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Abstract. Existing protocols for private set intersection are based on
homomorphic public-key encryption and the technique of representing
sets as polynomials in the cryptographic model. Based on the ideas of
these protocols and the two-dimensional verifiable secret sharing scheme,
we propose a protocol for private set intersection in the information-
theoretic model. By representing the sets as polynomials, the set inter-
section problem is converted into the task of computing the common
roots of the polynomials. By sharing the coefficients of the polynomials
among parties, the common roots can be computed out using the shares.
As long as more than 2n/3 parties are semi-honest, our protocol correctly
computes the intersection of n sets, and reveals no other information
than what is implied by the intersection and the secrets sets controlled
by the active adversary. This is the first specific protocol for private
set intersection in the information-theoretic model as far as we know.

Keywords: Secure multi-party computation, privacy-preserving set
intersection, unconditional security.

1 Introduction

This paper studies the following problem: n parties each with a secret set want
to compute the intersection of these sets without leaking anything else about
the secret sets. This problem is a specific case of secure multi-party computa-
tion, which is introduced by Yao [10], and extended by Goldreich, Micali and
Wigderson [5]. The goal of secure multi-party computation is to design a protocol
for the parties each with a secret input to compute securely a public function of
their inputs. The protocol should be correct and private. Correctness means that
every party believes the correctness of the output. Privacy means that no party
can learn more than what is implied by its output and its own input. For the
set intersection problem, the inputs are the parties’ secret sets and the output
is the intersection of these sets (all the parties get the intersection and nothing
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about other parties’ secret sets). Protocols for private set intersection are useful
in online recommendation services, online dating services, medical databases,
data mining, etc., as pointed out by Freedman, Nissim and Pinkas [4].

Related work. The set intersection problem is studied in [4,7,8], where sev-
eral protocols are presented in the cryptographic model based on homomorphic
public-key encryption. In the information-theoretic model, many general secure
computation protocols are proposed (e.g. [3,1,6,2]). Solutions to the set intersec-
tion problem can be derived from these general protocols from the theoretical
point of view, however, how to modify the general protocols to solve the set
intersection problem is not known.

Our work. This paper presents a protocol for the set intersection problem in the
information-theoretic model. The protocol uses the idea of representing a set as a
polynomial [4,7,8] and the two-dimensional verifiable secret sharing used in the
general unconditionally secure protocols (e.g. [3,2]). Our protocol follows the
share-compute-recover paradigm for general constructions in the information-
theoretic model. By representing the parties’ secret sets as polynomials, the set
intersection problem is converted into the task of computing the common roots
of these polynomials. Then the coefficients of the polynomials are shared using
two-dimensional secret sharing scheme and the common roots of the polynomials
are computed out using the shares. This is the first specific protocol for the
intersection problem in the information-theoretic model as far as we know.

Assuming that an active adversary corrupts less than n/3 parties, the pro-
posed protocol enables n parties each with a secret set to compute privately the
intersection of these sets and leaks no other information than what is implied
by the intersection and the secret sets controlled by the adversary. The security
of the protocol is proved and efficiency is analyzed in Section 4.

The proposed protocol is efficient in terms of communication complexity. The
protocol demands 6 rounds of communication and exchanges O(n4k2) elements
in E, where k is the size of the secret sets and E is a large finite field. The most
efficient general protocol in the information-theoretic model is due to [2]. The
protocol uses circuit randomization technique (for details, see[1]) and consists of
preparation phase, input phase, and computation phase. If the protocol is ap-
plied to the set intersection problem, then at least nk random numbers should
be shared in the pre-processing phase, which needs O(n4k) elements to be ex-
changed. As no article considers applying the general unconditionally secure
protocols to the set intersection problem before, so we cannot estimate the total
communication complexity, thus only a partial comparison is provided here.

2 Preliminaries

2.1 Adversary and Communication Models

Adversary model. A cheating party in a protocol is modelled as an adversary
who can corrupt parties. There are two kinds of adversaries. A passive adversary
learns the information hold by the corrupted parties, but the corrupted parties
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still act correctly according to the protocol. An active adversary not only learns
the information hold by the corrupted parties but also takes full control of them.
The two models are called passive model and active model respectively.

Communication model. There are two communication models in secure com-
putation: cryptographic model and information-theoretic model. The first model
assumes that parties are connected by public channels, and parties have bounded
computation power (probabilistic polynomial time) and the adversary can see
all the messages exchanged among the parties. The second model assumes that
there are pair-wise secure channels among parties, and parties have unbounded
computation power and the adversary can not learn the messages exchanged
between the honest (i.e. uncorrupted) parties.

In the paper, we assume both passive and active adversaries, and we assume
the information-theoretic model.

2.2 Polynomial Representation of Sets

Notation. Let E denote a large finite field. E[x] consists of all the polynomi-
als whose coefficients are chosen from E, and the probability that a random
polynomial (i.e. the coefficients are chosen randomly from E) in E[x] represents
elements of U is negligible.

We use the technique of representing sets as polynomials [4]. Let S be a set of
size k. A polynomial of degree k can be constructed: f(x) = a0 +a1x+ ...+akxk,
f(a) = 0 if and only if a ∈ S, where the coefficients of f(x) are chosen from E.

In [7,8], Kissner and Song convert the set intersection problem into the task
of computing the roots of a polynomial by use of the polynomial representation
of sets. This paper follows the idea of the protocols for set intersection in [7,8].
We briefly review their idea as follows.

Let r(x) be a random polynomial in E[x]. If a is the root of f(x) then a
is the root of f(x)r(x) too, that is, f(x)r(x) preservers all the roots of f(x).
Let S1, ...Sn be n sets, and the polynomials f1(x), ..., fn(x) represent S1, ...Sn

respectively. Let r1(x), ..., rn(x) be n random polynomials in E[x]. Then the
roots of f1(x)r1(x) + ... + fn(x)rn(x) represent the intersection of S1 ∩ ... ∩ Sn.

2.3 Two-Dimensional Verifiable Secret Sharing

Secret sharing is firstly introduced by Shamir [9]. A secret s can be shared with
a polynomial of degree t: f(x) such that f(0) = s. Let α1, ..., αn be public
parameters chosen in E. Pi’s share is Piecei(s) = f(αi), i = 1, ..., n. Shamir’s
secret sharing scheme is extended to two-dimensional secret sharing [3,6]. Each
secret value is shared among the players with a polynomial of degree t, and each
share is again shared among the parties with a polynomial of degree t. Let Piecei

denote a share, and Pieceij (sometimes written as Piecei,j, e.g. Piecei,2k(s))
denote a share-share.

Sharing. To share a secret s, a party chooses a random two-dimensional poly-
nomial p(x, y) =

∑t
i,j=0 rijx

iyj such that p(0, 0) = s, and sends to Pi the
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two polynomials fi(x) = p(x, αi), f̃i(y) = p(αi, y), i = 1, ..., n. Pi’s shares are
Piecei(s) = fi(0), Pieceji(s) = f̃i(αj) = p(αi, αj), j = 1, ..., n. We say that the
party t-shares s or s is t-shared.

Verifying the correctness of sharing. For i = 1, ..., n, each party Pj (j �= i)
sends to Pi the share-share Pieceij(s) = fj(αi), and Pi checks if the received
value is equal to f̃i(αj).

Linear function. Let a, b be two secrets shared among the parties, and r be a
constant integer, parties can compute locally the sharing of the new secrets ra
and a + b.

Multiplication of two secrets. Let a, b be two secrets shared among the
parties, the goal is to produce the t-sharing of a new secret c = ab among the
parties. The computation procedure develops in two steps: local computation
and degree reduction.

The degree reduction phase involves mainly a sub-protocol: re-share protocol.
The re-share protocol allows parties to produce t-shares of a secret given its t′-
shares. In the active model, when a party t-shares his share Piecei(s), he proves
that the shared value is indeed Piecei(s). The details for re-sharing protocol can
be found in [6].

Reconstruction. Let s be t-shared among the parties. To reveal the secret s
to a designated party, all other parties send their shares of s to the designated
party, then the party recovers the secret using Lagrange Interpolation.

Error correction. In the active model, a party may receive wrong shares from
corrupted parties when reconstructing a secret. Parties can perform locally error
correction to get n correct shares, and recover the secret (see [3] for details).

3 The Proposed Protocol for Private Set Intersection

A protocol in the passive model is constructed first. The protocol in the active
model is constructed based on the protocol in the passive model. The two pro-
tocols develop similarly except that some verifications and proofs are added to
the second protocol.

3.1 Construction in the Passive Model

Let P1, ..., Pn be n parties connected with pair-wise secure channels. Assume
parties are computationally unbounded and a passive adversary is allowed to
corrupt t < n/2 parties. P1, ..., Pn have secret sets S1, ..., Sn respectively. Let
k be the size of the sets and S[j] denote the j-th element of S. Then a set S
can be represented as a polynomial of degree k in E[x]: f(x) = (x − S[1])...(x −
S[k])=a0 + a1x + ... + akxk.

The main idea. Each party represents his secret set as a polynomial of k
degree. Let f1(x) = a10 + a11x + ... + a1kxk, f2(x) = a20 + a21x + ... + a2kxk,
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..., fn(x) = an0 + an1x + ... + ankxk be the n parties’ polynomials respectively.
Let r1(x), ..., rn(x) be n random polynomials of degree k. If the coefficients of
fi(x), ri(x), i = 1, ..., n, are shared, then the shares of the coefficients of the
polynomial F (x) = f1(x)r1(x) + f2(x)r2(x) + ... + fn(x)rn(x) can be computed.
Each party publishes his shares of the coefficients of F (x), then every party can
recover the polynomial F (x) and evaluate it at each element of his secret set. If
the function value equals to zero then the element belongs to the intersection,
else the element does not belong to the intersection. Thus the parties compute
out the intersection of the sets. The protocol is composed of three phases: input
phase, computation phase and output phase.

Input Phase
Step 1. Each party represents his secret set as a polynomial and shares the
coefficients of the polynomial among the parties.

- For i = 1, ..., n, Pi represents his secret set as a polynomial fi(x).
- For i = 1, ..., n, Pi t-shares the coefficients of his polynomial (e.g. Pi uses

fij(x) to share aij , j = 0, ..., k).

Step 2. The parties produce jointly the t-sharing of n random polynomials of
degree k.

- For i = 1, ..., n, Pi produces n random polynomials of degree k: ri1(x) =
bi10 + bi11x + ... + bi1kxk, ri2(x) = bi20 + bi21x + ... + bi2kxk, ..., rin(x) =
bin0 + bin1x + ... + binkxk.

- For i = 1, ..., n, Pi t-shares the coefficients of the n random polynomials
among the parties. E.g. Pi uses rij0(x), rij1(x), ..., rijk(x) to share bij0,
bij1,..., bijk respectively, j = 1, ..., n.

- For i = 1, ..., n, Pi computes the t-shares of the following n polynomials of
degree k rj(x) =

∑n
j′=1 rj′1(x) = wj0 +wj1x+ ...+wjkx

k, j = 1, ..., n, as be-
low: Piecei(wj0) =

∑n
j′=1 Piecei(bj′10), Piecei(wj1) =

∑n
j′=1 Piecei(bj′11),

..., Piecei(wjk) =
∑n

j′=1 Piecei(bj′1k), j = 1, ..., n.

Computation Phase
Let fj(x)rj(x) = zj0 + zj1x + ... + zj,2kx2k, j = 1, ..., n, and F (x) = f1(x)r1(x)
+ f2(x)r2(x) +... + fn(x)rn(x)= z0 + z1x + ... + z2kx2k.
Step 1. Compute the 2t-shares of the coefficients of f1(x)r1(x), f2(x)r2(x), ...,
fn(x)rn(x).

- For i = 1, ..., n, Pi computes locally the following values: Piecei(aj0)Piecei

(wj0), Piecei(aj0)Piecei(wj1), ..., Piecei(ajk)Piecei(wjk), j = 1, ..., n.

Step 2. Call the re-sharing protocol, and convert the 2t-shares of the coefficients
of f1(x)r1(x), f2(x)r2(x), ..., fn(x)rn(x) into t-sharing.

- For i = 1, ..., n, Pi t-shares the following values: Piecei(aj0)Piecei(wj0),
Piecei(aj0)Piecei(wj1), ..., Piecei(ajk)Piecei(wjk), j = 1, ..., n.
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- For i = 1, ..., n, Pi reconstructs the t-shares of aj0wj0, ..., ajkwjk: Piecei

(aj0wj0), Piecei(aj0wj1), ..., Piecei(ajkwjk), j = 1, ..., n.
- For i = 1, ..., n, Pi computes the t-shares of the coefficients of f1(x)r1(x),

f2(x)r2(x), ..., fn(x)rn(x) as below: Piecei(zj0) = Piecei(aj0wj0), Piecei

(zj1) = Piecei(aj0wj1)+Piecei(aj1wj0), ..., Piecei(zj,2k) = Piecei(ajkwjk),
j = 1, ..., n.

Step 3. Parties compute the t-shares of the 2k + 1 coefficients of F (x).

- For i = 1, ..., n, Pi computes the following 2k + 1 values: Piecei(zj) =∑n
j′=1 Piecei(zj′j), j = 0, ..., 2k.

Output Phase
Step 1. Each party sends his t-shares of the coefficients of F (x) to all other
parties.

Step 2. Find out the intersection.

- For i=1, ..., n, Pi reconstructs the 2k+1 coefficients of F (x) using Piece1(zj),
Piece2(zj), ..., Piecen(zj), j = 0, ..., 2k.

- For i = 1, ..., n, Pi evaluates F (x) at each element of his set. If the evaluation
is zero then the element belongs to the intersection, else the element does
not belong to the intersection. All the elements at which the evaluation is
zero form the intersection S1 ∩ ... ∩ Sn.

In the above protocol, it needs to compute the shares of the coefficients of
the multiplication of two polynomials given the shares of the coefficients of these
two polynomials. For example, let f(x), g(x) be two polynomials of degree k,
whose coefficients are shared among parties, we want to compute the sharing of
h(x) = f(x)g(x). Let cj , j = 0, ..., k be the coefficients of f(x), dj , j = 0, ..., k
be the coefficients of g(x), and let uj , j = 0, ..., 2k be the coefficients of h(x).
We have: u0 = c0d0, u1 = c0d1 + c1d0, ..., uk = c0dk + c1dk−1 + ... + ckd0,
uk+1 = c1dk + c2dk−1 + ... + ckd1, ..., u2k = ckdk. In these 2k + 1 expressions,
there are (k + 1)(k + 2) items of the form cidj , and the t-shares of cidj can
be computed out using the t-shares of ci, dj . Then the t-shares of u′

j , j′ =
0, ..., 2k can be computed out as below: Piecei(u0) = Piecei(c0d0), Piecei(u1)
= Piecei(c0d1) + Piecei(c1d0), ..., Piecei(uk) = Piecei(c0dk) + Piecei(c1dk−1)
+ ... + Piecei(ckd0), Piecei(uk+1) = Piecei(c1dk) + Piecei(c2dk−1) + ... +
Piecei(ckd1), ..., Piecei(u2k) = Piecei(ckdk).

3.2 Construction in the Active Model

In the protocol described above, an active adversary can disrupt the security
in two ways. One is pointed at [7,8]: the adversary can use zero-polynomial
f(x) = 0 to replace the the polynomial used to represent a set. The other is that
the adversary can send wrong shares to parties when sharing a secret.

If a party uses zero-polynomial to represent his set, then it is equivalent to
that the party’s set is the union set and he can compute the intersection of other
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parties’ sets. In order to prevent the parties from using zero-polynomial, it is
enough to define 1 as the default value of the coefficients of the k-degree items.

In input phase and computation phase, whenever a secret is shared the cor-
rectness of sharing should be verified using the share-shares. Additionally, a party
should prove that he indeed shares the required value (not a random value) in
the re-sharing protocol.

In output phase, each party publishes his shares in order to compute out the
coefficients of F (x). For each coefficient of the polynomial F (x), each party gets
n shares among which at most t shares are from the adversary (there are at most
t wrong shares). In case there are wrong shares, parties can use error correction
procedure to correct errors and reconstruct the coefficients correctly.

Using the above methods of preventing cheating activities, the protocol in
Section 3.1 can be made secure against an active adversary as below.

Input Phase
Step 1. Each party represents his secret set as a polynomial and shares the
coefficients of the polynomial among the parties.

- For i = 1, ..., n, Pi represents his secret set as a polynomial fi(x).
- For i = 1, ..., n, Pi two-dimensionally shares the coefficients of fi(x).
- For i = 1, ..., n, Pi checks the correctness of each of the received shares using

the corresponding share-shares under the help of other parties.

Step 2. Parties produce jointly the t-sharing of n randompolynomials of degree k.

- For i = 1, ..., n, Pi chooses randomly n polynomials of degree k: rij(x) =
bij0 + bij1x + ... + bijkxk, j = 1, ..., n.

- For i = 1, ..., n, Pi two-dimensionally t-shares the coefficients bij0, bij1, ...,
bijk, j = 1, ..., n.

- For i = 1, ..., n, Pi verifies the correctness of each of the received shares under
the help of other parties.

- For i = 1, ..., n, Pi computes the t-shares of the following n polynomials of
degree k rj(x) =

∑n
j′=1 rj′1(x) = wj0 +wj1x+ ...+wjkx

k, j = 1, ..., n, as be-
low: Piecei(wj0) =

∑n
j′=1 Piecei(bj′10), Piecei(wj1) =

∑n
j′=1 Piecei(bj′11),

..., Piecei(wjk) =
∑n

j′=1 Piecei(bj′1k), j = 1, ..., n.

Computation Phase
Let fj(x)rj(x) = zj0 + zj1x + ... + zj,2kx2k, j = 1, ..., n, and F (x) = f1(x)r1(x)
+ f2(x)r2(x) +... + fn(x)rn(x)= z0 + z1x + ... + z2kx2k.
Step 1. Compute the 2t-shares of the coefficients of f1(x)r1(x), f2(x)r2(x), ...,
fn(x)rn(x).

- For i = 1, ..., n, Pi computes locally the following values: Piecei(aj0)Piecei

(wj0), Piecei(aj0)Piecei(wj1), ..., Piecei(ajk)Piecei(wjk), j = 1, ..., n.

Step 2. Call the re-sharing protocol, and convert the 2t-shares of the coefficients
of f1(x)r1(x), f2(x)r2(x), ..., fn(x)rn(x) into the t-shares.
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- For i = 1, ..., n, Pi two-dimensionally t-shares the values: Piecei(aj0)Piecei

(wj0), Piecei(aj0)Piecei(wj1), ..., Piecei(ajk)Piecei(wjk), j = 1, ..., n.
- For i = 1, ..., n, Pi checks the correctness of each of the received shares using

the corresponding share-shares under the help of other parties.
- For i = 1, ..., n, Pi proves that the shared values are indeed the multi-

plication of his shares: Piecei(aj0)Piecei(wj0), Piecei(aj0)Piecei(wj1), ...,
Piecei(ajk)Piecei(wjk), j = 1, ..., n.

- For i = 1, ..., n, Pi reconstructs the t-shares of aj0wj0, ..., ajkwjk: Piecei

(aj0wj0), Piecei(aj0wj1), ..., Piecei(ajkwjk), j = 1, ..., n.
- For i = 1, ..., n, Pi computes the t-shares of the coefficients of f1(x)r1(x),

f2(x)r2(x), ..., fn(x)rn(x) as below: Piecei(zj0) = Piecei(aj0wj0), Piecei

(zj1) = Piecei(aj0wj1)+Piecei(aj1wj0), ..., Piecei(zj,2k) = Piecei(ajkwjk),
j = 1, ..., n.

Step 3. Parties compute the t-shares of the 2k + 1 coefficients of F (x).

- For i = 1, ..., n, Pi computes the following 2k + 1 values: Piecei(zj) =∑n
j′=1 Piecei(zj′j), j = 0, ..., 2k.

Output Phase
Step 1. Each party sends his t-shares of the coefficients of F (x) to all other
parties.
Step 2. Find out the intersection.

- For i = 1, ..., n, Pi performs the error correction procedure to get n correct
shares for each of the 2k + 1 coefficients of F (x).

- For i = 1, ..., n, Pi reconstructs the 2k + 1 coefficients of F (x) using the
correct shares.

- For i = 1, ..., n, Pi evaluates F (x) at each element of his set. If the evaluation
is zero then the element belongs to the intersection, else the element does
not belong to the intersection. All the elements at which the evaluation is
zero form the intersection S1 ∩ ... ∩ Sn.

4 Security and Efficiency Analysis of the Proposal

4.1 Correctness and Security

Theorem 1. In the passive model, suppose at most t < n/2 parties collude, the
protocol in Section 3.1 is a solution to the private set intersection problem.

Proof. The correctness of the protocol is based on the polynomial F (x) =
f1(x)r1(x) + f2(x)r2(x) + ... + fn(x)rn(x), and the privacy is based on the ran-
domness of r1(x), r2(x), ..., rn(x) and the properties of the secret sharing scheme.

Correctness. Firstly, all the parties get the correct polynomial F (x). When
the input phase ends, all the coefficients of f1(x), ..., fn(x), r1(x), ..., rn(x)
are shared correctly among the parties. When the computation phase ends, the
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coefficients of F (x) are shared correctly among the parties. In the output phase,
each party publishes his shares and all the party can compute out the coefficients
of F (x), which means that, all the parties learn the polynomial F (x).

Secondly, all the parties learn the correct intersection S1 ∩ ... ∩Sn from F (x).
If the element a belongs to the intersection S1 ∩ ... ∩ Sn, then f1(a) = 0, ...,
fn(a) = 0 and f1(a)r1(a) = 0, ..., fn(a)rn(a) = 0, and F (a) = f1(a)r1(a) + ...
+ fn(a)rn(a) = 0. It is to say that, if a belongs to S1 ∩ ... ∩ Sn, then each party
learns F (a) = 0 when evaluating F (x) at the element a. If a does not belong to
S1∩...∩Sn, then at least there is one set, i.e., Si does not include a and fi(a) �= 0),
i ∈ {1, ..., n}, so the probability that fi(a)ri(a) = 0 is negligible (remember that
the probability that ri(x) represents the elements of sets is negligible) and the
probability that F (a) = f1(a)r1(a) + ... + fn(a)rn(a) = 0 is negligible. Thus if
a does not belong to S1 ∩ ... ∩ Sn, then the probability that a party whose set
includes a determines wrongly that a ∈ S1 ∩ ...∩Sn is negligible. This completes
the correctness proof.

Privacy. Before output phase, the protocol leaks no information about coeffi-
cients of the polynomials, or equivalently, the secret sets. In computation phase,
the parties need to reconstruct some secrets when running the re-sharing pro-
tocol. In the re-sharing protocol, a party is allowed to reconstruct Piecei(c), a
share of the multiplication of two shared secrets, say a, b. As there are at most t
parties collude and t parties cannot recover the shared secrets, so the facts that
parties reconstruct the Piecei(c)s does not leak anything information about c,
not even to say the secrets a or b.

In output phase, the parties only learn S1 ∩ ... ∩ Sn from F (x). The poly-
nomials r1(x), ..., rn(x) are random due to the fact that at least n − t parties
honestly choose random polynomials from E(x) when jointly producing n ran-
dom polynomials. The randomness of r1(x), ..., rn(x) hides the elements at which
the evaluation of F (x) is nonzero. This completes the privacy proof. ��
Theorem 2. In the active model, suppose at most t < n/3 parties collude, the
protocol in Section 3.2 is a solution to the private set intersection problem.

Proof. An active adversary cannot disrupt the privacy of the protocol due to
two reasons. First, less than t + 1 colluding parties cannot recover a shared
secret before output phase according to the properties of verifiable secret sharing
scheme. Second, the protocol allows at most t parties to collude. So an active
who corrupts t parties cannot recover the shared secrets. The proof of privacy
is similar to that of Theorem 1, and is omitted here.

Correctness. An active adversary cannot affects the correctness of the protocol.
In input phase, the coefficients of f1(x), ..., fn(x) are correctly t-shared, since
verification of correct sharing is performed whenever a secret is shared. Similarly,
the coefficients of the random polynomials r1(x), ..., rn(x) are correctly t-shared
among the parties. In the computation phase, the parties communicate only
when the re-sharing protocol is recalled. In the re-sharing protocol, when a party,
say Pi, re-shares his share, all parties jointly verify the correctness of sharing,
and Pi is asked to prove that the shared value is indeed the shares that he holds.
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So the computation phase is correct. The correctness of the output phase is
similar to the proof of Theorem 1 and is omitted here. ��

4.2 Efficiency

The protocol only uses simple operation like addition and multiplication, so we
only consider the communication complexity of the protocol. The communication
complexity is measured in elements in E.

The protocol in the passive model requires 3 rounds of communication. In
input phase, the sharing in step 1 and step 2 can be executed in parallel in 1
round. In computation phase, the re-sharing of secrets needs 1 round of com-
munication. In the output phase, parties publish their shares, which requires 1
round of communication.

The communication complexity of the protocol in the passive model is O(n3k2).
The communication complexity is dominated by computation phase, where each
party needs to share n(k + 1)(k + 2) secret values and the total communication is
O(n3k2).

In the active model, the protocol requires 6 rounds of communication. In input
phase, sharing of secrets requires 1 round and verification of correct sharing
requires 1 round. In computation phase, re-sharing of shares needs 1 round,
verification of correct sharing needs 1 round, and proof that the shared value is
indeed the required share needs 1 round. In output phase, publishing the shares
needs 1 round.

The communication complexity of the protocol in the active model is O(n4k2).
The communication complexity is dominated by computation phase. In com-
putation phase, each party re-shares n × (k + 1)2 secret values, which needs
n × (k + 1)(k + 2) × n2 elements to be sent. So the communication complexity
of the computation phase is O(n4k2).

5 Conclusion

This paper considers the private set intersection problem in the information-
theoretic model. We adopt the technique of polynomial representation of sets
used in the previous protocols in the cryptographic model. By representing sets
as polynomials, the set intersection problem is converted into the problem of com-
puting the common roots of polynomials. This paper follows the share-compute-
recover paradigm for the general protocols in the information-theoretic model,
and presents a protocol based on the two-dimensional secret sharing scheme.
The protocol consists of input phase, computation phase, and output phase.
The protocol allows an active adversary to corrupt t < n/3 parties and demands
6 rounds of communication and O(n4k2) elements in a large finite field to be
exchanged. It is interesting to consider whether the protocol can be improved
with the ”dispute control” technique [2] to allow t < n/2 colluding parties. In
the information-theoretic model, other problems like cardinality set intersection,
set union, etc. are also worthy of consideration.
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