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Abstract. We present the first practical unlinkable secret handshake
scheme. An unlinkable secret handshake is a two-way authentication pro-
tocol in a PKI setting which protects privacy and anonymity of all in-
formation about the participants to everyone except of their intended
authentication partners. Namely, if entity A certified by organization
CA* wants to authenticate itself only to other entities certified by CA4,
and, symmetrically, entity B certified by CAZ wants to authenticate
itself only to entities also certified by CA®, then a secret handshake
protocol authenticates these parties and establishes a fresh shared key
between them if and only if CA* = CA® and the two parties entered
valid certificates for this CA into the protocol. If, however CA* # CAB,
or CA* = CAP but either A or B is not certified by this CA, the secret
handshake protocol reveals no information to the participants except of
the bare fact that their inputs do not match. In other words, an Un-
linkable Secret Handshake scheme is a perfectly private authentication
method in the PKI setting: One can establish authenticated communi-
cation with parties that possess the credentials required by one’s policy,
and at the same time one’s affiliation and identity remain perfectly secret
to everyone except of the parties to whom one wants to authenticate.

Efficient secret handshake schemes, i.e. authentication protocols which
protect the privacy of participants’ affiliations, were proposed before, but
participants in these schemes remained linkable. Namely, an attacker
could recognize all the instances of the protocol executed by the same
entity. Secondly, the previous schemes surrendered user’s privacy if the
certificates of this user were revoked, and our scheme alleviates this prob-
lem as well. Unlinkable schemes were proposed as well, but they either
relied on single-use certificates, or did not support revocation, or required
instantaneous propagation of revocation information.

Crucial ingredients in our construction of unlinkable secret handshakes
are chosen-ciphertext secure key-private encryption and multi-encryption
schemes, and the first efficient construction of a key-private group key
management scheme, which is a stateful analogue of (key-private) public
key broadcast encryption.

1 Introduction

Privacy of Authentication in the PKI Model. “Unlinkable Secret Handshake”
is a name we give to an Authenticated Key Exchange [AKE] scheme which, in
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addition to the standard security properties needed of an AKE scheme provides
privacy properties of affiliation hiding, policy hiding, and unlinkability. In order
to explain these privacy properties we need to recall how authentication (and
authenticated key exchange) works in the public-key infrastructure [PKI] model.
In the PKI model each party holds a certificate cert on its public key issued by
some Certification Authority [CA], the fact which we denote as cert € CA. (In the
general PKI model, certificates can be put together in arbitrarily long chains,
but here we consider only a “flattened PKI model” which does not support
certificate chains.) We call the CA an affiliation of that party and we use the
terms “certified by” and “affiliated with” interchangeably. We refer to the parties
affiliated with a given CA as its group, and we call the CA a group manager.

In addition to a list of certificates, each party also holds an authentication
policy, represented by a list of CA’s, which specifies that this party wants to
establish authenticated communication only with entities affiliated with these
CA’s. In some applications parties affiliated with some CA might have a policy
to authenticate only to other entities affiliated with the same CA, e.g. with the
employees of the same company, or with the members of the same organization.
In a common case a player’s policy will include all the CA’s this player is affiliated
with, but in general the two lists might have nothing in common.

Two-sided authentication in the PKI model is successful depending on
whether there is a match between the affiliations and the policies of the two
interacting parties. For simplicity of discussion, let each player hold only a single
certificate, and let its authentication policy consist also of only a single “target”
CA. In a secure PKI-based authentication scheme, if party A enters into the
computation a certificate cert? and policy CA*, and party B enters certificate
cert® and policy CAP, both players accept (and output a fresh authenticated
session key) only if cert® € CAP and cert? cA*.

The standard way in which players A and B discover if their affiliations and poli-
cies match is to announce for one party to announce its affiliation and policies to the
other. This match-discovery process is then followed by the cryptographic protocol,
consisting of the players’ verifying each other’s certificates and running an AKE
protocol on the public keys in these certificates. However, this means that some
player’s affiliations and /or policies are effectively available to anyone who requests
it. This unrestricted leakage of authentication policy and/or affiliation information
of a party is a privacy threat, because in many applications both one’s affiliation
and one’s policy is a sensitive information that should be protected from unnec-
essary exposure. (Note also that most commonly one’s policy immediately reveals
one’s affiliation.) The only entities that have the right to know that player A is affili-
ated with C'A; and by policy wants to communicate securely with entities affiliated
with C'As, are entities that are indeed affiliated with C'A5. No one else needsto know
anything about A’s affiliation and policy. In fact, an un-authorized observer should
not be able to link any two instances of the AKE protocol executed by any party.
Note that linkability has been recognized as a privacy threat in the context of many
applications, and this motivated research into identity escrow [KP98], electronic-
cash, e.g. [CFN8S|, or unlinkable credentials [CLO1], among other applications.
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In contrast, an (Unlinkable) Secret Handshake [SH] scheme is an AKE protocol
with the following privacy property: An adversary playing the role of player B,
who does not hold a valid certificate cert? € CA” where CA* is a policy specified
by A in this AKE protocol instance, does not learn anything about party A.
More specifically, the protocol provides (1) affiliation/policy hiding, in the sense
that without authorization one cannot tell the affiliation and the authentication
policy of any party, and (2) unlinkability, in the sense that an un-authorized
adversary cannot link any two instances of the SH protocol executed by the
same player. (Of course, B’s privacy against malicious player A is protected in
the analogous way.) Note that it makes no sense to require that affiliation/policy
hiding holds against “insiders”, i.e. parties which do satisfy A’s policy. However,
in some applications it might make sense to require unlinkability from insiders,
and even though we do not model such insider-unlinkability formally, our scheme
can be modified to support it, although the on-line computation cost would then
grow from 2logn to O(Alogn) exponentiations.

Prior Work on Secret Handshakes. Linkable versions of a Secret Handshake
scheme were given before, based on bilinear maps [BDST03, BHS04], computa-
tional Diffie-Hellman [CJT04], or RSA [JKT07a,[JKTO7h]. (As shown in [JKTO7h],
the RSA-based secret handshake scheme proposed in [Ver(9] is insecure because it
fails to protect players’ affiliations.) All these solutions are efficient and practical,
but all of them display two privacy vulnerabilities: First, even though the affilia-
tions and policies of the participants in these schemes are protected in the sense
of affiliation/policy hiding, these schemes do not meet the unlinkability property.
In fact, instances of the SH protocol executed by a single party can be efficiently
linked by any observer. Secondly, these schemes do not protect affiliation privacy of
players whose certificates need to be revoked, e.g. in case of key corruption or loss.
There have been several proposed solutions to the unlinkable secret handshake
problem, but neither of them solves the problem in a satisfactory way. First, all
the above schemes have trivially unlinkable variants if players use single-use cer-
tificates, but such single-use certificates require too much storage and make revo-
cation impractical. The scheme of Tsudik and Xu [TX05] relies on a group secret
shared by all the group members, and thus it requires perfect synchrony in revo-
cation information between the participating players, or otherwise the players fail
to authenticate one another. The scheme of Xu and Yung, [XY04] is not based on
any shared secrets, but it only offers a weak version of the privacy property called
k-anonymity. This notion allows the attacker to learn that the participants’ af-
filiation is contained in the set of k publicly revealed CA’s. Moreover, since the
real affiliation of player A belongs to an intersection of the k-element sets released
each time A runs the protocol, protocol instances can be linked with significant
probability. Finally, proposed an unlinkable scheme but their scheme does
support revocation.

Our Contributions: (1) The primary contribution of this paper is the first con-
struction of an efficient unlinkable Secret Handshake scheme, with no information
leakage due to certificate revocation, with no reliance on single-use certificates,
with support of revocation, and without the requirement that the both players
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assume the same revocation information. The scheme takes only a few commu-
nication rounds and its bandwidth is A - logn standard public key encryption
ciphertexts, where n is the upper bound on the number of group members and
A is a parameter equal to the maximum tolerated lag between revocation up-
dates received by the two protocol participants. The computational costs consist
of A -logn off-line exponentiations and 2logn on-line exponentiations, if the
scheme is instantiated with the least expensive CCA-secure variant of ElGamal
encryption, e.g. DHAES [ABROI]. For practical values like A = 10 and n < 216,
the bandwidth comes to 20K B, assuming computational Diffie-Hellman holds
on groups of residues of 1024-bit primes, and the on-line computation involves
32 (short) exponentiations with a fixed base, i.e. less than 100 milliseconds.

(2) We provide very strong definitions of both security and privacy for an
SH scheme. Security is modeled as in a standard AKE protocol (e.g. [CK02]),
and hence our definition implies security against the man-in-the-middle at-
tack, and it offers independence between keys on every session, thus neutral-
izing session-interference attacks. (This was unknown for the protocols given
in [CJT04].) Similar AKE-based definition for secret hand-
shakes was given for 2-party secret handshake protocols in [JKTO7D], but here
we strengthen the privacy property so that it includes unlinkability of the protocol
instances in addition to affiliation and policy hiding modeled in [JKTO7H.

(3) The main ingredient in our solution is a construction of a key-private public-
key group key management [PKGKM], which is a stateful version of the public-
key broadcast encryption. We show an efficient key-private PKGKM scheme
based on the “Logical Key Hierarchy” GKM scheme of Wallner et al. [WHA97],
and we show a CCA-secure version of it. Key-privacy for standard encryption
has been recognized as an important tool for achieving anonymity and privacy
properties in various protocols. A key-private (stateful) broadcast encryption
might find such applications as well. As a side contribution, we extend results of
Bellare et al. [BBs03] on batched encryption, to ElGamal encryption compiled
into its CCA-secure version via the Fujisaki-Okamoto construction [FO99).

Note on Intrinsic Limitations of Affiliation/Policy Hiding AKE’s. The security
notion for AKEs implies complete independence between protocol sessions in
the sense that a key agreed on any chosen session remains secure regardless of
what happens to keys agreed on all other sessions, including the most extreme
case when all these other keys are simply revealed in the clear. In the works
on secure AKE’s, e.g. [CK02|, this is modeled by giving the adversary against
an AKE scheme an access to a “key revelation” oracle which can reveal keys
computed on any protocol session except the session that the adversary is at-
tacking. In particular, this implies that any AKE session remains secure even if
the adversary sees whether or not all other protocol sessions were successful or
not. (Adversary can do that by revealing the keys computed in these sessions
and testing whether they are non-empty and equal.) In contrast to security, the
privacy property of affiliation/policy hiding cannot be achieved if (1) the propa-
gation of a revocation list is not instantaneous, (2) an adversary can engage with
any player in a protocol session, and (3) the adversary can observe whether or
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not any of these sessions were successful. This is because an active adversary who
corrupts some player can find out the affiliation/policy (assume these are equal)
of any player A who has not yet updated his or her revocation list. Namely,
an adversary can engage in a protocol with A assuming the corrupted player’s
identity, and since A’s revocation list is not updated, the protocol succeeds, and
the adversary observes that and learns that A is affiliated with the same group
as the corrupted player. The adversary then arranges a session between A and
any other player B, e.g. by engaging both players and acting as a man in the
middle, and if the adversary observes whether the session was successful, he/she
can conclude if B’s affiliation/policy matches that of A’s. Note that this attack
can be staged even if player B always has the most recent revocation list, either
because the protocol is supposed to tolerate the lag in A’s and B’s revocation
lists or because A might have updated his revocation list before running the
protocol with B.

Therefore, an AKE scheme cannot protect the affiliation/policy hiding of even
the players who always immediately update their revocation lists if (1) there are
players who do not, (2) the adversary can engage any player in the protocol,
and (3) the adversary can observe if a session is successful. Given this intrinsic
limitation to privacy of authentication protocols, we believe that the most use-
ful relaxation that would enable privacy protection in practical applications is
to remove the third item. In other words, we must require that the adversary
cannot tell an execution of a successful protocol that is executed over the secure
channel established by an instance of the AKE scheme, from an execution of a
“simulation” of such protocol, which a player will perform whenever an AKE in-
stance fails. In other words, the AKE scheme can offer affiliation/policy privacy
but only for a special class of protocols which utilize the keys agreed-upon by
this AKE, namely for protocols that can be simulated in this fashion. This class
includes, for example, protocols which have fixed number of rounds and whose
message sizes can be fixed without big efficiency losses. The privacy-preserving
execution of such protocol involves padding every message to the fixed upper
bound, and its simulation consists of sending random messages of the same size.
In both cases the protocol messages need to be encrypted with key-private sym-
metric encryption (which standard symmetric encryption schemes provide), but
in the simulation the key is chosen at random. We defer the full specification of
such privacy-preserving protocols to the full version [JLOT].

Organization. We define key-privacy for PKGKM’s in Section 2] and Unlinkable
SH’s in Section Bl In Section @l we introduce multi-encryption, which we use to
build key-private GKM in Section Bl and from that we build an SH scheme in
Section [ All proofs have been delegated to the full version of this paper [JLOT].

2 Key-Private Group Key Management: Definition

We describe the syntax of a (Public-Key) Group Key Management [PKGKM]
scheme, and we define two PKGKM properties: (1) Semantic security under
the chosen-ciphertext attack, IND-CCA, which is an adaptation of the standard
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security notion of IND-CCA for standard encryption [GM84] to GKM schemes;
and (2) Key-privacy under CCA, IK-CCA, which is also an adaptation of the
IK-CCA notion of key-privacy introduced by Bellare et al. for
standard encryption.

In a Public-Key GKM scheme we consider a group of players administered by
a group manager, who creates a public (encryption) key, issues private (decryp-
tion) keys to the group members, and can revoke any member by broadcasting
a revocation information, which is used to update both the public and the pri-
vate keys. A PKGKM scheme is a stateful version of a Public-Key Broadcast
Encryption scheme, considered e.g. by Dodis and Fazio [DF02] and by Boneh
et al. [BBWOG]. In a PK BE scheme, the public and private keys are fixed, and
the encryptor can encrypt a message for any subset of players. In a PKGKM
scheme, messages are always encrypted under the most recent public key, and
the revocation information used in computing this key determines the subset of
players who can decrypt.

A PKGKM scheme is a tuple of algorithms (Setup, KGen, Revoke(PKUpdate,
SKUpdate), Enc, Dec):

Setup(lk), on input a security parameter k, generates parameters params.
KGen(params), executed by the group manager, generates the initial group
public key PK (0), the initial master secret IVISK(O), and members’ initial
private keys SK%O), e SK&LO).

— Revoke(MSK(t),i,t), executed by the group manager in epoch ¢ (initially
t = 0) revokes key SK; of member U; by generating an update message
U+ | and updating the master secret to MSK®+  Message U+ is used
to update the public key as PK**1) = PKUpdate(PK®), U(+1)) and each
decryption key as SKj(tH) = SKUpdate(SKj(t), U, for each j # i.

et) )

— Enc(PK (et) m) encrypts message m on public key PK(
— Dec(SK i(dt), () is a decryption algorithm which either returns some message
m or rejects.

Initialization of the Static Adversary: To express security properties of
the PKGKM scheme in the static adversary model, it’s convenient to denote
the initialization pattern for the static adversary who corrupts subset Rev of
players, on public parameters params, as Init(params, Rev). This initialization
involves an execution of KGen(params) and ¢ executions of Revoke, for ¢ from
1 to 7 = |Rev|, which generates the initial public/private keys and ¢ update
messages UM ... U™ which in turn define a set of public/private keys PK®
and SKi(t), for all i € Rev and 0 < t < 7. The static adversary receives params,
the public keys, and the private keys of the players in Rev. In the key-privacy
definitions, when we initialize the keys of two groups G, GG1, on the same public
parameters params, we’ll generate the two sets of keys for these two groups as
Init(params, Revg, 0) and Init(params, Revy, 1).

A-Limited Completeness. We stress that we do not assume that the key update
messages are propagated immediately to all the participants, and hence there
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can be a discrepancy between the epoch of the public key used by the encryptor
and the epoch of the private key used by the decryptor. The PKGKM scheme we
construct in this paper handles such discrepancy between the epochs up to some
value A, and otherwise it does not guarantee proper decryption. In practice the
group members will have to retrieve update messages in an anonymous way, e.g.
using onion-routing, often enough to offset this A-limitation on the tolerated
epoch difference.

Let params = Setup(1*) and all the private/public keys are generated via
Init(params,Rev, €). Let Rev(t) denotes the first ¢ indices in Rev. We call a PKGKM
scheme A-Limited €.omp-Complete if it holds with probability at least 1 — €comp
that for any message m, for any 0 < et,dt < 7 and i ¢ Rev(maz{et, dt}), if
let — dt| < A then

Dec(SK™,C)=m if C =Enc(PK® m)

IND-CCA Security and IK-CCA Privacy for PKGKM’s. We define the IND /TK-
CCA security notions for a PKGKM scheme only for static adversaries. Both no-
tions are analogous to the IND-CCA security notion and the IK-CCA key-privacy
notion for standard public key schemes. The differences in the IND-CCA game
for a PKGKM scheme proceeds are as follows: (1) The game proceeds on some
set Rev of corrupted players chosen before the game starts; (2) The adversary is
given the initial group public key together with 7 = |Rev| update messages and
the private keys of the players in Rev, as generated by Init(params, Rev); (3) The
queries to the decryption oracle the adversary can make are of the form (C,i,t),
where ¢ € Rev and ¢t < 7, and the decryption oracle responds with Dec(Sth), ),
(4) The encryption challenge, on adversarially chosen pair of messages (mg, m1),
is computed as C* = Enc(PK (™), my); and (5) After receiving C* the adversary
cannot make decryption queries of the form (C*,14,t) for any 4,¢. As in the stan-
dard IND-CCA notion, we say that the PKGKM scheme is IND-CCA if the
probability that the adversary guesses b is at most negligibly larger than 1/2.

The IK-CCA game for a PKGKM scheme is defined in a similar way, except
that the adversary is given two sets of private/public keys, for groups Gy and
(1, the adversary can access decryption oracles for both groups, the encryption
challenge is computed as C* = Enc(PK b(T), m) on adversarially chosen message
m, and after receiving C* the adversary cannot ask for decryption of C* to
either group. Again, the PKGKM scheme is IK-CCA if the probability that
the adversary guesses b is at most negligibly larger than 1/2. We provide both
definitions in the full version of this paper on eprint [JLOT].

3 Unlinkable Secret Handshake Scheme: Definition

Similarly as in the Group Key Management setting, the model for a Secret
Handshake scheme consists of a set of groups G, each managed by its manager,
and a set of users /. For notational convenience in describing the security model
of a Secret Handshakes scheme, we’ll assume that every user U € U is a member
of a unique group G € G, which we’ll denote G = Membership(U). We say that
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U € G if G = Membership(U). Each U € G has its unique index in this group,
denoted i = Index(U). We stress that the restriction that each user is a member
of a unique group is taken only for notational convenience in defining the security
and privacy properties of a Secret Handshake scheme. It is not a restriction on
the actual applications of such scheme, where the same user can indeed be a
member of many groups.

Syntax of a Secret Handshake Scheme. We define a Secret Handshake (SH)
scheme as a tuple of algorithms (Setup, KGen, Revoke(PKUpdate, SKUpdate),
Handshake), where all algorithms except Handshake have the same syntax as in a
GKM scheme. As in the GKM scheme, we’ll denote by Init the static initialization
pattern involving an execution of KGen followed by |Rev| instances of Revoke,
one per each element in the set Rev of revoked players, chosen beforehand.

The new procedure, Handshake, is an interactive protocol executed by any
user U, on public inputs params and private inputs (SK, TPK,r), where SK =
SKGJ'(dt) for G = Membership(U), ¢ = Index(U), dt is U’s current epoch for
group G, TPK = PK ra® is a public key of some “target” group TG, not
necessarily equal to G, at some epoch et, and r is the role of U in this execution,
which is equal either to init for initializer or resp for responder. Since it’s an
interactive protocol, it is intended that two users, U and U’, execute two match-
ing instances of the Handshake protocol and exchange the messages generated on
these protocol instances. Adopting the standard terminology for Key Agreement
protocols, we refer to every instance of Handshake protocol as a session, and we’ll
call the matching instances of this protocol matching sessions. We will denote an
instance of the protocol executed by #-th instance of user U as 17, (9]. Consider the
session instance IT¢, running on inputs (SK, TPK,r), and instance IT, g// running
on inputs (SK', TPK',r"). We call these two sessions matching if (1) r # ', (2)
Membership(U) = PKGroup(TPK'), and (3) Membership(U’) = PKGroup(TPK),
where PKGroup(PK) identifies the group of the public key. We call two matching
instances I1 g and I1 [9]/, partnered if the protocol transcript on these two sessions
are the same, i.e. if the messages sent by II¢ are delivered to Hg/, and vice
versa. Two partnered sessions should both accept and output the same authen-
ticated and random key K, which can be then used for any subsequent secure
communication. If a session instance does not output a key then it rejects.

A-Limited Completeness: Informally, we require that if U and U’ run matching
instances of the Handshake protocol, i.e. U is a member of group G and wants
to authenticate itself to members of group TG, while U’ is a member of group
G’ = TG and wants to authenticate itself to members of group TG' = G,
then both players accept and output the same key on this session. However, we
can only guarantee such completeness property if neither of the two players is
revoked from their respective groups and if the epochs of the public and private
keys these players use are no farther than A apart, for both groups.

Formally, set params = Setup(1¥), and initialize two groups G = 0 and
G = 1 on two sets Revg,Rev; C {1,...,n} with the static initialization pat-
tern Init(params, Revg, 0) and Init(params, Revy, 1). Let Revg(t) denote the first
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t indices in Revg and let 7¢ = |Revg(7)]. We call an SH scheme A-Limited e-
Comgplete if the following holds: For any 0 < etg,dtg < 7¢ s.t. |etg — dtg| < A,
and any ig € Revg(maz{etg, dtg}), for both G = 0 and G = 1, if U and U’
run two sessions of the Handshake protocol on inputs

U’s inputs: (SK(dtO) Pngtl), init)  U”’s inputs: (SK(dtl), PK(()etO), resp)

0,40 1,41

then if all the protocol messages are properly exchanged between these two
instances, then with probability 1 — ¢ they both output a common key K.

Security of a Secret Handshake Scheme: Denote a set of groups as G, a set of
users U partitioned between these groups via the Membership function, and for
each group G € G some set Revg C {1,...,n}. We define SH security via a game
between an adversary A and the challenger simulating a network of players,
on common input (1¥,U, G, {Revg}aeg). First, the challenger picks params «
Setup(1*) and initializes each group G' € G by the static initialization procedure
Init(params, Revg, G), which produces all the public/private keys and gives A all
the public keys, update messages, and the private keys of the revoked members
in each group. After that, A adaptively issues to the challenger any number of
commands of the following type, and outputs a single bit when it’s done:

- [Handshake, U, dt, PK, r]: The challenger initializes an instance Hg where
0 is the next index that has not yet been used for player U, and then
starts the protocol for user U in epoch dt, i.e. runs Handshake on inputs
(SKS’?,PK?G,T) where G = Membership(U), i = Index(U), dt < |Revg]|,
and et < |Revyg|. The challenger keeps the state of the instance, and hands
to the adversary any message it generates.

- [Message, U, 0, m]: The challenger wakes up the IT¢, instance of the Handshake
protocol on message m, if such instance exists, and follows the protocol on be-
half of that instance. If the instance outputs another message, the challenger
hands it to the adversary. If the instance rejects, the challenger abandons it.
If the instance outputs a key, the challenger records it by saving the tuple
(HZQNPK?GWK)'

- [Reveal, U, ]: If either the II¥ session or some session partnered with /15
was tested (see below), or if session ITY did not output a key, the challenger
returns L. Otherwise, the challenger returns the key K output on this session
to A.

- [Test, U, 0]: The challenger picks a random bit b. If this is the only Test
query A makes, if session IT (9] outputted some key K, if the adversary has
not revealed the key on either I7, (9] or some session I (9]/, partnered with I7, (9],
and if ITY, executed on the target public key PK5 s.t. et = |Revrg| (i.e. if
the target public key PK on that session is updated so that all adversary’s
keys in group TG are revoked), then the challenger returns K to A if b = 0,
or a random string of length |K| if b = 1. If any of these conditions are not
met, the challenger returns 1.

Let AdvSH 4 denote the probability that A outputs the correct bit b chosen
by the challenger. (If A never makes the Test query we pick b at random.) We
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say that a SH scheme is (¢,€,n,n/, R, qs)-secure if for |U| = n, |G| = n/, for
maximum R sessions per user, for all subsets {Revg}geg, and all algorithms
A running in time ¢ which invoke a total of q¢ SH protocol instances, we have
|AdvSH 4, — %\ < €.

Unlinkability and Affiliation/Policy-Hiding of a Secret Handshake Scheme: We
define unlinkability and affiliation /policy-hiding similarly to SH-security, via
a game between an adversary A and a challenger on common input (1¥,U,G)
and the specification of corrupt (and revoked) players {Revg}aeg). As in the
SH-security game, the challenger picks params « Setup(1¥) and initializes each
group by Init(params, Rev¢, G). After the initialization, the challenger picks a
random bit b € {0,1}. Since our AKE protocols protect privacy only for the
privacy-preserving protocols (see the note in the introduction), we model the
privacy adversary without access to a key-revealing oracle. In the full version
of the paper [JLO7] we give a full model where the adversary has an access to
a protocol-execution oracle instead, and privacy of an AKE scheme holds only
if the protocol is privacy-preserving and compiled using a privacy simulator. In
these proceedings we simply restrict the privacy adversary A to issuing only the
Handshake and Message commands to the challenger.

The challenger in this privacy game services A’s commands depending on bit
b the challenger chooses: If b = 0 then the challenger executes each command
by following the corresponding protocol on behalf of the user entities, as in the
SH-security game. However, if b = 1, the challenger uses a special interactive
machine SIM to serve the commands issued to the instances whose target keys
are updated so that all adversary’s keys are revoked. For other instances, the
challenger follows the protocol on behalf of the user as in the SH-security game.
The SIM machine is initialized on string params, it can keep state between invo-
cations, but has no access to group keys created by the challenger in all the Init
instances. The challenger executes as follows using SIM:

- [Handshake, U, dt, PK$, r]: If the target key PK% satisfies et = |Revrg|
(i.e. if it is updated so that all adversary’s keys in group TG are revoked),
then the challenger picks a next index 6 that has not been used yet by U
and an additional globally unique (random) string é, which we will call an
identifier for the IT% session. The challenger hands [Handshake, §, 6-list] to
SIM where f-list contains the identifiers of all sessions which match IT g.

If et < |[Revrg|, the challenger initializes an instance IT{, for 6 the next
index not used by U, runs the Handshake protocol on behalf of Hg as in the
SH-security game, and hands any message generated by 17, g to the adversary.

- [Message, U, 6, m]: If [Handshake, U, dt, PK5, 7] has been issued and
et = |Revpg|, the challenger retrieves 0 identifier for this session, passes
[Message, 0, ] to SIM, and forwards SIM’s answer to A. If et < |Revyg|, the
challenger follows the real protocol on behalf of IT{ as in the SH-security
game, and hands any message generated by ITY, to the adversary.
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Let AdvSH 4 denote the probability that A outputs the correct bit b chosen
by the challenger in the above game. We say that a SH scheme is (¢,€e,n,n’, qs)-
unlinkable and affiliation/policy hiding if there exists a simulator algorithm SIM
running in time polynomial in k s.t. for || = n, |G| = n/, for R setting the max-
imum number of sessions per user, for all subsets {Revg }aeg, and all algorithms

A running in time ¢ which invoke a total of q¢ SH protocol instances, we have
|AdvSH 4 1, — é\ <e

4 Security and Key-Privacy for Batched Encryption

Our construction of a key-private (Public-Key) Group Key Management scheme
(PKGKM), is based on the so-called “multi-encryption” [ME] introduced by
Bellare et al. [BBs03]. A multi-encryption is a non-standard method of encrypt-
ing a message under many independent public keys, where the encryptor uses
the same randomness when encrypting the message under each key. The reason
we rely on multi-encryption instead of standard encryption in our key-private
group key management scheme construction, is that it reduces the cost of de-
cryption procedure from O(N) exponentiations to O(1), where N is the number
of component ciphertexts.

Here is why: In our key-private (public-key) group key management scheme
[PKGKM], the ciphertext is a vector of ciphertexts. We cannot tag any informa-
tion that links each component to the public key, as that would leak information
about the group. As a consequence, the decrypting party will not know which
of these component ciphertexts it should decrypt, and hence it can decrypt the
PKGKM ciphertext only in an oblivious way, i.e. by attempting to decrypt each
of the component (standard) ciphertexts. Now, if the N component ciphertexts
are computed in a standard way, such oblivious decryption would take O(N)
exponentiations. However, if the component ciphertexts are computed using the
same randomness vector, then the decryption procedure requires only O(1) expo-
nentiations and O(N) fast symmetric operations, e.g. xors and tests for equality.

In the rest of this section we (1) define a multi-encryption [ME] version of
a public-key encryption scheme, and the IND-CCA and IK-CCA notions for it.
Then we (2) define a version of multi-encryption in which decryption is oblivi-
ous, and we discuss converting an ME to an oblivious multi-encryption [OME].
Finally, (3) we show examples of IND/IK-CCA encryption schemes which yield
IND/IK-CCA ME and OME schemes.

Multi-Encryption and its Security and Privacy Properties. We define multi-
encryption as a version of a standard public-key encryption, where the same
message is encrypted under a set of public keys, and the encryptor uses the same
randomness in each encryption. A standard public-key encryption is given by a
triple of algorithms (KGen, Enc, Dec), but for the purpose of multi-encryption we
need to split the key-generation procedure into two parts, Setup, which generates
some public parameters params, e.g. params = (p, ¢, g) where p, ¢ are primes and
g is an element of order ¢ in Zy, and KGen(params) proper, which for example
picks private key x at random in Z, and sets the public key as y = g* mod p.
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The multi-encryption ITM¥ version of the public key encryption scheme IT =
(Setup, KGen, Enc, Dec) is a tuple of algorithms (Setup, KGen sz, Encys g, Decyr i),
(note that the setup does not change), where:

KGen sz (params) executes KGen(params) n times to produce a vector of n
public keys pk = {pk;}i=1,...», and the corresponding private keys sk.
Ency e (pk, m) picks a (long-enough) random string » and outputs a vector
of ciphertexts ¢ = {¢;}i=1,....n where ¢; = Enc(pk;, m;r) [i.e. the encryption
of m under key pk; using randomness 7.

Decys g (ski, ¢) outputs Dec(sk;, ¢;) where ¢ = (cq,...,¢y).

The IND-CCA notion of security and the IK-CCA notion of key-privacy for a
multi-encryption scheme ITM¥ is defined analogously to the IND-CCA secu-
rity and IK-CCA key-privacy definitions for the underlying standard encryption
scheme II. In the security notion (IND-CCA), the difference between security
of multi-encryption and standard encryption is that (1) in the multi-encryption
case the adversary receives a vector of public keys pk instead of a single key pk,
(2) the challenge ciphertext is a multi-encryption vector ¢* = Encys g (pk, my) for
the randomly chosen message my, instead of a single ciphertext ¢* = Enc(pk, ms),
and (3) the adversary has an adaptive access to a “flexible” decryption oracle,
which takes as input the index ¢ of the decryptor and the ciphertext vector
c = {¢;}, and outputs Dec(sk;, ¢;). Also, after the adversary sees the encryption
challenge ciphertext ¢* = (cf, ..., ) the adversary’s queries (i, c) must satisfy
¢i # ¢f where ¢ = (cq, ..., ¢p).

The changes between IK-CCA notion for multi-encryption and the IK-CCA
notion for standard encryption are analogous. We note that the above IND-
CCA and IK-CCA notions for multi-encryption scheme are for a static adversary,
which cannot corrupt parties after the protocol starts.

Oblivious Multi-Encryption. An oblivious multi-encryption scheme is a multi-
encryption scheme as described above, except that the decryptor is not told which
ciphertext is directed to him. In other words, an oblivious multi-encryption scheme
ITOME s a version of the public key encryption scheme IT = (Setup, KGen, Enc,
Dec) is a tuple of algorithms (Setup, KGenys g, Encas g, Deconre ), where Setup is as
in the underlying standard encryption 7, algorithms KGen s g, Encysp are asin the
multi-encryption scheme ITM ¥ formed from IT as defined above, and the decryp-
tion procedure Decoys g (Ski, €) proceeds differently than Decysg (sk;, ¢): Namely,
if ¢ = (c1,...,¢,), the decryption procedure computes m; « Dec(sk;,c;), for
each j ranging from 1 to n. If all m;’s are equal to the rejection symbol L, then
Deconrg(ski, ¢) outputs L as well. Otherwise, it outputs the first m; s.t. m; #.L.

The IND-CCA and IK-CCA notions for oblivious multi-encryption scheme
ITME are very similar to those for the (non-oblivious) multi-encryption 7%
(see above), and the only difference is in the adversary’s interaction with the
(flexible) decryption oracle: First, the decryption oracle implements the Deconr g
procedure instead of Decysg. Second, after getting the encryption challenge ¢* =
(cf,...,c), the decryption query (4, ¢) made by the adversary must satisfy ¢ #
c*. (Note that ¢ can contain one or more component ciphertexts of ¢*, as long



282 S. Jarecki and X. Liu

as ¢ # c¢*.) Analogous changes are made for the IK-CCA notion of an oblivious
multi-encryption scheme.

Constructing IND+IK-CCA Secure and Complete Oblivious Multi- Encryption
Schemes. Consider the following conversion from an OME scheme IT9MF —
(Setup, KGenys i, Encar g, Deconrg) to another OME scheme moME _ (Setup,

KGeny g, Enc’are, Dec’ oarge), where Enc'yrg(pk, m) picks random r « {0,1}*
for the security parameter k, computes ¢ < Encyg(pk, (m,r)) and outputs ci-
phertext C' = (¢, H(c,m, 7)), where H(-) — {0,1}?* is a hash function (modeled
as a random oracle in the security analysis); and Decg, ,, ; (sk, C') parses cipher-
text C' as (¢, h), and outputs m if (m,r) < Deconr(sk,c) s.t. h = H(e,m, 7).

Theorem 1. If IIMF is an IND+IK-CCA ME scheme, then II'MF s an
(n27k)-complete IND+IK-CCA OME scheme in ROM.

Ezxamples of IND+IK-CCA Oblivious Multi-Encryption Schemes. Bellare et al.
showed a generic method for converting IND-CCA standard encryption into
an IND-CCA ME. It required a technical property of “reproducibility” of the
underlying encryptionEI It’s easy to extend their results to IK privacy. Le., the
same reproducibility implies that IK-CCA encryption yields IK-CCA ME. By
combining the results of [BBDPOI] and [BBs03] with the discussion above, this
yields IND/IK-CCA and complete OME from DHAES and Cramer-Shoup. We
extend these results in the following sense: Fujisaki and Okamoto showed a way
to convert one-way encryption schemes, with additional technical property of -
uniformity, into IND-CCA encryption schemes, in the ROM model, via a hybrid
with symmetric encryption [FO99]. Their main theorem can be easily extended
to cover also key privacy. We refer to the full paper [JLO7] for details.

5 Key-Private PKGKM from Oblivious Multi-encryption

Our key-private public-key group key management scheme is based on the so-
called Wallner Tree key distribution scheme proposed by Wallner et al [WHA9T]
[WGLOS], which uses a binary tree to assign subsets of keys to group members.
Our key of a node in the tree is a pair of public/private keys (pkz(t), skz(t)) in
epoch t. We could encrypt a message under the top key pke(t), as it is known to
all members of the group. However, such scheme would work only if the public
key used by the encryptor has the same epoch as the private key used by the
decryptor, e.g. if both parties have the most recent key-update message.

Such synchrony assumption is not realistic in practice. On the other hand,
we can relax this assumption and construct a practical group key management
scheme with A-limited completeness, i.e. a scheme which works assuming a limit
A on the discrepancy between the key epochs assumed by the encryptors and
decryptors. Our way to use the set of keys is similar to the extension of the

! We note that the notion of multi-encryption introduced in [BBs03] is stronger than
here. Namely, the messages encrypted for each public key need not be the same.
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Wallner Tree construction in which any subset of A players can be revoked in a
batch. Let Rev® be a set of A indices corresponding to A most recently revoked
users. Let co-path(u) be the co-path of user u and R® be a A x logn table of
indices whose i-th column is made of indices in set co-path(r;) for i-th element
r; in Rev?. In any column ¢, the element in row j is the j-bit long element in
co-path(r;). Let R® be a transformation of the R(*) matrix, where every element
of R which is a prefix of some index i in the revoked set Rev® is replaced by
a special symbol *. For example, if n = 16, A = 3, and Rev") = {000,011, 101}
then

1 1 0 * * *
S (t) _ 01 00 11 (t) _ * * 11
R 001 010 100 — R 001 010 100 (1)
0000 0111 1010 0000 0111 1010

In this way, matrix R() consists of nodes which cover all the leaves except those
in set Rev"), Therefore, if the encryptor encrypted a message m under public
keys pk‘z(t_m for all indices z € R™, then every node except those in Rev(®
would be able to get m using its key from epoch t — A. Let PK® be a logn x A
table of public keys from epoch t — A corresponding to the indices in R®). If
some entry in R®*) is a symbol “«+”, then the entry in the same position of PK®
is also a “x”. Continuing the above example we have

* * *
(t-3)
* *  pk
PE® = (t-8) L (t-3) . (-3) (2)

Pk(()?13) pk(()tws) Pk%?():s)

Pkoooo” PRo111” PR1o1o
We can then encrypt a message m under PK®) using an OME scheme, as C(*)
given below. For the entries in PK® that are marked “«”, the corresponding
ciphertexts are filled with randomness, in the format of real ciphertexts.

$ $ $
C(t) B $ $ Encpk:gtf?’) (m) 5
= Encpk&;g) (m) Encpk(()tigil) (m) Encpkitoag) (m) 3)

Ene,yoo (m) Bne,aos (m) Bne,os (m)

Then each user U; for i ¢ Rev®® could use its key set of epoch t — A, i.e.
{sk."=%) : z € path(i)}, to decrypt the message m. (Actually, {sk,*=2) : 2z €
path(i)} remain the same until epoch t¢.)

However, instead of requiring the decryptor to be A epochs behind the encryp-
tor, we want to tolerate any lag between the encryptor and decryptor epochs, et
and dt, as long as |et — dt| < A. To do this, we will make each member of the
group store its key set for (A+1) consecutive epochs. Each player’s secret key
SKZ-(t) is a logn x (A+1) key table whose j-th column is a key set of user U; in
epoch 7 =t — (A+1)+j. The keys in each column are arranged so that skz(T),
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for 7 € {t—A,t}, is in row number |z|, i.e. the bit-length of index zf For the
same example above, the node 0111 has the secret key table:

sk(()t_s) # sk(()t_z) # sk(()t_l) = sk(()tl)
sy *) = shiy 2 # skiy ) = skyy
sk = skify > # skipy D = skt
sk = skiny = skin) = skt

t
SKél)u =

where # means the key changed from one epoch to the next one.

Let (Setup, KGeny g, Encon g, Deconrg) be an IND/IK-CCA secure and com-
plete Oblivious Multi-Encryption scheme. The IND/IK-CCA and A-complete
PKGKM scheme can be constructed as follows:

— Setup(1%): Output (params,n, A), where params «— Setup, n is the maximum
number of members in each group (assumed to be a power of 2), and A is
the maximum difference between the encryptor’s epoch and the decryptor’s
epoch for which we guarantee correctness of decryption.

— KGen(params): For Wallner Tree of depth logn. Use KGenjsg(params) to
generate a set of public/private key pairs (pkz(o), skz(o)) for all tree nodes
z. Store all these key pairs as MSK©® . To simplify the description of the key
generation process, we let the group manager revoke A dummy members, so
that PK( has the format as eq.(), and user U;’s key SK;© is a logn x
(A+1) key-table, whose j-th column is filled with keys {sk.U~27Y | 2z ¢
path(i), z # €}, as in eq.().

— Revoke(MSK(tfl),r(t)): The update message U®) consists of the standard
Wallner Tree update message which revokes user ) (and updates both the
standard Wallner Tree keys and the keys pkg*l), sk‘gt*l) for tree-nodes z on
the path from the root to the leaf corresponding to player r*). Additionally,
the update message contains also the PK® table as in eq.([). The table
contains a set of keys from epoch t — A which is determined by the tree-
leaves assigned to the last A revoked members.

— PKUpdate(U®"): Extract PK® from U®,

— SKUpdate(SK; ™1 U®): User U; extracts the key update part from U®,
perform the Wallner Tree user key update to get the new set of keys of
epoch t,i.e. {skz(t) }, for z in the key path of U;. Denote sk;® as the resulting
Wallner-tree secret key set for user U; in epoch t. Then U; discards ski(t_A_l)
from the first column of his key table SKZ-(t_l), and append ski(t) to the last
column, so that SK;® in the format of eq.(d).

— Enc(PK® m): Compute C « Encoyp(PK®,m) and format it as an
logn x A table, as in eq.(3]).

2 In this way all the keys in U;’s key set are present in column 7 except of the group
secret sk.(™. The users could use these group secrets too, but this makes the de-
scription of the scheme slightly more complicated, and it does not improve the per-
formance by much.
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- Dec(SK,-(t),C): For each key sk in the left-most column sk;*=2) in U’s
key table SK;*, from top level down, compute m « Decomr(sk,C). If
m # 1, output m. If the trials fail for all sk € ski(t_A), then repeat the
above procedure for the keys in the right-most column sk;® in SK;® . 1f all
trials fail, output L.

Note on Efficiency. The GKM encryption cost is a multi-encryption with Alogn
keys, i.e. Alogn standard encryptions. The GKM decryption cost is O(logn)
multi-encryption decryptions. We can reduce both costs by modifying the OME
scheme so that the OME scheme is used as Key Encapsulation, to encrypt a
random key k for an IND-CCA symmetric encryption scheme, padded with a tag
of s zero bits. The key k is then used to encrypt the message using the symmetric
encryption. The resulting OME scheme remains IND /TK-CCA and complete, but
(1) All the public-key encryption costs can be done off-line, before the encryptor
knows the plaintext, which in particular pushes all the encryption cost in the
secret handshake scheme of Section [fl off-line; and (2) Heuristically, the oblivious
decryptor rejects an attempt to decrypt a ciphertext using a wrong key with
1 —27¢ probability. For all the ElGamal-based OME schemes we provide (using
DHAES, Cramer-Shoup, or DDH-based ElGamal with the Fujisaki-Okamoto
transformation), this means that the decryption cost in the above GKM scheme
takes only 2logn exponentiations and O(A(logn)?) xor’s.

Theorem 2. If the underlying oblivious multi-encryption scheme is e-complete
and IND+IK-CCA secure then the above PKGKM scheme is € -complete and
IND+IK-CCA, where ¢ = 2Alog ne.

6 Unlinkable Handshakes from Key-Private PKGKM

Let (Setup, KGen, Revoke, Enc, Dec) be a A-complete IND/IK-CCA GKM scheme
and H : {0,1}* — {0,1}* is a hash function modeled as random oracle in the
security analysis. The SH scheme uses the same algorithm Setup, KGen, and
Revoke, and the Handshake protocol is shown in Figure [[l Each player’s inputs
in the protocol is a triple (SK, TPK ,resp/init) where SK is that player’s GKM
key for his/her group, TPK is the public key of this player’s target group, and
resp/init is the player’s role in the protocol. Let final be a special symbol, different
from resp and init. Parameter k can be set as k = 2k. In particular, it must be
large enough so that the probability that two sessions choose the same nonce is
negligible in k. Hash function H has a k-Dit range.
We refer to the full paper [JLOT] for proofs of the following claims:

Theorem 3 (A-limited completeness). Suppose the underlying Group Key
Management scheme is A-Limited e-complete. Then our Secret Handshake
scheme 1s A-Limited € -complete, where € = 2e.

Theorem 4 (Security of the SH Scheme). If the underlying Group Key
Management scheme is (t,e,n,qp)-IND-CCA secure and A-limited €.-complete,
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UZ(SKZ, TPKi,init) Uj(SKj,TPKj,resp)
G; = SKGroup(SK) G; = SKGroup(SK ;)
TG; = PKGroup(TPK ;) TG; = PKGroup(TPK ;)
s ot T s ot
Siba ¢j<_EnC(TPsz(Gj>37resszj))
¢i — Enc(TPK;, (G, s, init, K;)) <7 for s = si|s;; Kj a3 {0,1}*

for s = si|s;; K & {0,1}*
(G, 8,75, Kj) « Dec(SKy, ¢;);

if v = resp and (G, sj) = (TGs, s),

ih
hi — H(init, K;, K7) ¢

"> (Gh, sk, 1l K]) — Dec(SK;, ¢);
if v, = init and (G5, s}) = (TG}, s),
hj «— H(resp, K}, K;)

if hy = H(resp, K, K}) if h; = H(init, K}, K;)
output K = H(final, Ky, KJ). output K = H(final, K/, K;).

Fig. 1. Privacy-protecting AKE protocol Handshake(U;, U;)

then the SH scheme constructed in Section [ is (t',€',n,n', R, qs, qu)-secure,
for at most qs commands, qg hash queries, n’ groups, m members per group,
and maximum R sessions for each member, for R = qp/n, qs = qp, t =
t— (R+2)nn’Alogn - tegp, where tegy is the cost of a single exponentiation, and

€ =nn'R-(e+ (qu +qs) 27" +e.).

Theorem 5 (Anonymity and Affiliation/Policy Hiding Property of the
SH Scheme). If the underlying group key management scheme is (t1,€1,m,qp)-
IND-CCA and (t2,ea2,n,qp)-IK-CCA secure, then the SH scheme constructed in
Section[@ is (t',€',n,n', R, qs, qu)-private (unlinkable and affiliation/policy hid-
ing), for at most qs commands, qp hash queries, n’ groups, n members per group,
and mazimum R sessions for each member, for R = qp/n, qs = qp, t=
min{ty, o} — (R+2)nn'Alogn - teyp, where teyy, is the cost of a single exponen-

tiation, and € = nn'R(e; + €2 + (qg +qs) - 27F +€.).
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