
6 Signal Processing

6.1 Introduction

Signal processing refers to techniques for manipulating a signal to mini-
mize the effects of  noise, to correct all kinds of unwanted distortions or to 
separate various components of interest. Most signal processing algorithms 
include the design and realization of filters. A  fi lter can be described as a 
system that transforms signals.  System theory provides the mathematical 
background for filter design and realization. A filter as a system has an input 
and an output, where the  output signal y (t) is modifi ed with respect to the 
 input signal x(t) (Fig. 6.1). The signal transformation is often called convo-
lution or, if fi lters are applied, fi ltering.

This chapter is on the design and  realization of  digital fi lters with the 
help of a computer. However, many natural processes resemble  analog 
fi lters that act over a range of spatial dimensions. A single rainfall event 
is not recorded in lake sediments because short and low-amplitude events 
are smeared over a longer time span. Bioturbation also introduces serious 
distortions for instance to deep-sea sediment records. Aside from such 
 natural fi lters, the fi eld collection and sampling of geological data alters 
and smoothes the data with respect to its original form. For example, a 
fi nite size sediment sample integrates over a certain period of time and 
therefore smoothes the natural signal. Similarly, the measurement of mag-
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Fig. 6.1 Schematic of a linear time-invariant (LTI) system. The input signal is transformed 
into an output signal.
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netic susceptibility with the help of a loop sensor introduces signifi cant 
smoothing since the loop integrates over a certain section of the sediment 
core.

The characteristics of these natural fi lters are often diffi cult to determine. 
Numerical fi lters, however, are designed with well-defi ned characteristics. 
In addition,  artifi cial fi lters are time invariant in most cases, while natural 
fi lters, such as lake mixing or bioturbation, may change with time. An easy 
way to describe or predict the effect of a fi lter is to explore the fi lter output 
of a simple input signal, such as a sine wave, a square wave, a sawtooth, 
ramp or step function. Although there is an endless variety of such signals, 
most systems or fi lters are described by their impulse response, i.e., the 
output of a unit impulse.

The chapter starts with a more technical section on generating periodic 
signals, trends and noise, similar to Chapter 5.2. Chapter 6.3 is on linear 
time-invariant systems, which provide the mathematical background for 
fi lters. The following Chapters 6.4 to 6.9 are on the design, the realization 
and the application of linear time-invariant fi lters. Chapter 6.10 then sug-
gests the application of adaptive fi lters originally developed in telecom-
munication. Adaptive fi lters automatically extract noisefree signals from 
duplicate measurements on the same object. Such fi lters can be used in a 
large number of applications, such as noise removal from duplicate pale-
oceanographic time series or to improve the signal-to-noise ratio of paral-
lel color-intensity transects across varved lake sediments (see Chapter 5, 
Fig. 5.1). Moreover, such fi lters are also widley-used in geophysics for 
noise canceling.

6.2 Generating Signals

MATLAB provides numerous tools to generate basic signals that can be 
used to illustrate the effects of fi lters. In Chapter 5, we have generated a 
signal by adding together three sine waves with different amplitudes and 
periods. In the following example, the time vector is transposed for the 
purpose of generating column vectors.

t = (1:100)';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

plot(t,x), axis([0 100 -4 4])

 Frequency-selective fi lters are very common in earth sciences. They are 
used for removing certain frequency bands from the data. As an example, 



6.3 Linear Time-Invariant Systems 135

we could design a fi lter that has the capability to suppress the portion of 
the signal with a periodicity of τ =15, whereas the other two cycles are un-
affected. Such simple periodic signals can also be used to predict signal 
distortions of natural fi lters.

A step function is another basic input signal that can be used for exploring 
fi lter characteristics. It describes the transition from a value of one towards 
zero at a certain time.

t = (1:100)';
x = [ones(50,1);zeros(50,1)];

plot(t,x), axis([0 100 -2 2])

This signal can be used to study the effects of a fi lter on a sudden transi-
tion. An abrupt climate change could be regarded as an example. Most 
natural fi lters tend to smooth such a transition and smear it over a longer 
time period.

The  unit impulse is the third important signal that we will use in the fol-
lowing examples. This signal equals zero for all times except for a single 
data point which equals one.

t = (1:100)';
x = [zeros(49,1);1;zeros(50,1)];

plot(t,x), axis([0 100 -4 4])

The unit impulse is the most popular synthetic signal for studying the per-
formance of a fi lter. The output of the fi lter, the impulse response, describes 
the characteristics of a fi lter very well. Moreover, the output of a linear time-
invariant fi lter can be described by the superposition of impulse responses 
that have been scaled by the amplitude of the input signal.

6.3 Linear Time-Invariant Systems

Filters can be described as systems with an input and output. Therefore, we 
fi rst describe the characteristics of a more general system before we apply 
this theory to fi lters. Important characteristics of a system are

• Continuity – A system with continuous inputs and outputs is continuous. 
Most of the natural systems are continuous. However, after sampling na-
tural signals we obtain discrete data series and model these natural sy-
stems as discrete systems, which have discrete inputs and outputs.
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• Linearity – For linear systems, the output of the linear combination of 
several input signals

is the same linear combination of the outputs:

The important consequence of linearity is scaling and additivity ( super-
position). Input and output can be multiplied by a constant before or af-
ter transformation. Superposition allows to extract additive components 
of the input and transform these separately. Fortunately, many natural 
systems show a linear behavior. Complex linear signals such as additive 
harmonic components can be separated and transformed independently. 
Milankovitch cycles provide an example of linear superposition in pa-
leoclimate records, although there is an ongoing debate about the valid-
ity of this assumption. Numerous nonlinear systems exist in nature that 
do not obey the properties of scaling and additivity. An example of such 
a  linear system is

x = (1:100)';
y = 2*x;

plot(x,y)

An example of a  nonlinear system is

x = (-100:100)';
y = x.^2;

plot(x,y)

• Time invariance – The system output y (t) does not change with a delay 
of the input x (t+ i). The system characteristics are constant with time. 
Unfortunately, natural systems often change their characteristics with 
time. For instance, benthic mixing or bioturbation depends on various 
environmental parameters such as nutrient supply. Therefore, the sys-
tem’s performance varies with time signifi cantly. In such case, the actual 
input of the system is hard to determine from the output, e.g., to extract 
the actual climate signal from a bioturbated sedimentary record.
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• Invertibility – An invertible system is a system where the original input 
signal can be reproduced from the system’s output. This is an important 
property if unwanted signal distortions have to be corrected. Here, the 
known system is inverted and applied to the output to reconstruct the 
undisturbed input. As an example, a core logger measuring the magnetic 
susceptibility with a loop sensor integrates over a certain core interval 
with highest sensitivity at the location of the loop and decreasing sensi-
tivity down- and up-core. The above system is also invertible, i.e., we can 
compute the input signal from the output signal by inverting the system. 
The inverse system of the above linear system is

x = (1:100)';
y = 0.5*x;

plot(t,y)

The nonlinear system

x = (-100:100)';
y = x.^2;

plot(x,y)

is not invertible. Since this system yields equal responses for different 
inputs, such as y = +4 for inputs x= –2 and x= +2, the input cannot be re-
constructed from the output. A similar situation can also occur in linear 
systems, such as

x = (1:100)';
y = 0;

plot(x,y)

The output is zero for all inputs. Therefore, the output does not contain 
any information about the input.

• Causality – The system response only depends on present and past in-
puts x (0), x (–1), …, whereas future inputs x (+1), x (+2), … have no 
effect on the output y (0). All realtime systems, such telecommunication 
systems, must be causal since they cannot have future inputs available 
to them. All systems and fi lters in MATLAB are indexed as causal. In 
earth sciences, however, numerous non-causal fi lters are used. Filtering 
images and signals extracted from sediment cores are examples where 
the future inputs are available at the time of fi ltering. Output signals have 
to be delayed after fi ltering to compensate the differences between causal 
and non-causal indexing. 
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• Stability – A system is stable if the output of a fi nite input is also fi nite. 
Stability is critical in fi lter design, where fi lters often have the disadvan-
tage of provoking diverging outputs. In such cases, the fi lter design has 
to be revised and improved.

Linear time-invariant (LTI) systems as a special type of fi lters are very 
popular. Such systems have all the advantages that have been described 
above. They are easy to design and to use in many applications. The follow-
ing chapters 6.4 to 6.9 describe the design, realization and application of 
LTI-type fi lters to extract certain frequency components of signals. These 
fi lters are mainly used to reduce the noise level in signals. Unfortunately, 
many natural systems do not behave as LTI systems. The signal-to-noise 
ratio often varies with time. Chapter 6.10 describes the application of adap-
tive fi lters that automatically adjust their characteristics in a time-variable 
environment.

6.4 Convolution and Filtering

The mathematical description of a system transformation is the convolution. 
Filtering is one application of the convolution process. A running mean of 
length fi ve provides an example of such a simple fi lter. The output of an 
arbitrary input signal is

The output y (t) is simply the average of the fi ve input values x (t–2), x (t–1), 
x (t), x (t+1) and x (t+2). In other words, all the fi ve consecutive input val-
ues are multiplied by a factor of 1/5 and summed to form y (t). In this exam-
ple, all input values are multiplied by the same factor, i.e., they are equally 
weighted. The fi ve factors used in the above operation are also called fi lter 
weights bk. The fi lter can be represented by the vector

b = [0.2 0.2 0.2 0.2 0.2]

consisting of the identical fi lter weights. Since this fi lter is symmetric, it 
does not shift the signal on the time axis. The only function of this fi lter is 
to smooth the signal. Therefore, running means of a given length are often 
used to smooth signals, mainly for cosmetic reasons. A modern spreadsheet 
software usually contains running means as a function for smoothing data 
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series. The impact of the smoothing fi lter increases with increasing fi lter 
length.

The weights that a fi lter of arbitrary length may take can vary. As an ex-
ample, let us assume an asymmetric fi lter of fi ve weights.

b = [0.05 0.08 0.14 0.26 0.47]

The sum of all of the fi lter weights is one. Therefore, it does not introduce 
energy to the signal. However, since it is highly asymmetric, it shifts the 
signal along the time axis, i.e., it introduces a phase shift.

The general mathematical representation of the fi ltering process is the 
convolution:

where bk is the vector of  fi lter weights, N1+N2 is the  order of the fi lter, which 
is the length of the fi lter reduced by one. Filters with fi ve weights have an 
order of four, as in our example. In contrast to this format, MATLAB uses 
the engineering standard of indexing fi lters, i.e., fi lters are always defi ned 
as  causal. Therefore, the convolution used by MATLAB is

where N is the order of the fi lter. A number of frequency-domain tools 
provided by MATLAB cannot simply be applied to  non-causal fi lters that 
have been designed for applications in earth sciences. Hence, it is common 
to carry out phase corrections to simulate non-causality. For example, fre-
quency-selective fi lters as introduced in Chapter 6.9 can be applied using 
the function filtfilt, which provides zero-phase forward and reverse 
fi ltering.

The functions conv and filter that provide digital fi ltering with 
MATLAB are best illustrated in terms of a simple running mean. The n el-
ements of the vector x (t1), x (t2), x (t3), …, x (tn) are replaced by the arith-
metic means of subsets of the input vector. For instance, a running mean 
over three elements computes the mean of inputs x (tn–1), x (tn), x (tn+1) to 
obtain the output y (tn). We can easily illustrate this by generating a ran-
dom signal
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clear

t = (1:100)';
randn('seed',0);
x1 = randn(100,1);

designing a fi lter that averages three data points of the input signal

b1 = [1 1 1]/3;

and convolving the input vector with the fi lter

y1 = conv(b1,x1);

The elements of b1 are the weights of the fi lter. In our example, all fi lter 
weights are the same and they equal 1/3. Note that the conv function yields 
a vector that has the length n+m–1, where m is the length of the fi lter.

m1 = length(b1);

We should explore the contents of our workspace to check for the length of 
the input and output of conv. Typing

whos

yields

Name        Size            Bytes  Class     Attributes
b1          1x3                24  double
m1          1x1                 8  double
t         100x1               800  double
x1        100x1               800  double
y1        102x1               816  double

Here, we see that the actual input series x1 has a length of 100 data points, 
whereas the output y1 has two more elements. Generally, convolution intro-
duces (m–1) /2 data points at both ends of the data series. To compare input 
and output signal, we cut the output signal at both ends.

y1 = y1(2:101,1);

A more general way to correct the phase shifts of conv is

y1 = y1(1+(m1-1)/2:end-(m1-1)/2,1);

which of course works only for an odd number of fi lter weights. Then, we 
can plot both input and output signals for comparison. We also use legend
to display a legend for the plot.
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plot(t,x1,'b-',t,y1,'r-')
legend('x1(t)','y1(t)')

This plot illustrates the effect of the running mean on the original input se-
ries. The output y1 is signifi cantly smoother than the input signal x1. If we 
increase the length of the fi lter, we obtain an even smoother signal.

b2 = [1 1 1 1 1]/5;
m2 = length(b2);

y2 = conv(b2,x1);
y2 = y2(1+(m2-1)/2:end-(m2-1)/2,1);

plot(t,x1,'b-',t,y1,'r-',t,y2,'g-')
legend('x1(t)','y1(t)','y2(t)')

The next chapter introduces a more general description of fi lters.

6.5 Comparing Functions for Filtering Data Series

A very simple example of a nonrecursive fi lter was described in the previ-
ous section. The fi lter output y (t) depends only on the fi lter input x (t) and 
the fi lter weights bk . Prior to introducing a more general description for 
linear time-invariant fi lters, we replace the function  conv by  filter that 
can be used also for recursive fi lters. In this case, the output y (tn) depends 
on the fi lter input x (t), but also on previous elements of the output y (tn–1), 
y (tn–2), y (tn–3) and so on (Chapter 6.6). First, we use filter for nonre-
cursive fi lters.

clear

t = (1:100)';
randn('seed',0);
x3 = randn(100,1);

We design a fi lter that averages fi ve data points of the input signal.

b3 = [1 1 1 1 1]/5;
m3 = length(b3);

The input vector can be convolved with the function conv. The output is 
again corrected for the length of the data vector.

y3 = conv(b3,x3);
y3 = y3(1+(m3-1)/2:end-(m3-1)/2,1);

Although the function filter yields an output vector with the same length 
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as the input vector, we have to correct the output as well. Here, the function 
filter assumes that the fi lter is causal. The fi lter weights are indexed n,
n–1, n–2 and so on. Therefore, no future elements of the input vector, such 
as x (n+1), x (n+2) etc. are needed to compute the output y (n). This is of 
great importance in electrical engineering, the classic fi eld of application 
of MATLAB, where fi lters are often applied in real time. In earth sciences, 
however, in most applications the entire signal is available at the time of 
processing the data. Filtering the data series is done by

y4 = filter(b3,1,x3);

and afterwards the phase correction is carried out using

y4 = y4(1+(m3-1)/2:end-(m3-1)/2,1);
y4(end+1:end+m3-1,1) = zeros(m3-1,1);

which works only for an odd number of fi lter weights. This command sim-
ply shifts the output by(m–1)/3 towards the lower end of the t-axis, then 
fi lls the end of the data series by zeros. Comparing the ends of both outputs 
illustrates the effect of this correction, where

y3(1:5,1)
y4(1:5,1)

yields

ans =
    0.3734
    0.4437
    0.3044
    0.4106
    0.2971

ans =
    0.3734
    0.4437
    0.3044
    0.4106
    0.2971

This was the lower end of the output. We see that both vectors y3 and y4
contain the same elements. Now we explorer the upper end of the data vec-
tor, where

y3(end-5:end,1)
y4(end-5:end,1)

causes the output
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ans =
    0.2268
    0.1592
    0.3292
    0.2110
    0.3683
    0.2414

ans =
    0.2268
    0.1592
         0
         0
         0
         0

The vectors are identical up to element y(end–m3+1), then the second vec-
tor y4 contains zeros instead of true data values. Plotting the results with

subplot(2,1,1), plot(t,x3,'b-',t,y3,'g-')
subplot(2,1,2), plot(t,x3,'b-',t,y4,'g-')

or in one single plot,

plot(t,x3,'b-',t,y3,'g-',t,y4,'r-')

shows that the results of conv and filter are identical except for the up-
per end of the data vector. These observations are important for our next 
steps in signal processing, particularly if we are interested in leads and lags 
between various components of signals.

6.6 Recursive and Nonrecursive Filters

Now we expand the  nonrecursive fi lters by a recursive component, i.e., the 
output y (tn) depends on the fi lter input x (t), but also on previous output val-
ues y (tn–1), y (tn–2), y (tn–3) and so on. This fi lter requires the nonrecursive 
fi lter weights bi, but also the  recursive fi lters weights ai (Fig. 6.2). This fi lter 
can be described by the  difference equation:

Whereas this is a non-causal version of the difference equation, MATLAB 
uses the  causal indexing again,
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with the known problems in the design of zero-phase fi lters. The larger of 
the two quantities M and N1+N2 or N is the order of the fi lter.

We use the same synthetic input signal as in the previous example to il-
lustrate the performance of a recursive fi lter.

clear
t = (1:100)';
randn('seed',0);
x5 = randn(100,1);

We fi lter this input using a recursive fi lter with a set of weights a5 and b5,

b5 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a5 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m5 = length(b5);

y5 = filter(b5,a5,x5);

and correct the output for the phase

y5 = y5(1+(m5-1)/2:end-(m5-1)/2,1);
y5(end+1:end+m5-1,1) = zeros(m5-1,1);

Now we plot the results.

plot(t,x5,'b-',t,y5,'r-')

bi T

+

T ai

+

Input signal x(t)

Output signal y(t)

Fig. 6.2 Schematic of a  linear time-invariant fi lter with an input x (t) and an output y (t). 
The fi lter is characterized by its weights ai and bi , and the delay elements T. Nonrecursive 
fi lters only have nonrecursive weights bi , whereas the recursive fi lter also requires the 
recursive fi lters weights ai .
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Obviously, this fi lter changes the signal dramatically. The output contains 
only low-frequency components, whereas all higher frequencies are elimi-
nated. The comparison of the periodograms of the input and the output re-
veals that all frequencies above f = 0.1 corresponding to a period of τ =10 are 
suppressed.

[Pxx,F] = periodogram(x5,[],128,1);
[Pyy,F] = periodogram(y5,[],128,1);

plot(F,abs(Pxx),F,abs(Pyy))

Hence, we have now designed a frequency-selective fi lter, i.e., a fi lter that 
eliminates certain frequencies whereas other periodicities are relatively 
unaffected. The next chapter introduces tools to characterize a fi lter in the 
time and frequency domain that help to predict the effect of a frequency-
selective fi lter on arbitrary signals.

6.7 Impulse Response

The  impulse response is a very convenient way of describing the fi lter char-
acteristics (Fig. 6.3). A useful property of the impulse response h in LTI 
systems involves the convolution of the input signal x (t) with h to obtain 
the output signal y (t) .

It can be shown that the impulse response h is identical to the fi lter weights 
in the case of nonrecursive fi lters, but is different for recursive fi lters. 
Alternatively, the convolution is often written in a short form:

In many examples, the convolution in the  time domain is replaced by a 
simple multiplication of the  Fourier transforms H ( f ) and X ( f ) in the  fre-
quency domain.

The output signal y (t) in the time domain is then obtained by a reverse 
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Fourier transformation of Y ( f ). The signals are often convolved in the fre-
quency domain for simplicity of the multiplication as compared to a convo-
lution in the time domain. However, the Fourier transformation itself intro-
duces a number of artifacts and distortions and therefore, convolution in the 
frequency domain is not without problems. In the following examples we 
apply the convolution only in the time domain.

First, we generate an unit impulse:

clear
t = (0:20)';
x6 = [zeros(10,1);1;zeros(10,1)];

stem(t,x6), axis([0 20 -4 4])

The function stem plots the data sequence x6 as stems from the x-axis 
terminated with circles for the data value. This might be a better way to plot 
digital data than using the continuous lines generated by plot. We now 
feed this to the fi lter and explore the output. The impulse response is identi-
cal to the weights of nonrecursive fi lters.

b6 = [1 1 1 1 1]/5;
m6 = length(b6);

y6 = filter(b6,1,x6);

We correct this for the  phase shift of the function filter again, although 
this might not be important in this example.
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Fig. 6.3 Transformation of a a  unit impulse to compute b the impulse response of a system. 
The  impulse response is often used to describe and predict the performance of a fi lter.
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y6 = y6(1+(m6-1)/2:end-(m6-1)/2,1);
y6(end+1:end+m6-1,1) = zeros(m6-1,1);

We obtain an output vector y6 of the same length and phase as the input 
vector x6. We plot the results for comparison.

stem(t,x6)
hold on
stem(t,y6,'filled','r')
axis([0 20 -2 2])

In contrast to plot, the function  stem accepts only one data series. There-
fore, the second series y6 is overlaid on the same plot using the function hold.
The effect of the fi lter is clearly seen on the plot. It averages the unit impulse 
over a length of fi ve elements. Furthermore, the values of the output equal the 
fi lter weights of a6, in our example 0.2 for all elements of a6 and y6.

For a recursive fi lter, the output y6 does not agree with the fi lter weights. 
Again, an impulse is generated fi rst.

clear
t = (0:20)';
x7 = [zeros(10,1);1;zeros(10,1)];

Subsequently, an arbitrary recursive fi lter with weights of a7 and b7 is de-
signed.

b7 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a7 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m7 = length(b7);

y7 = filter(b7,a7,x7);

y7 = y7(1+(m7-1)/2:end-(m7-1)/2,1);
y7(end+1:end+m7-1,1) = zeros(m7-1,1);

The stem plot of the input x2 and the output y2 shows an interesting im-
pulse response:

stem(t,x7)
hold on
stem(t,y7,'filled','r')
axis([0 20 -2 2])

The signal is again smeared over a wider area. It is also shifted towards the 
right. Therefore, this fi lter not only affects the amplitude of the signal, but 
also shifts the signal towards lower or higher values. Phase shifts are usu-
ally unwanted characteristics of fi lters, although in some applications shifts 
along the time axis might be of particular interest.
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6.8 Frequency Response

Next, we investigate the  frequency response of a fi lter, i.e., the effect of 
a fi lter on the  amplitude and  phase of a signal (Fig. 6.4). The frequency 
response H ( f ) of a fi lter is the Fourier transform of the impulse response 
h (t) . The absolute of the complex  frequency response H ( f ) is the  magni-
tude response of the fi lter A ( f ).

The argument of the complex frequency response H ( f ) is the phase re-
sponse of the fi lter.

Since MATLAB fi lters are all causal it is diffi cult to explore the phase of 
signals using the corresponding functions included in the Signal Processing 
Toolbox. The user’s guide for this toolbox simply recommends to delay the 
fi lter output in the time domain by a fi xed number of samples, as we have 
done it in the previous examples. As an example, a sine wave with a period 
of 20 and an amplitude of 2 is used as an input signal.
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Fig. 6.4 a Magnitude and b phase response of a running mean over eleven elements.
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clear
t = (1:100)';
x8 = 2*sin(2*pi*t/20);

A running mean over eleven elements is designed and this fi lter is applied 
to the input signal.

b8 = ones(1,11)/11;
m8 = length(b8);

y8 = filter(b8,1,x8);

The phase is corrected for causal indexing.

y8 = y8(1+(m8-1)/2:end-(m8-1)/2,1);
y8(end+1:end+m8-1,1) = zeros(m8-1,1);

Both input and output of the fi lter are plotted.

plot(t,x8,t,y8)

The fi lter obviously reduces the amplitude of the sine wave. Whereas the 
input signal has an amplitude of 2, the output has an amplitude of

max(y8)

ans =
    1.1480

The fi lter reduces the amplitude of a sine with a period of 20 by

1-max(y8(40:60))/2

ans =
    0.4260

i.e., approximately 43%. The elements 40 to 60 are used for computing the 
maximum value of y8 to avoid edge effects. On the other hand, the fi lter 
does not affect the phase of the sine wave, i.e., both input and output are 
in phase.

The same fi lter, however, has a different impact on a different signal. Let 
us design another sine wave with a similar amplitude, but with a different 
period of 15.

clear
t = (1:100)';
x9 = 2*sin(2*pi*t/15);

Applying a similar fi lter and correcting the output for the phase shift of the 
function filter yields
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b9 = ones(1,11)/11;
m9 = length(b9);

y9 = filter(b9,1,x9);

y9 = y9(1+(m9-1)/2:end-(m9-1)/2,1);
y9(end+1:end+m9-1,1) = zeros(m9-1,1);

The output is again in phase with the input, but the amplitude is dramati-
cally reduced as compared to the input.

plot(t,x9,t,y9)

1-max(y9(40:60))/2

ans =
    0.6768

The  running mean over eleven elements reduces the amplitude of this signal 
by 67%. More generally, the fi lter response obviously depends on the fre-
quency of the input. The frequency components of a more complex signal 
containing multiple periodicities are affected in a different way. The fre-
quency response of a fi lter

clear
b10 = ones(1,11)/11;

can be computed using the function freqz.

[h,w] = freqz(b10,1,512);

The function  freqz returns the complex frequency response h of the digital 
fi lter b10. The frequency axis is normalized to π. We transform the frequen-
cy axis to the true frequency values. The true frequency values are w times 
the sampling frequency, which is one in our example, divided by 2*pi.

f = 1*w/(2*pi);

Next, we calculate the magnitude of the frequency response and plot the 
magnitude over the frequency.

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude')

This plot can be used to predict the magnitude of the fi lter for any frequency 
of an input signal. An exact value of the magnitude can also be obtained by 



6.8 Frequency Response 151

simple interpolation of the magnitude,

1-interp1(f,magnitude,1/20)

ans =
    0.4260

which is the expected ca. 43% reduction of the amplitude of a sine wave 
with period 20. The sine wave with period 15 experiences an amplitude 
reduction of

1-interp1(f,magnitude,1/15)

ans =
    0.6751

i.e., around 68% similar to the value observed at the beginning. The fre-
quency response can be calculated for all kinds of fi lters. It is a valuable 
tool to predict the effects of a fi lter on signals in general. The phase re-
sponse can also be calculated from the complex frequency response of the 
fi lter (Fig. 6.4):

phase = 180*angle(h)/pi;

plot(f,phase)
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

The phase angle is plotted in degrees. We observe frequent 180° jumps in 
this plot that are an artifact of the arctangent function inside the function 
angle. We can unwrap the phase response to eliminate the 180° jumps us-
ing the function unwrap.

plot(f,unwrap(phase))
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

Since the fi lter has a linear phase response, no shifts of the frequency com-
ponents of the signal occur relative to each other. Therefore, we would not 
expect any distortions of the signal in the frequency domain. The phase 
shift of the fi lter can be computed using

interp1(f,unwrap(phase),1/20) * 20/360 

ans =
   -5.0000

and 
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interp1(f,unwrap(phase),1/15) * 15/360

ans =
   -5.0000

respectively. Since MATLAB uses causal indexing for fi lters, the phase 
needs to be corrected, similar to the delayed output of the fi lter. In our 
example, we used a fi lter of the length eleven. We have to correct the 
phase by (11–1)/2=5. This suggests a zero phase shift of the fi lter for 
both frequencies.

This also works for recursive fi lters. Assume a simple sine wave with 
period 8 and the previously employed recursive fi lter.

clear
t = (1:100)';
x11 = 2*sin(2*pi*t/8);

b11 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a11 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m11 = length(b11);

y11 = filter(b11,a11,x11);

Correct the output for the phase shift introduced by causal indexing and plot 
both input and output signals.

y11= y11(1+(m11-1)/2:end-(m11-1)/2,1);
y11(end+1:end+m11-1,1) = zeros(m11-1,1);

plot(t,x11,t,y11)

The magnitude is reduced by

1-max(y11(40:60))/2

ans =
    0.6465

which is also supported by the magnitude response

[h,w] = freqz(b11,a11,512);

f = 1*w/(2*pi);

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude Response')
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1-interp1(f,magnitude,1/8)

ans =
    0.6462

The phase response

phase = 180*angle(h)/pi;

f = 1*w/(2*pi);

plot(f,unwrap(phase))
xlabel('Frequency'), ylabel('Phase in degrees')
title('Magnitude Response')

interp1(f,unwrap(phase),1/8) * 8/360

ans =
    -5.0144

must again be corrected for causal indexing. The sampling interval was one, 
the fi lter length is fi ve. Therefore, we have to add (5–1)/2=2 to the phase 
shift of –5.0144. This suggests a corrected phase shift of –3.0144, which is 
exactly the delay seen on the plot.

plot(t,x11,t,y11), axis([30 40 -2 2])

The next chapter gives an introduction to the design of fi lters with a desired 
frequency response. These fi lters can be used to amplify or suppress differ-
ent components of arbitrary signals.

6.9  Filter Design

Now we aim to design fi lters with a desired frequency response. Firstly, 
a synthetic signal with two periods, 50 and 15, is generated. The power-
spectrum of the signal shows the expected peaks at the frequencies 0.02 
and ca. 0.07.

t = 0 : 1000;
x12 = 2*sin(2*pi*t/50) + sin(2*pi*t/15);

plot(t,x12), axis([0 200 -4 4])

[Pxx,f] = periodogram(x12,[],1024,1);

plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')
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We add some  gaussian noise with amplitude one and explore the signal and 
its periodogram.

xn12 = x12 + randn(1,length(t));

plot(t,xn12), axis([0 200 -4 4])

[Pxx,f] = periodogram(xn12,[],1024,1);

plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')

The  Butterworth fi lter design technique is a widely-used method to cre-
ate fi lters of any order with a  lowpass,  highpass,  bandpass and  bandstop 
confi guration (Fig. 6.5). In our example, we like to design a fi ve-order 
lowpass fi lter with a  cutoff frequency of 0.08. The inputs of the function 
butter are the order of the fi lter and the cutoff frequency normalized 
to the  Nyquist frequency, which is 0.5 in our example, that is half of the 
sampling frequency.

[b12,a12] = butter(5,0.08/0.5);

The  frequency characteristics of the fi lter show a relatively smooth transi-
tion from the  passband to the  stopband, but the advantage of the fi lter is its 
low order.

[h,w] = freqz(b12,a12,1024);
f = 1*w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

We can again apply the fi lter to the signal by using the function  filter.
However, frequency selective fi lters such as lowpass, highpass, bandpass 
and bandstop are designed to suppress certain frequency bands, whereas 
phase shifts should be avoided. The function  filtfilt provides zero-
phase forward and reverse digital fi ltering. After fi ltering in the forward 
direction, the fi ltered sequence is reversed and it runs back through the fi lter. 
The magnitude of the signal is not affected by this operation, since it is either 
0 or 100% of the initial amplitude, depending on the frequency. In contrast, 
all phase shifts introduced by the fi lter are zeroed by the forward and re-
verse application of the same fi lter. This function also helps to overcome 
the problems with causal indexing of fi lters in MATLAB. It eliminates the 
phase differences of the causal vs. non-causal versions of the same fi lter. 
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Filtering and plotting the results clearly illustrates the effects of the fi lter.

xf12 = filtfilt(b12,a12,xn12);

plot(t,xn12,'b-',t,xf12,'r-')
axis([0 200 -4 4])

One might now wish to design a new fi lter with a more rapid transition from 
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Fig. 6.5 Frequency response of the fundamental types of frequency-selective fi lters. 
a Lowpass fi lter to suppress the high-frequency component of a signal. In earth sciences, 
such fi lters are often used to suppress high-frequency noise in a low-frequency signal. 
b  Highpass fi lter are employed to remove all low frequencies and trends in natural data. 
c-d  Bandpass and  bandstop fi lters extract or suppress a certain frequency band. Whereas 
the solid line in all graphs depicts the ideal  frequency response of a  frequency-selective 
fi lter, the gray band shows the tolerance for a low-order design of such a fi lter. In practice, 
the frequency response lies within the gray band.
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passband to stopband. Such a fi lter needs a higher order. It needs to have a 
larger number of fi lter weights. We now create a 15-order Butterworth fi lter 
as an alternative to the above fi lter.

[b13,a13] = butter(15,0.08/0.5);

[h,w] = freqz(b13,a13,1024);

f = 1*w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

The frequency response is clearly improved. The entire passband is rela-
tively fl at at a value of 1.0, whereas the stopband is approximately zero 
everywhere. Next, we modify our input signal by introducing a third period 
of 5. This signal is then used to illustrate the operation of a Butterworth 
bandstop fi lter.

x14 = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);
plot(t,x14), axis([0 200 -4 4])

[Pxx,f] = periodogram(x14,[],1024,1);

plot(f,abs(Pxx))

The new Butterworth fi lter is a bandstop fi lter. The stopband of the fi lter is 
between the frequencies 0.06 and 0.08. It can therefore be used to suppress 
the period of 15 corresponding to a frequency of approximately 0.07.

xn14 = x14 + randn(1,length(t));

[b14,a14] = butter(5,[0.06 0.08]/0.5,'stop');
xf14 = filtfilt(b14,a14,x14);

[Pxx,f] = periodogram(xf14,[],1024,1);

plot(f,abs(Pxx))

plot(t,xn14,'b-',t,xf14,'r-'), axis([0 200 -4 4])

The plots show the effect of this fi lter. The frequency band between 0.06 
and 0.08, and therefore also the frequency of 0.07 was successfully removed 
from the signal.
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6.10  Adaptive Filtering

The fi xed fi lters used in the previous chapters make the basic assumption 
that the signal degradation is known and it does not change with time. In 
most applications, however, an a priori knowledge of the  signal and  noise 
statistical characteristics is usually not available. In addition, both the noise 
level and the variance of the genuine signal can be highly nonstationary 
with time, e.g., stable isotope records during the glacial-interglacial transi-
tion. Fixed fi lters thus cannot be used in a nonstationary environment with-
out a knowledge of the signal-to-noise ratio.

In contrast, adaptive fi lters widely used in the telecommunication indus-
try could help to overcome these problems. An adaptive fi lter is an inverse 
modeling process, which iteratively adjusts its own coeffi cients automati-
cally without requiring any a priori knowledge of signal and noise. The op-
eration of an adaptive fi lter includes, (1) a fi ltering process, the purpose of 
which is to produce an output in response to a sequence of data, and (2) an 
 adaptive process providing a mechanism for the adaptive control of the  fi lter 
weights (Haykin 1991).

In most practical applications, the adaptive process is oriented towards 
minimizing an error signal or cost function e. The estimation error e at an in-
stant i is defi ned by the difference between some desired response di and the 
actual fi lter output yi, that is the fi ltered version of a signal xi, as shown by

where i=1, 2, …, N and N is the length of the input data vector. In the case 
of a nonrecursive fi lter characterized by the vector of fi lter weights W with f
elements, the fi lter output yi is given by the inner product of the transposed 
vector W and the input vector Xi.

The selection of the desired response d that is used in the adaptive process 
depends the application. Traditionally, d is a combined signal that contains 
a signal s and random noise n0. The signal x contains a noise n1 uncorre-
lated with the signal s but correlated in some unknown way to the noise n0.
In noise canceling systems, the practical objective is to produce a system 
output y that is a best fi t in the least-squares sense to the signal d.

Different approaches have been developed to solve this multivariate min-
imum error optimization problem (e.g., Widrow and Hoff 1960, Widrow 
et al. 1975, Haykin 1991). Selection of one algorithm over another is in-
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fl uenced by various factors: the rate of convergence (number of adaptive 
steps required for the algorithm to converge close enough to an optimum 
solution), misadjustment (measure of the amount by which the fi nal value 
of the mean-squared error deviates from the minimum squared error of an 
optimal fi lter, e.g., Wiener 1945, Kalman and Bucy 1961), and tracking (the 
capability of the fi lter to work in a nonstationary environment, i.e., to track 
changing statistical characteristics of the input signal) (Haykin 1991).

The simplicity of the   least-mean-squares (LMS) algorithm, originally 
developed by Widrow and Hoff (1960), has made it the benchmark against 
which other adaptive fi ltering algorithms are tested. For applications in 
earth sciences, we use this fi lter to extract the noise from two signals S
and X, both containing the same signal s, but uncorrelated noise n

1
 and n

2

(Hattingh 1988). As an example, consider a simple duplicate set of measure-
ments on the same material, e.g., two parallel stable isotope records from 
the same foraminifera species. What you will expect are two time-series 
with N elements containing the same desired signal overlain by different 
uncorrelated noise. The fi rst record is used as the primary input S

and the second record is the reference input X.

As demonstrated by Hattingh (1988), the required noise-free signal can be 
extracted by fi ltering the  reference input X using the  primary input S as the 
desired response d. The minimum error  optimization problem is solved by 
the norm least-mean-square. The  mean-squared error ei

2 is a second-order 
function of the weights in the nonrecursive fi lter. The dependence of ei

2 on 
the unknown weights may be seen as a multidimensional paraboloid with a 
uniquely defi ned minimum point. The weights corresponding to the mini-
mum point of this error performance surface defi ne the optimum Wiener 
solution (Wiener 1945). The value computed for the weight vector W us-
ing the LMS algorithm represents an estimator whose expected value ap-
proaches the Wiener solution as the number of iterations approaches infi nity 
(Haykin 1991). Gradient methods are used to reach the minimum point of 
the error performance surface. For simplifi cation of the optimization prob-
lem, Widrow and Hoff (1960) developed an approximation for the required 
gradient function that can be computed directly from the data. This leads to 
a simple relation for updating the fi lter-weight vector W.
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The new parameter estimate Wi+1 is based on the previous set of fi lter weights 
Wi plus a term, which is the product of a bounded step size u, a function of 
the input state Xi and a function of the error ei. In other words, error ei cal-
culated from the previous step is fed back to the system to update fi lter coef-
fi cients for the next step (Fig. 6.6). The fi xed convergence factor u regulates 
the speed and stability of adaption. A small value ensures a higher accuracy, 
but more data are needed to teach the fi lter to reach the optimum solution. In 
the modifi ed version of the LMS algorithm by Hattingh (1988), this problem 
is overcome by feeding the data back so that the canceler can have another 
chance to improve its own coeffi cients and adapt to the changes in the data.

In the following function  canc, each of these loops is called an iteration 
since many of these loops are required to achieve optimal results. This algo-
rithm extracts the noise-free signal from two vectors x and s containing the 
correlated signal and uncorrelated noise. As an example, we generate two 
signals containing the same sine wave, but different gaussian noise.

x = 0 : 0.1 : 100;
y = sin(x);
yn1 = y + 0.2*randn(size(y));
yn2 = y + 0.2*randn(size(y));

plot(x,yn1,x,yn2)

Save the following code in a text fi le canc.m and include it into the search 
path. The algorithm canc formats both signals, feeds them into the fi lter loop, 
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Fig. 6.6 Schematic of an adaptive fi lter. Each iteration involves a new estimate of the fi lter 
weights Wi+1 based on the previous set of fi lter weights Wi plus a term which is the product 
of a bounded step size u, a function of the fi lter input Xi , and a function of the error ei . In 
other words, error ei calculated from the previous step is fed back to the system to update 
fi lter coeffi cients for the next step (modifi ed from Trauth 1998).
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corrects the signals for phase shifts and formats the signals for the output.

function [zz,yy,ee] = canc(x,s,u,l,iter)
% CANC Correlated Adaptive Noise Canceling
[n1,n2] = size(s); n = n2; index = 0;       % Formatting
if n1 > n2
    s = s'; x = x'; n = n1; index = 1;
end
w(1:l) = zeros(1,l); e(1:n) = zeros(1,n);   % Initialization
xx(1:l) = zeros(1,l); ss(1:l) = zeros(1,l);
z(1:n) = zeros(1,n); y(1:n) = zeros(1,n);
ors = s; ms(1:n) = mean(s) .* ones(size(1:n));
s = s - ms; x = x - ms; ors = ors - ms;
for it = 1 : iter                           % Iterations
    for I = (l+1) : (n+1)                   % Filter loop
        for k = 1 : l
            xx(k) = x(I-k); ss(k) = s(I-k);
        end
        for J = 1 : l
            y(I-1) = y(I-1) + w(J) .* xx(J);
            z(I-1) = z(I-1) + w(J) .* ss(J);
        end
            e(I-1) = ors(I-1-(fix(l/2)))-y(I-1);
        for J = 1 : l
            w(J) = w(J) + 2.*u.*e(I-1).*xx(J);
        end
    end                                     % End filter loop
    for I = 1 : n                           % Phase correction
        if I <= fix(l/2)
            yy(I) = 0; zz(I) = 0; ee(I) = 0;
        elseif I > n-fix(l/2)
            yy(I) = 0; zz(I) = 0; ee(I) = 0;
        else
            yy(I) = y(I+fix(l/2));
            zz(I) = z(I+fix(l/2));
            ee(I) = abs(e(I+fix(l/2)));
        end
            yy(I) = yy(I) + ms(I);
            zz(I) = zz(I) + ms(I);
    end                                     % End phase correction
    y(1:n) = zeros(size(1:n));
    z(1:n) = zeros(size(1:n));
    mer(it) = mean(ee((fix(l/2)):(n-fix(l/2))).^2);
end                                         % End iterations
if index == 1                               % Reformatting
    zz = zz'; yy = yy'; ee = ee';
end

The required inputs are the signals x and s, the step size u, the fi lter length 
l and the number of  iterations iter. In our example, the two noisy signals 
are yn1 and yn2. For instance, we choose a fi lter with l=5 fi lter weights. A 
value of u in the range of 0 <u< l /λmax where λmax is the largest eigenvalue 
of the autocorrelation matrix of the reference input, leads to reasonable re-
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sults (Haykin 1991) (Fig. 6.7). The value of u is computed by

k = kron(yn1,yn1');
u = 1/max(eig(k))

which yields

u =
    0.0019

We now run the adaptive fi lter canc for 20 iterations and use the above 
value of u.
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Fig. 6.7 Output of the adaptive fi lter. a The duplicate records corrupted by uncorrelated 
noise are fed into the adaptive fi lter with 5 weights with a convergence factor of 0.0019. 
After 20 iterations, the fi lter yields the b learning curve, c the noisefree record and d the 
noise extracted from the duplicate records.
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[z,e,mer] = canc(yn1,yn2,0.0019,5,20);

The evolution of the mean-squared error

plot(mer)

illustrates the performance of the adaptive fi lter, although the chosen step 
size u=0.0019 obviously leads to a relatively fast convergence. In most ex-
amples, a smaller step size decreases the rate of convergence, but increases 
the quality of the fi nal result. We therefore reduce u by one order of magni-
tude and run the fi lter again with more iterations.

[z,e,mer] = canc(yn1,yn2,0.0001,5,20);

The plot of the mean-squared error against the iterations

plot(mer)

now convergences after around six iterations. We now compare the fi lter 
output with the original noise-free signal.

plot(x,y,'b',x,z,'r')

This plot shows that the noise level of the signal has been reduced dramati-
cally by the fi lter. Finally, the plot

plot(x,e,'r')

shows the noise extracted from the signal. In practice, the user should vary 
the parameters u and l to obtain the optimum result.

The application of this algorithm has been demonstrated on duplicate 
oxygen-isotope records from ocean sediments (Trauth 1998). The work by 
Trauth (1998) illustrates the use of the modifi ed LMS algorithm, but also 
another type of adaptive fi lters, the recursive least-squares (RLS) algorithm 
(Haykin 1991) in various environments.
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