

.

..

.

.

.

....

......

.

...

..

..

.

.

.

.

...

..

.

..

...

..

..

.

.

.

.

.

.

.

.......

..

..

.

.

...

...

.

....

..

..

.....

.

.

.

.

.

......

.

.

.

.

...

.....

.

...

..

..

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

..

.

.

..

.

.

.

.

..

.......

..

.

...

..

...

.

.

..

..

.

...

..

.

.

.

..

..

.

.

..

..

...

.

..

.

.

.

.

.

.....

...

.

.

.

.

.

.

.

.

.

..

.

.

..

..

...

...

.

.

...

.

.

...

.

.

.

...

.

.

...

.

.

...

..

....

...

.

...

.

.

.

.

.

.

.

.

...

.

.

..

.

.

..

..

.

...

.

.

..

..

....

.

...

...

...

.

.

.

.

.

..

.

.

...

...

..

.

.

....

..

.

.

..

.

.

.

.

.

....

.

.

.

.

.

.

....

..

.......

....

.

.....

..

..

.

.

.

.

.

.

.

..

..

..

..

..

....

.

...

....

.

.

..

.

.

.

.....

.

....

..

..

..

.

.

.

.

..

.

..

.

.

.

.......

.

.

.

.

.

.

.

.

.

....

...

.

..

...

..

.

.

.

.

.

..

.

.

.

..

..

...

.

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

...

..

..

..

....

.

..

.

.

.

.

.

...

.

...

..

.

.

.....

.

.

..

.

..

.

.

..

.

.

.

..

.

..

..

.

...

..

.

..

.

...

...

..

..

...

.

.

.

.

.

.

..

..

.

..

.

...

.

.

.

.

..

.

..

.

..

.

.

.

.

.

..

...

.

.

.....

....

..

.

.

.

..

..

.

.

.

..

..

..

......

...

.

...

.

.

.

.

..

.

..

.

..

.

..

.

...

.

..

.....

.

...

.

.

..

...

..

.....

.

.

.

.

.

..

.

..

.

..

..

....

.

.

.

.

.

.

.

.

..

.

..

..

..

..

..

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

...

.

...

..

..

..

.

...

.

.

..

..

.

.

.

..

.

.

..

..

.

...

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.....

.

...

.

.

....

.

....

..

..

.

.

...

.

....

...

.

.

.

..

.

..

.

.....

.

.

.

...

...

..

..

.

.

...

.....

.

.......

..

.

.

.

..

.

...

.

..

..

...

.......

.

.

.

.

.

.

..

..

..

...

.

...

........

..

.

..

.

.

...

..

...

....

..

.

.

.

.

.

....

.

...

.

..

.

.

.

....

.

.

.

.

.

..

.

.

.

.

.

.

.

...

..

.

...

....

.

.

....

.

.

.

.

.

.

..

.

......

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.....

.

.

.

..

.

...

......

.

..

...

....

.

.

.

.

....

.

..

...

..

..

....

.

..

..

.

.

.

..

.

.

...

.

.

.

.

..

.

..

.

........

...

.....

..

..

.

...

.

....

.

.

...

.

.

.

..

.

....

.....

.

.

.

.

.

.........

.

.

.

...

.

.

..

..

....

.

....

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

..

.

.

.

.

....

...

.

..

...

.

.

.

..

.

.

..

.

.

.

.

.

.....

..

.

.

.

..

.

.

.

.

.

...

.

..

...

.

..

.

.

..

..

.

..

.

..

...

...

..

...

.

.

.

....

.

..

.

....

..

..

.

.

..

...

.

.

.

....

..

....

.

..

.

.

.

.

..

.

.

...

..

..

...

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

..

..

.

.

....

..

.

...

.

.

..

..

.

.

..

..

.

.

...

.

.

.

..

.

.

.

.

.

....

.

.

.

.

.

.

.

..

.

.

.

...

..

..

..

.....

.

..

.

....

......

.

.

..

.

...

.

.

.....

..

...

.

..

..

.

..

....

..

..

...

..

...

.

.

.

.

.

.

.

..

..

...

.

..

.

....

.

.

.

.

.

.

..

..

.

....

..

...

..

..

.....

.

...

....

.

..

...

.

..

.

.

..

.

..

.

.

.

.

.

.

...

.

.

.

.

...

.

.

.

.

.....

..

.

...

.........

.

.

.

..

....

.

.

.

.

.

.

..

..

.

....

.

..

.

.........

.......

.

.

....

..

..

...

..

..

.

.

.

..

.

.

.

..

.

..

.

.

.

.

..

...

.....

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

....

..

...

..

.

..

....

.

.

.

.

..

.

.

....

..

.

..

.

.

.

..

.

.

.

...

...

.......

....

.

....

.

.

.

.

.

.

.

.

..

.

.....

.

.

.

.

...

.

.

...

.

..

..

.

.

.

....

.

.

...

....

.

.

.

.

..

....

.

.

..

.

.

.

.

..

..

..

...

.

..

....

.

.

..

.....

..

........

..

...

....

..

....

.

.

.

..

..

.

.

...

.

.

..

.

.

.

.

.

.

..

.

..

.

.

..

.

...

.

.

.

..

..

.

..

...

..

.

.

..

..

.

.

.

.

....

...

..

..

..

.

.

..

.

.

.

...

.

....

.....

.

.

...

...

.

..

...

.

.

...

....

.

.

.

..

.

.

...

.

.....

.

...

..

.

...

..

.

.

..

..

...

..

...

.

.

.

.

....

...

..

.

.

.

.

.

.....

..

.

.

..

.

.

.

.

.

.

.

.

.........

.

..

.

.

.

...

...

....

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

....

..

..

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

...

.

..........

...

.....

.

.

...

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

...

...

..

.

.

.

.

.

..

....

..

.

..

.

.

...

.

......

.

.

.

....

.

.

....

..

.

.

.

.....

...

..

.

.

.

.

.

.....

..

..

.

....

...

.

..

.

.

.

.

..

.

.

....

..

..

..

.

.

.

..

.

.....

...

...

.

..

..

...

.

..

..

.........

.

........

....

.....

....

.

.

.

..

...

.

...

......

.

..

.

...

.

...........

..

..

.

....

....

...

.

.

.

.

...

..

.

.

...

.

......

.

.

.

....

.

.

.

.

.

.

.

..

..

.

.

..

.

.

..

.

.

.

..

.

..

.

..

..

..

.

.

.

.

.

.

..

.

..

.

....

..

.

......

.

.....

.

..

.

.....

.

..

..

.

..

..

..

.

.

...

...

..

.

.

.

.

..

.

..

.

.

.....

..

.

..

.

.....

.

.......

.

.

.

.

....

..

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

...

...

...

....

.

...

.

.

...

.

.

.

..

..

.

.

.

.

.

.

.

.

...

.

.....

.

..

...

..

.

..

...

.

.

.

.

.

.

.

..

.

..

..

.

.

....

...

.

.....

..

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

....

.

..

.

.

....

.

.

.

.

..

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

...

.

..

.

.

..

.

.

.

..

.

.

......

.

.

.

.

.

...

.

.

.

.

.

..

.

.....

.

..

.

.

.

.

.......

.

.

.

.

............

.

.

.

...

.

.

.

.

.....

..

.....

.

.

..

.

.

..

.

.

.

..

.

.

.

.....

..

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.....

.

.

..

...

.

.

.

.

.

....

..

.

.

.

..

.

.

.

...

.

..

..

...

..

.

..

.

.

.

...

.

..

.

.

.

.

.

..

.

.

....

.

.

...

..

.

.

.

.

.

...

.

.

.

.

....

.

..

..

.

.

.

.

..

.

.

.

.

.....

.

..

.

...

.

.

.

....

.

..

.

...

.

...

...

.

.

.

.

..

.

.

.

..

..

.

..

.

.

..

..

.

..

..

.

...

..

..

..

..

..

...

.

.

.

.

.

..

..

.

..

.

.

..

.

...

..

......

..

..

.

.

.

....

..

..

.

.

...

..

.

.

..

.

.

.

.

....

.....

..

.

.

...

..

.

.

.

..

...

.

..

.

....

..

....

.

...

.

.

..

.

...

.

.

..

.

.

.

.

.....

.

...

..

..

..

.

..

..

..

......

.

.

.

.

..

...

.....

..

.

.

.

..

.

...

..

..

.

.

.

.

..

.

.

..

.

..

..

.

..

....

....

..

.

.

.

...

..

.

..

.

.

.

..

...

..

.

.....

.

.

.

.

...

..

....

.

.

.

..

.

.

.

..

..

.

........

.

.

.

.

.

.....

.

..

..

.....

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.......

..

..

.

.

.

..

....

.

.

..

.

.

..

..

.....

.

..

.

.

......

....

.

.

.

.

.

.

......

.....

..

..

.

.

..

..

.....

.

.....

.

..

..

.

.

..

.

...

...

..

.

....

.

..

.

.

.

.

.

.

..

.

.

..

.

.

..

.

..

...

.

..

.

.

.

.

.

.

.

.

...

........

..

.

...

..

..

.

.

.

.

..

..

.....

....

.

...

.

...

..

.

..

.

....

.

..

.

.

.

.

.

......

..

......

...

...

.....

.

..

...

.

....

.

.

.

.

.

.....

..

..

.

.

.

...

.

.

.

..

.

.

.

.

.

..

.

.

...

.

..

..

..

.

.

...

.

..

...

..

....

..

...

..

..

.

.

.

.

.

..

...

....

.

..

.

..

..........

....

...

.

..

...

..

.

....

..

..

...

.

.

.

..

....

.

.

.

...

.

.

..

.

.

.

.

....

..

.

..

.

.

.

.

...

.

..

.

.

.

....

..

.

..

..

.

..

...

.

...

..

.

.

..

.

.

.

.

.

.

.

.

...

.

.

..

.

..

..

..

.

.

.

...

.

..

..

.

....

..

.

.

..

.

.

.

.

.

....

...

...

.

.

..

.

.

.....

.

..

.

..

....

.

.

..

....

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

..

.

.

.

.

.

...

....

..

.....

.

.

.

...

.

.

.

.

..

.

.

.

.

.

.

....

.

.

.

.

.

..

...

..

.

....

....

.

.

..

.

..

..

..

...

...

..

.

.

...

..

..

.

.

..

..

..

.

..

.

..

.

.

..

.

..

...

..

.

.

.

.

..

.

.

.......

..

.

.

.

.

....

..

.

...

...

..

.

.

.

.

...

.

.

.

.

.

..

.

.

..

.

...

......

.

...

..

...

..

..

.

.

.

..

...

....

.

.......

.

.

..

.

.

.....

.

.......

.

..

.

.

.

.

.

.

.

....

..

.

.

.

...

..

....

.

....

.

.

.

..

.

.

.

.

.

..

..

.

.

..

..

.

.

.

.

.

..

.

..

.

..

.

.

...

.

.

.

.

..

.

.

.

..

.

.

.

.

....

..

.

.

.

..

.

...

.

.

..

........

.

.

..

.

.

..

..

.....

.

.

..

..

.

....

..

.

.

..

.

.

..

.

..

..

....

..

.

.

.....

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.

..

.

.

......

...

...

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

...

.

.

.

...

..

.

..

..

.

..

.....

..

.

.

...

..

.

...

..

.

.

..

.

.

.

...

.

.

.

..

.

.

.

.

.

.

...

.

.

....

..

.

.

..

.

...

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

..

...

.

...

....

..

.

.

.

.

.

.

.

..

..

..

...

.

...

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

...

...

.

...

.

.

...

.

.

.

.

..

..

.

.

.

...

.

.

.

.

.

.

.

..

..

..

...

.

...

.

.

.

.

..

....

..

.

..

.

....

.

.

.

.

.

.

.

..

...

.

.

..

....

.

.

..

...

....

.

..

..

.....

...

..

.....

.....

...

.

.

.

.

.

.

.

.

.

.

...

...

.

....

.

..

..

.

.

....

..

.

....

..

.

...

..

....

..

..

....

.

.

.

.

.

.

.

...

..

.

...

...

....

..

..

..

.

.

...

.

.

.

..

.

.

.

..

.

.

...

..

.

.

..

.

.

.

.

.

.

..

.

...

.

.

.

.

.

.

.

.

....

...

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

..

..

......

.

.

.

.

.

........

.

.

.

.

..

.

.

.

..

.

.

..

.

....

.

.

..

.

...

.

.

.

.

..

...

.

.

...

.

.

.

.

.

..

.

..

..

.

..

.

...

....

.

.

....

..........

..

...

.

..

...

..

..

..

....

.

....

.

.

..

.

...

.

.

.

.

.

.

......

...

...

.

.

........

....

.

...

.

.

.

.

..

...

.

..

.........

.

.

.

.

..

.

...

.

.

.

.

....

.

.

.

...

.

..

.

.

.

..

.

.

.

.

..

..

....

..

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

..

.

..

..

.

..

...

.

.

.

..

.

..

...........

..

.

.

.

..

.

.

.

.

..

.

.

..

..

.

.

.

..

.

..

..

.

.

.

..

.

.

.

.

...

..

....

...

.

.

.

.

..

.

...

.

.

.

...

...

...

....

..

.

.

..

.

..

...

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

....

.

...

..

.........

......

..

.....

....

.

...

.

.

.

.

.....

..

.

..

.

.

.

....

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

....

...

..

.

..

.

.....

..

..

.

.

....

..

......

.

...

.

..

.

.

.

..

...

.

.

.

.

....

...

.

.

.

..

..

.

..

.

....

...

..

.

..

....

.

.

..

...

.

..

.

..

.

...

..

.

..

..

...

.

.

.

.....

.

...

.

.

..

.

.

...

..

.

.

....

.......

..

..

.

..

...

..

..

...

....

.

.

.

.....

..

..

....

.

.

..

.

.

.

.

..

..

.

.

....

..

.

.

.

.

..

...

..

.

....

..

.

.

...

.

.

.

..

...

....

....

.

..

.

.

.

.

.....

..

...

.

.

..

.

.

.

..

.

......

.

..

.

.

.

.

..

.

..

..

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

...

.

.

.

....

.

....

...

.

...

..

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

..

.

.

...

...

...

..

.....

..

.....

.

.....

.

..

..

.

..

.

.

.

.

..

..

.

.

.

...

..

.

..

.

....

..

.

.

..

.

..

.

.....

.

....

.

...

.

.

.

.....

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

..

..

.

..

.

.

.

.........

..

..

..

..

..

.....

...

.

.

.

...

..

.

.

.

.

..

.

.

.

..

.

...

..

.

.....

...

..

....

.

.

...

.

.

.

.

.

.

.

.

..

...

.

..

.

.

.....

.

..

.

.

.

.

..

..

.

..

.

..

.

.

..

....

....

.

..

.

..

..

.

.....

......

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

...

..

.

.

.

.

.

.

..

...

.

.

...

.

...

....

.

..

.

..

.......

..

.........

.

.

.

.

.

.

..

...

.

.

....

...

.

.

.

.

.

....

..

.

.

.

..

....

.

.

.

.

.

..

..

..

..

.

.

.

.

..

...

.

...

...

.

...

...

.

.

.

.

...

..

.

..

..

......

..

..

..

.

.

.

.

..

.

..

...

.

.

.

.

.

.

..

.

....

..

.

.

..

.

...

..

....

..

.

....

.

.

.

..

.

...

.

.

.

.......

..

.

...

.

..

.

...

..

...

.

.

.

.

.

........

.

.

.

.

.

.

.

.

.

..

.

.

.

...

...

...

..

.

.

.

.

...

..

..

.

.

..

.

.

......

.

.

.

....

..

.....

.

...

..

.

.

.

...

...

.

.

..

.

.

.

.

.

.

.

.

.

..

.

..

.

..

..

.

.

...

..

..

....

.

.

.

.

.

.

.

....

.

..

..

.

.

..

...

.

.

.

..

.

.

..

.

.

..

.

...

..

.

.

..

...

...

.

.

.

.

.

...

.

..

.

...

..

..

.

.

.

.

..

.

.

.

.

.

..

...

......

..

.

.

.

..

...

...

..

.

.

..

..

.

.

.

..

.

.

..

..

...

.

.

.

.

.

.

.

......

.

.

.

.

.

...

.

..

...

...

.

.

.

.

.

.

.

..

...

..

.

...

.

..

..

.

.

...

..

.

.

.

.

.

.

.

..

.....

...

.

....

.

......

...

.

..

..

.

.

.

.

.

.

.

..

.

....

.

.

.

.

.

....

..

.

..

......

.

..

....

..

.

....

.

.

.

.

.

...

.

..

..

.

.

..

.

..

.

.

.

.

.

.

....

..

..

.

....

.

.

.

.

.

..

..

.

.

.......

...

.

.

.....

....

.

.

.

..

...

.

.

.

.

..

....

.

...

...

.

.

..

.

.

....

.

.

.

.

.

........

.

..

..

..

.

..

.

.

..

...

.

..

..

..

.

.

..

...

..

.

...

..

.

.

..

..

.

....

.

..

..

..

....

..

.

...

.

...

.

.

.

.

...

...

.

.

..

..

.

....

.

..

..

..

.

..

.

.

..

.......

..

.

.

.

.

.

.

.

...

..

........

.

.

.

.

.

.

.

.

..

.

..

.......

....

.

.

.

.

...

...

...

.

.

..

.

.

.

.

.

.

....

.

.

...

.

.

....

.

.

.

.

...

.

..

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

.....

..

..

...

.

..

....

.

..

...

...

.

.

.

..

...

..

..

...

..

..

.

.

..

.

.

...

....

..

.

....

..

.

.

.....

..

.

.

........

.

.

.

....

..

.

.

..

..

.

.

.

.

...

.

..

.

..

.

...

.

....

...

..

...

.

.

.

.

.

..

..

....

.

.

.

.

.

...

.

.

.

....

...

..

.

...

..

..

.

.

.

..

...

.

.

...

.

.

..

..

.

.

.

....

......

..

.

.

..

.

..

..

.

...

.

....

..

.

..

.

..

..

.

..

.

..

.

.

.

.

..

.

...

....

.

.

.

.

.

.

.

.

.

..

.

..

.....

......

.

.

.

..

..

.

.

.

..

...

....

.

.

..

...

....

.

.

.

.

.

.

..

....

.

.

.

..

......

......

.

.

.

..

...

.

.

.

.

.

.

.

.

.

..

..

..

...

.

.

.

.

...

..

..

.

.

.

..

...

.

.

.

.

..

.

.

...

...

.....

..

...

.

.

.

.

..

..

.

.

....

.

.

.

..

..

.......

..

.

.......

.

.

...

...

..

.........

..

..

.

.

..

.

.

..

...

.

..

.

.

.

.

.

.

..

..

.

.

.

...

..

..

..

.

.

..

.

.

.

.....

..

.

..

.

.

..

...

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

..

.

..

...

.

.

.

.

.

.

.

.

.

.

....

.

...

...

.

.

..

.

.

.......

..

.

.

...

.

...

.

....

.

.

.

...

..

.

.

.

.

.

.

.

..

.

.

...

...

..

.

.

.

.

.

..

..

.....

..

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

......

...

..

.

.

...

..

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

........

.

...

.

..

....

.

...

.

.

.

.

...

...

..

.

.

....

..

.

....

....

.

.

.

...

.....

.

....

..

.

..

.

.

..

..

...

..

.

.

.

.

.

..

.

.

.

.

..

...

.

....

.

.

.

..

.

..

.

.

...

...

.

.

.

..

.

.

.

.

.

..

...

....

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.....

...

......

..

.

...

.........

..

.

.......

.

..

.

.

..

..

.

...

....

.

..

..

..

.

..

....

..

...

.

..

.

..

..

..

.

...

..

.

....

...

.

...

...

....

.

.

.

.

.

.

.

.

.

.

..

.

.

....

.

.

.

.

..

.

.

..

.

...

....

.

..

.

.

.

....

.

.

.

.

......

..

.

.

.

.

.

.

.

..

.

....

..

.

.

.

..

...

...

..

...

...

.

.

...

.

.

.

.

..

..

.

.

.

.

.....

....

.

.

.

.

.

.

..

..

.

..

..

.

......

.

..

.

..

.

.

...

..

.

.

.

.

.

.

....

.........

..

.

.

.

....

..

..

...

....

....

.

.

..

.

..

.

.

.

.

.

....

.

.

....

.

..

...

.....

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

..

.

..

.

...

..

...

.

.

.

.

.

.

.

.

..

...

.

.

.

.

....

...

.

.

..

.

.

.

.

..

.

....

....

.

....

....

.

.

.

.

.

...

......

.....

.

..

..

.

......

......

.

..

..

.

.

...

..

.

.

.

....

..

...

.

..

.......

..

.

..

.

.....

.

..

.

.

..

...

.

.

.

.

...

.

.

.

.

..

.

..

..........

.

.

.

.

.

.

..

.

.

.

.

.

.

...

....

.

.

.

..

..

.

.

.

....

...

.

..

.

...

.....

..

..

....

..

.

.

.

.

.

.

.

.

...

...

.

..

.

......

...

.

..

..

.

..

..

..

..

.

..

.

.

.

...

.

.

..

.

.

.

.

.

..

..

.

.

..

.

...

.

....

.

.

.

.

.....

.

.

.

..

.

..

.

.

..

...

..

.

.

.

..

.

.

.

.

.

.

..

....

.

..

.

.

.

.

.

....

.

...

..

.

...

.

.

.

.

.

.

.

..

...

..

....

..

.

.

...

.....

..

.

.

...

.....

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

..

.

.

.

.

.

....

.........

.

..

.

.

..

.

.

.

.

...

......

.

..

.

..

..

.....

..

.

....

..

.

.

.......

.

..

.

.

.

.

...

.

.

..

..

...

.......

.

..

.

..

.

.

.

.

.

.

.

...

.

.

.

.

..

..

....

.

..

..

..

.

..

.

..

.

.

.

..

.

.

.

.

.

....

..

..

.

.

.

.

.

.

.

.

.

....

.

..

.

...

.

....

..

...

.

.

.

.

....

...

.

.

.

..

.

.

.

..

...

..

.

.

....

...

.

.

.

.

.

.

.

.

..

.

..

.

.

.

..

...

.

..

.

.....

..

.

.

.

.

..

.

...

.

.

..

.

.

...

.

..

.

.

...

.

.

.

.

.

..

.

.

.

.....

..

.

..

.

.

.

.

.

.....

......

..

.

.

.......

.

.

.

.

......

.

.

....

.

...

...

.

..

..

.

...

.

.

.

.

...

...

..

..

......

..

...

..

.

.

.

.

..

.....

.

..

..

....

.

.

.

...

.

.

.

...

.

.

.

.

.

.

.

....

..

..

.

....

.

...

.

.

..

..

..

...

..

.

....

..

0 2000 4000 6000 8000 10000

0

50

100

150

200

250

node number

depth

av
er

ag
e

Δ
tr

ig
g
e
r

Fig. 3. Adaptation plot of a random 3-Sat instance with 350 variables and 1491 clauses

0

5

10

15

20

25
..
.
.

.

.

.

.

.

.

....

.........

..

.

.

.

..

.

.

..

.

......

.......

..

.

..

....

.

..

..

.

..

.

...

.

...

...

..

..

..

.

..

.

.

...

......

..

....

.

.

.

.

.

..

..

...

..

...

..

......

.

..

...

..

..

....

...

.

..

..

..

...

.

.

..

..

.

.....

..

..

....

.....

...

...

..

.......

...

.....

....

....

.

.....

........

.

.......

...

.

..

.

..

..

.

.

.

.

..

.

...

..

.

.....

...

...

....

.....

.

....

....

.

......

.

...

...

.

......

..

...

.

.

...

..

...

....

.

.

....

.

.............

.......

.....

.

..

.................

...............

...........

..

..........

.......

.....

....

....

...............

....

.

.........

...............

......

........

...

....

................

.

...........

........

..

...

..

.

..

............

...

........

......

............

.....

..........

.......

....

.......

.............

...

.

..

...

........

.....

.......

...

...

.............

...

..............

......

.....

...

.

........

....

...........

...........

......

...

.........

........

.

..

.........

.....

...................

..............

.

..

...

.

.

.

.

..

.

.......

.......

........

.....

..

...

...............

...........

........

.....

....

......

...

..

......

......

..

.

.....................................
...........................
..........
........................
.
.
........................
..........
..........................
..
.........
.........................
...
................
.
...
.....................................
................................
............
..
.........
....
.....
.
..........
.
...
.....................
...
........................
.........
.....
........................
.....
..
.....
..........
..........................
..
.....................
..........
.......................
........
...
..
..
........................
.
.
.......
.........
................
.......................................
...........................
........
.............
..
............
.............
..
.
..
...
.....
.
.
.
.
.
.
.

.

.

.

.

.

.

..

....

...

..

..

..

........

..

.....

.

.

.

.

.

.

..

.

.

.

..

.

..

....

..

..

...

..............

..

....

...

.

.....

.......

....

..

.

...

.....

.

..........

...

.....

....

.

.....

...

......

.......

.....

....

.........

...........

......................

......

........

..

.......

...

................

...........................
.
.....
............
...........
..............
.......................
...
.
...
.
....
................
...........................
.............
...
....
.......
...............
.
.....
.
.
.
...
.
............
.
..................
.............
........................
....................
...................
........................
...........
.....
..
...
..
.......
.
...
.
.
..
....

.

.

..........

.

.........

.......

..

...........

..........

..............

.

.........

..

..

...................................
......
.
......
..
.....
.
.......
...........
................
.....
.

.

...............

.......

.

..........

.........

.....

..........

.

...........

.......

............

................

...

..

........

.

.

......

.......

..........

.

.....

........

..............

..

.............

...

.

.

........

.......

......

...

......

...

.................

.............

...........

..

.

....

.......

..

.

....

.

.

.

.

....

....

.

.

.

.

....

......................

.......

...

....

....

.....

...

.

.

........

..

.

.

....

.

.

.

.........

..........

..........

.

........

....

....

.

.....

......

.

.

..

.........

...

.

...

.

............

........

.......................

.........

.........

.....

..........

.....

.

.

.

.....

...

.

..

....

...

...

........

..

.

....

.

..

.

.

...

...

.

.....

.......

............

...

.

...

............

...

...

.................

....

.

..

...

..

.

.

...

....

.

.

.

....

.....

..

..

....

....

..

......

.....

.

..

....

...

..

..

......

..

..

...

.

.

.

....

..

..

.

..........

.............

.............

..

..

.....

..

.

.

...

......

......

......

................

.........

.................

.

..

.......

...

...

..................

.......

...

.

.........

...
..
.
..
..............
.....
...........
.......
....
.
.................
......
..
..
..
.
.......
..
..

..

.

..

...

..

.

..

..

..

........

...

..

..

...

.......

..

.

..

.

...

.

...

.

...

...

..................

..

.....

..

.

..

...

...

......

..

.

.

.

..........

..

..

.

......

...

......

..

.

........

...

...

..............

..

.....

..

..

..

.

......

..

.

....

..

....

....

...

...

.....

....

.....

........

..

...

......

......

......................................
...............
......
.
.................
.......
.
.

..

..........

....

..

....

..........

......

..

.

..

.

..

.

........

......

..

...........

..

...

.....

....

..

...

....

..........

.

.

.

..

.

........

...

.

....

.....

..

..

.

.......

......

..

..

.

.

.

..

....

..

..

..

.

...

.......

....

......

....

.

..........

.

.

.

...

.....

.

.

...

..

.

......

............

......

........

...

.

...

.

....

....

.....

.

...............

.........

.......

...........

..

...

................

...................

...

...

....

.

.........

...........

............

.................

......

........

.

..

.......

...............

.............

...........

...........

.............

............

..........

............

.....

.

.......

......

......

...

.

.....

.......

................

...................

.....

...

..............

..

.....

.......

.....

..

......

..

.......................

...
..
...
..
....................
....
..
..
..............
.........
................
...........
..
.........
...........
............
........
.......
.
...
...
..
..
..
..........
...

.....

....................

..

.....

..

.

.

.

.

......

.............

.....

.........................

....

.........

..

.

.......

.

........

.

.......

..

.

.

..

...........

.......

.......

.................

..........

...

..

........

...

.............

..

.........

.

.

........

.

................

.........

..

.............

....

..

..

.......

...

....

.....

..

..

.....

...

........

....

..

..

.............

....................

........

.............

.................

..

..

.

............

.......

...

...

........

..

.

.

..

........................
....
..
.............
.....

.

.

..

............

.................

.

..............

......

.......

.

.....

........

......

......

.....

........

...

..

....

...

.

......

.......

.

..

........

....

...

...

.......

.......

.

.....

.

....

.

.

.

....

...

..

....

.......

.

.....

.........

......

....

...........

..............

.......

.............

...

..

...........

...........

..........

........

...

..

....

..............

.....

..

..

.

.......

...

...

......

.......

..

.

...

.

.........

.....

..

....

.........................

..

............

..

..

...

.....

...........

...

..

..

...........

........

.........

.....

..

...........

....

......

.......

......

...

..

.....

.

...........

......

.

..

.

...

.....

.....

....

.....

.

.

.

..........

...........

.....

..

.

..

.

..

.............

.

.........

........

...

....

..

.

.............

......

.......

......

......

..

...

......

.....

.....

...

..

..

....

...........

...........

.

..

.

....

..........

.....

...

....

.....................

...

.

..

.

...

.....

..

...

.

..

..

......

.............

..

.........

.....

...

..

.....

..

.

.....

.

.

...

.

.............

.

........

...............

............

.....

.....................................
.................
.................
..............
........
...
............
........
............
..........
...
...
........
...
............
........
.........
...
..
..........
.
.......
......
............
.......
.
......
..
..........
..
...........
..
..........
.....
..
....
.......
...........................
........
..........
........
..
....
.
.
.
..

..

...

..

.

.

.

.

............

........

............

....

...

......................

....

..........

.............

.............................
.................
........
....
............
.................
................
...........
.....................
....
.....
..
.
..
.....
...
.....

..

..............

.

............

....

...

.........

.............

..

.........

.....

.

.

........

............

..............

...............

...........

..............

.......

............

......................

..........

........

.

.............

.................

........

.

..

....

...

.

......

.................

..

........

.

............

........

.........

.

..

....

......

....

......

......

....

........

.....

.........

.

.

.

..

........

.

.............

.

.........

.............

..........

............

.

.....

.........

......

..........

.......

..

..

.........

......

......

....

....

........

......

.......

.

.

.

.

.

...........

...

....

.............

.

....

....

...........

........................
...
..
...
.
..
...
..
..
.....
..
.........
.......
...
.............
......
..........
...............
................
.........
..
......
...................
..............
.........
........
.....
..
.......
............
.........
....
........
............................
......
..................
...........................
.......
..............
.
...
..
..
............
...................
...........
...............
..................
...............
.......
.........................

..............

..........

.....

..

.....

.........

.

.

..............

.....

..........

..

....

......

....

......

.

....

..

.

.

.

.........

.

.

.

..

.....

...........

.....

.......

....

...

...

.

...

.

...

.

.

.......

....

........

..

.

.

..

....

......

..........

.........

..

.

.......

.......

............................
...............
....
....
............
.....
.

.

........

......

.

.

.

.....

...

.

......

..

.......

..

.

.......

.....

............

...............

.....

.....

.........

.............

.......

.............

............

......

....

...

..

...

.

..

..

......

....

.....................

.....

.................

...........

.....

.....

..

...

.

......

...

.

.

.

..

...

.

....

...

...

.....

......

.

......

.......

...

...........

.....

.

..

..........

..............

.................

.........

.....

.

....

...

.

...

...

........

.....

..

....

........

.....

..........

........

......

......

..

.

...

....

..

..

...

..

.

.

...................

.......

....

.

..........

..

...

...

..

.........

..

..

..

....

.

..

..

...

.

.

.

.

.

.

.

...........

..................

.....

...................

...........

....

......

....

....

..

...............

.....................

...........

......

...........

............

...........

...............

.............................
.............
.
....
........
...........
........

....

...

.......

.

.....

...

.

..

..

.......

.

.....

......

....

.......

..

...

.

..

......

.....

....

....

.....

...

.........

..........

..

......

.......

.........

...

.....

..........

...........

...............

...

.....

...

........

..............

..
.

.

.

..............

................

..........

.............................
.................
..............................
...........
..
....................
.......................................
.
................
...
......................................
..
...
.........................
.....
...
....
..
.....................
...............
.
.
...........
.
..
.....................
.
.........
.....

..

0 2000 4000 6000 8000 10000

0

200

400

600

800

1000

1200

node number

depth

av
er

ag
e

Δ
tr

ig
g
e
r

Fig. 4. Adaptation plot of pyhala-braun-unsat-35-4-03.cnf

Effective Incorporation of Double Look-Ahead Procedures 271

For half of the families, the value of Δtrigger tends to be above average at
nodes near the root of the search-tree and / or tends to be below average at
nodes near the leafs (see figure 1 and 4). For the other half of the families the
opposite trend was noticed (see figure 3 and 2).

Recall that for pyhala-braun and quasigroup instances the average value for
Δtrigger was much lower than the optimum based on static heuristics. Figure 4
offers a possible explanation: Notice that nodes near the root use Δtrigger ≈ 1100
while on average nodes use Δtrigger ≈ 100. Adaptation plots for quasigroup
instances showed a similar gap. A low static value for Δtrigger will probably
result in many additional look-aheads at the nodes near the root which could
ruin the overall performance.

6 Conclusions

We presented an adaptive algorithm to control the DoubleLook procedure,
which uses - like the static heuristic - only one magic constant. The algorithm has
been implemented in all look-ahead Sat solvers that use a DoubleLook pro-
cedure. As a result of this modification, all three solvers showed a performance
improvement on a wide selection of benchmarks. On macro level we observed
that for most instances this algorithm approximates the family specific “opti-
mal” static strategy, while on micro level the algorithm adapts to the (reduced)
formula in each node of the search-tree.

References

1. A. Biere, A. Cimatti, E.M. Clarke, Y. Zhu, Symbolic model checking without BDDs.
in Proc. Int. Conf. TACAS, Springer Verlag, LNCS 1579 (1999), 193–207.

2. H. Connamacher, A random constraint satisfaction problem that seems hard for
DPLL. In the Proceedings of SAT 2004.

3. M. Davis, G. Logemann, and D. Loveland, A machine program for theorem proving.
Communications of the ACM 5 (1962), 394–397.

4. O. Dubois and G. Dequen, source code of the kcnfs solver. Available at
http://www.laria.u-picardie.fr/∼dequen/sat/.

5. J.W. Freeman, Improvements to Propositional Satisfiability Search Algorithms.
Ph.D. thesis, University of Pennsylvania, Philadelphia (1995).

6. D. Le Berre and L. Simon, The essentials of the SAT’03 Competition. Springer-
Verlag, LNCS 2919 (2004), 452–467.

7. C.M. Li, A constraint-based approach to narrow search trees for satisfiability. In-
formation processing letters 71 (1999), 75–80.

8. C.M. Li and Anbulagan. Heuristics Based on Unit Propagation for Satisfiability
Problems. In Proc. of Fifteenth IJCAI (1997), 366–371.

9. L. Simon, D. Le Berre, and E. Hirsch, The SAT 2002 competition. Annals of Math-
ematics and Artificial Intelligence (AMAI) 43 (2005), 343–378.

10. L. Simon, Sat’04 competition homepage. http://www.satcompetition.org/2004
11. H. Zhang and M.E. Stickel, Implementing the Davis-Putnam Method. SAT2000

(2000), 309–326.

http://www.laria.u-picardie.fr/~dequen/sat/
http://www.satcompetition.org/2004

Applying Logic Synthesis for Speeding Up SAT

Niklas Een, Alan Mishchenko, and Niklas Sörensson

Cadence Berkeley Labs, Berkeley, USA
EECS Department, University of California, Berkeley, USA

Chalmers University of Technology, Göteborg, Sweden

Abstract. SAT solvers are often challenged with very hard problems
that remain unsolved after hours of CPU time. The research community
meets the challenge in two ways: (1) by improving the SAT solver tech-
nology, for example, perfecting heuristics for variable ordering, and (2)
by inventing new ways of constructing simpler SAT problems, either us-
ing domain specific information during the translation from the original
problem to CNF, or by applying a more universal CNF simplification pro-
cedure after the translation. This paper explores preprocessing of circuit-
based SAT problems using recent advances in logic synthesis. Two fast
logic synthesis techniques are considered: DAG-aware logic minimization
and a novel type of structural technology mapping, which reduces the
size of the CNF derived from the circuit. These techniques are experi-
mentally compared to CNF-based preprocessing. The conclusion is that
the proposed techniques are complementary to CNF-based preprocessing
and speedup SAT solving substantially on industrial examples.

1 Introduction

Many of today’s real-world applications of SAT stem from formal verification,
test-pattern generation, and post-synthesis optimization. In all these cases, the
SAT solver is used as a tool for reasoning on boolean circuits. Traditionally,
instances of SAT are represented on conjunctive normal form (CNF), but the
many practical applications of SAT in the circuit context motivates the specific
study of speeding up SAT solving in this setting.

For tougher SAT problems, applying CNF based transformations as a pre-
processing step [6] has been shown to effectively improve SAT run-times by (1)
minimizing the size of the CNF representation, and (2) removing superfluous
variables. A smaller CNF improves the speed of constraint propagation (BCP),
and reducing the number of variables tend to benefit the SAT solver’s variable
heuristic. In the last decade, advances in logic synthesis has produced powerful
and highly scalable algorithms that perform similar tasks on circuits. In this
paper, two such techniques are applied to SAT.

The first technique, DAG-aware circuit compression, was introduced in [2]
and extended in [11]. In this work, it is shown that a circuit can be minimized
efficiently and effectively by applying a series of local transformations taking
logic sharing into account. Minimizing the number of nodes in a circuit tends
to reduce the size of the derived CNFs that are passed to the SAT engine. The

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 272–286, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Applying Logic Synthesis for Speeding Up SAT 273

process is similar to CNF preprocessing where a smaller representation is also
achieved through a series of local rewrites.

The second technique applied in this paper is technology mapping for lookup-
table (LUT) based FPGAs. Technology mapping is the task of partitioning a
circuit graph into cells with k inputs and one output that fits the LUTs of
the FPGA hardware, while using as little area as possible. Many of the signals
present in the unmapped circuit will be hidden inside the LUTs. In this man-
ner, the procedure can be used to decide for which signals variables should be
introduced when deriving a CNF, leading to CNF encodings with even fewer
variables and clauses than existing techniques [14,15,9].

The purpose of this paper is to draw attention to the applicability of these
two techniques in the context of SAT solving. The paper makes a two-fold con-
tribution: (1) it proposes a novel CNF generation based on technology mapping,
and (2) it experimenally demonstrated the practicality of the logic synthesis
techniques for speeding up SAT.

2 Preliminaries

A combinational boolean network is a directed acyclic graph (DAG) with nodes
corresponding to logic gates and directed edges corresponding to wires connect-
ing the gates. Incoming edges of a node are called fanins and outgoing edges
are called fanouts. The primary inputs (PIs) of the network are nodes without
fanins. The primary outputs (POs) are nodes without fanouts. The PIs and POs
defines the external connections of the network.

A special case of a boolean network is the and-inverter graph (AIG), contain-
ing four node types: PIs, POs, two-input AND-nodes, and the constant TRUE
modelled as a node with one output and no inputs. Inverters are represented
as attributes on the edges, dividing them into unsigned edges and signed (or
complemented) edges. An AIG is said to be reduced and constant-free if (1) all
the fanouts of the constant TRUE, if any, feeds into POs; and (2) no AND-node
has both of its fanins point to the same node. Furthermore, an AIG is said to
be structurally-hashed if no two AND-nodes have the same two fanin edges in-
cluding the sign. By decomposing k-input functions into two-input ANDs and
inverters, any logic network can be reduced to an AIG implementing the same
boolean function of the POs in terms of the PIs.

A cut C of node n is a set of nodes of the AIG, called leaves, such that any
path from a PI to n passes through at least one leaf. A trivial cut of a node is
the cut composed of the node itself. A cut is k-feasible if the number of nodes in
it does not exceed k. A cut C is subsumed by C′ of the same node if C′ ⊂ C.

3 Cut Enumeration

Here we review the standard procedure for enumerating all k-feasible cuts of an
AIG. Let Δ1 and Δ2 be two sets of cuts, and the merge operator ⊗k be defined
as follows:

274 N. Een, A. Mishchenko, and N. Sörensson

Δ1 ⊗k Δ2 = { C1 ∪ C2 | C1 ∈ Δ1, C2 ∈ Δ2, |C1 ∪ C2| ≤ k }

Further, let n1, n2 be the first and second fanin of node n, and let Φ(n) denote
all k-feasible cuts of n, recursively computed as follows:

Φ(n) =

⎧
⎨

⎩

Φ(n1) , n ∈ PO
{{n}} , n ∈ PI
{{n}} ∪ Φ(n1)⊗k Φ(n2) , n ∈ AND

This formula gives a simple procedure for computing all k-feasible cuts in a single
topological pass from the PIs to the POs. Informally, the cut set of an AND
node is the trivial cut plus the pair-wise unions of cuts belonging to the fanins,
excluding those cuts whose size exceeds k. Reconvergent paths in the AIG lead
to generating subsumed cuts, which may be filtered out for most applications.

In practice, all cuts can be computed for k ≤ 4. A partial enumeration, when
working with larger k, can be achieved by introducing an order on the cuts and
keeping only the L best cuts at each node. Formally: substitute Φ for ΦL where
ΦL(n) is defined as the trivial cut plus the L best cuts of Δ1 ⊗k Δ2.

4 DAG-Aware Minimization

The concept of DAG-aware minimization was introduced by Bjesse et. al. in [2],
and further developed by Mishchenko et. al. in [11]. The method works by making
a series of local modifications to the AIG, called rewrites, such that each rewrite
reduces the total number of AIG nodes. To accurately compute the effect of a
rewrite on the total number of nodes, logic sharing is taken into account. Two
equally-sized implementations of a logical function may have different impact on
the total node count if one of them contains a subgraph that is already present
in the AIG (see Figure 1).

In [11] the authors propose to limit the rewrites to 4-input functions. There
exists 216 = 65536 such functions. By normalizing the order and polarity of input

s ? x : y

&

& &

x s y

&

s y

~~>

s ? x : y

&

& &

x s y

Fig. 1. Given a netlist containing the two fragments on the left, one node can be saved
by rewriting the MUX “s ? x : y” to the form on the right, reusing the already present
node “¬s ∧ ¬y”

Applying Logic Synthesis for Speeding Up SAT 275

and output variables, these functions are divided into 222 equivalence classes.1

Good AIG structures, or candidate implementations, for these 222 classes can
be precomputed and stored in a table. The algorithm of [11] is reviewed below:

DAG-Aware Minimization. Perform a 4-feasible cut enumeration, as
described in the previous section, proceeding topologically from the PIs
to the POs. During the cut enumeration, after computing the cuts for
the current node n, try to improve its implementation as follows: For
every cut C of n, let f be the function of n in terms of the leaves of
C. Consider all the candidate implementations of f and choose the one
that reduces the total number of AIG nodes the most. If no reduction is
possible, leave the AIG unchanged; otherwise recompute the cuts for the
new implementation of node n and continue the topological traversal.

Several components are necessary to implement this procedure:

– A cut enumeration procedure, as described in the previous section.
– A bottom-up topological iterator over the AIG nodes that can handle

rewrites during the iteration.
– An incremental procedure for structural hashing. In order to efficiently search

for the best substitution candidate, the AIG must be kept structurally-
hashed, reduced and constant-free. After a rewrite, these properties may
be violated and must be restored efficiently.

– A pre-computed table of good implementations for 4-input functions. We pro-
pose to enumerate all structurally-hashed, reduced and constant-free AIGs
with 7 nodes or less, discarding candidates not meeting the following prop-
erty: For each node n, there should be no node m in the subgraph rooted in
n, such that replacing n with m leads to the same boolean function. Example:
“(a∧ b)∧ (a∧ c)” would be discarded since replacing the node “(a∧ b)” with
its subnode “b” does not change the function.

– An efficient procedure to evaluate the effect of replacing the current imple-
mentation of a node with a candidate implementation.

The implementation of the above components is straight-forward, albeit tedious.
We observe that in principle, the topological iterator can be modified to revisit
nodes as their fanouts change. When this happens, new opportunities for DAG-
aware minimization may be exposed. Modifying the iterator in this way yields
an idempotent procedure, meaning that nothing will change if it is run a second
time. In practice, we found it hard to make such a procedure efficient.

A simpler and more useful modification to the above procedure is to run it
several times with a perturbation phase in between. By changing the structure
of the AIG, without increasing its size, new cuts can conservatively be intro-
duced with the potential of revealing further node saving rewrites. One way of
perturbing the AIG structure is to visit all multi-input conjunctions and modify
their decomposition into two-input And-nodes. Another way is to perform the
above minimization algorithm, but allow for zero-gain rewrites.
1 Often referred to as the NPN-classes, for Negation (of inputs), Permutation (of

inputs), Negation (of the output).

276 N. Een, A. Mishchenko, and N. Sörensson

5 CNF Through the Tseitin Transformation

Many applications rely on a some version of the Tseitin transformation [14]
for producing CNFs from circuits. For completeness, we state the exact version
compared against in our experiments. When the transformation is applied to
AIGs, two improvements are often used: (1) multi-input Ands are recognized in
the AIG structure and translated into clauses as one gate, and (2) if-then-else
expressions (MUXes) are detected in the AIG through simple pattern matching
and given a specialized CNF translation. The clauses generated for these two
cases are:

x ↔ And(a1, a2, . . ., an). Clause representation:

a1 ∧ a2 ∧ . . . ∧ an → x
a1 → x, a2 → x, . . . , an → x

x ↔ ITE(s,t,f). If-then-else with selector s, true-branch t, false-branch f.
Clause representation:

s ∧ t → x s ∧ f → x (red) t ∧ f → x

s ∧ t → x s ∧ f → x (red) t ∧ f → x

The two clauses labeled “red” are redundant, but including them increases the
strength of unit propagation. It should be noted that a two-input Xor is handled
as a special case of a MUX with t and f pointing to the same node in opposite
polarity. This results in representing each Xor with four three-literal clauses
(the redundant clauses are trivially satisfied). In the experiments presented in
section 7, the following precise translation was used:

– The roots are defined as (1) And-nodes with multiple fanouts; (2) And-
nodes with a single fanout that is either complemented or leads to a PO; (3)
And-nodes that, together with its two fanin nodes, define an if-then-else.

– If a root node defines an if-then-else, the above translation with 6 clauses,
including redundant clauses, is used.

– The remaining root nodes are encoded as multi-input Ands. The scope of
the conjunction rooted at n is computed as follows: Let S be the set of the
two fanins of n. While S contains a non-root node, repeatedly replace that
node by its two fanins. The above clause translation for multi-input Ands
is then used, unless the conjunction collected in this manner contains both
x and ¬x, in which case, a unit clause coding for x ↔ False is used.

– Unlike some other work [7,9], there is no special treatment of nodes that
occur only positively or negatively.

6 CNF Through Technology Mapping

Technology mapping is the process of expressing an AIG in the form represen-
tative of an implementation technology, such as standard cells or FPGAs. In

Applying Logic Synthesis for Speeding Up SAT 277

particular, lookup-table (LUT) mapping for FPGAs consists in grouping And-
nodes of the AIG into logic nodes with no more than k inputs, each of which
can be implemented by a single LUT.

Normally, technology mapping procedures optimize the area of the mapped
circuit under delay constraints. Optimal delay mapping can be achieved effi-
ciently [3], but is not desirable for SAT where size matters more than logic
depth. Therefore we propose to map for area only, in such a way that a small
CNF can be derived from the mapped circuit. In the next subsections, we review
an improved algorithm for structural technology mapping [12].

6.1 Definitions

A mapping M of an AIG is a partial function that takes a non-PI (i.e. And or
PO) node to a k-feasible non-trivial cut of that node. Nodes for which mapping
M is defined are called active (or mapped), the remaining nodes are called
inactive (or unmapped). A proper mapping of an AIG meets the following three
criteria: (1) all POs are active, (2) if node n is active, every leaf of cut M(n) is
active, and (3) for every active And-node m, there is at least one active node
n such that m is a leaf of cut M(n). The trivial mapping (or mapping induced
by the AIG) is the proper mapping which takes every non-PI node to the cut
composed of its immediate fanins.

An ordered cut-set ΦL is a total function that takes a non-PI node to a non-
empty ordered sequence of L or less k-feasible cuts. In the next section, M and
ΦL as will be viewed as updateable objects and treated imperatively with two
operations: For an inactive node n, procedure activate(M, ΦL, n) sets M(n) to
the first cut in the sequence ΦL(n), and then recursively activates inactive leaves
of M(n). Similarly, for an active node n, procedure inactivate(M, n), makes node
n inactive, and then recursively inactivates any leaf of the former cut M(n) that
is violating condition (3) of a proper mapping.

Furthermore, nFanouts(M, n) denotes the number of fanouts of n in the sub-
graph induced by the mapping. The average fanout of a cut C is the sum of the
number of fanouts of its leaves, divided by the number of leaves. Finally, the
maximally fanout-free cone (MFFC) of node n, denoted mffc(M, n), is the set
of nodes used exclusively by n. More formally, a node m is part of n’s MFFC iff
every path in the current mapping M from m to a PO passes through n. For an
inactive node, mffc(M, ΦL, n) is defined as the nodes that would belong to the
MFFC of node n if it was first activated.

6.2 A Single Mapping Phase

Technology mapping performs a sequence of refinement phases, each updating
the current mapping M in an attempt to reduce the total cost. The cost of a
single cut, cost(C), is given as a parameter to the refinement procedure. The
total cost is defined as sum of cost(M(nact)) over all active nodes nact .

Let M and ΦL be the proper mapping and the ordered cut-set from the
previous phase. A refinement is performed by a bottom-up topological traversal
of the AIG, modifying M and ΦL for each And-node n as follows:

278 N. Een, A. Mishchenko, and N. Sörensson

– All k-feasible cuts of node n (with fanins n1 and n2) are computed, given
the sets of cuts for the children: Δ = {{n}} ∪ ΦL(n1)⊗k ΦL(n2)

– If the first element of ΦL(n) is not in Δ, it is added. This way, the previously
best cut is always eligible for selection in the current phase, which is a
sufficient condition to ensure global monotonicity for certain cost functions.

– ΦL(n) is set to be the L best cuts from Δ, where smaller cost, higher average
fanout, and smaller cut size is better. The best element is put first.

– If n is active in the current mapping M, and if the first cut of ΦL(n) has
changed, the mapping is updated to reflect the change by calling inacti-
vate(M, n) followed by calling activate(M, ΦL, n). After this, M is guaran-
teed to be a proper mapping.

6.3 The Cost of Cuts

This subsection defines two complementary heuristic cost function for cuts:

Area Flow. This heuristic estimates the global cost of selecting a cut C by
recursively approximating the cost of other cuts that have to be introduced
in order to accommodate cut C:

costAF (C) = area(C) +
∑

n∈C

costAF (first(ΦL(n)))
max(1,nFanouts (M, n))

Exact Local Area. For nodes currently not mapped, this heuristic computes
the total cost-increase incurred by activating n with cut C. For mapped
nodes, the computations is the same but n is first deactivated. Formally:

mffc(C) =
⋃

n∈C

mffc(M, ΦL, n)

costELA(C) =
∑

n∈mffc(C)

area(first(ΦL(n))

In standard FPGA mapping, each cut is given an area of 1 because it takes one
LUT to represent it. A small but important adjustment for CNF generation is
to define area in terms of the number of clauses introduced by that cut. Doing
so affects both the area flow and the exact local area heuristic, making them
prefer cuts with a small representation.

The boolean function of a cut is translated into clauses by deriving its irredun-
dant sum-of-products (ISOP) using Minato-Morreale’s algorithm [10] (reviewed
in Figure 2). ISOPs are computed for both f and ¬f to generate clauses for
both sides of the bi-implication t ↔ f(x1, . . . , xk). For the sizes of k used
in the experiments, boolean functions are efficiently represented using truth-
tables. In practice, it is useful to impose a bound on the number of products
generated and abort the procedure if it is exceeded, giving the cut an infinitly
high cost.

Applying Logic Synthesis for Speeding Up SAT 279

cover isop(boolfunc L, boolfunc U)
{

if (L == False) return ∅
if (U == True) return {∅}
x = topVariable(L, U)
(L0, L1) = cofactors(L, x)
(U0, U1) = cofactors(U , x)

c0 = isop(L0 ∧ ¬U1, U0)
c1 = isop(L1 ∧ ¬U0, U1)
Lnew = (L0 ∧ ¬func(c0)) ∨ (L1 ∧ ¬func(c1))
c∗ = isop(Lnew , U0 ∧ U1)

return ({x} × c0) ∪ ({¬x} × c1) ∪ c∗
}

Fig. 2. Irredundant sum-of-product generation. A cover (= SOP = DNF) is a set,
representing a disjunction, of cubes (= product = conjunction of literals). A cover c
induces a boolean function func(c). An irredundant SOP is a cover c where no cube
can be removed without changing func(c). In the code, boolfunc denotes a boolean
function of a fixed number of variables x1, x2, . . . , xn (in our case, the width of a LUT).
L and U denotes the lower and upper bound on the cover to be returned. At top-level,
the procedure is called with L = U . Furthermore, topVariable(L, U) selects the first
variable, from a fixed variable order, which L or U depends on. Finally, cofactors(F ,
x) returns the pair (F [x = 0], F [x = 1]).

6.4 The Complete Mapping Procedure

Depending on the time budget, technology mapping may involve different num-
ber of refinement passes. For SAT, only a very few passes seem to pay off. In
our experiments, the following two passes were used, starting from the trivial
mapping induced by the AIG:

– An initial pass, using the area-flow heuristic, costAF , which captures the
global characteristics of the AIG.

– A final pass with the exact local area heuristic, costELA. From the definition
of local area, this pass cannot increase the total cost of the mapping.

Finally, there is a trade-off between the quality of the result and the speed of the
mapper, controlled by the cut size k and the maximum number of cuts stored at
each node L. To limit the scope of the experimental evaluation, these parameters
were fixed to k = 8 and L = 5 for all benchmarks. From a limited testing, these
values seemed to be a good trade-off. It is likely that better results could be
achieved by setting the parameters in a problem-dependent fashion.

7 Experimental Results

To measure the effect of the proposed CNF reduction methods, 30 hard SAT
problems represented as AIGs were collected from three different sources. The

280 N. Een, A. Mishchenko, and N. Sörensson

first suite, “Cadence BMC”, consists of internal Cadence verification problems,
each of which took more than one minute to solve using SMV’s BMC engine.
Each of the selected problem contains a bug and has been unrolled upto the
length k, which reveals this bug (yielding a satisfiable instance) as well as upto
length k − 1 (yielding an unsatisfiable instance).

The second suite, “IBM BMC”, is created from publically available IBM BMC
problems [16]. Again, problems containing a bug were selected and unrolled to
length k and k − 1. Problems that MINISAT could not solve in 60 minutes were
removed, as were problems solved in under 5 seconds.

Finally, the third suite, “SAT Race”, was derived from problems of SAT-Race
2006. Armin Biere’s tool “cnf2aig”, part of the AIGER package [1], was applied
to convert the CNFs to AIGs. Among the problems that could be completely
converted to AIGs, the “manol-pipe” class were the richest source. As before,
very hard and very easy problems were not considered.

For the experiments, we used the publically available synthesis and verification
tool ABC [8] and the SAT solver MINISAT2. The exact version of ABC used
in these experiments, as well as other information useful for reproducing the
experimental results presented in this paper, can be found at [5].

Clause Reduction. In Table 1 we compare the difference between generat-
ing CNFs using only the Tseitin encoding (section 5) and generating CNFs by
applying different combinations of the presented techniques, as well as CNF pre-
processing [6] (as implemented in MINISAT2). Reductions are measured against
the Tseitin encoding. For example, a reduction of 62% means that, on average,
the transformed problem contains 0.38 times the original number of clauses.

We see a consistent reduction in the CNF size, especially in the case where
the CNF was derived using technology mapping. The preprocessing scales well,
although its runtime, in our current implementation, is not negligible.

For space reasons, we do not present the total number of literals. However, we
note that: (1) the speed of BCP depends on the number of clauses, not literals;
(2) deriving CNFs from technology mapping produces clauses of at most size
k + 1, which is 9 literals in our case; and (3) in [6] it was shown that CNF
preprocessing in general does not increase the number of literals significantly.

SAT Runtime. In Table 2 we compare the SAT runtimes of the differently
preprocessed problems. Runtimes do not include preprocessing times. At this
stage, when the preprocessing has not been fully optimized for the SAT context,
it is arguably more interesting to see the potential speedup. If the preprocessing
is too slow, its application can be controlled by modifying one of the parameters
(such as the number or width of cuts computed), or preprocessing may be delayed
until plain SAT solving has been tried for some time without solving the problem.
Furthermore, for BMC problems, the techniques can be applied before unrolling
the circuit, which is significantly faster (see Incremental BMC below).

Speedup is given both as a total speedup (the sum total of all SAT runtimes)
and as arithmetic and harmonic average of the individual speedups. For BMC,
we see a clear gain in the proposed methods, most notably for the Cadence

Applying Logic Synthesis for Speeding Up SAT 281

BMC problems where a total speedup of 6.9x was achieved not using SATELITE-
style preprocessing, and 5.3x with SATELITE-style preprocessing (for a total of
22.3x speedup compared to plain SAT on Tseitin). However, the problems from
the SAT-Race benchmark exhibit a different behavior resulting in an increased
runtime. It is hard to explain this behavior without knowing the details of the
benchmarks. For example, equivalence checking problems are easier to solve if
the equivalent points in the modified and golden circuit are kept. The proposed
methods may remove such pairs, making the problems harder for the SAT solver.

CNF Generation based on Technology Mapping. Here we measure the
effect of using the number of CNF clauses as the size estimator of a LUT, rather
than a unit area as in standard technology mapping. In both cases, we map using
LUTs of size 8, keeping the 5 best cuts at each node during cut enumeration.
The results are presented in Table 5. As expected, the proposed technique lead
to fewer clauses but more variables. In these experiments, the clause reduction
almost consistently resulted in shorter runtimes of the SAT solver.

Incremental BMC. An alternative and cheaper use of the proposed tech-
niques in the context of BMC, is to minimize the AIG before unrolling. This
prevents simplification across different time frames, but is much faster (in our
benchmarks, the runtime was negligible). The clause reduction and the SAT
runtime using DAG-aware minimization are given in Table 4. In this particu-
lar experiment, ABC was not used, but an in-house Cadence implementation of
DAG-aware minimization and incremental BMC. Ideally, we would like to test
the CNF generation based on technology mapping as well, but this is currently
not available in the Cadence tool. For licence reasons, IBM benchmarks could
not be used in this experiment. Instead, 5 problems from the TIP-suite [1] were
used, but they suffer from being too easy to solve.

8 Conclusions

The paper explores logic synthesis as a way to speedup the solving of circuit-
based SAT problems. Two logic synthesis techniques are considered and ex-
perimentally evaluated. The first technique applies recent work on DAG-aware
circuit compression to preprocess a circuit before converting it to CNF. In spirit,
the approach is similar to [4]. The second technique directly produces a compact
CNF through a novel adaptation of area-oriented technology mapping, measur-
ing area in terms of CNF clauses.

Experimental results on several sets of benchmarks have shown that the pro-
posed techniques tend to substantially reduce the runtime of SAT solving. The
net result of applying both techniques is a 5x speedup in solving for hard indus-
trial problems. At the same time, some slow-downs were observed on benchmarks
from the previous year’s SAT Race. This indicates that more work is needed for
understanding the interaction between the circuit structure and the heuristics
of a modern SAT-solver.

282 N. Een, A. Mishchenko, and N. Sörensson

Acknowledgements
The authors acknowledge helpful discussions with Satrajit Chatterjee on tech-
nology mapping and, in particular, his suggestion to use the average number of
fanins’ fanouts as a tie-breaking heuristic in sorting cuts.

Table 1. CNF generation with different preprocessing. “(orig)” denotes the original
Tseitin encoding; “D” DAG-Aware minimization; “T” CNF generation through Tech-
nology Mapping; “S” SATELITE style CNF preprocessing. On the left, the number of
clauses in the CNF formulation is given, in thousands. On the right, the runtimes of
applied preprocessing are summed up. No column for the time of generating CNFs
through Tseitin encoding is given, as they are all less than a second. The “Cdn” prob-
lems are internal Cadence BMC problems; the “ibm” problems are IBM BMC problems
from [16]; the remaining ten problems are the “manol-pipe” problems from SAT-Race
2006 [13] back-converted by “cnf2aig” into the AIG form.

Clause Reduction (k clauses) Preprocessing Time (sec)
Problem (orig) S D DS T TS DT DTS S D DS T TS DT DTS

Cdn1-70u 160 113 69 43 54 41 36 29 1 6 7 14 15 11 12
Cdn1-71s 166 117 71 44 55 43 37 30 1 6 6 14 15 12 12
Cdn2-154u 682 452 467 310 312 257 282 254 6 31 35 48 51 66 68
Cdn2-155s 693 459 475 316 318 262 287 259 7 32 36 49 52 67 69
Cdn3.1-18u 1563 813 952 511 905 529 506 306 12 91 99 151 159 189 193
Cdn3.1-19s 1686 898 1028 559 977 593 547 336 12 98 107 162 170 208 212
Cdn3.2-19u 1684 899 1027 561 977 578 547 337 12 98 106 163 171 206 210
Cdn3.2-20s 1807 979 1102 611 1049 612 588 368 13 104 114 175 184 219 224
Cdn3.3-19u 1686 897 1027 560 977 578 547 338 12 100 109 163 171 204 208
Cdn3.3-20s 1809 974 1103 611 1049 647 588 368 14 104 113 174 183 224 229
ibm18-28u 151 95 72 55 67 54 50 48 1 5 6 11 11 11 12
ibm18-29s 158 99 75 57 70 56 53 50 1 5 6 11 12 12 12
ibm20-43u 253 156 127 97 120 99 89 85 2 10 11 19 20 20 21
ibm20-44s 259 161 131 100 123 101 91 88 2 10 11 19 20 21 21
ibm22-51u 415 269 211 160 201 174 149 143 4 16 17 31 33 33 34
ibm22-52s 425 275 216 164 205 178 153 147 4 16 18 32 33 34 34
ibm23-35u 231 147 116 86 100 85 80 76 2 9 9 17 18 18 19
ibm23-36s 239 152 120 89 103 89 83 78 2 9 10 17 18 19 19
ibm29-25u 53 35 28 21 22 20 18 17 0 2 2 4 4 5 5
ibm29-26s 55 36 29 22 24 21 19 18 0 2 3 5 5 5 5
c10id-s 293 273 280 258 177 159 167 151 2 20 21 31 33 46 48
c10nidw-s 643 593 612 563 416 380 394 363 4 47 52 77 84 119 126
c6nidw-i 154 142 147 134 97 89 93 87 1 10 11 18 19 26 27
c7b 41 36 39 33 27 26 26 25 0 3 3 5 6 7 8
c7b-i 40 36 38 33 27 26 26 25 0 3 4 5 5 7 8
c9 23 20 20 17 15 14 13 12 0 2 2 3 3 4 4
c9nidw-s 535 489 507 465 340 312 326 300 4 39 42 66 71 96 101
g10b 128 116 127 111 87 82 83 76 1 9 10 15 16 23 24
g10id 258 240 254 234 161 147 156 143 2 20 21 30 32 47 49
g7nidw 119 110 118 107 78 72 75 70 1 8 8 13 14 20 21

Avg. red. – 29% 32% 47% 46% 56% 57% 62%

Applying Logic Synthesis for Speeding Up SAT 283

Table 2. SAT runtime with different preprocessing. “(orig)” denotes the original
Tseitin encoding; “D” DAG-Aware minimization; “T” CNF generation through Tech-
nology Mapping; “S” SATELITE style CNF preprocessing. Given times do not include
preprocessing, only SAT runtimes. Speedups are relative to the “(orig)” column.

SAT Runtime (sec) – Cadence BMC
Problem (orig) S D DS T TS DT DTS

Cdn1-70u 21.9 12.3 3.6 3.1 2.5 4.1 1.2 1.3
Cdn1-71s 15.2 8.8 7.7 3.9 2.1 3.1 4.0 2.7
Cdn2-154u 116.4 48.3 41.1 37.7 11.6 34.4 15.6 9.3
Cdn2-155s 101.8 22.9 12.9 16.2 18.2 50.6 13.4 6.9
Cdn3.1-18u 1516.0 139.4 361.9 119.4 196.3 78.8 78.8 39.0
Cdn3.1-19s 1788.2 276.7 535.0 154.8 317.8 137.1 131.9 42.5
Cdn3.2-19u 403.8 214.4 239.8 169.7 140.9 73.7 114.8 78.1
Cdn3.2-20s 3066.1 893.4 1002.9 353.2 376.2 313.5 687.5 96.5
Cdn3.3-19u 316.1 225.6 133.9 104.7 107.9 107.6 53.2 55.0
Cdn3.3-20s 2305.4 456.4 863.1 385.8 507.0 236.9 307.2 101.2

Total speedup: 4.2x 3.0x 7.2x 5.7x 9.3x 6.9x 22.3x
Arithmetic average speedup: 3.9x 3.6x 6.5x 6.3x 7.6x 9.2x 19.7x
Harmonic average speedup: 2.7x 2.9x 4.8x 5.3x 4.9x 6.6x 11.5x

SAT Runtime (sec) – IBM BMC
Problem (orig) S D DS T TS DT DTS

ibm18-28u 83.7 82.6 39.2 41.9 45.0 54.2 23.2 18.5
ibm18-29s 93.6 47.6 46.8 25.1 36.9 23.5 25.9 20.9
ibm20-43u 805.5 890.1 402.3 488.0 540.3 283.6 219.9 215.1
ibm20-44s 1260.2 278.4 305.6 83.8 277.2 422.2 265.7 303.6
ibm22-51u 361.8 194.6 109.2 88.6 145.8 170.8 67.0 82.5
ibm22-52s 408.4 489.0 148.3 135.7 187.2 177.9 120.5 91.3
ibm23-35u 540.3 365.9 264.2 241.5 260.1 220.2 181.4 130.7
ibm23-36s 856.2 743.4 527.9 356.8 436.2 585.7 144.7 238.1
ibm29-25u 329.7 375.6 39.0 29.4 42.9 56.6 28.5 11.4
ibm29-26s 71.3 190.5 41.7 20.9 71.5 31.5 28.0 25.4

Total speedup: 1.3x 2.5x 3.2x 2.4x 2.4x 4.4x 4.2x
Arithmetic average speedup: 1.5x 3.0x 4.9x 2.8x 2.8x 4.7x 6.5x
Harmonic average speedup: 1.0x 2.4x 3.1x 2.1x 2.4x 4.0x 4.3x

284 N. Een, A. Mishchenko, and N. Sörensson

Table 3. SAT runtime with different preprocessing (cont. from Table 2)

SAT Runtime (sec) – SAT Race
Problem (orig) S D DS T TS DT DTS

c10id-s 26.7 5.1 25.1 23.6 50.6 25.2 49.8 14.7
c10nidw-s 710.5 624.7 700.3 880.4 383.6 698.1 212.7 856.6
c6nidw-i 414.4 267.1 734.7 412.5 244.5 209.7 540.1 710.3
c7b 29.4 167.2 76.3 58.4 34.6 43.9 63.9 435.5
c7b-i 101.4 54.2 68.1 52.0 49.5 93.2 293.4 154.5
c9 10.8 51.2 11.4 32.8 11.8 21.0 44.1 83.1
c9nidw-s 122.5 625.2 246.9 864.8 287.2 446.7 952.6 285.2
g10b 385.3 388.8 446.0 183.6 106.5 225.6 291.2 182.5
g10id 736.0 350.7 524.0 723.9 98.3 92.0 190.6 188.4
g7nidw 119.4 24.8 78.3 67.3 13.5 17.2 63.6 37.8

Total speedup: 1.0x 0.9x 0.8x 2.1x 1.4x 1.0x 0.9x
Arithmetic average speedup: 1.8x 1.0x 1.1x 2.8x 2.3x 1.3x 1.4x
Harmonic average speedup: 0.5x 0.8x 0.6x 1.2x 0.9x 0.5x 0.3x

Table 4. Incremental BMC on original and minimized AIG. The above problems all
contain bugs. Runtimes are given for performing incremental BMC upto the shortest
counter example. In the columns to the right of the arrows, the design has been min-
imized by DAG-aware rewriting before unrolling it. The node count is the number of
Ands in the design. Note that in this scheme, there can be no cross-timeframe simpli-
fications. The experiment confirms the claim in [2] of the applicability of DAG-aware
circuit comparession to formal verification. The original paper only listed compression
ratios and did not include runtimes.

Nodes before and BMC runtimes before
Problem after minimization and after minimization

Cdn1 3,527 → 949 37.8 s → 9.6 s
Cdn2 7,918 → 3,126 17.5 s → 0.8 s
Cdn3.1 84,718 → 28,637 607.1 s → 275.3 s
Cdn3.3 84,698 → 28,611 >1 h → 1823.7 s
Cdn4 2,936 → 1,538 >1 h → >1 h

nusmv:tcas5 2,661 → 1,975 9.11 s → 2.27 s
nusmv:tcas6 2,656 → 1,965 4.12 s → 0.67 s
texas.parsesys1 11,860 → 939 0.64 s → 0.03 s
texas.two-proc2 791 → 335 0.23 s → 0.01 s
vis.eisenberg 720 → 306 1.63 s → 2.01 s

Applying Logic Synthesis for Speeding Up SAT 285

Table 5. Comparing CNF generation through standard technology mapping and tech-
nology mapping with the cut cost function adapted for SAT. In the adapted CNF gener-
ation based on technology mapping (righthand side of arrows), the area of a LUT
is defined as the number of clauses needed to represent its boolean function. In the
standard technology mapping (lefthand side of arrows), each LUT has unit area
“1”. In both cases, the mapped design is translated to CNF by the method described
in section 6.4, which introduces one variable for each LUT in the mapping. The stan-
dard technology mapping minimizes the number of LUTs, and hence will have a lower
number of introduced variables. From the table it is clear that using the number of
clauses as the area of a LUT gives significantly fewer clauses, and also reduces SAT
runtimes.

Technology Mapping for CNF
Problem #clauses #vars SAT-time

Cdn1-70u 62 k → 54 k 12 k → 15 k 6.6 s → 4.1 s
Cdn1-71s 64 k → 55 k 13 k → 15 k 6.6 s → 3.1 s
Cdn2-154u 327 k → 312 k 58 k → 77 k 23.3 s → 34.4 s
Cdn2-155s 333 k → 318 k 58 k → 78 k 21.4 s → 50.6 s
Cdn3.1-18u 1990 k → 905 k 145 k → 248 k 125.9 s → 78.8 s
Cdn3.1-19s 2147 k → 977 k 156 k → 267 k 161.2 s → 137.1 s
Cdn3.2-19u 2146 k → 977 k 156 k → 266 k 189.9 s → 73.7 s
Cdn3.2-20s 2302 k → 1049 k 167 k → 285 k 501.6 s → 313.5 s
Cdn3.3-19u 2147 k → 977 k 156 k → 267 k 136.4 s → 107.6 s
Cdn3.3-20s 2302 k → 1049 k 167 k → 285 k 311.7 s → 236.9 s

References

1. A. Biere. AIGER (AIGER is a format, library and set of utilities for And-Inverter
Graphs (AIGs)). http://fmv.jku.at/aiger/.

2. P. Bjesse and A. Boralv. DAG-Aware Circuit Compression For Formal
Verification. In Proc. ICCAD’04, 2004.

3. D. Chen and J. Cong. DAOmap: A Depth-Optimal Area Optimization
Mapping Algorithm for FPGA Designs. In ICCAD, pages 752–759, 2004.

4. R. Drechsler. Using Synthesis Techniques in SAT Solvers. Technical Report,
Intitute of Computer Schience, Unversity of Bremen, 28359 Bremen, Germany,
2004.

5. N. Een. http://www.cs.chalmers.se/˜een/SAT-2007.
6. N. Een and A. Biere. Effective Preprocessing in SAT through Variable

and Clause Elimination. In Proc. of Theory and Applications of Satisfiability
Testing, 8th International Conference (SAT’2005), volume 3569 of LNCS, 2005.

7. N. Een and N. Sörensson. Translating Pseudo-Boolean Constraints into
SAT. In Journal on Satisfiability, Boolean Modelling and Computation (JSAT),
volume 2 of IOS Press, 2006.

8. B. L. S. Group. ABC: A System for Sequential Synthesis and Verification.
http://www.eecs.berkeley.edu/˜alanmi/abc/.

9. P. Jackson and D. Sheridan. Clause Form Conversions for Boolean Circuits.
In Theory and Appl. of Sat. Testing, 7th Int. Conf. (SAT’04), volume 3542 of
LNCS, Springer, 2004.

286 N. Een, A. Mishchenko, and N. Sörensson

10. S. Minato. Fast Generation of Irredundant Sum-Of-Products Forms from
Binary Decision Diagrams. In Proc. SASIMI’92.

11. A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-aware AIG rewriting: A
fresh look at combinational logic synthesis. In Proc. DAC’06, pages 532–536,
2006.

12. A. Mishchenko, S. Chatterjee, and R. Brayton. Improvements to Technology
Mapping for LUT-based FPGAs. volume 26:2, pages 240–253, February 2007.

13. C. Sinz. SAT-Race 2006 Benchmark Set. http://fmv.jku.at/sat-race-2006/.
14. G. Tseitin. On the complexity of derivation in propositional calculus.

Studies in Constr. Math. and Math. Logic, 1968.
15. M. N. Velev. Efficient Translation of Boolean Formulas to CNF in Formal

Verification of Microprocessors. Proc. of Conf. on Asia South Pacific Design
Aut. (ASP-DAC), 2004.

16. E. Zarpas. Benchmarking SAT Solvers for Bounded Model Checking. In
Proc. SAT’05, number 3569 in LNCS. Springer-Verlag, 2005.

Towards a Better Understanding of the

Functionality of a Conflict-Driven SAT Solver�

Nachum Dershowitz1,3, Ziyad Hanna2, and Alexander Nadel1,2

1 School of Computer Science, Tel Aviv University, Ramat Aviv, Israel
{nachumd,ale1}@tau.ac.il

2 Design Technology Solutions Group, Intel Corporation, Haifa, Israel
{ziyad.hanna,alexander.nadel}@intel.com

3 Microsoft Research, Redmond, WA

Abstract. We show that modern conflict-driven SAT solvers implicitly
build and prune a decision tree whose nodes are associated with flipped
variables. Practical usefulness of conflict-driven learning schemes, like
1UIP or AllUIP, depends on their ability to guide the solver towards
refutations associated with compact decision trees. We propose an en-
hancement of 1UIP that is empirically helpful for real-world industrial
benchmarks.

1 Introduction

Modern conflict-driven backtrack-search SAT solvers are widely used in applica-
tions in academia and industry. Each invocation can be associated with a deci-
sion tree, and tree pruning is a commonly used, intuitive concept for developing
and analyzing enhancements. But, since the introduction of Conflict-Directed
Backjumping (CDB) [4], it has become unclear how to characterize the decision
tree built in the process. The main difficulty arises from the fact that a CDB-
based solver may flip values of implied variables, rather than decision variables.
Also, it may skip decision levels when backtracking. As a result of this vague-
ness, modern solvers are more commonly understood as resolution engines, using
decision-tree construction as a heuristic, rather than as algorithms constructing
decision trees (e.g., [3]). Unfortunately, this provides little insight for reasoning
about the behavior of learning schemes and for developing new ones. Witness the
statement [5]: “The effectiveness of certain . . . schemes can only be determined
by empirical data for the entire solution process”.

We propose a framework that allows one to reason about a CDB-based solver
as a decision-tree construction based engine. We rely on the following hypoth-
esis: nodes in the decision tree, implicitly constructed by a CDB-based solver,
are associated with flipped variables, rather than with initially picked decision

� This research was supported in part by the Israel Science Foundation (grant no.
250/05). The work of Alexander Nadel was carried out in partial fulfillment of the
requirements for a Ph.D.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 287–293, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

288 N. Dershowitz, Z. Hanna, and A. Nadel

D1

D2

L1

M D3

V1

N V2

L � � F1

M �

1 → {I1}

1 → {I2}

0
1 → {I3}

1 → {I4}

0
1 → {B}

1 0 0
1 → {I5, I6}

0
1 → {I7,¬I7}

Fig. 1. Snapshot of a CDB-based solver run. The solid rightmost path is the current
assignment stack. There are three decision levels. Each flipped variable is associated
with a left decision subtree, denoted by dotted parts. Nodes correspond to decision
or flipped variables and edges are marked with the Boolean values assigned to these
variables and, optionally, with implied literals.

variables. This approach allows us to explain why 1UIP [1] is empirically ad-
vantageous over other schemes (cf. [5,3]). It also suggests a practically useful
enhancement, called “local conflict clause recording”.

2 Implicit Decision-Tree Construction and Pruning

An asserting conflict clause is a conflict clause containing the negation of one
and only one literal, called a pivot literal, assigned at the last decision level.
The 1UIP [1], 2UIP [5] and AllUIP [5] clauses are all asserting. After the pivot
variable is flipped, it is called a flipped variable. The parent clause of an implied
literal A, denoted Par(A), is the clause where the value of A is implied.

Decision-tree construction for plain backtracking can be understood as adding
a new node to the tree, labeled with a decision variable B, assigned value σ =
Val(B), and a new left edge, labeled σ, upon each decision. The left subtree of
B, denoted LTree(B), is constructed recursively. When the solver backtracks to
B and flips Val(B), the tree is updated with a new right edge, labeled ¬σ, and
a right subtree is constructed.

In our view, a CDB-based solver maintains a forest of left subtrees. Every
flipped variable is associated with a left subtree. The forest is merged into one
tree, comprising a refutation trace of the whole formula, only after the last
conflict. Upon conflict, when a pivot variable B is flipped, its left decision subtree
is constructed by merging left subtrees of a subset of flipped variables, assigned
after B. Suppose the solver is in a conflict situation, the conflicting clause is
γ and the decision level is k. We call a flipped variable that belongs to level
k an lf-variable, and a flipped variable that belongs to levels lower than k an

Towards a Better Understanding of the Functionality 289

� �

I1 I7

D1 F1

¬I7

I4 B

D3

� V1 �

UIP-2 1UIP

(a) Implication Graph

D1

D2

B

F1 ?

M �

1 → {I1}

1 → {I2}

1 0

0 1

(b) Resulting Tree

Fig. 2. Implication graph and decision tree for Fig. 1 with 1UIP and UIP-2 cuts and
the resulting tree after applying Algorithm 1 and conflict-driven backjumping for 1UIP
scheme

lu-variable. An lf-variable is active if it is connected to γ and is dominated by B
in the implication graph. In our example (Fig. 1 and Fig 2(a)), the only active
lf-variable is F1. Lf-variable V1 is not dominated by B. Lf-variable V2 is not
connected to the conflicting variable. Thus, both V1 and V2 are inactive.

Algorithm 1. On conflict, returns LTree(B) of the pivot variable B

1: Let F1 . . . Fn be active lf-variables. Suppose LTree(Fn+1) and Tree(F1) are leaves.
2: for i := n downto 1 do
3: Tree(Fi) := TNewTree(Fi;¬Val(Fi);LTree(Fi);Tree(Fi+1))
4: return Tree(F1)

Algorithm 1 constructs the left decision subtree of a pivot variable B. A recur-
sive function TNewTree is invoked. It receives four parameters: (1) root variable;
(2) first value of the root variable; (3) left subtree; and (4) right subtree. See
Fig. 2(b) for the result of applying Algorithm 1 and conflict-driven backjumping
for 1UIP scheme in our example.

Applying Algorithm 1 allows a CDB-based solver to skip some flipped vari-
ables. Skipping a flipped variable means excluding its left subtree from the final
decision tree characterizing the run of a solver. Skipped variables fall into three
categories: (1) lu-variables, skipped during backtracking (L1 in our example); (2)
inactive lf-variables, connected to the conflicting clause vertices, but not dom-
inated by the pivot variable (V1 in our example); (3) inactive lf-variables, not
connected to the conflicting clause vertices (V2).

We distinguish between two types of decision-tree pruning: backward tree
pruning is carried out upon conflict detection by skipping existing subtrees;
forward tree pruning is performed by recording conflict clauses useful in terms
of frequent participation in Boolean constraint propagation (BCP) during the
subsequent search. Algorithm 1 carries out backward tree pruning implicitly by

290 N. Dershowitz, Z. Hanna, and A. Nadel

not including the left decision subtrees of inactive lf-variables in the left decision
subtree of the pivot variable. To the best of our knowledge, this kind of decision-
tree pruning has not been highlighted in the literature. A more prominent kind
of backward tree pruning is carried out by the solver while backtracking non-
chronologically [4]. We underscore the fact that the effectiveness of this kind of
pruning depends on the size of the left decision subtrees of skipped flipped vari-
ables, rather than on the number of skipped decision levels, as usually presumed.

3 Usefulness of Conflict-Clause Recording Schemes

The UIP-2 scheme for conflict learning takes UIP number 2 of the last decision
level as the pivot variable. We compared the best known scheme, 1UIP [1], with
AllUIP [5] and UIP-2, which we feel are representative enough to explain the
advantages of 1UIP over other schemes, too. (We do not discuss conflict clause
minimization due to space restrictions.)

Choosing the first UIP, rather then UIP number 2 of the last decision level,
is optimal for backward pruning. Indeed, the first UIP is the closest to the
conflict; thus it tends to dominate fewer lf-variables. Also, the first UIP allows
backtracking to the highest possible decision level, maximizing the number of
uf-variables skipped during backtracking.

Why is 1UIP better than AllUIP? Replacing literals of other decision levels
by their dominator does not impact backward tree pruning. Indeed, the number
of inactive lf-variables and the backtrack level remain the same. We claim that
1UIP clauses tend to contribute more to BCP than AllUIP clauses, so are more
useful for forward pruning. Let B be the pivot variable and k the decision level at
the moment of a conflict. Denote by Fr+(B) the fraction of the conflict clauses
that contain the variable B out of all conflict clauses recorded since B was last
assigned. The key observation, confirmed empirically in Sect. 5, is that Fr+(B)
tends to be much higher for AllUIP than for 1UIP. Indeed, 1UIP conflict clauses

A

D

� �

1UIP: 0 → {B, C, D, G,¬G}
AllUIP: 0 → {B, C}

1 → {B, C}

1 → {E,¬E} 0 → {F,¬F}

Fig. 3. Example of superiority of 1UIP over AllUIP. Suppose we invoke a CDB-based
SAT solver on an input formula (A∨D∨G)∧(A∨D∨¬G)∧(A∨C)∧(A∨B)∧(¬A∨B)∧
(¬A∨C)∧(¬B∨¬C ∨¬D∨E)∧(¬B∨¬C ∨¬D∨¬E)∧(¬A∨D∨F)∧(¬A∨D∨¬F).
The solver first picks the literal A, propagates its value, then picks D, propagates
and encounters a conflict. The 1UIP clause is ¬B ∨ ¬C ∨ ¬D; the AllUIP clause is
¬A∨¬D. After flipping D, both the AllUIP and the 1UIP conflict clauses are ¬A. After
propagating, 1UIP would yield a conflict, meaning that the formula is unsatisfiable. In
contrast, AllUIP would not result in a conflict, since all previously recorded conflict
clauses are satisfied.

Towards a Better Understanding of the Functionality 291

tend to contain literals implied from B at k, rather than B itself. AllUIP clauses
tend to contain B, since B dominates all the literals at k. Hence, after flipping
B, more of the AllUIP conflict clauses, recorded before the flip, will be satisfied
and will not contribute to BCP (compared with 1UIP conflict clauses). See Fig. 3
for an example.

4 Local Conflict-Clause Recording

A Local Conflict-Clause (LCC) is a non-asserting conflict clause, recorded in
addition to the 1UIP conflict clause if the last decision level contains some active
lf-variables. To record it, the last active lf-variable is considered to be a decision
variable, defining a new decision level. An LCC is the 1UIP clause with respect
to this new decision level.

A clause α is inconsistent with a decision-tree path P if α contains the nega-
tion of one of the literals of P . Consider a conflict situation, with pivot variable B
and active lf-variables F1, F2, . . . , Fn. Suppose the leftmost path of LTree(B) is
P1 = (G1, . . . , Gl). The rightmost path of LTree(B) must be Pf = (F1, . . . , Fn).
The key observation is that there is an asymmetry between P1 and Pf in that P1

tends to be inconsistent with more clauses than Pf . Indeed, each of the clauses
Par(Gi) is inconsistent with P1, since it must contain ¬Gi. This is not the case
with Pf . It is not guaranteed that there exist clauses containing ¬Fj , since parent
clauses of Fj ’s contain Fj rather than ¬Fj . Denote the number of left edges in a
path by �(P). An arbitrary path P in LTree(B) is guaranteed to be inconsistent
with at least �(P) clauses. In general, the greater �(P), the greater the chance
is that there will be aggressive propagation, once the literals of P are assigned.

The main goal of adding LCCs is to improve forward tree pruning when
literals, corresponding to a path with small �(P), are assigned. In addition, LCCs
tend to contribute more to BCP than 1UIP clauses immediately after flipping
the pivot variable. Indeed, after flipping the pivot variable, the 1UIP clause is
always satisfied, whereas the local conflict clause may contribute to BCP, since
it may not contain the pivot variable.

5 Experimental Results

We implemented 1UIP, UIP-2 and AllUIP within the industrial CDB-based
solver, Eureka [2] (but without decision-stack shrinking). All experiments were
carried out on a machine with 4GB memory and two Intel Xeon CPU 3.06 pro-
cessors. We used instances from 11 well-known industrial benchmark families.
These three schemes are compared in Table 1 on 8 instances.

The main conclusions of our experiments are: (1) 1UIP is indeed more pow-
erful and robust than other schemes. It is always faster than UIP-2, and out-
performs AllUIP by orders of magnitude on 4 instances, appearing in the left
column of Table 1. (2) Fr+ is double for AllUIP than for 1UIP. This explains
1UIP’s superiority over AllUIP by confirming the hypothesis of Sect. 3. (3) Of

292 N. Dershowitz, Z. Hanna, and A. Nadel

Table 1. Comparing 1UIP, UIP-2 and AllUIP on selected instances. The rows display:
(Tm) execution time in seconds; (Con) number of conflicts; (Fr+) average Fr+; (NSk)
average number of decision-tree nodes skipped per conflict.

Instance Res 1UIP UIP-2 AllUIP Instance Res 1UIP UIP-2 AllUIP

4pipe Tm 51 148 11930 longmult10 Tm 485 513 590
Con 101277 308946 29985706 Con 237814 261669 379737
Fr+ 0.41 0.38 0.83 Fr+ 0.37 0.34 0.84
NSk 0.19 0.14 0.24 NSk 0.13 0.11 0.24

5pipe Tm 50 347 > 14400 longmult11 Tm 559 756 690
Con 85119 562304 28185547 Con 273200 346414 471626

Fr+ 0.40 0.33 0.84 Fr+ 0.37 0.35 0.83
NSk 0.18 0.14 0.21 NSk 0.14 0.11 0.25

8pipe k Tm 2426 > 14400 > 14400 rotmul Tm 578 1186 992
Con 1478419 10129202 13192438 Con 615314 1371339 1576324

Fr+ 0.37 0.26 0.81 Fr+ 0.52 0.48 0.84
NSk 0.21 0.13 0.19 NSk 0.16 0.13 0.27

9pipe k Tm 1493 > 14400 > 14400 term1mul Tm 2173 5213 2975
Con 640559 6040439 6548156 Con 1585135 3750774 3059096

Fr+ 0.37 0.27 0.85 Fr+ 0.55 0.54 0.86
NSk 0.20 0.16 0.20 NSk 0.15 0.11 0.26

Table 2. Effect of LCC recording (time is in sec.; t/o is the number of instances that
timed out)

Default Def. + LCC
Family Threshold Time t/o Time t/o

sat04 ind maris03 gripper sat 3 hours 2238 0 986 0
sat04 ind goldberg03 hard eq check 3 hours 30336 2 15353 0
sat04 ind maris03 gripper unsat 4 hours 30135 4 17842 2
velev fvp unsat.3.0 3 hours 18199 2 10928 2
velev fvp sat.3.0 3 hours 9041 0 7155 0
velev vliw sat 2.0 3 hours 5970 0 4715 0
barrel 3 hours 260 0 226 0
velev pipe unsat 1.0 3 hours 15880 0 13094 0
velev vliw unsat 4.0 3 hours 17260 0 14810 0
longmult 3 hours 5413 0 5076 0
velev vliw sat 4.0 3 hours 5116 0 6882 0

all schemes, UIP-2 skips the fewest nodes/flipped variables. Additional empiri-
cal findings, omitted here, show that this happens mainly due to the fact that
there are fewer inactive lf-variables not dominated by the pivot variable in the
implication graph. This agrees with the theoretical analysis in Sect. 3. (4) Sur-
prisingly, AllUIP allows one to skip more nodes and flipped variables than 1UIP
on some examples. We found that it happens mainly due to the fact that many
lf-variables are not connected to the conflicting clause for AllUIP. According to
the analysis in Sect. 3, the number of skipped nodes and variables should be
about the same for both schemes. This expected behavior is indeed observed on
the 4 instances of the left column of Table 1, where AllUIP is outperformed by
several orders of magnitude. Studying the reasons for the unexpected behavior
on the other 4 instances, where the gap between 1UIP and AllUIP is not large,
is left for future research.

Table 2 shows the effect on 11 families of local conflict-clause recording within
the default version of Eureka. The technique is helpful overall on 10 of them.

Towards a Better Understanding of the Functionality 293

Accordingly, LCC recording can be recommended as a default strategy for mod-
ern CDB-based solvers.

References

1. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an efficient SAT solver. In DAC’01, pages 530–535, 2001.

2. A. Nadel, M. Gordon, A. Palti, and Z. Hanna. Eureka-2006 SAT solver.
http://fmv.jku.at/sat-race-2006/descriptions/4-Eureka.pdf.

3. L. O. Ryan. Efficient algorithms for clause learning SAT solvers. Master’s thesis,
Simon Fraser University, Burnaby, Canada, 2004.

4. J. P. M. Silva and K. A. Sakallah. GRASP—a new search algorithm for satisfiability.
In ICCAD’96, pages 220–227. IEEE Computer Society, 1996.

5. L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven
learning in a Boolean satisfiability solver. In ICCAD’01, pages 279–285. IEEE Press,
2001.

http://fmv.jku.at/sat-race-2006/descriptions/4-Eureka.pdf

A Lightweight Component Caching Scheme for

Satisfiability Solvers

Knot Pipatsrisawat and Adnan Darwiche

Computer Science Department
University of California, Los Angeles
{thammakn,darwiche}@cs.ucla.edu

Abstract. We introduce in this paper a lightweight technique for re-
ducing work repetition caused by non–chronological backtracking com-
monly practiced by DPLL–based SAT solvers. The presented technique
can be viewed as a partial component caching scheme. Empirical evalua-
tion of the technique reveals significant improvements on a broad range of
industrial instances.

1 Introduction

As a DPLL–based SAT solver makes decisions, the knowledge base gets simplified
due to Boolean constraint propagation. This simplification may be substantial
enough to disconnect the knowledge base into independent components1. Knowl-
edge about independent components could reduce the amount of work done by
a solver. However, precise component analysis is prohibitively expensive for SAT
solving in general, although some solvers have incorporated static component
analysis in the preprocessing phase [1,9,6].

The lack of dynamic component analysis is made worse by the use of non–
chronological backtracking, because it may cause solvers to erase assignments
that are not related to the conflict. In the worst case, erased assignments may
contain solutions to independent components. As a result, the solver may need to
solve some components multiple times. This problem has already been observed
and solutions have been proposed in [8,4]. Nevertheless, the proposed solutions
seem to offer limited improvements on real–world instances.

We address this particular problem in this paper and provide two contribu-
tions. First, an analytic and empirical analysis that substantiates the observa-
tions about work repetition in modern SAT solvers that use non–chronological
backtracking. Second, a low–overhead technique that helps reduce work repeti-
tion in such solvers.

The rest of this paper is structured as follows. In Section 2, we describes pre-
cisely the above problem. An empirical study that further exposes and quantifies
the problem is presented in Section 3. A solution is proposed in Section 4 and
is evaluated in Section 5. Section 6 discusses related work and we conclude in
Section 7.
1 A component is defined as a set of clauses. Two components are independent if they

share no variable.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 294–299, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Lightweight Component Caching Scheme for Satisfiability Solvers 295

2 Losing Work with Non–chronological Backtracking

The use of non–chronological backtracking in SAT and CSP allows solvers to
better focus on fixing the cause of the conflict [18,2,11]. The most common
non–chronological backtracking scheme used by SAT solvers today, called far–
backtracking [16], is based on generating asserting clauses [20]. This approach
involves undoing the assignments from the point of conflict up to (not including)
the assertion level. Although the results and analysis we present in this paper
can be adapted to work for non–chronological backtracking in general, we stay
focused on far–backtracking as it is the most common in modern SAT solvers.

One caveat on this backtracking scheme is that all decisions and implied
variable assignments made between the level of the conflict and the assertion level
are effectively erased by backtracking. As we shall see next, these assignments
may contain solutions of sub–problems (components) and would be lost in the
backtracking process, requiring their rediscovery at a later stage in the search.

. . .
0 1 2 3 k−1 k+1 k+2 k+3k

Decision
level

Component 1

k+4

Component 2

Erased assignmentsAssertion level

Fig. 1. Erased assignments due to a backtrack

To consider a dramatic example of this phenomena, examine Figure 1 in which
the solver has solved a component using the first k decision levels. After several
decisions on a second component, the solver runs into a conflict and derives a unit
learned clause. The assertion level in this case will be level 0, leading the solver
to erase all assignments, assert the unit clause, and restart the search process
all over. After the learned clause is asserted, the solver will continue looking
for solutions for both components, as it did not save the solution it previously
found. This can lead to great inefficiency as the solver may end up solving some
components multiple times.

We will provide a more realistic, yet still somewhat synthetic, empirical study
in the next section to quantify further this potential inefficiency.

3 An Empirical Study

To illustrate the extent of work repetition, we artificially generated instances
that would cause work repetition in conventional SAT solvers. Each instance
was generated by merging four identical copies of a satisfiable instance. These
bigger instances will be referred to as replicated instances throughout this paper.

Table 1 reports the results of this initial experiment, conducted using
MiniSat [7], on a computerwith Intel Pentium 3.4GHz processor and 2GBofRAM.

296 K. Pipatsrisawat and A. Darwiche

Table 1. Runtime (in seconds) of MiniSat with and without progress saving. (*) in-
dicates insufficient memory. The ratio columns show approximate ratios of runtime on
replicated over original instances.

Instance Name Runtime
MiniSat MiniSat with ps

Original Replicated Ratio Original Replicated Ratio
vmpc 21.renamed-as.sat05-1923 6.01 731.98 122 1.5 21.58 14
vmpc 21.shuffled-as.sat05-1955 0.48 59.37 124 1.25 26.01 21
vmpc 23.renamed-as.sat05-1927 39.19 3202.67 82 2.4 28.61 12
vange-color-54 28.26 4624.42 163 4.24 96.34 23
velev-fvp-sat-3.0-12 6.70 >200* >29 4.07 41.87 10
ibm 19 rule SAT dat.k30 7.91 209.73 26 6.47 28.6 4.4
ibm 21 rule SAT dat.k35 8.87 819.00 92 5.15 44.12 8.6

Fig. 2. Decision behavior on a replicated instance of MiniSat (left) and MiniSat with
progress saving (right). Both x-axes represent the chronological order of decisions.

The table reports runtime of MiniSat on each original and replicated instance. Let
us first consider the first three runtime columns. The remaining columns will be
discussed in the next section. According to this table, MiniSat can be more than
two orders of magnitude slower on replicated instances, even though a replicated
instance contains four identical copies of the original instance.

Further investigation on these instances reveals the source of inefficiency. In
the next experiment, we plot indices of decision variables in chronological or-
der. The left plot in Figure 2 shows such plot based on running MiniSat on
the replicated instance of vmpc 21.shuffled-as.sat05-1955. Variable indices in the
replicated instance range from 1 to 1764 (4 × 441 original variables). Each in-
dependent component in the instance occupies a contiguous range of variable
indices. Each dark band in this plot indicates the solver’s attempt to solve a
component. We can see in this plot that MiniSat ended up solving all components
multiple times. Most of the attempts to re-solve a component take non-trivial
amount of work, as illustrated by the width of each band. This clearly illustrates
that work repetition is responsible for a fair amount of the disproportionate in-
crease in runtime of the solver on the replicated instances. Further experiments
revealed that similar behavior persisted on other instance pairs as well.2

2 More experimental results are available in an extended version of the paper at
http://reasoning.cs.ucla.edu/publications.html

A Lightweight Component Caching Scheme for Satisfiability Solvers 297

Table 2. Runtime of MiniSat with and without progress saving. * The solvers’ runtime
for each suite is calculated from instances solved by both versions.

Suite Instance Runtime* # Solved
Count MiniSat P. Saving MiniSat P. Saving

fvp sat 3.0 20 1134.027 45.59 10 20
grieu 05 32 5069.342 1789.555 16 19
IBM 2004 1 11 19 4422.805 1623.339 14 18
IBM 2004 1 14 19 329.039 194.078 19 19
manol pipe 31 5050.709 5247.547 30 31
pipe sat 1.0 10 92.108 973.436 6 8
liveness sat 1.0 10 114.576 888.857 5 6
vliw sat 2.0 9 59.312 887.14 5 5
narain 05 10 194.998 249.998 5 5
Total 160 16466.916 11899.54 110 131

4 A Lightweight Caching Scheme

The solution we are proposing for this problem is simple and can be thought
of as a lightweight partial component caching technique. Since far–backtracking
could erase partial solutions, we simply save them. This technique, which we
refer to as progress saving, requires keeping an additional array of literals, called
the saved–literal array. Every time the solver performs a backtrack and erases
assignments, each erased assignment is saved in the this array. Now, any time
the solver decides to branch on variable v, it uses the saved literal, if one exists.
Otherwise, the solver uses the default phase selection heuristic. Note that this
technique would fit nicely on any Chaff-like solver implementation.

We integrated progress saving into MiniSat for the purpose of evaluation3.
In this integration, the variable ordering heuristic needs not be changed. Now,
consider the last three columns of Table 1, in which the runtimes of MiniSat
with progress saving on original and replicated instances are compared. In all
cases, there are significant improvements in runtime on replicated instances.

Furthermore, the decision behavior of MiniSat with progress saving on the
replicated instance of vmpc 21.shuffled-as.sat05-1955 is shown on the right of
Figure 2. This plot indicates a decease in work repetition. Though previously
solved components are still revisited (thin strips of dots after dark bands), their
solutions are almost immediately found, because of the saved literals.

5 Experimental Results

We now evaluate progress saving on a set of 1251 industrial benchmarks drawn
from the SAT’05 competition [17] and [19,10]. All experiments were performed
on a Pentium 4, 3.8 GHz and 2GB RAM, with time limit of 1800 seconds.

Table 2 reports runtime on 160 instances selected from the total 1251 instances
considered. According to this table, progress saving solves 21 more instances
than MiniSat, improves the overall running time on those instance solved by
both solvers, yet leads to worse running time on some of the instances.
3 Progress saving was originally introduced in RSat [12,14].

298 K. Pipatsrisawat and A. Darwiche

Figure 3 provides more comprehensive evidence on the effectiveness of progress
saving as it considers all 1251 instances discussed above. On the left, we compare
three versions of MiniSat (different phase selection heuristics) to MiniSat with
its default heuristic augmented with progress saving. The x-axis lists the number
of solved instances for a given cutoff time (y-axis), showing that progress saving
dominates all three versions of MiniSat. On the right, we show a head-to-head
runtime comparison between MiniSat and MiniSat with progress saving. Note
that both axes here are in log-scale. This figure, which also depicts the best
linear fit, provides further evidence on the effectiveness of progress saving.

800 850 900 950 1000 1050 1100 1150 1200

200

400

600

800

1000

1200

1400

1600

1800

Number of instances solved

R
un

tim
e

(s
)

MiniSat
MiniSat[positive]
MiniSat[random]
MiniSat+ps

10
−2

10
0

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

MiniSat

M
in

iS
at

+
ps

y = 0.57*x + 14

Fig. 3. Comparing three versions of MiniSat (different phase selection heuristics) to
MiniSat with progress saving. The default phase selection heuristic of MiniSat splits on
negative literals. We also consider splitting on positive and randomly chosen literals.

6 Related Work

Model counters and knowledge compilers have proven to benefit greatly from
dynamic and semi–dynamic component analysis performed during the search
[13,15,5,3]. These techniques are usually too expensive to apply to SAT solving.
Ginsberg addressed a very similar problem in the context of CSP [8]. The author
proposed a new backtracking scheme called dynamic backtracking. This approach
is superficially similar to ours. However, it may cause the search space after back-
tracking to become overly constrained, as pointed out by the author. Moreover,
it would require a careful modification of the contemporary SAT framework to
make it work as intended. Neither is the case for our solution.

Biere and Sinz showed that independent components do exist in some real-
world SAT instances and proposed an efficient method to take advantage of
the structure [4]. However, their approach is semi–dynamic, as it only considers
permanent decompositions that occur in the absence of any decision. While
improvements on artificially–generated instances were reported, similar gains
did not materialized in their experiment on real–world instances.

A Lightweight Component Caching Scheme for Satisfiability Solvers 299

7 Conclusion

We studied an inefficiency introduced by the conventional backtracking scheme of
modern SAT solvers. We then proposed a low–overhead solution, called progress
saving, that can be viewed as a component caching technique. The practicality
of our solution is illustrated by experimental results, which show improvements
on a wide range of problems when the technique is integrated into MiniSat.

References

1. Aloul, F., Markov, I., and Sakallah, K. Force: a fast and easy-to-implement
variable-ordering heuristic. In Proc. of the 13th ACM Great Lakes Symposium on
VLSI 2003. pp. 116-119. (2003).

2. Bayardo, R. J. J., and Schrag, R. C. Using CSP look-back techniques to solve
real-world SAT instances. In AAAI’97 (Providence, Rhode Island), pp. 203–208.

3. Beame, P., Impagliazzo, R., Pitassi, T., and Segerlind, N. Memoization
and dpll: Formula caching proof systems. In Proc. of 18th Annual IEEE Conf. on
Computational Complexity, Aarhus, Denmark. (2003).

4. Biere, A., and Sinz, C. Decomposing sat problems into connected components.
Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 2 (2006).

5. Darwiche, A. New advances in compiling CNF to decomposable negational nor-
mal form. In Proc. of European Conference on AI. (2004).

6. Durairaj, V., and Kalla., P. Variable ordering for efficient sat search by ana-
lyzing constraint-variable dependencies. In SAT’05 (August 2005).

7. Eén, N., and Sörensson, N. An extensible sat-solver. In SAT’03 (2003).
8. Ginsberg, M. L. Dynamic backtracking. Jrnl of Artf. Intel. Resrh. 1 (1993).
9. Huang, J., and Darwiche, A. A structure-based variable ordering heuristic for

sat. In (IJCAI’03) (2003), pp. 1167–1172.
10. IBM. Ibm formal verification benchmark library. http://www.research.ibm.com

/haifa/projects/verification/RB Homepage/fvbenchmarks.html.
11. Marques-Silva, J. P., and Sakallah, K. A. GRASP - A New Search Algo-

rithm for Satisfiability. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design (1996), pp. 220–227.

12. Pipatsrisawat, K., and Darwiche, A. SAT Solver Description: RSat.
13. Roberto J. Bayardo, J., and Pehoushek, J. D. Counting models using con-

nected components. In Proc. of the 17th Natl. Conf. on AI. (2000), AAAI Press /
The MIT Press, pp. 157–162.

14. Rsat sat solver homepage. http://reasoning.cs.ucla.edu/rsat.
15. Sang, T., Bacchus, F., Beame, P., Kautz, H. A., and Pitassi, T. Combining

component caching and clause learning for effective model counting. In SAT’04.
16. Sang, T., Beame, P., and Kautz, H. A. Heuristics for fast exact model counting.

In SAT (2005), pp. 226–240.
17. SAT’05 Competition Homepage, http://www.satcompetition.org/2005/.
18. Stallman, R., and Sussman, G. Forward reasoning and dependency-directed

backtracking in a system for computer-aided circuit analysis. Artf. Intel. 9 (1977).
19. Velev, M. N. Sat bnchmrk lib. www.miroslav-velev.com/sat benchmarks.html.
20. Zhang, L., Madigan, C. F., Moskewicz, M. W., and Malik, S. Efficient conflict

driven learning in boolean satisfiability solver. In ICCAD (2001), pp. 279–285.

Minimum 2CNF Resolution Refutations in

Polynomial Time

Joshua Buresh-Oppenheim and David Mitchell

Simon Fraser University
jburesho@cs.sfu.ca, mitchell@cs.sfu.ca

Abstract. We present an algorithm for finding a smallest Resolution
refutation of any 2CNF in polynomial time.

1 Introduction

The problem of deciding satisfiability of propositional 2-CNF formulas (2-SAT),
is an important tractable case of SAT. The first polynomial-time algorithm for
2-SAT was given by Cook [4]. Linear time algorithms were given by Even, Itai
and Shamir [6] and, subsequently, Aspvall, Plass and Tarjan [2]. For an unsat-
isfiable formula, a small and simple certificate, or proof of unsatisfiability, may
be interpreted as an explanation for its unsatisfiability. Such explanations are
central in a number of applications. Cook’s algorithm constructs a tree-like Res-
olution refutation of an unsatisfiable formula. The algorithm of [6], and a later
algorithm by del Val [5], involve schemes for applying unit Resolution, and can
easily be modified to output tree-like Resolution refutations. The algorithm of [2]
provides a certificate in the form of a graph labelled with clauses which are eas-
ily seen to be an unsatisfiable subset of the given clauses. A tree-like Resolution
refutation can easily be extracted from this graph.

In [3] we gave polytime algorithms for finding a smallest tree-like Resolution
refutation and a smallest unsatisfiable subformula of an unsatisfiable 2CNF (the
latter is itself an efficiently verifiable certificate since 2SAT is in linear time).
Here we give a polytime algorithm for finding a smallest general Resolution refu-
tation. All three algorithms are dynamic programming algorithms based on the
implication graph associated with a 2CNF. The algorithm for finding a tree-like
refutation runs in time O(n2m), where n is the number of underlying variables
and m is the number of clauses, while the algorithm presented here for general
refutations runs in time O(n6m). In [3] we showed that minimum tree-like Res-
olution refutations provide a 2-approximation of the smallest general Resolution
refutation. Hence, in practice it may often be better to use the faster algorithm
to obtain an approximation. Nonetheless, we consider solving the general case
an interesting theoretical problem. In particular, we note the contrast with the
case of Horn formulas, for which the size of the smallest Resolution refutation
is NP-hard to determine, or even to approximate within any constant factor [1].
This difference is especially interesting in light of the similarities in standard
algorithms for 2-SAT and Horn-SAT. One may observe that we make essential

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 300–313, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Minimum 2CNF Resolution Refutations in Polynomial Time 301

use of the symmetries in 2-CNFs derivations, as exhibited by the “dual” paths
in the implication graph, that do not exist in the Horn case.

The algorithms for finding minimum-size certificates provided here and in
[3] are more complicated, and of higher time-complexity, than the linear-time
algorithms. However, in some applications the size and simplicity of the certifi-
cates provided may justify the extra cost. For example, if we have a very large
formula and the certificate must be interpreted by a human user, or we have
plenty of time to preprocess the formula and the certificate produced will be
used repeatedly in the future, then finding a sublinear size certificate, even if
it takes a relatively long time, may be better than finding a linear size certifi-
cate quickly. Another example is provided by certain abstraction-based model
checking techniques in hardware and software verification. At each stage in a
sequence of stages a certificate of unsatisfiablility of one formula is used in the
creation of a new, larger formula. The size and complexity of the certificates
produced is very important in the success of the overall process. In general, the
formulas used in this application are not 2CNF formulas, but they often have a
very large fraction of 2-clauses. We envision being able to take advantage of the
methods for constructing minimum refutations of 2CNF formulas in developing
more effective algorithms than currently available for this context.

2 Preliminaries

Throughout, let C be a collection of 2-clauses (that is, clauses with at most
two literals) over an ordered set of variables {x1, ..., xn}. Say |C| = m. As first
suggested by [2], C can be represented as a directed graph GC on 2n nodes,
one for each literal. If (a∨ b) ∈ C for literals a, b, then the edges (ā, b) and (b̄, a)
appear in GC (note that literals a and b can be the same). Both of these edges are
labelled by the clause (a∨b). For an edge e = (a, b), let dual(e), the dual edge of
e, be the edge (b̄, ā). For literals a, b, define Pab to be the set of all directed paths
from a to b in GC . If c is also a literal, let Pabc be the set of all directed paths
that start at a, end at c and visit b at some point. For P1 ∈ Pab and P2 ∈ Pbc,
we denote by P1 ◦ P2 ∈ Pabc the concatenation of the two paths. For a path
P = (e1, ..., ek) ∈ Pab, let dual(P) ∈ Pb̄ā be the path (dual(ek), ..., dual(e1)).

Proposition 1 ([2]). C is unsatisfiable if and only if there is a variable x such
that both Pxx̄ and Px̄x are not empty.

Actually, note that for any literals a, b and variable x, a pair of paths P1 ∈ Paāx

and P2 ∈ Pbb̄x̄ are contradictory (for one thing, they imply the existence of a
pair of paths such as those in the proposition). This motivates the following
definition: Two paths P1 and P2 are called end-contradictory if there are literals
a and b and a variable x (x, x̄ need not be distinct from ā, b̄) such that P1 ∈ Paāx

and P2 ∈ Pbb̄x̄.
We will be interested in finding such pairs of paths of a particularly simple

form. First we will need to establish several definitions about directed paths in
GC . Note that in GC even a simple path may contain two edges with the same

302 J. Buresh-Oppenheim and D. Mitchell

clause label. Let clauses(P) denote the set of clause-labels underlying the edges
of a directed path P . We define |P |, the size of the path P , to be |clauses(P)|.
In contrast, let length(P) denote the length of P as a sequence. Call a path
P singular if it does not contain two edges that have the same clause label.
Therefore, a path P is singular if and only if |P | = length(P). Given two paths
P1, P2, let �(P1, P2) denote the quantity |clauses(P1) ∪ clauses(P2)|.
Definition 1. Let suf(P) be the maximal singular suffix of P . For a path P ∈
Paāb (ā and b need not be distinct), let extend(P) be the following path in Pb̄b:
let P ′ be the portion of P that starts at the last occurrence of ā and goes to the
end. Then extend(P) is dual(P ′) ◦ P .

Definition 2. Given a path P ∈ Paāb, let sing(P) be the following operation:
first let P ′ = extend(P). Now, while there is a repeated edge in P ′, remove the
segment of P ′ after the first occurrence of the edge through the second occurrence.
When there is no longer a repeated edge, take the suffix of the resulting path.

It is clear that sing(P) is singular and that clauses(sing(P)) ⊆ clauses(P).
Also, if P1 and P2 are end-contradictory, then so are sing(P1) and sing(P2) and
�(sing(P1), sing(P2)) ≤ �(P1, P2).

Definition 3. Let P be a singular path that starts at literal a. Define core(P)
as the subpath of P that starts at a and ends at the first occurrence of ā (or at
the end of P if there is none).

A segment of a path is a consecutive subsequence of the path’s sequence. For
two singular paths P1 and P2, a primal shared segment is a common segment.
A dual shared segment of P1 with respect to P2 is a segment t of P1 such that
dual(t) is a segment of P2. A shared segment is either a primal or dual shared
segment. For two disjoint segments s and t of P , say s ≺P t if s appears before t
in P . For two singular paths P1 and P2, let k(P1, P2) be the number of maximal
shared segments (primal or dual) of P1 and P2.

We assume the reader is familiar with Resolution derivations. We simply men-
tion that Resolution derivations can be viewed as DAGs whose nodes are the
clauses in the derivation (we assume all occurrences of a particular clause are
identified to one node). In a derivation of a single clause C, C is the only source
and the sinks are the axioms used in the derivation. Each non-axiom clause
has fanout two: it points to the two clauses whose resolvent it is. A Resolution
refutation is a derivation of the empty clause Λ. The size of a derivation is the
number of clauses (nodes) in it.

Proposition 2. Any Resolution derivation of a single clause that uses � axioms
must have size at least 2�− 1.

Let P ∈ Pab. Let IR(P) be the Input Resolution derivation that starts by
resolving the clauses labelling the first two edges in P and then proceeds by
resolving the latest derived clause with the clause labelling the next edge in the
sequence P . This is a derivation of either (ā ∨ b) or simply (b) (if the path goes
through literal ā). It is not hard to see that the size of the derivation IR(P) is
2 · length(P)− 1.

Minimum 2CNF Resolution Refutations in Polynomial Time 303

3 Characterizing Minimum Resolution Refutations

Let π be a Resolution derivation from C that includes the clause (ā∨ b). Then π
defines a path in GC from a to b (and from b̄ to ā). The underlying edges of this
path are exactly the elements of C that appear as sinks in π and are reachable
from (ā ∨ b). More formally, we have the following definition:

Definition 4. Let a, b be literals over distinct variables. Let π be a Resolution
derivation containing (ā ∨ b). If (ā ∨ b) is a sink in π, then let ResPath(π, (ā ∨
b), a → b) equal the edge (a, b), and let ResPath(π, (ā ∨ b), b̄ → ā) equal the
edge (b̄, ā). Otherwise, assume (ā ∨ b) has children (ā ∨ c) and (c̄ ∨ b), for some
literal c, in π. Then set ResPath(π, (ā ∨ b), a → b) to ResPath(π, (ā ∨ c), a →
c)◦ResPath(π, (c̄∨b), c→ b). Set ResPath(π, (ā∨b), b̄→ ā) to ResPath(π, (c̄∨
b), b̄→ c̄) ◦ResPath(π, (ā ∨ c), c̄→ ā). If the variable underlying a precedes the
variable underlying b in the order of variables, then let ResPath(π, (ā ∨ b)) =
ResPath(π, (ā ∨ b), a→ b).

Now assume that the clause (a) appears in some Resolution derivation π. Again,
if (a) is a sink, let ResPath(π, (a)) be the edge (ā, a). Otherwise, if the children
of (a) are (a ∨ x) and (a ∨ x̄) for some variable x, then set ResPath(π, (a)) to
ResPath(π, (a ∨ x), ā → x) ◦ ResPath(π, (a ∨ x̄), x → a). Otherwise, if the
children of (a) are (a ∨ b) and (b̄) for some literal b, then set ResPath(π, (a)) to
ResPath(π, (b̄)) ◦ResPath(π, (a ∨ b), b̄→ a).

Finally, given a Resolution refutation π that ends by resolving (x) and (x̄),
let ResPath(π) be the pair (ResPath(π, x), ResPath(π, x̄)).

Notice that, for a Resolution refutation π, the pair of paths in ResPath(π)
are end-contraditory. This justifies our strategy of reducing the search for a
minimum Resolution refutation to a search for a pair of end-contradictory paths
that satisfy certain criteria.

Definition 4 demonstrates that there is a pretty deep correspondence between
Resolution derivations over C and paths in GC . Will we exploit this correspon-
dence heavily throughout, but here we pause to illustrate one salient aspect of
it. Consider a fragment of a Resolution derivation π such as that in figure 1.
Let Q = ResPath(π, C). Then, going backwards along the main path in the
derivation, each successive clause Ci corresponds to an extension of the segment
Q, called Qi. In particular, the resolution with each clause Di extends Qi either
from its beginning or from its end.

Definition 5. A joint derivation of two clauses (ā ∨ b) and (c̄ ∨ d) (again, ā, c̄
need not be distinct from b, d) from C is a Resolution derivation that uses C as
axioms and such that (ā ∨ b) and (c̄ ∨ d) appear in the derivation and are the
only clauses with fanin 0.

Definition 6. Consider a joint derivation π of (ā ∨ b) and (c̄ ∨ d) from C. A
shared clause in this derivation is any clause C in π such that there are paths
in π from (ā ∨ b) to C and from (c̄ ∨ d) to C, respectively. A top-shared clause
is a shared clause C such that there is a path from (c̄∨ d) to C that contains no
other shared clause.

304 J. Buresh-Oppenheim and D. Mitchell

d
C1

C2

C3

D1

D2

D3

Dr

Qr

Q

C

D1

D2

D3

Dr

Cr

C = (ā ∨ b)

Cr = (c̄ ∨ d)

c

a

b

Fig. 1. Extending a path through Resolution

Lemma 1. Let π be a joint derivation of (ā∨ b) and (c̄∨d) from C containing �
sinks. Assume further that π has k top-shared clauses. Then π has size at least
2� + k − 2.

Proof. Consider the sinks that are descendants of (ā∨b); say there are �1 of them
(and �2 = �− �1 remaining sinks). Let S be the set of top-shared clauses. All of
the descendant sinks of S are among these �1 sinks. The subgraph induced by all
clauses in π reachable from (ā ∨ b) constitutes a Resolution derivation of (ā∨ b)
from �1 sinks. Therefore, by Proposition 2, this subgraph must contain at least
2�1−1 clauses. Now consider the subgraph induced by all clauses reachable from
(c̄∨ d) where we exclude any shared clause that is not a top-shared clause. This
constitutes a Resolution derivaton of (c̄∨d) from �2+k sinks (modulo removal of
edges between top-shared clauses). Therefore, it must contain at least 2(�2+k)−1
clauses. These two derivations (of (ā ∨ b) and (c̄ ∨ d)) are clause disjoint except
for the k clauses in S. Therefore, the entire joint derivation contains at least
(2�1 − 1) + (2(�2 + k)− 1)− k = 2� + k − 2 clauses.
�
Let P1 ∈ Pab and P2 ∈ Pcd and assume that the sum of the lengths of these
paths is L. Let t1, ..., tk be shared segments (primal or dual) of P1 and P2.
Define JointDerive(P1, P2, t1, ..., tk) to be the following joint derivation of ā∨ b
(or possibly just (b)) and c̄∨d (or possibly just (d)) from C: for each i, construct
IR(ti); assume this is a derivation of the clause x̄i ∨ yi. Assume that removing

Minimum 2CNF Resolution Refutations in Polynomial Time 305

the ti segments from P1 yields h1 intermediate nonempty segments {rj}h1
j=1.

Likewise, there are h2 intermediate nonempty segments {sj}h2
j=1 in P2. Derive

each rj and sj using IR(rj) and IR(sj). These k + h1 + h2 derivations have
combined size 2(L −∑k

i=1 length(ti)) − (k + h1 + h2). Now use the results of
the ti and rj derivations to derive (ā ∨ b) (or (b)) in an input fashion by adding
k +h1− 1 new clauses. Likewise, derive (c̄∨d) (or just (d)) by adding k +h2− 1
new clauses. In total, we have 2(L−∑k

i=1 length(ti)) + k − 2 clauses.
Let P1 ∈ Pab and P2 ∈ Pcd be singular. Let t1, ..., tk be the maximal shared

segments (primal or dual) of P1 and P2. Define the canonical joint derivation
CJD(P1, P2) to be JointDerive(P1, P2, t1, ..., tk).

Lemma 2. Let P1 ∈ Pab and P2 ∈ Pcd be singular paths and assume that if
a and b have distinct underlying variables, then a’s variable precedes b’s in the
ordering (likewise for c and d). CJD(P1, P2) is a joint derivation of clauses C1

and C2, where C1 is either (ā ∨ b) or just (b), and C2 is either (c̄ ∨ d) or just
(d). Moreover, CJD(P1, P2) has minimum size over all joint derivations π of
C′

1 and C′
2 where ResPath(π, C′

1) = P1 and ResPath(π, C′
2) = P2.

Proof. Consider any joint derivation π of C′
1 and C′

2. Let � be the number of
distinct axioms underlying P1 and P2 and let k be the number of maximal
shared segments. π must have at least � sinks. If π has at least k top-shared
clauses it cannot have size smaller than CJD(P1, P2) by Lemma 1. Now assume
it has k′ < k top-shared clauses. Each top-shared clause corresponds to a shared
segment of P1 and P2. The other shared clauses correspond to subsegments of
these shared segments. Therefore, there must be k−k′ maximal shared segments
such that no subsegment is represented by a shared clause in π. Each such
maximal shared segment contains at least one axiom which is not shared in π.
Therefore, the number of sinks in π is at least � + k− k′, so π must have size at
least 2(� + k − k′) + k′ − 2 = 2� + k − 2 + (k − k′) > 2� + k − 2.
�

We now show the crucial fact that the paths underlying a minimum Resolution
refutation are, without loss of generality, singular. The proof goes by a fairly
intense case analysis, which we only sketch here. We do, however, offer some
intuition. In [3], we show that, for any derivable, nonempty clause C, there is
a smallest derivation of C that is IR(P) for some singular path P in GC . In
other words, multiple use of clauses, even axioms, is not helpful. A Resolution
refutation is essentially a joint derivation of (x) and (x̄) for some variable x. As
also shown in [3], independent minimum derivations of (x) and (x̄) are sometimes
almost twice as large as the minimum joint derivation of the two, so the sharing
of clauses between the two derivations can be crucial. Here we simply rule out
any benefit of sharing a clause within one side (e.g. the portion used to derive
(x)) of the joint derivation.

Lemma 3. Assume there is a Resolution refutation, π, of C of size s. Then
there is a Resolution refutation of C, π′, of size ≤ s, such that both paths in
ResPath(π′) are singular.

306 J. Buresh-Oppenheim and D. Mitchell

Proof (sketch). Assume π ends by resolving x and x̄. If either ResPath(π, (x))
or ResPath(π, (x̄)) is not singular, then there is a clause C in π such that there
are at least two paths from x to C or from x̄ to C, respectively. Call such a clause
repeated. If there are k distinct paths from x to C, we say that C is repeated k
times with respect to x, or that C has k occurrences with respect to x.

Let C be a repeated clause in π that has no repeated ancestor (if there are
no repeated clauses, we are done). We will show how to locally transform π so
that we eliminate one occurrence of C and do not add occurrences of any other
clause.

Assume without loss of generality that C is repeated with respect to x. Let
D be an ancestor of C in π such that there are exactly two distinct paths from
D to C and such that no descendant of D has two distinct paths to C. Let r1

and r2 denote the two paths from D to C. C must have two distinct literals,
say, (c̄ ∨ d). It may be the case that there is one clause, C2, on r2 such that
there is one path from x̄ to C2 that is edge-disjoint from r2 (likewise for C1 and
r1). There cannot be more than one such clause or one such path by the way
we chose C. We will generally assume that C1 and C2 exist since the proof is
simpler if they don’t. Therfore, let D′ be a clause reachable from x̄ such that
there is a path from D′ to C1 (call it r3) and a node-disjoint path from D′ to C2

(call it r4). Let r31 be r3 concatenated with the suffix of r1 from C1 to C, and
let r42 be r4 concatenated with the suffix of r2 from C2 to C. So r31 and r42 are
the two distinct paths from D′ to C. This entire setup is illustrated in figure 2.
We will assume for simplicity that both D and D′ contain two distinct literals;
the proof is similar if they don’t.

Let Q = ResPath(π, C), P = ResPath(π, D) and P ′ = ResPath(π, D′).
There are several cases based on how C occurs in P and P ′. For instance, the
r1 occurrence of C corresponds to a segment of P that is either Q or dual(Q).
Also, the r1 occurrence of C could either precede or succeed the r2 occurrence
in P . We illustrate one case: assume that the r2 occurrence of C succeeds the
r1 occurrence in P and that both are Q. Assume that the r42 occurrence of C
succeeds the r31 occurrence in P ′ and that the r42 occurrence is Q while the r31

occurrence is dual(Q) (see figure 3).
As described above (after Definition 4), each resolution along, say, path r2

from C to D corresponds to an extension of (an extension of) the r2 occurrence
of Q. Call a clause in π a neighbor of r2 if it is a child of any clause in r2

(except C), but is not in r2 itself. Let B2
1 , B2

2 , ..., B2
b2

be the neighbors of r2

that correspond to extending the r2 occurrence of Q towards the beginning of
P and let E2

1 , ..., E2
e2

be the neighbors of r2 that correspond to extending the
r2 occurrence of Q towards the end of P . Likewise for r1 and B1

1 , ..., B1
b1

and
E1

1 , ..., E1
e1

, respectively. Let B3
1 , ..., B3

b3
and E3

1 , ..., E3
e3

be the neighbors of r3

that extend the r31 occurrence of dual(Q) towards the beginning and end of P ′,
respectively (likewise for B4

1 , ..., B4
b4

, E4
1 , ..., E4

e4
and the r41 occurrence of Q).

Let IR(B1) be the input derivation that proceeds by resolving B1
1 , ..., B1

b1
in

order and let B1 denote the final clause in this derivation (likewise for all the Bi’s
and Ei’s). It must be the case that D is the result of resolving C with B1 and E2

Minimum 2CNF Resolution Refutations in Polynomial Time 307

E3
e3

x x̄

C

D

C1

C2

B2
1

B2
c2

E2
c′2

E1
1

B1
1

E1
c′1

B1
c1

E1
e1

B1
b1

E2
e2

B2
b2

E2
1

B3
1

E3
1

B3
b3

B4
b4

E4
1

D′
B4

1 E4
e4

Fig. 2. Original derivation

(see figure 4). To derive D′ (or, in fact, something stronger), let B1(c1) denote
the (c1 − 1)th derived clause in B1 and let E31 denote the result of resolving
B1(c1) with E3. Likewise, let B42 denote the result of resolving B2(c2) with B4.
Finally, let E42 denote the result of resolving E2(c′2) with E4. The clause that
results from resolving C with E31, B42 and E42 successively must be a subclause
of D′. Now we must compare the size of the modified derivation with the size
of the original derivation. In the original, each Bi

j and Ei
j clause gives rise to

a new derived clause, so there are K =
∑4

i=1 bi + ei derived clauses along the
paths r1, ..., r4. In the modified derivation, the total number of derived clauses
in the input derivations Bi and Ei is

∑4
i=1(bi − 1) + (ei − 1) = K − 8. To finish

deriving D, we create one intermediate derived clause; to finish D′, we create
five. Therefore the modified derivation is no bigger.
�
Now we show that we can assume the pair of singular paths underlying a mini-
mum Resolution refutation obeys special properties. In light of Lemma 2, we call
a pair of singular, end-contradictory paths P1, P2 minimum if they minimize the
expression f(P1, P2) ≡ 2�(P1, P2) + k(P1, P2)− 1. In other words, they generate
a minimum size refutation (the -1 term in the expression replaces the -2 in the
size of CJD(P1, P2) because we count the empty clause).

308 J. Buresh-Oppenheim and D. Mitchell

ResPath(π′, D′)

Q

C

C

Q

P

D

B1
2

B1
1

E1
1

E1
2

B2
1

B2
2

E2
1

E2
2

C

dual(Q)

C

Q

P ′

E1
1

E1
2

D′

B3
2 B3

1

B1
1

B1
2

E3
1 E3

2

B2
1

E2
1

E4
1

B4
1

C1

C2

D

B1
2

B1
1

Q

C
E2

1

E2
2

ResPath(π′, D)

C

Q
E2

1

E4
1

E3
1 E3

2

B2
1

B4
1

B1
1

B1
2

≤ D′

Fig. 3. Transformation of paths

Consider the following properties of two singular paths P1 and P2.
Property I: Let s1 ≺P1 · · · ≺P1 sk be the maximal primal shared segments of
P1 and P2. Then sk ≺P2 · · · ≺P2 s1.
Property II: Let t1 ≺P1 · · · ≺P1 t� be the maximal dual shared segments of P1

with respect to P2. Then dual(t1) ≺P2 · · · ≺P2 dual(t�).
Property III: Let s1 ≺P1 · · · ≺P1 sk be the maximal primal shared segments
of P1 and P2 and let t1 ≺P1 · · · ≺P1 t� be the maximal dual shared segments of
P1 with respect to P2. For any i, j, ti ≺P1 sj if and only if dual(ti) ≺P2 sj.
Property IV: All shared segments of P1 and P2 occur in core(P1) and core(P2).

Lemma 4. Every minimum pair of singular, end-contradictory paths must sat-
isfy Properties I-IV.

Minimum 2CNF Resolution Refutations in Polynomial Time 309

D′x

D

B1

b1

E1

1

E1

e1

B2

1

B2

b2

E2

1

E2

e2

C

E1

c′
1

E1

2

B2

c2

B2

2

E2

c′
2

E2

2
B1

1
B1

2

B1

c1

B3

1

B3

2

B3

b3

E3

1

E3

2

E3

e3

B4

1

B4

2

B4

b4
E4

b4

E4

2E4

1

x̄

Fig. 4. Modified derivation

Proof. Our general strategy is to take a pair of singular, end-contradictory paths
P1, P2 that violate one of the properties and transform them into a pair of
singular, end-contradictory paths P ′

1, P
′
2 such that f(P ′

1, P
′
2) < f(P1, P2).

Consider Property I. If P1 and P2 violate the property, then there is some i < j
such that si ≺P2 sj . Let P ′

1 be the segment of P1 starting at the beginning of si

and ending at the end of sj . Likewise, let P ′
2 be the segment of P2 that starts at

the beginning of si and ends at the end of sj . Assume, without loss of generality,
that length(P ′

1) ≤ length(P ′
2). Let P ′′

2 be the path P2 with P ′
2 replaced by P ′

1.
It must be the case that P ′′

2 is singular since otherwise there would have been a
shared segment in between si and sj in P2. Futhermore, P1 and P ′′

2 are clearly end-
contradictory. Finally, f(P1, P

′′
2) < f(P1, P2) since both the number of underlying

clauses and the number of maximal shared segments have gone down. Property II
follows in the same way by looking at P1 and dual(P2).

Consider Property IV. Let P1, P2 be singular, end-contradictory paths. As-
sume, without loss of generality, that core(P1) = P1. Let core(P1) go from a to
ā and let P1 end at x. Assume P2 starts at b and ends at x̄ (b may equal x). Let

310 J. Buresh-Oppenheim and D. Mitchell

P ′
1

x̄

P2

si
sj

x

P1

sjsi

P ′
1

P ′
2

xx̄

P ′
1P1

P ′′
2

Fig. 5. Forcing Property I

s be the maximal shared segment that ends as late as possible in P1. Assume s
goes from c to d such that d occurs after ā in P1. If s is a primal shared segment,
then let P ′

1 be the segment of P1 that goes from a to d. Let Q1 be the segment
of P1 that goes from d to x and let Q2 be the segment of P2 that goes from d
to x̄. Let P ′

2 = Q2 ◦ dual(Q1). Note that P ′
1 and P ′

2 are end-contradictory and
singular. Also, f(P ′

1, P
′
2) < f(P1, P2) since the number of shared segments has

gone down. If s is a dual shared segment, then again let P ′
1 be the segment of P1

that goes from a to d. If d̄ occurs at or after b̄ in P2, then let P ′
2 be the segment

of P2 that goes from b to d̄. Otherwise, let Q1 be the segment of P1 from d to
x. Let Q2 be the (possibly empty) segment of P2 from b̄ to x̄, and let Q3 be the
segment of P2 from b to d̄. Set P ′

2 = Q1 ◦ dual(Q2) ◦Q3. Again, P ′
1 and P ′

2 are
singular and end-contradictory and f(P ′

1, P
′
2) < f(P1, P2).

P ′
2

a

ā

s
x

x̄

s

a

ā

x

P1

P2

s
P ′

1d d

d

x

d̄

Fig. 6. Forcing Property IV

Finally, consider Property III. We assume that Properties I, II and IV hold.
If P1 and P2 violate the property, then there is a primal shared segment s and
a dual shared segment t such that, without loss of generality, t ≺P1 s, but
s ≺P2 dual(t), and furthermore there are no shared segments between t and s
in P1. Let c, d be the endpoints of t, and g, h the endpoints of s. Let Q1 be the
segment of P1 from d to h, and let Q2 be the segment of P2 from h to c̄. Let
P ′

1 = Q1 ◦ Q2. Note that P ′
1 is singular. Let Q3 be the segment of P1 from the

end of core(P1) to the end of P1 (say P1 ends at x). Let Q4 be the segment of P2

from c̄ to the end and let Q5 be the segment of P1 from the beginning to c. Let

Minimum 2CNF Resolution Refutations in Polynomial Time 311

c

a x

x̄

ā
P1

t
s

P2

sdual(t)

a

x̄

P ′
1

P ′
2

t
s

dual(t)

x̄

a

c̄

c

c̄

Fig. 7. Forcing Property III

P ′
2 = Q4 ◦ dual(Q3) ◦Q5. P ′

2 may not be singular, so let P ′′
2 = sing(P ′

2). Clearly
P ′

1 and P ′′
2 are end-contradictory and singular. Also, f(P ′

1, P
′′
2) < f(P1, P2).
�

4 The Algorithm

Our algorithm for finding a minimum Resolution refutation will use dynamic
programming in a similar way that, say, the Bellman-Ford algorithm does. It
would be sufficient to find a minimum pair of singular, end-contradictory paths
P1, P2, but it is unclear how to limit our search to singular paths, since arbitrary
extensions of singular paths are not necessarily singular. On the other hand,
if we have two non-singular, end-contradictory paths, there does not seem to
be a simple characterization of the size of a smallest Resolution refutation in
terms of the lengths of the paths and the lengths of any shared segments. We
get around this problem by defining a generalized cost of two arbitrary paths
such that the cost is at least the size of the minimum joint derivation based on
the paths, but is equal to this size in the case where both paths are singular.
Therefore, optimizing over all pairs of end-contradictory paths with respect to
this generalized cost must find a minimum since we know that the minimum is
achieved by a pair of singular paths.

Another ingredient to the algorithm is that we can focus on pairs of paths
that obey properties I-IV (we will explain what this means for non-singular paths
shortly). In particular, the structure provided by these properties allows us to do
dynamic programming where the recursion is on the number of shared segments
between a pair of paths. The recursion is based on the following idea. The reason
a pair of paths P1 and P2 that minimize the cost function may not each be of
minimum length is that, while longer, they benefit by sharing more clauses. If we
demand that P1 and P2 have a shared segment with specified endpoints, however,
then that segment should be as short as possible; likewise, for any segment of,
say, P1 with specified endpoints that is guaranteed not to overlap any shared
segment. By doing this, we isolate segments of P1 and P2 that we can locally
optimize and then concentrate on the remainder of the paths.

312 J. Buresh-Oppenheim and D. Mitchell

For two paths P1 and P2, define cost(P1, P2, k) to be the minimum of the
expression

length(P1) + length(P2)−
r∑

i=1

length(si)−
q∑

j=1

length(tj)

over all choices of s1, ..., sr, t1, ..., tq, r + q = k, such that s1 ≺P1 · · · ≺P1 sr are
(possibly empty) primal shared segments of P1 and P2, t1 ≺P1 · · · ≺P2 tq are
(possibly empty) dual shared segments of P1 with respect to P2, all of the si’s
and tj ’s are edge-disjoint from one another and they obey Properties I-III. Given
four literals a, b, c, d and a natural number k, define cost(a, b, c, d, k) to be the
minimum over all paths P1 ∈ Pab and P2 ∈ Pcd of cost(P1, P2, k).

The algorithm will compute cost(a, b, c, d, k) for all literals a, b, c, d and all
0 ≤ k ≤ m, and will store with each entry a pair of paths and set of shared
segments that achieve that cost. To find a minimum Resolution refutation, we
search for litarals a, b, x and a number k that minimize

2(cost(a, ā, b, b̄, k) + cost(ā, x, b̄, x̄, 0)) + k − 1.

The reason for the two cost terms is Property IV, which assures us that we need
not consider any shared segments outside of the cores of the paths. For fixed k, let
P1, P2 be the pair of paths that minimize the first term in this expression and let
s1, ..., sr, t1, ..., tq be the shared segments. Let P ′

1, P
′
2 be the paths that minimize

the second term in this expression. Let Q1 = P1 ◦P ′
1 and let Q2 = P2 ◦P ′

2. Then
JointDerive(Q1, Q2, s1, ..., sr, t1, ..., tq) is minimum for this value of k. We then
simply optimize over all values of k.

To begin, for all literals a, b, set B[a, b] to the length of a shortest path in Pab.
This can be done using Bellman-Ford, for example. For all literals a, b, c, d, set
cost(a, b, c, d, 0) to B[a, b]+B[c, d]. To compute a general entry in cost() where k
is nonzero, let P1 and P2 be the paths that achieve the minimum corresponding

For all literals a, b
B[a, b] ←− min{length(P) | P ∈ Pab}

For all literals a, b, c, d
cost(a, b, c, d, 0) ←− B[a, b] + B[c, d]

For k = 1 to m do
For all literals a, b, c, d

For all literals x, y
tmp ←− min{B[a, x] + B[y, d] + B[x, y] + cost(y, b, c, x, k − 1),

B[a, x] + B[b, ȳ] + B[x, y] + cost(y, b, x̄, d, k − 1),
B[y, b] + B[x̄, d] + B[x, y] + cost(a, x, c, ȳ, k − 1)}

If tmp < cost(a, b, c, d, k) then cost(a, b, c, d, k) ←− tmp

Output min0≤k≤m mina,b,x 2(cost(a, ā, b, b̄, k) + cost(ā, x, b̄, x̄, 0)) + k − 1

Fig. 8. Computing the size

Minimum 2CNF Resolution Refutations in Polynomial Time 313

to the entry in question. By Properties I-III, there are three cases. (1) There
are no dual shared segments of P1 with respect to P2. Therefore, the first shared
segment in P1 (in order of appearance) is a primal shared segment s1 that is the
last shared segment in P2. (2) The first shared segment in P1 is a dual shared
segment t1 and dual(t1) is the first shared segment in P2. (3) The last shared
segment in P1 is a dual shared segment tq and dual(tq) is the last shared segment
in P2.

Therefore, to compute cost(a, b, c, d, k), we take the minimum over all literals
x, y of the minimum of (1) B[a, x] + B[y, d] + B[x, y] + cost(y, b, c, x, k− 1); (2)
B[a, x] + B[b, ȳ] + B[x, y] + cost(y, b, x̄, d, k− 1); (3) B[y, b] + B[x̄, d] + B[x, y] +
cost(a, x, c, ȳ, k − 1). The algorithm for computing the size of a smallest Reso-
lution refutation is summarized in figure 8. It is not hard to see that it runs in
time O(n6m). As mentioned above, one can produce a minimum refutation by
keeping track of the paths and shared segments that achieve the minima. This
adds nothing to the asymptotic complexity.

References

1. M. Alekhnovich, S. Buss, S. Moran, and T. Pitassi. Minimum propositional proof
length is NP-hard to linearly approximate. JSL: Journal of Symbolic Logic, 66,
2001.

2. Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm
for testing the truth of certain quantified boolean formulas. Information Processing
Letters, 8(3):121–123, March 1979.

3. J. Buresh-Oppenheim and D. Mitchell. Minimum witnesses for unsatisfiable 2CNFs.
In Proceedings of the 9th International Conference on Theory and Applications of
Satisfiability Testing (SAT), 2006.

4. S.A. Cook. The complexity of theorem proving procedures. In Proc. 3rd Ann. ACM
Symp. on Theory of Computing, pages 151–158, New York, 1971. Association for
Computing Machinery.

5. Alvaro del Val. On 2-SAT and Renamable Horn. In AAAI’2000, Proc. 17th (U.S.)
National Conference on Artificial Intelligence. AAAI Press/The MIT Press, 2000.

6. S. Even, A. Itai, and A Shamir. On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing, 5(4), 1976.

Polynomial Time SAT Decision for

Complementation-Invariant Clause-Sets,
and Sign-non-Singular Matrices

Oliver Kullmann�

Computer Science Department, University of Swansea
Swansea, SA2 8PP, UK

O.Kullmann@Swansea.ac.uk

http://cs-svr1.swan.ac.uk/ csoliver

Abstract. We study complement-invariant clause-sets F , where for
every clause C ∈ F we have C = {x : x ∈ C} ∈ F , i.e., F is closed under el-
ementwise complementation of clauses. The reduced deficiency of a clause-
set F is defined as δr(F) := 1

2
(δ(F) − n(F)), where δ(F) = c(F) − n(F)

is the difference of the number of clauses and the number of variables,
while the maximal reduced deficiency is δ*

r (F) := maxF ′⊆F δr(F
′) ≥ 0.

We show polynomial time SAT decision for complement-invariant clause-
sets F with δ*

r (F) = 0, exploiting the (non-trivial) decision algorithm for
sign-non-singular (SNS) matrices given by [Robertson, Seymour, Thomas
1999; McCuaig 2004]. As an application, hypergraph 2-colourability deci-
sion is considered. Minimally unsatisfiable complement-invariant clause-
sets F fulfil δr(F) = δ*

r (F), and thus we immediately obtain polynomial
time decidability of minimally unsatisfiable complement-invariant clause-
sets F with δr(F) = 0, but we also give more direct algorithms and charac-
terisations (especially for sub-classes). The theory of autarkies is the basis
for all these considerations.

1 Introduction

The deficiency δ(F) = c(F) − n(F) of clause-sets (where c(F) is the number
of clauses, and n(F) is the number of variables) is an interesting parameter,
allowing polynomial time SAT decision for clause-sets F with bounded maximal
deficiency (maximised over all sub-clause-sets; see [3,4]). We make the first step
towards an analogous poly-time hierarchy, where we consider only complement-
invariant clause-sets F (for every C ∈ F also C ∈ F holds), while we strengthen
the notion of deficiency to reduced deficiency δr(F) = 1

2 (δ(F)− n(F)), which is
the deficiency of a “core half” of F , containing one representative C from every
complementary pair C, C of clauses. We prove polynomial time SAT decision
for complement-invariant clause-sets with the maximal reduced deficiency equal
to its minimal value 0. The proof is based on a recent breakthrough by [13,11],
� Supported by grant EPSRC GR/S58393/01.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 314–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Polynomial Time SAT Decision 315

where several long outstanding problems (open for up to 93 years) have been
solved. As an application we obtain polynomial time decision of 2-colourability
of hypergraphs with the maximal deficiency equal to its minimal value 0 (where
the deficiency of an hypergraph is the difference of the number of hyperedges
and the number of variables).

We exploit heavily the relationship between autarky theory and matrix analy-
sis. More specifically, we exploit qualitative matrix analysis (QMA), matrix anal-
ysis modulo the equivalence relation between matrices given by having the same
sign pattern. [2] describes the foundations of QMA in qualitative economics:

Qualitative economics is usually considered to have originated with the
work of Samuelson who discussed the possibility of determining unam-
biguously the qualitative behavior of solution values of a system of equa-
tions. In his pioneering paper Lancaster put it this way:
Economists believed for a very long time, and most economists would
still hope it to be so, that a considerable body of sensible economic
propositions could be expressed in a qualitative way, that is, in a form
in which the algebraic sign of some effect is predicted from a knowl-
edge of the signs, only, of the relevant structural parameters of the
system.

For example, that a system of (differential) equations has a unique solution is
(often) controlled by a square matrix A having non-zero determinant. Now in
qualitative matrix analysis we want det(A) �= 0 independent of the magnitude
of the entries of A, if only the signs are preserved. This example leads to two
fundamental notions of QMA, which are also central for this article: A square
matrix A is called an SNS-matrix if all matrices A′ with the same sign pattern
are non-singular, while more generally a matrix A is called an L-matrix if
all matrices A′ with the same sign pattern have linearly independent rows. As
already remarked in [7], L-matrices correspond 1-1 to complement invariant
clause-sets which are lean (have no non-trivial autarky); the main results of
this article are related to SNS-matrices, which in turn correspond 1-1 to such
lean complement invariant clause-sets which have reduced deficiency 0.

Likely the best way to determine whether an arbitrary matrix is an L-matrix is
to determine whether the corresponding complement invariant clause-set is lean
(for example using the method as discussed in [9]). However for SNS-matrices
finally a polynomial time algorithm was found in [13], which is the basis for de-
ciding leanness and minimally unsatisfiability for complement invariant clause-
sets with reduced deficiency 0 in polynomial time (Corollary 14). In Theorem
20 these result are strengthened by showing that actually satisfiability is de-
cidable in polynomial time for complement invariant clause-sets with maximal
reduced deficiency 0. As an immediate application, in Corollary 22 we obtain,
that 2-colourability for hypergraphs G with maximal deficiency 0 is decidable in
polynomial time.

316 O. Kullmann

2 Some General Theory of Autarky Systems

We use standard (boolean) clause-sets F , which are finite sets of clauses here,
where a clause is a finite set of non-clashing literals; the empty clause is ⊥, the
empty clause-set �. Application of partial assignments ϕ to F is denoted by
ϕ ∗ F (substituting truth values for the literals touched by ϕ with subsequent
simplification), while by V ∗ F for some set V of variables the operation of
crossing out the variables of V from F is denoted (that is, V ∗ F = {{x ∈ C :
var(x) /∈ V } : C ∈ F}). Furthermore F [V] := ((var(F) \ V) ∗ F) \ {⊥} is the
restriction of F to the variable-set V .

A partial assignment ϕ is an autarky for a clause-set F if every clause C ∈ F
touched by ϕ (that is, var(ϕ) ∩ var(C) �= ∅) is actually satisfied by ϕ; the sys-
tematic exploration of autarkies started with [5], where the reader may find more
background information. The main algorithmic use of autarkies ϕ for F is autarky
reduction, the transition from F to the satisfiability-equivalent ϕ∗F (which is the
sub-clause-set of F given by all clauses not touched by ϕ). An autarky ϕ for F
is called balanced if also ϕ is an autarky for F , where ϕ is the pointwise com-
plement of ϕ. Balanced autarkies share many general properties with ordinary
autarkies. Since there are many more types of “special autarkies”, a general the-
ory is needed, provided by the theory of autarky systems, which axiomatically
specifies the properties needed of the map F 	→ A(F) ⊆ Auk(F) from clause-
sets F to sub-monoids A(F) of the autarky monoid so that the special autarkies
behave like ordinary autarkies. See [6,7,8] for precise definitions and some funda-
mental results. All autarky systems we have encountered fulfil, besides the basic
requirements cast in the notion of an autarky system, the following five funda-
mental properties (or can be easily extended to fulfil them), which are collected
in the notion of a normal autarky system (see [8] for the most current version
of this notion):

1. A is iterative, if A-autarkies of sub-clause-sets of F , obtained by A-autarky
reduction, are still in A(F).

2. A is called standardised, if A-autarkies can be set arbitrarily on variables
not in F .

3. A is ⊥-invariant, if A(F) is invariant against addition or deletion of the
empty clause ⊥.

4. A is stable under variable elimination, if for every set V of variables
the A-autarkies of V ∗ F which do not use V are exactly the A-autarkies of
F which do not use V .

5. A is invariant under renaming, if renaming of clause-sets F carries over
to A(F).

In this article we consider four normal autarky systems:

– Auk, the full autarky system (all autarkies)
– BAuk, the system of balanced autarkies (see Section 3)

Polynomial Time SAT Decision 317

– LAuk resp. BLAuk, the normalised system created from simple linear au-
tarkies resp. from simple balanced linear autarkies (see Section 4).1

Let A be a normal autarky system. A clause-set F is called A-lean if F has
no non-trivial A-autarky (one which touches F); there is a largest A-lean sub-
clause-set of F , called the A-lean kernel. F is calledA-satisfiable if the A-lean
kernel is � (which is equivalent to the existence of an A-autarky for F which
actually satisfies F), while otherwise F is called A-unsatisfiable. � is A-lean,
and if F �= � is A-lean, then F is A-unsatisfiable; F is A-lean iff F \ {⊥} is
A-lean iff F ∪ {⊥} is A-lean. If A is the full autarky system, then we just speak
of satisfiability, unsatisfiability, and leanness.

Definition 1. A clause-set F is called minimally A-unsatisfiable, if F is
A-unsatisfiable, while every F ′ ⊂ F is A-satisfiable.

1. For A as the full autarky system we obtain ordinary minimal unsatisfiability.
2. F �= � is minimally A-lean (that is, F is A-lean, while every F ′ ⊂ F is not
A-lean) if and only if F is minimally A-unsatisfiable.

Definition 2. A clause-set F is called barely A-lean (in generalisation of the
notion of a “barely L-matrix” in [2]) if F is A-lean, while for every clause C ∈ F
the clause-set F \ {C} is not A-lean.

1. � is barely A-lean, while if c(F) = 1, then F is not barely A-lean.
2. If F is minimally A-unsatisfiable and c(F) �= 1, then F is barely A-lean.
3. If A is the full autarky system, then we speak of “barely lean”.
4. If F is barely A-lean then ⊥ /∈ F (otherwise also F \ {⊥} would be A-lean).

Lemma 3. If for a normal autarky system A, deciding whether a non-trivial
autarky exists and finding one if existent, is solvable in polynomial time, then
the following decision problems are solvable in polynomial time:

1. A-satisfiability and A-unsatisfiability;
2. minimal A-unsatisfiability;
3. A-leanness;
4. barely A-leanness.

1 The problem with simple (balanced) linear autarkies, which makes “normalisation”
necessary, is that these autarky systems are not “iterative”, that is, in general it
is not the case that if ϕ is a simple (balanced) linear autarky for F and if ψ is
a simple (balanced) linear autarky for ϕ ∗ F , then ψ ◦ ϕ is a (balanced) linear
autarky for F , because ψ might invalidate the (balanced) simple-linear-autarky-
condition for clauses which had been already satisfied by ϕ (and thus were removed).
“Normalisation” just adds these compositions of “iterated autarkies” to the autarky
monoid, and for the resulting (balanced) linear autarkies the adjective “simple” is
dropped; see Subsections 4.4 and 4.6 in [5] for the special case of linear autarkies,
and Lemma 8.4 in [7] for the general case.

318 O. Kullmann

Definition 4. A clause-set F is a generalised sum of clause-sets F1, F2 if
var(F1)∩var(F2) = ∅ with var(F1), var(F2) �= ∅, and there is F ′

2 with F = F1 ·∪F ′
2

(disjoint union), such that F ′
2 is obtained from F2 by adding literals over var(F1)

to clauses from F2 (that is, there exists a bijection α : F2 → F ′
2 such that for all

C ∈ F2 we have α(C) ⊇ C and var(α(C) \ C) ⊆ var(F1)).

1. Let F be a generalised sum of F1, F2:
(a) F = F1 ·∪F ′

2 and var(F) = var(F1) ·∪ var(F2), and thus δ(F) = c(F) −
n(F) = (c(F1) + c(F2))− (n(F1) + n(F2)) = δ(F1) + δ(F2).

(b) F2 \ {⊥} = F [var(F2)].
(c) If F is A-lean, then so is F2.
(d) If F1, F2 are A-lean, then so is F .

2. If F is any clause-set and F1 ⊂ F with ∅ ⊂ var(F1) ⊂ var(F) and such that
for C ∈ F \ F1 we have var(C) �⊆ var(F1), then F is a generalised sum of
F1, F2 for F2 := F [var(F) \ var(F1)].

Definition 5. A clause-set F is A-indecomposable (in generalisation of the
notion of an “L-indecomposable matrix” in [2]) if F is not the generalised sum
of A-lean clause-sets F1, F2; otherwise F is called A-decomposable.

1. Note that if F is A-decomposable, then F is necessarily A-lean, while if F
is not A-lean, then F is A-indecomposable.

2. If A is the full autarky system, then we speak of “autarky indecomposable”.
3. F is A-decomposable iff F \ {⊥} is A-decomposable iff F ∪ {⊥} is A-

decomposable.

Generalising Theorem 2.2.5 in [2]:

Lemma 6. A clause-set F with c(F) ≥ 2 is minimally A-unsatisfiable if and
only if the following two conditions hold:

(i) F is barely A-lean
(ii) F is A-indecomposable.

Proof. Clearly the two conditions are necessary; it remains to see that they are
sufficient. Since F is barely A-lean, F is A-lean, and thus A-unsatisfiable, and
furthermore we have ⊥ /∈ F . Now consider C ∈ F , and assume that F \ {C} is
not A-satisfiable. Then there is a non-trivial autarky ϕ for F \ {C} such that
F1 := ϕ ∗ (F \ {C}) is A-lean, where � ⊂ F1 ⊂ F \ {C}. Now, by Remark 2 to
Definition 4, F is a generalised sum of F1 and F2 := F [var(F)\var(F1)] (clauses
from F \F1 different from C contain some literal satisfied by ϕ, while C contains
a literal falsified by ϕ), contradicting A-indecomposability of F by Remark 1c
to Definition 4. ��
We conclude this section on general autarky systems by regarding the complexity
of the basic decision problems for the full autarky system:

1. satisfiability/unsatisfiability decision is NP/coNP-complete;
2. minimally unsatisfiability decision is DP -complete ([12]);
3. leanness decision is coNP-complete ([7]);
4. barely lean decision is DP -complete ([10]);
5. autarky decomposability decision is in Σ2 (it is not known whether autarky

decomposability decision is Σ2-complete).

Polynomial Time SAT Decision 319

3 Balanced Autarkies

[7] introduced balanced autarkies for clause-sets F , which are partial assign-
ments ϕ such that for every clause C ∈ F touched by ϕ there exists a satisfied
as well as a falsified literal in C. The set of all balanced autarkies for F is
BAuk(F); it is BAuk a normal autarky system. We use the following phrases:

– “BAuk-satisfiable” resp. “BAuk-unsatisfiable” is called balanced satisfiable
resp. balanced unsatisfiable;

– “minimally BAuk-unsatisfiable” is called minimally balanced unsatisfiable;
– “(barely) BAuk-lean” is called (barely) balanced lean;
– “BAuk-indecomposable” is called balanced autarky-indecomposable.

The complexities of the basic decision problems for balanced autarkies are
likely the same as for general autarkies (see the end of Section 2), but proven
at this time is only the coNP-completeness of balanced leanness decision (as
remarked in [7]). For a partial assignment by ϕ we denote the pointwise com-
plement of ϕ, that is, var(ϕ) = var(ϕ) and ϕ(v) = ϕ(v).

Lemma 7. The following assertions are equivalent for a partial assignment ϕ
and a clause-set F :
1. ϕ is a balanced autarky for F
2. ϕ and ϕ are autarkies for F .

Thus complementation of partial assignments yields an automorphism of the
balanced autarky monoid BAuk(F).

3.1 L-Matrices and SNS-Matrices

All matrices in this article have real entries. For a matrix M the sign pattern
sgn(M) is the {−1, 0, +1}-matrix sgn(M) of the same dimension given by entry-
wise sgn-formation, while the null pattern of M is sgn(|M |) (a {0, 1}-matrix),
where |M | denotes entrywise absolute-value formation.

For a clause-set F let M(F) be the clause-variable matrix of F (see Section 3
in [7] for more details). As shown in Section 5 of [7], a clause-set F is balanced
lean if and only if the matrix M(F)t is an L-matrix, where a matrix M is
called an L-matrix if each matrix with the same sign pattern as M has linearly
independent rows. L matrices have at least as many columns as rows, and thus for
balanced lean clause-sets F we have δ(F) ≥ 0 (see Lemma 19 for a more general
and stronger statement). Square L-matrices are called SNS-matrices (“sign-non-
singular matrices”), which are characterised by the condition that every square
matrix with the same sign pattern is invertible (non-singular); so a clause-set F
with δ(F) = 0 is balanced lean iff M(F)t is an SNS-matrix. We also have the
inverse directions (so that the notions of L- and SNS-matrices are fully captured
by balanced lean clause-sets):

1. A matrix M without repeated columns is an L-matrix if and only if M has
no zero rows and “the” clause-set F with M(F)t = M is balanced lean.

320 O. Kullmann

2. A matrix M is an SNS-matrix if and only if M neither has zero rows nor
repeated columns and “the” clause-set F with M(F)t = M is balanced lean
and fulfils δ(F) = 0.

The special treatment of rows and columns is necessary due to the use of clause-
sets, which contract multiple clauses and also eliminate purely “formal” variables
(which do not occur).

For a square {−1, 0, +1}-matrix A of order n ∈ N0 the following conditions
are equivalent (see [2] for the (easy) proofs):

1. A is an SNS-matrix;
2. det(A) �= 0 and all non-null terms in the determinant expansion of A have

the same sign (that is, there is ε ∈ {−1, +1} such for all permutations π ∈ Sn

of {1, . . . , n} in case of
∏n

i=1 Ai,π(i) �= 0 we have sgn(π) ·∏n
i=1 Ai,π(i) = ε).

3. det(A) �= 0 and per(|A|) = |det(A)|, where per(A) =
∑

π∈Sn

∏n
i=1 Ai,π(i)

denotes the permanent of a square matrix A.
4. det(A) �= 0 and for every square matrix M of order n we have per(M ∗|A|) =
|det(M ∗ A)|, where M ∗ A denotes the pointwise (Hadamard-)product of
matrices of the same dimension.

The “Pólya-Problem”, as discussed in [13], is the problem to determine whether
for a square {0, 1}-matrix A there exists an SNS-{−1, 0, +1}-matrix B with the
same null pattern. Algorithm 9.7 there decides in polynomial time whether for
input A the matrix B exists, and also computes B if it exists.2 This algorithm
yields poly-time decision of the SNS-property for square {−1, 0, +1}-matrices M
as follows (while deciding the (general) L-matrix-property is coNP-complete):

1. If det(M) = 0 then M is not an SNS-matrix.
2. Let A := |M |.
3. If A has no associated SNS-matrix B then M is not an SNS-matrix.
4. Otherwise M is an SNS-matrix iff |det(B)| = |det(M)|.

A problem remains: In this way we can decide whether M is an SNS-matrix,
but in case M is not an SNS-matrix, how do we find (in polynomial time) a ma-
trix M ′ with the same sign pattern as M which is singular ? The critical step is
Step 3 in the above procedure, where one has to examine the different obstruc-
tions studied in [13]. It seems plausible, that from these obstructions one can
compute a witness M ′, but on the other hand it doesn’t seem to be straight-
forward, and so we formulate the remaining algorithmic problem as a conjecture:

2 [13] uses an equivalent formulation based on the notion of “Pfaffian orientation”.
For an oriented graph D (undirected graphs, where additionally every edge has an
orientation), in the skew-symmetric {0,±1}-matrix A′(D) of order |V (D)| let entries
±1 denote the direction of edges. A Pfaffian orientation of an undirected graph G
is an orientation σ of the edges of G, yielding an oriented graph Gσ, such that the
square root of the determinant of matrix A′(Gσ) is the number of perfect matchings
of G. When applied to bipartite G, the problem of deciding whether a Pfaffian
orientation of G exists (and then finding one) is equivalent to the Pólya-problem.

Polynomial Time SAT Decision 321

Conjecture 8. The following functional computation problem can be solved in
polynomial time: Given a square matrix A over {−1, 0, +1}, if A is not an SNS-
matrix, then a matrix A′ over Q with the same sign pattern as A′ can be com-
puted such that A′ is singular.

3.2 Complement-Invariant Clause-Sets

By F := {C : C ∈ F} we denote the clause-wise complement of a clause-set F ,
where C := {x : x ∈ C}). The following lemma shows that (un)satisfiability,
minimal unsatisfiability and leanness of F ∪ F is equivalent to the respective
property for F where the full autarky system is replaced with the autarky system
of balanced autarkies (other properties behave in a more complicated way; we
consider only barely leanness here).

Lemma 9. For a clause-set F we have:

1. For a partial assignment ϕ the following conditions are equivalent:
(a) ϕ is an autarky for F ∪ F .
(b) ϕ is a balanced autarky for F ∪ F .
(c) ϕ is a balanced autarky for F .

2. F is balanced satisfiable resp. balanced unsatisfiable iff F ∪ F is satisfiable
resp. unsatisfiable.

3. F is balanced lean iff F ∪ F is lean.
4. F is minimally balanced unsatisfiable iff F ∪ F is minimally unsatisfiable.
5. (a) If F is barely balanced lean then F ∪ F is barely lean.

(b) Conversely, assume that F ∪ F is barely lean.
i. If c(F) = 1 (here the clause of F must be a unit clause), then F is

not barely balanced lean.
ii. If F is a generalised sum of some F1, {U}, where U is a unit clause,

then F is not barely balanced lean (since F1 is balanced lean).
iii. Otherwise F is barely balanced lean.

Proof. Part 1 follows by definition, and Parts 2, 3 are direct consequences of
this basic fact. For Part 4 it is left to show that if F is minimally balanced
unsatisfiable then F ∪F is minimally unsatisfiable; consider a clause C ∈ F ∪F ,
and we have to show that (F ∪ F) \ {C} is satisfiable. There is a balanced
satisfying assignment ϕ for (F ∪ F) \ {C, C}. Since F ∪ F is lean, ϕ touches
C, and then ϕ or ϕ is a satisfying assignment for (F ∪ F) \ {C}. For Part 5
first assume that F is barely balanced lean, and we have to show that F ∪ F
is barely lean. Consider C ∈ F ∪ F . Now (F ∪ F) \ {C, C} has a non-trivial
balanced autarky ϕ. Since F ∪ F is lean, ϕ touches C, and then ϕ or ϕ (again)
is a non-trivial autarky for (F ∪ F) \ {C}.

Conversely assume that F ∪ F is barely lean, c(F) ≥ 2, and consider C ∈ F .
We know that F is balanced lean, and we need to consider whether it is barely
so, that is, whether there is a non-trivial balanced autarky for F \ {C}. There
is a non-trivial autarky ϕ for (F ∪ F) \ {C}. If ϕ touches F \ {C}, then ϕ is a
non-trivial balanced autarky for F \ {C}. So assume var(ϕ) ∩ var(F \ {C}) = ∅.

322 O. Kullmann

So there is x ∈ C with var(x) /∈ var(F \{C}) (while var(C \{x}) ⊆ var(F \{C}),
since F is lean), and thus F is a generalised sum of F1 := F \ {C} and {x} (note
that in case of var(F \ {C}) = ∅ we would have F \ {C} = {⊥}). Now F1 is
balanced lean, since a non-trivial balanced autarky for F \ {C} either does not
touch C, or otherwise a non-balancedness can be repaired using x, and so in
both cases we contradict that F is balanced lean. It follows be definition, (as
stated in case 5(b)ii), that here F is not barely balanced lean. ��

By Lemma 9, Part 4 together with Lemma 6 we get:

Corollary 10. A clause-set F ∪ F , where F is a clause-set with c(F) ≥ 2,
is minimally unsatisfiable if and only if F is barely balanced lean and balanced
autarky-indecomposable.

Definition 11. A clause-set F is called complement-invariant if F = F ,
which is equivalent to the existence of a clause-set F0 with F = F0 ∪F0; such an
F0 is called a core half of F if 2 · c(F0) = c(F).

So only complement-invariant clause-sets F with ⊥ /∈ F have a core half (which
is unique only up to complementation of the clauses), but this little inconve-
nience seems not to justify the use of multi-clause-sets instead in this article
(the problem is that ⊥ = ⊥, which causes contraction for clause-sets). If F is
complement-invariant and ϕ is an autarky for F , then also ϕ∗F is complement-
invariant (obviously this is not the case for arbitrary ϕ).

Definition 12. For an arbitrary clause-set F we define the reduced deficiency
δr(F) := 1

2 (δ(F)− n(F)) ∈ 1
2N0.

If F is complement-invariant with core half F0, then we have δr(F) = δ(F0),
since

δr(F) =
1
2
(δ(F) − n(F)) =

1
2
(c(F) − 2n(F)) =

1
2
(2c(F0)− 2n(F)) =

c(F0)− n(F) = c(F0)− n(F0) = δ(F0).

If F is lean, then we have δr(F) = δ(F0) ≥ 0 (see Lemma 19 for a more general
statement).

3.3 Square Balanced Lean Clause-Sets

Theorem 13. Consider a clause-set F with δ(F) = 0.

1. It is decidable in poly-time whether F is balanced lean.
2. It is decidable in poly-time whether F is barely balanced lean.
3. Assume F is balanced lean. Then F is balanced autarky-decomposable if and

only if F is a generalised sum of clause-sets F1, F2 with δ(F1) = δ(F2) = 0.
4. It is decidable in poly-time whether F is balanced autarky-indecomposable.
5. It is decidable in poly-time whether F is minimally balanced unsatisfiable.

Polynomial Time SAT Decision 323

Proof. Part 1 follows by [13] as discussed in Subsection 3.1. For Part 2 first we
test whether F is balanced lean (by Part 1); assume now that F is balanced lean,
and consider F ∈ C. We have to test whether F \ {C} is (not) balanced lean.
If δ(F \ {C}) = 0, then we can apply Part 1, and so assume δ(F \ {C}) �= 0.
If C would contain two or more variables not occurring in F \ {C} then F
would not be balanced lean, and so all variables of C must occur in F \ {C},
and we have δ(F \ {C}) = −1, in which case F \ {C} is not balanced lean
(as desired). The statement of Part 3 is essentially equivalent to Theorem 2.2.1
in [2], however for the sake of completeness, and also since our notions differ
slightly from [2] in order to accommodate for the differences in handling matrices
and clause-sets, we give a proof here. If F is balanced autarky-decomposable,
then F is a generalised sum of balanced lean clause-sets F1, F2; we then have
δ(F1), δ(F2) ≥ 0, and due to δ(F) = δ(F1)+δ(F2) we get δ(F1) = δ(F2) = 0. For
the opposite direction assume that F is a generalised sum of clause-sets F1, F2

with δ(F1) = δ(F2) = 0; we have that F2 is balanced lean, and we show that F1

is also balanced lean, which is equivalent to M(F1) being an SNS-matrix. We
have the matrix decomposition

M(F) =
(

M(F1) 0
∗ M(F2)

)

.

Because of det(M(F)) = det(M(F1)) · det(M(F2)) we get det(M1) �= 0, and
moreover, if there would be two non-null terms in the determinant expansion
of M(F1) then we would get two non-null terms in the determinant expansion
of M(F) contradicting that M(F) is an SNS-matrix (see the characterisation of
SNS-matrices in Subsection 3.1). For Part 4 w.l.o.g. we can assume that ⊥ /∈ F ;
it suffices now to realise that F is a generalised sum of clause-sets F1, F2 with
δ(F1) = δ(F2) = 0 iff M(F) is partly decomposable as defined in Subsection 4.2
of [1] (there the square submatrices in the decomposition are allowed to be zero
matrices, however this cannot happen in our case, since M(F) has no zero column
as a clause-variable matrix, while it has no zero row by assumption), where the
property of being partly decomposable is decidable in polynomial time.3 Finally
Part 5 follows with Lemma 6 and Parts 2, 4 (and using that � is not minimally
balanced unsatisfiable while {C} for some unit clause C is minimally balanced
unsatisfiable). ��
Corollary 14. Consider a complement-invariant clause-set F with δr(F) = 0.
1. It is decidable in poly-time whether F is lean.
2. It is decidable in poly-time whether F is barely lean.
3. It is decidable in poly-time whether F is minimally unsatisfiable.
3 By Corollary 4.2.4 in [1] thus the algorithm for deciding whether F is balanced

autarky-indecomposable works as follows: Let A := |M(F)|, and consider the bipar-
tite graph G with reduced adjacency matrix A. If G has no perfect matching then
F is balanced autarky-decomposable; otherwise obtain A′ from A by permuting ac-
cordingly rows and columns of A in such a way that the main diagonal of A′ has
only entries equal to 1. Now F is balanced autarky-indecomposable iff the directed
graph with adjacency matrix A′ is strongly connected.

324 O. Kullmann

Proof. Part 1 follows with Theorem 13, Part 1 and Lemma 9, Part 3. Part 2
follows with Theorem 13, Part 2 and Lemma 9, Part 5 as follows: W.l.o.g. ⊥ /∈ F .
Let F0 be a core half of F . If F0 is not balanced lean, then F is not barely lean;
assume now that F0 is balanced lean. If F0 is barely balanced lean, so is F ;
assume now that F0 is not barely balanced lean. If F0 = {C}, then F is barely
lean iff C is a unit clause. If F0 is not a generalised sum of F ′

0, {C} for some
unit clause C, then F is not barely lean. The remaining case is that F0 is a
generalised sum of F ′

0, {C} for some unit clause C. Since F0 is balanced lean,
also F ′

0 must be balanced lean here; now F is barely lean iff F ′
0 is barely balanced

lean. Finally Part 3 follows with Theorem 13, Part 5 and Lemma 9, Part 4. ��
Five examples of minimally unsatisfiable complement-invariant clause-sets F
with δr(F) = 0 follow, where in each case only a core half is given, and variables
are represented by positive integers (the first three examples yield PN-clause-
sets, where every clause is either positive or negative):

1. F 1
0 :=

{ {1, 2}, {2, 3}, {1, 3}}
(the 2-colourability of the triangle).

2. F 2
0 :=

{ {2, 3, 6}, {1, 3, 5}, {1, 2, 4}, {3, 4, 7}, {2, 5, 7}, {1, 6, 7}, {4, 5, 6}}
(the

2-colourability of the Fano plane (the projective plane of order 2)).
3. F 3

0 :=
{ {1, 2, 3}, {2, 3, 4}, {1, 4}, {2, 5}, {3, 5}} (an example with clauses

with empty intersection).
4. F 4

0 :=
{ {−1, 2}, {−2, 3, 4}, {−1,−2,−3, 4}, {−1,−4}} (an example where

the whole clause-set cannot be renamed to a PN-clause-set (i.e., clashes
within F0 are necessary)).

5. F 5
0 :=

{ {−1, 2,−5}, {−1,−2, 3}, {−2,−3, 4}, {−3,−4,−5}, {1,−5}} (with
clauses with empty variable-intersection and necessary clashes within F0).

4 Linear Autarkies and Balanced Linear Autarkies

A linear autarky for a clause-set F is given by a non-trivial solution to the linear-
programming problem M(F)·x ≥ 0, while a balanced linear autarky for F is given
by a non-trivial solution to the linear algebra problem M(F) · x = 0; see [5,7]
for more information. Balanced linear autarkies are special balanced autarkies,
and a partial assignment ϕ is a balanced linear autarky for F iff ϕ, ϕ are linear
autarkies for F . The autarky-existence problem is solvable in polynomial time for
linear autarkies as well as for balanced linear autarkies, and thus with Lemma 3
the basic decision problems for these two (normal) autarky systems are solvable
in polynomial time (while it remains to determine the complexity of (balanced)
linear-autarky-decomposability decision). In full analogy to Lemma 9 we have,
replacing “lean” by “linearly lean” in the statements as well as in the proofs:

Lemma 15. For a clause-set F we have:
1. For a partial assignment ϕ the following conditions are equivalent:

(a) ϕ is a linear autarky for F ∪ F .
(b) ϕ is a balanced linear autarky for F ∪ F .
(c) ϕ is a balanced linear autarky for F .

Polynomial Time SAT Decision 325

2. F is balanced linearly satisfiable resp. balanced linearly unsatisfiable iff F ∪F
is linearly satisfiable resp. linearly unsatisfiable.

3. F is minimally balanced linearly unsatisfiable iff F ∪F is minimally linearly
unsatisfiable.

4. F is balanced linearly lean iff F ∪ F is linearly lean.
5. (a) If F is barely balanced linearly lean then F ∪ F is barely linearly lean.

(b) Conversely, assume that F ∪ F is barely linearly lean.
i. If c(F) = 1 (here the clause of F must be a unit clause), then F is

not barely balanced linearly lean.
ii. If F is a generalised sum of some F1, {U}, where U is a unit clause,

then F is not barely balanced linearly lean (since F1 is balanced lean).
iii. Otherwise F is barely balanced linearly lean.

By Lemma 6 we get (analogously to Corollary 10):

Corollary 16. A clause-set F ∪F for c(F) ≥ 2 is minimally linearly unsatisfi-
able if and only if F is barely balanced linearly lean and balanced linear-autarky-
indecomposable.

Analogously to Theorem 13, Parts 3, 4 we get (note that F with δ(F) = 0 is
balanced linearly lean iff M(F) is non-singular):

Lemma 17. Consider a clause-set F with δ(F) = 0. If F is balanced linearly
lean, then F is balanced linear-autarky-decomposable if and only if F is a gen-
eralised sum of clause-sets F1, F2 with δ(F1) = δ(F2) = 0. Thus it is decidable
in poly-time whether F is balanced linear-autarky-indecomposable.

The maximal deficiency (see [7]) is defined as δ∗(F) = maxF ′⊆F δ(F) ≥ 0 (note
that δ(�) = 0). Analogously we define:

Definition 18. The maximal reduced deficiency is defined as δ*
r (F) :=

maxF ′⊆F δr(F ′) ≥ 0.

If F is complement-invariant and F0 is a core half of F , then δ*
r (F) = δ∗(F0),

and thus for complement-invariant clause-sets δ*
r (F) is computable in polynomial

time. By Lemma 7.2 in [8] we have:

Lemma 19. If a clause-set F0 is balanced linearly lean, then δ∗(F0) = δ(F0)
(and thus δ(F0) ≥ 0). It follows that for a linearly lean complement-invariant
clause-set F we have δ*

r (F) = δr(F) (and thus δr(F) ≥ 0).

Theorem 20. Under the condition that Conjecture 8 holds, for complement-
invariant clause-sets F with δ*

r (F) = 0 the lean kernel is computable in polyno-
mial time (together with a maximal autarky realising the lean kernel). Thus the
satisfiability problem is decidable in polynomial time (providing also a satisfying
assignment in the satisfiable case), and furthermore if F is unsatisfiable, then a
minimally unsatisfiable sub-clause-set can be computed in polynomial time.

Proof. First the input F is reduced to the linearly lean kernel F ′ ⊆ F , where
we have δr(F ′) = 0. If F ′ is lean, then F ′ is the lean kernel of F ; otherwise by
Conjecture 8 (and Lemma 9, Part 1) we can find a non-trivial autarky ϕ for F ′,
and reduce F ′ to F ′′ ⊆ F . The whole cycle is repeated until we find the lean
kernel of F . ��

326 O. Kullmann

5 Hypergraph Colouring

Considering hypergraphs G (that is, pairs G = (V (G), E(G)), where V (G) is a
(finite) set of vertices, and E(G) is the hyperedge set, a set of subsets of V (G))
as special (positive) clause-sets, we naturally transfer the notion of deficiency:

Definition 21. For a hypergraph G let the deficiency be defined as δ(G) :=
|E(G)| − |V (G)|, while the maximal deficiency is δ∗(G) := maxG′⊆G δ(G),
where by “G′ ⊆ G” we denote sub-hypergraphs of G, that is, hypergraphs G′ with
V (G′) ⊆ V (G) and E(G′) ⊆ E(G).

The maximal deficiency of a hypergraph is the maximum size of a matching
in the bipartite hyperedge-vertex graph, and thus is computable in polynomial
time. Core halves of complement-invariant PN-clause-sets F (where a PN-clause-
set contains only positive and negative clauses, and no mixed cases) can be
naturally considered as hypergraphs G(F), which actually can be defined for
arbitrary clause-sets as the variable hypergraph, that is V (G(F)) = var(F),
while E(G(F)) = {var(C) : C ∈ F}. It is easy to see that a complement-
invariant PN-clause-set F is satisfiable resp. minimally unsatisfiable if and only
if G(F) is 2-colourable resp. minimally non-2-colourable (see Lemma 8.1 in [8]
for the general statement, regarding k-colouring of hypergraphs), and thus from
Theorem 20 we directly obtain:

Corollary 22. Under the condition that Conjecture 8 holds, the 2-colouring
problem for hypergraphs G with δ∗(G) = 0 can be solved in polynomial time.

A very informative classification of minimally non-2-colourable intersecting
square hypergraphs has been given in [14], allowing to replace the complicated
algorithm underlying Corollary 22 by some form of simple pattern matching (two
central examples F 1

0 , F 2
0 have been given after Corollary 14); see [8] for more de-

tails (and for the interpretation of these hypergraphs by minimally unsatisfiable
complement-invariant clause-sets of reduced deficiency zero with the property,
that every two different clauses have some variable in common).

6 Open Problems

The main open problem seems to me the following generalisation (the case k = 0
is Theorem 20, but relying on Conjecture 8):

Conjecture 23. For fixed k ∈ N0 the satisfiability problem for complement-
invariant clause-sets F with δ*

r (F) ≤ k is decidable in polynomial time (and
in the satisfiable cases also a satisfying assignment can be computed).

One can further ask whether we have fixed-parameter tractability in k here.
Conjecture 23 implies that for fixed k the hypergraph 2-colouring problem is
decidable in polynomial time for hypergraphs G with δ∗(G) ≤ k; now what
about m-colourability for arbitrary m ≥ 2 ? What is the resolution complexity
of minimally unsatisfiable complement-invariant clause-sets F with δr(F) = 0

Polynomial Time SAT Decision 327

(δr(F) = k) ? Finally, we express the hope, that the broader context of boolean
as well as non-boolean satisfiability will help to gain a better understanding also
for the original combinatorial problems (like finding a Pfaffian orientation of a
(non-bipartite) graph; see [15]).

References

1. Richard A. Brualdi and Herbert J. Ryser. Combinatorial Matrix Theory, volume 39
of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
1991. ISBN 0-521-32265-0; QA188.B78 1991.

2. Richard A. Brualdi and Bryan L. Shader. Matrices of sign-solvable linear systems,
volume 116 of Cambridge Tracts in Mathematics. Cambridge University Press,
1995. ISBN 0-521-48296-8; QA188.B79.

3. Herbert Fleischner, Oliver Kullmann, and Stefan Szeider. Polynomial–time recog-
nition of minimal unsatisfiable formulas with fixed clause–variable difference. The-
oretical Computer Science, 289(1):503–516, November 2002.

4. Oliver Kullmann. An application of matroid theory to the SAT problem. In
Fifteenth Annual IEEE Conference on Computational Complexity (2000), pages
116–124.

5. Oliver Kullmann. Investigations on autark assignments. Discrete Applied Mathe-
matics, 107:99–137, 2000.

6. Oliver Kullmann. On the use of autarkies for satisfiability decision. In Henry
Kautz and Bart Selman, editors, LICS 2001 Workshop on Theory and Applica-
tions of Satisfiability Testing (SAT 2001), volume 9 of Electronic Notes in Discrete
Mathematics (ENDM). Elsevier Science, June 2001.

7. Oliver Kullmann. Lean clause-sets: Generalizations of minimally unsatisfiable
clause-sets. Discrete Applied Mathematics, 130:209–249, 2003.

8. Oliver Kullmann. Constraint satisfaction problems in clausal form: Autarkies,
minimal unsatisfiability, and applications to hypergraph inequalities. In Na-
dia Creignou, Phokion Kolaitis, and Heribert Vollmer, editors, Complexity of
Constraints, number 06401 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, 2006. http://drops.dagstuhl.de/opus/volltexte/2006/803 .

9. Oliver Kullmann, Inês Lynce, and João Marques-Silva. Categorisation of clauses
in conjunctive normal forms: Minimally unsatisfiable sub-clause-sets and the lean
kernel. In Armin Biere and Carla P. Gomes, editors, Theory and Applications
of Satisfiability Testing - SAT 2006, volume 4121 of Lecture Notes in Computer
Science, pages 22–35. Springer, 2006. ISBN 3-540-37206-7.

10. Oliver Kullmann, Victor W. Marek, and Miros�law Truszczyński. Computing au-
tarkies and properties of the autarky monoid. In preparation, January 2007.

11. William McCuaig. Pólya’s permanent problem. The Electronic Journal of Combi-
natorics, 11, 2004. #R79, 83 pages.

12. Christos H. Papadimitriou and David Wolfe. The complexity of facets resolved.
Journal of Computer and System Sciences, 37:2–13, 1988.

13. Neil Robertson, Paul D. Seymour, and Robin Thomas. Permanents, Pfaffian ori-
entations, and even directed circuits. Annals of Mathematics, 150:929–975, 1999.

14. Paul D. Seymour. On the two-colouring of hypergraphs. The Quarterly Journal of
Mathematics (Oxford University Press), 25:303–312, 1974.

15. Robin Thomas. A survey of Pfaffian orientations of graphs. In Proceedings of the
International Congress of Mathematicians, Madrid, Spain, 2006.

http://drops.dagstuhl.de/opus/volltexte/2006/803

Verifying Propositional Unsatisfiability:

Pitfalls to Avoid

Allen Van Gelder

University of California, Santa Cruz CA 95060, USA
http://www.cse.ucsc.edu/~avg

Abstract. The importance of producing a certificate of unsatisfiability
is increasingly recognized for high performance propositional satisfiabil-
ity solvers. The leading solvers develop a conflict graph as the basis for
deriving (or “learning”) new clauses. Extracting a resolution derivation
from the conflict graph is theoretically straightforward, but it turns out
to have some surprising practical pitfalls (as well as the unsurprising
problem that resolution proofs can be extremely long). These pitfalls are
exposed, solutions are presented, and analyzed for worse cases. Dramatic
improvements on industrial benchmarks are demonstrated.

1 Introduction

With the explosive growth of Sat Modulo Theories (SMT) in the last few years,
the focus in propositional SAT solvers is shifting to unsatisfiable formulas, be-
cause these are the negated theorems to be proved in many applications. Produc-
ing proofs and independently checking them has received limited attention. Two
ground-breaking efforts are Goldberg and Novikov [4], who built on BerkMin [3],
and Zhang and Malik [9,10], who built on Chaff [6]. It is important to get our
propositional house in order to provide an adequate foundation for the more so-
phisticated challenge of producing independently checkable proofs for SMT.

The author has argued elsewhere [7] that solvers should be able to produce eas-
ily verifiable certificates to support claims of unsatisfiability. The gold standard
proposed is that the language of certificates should be recognizable in determin-
istic log space, a very low complexity class. Intuitively, an algorithm to recognize
a log space language may re-read the input as often as desired, but can only
write into working storage consisting of a fixed number of registers, each able to
store O(log L) bits, for inputs of length L.

The rationale for such a stringent requirement is that the buck has to stop
somewhere. How are we to trust a “verifier” that is far too complex to be sub-
jected to an automated verification system? And how are we to trust that au-
tomated verification system? Eventually, there has to be a verifier that is so
elementary that we are satisfied with human inspection.

An explicit resolution proof is one in which each derived clause is stated
explicitly, along with the two earlier clauses that were resolved to get the current
clause. It is not hard to see that an explicit resolution proof can be recognized
in deterministic log space.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 328–333, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Verifying Propositional Unsatisfiability: Pitfalls to Avoid 329

�

�y

�x1

�x2

�x3

� t

a

� p

�q

b

Conflict Antecedent

�x1�x2�x3�y�

FirstNewCut Clause

�x1�x2�x3�

1UIP Clause

�p��a� t�

RelSat Clause

�p��a��b�

Decision Clause

�p�q��b�

Fig. 1. Conflict graph with several cuts shown

A detailed specification for an explicit resolution derivation (%RES) was used
for the “certified unsat” track of the SAT 2005 Competition. Although the results
of that track were disappointing, this paper shows how fixing a performance
problem in one solver produced orders-of-magnitude improvement, suggesting
that the methodology is feasible, after all. Details on current capabilities are
available at: http://www.cse.ucsc.edu/∼avg/ProofChecker/.

2 A Pitfall in Resolution Extraction

Most, if not all, leading SAT solvers use a conflict graph data structure to infer
conflict clauses. Figure 1 illustrates a conflict graph. The notation varies from
other papers [11,2] to better reflect the actual data structures used by the pro-
grams. Each graph vertex is associated with a different literal, no complementary
literals appear, and the conflict vertex is associated with the constant false, de-
noted by “⊥.” The vertex for each implied literal, including false, is labeled
with an “input” clause, called the antecedent clause. This notation agrees more
closely with the original presentation . Assumed (guessed) literals, commonly
called “decision literals,” do not have an antecedent clause.

Recent papers have observed the connection between conflict graphs and res-
olution [4,9,2,8]. Of course, given a cut, the antecedent clauses on the conflict
side logically imply the conflict clause, which consists of the negations of the
reason-side literals adjacent to some vertex on the conflict side (i.e., one or more
edges cross the cut to such literals).

The question is how to exploit the structure of the conflict graph to obtain
a resolution derivation of the conflict clause. This question is not as simple as
it might appear, in view of the fact that the algorithm published by Zhang and
Malik, and actually implemented in zverify df (in the zchaff distributions),
has an exponential worst case. Their algorithm is based on Figure 3 of their

330 A. Van Gelder

Fig. 2. Pseudocode to generate resolution proof from conflict graph

[1]

1

2

[2]

�
�

���

�

�
�

��

[
3, 1, 2

]

3

4

[
4, 1, 2

]

�
�

���

�

�
�

��

[
5, 3, 4

]

5

6

[
6, 3, 4

]

�
�

���

�

�
�

��

[
7, 5, 6

]

7

8

[
8, 5, 6

]

�
�

���

�

�
�

��

[
9, 7, 8

]

9

10

[
10, 7, 8

]

�
�

���

�

�
�

��

[
11, 9, 10

]

11

12

[
12, 9, 10

]

����

			

[
11, 12

]

⊥

Fig. 3. DAG family (h = 6 instance) with exponential worst case for zverify df as
published and distributed (through 2006). Antecedent clauses are shown in brackets.

paper [9], the crucial part of which appears in our Figure 2. It is important to
note on line 1 that final conflicting clause is not a conflict clause. Rather,
it denotes the antecedent of ⊥, the “input” clause that became empty during
unit propagation (see “Conflict Antecedent” in Figure 1). The conflict clause is
the final value of cl, and is empty if the solver was correct. An invariant is that
cl contains the negations of some literals in the conflict graph.

Line 3 is implemented two ways in different versions. In one version, the literal
chosen is one with minimum DAG height, which is the maximum path length to a
vertex whose antecedent is a unit clause. In another version, the literal chosen is
simply the one with the lowest variable number, essentially an arbitrary choice.
The conflict graph family that generates exponential behavior in the size of the
conflict graph is the same for both versions. The parameter of this family is h,
the DAG height of the false vertex. A member with h = 6 is shown in Figure 3.
The resolution developed by Figure 2 begins as follows, where “(11)” denotes
resolution with clashing literal 11:

[
11, 12

]
(11)

[
11, 9, 10

]
(9)

[
9, 7, 8

]
(7)

[
7, 5, 6

]
(5)

[
5, 3, 4

]
(3)

[
3, 1, 2

]

(1) [1] (2) [2] (4)
[
4, 1, 2

]
(1) [1] (2) [2] (6)

[
6, 3, 4

]
(3)

[
3, 1, 2

]
. . .

Literals 1 and 2 will be resolved upon 2h−1 times each; literals 3 and 4 will be
resolved upon 2h−2 times each, etc.; the total number of resolutions is 2 (2h−1).

This is a case where theory translates into practice, at least in the case of
the arbitrary choice of literal in the version dated 2004.11.15. Table 1 shows
the sizes of resolution proofs on some smaller industrial benchmarks, for the

Verifying Propositional Unsatisfiability: Pitfalls to Avoid 331

Table 1. Resolution proof length inefficiencies. Sizes are mega-literals. “+?” indicates
job was killed when size exceeded stated number.

Small GN03

benchmark 2004.11.15 with fix

5pipe 153 15
5pipe 1 ooo 986 92
5pipe 5 ooo 2320 94
6pipe 169 97
6pipe 6 ooo 3072+? 486
7pipe 358 319
9vliw bp mc 308 58
barrel7 2754 5
barrel8 3072+? 73
barrel9 3072+? 80
c3540 393 78
c5315 162 9
c7552 2650 22

IBM FV SAT 2005

benchmark 2004.11.15 with fix

01 SAT dat.k10 3 0.134
07 SAT dat.k30 3 2.582
07 SAT dat.k35 3 2.859
18 SAT dat.k10 174 0.511
18 SAT dat.k15 102520+? 14.410
1 11 SAT dat.k10 13 0.338
1 11 SAT dat.k15 128 2.077
20 SAT dat.k10 13 0.208
23 SAT dat.k10 3 0.062
23 SAT dat.k15 15259+? 3.737
26 SAT dat.k10 0.036 0.036
2 14 SAT dat.k10 70 0.857
2 14 SAT dat.k15 3220 7.188

original program and a fixed version that uses a better order, which will be
described shortly. (Although zverify df does not output the resolution proof, it
materializes all the clauses.) The GN03 benchmarks are the smaller ones reported
previously [4,9]. Those labeled “IBM FV” are from the “industrial” category of
the SAT 2005 Competition (see http://www.satcompetition.org/2005 and
the URL given in the introduction).

The purpose of showing this data is to show that extracting a resolution proof
from the conflict graph has the potential for very bad performance, but it is not
intended to criticize the Princeton zchaff team in any way, who have been very
cooperative. Their paper did go through peer review without the problem being
noticed.

3 Avoiding the Pitfall Via “Trivial Resolution” (TVR)

We now introduce some terminology and notation to study efficient methods
of extraction, with worst-case guarantees. We shall use the notation that n is
the number of vertices in the conflict graph, m is the number of edges, d is the
maximum out-degree of any vertex in the conflict graph, and w is the number of
literals in the conflict clause to be derived. Note that the sum of the lengths of
the antecedent clauses is m. Thus (m + w) is the combined length of the input
and output.

A linear resolution derivation is one in which the first clause is an “input” clause,
called the top clause, and each resolution operation has the previous clause in the
derivation as one operand; the second operand may be an “input” clause or an
earlier-derived clause of the linear derivation. (We shorten “resolution derivation”
to “derivation” when there is no ambiguity.) An input derivation is a linear deriva-
tion in which the second operand must be an “input” clause. For our purposes, an

332 A. Van Gelder

“input” clause is one that existed while the conflict graph was being constructed;
this includes antecedent clauses of the conflict graph. Note that Figure 2 provides
a framework for input derivations using antecedent clauses.

Beame et al. [2] define a trivial resolution derivation (TVR) to be an input
derivation with the further restriction that no clashing variable occurs in more
than one resolution operation. They show (their Proposition 4) that the conflict
clause can be derived by a TVR using the antecedent clauses of the conflict-side
vertices of the conflict graph, and using the antecedent of the false vertex as the
top clause. The successful TVR has exactly n resolution operations, but using a
correct order is crucial.

To get a worst-case bound on total derivation size of TVR, measured in num-
ber of literals, we note that it is possible for the current resolvent to grow by up to
(d−1) literals per resolution for the first n/d steps to a size of (w+1+n (d−1)/d),
even if the final conflict clause is fairly narrow. Thereafter, it can shrink only one
literal per resolution, so the sum of the sizes of all resolvents in the derivation
is bounded by (w + n (d − 1)/2 d)n, which can be quadratic in the size of the
conflict graph.

The trouble with TVR scheme is that the correct order is not readily accessible
from the data structure of the conflict graph. To obtain a valid TVR order, the
rule for choose literal on line 3 of Figure 2 should be:

Cut-Crossing Rule: Choose a literal all of whose incoming edges originate
from a vertex whose literal has already been resolved upon, or from the false
vertex (reworded from Beame et al., op cit.).

Some other data structure is needed to provide or compute an appropriate order.
The saving grace is that the input for zverify df is set up by the companion

solver, such as zchaff, which already has such a data structure. The solver
creates a sequence of “implied” literals in the chronological order in which they
entered the conflict graph. When this sequence is available, zchaff uses the
reverse of this order to generate the trace of an input derivation for zverify df
to verify [9]. It is not difficult to see that reverse chronological order satisfies
the cut-crossing rule. (A theoretical nitpick is that the sequence might include
numerous implied literals that are not in the conflict graph, but have to be
looked at anyway, so the time is not strictly bounded by the size parameters of
the conflict graph.)

As it happens, zchaff communicates the successful order to zverify df in
its encoding of the “resolve-trace” for all conflict clauses with a positive “de-
cision level.” Unfortunately, zchaff (through 2006) treats decision level zero
differently, does not actually create an empty conflict clause, and so the crucial
order for decision level zero is not in the encoding of the resolve-trace. Instead
the final conflict graph itself is encoded in the output. Thus zverify df had an
opportunity to go astray.

The “fix” applied by this author to deliver the rightmost column of Table 1
(files available from the author; meanwhile, the “diffs” are available at the URL
mentioned in the introduction) involved modifying zchaff to follow through at
decision level zero, mainly using the procedures and data structures already in

Verifying Propositional Unsatisfiability: Pitfalls to Avoid 333

the program. The fixed program creates an empty conflict clause and encodes its
resolution order in the resolve-trace, using the same protocol as for the nonempty
conflict clauses at positive decision levels. Then zverify df was modified slightly
to expect this additional line.

4 Conclusion

A longer paper at the URL in the introduction has additional details, experimen-
tal results, and discusses another extraction strategy named Pseudo-Unit Propa-
gation (PUP). Both the TVR and PUP methods guarantee that total derivation
size polynomial in the size of the conflict graph, but both have nonlinear worst
cases, which are incomparable. Experimental data on industrial benchmarks (not
presented in detail) shows that PUP derivations are 60% longer than TVR on
average and are longer on about 74% of the benchmarks tested.

The significance of this data and take-home message is: The PUP strategy is
a second, milder, pitfall to avoid. A program that generates resolutions “on-line”
during unit clause propagation will do essentially the same resolutions as a PUP
after-the-fact system. Both theoretical and empirical analyses suggest that this
produces more verbose resolution derivations (aside from the on-line resolutions
that turn out to be unneeded), compared to the after-the-fact TVR method.

References

1. Baase, S., Van Gelder, A.: Computer Algorithms: Introduction to Design and
Analysis. 3rd edn. Addison-Wesley (2000)

2. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. J. Artificial Intelligence Research 22 (2004) 319–351

3. Goldberg, E., Novikov, Y.: Berkmin: a fast and robust sat-solver. In: Proc. Design,
Automation and Test in Europe. (2002) 142–149

4. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF for-
mulas. In: Proc. Design, Automation and Test in Europe. (2003) 886–891

5. Marques-Silva, J.P., Sakallah, K.A.: GRASP–a search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48 (1999) 506–521

6. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: 39th Design Automation Conference. (2001)

7. Van Gelder, A.: Decision procedures should be able to produce (easily) checkable
proofs. In: CP02 Workshop on Constraints in Formal Verification, Ithaca. (2002)

8. Van Gelder, A.: Pool resolution and its relation to regular resolution and DPLL
with clause learning. In: Proc. LPAR, LNAI 3835, Montego Bay. (2005) 580–594

9. Zhang, L., Malik, S.: Validating sat solvers using an independent resolution-based
checker: Practical implementations and other applications. In: Proc. Design, Au-
tomation and Test in Europe. (2003)

10. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable boolean
formula. In: Proc. Theory and Applications of Satisfiability Testing. (2003)

11. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning
in a boolean satisfiability solver. In: ICCAD. (2001)

A Simple and Flexible Way of Computing Small

Unsatisfiable Cores in SAT Modulo Theories

Alessandro Cimatti1, Alberto Griggio2, and Roberto Sebastiani2

1 ITC-IRST, Povo, Trento, Italy
cimatti@itc.it

2 DIT, Università di Trento, Italy
{griggio,rseba}@dit.unitn.it

Abstract. Finding small unsatisfiable cores for SAT problems has re-
cently received a lot of interest, mostly for its applications in formal ver-
ification. Surprisingly, the same problem in the context of SAT Modulo
Theories (SMT) has instead received very little attention in the litera-
ture; in particular, we are not aware of any work aiming at producing
small unsatisfiable cores in SMT.

The purpose of this paper is to start filling the gap in this area, by
proposing a novel approach for computing small unsat cores in SMT. The
main idea is to combine an SMT solver with an external propositional
core extractor: the SMT solver produces the theory lemmas found during
the search; the core extractor is then called on the boolean abstraction
of the original SMT problem and of the theory lemmas. This results in
an unsatisfiable core for the original SMT problem, once the remaining
theory lemmas have been removed.

The approach has several advantages: it is extremely simple to imple-
ment and to update, and it can be interfaced with every propositional core
extractor in a plug-and-play way, so that to benefit for free of all unsat-
core reduction techniques which have been or will be made available.

1 Motivations and Goals

In the last decade we have witnessed an impressive advance in the efficiency of
SAT techniques, which has brought large and previously intractable problems at
the reach of state-of-the-art SAT solvers. In particular, and due to its importance
in formal verification, the problem of finding small unsatisfiable cores in SAT —
i.e., unsatisfiable subsets of unsatisfiable sets of clauses— has been addressed by
many authors in the recent years [8,9,11,4,7,10].

The formalism of plain propositional logic, however, is often not suitable or
expressive enough for representing many interesting real-world problems, which
are more naturally expressible as satisfiability problems in decidable first-order
theories —Satisfiability Modulo Theories, SMT. Efficient SMT solvers have been
developed in the last five years, called lazy SMT solvers, which combine DPLL
with ad-hoc decision procedures for many theories of interest (e.g., [6,1,2,5]).

Surprisingly, the problem of finding unsatisfiable cores in SMT has received
virtually no attention in the literature. Although some SMT tools do compute

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 334–339, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Simple and Flexible Way of Computing Small Unsatisfiable Cores 335

unsat cores, this is done either as a byproduct of the more general task of pro-
ducing proofs, or by modifying the embedded DPLL solver so that to apply
basic propositional techniques to produce an unsat core. In particular, we are
not aware of any work aiming at producing small unsatisfiable cores in SMT.

In this paper we present a novel approach addressing this problem. The main
idea is to combine an SMT solver with an external propositional core extractor.
The SMT solver stores and returns the theory lemmas it had to prove in order to
refute the input formula; the external core extractor is then called on the boolean
abstraction of the original SMT problem and of the theory lemmas. The resulting
boolean unsatisfiable core is cleaned from (the boolean abstraction of) all theory
lemmas, and it is refined back into a subset of the original clauses. The result is
an unsatisfiable core of the original SMT problem.

Although simple in principle, the approach is conceptually interesting: basi-
cally, the SMT solver is used to dynamically lift the suitable amount of theory
information to the boolean level. Furthermore, the approach has several advan-
tages in practice: first, it is extremely simple to implement and to update; second,
it is effective in finding small cores; third, the core extraction is not prone to com-
plex SMT reasoning; finally, it can be interfaced with every propositional core
extractor in a plug-and-play manner, so that to benefit for free of all unsat-core
reduction techniques which have been or will be made available.

For lack of space, in this short version of the paper we omit many details, any
relatedwork and the description and the results of our extensive experimental eval-
uation of the approach. They can be found in the extended version of the paper [3].

2 Background

Given a decidable first-order theory T , we call a theory solver for T , T -solver,
any tool able to decide the satisfiability in T of sets/conjunctions of ground
atomic formulas and their negations (theory literals or T -literals) in the language
of T . If the input set of T -literals μ is T -unsatisfiable, then a typical T -solver
not only returns unsat, but it also returns the subset η of T -literals in μ which
was found T -unsatisfiable. (η is hereafter called a theory conflict set, and ¬η
a theory conflict clause.) If μ is T -satisfiable, then T -solver not only returns
sat, but it may also be able to discover one (or more) deductions in the form
{l1, ..., ln} |=T l, s.t. {l1, ..., ln} ⊆ μ and l is an unassigned T -literal. If so, we call
(
∨n

i=1 ¬li ∨ l) a theory-deduction clause. Importantly, notice that both theory-
conflict clauses and theory-deduction clauses are valid in T . We call them theory
lemmas or T -lemmas.

Satisfiability Modulo (the) Theory T (SMT (T)) is the problem of deciding the
satisfiability of boolean combinations of propositional atoms and theory atoms.
We call an SMT (T) tool any tool able to decide SMT (T). Notice that, unlike a
T -solver, an SMT (T) tool must handle also boolean connectives.

Hereafter we adopt the following terminology and notation. The bijective
function T 2P (“theory-to-propositional”), called boolean abstraction, maps
propositional variables into themselves, ground T -atoms into fresh propositional

336 A. Cimatti, A. Griggio, and R. Sebastiani

variables, and is homomorphic w.r.t. boolean operators and set inclusion. The
function P2T (“propositional-to-theory”), called refinement, is the inverse of
T 2P . The symbols ϕ, ψ denote T -formulas, and μ, η denote sets of T -literals;
ϕp, ψp denote propositional formulas, μp, ηp denote sets of propositional literals
(i.e., truth assignments) and we often use them as synonyms for the boolean ab-
straction of ϕ, ψ, μ, and η respectively, and vice versa (e.g., ϕp denotes T 2P(ϕ),
μ denotes P2T (μp)). If T 2P(ϕ) |= ⊥, then we say that ϕ is propositionally
unsatisfiable.

2.1 Lazy Techniques for SMT

The idea underlying every lazy SMT (T) procedure is that (a complete set of)
the truth assignments for the propositional abstraction of ϕ are enumerated and
checked for satisfiability in T ; the procedure either returns sat if one T -satisfiable
truth assignment is found, or returns unsat otherwise.

A simplified schema of a lazy SMT (T) procedure is as follows. The propo-
sitional abstraction ϕp of the input formula ϕ is given as input to a modified
version of a DPLL solver, and when a satisfying assignment μp is found, the
refinement μ of μp is fed to the T -solver; if μ is found T -consistent, then ϕ
is T -consistent; otherwise, T -solver returns the conflict set η which caused the
T -inconsistency of P2T (μp). Then the clause ¬ηp is added in conjunction to ϕp,
either temporarily or permanently (T -learning), and the algorithm backtracks
up to the highest point in the search where a literal can be unit-propagated on
¬ηp (T -backjumping).

Two important optimizations are early pruning and theory propagation: the T -
solver is invoked also on (the refinement of) an intermediate assignment μ: if
it is found T -unsatisfiable, then the procedure can backtrack, since no exten-
sion of μ can be T -satisfiable; if not, and if the T -solver performs a deduction
{l1, ..., ln} |=T l s.t. {l1, ..., ln} ⊆ μ, then T 2P(l) can be unit-propagated, and
the boolean abstraction of the T -lemma (

∨n
i=1 ¬li ∨ l) can be learned.

The above schema is a coarse abstraction of the procedures underlying all the
state-of-the-art lazy SMT (T) tools like, e.g., BarceLogic, CVCLite, Math-
SAT, Yices. The interested reader is pointed to, e.g., [6,1,2,5], for details and
further references.

2.2 Techniques for Unsatisfiable-Core Extraction in SAT

Given an unsatisfiable (propositional) CNF formula ϕ, we say that an unsatisfi-
able CNF formula ψ is an unsatisfiable core of ϕ iff ϕ = ψ∧ψ′ for some (possibly
empty) CNF formula ψ′. Intuitively, ψ is a subset of the clauses in ϕ causing the
unsatisfiability of ϕ. An unsatisfiable core ψ is minimal iff the formula obtained
by removing any of the clauses of ψ is satisfiable. A minimum unsat core is a
minimal unsat core with the smallest possible cardinality.

In the last few years, several algorithms for computing small [11], minimal
[7,4] or minimum [8,9,10] unsatisfiable cores of propositional formulas have been
proposed. For lack of space, we can not provide details here, and we refer to the
extended version [3] of the paper for a detailed description.

A Simple and Flexible Way of Computing Small Unsatisfiable Cores 337

〈SatValue,Clause set〉 T -Unsat Core(Clause set ϕ) { // ϕ is {C1, ..., Cn}
if (T -DPLL(ϕ) == sat) then return 〈sat,∅〉;
// D1, ..., Dk are the T -lemmas stored by T -DPLL
ψp=Boolean Unsat Core(T 2P({C1, ..., Cn, D1, ..., Dk}));
// ψp is T 2P({C′

1, ..., C
′
m, D′

1, ..., D
′
j}));

return 〈unsat,{C′
1, ..., C

′
m}〉; }

Fig. 1. Schema of the T -Unsat Core algorithm

2.3 Techniques for Unsatisfiable-Core Extraction in SMT

To the best of our knowledge, there is no published work in the literature de-
voted to the computation of unsatisfiable cores in SMT. However, at least three
SMT solvers support unsat core generation with techniques adapted from SAT.
CVCLite [1] and a recent extension of MathSAT [2] can compute unsatisfiable
cores as a byproduct of the generation of proofs, in a way similar to that in [11].
Yices [5] instead uses the following technique: a selector variable is introduced
for each original clause, which is forced to false before starting the search. In this
way, when a conflict at decision level zero is found, the conflict clause contains
only selector variables, and the unsat core returned is the union of the clauses
whose selectors appear in such conflict clause.

We remark the fact that none of these solvers aims at producing minimal or
minimum unsat cores, nor does anything to reduce their size.

3 A Novel Approach to Building Unsat Cores in SMT

We present a novel approach in which the unsatisfiable core is computed a pos-
teriori w.r.t. the execution of the SMT solver, and only if the formula has been
found T -unsatisfiable, by means of an external (and possibly optimized) propo-
sitional unsat-core extractor.

In the following we assume that a lazy SMT (T) procedure has been run
over a T -unsatisfiable SMT (T) CNF formula ϕ =def {C1, ..., Cn}, and that
D1, ..., Dk denote all the T -lemmas, both theory-conflict and theory-deduction
clauses, which have been returned by the T -solver during the run.

Our novel approach is based on two simple facts.

(i) Under the assumptions above, the conjunction of ϕ with all the T -lemmas
D1, ..., Dk is propositionally unsatisfiable: T 2P(ϕ ∧∧n

i=1 Di) |= ⊥.
(ii) As T -lemmas Di are valid in T , they do not affect the T -satisfiability of a

formula: (ψ ∧Di) |=T ⊥ ⇐⇒ ψ |=T ⊥.

These facts suggest the novel algorithm represented in Figure 1. The proce-
dure T -Unsat Core receives as input a set of clauses ϕ =def C1, ..., Cn and it
invokes on it a lazy SMT (T) tool T -DPLL, which is instructed to store some-
where the T -lemmas returned by T -solver, namely D1, ..., Dk. If T -DPLL returns
sat, then the whole procedure returns sat. Otherwise, the boolean abstraction

338 A. Cimatti, A. Griggio, and R. Sebastiani

of {C1, ..., Cn, D1, ..., Dk}, which is inconsistent because of (i), is passed to an
external tool Boolean Unsat Core, which is able to return the boolean unsat
core ψp of the input. By construction, ψp is the boolean abstraction of a clause
set {C′

1, ..., C
′
m, D′

1, ..., D
′
j} s.t. {C′

1, ..., C
′
m} ⊆ {C1, ..., Cn} and {D′

1, ..., D
′
j} ⊆

{D1, ..., Dk}. As ψp is unsatisfiable, then {C′
1, ..., C

′
m, D′

1, ..., D
′
j} is T -unsat.

By (ii), the T -valid clauses D′
1, ..., D

′
j have no role in the T -unsatisfiability of

{C′
1, ..., C

′
m, D′

1, ..., D
′
j}, so that the procedure returns unsat and the T -unsat

core {C′
1, ..., C

′
m}.

The procedure can be implemented very simply by modifying the SMT solver
so that to store the T -lemmas1 —if it doesn’t already— and by interfacing it with
some state-of-the-art boolean unsat-core extractor used as an external black-box
device (e.g., by a simple exchange of files in DIMACS format). Moreover, if the
SMT solver can provide the set of all T -lemmas as output, then the whole
procedure may reduce to a control device interfacing with both the SMT solver
and the boolean core extractor as black-box external devices.

3.1 Discussion

Though based on an extremely simple concept, the newly-proposed approach is
appealing for several reasons.

First, it is extremely simple to implement and update. The building of unsat
cores is demanded to an external device, which is fully decoupled from the in-
ternal DPLL-based enumerator. Therefore, there is no need to implement any
internal unsat-core constructor nor to modify the embedded boolean device. Ev-
ery possible external device can be interfaced in a plug-and-play manner by
simply exchanging a couple of DIMACS files.

Second, from the perspective of effectiveness in reducing the size of unsat
cores, every original clause which the boolean unsat-core device is able to drop
is dropped also in the final formula. Therefore, this technique exploits for free
all unsat-core reduction techniques which have been and will be conceived in the
SAT community.

One potential drawback of this approach is the fact that a SMT (T) solver is
required to store all the T -lemmas returned by the T -solver. However, this is not
a real problem. In fact, unlike with plain SAT, in lazy SMT the computational
effort is typically dominated by the search in the theory T , so that the number
of clauses that can be stored with a reasonable amount of memory is typically
much bigger than the number of calls to the T -solver which can overall be accom-
plished within a reasonable amount of time. In our experience, even the hardest
SMT formulas at the reach of current lazy SMT solvers rarely need generating
more than 105 T -lemmas, which have very reasonable memory requirements to
store. (E.g., notice that the default choice in MathSAT is to learn all T -lemmas
permanently anyway, and we have never encountered memory overload problems
due to this fact.)
1 Notice that here “storing” does not mean “learning”: the SMT solver is not required

to add the T -lemmas to the formula during the search. This imposes no constraint
on the lazy strategy adopted.

A Simple and Flexible Way of Computing Small Unsatisfiable Cores 339

Finally, one limitation of this approach is that the resulting T -unsatisfiable
core is not guaranteed to be minimal, even if Boolean Unsat Core returns mini-
mal boolean unsatisfiable cores. However, to the best of our knowledge, not only
the issue of the minimality of unsat cores in SMT has never been addressed or
even discussed before, but also this is the first time that the problem of the size
of unsat cores in SMT is addressed.

4 Conclusions

We have presented a novel approach to generating small unsatisfiable cores in
SMT, that computes them a posteriori, relying on an external propositional un-
sat core extractor. The technique is very simple in concept, and straightforward
to implement and update. Moreover, it benefits for free of all the advancements
in propositional unsat core computation. Our experimental results, available in
the extended version [3], have shown that, by using different core extractors, it
is possible to reduce significantly the size of cores and to trade core quality for
speed of execution (and vice versa), with no implementation effort.

References

1. C. Barrett and S. Berezin. CVC Lite: A New Implementation of the Cooperating
Validity Checker. In Proc. CAV’04, 2004.

2. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P.van Rossum, S. Schulz,
and R. Sebastiani. An incremental and Layered Procedure for the Satisfiability of
Linear Arithmetic Logic. In Proc. TACAS’05, 2005.

3. A. Cimatti, A. Griggio, and R. Sebastiani. A Simple and Flexible Way of
Computing Small Unsatisfiable Cores in SAT Modulo Theories. Technical Re-
port DIT-07-006, DIT, Univ. of Trento, 2007. Extended version. Available at
http://dit.unitn.it/∼griggio/papers/sat07 extended.pdf.

4. N. Dershowitz, Z. Hanna, and A. Nadel. A Scalable Algorithm for Minimal Un-
satisfiable Core Extraction. In Proc. SAT’06, 2006.

5. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In
Proc. CAV’06, 2006.

6. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T):
Fast decision procedures. In Proc. CAV’04, 2004.

7. R. Gershman, M. Koifman, and O. Strichman. Deriving Small Unsatisfiable Cores
with Dominators. In Proc. CAV’06, 2006.

8. I. Lynce and J. P. Marques Silva. On computing minimum unsatisfiable cores. In
Proc. SAT’04, 2004.

9. M. N. Mneimneh, I. Lynce, Z. S. Andraus, J. P. Marques Silva, and K. A. Sakallah.
A Branch-and-Bound Algorithm for Extracting Smallest Minimal Unsatisfiable
Formulas. In Proc. SAT’05, 2005.

10. J. Zhang, S. Li, and S. Shen. Extracting Minimum Unsatisfiable Cores with a
Greedy Genetic Algorithm. In Proc. ACAI’06, 2006.

11. L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable
boolean formula. In Proc. SAT’03, 2003.

http://dit.unitn.it/~griggio/papers/sat07_extended.pdf

SAT Solving for Termination Analysis with

Polynomial Interpretations�

Carsten Fuhs1, Jürgen Giesl1, Aart Middeldorp2, Peter Schneider-Kamp1,
René Thiemann1, and Harald Zankl2

1 LuFG Informatik 2, RWTH Aachen, Germany
{fuhs,giesl,psk,thiemann}@informatik.rwth-aachen.de

2 Institute of Computer Science, University of Innsbruck, Austria
{aart.middeldorp,harald.zankl}@uibk.ac.at

Abstract. Polynomial interpretations are one of the most popular tech-
niques for automated termination analysis and the search for such inter-
pretations is a main bottleneck in most termination provers. We show
that one can obtain speedups in orders of magnitude by encoding this
task as a SAT problem and by applying modern SAT solvers.

1 Introduction

Termination is one of the most important properties of programs and therefore,
there is a need for techniques and tools that analyze the termination behavior
of programs automatically. In particular, there has been intensive research on
methods for termination analysis of term rewrite systems (TRSs) [4]. Instead
of developing several separate termination techniques for different programming
languages, a promising approach is to transform programs from different lan-
guages into TRSs instead. Then termination tools for TRSs can be used for
termination analysis of many different programming languages, cf. e.g. [13,22].

The increasing interest in termination analysis for TRSs is also shown by the
annual International Competition of Termination Tools.1 In 2006, for the first
time some tools used SAT solvers to automate certain termination techniques,
cf. [1,5,6,11,18,25,26]. But although polynomial interpretations [20] are one of
the most popular techniques in these tools, up to now there has not been any
paper on using SAT solvers for finding polynomial interpretations automatically.

In this paper, we show that SAT solving is extremely useful for this task. We
recapitulate TRSs in Sect. 2. Sect. 3 shows how to encode the search for polyno-
mial interpretations as a SAT problem. Sect. 4 extends our approach to negative
polynomial interpretations [17]. Sect. 5 presents our implementation in the tool
AProVE [14], which was the most powerful termination prover for TRSs in all
the competitions 2004 - 2006. Our experiments show that our approach improves
dramatically over previous methods for generating polynomial interpretations.
� Supported by the DFG (Deutsche Forschungsgemeinschaft) grant GI 274/5-1 and

the FWF (Austrian Science Fund) project P18763.
1 See http://www.lri.fr/∼marche/termination-competition/

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 340–354, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.lri.fr/~marche/termination-competition/

SAT Solving for Termination Analysis with Polynomial Interpretations 341

2 Termination of TRSs and Polynomial Interpretations

A TRSR is a set of rules �→ r where � and r are terms. A rule �→ r applies to a
term t if � matches a subterm u of t with some substitution σ (namely, u = σ(�)).
The rule is applied by replacing the subterm u by σ(r), resulting in a new term v
(a so-called rewrite step, denoted “t→R v”). A reduction is a sequence of rewrite
steps. A TRS is terminating if all its reductions are finite. For example, consider
the following TRS where s represents the successor function, half(x) computes
�x

2 �, and bits(x) is the number of bits needed to represent all numbers up to x.

half(0)→ 0 (i) bits(0)→ 0 (iv)
half(s(0))→ 0 (ii) bits(s(0))→ s(0) (v)

half(s(s(x)))→ s(half(x)) (iii) bits(s(s(x)))→ s(bits(s(half(x)))) (vi)

So we have half(s(s(0)))→R s(half(0))→R s(0), i.e., half(s(s(0)))→∗
R s(0).

One of the most powerful termination methods is the dependency pair (DP)
technique [2], implemented in virtually all current termination tools for TRSs.

Definition 1 (Dependency Pairs [2]). For a TRS R, the defined symbols are
the root symbols of the left-hand sides of rules. For every defined symbol f , we ex-
tend the signature by a fresh tuple symbol f � with the same arity as f . If t =
f(t1, . . . , tn) and f is a defined symbol, we write t� for f �(t1, . . . , tn). If � →
r ∈ R and t is a subterm of r with defined root symbol, then the rule �� → t�

is a dependency pair of R. The set of all dependency pairs of R is denoted
DP(R).

In our example, half and bits are defined symbols and DP(R)={(vii), (viii), (ix)}:
half�(s(s(x)))→ half�(x) (vii)
bits�(s(s(x)))→ half�(x) (viii) bits�(s(s(x)))→ bits�(s(half(x))) (ix)

Intuitively, a DP corresponds to a (possibly recursive) function call. To prove
termination, we have to show that there cannot be infinitely many function calls
in any reduction. More precisely, one has to prove that there is no infinite chain

σ1(u1) →DP (R) σ1(v1) →∗
R σ2(u2) →DP (R) σ2(v2) →∗

R σ3(u3) →DP (R) σ3(v3) . . .

where ui → vi ∈ DP (R) and σi are substitutions. To this end, the DP method2

requires u � v for all u→ v ∈ DP (R) and � � r for all rules �→ r ∈ R:
∧

u→v ∈ DP(R)
u � v ∧

∧

�→r ∈ R � � r (1)

A popular method to search for relations � and � automatically are polyno-
mial interpretations [20]. A polynomial interpretation Pol maps each n-ary func-
tion symbol f to a polynomial fPol over n variables x1, ..., xn with coefficients
from N = {0, 1, 2, ...}. This mapping is extended to terms by defining [x]Pol = x
for all variables x and [f(t1, ..., tn)]Pol = fPol([t1]Pol, ..., [tn]Pol). If the interpre-
tation Pol is clear from the context, we also write [t] instead of [t]Pol.
2 For further refinements of the DP method we refer to [2,12,15,16,17], for example.

342 C. Fuhs et al.

For example, consider Pol1 with halfPol1 = half�Pol1
= x1, bitsPol1 = bits�Pol1

=
sPol1 = x1 + 1, 0Pol1 = 0. Then [half(s(s(x)))] = x + 2 and [s(half(x))] = x + 1.
Now a term u is considered to be greater (resp. greater-equal) than v iff [u] > [v]
(resp. [u] ≥ [v]) holds for all instantiations of the variables with natural numbers.
So with Pol1 we obtain half(s(s(x))) � s(half(x)). In fact, all DPs (vii) - (ix) are
strictly decreasing and the rules (i) - (vi) are at least weakly decreasing, i.e., the
requirement (1) holds. Thus, termination of the TRS (i) - (vi) is proved.

To find such interpretations automatically, one starts with an abstract poly-
nomial interpretation. It maps each n-ary symbol f to a polynomial of the form

a0 + a1 xe11
1 . . . xen1

n + . . . + am xe1m
1 . . . xenm

n (2)

Here, the eij are actual numbers (i.e., one has to determine the degree and the
shape of the polynomials), but the coefficients ai are left open (i.e., they are vari-
able or abstract coefficients). For example, we could use the abstract polynomial
interpretation Pol2 with halfPol2 = a x1 + b, sPol2 = c x1 + d, etc.

Every inequality u � v (resp. u � v) can be transformed into the constraint
[u]− [v] > 0 (resp. [u]− [v] ≥ 0). Here, [u]− [v] is a polynomial of the form

p0 + p1 xe11
1 . . . xen1

n + · · ·+ pk xe1k
1 . . . xenk

n (3)

where pi are polynomials over abstract coefficients. So with Pol2, half(s(s(x)))�
s(half(x)) is transformed to a c2 x + a c d + a d + b− c a x− c b− d > 0, i.e. to

p0 + p1 x > 0 where p0 = a c d + a d + b− c b− d and p1 = a c2 − c a (x)

If p is a polynomial like (3), then instead of inequalities or equalities of the
form p > 0, p ≥ 0, p = 0, it suffices3 to require the following constraints [19]:

αp>0 = (p0 > 0 ∧ p1 ≥ 0 ∧ . . . ∧ pk ≥ 0) (4)
αp≥0 = (p0 ≥ 0 ∧ p1 ≥ 0 ∧ . . . ∧ pk ≥ 0) (5)
αp=0 = (p0 = 0 ∧ p1 = 0 ∧ . . . ∧ pk = 0) (6)

So instead of (x), it is sufficient to demand p0 > 0 and p1 ≥ 0:

a c d + a d + b− c b− d > 0 ∧ a c2 − c a ≥ 0 (xi)

Such constraints can be transformed further such that they do not contain
subtractions and “≥” anymore. For example, (xi) can be transformed into

a c d + a d + b > c b + d ∧ (a c2 > c a ∨ a c2 = c a) (xii)

Now to prove termination one has to show the satisfiability of such Diophan-
tine constraints over the naturals. Def. 2 introduces their syntax and semantics.

Definition 2 (Diophantine Constraints). Let A be a set of Diophantine
variables. The set of polynomials P is the smallest set with

• A ⊆ P and N ⊆ P
• If {p, q} ⊆ P then {p + q, p ∗ q} ⊆ P

3 Of course, αp>0 and αp≥0 are sufficient, but not necessary for p > 0 and p ≥ 0.

SAT Solving for Termination Analysis with Polynomial Interpretations 343

The set of Diophantine constraints C is the smallest set with

• {true, false} ⊆ C
• If {p, q} ⊆ P then {p > q, p = q} ⊆ C
• If {α, β} ⊆ C then {¬α, α ∧ β, α ∨ β, α→ β, α↔ β, α⊕ β} ⊆ C

A Diophantine interpretation D is a mapping D : A → N. It can be extended
to polynomials by defining D(n) = n for all n ∈ N, D(p + q) = D(p) + D(q),
and D(p ∗ q) = D(p) ∗ D(q). It can also be extended to Diophantine constraints
as follows (i.e., we then have D : C → {0, 1}, where 0 stands for “false” and 1
stands for “true”). As usual, D is called a model of a constraint α iff D(α) = 1.

• D(true) = 1, D(false) = 0
• D(p > q) = 1 if D(p) > D(q) and D(p > q) = 0, otherwise
• D(p = q) = 1 if D(p) = D(q) and D(p = q) = 0, otherwise
• D(¬α) = 1 if D(α) = 0 and D(¬α) = 0, otherwise,

and similarly for the other Boolean connectives, where ⊕ is exclusive-or

For example, let a ∈ A and let D with D(a) = 2. Then D(2 ∗ a) = D(2) ∗D(a) =
2 ∗ 2 = 4 and D(1 + a) = 3. Thus, D(2 ∗ a > 1 + a) = 1, since 4 > 3.

Similarly, the constraint (xii) is satisfied by the interpretation D(a) = 1,
D(b) = 0, D(c) = 1, and D(d) = 1. This Diophantine interpretation instan-
tiates the abstract polynomial interpretation Pol2 with halfPol2 = a x1 + b and
sPol2 = c x1+d to the concrete polynomial interpretation Pol1 with halfPol1 = x1

and sPol1 = x1 + 1 (i.e., we also write4 D(Pol2) = Pol1).
To summarize, to prove termination we proceed as follows:

1. Transform the termination problem into inequalities u � v or u � v between
terms. If one uses the DP method, then one obtains a requirement like (1).

2. Fix an abstract polynomial interpretation and transform the inequalities into
[u]− [v] > 0 or [u]− [v] ≥ 0, respectively.

3. Replace [u] − [v] > 0 and [u] − [v] ≥ 0 by α[u]−[v]>0 and α[u]−[v]≥0, cf. (4), (5).
4. Transform the obtained constraint into a Diophantine constraint containing

only > and = and no subtractions.
5. Check the satisfiability of the resulting Diophantine constraint. In the next

section, we will show how to perform this check using SAT solvers.

3 Encoding Diophantine Constraints to SAT

We have shown that to prove termination, it suffices to prove the satisfiability
of a Diophantine constraint. Now we reduce this problem to a SAT problem. We
first give the syntax and semantics of propositional logic. Here, we also regard
tuples of formulas which are interpreted as binary representations of numbers.

Definition 3 (Propositional Logic). Let V be a set of propositional variables.
Then the set of propositional formulas F is the smallest set with
4 D only instantiates abstract coefficients like a, b, c, d. For variables xi we define
D(xi) = xi. Thus D(ax1 + b) = 1 ∗ x1 + 0 = x1.

344 C. Fuhs et al.

• V ⊆ F and {0, 1} ⊆ F
• If {ϕ, ψ} ⊆ F then {¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ϕ↔ ψ, ϕ⊕ ψ} ⊆ F

A propositional interpretation I : V → {0, 1} can be extended to formulas as
follows (i.e., we then have I : F → {0, 1}). I is called a model of ϕ iff I(ϕ) = 1.

• I(0) = 0, I(1) = 1
• I(¬ϕ) = 1 if I(ϕ) = 0 and I(¬ϕ) = 0, otherwise (similarly for ∧,∨,→,↔,⊕)

Finally, a propositional interpretation can also be extended to tuples of n propo-
sitional formulas (with n ≥ 1) by defining I : Fn → N where

I(〈ϕ1, . . . , ϕn〉) = 2n−1 ∗ I(ϕ1) + 2n−2 ∗ I(ϕ2) + . . . + 2 ∗ I(ϕn−1) + I(ϕn)

As an example, let a1, a2 ∈ V with I(a1) = 1 and I(a2) = 0. Then we have
I(〈a1,¬a2 ∧ 1, a2〉) = 4 ∗ I(a1) + 2 ∗ I(¬a2 ∧ 1) + I(a2) = 4 ∗ 1 + 2 ∗ 1 + 0 = 6.

Note that one can always delete zeros at the beginning of a tuple since
I(〈0, . . . , 0, ϕ1, . . . , ϕn〉) = I(〈ϕ1, . . . , ϕn〉) for any interpretation I. Moreover,
we identify one-element-tuples with the element itself since I(〈ϕ〉) = I(ϕ).

Satisfiability of Diophantine constraints is undecidable (it corresponds to
Hilbert’s 10th problem). Therefore, we restrict the search to Diophantine inter-
pretations of the form D : A → {0, . . . , 2k − 1} for a fixed k ≥ 1. Then variables
are only instantiated by numbers that can be represented by k bits. Satisfiability
of Diophantine constraints by such restricted interpretations is NP-complete.

We now introduce a mapping ||.|| : C → F from Diophantine constraints to
propositional formulas such that a constraint α is satisfiable by an interpretation
D : A → {0, . . . , 2k − 1} iff the propositional formula ||α|| is satisfiable.

We first define ||.|| on Diophantine variables. Every Diophantine variable is
mapped to a tuple of k propositional variables, i.e., we have ||.|| : A → Vk:

||a|| = 〈a1, . . . , ak〉 for every Diophantine variable a ∈ A (7)

The idea is that 〈a1, . . . , ak〉 should be the binary representation of a. For any
propositional interpretation I we define the corresponding interpretation DI.

Definition 4 (Corresponding Interpretations). Let V contain a1, . . . , ak

for any Diophantine variable a ∈ A. For any propositional interpretation I, we
define the corresponding Diophantine interpretation as DI(a) = I(〈a1, . . . , ak〉).
So if k = 2, then ||a|| = 〈a1, a2〉. The propositional interpretation I(a1) = 1 and
I(a2) = 0 corresponds to the interpretation with DI(a) = I(〈a1, a2〉) = 2.

Now we define ||.|| for natural numbers. Again, ||.|| maps numbers to their
binary representation, i.e., we have ||.|| : N→ {0, 1}+:

||n|| = 〈b1, . . . , b�〉 for every n ∈ N (8)

where all bi ∈ {0, 1} and n = 2�−1 ∗ b1 + 2�−2 ∗ b2 + . . . + 2 ∗ b�−1 + b�. To avoid
unnecessary long encodings with zeros at the beginning, we require b1 = 1 for
all n > 0 (i.e., we require that as few bits as possible are used for representing
n > 0). So for example, we have ||2|| = 〈1, 0〉. For the representation of the
number 0 we define ||0|| = 〈0〉. Note that DI(n) = n = I(||n||) for all n ∈ N.

SAT Solving for Termination Analysis with Polynomial Interpretations 345

Next we define ||.|| for polynomials. As before, every polynomial is mapped
to a tuple of propositional formulas, i.e., ||.|| : P → F+. The goal is to obtain
the following correspondence for all polynomials p and all interpretations I:

DI(p) = I(||p||) (9)

To handle addition and multiplication, we introduce operations B+ : F+×F+ →
F+ and B∗ : F+×F+ → F+ on tuples of propositional formulas. We then define

||p + q|| = B+(||p||, ||q||) and ||p ∗ q|| = B∗(||p||, ||q||) (10)

for all polynomials p and q. We first give the definition of B+.

• B+(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) = B+(〈ϕ1, ..., ϕn〉, 〈 0, ..., 0
︸ ︷︷ ︸

n−m times

, ψ1, ..., ψm〉) if n > m

• B+(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) = B+(〈 0, ..., 0
︸ ︷︷ ︸

m−n times

, ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) if n < m

• B+(〈ϕ〉, 〈ψ〉) = 〈ϕ ∧ ψ, ϕ ⊕ ψ〉
• B+(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψn〉) = 〈B2or3(ϕ1, ψ1, ξ1), B

1or3(ϕ1, ψ1, ξ1), ξ2, ..., ξn〉
if B+(〈ϕ2, ..., ϕn〉, 〈ψ2, ..., ψn〉) = 〈ξ1, ..., ξn〉

Thus, ξ1 is the carry resulting from adding 〈ϕ2, ..., ϕn〉 and 〈ψ2, ..., ψn〉. Here
“B1or3(ϕ1, ψ1, ξ1)” abbreviates ϕ1 ⊕ ψ1 ⊕ ξ1 (i.e., either one or all three of the
formulas ϕ1, ψ1, and ξ1 must be true). Similarly, “B2or3(ϕ1, ψ1, ξ1)” abbreviates
(ϕ1 ∧ ψ1) ∨ (ϕ1 ∧ ξ1) ∨ (ψ1 ∧ ξ1). For example, we have5

B+(〈1〉, 〈a2〉) = 〈1 ∧ a2, 1 ⊕ a2〉 = 〈a2,¬a2〉
B+(〈0, 1〉, 〈a1, a2〉) = 〈B2or3(0, a1, a2), B

1or3(0, a1, a2),¬a2〉 = 〈a1 ∧ a2, a1 ⊕ a2, ¬a2〉

Therefore, we obtain ||1 + a||=B+(||1||, ||a||)=B+(〈1〉, 〈a1, a2〉)=〈a1 ∧ a2, a1 ⊕
a2, ¬a2〉. Indeed, if I(a1)=1 and I(a2)=0 (i.e., DI(a)=2), then DI(1 + a)=3
and I(||1 + a||)=I(〈a1 ∧ a2, a1 ⊕ a2,¬a2〉)=3. Hence, DI(1 + a) = I(||1 + a||),
as desired in (9). Next we give the definition of B∗ : F+ ×F+ → F+.

• B∗(〈ϕ1, ..., ϕn〉, 〈ψ〉) = 〈ϕ1 ∧ ψ, ..., ϕn ∧ ψ〉
• B∗(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) = B+(〈ϕ1 ∧ ψ1, ..., ϕn ∧ ψ1, 0, ..., 0

︸ ︷︷ ︸
m−1 times

〉,

B∗(〈ϕ1, ..., ϕn〉, 〈ψ2, ..., ψm〉)), if m ≥ 2.

E.g., ||2 ∗ a|| = B∗(||2||, ||a||) = B∗(〈1, 0〉, 〈a1, a2〉)
= B+(〈1 ∧ a1, 0 ∧ a1, 0〉, B∗(〈1, 0〉, 〈a2〉)) = B+(〈a1, 0, 0〉, 〈a2, 0〉)
= B+(〈a1, 0, 0〉, 〈0, a2, 0〉) = 〈0, a1, a2, 0〉 = 〈a1, a2, 0〉.

Indeed, if I(a1) = 1 and I(a2) = 0 (i.e., DI(a) = 2), then DI(2 ∗ a) = 4 =
I(〈a1, a2, 0〉) = I(||2 ∗ a||), as desired in (9). We state (9) as a general lemma.

Lemma 5 (Correctness of Encoding Polynomials). For every polynomial
p ∈ P and every propositional interpretation I, we have DI(p) = I(||p||).6
5 For readability, we perform Boolean simplifications like replacing 1 ∧ a2 by a2, etc.
6 All proofs can be found in [10].

346 C. Fuhs et al.

Now we extend the mapping ||.|| to ||.|| : C → F . Thus, every Diophantine
constraint is mapped to a formula (not to a tuple). Obviously, we define

||true|| = 1 and ||false|| = 0 (11)

For Diophantine constraints that are polynomial inequalities or equalities, we
introduce operations B> : F+ ×F+ → F and B= : F+ ×F+ → F and define

||p > q|| = B>(||p||, ||q||) and ||p = q|| = B=(||p||, ||q||) (12)

for all polynomials p and q. To define B> and B=, we first handle the case where
the argument tuples have different lengths. For ◦ ∈ {=, >} we define

• B◦(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) = B◦(〈ϕ1, ..., ϕn〉, 〈 0, ..., 0
︸ ︷︷ ︸

n−m times

, ψ1, ..., ψm〉) if n > m

• B◦(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) = B◦(〈 0, ..., 0
︸ ︷︷ ︸

m−n times

, ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) if n < m

Now we define B> and B= for tuples of equal length.

• B=(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψn〉) = (ϕ1 ↔ ψ1) ∧ . . . ∧ (ϕn ↔ ψn)
• B>(〈ϕ〉, 〈ψ〉) = ϕ ∧ ¬ψ
• B>(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψn〉) = (ϕ1 ∧ ¬ψ1) ∨

((ϕ1 ↔ ψ1) ∧ B>(〈ϕ2, ..., ϕn〉, 〈ψ2, ..., ψn〉)), if n ≥ 2

For example, ||2 ∗ a > 1 + a|| = B>(||2 ∗ a||, ||1 + a||)
= B>(〈a1, a2, 0〉, 〈a1 ∧ a2, a1 ⊕ a2,¬a2〉)
= (a1 ∧ ¬a2) ∨ ((a1 ↔ a2) ∧ ((a2 ∧ ¬(a1 ⊕ a2)) ∨ . . .))
= a1

So ||2∗a > 1+a|| only holds for the propositional interpretations where I(a1) =
1. Indeed, the corresponding Diophantine interpretations with DI(a) = 2 or
DI(a) = 3 are the only ones satisfying the constraint 2 ∗ a > 1 + a (if we are
restricted to D(a) ∈ {0, . . . , 3}). Finally, we define ||.|| on non-atomic constraints:

||¬α|| = ¬||α|| and ||α ◦ β|| = ||α|| ◦ ||β|| for all ◦ ∈ {∧,∨,→,↔,⊕} (13)

By Thm. 6, our encoding defined in (7), (8), (10), (11), (12), (13) is correct.

Theorem 6 (Correctness of Encoding Diophantine Constraints). For
every α ∈ C and every propositional interpretation I, we have DI(α) = I(||α||).

So to determine the satisfiability of a Diophantine constraint α by a Diophan-
tine interpretation with numbers from {0, . . . , 2k − 1}, we now encode α as a
propositional formula ||α|| and then use a SAT solver to find a model I of ||α||.
Thm. 7 shows that the size of our encoding is polynomial.

Theorem 7 (Size of Encoding). Let α ∈ C such that every number in α is
≤ 2k − 1. Then the size of ||α|| is in O(|α|2 ∗ k2), where |α| is the size of α.

SAT Solving for Termination Analysis with Polynomial Interpretations 347

4 Polynomials with Negative Constant

Now we regard polynomials fPol which may have a negative constant coefficient
(i.e., in (2) one may have a0 < 0). All other coefficients still have to be natural
numbers. As demonstrated by the tools TTT [17] and AProVE [14] in the termi-
nation competitions, such polynomials (in connection with the DP method) are
very helpful in practice. We show how to extend our approach in order to use
SAT solvers also for such polynomial interpretations.

As in [3, Ex. 4.28], we replace the rules (v) and (vi) of our TRS by

bits(s(x))→ s(bits(half(s(x)))).

Instead of (viii) and (ix) we get the DPs bits�(s(x))→ half�(s(x)) and bits�(s(x))
→ bits�(half(s(x))). Now there is no polynomial interpretation with non-negative
coefficients where the DPs are strictly and the rules are weakly
decreasing.

Thus, we use a polynomial interpretationPol3 with halfPol3 = x1−1. However,
if one extends such interpretations to terms naively, then terms could be mapped
to negative numbers and thus, the resulting order would not be well founded.
Hence, [17] proposed the following modification in the definition of [.]: [x] = x
for all variables x and [f(t1, . . . , tn)] = max(fPol([t1], . . . , [tn]), 0). So if sPol3 =
x1 + 1, then [s(half(x))]Pol3 = max(max(x − 1, 0) + 1, 0). Now one can again
replace inequalities u � v (resp. u � v) by [u] > [v] (resp. [u] ≥ [v]).

We are interested in abstract polynomial interpretations with variable coef-
ficients. To find suitable values for the coefficients, up to now inequalities like
[u] > [v] were transformed into Diophantine constraints by building α[u]−[v]>0

etc., cf. (4) and (5). Here, we simply required all coefficients of the polynomial
[u]− [v] to be non-negative resp. positive. However, now [u]− [v] contains “max”
(i.e., it is no longer a polynomial). Thus, it is unclear how to transform [u] > [v]
into a satisfiability problem of a Diophantine constraint.

To solve this problem, let us first regard concrete polynomial interpretations
(where the coefficients are actual numbers). Here, the occurrences of “max” in
inequalities [u] > [v] could be eliminated by case analyses. But to increase effi-
ciency, [17] presented an alternative approach to transform inequalities like [u] >
[v] into ordinary polynomial inequalities without “max”. The idea is to define
an under-approximation [.]left and an over-approximation [.]right which do not
contain “max” anymore. Then instead of [u] > [v] one requires [u]left > [v]right .

Definition 8 ([.]left and [.]right for Concrete Interpretations [17]). For
every polynomial p we denote its constant part by con(p) and the non-constant
part p − con(p) by ncon(p). For any concrete polynomial interpretation Pol

and any term t, we define the polynomials [t]leftPol and [t]rightPol as
follows:7

7 If Pol is clear from the context we again omit the subscript “Pol”.

348 C. Fuhs et al.

[t]left =

⎧
⎨

⎩

t if t is a variable
0 if t = f(t1, . . . , tn), ncon(p1) = 0, and 0 > con(p1)
p1 if t = f(t1, . . . , tn), otherwise

[t]right =

⎧
⎨

⎩

t if t is a variable
ncon(p2) if t = f(t1, . . . , tn) and 0 > con(p2)
p2 if t = f(t1, . . . , tn), otherwise

where p1 = fPol([t1]left , . . . , [tn]left) and p2 = fPol([t1]right , . . . , [tn]right).

As shown in [17], we have [t]left ≤ [t] ≤ [t]right for all terms t. Moreover, if the
polynomial interpretation has no negative constants, then we have [t]left = [t] =
[t]right . For the polynomial interpretation with halfPol3 = x1 − 1, we obtain

[half(x)]leftPol3
= x− 1 [half(x)]Pol3 = max(x − 1, 0) [half(x)]rightPol3

= x (xiii)

The reason is that for both i ∈ {1, 2}, we have pi = halfPol3(x) = x−1 and thus
ncon(pi) = x and con(pi) = −1. If Pol3 is defined like our previous interpretation
Pol1 on all remaining function symbols except half, then we obtain [u]left >
[v]right for all DPs u → v and [�]left ≥ [r]right for all rules � → r. Thus, the
termination of our modified example can now easily be shown.

The disadvantage of Def. 8 is that one can only compute [t]left and [t]right for
concrete polynomial interpretations.8 However, if one wants to find the coeffi-
cients of the polynomial interpretations automatically, then it would be better
to start with abstract polynomial interpretations again where the coefficients ai

in (2) are left open (i.e., they are variable coefficients).
For example, we would use an abstract interpretation Pol2 with halfPol2 =

a x1+b. Here, a may only be instantiated by natural numbers, whereas we de-
note Diophantine variables like b that may be instantiated by integers in bold
face. However, to compute [half(x)]leftPol2

and [half(x)]rightPol2
we would have to decide

whether ncon(pi) = a x and con(pi) = b are equal to resp. less than 0. This of
course depends on the instantiation of the variable coefficients a and b.

Therefore, we now modify Def. 8 to make it suitable for abstract polynomial
interpretations. The idea is to introduce new variables bleft

t and brightt for any
term t and to create Diophantine constraints αleft

t and αright
t which guarantee

that bleft
t and brightt are instantiated correctly. To this end, we express the con-

ditions ncon(p1) = 0 and 0 > con(pi) from Def. 8 as Diophantine constraints.

Definition 9 ([.]left and [.]right for Abstract Interpretations). For any
abstract polynomial interpretation Pol and any term t, we define:

• If t is a variable, then [t]left = t, [t]right = t, αleft
t = true, and αright

t = true.
• If t = f(t1, . . . , tn), then9 [t]left =ncon(p1)+ bleft

t , [t]right =ncon(p2)+ brightt ,

8 Thus, current implementations for negative polynomials like TTT and AProVE sim-
ply test several choices for the coefficients. More sophisticated algorithms for sys-
tematically finding coefficients like [8] only work for non-negative coefficients.

9 Note that according to Def. 8, [t]left = ncon(p1) if ncon(p1) = 0 and 0 > con(p1).

SAT Solving for Termination Analysis with Polynomial Interpretations 349

αleft
t = αleft

t1 ∧ ... ∧ αleft
tn
∧ (αncon(p1)=0 ∧ 0>con(p1) → bleft

t =0)
∧ (¬(αncon(p1)=0 ∧ 0>con(p1))→ bleft

t =con(p1))

αright
t = αright

t1 ∧ ... ∧ αright
tn

∧ (0>con(p2) → brightt =0)
∧ (¬(0>con(p2))→ brightt =con(p2))

Here, p1 and p2 are defined as in Def. 8 and αncon(pi)=0 is defined as in (6).

For halfPol2 = a x1+b and t = half(x), we have ncon(pi) = a x, con(pi) = b,

[half(x)]leftPol2
= ax + bleft

t and [half(x)]rightPol2
= ax + bright

t (xiv)

αleft
t = ((a = 0 ∧ 0 > b) → bleft

t = 0) ∧ (¬(a = 0 ∧ 0 > b) → bleft
t = b) (xv)

αright
t = ((0 > b) → bright

t = 0) ∧ (¬(0 > b) → bright
t = b) (xvi)

Thm. 10 shows that Def. 9 extends Def. 8 to abstract interpretations correctly.

Theorem 10 (Correspondence of Def. 8 and 9). Let D be a Diophantine
interpretation (which may also map bold variables to integers). Let Pol be an
abstract polynomial interpretation, and let t be a term. Then D(αleft

t) = 1 implies
D([t]leftPol) = [t]leftD(Pol) and D(αright

t) = 1 implies D([t]rightPol) = [t]rightD(Pol).

For example, let D be an interpretation which turns the abstract polynomial in-
terpretation Pol2 into the concrete interpretation Pol3. Thus, we have D(a) = 1
and D(b) = −1 and indeed, D(halfPol2) = D(a x1+b) = x1 − 1 = halfPol3 . To
satisfy the Diophantine constraints αleft

t and αright
t in (xv) and (xvi), we must have

D(bleft
t) = −1 and D(brightt) = 0. Then by (xiii) and (xiv) we indeed obtain

D([half(x)]leftPol2
) = D(ax + bleft

t) = x− 1 = [half(x)]leftPol3

D([half(x)]rightPol2
) = D(ax + brightt) = x = [half(x)]rightPol3

So we generate Diophantine constraints containing bold variables like b and
bleft

t which may be instantiated by integers. However, our encoding to propo-
sitional formulas in Sect. 3 only handles instantiations with natural numbers.
Therefore, we now show how to remove bold variables from constraints α.

In the encoding ||α||, we restricted ourselves to interpretations D where for
all (non-bold) variables a we have D(a) ∈ {0, . . . , 2k − 1} for some fixed k ≥ 1.
Now one has to fix an additional number n ≥ 0 and for all bold variables a , we
restrict ourselves to D(a) ∈ {−n, . . . , 2k−1−n}. Hence, to encode a Diophantine
constraint α with bold variables, we first replace every bold variable a in α by
“a − n” for a fresh (non-bold) variable a. Then (after removing subtractions),
one can again use our encoding ||.|| from Sect. 3.

To summarize, the procedure from the end of Sect. 2 to transform a termina-
tion problem into a satisfiability problem is now modified as follows:

1. Transform the termination problem to inequalities u � v or u � v, cf. (1).
2. Fix an abstract polynomial interpretation and transform the inequalities into

[u]left − [v]right > 0 or [u]left − [v]right ≥ 0, respectively. Add the conjunction
of all corresponding constraints αleft

u and αright
v .

350 C. Fuhs et al.

3. Replace [u]left − [v]right (≥)0 by α[u]left−[v]right (≥)0
.

4. Fix a number n ≥ 0 and replace all Diophantine variables a that may be
instantiated by integers by “a− n” for a fresh variable a.

5. Remove “≥” and subtractions from the obtained constraint and check its
satisfiability using SAT solving as in Sect. 3.

5 Implementation, Experiments, and Conclusion

We implemented our new SAT-based approach for polynomial interpretations
in the termination prover AProVE [14]. We used the MiniSAT solver [9] and to
convert formulas to CNF, we applied SAT4J’s [21] implementation of Tseitin’s
algorithm [24]. For efficiency, our implementation uses several optimizations:

(a) Simplification: In addition to standard simplifications for Diophantine
constraints and for propositional formulas, we developed a new graph-based
approach to detect possible simplifications of Diophantine constraints quickly.
We build a graph whose nodes consist of all occurring Diophantine variables
and of all possible values they can take (e.g., {0, ..., 2k − 1}). An edge from a
node n1 to n2 denotes that D(n1) ≥ D(n2) for any Diophantine model D of the
given Diophantine constraint. This graph is constructed and maintained while
performing the other simplifications. Whenever there is a non-trivial strongly
connected component (SCC) in the graph, we can deduce that all its nodes must
take the same value under any Diophantine model. If there is more than one
number in the SCC, then the Diophantine constraint is not satisfiable. If there
is one number in the SCC, we instantiate all Diophantine variables in the SCC
by that number. If the SCC only consists of Diophantine variables, we choose
an arbitrary one and replace all other variables in the SCC by the chosen one.

(b) Sharing: We use sharing for common subexpressions, both on the level of
Diophantine constraints and on the level of propositional formulas.

(c) Tracking maximum values: By taking into account that Diophantine
variables are only instantiated by values from a certain set (e.g., {0, ..., 2k− 1}),
one can keep track of the maximum possible values for all polynomials occurring
in the Diophantine constraint. This can help to improve the conversion from
Diophantine constraints to tuples of propositional formulas. The reason is that
we can detect cases where the most significant bits are equivalent to 0.

As an example, suppose that all Diophantine variables can take values from
{0, ..., 3} and that consequently, the conversion ||.|| transforms Diophantine vari-
ables into tuples of two propositional variables (i.e., k = 2). Note that by defini-
tion, B∗(〈ϕ1, ..., ϕn〉, 〈ψ1, ..., ψm〉) is always a tuple of length n+m, if m ≥ 2. So
if a, b, c ∈ A, then ||a|| and ||b|| have length 2, ||a∗b|| has length 4, and ||a∗b∗c||
has length 6. However, if one takes the ranges of the coefficients into account,
then one can determine that a ∗ b ∗ c has at most the value 3 ∗ 3 ∗ 3 = 27. Thus,
only 5 bits are needed for ||a ∗ b ∗ c||, i.e., the most significant bit of ||a ∗ b ∗ c|| is
always equivalent to 0. Therefore, it can be omitted (i.e., one should delete the
leftmost formula in the 6-tuple ||a ∗ b ∗ c||, resulting in a 5-tuple).

SAT Solving for Termination Analysis with Polynomial Interpretations 351

This optimization is particularly helpful when using other ranges than {0, ...,
2k − 1} (e.g., when using {0, 1, 2} instead of {0, 1, 2, 3}). Then we have to intro-
duce subformulas that prohibit certain values for the Diophantine variables, but
this usually pays off due to the reduced search space.

To evaluate our new SAT-based implementation of polynomial interpretations
(AProVE-SAT), we compared it with the non-SAT-based implementations in the
termination tools AProVE 1.2 and TTT [17]. In addition, we experimented with
a version of AProVE which uses the Diophantine solver of the CiME-tool [7]
(AProVE-CiME). The implementations in AProVE 1.2 and AProVE-CiME solve
Diophantine constraints by a specialized finite domain constraint satisfaction
procedure [8], while TTT uses a “generate-and-test” approach instead. More-
over, we considered a variant AProVE-CLP which applies the constraint logic
programming engine of SICStus Prolog to find polynomial interpretations.

Finally, we also implemented a variant AProVE-PB which uses the pseudo-
boolean solver Pueblo [23]. Here, instead of encoding Diophantine constraints
to propositional formulas, we adapted the encoding ||.|| from Sect. 3 in order
to yield pseudo-boolean constraints : For Diophantine variables a over {0, . . . ,
2k − 1} we now define ||a|| = 2k−1 a1 + . . . + 2 ak−1 + ak, and we define ||n|| = n
for n ∈ N and ||p ◦ q|| = ||p|| ◦ ||q|| for polynomials p, q ∈ P and ◦ ∈ {+, ∗}.
Afterwards, the resulting constraints are linearized.

We tested the six tools on all 865 TRSs from the Termination Problem Data
Base 3.2.10 This is the collection of examples used in the International Competi-
tion of Termination Tools 2006. For our experiments, the tools were run on an
AMD Athlon 64 at 2.2 GHz. To measure the effect of the different implementa-
tions for polynomial interpretations, we configured all tools to use only a basic
version of the DP method and no other termination technique.11

For each example, we imposed a time limit of 60 seconds (corresponding to the
way tools are evaluated in the annual competition) or of 10 minutes, indicated by
“Limit” in the following table. The columns “Yes” and “TO” show the number
of TRSs for which proving termination with the given configuration succeeds or
times out. Finally, “Time” gives the total time in seconds needed for analyzing
all 865 examples. The column “Range” specifies the range of the coefficients
of polynomials (i.e., if the “Range” is n, then we only searched for coefficients
from {0, ..., n}). The column “Degree” gives the degree of the polynomials. If the
“Degree” is 1, then we used linear polynomials and “sm” means that we used
simple-mixed12 polynomials (these are not available in TTT).

The comparison of the SAT-based configurations AProVE-SAT and AProVE-
PB with the non-SAT-based configurations shows that the provers based on
SAT solving with our proposed encoding are faster by orders of magnitude. This
holds in particular if one considers a higher time limit or polynomials with higher
coefficients or degrees (which are needed to increase the number of “Yes”-results,

10 The data base is available from http://www.lri.fr/∼marche/tpdb/
11 Such a configuration was not possible for other tools beside AProVE, TTT, and CiME.
12 A non-unary polynomial (with n > 1 in (2)) is simple-mixed if we have eij ≤ 1 for all

its exponents. A unary polynomial is simple-mixed if it has the form a+ b x1 + c x2
1.

http://www.lri.fr/~marche/tpdb/

352 C. Fuhs et al.

i.e., to increase the power of automated termination proving). Note that for
Degree = 1, there are no timeouts in the configuration AProVE-SAT, whereas
the non-SAT-based configurations have many timeouts. Due to the increased
efficiency, the number of examples where termination can be proved within the
time limit is considerably higher in the SAT-based configurations. To indicate
the size of the SAT problems obtained, the largest resulting propositional for-
mula contained almost 3.5 million variables and more than 12 million clauses.
Comparing the SAT-based configurations AProVE-SAT and AProVE-PB shows
that the approach of converting termination problems to propositional formulas
is currently preferable to the related approach of converting them to pseudo-
boolean constraints.

AProVE-SAT AProVE-PB AProVE 1.2
Limit Range Degree Yes TO Time Yes TO Time Yes TO Time
60s 1 1 421 0 45.5 421 0 61.6 421 1 151.8
60s 2 1 431 0 91.8 431 0 158.5 414 48 3633.2
60s 3 1 434 0 118.6 434 1 222.1 408 81 5793.2
60s 3 sm 440 51 5585.9 427 82 7280.3 404 171 11608.1

10m 1 1 421 0 45.5 421 0 61.6 421 1 691.8
10m 2 1 431 0 91.8 431 0 158.5 418 41 27888.4
10m 3 1 434 0 118.6 434 0 689.6 415 53 38286.4

AProVE-CLP AProVE-CiME TTT
Limit Range Degree Yes TO Time Yes TO Time Yes TO Time
60s 1 1 420 16 1357.8 408 1 168.3 326 32 2568.5
60s 2 1 420 37 3558.3 408 43 3201.0 335 83 5677.6
60s 3 1 407 91 6459.5 402 67 5324.1 338 110 7426.9
60s 3 sm 367 145 10357.4 361 147 10107.7

10m 1 1 421 11 7852.2 408 0 332.7 328 16 14007.8
10m 2 1 423 25 18795.6 412 33 22190.4 337 68 45046.6
10m 3 1 420 51 41493.8 407 46 33873.6 340 91 61209.2

We also ran experiments with higher ranges but it turned out that they are
rarely needed. For Degree = 1 and Limit = 10 minutes, a range of 6 would
increase the number of “Yes”-results from 434 to 436 while the runtime increases
from 118.6 to 748.1 seconds. Even if one uses a range of 63, the number of “Yes”-
results does not increase further, but the runtime goes up to 56235.5 seconds.

AProVE-SAT no optimization (a) no optimization (b) no optimization (c)
Range Yes TO Time Yes TO Time Yes TO Time Yes TO Time

1 421 0 45.5 421 0 56.6 421 0 49.7 421 0 50.1
2 431 0 91.8 431 0 107.5 431 0 93.9 431 0 114.7
3 434 0 118.6 434 1 159.4 434 0 202.8 434 0 138.7

The next
table shows the
effect of our op-
timizations(with
linear polynomials and a 60 seconds time limit). While AProVE-SAT uses all opti-
mizations (a) - (c), we also give the results obtained if one omits any one of these
optimizations. The table demonstrates that each optimization has a considerable
positive effect, especially if one uses higher ranges for the coefficients.

AProVE-SAT AProVE 1.2 TTT
Range Yes TO Time Yes TO Time Yes TO Time

1 440 0 98.0 441 22 1863.7 341 106 7307.3
2 479 1 305.4 460 126 8918.3 360 181 12337.3
3 483 4 1092.4 434 221 15570.9 361 247 16927.7

The last table demonstrates
the use of SAT solving for neg-
ative linear polynomials with a
time limit of 60 seconds. If the
“Range” is n, then now the constant coefficient may take values from {−n, ..., n}.
Again, the SAT-based configuration is much faster and substantially more pow-
erful than the non-SAT-based ones. Compared to the results for non-negative

SAT Solving for Termination Analysis with Polynomial Interpretations 353

polynomials, a few timeouts occur for larger ranges, but negative polynomials
increase the power significantly whereas the runtimes only increase moderately.
In future work, we will extend our SAT encoding in order to deal also with
polynomials where other (non-constant) coefficients can be negative [17].

As mentioned in Sect. 1, the SAT-based implementation of polynomial inter-
pretations was used by AProVE in the International Competition of Termination
Tools 2006. Here, AProVE was configured to use several other termination tech-
niques in addition to polynomial interpretations. Due to the speed of our new
SAT-based approach, AProVE could try polynomial interpretations (also with
higher ranges) as one of the first termination techniques. In case of failure, there
was still enough time to try other termination techniques afterwards. With a
time limit of 60 seconds for each example, AProVE could prove termination of
633 TRSs and thereby it was the winner of the competition.

To summarize, automated termination analysis is a field where SAT solving
has turned out to be extremely useful. At the same time, this field also poses
new challenges for SAT solving, since for higher ranges and higher degrees of the
polynomials, one sometimes obtains SAT problems which are hard for current
SAT solvers.13 To experiment with our implementation, for further details on
our experiments (also with other SAT solvers), and for all proofs please see [10].

Acknowledgments. We thank Daniel Le Berre for helpful comments.

References

1. E. Annov, M. Codish, J. Giesl, P. Schneider-Kamp, and R. Thiemann. A SAT-
based implementation for RPO termination. In Short Papers of LPAR ’06, 2006.

2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133-178, 2000.

3. T. Arts and J. Giesl. A collection of examples for termination of term rewriting
using dependency pairs. Technical Report AIB-2001-09, RWTH Aachen, 2001.

4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.

5. M. Codish, V. Lagoon, and P. Stuckey. Solving partial order constraints for LPO
termination. In Proc. RTA ’06, LNCS 4098, p. 4-18, 2006.

6. M. Codish, P. Schneider-Kamp, V. Lagoon, R. Thiemann, and J. Giesl. SAT solving
for argument filterings. In Proc. LPAR ’06, LNAI 4246, p. 30-44, 2006.

7. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME. http://cime.lri.fr.

8. E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving
termination using polynomial interpretations. J. Aut. Reason., 34(4):325-363, 2005.

9. N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT ’03, LNCS
2919, p. 502-518, 2004.

10. Empirical evaluation of “SAT solving for termination analysis with polynomial
interpretations”. http://aprove.informatik.rwth-aachen.de/eval/SATPOLO.

11. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. In Proc. IJCAR ’06, LNAI 4130, p. 574-588, 2006.

13 We have therefore submitted some of these problems to the SAT competition 2007.

http://cime.lri.fr
http://aprove.informatik.rwth-aachen.de/eval/SATPOLO

354 C. Fuhs et al.

12. J. Giesl, R. Thiemann, P. Schneider-Kamp. The DP framework: Combining Tech-
niques for Automated Termination Proofs. LPAR’04, LNAI 3452, p.301-331, 2005.

13. J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated termina-
tion analysis for Haskell: From term rewriting to programming languages. In Proc.
RTA ’06, LNCS 4098, p. 297-312, 2006.

14. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the DP framework. Proc. IJCAR ’06, LNAI 4130, p. 281-286, 2006.

15. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improv-
ing dependency pairs. Journal of Automated Reasoning, 37(3): 155-203, 2006.

16. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Infor-
mation and Computation, 199(1,2):172-199, 2005.

17. N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and fea-
tures. Information and Computation, 205(4):474-511, 2007.

18. D. Hofbauer and J. Waldmann. Termination of string rewriting with matrix inter-
pretations. In Proc. RTA ’06, LNCS 4098, p. 328-342, 2006.

19. H.Hong and D.Jakuš. Testing positiveness of polynomials. JAR, 21(1):23-38, 1998.
20. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report

MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.
21. D. Le Berre et al. SAT4J satisfiability library for Java. http://www.sat4j.org.
22. P. Schneider-Kamp, J. Giesl, A. Serebrenik, R. Thiemann. Automated termination

analysis for logic programs by term rewriting. In Proc. LOPSTR ’06, LNCS, 2007.
23. H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid pseudo-boolean SAT solver.

Journal on Satisfiability, Boolean Modeling and Computation, 2:61-96, 2006.
24. G. Tseitin. On the complexity of derivation in propositional calculus. In Studies

in Constructive Mathematics and Mathematical Logic, p. 115-125, 1968.
25. H. Zankl, N. Hirokawa, and A. Middeldorp. Constraints for argument filterings.

In Proc. SOFSEM ’07, LNCS 4362, p. 579-590, 2007.
26. H. Zankl and A. Middeldorp. KBO as a satisfaction problem. Proc. WST’06, 2006.

http://www.sat4j.org

Fault Localization and Correction with QBF�

Stefan Staber and Roderick Bloem

Graz University of Technology

Abstract. In this paper, we study the use of QBF solvers for fault localization
and correction of sequential circuits. Given a violated specification, we com-
pute whether the circuit can be repaired by evaluating a sequence of quantified
Boolean formulas. If a repair exists, it can be extracted from a certificate for
another quantified Boolean formula. Because it only finds components when a
repair is possible, this approach is more precise than a satisfiability-based ap-
proach that we have developed earlier. We demonstrate this in an experimental
evaluation.

1 Introduction

One of the major applications of SAT solvers is verification of finite-state systems.
When a system is faulty, a SAT-based model checker will emit a counterexample, i.e., a
sequence of inputs that leads to a failure. Even with a counterexample, it is hard to find
and correct the fault, and debugging typically takes a significant amount of the design
time.

In previous work, we have addressed the problem of fault localization using a SAT
solver. To localize a fault, we see a failure as a contradiction between the behavior
described by the circuit and the behavior required by the specification for the given input
sequence. A fault candidate is a component (e.g., a gate) such that the contradiction
disappears when we lift the restriction imposed by the component. Conceptually, we do
this by removing the component’s clauses from the SAT instance. If this resolves the
contradiction then there is a replacement for the component that fixes the circuit for the
given counterexample.

This approach has two shortcomings. First, the approach is not very specific. It is re-
stricted to one (or a few) counterexamples and thus may find fault candidates for which
there is no replacement that is correct for all input sequences. Second, this approach
does not suggest a replacement for the component, even if one exists.

In this paper we show how quantified Boolean formula (QBF) solvers can be used
to address these problems. We use a game-based approach to construct a QBF formula
that states that a component is a fault candidate if and only if it can be replaced by a
function that is correct for all inputs. If we use a QBF solver that emits a certificate, we
can use it to construct a replacement for the component. We show how the QBF problem
is formulated and how a repair can be built from certificates. We show how to use QBF
to solve safety and Büchi games. Although the formulation for safety games closely
monitors what is done for Binary Decision Diagrams, the formulation for Büchi games

� This work was supported in part by the European Union under contract 507219 (PROSYD).

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 355–368, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

356 S. Staber and R. Bloem

is novel and has a linear number of quantifier alternations instead of a quadratic num-
ber. The results of the QBF solver can be used to construct repairs if the specification
is given as a deterministic Büchi automaton. This class includes all safety properties.
The formulation of the QBF problem is much like the one for bounded model check-
ing (BMC) [BCCZ99] with a different quantifier structure. Although the approach is
complete, limits on time or memory use may force us to limit the search depth. If we
limit the search depth, the approach still has much higher specificity that the SAT-based
approach.

In [SFBD06], we described how SAT-based fault localization can be used to find a
fault on the source (Register Transfer) level. The same applies for the QBF approach,
but for simplicity this paper will focus on faults at the gate level. In [GSB06], we have
shown the applicability of SAT-based fault localization to C programs. QBF could also
be used in that setting, provided we limit the length of the counterexamples. Finally, in
[JGB05, SJB05] we presented an approach to localization and correction that is based
on BDDs. In contrast, this paper considers quantified Boolean formulas.

In [ASV+05] a QBF solver is used to debug hardware. The approach uses a QBF
solver to perform fault localization in a single pass for all given test vectors. These
technique was applied on the gate level (on different hierarchical levels) and under the
assumption that correct output values for counterexamples are given.

The flow of the paper is as follows. In Section 2 we state the necessary theory. In
Section 3 we summarize the use of sat-solvers for fault localization and discuss its
shortcomings. In Section 4, we discuss the use of QBF solvers to localize and correct
faults. We present preliminary experimental results (on localization, not on repair) in
Section 5 and conlude in Section 6.

2 Preliminaries

2.1 Quantified Boolean Formulas

A quantified Boolean formula in prenex conjunctive normal form is defined as a con-
junction of clauses with a quantifier prefix. The prefix is a sequence of alternating ex-
istentially and universally quantified variables. More formally, a quantified Boolean
formula is a formula F = QB, where the prefix Q = q1v1q2v2 . . . qnvn is a sequence
of quantifiers qi ∈ {∃, ∀} and variables vi, and B is a conjunction of clauses in CNF.
Every variable in B is quantified once in the prefix Q. For example:

F = ∀a∀b∃c.(¬a ∨ ¬b ∨ c) ∧ (a ∨ b ∨ ¬c)

A variable v is existential if it is existentially quantified, and universal otherwise. Vari-
able v is dominated by a variable v′ if in the prefix v′ is quantified before v. It is possible
to convert every formula to prenex conjunctive normal form and in the paper we will
use arbitrary nestings of Boolean operators and quantifiers. Egly et al. [ETW02] show
how to convert formulas efficiently such that the number of quantifier alternations is
small. We will use capital letters for sets of variables and quantification over such sets
is an abbreviation for a sequence of quantifications, one for each variable in the set. A
formula F with free variables V is denoted F (V). If |V | = |V ′|, we will write F (V ′)

Fault Localization and Correction with QBF 357

to denote syntactic substitution of the unbound occurrences of the variables in V by
variables in V ′.

Suppose e1, . . . , em is the set of existential variables in a quantified Boolean func-
tion. Given an existential variable ei let Ui be the set of universal variables that dom-
inate ei. A determining function for an existential variable ei is a function that maps
a valuation of the variables Ui to a value for ei. A certificate for a QBF is a set of
determining functions, one for each existential variable, that proves the truth of the for-
mula [Ben05a]. A partial certificate is a set of determining functions for the variables
e1, . . . , ek with k ≤ m such that can be extended to a certificate by adding functions for
ek+1, . . . , em. The tool sKizzo supports the construction of certificates for quantified
Boolean programs. Partial certificates are currently not supported by QBF solvers, but
are likely easier to construct than full certificates.

Typically, there exists more than one certificate for the satisfiability of a QBF, since
in some valuations the value of an existential variable is not relevant. Certificates can be
represented as Boolean functions, truth tables, or BDDs. As an example, one certificate
for F is c = a ∧ b, another one is c = a ∨ b.

2.2 Circuits and Games

A sequential circuit consists of a set of gates, a set of signals connecting the gates, and
a set of flipflops with a given initial state. Signals are connected to at most one output
of a gate. If a signal is not connected to the output of a gate, it is an input of the circuit.
We will assume that all cycles in a circuit contain a flipflop, we will assume a single
global clock, and we are not concerned with timing issues.

A circuit can be represented as a symbolic transition structure (V, I, s0, T), where
V , the set of variables has a one to one correspondence to the flipflops, I is the set of
input signals, s0 is a Boolean formula over the variables which is only satisfied by the
initial state, and T , the transition function, is a Boolean formula over V , I , and V ′.
Intuitively, T specifies a relation over V × I × V that corresponds to the combinatorial
logic of the circuit. We can build T as follows: suppose that the circuit contains n gates,
numbered 1 through n and that gate i is represented by a Boolean function ϕi in terms
of the input and the output signals. Then T =

∧
i ϕi. We can assume that the ϕi are

given in CNF, which implies that T is also in CNF.1 We have n = 2|V | states, and the
diameter d of the circuit is maximum length of any shortest path from the initial state
to another reachable state.

A game is an extension of a transition structure: A (deterministic) game is a tuple
(V, I, C, s0, T), together with a specification ψ, where V , I , and s0 are as before, C
is a set of system choice variables, and T is now a formula over V , I , C, and V ′ that
defines a function from V × I × C to V . One way to view a game [AH99] is as a
partially implemented system: the inputs are provided by an antagonistic environment
that wants the system to violate its specifications, and the system choices are provided
by a protagonist that wants the system to fulfill the specifications. The natural question

1 We will conveniently ignore the fact that T contains a free variable for every signal. When T
is used in a quantified Boolean formula, these variables should be existentially quantified in
the appropriate place.

358 S. Staber and R. Bloem

is thus whether the protagonist can match, move by move, any input sequence by a
sequence of choices so that ψ is fulfilled. If this is the case, the game is won. A play
is an infinite sequence π = s0, i0, c0, s1, i1, c1, . . . of states, inputs, and choices that
adheres to the transition relation. A strategy maps a prefix of a play to a system choice.
A strategy fixes a set of plays, one for each input sequence. The strategy is winning if
each play thus obtained satisfies the specification. A strategy is memoryless if it only
depends on the last state and the last input in the prefix. Given a memoryless strategy,
we can restrict the game to the strategy by fixing the choice for every combination
of a state and an input, thus obtaining a circuit. A strategy is finite state if it can be
implemented using a finite memory of past inputs, using a finite state machine.

In this paper, we consider safety and Büchi games, i.e. games in which the winning
condition is either given as a set of states that must be avoided (losing states), or by a
set of states that must be visited infinitely often. Both types of games have memoryless
strategies [Tho95]. In fact, for these games there is either a winning memoryless strat-
egy for the protagonist or a winning memoryless strategy for the antagonist. When a
specification is instead given as a safety property, we can compose the game with the
automaton for the safety property and use the algorithm for safety games to either de-
cide that the game is lost or to obtain a memoryless winning strategy. The memoryless
strategy can in turn be used to obtain a finite-state strategy for the original game. (The
memory is provided by the automaton for the safety property.) This technique is known
as a game reduction and can also be applied if the specification is given as a separate
deterministic Büchi automaton.

2.3 Fault Localization and Correction

Suppose we are given a circuit and a specification ψ and suppose the circuit does not
satisfy the specification. Assume that the fault can be fixed by replacing a single gate.

We are looking for a simple replacement for the faulty gate. Thus, we allow only
combinatorial corrections. The combinatorial replacement for a gate is a function in
terms of the current state given by the flipflops and the current input values. We do
not allow sequential corrections because this would require the introduction of addi-
tional flipflops. Such a correction may alter the circuit significantly and could be hard
to understand for the debugging engineer.

In order to find the fault, we turn the circuit into a game. In this game, the protagonist
decides which gate is incorrect and how this gate should behave. As before, assume that
we have n gates. The game is defined as G = (V, I, {ab1, . . . , abn, S}, s0, T), where
V is the set of flipflops, I is the set of inputs and s0 is the initial state, as before.
The system choice variables consist of a set AB = {ab1, . . . , abn} of n abnormal
signals and a variable S. Intuitively, abi means that gate i is incorrect and S is a new
signal, a Boolean variable that determines the replacement behavior of the gate. We
have T =

∧
i ϕ′

i, where

ϕ′
i = (¬ abi ∧ϕi) ∨ (abi ∧S),

where ϕi is the formula describing the behavior of gate i, as above.
Let ψ′ be the conjunction of the specification ψ, the requirement that the choice for

all abi is constant, and the requirement that exactly one of the abi is set.

Fault Localization and Correction with QBF 359

If ψ is an invariant, the resulting game is a safety game. If it is a set of states to be
visited infinitely often, G is a Büchi game.

Theorem 1. [JGB05] Suppose G is a safety game. There is a winning strategy that sets
abi to 1 if and only if there is a combinational function f in terms of inputs and states
such that the circuit is correct when gate i is replaced by f .

Suppose G is a Büchi game. Then there is a combinational replacement for gate i iff
there is a winning strategy that sets abi to 1.

If ψ is a safety property or a property expressed as a deterministic Büchi automaton, we
need to add a monitor to the circuit. In this case it should be noted that the repair may
depend on the state of the monitor [JGB05].

It may be doubted that a replacement of a single gate would suffice to fix a typical
design error. However, this approach can be lifted to the Register Transfer (RT) level,
by correcting entire expressions. Since this approach works on the same level as the
designer, it is more likely to find usable results. The technical approach to finding and
fixing faults at the RTL level is not much different from the gate level, so we do not
describe it here. Similarly, the approach is easily extended to localization of multiple
faults. See [JGB05, SJB05, GSB06, SFBD06].

3 SAT-Based Fault Localization

In this section we summarize the SAT-based approach for fault localization presented
in [SFBD06] and discuss its shortcomings. The SAT-based approach builds a proposi-
tional formula such that any satisfying assignment of the formula corresponds to fault
candidate. Suppose we are given a faulty sequential circuit, a specification ψ, and a
finite counterexample ξ with length k.

To construct the propositional formula we extend the circuit to a game as discussed
in Section 2.3. As in BMC, we unroll the transition function T with length k. We con-
catenate the unrolled transition function with the specification ψ, a formula ζ1 that
states that most one of the AB variables is one, and the counterexample ξ. By adding
ξ to the formula, we fix the inputs of the system. In game terms, we fix the moves
of the antagonistic environment. Now, we have to find system choices from the initial
state to state k in order to fulfill ψ. We obtain the formula: η = s0 ∧ ψ ∧ ξ ∧ ζ1 ∧∧

i∈0...k−1 T (Vi, Ii, AB ∪ {Gi}, Vi+1). We use a SAT solver to decide the satisfiabil-
ity of η. If the SAT solver finds a satisfying assignment for η, one signal abi will be
set to one. The corresponding gate i is a fault candidate. Typically, there is more than
one assignment to AB for which the η is satisfiable. Each such assignment corresponds
to a fault candidate. We can obtain all fault candidates by excluding candidates found
previously using blocking clauses.

3.1 Example

We illustrate the SAT-based approach on a simple arbiter example shown in Figure 1.
The arbiter has two request lines r1, r2 and two acknowledge lines a1, a2. Latch C1

is high if a request on r1 is not acknowledged, latch C2 stores open requests for r2.

360 S. Staber and R. Bloem

Fig. 1. Simple Arbiter

Latch T decides which request line has priority if both are high. The initial values of
the latches are zero.

The specification states that the arbiter has to guarantee that a request is acknowl-
edged in the same or the next clock cycle and at most one of the acknowledge lines
may be high at any clock cycle. In LTL, the specification reads G¬(a1∧a2)∧G(r1→
(a1 ∨ X a1)) ∧ G(r2→ (a2 ∨ X a2)).

The arbiter contains a fault. Gate G12 should be an OR gate. A shortest counterex-
ample to the specification is r1 = 1, r2 = 0 in the first clock cycle and r1 = 0, r2 = 1
in the second cycle. Given this input, the request outputs are both zero in both cycles.
When we use this counterexample for fault localization, we obtain the fault candidates
G8, G9, G11, and G12. With each of these gates, it is possible to remove the contradic-
tion between the specification and this particular counterexample. For instance, if G11
returns 1 in the initial cycle, the output will be a1 = 1, a2 = 0 in the first cycle, and
a1 = 0, a2 = 1, which is correct.

3.2 Shortcomings

For the calculation of the fault candidates we use a single counterexample. The reported
fault candidates can be used to correct the circuit, but only for the used counterexample.

Fault Localization and Correction with QBF 361

Table 1. Values for Arbiter

Input State Output Correction

r1 r2 C1 C2 T a1 a2 G12
Clock Cycle 1 1 0 0 0 0 0 0 0
Clock Cycle 2 0 1 1 0 1 0 0 1

Clock Cycle 1 1 0 0 0 0 0 0 1
Clock Cycle 2 1 0 1 0 1 0 0 0

For instance, although we showed a replacement for G11 that works for the input
described above, there is no correction for G11 such that the specification holds for all
possible inputs. This is easily seen: If input r2 is always high, G9 is always low and so
is G12, regardless of G11. Thus, a request on r1 cannot be acknowledged. This is an
example of a spurious fault location that has no realizable correction.

By considering multiple counterexamples, we can shrink the set of fault locations
and, by judiciously choosing the counterexamples, we can also remove G11. However,
picking the proper counterexamples can be hard and should not be left to the user.

Apart from this lack of specificity, the approach does not allow us to construct repair.
For instance, Table 1 shows the input values, output values and a correction that the
SAT solver may provide for gate G12. The input values and the state are the same in
the first clock cycle for both counterexamples. However, the suggested correction for
counterexample one is 0 but for counterexample two, it is 1. Gate G12 is repairable with
an OR-gate, but with the reported valuations we cannot infer a consistent correction.

As an extreme example, the algorithm may find fault candidates even if the given
specification is not realizable. Assume we have given a circuit which consists only of
a simple inverter, and the specification reads b1 ⇔ X a1. Clearly, this specification is
not realizable because the output depends on future input. The shortest counterexample
for this specification has length two. E.g., two consecutive 0s on the input produce two
consecutive 1s on the output. The SAT-based approach, however, declares the inverter
to be a fault candidate. The satisfying assignment sets the output to 0 in the first cycle,
which fulfills the specification. Note that with the given formalization, it is impossible
conclude that the buffer is not a fault candidate. (See [SFBD06] for a partial solution to
this problem.)

4 QBF-Based Fault Location and Correction

In this section we describe an approach for fault localization and correction based on
quantified Boolean formulas and certificates. The goal of the QBF approach is to pro-
vide increased specificity and correct repair suggestions. In fact, the fault candidates
found will be exactly those gates for which a repair exists. We will first describe how to
solve a safety game using QBF and then show a simple optimization for our application.
Following that, we discuss Büchi games and give an example.

362 S. Staber and R. Bloem

4.1 QBF for Safety Games

As discuss in Section 2, in safety games the specification corresponds to a set of states
in which the protagonist must remain. The environment, the antagonist in our game,
tries to force a visit to a bad state, where the specification does not hold. We define the
predicate B(V) to be the set of bad states.

It is well known that the set of losing states in a safety game can be computed as

μY. B(V) ∨ ∃I∀C∃V ′. T (V, I, C, V ′) ∧ Y (V ′),

where μ denotes the least fixed point. Let W be the set of winning states, i.e., the com-
plement of the fixed point. A winning strategy is any function that maps the combination
of a state q in W and an input i to a choice c such that T (q, i, c, q′) and q′ ∈W . We can
mirror the computation of this fixed point as a sequence of quantified Boolean formulas.
We define the following formulas, where intuitively Yi denotes that the environment can
force a visit to Y in i steps.

Y0(V) = B(V),
Yi(V) = B(V) ∨ ∃I∀C∃V ′.T (V, I, C, V ′) ∧ Yi−1(V ′).

We compute Yi for increasing i until either the initial state is included in Yi, which
means that the game is lost, or until Yi implies Yi−1, which implies that a fixpoint has
been reached and the game is won. In the following algorithm, Yi(V) is a formula with
free variables V . (Thus, Yi is a syntactic construct and not evaluated to a set). The
function QBF Evaluate is a decision procedure that takes a closed quantified Boolean
formula and returns true iff the formula is valid. The algorithm either terminates with
the message “lost”, or with a formula W (V) that describe the set of won states.

i := 0 ;
Yi(V) := B(V) ;
w h i l e (t rue) {

i f QBF Evaluate (∀V.s0(V) → Yi(V)) then p r i n t ” l o s t ” ; s top ;
i f QBF Evaluate (∀V.Yi(V) → Yi−1(V)) then b r e a k ;
i := i + 1 ;
Yi(V) := B(V) ∨ ∃I∀C∃S′.T (V, I, C, V ′) ∧ Yi−1 ;

}
// Game won, Yi and Yi−1 are equivalent, but latter is smaller.
k := i − 1 ;
W (V) := ¬Yk(V) ;

If the game is won, we can extract a winning strategy from W . In this case, the
following formula is valid and its certificate maps every combination of a winning state
and an input to a choice. The certificate is a winning strategy.

Z = ∀V.W (V)→ ∀I∃C∃V ′.T (V, I, C, V ′) ∧W (V ′)

Note that a partial certificate suffices: we need a certificate for C but not for the exis-
tentially quantified variables inside the two occurrences of W .

Note that the maximum number of quantifier alternations in Yk is 2k + 1, where k is
the value of i upon termination of the algorithm. This corresponds exactly to the number

Fault Localization and Correction with QBF 363

of quantifier alternations in a BDD-based version of the algorithm. (The BDD-based al-
gorithm would make k symbolic steps [BGS06], each computing∃I∀C.T (V, I, C, V ′)∧
Y (V ′), where Y is a BDD.) The number of quantifier in Z is 2k + 1.

Note that much work is repeated evaluating the termination criteria. Thus, an
incremental version of QBF Evaluate may be beneficial. The number of calls to
QBF Evaluate is 2k but can be reduced to O(log(k)) by a binary search or to 1 or
2 by choosing i sufficiently large (e.g., equal to the number of states).

4.2 QBF for Repair

Returning to our application of repair, recall that the choice variables consist of a set AB
of abnormal predicates and a variable S that states the new behavior. The requirement
that the variables AB do not change allows us to pull them out of the quantification, so
that Yi becomes

Y ′
i (V0) = ∀AB .ζ1 ∧B(V0)∨ ∃I1∀S1∃V1.T (V0, I1, AB∪{S1}, V1)∧ (B(V1)∨ . . .

∃Ii∀Si∃Vi.T (Vi−1, Ii, AB∪{Si}, Vi) ∧B(Vi)) . . .),

where again, ζ1 denotes that at most one component is abnormal. Furthermore,

Z ′ = ∃AB ∀V. ζ1 ∧ (W (V)→ ∀I∃S∃V ′, T (V, I, AB∪{S}, V ′) ∧W (V ′))

Note that the fault candidate can be derived from a partial certificate for Yk. The
algorithm stops as soon as one fault candidate, say l, has been identified. Other fault
candidates can be found by requiring that abl is zero and restarting the algorithm.

If the game is won, we obtain a certificate for Z . The certificate consists of:

– A (constant) function f1 that gives an appropriate value for AB.
– A function f2 that maps every combination of a state and an input to an appropriate

value for G, i.e., an appropriate output for the fault candidate.

When we implement the function f2 as a combinational circuit, we obtain a replace-
ment for the fault candidate. Synthesis of the function can easily be automated if the
certificate is given as a BDD or a truth table.

Note that we may terminate the algorithm before reaching convergence in case the
QBF solver runs out of time or memory. In this case, we can still extract a repair sugges-
tion using the certificate for Z ′. If we terminate the algorithm after i steps, the suggested
repair guarantees that there is no counterexample of i steps or less, but there is no guar-
antee that a bad state is never reached. The suggestion may, however, give a good hint
on how to repair the system.

4.3 QBF for Büchi Games

The approach described thus far work for safety properties. We will now consider live-
ness. In particular, we will assume that the repair problem is stated as a Büchi game.
Using the same techniques as for safety properties, we can handle techniques in which
the property is stated as a deterministic Büchi automaton. Such automata can not ex-
press all properties, but are sufficiently expressive to state most properties of interest

364 S. Staber and R. Bloem

[Mai00, ALT04, JGB05]. We will first describe how Büchi games are computed and
then briefly explain how to use the theory for repair.

Suppose we have a game (V, I, C, s0, T) and the winning condition requires that
any play visit the set F infinitely often. Typically, Büchi games are computed by the
evaluating the following nested fixed point. (Where ν denotes a greatest fixed point.)

νY. ∀I∃C∃V ′. T (V, I, C, V ′)∧
μZ. Y (V ′) ∧ (F (V ′) ∨ ∀I ′∃C′∃V ′′.T (V ′, I ′, C′, V ′′) ∧ Z(V ′′)).

The total number of iterations of the inner fixed point in this formula is quadratic in the
size of the state space [BGS06]. Thus, when evaluating this formula using, e.g., BDDs,
the total number of quantifier alternations that is evaluated is quadratic. We can easily
mimic this fixpoint as a sequence of quantified Boolean formulas, as we did for safety
games. The drawback is that such formulas can have a quadratic number of quantifier
alternations. We will present an alternative approach that needs only a linear number of
quantifier alternations.

Let us define

W 0
k (V0, . . . , Vk−1) = ∀Ik∃Ck∃Vk. T (Vk−1, Ik, Ck, Vk)∧

∨

i∈[0,k]

∨

j∈[i+1,k]

Vi = Vj ∧
∨

l∈[i,j]

F (Vl),

W i
k(V0, . . . , Vk−i−1)=∀Ik−i∃Ck−i∃Vk−i. T (Vk−i−1, Ik−i, Ck−i, Vk−i) ∧W i−1

k ,and

Wk(V0) = W k−1
k (V0).

Intuitively, s |= Wk(V0) if the protagonist can force the game into an accepting loop
within k steps. Similarly, we have

L1
k(V0, . . . , Vk−1) = ∃Ik∀Ck∃Vk. T (Vk−1, Ik, Ck, Vk)∧

∨

i∈[0,k]

∨

j∈[i+1,k]

Vi = Vj ∧
∧

l∈[i,k]

¬F (Vl),

Li
k(V0, . . . , Vk−i−1) = ∃Ik−i∀Ck−i∃Vk−i. T (Vk−i−1, Ik−i, Ck−i, Vk−i) ∧ Li−1

k , and

Lk(V0) =Lk−1
k (V0).

Intuitively, s |= Lk(V0) if the antagonist can force the game into a non-accepting loop
within k steps.

Suppose the game is won. Then, the protagonist has a winning memoryless strat-
egy. If we restrict the game so that the protagonist’s choices adhere to the strategy, the
resulting circuit will contain only fair loops (and unreachable loops). Thus, any input se-
quence of sufficient length will visit a loop containing an accepting state and s0 |= Wk

for some k smaller than or equal to the diameter of the game. Simultaneously, s0 �|= Lk

for any k: there are no loops without an accepting state. Through a similar argument we
can show that if the game is lost, we have s0 |= Lk for some k but s0 �|= Wk for any k.
This suggests the following algorithm. (We leave out the construction of the formulas.)

Fault Localization and Correction with QBF 365

i := 0 ;
w h i l e (t rue) {

i f QBF Evaluate (∀V.s0(V) → Li(V)) then p r i n t ” l o s t ” ; s top ;
i f QBF Evaluate (∀V.s0(V) → Wi(V)) then b r e a k ;
i := i + 1 ;

}
k := i ;
W (V) := Wk(V) ;

The strategy can be extracted from a certificate in the same way as for a safety game:
We check if the protagonist can force the game to a state satisfying R(V) = W (V) ∧
F (V). Let Yi(S) be the formula that denotes that the protagonist can reach R(V) in i
steps or less. Let

Z=∀S∀I∃C∃S′. T (S, I, C, S′)∧
∨

i>0

((Yi(S)∧¬Yi−1(S)∧Yi−1(S′))∨(F (S)∧W (S′))).

A certificate for Z is a memoryless strategy, that is, it maps S and I to C. The strategy
corresponds to the standard attractor strategy for Büchi games: it always moves closer
to a winning state in F and from there it moves to an arbitrary winning state. In detail,
we have that a state s satisfies Yi(S)∧¬Yi−1(S) if the protagonist can force a visit to a
state in F ∧W in i steps but not fewer. If that is the case, the protagonist needs to move
to a state from which it can reach F ∧W in at most i − 1 steps, which is denoted by
Yi−1(S′). If the state is in F , we have F (S), and in the next state we must remain in a
winning state: W (S′).

It is interesting to note that this algorithm is quite different from the standard BDD-
based one that uses a quadratic number of steps. (More efficient algorithms are not
known, but neither is a lower bound.) In our case it suffices to call the QBF solver log n
times, or once or twice, if we choose i sufficiently large. Each call considers a formula
with at most n quantifier alternations.2

As with safety games, when applying this approach to repair, we can move the quan-
tification of the AB variables to the outer position. Since we again obtain a memoryless
strategy, the conversion of a strategy to a repair is as with safety games.

4.4 Example

We repeat the arbiter example of section 3 with our implementation of the QBF ap-
proach for safety games. In Section 3, we showed that the SAT-based approach provided
four fault candidates for the counterexample.

For the QBF-approach we added two additional flipflops to the circuit. The flipflops
act as monitor and keep track of requests that were not acknowledged. With help of the
monitor we can translate the original safety specification into an invariant. The approach
returns gate G12 as the only possible fault location.

2 As stated, the length of the formulas is quadratic. We can reduce this to linear by checking
only if the last state has occurred previously, and by allowing sharing of subformulas. The
drawback is that the number of quantifier alternations is no longer limited by the diameter of
the game, but by the size of its state space.

366 S. Staber and R. Bloem

The QBF solver delivers a correction for G12. The certificate contains a BDD repre-
senting the function

G12 = C1 ∧ (C2 ∧ T ∧ (r1 ∨ r2) ∨ ¬C2 ∧ (T ∨ r1 ∧ ¬r2)) ∨ (¬C1 ∧ T ∧ r1).

We can simplify this function because we know that following conditions must hold
in the circuit: C1 → ¬C2, T → ¬C2,¬T → ¬C1. Considering this constraints, we
obtain the function G12 = T ∧ (C1∨ r1). Since gate G0 is C1∨ r1 this is equivalent to
G12 = T ∧G0. This is a correct repair (and simpler than the original implementation):
it produces an a1 only when T is true and there is a request either now or in the last
tick. An r2 is handled when T is low by the remaining logic.

The example shows that the QBF approach overcomes the disadvantages of the SAT-
based approach. It is exact and provides only fault locations that can be corrected. Fur-
thermore, the certificate contains a combinatorial correction for the fault candidate. The
provided correction can be easily translated into circuitry.

Naturally, we prefer simple corrections for the faulty gate. Since a certificate repre-
sents only one possible valuation of the variables, it is not guaranteed that we obtain
the simplest possible correction for the faulty gate. In future work we would like to
investigate how we can provide corrections as simple as possible.

5 Experiments

In this section we present preliminary experimental results. In the experiments we focus
on localization only and we compute the fault candidates for a fixed depth k, k being
the length of a counterexample provided by BMC. For the experiments we used bench-
marks provided with the VIS model checker [B+96] written in Verilog on RT level. We
manually introduced a bug in the examples (on the RT level). The experiments were
executed on a Pentium IV with 2,8GHz and 3GB of RAM running Linux.

We used the sKizzo QBF solver [Ben05b]. sKizzo is able to dump the inference
log of a QBF to a file. The certifier program ozziKs applies a reconstruction to the log
and is able to dump a certificate that is based on BDDs. As far as we know, sKizzo
is the only QBF solver that is able to generate certificates (We have not yet evaluated
whether the proofs that yQuaffle produces [YM05] can be used for the same purpose.)

Table 2 contains the obtained experimental results. We are comparing the results of
the SAT-based approach with the QBF approach. Col. one is the name of the circuit.
Col. two and three show the number of gates and registers in the design respectively.
Col. four shows the number of RT-level components in the design. Col. five shows the
length of the counterexample obtained by BMC. Col. six and seven show the number
of components in a static slice. The static slice is computed backwards from the output
signals. All the components that have an influence on the signals in the property, are
part of the static slice. For debugging, only components in the static slice should be
considered, so this gives an upper bound on the number of components we should find.
For the SAT results in col. eight and nine we used the approach described in [SFBD06].
In col. ten and eleven the number of fault locations for the QBF approach are given and

Fault Localization and Correction with QBF 367

Table 2. Experimental results. M...memory out; T...time out; a)...we were able to compute only
one fault location, subsequently memory out.

Circuit BMC Slice SAT QBF time

Name Gates Registers #cmp k #cmp % #cmp % #cmp % sKizzo 2clsQ

b01 e1 98 7 40 5 32 80 5 13 2 6 8:16 0:20
b02 e1 46 4 20 5 20 100 5 25 5 25 0:13 0:03
b09 e1 398 28 33 21 22 67 6 18 1 3 1:20:13 T
b10 e1 318 20 61 7 53 87 10 16 - - M T
b11 e1 770 31 44 6 39 89 9 20 5 11 3:10:11 T
b13 e1 505 53 96 5 72 75 3 3 a) a) 0:10 1:08
VsaR e1 2956 154 56 15 50 89 8 14 - - M T

in the last two col. we give the runtimes for finding one fault location with sKizzo and
2clsQ [SB06] respectively. The results for the SAT-based approach are significantly
better than the static slice. Results for the QBF approach are mixed. In three of the
examples we were able to improve the results compared to the SAT-based approach and
in one example the number of fault locations could not reduced. In example b13 we
were able to compute one fault location before the QBF solver ran out of memory. For
two examples we could not provide any fault locations. Note that we have not limited
the possible fault locations in the QBF formulas by using the result from the SAT solver
or the static slice. This would likely speed up the QBF solver.

6 Conclusions

We have studied the use of QBF solvers to locate and correct faults in finite state sys-
tems. Although our exposition has focused on single faults on the gate level, it can
easily be extended to multiple faults and the implementation works on the RT level.
Since repair corresponds to computing a game, we have shown an algorithm for com-
puting safety games and a novel algorithm for computing Büchi games which has a
linear number of quantifier alternations. Furthermore, we have shown how certificates
can be used to derive strategies and thus repairs.

Our experimental results are still preliminary. They show that the QBF approach is
slow, but more precise than a competing SAT-based approach. We have also seen that
repairs can be extracted. The repair approach performs many very similar computa-
tions. It would benefit from an incremental approach like the one for SAT. Likewise,
we would like to try to find simple repairs. It would be beneficial if more general cer-
tificates could be obtained, i.e., relations instead of functions. It should be noted that
sKizzo derives certificates that contain more information than needed and that partial
certificates would suffice.

Acknowledgments. We would like to thank Armin Biere and Marco Benedetti for fruit-
ful discussions and the latter for a pre-release of ozziKs.

368 S. Staber and R. Bloem

References

[AH99] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design,
15:7–48, 1999.

[ALT04] R. Alur and S. La Torre. Deterministic generators and games for LTL fragments.
ACM Transactions on Computational Logic, 5(1):1–25, January 2004.

[ASV+05] M. Ali, S. Safarpour, A. Veneris, M. Abadir, and R. Drechsler. Post-verification de-
bugging of hierarchical designs. In Proc. IEEE International Conference on Com-
puter Aided Design (ICCAD 2005), pages 871–876, San Jose, California, USA,
2005.

[B+96] R. K. Brayton et al. VIS: A system for verification and synthesis. In T. Henzinger
and R. Alur, editors, Eighth Conference on Computer Aided Verification (CAV’96),
pages 428–432. Springer-Verlag, Rutgers University, 1996. LNCS 1102.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Fifth International Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS’99), pages 193–207, March 1999. LNCS 1579.

[Ben05a] M. Benedetti. Extracting certificates from quantified Boolean formulas. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’05), pages 47–53, 2005.

[Ben05b] M. Benedetti. sKizzo: a suite to evaluate and certify QBFs. In Proc. of 20th Inter-
national Conference on Automated Deduction (CADE05), 2005. LNCS 3632.

[BGS06] R. Bloem, H. N. Gabow, and F. Somenzi. An algorithm for strongly connected
component analysis in n log n symbolic steps. Formal Methods in System Design,
28:37–56, 2006.

[ETW02] U. Egly, H. Tompits, and S. Woltran. On quantifier shifting for quantified boolean
formulas. In Proceedings of the SAT-02 Workshop on Theory and Applications of
Quantified Boolean Formulas (QBF-02), pages 48–61, 2002.

[GSB06] A. Griesmayer, S. Staber, and R. Bloem. Automated fault localization for C pro-
grams. In Workshop on Verification and Debugging (V&D’06), 2006. To Appear.

[JGB05] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In K. Etes-
sami and S. K. Rajamani, editors, 17th Conference on Computer Aided Verification
(CAV’05), pages 226–238. Springer-Verlag, 2005. LNCS 3576.

[Mai00] M. Maidl. The common fragment of CTL and LTL. In Proc. 41th Annual Sympo-
sium on Foundations of Computer Science, pages 643–652, 2000.

[SB06] H. Samulowitz and F Bacchus. Binary clause reasoning in QBF. In Proc. 9th Intern.
Conf. on Theory and Applications of Satisfiability Testing (SAT’06), 2006.

[SFBD06] S. Staber, G. Fey, R. Bloem, and R. Drechsler. Automatic fault localization for
property checking. In Second Haifa Verification Conference, 2006.

[SJB05] S. Staber, B. Jobstmann, and R. Bloem. Finding and fixing faults. In D. Borrione
and W. Paul, editors, 13th Conference on Correct Hardware Design and Verification
Methods (CHARME ’05), pages 35–49. Springer-Verlag, 2005. LNCS 3725.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In 12th Annual Sym-
posium on Theoretical Aspects of Computer Science, pages 1–13. 1995. LNCS 900.

[YM05] Y. Yu and S. Malik. Validating the result of a quantified Boolean formula (QBF)
solver: Theory and practice. In Asia and South Pacific Design Automation Confer-
ence (ASPDAC’05), pages 1047–1051, 2005.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 369 – 376, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Sensor Deployment for Failure Diagnosis in
Networked Aerial Robots: A Satisfiability-Based Approach

Fadi A. Aloul1 and Nagaragan Kandasamy2

1 Department of Computer Engineering, American University of Sharjah, UAE
faloul@aus.edu

2 Department of Electrical and Computer Engineering, Drexel University, USA
kandasamy@ece.drexel.edu

Abstract. Unmanned aerial vehicles (UAVs) represent an important class of
networked robotic applications that must be both highly dependable and
autonomous. This paper addresses sensor deployment problems for distributed
failure diagnosis in such networks where multiple vehicles must agree on the
fault status of another UAV. Sensor placement is formulated using an integer
linear programming (ILP) approach and solved using Boolean satisfiability
(SAT)-based ILP solvers as well as generic ILP solvers. Our results indicate
that the proposed models are tractable for medium-sized UAV networks.

Keywords: 0-1 ILP, SAT, UAV networks, fault diagnosis, distributed systems.

1 Introduction

Unmanned aerial vehicles (UAVs) represent an important class of robotic applications
for distributed sensing and control. A collection of vehicles must perform a shared
task while coordinating the required inter-vehicle actions using wireless communica-
tion. Examples include remote sensing, surveillance and patrol, and data collection
over areas dangerous to human intervention. Such UAV networks have significant
cost constraints. However, they must be both highly dependable and largely autono-
mous, requiring only high-level guidance from ground controllers.

Sensing and surveillance applications require that UAV node maintain a tight spa-
tial formation or physical topology, including specified inter-node distances. In a
typical decentralized formation-control scheme, each node receives information from
neighboring nodes such as their position and velocity, and uses this data for local con-
trol aimed at maintaining its position within the topology [6]. Therefore, correct and
timely information flow between nodes is critical to maintaining a stable topology.

To maintain the specified topology of a UAV network comprising nodes

qNN ,...,1 , each jN must communicate some critical information such as its position

and velocity to neighboring nodes. Hardware (software) failures may, however, cause
the node to transmit erroneous values. Though physical redundancy in the form of
replicated sensors and processors can mask such node failures, it also adds to jN ’s

370 F.A. Aloul and N. Kandasamy

cost, weight, and power consumption. A low-cost alternative is failure diagnosis using
analytical redundancy [8] where other nodes in the topology use their local sensors
and an appropriate mathematical model to estimate the values sent by jN , and

compare discrepancies between the actual and estimated values.
This paper addresses sensor deployment problems for distributed failure diagnosis

in wireless UAV networks where multiple nodes must agree on the fault status of
another node. We assume that a node iN in this topology requires a testing configura-

tion-a set of sensors-to monitor jN for example, if iN has a GPS sensor, and addi-

tionally, a 3D laser range finder, it can, using these sensors and an appropriate
mathematical model, independently estimate jN ’s position. Several choices of testing

configurations are typically available for iN , differing from each other in their moni-

toring range, detection capabilities, and cost. (Another possible testing configuration
on iN may comprise a 2D laser range finder and an omni-directional camera.) Also,

the sensors themselves may have varying operating distances. Clearly, long-range
sensors can monitor multiple nodes, and at greater distances. However, the use of
such expensive sensors may substantially increase the overall system cost. On the
other hand, if only short-range sensors are used, effective diagnosis may only be
achieved with a large number of such sensors. Therefore, efficient sensor selection
and placement strategies are needed to minimize system cost while achieving the
desired level of diagnosability.

Previous research has addressed distributed system diagnosis under the assump-
tion that processing units test each other and exchange the test results to identify fail-
ures [2]. Failed units are then removed from future computations. Several variants of
this problem have been studied in the literature, including diagnosing transient and
intermittent faults [10], probabilistic diagnosis [4], and failure diagnosis in random,
sparse, and highly regular topologies [7]. Since explicit tests are typically difficult to
obtain in practice, various comparison-based approaches have also been proposed,
where tasks are duplicated on multiple units and their results compared to identify
faulty ones [3]. A good survey of prior diagnosis-related research is presented in [2].
The above papers, however, don't address the sensor selection and placement prob-
lems for failure diagnosis in wireless networks.

The authors of [5] present a method to identify faulty processors in ad hoc wire-
less networks via a comparison-based diagnosis model. They present algorithms for
both fixed and time-varying network topologies, and show that diagnosis efficiency is
significantly reduced when the topology changes with time. As before, sensor
selection and placement problems are not addressed.

The sensor placement problem is related to both the alarm and guard placement
problems [12, 13]. In [12], alarms are placed on the nodes of a failure propagation
graph such that one failed node is uniquely and efficiently identified. A fault propa-
gates along this graph activating one or more alarms and the diagnosis algorithm finds
the node responsible for causing them. The guard placement problem can be infor-
mally stated as that of determining the minimum number of guards, each having a
certain monitoring range, to cover the interior of an art gallery, represented as a
polygon [13].

 Sensor Deployment for Failure Diagnosis in Networked Aerial Robots 371

This paper uses an integer linear programming (ILP) approach to solve sensor
deployment problems for distributed failure diagnosis in UAV networks. We specifi-
cally target popular UAV formations such as mesh, diamond, and circular topologies
[15, 16] , and provide exact solutions for topologies up to 40 nodes, representative of
topology sizes assumed by researchers while developing formation control algorithms
[15, 17].

The proposed method aims to minimize both the testing and communication costs
associated with identifying a bounded number of faulty UAV nodes. (In a typical
wireless network, it is desirable to minimize the transmitting range of individual
nodes to reduce power consumption and network interference.) Assuming an upper
bound f on the number of node failures, we formulate and solve ILP models for the
following optimization problem: Given a topology comprising q empty slots and an
equal number of UAV nodes, each having a specific testing and communication con-
figuration, allocate nodes to slots such that system diagnosability, in terms of the
number of diagnosed nodes, is maximized. The above is termed the MaxD problem.

The model are solved using two different 0-1 ILP (SAT-based and generic-based)
solvers [1, 9] and their performance is compared. Our experiments indicate that these
models are tractable for topologies up to forty nodes.

The rest of this paper is organized as follows. Section 2 discusses some modeling
assumptions and the distributed diagnosis approach. We develop ILP models for the
MaxD problem in Section 3 and solve them in Section 4. We conclude this paper in
Section 5.

N
9

N
4

N
3

N
2

N
1

N
6

N
5

N
8

N
7

N
9

N
4

N
3

N
2

N
1

N
6

N
5

N
8

N
7

N
9

N
4

N
3

N
2

N
1

N
6

N
5

N
8

N
7

(a) (b) (c)

Fig. 1. (a) A grid topology of UAVs. The testing edges induced on the other nodes when

1N chooses (b) a testing configuration 1T and (c) a shorter-range testing configuration 2T .

2 Preliminaries

This section describes the assumed system model and discusses the distributed diag-
nosis approach. The combinatorial nature of the sensor selection and placement prob-
lems of interest is briefly outlined.

2.1 System Model

We assume a distributed system where UAV nodes communicate with each other
over a wireless network having limited bandwidth and must maintain the specified
physical topology. Fig. 1(a) shows a grid topology for UAVs. High-level controllers

372 F.A. Aloul and N. Kandasamy

coordinate with other nodes of interest to maintain the topology while feedback-
control loops regulate local dynamics on each node.

A node iN ’s position within a topology is given in the),,(iii zyx dimensions and

the distance between nodes iN and jN is

222)()()(jijijiij zzyyxxD −+−+−= (1)

When iN has a choice of testing configurations, we let ikT denote the thk such

configuration with testing range range(ikT) and cost ika ; if ijik DTrange ≥)(, then iN

can test (or monitor) jN using configuration ikT . Similarly, if ilC denotes the thl

communication configuration on iN having cost ilb , then node iN can transmit mes-

sages to jN if ijil DCrange ≥)(. (Also, whenever the context is clear, we will refer to

the thk testing and thl communication configuration on a node simply as kT and lC ,

respectively.)
As noted in Section 1, controllers on each jN must communicate some critical in-

formation such as its position and velocity to neighboring nodes to maintain the
desired topology. We assume that jN may suffer operational failures including per-

manent and transient ones, thereby transmitting erroneous (sensor) information to its
neighbors. Therefore, jN must be diagnosed and removed from participating in

future formation-control computations.

2.2 Distributed Diagnosis

Distributed diagnosis in a topology such as Fig. 1(a) requires that multiple testing
nodes agree on the fault status of a testee node jN . This is achieved using a 2-phase

approach as follows. During phase 1, each testing node independently evaluates the
information transmitted by jN . These local decisions are then consolidated via a suit-

able agreement algorithm during phase 2 to obtain a global view of jN ’s status. Simi-

lar 2-phase diagnosis schemes have been previously proposed to identify faulty proc-
essors [14].

We assume an analytical redundancy-based checking scheme that is executed lo-
cally on node iN to evaluate the information sent by jN . Node iN uses its onboard

testing configuration and an appropriate mathematical model to independently esti-
mate jN ’s sensor values. These estimates are compared to the actual values sent by

jN to generate a residue or error. During phase 2, iN exchanges the locally gener-

ated residue with other testing nodes within communication range. Since multiple
testers may employ both design and data diversity, i.e., use various testing configura-
tions and/or models to estimate the same values, these residues may differ slightly
from each other, and yet be correct. Therefore, each tester obtains a voted residue
value using an approximate agreement algorithm, and evaluates it against an a priori
defined threshold to diagnose jN . If all testers perceive jN ’s failure uniformly, then

 Sensor Deployment for Failure Diagnosis in Networked Aerial Robots 373

a suitable agreement algorithm is the median voter which selects the middle value
from an odd number of residues by eliminating those residue pairs differing by the
greatest amount [11]. At the end of phase 2, all fault-free nodes correctly identify

jN ’s status.

Assuming an upper bound f on the number of node failures in the topology, we
need at least 2f+1 tester nodes to diagnose another node. The distributed approach
described above also tolerates failures during the diagnosis process itself and
increases confidence in the corresponding decisions. Finally, to reduce the cost of
diagnosis, not all sensors on jN are diagnosed. A few critical sensors are typically

selected and checkers implemented to diagnose them.
Returning to Fig. 1, a testing configuration selected for iN induces corresponding

testing edges on neighboring nodes where ji NN → indicates that iN can monitor

jN . Fig. 1(b) shows the edges generated when 1N chooses a testing configuration 1T .

Fig. 1(c), on the other hand, shows the case where a testing configuration 2T with a

shorter range is used. We also assume “line-of-sight” testing, i.e., there must be an
uninterrupted path between the testee and tester nodes. Therefore, in Fig. 1, node N1
cannot test N3, N7, and N9, since they are not in the line-of-sight.

3 Problem Formulation

Given a topology with q empty slots and an equal number of nodes, each with a spe-
cific testing and communication configuration, allocate nodes to slots such that sys-
tem diagnosability, in terms of the number of diagnosed nodes, is maximized. We
assume an upper bound f on the number of node failures. We define the following
decision variables.

1=ijx if iN occupies slot j; 0 otherwise

1=ijm if node placed in slot i can moniter the node in j; 0 otherwise

1=id if the node placed in slot i is diagnosable; 0 otherwise

1=ijp if a node iN can communicate with jN ; 0 otherwise

We maximize the cost function

∑
=

q

i
id

1

 (2)

subject to the following constraints. A node iN must be allocated to exactly one

slot.

∑
=

=
q

ji
ijx 1 i∀ (3)

Conversely, each slot j must have exactly one node allocated to it.

374 F.A. Aloul and N. Kandasamy

∑
=

=
q

j
ijx

1

1 j∀ (4)

Let ijs denote the set of nodes, when placed in slot i, can monitor slot j; node

ijk sN ∈ if it has a testing configuration lkT such that ijlk DTrange ≥)(. Constraint (5)

sets the decision variable ijm to indicate if a chosen node-to-slot allocation enables

slot i to test slot j, and constraint (6) ensures that a node allocated to slot j is moni-
tored by at least 2f + 1 other nodes.

∑
∈

≥−
ijk sN

ijki mx 0 jiji ≠∀∀ ,,
(5)

∑
=

+≥
q

i
ij fm

1

12 jij ≠∀ , (6)

Constraint (7) sets the decision variable ijp indicating if a chosen node-to-slot al-

location enables slot i to transmit to slot j. Let ijs now denote the set of nodes, when

placed in slot i, have the transmission range to reach slot j; node ijk sN ∈ if its com-

munication configuration lkC is such that ijlk DCrange ≥)(.

∑
∈

≥−
ijk sN

ijki px 0 jiji ≠∀∀ ,,
(7)

Constraints (8), (9), and (10) select exactly 2f + 1 slots to diagnose the node placed in
slot j. Note that the node placed in slot j must transmit its sensor values to every member
of the selected subset; otherwise it is not diagnosable. For example, if under some node-
to-slot allocation, slot j cannot transmit its sensor values to a slot i chosen to monitor it,
i.e., 1=ijz and 0=ijp , then clearly jd must be 0 to satisfy constraint (10).

0≥− ijij zm jiij ≠∀∀ ,, (8)

∑
=

+=
q

i
ij fz

1

12 jij ≠∀ , (9)

1≤−+ ijiji pzd (10)

Finally, for each slot j, the 2f + 1 slots chosen to diagnose it must be able to exchange
the test results amongst themselves and reach an agreement during phase 2 of the diag-
nosis process. These slots must be fully connected or else the node in slot j cannot be
diagnosed. For example, consider a pair of slots i and k chosen to diagnose slot j, i.e.,

1== kjij zz . However, if slots i and k cannot exchange their test results, i.e., if 0=ikp

or 0=kip , then clearly jd must be zero to satisfy both constraints (11) and (12).

 Sensor Deployment for Failure Diagnosis in Networked Aerial Robots 375

2≤−++ ikkjijj pzzd (11)

2≤−++ kikjijj pzzd)(,,, jikjiji ∨≠≠∀ (12)

4 Performance Evaluation

We solve the ILP model developed in Section 3 using the generic-based ILP solver
CPLEX [9] and the SAT-based 0-1 ILP solver PBS ver. 4 [1]. The CPLEX and PBS
solvers were executed on an Intel Xeon 3 GHz machine with 4 GB RAM. The results
presented in this section assume grid topologies, though the models are directly appli-
cable to other important formations such as circles and diamonds.

Both CPLEX and PBS were used to solve the MaxD model for different topology
sizes. For each experiment, we generated a grid topology comprising q empty slots.
Assuming an equal number of nodes, a specific testing and communication configura-
tion was pre-selected for each node such that the distribution of configurations to
nodes was uniform. The time-out periods for the CPLEX and PBS solvers were set to
10,000 seconds.

Table 1 summarizes the results obtained by CPLEX and PBS, in terms of the number
of diagnosable nodes, for f = 1, 2. Optimal results are shown in boldface in the figures.
We assume five testing (communication) configurations corresponding to α values of 0,
0.25, 0.5, 0.75, and 1. The results show that PBS outperforms CPLEX in the f = 1 case.
Both solvers time-out trying to prove the solution optimality in the f = 2 case. To sum-
marize, the MaxD model appears tractable for medium-size topologies up to 40
nodes.

Table 1. Number of nodes diagnosed under the difference fault models; five testing (communi-
cation) configurations corresponding to α = 0, 0.25, 0.5, 0.75, 1 are assumed

f = 1 f = 2
PBS CPLEX PBS CPLEX Nodes(q)

Cost Time Cost Time Cost Time Cost Time
4x5 20 0.26 20 164 16 t/o 15 t/o
5x5 25 1.7 25 237 20 t/o 19 t/o
5x6 30 1.59 30 2163 24 t/o 24 t/o
6x6 36 10.44 33 t/o 28 t/o 0 t/o

5 Conclusions

This paper has addressed the problem of sensor deployment for distributed failure
diagnosis in UAV networks. The MaxD model allows designers to specify the place-
ment of nodes within a given topology to maximize system diagnosability while in-
curring no additional testing costs. The ILP model was solved using the generic-based
ILP solver CPLEX and SAT-based 0-1 ILP solver PBS, and experimental results in-
dicate that they are tractable for medium-size topologies. For larger topologies, a
straightforward (and sub-optimal) solution is to partition the given topology into

376 F.A. Aloul and N. Kandasamy

portions tractable for the ILP models, and solve the resulting sub-problems in parallel.
We will investigate this and other approximation methods in future work.

References

[1] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, “Generic ILP Versus Specialized 0-1
ILP: An Update,” Proc. IEEE/ACM Conf. Computer Aided Design (ICCAD), 450-457,
November 2002.

[2] M. Barborak, M. Malek, and A. Dahbura, “The Consensus Problem in Fault-Tolerant
Computing,” ACM Computing Surveys, 25(2), 171-219, June 1993.

[3] D. Blough and H. Brown, “The Broadcast Comparison Model for On-line Fault Diagno-
sis in Multicomputer Systems: Theory and Implementation,” IEEE Trans. Comp., 48(5),
470-493, May 1999.

[4] D. Blough, G. Sullivan, and G. Masson, “Efficient Diagnosis of Multiprocessor Systems
under Probabilistic Models,” IEEE Trans. Computers, 41(9), 1126-1136, September
1992.

[5] S. Chessa and P. Santi, “Comparison-Based System-Level Fault Diagnosis in Ad-hoc
Networks,” Proc. IEEE Symposium Reliable Distributed Systems, 257-266, 2001.

[6] J. Fax and R. Murray, “Information Flow and Cooperative Control of Vehicle Forma-
tions,” IEEE Transactions on Automatic Control, 49(9), 1465-1476, September 2004.

[7] D. Fussel and S. Rangarajan, “Probabilistic Diagnosis of Multiprocessor Systems with
Arbitrary Connectivity,” Proc. IEEE Symposium on Fault-Tolerant Computing, 560-565,
1989.

[8] J. Gertler, “Fault Detection and Diagnosis in Engineering Systems,” Marcel Dekker,
NewYork, 1998.

[9] ILOG CPLEX, http://www.ilog.com/products/cplex
[10] W. Kozlowski and H. Krawczyk, “A Comparison-Based Approach to Multi-Computer

System Diagnosis in Hybrid Fault Situations,” IEEE Trans. Computers, 40(11),
1283-1287, November 1991.

[11] P. Lorczak, A. Caglayan, and D. Eckhardt, “A Theoretical Investigation of Generalized
Voters for Redundant Systems,” Proc. IEEE Symposium on Fault-Tolerant Computing,
444-451, 1989.

[12] N. Rao, “Computational Complexity Issues in Operative Diagnosis of Graph-Based Sys-
tems,” IEEE Trans. Computers, 42(4), 447-457, April 1993.

[13] J. O’Rourke, “Art Gallery Theorems and Algorithms,” Oxford University Press, Oxford,
1987.

[14] C. J. Walter, P. Lincoln, and N. Suri, “Formally Verified On-Line Diagnosis,” IEEE
Trans. Software Engineering, 23(11), 684-721, November 1997.

[15] J. Fax and R. Murray. “Information Flow and Cooperative Control of Vehicle Forma-
tions,” Proc. IFAC World Congress, July 2002.

[16] A. Pant et al., “Mesh Stability of Unmanned Aerial Vehicle Clusters,” Proc. American
Control Conf., 2001.

[17] J. Desai, J. Ostrowski, V. Kumar. “Control of Changes in Formation for a Team of Mo-
bile Robots,” Proc. IEEE Conf. Robotics & Automation, 1556-1561, May 1999.

Inversion Attacks on Secure Hash Functions

Using sat Solvers

Debapratim De1, Abishek Kumarasubramanian1,
and Ramarathnam Venkatesan1,2

1 Cryptography, Security and Algorithms Research Group, Mircosoft Research India,
Bangalore

2 Cryptography and Anti-Piracy Research Group, Microsoft Research, Redmond
{dde,abikum,venkie}@microsoft.com

Abstract. Inverting a function f at a given point y in its range involves
finding any x in the domain such that f(x) = y. This is a general problem.
We wish to find a heuristic for inverting those functions which satisfy
certain statistical properties similar to those of random functions. As an
example, we choose popular secure hash functions which are expected
to be hard to invert and any successful strategy to do so will be quite
useful. This provides an excellent challenge for sat solvers. We first find
the limits of inverting via direct encoding of these functions as SAT: for
md4 this is one round and twelve steps and for md5 it is one round and
ten steps. Then, we show that by adding customized constraints obtained
by modifying an earlier attack by Dobbertin, we can invert md4 up to 2
rounds and 7 steps in < 8 hours.

1 Introduction

Many combinatorial and optimization problems can be encoded as sat instances
and the efficiency of sat solvers, which has improved considerably over the years,
has enabled solving them. Some of them [1][2] perform very well in practical
situations. In this paper, we study the inversion problem, where one is given
a function F , as a program or an algorithm, and asked to come up with an
algorithm I(y) that given y in the range of F , finds some x = I(y) such that
F (x) = y. Since any NP problem can be formulated appropriately as an inversion
problem, one can expect wide applicability, and indeed expect difficulty (in the
worst case) in solving them; we here focus on how to use various sat solver
strategies on those problems of practical interest that satisfy some statistical
properties. Among them it is natural to study those extreme cases that present
considerable challenge to gain some perspective.

Indeed, if F happens to be a secure hash function such as md4, md5 and
sha0, it possesses nice statistical properties akin to a random function: however
one expects any sat solver to fail if one encodes it’s inversions directly as a sat
problem. We report on the experiments that show what can be achieved with
current sat solvers. The secure hash functions proceed in rounds, typically 3 or
4, and each round having some fixed number (e.g., 16) of steps. It is common to

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 377–382, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

378 D. De, A. Kumarasubramanian, and R. Venkatesan

consider the progress of a cryptographic attack method by studying its efficacy
on the function restricted to a reduced number of rounds and steps.

Next we ask the following question: can we use some knowledge about the
function F at hand? For example, in the secure hash functions we can expect
first two conditions below to hold and the third one to a large extent depending
on the sat encoding:

– equidistribution: For any y and L, the number of x of length L that map
into the same y is approximately 2L−|y|.

– input extensibility: Even if one fixes some of the m bits of (or imposes
some conditions on) x, one expects solutions for F (x) = y to exist if 2L−|y|−m

is large enough (for example exceeding 1000).
– auxiliary variable extensibility: Similar claim applies the auxiliary

variables: assume the encoding of the equation F (x) = y results in a sat
formula φ(x1, ..., xn, y1, ..., ym, a1,..., aT) where xi and yj are respectively the
bits of x and y, and ai are the auxiliary variables used in the encoding.
Then, on fixing some of the bits of (or imposing some statistically equivalent
conditions on) ai (for suitable chosen values of i) φ will still be satisfiable,
similar to item 2.

These assumptions allow us to pose more constraints on the variables in the
intermediate steps and rounds, thereby reducing the search space. Such an ap-
proach was implicitly used by Dobbertin to invert md4 for 2 rounds with an
estimate of 232 md4 computations. A direct sat encoding of this attack inverted
2 rounds in less than a second. Typically, to keep our work factor manageable,
in our experiments we restricted the run time of the sat solvers to be within a
day. Our results on the limits of direct encoding must be viewed in this context.

Next, we present a way of posing extra constraints on the intermediate values
during the computation, so as to achieve an inverse of md4 up to 2 round and 7
steps. We give data on the results along the intermediate steps, and as well as the
variable prioritization techniques to help the solver. The properties of equidistri-
bution and extensibility are statistical in nature and are usually enjoyed by a wide
variety of practical problems. It is reasonable to expect these to hold in many other
applications and our techniques may be reasonably expected to yield results.

1.1 Prior Work

In the past few years, many cryptographic hash functions have been shown to be
vulnerable to collision-finding attacks [3][4][5][6]. There has also been a successful
attempt [7] in applying sat solvers to an essential constraint satisfaction phase
in these collision-finding attacks. In this paper, we explore the use of sat solvers
in preimage attacks.

2 Hash Functions

Hash functions are very important and useful cryptographic primitives. They
are commonly used in signature schemes, time stamping mechanisms, random
number generators and many cryptographic protocols.

Inversion Attacks on Secure Hash Functions Using sat Solvers 379

A hash function maps an input string of arbitrary or almost arbitrary length
to one with a fixed length. A cryptographic hash function H mapping a domain
D to a range R is required to satisfy the following three properties - (a) Collision
Resistance: It should be ‘hard’ to produce distinct x1, x2 ∈ D such that H(x1) =
H(x2); (b) Second Preimage Resistance: For a given x1 ∈ D, it should be ‘hard’
to produce a distinct x2 ∈ D such that H(x1) = H(x2); (c) Preimage Resistance:
For a given y ∈ D, it should be ‘hard’ to produce an x ∈ D such that H(x) = y.
We call preimage attacks also as inversion attacks.

3 Inversion Attacks on md4

One may view md4 as a map from binary strings into {0, 1}128. It first pads, if
necessary, the input so that its length becomes a multiple of 512 then applies
a compress function iteratively, which maps 512-bit message blocks to 128 bits.
Each iteration consists of 3 rounds, each of which is 16 steps long. Typically,
attacks focus on the compress function. For details see [8]. Ours is a pre-image
attack on the 2 round and 7 step version.

We now present an algorithmic description suitable for our purposes. It uses
an array Q of 32-bit values indexed by [−3,−2,−1, 0, 1, . . . , 48].

Round 1:
for i = 1 to 16 do

Q[i] = f(Q[i− 4], Q[i− 3], Q[i− 2], Q[i− 1], X [i− 1])
end for

Round 2:
for i = 17 to 32 do

Q[i] = g(Q[i− 4], Q[i− 3], Q[i− 2], Q[i− 1], X [p(i− 17)]
end for

Round 3:
for i = 33 to 48 do

Q[i] = h(Q[i− 4], Q[i− 3], Q[i− 2], Q[i− 1], X [q(i− 33)]
end for

Here the permutations p and q and the functions f, g, h are defined in the md4
standard.

This computation can be encoded as a sat formula in the following manner.
Consider each of Q[i], i ∈ {−3,−2,−1, . . . , 48}, as an array of 32-bit unknowns.
Each of the functions f, g, h involve elementary operations, and are encoded as
sat. In order to encode the inversion attack, we set the output bits to the hash
value that we want to invert. The 128 bit hash value output after x rounds is in
Q[x], Q[x− 1], Q[x− 2] and Q[x− 3].

Let IV = (Q[−3], Q[0], Q[−1], Q[−2]) be the initial chaining vector for md4.
The steps of reduced version of the md4 algorithm for two rounds and seven
steps can be described as an iterative computation using Table 1 [10]. In this
table, any empty entry means the value of the register is equal to the entry

380 D. De, A. Kumarasubramanian, and R. Venkatesan

directly above it. For eg. the entry in “Register A” at step 7 is Q5. The table
describes the general md4 computation without any constraints. In the attacks
we enforce the equation (*) or (#), given later, and thus, for eg., register ’A’,
’C’, and ’D’ will have value K in step 15.

Direct Encoding Results. A direct encoding of 1 round and 12 steps produces
a sat instance with 491520 clauses and 3476 variables. We found the following
results from two inversions of the special all zero hash:

0x975c2001 0x71605f00 0x6fa2ecaa 0x5e3135b0 0x02802000 0x6ef98002
0x97fd84ac 0xe1c01d6c 0x450c1900 0x45e1b020 0xb1456cb6 0x299b16af
0x9a7ca6c0 0xb9220116 0x79dd0069 0x25cdfec4

and
0xeec261af 0x911406c1 0x64aa4753 0x224b8cc0 0xa3048188 0xa39ca000
0xe98a4afd 0xc3f19656 0x051600a0 0xc1c01202 0x6b018627 0xb104fef9
0x50cc0480 0xa0e94340 0xa9da0860 0x063fff72

The first instance was run on SATELITE and MINISAT. It compresses to 202407
clauses and 3007 variables, in 75 seconds, which solves in another 12 seconds.
The second instance takes 72 seconds to solve on plain MINISAT.

Dobbertin’s Attack. Dobbertin’s inversion attack [10] on a two round version
of md4 takes a given hash value Q[32], Q[31], Q[30], Q[29] and finds a value for
the message in X[0] through X[15]. Given that one expects a given hash value to
have 2512

2128 inverses (assuming the function behaves like a random one), Dobbertin
poses the following constraint on intermediate values

Q[25] , Q[26] , Q[27] , Q[21] , Q[22] , Q[23] = K (*)
Q[17] , Q[18] , Q[19] , Q[13] , Q[14] , Q[15] = K

This reduces the search space from 2128 to 264 involving an a non-linear im-
plicit 32-bit valued function D in an equation of the form (we call Q[128] as B0

to match the notation in [10])

D(B0, K) = 0 (1)

This reduces the attack complexity to (232) steps on an average: one chooses
the values for B0, K (64-bits) at random and check if (1) holds. This extends
automatically further to 2 rounds and 3 steps but further extension by direct en-
coding were not solvable in a few days, possibly because such encoding increases
the search space size to 96-bits.

Variable Prioritization. In the DPLL algorithm, the branch variables can be
carefully ordered and tailored to make the solver more efficient with respect to
the application at hand and extra knowledge. In the case of Dobbertin’s attack,
the 32-bit variables B0, K in the equation 1, are prioritized as branching points
ahead of every other variable. Between the bits of B0, K we allow MINISAT’s
activity heuristics to dictate variable(bit) ordering. This strategy is used in all
attacks.

Inversion Attacks on Secure Hash Functions Using sat Solvers 381

Table 1. md4 Computation for 2 Rounds and 7 Steps

Our Attack. The sat solver enables one to modify the table by posing more
implicit constraints. We remove the constraint on Q[13] and set the rest of the
variables in the Dobbertin’s constraints to 0. The new set of constraints on the
hash values of md4 are to set the values of

Q[25] , Q[26] , Q[27] , Q[21] , Q[22] , Q[23] = 0 (#)
Q[17] , Q[18] , Q[19] , Q[14] , Q[15] = 0

Results. The following are examples of inversions that we obtain using the
above extension of the Dobbertin’s attack. Recall that no inversions for more
than 2 rounds and 3 steps were known before. The hash values were chosen in a
special form to highlight the fact that the results were not obtained via forward
computation of the messages.

md4 2 rounds 4 steps
0xb7759877 0xa57d8667 0xa57d8667 0x87428825 0xa57d8667 0xa57d8667
0xa57d8667 0xb9ca39c5 0xa57d8667 0xa57d8667 0xa57d8667 0x0ac7e6f0
0x6a59a547 0x8f2c86ce 0xa983dbf1 0x554ad05a

hashes to
0x00000001, 0x00000000, 0x00000000, 0x00000000

md4 2 rounds 5 steps
0x9c013f03 0xa57d8667 0xa57d8667 0xdfc0ab4a 0xa57d8667 0xa57d8667
0xa57d8667 0xee416467 0xa57d8667 0xa57d8667 0xa57d8667 0xb114a392
0x4efced8e 0x82581cf9 0x493bb897 0xa7b1272c

hashes to
0x00000000, 0x00000000, 0x00000000, 0x00000001

md4 2 round 7 steps
0x7cd74bbd 0xa57d8667 0xa57d8667 0x8981e841 0xa57d8667 0xa57d8667
0xa57d8667 0x63ba9d30 0xa57d8667 0xa57d8667 0xa57d8667 0x8e67f411
0x044ef497 0x7b17b462 0x7f884714 0x69725052

hashes to
0x11111111, 0x11111111, 0x11111111, 0x11111111

We refer the reader to the full version of the paper for results on preimage
attacks on MD5.

382 D. De, A. Kumarasubramanian, and R. Venkatesan

4 Conclusions

We presented heuristics for solving inversion problems for fucntions that satisfy
certain statistical properties similar to that of random functions. We demostrate
that this technique can be used to solve the hard case of inverting a popu-
lar secure hash function. We believe this technique may be extended to invert
other hard functions, particularly with a better understanding of their internal
structure.

References

1. Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient sat solver. Proc., Design Automation Conference (DAC), June
2001

2. Eén, N., Sorensson, N.: An extensible sat solver. Proc., International Symposium
on the Theory and Applications of Satisfiability and Testing (sat), 2003

3. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
md4 and RIPEMD. Advances in Cryptology, EUROCRYPT 2005. Proc., Volume
3494 of LNCS, Springer, 2005.

4. Wang, X., Yu, H.: How to break md5 and other hash functions. CRYPTO 2005.
Proc., Volume 3621 of LNCS, Springer, 2005.

5. Wang, X., Yu, H., Yin, Y. L.: Efficient collision search attacks on SHA-0. CRYPTO
2005. Proc., Volume 3621 of LNCS, Springer, 2005.

6. Wang, X., Yin, Y. L., Yu, H.,: Finding collisions in the full SHA-1. CRYPTO 2005.
Proc., Volume 3621 of LNCS, Springer, 2005.

7. Mironov, I., Zhang, L.: Applications of sat Solvers to Cryptanalysis of Hash Func-
tions. Proc., International Symposium on the Theory and Applications of Satisfi-
ability and Testing (sat), 2006.

8. Rivest, R. L.: The md4 message digest algorithm. Advances in Cryptology-
CRYPTO 90, Volume 537 of LNCS, pages 303311, Springer, 1991.

9. Rivest, R. L.: The md5 message digest algorithm. RFC 1321, The Internet Engi-
neering Task Force, 1992.

10. Dobbertin, H.: The md4 message digest algorithm. Fast Software Encryption: 5th
International Workshop, FSE’98, Volume 1372 of LNCS, Springer, 1998.

11. Eén, N., Biere, A.: Effective Preprocessing in sat Through Variable and Clause
Elimination. Proc., International Symposium on the Theory and Applications of
Satisfiability and Testing (sat), 2005.

Author Index

Aloul, Fadi A. 369
Ansótegui, Carlos 10
Argelich, Josep 28
Audemard, Gilles 16

Bacchus, Fahiem 215
Biere, Armin 201
Bloem, Roderick 355
Bonet, Maŕıa Luisa 10
Bubeck, Uwe 244
Buresh-Oppenheim, Joshua 300

Cimatti, Alessandro 334

Darwiche, Adnan 294
Davis, Martin 1
De, Debapratim 377
Dershowitz, Nachum 287

Een, Niklas 272

Fuhs, Carsten 340

Giesl, Jürgen 340
Glaß, Michael 56
Gomes, Carla P. 100
Griggio, Alberto 334

Hanna, Ziyad 287
Haubelt, Christian 56
Heras, Federico 41
Hertel, Alexander 159
Hertel, Philipp 159
Heule, Marijn 134, 258
Hoffmann, Joerg 100

Jussila, Toni 201

Kandasamy, Nagaragan 369
Kleine Büning, Hans 244
Kojevnikov, Arist 70
Kröning, Daniel 201
Kullmann, Oliver 314
Kumarasubramanian, Abishek 377

Langlois, Marina 80
Larrosa, Javier 41

Levy, Jordi 10
Li, Chu Min 121
Lukasiewycz, Martin 56
Lynce, Inês 22

Makino, Kazuhisa 187
Manolios, Panagiotis 4
Manyà, Felip 10, 28
Marques-Silva, Joao 22
Middeldorp, Aart 340
Mishchenko, Alan 272
Mitchell, David 300

Nadel, Alexander 287
Navarro-Pérez, Juan Antonio 3

Oliveras, Albert 41

Pipatsrisawat, Knot 294
Porschen, Stefan 173
Prestwich, Steven 107

Sabharwal, Ashish 100
Säıs, Lakhdar 16
Samer, Marko 230
Samulowitz, Horst 215
Scheder, Dominik 148
Schneider-Kamp, Peter 340
Sebastiani, Roberto 334
Selman, Bart 100
Sinz, Carsten 201
Sloan, Robert H. 80
Sörensson, Niklas 272
Speckenmeyer, Ewald 173
Staber, Stefan 355
Szeider, Stefan 94, 230

Tamaki, Suguru 187
Teich, Jürgen 56
Thiemann, René 340
Turán, György 80

Urquhart, Alasdair 159

Van Gelder, Allen 328
van Maaren, Hans 134, 258
Venkatesan, Ramarathnam 377

384 Author Index

Voronkov, Andrei 3
Vroon, Daron 4

Wei, Wanxia 121
Wintersteiger, Christoph M. 201

Yamamoto, Masaki 187

Zankl, Harald 340
Zhang, Harry 121
Zumstein, Philipp 148

	Title page
	Preface
	Organization
	Table of Contents
	SAT: Past and Future
	Encodings of Problems in Effectively PropositionalLogic
	Efficient Circuit to CNF Conversion
	Introduction
	Related Work
	NICE Dags
	CNF Conversion
	Experimental Evaluation
	Conclusions

	Mapping CSP into Many-Valued SAT
	Introduction
	Preliminaries
	Signed CNF Formulas
	Constraint Satisfaction Problems
	Mapping CSP into Signed-SAT

	CSP Inference as Signed Resolution

	Circuit Based Encoding of CNF Formula
	Introduction
	Technical Background and Related Works
	Circuit Based Encoding
	Handling Circuit SAT Formula
	Conclusion

	Breaking Symmetries in SAT Matrix Models
	Introduction
	Symmetry Breaking in SAT
	Symmetry Breaking in Matrix Models
	Experimental Results
	Conclusions and Future Work

	Partial Max-SAT Solvers with Clause Learning
	Introduction
	Previous Work
	Partial Max-SAT Solvers
	PMS
	PMS-Hard
	PMS-Learning

	Experimental Investigation
	Concluding Remarks

	MiniMaxSat: A NewWeighted Max-SAT Solver
	Introduction
	Preliminaries
	Overview of MiniMaxSat
	Lower Bounding in MiniMaxSat
	Additional Features of MiniMaxSat
	Probing
	Branching Heuristic
	Pseudo-boolean Optimization

	Experimental Results
	Related Work
	Conclusions and Future Work

	Solving Multi-objective Pseudo-Boolean Problems
	Introduction
	Specialized PB Solvers
	Problem Formulation
	Algorithms
	Algorithm 1
	Algorithm 2
	Algorithm 3

	Experimental Results
	Queens Puzzle
	System Level Synthesis

	Conclusions

	Improved Lower Bounds for Tree-LikeResolution over Linear Inequalities
	Definitions
	Resolution over Linear Inequalities
	Real Communication Complexity
	Monotone Real Circuits
	Local Search Protocols

	Lower Bound for Tree-Like R(CP)-Like Proof Systems
	Exponential Lower Bounds

	Open Questions

	Horn Upper Bounds and Renaming
	Introduction
	Preliminaries
	Negative Results for Horn Upper Bounds with Renaming
	Computational Results
	Further Remarks

	Matched Formulas and Backdoor Sets
	Introduction and Background
	Results

	Short XORs for Model Counting:From Theory to Practice
	Introduction
	Background
	The Setup for Empirical Evaluation
	Experimental Results and Discussion
	Concluding Remarks

	Variable Dependency in Local Search:Prevention Is Better Than Cure
	Introduction
	Minimal Disagreement Parity Learning
	A Constraint-Based Model
	Encoding Parity Constraints
	Encoding Cardinality Constraints
	Experiments

	Towers of Hanoi as STRIPS Planning
	ToH as STRIPS
	STRIPS as SAT
	Exploiting Domain Knowledge
	Superparallelism
	Long-Range Dependencies
	Implied Clauses
	Experiments

	Conclusion

	Combining Adaptive Noise and Look-Ahead in LocalSearch for SAT
	Introduction
	G2WSAT and adaptG2WSAT
	G2WSAT
	Algorithm adaptG2WSAT
	Performances of the Adaptive Noise Mechanism for adaptG2WSAT and for adaptNovelty+

	Look-Ahead for Promising Decreasing Variables
	Promising Score of a Variable
	Integrating Limited Look-Ahead in adaptG2WSAT

	Evaluation
	Comparison of Performances of adaptG2WSATP, G2WSAT, and adaptG2WSAT
	Comparison of Performances of adaptG2WSATP, R+adaptNovelty+, and VW
	Comparison of Performances of adaptG2WSATP and Preliminary adaptG2WSATP

	Conclusion

	From Idempotent Generalized BooleanAssignments to Multi-bit Search
	Introduction
	Idempotents and Generalized Boolean Assignments
	Multi-bit Unit Propagation
	Implementation UnitMarch
	Unit Propagation
	Detection of Unit Clauses

	Results
	Conclusions and Future Work

	Satisfiability with Exponential Families
	Introduction
	Some Observations
	S-SAT and the VC-Dimension
	NP-Completeness of Context-Free S-SAT
	S-SAT and Polynomial Circuits
	Some S-SAT Which Is Not NP-hard
	Conclusion

	Formalizing Dangerous SAT Encodings
	Introduction
	A SAT Encoding for the Hamiltonian Cycle Problem
	Exponential Lower Bounds for H(Kn*)T,1,F
	Polynomial Upper Bounds for H(Kn*)T,O,F
	Domain Independent Framework for Comparing Encodings
	Explosivity
	Stability
	Implosivity
	Alternate Hierarchies

	Implications for Proof Complexity
	Concluding Remarks

	Algorithms for Variable-Weighted 2-SAT andDual Problems
	Introduction
	Preliminaries
	Reduction Tools for Variable-Weighted Formulas
	Optimum Weight 2-SAT
	The Weighted Dual Class CNF+(2)
	Concluding Remarks and Open Problems

	On the Boolean Connectivity Problemfor Horn Relations
	Introduction
	Preliminaries
	Complexity of the Boolean Connectivity Problems Within Schaefer
	Tractable Cases for Conn(S)
	CoNP-Hardness for Relations in Horn and Dual Horn

	Horn Relations Represented by Characteristic Sets

	A First Step Towardsa Unified Proof Checker for QBF
	Introduction
	Theory
	Implementation
	Experimental Results
	Reference Implementations
	Conclusion

	Dynamically Partitioning for Solving QBF
	Introduction
	Background
	Partitioning QBF
	Partitioning for a Search Based QBF Solver
	Quantifier Trees

	Learning with Partitioning
	Clause Learning
	Cube Learning

	Implementation
	Experimental Results
	2clsQ vs. 2clsP
	2clsP vs. Other Solvers
	State of the Art Solver

	Conclusions

	Backdoor Sets of Quantified Boolean Formulas
	Introduction
	Background
	Quantified Boolean Formulas
	Parameterized Complexity

	Dependency Schemes
	Backdoor Sets
	Detecting Strong Backdoor Sets
	Conclusion

	Bounded Universal Expansionfor Preprocessing QBF
	Introduction
	Preliminaries
	The Basic Preprocessing Algorithm
	Universal Expansion
	Bounded Expansion
	Simplifications

	Selection Strategy
	Estimation Scheme
	Including Locality
	Goal Orientation

	Integrating Q-Resolution
	Implementation and Experiments
	Conclusion

	Effective Incorporation ofDouble Look-Ahead Procedures
	Introduction
	Preliminaries
	Static Heuristics
	Adaptive DoubleLook
	Results
	The Magic Constant
	Comparison
	Adaptation Plots

	Conclusions

	Applying Logic Synthesis for Speeding Up SAT
	Introduction
	Preliminaries
	Cut Enumeration
	DAG-Aware Minimization
	CNF Through the Tseitin Transformation
	CNF Through Technology Mapping
	Definitions
	A Single Mapping Phase
	The Cost of Cuts
	The Complete Mapping Procedure

	Experimental Results
	Conclusions

	Towards a Better Understanding of theFunctionality of a Conflict-Driven SAT Solver
	Introduction
	Implicit Decision-Tree Construction and Pruning
	Usefulness of Conflict-Clause Recording Schemes
	Local Conflict-Clause Recording
	Experimental Results

	A Lightweight Component Caching Scheme forSatisfiability Solvers
	Introduction
	Losing Work with Non--chronological Backtracking
	An Empirical Study
	A Lightweight Caching Scheme
	Experimental Results
	Related Work
	Conclusion

	Minimum 2CNF Resolution Refutations inPolynomial Time
	Introduction
	Preliminaries
	Characterizing Minimum Resolution Refutations
	The Algorithm

	Polynomial Time SAT Decision forComplementation-Invariant Clause-Sets,and Sign-non-Singular Matrices
	Introduction
	Some General Theory of Autarky Systems
	Balanced Autarkies
	L-Matrices and SNS-Matrices
	Complement-Invariant Clause-Sets
	Square Balanced Lean Clause-Sets

	Linear Autarkies and Balanced Linear Autarkies
	Hypergraph Colouring
	Open Problems

	Verifying Propositional Unsatisfiability:Pitfalls to Avoid
	Introduction
	A Pitfall in Resolution Extraction
	Avoiding the Pitfall Via ``Trivial Resolution'' (TVR)
	Conclusion

	A Simple and Flexible Way of Computing SmallUnsatisfiable Cores in SAT Modulo Theories
	Motivations and Goals
	Background
	Lazy Techniques for SMT
	Techniques for Unsatisfiable-Core Extraction in SAT
	Techniques for Unsatisfiable-Core Extraction in SMT

	A Novel Approach to Building Unsat Cores in SMT
	Discussion

	Conclusions

	SAT Solving for Termination Analysis withPolynomial Interpretations
	Introduction
	Termination of TRSs and Polynomial Interpretations
	Encoding Diophantine Constraints to SAT
	Polynomials with Negative Constant
	Implementation, Experiments, and Conclusion

	Fault Localization and Correction with QBF
	Introduction
	Preliminaries
	Quantified Boolean Formulas
	Circuits and Games
	Fault Localization and Correction

	SAT-Based Fault Localization
	Example
	Shortcomings

	QBF-Based Fault Location and Correction
	QBF for Safety Games
	QBF for Repair
	QBF for Büchi Games
	Example

	Experiments
	Conclusions

	Inversion Attacks on Secure Hash FunctionsUsing sat Solvers
	Introduction
	Prior Work

	Hash Functions
	Inversion Attacks on md4
	Conclusions

	Author Index

