
9 Multivariate Statistics

9.1 Introduction

Multivariate analysis aims to understand and describe the relationship be-
tween an arbitrary number of variables. Earth scientists often deal with  mul-
tivariate data sets, such as microfossil assemblages, geochemical fi ngerprints 
of volcanic ashes or  clay mineral contents of sedimentary sequences. If there 
are complex relationships between the different parameters, univariate sta-
tistics ignores the information content of the data. There is a number of meth-
ods, however, for investigating the scaling properties of multivariate data.

A multivariate data set consists of measurements of p variables on n ob-
jects. Such data sets are usually stored in n-by-p arrays:

The columns of the array represent the p variables, the rows represent the 
n objects. The characteristics of the 2nd object in the suite of samples is 
described by the vector in the second row of the data array:

As an example, assume the microprobe analysis on glass shards from volca-
nic ashes in a tephrochronology project. Then, the variables represent the p
chemical elements, the objects are the n ash samples. The aim of the study 
is to correlate ashes by means of their geochemical fi ngerprints.

Most of the  multi-parameter methods simply try to overcome the main 
diffi culty associated with multivariate data sets. This problem relates to the 
data visualization. Whereas the character of an univariate or bivariate data 
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set can easily be explored by visual inspection of a 2D histogram or an xy
plot (Chapter 3), the graphical display of a three variable data set requires 
a projection of the 3D distribution of data points into 2D. It is impossible 
to imagine or display a higher number of variables. One solution to the 
problem of visualization of high-dimensional data sets is the  reduction of 
dimensionality. A number of methods group highly-correlated variables 
contained in the data set and then explore a smaller number of groups.

The classic methods to reduce dimensionality are the  principal compo-
nent analysis (PCA) and the  factor analysis (FA). These methods seek the 
directions of maximum variance in the data set and use these as new coor-
dinate axes. The advantage of replacing the variables by new groups of vari-
ables is that the groups are uncorrelated. Moreover, these groups often help 
to interpret the multivariate data set since they often contain valuable infor-
mation on process itself that generated the distribution of data points. In a 
geochemical analysis of magmatic rocks, the groups defi ned by the method 
usually contain chemical elements with similar ion size that are observed 
in similar locations in the lattice of certain minerals. Examples for such 
behavior are Si4+ and Al3+, and Fe2+ and Mg2+ in silicates, respectively.

The second important suite of multivariate methods aims to group objects 
by their similarity. As an example,  cluster analysis (CA) is often applied to 
correlate volcanic ashes as described in the above example. Tephrochronology 
tries to correlate tephra by means of their geochemical fi ngerprint. In com-
bination with a few radiometric age determinations of the key ashes, this 
method allows to correlate sedimentary sequences that contain these ashes 
(e.g., Westgate 1998, Hermanns et al. 2000). More examples for the applica-
tion of cluster analysis come from the fi eld of micropaleontology. In this con-
text, multivariate methods are employed to compare microfossil assemblages 
such as pollen, foraminifera or diatoms (e.g., Birks and Gordon 1985).

The following text introduces the most important techniques of multivari-
ate statistics, principal component analysis and cluster analysis (Chapter 9.2 
and 9.4). A nonlinear extension of the PCA is the  independent component 
analysis (ICA) (Chapter 9.3). First, the chapters provide an introduction to 
the theory behind the techniques. Subsequently, the use of these methods in 
analyzing earth sciences data is illustrated with MATLAB functions.

9.2 Principal Component Analysis

The  principal component analysis (PCA) detects linear dependencies be-
tween variables and replaces groups of correlated variables by new uncor-



9.2 Principal Component Analysis 247

related variables, the  principal components (PC). The performance of the 
PCA is better illustrated with help of a bivariate data set than a multivari-
ate one. Figure 9.1 shows a bivariate data set that exhibits a strong linear 
correlation between the two variables x and y in an orthogonal xy coordi-
nate system. The two variables have their univariate means and variances 
(Chapter 3). The bivariate data set can be described by the bivariate sample 
mean and the covariance (Chapter 4). The xy coordinate system can be re-
placed by a new orthogonal coordinate system, where the fi rst axis passes 
through the long axis of the data scatter and the new origin is the bivariate 
mean. This new reference frame has the advantage that the fi rst axis can 
be used to describe most of the variance, while the second axis contributes 
only a little. Originally, two axes were needed to describe the data set prior 
to the transformation. Therefore, it is possible to reduce the data dimension 
by dropping the second axis without losing much information as shown in 
Figure 9.1.
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Fig. 9.1 Principal component analysis (PCA) illustrated on a bivariate scatter. The original 
xy coordinate system is replaced by a new orthogonal system, where the fi rst axis passes 
through the long axis of the data scatter and the new origin is the bivariate mean. We can 
now reduce dimensionality by dropping the second axis without losing much information.
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This is now expanded to an arbitrary number of variables and samples. 
Suppose a data set of measurements of p parameters on n samples stored in 
an n-by-p array.

The columns of the array represent the p variables, the rows represent the n
samples. After rotating the axis and moving the origin, the new coordinates 
Yj can be computed by

The fi rst principle component PC1 denoted by Y1 contains the greatest vari-
ance, PC2 the second highest variance and so forth. All PCs together con-
tain the full variance of the data set. The variance is concentrated in the fi rst 
few PCs, which explain most of the information content of the data set. The 
last PCs are generally ignored to reduce the data dimension. The factors 
aij in the above equations are the  principal component  loads. The values of 
these factors represent the relative contribution of the original variables to 
the new PCs. If the load aij of a variable Xj in PC1 is close to zero, the infl u-
ence of this variable is low. A high positive or negative aij suggests a strong 
contribution of the variable Xj. The new values Yj of the variables computed 
from the linear combinations of the original variables Xj weighted by the 
loads are called the  principal component  scores.

In the following, a synthetic data set is used to illustrate the use of the 
function  princomp included in the Statistics Toolbox. Our data set con-
tains the percentage of various minerals contained in sediment samples. 
The sediments are sourced from three rock types: a magmatic rock con-
tains amphibole (amp), pyroxene (pyr) and plagioclase (pla), a hydrother-
mal vein characterized by the occurrence of fl uorite (fl u), sphalerite (sph)
and galenite (gal), as well as some feldspars (plagioclase and potassium 
feldspar, ksp) and quartz (qtz), and a sandstone unit containing feldspars, 
quartz and clay minerals (cla).

Ten samples were taken from various levels of this sedimentary sequence 
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containing varying amounts of these minerals. The PCA is used to verify 
the infl uence of the three different source rocks and to estimate their rela-
tive contribution. First, the data are loaded by typing

data = load('sediments.txt');

Next, we defi ne labels for the various graphs created by the PCA. We num-
ber the samples 1 to 10, whereas the minerals are characterized by three-
character abbreviations.

for i = 1:10
   sample(i,:) = ['sample',sprintf('%02.0f',i)];
end
clear i

minerals = ['amp';'pyr';'pla';'ksp';'qtz';'cla';'flu';'sph';'gal']

A successful PCA requires linear correlations between variables. The  cor-
relation matrix provides a technique for exploring such dependencies in the 
data set (Chapter 4). The elements of the correlation matrix are Pearson’s 
correlation coeffi cients for each pair of variables as shown in Figure 9.2. 
Here, the variables are minerals.

corrmatrix = corrcoef(data);
corrmatrix = flipud(corrmatrix);

imagesc(corrmatrix), colormap(hot)
title('Correlation Matrix')
axis square, colorbar, hold
set(gca,'XTickLabel',minerals,'YTickLabel',flipud(minerals))

This pseudocolor plot of the correlation coeffi cients shows strong positive 
correlations between the minerals amp, pyr and pla, the minerals ksp, qtz
and cla, and the minerals fl u, sph and gal, respectively. Moreover, some of 
the minerals show negative correlations. We also observe no dependency 
between some of the variables, for instance between the potassium feldspar 
and the vein minerals. From the observed dependencies, we expect interest-
ing results from the application of the PCA.

Various methods exist for scaling the original data before applying the 
PCA, such as  mean centering (zero means) or  autoscaling (mean zero and 
standard deviation equals one). However, we use the original data for com-
puting the PCA. The output of the function princomp includes the principal 
component loads pcs, the scores newdata and the variances variances.

[pcs,newdata,variances] = princomp(data);
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The loads of the fi rst fi ve principal components PC1 to PC5 can be shown 
by typing

pcs(:,1:5)

ans =
   -0.3303    0.2963   -0.4100   -0.5971    0.1380
   -0.3557    0.0377    0.6225    0.2131    0.5251
   -0.5311    0.1865   -0.2591    0.4665   -0.3010
    0.1410    0.1033   -0.0175    0.0689   -0.3367
    0.6334    0.4666   -0.0351    0.1629    0.1794
    0.1608    0.2097    0.2386   -0.0513   -0.2503
    0.1673   -0.4879   -0.4978    0.2287    0.4756
    0.0375   -0.2722    0.2392   -0.5403   -0.0068
    0.0771   -0.5399    0.1173    0.0480   -0.4246

We observe that PC1 (fi rst column) has high negative loads in the fi rst three 
variables amp, pyr and pla (fi rst to third row), and a high positive load in the 
fi fth variable qtz (fi fth row). PC2 (second column) has high negative loads in 
the vein minerals fl u, sph and gal, and again a positive load in qtz. We create 
a number of plots of the PCs.
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Fig. 9.2 Correlation matrix containing   Pearson’s correlation coeffi cients for each pair of 
variables, such as minerals in a sediment sample. Light colors represent strong positive 
linear correlations, whereas dark colors document negative correlations. Orange suggests 
no correlation.
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subplot(2,2,1), plot(1:9,pcs(:,1),'o'), axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,1),minerals,'FontSize',8), hold
plot(1:9,zeros(9,1),'r'), title('PC 1')

subplot(2,2,2), plot(1:9,pcs(:,2),'o'), axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,2),minerals,'FontSize',8), hold
plot(1:9,zeros(9,1),'r'), title('PC 2')

subplot(2,2,3), plot(1:9,pcs(:,3),'o'), axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,3),minerals,'FontSize',8), hold
plot(1:9,zeros(9,1),'r'), title('PC 3')

subplot(2,2,4), plot(1:9,pcs(:,4),'o'), axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,4),minerals,'FontSize',8), hold
plot(1:9,zeros(9,1),'r'), title('PC 4')

The loads of the index minerals and their relationship to the PCs can be used 
to interpret the relative infl uence of the source rocks. PC1 characterized by 
strong contributions of amp, pyr and pla, and a contribution with an oppo-
site sign of qtz probably describes the amount of magmatic rock clasts in the 
sediment. The second principal component PC2 is clearly dominated by hy-
drothermal minerals hence suggesting the detrital input from the vein. PC3

and PC4 show a mixed and contradictory pattern of loads and are therefore 
not easy to interpret. We will later see that this observation is in line with a 
rather weak and mixed signal from the sandstone source on the sediments.

An alternative way to plot of the loads is a bivariate plot of two principal 
components. We ignore PC3 and PC4 at this point and concentrate on PC1

and PC2.

plot(pcs(:,1),pcs(:,2),'o')
text(pcs(:,1)+0.02,pcs(:,2),minerals,'FontSize',14), hold
x = get(gca,'XLim'); y = get(gca,'YLim');
plot(x,zeros(size(x)),'r')
plot(zeros(size(y)),y,'r')
xlabel('First Principal Component Loads')
ylabel('Second Principal Component Loads')

Here, we observe the same relationships on a single plot that were previous-
ly shown on several graphs (Fig. 9.3). It is also possible to plot the data set as 
functions of the new variables. This needs the second output of princomp
containing the principal component scores.

plot(newdata(:,1),newdata(:,2),'+')
text(newdata(:,1)+0.01,newdata(:,2),sample), hold
x = get(gca,'XLim'); y = get(gca,'YLim');
plot(x,zeros(size(x)),'r')
plot(zeros(size(y)),y,'r')
xlabel('First Principal Component Scores')
ylabel('Second Principal Component Scores')
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This plot clearly defi nes groups of samples with similar infl uences. The 
samples 1, 2, 8 to 10 dominated by magmatic infl uences cluster in the left 
half of the diagram, the samples 3 to 5 dominated by the hydrothermal vein 
group in the lower part of the right half, whereas the two sandstone domi-
nated samples 6 and 7 fall in the upper right corner.

Next, we use the third output of the function princomp to compute the 
variances of the corresponding PCs.

percent_explained = 100*variances/sum(variances)

percent_explained =
   80.9623
   17.1584
    0.8805
    0.4100
    0.2875
    0.1868
    0.1049
    0.0096
    0.0000

We see that more than 80% of the total variance is contained in PC1, around 
17% is described by PC2, whereas all other PCs do not play any role. This 
means that most of the variability in the data set can be described by two 
new variables only.
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Fig. 9.3 Principal components loads suggesting that the PCs are infl uenced by different 
minerals. See text for detailed interpretation of the PCs.
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9.3 Independent Component Analysis (by N. Marwan)

The principal component analysis (PCA) is the standard method for separat-
ing mixed signals. Such analysis provides signals that are linearly uncor-
related. This method is also called  whitening since this property is char-
acteristic for white noise. Although the separated signals are uncorrelated, 
they could still can be dependent, i.e., nonlinear correlation remains. The 
independent component analysis (ICA) was developed to investigate such 
data. It separates mixed signals into independent signals, which are then 
nonlinearly uncorrelated. Fast ICA algorithms use a criterion which esti-
mates how gaussian distributed the joint distribution of the independent 
components is. The less gaussian this distribution is, the more independent 
the individual components are.

According to the model, n independent signals x (t) are linearly mixed in 
m measurements.

and we are interested in the source signals si and in the mixing matrix A.
For example, we can imagine that we are on a party and a lot of people talk 
independently with others. We hear a mixing of these talks and perhaps 
cannot distinguish the single talks. Now we could install some microphones 
and use these measurements to separate the single conversations. Hence, 
this dilemma is also called the  cocktail party problem. Its correct term is 
blind source separation that is given by

where W T is the separation matrix in order to reverse the mixing and get 
the original signals. Let us consider a mixing of three signals s1, s2 and 
s3 and their separation using PCA and ICA. First, we create three periodic 
signals

clear
i = (1:0.01:10 * pi)';
[dummy index] = sort(sin(i));

s1(index,1) = i/31; s1 = s1 - mean(s1);
s2 = abs(cos(1.89*i)); s2 = s2 - mean(s2);
s3 = sin(3.43*i);
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subplot(3,2,1), plot(s1), ylabel('s_1'), title('Raw signals')
subplot(3,2,3), plot(s2), ylabel('s_2')
subplot(3,2,5), plot(s3), ylabel('s_3')

Now we mix these signals and add some observational noise. We get a three-
column vector x which corresponds to our measurement (Fig. 9.4).

randn('state',1);

x = [.1*s1 + .8*s2 + .01*randn(length(i),1),...
     .4*s1 + .3*s2 + .01*randn(length(i),1),...
     .1*s1 +   s3  + .02*randn(length(i),1)];

subplot(3,2,2), plot(x(:,1)), ylabel('x_1'), title('Mixed signals')
subplot(3,2,4), plot(x(:,2)), ylabel('x_2')
subplot(3,2,6), plot(x(:,3)), ylabel('x_3')

We begin with the separation of the signals using the PCA. We calculate the 
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principal components and the whitening matrix W_PCA with

sPCA = sPCA./repmat(std(sPCA),length(sPCA),1);

The PC scores sPCA are the linearly  separated components of the mixed 
signals x (Fig. 9.5).

subplot(3,2,1), plot(sPCA(:,1))
ylabel('s_{PCA1}'), title('Separated signals - PCA')
subplot(3,2,3), plot(sPCA(:,2)), ylabel('s_{PCA2}')
subplot(3,2,5), plot(sPCA(:,3)), ylabel('s_{PCA3}')

The  mixing matrix A can be found with

A_PCA = E * sqrt (D);
W_PCA = inv(sqrt(diag(D))) * E';

Next, we separate the signals into independent components. We will do 

0 1000 2000 3000 4000

1000

1000

2000

2000

3000

3000

4000

4000

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0

0
−4

−2

0

2

4

−4

−2

0

2

−2

−1

0

1

2

−4

−2

0

2

4

−4

−2

0

2

4

−2

0

2

4

s
s

s
P

C
A

1
P

C
A

2
P

C
A

3

s I
C

A
1

s I
C

A
2

s I
C

A
3

Separated  Signals − PCA Separated  Signals − ICA

a

c

e f

d

b

Fig. 9.5 Output of the principal component analysis (a, c, e) compared with the output of 
the independent component analysis (b, d, f). The PCA has not reliably separated the mixed 
signals, whereas the ICA found the source signals almost perfectly.



256 9 Multivariate Statistics

this by using a FastICA algorithm which is based on a fi xed-point itera-
tion scheme to fi nd the maximum of the non-gaussianity of the independent 
components WTx. As the nonlinearity function we use a power of three 
function for instance.

rand('state',1);

div = 0;
B = orth(rand(3, 3) - .5);
BOld = zeros(size(B));

while (1 - div) > eps
   B = B * real(inv(B' * B)^(1/2));
   div = min(abs(diag(B' * BOld))); 
   BOld  = B;
   B = (sPCA' * ( sPCA * B) .^ 3) / length(sPCA) - 3 * B;
   sICA = sPCA * B;
end

We plot the separated components with (Fig. 9.5)

subplot(3,2,2), plot(sICA(:,1)), ylabel('s_{ICA1}'),
   title('Separated signals - ICA')
subplot(3,2,4), plot(sICA(:,2)), ylabel('s_{ICA2}')
subplot(3,2,6), plot(sICA(:,3)), ylabel('s_{ICA3}')

The PCA algorithm has not reliably separated the mixed signals. Especially 
the saw-tooth signal was not correctly found. In contrast, the ICA has found 
the source signals almost perfectly. The only remarkable differences are the 
noise, which came through the observation, the wrong sign and the wrong 
order of the signals. However, the sign and the order of the signals are not 
really important, because we have generally not the knowledge about the 
real sources nor their order. With

A_ICA = A_PCA * B;
W_ICA = B' * W_PCA;

we compute the mixing matrix A and the separation matrix W. The mix-
ing matrix A can be used in order to estimate the portion of the separated 
signals on our measurements  The components aij of the mixing matrix A 
correspond to the principal components loads as introduced in Chapter 9.2. 
A FastICA package is available for MATLAB and can be found at

http://www.cis.hut.fi/projects/ica/fastica/
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9.4 Cluster Analysis

 Cluster analysis creates groups of objects that are very similar compared to 
other objects or groups. It fi rst computes the similarity between all pairs of 
objects, then it ranks the groups by their similarity, and fi nally creates a hi-
erarchical tree visualized as a dendrogram. Examples for grouping objects 
in earth sciences are the correlations within volcanic ashes (Hermanns 
et al. 2000) and the comparison of microfossil assemblages (Birks and 
Gordon 1985).

There are numerous methods for calculating the similarity between two 
data vectors. Let us defi ne two data sets consisting of multiple measure-
ments on the same object. These data can be described as the vectors:

The most popular measures of similarity of the two sample vectors are the

Euclidian distance – This is simply the shortest distance between the two 
points in the multivariate space:

The Euclidian distance is certainly the most intuitive measure for simi-
larity. However, in heterogenic data sets consisting of a number of differ-
ent types of variables, it should be replaced by the following measure.

Manhattan distance – In the city of Manhattan, one must walk on per-
pendicular avenues instead of diagonal crossing blocks. The Manhattan 
distance is therefore the sum of all differences:

Correlation  similarity coeffi cient – Here, we use Pearson’s linear product-
moment correlation coeffi cient to compute the similarity of two objects:

•

•

•
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This measure is used if one is interested in ratios between the variables mea-
sured on the objects. However, Pearson’s correlation coeffi cient is highly 
sensitive to outliers and should be used with care (see also Chapter 4).

Inner-product similarity index – Normalizing the data vectors to one and 
computing the inner product of these yield another important similarity 
index. This is often used in transfer function applications. In this ex-
ample, a set of modern fl ora or fauna assemblages with known environ-
mental preferences is compared with a fossil sample to reconstruct the 
environmental conditions in the past.

The inner-product similarity varies between 0 and 1. A zero value sug-
gests no similarity and a value of one represents maximum similarity. 

The second step in performing a cluster analysis is to rank the groups by their 
similarity and build a hierarchical tree visualized as a dendrogram. Defi ning 
groups of objects with signifi cant similarity and separating clusters depends 
on the internal similarity and the difference between the groups. Most clus-
tering algorithms simply link the two objects with highest similarity. In the 
following steps, the most similar pairs of objects or clusters are linked it-
eratively. The difference between groups of objects forming a cluster is de-
scribed in different ways depending on the type of data and application.

K-means clustering – Here, the Euclidean distance between the multi-
variate means of the K clusters is used as a measure for the difference 
between the groups of objects. This distance is used if the data suggest 
that there is a true mean value surrounded by random noise.

K-nearest-neighbors clustering – Alternatively, the Euclidean distance of 
the nearest neighbors is used as measure for this difference. This is used 

•

•

•
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if there is a natural heterogeneity in the data set that is not attributed to 
random noise.

It is important to evaluate the data properties prior to the application of a 
clustering algorithm. First, one should consider the absolute values of the 
variables. For example, a geochemical sample of volcanic ash might show 
SiO2 contents of around 77% and Na2O contents of 3.5%, although the 
Na2O content is believed to be of great importance. Here, the data need to 
be transformed to zero means ( mean centering). Differences in the vari-
ances and in the means are corrected by  autoscaling, i.e., the data are stan-
dardized to zero means and variances that equal one. Artifacts arising from 
closed data, such as artifi cial negative correlations, are avoided by using 
Aitchison’s log-ratio transformation (Aitchison 1984, 1986). This ensures 
data independence and avoids the constant sum normalization constraints. 
The log-ratio transformation is

where xtr denotes the transformed score (i=1, 2, 3, …, d–1) of some raw 
data xi. The procedure is invariant under the group of permutations of the 
variables, and any variable can be used as divisor xd.

As an example for performing a cluster analysis, the sediment data stored 
in sediment.txt are loaded and the plotting labels are defi ned.

data = load('sediments.txt');

for i = 1:10
  sample(i,:) = ['sample',sprintf('%02.0f',i)];
end
clear i

minerals= ['amp';'pyr';'pla';'ksp';'qtz';'cla';'flu';'sph';'gal'];

Subsequently, the distances between pairs of samples can be computed. The 
function pdist provides many ways for computing this distance, such as 
the Euclidian or Manhattan city block distance. We use the default setting 
which is the Euclidian distance.

Y = pdist(data);

The function pdist returns a vector Y containing the distances between 
each pair of observations in the original data matrix. We can visualize the 
distances on another pseudocolor plot.
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 squareform(Y);
 imagesc(squareform(Y)), colormap(hot)
title('Euclidean distance between pairs of samples')
xlabel('First Sample No.')
ylabel('Second Sample No.')
colorbar

The function squareform converts Y into a symmetric, square format, so 
that the elements (i,j)of the matrix denote the distance between the i
and j objects in the original data. Next, we rank and link the samples with 
respect to their inverse distance using the function linkage.

Z = linkage(Y);

In this 3-column array Z, each row identifi es a link. The fi rst two columns 
identify the objects (or samples) that have been linked, the third column 
contains the individual distance between these two objects. The fi rst row 
(link) between objects (or samples) 1 and 2 has the smallest distance cor-
responding to the highest similarity. Finally, we visualize the hierarchical 
clusters as a dendrogram which is shown in Figure 9.6.

 dendrogram(Z);
xlabel('Sample No.')
ylabel('Distance')
box on

Clustering fi nds the same groups as the principal component analysis. We 
observe clear groups consisting of samples 1, 2, 8 to 10 (the magmatic 
source rocks), samples 3 to 5 (the hydrothermal vein) and samples 6 and 7 
(the sandstone). One way to test the validity of our clustering result is the 
cophenet correlation coeffi cient. The value of

cophenet(Z,Y)

ans =
    0.7579

looks convincing, since the closer this coeffi cient is to one, the better is the 
cluster solution.
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Fig. 9.6 Output of the cluster analysis. The dendrogram shows clear groups consisting 
of samples 1, 2, 8 to 10 (the magmatic source rocks), samples 3 to 5 (the magmatic dyke 
containing ore minerals) and samples 6 and 7 (the sandstone unit).




