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Preface

The Fifth International Conference on Applied Cryptography and Network Se-
curity (ACNS 2007) was held in Zhuhai, China, June 5–8, 2007. This volume
contains papers that were accepted to the academic track of the conference.

The conference received an astounding number of submissions this year, which
made the review process a challenging and demanding task. We are indebted to
the members of the Program Committee and the external reviewers for all their
hard work. The committee accepted 31 papers from roughly 260 submissions.
These proceedings contain revised versions of the accepted papers. While re-
visions are expected to take the referees’ comments into account, this was not
enforced and the authors bear full responsibility for the content of their papers.

In addition to the academic track, the conference hosted a non-archival indus-
trial track whose papers were also carefully selected from among the submissions.

Shai Halevi deserves the community’s gratitude for writing his Web submis-
sion and review software, which we used for this conference. On a more personal
level, we would like to extend our own deepest thanks to Shai for not only writ-
ing his software, but for installing and maintaining the submission server for
this conference. Thanks go also to the International Association for Cryptologic
Research (IACR) for agreeing to host the server.

It is our pleasure to thank the General Chair Yongfei Han, the Publicity
Chair Jianying Zhou, and the Chair of the Organizing Committee Li Nan for
their help and support in putting this conference together. Without their help,
this conference would not have been possible. Finally, we are grateful to ONETS
and Zhuhai College, Jilin University, for sponsoring the conference.

March 2007 Jonathan Katz
Moti Yung
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Jean-Sébastien Coron . . . . . . . . . . . . . . . . University of Luxembourg, Luxembourg
Nicolas Courtois . . . . . .University College of London, UK and Gemalto, France
Kevin Fu . . . . . . . . . . . . . . . . . . . . . . . . . University of Massachusetts Amherst, USA
Philippe Golle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PARC, USA
Michael Goodrich . . . . . . . . . . . . . . . . . . . . . University of California at Irvine, USA
Alejandro Hevia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . University of Chile, Chile
Susan Hohenberger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IBM Research, Switzerland
Nick Hopper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . University of Minnesota, USA
Charanjit Jutla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IBM Research, USA



VIII Organization

Kaoru Kurosawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ibaraki University, Japan
Xuejia Lai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shanghai Jiaotong University, China
Dong Hoon Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CIST, South Korea
Phil MacKenzie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Google, USA
Ilya Mironov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microsoft Research, USA
Pascal Paillier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gemalto, France
Kenny Paterson . . . . . . . . . . . . . . . . . . . Royal Holloway, University of London, UK
Raphael Phan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EPFL, Switzerland
Benny Pinkas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . University of Haifa, Israel
David Pointcheval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CNRS and ENS, France
Zulfikar Ramzan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symantec, Inc., USA
Phil Rogaway . . . . . . . . . . UC Davis, USA and Chiang Mai University, Thailand
Kazue Sako . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .NEC, Japan
Palash Sarkar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indian Statistical Institute, India
Vitaly Shmatikov . . . . . . . . . . . . . . . . . . . . . . . . .University of Texas at Austin, USA
Thomas Shrimpton . . . . . . . . . . . . . . . . . . . . . . . . . . . Portland State University, USA
Nigel Smart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .University of Bristol, UK
Ron Steinfeld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Macquarie University, Australia
Adam Stubblefield . . . . . . . . . . . . . . . . . . . . . . . . . . . . Johns Hopkins University, USA
Mike Szydlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Akamai, USA
Brent Waters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRI International, USA
Avishai Wool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tel Aviv University, Israel
Sung-Ming Yen . . . . . . . . . . . . . . . . . . . . . . . . . . National Central University, Taiwan
Jianying Zhou . . . . . . . . . . . . . . . . . . . . Institute for Infocomm Research, Singapore

Publicity Chair

Jianying Zhou . . . . . . . . . . . . . . . . . . . . Institute for Infocomm Research, Singapore

Organizing Committee

Li Nan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ONETS, China

Steering Committee

Yongfei Han . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ONETS, China
Moti Yung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Columbia University, USA
Jianying Zhou . . . . . . . . . . . . . . . . . . . . Institute for Infocomm Research, Singapore

External Reviewers

Gergely Acs
Ben Adida
Toshinori Araki
Joonsang Baek

Dan Bailey
Lucas Ballard
Gregory V. Bard
Elad Barkan

Constantinos Bartzis
Ohad Ben-Cohen
Boldizsar Bencsath
Bobby Bhattacharjee



Organization IX

Marina Blanton
Jin Wook Byun
Srdjan Capkun
Aldar Chan
Melissa Chase
Sanjit Chatterjee
Chien-Ning Chen
Pau-Chen Cheng
Benoit Chevallier-Mames
Han-Fei Chiang
Kuo-Zhe Chiou
Eun Young Choi
Kyu Young Choi
Seung Geol Choi
JM Combes
Scott Contini
Debbie Cook
Laszlo Csik
Yang Cui
Reza Curtmola
Dimitri DeFigueiredo
Blandine Debraize
Benessa Defend
Alex Dent
Laszlo Dora
Ehud Doron
Markus Duermuth
Wu-chang Feng
Pierre-Alain Fouque
Aurelien Francillon
Eiichiro Fujisaki
Jun Furukawa
Steven Galbraith
Craig Gentry
Vipul Goyal
Matt Green
David Gross-Amblard
Fanglu Guo
Goichiro Hanaoka

Carmit Hazay
Swee-Huay Heng
T. Heydt-Benjamin
Shoichi Hirose
James Hoagland
Chao-Chih Hsu
Toshiyuki Isshiki
Ik Rae Jeong
Antoine Joux
Marcelo Kaihara
Edward Kaiser
Yael Tauman Kalai
Seny Kamara
Aggelos Kiayias
Eike Kiltz
Bum Han Kim
Hugo Krawczyk
Jeong Ok Kwon
Amit Lakhani
Loukas Lazos
Hwa Sung Lee
Hyun Sook Lee
Tieyan Li
Xiangxue Li
Wei-Chih Lien
Hsi-Chung Lin
Lang Lin
Yehuda Lindell
Nathan Linger
Matteo Maffei
Wenbo Mao
Josh Mason
Breno de Medeiros
Kazuhiko Minematsu
Atsuko Miyaji
Nagendra Modadugu
Kengo Mori
Yoichiro Morita
Masayuki Nakae

Toru Nakanishi
Juanma Nieto
Satoshi Obana
Jong Whan Park
Maura Paterson
Michael Ø. Pedersen
Chris Peikert
Duong Hieu Phan
Le Trieu Phong
Josef Pieprzyk
Axel Poschman
Julio Quinteros
Moheeb Abu Rajab
David Safford
Peter Schaffer
Jacob Schuldt
Hovav Shacham
Radu Sion
William Skeith
Sam Small
Angelo Spognardi
Martijn Stam
Keisuke Tanaka
Isamu Teranishi
Dominique Unruh
Matthew Vail
Istvan Vajda
Yongdong Wu
Guilin Wang
Huaxiong Wang
Enav Weinreb
Stephen A. Weis
Chi-Dian Wu
Kazuo Yanoo
Po-Wah Yau
Lidong Zhou
Huafei Zhu



Table of Contents

Signature Schemes I

Generic Transformation to Strongly Unforgeable Signatures . . . . . . . . . . . 1
Qiong Huang, Duncan S. Wong, and Yiming Zhao

Efficient Generic On-Line/Off-Line Signatures Without Key
Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Xiaofeng Chen, Fangguo Zhang, Willy Susilo, and Yi Mu

Merkle Signatures with Virtually Unlimited Signature Capacity . . . . . . . . 31
Johannes Buchmann, Erik Dahmen, Elena Klintsevich,
Katsuyuki Okeya, and Camille Vuillaume

Computer and Network Security

Midpoints Versus Endpoints: From Protocols to Firewalls . . . . . . . . . . . . . 46
Diana von Bidder-Senn, David Basin, and Germano Caronni

An Adversary Aware and Intrusion Detection Aware Attack Model
Ranking Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Liang Lu, Rei Safavi-Naini, Jeffrey Horton, and Willy Susilo

Analyzing an Electronic Cash Protocol Using Applied Pi Calculus . . . . . 87
Zhengqin Luo, Xiaojuan Cai, Jun Pang, and Yuxin Deng

Cryptanalysis

Cryptanalysis of the TRMC-4 Public Key Cryptosystem . . . . . . . . . . . . . . 104
Xuyun Nie, Lei Hu, Jintai Ding, Jianyu Li, and John Wagner

Estimating the Prime-Factors of an RSA Modulus and an Extension of
the Wiener Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Hung-Min Sun, Mu-En Wu, and Yao-Hsin Chen

A Timing Attack on Blakley’s Modular Multiplication Algorithm, and
Applications to DSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Bahador Bakhshi and Babak Sadeghiyan

Protecting AES Software Implementations on 32-Bit Processors
Against Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Stefan Tillich, Christoph Herbst, and Stefan Mangard



XII Table of Contents

Group-Oriented Security

Constant-Round Authenticated Group Key Exchange with Logarithmic
Computation Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Junghyun Nam, Juryon Paik, Ung Mo Kim, and Dongho Won

Preventing Collusion Attacks on the One-Way Function Tree (OFT)
Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Xuxin Xu, Lingyu Wang, Amr Youssef, and Bo Zhu

Bayesian Methods for Practical Traitor Tracing . . . . . . . . . . . . . . . . . . . . . . 194
Philip Zigoris and Hongxia Jin

Cryptographic Protocols

A New Protocol for Conditional Disclosure of Secrets and Its
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Sven Laur and Helger Lipmaa

An Unconditionally Secure Protocol for Multi-Party Set Intersection . . . 226
Ronghua Li and Chuankun Wu

Privacy-Preserving Set Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Keith Frikken

Anonymous Authentication

Universal Accumulators with Efficient Nonmembership Proofs . . . . . . . . . 253
Jiangtao Li, Ninghui Li, and Rui Xue

Unlinkable Secret Handshakes and Key-Private Group Key Management
Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Stanis�law Jarecki and Xiaomin Liu

Identity-Based Cryptography

Identity-Based Proxy Re-encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Matthew Green and Giuseppe Ateniese

A More Natural Way to Construct Identity-Based Identification
Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Guomin Yang, Jing Chen, Duncan S. Wong, Xiaotie Deng, and
Dongsheng Wang

Tweaking TBE/IBE to PKE Transforms with Chameleon Hash
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Rui Zhang



Table of Contents XIII

Certified E-Mail Protocol in the ID-Based Setting . . . . . . . . . . . . . . . . . . . . 340
Chunxiang Gu, Yuefei Zhu, and Yonghui Zheng

Security in Wireless, Ad-Hoc, and Peer-to-Peer
Networks

Efficient Content Authentication in Peer-to-Peer Networks . . . . . . . . . . . . 354
Roberto Tamassia and Nikos Triandopoulos

An Identity-Based Signcryption Scheme for Multi-domain Ad Hoc
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Fagen Li, Yupu Hu, and Chuanrong Zhang

Efficient Self-healing Key Distribution with Revocation for Wireless
Sensor Networks Using One Way Key Chains . . . . . . . . . . . . . . . . . . . . . . . . 385

Ratna Dutta, Ee-Chien Chang, and Sourav Mukhopadhyay

BAP: Broadcast Authentication Using Cryptographic Puzzles . . . . . . . . . 401
Patrick Schaller, Srdjan Čapkun, and David Basin
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Generic Transformation to Strongly Unforgeable

Signatures�

Qiong Huang1, Duncan S. Wong1, and Yiming Zhao2

1 Dept. of Computer Science,
City University of Hong Kong

Hong Kong, China
{csqhuang,duncan}@cityu.edu.hk

2 Dept. of Computer Science and Engineering,
Fudan University

Shanghai 200433, China
zhym@fudan.edu.cn

Abstract. Recently, there are several generic transformation techniques
proposed for converting unforgeable signature schemes (the message in
the forgery has not been signed yet) into strongly unforgeable ones (the
message in the forgery could have been signed previously). Most of the
techniques are based on trapdoor hash functions and all of them re-
quire adding supplementary components onto the original key pair of
the signature scheme. In this paper, we propose a new generic transfor-
mation which converts any unforgeable signature scheme into a strongly
unforgeable one, and also keeps the key pair of the signature scheme un-
changed. Our technique is based on strong one-time signature schemes.
We show that they can be constructed efficiently from any one-time
signature scheme that is based on one-way functions. The performance
of our technique also compares favorably with that of those trapdoor-
hash-function-based ones. In addition, this new generic transformation
can also be used for attaining strongly unforgeable signature schemes
in other cryptographic settings which include certificateless signature,
identity-based signature, and several others. To the best of our knowl-
edge, similar extent of versatility is not known to be supported by any
of those comparable techniques. Finally and of independent interest, we
show that our generic transformation technique can be modified to an
on-line/off-line signature scheme, which possesses a very efficient signing
process.

1 Introduction

When considering the security of a signature scheme, we usually refer to the
existential unforgeability against adaptive chosen message attacks [16]. The

� The first two authors are supported by a grant from CityU (Project No. 7001844).
The third author is supported by National Natural Science Foundation of China
under Grant No. 60573054.

J. Katz and M. Yung (Eds.): ACNS 2007, LNCS 4521, pp. 1–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 Q. Huang, D.S. Wong, and Y. Zhao

security requirement is to prevent forgery of signatures on new messages not pre-
viously signed. However, most signature schemes are randomized and allow many
possible signatures for a single message. In some applications, a stronger security
notion, called strong unforgeability, is desirable. It prevents forgery of signatures
on messages that could have been signed previously. Applications of strongly un-
forgeable signature schemes include signcryption [2], encryption secure against
chosen ciphertext attacks [13,10], group signature [8,3], authenticated group key
exchange [18] and etc. [9]. Unfortunately, many signature schemes in the liter-
ature are not strongly unforgeable. Recently, some techniques [9,30,6,29] have
been proposed to convert existing schemes to strongly unforgeable ones. How-
ever, these techniques require to add some supplementary parameters onto the
original key pairs of the signature schemes. This may introduce some inconve-
nience or operational issue in practice, for example, new public key certificates
may need to be requested for those augmented public keys.

A Generic and Universal Transformation. In this paper, we present a
new generic transformation which converts any signature scheme to a strongly
unforgeable one. When comparing with existing techniques [9,30,29] which are
based on trapdoor hash functions, our method has the following merits.

1. The transformation adds no additional component into the original pub-
lic/private key pair; and

2. the transformation is universal in the sense that the same transformation
technique can be used to convert schemes in other cryptographic settings
to strongly unforgeable ones. These cryptographic settings include identity-
based signature [27], certificateless signature [1] and several others (Sec. 4).

Furthermore, a strongly-unforgeable signature scheme obtained from our trans-
formation can also be used as an on-line/off-line signature [14,28]. Most of the
computational-intensive part of the signing process can be done off-line, and
this leaves only a little work to be carried out on-line (essentially, only one hash
evaluation is left to be done). This helps improve the efficiency of the signing
process significantly.

Strong One-time Signature. Our transformation is based on strong one-
time signature. A strong one-time signature scheme is a signature scheme which
prevents the adversary, making at most one signing query, from producing a new
signature on a message that could have already been signed. Currently, almost
all the one-time signature schemes in the literature [23,19,14,24] have only been
shown to be one-time unforgeable rather than strongly one-time unforgeable,
that is, they are only ensured to prevent forgery of signatures on new messages
not previously signed. The transformation technique to strong one-time signature
proposed in [15] requires O(�) universal one-way hash functions [21] where � is the
length of messages to be signed. In this paper, we propose a simple modification
of the method in [15] that improves the efficiency greatly by requiring only one
collision-resistant hash function.
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Related Work. At PKC 2006, Boneh, Shen and Waters [9] presented a trans-
formation technique which converts a large class of existentially unforgeable
signature schemes (in the sense of [16]) into strongly unforgeable ones. Their
transformation is based on trapdoor hash functions and applies to a class of
signature schemes, named partitioned signatures. A signature is said to be parti-
tioned if (1) part of the signature, denoted by σ2, is independent of the message
m, and (2) given m and σ2, the signature can be fully determined. Although
many standard signature schemes fall into this class, as the authors pointed out
in [9], DSS [22] may not be partitioned.1

Recently, Teranishi et al. [30] proposed two trapdoor-hash-function-based con-
versions which can convert any (standard) signature scheme to a strongly un-
forgeable one. The first conversion works by modeling the hash function (used in
the trapdoor commitment) as a random oracle [5], while the second one works
in the standard model, and uses a trapdoor commitment scheme with two trap-
doors. With the knowledge of any one of the trapdoors, the simulator can simu-
late the game for the forger. Independently and concurrently, Steinfeld, Pieprzyk
and Wang [29] proposed another similar transformation technique based on trap-
door hash functions. The idea is to use two trapdoor hash functions and ap-
ply the ‘hash-then-switch’ method to protect the entire signature (rather than
only part of it) from modification. They showed that any valid forgery against
strong unforgeability would contradict either the existential unforgeability of
the original scheme or the collision-resistance of the underlying trapdoor hash
functions.

In all the transformations above, additional public and private key compo-
nents for the underlying trapdoor hash functions have to be added into the
public and private keys of the original signature scheme, respectively. Further-
more, it is not known if their techniques can be applied to signature schemes in
other cryptographic settings, for example, in certificateless cryptography [1].

Earlier in [15], Goldreich showed the existence of strongly unforgeable sig-
nature schemes based on one-way functions. First, a strong one-time signature
scheme is constructed from a one-time signature scheme (that follows the ‘one-
way function paradigm’ [14,15], which will also be introduced in Sec. 5). The con-
struction is based on universal one-way hash functions [21,15] which in turn can
be constructed from one-way functions. Then, by applying the ‘authentication-
tree’ method [15], a strongly unforgeable signature scheme can be constructed.
However, this is only a theoretical construction for the feasibility, and thus is
inefficient.

Interestingly and independently of our work, Bellare and Shoup [6] propose
a construction, which is quite similar with ours, to transform existentially un-
forgeable signature schemes into strongly unforgeable ones. Their transformation
employs a two-tier signature [6] scheme rather than a one-time signature. Thus,
the key structure of the original signature scheme is also changed by adding the
key pair of the underlying two-tier signature scheme ds into it, if the primary
key of ds is not empty.

1 Readers may also refer to [29] for some additional discussions about this.
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Paper organization. In next section, we review the definitions of unforge-
able and strongly unforgeable signature schemes and the respective definitions
for one-time signature schemes. Our generic transformation technique is pro-
posed and shown to be secure in Sec. 3. In Sec. 4, the generic transformation is
extended to certificateless signatures and identity-based signatures, and exten-
sions to other settings are discussed. In Sec. 5, we propose a method to convert
any one-time signature scheme following the one-way function paradigm into a
strong one-time unforgeable one, and discuss its efficiency. In Sec. 6, we show
how to use our generic transformation to construct an efficient on-line/off-line
signature scheme, and conclude the paper.

2 Preliminaries

A signature scheme SIG consists of three (probabilistic) polynomial-time al-
gorithms, KG, Sign and Vrfy, which are key generation, signature generation
and verification, respectively. Existential unforgeability against adaptive chosen
message attacks [16] for SIG can be defined using the following game called
Game-General:

Setup: A public/private key pair (pk, sk) ← KG(1k) is generated and ad-
versary A is given the public key pk.

Query: A runs for time t and issues q signing queries to a signing oracle in
an adaptive manner, that is, for each i, 1 ≤ i ≤ q, A chooses a message
m(i) based on the message-signature pairs that A has already seen, and
obtains in return a signature σ(i) on m(i) from the signing oracle (i.e.,
σ(i) = Sign(sk, m(i))).

Forge: A outputs a forgery (m∗, σ∗) and halts. A wins if
– σ∗ is a valid signature on message m∗ under the public key pk, i.e.,

Vrfy(pk, σ∗, m∗) = 1; and
– m∗ has never been queried, i.e., m∗ /∈ {m(1), m(2), · · · , m(q)}.

Definition 1 (Unforgeability). A signature scheme SIG = (KG, Sign, Vrfy)
is (t, q, ε)-existentially unforgeable against adaptive chosen message attacks (or
unforgeable, in short), if any adversary with run-time t wins in Game-
General with probability at most ε after issuing at most q signing queries.

One of the restrictions for adversary A in Game-General is that the forging
message m∗ must be new and has not been signed. We can relax this restriction
to obtain the notion of strong existential unforgeability against adaptive chosen
message attacks, such that A forges a new valid signature on a message that
could have been signed previously. We refer to this new game as Game-Strong
which is defined as follows.

The Setup and Query phases are the same as in Game-General.
Forge: A outputs a forgery (m∗, σ∗) and halts. A wins if

– σ∗ is a valid, i.e., Vrfy(pk, σ∗, m∗) = 1; and
– (m∗, σ∗) �∈ { (m(i), σ(i)) }i∈{1,2,··· ,q}.
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Definition 2 (Strong Unforgeability). A signature scheme SIG = (KG,
Sign, Vrfy) is (t, q, ε)-strongly existentially unforgeable against adaptive chosen
message attacks (or strongly unforgeable, in short), if any adversary with run-
time t wins in Game-Strong with probability at most ε after issuing at most q
signing queries.

In our generic transformation proposed later in this paper, one of the primitives
we use is the strong one-time signature. Informally, a strong one-time signature
scheme is a signature scheme, but each private key is used only once for signa-
ture generation. We require that given a (one-time) public key, the adversary
is only allowed to make at most one signing query before producing a forgery
on a message that could have been queried previously. Formally, we define the
following game called Game-StrongOneTime.

The Setup and Forge phases are the same as in Game-Strong.
Query: same as in Game-Strong, except that q = 1.

Definition 3 (Strong One-Time Unforgeability). A signature scheme SIG
= (KG, Sign, Vrfy) is a (t, ε)-strong one-time signature scheme, if any adversary
with run-time t wins Game-StrongOneTime with probability at most ε.

Similarly, a one-time signature (rather than strong) can be defined by strength-
ening the restriction for A so that the forgery must contain a new message which
has not been signed previously.

3 Our Generic Transformation

In this section, we describe our generic transformation which converts any un-
forgeable signature scheme to a strongly unforgeable one. This transformation
can be considered as a sequential composition of the original (standard) signa-
ture and a strong one-time signature. First, we use the original signature scheme
to generate a “certificate” on a freshly generated one-time public key. Then,
we use the strong one-time signature scheme to generate a signature on some
message and the “certificate”. Below are the details.

Let SIG′ = (KG′, Sign′, Vrfy′) be a signature scheme that is unforgeable
(Def. 1). Let SIGOT = (KGOT , SignOT , VrfyOT ) be a strong one-time signa-
ture scheme (Def. 3). The transformation is described in Fig. 1, and we have the
following theorem:

Theorem 1. The generic transformation described in Fig. 1 is a (t, q, ε)-
strongly unforgeable scheme (Def. 2), provided that SIG′ is a (t, q, ε/2)-
unforgeable signature scheme (Def. 1) and SIGOT is a (t, ε/2q)-strong one-time
signature scheme (Def. 3).

Proof. Suppose there exists an adversary A in Game-Strong that runs for
time t, issues at most q signing queries2 and breaks the strong unforgeability
2 W.l.o.g., we assume that A makes exactly q distinct signing queries.
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KG: Generate a public/private key pair (pk′, sk′) ← KG′(1k), and set public
key pk = pk′ and private key sk = sk′.

Sign: On input private key sk and a message m, the following steps are
carried out and a signature σ is generated.

(vkOT , skOT ) ← KGOT (1k)
σ1 ← Sign′(sk, vkOT )
σ2 ← SignOT (skOT , m‖σ1)
σ ← (σ1, σ2, vkOT )

Vrfy: On input public key pk, message m and signature σ = (σ1, σ2, vkOT ),
b1 ∧ b2 is returned where b1 ← Vrfy′(pk, σ1, vkOT ) and b2 ←
VrfyOT (vkOT , σ2, m‖σ1).

Fig. 1. Our Generic Transformation to Strongly Unforgeable Signatures

(Def. 2) of the generic transformation with probability at least ε. We show how
to construct adversaries B and C that break the strong one-time unforgeability
(Def. 3) of SIGOT and the existential unforgeability (Def. 1) of SIG′, respectively,
such that either B wins in Game-StrongOneTime with probability at least
ε/2q or C wins in Game-General with probability at least ε/2, and both of
them run for time slightly greater than t.

Let (m∗, σ∗) be the forgery of A, where σ∗ = (σ∗1 , σ∗2 , vk∗OT ). For i=1, 2, · · · , q,
let m(i) be the i-th (distinct) query message of A and σ(i) = (σ(i)

1 , σ
(i)
2 , vk

(i)
OT ) the

corresponding signature. We define two events, E1 and E2. E1 is that (m∗, σ∗)
is valid and vk∗OT = vk

(i)
OT for some i (1 ≤ i ≤ q). E2 is that (m∗, σ∗) is valid

and vk∗OT �= vk
(i)
OT for all 1 ≤ i ≤ q. As Pr[E1] + Pr[E2] = Pr[A wins], if A wins

in Game-Strong, it must be that either event E1 or event E2 occurs. Since
A wins with probability ε, it follows that one of the two events occurs with
probability at least ε/2. In the simulations below, A will be run by each of the
adversaries B and C which we will construct. If E1 (respectively, E2) occurs with
probability ε/2, then B breaks the strong one-time unforgeability of SIGOT with
probability ε/2q (respectively, C breaks the existential unforgeability of SIG′

with probability ε/2).

Adversary B. Given a challenge one-time public key vkOT , which is a ran-
dom instance in the corresponding key space, and a (one-time) signing oracle
OSignvkOT , adversary B proceeds as below to attack against the strong one-time
unforgeability of SIGOT :

Setup: B runs KG(1k) to generate a key pair (pk, sk) for the generic
transformation, selects uniformly at random i from {1, 2, · · · , q}, and
runs A on input the public key pk.
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Query: When A issues the j-th (j �= i) signing query, B simulates the
signing oracle as if the answer is generated by the real signer. That
is, B responds as follows:

– Run KGOT (1k) to generate a one-time key pair (vk
(j)
OT , sk

(j)
OT );

– Compute σ
(j)
1 ←Sign′(sk, vk

(j)
OT );

– Compute σ
(j)
2 ←SignOT (sk(j)

OT , m(j)‖σ
(j)
1 );

– Return σ(j) ← (σ(j)
1 , σ

(j)
2 , vk

(j)
OT ) to A.

When A issues the i-th signing query, B responds as follows:

– Set vk
(i)
OT = vkOT and compute σ

(i)
1 ←Sign′(sk, vk

(i)
OT );

– Obtain a signature σ
(i)
2 on m(i)‖σ

(i)
1 by querying the one-time

signing oracle OSignvkOT .
– Return σ(i) ← (σ(i)

1 , σ
(i)
2 , vk

(i)
OT ) to A.

Forge: After A outputs a forgery (m∗, σ∗) where σ∗ = (σ∗1 , σ∗2 , vk∗OT ),
B outputs ((m∗‖σ∗1), σ∗2) as its forgery for SIGOT .

Since B’s run is essentially a run of A, if A runs for time t, so does B. Also,
B perfectly simulates the signing oracle for A as B follows exactly the signing
process except when answering the i-th query. For the i-th query, B makes a
black-box access to its one-time signing oracle OSignvkOT and the oracle’s answer
is indistinguishable from those signatures generated by a real signer with respect
to the same one-time public key vkOT . Thus, A’s view is identical to that in a
real attack (i.e. an exact simulation of Game-Strong) and is independent of
the choice of i. This implies that A will succeed with the same probability as in
a real attack.

Now we analyze the validity of B’s output under the conditions that event E1

occurs and B’s guess of i is correct (i.e. vk∗OT = vk
(i)
OT = vkOT ). If (m∗‖σ∗1) �=

(m(i)‖σ
(i)
1 ), by the validity of (m∗, σ∗), we have that VrfyOT (vk∗OT , σ∗2 , m∗‖σ∗1) =

1, hence, ((m∗‖σ∗1), σ∗2) is certainly a valid forgery for SIGOT . Then we come to
the case that (m∗‖σ∗1) = (m(i)‖σ

(i)
1 ). Due to the validity of (m∗, σ∗), it must be

that σ∗2 �= σ
(i)
2 . Therefore, ((m∗‖σ∗1), σ∗2) is also a valid forgery for SIGOT , which

contradicts the strong unforgeability of SIGOT .
The probability that the choice of i is exactly the one such that vk∗OT = vk

(i)
OT

is 1/q. Therefore, if event E1 occurs with probability at least ε/2, B which runs
for time t breaks the security of SIGOT with probability at least ε/2q.

Adversary C. Given a public key pk′ of SIG′, which is chosen from the output
space of KG′(1k) at random, and a signing oracle OSignpk′ , adversary C proceeds
as below to attack against the existential unforgeability of SIG′.

Setup: C sets pk = pk′, and runs A on input public key pk. Note that
C does not know the corresponding private key sk.

Query: When A issues a signing query on some message m, C simulates
the answer as follows:
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– Run KGOT (1k) to generate a one-time key pair (vkOT , skOT );
– Query the signing oracle OSignpk′ for a signature σ1 on vkOT ,

and compute σ2 ← SignOT (skOT , m‖σ1);
– Return σ ← (σ1, σ2, vkOT ).

Forge: After A outputs a forgery (m∗, σ∗) where σ∗ = (σ∗1 , σ∗2 , vk∗OT ),
C outputs (vk∗OT , σ∗1) as its forgery for SIG′.

If event E2 occurs, vk∗OT is a new one-time public key which has not been used
by C in any of the previous queries to its signing oracle OSignpk′ . By the validity
of (m∗, (σ∗1 , σ∗2 , vk∗OT )) under the public key pk, we have Vrfy′(pk, vk∗OT ) = 1.
Therefore, (vk∗OT , σ∗1) is a valid forgery for SIG′.

Since C’s run is essentially a run of A, if A runs for time t, so does C. Also,
C issues only one signing query to its own oracle OSignpk′ when answering a
signing query issued by A, if A issues q signing queries, so does C. Furthermore, C
perfectly simulates the signing oracle for A because C simply follows the signing
procedure with the only exception that C uses its signing oracle OSignpk′ to
generate σ1, and the oracle’s output is perfectly indistinguishable from signatures
generated by real signers of SIG′ with respect to the same public key. Therefore,
A will succeed with the same probability as that in a real attack. If event E2
occurs with probability ε/2, C breaks the existential unforgeability of SIG′ with
probability ε/2 as well.

This concludes that if A (t, q, ε)-breaks the strong unforgeability of SIG, either
B (t, ε/2q)-breaks the strong one-time unforgeability of SIGOT , or C (t, q, ε/2)-
breaks the existential unforgeability of SIG′. �	

The efficiency of the generic transformation depends very much on that of the
underlying strong one-time signature scheme SIGOT . As we can see, the generic
transformation adds one key generation and one signing operation of SIGOT

onto the original signing process of SIG′, and one verification operation of SIGOT

onto the original verification process. According to [14,24], SIGOT can usually be
implemented with very efficient key generation, signing and verifying processes,
and short signatures. In addition, the two verification operations of the generic
transformation, one for checking σ1 and the other for σ2, can be carried out in
parallel, that may also be used to improve efficiency. In the next section, we show
that the generic transformation can also be extended to transform signatures
in other settings such as certificateless signature, identity-based signature and
several others, to strongly unforgeable ones. To the best of our knowledge, it
is not known if this extent of versatility can also be supported by comparable
methods such as [9,30,29].

4 Extensions to Other Cryptographic Settings

In the above, we show how to transform an unforgeable signature scheme to a
strongly unforgeable one, under the conventional public key infrastructure. That
is, the public key of an entity is assumed to be publicly known, for example due
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to the presence of a certificate issued by a Certification Authority. In this section,
we show that the generic transformation technique can be extended directly for
converting signature schemes in other cryptographic settings to their strongly
unforgeable ones in some similar context.

4.1 Certificateless Signature and ID-Based Signature

Certificateless cryptography, introduced by Al-Riyami and Paterson [1], is inten-
ded to solve the key escrow issue that is inherent in ID-based cryptography.
In the following, we adopt the simplified five-algorithm definition of [17] for
specifying a certificateless signature scheme. These five algorithms are: mas-
ter key generation, KG, user partial key generation, PartialKeyGen, user se-
cret key generation, UserKeyGen, signature generation, Sign and verification,
Vrfy. In a certificateless cryptosystem, there is a key generation center, KGC,
which runs KG to generate its master key pair, and is responsible for gener-
ating users’ partial key by running PartialKeyGen. Each user in the system
have their own (independent) public/private key pair, generated by running
UserKeyGen. Two games are considered for the security of a certificateless sig-
nature: Game-I and Game-II. Adversary AI in Game-I models malicious users,
which can compromise user secret key, replace user public key, but cannot get
master secret key nor user partial key. Adversary AII in Game-II models a dis-
honest KGC which knows master secret key and partial keys of all users but
cannot get access to user secret key nor replace user public key. Informally,
a certificateless signature is said to be (t, qs, qo, ε)-existentially unforgeable (in
Game-I, or Game-II) if no adversary with run-time t issuing at most qs signing
queries and at most qo other oracle queries (such as CreateUser, RevealPar-
tialKey and others specified in the games) succeeds in forging a signature on
a new identity-message pair (ID∗, m∗) with probability at least ε. For detailed
definitions of security games, we refer readers to [17]. A certificateless signa-
ture is said to be strongly unforgeable (in Game-I, or Game-II) if it can prevent
forgery of new signatures on identity-message pairs which could have been signed
previously.

To the best of our knowledge, no certificateless signature scheme in the litera-
ture has formally been considered about the strong unforgeability. Also note that
the generic composition of certificateless signature scheme from a standard signa-
ture scheme and an ID-based signature scheme proposed in [17] does not ensure
strong unforgeability even if we assume that both of the underlying primitives
are strongly unforgeable. It remains open to construct a generic composition of
strongly unforgeable certificateless signature scheme. In the following, we show
that the generic transformation technique proposed in Sec. 3 can be used directly
to solve this problem.

Let KGCL, PartialKeyGenCL, UserKeyGenCL, SignCL and VrfyCL constitute
a certificateless signature scheme SIGCL. The transformation is described as
below:



10 Q. Huang, D.S. Wong, and Y. Zhao

KG: (mpk,msk) ← KGCL(1k).
PartialKeyGen: partialkey[ID] ← PartialKeyGenCL(msk, ID).
UserKeyGen: (upk[ID], usk[ID]) ← UserKeyGenCL(mpk, ID).
Sign: For a message m and identity ID, a signature σ is generated:

(vkOT , skOT ) ← KGOT (1k)
σ1 ← SignCL(usk[ID], partialkey[ID], vkOT )
σ2 ← SignOT (skOT ,m‖ID‖σ1)
σ ← (σ1, σ2, vkOT )

Vrfy: Given master public key mpk, message m, identity ID, user
public key upk[ID] and signature σ = (σ1, σ2, vkOT ), b1 ∧ b2 is
returned, where b1 ← VrfyCL(mpk, ID, upk[ID], σ1, vkOT ) and
b2 ← VrfyOT (vkOT , σ2,m‖ID‖σ1).

Theorem 2. The certificateless signature scheme described above is (t, qs, qo, ε)-
strongly unforgeable in Game-I (respectively, Game-II) if SIGCL is (t, qs, qo, ε/2)-
existentially unforgeable in Game-I (respectively, Game-II), and SIGOT is a
(t, ε/2qs)-strong one-time signature scheme, where qs and qo are the maximum
numbers of signing queries and all the other oracle queries, respectively.

Similar to the proof of Theorem 1, to prove the strong unforgeability of the
generic transformation in Game-I (respectively, Game-II), we distinguish be-
tween two events: (1) the forgery of AI is valid and the one-time public key
in the forgery appears in some previous answer of the signing queries; (2) the
forgery is valid but the one-time public key in the forgery is new. For the first
event, we can construct an efficient adversary BCL to break the strong one-time
unforgeability of SIGOT . Note that, with the knowledge of master secret key
msk, BCL can answer queries to all the other oracles (i.e., CreateUser, Reveal-
PartialKey, RevealSecretKey and ReplaceKey) besides the Signing oracle, and it
can issue a signing query to its own oracle in this case. For the second event, we
can construct an efficient adversary CCL to break the existential unforgeability
of SIGCL. Detailed proof is similar to that of Theorem 1, so we omit it here.

In the generic transformation above, we include identity ID in the message
when generating σ2. This allows us to follow the two-event approach in the proof
of Theorem 1 and therefore simplifies the proof for this theorem.

An ID-based signature scheme, introduced by Shamir [27], comprises four effi-
cient algorithms, master key generation, KG, user secret key generation, Extract,
signature generation, Sign and verification, Vrfy. Such a scheme is said to be
(t, qs, qe, ε)-existentially unforgeable against adaptive chosen message and identity
attacks if no adversary, which runs for time t and issues at most qe Extract queries
and at most qs Signing queries, succeeds in forging a signature on a new identity-
message pair with probability at least ε. Readers may refer to [4] for details.
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Let SIGIBS=(KGIBS, ExtractIBS, SignIBS , VrfyIBS) be an ID-based signa-
ture scheme. We can apply the same transformation technique described above
to convert SIGIBS to a strongly unforgeable one (i.e. preventing adversaries from
forging new signatures on identity-message pairs that could have been signed pre-
viously). We omit the details of the transformation as it can easily be obtained
from the above.

Similarly, we have the following theorem:

Theorem 3. The new signature scheme obtained from the generic transforma-
tion in the setting of ID-based cryptography is (t, qs, qe, ε)-strongly existentially
unforgeable against adaptive chosen message and identity attacks, provided that
SIGIBS is an ID-based signature scheme that is (t, qs, qe, ε/2)-existentially un-
forgeable against adaptive chosen message and identity attacks, and SIGOT is a
(t, ε/2qs)-strong one-time signature scheme, where qe and qs are the maximum
numbers of the Extract queries and Signing queries, respectively.

The proof is similar to that of Theorem 1 and is omitted here.

4.2 Other Signatures

In our generic transformation and its extensions to certificateless and ID-based
settings, we can see that our technique makes no modification on the internal of
the original signature scheme, but uses it as a black-box to sign a freshly-generated
one-time public key. This does not rely on any additional property of the original
scheme except the existential unforgeability. Besides, our transformation does not
modify the public/private key pair nor information concerning users’ identities.
Therefore, after describing the generic transformation in Sec. 3, the extensions
to certificateless signature and ID-based signature become straightforward. We
believe that this generic transformation technique can also be applied to other
types of signature schemes, such as group signature [11], ring signature [25], proxy
signature [20] and some others. We leave this as our further studies.

5 Strong One-Time Signature

The security of our generic transformation relies on the existence of strong one-
time signature schemes. In this section, we show how to transform any one-time
signature scheme which follows the ‘one-way function paradigm’ [14,15] to a
strong one-time version. We also evaluate the performance of an instantiation
which is based on a scheme by Reyzin and Reyzin [24].

5.1 From One-Time to Strong One-Time

Since the introduction of one-time signature [23,19], there have been many
schemes of this type proposed, and many of them follow the one-way function
paradigm [14,15]. Let f : {0, 1}k → {0, 1}κ be a one-way function. Informally, a
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scheme that follows the ‘one-way function paradigm’ has the private key com-
posed of a set of random elements from the domain of f , and the public key
composed of evaluations of those private key elements using f . To generate a
signature, a subset of private key elements is chosen in accordance with the mes-
sage, and the subset is considered to be the signature, which can then be verified
through evaluations of f and comparison with the corresponding elements in the
public key. Below is an example from [15].

KG: On input 1k, randomly select 2� strings of length k,
s0
1, s

1
1, · · · , s0

� , s
1
� , where � = �(k) for some polynomial � : → ,

and compute vb
i = f(sb

i), for b = 0, 1 and i = 1, 2, · · · , �. The pub-
lic key vkOT is ((v0

1 , v
1
1), · · · , (v0

� , v
1
� )) and the private key skOT is

((s0
1, s

1
1), · · · , (s0

� , s
1
� )).

Sign: For an �-bit message m = b1b2 · · · b� where bi ∈ {0, 1} for i =
1, · · · , �, the signature σ is (sb1

1 , · · · , sb�
� ).

Vrfy: For message m = b1b2 · · · b� and signature σ = (σ1, σ2, · · · , σ�),
if vbi

i = f(σi) for all i = 1, 2, · · · , �, output 1; otherwise, output 0.

It is easy to show that the scheme above is a one-time signature scheme as
any forgery on a new message would lead to the inversion of f . However, it is
not ensured that no forgery can be made on a message that has already been
signed.

To transform a one-time signature that follows the one-way function paradigm
to a strong one-time signature (in the sense of Def. 3), a method is proposed in
[15], which is based on Universal One-Way Hash Functions (UOWHF, in short)
[21]. Although UOWHF can be constructed directly from one-way functions, the
resulting strong one-time signature scheme suffers from a much larger public key,
which includes the description of 2� randomly selected UOWHFs in addition to
the one-way-function evaluations of the 2� private key elements.

To solve this problem, we propose another method. Our method is to replace
f with a randomly selected collision-resistant hash function h. In this conversion,
only the description of one (collision-resistant) hash function is added into the
public key vkOT rather than that of 2� UOWHFs as in the method of [21].
On the security of our conversion, as the minimal assumption currently known
for constructing a collision-resistant hash function is the existence of claw-free
permutations, which is stronger than that of the existence of one-way functions,
it follows that our generic transformation proposed in Sec. 3 is also based on
the existence of claw-free permutations. In general, we use signature schemes
to sign arbitrary-length messages. The standard technique, so-called ‘hash-and-
sign’ paradigm [12], we can use it to apply a collision-resistant hash function to
the message and then sign the resulting hash value. Therefore, the existence of
claw-free permutations is generally an assumption for the security of the original
unforgeable signature schemes already.
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The following theorem shows that our method yields a strong one-time signa-
ture scheme.

Theorem 4. Let SIG′OT be a secure one-time signature scheme that follows the
one-way function paradigm, and let SIGOT be the resulting scheme by replacing
the one-way function f with a randomly selected hash function h. Then SIGOT is
strongly unforgeable against (adaptive) chosen one-message attack in the sense of
Def. 3, provided that h is collison-resistant and preimage-resistant (or, one-way).

Proof (Sketch). First, as the collision resistance of a hash function implies one-
wayness (please also refer to the remark below), if we view the hash function h
as a one-way function, then the new scheme SIGOT is equivalent to SIG′OT , thus
is also unforgeable against one-time chosen message attacks (i.e., SIGOT is also
a one-time signature scheme).

Let A be an adversary which runs for time t and breaks the strong one-time
unforgeability (in the sense of Def. 3) of SIGOT with probability at least ε. Note
that in general, if messages are � bits long, by no means the signatures must have
exactly � private key components. Hence, we use another notation d to denote
the number of private key components in a signature of SIGOT . For example, in
HORS [24], the value of d is much less than �. Now, suppose m = b1b2 · · · b� is
the �-bit message in the query of A and σ = (σ1, · · · , σd) is the signature on m
answered by the Signing oracle, where σi ∈ {0, 1}k, for i = 1, · · · , d. Let (m∗, σ∗)
be A’s forgery, where m∗ = b∗1b∗2 · · · b∗� and σ∗ = (σ∗1 , · · · , σ∗d). Then either of the
following events would occur with probability at least ε/2:

1. If m∗ �= m, there exists at least one i such that b∗i �= bi. This would lead to
the break of the preimage-resistance of function h.

2. If m∗ = m, it must hold that σ∗ �= σ, which implies that there exists at least
one i (1 ≤ i ≤ d) such that σ∗i �= σi. Such a pair forms a collision for h. �	

Remark : It is worthwhile to notice the relation between collision-resistance
and one-wayness. Suppose h is a hash function compressing k-bit strings into
κ-bit strings. According to [26], ε-collision-resistance of h implies (2ε + 2κ−k)-
one-wayness. This implies that the input length k should be larger than the
output length κ by a sufficient margin for ensuring the one-wayness of h.

5.2 An Instantiation of Strong One-Time Signature

Most of the current constructions of one-time signature follow the one-way func-
tion paradigm and are very efficient (with regard to time) as they do not carry
out any public key cryptographic operation. One of the most efficient one-time
signature schemes that follows the one-way function paradigm is the HORS pro-
posed by Reyzin and Reyzin [24].

HORS is in fact an r-time signature scheme. A single public key can be used for r
times, in contrast to only one time in a one-time signature scheme. The security of
HORS relies on the existence of Subset Resilient functions [24]. For r > 1, realizing
such functions using only conventional complexity-theoretic assumptions without
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random oracles is still an open problem. Fortunately, in our case, each key pair
of HORS only needs to be used once (i.e. r = 1), and so collision-resistant hash
families are enough for realizing the subset resilient functions.

Let k be the security parameter. Two auxiliary parameters, t and d, are chosen
such that d · log t = �, where � is the output length of a collision-resilient hash
function Hash. The private key contains essentially t strings of k bits (along with
the value of d) and the public key contains the evaluations of these t strings using
a one-way function f : {0, 1}k → {0, 1}κ. The signing process requires just one
Hash operation and produces a signature which is a sequence of d out of t strings
of the private key. The verification process requires only d evaluations of f and
one of Hash.

According to Theorem 4, to convert HORS into a strong one-time signature
scheme, we can replace f with a randomly chosen collision-resistant (and one-
way) hash function h. As suggested in [24], the security parameter k is set 80,
and the output length κ of h is 160-bit. According to the remark at the end of
Theorem 4, the one-wayness of h may not be ensured by collision-resistance in
this case. Hence we suggest that a collision-resistant and one-way hash function
h should be used. For example, we employ a collision-resistant hash function
h : {0, 1}240 → {0, 1}160, that is, setting k to 240. We refer to the resulting
scheme as ‘strong HORS ’.

Public Key Size and Signature Size. In our generic transformation, sig-
nature size depends on the public key size and signature size of the underlying
strong one-time scheme, but not on the private key size. Hence in the following,
we only evaluate the public key size and signature size of strong HORS. As we
can see, the public key is t · κ-bit-long and the signature is d · k-bit-long. These
sizes could be large in practice, for example when t = 256 and d = 20 (as sug-
gested in [24]). We note that almost all the current one-time signature schemes
suffer from this drawback, and we believe that improving the signature size of a
one-time signature scheme is of independent interest.

Remark: Also note that any strongly unforgeable signature scheme (in the
sense of Def. 2) is also a strong one-time signature scheme (Def. 3). Hence the
drawback mentioned above can easily be solved by using a strongly unforgeable
signature scheme that has short public key and signature, such as the one in
[7], to instantiate SIGOT in our generic transformation. We should note that the
tradeoff is on the computational efficiency.

6 Concluding Remarks

On-line/Off-line. As mentioned before, the signature generation of our generic
transformation can be considered as a sequential composition of the original
signature scheme and a strong one-time signature scheme. In the first phase, a
one-time public key is freshly generated and signed to create a ‘certificate’. In the
second phase, the message and the ‘certificate’ are then signed using the strong
one-time signature scheme. The first phase is independent of the message and
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therefore, can be used directly as the off-line part of an on-line/off-line signature
scheme [14]. This phase can also be carried out for multiple times, each time,
a triple (vkOT , skOT , σ1) is generated and stored. When a message m is to be
signed on-line, an unused triple (vkOT , skOT , σ1) is selected and a signature σ2
on m‖σ1 is generated under skOT using the strong one-time signing algorithm.
This yields a very efficient on-line operation. For example, the signing process
of (strong) HORS [24] is essentially one hash evaluation.

In this paper, we proposed a universal and generic transformation which con-
verts any unforgeable signature scheme into a strongly unforgeable one. It is uni-
versal in the sense that it can also be applied to signatures in other settings such
as ID-based signature, certificateless signature and several others. Our technique
does not add any additional parameter into the original public/private key pair
and makes no change to the internals of the original signature scheme. On the
conversion to strong one-time signature schemes that follow the one-way function
paradigm, our method is efficient and does not introduce any additional secu-
rity assumption in general. Due to the limitation of currently available one-time
signature schemes, our generic transformation could have a large signature size
when implemented, which is the main drawback. However, by choosing proper
parameters and instantiations, our technique can be very efficient for practi-
cal use (Sec. 5.2). Finally, thanks to the efficient key generation, signing and
verification processes of the strong one-time signature scheme, these make our
transformation much more efficient than the comparable transformation tech-
niques [15,9,29,30,6].

Based on the results in this paper, we conclude with the following two remarks,
which have the theoretical and practical interests, respectively.

1. If one-way function exists, there exists a generic transformation to a strongly
unforgeable signature scheme.

2. If we admit a non-standard assumption, such as Subset Intractability [24],
or the existence of collision-free hash functions, then we can obtain a very
efficient generic transformation to a strongly unforgeable signature scheme.
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Abstract. The “hash-sign-switch” paradigm was firstly proposed by
Shamir and Tauman with the aim to design an efficient on-line/off-line
signature scheme. However, all existing on-line/off-line signature schemes
based on Shamir-Tauman’s paradigm suffer from the key exposure prob-
lem of chameleon hashing. That is, if the signer applies the same hash
value more than once to obtain two signatures on two different mes-
sages, the recipient can obtain a hash collision and use it to recover the
signer’s trapdoor information. Therefore, the signer should pre-compute
and store plenty of different chameleon hash values and the correspond-
ing signatures on the hash values in the off-line phase, and send the
collision and the signature for a certain hash value in the on-line phase.
Hence, the computation and storage cost for the off-line phase and the
communication cost for the on-line phase in Shamir-Tauman’s signature
scheme are still a little more overload.

In this paper, we first introduce a special double-trapdoor hash family
based on the discrete logarithm assumption to solve this problem. We
then apply the “hash-sign-switch” paradigm to propose a much more
efficient generic on-line/off-line signature scheme. Additionally, we use
a one-time trapdoor/hash key pair for each message signing, which pre-
vents the recipient from recovering the trapdoor information of the signer
and computing other collisions.

Keywords: On-line/off-line signatures, Chameleon hashing, Key
exposure.

1 Introduction

The notion of on-line/off-line signatures was introduced by Even, Goldreich and
Micali [10,11]. It performs the signature generating procedure in two phases.
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The first phase is performed off-line (without knowing the signed message) and
the second phase is performed on-line (after knowing the signed message). On-
line/off-line signatures are particularly useful in smart card applications: The
off-line phase is implemented either during the card manufacturing process or
as a background computation whenever the card is connected to power, and the
on-line phase uses the stored result of the off-line phase to sign actual messages.
The on-line phase is typically very fast, and hence can be extended efficiently
even on a weak processor.

Even, Goldreich and Micali proposed a general method for converting any
signature scheme into an on-line/off-line signature scheme. However, the method
is not practical because it increases the size of the signature by a quadratic factor.
In Crypto 2001, Shamir and Tauman [22] used the so called “chameleon hash
functions” to develop a new paradigm, named “hash-sign-switch”, for designing
much more efficient on-line/off-line signature schemes.

Chameleon hash functions, first introduced by Krawczyk and Rabin [16], are
trapdoor one-way hash functions which prevent everyone except the holder of
the trapdoor information from computing the collisions for a randomly given
input. Chameleon hash functions were originally used to design chameleon sig-
natures, which simultaneously provide non-repudiation and non-transferability
for the signed message as undeniable signatures [7] do. In the chameleon signa-
ture schemes, the recipient is the holder of trapdoor information, while in case of
on-line/off-line signatures, the signer is the holder of the trapdoor information.
Therefore, in the off-line phase the signer generates a signature σ by using a
provably secure signature scheme to sign the chameleon hash value h(m′, r′) of
a random message m′ and a random auxiliary number r′. In the on-line phase,
the signer computes a collision r of the chameleon hash function for the given
message m such that h(m, r) = h(m′, r′). The signature for the message m is
the pair (σ, r).

In the Shamir-Tauman’s on-line/off-line signature schemes, one limitation is
that the signature for the different messages must use different chameleon hash
values. Otherwise, if the signer uses the same hash value twice to obtain two
signatures on two different messages, the recipient can obtain a hash collision
and use it to recover the signer’s trapdoor information, i.e., the private key.
To avoid this problem, the signer must compute and store plenty of different
chameleon hash values and the corresponding signatures on the hash values in
the off-line phase. Given a signed message in the on-line phase, the signer first
chooses a one-time hash value, and then computes a hash collision for the hash
value. He then sends the hash collision and the corresponding signature to the
recipient. Hence, the computation and storage cost for the off-line phase and the
communication cost for the on-line phase in Shamir-Tauman’s signature scheme
are still a little more overload.

In this paper, for the first time in the literature, we address this problem
by introducing a double-trapdoor hash family based on the discrete logarithm
assumption and then apply the “hash-sign-switch” paradigm to propose a much
more efficient generic on-line/off-line signature scheme. In our signature scheme,
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the hash value and the corresponding signature are always identical and can
be viewed as the public key of the signer. Hence, it is not required to compute
and store them in the off-line phase. Additionally, we introduce the idea of long-
term trapdoor and one-time trapdoor in our chameleon hash families, which
is similar to the idea of master trapdoor and specific trapdoor in the multi-
trapdoor commitment schemes [13]. The one-time trapdoor is used only once
for each message signing in the on-line phase, which prevents the recipient from
recovering the trapdoor information of the signer and computing other collisions.

In order to achieve the communication and computation advantages of our
on-line/off-line signature scheme, we adopt elliptic curve cryptosystems [15,19]
to present our double-trapdoor hash family. Certainly, we can design such a
double-trapdoor hash family over other generic groups, e.g., the subgroup of Z

∗
p.

However, we argue that such a double-trapdoor hash family over generic groups is
unsuitable for designing efficient generic on-line/off-line signature schemes. The
reason is as follows: Since the “hash-sign-switch” paradigm is a generic method,
it is required that any provably secure signature scheme S can be used to design
the on-line/off-line signature scheme. However, only when the signature length
of original signature scheme S is less than that of a group element, our pro-
posed on-line/off-line signature scheme is superior to Shamir-Tauman’s scheme
in communication cost.1 Currently, for any provably secure signature scheme,
the signature length is more than 160 bits. Therefore, the elliptic curve cryp-
tosystems seem to be the optimal choice. If we adopt other generic group such
as the subgroup of Z

∗
p, many signature schemes including some short signature

schemes [3,5] can not be used to design our on-line/off-line signature scheme.
For more details, please refer to Section 5.2.

1.1 Related Works

As noted in [22], some signature schemes such as Fiat-Shamir, Schnorr, and
ElGamal signature schemes [12,21,9] can be naturally partitioned into on-line and
off-line phases. The reason is that the first step in these signature schemes does
not depend on the given message, and can thus be carried out off-line. However,
these are particular schemes with special structure and specific security assump-
tions rather than a general and provably secure conversion technique for arbi-
trary signature schemes. Shamir and Tauman introduced the “hash-sign-switch”
method for simultaneously improving both the security and the real-time ef-
ficiency of any signature scheme by converting it into an efficient on-line/off-
line signature scheme. Generally, a new chameleon hash family results in a new
on-line/off-line signature scheme. Recently, some variants of on-line/off-line sig-
nature schemes [6,17] have been proposed based on Shamir-Tauman’s general
construction.

However, it seems that all existing on-line/off-line signature schemes based on
Shamir-Tauman’s paradigm suffer from the key exposure problem of chameleon

1 In any case, our proposed scheme is no inferior to Shamir-Tauman’s scheme in com-
putation and storage cost.
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hashing. This problem is firstly addressed by Ateniese and de Medeiros [1] in
the original chameleon signature schemes. Chen et al. [8] proposed the first full
construction of a chameleon hash function without key exposure. Later, Ateniese
and de Medeiros presented several constructions of exposure-free chameleon hash
functions based on different cryptographic assumptions [2]. However, to the best
of our knowledge, there seems to be no existing work that solves the key exposure
problem in the generic on-line/off-line signature schemes.

1.2 Organization

The rest of the paper is organized as follows: Some preliminaries are provided in
Section 2. The new double-trapdoor chameleon hash family based on the discrete
logarithm assumption is presented in Section 3. Our efficient generic on-line/off-
line signature scheme is given in Section 4. The security and efficiency analysis of
our scheme are given in Section 5. Finally, conclusions will be made in Section 6.

2 Preliminaries

In this section, we introduce the basic notion of chameleon hash family and
Shamir-Tauman’s “hash-sign-switch” paradigm [22].

2.1 Chameleon Hash Family

Definition 1. (chameleon hash family) A chameleon hash family consists of a
pair (I, H):

– I is a probabilistic polynomial-time key generation algorithm that on input
1k, outputs a pair (HK, TK) such that the sizes of HK, TK are polynomially
related to k.

– H is a family of randomized hash functions. Every hash function in H is
associated with a hash key HK, and is applied to a message from a space
M and a random element from a finite space R. The output of the hash
function HHK does not depend on TK.

A chameleon hash family (I, H) has the following properties:

1. Efficiency: Given a hash key HK and a pair (m, r) ∈ M ×R, HHK(m, r) is
computable in polynomial time.

2. Collision resistance: There is no probabilistic polynomial time algorithm A
that on input HK outputs, with a probability which is not negligible, two
pairs (m1, r1), (m2, r2) ∈ M × R that satisfy m1 �= m2 and HHK(m1, r1) =
HHK(m2, r2) (the probability is over HK, where (HK, TK) ← I(1k), and
over the random coin tosses of algorithm A).

3. Trapdoor collisions: There exists a probabilistic polynomial time algorithm
that given a pair (HK, TK) ← I(1k), a pair (m1, r1) ∈ M × R, and an
additional message m2 ∈ M, outputs a value r2 ∈ R such that:
– HHK(m1, r1) = HHK(m2, r2).
– If r1 is uniformly distributed in R then the distribution of r2 is compu-

tationally indistinguishable from uniform in R.
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2.2 Shamir-Tauman’s “Hash-Sign-Switch” Paradigm

Shamir and Tauman introduced the following“hash-sign-switch” paradigm to get
a generic on-line/off-line signature scheme.

– System Parameters Generation: Let (I, H) be any trapdoor hash family
and (G, S, V) be any provably secure signature scheme. The system param-
eters are SP = {(I, H), (G, S, V)}.

– Key Generation Algorithm:
• On input 1k, run the key generation algorithm of the original signature

scheme G to obtain a signing/verification key pair (SK, V K).
• On input 1k, run the key generation algorithm of the trapdoor hash

family (I, H) to obtain a hash/trapdoor key pair (HK, TK).

The signing key is (SK, TK) and the verification key is (V K, HK).

– The Signing Algorithm:
1. Off-line phase

• Choose at random (mi, ri) ∈R M×R, and compute the chameleon hash
value hi = HHK(mi, ri).

• Run the signing algorithm S with the signing key SK to sign the message
hi. Let the output be σi = SSK(hi).

• Store the pair (mi, ri), and the signature σi.
2. On-line phase

• For a given message m, retrieve from the memory a random pair (mi, ri)
and the signature σi.

• Compute r ∈ R such that HHK(m, r) = HHK(mi, ri).
• Send (r, σi) as the signature of the message m.

– The Verification Algorithm:
• Compute hi = HHK(m, r).
• Verify that σi is indeed a signature of the hash value hi with respect to

the verification key V K.

In the following, we present Shamir-Tauman’s “hash-sign-switch” paradigm
with elliptic curve analogue of the chameleon hash family based on the discrete
logarithm assumption [16,22], so that we can fairly compare it with our proposed
signature scheme.

– System Parameters Generation: Let t be a prime power, and E(Ft)
an elliptic curve over finite field Ft. Let #E(Ft) be the number of points of
E(Ft), and P be a point of E(Ft) with prime order q where q|#E(Ft). Denote
G the subgroup generated by P . Let (I, H) be the trapdoor hash family based
on the discrete logarithm assumption and (G, S, V) be any provably secure
signature scheme. The system parameters are SP = {E, t, q, P, G, (G, S, V)}.

– Key Generation Algorithm:
• On input 1k, run the key generation algorithm of the original signature

scheme G to obtain the signing/verification key pair (SK, V K).
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• On input 1k, run the key generation algorithm of the trapdoor hash
family (I, H) to obtain the hash/trapdoor key pair (Y = xP, x).

The signing key is (SK, x) and the verification key is (V K, Y ).2

– The Signing Algorithm:
1. Off-line phase

• Choose at random (mi, ri) ∈R M × R, and computes the chameleon
hash value hi = HY (mi, ri) = miP + riY .

• Run the signing algorithm S with the signing key SK to sign the message
hi. Let the output be σi = SSK(hi).

• Store the pair (mi, ri), and the signature σi.

2. On-line phase
• For a given message m, retrieve from the memory x−1 and a random

pair (mi, ri).
• Compute r = x−1(mi − m) + ri mod q.
• Send (r, σi) as the signature of the message m.

– The Verification Algorithm:
• Compute hi = HY (m, r) = mP + rY .
• Verify that σi is indeed a signature of the hash value hi with respect to

the verification key V K.

3 A Double-Trapdoor Chameleon Hash Family

Chameleon hashing is very closely related to chameleon commitment schemes [4].
Gennaro [13] first introduced the notion of multi-trapdoor commitments. Ate-
niese and de Medeiros [2] observed that any stateless trapdoor commitment with
two trapdoors may be adequate for designing a chameleon hash scheme without
key exposure, which can be used to design a chameleon signature scheme. How-
ever, it seems that the current chameleon hash schemes without key exposure are
not suitable for designing efficient on-line/off-line signature schemes. The rea-
sons are twofold: Firstly, collision computation in these chameleon hash schemes
usually requires the costly modular exponentiation operation. Secondly, though
collision forgery will not reveal the signer’s trapdoor information, it allows the
verifier to compute other collisions for the same hash value.3

In this section, we first propose a new double-trapdoor chameleon hash family
based on the discrete logarithm assumption as follows, which is a main ingredient
for designing our efficient on-line/off-line signature scheme.

2 The value of x−1 should be pre-computed and stored in order to decrease the com-
putation cost in the on-line phase of the signature scheme.

3 Note that this feature has some advantages in the chameleon signatures. For example,
the signer can provide a different collision to hide the original signed message. While
in the case of on-line/off-line signatures, it means that the verifier can universally
forge a signature of the signer.
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– System Parameters Generation: Let t be a prime power, and E(Ft)
an elliptic curve over finite field Ft. Let #E(Ft) be the number of points
of E(Ft), and P be a point of E(Ft) with prime order q where q|#E(Ft).
Denote by G the subgroup generated by P . Define a cryptographic secure
hash function f : Zq × G → Zq. Choose two random elements k, x ∈R Z

∗
q ,

and compute K = kP, Y = xP . The public hash key is HK = (K, Y ), and
the private trapdoor key is TK = (k, x).

– The Hash Family: Given the hash key HK, the proposed chameleon hash
function HHK : Zq × Zq → G is defined as follows:

HHK(m, r) = f(m, K) · K + rY.

Theorem 1. The construction above is a chameleon hash family under the as-
sumption of the discrete logarithm problem in G is intractable.

Proof. We prove that the scheme satisfies the properties defined in Section 2.1.

1. Efficiency: Given the hash key HK and a pair (m, r) ∈ Zq×Zq, HHK(m, r) =
f(m, K) · K + rY is computable in polynomial time.

2. Collision resistance: Assume to the contrary, that there exists a polynomial
time algorithm A that on input HK outputs, with a probability which is
not negligible, two pairs (m1, r1), (m2, r2) ∈ Zq × Zq that satisfy m1 �= m2
and HHK(m1, r1) = HHK(m2, r2). Then, we can use A to solve the discrete
logarithm problem in G as follows: For a randomly given instance (P, aP ),
choose a random integer b ∈R Zq and define K = aP , and Y = bP . Therefore,
if

f(m1, aP ) · aP + r1Y = f(m2, aP ) · aP + r2Y,

we can compute a = (f(m1, aP ) − f(m2, aP ))−1(r2 − r1)b mod q.
3. Trapdoor collisions: Assume that we are given the hash and trapdoor key pair

(HK, TK), a pair (m1, r1) ∈ Zq × Zq, and an additional message m2 ∈ Zq,
we want to find r2 ∈ Zq such that

f(m1, kP ) · kP + r1Y = f(m2, kP ) · kP + r2Y.

The value of r2 can be computed in polynomial time as follows:

r2 = r1 + kx−1(f(m1, kP ) − f(m2, kP )) mod q.

Also, if r1 is uniformly distributed in R then the distribution of r2 is com-
putationally indistinguishable from uniform in R. �

4 Our Efficient On-Line/Off-Line Signature Scheme

In this section, we apply the “hash-sign switch” paradigm to propose a much
more efficient on-line/off-line signature scheme. We can adopt any provably se-
cure digital signature scheme to design our on-line/off-line signature scheme,
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so it is a general construction. The main idea is that the hash value and the
corresponding signature in the signature scheme are always identical and can
be viewed as the public key of the signer. Hence, it is not required to compute
and store them in the off-line phase. However, if we directly use the proposed
double-trapdoor chameleon hash function to design the on-line/off-line signature
scheme, the key exposure problem still arises.

We introduce the idea of long-term trapdoor and one-time trapdoor in our
chameleon hash family. The one-time trapdoor is used only once for each mes-
sage signing in the on-line phase, which prevents the recipient from recovering
the trapdoor information of the signer and computing other collisions. The long-
term trapdoor can be used repeatedly during its life span.

The proposed on-line/off-line signature scheme consists of the following
efficient algorithms:

– System Parameters Generation: Let t be a prime power, and E(Ft)
an elliptic curve over finite field Ft. Let #E(Ft) be the number of points
of E(Ft), and P be a point of E(Ft) with prime order q where q|#E(Ft).
Denote G the subgroup generated by P . Define a cryptographic secure hash
function f : Zq × G → Zq. Given a hash key HK = (K, Y ), the chameleon
hash function HHK : Zq × Zq → G is defined as follows:

HHK(m, r) = f(m, K) · K + rY.

Let (G, S, V) be any provably secure signature scheme. The system parame-
ters are SP = {E, t, q, P, G, f, HHK , (G, S, V)}.

– Key Generation Algorithm:
• On input 1k, run the key generation algorithm of the original signature

scheme G to obtain the signing/verification key pair (SK, V K).
• On input 1k, run the key generation algorithm of the trapdoor hash

family to obtain the long-term hash/trapdoor key pair, denote by HK =
Y = xP, TK = x.

• Choose at random k∗ ∈R Zq, and compute the chameleon hash value
h = k∗Y . Run the signing algorithm S with the signing key SK to sign
the message h. Let the output be σ = SSK(h).

The signing key is (SK, x, k∗) and the verification key is (V K, Y, σ).

– The Signing Algorithm:
1. Off-line phase

• Choose at random ki ∈R Zq, and computes kix
−1 mod q and kiP .

• Store the one-time trapdoor/hash key pair (kix
−1, kiP ).

2. On-line phase
• For a given signed message mi, retrieve from the memory a random pair

(kix
−1, kiP ).

• Compute ri = k∗ − f(mi, kiP )kix
−1 mod q.

• Send (ri, kiP ) as the signature of the message mi.
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– The Verification Algorithm:
• Compute h = f(mi, kiP )kiP + riY by using the one-time hash key kiP

and the long-term hash key Y .
• Verify that σ is indeed a signature of the hash value h with respect to

the verification key V K.

Note that

h = f(mi, kiP )kiP + riY

= f(mi, kiP )kiP + (k∗ − f(mi, kiP )kix
−1)Y

= k∗Y

The proposed scheme satisfies the property of completeness.

Remark 1. We argue that the value of x−1 should be pre-computed and stored
in both our scheme and Shamir-Tauman’s scheme.

Note that ri = k∗ − f(mi, kiP )kix
−1 mod q, it also requires only 1 modular

multiplication of Zq in the on-line phase of our scheme since kix
−1 is stored in

the off-line phase.

Remark 2. Note that in our proposed on-line/off-line signature scheme, the hash
key Ki = kiP is used only once for signing a message mi, while the other hash
key Y = xP can be used repeatedly. This is why we named them the one-time
hash key and the long-term hash key, respectively.

5 Analysis of the Proposed Schemes

5.1 Security

The most general known security notion of a signature scheme is security against
existential forgery on adaptively chosen message attacks, which was firstly de-
fined by Goldwasser, Micali and Rivest [14] as follows:

Definition 2. A signature scheme Ω = (Gen, Sign, Ver) is existentially unforge-
able under adaptive chosen message attacks if for any probabilistic polynomial
time adversary A there exist no non-negligible probability ε such that

Adv(A) = Pr

⎡
⎢⎢⎢⎢⎣

〈pk, sk〉 ← Gen(1l);
for i = 1, 2, . . . , k;
mi ← A(pk, m1, σ1, . . . , mi−1, σi−1), σi ← Sign(sk, mi);
〈m, σ〉 ← A(pk, m1, σ1, . . . , mk, σk);
m /∈ {m1, . . . , mk} ∧ Ver(pk, m, σ) = accept

⎤
⎥⎥⎥⎥⎦

≥ ε.

Now we give the formal security proof of our on-line/off-line signature scheme.
More precisely, we have the following theorem:

Theorem 2. In the random oracle model, the resulting on-line/off-line signa-
ture scheme is existentially unforgeable against adaptive chosen message attacks,
provided that the discrete logarithm problem in G is intractable.
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Proof. In our proposed on-line/off-line signature scheme, the corresponding sig-
nature σ on the chameleon hash value h is viewed as the public key of the signer.
Therefore, a hash collision r and a one-time hash key kP are the real signature
on the message m.

Suppose that A is a probabilistic algorithm that given a verification key
(V K, HK, σ), forges a signature with respect to the proposed on-line/off-line
signature scheme by an adaptively chosen message attack in time T with success
probability ε. We denote respectively by qH and qS the number of queries that A
can at most ask to the hash oracle and the signing oracle. Let (mi, Ki = kiP ) de-
note the input of i-th query to the hash oracle, and ei denote the corresponding
answer to it. Let mj denote the j-th query to the signing oracle, and (r′j , K

′
j) de-

note the corresponding signatures produced by the signing oracle. Let (m, r, kP )
denote the output of A. Since the success probability of A is ε, it follows that

Pr[VV K(h, σ) = 1 ∧ h = HHK,kP (m, r) = HHK,kiP (mi, ri)] ≥ ε.

Then we can construct a probabilistic algorithm M to compute a for a randomly
given instance (P, aP ) where P is a generator of G as follows:

– Let (SK, V K) be the signing/verification key pair of the original signature
scheme. Choose a random integer b ∈R Zq, and let HK = Y = bP . Define
the chameleon hash value h = b · aP . Run the signing algorithm S with
the signing key SK to sign the message h. Let the output be σ = SSK(h).
Publish the pair (V K, Y, σ).

– Maintain a list, called f -list, which is initially set to empty. If the i-th query
(mi, Ki) to the hash oracle f is not in the list, choose a random element
ei ∈R Zq and respond it as the answer of i-th query. Then add (mi, Ki, ei)
to the f -list.

– Let mj denote the input of j-th query to the signing oracle, choose at random
(e′j , r

′
j) ∈R Zq × Zq ( Note that e′j is not in the f -list) and define

K ′j = e′−1
j (h − r′jY ),

respond e′j as the hash oracle answer to the query (mj , K
′
j), and (K ′j , r

′
j)

as the signing oracle answer to the query mj. Then add (mj , K
′
j , e
′
j) to the

f -list.

Suppose the output of A is (m, K, r). If m �= mj for j = 1, ..., qS and h =
f(m, K)K + rY , we say that A forges a signature (K, r) on the message m with
respect to the proposed on-line/off-line signature scheme.

By replays of A with the same random tape but different choices of oracle f ,
as done in the Forking Lemma [20], we can obtain two valid signatures (m, K, r)
and (m, K, r′) with respect to different hash oracles f and f ′.

Note that h = f(m, K)K + rY and h = f ′(m, K)K + r′Y , we can compute
a = (f ′(m, K) − f(m, K))−1(f ′(m, K)r − f(m, K)r′) as the discrete logarithm
of aP with respect to the base P .

The success probability of M is also ε, and the running time of M is
equal to the running time of the Forking Lemma which is bounded by 23TqR/ε
[20]. 
�
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5.2 Efficiency

We compare the efficiency of our scheme with that of Shamir-Tauman’s scheme
given in Section 2.2. We denote by C(θ) the computation cost of operation θ,
and by |λ| the bits of λ. Also, we denote by M a scalar multiplication in G,
by SM a simultaneous scalar multiplication of the form λP + μQ in G, and by
m the modular multiplication in Zq. We omit other operations such as point
addition and hash in both schemes.

Table 1 and Table 2 present the comparison of the computation cost, the stor-
age cost, and the communication cost for each message signing between Shamir-
Tauman’s scheme and our scheme.

Table 1. Comparison of the computation cost

Shamir-Tauman’s scheme Our scheme

Off-line phase 1C(h) + 1C(σ) 1C(kP ) + 1C(kx−1)
= 1SM + 1C(σ) = 1M + 1m

On-line phase 1m 1m

Table 2. Comparison of the storage and communication cost

Shamir-Tauman’s scheme Our scheme

Storage
off-line phase 2|q| + 1|σ| 1|q| + 1|t| + 1

Communication
on-line phase 1|q| + 1|σ| 1|q| + 1|t| + 1

Since a 160-bit ECC key offers more or less the same level of security as a
1024-bit RSA key [18], we let |q|=160 in the following. Currently, for any secure
signature scheme, the signature length |σ| ≥ |t| + 1 since |t| is about 160 (In
the optimal case, we can choose an elliptic curve E(Ft) such that #E(Ft) is just
a 160-bit prime q. From Hasse theorem, we know that |t| = |#E(Ft)| = 160).
Therefore, the proposed scheme is much superior to Shamir-Tauman’s scheme
in the computation cost of off-line phase, storage cost and communication cost,
while the computation cost in the on-line phase is same. So, we argue that our
signature scheme is more suitable for smart-card applications where both the
computation and storage resources are limited.

Remark 3. However, if we adopt other generic group such as the subgroup of Z
∗
p

to present our double-trapdoor chameleon hash family and on-line/off-line sig-
nature scheme, the communication cost for our on-line/off-line signature scheme
is 1|q| + 1|p|. For most current signature schemes, the signature length |σ| < |p|
if we let |p| = 1024. So, our proposed on-line/off-line signature scheme is inferior
to Shamir-Tauman’s scheme in communication cost since 1|q|+1|p| > 1|q|+1|σ|.
This is the reason why we choose the elliptic curve cryptosystems.
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6 Conclusions

On-line/off-line signatures are particularly useful in smart card applications.
In this paper, we first introduce a special double-trapdoor chameleon hash
family based on the discrete logarithm assumption and then apply the “hash-
sign-switch” paradigm to propose a much more efficient generic on-line/off-line
signature scheme. Compared with Shamir-Tauman’s signature scheme, the ad-
vantages of our signature scheme are the lower computation and storage cost for
the off-line phase, and the lower communication cost for the on-line phase.
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Abstract. We propose GMSS, a new variant of the Merkle signature
scheme. GMSS is the first Merkle-type signature scheme that allows a
cryptographically unlimited (280) number of documents to be signed with
one key pair. Compared to recent improvements of the Merkle signature
scheme, GMSS reduces the signature size as well as the signature gener-
ation cost.

Keywords: Merkle signatures, post-quantum cryptography, SSL.

1 Introduction

Digital signatures are one of the most important applications of public key
cryptography. For example, they are an essential part of the SSL/TLS proto-
col for authenticating websites. If large scale quantum computers are built, all
popular digital signature schemes like RSA, DSA and ECDSA will become in-
secure [12]. In addition, significant progresses have been made for solving the
underlying number theoretic problems for RSA or DSA, and therefore, the key
lengths required to provide sufficient security have been steadily increasing [10].
As a consequence, it is urgent to look for alternative signature schemes, thor-
oughly analyze and understand their security, and see how they behave in real-life
applications.

A promising alternative to common digital signature schemes is the Merkle
signature scheme (MSS) proposed by Merkle in [11]. The security of MSS solely
relies on the existence of cryptographic hash functions. According to [7], the re-
quired properties of the hash function are one-wayness and collision resistance.
Using MSS, it is possible to remove the requirement for number theoretic as-
sumptions from digital signatures. In recent years, many improvements to the
original MSS were proposed. The inefficient key generation and the resulting lim-
ited signature capacity of MSS is addressed in [3]. The authors proposed CMSS, a
variant of MSS that increases the signature capacity from 220 to 240 and provides
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competitive timings compared to common signature schemes. Other important
contributions are efficient tree traversal algorithms [8,13,14], which play a crucial
role for fast signature generation.

First of all, it is unclear whether a signature capacity of 240 is sufficient for
practical applications. Consider for example webservers using SSL/TLS or elec-
tronic archives. Second, the original MSS as well as CMSS suffer from quite large
signature sizes. Further, there may be time and space requirements in specific
application environments, such as smart cards, that are not satisfied by current
constructions.

In this paper we present the generalized Merkle signature scheme (GMSS).
GMSS is a highly flexible variant of CMSS that can be adjusted to the require-
ments and constraints of a particular environment. GMSS drastically reduces the
signing time by distributing the costs for one signature generation across several
previous signatures and the key generation. This in turn makes it possible to
choose parameters that provide smaller signatures. Using GMSS, it is possible
to achieve a signature capacity of 280 with competitive timings and reasonable
signature sizes, i.e. 26.1 ms for signing, 18.1 ms for verifying, and 3,620 bytes for
the signature. In case of a signature capacity of 240 it is possible to achieve 26
ms for signing, 19.6 ms for verifying, and only 1,860 bytes for the signature. For
both signature capacities, it is also possible to achieve signing and verification
times of only 10 ms at the expense of larger signatures, i.e. 2,340 bytes for 240

and 4,240 bytes for 280. We also propose a client-server protocol for webservers
using SSL/TLS that minimizes the latency and improves resistance to denial of
service attacks.

This paper is organized as follows: Section 2 introduces GMSS. Section 3
shows how to choose appropriate parameters and how to exchange signatures in
the SSL/TLS protocol. Finally, Section 4 states our conclusion.

2 GMSS in Theory

This section at first shows the general construction of GMSS. Then the key
generation, signature generation and verification are explained in detail and the
costs and memory requirements are estimated.

2.1 General Construction

The basic construction of GMSS consists of a tree with T layers. The nodes of
this tree are in turn Merkle trees [11]. A brief description of Merkle trees can
be found in Appendix A. The height of all Merkle trees in a certain layer i is
denoted by hi. Trees in different layers may have different heights. Each Merkle
tree in layer i = 1, . . . , T −1 is parent to 2hi Merkle trees. T1,0 denotes the single
Merkle tree in layer 1. The 2h1+...+hi−1 Merkle trees in layers i = 2, . . . , T are
denoted by Ti,j , j = 0, . . . , 2h1+...+hi−1 − 1 according to their position from left
to right.

Parents and children Merkle trees have the following relationship: the root of
a child tree is signed with the one-time signature key corresponding to a certain
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leaf of his parent tree. In the following, when talking about leaves in the context
of signing, we mean the corresponding one-time signature key. RootT denotes
the root of tree T . SigT denotes the one-time signature of RootT , which is
generated using leaf l of T ’s parent. Message digests d are signed using the
leaves of the Merkle trees on the deepest layer T and we call their one-time
signature Sigd. Thanks to the layer hierarchy, the number of message digests
that can be signed using one GMSS key pair is S = 2h1+...+hT . The general
construction of GMSS is depicted in Figure 1.

T1,0

T2,0 T2,1

TT,0 TT,1

RootT

SigT

T

l

. . .

. . .. . .

Fig. 1. General construction of GMSS

For any given signature s ∈ {0, . . . , 2h1+...+hT − 1}, there is a unique path p
from the Merkle tree on the lowest layer T , which is used to sign the digest, to
the single Merkle tree on the top layer 1 (T1,0). This path involves one Merkle
tree at each layer i = 1, . . . , T . A GMSS signature of a message digest d contains
the one-time signature Sigd of d and the one-time signatures SigT of the roots
of all Merkle trees on path p, except for T1,0. For all trees T on path p, a GMSS
signature also contains the authentication path AuthT ,l of the leaf l that is used
to sign either the child of T , or the digest d. An authentication path is defined as
the sequence of the siblings of all nodes on the path from leaf l to the root of T .
GMSS uses the Winternitz one-time signature scheme [4,11] for signing digests
d and RootT (see Appendix B for for a brief introduction to the Winternitz
one-time signature scheme). wi denotes the Winternitz parameter used in layer
i = 1, . . . , T . Different layers are allowed to use different Winternitz parameters.
GMSS is specified by a GMSS parameter set

P =
(
T, (h1, . . . , hT ), (w1, . . . , wT )

)
.

Remark 1. The Merkle variant CMSS proposed in [3] is a special case of GMSS.
CMSS uses only two layers, where both layers use the same Winternitz parameter
and all trees in both layers have the same height, i.e. P =

(
2, (h, h), (w, w)

)
.

During the key generation, GMSS computes SigT and AuthT ,l for the Merkle
trees on the path p used by the first signature (Section 2.3). SigT and AuthT ,l
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required by succeeding signatures are precomputed (Section 2.4). Since those val-
ues change less frequently for upper layers, the precomputation can be distributed
over many steps. On the one hand, this results in a significant improvement of the
signing speed. On the other hand, this enables us to choose large Winternitz pa-
rameters wi, which results in smaller signatures. In Section 3.1, we formulate this
trade-off as an optimization problem to find an optimal parameter set.

2.2 Winternitz One-Time Signature Key Generation

First of all, we describe our strategy for generating random data required by one-
time signature keys. Let H : {0, 1}∗ → {0, 1}n be a cryptographic hash function
with output length n bits. We adopt the approach for the generation of the
Winternitz OTS signature keys proposed in [3] and use a pseudo random number
generator (PRNG) f : {0, 1}n → {0, 1}n × {0, 1}n, Seedin �→ (Seedout,Rand)
for generating secrets. In the following, we call c

Hash
the cost evaluating one

hash (in our case, the input size is small and fixed) and c
Prng

the cost for
calling the PRNG. To assure interoperability we selected the PRNG described
in [6], Appendix 3.1, which requires one single call to the hash function H .

Rand ← H(Seedin),Seedout ← (1 + Seedin + Rand) mod 2n (1)

We use an initial seed SeedTi,j,l to generate the seed for the lth Winternitz OTS
signature key of Merkle tree Ti,j , i.e.

(SeedTi,j ,l+1,SeedOTS) ← f(SeedTi,j ,l)
(SeedOTS, xk) ← f(SeedOTS), k = 1, . . . , twi

and twi = �n/wi� + �(�log2(�n/wi�)	 + 1 + wi) /wi�. The lth one-time signa-
ture key and the lth leaf of Merkle tree Ti,j are given as X = (x1, . . . , xtwi

)
and Y = H

(
H2wi−1(x1)‖ . . . ‖H2wi−1(xtw )

)
, respectively. Note that Y is also

the Winternitz one-time verification key that corresponds to X . Hk(x) denotes
the hash function applied k times and ‖ the concatenation of two strings. The
updated seed SeedTi,j ,l+1 is stored and used to generate the (l + 1)th signature
key. If the current signature key is associated with the last leaf of tree Ti,j , i.e.
l = 2hi − 1, the updated seed is used as initial seed for the next Merkle tree
Ti,j+1, i.e. (SeedTi,j+1,0,SeedOTS) ← f(SeedTi,j ,2hi−1).

2.3 GMSS Key Generation

Next, we explain how to generate a GMSS keypair, establish the size of the public
and private keys and the cost for computing them. From the parameter set P
and initial seeds SeedT1,0,0, . . . ,SeedTT,0,0, the key generation step computes
the GMSS public key RootT1,0 and the GMSS private key which consists of the
following entries.

⎧
⎨
⎩

SeedTi,0,0 , i = 1, . . . , T , SeedTi,2,0 , i = 2, . . . , T
SigTi,0 , i = 2, . . . , T , RootTi,1 , i = 2, . . . , T

AuthTi,0,0 , i = 1, . . . , T , AuthTi,1,0 , i = 2, . . . , T
(2)
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At first, the key generation computes the root of the first tree in each layer
RootTi,0 , i = 1, . . . , T . This can be done efficiently using a classical algorithm
also referred to as treehash [13], shown in Algorithm 1. This algorithm uses a
stack S of nodes, where each node knows its height in the tree. In this paper, we
use a slightly modified version of treehash, which allows us to easily distribute
costs by incrementally computing the root. In Algorithm 1, the leaf l is the
lth verification key, computed using SeedTi,j,l as described above. For a tree
of height hi, Algorithm 1 must be called 2hi times, where the 2hi leaves are
supplied in sequential order, from left to right. For each call of Algorithm 1, the
inner while loop might compute from 0 to hi iterations, but in total, the 2hi calls
will result in exactly 2hi − 1 iterations. After the 2hi calls, the stack S contains
a single node, the root of the tree. Note that during the computation of the root
RootTi,0 , the authentication path for the 0th leaf of tree Ti,0, i.e. AuthTi,0,0 is
generated for free, since all nodes of the tree are parsed by the algorithm.

Algorithm 1. Treehash
Input: Leaf l, stack S
Output: updated stack S

1. push l to S
2. while top two nodes of S have the same height do

2.1. pop n1 from S; pop n2 from S
2.2. push H(n2||n1) to S

3. return S

Next, the roots RootTi,1 and authentication paths AuthTi,1,0 of of the suc-
ceeding trees Ti,1, i = 2, . . . , T are computed with Algorithm 1. As explained
above, the initial seeds SeedTi,1,0 related to the trees Ti,1 are now available.
Finally, after generating the second tree in each layer, the seeds SeedTi,2,0 are
available, which are stored as part of the private key to allow an efficient gen-
eration of trees Ti,2 during the signing process. Note that SigTi,0 , i = 2, . . . , T
does not have to be computed explicitly. It is an intermediate value during the
computation of the 0th leaf of tree Ti−1,0, i = 2, . . . , T .

Lemma 1 (Key Generation). The total cost for the key generation is

ckeygen =
T∑

i=1
ctree(i) +

T∑
i=2

ctree(i) (3)

where ctree(i)=
(
2hi (twi(2wi −1)+1) + 2hi −1

)
c
Hash

+2hi (twi +1) c
Prng

. The
memory requirements for the keys are

mpubkey = n bits

mprivkey =
(

T∑
i=1

(hi + 1) +
T∑

i=2
(hi + twi−1 + 2)

)
n bits.

(4)
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Proof. A tree on layer i requires the computation of 2hi leaves. Each leaf compu-
tation requires (2wi −1) ·twi +1 hash function evaluations and twi +1 calls to the
PRNG: one PRNG to obtain the seed and twi to obtain the signature key. The 2hi

applications of treehash require 2hi − 1c
Hash

. Therefore, the total cost for one
tree on layer i is given as ctree(i) =

(
2hi ((2wi − 1) · twi + 1) + 2hi − 1

)
c
Hash

+
2hi (twi + 1) c

Prng
. Since we construct two trees on layers i = 2, . . . T and one

on layer i = 1, the total cost for the key generation is given by Equation (3). The
memory requirements of the keys depend on the output size of the hash function
n. A root RootTi,j is a single hash value and requires n bits, which explains
mpubkey = n bits. A seed SeedTi,j ,l requires n bits. A one-time signature SigTi,j

requires n · twi−1 bits. An authentication path requires hi · n bits. For each layer
i = 2, . . . , T , we store two seeds, two authentication paths, one root and one
one-time signature. For layer i = 1, we store one seed and one authentication
path. Hence, the size of the pivate key is mprivkey as in Equation (4). ��

2.4 Signature Generation

In the following, we discuss the signature generation stage. We introduce the
components of a GMSS signature and estimate formulas for the signature size
and costs. We also explain how the signature generation costs are distributed.
For the sth GMSS signature (s ∈ {0, . . . , 2h1+...+hT − 1}), let

{
jT = �s/2hT 	, lT = s mod 2hT

ji = �ji+1/2hi	, li = ji+1 mod 2hi , i = 1, . . . , T − 1.
(5)

The path from the lowest tree TT,jT to the top tree T1,0 used by the sth signature
is given as (TT,jT , TT−1,jT −1 , . . . , T2,j2 , T1,0). The one-time signature Sigd of the
message digest d is generated using the lT th leaf of tree TT,jT . The one-time
signature SigTi,ji

of the root of tree Ti,ji is generated using the li−1th leaf of
tree Ti−1,ji−1 , i = 2, . . . , T . The sth GMSS signature consists of

1. The index s
2. The one-time signature Sigd

3. The one-time signatures SigTi,ji
, i = 2, . . . , T

4. The authentication paths AuthTi,ji
,li , i = 1, . . . , T

Lemma 2 (Signature Size). The size of a signature is

msignature =
T∑

i=1
(hi + twi) · n bits. (6)

Proof. A signature consists of T authentication paths (hi · n bits) and T one-
time signatures (twi · n bits), one for each layer i = 1, . . . , T . Adding up yields
msignature as shown by Equation (6) as the size of a signature. ��

Following the framework of [5], we split the signature generation into two parts.
The first part is the online part which computes Sigd and outputs the signature.
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The second part is the offline part that precomputes the authentication paths
and one-time signatures of the roots required for upcoming signatures. In fact,
the offline part performs an update of the private key and GMSS is therefore
a key-evolving signature scheme [2]. Note that for the first signature s = 0 the
offline part was done during the key generation.

Lemma 3 (Online Signature Cost). The average cost for the online signing
part is

conline = (2wT − 1)twT /2 · c
Hash

+ (twT + 1)c
Prng

. (7)

Proof. The generation of the one-time signature key requires one call to the
PRNG to obtain the seed and twT are necessary to obtain the secrets. The
average signing costs of the Winternitz one-time signature scheme are

(
(2wT −

1)twT

)
/2 · c

Hash
. This leads to Equation (7). ��

Next, we explain how to efficiently compute the offline signature part by dis-
tributing its cost. Our idea is based on the observation that trees in upper layers
do not change frequently from one signature to the other. In the following, the
values li, ji correspond to the current signature s.

We begin with the precomputation of SigTi,ji+1 , i = 2, . . . , T , which must be
ready when the next signature uses tree Ti,ji+1. SigTi,ji+1 is generated using the
one-time signature key that corresponds to either the (li−1 + 1)th leaf of tree
Ti−1,ji−1 or the 0th leaf of tree Ti−1,ji−1+1. The latter case appears if (li−1 +1) =
0 mod 2hi−1 , i.e. we have to use the next tree in the next upper layer i − 1. For
now we assume that RootTi,ji+1 is known when tree Ti,ji is used for the first
time, i.e. li = 0. This certainly holds if ji = 0, since RootTi,1 was computed
during the key generation. We distribute the computation of SigTi,ji+1 over the
2hi leaves (or steps) of tree Ti,ji . If li = 0 we use RootTi,ji+1 and perform
the initialization steps of the Winternitz one-time signature scheme. Then we
compute SigTi,ji+1 step-by-step each time we advance one leaf in tree Ti,ji . The
generation of SigTi,ji+1 is completed if li = 2hi − 1.

Lemma 4. On average, we require

csig(i) =
⌈

(2wi−1−1)twi−1

2hi+1

⌉
c
Hash

+
⌈

twi−1+1
2hi

⌉
c
Prng

(8)

operations each time we advance one leaf in Ti,ji to compute SigTi,ji+1 .

Proof. The one-time signature SigTi,ji+1 is generated using the Winternitz pa-
rameter of layer i − 1 (wi−1), and on average requires (2wi−1 − 1)twi−1/2 hash
evaluations and twi−1 + 1 calls to the PRNG, see Lemma 3. Since there are 2hi

leaves in the tree on layer i, the computation of SigTi,ji+1 can be distributed
over 2hi steps which yields Equation (8) as costs per step. ��

Above, we assumed that RootTi,ji+1 is known when we first use tree Ti,ji . Hence
we must precompute RootTi,ji+2 while using tree Ti,ji , such that it is ready
when we switch to tree Ti,ji+1 and want to start generating SigTi,ji+2 . This is
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RootTi,ji
RootTi,ji+1

Ti,ji+1Ti,ji

Ti−1,ji−1
SigTi,ji

SigTi,ji+1

li−1
li−1+1

Fig. 2. SigTi,ji+1 is precomputed from RootTi,ji+1 while using tree Ti,ji

done by successively computing the leaves of tree Ti,ji+2 and passing them to
Algorithm 1. While using the lith leaf of Ti,ji we compute the lith leaf of Ti,ji+2.
Its computation is distributed over the 2hi+1 leaves (or steps) of Ti+1,ji+1 , the
current tree on the next lower layer i + 1. Once the leaf is generated, it is
passed to treehash which partially constructs RootTi,ji+2 . Since treehash must
be called 2hi times to construct the root of a tree of height hi, the construction
of RootTi,ji+2 is completed once we switch from tree Ti,ji to tree Ti,ji+1. Note
that SeedTi,ji+2,0, the seed required to compute the 0th leaf Ti,ji+2 was obtained
during the generation of RootTi,ji+1 and is part of the private key. If ji = 0 the
seed was computed during the key generation. For the lowest layer i = T the
computation of the leaves has to be done at once. We also store AuthTi,ji+2,0
during the preparation of RootTi,ji+2 .

RootTi,ji
RootTi,ji+2

RootTi+1,ji+1

Ti,ji+2

Ti+1,ji+1

Ti,ji

SigTi+1,ji+1

li

Fig. 3. Leaf li of tree Ti,ji+2 is precomputed while using tree Ti+1,ji+1

Lemma 5. We require
{

c1
leaf(i) =

⌈
(2wi−1)twi

+1
2hi+1

⌉
c
Hash

+
⌈

twi
+1

2hi+1

⌉
c
Prng

c2
leaf(i) = hi · c

Hash
(at most)

(9)

operations each time we advance one leaf in Ti+1,ji+1 and Ti,ji , respectively, to
compute RootTi,ji+2 .
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Proof. The generation of the lith leaf of tree Ti,ji+2 requires ((2wi − 1)twi +
1)c

Hash
and (twi+1)c

Prng
. Since there are 2hi+1 leaves in the tree on layer i+1,

the computation of the lith leaf can be distributed over 2hi+1 steps which yields
c1
leaf(i). The while-loop of treehash requires at most hi hash function evaluations

which yields c2
leaf(i). ��

Next, we describe the precomputation of AuthTi,ji
,li+1, the authentication path

of the next leaf of tree Ti,ji . We use an algorithm proposed by Szydlo in [13].
This algorithm uses hi − 1 instances of treehash to compute the upcoming au-
thentication nodes. Given a leaf index li, Szydlo’s algorithm firstly checks if a
new instance of treehash must be generated. Then it spends at most hi compu-
tational units, which are either hash function evaluations for the while-loop of
treehash or leaf calculations. Again, the computation of the required leaves is
distributed over the 2hi+1 leaves of Ti+1,ji+1 . When using the leaf li+1 = 0 of tree
Ti+1,ji+1 , we perform the initialization steps of Szyldo’s algorithm and decide (1)
if a new instance of treehash must be generated and (2) how many new leaves
are required by the active treehash instances. Those leaves are computed step-
by-step as explained above. If li+1 = 2hi+1 − 1 the calculation of the required
leaves is completed and we pass them to Szydlo’s algorithm which updates the
treehash instances and outputs AuthTi,ji

,li+1. Note that AuthTi,ji
,0 is stored

during the construction of RootTi,ji
and therefore already available if li = 0.

Also, AuthTT,jT
,lT +1 must be computed at once.

RootTi,ji

RootTi+1,ji+1

Ti+1,ji+1

Ti,ji

SigTi+1,ji+1

li
li+1

Fig. 4. Leaves required for AuthTi,ji
,li+1 are precomputed while using tree Ti+1,ji+1

Lemma 6. We require at most
{

c1
auth(i) = hi · c1

leaf(i) +
⌈

2hi−2

2hi+1

⌉
c
Prng

c2
auth(i) = hi · c

Hash

(10)

operations each time we advance one leaf in Ti+1,ji+1 and Ti,ji , respectively, to
compute AuthTi,ji

,li+1.

Proof. Szydlo’s algorithm initializes at most one instance of treehash in each
iteration. We need at most 2hi−2 calls to the PRNG to obtain the initial seed for
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the leaf required by this instance from the current seed. In the worst case, the
active treehash instances require the computation of hi leaves. The computation
of those hi leaves and the 2hi−2 calls to the PRNG are distributed over the
2hi+1 steps in the tree on layer i + 1. This yields c1

auth(i). At most hi − 1 hash
evaluations are spend on the while-loops of the active treehash instances. One
hash evaluation is required by the initialization steps of Szydlo’s algorithm. This
yields c2

auth(i). ��

The following lemma considers the worst case costs of the offline part. It assumes
that for the next signature, we have to advance one leaf in each tree Ti,ji , i =
1, . . . , T − 1. Note that this is equivalent to advancing from tree Ti,ji to Ti,ji+1
in all layers i = 2, . . . , T .

Lemma 7 (Offline Signature Cost and Memory). The worst case costs
and the memory for the offline part are

coffline =
T∑

i=2

(
csig(i)+c1

leaf(i)+c2
leaf(i)

)
+

T∑
i=1

(
c1
auth(i)+c2

auth(i)
)

moffline =
(

T∑
i=2

(twi−1 + 4hi) + 3h1

)
· n bits.

(11)

Proof. In the worst case, we have to advance one leaf in the current tree on all
layers i = 1, . . . , T − 1. The cost for this case are obtained by adding the costs
for the precomputation of SigTi,ji+1 and RootTi,ji+2 for all layers i = 2, . . . , T
and AuthTi,ji

,li+1 for all layers i = 1, . . . , T . This yields coffline. During the
offline part, we have to store SigTi,ji+1 which requires twi−1 · n bits and the
stack required by treehash to construct RootTi,ji+2 which requires hi · n bits,
i = 2, . . . , T . Further, we have to store AuthTi,ji

,li+1 and some temporary nodes
required by Szydlo’s algorithm which require 3hi ·n bits, i = 1, . . . , T . This yields
moffline. ��

2.5 Verification

The verification process of GMSS is essentially the same as for MSS and CMSS.
The verifier knows the public key RootT1,0 and the parameter set P used by the
signer. At first, he verifies the one-time signature Sigd of the digest d using the
Winternitz parameter wT . Doing so, he obtains the verification key for this sig-
nature, i.e. leaf lT of tree TT,jT . Then, the verifier repeats the following steps for
i = T, . . . , 2. (1) use li and AuthTi,ji

,li to compute RootTi,ji
. (2) use RootTi,ji

and verify SigTi,ji
and obtain li−1. Finally, the verifier uses l1 and AuthT1,j1 ,l1

to obtain RootT1,0 . If RootT1,0 matches the signers public key, the signature is
accepted.

Lemma 8 (Verification Cost). The average cost for the verification is

cverify =
T∑

i=1
((2wi − 1)twi/2 + hi) c

Hash
. (12)
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Proof. On average,
(
(2wi − 1)twi

)
/2 hash evaluations are required to verify an

one-time signature. Using a leaf and an authentication path to construct a root
requires hi hash evaluations. Since there is a one-time signature and an authen-
tication path for each layer the average costs for the verification are cverify. ��

3 GMSS in Practice

In this section, we give practical GMSS parameters that simultaneously allow for
a large signature capacity, good efficiency and small bandwidth, and describe how
to integrate GMSS in a protocol such as SSL with a client/server architecture.

3.1 Choosing P

To find an optimal parameter set, we consider following optimization problem:
given certain bounds on the signature capacity as well as the key generation, sig-
nature generation and verification time, find the parameter set which provides
the smallest signatures. We formulated this optimization problem as mixed in-
teger program (MIP) using Zimpl [9]. The constraints of this MIP are the equa-
tions for the key generation (3), signature generation (7),(11) and verification
(12) time and the signature size (6). Note that the worst cast cost of Szydlo’s al-
gorithm for the authentication path computation shown in Equation (10) occurs
only once per tree. To compute the parameter sets, we use the average costs of
Szydlo’s algorithm, which are

(
hi/2 ·

(
(2wi − 1)twi + 1

)
+ hi/2 − 1

)
c
Hash

+
(
hi + twi

)
c
Prng

for a tree on layer i. To solve the MIP, we used the free solver SCIP [1]. Using
different bounds for the signature generation and verification time, we obtained
the following parameter sets Pk =

(
T, (h1, . . . , hT ), (w1, . . . , wT )

)
that allow up

to 2k signatures.

P40 =
(
2, (20, 20), (10, 5)

)
P80 =

(
4, (20, 20, 20, 20), (8, 8, 8, 5)

)
P ′40 =

(
2, (20, 20), (9, 3)

)
P ′80 =

(
4, (20, 20, 20, 20), (7, 7, 7, 3)

)

Table 1 shows timings (t) and memory requirements (m) for the parameter
sets when using a 160 bit hash function. The size of the public key is mpubkey = 20

Table 1. Timings and memory requirements

moffline mprivkey msignature tkeygen tsign tverify

P40 3160 bytes 1640 bytes 1860 bytes 723 min 26.0 ms 19.6 ms
P ′

40 3200 bytes 1680 bytes 2340 bytes 390 min 10.7 ms 10.7 ms
P80 7320 bytes 4320 bytes 3620 bytes 1063 min 26.1 ms 18.1 ms
P ′

80 7500 bytes 4500 bytes 4240 bytes 592 min 10.1 ms 10.1 ms
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bytes for all parameter sets. To get timings, we use the ratio c
Hash

= c
Prng

=
0.002 ms, which we obtained using a Java implementation of SHA1 on a Pentium
dualcore 1.8GHz.

This table clarifies the flexibility of GMSS. P40 and P80 provide the shortest
possible signatures. In case of P40, the signature size is reduced more that 26%
compared to what was stated in [3]. P ′40 and P ′80 provide very fast signature
generation and verification times, at the expense of larger signatures.

Note that a large portion of the signature cost is required for the precomputa-
tion of the upcoming authentication paths. One possibility to circumvent this is
to use a tree of small height (≤ 5) in the lowest layer and to store it completely
in memory. Then the authentication paths can be obtained for free. In case of a
160 bit hash function, storing a tree of height five requires 1,260 bytes.

3.2 Message Flow and Application to SSL/TLS

Finally, we describe how signatures should be transmitted when the signer and
the verifier are connected during the signing process as in case of the SSL/TLS
protocol. Thanks to the online/offline strategy [5], the server has all signature
parts ready from the beginning of the transaction, except for the one-time sig-
nature of the message digest Sigd. The server delays the generation of the on-
line signature Sigd and sends only the first offline signature part SigTT,jT

and
RootTT,jT

to the client. Then, the client demonstrates his honesty by sending
leaf lT−1 (the verification key of SigTT,jT

) back to the server. The client has
to spend some computational effort to obtain lT−1, namely he has to verify
SigTT,jT

, while the server does not have to do anything. While the server is
waiting for the client to send lT−1, he can also start with next the offline part of
the signing process. When the server receives the correct leaf lT−1, he sends the
remaining parts of the signature and starts to compute Sigd. In the same time,
the client can verify the remaining one-time signatures SigTi,ji

, i = 2, . . . , T − 1

falsefalse

false

truetrue

true

abort

continue

rejectreject

accept

correct?correct?

correct?

computecomputecomputecomputecomputecompute

update Sigi and Authi, i ≤ T
for next signature

sign

digest
lT−1

lT−1

lT−1

lT−2 lTRootT−1

Root1

Root1

RootT

RootT

RootT

SigT
SigT−1 SigdAuthT−1 Auth1 AuthT

Signer

Verifier

(client)

(server)

Fig. 5. Message Flow for SSL/TLS
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that he receives from the server, and compares the root of the top tree to the
server’s public key. In the final step, the server sends Sigd to the client who
verifies its correctness.

The overhead of our protocol for the server is just 2n bits memory to store
RootTT,jT

and lT−1. The benefits are as follows: it minimizes bandwidth and
server-side calculations in case of DoS attacks, and optimizes the latency of the
transaction. Indeed, the protocol can be stopped early in case of DoS. In addi-
tion, the signature generation, transmission and verification stages are performed
concurrently.

4 Conclusion

We presented the generalized Merkle signature scheme (GMSS). GMSS is pa-
rameterized by the parameter set P , that allows a great degree of freedom in
choosing the signature capacity, the signature generation and verification tim-
ings, and the signature size. GMSS uses a scheduling strategy to precompute
upcoming signatures. This drastically reduces the signature generation time and
in turn allows to choose parameters that provide smaller signatures. For a sig-
nature capacity of 240, the signature size is 1,860 bytes, where signature genera-
tion and verification requires 26 ms and 19.6 ms, respectively. GMSS is the first
Merkle-type signature scheme that maintains its efficiency even if the signature
capacity cryptographically unlimited, i.e. 280. In that case, the signature size is
3,620 bytes, where signature generation and verification requires 26.1 ms and
18.1 ms, respectively. For both signature capacities (240, 280), it is also possible
to find parameter sets such that the signature generation and verification time
is only 10 ms. This makes GMSS a serious competitor to commonly used sig-
nature schemes such as RSA or ECDSA. Furthermore, GMSS does not rely on
number theoretic problems and is not vulnerable to quantum computer attacks.
Finally, we proposed a DoS-resilient protocol for SSL/TTL that minimizes the
total latency of a signature exchange.
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A Merkle’s Tree Authentication Scheme

The tree authentication scheme was proposed by Merkle in [11] for using mul-
tiple one-time signature instances with a single “master” public key. Merkle’s
tree authentication scheme in conjunction with a one-time signature scheme is
referred to as the Merkle signature scheme (MSS).

Keypair Generation: The signer first generates 2h one-time key pairs. The one-
time verification keys form the leaves of a binary hash tree of height h, called
Merkle tree. The value of an inner node is obtained by hashing the concatenation
of the values of its two children. Iterating yields the root of the tree which is the
MSS public key, and the private key consists of the 2h one-time signature keys.

Signature Generation: To authenticate the s-th leaf, i.e. the s-th verification key,
the s-th authentication path is required. This authentication path consists of the
h−1 siblings of the h−1 nodes on the path from the sth leaf to the root. The s-th
Merkle signature consists of four parts: first the index s ∈ {0, . . . , 2h − 1} of the
selected one-time signature; second, the one-time signature of data d generated
with the s-th signature key; third, the s-th verification key; and fourth, the
authentication path for the s-th verification key.

http://eprint.iacr.org/
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Verification: After verifying the one-time signature of d, the verifier has to val-
idate the authenticity of the supplied verification key. Using the index s and
the authentication path of the s-th leaf, he re-computes the path from the sth
leaf to the root. To do so, he hashes the concatenation of the s-th leaf and first
node in the authentication path to obtain the first node on the path to the root
(the order for concatenating is decided according to the index s). By succes-
sively concatenating the hashed nodes and authentication nodes, the verifier can
eventually recover the root itself. If the root matches the signer’s public key, the
signature is valid.

B The Winternitz One-Time Signature Scheme

The Winternitz OTS [11], described in detail in [4], is parameterized by w, which
allows a trade-off between the signature cost and size.

Keypair Generation: The keypair generation produces tw random values x1,
x2, . . . , xtw , where tw = �n/w� + �(�log2(�n/w�)	 + 1 + w)/w�. Then, the
one-time signature key is X = (x1, . . . , xtw ), and the one-time verification key
Y = H

(
H2w−1(x1)‖ . . . ‖H2w−1(xtw )

)
, where Hk(x) denotes the hash function

applied k times and ‖ the concatenation of two strings. The cost for the key pair
generation is cOTSkeygen =

(
(2w − 1)tw + 1

)
c
Hash

+ tw · c
Prng

.

Signature Generation: For an n-bit message digest d, the OTS is computed as
follows. The binary representation of d (possibly padded) is divided into �n/w�
blocks of length w: b1, . . . ,b�n/w�. Next, the checksum C =

∑�n/w�
k=1 2w − bk is

calculated. The binary representation of C (possibly padded) is again divided
into blocks of length w: b�n/w�+1, . . . , btw . Finally, the signature of d is Sig =
(σ1, . . . , σtw ), where σk = Hbk(xk), k = 1, . . . , tw. The signature size is tw · n
bits and the average cost for signing is cOTSsign = (2w − 1)tw/2 · c

Hash
.

Verification: Given the digest d, the signature Sig = (σ1, . . . , σtw), and the
verification key Y , the verifier computes b1, . . . , btw just like the signer and
then calculates yk = H2w−1−bk(σk), k = 1, . . . , tw. The signature is accepted
if H(y1‖ . . . ‖ytw) equals the verification key Y . The average verification cost is
exactly the same as the signature cost.
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Abstract. Today’s protocol specifications only define the behaviour of
principals representing communication endpoints. But in addition to end-
points, networks contain midpoints, which are machines that observe or
filter traffic between endpoints. In this paper, we explain why midpoints
should handle protocols differently from endpoints and thus midpoint
specifications are needed. With a case study, using the TCP protocol
and three different firewalls as midpoints, we illustrate the consequences
of the current lack of protocol specifications for midpoints, namely that
the same protocol is implemented differently by the different firewalls. We
then propose a solution to the problem: We give an algorithm that gener-
ates a midpoint automaton from specifications of endpoint automata. We
prove that the resulting midpoint automata are correct in that they for-
ward only those messages that could have resulted from protocol-conform
endpoints. Finally, we illustrate the algorithm on the TCP protocol.

1 Introduction

Networks contain different kinds of principals. Some are communication end-
points, such as clients and servers, while others are midpoints (also called mid-
dleboxes [Gro02a]) that forward, filter, or, more generally, transform traffic. A
midpoint that simply forwards traffic is straightforward to implement. But as
soon as stateful filtering comes into play, the midpoint must know the communi-
cation protocols used. This is TCP for packet filters and diverse application-level
protocols for application-level firewalls. If a midpoint does not know enough
about the protocols it filters, there exist ways to bypass a security policy. A
prominent example is sending file-sharing traffic over http when using packet
filters.

Protocol specifications are normally written for endpoints. Starting from such
specifications, it is not clear how a midpoint should enforce the protocol-conform
execution by the endpoints, as it can neither observe nor correctly track the
protocol states of endpoints (see Section 3 for more details on this problem).
Another problem is that filtering midpoints need to be as secure (i.e. as strict)
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as possible. However, they should also be user-friendly (and therefore not overly
strict). This leads to different interpretations on how a midpoint should handle
a given protocol.

The implications of the lack of protocol specifications for midpoints are that
manufacturers of devices acting as midpoints have no guidelines on how they
should implement a protocol. In practice, midpoint manufacturers implement the
same protocol differently, based on their own interpretation of how the midpoint
should handle the endpoint data. This implementation is then incrementally
adapted based on practical experience. To show how this looks in practice, we
present the TCP automata of three different firewalls in Section 4 and analyse
their differences.

As a solution to this problem, we show how to systematically generate mid-
point specifications from endpoint specifications. We propose an algorithm that,
given the protocol automata for the endpoints, generates a protocol automaton
for the midpoint. Roughly speaking, the algorithm tracks all possible endpoint
states at each point in time, taking into account messages in transit and possible
network behaviour. We prove that the midpoint automata constructed forward
only those messages that could have resulted from protocol-conform endpoints.
Overall, our contributions are an analysis of why different protocol specifications
are needed for midpoints than for endpoints, what the implications of the lack of
such specifications are, and a solution for this problem. We use the TCP protocol
as an example.

The remainder of this paper is organised as follows. In Section 2, we briefly
describe background and related work. We then, in Section 3, explain why mid-
points are different from endpoints and therefore need their own protocol specifi-
cations, before presenting, in Section 4, the results of our case study. In Section 5,
we present an algorithm to generate a midpoint automaton from endpoint au-
tomata and prove it correct. Finally we conclude and report on future work in
Section 6.

2 Background and Related Work

We will use the TCP protocol [ISI81] for our examples, which we briefly sum-
marise here. TCP is a connection-oriented protocol, which is used by applications
to transport data to communication partners in a reliable way. TCP itself uses
IP to transport the data and just adds a header for flow control, reliability, and
multiplexing purposes. As TCP is connection-oriented, there is an initiation —
called a three-way-handshake (see Figure 1) — and a tear down (see Figure 2)
for each connection. With the use of sequence numbers and acknowledgements,
TCP ensures that (a copy of) every packet reaches its destination.

For protocol specifications, we use Mealy machines (automata) [Mea55]. A
Mealy machine is a six-tuple M = (Q, Σ, Γ, δ, λ, q1), where Q = {q1, q2, ..., q|Q|}
is a finite set of states ; Σ = {σ1, σ2, ..., σ|Σ|} is a finite input alphabet ;
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Alice message sent Bob

CLOSED LISTEN
SYN-SENT — SYN →

← SYN & ACK — SYN-RECEIVED
ESTABLISHED — ACK → ESTABLISHED

Fig. 1. TCP three-way-handshake

Alice message sent Bob

— FIN & ACK →
← FIN & ACK —
— ACK →

Fig. 2. TCP connection tear down

Γ = {γ1, γ2, ..., γ|Γ |} is a finite output alphabet ; δ : Q × Σ → Q is the transition
function; λ : Q × Σ → Γ is the output function; and q1 ∈ Q is the initial state.

Note that we write qi
x/y−→ qj to denote that δ(qi, x) = qj and λ(qi, x) = y.

Despite the fact that midpoint automata are central for the construction of
firewalls and other security gateways, the problem we address has only partly
been identified before [Gro00, Gro02b]. To our knowledge, we are the first to
present a formal treatment of the problem and to provide an approach for solv-
ing it. The closest related work is [BCMG01], which describes how to build a
monitor to find out if a system correctly implements an endpoint specification.
The authors report on the same problems as ours in determining the state of an
endpoint. This problem arises as packets can be reordered or lost between the
monitor and the endpoint. They propose several monitoring algorithms. Unfor-
tunately, their algorithm that takes arbitrary reordering and loss into account
is very inefficient (the authors call it brute-force) and their refinements are too
constrained to be useful in our setting. In principle, their solution could be used
to solve our problem, by using one monitor per endpoint and attaching the out-
put of one monitor to the input of the other. As their monitors are inefficient,
this is not a practical solution since firewalls should execute very efficiently, i.e.,
make each decision with minimal overhead.1 Note that we also solve a different
problem than they do: We do not care if the endpoints correctly implement a
protocol. Our goal is to only let messages arising from correct protocol runs pass
the firewall, independently of how the endpoints create them.

Related areas are firewall testing [MWZ05, ASH03], test-case generation for
Mealy machines [Gil61,Cho78,SD88,FvBK+91,CVI89] and the testing of TCP
endpoint automata [BFN+06, Pax97]. In firewall testing a midpoint is tested.
The starting point of previous work has been the firewall rulesets but not the
underlying automata. The area of test case generation for Mealy machines is

1 This is not a problem with our generated automata. The generation takes time but
their execution is very fast.
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related, as these methods can be used to generate test cases for the midpoint
automata resulting from our algorithm.

3 The Source of the Problem

In this section, we explain why midpoints are different from endpoints and why
they thus need a different protocol specification. The problem arises with the
filtering midpoints. These base their decisions — basically drop or forward —
on the protocol states the endpoints are in. Unfortunately the two endpoints of
a connection can be in different states and not all of these states are observable
by the midpoint.

Consider the following example: the TCP connection initiation (three-way-
handshake) shown in Figure 1. Imagine the second packet gets lost after being
forwarded by the midpoint (scenario 1). Alice is now in the state SYN-SENT,
whereas Bob is in state SYN-RECEIVED. To the midpoint, this situation looks
the same as the situation where the second packet reaches Alice, but the third
packet gets lost before being received by the midpoint (scenario 2).

Given that the midpoint cannot differentiate between these scenarios, in what
state should the midpoint be? And how should it react upon receiving a SYN
packet from Alice? In scenario 1, the SYN is a retransmission and should be
forwarded. Whereas in scenario 2, a SYN does not conform with a correct pro-
tocol execution (Alice should not send SYN packets in state ESTABLISHED) and
should therefore be dropped.

The endpoints see the situation differently. Alice can clearly distinguish be-
tween scenario 1, where she would repeat her SYN, and scenario 2, where she
would repeat her ACK. Bob cannot distinguish between the scenarios (or at least
not until he has seen Alice’s reaction), but he does not need to: he would repeat
his SYN&ACK in any case.

Another scenario is possible: Alice may have crashed and the SYN at hand
could represent a new connection initiation (with the same source port as before).
This scenario can also happen later on in a connection. What should the midpoint
then do? Should it forward the SYN and risk damage to Bob? Should it just
block the packet and hinder Alice from communicating with Bob? Should it send
a RST in Bob’s name? Should it also send a RST in Alice’s name to Bob? All
these questions must be answered when giving a midpoint specification of TCP.

In this example, we see that one reason why midpoints cannot always track the
protocol states of the endpoints lies in packet loss. But packet loss is only part
of the problem. Another reason lies in the fact that certain endpoint constructs
lead to ambiguity from the midpoint’s perspective. These are:

1. Multiple transitions with the same output:

Consider two transitions qi
−/a−→ qj and qi

b/a−→ qk. Assume that the mid-
point has previously forwarded b to an endpoint with these two transitions
and afterwards receives an a. It cannot know from which transition this a
originated.
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2. Transitions without output:
In this case, a midpoint cannot distinguish between the start state of the
transition and the end state of the transition (at least until it has seen
other, unambiguous output from the endpoint). A special case is hidden
states, which are states where all incoming and outgoing transitions have no
output. Such states can never be identified by a midpoint.

3. A packet can be sent in different states:
This makes an unambiguous mapping between packets and states impossible.
While this is not a source of tracking problems, it does make recovering from
them difficult.

4 Case Study: Differences in Midpoints Based on TCP

In the last section, we explained why it is nontrivial to build a midpoint from
endpoint specifications. In this section, we now show the implications of a lack of
midpoint specifications by documenting the current state of affairs. For this, we
took three commonly used firewalls — Checkpoint [Che], netfilter / iptables [ipt],
and ISA Server [Isa] — and reverse engineered them, testing them against our
(as there is no other) TCP midpoint specification given in [SBC05] and then
analysing the results by hand.

As a result, we derived three distinct TCP automata (see [vBBC07] for de-
tails). Below we describe three of the differences:

A ’clean’ three-way-handshake is not enforced. To initiate a TCP connection,
a so called three-way-handshake is used (see Figure 1). So let us assume the
firewall has accepted a SYN from an endpoint E0 (Alice) to another endpoint
E1 (Bob). If there is now a SYN&ACK from E1 to E0, then everything works as
expected: the packet should be let through and the firewall should enter the next
state. If there is another SYN from E0 to E1, then this will be a retransmission
(it could be that the first SYN was lost between the firewall and E1) and should
be allowed as well. If there is a RST from E1 to E0, then E1 does not want this
connection, the packet should be let through, and the TCP automaton initialised.
All other packets make no sense at this time and therefore should be blocked.
Unfortunately, in all of the tested firewalls, additional packets were let through.
As one example, a FIN from E1 to E0 is allowed during connection initiation
in netfilter. But there is no connection to be closed: If E1 is not accepting the
connection, then it would send a RST.

After a FIN, data from both sides is still accepted. If E0 sends a FIN to E1,
then this means that E0 wants to close the connection. After this FIN, E1 is
still allowed to send data, but E0 is not (it makes not sense to send data after
requesting to close the connection), except for the ACK belonging to E1’s FIN.
As packets may not arrive in their correct ordering at the firewall, the firewall
cannot just drop all packets from E0 after having seen a FIN from B. But the
firewall should just let through older packets (based on the sequence number),
a retransmission of the FIN, and the ACK to E1’s FIN&ACK (after having
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received E1’s FIN&ACK). To accomplish this task, the firewall has to keep track
of the sequence numbers. This appears not to be done and therefore too many
packets are let through.

SYNs are accepted during already established connections. SYNs are only used
for connection initiation. That means that if a connection is fully established,
there will be no more legitimate SYNs (based on the sequence numbers) be-
longing to that connection. But netfilter and ISA Server accept SYNs (from the
initiator of the connection) all the time. Checkpoint does block the SYNs, but
always allows SYN & ACK, which is not much better.

These findings show that there is a lack of consensus, at best, and a general
lack of understanding, at worst, about how TCP should be handled by a firewall.
The result is that every vendor does something different. We would like to con-
tribute a solution to this problem by showing, systematically, how to construct
midpoint specifications from endpoint specifications.

5 Construction of a Midpoint Automaton from Endpoint
Automata

In the preceding sections, we saw why there is a need for midpoint specifications.
Basically there are two ways to construct such a specification: write it directly or
generate it from the endpoint specifications. The first alternative has two major
drawbacks: 1) the consistency with the endpoint specifications must somehow be
assured and 2) it requires additional work for the protocol designers. The second
alternative overcomes both problems.

5.1 Setting

We subsequently consider only two-party protocols, i.e. protocols for only two
endpoints. This covers most network protocols.2 Let E0 and E1 be the end-
points and M the midpoint through which communication passes. Communica-
tion takes place in the form of messages, where the endpoint specification of the
communication protocol determines when an endpoint may send which kind of
message. For every message arriving at the midpoint, the midpoint can either
forward the message or drop it (Figure 3).

E0 M

m

E1

m’

E0 M

m

E1

Fig. 3. A message m from endpoint E0 to endpoint E1 is forwarded (left) or dropped
(right) by the midpoint M

We write X → Y : m to express that the message m is sent from the endpoint
X to the other endpoint Y , where X ∈ {E0, E1}, Y ∈ {E0, E1}, and Y �= X . As
2 It is straightforward to extend our approach to protocols with more endpoints.
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there is a midpoint M between E0 and E1, every X → Y : m can be divided into
the two parts X → M : m and M → Y : m′. This makes explicit on which side
of the midpoint a message is and also simplifies the specification of the actions
of the midpoint: m′ = m if the midpoint forwards the message unaltered, m = −
(where − signifies no external output) if the midpoint drops the message, and
m′ �= m if the midpoint alters the message before forwarding it. The messages
may be altered, for example, when using Network Address Translation (NAT)
in the firewall. For the sake of simplicity, we will not consider this case.

We will construct our midpoints to be permissive rather than restrictive. This
means that our midpoint forwards messages if they could have resulted from
protocol-conform endpoints. Thus our midpoint can possibly accept an incorrect
message, but only in the cases where there is a scenario where this message could
occur.

For the transport of the messages between the endpoints (via the midpoint),
we assume a network that either (1) delivers messages, although not necessarily
preserving the order, or (2) looses them.

5.2 Idea

Before giving the construction of a midpoint automaton from endpoint automata
in Section 5.3, we first sketch the ideas behind our construction.

We model the global state of a system (the endpoints, midpoint, and network)
at some time t as a state stt = (qt

0, q
t
M , qt

1, nett), where qt
i is the state of endpoint

Ei at time t, qt
M is the state of the midpoint M at time t, and nett consists of

all messages travelling between the endpoints at time t.
The midpoint M has to base its actions on the state of its environment. If

M could observe all actions in the system, qt
M = (qt

0, q
t
1, nett) would hold at any

time t, meaning that M always knows the exact states of the endpoints and the
contents of the network. But midpoints generally cannot always determine the
correct values of these components and hence we will let the state of our midpoint
be a set of such triples, where each of these triples represents a possibly correct
view of the system. Thus the triples of one state qt

M are equivalent in the sense
that they are not distinguishable by the midpoint with its current knowledge,
i.e. based on the traffic it has previously observed.

To provide further intuition about the functioning of a midpoint, let us con-
sider an example. Suppose the system starts in the global state st1 = (q1,
{(q1, q1, net1)}, q1, net1).3 Assume the following steps are taken:

1. M sends (forwards) a message x to E0.
To track the fact that the network now contains x, M must change its state
to q2

M = {(q1, q1, net2)}, where net2 = net1 ∪ {M → E0 : x}. The global
state is then st2 = (q1, {(q1, q1, net2)}, q1, net2).

3 This means that E0 and E1 both are in their start states, the network content is
net1 and the midpoint knows about all this. Note that q1 of E0 and q1 of E1 are not
the same as they do not belong to the same automaton.
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(q1, qB, {M -> E0: x, M -> E0: y})q1 q2 q3

x / z1 y / z2
M -> E0: x
M -> E0: y

E0 M

(q1, qB, {M -> E0: x, M -> E0: y})q1 q2 q3

x / z1 y / z2
M -> E0: y
E0 -> M: z1

(q1, qB, {M -> E0: x, M -> E0: y})q1 q2 q3

x / z1 y / z2
E0 -> M: z1
E0 -> M: z2

Fig. 4. Two consecutive endpoint transitions

2. x is received by E0 and used as input to its automaton. Suppose, for E0

in state q1, there are only two transitions: q1
x/y−→ q2 and q1

−/z−→ q3. As
M does not know if and when E0 makes a transition, it cannot directly
act on this step and thus its state is wrong. The global state is st3 =
(q2, {(q1, q1, net2)}, q1, net3), where net3 = net2 \ {M → E0 : x} ∪ {E0 →
M : y}.

3. A message y reaches M .
To take a correct decision, M must compute what could have happened (all
possible successor steps) since its last step. This is either:
– nothing, i.e., (q1, q1, net2),
– E0 consumes x, makes a transition to q2, and outputs y: (q2, q1, net3), or
– E0 makes a transition to q3, and outputs z: (q3, q1, net2∪{E0 → M : z}).

Now, M can determine its reaction on y. If there is one or more triple having
y in its net (a possibly correct scenario where y occurred), y is forwarded
and M ’s next state will consist of all these matching triples with their nets
updated: q4

M = {(q2, q1, net4)}, where net4 = (net3 \{E0 → M : y})∪{M →
E1 : y}. The global state is st4 = (q2, {(q2, q1, net4)}, q1, net4).

In the example above, there was only one endpoint transition between two
consecutive midpoint transitions. In such a case, tracking (computing all pos-
sible successor states) is not difficult. The situation is more complex if more
than one endpoint transition can happen between two consecutive midpoint
transitions. Figure 4 provides an example. Since communication need not be or-
der preserving, after two consecutive endpoint transitions, the second message
(E0 → M : z2) may reach the midpoint first. Thus it would not be enough if the
midpoint computed only the next possible state (reachable in one step), but all
possible successor states are needed, as only this would lead to {(q1, qB, {M →
E0 : x, M → E0 : y}), (q2, qB, {M → E0 : y, E0 → M : z1}), (q3, qB, {E0 → M :
z1, E0 → M : z2})} and thus lead to the correct action — forwarding z2 — and
the correct next state {(q3, qB, {E0 → M : z1, M → E1 : z2})}.

Let us return to our first example to illustrate why all possibly correct mes-
sages must be forwarded. Assume that we have the following sequence of actions:

1. M forwards a message x to E0.
2. x is lost by the network.
3. E0 takes the transition to state q3.
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4. An intruder sends message y (which is incorrect at q3).
5. y reaches M .

For the midpoint, this scenario looks exactly the same as the one before. But
here y is an incorrect message. As we never want to block correct messages (our
decision for a permissive rather than restrictive midpoint), we have to accept y
here (it could be the correct one from above).

5.3 Construction

We will now give the technical details of our construction of a midpoint automa-
ton from endpoint automata. A two-party protocol p can be specified by two
Mealy automata (one for each endpoint):

A0 = (Q0, Σ0, Γ0, δ0, λ0, q0,1) and A1 = (Q1, Σ1, Γ1, δ1, λ1, q1,1).

Note that Σ0 = Γ1 and Γ0 = Σ1 since these automata must be able to commu-
nicate with each other. Often even A0 and A1 are the same.

The network can be modelled as a multiset (also called bag) net, which stores
all messages in transit between the midpoint and the endpoints. Specifically

net ⊆ M(S) = {x′ | x ⊆ S, x′ =s x},

where S is the set of messages allowed by the protocol and =s denotes set equality
(the sets contain the same elements, ignoring repetition).

In our construction, net will be part of a state of a deterministic automaton.
Since we cannot handle a network of infinite size we must forbid actions of the
endpoints and the network that can put infinitely many packets into the net-
work. Hence, for the endpoints, we forbid loops without input in their protocol
automata. For the network, we do not model message duplication. These restric-
tions are not problematic as the former should not be present and the latter can
easily be detected and handled on another layer. Thus, it suffices to consider

net ⊆ P(S), where S ={X → Y : m|X, Y ∈{E0, E1, M}, Y �= X, m ∈ (Σ0∪Γ0)}.

Before starting with the construction of the midpoint automaton, we need to
define the actions that are possible in our system. These are either transitions
by the endpoints or the midpoint, based on their automata, network loss, or a
message inserted by an intruder.

Definition 1. stt+1 = (qt+1
0 , qt+1

M , qt+1
1 , nett+1) is a successor state of stt =

(qt
0, q

t
M , qt

1, nett), denoted stt � stt+1, if one of the following conditions holds.

Midpoint transition: For any msg ∈ net with msg = (Ei → M : m),

qt+1
0 = qt

0,

qt+1
1 = qt

1,

qt+1
M = δM (qt

M , msg),

nett+1 = (nett \ {msg}) ∪ {λM (qt
M , msg)}.

(1a)
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Correct endpoint transition: For any msg ∈ nett with msg = (M → Ei : m)
(the endpoint taking an input from the network) or for m = − (no input)

msg′ =

{
(Ei → M : λi(qt

i , m)) ifλi(qt
i , m)) �= −,

− otherwise,

nett+1 = (nett \ {msg}) ∪ {msg′},

qt+1
i = δi(qt

i , m),

qt+1
1−i = qt

1−i,

qt+1
M = qt

M .

(1b)

Incorrect transition:

msg′ ∈ (Γi \ {λi(qt
i , m)|(M → Ei : m) ∈ nett or m = −}),

nett+1 = nett ∪ {msg′},

qt+1
0 = qt

0,

qt+1
1 = qt

1,

qt+1
M = qt

M .

(1c)

Network loss: for any msg ∈ nett,

qt+1
0 = qt

0,

qt+1
1 = qt

1,

qt+1
M = qt

M ,

nett+1 = nett \ {msg}.

(1d)

Note that as the network is modelled by a set, the permutation of messages
is handled implicitly. Furthermore, note that an endpoint transition must not
produce output. We denote empty output as ‘−’.

Definition 2. Transitions (1a), (1b) and (1d) represent correct transitions. We
denote a message resulting from a correct transition as a correct message and
all other messages as incorrect messages.

Definition 3. A correct trace is a trace st1 � st2 � ... � stn, where every
transition sti � sti+1, with 1 ≤ i < n, is a correct transition.

Definition 4. The message history of a trace tr = st1 � st2 � ... � stn is
a sequence of messages m1, m2, ..., mt, where t is the number of non-midpoint
transitions in tr that produce output, and mi is the output from the ith of these
transitions.

Definition 5. The midpoint message history of a trace tr = st1 � st2 � ... � stn

is a sequence of messages m1, m2, ..., ms, where s is the number of midpoint
transitions in tr, and mi is the input of M at its ith transition in tr.



56 D. von Bidder-Senn, D. Basin, and G. Caronni

Definition 6. Two traces are midpoint equivalent if they have the same mid-
point message history.

Definition 7. Two triples (a, c, d) and (e, g, h) are midpoint equivalent if there
exist two midpoint equivalent traces tr1 and tr2 with tr1 = s1 � s2 � ... �
(a, b, c, d) and tr2 = st1 � st2 � ... � (e, f, g, h).

To have a correctly functioning midpoint, two properties about a midpoint state
qM must be satisfied: 1) one of the triples in qM is the correct one (Definitions
8 and 9) and 2) only possibly correct messages are forwarded (Definition 10).

Definition 8. qt
M is a correct tracking at time t if qt

M is neither too small nor
too large. Not too small means that (qt

0, q
t
1, nett) ∈ qt

M . Not too large means that
all q ∈ qt

M are midpoint equivalent to (qt
0, q

t
1, nett).

Definition 9. M tracks endpoints correctly if for every midpoint transition
(qn−1

0 , qn−1
M , qn−1

1 , netn−1) � (qn
0 , qn

M , qn
1 , netn) in a trace, qn

M is a correct tracking
at time n.

Definition 10. M computes outputs correctly if for every trace tr = st1 �
. . . � stn and every t, 1 ≤ t ≤ n we have:

λM (qt
M , Ei →M : m)=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

M → Ej : m if Ei → M : m occurs in the message
history of any trace tr′ which is mid-
point equivalent to tr,

− otherwise.

where j = 1 − i.

As M cannot distinguish between tr and tr′ in the above, it must forward all
messages that occur in any of these traces, in order to avoid ever dropping a
correct message.

Based on A0 and A1, we will now construct a Mealy automaton AM for the
handling of protocol p by the midpoint:

AM = (QM , ΣM , ΓM , δM , λM , sM )
QM = P(Q0 × Q1 × net)
ΣM = {E0 → M : a | a ∈ (Γ0 \ {−}} ∪ {E1 → M : a | a ∈ (Γ1 \ {−}}
ΓM = {M → E0 : a | a ∈ (Σ0 \ {−}} ∪ {M → E1 : a | a ∈ (Σ1 \ {−}} ∪ {−}

qM,1 = {(q0,1, q1,1, {})}

Before we define the functions δM and λM , we first analyse the different possible
scenarios. We do this with the help of Figure 5. There we describe the relation-
ship between the actions of an endpoint E0 (the situation for E1 is analogous),
the network, and the midpoint M . In particular, we consider how the four dif-
ferent types of transitions an endpoint can take (x/−, x/y, −/y, and −/−, for
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Endpoint E0 Network Midp. correct midpoint transition Eq.

-
E0 M

x
δM (qM , −) = {(q1, qE1 , netM \ {M → E0 : x})} (2c)
λM (qM , −) = −

q1 q2x / -
E0 M

x
δM (qM , −) = {(q2, qE1 , netM \ {M → E0 : x})} (2d)
λM (qM , −) = −

E0 M

x

y

δM (qM , −) = {(q3, qE1 , netM \ {M → E0 : x})} (2d)

q1 q3x / y

λM (qM , −) = − (2c)

E0 M

x

y

δM (qM , E0 → E1 : y) = {(q3, qE1 , (netM \
{M → E0 : x}) ∪ {M → E1 : y})}

(2d)

λM (qM , E0 → E1 : y) = E0 → E1 : y

E0 M

x

y

δM (qM , E0 → E1 : y) = {(q4, qE1 , (netM \
{M → E0 : x}) ∪ {M → E1 : y})}

(2c)
(2e)

λ(qM , E0 → E1 : y) = E0 → E1 : y

q1 q4- / y
E0 My

δM (qM , E0 → E1 : y) (2e)
= {(q4, qE1 , netM ∪ {M → E1 : y})}

λ(qM , E0 → E1 : y) = E0 → E1 : y

E0 My

M

δM (qM , −) = {(q4, qE1 , netM )} (2e)
λM (qM , −) = − (2c)

q1 q5- / -
E0 M

δM (qM , −) = {((q5, qE1 , netM )} (2e)
λM (qM , −) = −

Fig. 5. A transition in an endpoint, from a midpoint’s view

x ∈ Σ0, y ∈ Γ0) look from the endpoints’, the network’s, and the midpoint’s
respective point of view. These are shown in columns 1 – 3, where one row rep-
resents one case. Note that one view (row) of one principal can belong to several
views of another principal.

In the fourth column, the correct midpoint transition is shown. That is the
transition the midpoint must take if it wants to correctly track the endpoint’s
state and the messages in the network.4 For this we assume qM={(q1, qE1 , netM )}
to be the state of the midpoint after its last transition (where applicable, this
is forwarding x). Note that netM contains all the messages in the network.
Therefore a message has to be removed from netM if it is no longer in the
network, either because it was consumed by an endpoint or midpoint, or lost by
the network.

As an example, let us explain the contents of the third row (in the first column,
the third and the forth row coincide). Here a message x is forwarded by M to
E0 (3rd column), i.e. M → E0 : x. This message then reaches E0 (2nd column),
which uses it as input to its x/y-transition (1st column). After this transition,
E0 is in state q3 (1st column) and a message y (E0 → M : y) has been inserted

4 We will later give definitions of δM and λM that incorporate all these scenarios. The
fifth column gives the number of the corresponding equations.
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into the network (2nd column). This message is then lost by the network (2nd
column). To correctly represent these actions, M has to change its state as given:
E0 is now in state q3 and the net no longer contains x (4th column). Note that
netM does not contain y as its insertion is compensated by its removal.

With the help of Figure 5, we will now define the successor function. This
function computes all direct successor states of a triple of the midpoint state
(the transition function will then later choose some of these triples, based on
its input). The figure illustrates why we sometimes have more than one possible
successor state: the midpoint (3rd column) cannot distinguish all the scenarios
(rows). Note that Figure 5 only considers one endpoint, whereas succ considers
both endpoints (the equations (2d) and (2e) for E0 correspond to the equations
(2f) and (2g) for E1).

succ(qM ) =
⋃

q∈qM

⋃
(M→E0:m1)∈netM

⋃
(M→E1:m4)∈netM

⋃
msg∈netM

(2a)

{(q0, q1, netM ), (2b)
(q0, q1, netM \ {msg}), (2c)
(δ0(q0, m1), q1, (netM \ {M → E0 : m1}) ∪ m2) (2d)
(δ0(q0, −), q1, netM ∪ m3) (2e)
(q0, δ1(q1, m4), (netM \ {M → E1 : m4}) ∪ m5), (2f)
(q0, δ1(q1, −), netM ∪ m6)} (2g)

where

m2 =

{
{E0 → M} : λ0(q0, m1) λ0(q0, m1) �= −,

∅ otherwise,
(2h)

m3 =

{
{E0 → M : λ0(q0, −)} λ0(q0, −) �= −,

∅ otherwise,
(2i)

m5 =

{
{E1 → M : λ1(q1, m4)} λ1(q1, m4) �= −,

∅ otherwise,
(2j)

m6 =

{
{E1 → M : λ1(q1, −)} λ1(q1, −) �= −,

∅ otherwise.
(2k)

The function succ computes all the states that are reachable in one step by an
endpoint or the network. Since we are interested in all possible successor states,
we must compute the closure of succ, defined as

cl(succ(x)) =
∞⋃

i=0

succi(x). (3)

Observe that the closure is monotonic. It also has an upper bound, namely

cl(succ(qt
M )) ⊆ P({(q0, q1, n)|q0 ∈ Q0, q1 ∈ Q1, n ∈ net}).

Hence, as Q0, Q1, and net are finite, cl(succ(qt
M )) is also finite.
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We now can define δM . The idea is to let our midpoint track all possible
actions. We do this by first calculating the closure of all possible next states
before actually executing a transition based on them.

δM (qt
M , m)=

⋃
(q0,q1,netM )∈cl(succ(qt

M ))

{(q0, q1, (netM\{m})∪λM (qM , m))}|m∈netM}

(4)
Note that cl(succ(qt

M )) represents all possible successor states of qt
M , whereas

δM (qt
M , m) only contains those successor states of qt

M that can be reached with
a message m. λM is now straightforward: If there is any triple where the input
occurs, i.e. the message is correct in some midpoint-equivalent trace, the input
is forwarded.

out((q0, q1, netM ), Ei → M : y) =

{
(M → Ej : y) if {Ei → M : y} ∈ netM ,

− otherwise.
(5)

where j = 1 − i, and

λM (qM , m)=

{
out(q, m) if there exists a q∈cl(succ(qM )) with (out(q, m) �= −),
− otherwise.

(6)
Note that for each m, there is at most one non-empty (not ‘−’) value for
out(q, m). Hence, λM is well-defined. This is due to the fact that our midpoint
either drops or forwards a message. This would have to be revised for a midpoint
that alters messages (e.g. a firewall performing Network Address Translation).

5.4 Correctness

As stated in Section 5.2, a correctly functioning midpoint must satisfy two prop-
erties: 1) one of its state triples is correct and 2) only possibly correct messages
are forwarded. In this section, we prove that a midpoint, constructed as described
in Section 5.3, satisfies the above properties.

Property I: one state triple is correct.
We prove the first property with the help of the following lemmas.

Lemma 1. Given an M produced by our midpoint construction and a trace
st1 � st2 � ... � stn, if there is a correct tracking at time t1, then the tracking
after the next midpoint transition stt2 � stt2+1, t2 ≥ t1, is also correct.

Lemma 2. Given an M produced by our midpoint construction and a trace
tr = st1 � st2 � · · · � stn, for any midpoint transition stt2 � stt2+1, there is a
correct tracking at each time t1, with 1 ≤ t1 ≤ t2 < n.

Lemma 3. Given an M produced by our midpoint construction, M tracks end-
points correctly (as defined in Definition 9).
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Lemma 3 follows from the other two. If for every midpoint transition there exists
an earlier correct tracking (Lemma 2), then the tracking after the midpoint tran-
sition is correct (Lemma 1). Hence the tracking after every midpoint transition
is correct.

Proof sketch for Lemma 1
We will only sketch the proof of the first lemma. The proof in its entirety can
be found in [vBBC07].

Recall that δM consists of two parts: 1) compute all possible successor states
using cl(succ(qt1

M )), and 2) keep only the state triples that are feasible with
respect to a given message. The second part directly reflects the definition of a
midpoint transition. To prove the first part, we show that succ can track one
non-midpoint transition correctly, and that taking the closure of succ computes
any number of non-midpoint transitions correctly.

Proof of Lemma 2
We prove the lemma by induction on the midpoint transitions in a trace.

Base Case, the first midpoint transition in a trace.
The first state st1 is a correct tracking at time 1:

st1 = (q1
0 , q1

M , q1
1 , net1) = (q0,1, (q0,1, q1,1, {}), q1,1, {}).

The first midpoint transition cannot take place before st1 � st2. By Lemma 1,
this means that the tracking after the first midpoint transition is correct.

Step Case, the nth midpoint transition, n > 1.
By the induction hypothesis, the tracking is correct after the (n−1)th midpoint
transition. By Lemma 1, this implies that the tracking is also correct after the
nth midpoint transition. QED.

Property II: only possibly correct messages are forwarded.

Lemma 4. M computes outputs correctly (as defined in Definition 10).

We show the correctness of λM (qt
M , msg) in two steps:

1. msg = (Ei → M : m) was inserted by a correct transition.
There is is a triple qt

corr ∈ qt
M with qt

corr = (qt
0, q

t
1, nett) (see the proof of

Lemma 1 in [vBBC07]). The output of this triple, defined by Equation (5), is
correct, namely msg′ = (M → Ej : m). For every other triple q, out(q, msg)
is either msg′ or −. Thus, by Equation (6), λM (qt

M , Ei → M : m) is correct.
2. msg was inserted by an incorrect transition.

As seen above, there can only be a (q0, q1, net) ∈ qt
M with msg ∈ net if this

represents a possibly correct scenario. But, in this case, forwarding msg is
correct.5 QED.

5 Note that in this case, the endpoints might not be able to continue their run of the
protocol; the incorrect endpoint is only able to continue to send messages if they
belong to a possibly correct scenario. This is the price of having a permissive firewall.
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NEW

SYN_A

SYN_B a

ESTABLISHED
b c

FIN1_AFIN1_B d e

- Start E0
- no simultaneous open
- non-core input is ignored
- Input alphabet: 
  2  E0 -> M: S       3  E1 -> M: S
  4  E0 -> M: SA     5  E1 -> M: SA
  6  E0 -> M: A       7  E1 -> M: A
  8  E0 -> M: F       9  E1 -> M: F

f FIN2_AFIN2_B

CLOSE_B CLOSE_A

NEW

g

  2 / 2

5 / 5

  5 / 5

  9 / 9

  9 / 9

  
9 / 9

  9 / 9

  
9 / 9

  9 / 9  

  6 / 6  

  6 / 6  

  6 / 6  

  6 / 6  

  6 / 6  
  6 / 6  

  6 / 6  
  6 / 6  

  
6 / 6  

  
9 / 9

  7 / 7  

  7 / 7  

  
7 / 7  

  
7 / 7  

  
8 / 8  

  
8 / 8  

  
8 / 8  

  8 / 8  

  8 / 8

  7 / 7  

Fig. 6. Midpoint Automaton for TCP

5.5 Discussion

In Section 4, we analysed the TCP automata of several firewalls. We now com-
pute the TCP midpoint automaton using the construction just presented. For
endpoint automata, we use the automaton from the TCP specification for end-
points [ISI81, page 23].

The endpoint automaton in the TCP specification combines the initiator and
the responder role. These roles are handled differently by firewalls, which dis-
tinguish between the networks outside and behind the firewall. Normally only
one side is allowed to initiate a connection. Therefore we made two copies of the
TCP endpoint automaton from the specification, one for each of the roles, which
we adapt as follows. We chose E0 to play the role of the initiator. Therefore
we denote the state CLOSED as the start state of automaton A0 and delete the
state LISTEN from A0. Furthermore, as we are only interested in one run of the
protocol, we name the end state of A0 CLOSED2 (instead of CLOSED). To let E1
play the role of the responder, we denote the state LISTEN as the start state of
A1 and delete the state SYN-SENT and the transitions from state CLOSED to state
LISTEN from A1. The resulting, minimised midpoint automaton can be found
in Figure 6. Note that although this automaton represents only a subset of the
TCP protocol this is not a limitation of our algorithm. Our algorithm can handle
sequence numbers and the like if they are part of an endpoint automaton.

As expected, in each state of the midpoint, there is considerable uncertainty
about the exact state of the endpoints. This is reflected in the fact that some
midpoint states consist of over 60 triples. Despite this, the automaton is of
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manageable complexity, in particular the number of outgoing transitions per
state is small (1 – 3). The multiple transitions reflect the (limited) ways that
messages can be sent independently by the endpoints and how they can be
reordered by the network.

Note too that our midpoint automaton has 7 more states (a – g) than our
reverse-engineered TCP automata. This reflects the additional complexity nec-
essary to properly track possible network events. Let us illustrate this with an
example. In our midpoint automaton, it can clearly be seen that, to get from
state SYN B to state FIN1 B, two messages — an ACK from E0 and a FIN from
E1 — are needed. These messages are independent and thus can arrive in either
order at the firewall. If we look how actual firewalls handle this, we see that
the intended order of sending the ACK before the FIN leads to the same result,
but that the opposite order ends in state ESTABLISHED, leaving us without an
explanation why the FIN needs to be allowed in state SYN B.

Our construction builds permissive midpoint automata. This reflects our de-
cision not to penalise protocol-conform endpoints for actions of the environment
(here the network). But it is a simple matter to modify the approach to construct
restrictive midpoint automata. These can be built by stopping — i.e. dropping
everything from then on — at states that consist of more than one triple. But
building a restrictive automaton makes little sense with current protocols: It
requires dropping more or less everything, as there will be uncertainty already
after a few packets.

As discussed in Section 3, a midpoint may send (spoofed) messages to the
endpoints to tear down (reject) an unwanted connection. Note that the deci-
sion whether such a message is sent is part of the midpoint’s policy, not of
the automaton. Therefore, similar to instantiating a new instance of the mid-
point automaton after receiving the first packet of a connection, the sending of
such messages should result in the deletion of the corresponding instance of the
midpoint automaton.

6 Conclusion and Future Work

In this paper, we have shown why midpoints must behave, and hence be specified,
differently from endpoints. Furthermore we have given an algorithm to generate
midpoint automata from endpoint automata. Our solution should be of interest
to at least two groups: those building midpoints and those analysing (e.g. testing)
them. Both groups will benefit from having a general method to systematically
construct midpoint specifications from those for endpoints.

The construction presented has two minor limitations: it requires that the
endpoint automata do not have loops without input and it does not take dupli-
cation in the network into account. The first point is unproblematic, as loops
without input should not be present since these would enable one endpoint to
loop infinitely without communicating (only “talking” not “listening”) with the
other endpoint. We believe the problem of duplicates (or retransmissions) should
be solved independent of protocol automata. The midpoint should remember the
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packets seen (unique id) and its decision, and then apply the same decision to
duplicates received later. We intend to investigate if this solution is feasible.

We plan to use our algorithm in the area of firewall conformance testing.
Namely, when testing a given firewall, we first determine the differences between
the automaton implemented in the firewall and the generated midpoint automa-
ton AMp for every protocol p.6 Then the user can decide if the additional or
missing transitions represent a problem. If not, we continue with the test of the
policy, as described in [SBC05], based on the protocol automaton of the given
midpoint. In this way, firewall conformance testing (and testing of other kinds
of midpoints as well) is possible and we can give the users information (and
control) on the strictness of their firewalls.
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Abstract. A successful computer system intrusion is often resulted from
an attacker combining exploits of individual vulnerability. This can be
modelled by attack models and attack graphs to provide a global view
on system security against attacker’s goal. However, as the size and com-
plexity of attack models and attack graphs usually greatly exceeds human
ability to visualize, understand and analyze, a scheme is required to iden-
tify important portions of attack models and attack graphs. Mehta et al.
proposed to rank states of an attack model by the probability of an ad-
versary reaching a state by a sequence of exploiting individual vulnera-
bilities in a previous scheme. Important portions can hence be identified
by ranks of states. However, Mehta et al.’s ranking scheme is based on the
PageRank algorithm which models a web surfing scenario, but has not con-
sidered much on the dissimilarity between web surfing scenarios and com-
puter system intrusion scenarios. In this paper, we extend Mehta et al.’s
scheme by taking into consideration dissimilarity between web surfing
scenarios and computer system intrusion scenarios. We experiment with
the same network model used in Mehta et al.’s scheme and have the re-
sults compared. The experiments yielded promising results that demon-
strated consistent ranks amongst varying parameters modelled by our
ranking scheme.

1 Introduction

A large computer system often consists of multiple platforms, runs different soft-
ware packages and has complex connections to other systems. Despite the best
efforts by system designers and architects, there will still exist vulnerabilities
resulting from bugs or design flaws allowing an adversary (attacker) to gain a
level of access to systems or information not desired by the system owners. The
act of taking advantage of an individual vulnerability is referred to as an “atomic
attack” or an “exploit”. A vulnerability is often exploited by a piece of software,
a chunk of data, or sequence of commands, resulting in unintended or unantic-
ipated behavior of the system such as gaining control of a computer system or
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allowing privilege escalation. Although an exploit may have only insignificant
impact on the system by itself, an adversary may be able to construct a sys-
tem intrusion that combines several atomic attacks, each taking the adversary
from one system state to another, until he reaches the final goal. Therefore, to
evaluate the security level of a large computer system, an administrator must
not only take into account the effects of exploiting each individual vulnerability,
but also consider global intrusion scenario where an adversary combines several
exploits to compromise the system.

There has been considerable amount of work on modelling multi-stage attacks
by combination of individual vulnerabilities [7] [12] [5]. Recently, Sheyner et al.
proposed using attack models and attack graphs to provide a global view of
system security against exploiting the combination of vulnerabilities [16] [7]. An
attack model is a graph that consists of a set of nodes and edges, where each node
represents a reachable system state and each edge represents an atomic attack
that takes the system from one state to another. An attack graph is a sub-
graph of the attack model and contains only nodes in the paths that eventually
reach a state where the system is considered compromised. With attack models
and graphs, a global view on multi-stage attacks by combination of individual
vulnerabilities can be obtained by administrators to assist in the implementation
of effective security measures.

However, as the size and complexity of attack models/graphs usually greatly
exceeds human ability to visualize, understand and analyze, a scheme is required
to identify important portions of attack models/graphs. An effective method is
to rank states in attack models/graphs based on factors like the probability of
an intruder reaching the state. Important portions of attack models/graphs can
hence be identified by ranks of their states.

Mehta et al. [16] propose to rank states of an attack model by the probability
of an adversary reaching a state by a sequence of atomic attacks. The rank-
ing algorithm is based on the PageRank algorithm used by Google to measure
importance of web pages on the World Wide Web. Given a system to be ana-
lyzed, first an attack model formally describing the system is constructed. Then
the ranking algorithm is applied to rank states of the obtained attack model.
Meanwhile, an attack graph is generated using the attack graph generation tool
[10], and is “projected” on the ranked attack model to obtain a ranked attack
graph. The ranked states of an attack graph provide various security analysis for
the system, such as measuring security of the system, evaluating effectiveness of
counter-measures, and identifying important portion for visual analysis of the
system.

Despite the similarity between ranking web pages and ranking system states,
differences not considered by Mehta’s scheme exist between the two scenarios.
The World Wide Web model adopted by PageRank assumes that a random surfer
has universally equal probabilities of following one of the links in a current page
to the next page, and correspondingly Mehta’s ranking scheme assumes that an
attacker has equal probability of remaining undetected at all states of an attack
model. However, the likelihood of an attacker remaining undetected at a state
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so as to exploit a vulnerability that takes the system to another state could be
considered to be influenced by the number of steps required to reach the state
from the starting position. Consider a scenario where a network has implemented
some sort of defense-in-depth as an example, the more steps an attack has taken,
the more likely that he is discovered. Therefore, we assume the probability of
an attacker remaining undetected at a state decreases with number of steps
required to reach that state. The decreasing rate is not universal amongst all
computer systems but determined by each system’s intrusion detection ability,
which affects state transitions in attack models and should be considered when
ranking system states.

Moreover, the random transition model adopted by PageRank assumed that
a WWW surfer navigates to the next page by selecting one of the available suc-
ceeding pages at random with equal probabilities. This assumption fits well with
intrusions that use a brute force probe-scan approach. However, an adversary
may exploit vulnerabilities based on metrics such as cost, age, evaluation on
probability of success and being detected. In this case, vulnerabilities are not
selected at random and different vulnerabilities have different probabilities of
being exploited. The behavior of an adversary selectively exploiting vulnerabil-
ities has considerable effect on his chance to reach the final goal, and therefore
should be considered when ranking system states of attack models and graphs.

1.1 Our Contribution

In this paper, we propose a ranking scheme that addresses problems stated above.
The proposed ranking scheme is adjusted from Mehta et al.’s scheme, but has
the advantage of modelling variation in intrusion detection abilities amongst
computer systems, and non-uniform distribution in probability that each vul-
nerability is exploited. First, in addition to modelling vulnerabilities in a sys-
tem that could be exploited to have system states changed, our ranking scheme
also models intrusion detection ability of computer systems defined as the sys-
tem’s effort to detect and prevent such state transitions by intruders exploiting
vulnerabilities. Secondly, we provide an instantiation of the biasing idea in [1]
by modelling adversaries’ behavior in exploiting vulnerabilities probabilistically
based on certain metrics as stated above but not by brute-force probing. With
the proposed ranking scheme, evaluation on system intrusion detection ability or
adversaries’ ability in relation to probabilistically exploit vulnerabilities, when
available from for example empirical data or log statistics, can be used to obtain
more accurate ranks of computer system states modelled by attack models and
attack graphs. The proposed scheme can also be applied to other areas such as
network research or system design, e.g. determining minimum system intrusion
detection strength required to protect against best effort by an adversary.

To evaluate the effectiveness of the proposed ranking scheme, we implemented
a prototype of the scheme in Java. We experiment with the network example
used by Mehta et al. [16] and have the results compared with their scheme.
The experiments yielded promising results that demonstrated consistent ranks
amongst varying parameters modelled by the proposed ranking scheme.
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1.2 Related Work

Techniques for quantitative security measurement have been a strong focus in the
research community [9] [11] [4] [5]. Dacier et al. [9] model a computer system as a
Privilege Graphs exhibiting security vulnerabilities and convert it into a Markov
chain corresponding to all possible successful attack scenarios. The Markov chain
is then used to compute MTTF (mean time to failure) of the system, used as the
quantitative measure of the security level of a system. Time and effort required
by each type of attack is estimated from empirical and statistical data. Phillips
et al. [5] present a framework for evaluating the most likely attack paths in the
attack graph generated by an ad hoc algorithm. The framework requires attacker
profiles and attack templates in order to compute the likelihood of each type of
attack. Madan et al [4] proposed an approach to quantifying various security
related attributes of a computer system such as system availability, MTTF, and
probabilities of system failure. Quantification of security related attributes is by
solving the Semi-Markov Process (SMP) model describing state transitions in
the system. However, the proposed approach requires availability of a wide range
of ad hoc model parameters, restricting the approach feasible only for systems
of a small scale. Another related work presented in [11] provides a quantitative
analysis of attacker behavior based on empirical data collected from intrusion
experiments.

1.3 Paper Organisation

The rest of the paper is organized as follows. Section 2 provides a brief review
on relevant background knowledge. The proposed ranking scheme is presented
in Section 3. Section 4 provides implementation details and experimental results
demonstrating effectiveness of the proposed scheme, and Section 5 concludes the
paper.

2 Background and Preliminaries

2.1 Attack Models and Attack Graph

Sheyner et al. first formally defined the concept of Attack Model and Attack
Graph [10]. An Attack Model is a formal description of security related attributes
of the attacker, the defender and the modelled system using graph representation.
Nodes represent the states of the system, such as the attacker’s privilege level on
individual system components. Transitions correspond to actions taken by the
attacker which lead to a change in the state of the system. The starting state of
the model denotes the state of the system where no damage has occurred and
the attacker is looking for an entry point to enter the system. As an example, if
we consider the case of a computer network attack model, a state represents the
state of the attacker, the running services, access privileges, network connectivity
and trust relations. The transitions correspond to actions of the attacker such as
exploiting vulnerabilities to obtain elevated privileges on the computer system.
Formally,
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Definition 1. [10] Let AP be a set of atomic propositions. An Attack Model is
a finite automaton M = (S, τ , s0, l), where S is a set of states in relation to a
computer system, τ ⊆ S ×S is the transition relation, s0 ∈ S is the initial state,
and l : S → 2AP is a labelling of states with the set of propositions true in that
state.

The negation of an attacker’s goal in relation to an attack model can be used as
security properties that the system must satisfy in a secure state. An example
of a security property in computer networks would be “the intruder cannot gain
root access on the database server”. States in an attack model where the security
properties are not satisfied are called error states. Given an attack model and
the attacker’s goal, an Attack Graph is a subgraph of the attack model which
contains only paths leading to one of the error states, and states on such paths.
Formally,

Definition 2. [10] Let AP be a set of atomic propositions. An Attack Graph is a
finite automaton G = (S, τ , s0, Ss, l), where S is a set of states in relation to a
computer system, τ ⊆ S ×S is the transition relation, s0 ∈ S is the initial state,
Ss ⊆ S is the set of error states in relation to the security properties specified for
the system, and l : S → 2AP is a labelling of states with the set of propositions
true in that state.

Given an attack model and the associated security properties, model checking
techniques can be used to generate attack graphs automatically [14].

2.2 Web Graph and PageRank

Web Graph and Notations. For a web model consisting of N nodes (pages),
notations used in the our discussion are defined in Table 1. Consider the web
graph shown in Figure 1 as an example. Node 1 has three out links (node 2, 3
and 4) and hence h1 = 3. Node 4 is pointed to by two nodes (node 1 and 3) and
hence pa[4] = {node 1, node 3}. Equation 1 represents the transition matrix W
in relation to the web graph. It is noticeable that not all nodes have out links,
and we refer to these nodes as dangling nodes. When a web surfer reaches at a
web page that has no out links, he is often assumed to select a random page
to continue surfing [13] [2]. To model this, a dangling node in a web graph is
typically assumed to be pointing to all other nodes with equal probabilities.

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
1
3 0 0 0 0 0 0 0 0
1
3 0 0 0 0 0 0 0 0
1
3 0 1

3 0 0 0 0 0 0
0 1 0 1

2 0 0 0 0 0
0 0 0 0 1

2 0 0 0 0
0 0 0 0 1

2 0 1 0 0
0 0 1

3
1
2 0 0 0 0 0

0 0 1
3 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)
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Table 1. Web Model Notations

Notation Meaning
hj Number of nodes (pages) pointed to by node (page) j
pa[j] Set of nodes (pages) pointing to node (page) j.
d Probability that a random surfer continues surfing by navigating to one of the

pages linked by the current page, usually referred to as damping factor. Cor-
respondingly, 1 − d represents the probability that a random surfer continues
surfing and navigates to a random page

W W = {wi,j} is a transition matrix such that wi,j = 1
hj

if there is a link from

node j to node i, otherwise wi,j = 0. An important property of W is that ∀j,∑N
i=1 wi,j = 1.

ΠN [1, . . ., 1]’, i.e. transpose of the N-dimension unit vector

Fig. 1. An example of web graph

PageRank Algorithm. PageRank [13] is the algorithm used by Google to de-
termine the relative importance of web pages on the World Wide Web. PageRank
is based on the behavior model of a random surfer in a web graph. It assumes
that a random surfer starts at a random page and keeps clicking on links and
eventually gets bored and starts on another random page. To capture the notion
that a random surfer might get bored and restart from another random page,
a damping factor d is introduced, where 0 < d < 1. The transition probability
from a state is divided into two parts: d and 1 - d. The d mass is divided equally
among the state’s successors. Random transitions are added from that state to
all other states with the residual probability 1 - d equally divided amongst them,
modelling that if a random surfer arrives at a dangling page where no links are
available, he is assumed to pick another page at random and continue surfing
from that page. The computed rank of a page is the probability of a random
surfer reaching that page. That is, consider a web graph with N pages linked to
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each other by hyperlinks, the PageRank xp of page (node) p is defined as the
probability of the random surfer reaching p, formally

xp = d
∑

q∈pa[p]

xq

hq
+

1 − d

N
(2)

When stacking all the xp into a vector x, it can be represented as

x = dWx +
1
N

(1 − d)ΠN (3)

Using iterative expression, Equation 3 can be represented as

x(t) = dWx(t − 1) +
1
N

(1 − d)ΠN (4)

The computation of PageRank can be considered a Markov Process, as can
be seen from Equation 4. It has been proved that after multiple iterations,
Equation 4 will reach a stationary state where each xp represents the proba-
bility of the random surfer reaching page p [8].

2.3 Mehta et al’s Ranking Scheme

Given an attack model M = (S, τ , s0, l), the transition probability from each
state is divided into d and 1-d, modelling respectively that an attacker is dis-
covered and isolated from the system, or that the attacker remains undetected
and proceeds to the next state with his intrusion. Similar to PageRank, the rank
of a state in an attack model is defined to be the probability of the system be-
ing taken to that state by a sequence of exploits. The ranks of all states are
computed using the method for computing PageRank described in Section 2.2.
Breadth first search starting from the initial system state s0 is then performed
for each atomic attack in τ to construct the transition matrix W . The only
adjustment from PageRank, where a transition from each state pointing to all
other states with probability 1-d equally divided amongst all other states, is that
a transition from each state pointing back to the initial state with probability
1-d is added to model the situation where an attacker is discovered and has to
restart the intrusion from the initial state.

3 Modelling Adversary and Intrusion Detection
Capability in Ranking Attack Models

Recall the discussion in Section 1. Unlike the web graph model adopted by
PageRank where the probability that a random surfer follows a link to the next
page is state independent, the likelihood of an attacker remaining undetected at a
state so as to exploit a vulnerability that takes the system to another state could
be considered to be influenced by the number of steps required to reach the state
from the starting position. Therefore we assume the probability of an attacker
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remaining undetected at a state decreases with number of steps required to reach
that state. The decreasing rate is not universal amongst all computer systems
but system specific as determined by each system’s intrusion detection ability.
Another important dissimilarity between a web surfing scenario and a system
intrusion scenario is that exploits taking a computer system from one state to
another may be “selected” not at random but based on the adversary’s evaluation
on metrics such as cost, effort, probability of success and being detected, whereas
links taking a web surfer to the next page is always selected at random with equal
probabilities. These factors affect an adversary’s chance to reach his final goal,
and therefore should be considered when ranking states of attack models and
graphs.

In this section, we propose an adversary aware and intrusion detection aware
ranking scheme that addresses problems stated above. Being adversary aware,
the proposed scheme considers how an adversary selectively exploiting vulner-
abilities affect his chance to compromise the system. Being intrusion detection
aware, the proposed scheme considers system intrusion detection ability and how
it affects an adversary’s chance to reach his final goal.

3.1 Web Graph Adjustment

The transition model of web graph needs to be adjusted to provide a more
accurate simulation of computer system state transitions in relation to system
intrusion scenario. As in Mehta et al.’s ranking scheme, we add a transition from
each state pointing back to the initial state with probability 1-d, modelling the
situation where an intrusion is detected and needs to be restarted from initial
state. Furthermore, our ranking scheme differs from Mehta et al.’s scheme in
that

1. We assume that the probability of an attacker remaining undetected at a
state decreases with the number of steps required to reach that state, which
in an attack model can be represented as length of the intrusion path to
reach that state. The decreasing rate is determined by each system’s in-
trusion detection ability. In general, well-protected systems such as systems
implementing “defense-in-depth” have better ability to detect intrusions at
earlier stages and can be simulated with greater decreasing rates. As it is
difficult to predict the actual intrusion path, we simplify the situation by
assuming that at each state sj the probability of an attacker remaining un-
detected decreases at a rate proportional to l(s0, sj), length of the shortest
path between state sj and initial state s0. That is, the probability of an
attacker remaining undetected at state sj exponentially decays with length
of the shortest path from s0 to sj . Consequently, transition probability from
each state sj is divided into dj and 1-dj representing respectively the situ-
ation where an attacker remains undetected and is able to take the system
to another state, or where the attacker is discovered and has to restart the
intrusion. dj is the value of d exponentially decaying with l(s0, sj) where d
is the usual damping factor.
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2. In a system intrusion scenario, it is more likely that an adversary has the
ability to prioritize and exploit “promising” vulnerabilities based on his past
experience and knowledge, other than probing the target network with brute-
force attack. This is modelled in our ranking scheme by assigning a separate
probability to each type of exploit. We divide each dj among state sj ’s
successors according to the probability that each type of exploit is selected to
take sj to one of its successors. The probability distribution can be obtained
from empirical data or other sources [12]. By doing so, that the adversary
probes the system with brute-force attack can be modelled by assigning equal
probabilities to all exploits. Similarly, intrusions by an experienced attacker
who exploits vulnerabilities selectively to maximize his chance of success can
be modelled by assigning higher probabilities to critical exploits.

3. We add a transition from each dangling state pointing back to the initial
state s0 with probability 1, modelling the situation that an adversary has
come to a state where he cannot proceed with the intrusion and has to restart
from initial state.

Fig. 2. Transitions in attack models

Consider the graph illustrated in Figure 1 as an example. Assume we have
some empirical data that enables us to estimate that whenever the system is in s1,
on average it will take the transition to s2, s3 and s4 2, 5 and 3 times, respectively,
out of ten. We can then place probabilities 0.2, 0.5 and 0.3 on these transitions.
Similarly, assume that the empirical data enables us to place probability 0.3, 0.4
and 0.3 to the transitions taking s3 to s4, s8 and s9 respectively, probability 0.8
and 0.2 to the transitions taking s4 to s5 and s8 respectively, and probability
probability 0.4 and 0.6 to the transitions taking s5 to s6 and s7 respectively.
Figure 2 illustrates the graph with adjusted transition model from web graphs,
which is a more accurate simulation of computer system state transition in an
intrusion scenario. The intensity of color for each state sj visualize the probability
dj that an intrusion is not detected at that state.
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3.2 Transition Matrix Construction

To rank an attack model M = (S, τ , s0, l), we need to construct the transition
matrix W = wij , the matrix representation of state transitions in an attack
model, where wij is the probability of the system being taken to state sj from
state si. Let τ(sj → si) denote the proportion between the number of exploits
that take the system from si to sj and the total number of exploits applicable
to si and l(si, sj) denote the length of the shortest path between si and sj, a
concrete algorithm for constructing W is presented in Algorithm 1. Depth-first-
search or model checker such as NuSMV [1] is first used to construct the N ×N
adjacency matrix AM where N is the number of reachable states in M , such
that AM [i, j] = 1 if state sj is one of the successor states of state si, otherwise
AM [i, j] = 0. Then the transition matrix W is constructed following the above
stated adjustment to state transitions in web graphs.

Reconsider the web graph illustrated in Figure 1 as a example. We now
construct the transition matrix W according to the adjustment illustrated in
Figure 2 using Algorithm 1. The generated W is shown in Equation 5 where
each di = d × e−λl(s1,si), d being the usual damping factor used in PageRank.

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 − d2 1 − d3 1 − d4 1 − d5 1 1 − d7 1 1
0.2 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0
0.3 0 0.3d3 0 0 0 0 0 0
0 d2 0 0.8d4 0 0 0 0 0
0 0 0 0 0.4d5 0 0 0 0
0 0 0 0 0.6d5 0 d7 0 0
0 0 0.4d3 0.2d4 0 0 0 0 0
0 0 0.3d3 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

3.3 Ranking Attack Models

Following Mehta et al.’s definition, we define the rank for each state sj in an
attack model as the probability that sj is reached from the initial state s0. This
can be recursively represented as

xp =
∑

q∈pa[p]

wqp × xq (6)

When stacking all xp into one vector x, Equation 6 can be represented as

x = Wx (7)

x in Equation 7 can be computed by multiple iterations through the following
equation until a stationary state is reached.

x(t) = Wx(t-1) (8)
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Algorithm 1: GenerateW (M)

/* The function generates the adjusted transition matrix W from the
given attack model M. */

/* Input: M = (S, τ, s1, L): the attack model where s1 is the initial
state of M. */

/* Output: W = wij, where wij represents the probability of an
adversary exploiting the vulnerability that takes the system from
state sj to state si. */

begin

AM = Construct Adjacency Matrix From Model(M)

/* Set the probabilities of transitions to and from the initial
state */

for i = 1 to N do
if AM [1, i] = 1 then

wi1 = τ (s1 → si)
else

wi1 = 0

if ∀j, AM [i, j] = 0 then
w1i = 1

else
w1i = 1 − d × e−λl(s1,si)

/* Set the probabilities of transitions to and from other states
*/

for i = 2 to N do
for j = 2 to N do

if AM [j, i] = 0 then
wij = 0

else
wij = d × τ (sj → si) × e−λl(s1,sj)

end

If Equation 8 reaches a stationary state, i.e. x(t) = x(t−1), after a long run of
computation, all states in attack graph can be ranked. However, Equation 8 may
or may not reach a stationary state after a long run of computation. Moreover,
the result after multiple iterations may not be interesting (for example, the
stationary state limt→∞ x(t) may be a vector of all 0s). A detailed proof of
Theorem 1 is provided in Appendix A to justify that Equation 8 constructed
as above can always reach a non-trivial stationary state after multiple iterations.

Theorem 1. Equation 8 converges at a non-trivial vector x∗ where
∑

i x∗i = 1
after multiple iterations.

Given an attack model and empirical data that enables us to evaluate probabil-
ities of different vulnerabilities being exploited, we first construct the transition
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matrix W as presented in Algorithm 1. We then assign random initial value to
the rank of each state, and run Equation 8 for multiple iterations until it reaches
the stationary state, guaranteed to exist by Theorem 1.

4 Implementation and Experiments

To evaluate the effectiveness of the proposed ranking scheme, we developed a
toolkit in Java that ranks attack models with the proposed scheme. We ran the
toolkit on the network example used by Mehta et al [16] and have the results
compared with their ranking scheme. In this section, we first provide implementa-
tion details of the toolkit, then present the network model and the experimental
results.

4.1 Implementation

The implementation toolkit is developed in Java but relies on NuSMV [1] for
model checking functionalities, such as generating the complete set of reachable
states given an initial state and the set of allowed state transitions. We made a
minor modification to the source code of NuSMV (see below) to achieve inter-
action with our Java-based implementation toolkit. In the following, we provide
details on the architecture of our implementation toolkit and its interaction with
the modified NuSMV.

Fig. 3. Toolkit Architecture

Toolkit Architecture. The architecture of our Java-based attack model rank-
ing toolkit is illustrated in Figure 3. A network model along with the security
specification written in NuSMV modelling language are fed to NuSMV. NuSMV
then generates the complete set of reachable states S in the given model. We also
modified NuSMV so that for each state s ∈ S it generates the set of successors.
The results generated as above are then saved as files, and feeded to the im-
plementation toolkit to construct the adjacency matrix for states in the model.
Combining the adjacency matrix, the empirical evaluation on the probability
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that each type of vulnerability is exploited, and the evaluation on the system’s
intrusion detection ability, the implementation toolkit generates the transition
matrix W and ranks the states in the attack model as described in Section 3.

Toolkit Components

State Builder. With the NuSMV command print reachable states -v, we gen-
erate the set of reachable states from the specified system initial state which
are saved to a text file. The State Builder then reads the set of reachable
states into Java-specific representation from the generated text file.

Adjacency Matrix Builder. We modified NuSMV such that it generates and
saves into a text file the successor states of a given state with the -st com-
mand line option. Iteratively using the -st option for each reachable state,
the Adjacency Matrix Builder generates an N × N adjacency matrix AM
where N is the number of states in the attack model such that AM [i, j] = 1
if state j is one of the successor states of state i, otherwise AM [i, j] = 0.

Transition Matrix Builder. Combining the adjacency matrix, the empirical
evaluation on the probability that each type of vulnerability is exploited,
and the evaluation on the system’s intrusion detection ability, the Transition
Matrix Builder follows Algorithm 1 to generate the transition matrix W .

Attack Model Ranker. Given the transition matrix W , the Attack Model
Ranker computes the ranks for all reachable states in the attack model using
Equation 8 iteratively until the stationary is reached. A non-trivial stationary
state is guaranteed to exist after multiple iterations by Theorem 1.

4.2 The Network Model for Experiments

The network model used for our experiments is illustrated in Figure 4. There
are two target hosts ip1 and ip2, and a firewall separating them from the rest of
the Internet. As shown each host is running two of three possible services (ftp,
sshd, database). We model the same 4 types of atomic attacks summarized in
Table 2 as in [15] [16] for comparable results. A detailed explanation of each
attack follows.

The intruder launches his attack starting from an external machine ipa that
lies outside the firewall. His eventual goal is to gain access to the database. For
that, he needs root access on the database server ip2.

Table 2. Atomic Attacks Modelled in the Sample Network

Attack Vulnerability Exploited
� sshd buffer overflow Some versions of ssh are vulnerable to buffer overflow
� ftp.rhosts Exploiting the vulnerability resulting from a writable ftp

home directory
� remote login Remote trust relation between machines
� local buffer overflow Some setuid root executables are vulnerable to buffer over-

flow
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We construct a finite state model of the network such that each state rep-
resents the system state including trust relation, connectivity, and adversary
privilege on each machine, and each state transition corresponds to a single
atomic attack which takes the system from one state to another.

Fig. 4. Network

Connectivity and Trust Relation. Connectivity models the connection be-
tween two machines. We denote the connectivity by a binary relation Reachable
⊆ Host × Host, where Reachable(h1, h2) = 1 if h1 can connect to h2, otherwise
Reachable(h1, h2) = 0, i.e. either there is no physical link between h1 and h2,
or the link is blocked by the firewall. Assuming the firewall policy is that the
ftp server (ip1) is publicly accessible while the database server (ip2) can only be
accessed internally, the connectivity relation is shown in Table 3. Similarly, we de-
note trust relation between machines by a binary relation Trust ⊆ Host×Host,
where Trust(h1, h2) = 1 if a user on h1 can login to h2 remotely without speci-
fying a password, Trust(h1, h2) = 0 otherwise. The trust relation is summarized
in Table 4.

The Adversary and Privilege. Privileges are {none, user, root}. There is
an ordering of privileges: none < user < root. The adversary has root on ipa

and no privileges on other machines initially. We use the function plvlA(H) :
Hosts → {none, user, root} to denote the level of privilege that intruder A has
on machine H .

Vulnerabilities and Atomic Attacks. We model the same 4 types of attacks
as in [15] [16], each taking the modelled network from one state to another as
described by the “effect” section of the attack. An attack is only applicable
when both the network precondition and intruder precondition are satisfied.
Throughout the following description, we denote source and target machine by
S and T . To simplify the notations, we use sshH , ftpH and localH to denote
the presence of a vulnerability by running ssh service, ftp service and a setuid
root executable respectively on host H .
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Table 3. Connectivity

Reachable ipa ip1 ip2

ipa 1 1 0

ip1 1 1 1

ip2 1 1 1

Table 4. Trust Relation

Trust ipa ip1 ip2

ipa 1 0 0

ip1 0 1 1

ip2 0 1 1

1. sshd buffer overflow: Some versions of ssh services are vulnerable to a buffer
overflow attack that allows an intruder to obtain a root shell on the target
machine. Formally,
attack sshd-buffer-overflow is

intruder preconditions
[User-level privileges on host S]
plvlA(S) ≥ user

network preconditions
[Host T is running a vulnerable version of ssh service]
sshT

[Host T is reachable from S]
Reachable(S, T ) = 1

intruder effects
[Root-level privileges on host T]
plvlA(T ) = root

end
2. ftp .rhosts: With a writable home directory and an executable command

shell assigned to anonymous ftp users, an intruder can modify the .rhosts
file in the ftp home directory, so as to create a remote login trust relationship
between his machine and the target machine. Formally,
attack ftp-rhosts is

intruder preconditions
[User-level privileges on host S]
plvlA(S) ≥ user

network preconditions
[Host T is running a ftp service in a writable directory,
which gives a user shell to ftp users]
ftpT

[Host T is reachable from S]
Reachable(S, T ) = 1
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network effects
[Trust relation between the intruder’s machine and the target]
Trust(S, T ) = 1

end
3. remote login: Using an existing remote login trust relationship between two

machines, the intruder can login from his machine to the target and obtain
a user shell without supplying a password. Although remote login is usually
considered a legitimate operation by regular users, it is however an atomic
attack from an intruder’s viewpoint. Formally,
attack remote-login is

intruder preconditions
[User-level privileges on host S]
plvlA(S) ≥ user

network preconditions
[Host T trusts S]
Trust(S, T ) = 1
[Host T is reachable from S]
Reachable(S, T ) = 1

intruder effects
[User-level privileges on host T]
plvlA(T ) = user

end
4. local buffer overflow: The attacker exploits a buffer overflow vulnerability in

a setuid root executable to gain root access. Formally,
attack local-buffer-overflow is

intruder preconditions
[User-level privileges on host T]
plvlA(T ) ≥ user

network preconditions
[Host T runs a vulnerable version of a setuid root executable]
localT

intruder effects
[Root-level privileges on host T]
plvlA(T ) = root

end

4.3 Experimental Results Analysis and Evaluation

Let the security property be “intruder cannot gain root access on ip2”. We ran
our attack model ranking toolkit presented in Section 4.1, and visualized the
results with the graphViz package [3]. Figure 5 illustrates the result obtained
as such. For each state, the intensity of color is proportional to the rank of
that state. Any path in the graph from the root node to a leaf node represents
a sequence of exploits with which the intruder can achieve his final goal. It
can be seen that local buffer overflow and remote login are critical exploits as
each path from the root node to a leaf node has exploited them at least once.
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After fixing either local buffer overflow or remote login, NuSMV asserts security
property “intruder cannot gain root access on ip2” to be true. On the other
hand, ftp.rhost and ssh buffer over flow are non-critical exploits as an intruder
can still reach his final goal without either of them.
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Fig. 5. Comparison of Ranked Attack Models. (a) The complete ranked attack model
(b) Attack Model after fixing up the SSH vulnerability (c) Attack Model after fixing
FTP vulnerability.

To investigate how an attacker selectively exploiting vulnerabilities affects his
chance of compromising the system, we vary the probability assigned to each
type of exploit and have other exploits divide the remaining probability equally.
Changes to the ranks of states resulting from varying the probabilities of the
exploits reflects how an attacker selectively exploiting vulnerabilities affects his
chance to compromise the system. We also set the rate by which probability of
an intrusion remaining undetected decays with the shortest path to 0, so that
changes to the rank of a state are the result only of varying the probabilities of
the exploits. The experimental result is plotted in Figure 6 where the Y-axis rep-
resents the total rank of error states, i.e. the probability of an adversary reaching
his goal. It can be seen that the total rank of error states increases as the at-
tacker prioritize critical exploits local buffer overflow and remote login, modelled
by assigning higher probabilities to the two attacks. Similarly, the adversary’s
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chance to succeed decreases as he prioritize non-critical exploits ftp.rhosts and
sshd buffer overflow. In general, our scheme produces a higher rank when the
attacker prioritize critical exploits and hence has better chance to succeed. The
rank produced by our scheme joins the rank by Mehta’s scheme at the equal
probability point, i.e. where all exploits are assigned equal probabilities.
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Fig. 6. Rank varies with attack probabilities

To investigate the effect that probability of an intrusion remaining undetected
decays at a rate proportional to length of the shortest path from initial state,
we vary the decaying rate λ while assigning equal probabilities to all exploits.
The experimental result is plotted in Figure 7. It can be seen that the total rank
of error states increases as the decaying rate decreases. This corresponds to the
fact that an attacker has less chance of success on well-protected systems such
as systems implementing “defense-in-depth” which at each step of the intrusion
and thus on the whole has a higher probability of being able to discover and
thwart the intrusion. The ranks produced by our ranking scheme consistently
remain lower than the rank by Mehta’s scheme, resulting from the decaying of
probability that an adversary remains undetected and is able to proceed.

Figure 8 plots the experimental result by the overall effect of various decaying
rates and varying probability assigned to each type of exploit (still other exploits
divide remaining probability equally). It can be seen that ranking of system
states is dominated by decaying of probability that intrusion remains undetected.
Variation in probability assigned to each type of exploit only affects ranking
of states to a minor extent. It can also be see that, the greater the decaying
rate is, the less variation in probability assigned to each type of exploit affects
ranking of states. The result reveals that deployment of well-protected system
offsets experienced intruder’s strategy in selectively exploiting vulnerabilities to
maximize his chance of success, lowering his chance of success to no more than
that of brute-force type of attack.
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The experimental results and analysis presented above demonstrates the ad-
vantage and application of the proposed ranking scheme. Firstly, it considers
the effect on ranking of system states by an intruder selectively exploiting vul-
nerabilities to maximize his chance of success. Secondly, it is able to model the
effect on ranking of system states by system intrusion detection ability that
aims at thwarting exploits of vulnerabilities that take the system to another
state where the intruder gains an elevated privilege. Therefore, the proposed
ranking scheme can rank attack models more accurately, and provide more re-
alistic evaluation on the probability that a system is in a compromised state.
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Intuitively, the probability of a system being in a compromised state increases
with the probability that an intruder is able to prioritize critical exploits, and
with weakening system intrusion detection ability; however, our ranking scheme
provides a quantitative measure for the increase. The proposed scheme can also
assist network researchers and architects in network design and analysis, e.g.
determining the minimum intrusion detection strength required to thwart the
best effort in selectively exploiting vulnerabilities by intruders.

5 Conclusion

As the size and complexity of attack models/graphs usually greatly exceed
human ability to visualize, understand and analyze, ranking of states is often
required to identify important portions of attack models/graphs. Mehta et al
proposed a ranking scheme based on the PageRank algorithm used by Google to
measure importance of web pages on World Wide Web. We extend their scheme
by modelling an attacker selectively exploiting vulnerabilities to maximize his
chance of compromising the system, and intrusion detection ability of computer
systems detecting and preventing attackers to exploit system vulnerabilities.
With the proposed ranking scheme, evaluation on system intrusion detection
ability or attackers’ ability in relation to probabilistically exploit vulnerabilities,
when available from for example empirical data or log statistics, can be used
to obtain more accurate ranks of computer system states modelled by attack
models and attack graphs.
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A Proof of Theorem 1

Lemma 1. Each column of the transition matrix W constructed by Algorithm
1 sums to 1, i.e.

∑N
i=1 wi,j = 1.

Proof of the above lemma follows directly the way by which W is constructed.

Theorem 1. Equation 8 converges at a non-trivial vector x∗ where
∑

i x∗i = 1
after multiple iterations.

Proof: Consider a linear transformation of xp defined in Equation 2. Let

x′p = c1 × xp + c2 = c1 ×
∑

q∈pa[p]

xq × wpq + c2 (9)

where c2 = 1−c1
N . Stacking all x′p into one vector x′ and using iterative expression,

Equation 9 is represented as

x(t)’ = c1Wx(t-1)’ + c2ΠN (10)

A well-known theory states that the condition that MX(K +1) = NX(K)+b
converges at (M − N)−1b is ρ(M−1N) < 1 [6].

Here we have M = I and N = c1W . Therefore ρ(M−1N) = ρ(c1W ) =
c1ρ(W ). Assume x is an eigenvector of W and λ is the associated eigenvalue,
then Wx = λx, i.e. ∀i,

∑N
j=1 wi,jxi = λxi. Extracting the common factor xi, this

can be written as xi(
∑N

j=1 wi,jxi − λ) = 0. As x is an eigenvector, there exist
non-zero xi. Therefore, λ =

∑N
j=1 wi,jxi. Following lemma 1,

∑N
i=1 wi,j = 1,

we know that λ =
∑N

j=1 wi,jxi = 1. Therefore, ρ(W ) = 1. On the other hand,
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0 < c1 < 1. As a result, ρ(M−1N) = c1ρ(W ) < 1, and hence Equation 10
converges at a stationary state limt→∞ x(t)’.

We then prove by induction on t that the stationary state ‖ limt→∞ x(t)’‖1
of Equation 10 is a unit vector, i.e. ‖ limt→∞ x(t)’‖1 = 1.

1. For t = 0, Let x(0)’ = 1
N ΠN ; hence ‖x(0)’‖1 = 1.

2. Let t > 0 and assume by induction that ‖x(t)’‖1 = 1. Then, based on the
definition of stochastic matrices,

‖x(t+1)’‖ = Π ′Nx(t+1)’ = c1Π
′
NWx(t)’ + c2Π

′
NΠN

= c1Π
′
Nx(t)’ + (1 − c1) = 1 (11)

We hence proved that with the initial unit vector x(0)’ = 1
N ΠN , ‖ limt→∞

x(t)’‖1 = 1. As stationary solution of Equation 10 is independent of the
initial value x(0)’ [6], it can be concluded immediately that ‖ limt→∞ x(t)’‖1
= 1 with any initial vector x(0)’. Note that it can be seen from Equation 9
that x′p > 0; hence ‖x(t)’‖1 =

∑N
p=1 x′p = 1

The stationary state x(t) of Equation 2 can be retrieved from x(t)’ with
linear conversion x(t) = (x(t)’−c2)

c1
. x(t) is not trivial, because

N∑
p=1

xp =
N∑

p=1

x′p − c2

c1
=

∑N
p=1 x′p − N × c2

c1
=

1 − N × c2

c1
= 1 (12)

That is, the stationary state x(t) is a unit vector. �
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Abstract. Untraceability and unreuseability are essential security prop-
erties for electronic cash protocols. Many protocols have been proposed
to meet these two properties. However, most of them have not been for-
mally proved to be untraceable and unreuseable. In this paper we propose
to use the applied pi calculus as a framework for describing and analyz-
ing electronic cash protocols, and we analyze Ferguson’s electronic cash
protocol as a case study. We believe that this approach is suitable for
many different electronic cash protocols.

1 Introduction

Security protocols for on-line payments play an important role in today’s elec-
tronic commerce. These protocols can be applied in a myriad of circumstances,
from real time money transfer to selling soccer match tickets on the Internet.
However, when transactions are monitored, some private information of cus-
tomers, which should be kept secret, is recorded too. In order to protect users’
privacy, researchers have proposed a set of untraceable electronic cash proto-
cols [14,19,11,12,29]. Similar to physical cash, electronic cash is also portable,
recognizable, transferable, and untraceable (anonymous).

As exemplified in Figure 1, an electronic cash protocol usually consists of three
sub-protocols — the withdraw protocol, the payment protocol, and the deposit
protocol. It also has three types of principals — a bank, a payer, and a shop. A
typical flow of the protocol is given as follows:

1. By executing a withdraw stage protocol with the bank over an authenticated
channel, the payer can obtain electronic coins issued by the bank;

2. The payer spends these coins in the shop, by performing the payment stage
protocol, in which the shop can be convinced that these coins are not faked;
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Fig. 1. Typical electronic cash protocol

3. The shop can initiate the deposit stage protocol with the bank, to verify and
deposit these coins into its account.

In an on-line electronic cash protocol, the bank is required to stay in a standby
condition to verify the coins for the shop in the payment stage protocol, while in
an off-line one, its payment stage protocol does not require interactions between
the shop and the bank. That is to say, the shop verifies the validity of the
electronic coins without the bank’s assistance. In this paper, we only consider
off-line electronic cash protocols because they reduce the complexity of the bank
systems. However this advantage also brings the danger of the payer’s using the
same coin more than once. So two main security properties are required for any
off-line electronic cash protocol:

– Anonymity (Untraceability). The bank should not be able to determine if a
certain payment is made by a particular payer, even with the shop’s coop-
eration.

– Detection-of-double-spending (Unreuseability). If a dishonest payer spends a
coin more than once, the bank should be able to detect the payer’s identity
with an overwhelming probability.

To our knowledge, most electronic cash protocols have not been proved to be
untraceable and unreuseable. Recently, the need for applying formal methods
to security protocols has been widely recognized and there have been several
attempts to develop a formal framework for specifying and reasoning about
security properties. For example, CSP [22] and the spi calculus [5] have been
used to analyze security protocols [28,6]. The applied pi calculus [4], which is a
variant of the pi calculus [26,27] extended with value passing, function symbol,
and equational theory over terms and functions, has been successfully applied
to verify some security protocols [2]. The protocol verifier ProVerif [8] provides
a set of proof techniques which can be used directly in proving the equivalence
between processes of the applied pi calculus.
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The main contributions of this paper are summarized as follows.

– We model Ferguson’s electronic cash protocol in the applied pi calculus by
defining an appropriate signature and equational theory.

– We demonstrate that Ferguson’s electronic cash protocol fulfills untraceabil-
ity and unreuseability. The proofs are partly done by ProVerif.

Related work. Anonymity (untraceability) was first proposed by Chaum [13]
to solve the Dinning Cryptographer Problem. After that, a great deal of re-
search has been carried out on this topic and various formal definitions and
frameworks for analyzing anonymity have been developed in the literature. For
example, Schneider and Sidiropoulos analyzed anonymity with CSP [28]. They
used substitution and observable equivalence to define anonymity in CSP. In
their framework, the automatic tool FDR [24] was used to check the equivalence
of two processes. In [23] Kremer and Ryan analyzed the FOO92 voting proto-
col with the applied pi calculus and proved that it satisfies anonymity. Chothia
[15] used bisimulation in the pi calculus to test the anonymity of an anonymous
file-sharing system. Chothia et al. [16] proposed a general framework based on
the process algebraic verification tool μCRL [10] for checking anonymity and
applied it to several protocols, including the Dinning Cryptographer Problem
and the FOO92 voting protocol. Our framework is similar to [23], but our proofs
are partly done by ProVerif when in [23] all the proofs are done manually.

Other works, such as [7,17,18], considered probabilistic anonymity. Bhar-
gava and Palamidessi [7] formulated their notions of probabilistic anonymity
in terms of observables for processes in the probabilistic pi calculus [25]. Deng,
Palamidessi and Pang [17] extended the work of [7] and defined the notion of
weak probabilistic anonymity and used a probabilistic model checker [21] to au-
tomatically analyze the Dining Cryptographers Problem. In [18] Deng, Pang
and Wu used the notion of relative entropy from information theory to measure
the degree of anonymity a protocol can guarantee, and they proposed a proba-
bilistic process calculus to describe protocols. They considered the scenario with
nondeterministic and probabilistic users, which is more realistic. However, the
expressiveness of the process calculi they used are less powerful than that of
the applied pi calculus used here, which can express all the computations by
functions. All of these works on probabilistic anonymity have not been applied
to electronic cash protocols.

Organization of the paper. In next section, we briefly introduce the applied pi
calculus. In Section 3, we model a simplified version of Ferguson’s electronic cash
protocol. Two crucial properties of the protocol, untraceability and unreuseabil-
ity, are analyzed in Sections 4 and 5, respectively. Finally, we conclude the paper
and discuss some future work in Section 6.

2 The Applied Pi Calculus

In this section, we give a brief overview of this calculus. The reader is referred
to [4] for more details.
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2.1 Syntax

To describe a process in the applied pi calculus, one should first define a signature
Σ which consists of some function symbols. Given a signature Σ, an infinite set
of names, and an infinite set of variables, the set of terms are defined below:

L, M, N, T, U, V ::= terms
a, b, c, . . . , k, . . . , m, n name
x, y, z variable
f(M1, . . . , Ml) function application

Equational theories play an important role in security protocol analysis. An
equational theory over a signature usually consists of a set of equations asserting
the equality of cryptographic primitives. For example, in order to model the
symmetry cryptography, one can use the equation

dec(enc(x, y), y) = x.

Here x represents a plaintext and y is a key. The binary function symbols enc
and dec denote encryption and decryption operation, respectively.

We usually use E to denote an equational theory. The notation Σ � M =E N
means the equation M = N is in the theory E associated with Σ.

The definition of plain processes is similar to the one in the pi calculus, except
that messages can contain terms rather than names.

P, Q, R ::= 0 null process
P | Q parallel composition
!P replication
νn.P name restriction (“new”)
if M = N then P else Q conditional
u(x).P message input
ū〈N〉.P message output

Extended processes introduce active substitutions and variable restrictions.

A, B, C ::= P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

Here {M/x} is an active substitution which replaces the variable x with the term
M , just like “let x = M in . . .”. The active substitution {M/x} typically appears
when the term M has been sent to the environment. The variable restriction νx
restricts the scope of active substitutions. We write fv(A), bv(A), fn(A), and
bn(A) for free and bound variables and free and bound names of A.
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A closed extended process A can be rewritten into a form which consists of a
substitution and a plain process with some restricted names:

A ≡ ν ñ.{M̃/x̃} | P

where fv(P ) = ∅, fv(M̃) = ∅, and {ñ} ⊆ fn(M̃).
Every extended process can be mapped to a frame φ(A) which contains only

restriction and parallel composition of active substitutions, by replacing every
plain process in A with 0. The frame φ(A) can be viewed as static knowledge
exposed by A to its environment, but not for A’s dynamic behavior. We write
dom(ϕ) for the domain of ϕ, a set of variables which appear in active substitu-
tions in ϕ but not under a variable restriction.

We write φ � M to mean M can be deduced from φ. This relation is called
deduction which is axiomatized by the following rules.

Subst

ν ñ.σ � M
if ∃ x ∈ dom(σ) s.t. xσ = M

Nonce

ν ñ.σ � s
if s 
∈ ñ

Funct

φ � M1 · · · φ � Mk

φ � f(M1, · · · , Mk)
f ∈ Σ

Equiv

φ � M M =E N

φ � N

An evaluation context, denote by C[ ], is a context whose hole is not under
a replication, a conditional, an input, or an output. An evaluation context C[ ]
closes A when C[A] is closed, and C[ ] is called a closing evaluation context.

2.2 Semantics

Structural equivalence, written A ≡ B, is the smallest equivalence relation on ex-
tended processes that is closed under α-conversion on both names and variables,
and under evaluation contexts.

Internal reduction → is the smallest relation on extended processes closed by
structural equivalence and application of evaluation contexts:

Comm ā〈x〉.P | a(x).Q → P | Q
Then if M = M then P else Q → P
Else if M = N then P else Q → Q , when Σ 
� M =E N

As usual, labeled operational semantics extends reduction semantics and en-
ables us to reason about the interaction between processes and the environment.
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We give a labeled operational semantics which defines transitions of the form
A

α−→ A′ with α being a label of input or output action. The following rules are
adopted in the labeled operational semantics.

In a(x).P
a(M)−−−→ P{M/x}

Out-Atom ā〈u〉.P ā〈u〉−−−→ P

Open-Atom

A
ā〈u〉−−−→ A′ u 
= a

νu.A
νu.ā〈u〉−−−−−→ A′

Scope
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

Par

A
α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅

A | B
α−→ A′ | B

Struct
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

2.3 Equivalence Relations

We write A ⇓ a when A can send a message on channel a, i.e., A →∗ C[ā〈M〉.P ]
for some evaluation context C[ ] that does not bind a.

Definition 1 (Observational equivalence). Observational equivalence (≈)
is the largest symmetric relation R between closed extended processes with the
same domain such that A R B implies:

1. if A ⇓ a, then B ⇓ a;
2. if A →∗ A′, then B →∗ B′ and A′ R B′ for some B′;
3. C[A] R C[B] for all closing evaluation contexts C[ ].

Definition 1 says that two processes which cannot be distinguished in any context
are observationally equivalent. The context usually denotes an attacker.

Definition 2. We say that two terms M and N are equal in the frame φ, and
write (M = N)φ, if and only if φ ≡ ν ñ.σ, Mσ = Nσ, and {ñ} ∩ (fn(M) ∪
fn(N)) = ∅ for some names ñ and substitution σ.

Definition 3 (Static equivalence). Two closed frames ϕ and ψ are statically
equivalent, written ϕ ≈s ψ, for ϕ ≡ νñ1σ1 and ψ ≡ νñ2σ2, when dom(ϕ) =
dom(ψ) and when, for all terms M and N , we have (M = N)ϕ if and only if
(M = N)ψ.

Two extended processes are static equivalent if and only if φ(A) ≈s φ(B).
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Static equivalence only defines a relation on frames, which are static knowl-
edge exposed to the environment by some processes. More details about static
equivalence can be found in [3].

Definition 4 (Labeled bisimilarity). Labeled bisimilarity (≈l) is the largest
symmetric relation R on closed extended processes such that A R B implies:

1. A ≈s B;
2. if A →∗ A′, then B →∗ B′ and A′ R B′ for some B′
3. if A

α−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅, then B →∗ α−→→∗ B′

The following theorem was proved in [4].

Theorem 1. ≈l = ≈ and ≈ ⊆ ≈s.

Theorem1shows that observational equivalence coincideswith labeledbisimilarity
and observational equivalence is finer than static equivalence. Labeled bisimilarity
does not consider all the contexts, which leads to easy proofs in many occasions.

3 Modeling an Electronic Cash Protocol

In this section, we first introduce a simplified version of Ferguson’s electronic cash
protocol [19], then we define an appropriate equational theory with reasonable
abstraction for the blind signatures scheme in the protocol. Finally we model the
protocol in the applied pi calculus from the viewpoint of three types of principals.

3.1 Ferguson’s Electronic Cash Protocol

As mentioned in the introduction, the protocol consists of three types of partic-
ipants, the bank, the payer, and the shop. The protocol employs a randomized
blind signatures scheme based on RSA-signature scheme to ensure that the payer
can obtain the bank’s signature on the coin, while the bank has no knowledge
of the coin. A polynomial secret sharing scheme is used for double-spending
detection. The whole protocol can be described by three sub-protocols:

Withdraw Stage
1. The payer chooses three numbers c, k, and g, where c represents a coin, k is

a random number, and g is a blinding factor;
2. The payer blinds the coin c with k and g using blinding function blind(c, k, g),

and then sends this blinded coin together with its identity U to the bank
over an authenticated channel c1;

3. The bank signs on the blinded coin using the randomized blind signatures
scheme, generates two blinded signatures s1 and s2, and sends them back to
the payer on c2;

4. The payer unblinds these two signatures received from the bank using unblind-
ing function unblind and blinding factor g, and obtains sign(CkA, prvkey) and
sign(CUB, prvkey), which are two RSA signatures with the bank’s private key
prvkey on CkA and CUB separately. Here C = fc(c), A = fa(c), B = fb(c),
and fc, fa, fb are public suitable one-way functions.
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Payment Stage
1. The payer sends the coin c to the shop over a secret channel cpay;
2. The shop sends the payer a randomly chosen (non-zero) challenge x on c3;
3. The payer computes a response r = kx+U (the share of the payer’s identity

for double-spending detection) and a signature on CrAxB which can be
easily deduced from the two RSA-signatures obtained from the bank, and
sends them on channel c4;

4. The shop can verify the signature on CrAxB with the bank’s public key to
ensure the validity of the payer’s coin, and then completes the trade with
the payer.

Deposit Stage
1. The shop sends the coin c, the challenge x and the response (both r and the

signature) to the bank on channel c5 to deposit the coin;
2. The bank can check whether the coin is valid by verifying the correctness of

the signature, and then stores (c, x, r) in the Used-coin Database and informs
the shop on channel cpayOK if the coin is valid;

3. If the payer spends the coin c twice dishonestly, then there must be two en-
tries (c, x1, r1) and (c, x2, r2) associated with c in the database. Since (x1, r1)
and (x2, r2) are two different points on the line r = kx+ U , the bank is able
to determine the payer’s identity U immediately.

3.2 Equational Theory

To analyze Ferguson’s electronic cash protocol, we define signature Σ for cryp-
tography primitives in the following way:

blind(c, k, g) (* blind a coin with k, and g * )
unblind(c, g) (* undo blinding * )
pk(sk) (* get public key from private key * )
blindsignA(c, U, sk) (* blind signature algorithm A * )
blindsignB(c, U, sk) (* blind signature algorithm B * )
sign(m, sk) (* RSA signature scheme* )
checksign(m, s, pk) (* verify RSA signature * )
hash1(c, k, U) (* hash1(c,k,U)=CkA * )
hash2(c, k, U) (* hash2(c,k,U)=CUB * )
hash3(c, x, r) (* hash3(c,x,r)=CrAxB * )
resp-r(x, k, U) (* polynomial secret sharing scheme * )
resp-s(x, s1, s2) (* compute the coin’s signature from the two given by the bank * )
reveal(x, y) (* determine the identity of the double-spender * )
( , ), ( , , ), . . . (* constructors for combined messages * )
F1, . . . ,Fi, . . . (* projections for combined messages * )

The equational theory on Σ is given as follows.
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– For convenience, we introduce ( , ), ( , , ), . . . to denote combinations of
messages, and Fi extracts the i-th component of the combined messages. An
example of the equation is:

Fi((x1, . . . , xi, . . . , xn)) = xi

– For fa, fb, and fc, which are three public suitable one-way functions used
in the protocol, we introduce hash1, hash1, and hash3 for some kinds of
combinations of fa, fb and fc:

hash1(coin, k, U) = CkA
hash2(coin, k, U) = CUB
hash3(coin, x, r) = CrAxB

There is no equation on hash1, hash2, and hash3, because these one-way
functions are collision-free.

– In order to model the RSA signature scheme, sign and checksign are em-
ployed to denote corresponding signature and verification procedure, and
the function symbol pk is used for deriving public-key from private-key. The
equation is:

checksign(M, sign(M, sk), pk(sk)) = true

– The randomized blind signature scheme in the protocol runs as follows: The
payer first blinds the coin c with random number k and blinding factor g,
and then sends it together with the payer’s identity to the bank. The bank
executes two special blind signature algorithms A and B with its private key
and the payer’s identity to generate blinded signatures, from which the payer
can obtain two signatures over CkA and CUB (in RSA signature scheme)
after unblinding operation. The equations are describe as follows:

unblind(blindsignA(blind(coin, k, g), U, sk), g) = sign(hash1(coin, k, U), sk)
unblind(blindsignB(blind(coin, k, g), U, sk), g) = sign(hash2(coin, k, U), sk)

– Note that we use symbolic abstraction of blind function for the protocol.
Since there is no equation on blind functions, a blinded coin can be viewed
as a fresh, opaque message, apparently unrelated to the coin c, when the
blinding factor g is not revealed.

νn.c̄〈n〉 ≈ νk.νg.c̄〈blind(coin, k, g)〉
– Finally, the polynomial secret sharing scheme in the protocol is modeled with

three function symbols. The first one, resp-s(x, s1, s2), denotes a response
over challenge x and two signature s1 and s2 which are obtained from the
bank by the payer; the second one, resp-r(x, k, U), denotes a response over
challenge x on the line r = kx + U ; the last one, reveal, is a special function
symbol by which the bank can detect the double-spender’s identity. The
equations are defined below:

resp-s(x, sign(hash1(coin, k, U), sk), sign(hash2(coin, k, U), sk))
= sign(hash3(c, x, resp-r(x, k, U)), sk)

reveal(resp-r(x1, k, U), resp-r(x2, k, U)) = U, where x1 
= x2
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3.3 The Payer Process

The payer process models the role of a payer, as the one in the protocol which
is mentioned in Section 3.1. First, the payer generates a fresh random number
k, a fresh blind factor g, and a coin c. Next, the payer blinds the coin c with k
and g, and then sends this blinded coin together with its identity U to the bank,
expecting two corresponding signatures. Finally, the payer sends the coin c to
the shop and accomplishes a challenge-response procedure with the shop.

It should be noticed that c1, . . . , cn are public channels, used only for syn-
chronizing different protocol steps. For example, the payer process sends its first
message on channel c1, and then the bank process will receive this message on
the same channel. Since these channels are public, the adversary will know what
has been sent on these channels.

We write let x = M in P instead of P{M/x} for ease of understanding.

Ppayer ::= νk.νg.νc.
c1〈(blind(c, k, g), U)〉.
c2(x1).
let signature1 = unblind(F1(x1), g) in
let signature2 = unblind(F2(x1), g) in
if checksign(hash1(c, k, U), signature1, Pubbank) = true then
if checksign(hash2(c, k, U), signature2, Pubbank) = true then
cpay〈c〉.
c3(x2).
c4〈(resp-r(x2, k, U), resp-s(x2, signature1, signature2))〉

3.4 The Bank Process

The behavior of the bank is modeled by the process below. After receiving a
blinded coin from the payer, the bank sends back two blind signatures, and
debits one dollar from the payer’s account at the same time. When the shop
requests to verify the validity of a coin, the bank first verifies the correctness of
signature, and then deposits one dollar to the shop’s account.

P ′Bank ::= (c1(x1).
let blindcoin = F1(x1) in
let U = F2(x1) in
c2〈(blindsignA(blindcoin, U, Prvbank), blindsignB(blindcoin, U, Prvbank))〉) |
(c5(x2).
let coin = F1(x2) in
let challenge = F2(x2) in
let response = F3(x2) in
let signature = F4(x2) in
if checksign(hash3(coin, challenge, response), signature, Pubbank) = true
then cpayOK〈〉)
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The bank’s public key is defined as a context, in which the private key remains
secret and the public is exported.

Keybank[ ] ::= νPrvbank .({pk(Prvbank)/Pubbank} | [ ])

The bank process is defined as follows, and the replication operator enables
the bank process to deal with multiple requests from payers and shops.

PBank ::= Keybank[!P ′Bank]

3.5 The Shop Process

The shop is modeled as the process below. In order to determine whether a paid
coin is valid, the shop initiates the challenge-response procedure with the payer.
Then the shop sends the coin and the result of the challenge-response procedure
to the bank to deposit this coin.

Pshop ::= ν x.
cpay(x1).
let coinpay = x1 in
c3〈x〉.
c4(x2).
let response = F1(x2) in
let signature = F2(x2) in
if checksign(hash3(coinpay, x, response), signature, Pubbank) = true
then c5〈(coinpay, x, response, signature)〉.
cpayOK()

3.6 The System Process

The whole system is obtained by putting in parallel the three components, the
payer process, the bank process, and the shop process. Notice that the public
key Pubbank used in Ppayer and Pshop is exported by Pbank, while the private
key of the bank remains secret.

Psystem ::= Pbank | Ppayer | Pshop

4 Analysis of Untraceability

A formal definition of untraceability was first proposed in [20]. We follow this
formal definition and analyze Ferguson’s protocol in the applied pi calculus.
Here, we only consider passive attackers who eavesdrop on channels.

Definition 5 (Untraceability). Let passive attacker A has access to all bank’s
views of withdraw, payment, and deposit protocols. Then for any two coins Ci, Cj

and two withdraws W0, W1 such that Ci and Cj are originated from W0 and W1,
A cannot distinguish whether Ci comes from W0 or W1.
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For ease of understanding, we specialize the above general definition to a sim-
ple system with two payers P1 and P2. Suppose P1 withdraws coin1, and P2
withdraws coin2.

P1 ::= Ppayer{coin1/c, payer1/U}
P2 ::= Ppayer{coin2/c, payer2/U}

We say that an electronic cash protocol satisfies the requirement of untraceabil-
ity, when process P1 with coin1 paralleled by process P2 with coin2 is observa-
tionally equivalent to process P1 with coin2 paralleled by process P2 with coin1,
i.e., P1 | P2 ≈ P1{coin2/coin1} | P2{coin1/coin2}.

Theorem 2 (Untraceability). Ferguson’s electronic cash protocol satisfies the
requirement of untraceability.

Proof. Proving equivalences of two processes which differ only in the choice
of some terms is supported by ProVerif [8,9]. We benefit from this feature of
ProVerif, and the proof is partly done by this tool.

We use ProVerif to prove the following equivalence

Ppayer{coin1/c} ≈ Ppayer{coin2/c}.

The code for proving this equivalence in included in the appendix. Based on the
result of ProVerif, the process of withdraw stage is independent from the payment
stage. Even if the bank and the shop cooperate, they cannot distinguish whether
P1 withdraws coin1 or coin2, so we have

P1 ≈ P1{coin2/coin1}.

Thus, from the structural equivalence, the following equivalence is obvious.

P1 | P2 ≈ P1{coin2/coin1} | P2{coin1/coin2} ��

5 Analysis of Unreuseability

In this section we analyze the unreuseability property of the protocol modeled
in Section 3. In an off-line electronic cash protocol, after receiving a coin, the
shop does not deposit the coin immediately. Thus, the strategy adopted by the
system is to detect the behavior of double-spending instead of preventing it. The
formal definition of unreuseability from [20] is given below.

Definition 6 (Unreuseability). If a coin is successfully deposited twice, then
the identity of at least one misbehaving user can be efficiently computed and
proved from the bank’s view of the deposit.

In Ferguson’s protocol, the payer’s identity is embedded in the payment stage
by the polynomial secret sharing scheme. Repeated execution of the challenge-
response procedure over a same coin will certainly reveal the identity of the
payer. Since ProVerif cannot examine the knowledge of a particular participant,
the proof of Theorem 3 is done manually.
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Theorem 3 (Unreuseability). Ferguson’s electronic cash protocol can detect
the identity of a double-spender, i.e. if a dishonest payer spends a coin twice

P
νy1.cpay〈y1〉.c3(x2).νy2.c4〈y2〉−−−−−−−−−−−−−−−−−−−→ νy3.cpay〈y3〉.c3(x3).νy4.c4〈y4〉−−−−−−−−−−−−−−−−−−−→ A′, and (y1 = y3)φ(A′)

then the payer’s identity must be revealed by the bank,

φ(A′) � payer

Proof. Without loss of generality, we construct a process representing the mis-
behaving payer.

Pdouble−spender ::= νk.νg.νc.
c1〈(blind(c, k, g), U)〉.
c2(x1).
let signature1 = unblind(F1(x1), g) in.
let signature2 = unblind(F2(x1), g) in.
if checksign(hash1(c, k, U), signature1, Pubbank)=true then
if checksign(hash2(c, k, U), signature2, Pubbank)=true then
cpay〈c〉.
c3(x2).
c4〈(resp-r(x2, k, U), resp-s(x2, signature1, signature2))〉.
cpay〈c〉.
c3(x3).
c4〈(resp-r(x3, k, U), resp-s(x3, signature1, signature2))〉

P ::= Pdouble−spender{payer/U}

After withdrawing the coin from the bank, and spending the coin twice,

P
νy.c1〈y〉.c2(x1)−−−−−−−−−−→ νy1.cpay〈y1〉.c3(x2).νy2.c4〈y2〉−−−−−−−−−−−−−−−−−−−→ νy3.cpay〈y3〉.c3(x3).νy4.c4〈y4〉−−−−−−−−−−−−−−−−−−−→ A′

The knowledge exposed by the double-spender to the bank and the shop is

φ(A′) = νk.νg.νc.
({(blind(c, k, g), payer)/y} | {c/y1} | {c/y3} |
{(resp-r(x2, k, payer), resp-s(x2, signature1, signature2)/y2} |
{(resp-r(x3, k, payer), resp-s(x3, signature1, signature2)/y4})

Notice that x2 and x3 are two challenges initiated by the shop in different ses-
sions, so we can infer x2 
= x3. From the equations on resp-r and reveal, we
have

φ(A′) � resp-r(x2, k, payer), φ(A′) � resp-r(x3, k, payer)
φ(A′) � reveal(resp-r(x2, k, payer), resp-r(x3, k, payer)) = payer

Clearly, this protocol satisfies unreuseability. ��
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6 Conclusion and Future Work

In this paper we have modeled Ferguson’s electronic cash protocol in the ap-
plied pi calculus, and we have verified that it satisfies the security properties
of untraceability and unreuseability. We believe that the approach used in this
paper is suitable for analyzing many other similar electronic cash protocols as
well.

As for the future work, it would be interesting to extend the framework of this
paper to a probabilistic setting and use it to analyze anonymity of electronic cash
protocols. We would also like to analyze other crucial properties of electronic cash
protocols, such as divisibility and transferability, and to develop an automatic
verification tool to verify security requirements of the protocols. Another future
direction is to look at on-line electronic cash protocols, where the bank systems
are much more complicated to model.
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Appendix - The Code for Proving Theorem 2 in ProVerif

We use this piece of code to prove the following equivalence

Ppayer{coin1/c} ≈ Ppayer{coin2/c}.

The Ppayer is described by processP below.
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(* Ferguson’s E-cash protocol *)

(* constant and constructor *)
data true/0.
data U/0.
data con2/2.

(* signature *)
fun blind/3.
(* fun unblind/2. *)
fun pk/1.
fun blindsignA/3.
fun blindsignB/3.
fun sign/2.
fun checksign/3.
fun hash1/3.
fun hash2/3.
fun hash3/3.
fun respr/3.
(* fun resps/3. *)
(* fun reveal/2. *)

(* equational theory *)
equation checksign(m,sign(m,sk),pk(sk))=true.
reduc unblind(blindsignA(blind(c,k,g),U,sk),g)

=sign(hash1(c,k,U),sk);
unblind(blindsignB(blind(c,k,g),U,sk),g)
=sign(hash2(c,k,U),sk).

reduc resps(x,sign(hash1(c,k,U),sk),sign(hash2(c,k,U),sk))
=sign(hash3(c,x,respr(x,k,U)),sk).

reduc reveal(respr(x1,k,U),respr(x2,k,U))=U.

(* channel *)
free cpk.
free c1.
free c2.
free c3.
free c4.
private free cpay.

let processP = new k; new g; new coin1; new coin2;
in (cpk, pubBank);
let c = choice[coin1,coin2] in
out (c1, con2(blind(c,k,g),U));
in (c2, con2(bs1,bs2));
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let s1 = unblind(bs1,g) in
let s2 = unblind(bs2,g) in
if checksign(hash1(c,k,U),s1,pubBank) = true then
if checksign(hash2(c,k,U),s2,pubBank) = true then
out (cpay, coin);
in (c3, x);
out (c4, con2(respr(x,k,U),resps(x,s1,s2))).

process processP
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1 Introduction

For the last three decades, public key cryptosystems (PKC) become an indis-
pensable part of our modern communication system. The security of traditional
PKC, such as RSA and ElGamal, depends on hard number theory based prob-
lems such as factoring or discrete logarithms. However, due to the quantum
computer attack by Shor [Sho97], and demand for more efficient cryptosystems
for small devices, there is a need to search for alternatives which are based on
other classes of problems.

Multivariate public key cryptosystem (MPKC) is a promising alternative.
Different from traditional PKC, the public key of MPKC is usually a set of
quadratic polynomials. The security of MPKC relies on the difficulty of solving
systems of nonlinear polynomial equations with many variables, and the latter is
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the computation in MPKC can be very fast because it is operated on a small
finite field.

The first promising construction of MPKC is the Matsumoto-Imai (MI) scheme
[MI88] proposed in 1988. Unfortunately, it was defeated by Patarin in 1995 with
the linearization method [Pat95].

Tractable rational map cryptosystem (TRMC) is a family of MPKC. It is a
type of stepwise triangular system (STS) [Wo05]. There are some STS schemes
such as TTM cryptosystems [Moh99] and TTS signature schemes [YC05]. All
existing instances of TTM have a common defect: their plaintext and ciphertext
variables always satisfy some linearization equations. Hence, they are all insecure
[GC00], [DH03], [DS03], [NHLCD06]. Compared to TTM, the construction of
TRMC is more systematic. Its central map is a so-called tractable rational map.

A previous version of TRMC is TRMC-2. The decryption of TRMC-2 involves
solving a sub-system of equations. Joux et al pointed out that the existence of
the sub-system turned out to be a weakness [JKMR05]. Utilizing this weakness,
Joux et al introduced a variant of the XL algorithm and built a pseudo-private
key equivalent to the original private key for a given valid ciphertext. With this
pseudo-private key, they find the corresponding plaintext.

To avoid this attack, the inventors of TRMC proposed TRMC-4 [WC04] re-
cently. But unfortunately, we find there exist some linearization equations sat-
isfied by plaintext variables mi and ciphertext variables wj , namely

n,m∑
i=1,j=1

aijmiwj +
n∑

i=1

bimi +
m∑

j=1

cjwj + d = 0.

Linearization equation attack was proposed first by Patarin in 1995 to defeat
the MI scheme [Pat95]. The linearization equation is also called the Patarin
relation. The authors claimed that it would be computationally infeasible if
one carefully designs the tractable rational maps [WC04]. But for TRMC-4,
we find that there are some Paratin relations in TRMC-4 and we can find all
linearization equations in 234 operations. Then for a given valid ciphertext, via
three eliminations, we can find the corresponding plaintext in 224 operations.

This paper is organized as follows. We introduce tractable rational map and
TRMC-4 encryption scheme in Section 2. In Section 3, we describe how to attack
TRMC-4, present a practical attack procedure, and calculate the complexity of
our attack. Finally, in Section 4, we conclude the paper.

2 TRMC Cryptosystems

2.1 Tractable Rational Map

TRMC is an MPKC. Its central map is a so-called tractable rational map, which
is different from other MPKCs such as TTM etc..
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Let K be a finite field. A tractable rational map is a map on K of following
form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
y2
...
yj

...
yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...

xj

...
xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1(x1)
r2(x2) · p2(x1)

q2(x1)
+ f2(x1)

g2(x1)
...
rj(xj) · pj(x1,x2,··· ,xj−1)

qj(x1,x2,··· ,xj−1)
+ fj(x1,x2,··· ,xj−1)

gj(x1,x2,··· ,xj−1)
...
rn(xn) · pn(x1,x2,··· ,xn−1)

qn(x1,x2,··· ,xn−1)
+ fn(x1,x2,··· ,xn−1)

gn(x1,x2,··· ,xn−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where fj , gj, pj , qj are polynomials on K, rj is an invertible polynomial over K
whose inverse can easily be computed.

The inverse process is very simple. One can derive x1 = r−1
1 (y1) from y1 =

r1(x1), then compute x2 from x1 and y2. By iteration, we can obtain the values
of x3, · · · , xn in turn. So TRMC can be regarded as a triangular system.

2.2 TRMC-4

Let K = F28 be a finite field with 28 elements. Map F : K
45 → K

50 is a
composition of 4 maps φ1, φ2, φ3, φ4. Let

(x1, · · · , x45) = φ1(m1, · · · , m45), (y1, · · · , y50) = φ2(x1, · · · , x45),

(z1, · · · , z50) = φ3(y1, · · · , y50), (w1, · · · , w50) = φ4(z1, · · · , z50),

where φ1 and φ4 are invertible affine maps, φ2 and φ3 are tractable rational
maps. Note that the central map of TRMC-4 is the composition of two tractable
rational maps.

The expressions of φ2 and φ3, except for a few parameters, are public in-
formation in the TRMC-4. φ1 and φ4 are taken as the private key, while the
expression of the map (w0, · · · , w50) = F (m0, ..., m45) is the public key. The
public key F (m1, · · · , m45) is 50 quadratic equations in 45 variables. Denote by
Fj the j-th component function of F .

(w1, · · · , w50) = F (m1, · · · , m45)
= φ4 ◦ φ3 ◦ φ2 ◦ φ1(m1, · · · , m45)
= (F1(m1, · · · , m45), · · · , F50(m1, · · · , m45))

To list φ2 and φ3, we firstly fix some notation.
Let E = F248 be a degree 6 extension field of K. π : E → K

6 is a natural
K-linear isomorphism. Namely we take a basis of E over K, {θ1, · · · , θ6}, and
define π by π(a1θ1 + · · · + a6θ6) = (a1, · · · , a6) for any a1, · · · , a6 ∈ K. It is
natural to regard π as a K-linear isomorphism from E

8 to K
48.

In TRMC-4, the intermediate variables x1, · · · , x45, y1, · · · , y48 and z1, · · · , z48
are grouped into elements in E, shown in Table 1. Here the second and the forth
column are the images of entries in the first and the third column, respectively.
For example, π(X1) = c1θ1 +x1θ2 + · · ·+x5θ6. The c1, · · · , c6 ∈ K are constants,
such that c1, c4, c5 �= 0 to avoid decryption failure.



Cryptanalysis of the TRMC-4 Public Key Cryptosystem 107

Table 1. Intermediate variables and their corresponding entries in E

X1 (c1, x1, x2, x3, x4, x5) Y1 (y1, y2, y3, y4, y5, y6)

X2 (c2, x6, x7, x8, x9, x10) Y2 (y7, y8, y9, y10, y11, y12)

X3 (c3, x11, x12, x13, x14, x15) Y3 (y13, y14, y15, y16, y17, y18)

X4 (x16, x17, x18, x19, x20, x21) Y4 (y19, y20, y21, y22, y23, y24)

X5 (x22, x23, x24, x25, x26, x27) Y5 (y25, y26, y27, y28, y29, y30)

X6 (x28, x29, x30, x31, x32, x33) Y6 (y31, y32, y33, y34, y35, y36)

X7 (x34, x35, x36, x37, x38, x39) Y7 (y37, y38, y39, y40, y41, y42)

X8 (x40, x41, x42, x43, x44, x45) Y8 (y43, y44, y45, y46, y47, y48)

X̃1 (c4, x1, x4, x7, x10, x13) Z1 (z1, z2, z3, z4, z5, z6)

X̃2 (c5, x2, x5, x8, x11, x14) Z2 (z7, z8, z9, z10, z11, z12)

X̃3 (c6, x3, x6, x9, x12, x15) Z3 (z13, z14, z15, z16, z17, z18)

Z4 (z19, z20, z21, z22, z23, z24)

Z5 (z25, z26, z27, z28, z29, z30)

Z6 (z31, z32, z33, z34, z35, z36)

Z7 (z37, z38, z39, z40, z41, z42)

Z8 (z43, z44, z45, z46, z47, z48)

φ2 is defined as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = X̃1;

Y2 = X̃2X̃1;

Y3 = X̃3X̃2;
Y4 = X4X1 + X3X2(

Y5 Y6

Y7 Y8

)
=

(
X1 X2

X3 X4

) (
X5 X6

X7 X8

)
=

(
X1X5 + X2X7 X1X6 + X2X8

X3X5 + X4X7 X3X6 + X4X8

)
;

y49 = L1L6 + L2L7 + L3L8 + L4L9 + L5L10;
y50 = L1L11 + L2L12 + L3L13 + L4L14 + L5L15.

(2.1)

where L1, · · · , L15 are randomly chosen linear maps in x1, · · · , x45.
φ3 is defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1 = Y 2
1

Y3
Y2

+ g1(
Y5Y8+Y6Y7

Y4
) = X̃1X̃3 + g1(X5X8 + X6X7);

Z2 = Y2 + g2(
Y5Y8+Y6Y7

Y4
) = X̃2X̃1 + g2(X5X8 + X6X7);

Z3 = Y3 + g3(
Y5Y8+Y6Y7

Y4
) = X̃3X̃2 + g3(X5X8 + X6X7);

Z4 = Y4 = X4X1 + X3X2;
Z5 = Y5 = X1X5 + X2X7;
Z6 = Y6 = X1X6 + X2X8;
Z7 = Y7 = X3X5 + X4X7;
Z8 = Y8 = X3X6 + X4X8;
z49 = y49;
z50 = y50.

(2.2)

where gi, i = 1, 2, 3, are maps from E to E, each of them corresponds to a map
fi, where fi = π ◦ gi ◦ π−1, is a K-linear transformation from K

6 to K
6.

The inverting process of TRMC-4 is very simple. Applying φ−1
4 on w1, · · · , w50,

one can derive the z1, · · · , z50, then the Z1, · · · , Z8 and Y4, · · · , Y8. One can
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compute the value of Y1, Y2, Y3 from the first three formulas of (2.2) and Z1, Z2, Z3.
Then from the first three formulas of (2.1), one can obtain X̃1, X̃2, X̃3 hence
X1, X2, X3. Then one can derive X4, X5, X6, X7, X8 from the matrix equation
and the fourth equation. So one obtains all the (x1, · · · , x45). Finally, apply-
ing φ−1

1 on (x1, · · · , x45), one derives all plaintext (m1, · · · , m45). Note that if
Z4 = Y4 = 0, the decryption mentioned above will not work.

3 Cryptanalysis on TRMC-4

The inventors of TRMC claimed [WC04] that searching the general Patarin
relations would be computationally infeasible by carefully designing the tractable
rational maps. But through theoretical analysis, we find that there still exist
Patarin relations in TRMC-4 and we can find all Patarin relations in a short
times. Given a valid ciphertext, starting from these equations, we can find the
corresponding plaintext easily.

3.1 Linearization Equations

Firstly, set

M1 =
(

X1 X2
X3 X4

)
, M2 =

(
X5 X6
X7 X8

)
, M =

(
Y5 Y6
Y7 Y8

)
=

(
Z5 Z6
Z7 Z8

)
.

Denote by A∗ the associated matrix of a square matrix; for a second order

matrix A =
(

a b
c d

)
, its associated matrix is A∗ =

(
d −b

−c a

)
.

In TRMC-4, we have

M = M1M2, det(M1) = Y4 = Z4,

Hence
M2det(M1) = M∗

1 M,

namely, (
X5 X6
X7 X8

)
Z4 =

(
X4 X2
X3 X1

) (
Z5 Z6
Z7 Z8

)
. (3.1)

Expanding it, that is,
⎧
⎪⎪⎨
⎪⎪⎩

X4Z5 + X2Z7 + X5Z4 = 0;
X2Z8 + X4Z6 + X6Z4 = 0;
X1Z7 + X3Z5 + X7Z4 = 0;
X1Z8 + X3Z6 + X8Z4 = 0.

(3.2)

Since F is derived from φ3 ◦ φ2 by composing from the inner and outer sides
by invertible affine maps φ1 and φ4. Hence equation (3.2) imply that for any
(m1, · · · , m45) ∈ K45 satisfying the equation of the form:

45,50∑
i=1,j=1

aijmiFj +
45∑

i=1

bimi +
50∑

j=1

cjFj + d = 0 (3.3)
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Furthermore, the four equations in (3.2) are all linearly independent, therefore
there exist at least 24 linearization equations such that their corresponding coef-
ficient vectors are linearly independent. Actually, given the value of Zi, the equa-
tions in Xi are also linearly independent. Hence, given a valid ciphertext, there
still exist at least 24 linearly independent linear equations in (m1, · · · , m45). Let
V denote the K-linear space composed of all linearization equations of the form
(3.3), and let D ≥ 24 be its dimension.

To find all equations in V is equivalent to find a basis of V . The equation (3.3)
is equivalent to a system of equations on the coefficients aij , bi, cj, and d. The
number of unknowns in these equations is equal to the number of monomials in
mi, Fj . So there are 2346 = 45 × 50 + 45 + 50 + 1 unknowns in these equations.

To find a basis of V , we randomly select slightly more than 2346, say 2500,
plaintexts (m1, · · · , m45), substitute them in (3.3) to get a system of 2500 linear
equations, and solve the resulting system. Let {(a(ρ)

ij , b
(ρ)
i , c

(ρ)
j ,d(ρ)), 1 ≤ ρ ≤ D}

be the coefficient vectors corresponding to a basis of V , where i, and j stand for
i = 1, · · · , 45, 1 ≤ j ≤ 50, respectively. Hence, we derive D linearly independent
equations in mi and Fj . Let Eρ(1 ≤ ρ ≤ D) denote the equations:

⎧
⎨
⎩

45,50∑
i=1,j=1

a
(ρ)
ij miFj +

45∑
i=1

b
(ρ)
i mi +

50∑
j=1

c
(ρ)
j Fj + d(ρ) = 0

(1 ≤ ρ ≤ D)
(3.4)

The work above depends only on any given public key, and it can be solved
once for all cryptanalysis under that public key.

3.2 First Elimination

Let’s assume we have a valid ciphertext w′ = (w′1, · · · , w′50). our goal is to find
its corresponding plaintext m′ = (m′1, · · · , m′45).

Substituting (F1, · · · , F50) = (w′1, · · · , w′50) into Eρ(1 ≤ ρ ≤ D), we can
derive D linear equations in mi. Reducing these D equations, we can derive
a system of linearly independent linear equations. Let l (l ≥ 24) denote the
number of linearly independent equations in these system. Let E′1, · · · , E′l denote
these equations. Doing a simple Gaussian elimination, from these l equations we
can represent l variables of x1, · · · , x45 by linear combinations of other 45 − l.
That is, we can find two disjoint subsets of {1, · · · , 45}, A′1 = {u′1, · · · , u′l} and
A1 = {u1, · · · , u45−l}, and linear expressions

mu′
j

= hj(mu1 , · · · , mu45−l
), 1 ≤ j ≤ l (3.5)

such that E′1, · · · , E′l holds when (3.5) are substituted into them.
Let S denote a (45 − l)-dimensional affine subspace of K

45 defined by (3.5);
the component mu′

j
of any vector (m0, · · · , m45) in S is hj(mu1 , · · · , mu45−l

).
Now substitute (3.5) into Fj(m1, · · · , m45) and derive 50 new quadratic func-

tions F̂j(mu1 , · · · , mu45−l
) (1 ≤ j ≤ 50).
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3.3 Second Elimination

Furthermore, through theoretical analysis, we find there still exist linearization
equations on S.

Firstly, we denote by Z ′i, i = 1, · · · , 8, the value of Zi corresponding to a given
valid ciphertext w′ = (w′1, . . . , w

′
50). Similar notations Y ′i , X ′i, X̃ ′i, x′i and m′i are

denoted for Yi, Xi, X̃i, xi and mi, respectively.
Since we have found a basis of all linearization equations and each linearization

equation is a linear combination of this basis, this fact holds when the variables
Fj in the equations are substituted by w′j . Applying this fact to (3.1), we know

(
X5 X6
X7 X8

)
=

(
X4 X2
X3 X1

) (
Z ′5 Z ′6
Z ′7 Z ′8

)
Z ′4
−1 (3.6)

namely,
(

X5 X6
X7 X8

)
=

(
(X4Z

′
5 + X2Z

′
7)Z
′
4
−1 (X2Z

′
8 + X4Z

′
6)Z
′
4
−1

(X1Z
′
7 + X3Z

′
5)Z
′
4
−1 (X1Z

′
8 + X3Z

′
6)Z
′
4
−1

)
(3.7)

The linear equations in mi derived from (3.6), (3.7) are all linear combinations
of the equations E′1, · · · , E′l , in other words, (3.6), (3.7) holds on S.

Calculate the determinants of matrixes in two sides of matrix equation (3.6),
then

X5X8 + X6X7 = C′Z4 (3.8)

where C′ = (Z ′5Z
′
8 + Z ′6Z

′
7)Z
′
4
−2.

Substitute (3.7) (3.8) into (2.2), then
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1 = X̃1X̃3 + g1(C′Z4)
Z2 = X̃2X̃1 + g2(C′Z4)
Z3 = X̃3X̃2 + g3(C′Z4)
Z4 = X1X4 + X2X3

Z5 = Z ′5Z ′4
−1

Z4

Z6 = Z ′6Z
′
4
−1

Z4

Z7 = Z ′7Z
′
4
−1

Z4

Z8 = Z ′8Z
′
4
−1

Z4

(3.9)

From the first three equations of (3.9), we can derive:
{

X̃3(Z2 + g2(C′Z4)) = X̃1(Z3 + g3(C′Z4))
X̃2(Z1 + g1(C′Z4)) = X̃1(Z3 + g3(C′Z4))

(3.10)

Equation (3.10) implies that there exist at least 10 to 12 linearly independent
linearization equations for remaining 45−l plaintext variables and the new public
key polynomials, that is:

45−l,50∑
i=1,j=1

âijmuiF̂j +
45−l∑
i=1

b̂imui +
50∑

j=1

ĉjF̂j + d̂ = 0 (3.11)

And these equations are still linearly independent when the value of F̂i is given.
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Additionally, from the last five equations, we find that some (at least 24)
polynomials of the new public key polynomials can be linearly expressed by
other polynomials.

In order to make our attack more efficient, we can do Gauss reduction first
on the new public key polynomials. Note that here we must combine the given
valid ciphertext with the new public key polynomials. Concretely, we consider
the coefficients in each polynomial as a row vector and we concatenate w′i and the
coefficient vector corresponding to Fi. Therefore, we derive a 50× (

(45−l+2
2

)
+1)

matrix. Doing Gauss reduction on this matrix, we can obtain a matrix whose
order less than 26. Hence, we derive a new set of public key polynomials, denoted
by ˆ̂

Fi. Set there are t ≤ 26 polynomials in this set. Denote the valid ciphertext
corresponding to the new public key polynomials by ŵ′i, i = 1, · · · , t.

So the equation (3.11) can be changed into:

45−l,t∑
i=1,j=1

âijmui

ˆ̂
Fj +

45−l∑
i=1

b̂imui +
t∑

j=1

ĉj
ˆ̂
Fj + d̂ = 0 (3.12)

To find all equations of the form (3.12), we can use the same method as the
one used for equations (3.3). Firstly, we must derive a system of linear equation
in âij , b̂i, ĉj and d̂. Since the number of public key polynomials decrease to t,
these equation have only

(45 − l)t + 45 − l + t + 1 ≤ 594

unknowns. We randomly select 600 m ∈ S, and substitute them in (3.12) to get
a system of 600 linear equations and then solve it.

Let D̂ and {(â(ρ)
ij , b̂

(ρ)
i , ĉ

(ρ)
j , d̂(ρ)) : 1 ≤ ρ ≤ D̂} be the dimension and a basis

of solution space, respectively. So we derive D̂ linearly independent quadratic
equations in mui , i = 1, · · · , 45 − l and ˆ̂

Fj , j = 1, · · · , t. Then Substitute ˆ̂
Fj

by ŵj to get D̂ linear equations in mui . Assuming we can derive k (k ≥ 10)
linearly independent equations, denote these equations by Ê′1, · · · , Ê′k. Doing a
simple Gaussian elimination, from these k equations we can represent k vari-
ables of mu1 , · · · , mu45−l

by linear combinations of other 45 − l − k. That is,
we can find two disjoint subsets of {1, . . . , 45 − l}, B′1 = {v′1, · · · , v′k} and
B1 = {v1, · · · , v45−l−k}, and linear expressions

mv′
j

= ĥj(mv1 , · · · , mv45−l−k
), 1 ≤ j ≤ k (3.13)

such that Ê′1, · · · , Ê′k holds when (3.13) are substituted into them. Let Ŝ denote
(45−l−k)-dimensional affine subspace of S, where for each vector (m1, · · · , m45)
in Ŝ, mv′

j
is substituted by (3.13) for any 1 ≤ i ≤ k.

Now substitute (3.13) into Fj(m1, · · · , m45) and derive t new quadratic func-
tions F̃j(mv1 , · · · , mv45−l−k

), j = 1, · · · , t.



112 X. Nie et al.

3.4 Third Elimination

Again, through theoretical analysis on F̃j(mv1 , · · · , mv45−l−k
), j = 1, · · · , t, we

find that we can do elimination once more.
Since we have found a basis of all linearization equations on S and each

linearization equations is a linear combination of this basis, this fact of course
holds when the variables ˆ̂

Fj in the equations are substituted by ŵ′j . Applying
this fact to (3.10), we know {

X̃3 = X̃1C
′
1

X̃2 = X̃1C
′
2

(3.14)

where C′1 = (Z ′3 + g3(C′Z ′4))(Z
′
2 + g2(C′Z ′4))

−1, C′2 = (Z ′3 + g3(C′Z4))(Z ′1 +
g1(C′Z ′4))

−1, in other words, (3.14) holds on Ŝ.
Substitute (3.14) into the first three equations of (3.9), then

⎧⎨
⎩

Z1 = X̃2
1C′1 + g1(C′Z4)

Z2 = X̃2
1C′2 + g2(C′Z4)

Z3 = X̃2
1C′1C′2 + g3(C′Z4)

(3.15)

We find X̃2
1 can be expressed as linear combinations of the Zi. Utilizing the fact

that squaring is a linear operation on a field of characteristic 2, we have, on Ŝ,
the 6 expressions corresponding to X̃2

1 is of the form
∑

a′im
2
i + b′ and K-linear

combinations of Fj(m1, · · · , m45) and 1 (constant). Thus, of linear combinations
of F̃j(mv1 , · · · , mv45−l−k

), j = 1, · · · , t, there must exist at least 6 expressions
which all contain only squaring terms and a constant term and correspond to
X̃2

1 .
It is easy to solve the following linear system on the ãi and b̃j :

⎧
⎨
⎩

50∑
i=1

ãiF̃i(mv1 , · · · , mv45−l−k
) +

45−l−k∑
j=1

b̃jm
2
vj

+ c̃ = 0

∀mv1 , · · · , mv45−l−k
∈ Ŵ

(3.16)

Set (ã(ρ)
1 , · · · , ã

(ρ)
50 , b̃

(ρ)
1 , · · · , b̃

(ρ)
45−l−k, c̃(ρ)), 1 ≤ ρ ≤ p (where p such that p + k =

15, because the vectors in K
6 corresponding to X̃i have 15 variables), is a basis

of solution space of system (3.16). Set
⎧⎨
⎩

45−l−k∑
j=1

(b̃(ρ)
j )1/2mvj + (

50∑
i=1

ãiw
′
i)

1/2 + c̃(ρ) = 0

1 ≤ ρ ≤ p

(3.17)

For any (m1, · · · , m45) ∈ Ŝ, its corresponding (mv1 , · · · , mv45−l−k
) satisfied

(3.17). Therefore we can represent p variables of mv1 , · · · , mv45−l−k
as linear

expressions of the remaining variables.
So far, we represent totally l + k + p variables of (m1, · · · , m45) as linear

expressions of the remaining 45−l−k−p variables. In other words, we eliminated
l + k + p variables in public key polynomials.
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3.5 Finding The Plaintext

Substitute the linear expressions derived from (3.17) into F̃j(mv1 , · · · , mv45−l−k
),

j = 1, · · · , t to get t new public key polynomials. There are 45 − l − k − p(≤ 6)
in these new polynomials. Denote them by ˜̃Fj(mv1 , · · · , mv45−l−k

), j = 1, · · · , t.
Since 45− l−k−p(≤ 6) is very small, in principle, we can use the Gröbner bases
method or XL method to solve the system

˜̃Fj = ŵ′j (3.18)

very easily and to find the plaintext.

3.6 A Practical Attack Procedure, Its Complexity and Experimental
Verification

Our attack can be further divide into the following five steps.

Step 1: Find a basis of the linear space of the coefficient vectors (aij , bi, cj, d)
of the linearization equations.

As mentioned in subsection (3.1), we randomly select 2500 plaintexts (m1,
· · · , m45) and substitute them into equation (3.3) to get a linear system of 2500
equations on 2346 unknowns. The computational complexity to solve it is

23462 × 2500 < 25003 < 234.

operations on the finite field K = F28 .
This step is independent of the value of the ciphertext w′ and can be done

once for a given public key.
Our computer experiments show that indeed D is equal to 24.

Step 2: For a given valid ciphertext (w′1, · · · , w′50), we substitute it into (3.4)
and solve the system of linear equations to get linear expression (3.5). Substitute
(3.5) into the public key polynomials to derive a set of new public key polynomials
F̂1, · · · , F̂50. Then we combine the given valid cipheretext and the new public key
polynomials and do Gauss reduction as subsection (3.3) described. At last, we
derive t linearly independent public key polynomials and t new valid ciphertext
components.

The first part of this step is of computational complexity about

452 · D < 453 < 215,

and the second part is
((

45 − l + 2
2

)
+ 1

)2

× 50 < 222.

Our computer experiments show that the number of linear expression derived
in this step is l = 24, and the number of the linearly independent public key
polynomials is t = 26.
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Step 3: Solve (3.12) to get a basis of solution spaceof (3.12),{(â(ρ)
ij , b̂

(ρ)
i , ĉ

(ρ)
j , d̂(ρ)) :

1 ≤ ρ ≤ D̂} then substitute the given ciphertext into result system of equations to
derive linear expression (3.13).

The first part of this step is of computational complexity about

(594)2 × 600 < 224,

and the second part is
(45 − l)2 · D̂ < 211.

Our computer experiments show D̂ = k = 12.

Substituting (3.13) into ˆ̂
Fj , j = 1, · · · , t, we can derive a set of new public key

polynomials F̃j(mv1 , · · · , mv45−l−k
),j = 1, · · · , t.

Step 4: Solve (3.16) to get a basis of solution space of it and then solve the
system of equations (3.17) to derive p linear expressions in remainder 45−l−k−p
components.

The first part of this step is of computational complexity about

(96 − l − k)3 < 218,

and the second part is
p(45 − l − k)2 < 210.

Our computer experiments show p = 3,

Step 5: Use the Gröbner basis method to solve the system of equations (3.18)
to get 45 − l − k − p values of plaintext components and then collect all linear
expressions between the variables derived in previous steps to get the values of
remainder plaintext components.

Our computer experiments show that there is 6 variables and 8 polynomials
in the last new public key polynomials ˜̃Fj(mv1 , · · · , mv45−l−k

), j = 1, · · · , t. The
computational complexity in this step is

(
63

3!

)3

< 218.

Hence, the total computational complexity of our attack is less then 234
F28-

operations.
We implement our attack on a Pentium IV 2.4Ghz PC with 256M memory, and

we code the attack using VC++. For any given valid ciphertext, our experiments
successfully find the corresponding plaintext less than 7 minutes, where 6 minutes
were spent on the execution of the step 1 in subsection (3.6), and less than 1
minute was spent to execute the remaining steps.

4 Conclusion

In this paper, we present a very efficient attack on TRMC-4. We need to do
precomputation first, which takes 6 minutes on a PC with a 2.4Ghz Pentium
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IV processor. Our attack then recovers the corresponding plaintext of any valid
ciphertext in less than 1 minute. The total computational complexity is less
than 234

F28-operations. The key point of the attack is finding all linearization
equations in polynomial time. Therefore, TRMC-4 is totally insecure.

Although we break the TRMC-4, we still think the design of TRMC is a
interesting idea; one can carefully design the tractable rational map to improve
the security of TRMC.
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Abstract. In the RSA system, balanced modulus N denotes a product
of two large prime numbers p and q, where q < p < 2q. Since Integer-
Factorization is difficult, p and q are simply estimated as

√
N . In the

Wiener attack, 2
√

N is adopted to be the estimation of p + q in order to
raise the security boundary of private-exponent d. This work proposes a
novel approach, called EPF, to determine the appropriate prime-factors
of N . The estimated values are called ”EPFs of N”, and are denoted
as pE and qE . Thus pE and qE can be adopted to estimate p + q more
accurately than by simply adopting 2

√
N . In addition, we show that the

Verheul and Tilborg’s extension of the Wiener attack can be considered
to be brute-guessing for the MSBs of p + q. Comparing with their work,
EPF can extend the Wiener attack to reduce the cost of exhaustive-
searching for 2r+8 bits down to 2r−10 bits, where r depends on N and
the private key d. The security boundary of private-exponent d can be
raised 9 bits again over Verheul and Tilborg’s result.

Keywords: RSA, continued fraction, the Wiener attack, exhaustive-
searching, most significant bit.

1 Introduction

RSA [7] has been conventionally adopted cryptosystem since 1978. The ad-
vantage of using RSA is that its security is based on the difficulty of Integer-
Factorization. A 1024-bit RSA modulus N , which is a product of two 512-bit
prime numbers, (i.e., N = pq), is adopted to make the factoring infeasible.
However, this system is inefficient for digital signature signing and verifying.
Many practical issues have been considered in implementing issues, such as re-
ducing the verifying and signing time [3], [8], [9]. In the real world, powerful
computers such as servers are frequently employed to execute the verifying task.
Lightweight devices with weak computational power, e.g., smart card, wireless
sensors or IC card, are employed to execute the signing task. Therefore, most
research is focused on reducing the signing time rather than verifying time.

Since the complexity of signing depends on the bit-length of private-exponent,
the most popular method to reduce the signing time is to apply a small private-
exponent d. To achieve this purpose, a small private-exponent d is first chosen

J. Katz and M. Yung (Eds.): ACNS 2007, LNCS 4521, pp. 116–128, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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in the RSA key generation algorithm, and the corresponding public-exponent
e satisfying ed ≡ 1 (modφ(N)) is then calculated. This RSA variant is called
RSA-Small-d. However, RSA-Small-d also causes security problems [1], [4], [5],
[11], [12]. Indeed, instances of RSA with d < N1/4, can be efficiently broken by
Wiener’s continued fraction attack, which is called the Wiener attack [11]. Boneh
and Durfee’s lattice-based attack [2], which was proposed in 1998, indicates that
the instance of RSA with d < N0.292 should be considered as unsafe system.
Although their attack is heuristic, it can work very well.

Verheul and Tilborg [10] proposed a technique to extend the Wiener attack
in 1997. Their technique costs an exhaustive-searching for 2r + 8 bits, where
r = log2 d − log2 N1/4 to raise r bits over the security boundary of the Wiener
attack. Assume that brute-searching for 56 bits is feasible in terms of current
computational ability. Solving r for the equation: 2r + 8 = 56 yields r = 24.
Therefore, the boundary of the Wiener attack can be raised 24 bits by Verheul
and Tilborg’s extension.

This work indicates that Verheul and Tilborg’s extension can be considered
as brute-guessing for the most significant bits (MSBs) of p + q, thus providing
a motivation to study how to find out the MSBs of p + q as many as possible.
Consequently, this work develops an approach to estimate the appropriate prime-
factors of N . Assume that the estimated prime-factors are termed pE and qE

respectively. These terms pE and qE are called the ”EPFs of N”, where EPF is
short for ”Estimated Prime-Factor”. Using EPF, p + q can be estimated more
accurately than simply adopting 2

√
N as the estimated value.

Given a 1024-bit RSA modulus N , which is a product of two 512-bit prime
numbers p and q, the values pE + qE and p + q generally match 10 to 12 MSBs.
Therefore, if EPF is adopted to extend the Wiener attack, then the cost of
exhaustive-searching for 2r + 8 bits is reduced to that of exhaustive-searching
for 2r − 10 bits. Consequently, the security boundary of private-exponent d can
be raised 9 bits again over that of Verheul and Tilborg’s extension.

The remainder of this paper is organized as follows: Section 2 briefly reviews
some basic results used in the paper, including continued fraction, the Wiener
attack, and Verheul & Tilborg’s extension. Section 3 then proposes the approach
of EPF and shows the experiment results. Next, Section 4 gives another look on
Verheul and Tilborg’s extension and applies EPF to improve its performance.
Conclusions are finally drawn in Section 5, along with recommendations for
future work.

1.1 Our Contribution

The contributions of this work are listed in the following:

(1) A novel approach, called EPF, is provided to evaluate the appropriate prime-
factors of N .

(2) Verheul and Tilborg’s extension of the Wiener attack is considered as brute-
guessing for the MSBs of p + q.

(3) Combine the results of (1) and (2), the exhaustive-searching for the extension
of the Wiener attack can be reduced from 2r + 8 bits to 2r − 10 bits.
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2 Preliminary

Some background knowledge is reviewed in this section, including continued
fractions, the Wiener attack, and the Verheul and Tilborg’s extension.

2.1 Continued Fractions

First we give the definition of continued fractions and some related theorems.
The details can be referenced in [6].

Definition 1. For any poistive real number ξ0, define ai = �ξi�, ξi+1 = 1/(ξi −
ai) for i = 0, 1, 2, ..., n, until ξn is an integer. Then ξ0 can be expanded into the
following form:

ξ0 = a0 +
1

a1 +
1

a2 + ... +
1
an

(1)

(1) is called the continued fraction expression of ξ0. For simplicity, we write
(1) to be ξ0 = (a0, a1, a2, ..., an). Besides, (a0, a1, ..., ai) is denoted as the i’th
convergent of the continued fraction expansion of ξ0.

Theorem 2. If ξ0 is a rational number, then the process of calculating continued
fraction expression would be finished in some finite index n. Otherwise, if ξ0 is
an irrational number, the process would not stop and n is approaching to infinite.

Theorem 3. For any positive real number ξ0, suppose hn

kn
is the i’th convergent

of the continued fraction expression of ξ0. Define h−2 = 0, h−1 = 1; k−2 = 1,
k−1 = 0, then hi = aihi−1 + hi−2 and ki = aiki−1 + ki−2 for i � 0.

Theorem 4. The convergents hn

kn
are successively close to ξ0, that is

∣∣∣∣ξ0 − hn

kn

∣∣∣∣ <

∣∣∣∣ξ0 − hn+1

kn+1

∣∣∣∣ .

Furthermore, if ξ0 is an irrational number, then lim
n→∞

hi

ki
= ξ0.

Theorem 5. Let ξ0 denote any real number. If there is a rational number a
b

with 1 ≤ b satisfying ∣∣∣ξ0 − a

b

∣∣∣ <
1

2b2 ,

then a
b is one of the convergents of the continued fraction expression of ξ0.
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2.2 The Wiener Attack

Wiener [11] first applied the technique of continued fraction to attack RSA-
Small-d. He observed that RSA equation ed = kϕ(N) + 1 can be rewritten as
the following form: ∣∣∣∣

e

ϕ(N)
− k

d

∣∣∣∣ =
∣∣∣∣

1
dϕ(N)

∣∣∣∣ . (2)

Replacing e
ϕ(N) in (2) by e

N yields
∣∣∣∣

e

N
− k

d

∣∣∣∣ <
1

2d2 . (3)

According to Theorem 5, if (3) is hold, then k
d equals one of the convergents of

the continued fraction expression of e
N . Since gcd(k, d) = 1, the values of d and

k can be extract out actually. Since N1/2
≈ p ≈ q and d ≈ k, the left side of (3)

reduces to
∣∣∣∣

e

N
− k

d

∣∣∣∣ =
Nk − ed

Nd
=

k (p + q − 1) − 1
Nd

≈
2

N1/2 . (4)

In order to apply Theorem 5 again, we have to set

2
N1/2 <

1
2d2 ,

which leads to:
d < 1

2N1/4. (5)

After ignoring the small constatnt 1
2 in (5), the Wiener attack shows that RSA

is insecure when the private-exponent d is smaller than N1/4. For instance of
1024-bit RSA modulus, d should be chosen larger than 256 bits.

2.3 Verheul and Tilborg’s Extension of the Wiener Attack

While considering the private-exponent d which is slightly larger than N1/4, the
Wiener attack would be failed. Hence, in order to avoid this situation, Verheul
and Tilborg [10] propose a technique to raise the security boundary of N1/4 with
exhaustive-searching for 2r +8 bits, where r = log2 d− log2 N1/4. They consider
the following identity:

k

d
=

pj+1U + (UΔ + V ) pj

qj+1U + (UΔ + V ) qj
, (6)

where pi

qi
is the i’th convergent of the continued fraction of e

N . ”U” and ”V ”
are unknown numbers with upper bound: log2 U ≤ r + 4 and log2 V ≤ r +
4 respectively. The item ”Δ” is a small number, e.g., 1 or 2., thus we omit its
uncertainty. Consequently, the uncertainty of k

d in (6) is about 2r+8 bits, which
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means we need to do an exhaustive-searching for about 2r + 8 bits to extract
out the correct value of k

d .
Assume that brute-guessing a number with quantity 256 is feasible in terms

of current computational ability. Solving r for 2r + 8 = 56 yields the boundary
of Verheul and Tilborg’s result. That is, Verheul and Tilborg’s extension can
further extend the security boundary of d up to 24 bits over Wiener’s result.
Thus, the instance of RSA with d < N1/4224 can be totally broken by the
technique of continued fraction. In this paper, we show Verheul and Tilborg’s
extension can be regarded as brute-guessing the MSBs of p+ q. Furthermore, we
reduce the cost of original exhaustive-searching for 2r + 8 bits to 2r − 10 bits,
where r = log2 d − log2 N1/4.

3 The Proposed Approach (EPF) to Estimate the
Prime-Factors of N = pq

In this section, a novel approach, called EPF, to estimate the prime-factors of N
(= pq) is proposed. The point is to find out two numbers, pE and qE , by imitating
the properties of p and q as similar as possible. The properties includes the bit-
length, the most significant bits, and the product of pE and qE . Also, we name
pE and qE ”EPFs of N”, where EPFs is short for ”Estimated Prime-Factors”.

First, we focus on how to estimate p + q. Note that the hardness of finding
p + q is the same as the hardness of finding p and q due to the formula:

(p − q)2 = (p + q)2 − 4N . (7)

Thus solving p and q is obvious by computing p − q with the formula (7).

3.1 How to Estimate p + q?

Suppose N = pq, where p and q are two large prime-numbers with the same
bit-length. Without loss of generality, we assume that q < p < 2q. Define Dp to
be the difference of

√
N and p. Similarly, define Dq to be the difference of q and√

N . That is,
p =

√
N + Dp and q =

√
N − Dq (8)

Applying (8) to N = pq we have

N = pq = (
√

N + Dp)(
√

N − Dq) = N +
√

N(Dp − Dq) − DpDq (9)

After simplifying (9) yields

DpDq =
√

N(Dp − Dq) (10)

Dividing by
√

NDpDq in both sides of (10) leads to

1√
N

=
Dp − Dq

DpDq
. (11)
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To estimate the appropriate quantities of Dp and Dq, we compute the i’th con-
vergent of 1/

√
N , denoted hi/ki, in the continued fraction expression. Hence,

according to Theorem 4, {hi/ki}i is a rational sequence such that

hi

ki
→ 1√

N
=

Dp − Dq

DpDq
, as i → ∞. (12)

Since
√

N must be an irrational number, or we can factor N immediately, the
three values 1/

√
N , Dp−Dq and DpDq in (12) are irrational numbers as well. Due

to the reason of inconvenience for operations on irrational numbers, we consider
the rational number �Dp�−�Dq�

�DpDq� , which is close to Dp−Dq

DpDq
. The integer parts of

Dp −Dq and DpDq are almost the same as the integer parts of 	Dp
−�Dq� and

�DpDq� respectively. Setting p =
⌊√

N
⌋

+ 	Dp
 and q =
⌊√

N
⌋

−�Dq�, we have

p + q = 2
⌊√

N
⌋

+ 	Dp
 − �Dq� . (13)

According to (13), we know that the information of 	Dp
 − �Dq� is still uesful
for us to estimate p + q.

Next, Theorem 6 shows that hn

kn
and �Dp�−�Dq�

�DpDq� are quite near. This implies

that adopting hn

kn
to be the estimation of �Dp�−�Dq�

�DpDq� is reasonable. Moreover, we

give the upper bound of the difference between hn

kn
and �Dp�−�Dq�

�DpDq� .

Theorem 6. If kn < DpDq, we have
∣∣∣∣
	Dp
 − �Dq�

�DpDq�
− hn

kn

∣∣∣∣ <
3

�DpDq�
. (14)

Proof. Since kn < DpDq and kn < knkn+1, we have

1
knkn+1

<
1
kn

<
1

DpDq
<

1
�DpDq�

.

Now we prove (14) by triangle inequality:
∣∣∣ �Dp�−�Dq�
�DpDq� − hn

kn

∣∣∣ =
∣∣∣ �Dp�−�Dq�
�DpDq� − Dp−Dq

DpDq
+ Dp−Dq

DpDq
− hn

kn

∣∣∣

�
∣∣∣ �Dp�−�Dq�
�DpDq� − Dp−Dq

DpDq

∣∣∣ +
∣∣∣Dp−Dq

DpDq
− hn

kn

∣∣∣ < 2
�DpDq� + 1

knkn+1
< 3
�DpDq� .

Done. �

Since �DpDq� is much larger than 3, 3
�DpDq� is close to 0. Consequently, the

value of �Dp�−�Dq�
�DpDq� is almost the same as the vaule of hn

kn
. Also, if the bit-length

of hn is equal to or slightly smaller than the bit-length of 	Dp
 − �Dq�, hn may
be considered as the estimation of 	Dp
 − �Dq� reasonably. Hence, to select the
suitable index n, we apply the following rule:

hn < 	Dp
 − �Dq� < hn+1
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Notice that hn is smaller than hn+1 due to Theorem 3. An apparent question is
that how to choose the right value of n without the information of 	Dp
− �Dq�.
To solve this problem, in fact, we choose several index as candidates according
to the statistical result. The experiment shows the average of n is 299, with the
standard deviation 12. Therefore, while searching the right value of n for each
modulus N , it may increase a little complexity. Here we simply estimate the
appropriate quantity which is slightly smaller than the vaule of 	Dp
 − �Dq�.
Thus we choose hn as estimated value rather than hn+1. However, it has no
theory to justify the difference of bit-lengths of hn and 	Dp
 − �Dq�. Thus we
show that the bit-length of hn is actually slightly smaller than the bit-length of
	Dp
−�Dq� by implementing experiments. Table 1 gives the results for 1024-bit
and 2048-bit RSA modulus respectively. We take 100 instances for each case
and compute the average bit-length and its standard deviation. According to
our experiments, for 1024-bit RSA modulus, hn is about 502 bits with standard
deviation 2.01. As for 2048-bit RSA modulus, hn is about 1011 bits with standard
deviation 4.42.

Table 1. The Bit-lengths of Estimated and Real Values

Modulus N hn �Dp� − �Dq� hn+1

1024 bits 502 bits 503 bits 505 bits

Standard deviation 2.01 1.43 2.10

2048 bits 1011 bits 1012 bits 1013 bits

Standard deviation 4.42 4.19 4.40

3.2 Estimated Prime-Factors of N (EPFs of N)

Here we show how to estimate the prime-factors of N , where N = pq. The
estimated prime-factors are denoted as pE and qE , which are called ”EPFs of
N”. Since �DpDq� ≈ 	Dp
 · �Dq�, kn can be regarded as the estimation of
	Dp
 · �Dq�. In other words, we have three fractions,

hn

kn
≈

	Dp
 − �Dq�
�DpDq�

≈
	Dp
 − �Dq�
	Dp
 · �Dq�

,

which are all close to each other. Besides, the bit-lengths of their numerator and
denominator are almost the same. Hence, hn and kn can be regarded as the
estimations of 	Dp
 − �Dq� and 	Dp
 · �Dq�, that is,

hn ≈ 	Dp
 − �Dq� and kn ≈ 	Dp
 · �Dq�
Computing 	Dp
 + �Dq� by the formula:

(	Dp
 + �Dq�)2 = (	Dp
 − �Dq�)2 + 4 	Dp
 · �Dq�

= h2
n + 4kn

(15)
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Solving 	Dp
 and �Dq� from (15) we get

	Dp
 =
⌈√

h2
n+4kn+hn

2

⌉
and �Dq� =

⌊√
h2

n+4kn−hn

2

⌋

Therefore, the EPFs of N are set to

pE =
⌊√

N
⌋

+
⌈√

h2
n+4kn+hn

2

⌉
and qE =

⌊√
N

⌋
−

⌊√
h2

n+4kn−hn

2

⌋
.

3.3 The Accuracy of EPFs of N

Here we show the accuracy of EPFs of N by experiments. The statistical data
in Table 2 shows the difference of EPFs and practical prime-factors, i,e,, p−pE ,
qE − q. We also compute the average bit-length of N − NE , where NE = pEqE .
The data comes from the average of 100 samples for each case. Note that the
pE and qE are the same 7 MSBs with p and q respectively for 1024-bit RSA
modulus. Also, for the case of 2048-bit RSA modulus, pE and qE are the same
9 MSBs with p and q respectively.

Table 2. The Accuracy of EPFs

the bit-length of N 1024 bits 2048

the average bit-length of p − pE 505 bits 1015 bits

standard deviation of p − pE 1.52 2.57

the average bit-length of qE − q 505 bits 1015 bits

standard deviation of qE − q 1.49 2.57

the average bit-length of N − NE 510 bits 1022 bits

standard deviation 1.56 2.06

4 Another Look on Verheul and Tilborg’s Extension and
Its Improvement

We show that Verheul and Tilborg’s extension can be regarded as brute-guessing
for the MSBs of p + q in this section. By applying EPF to improve the Wiener
attack, the new result raises the security boundary of d again. In the remainder
of the paper, we suppose the estimation of p + q is 2A, i.e., A ≈ p+q

2 . Under
such assumption φ(N) = (N + 1) − (p + q) is estimated as (N + 1) − 2A.

4.1 Improvement of the Wiener Attack

Consider the following question:
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Question:
When considering the RSA equation: ed = k(p − 1)(q − 1) + 1, where N = pq,
what range of d would satisfy the following inequalities?

| e

N + 1 − 2A
− k

d
| <

1
2d2 < | e

N
− k

d
| (16)

The meaning of (16) is shown as follows: In the right side of (16), the inequality
means the range of d that the Wiener attack would fail. Instead, in the left side
of (16), the inequality means the the Wiener attack can work successfully. The
difference between left inequality and right inequality of (16) is whether applying
new estimation of φ(N), i.e., N + 1 − 2A, to replace N . Now we simplify (16)
in the following:

Consider the right side of (16), since
∣∣∣∣

e

N
− k

d

∣∣∣∣ =
ed − Nk

Nd
=

k(p + q − 1) − 1
Nd

,

the right side inequality of (16) is equivalent to 1
2d2 < k(p+q−1)−1

Nd , that is

N < 2dk[(p + q) − 1] − 2d. (17)

Similarly, in the left side of (16), since
∣∣∣∣

e

N + 1 − 2A
− k

d

∣∣∣∣ =
∣∣∣∣
ed − k(N + 1 − 2A)

(N + 1 − 2A)d

∣∣∣∣ =
k[(p + q) − 2A] − 1

(N + 1 − 2A)d
,

the left side inequality of (16) is equivalent to k[(p+q)−2A]−1
(N+1−2A)d < 1

2d2 , that is

2dk[(p + q) − 2A] − 2d < N + 1 − 2A. (18)

In order to combine (17)and (18), we rearrange (18) in the following form:

2dk[(p + q) − 1] − 2d < N + (2dk − 1)(2A − 1) , (19)

which is the same format of (17). Consequently, after combining (17) and (19),
(16) is equivalent to

N < 2dk[(p + q) − 1] − 2d < N + (2dk − 1)(2A − 1). (20)

Note that if A = p+q
2 , the right side of (20) changes to

2dk (p + q − 1) − 2d < N + (2dk − 1) ((p + q) − 1) = 2dk (p + q − 1) + ϕ(N) ,

which is always hold for any size of private-exponent d.
Solving d in the right inequality of (20) we get its upper bound:

d <
N + 1 − 2A

2k (p + q − 2A) − 2
. (21)
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According to (21), the private-exponent d should not be chosen smaller than
N+1−2A

2k(p+q−2A)−2 or RSA system can be totally broken immediately. In addition,
the closer the distance between 2A and p + q is, the larger upper bound the
insecure private-exponent is. Therefore, to raise the security boundary of d, we
should try to find the estimated value of p + q as appropriate as possible. This
conclusion also implies that the complexity of extending the Wiener attack can
be considered as the complexity of finding p + q.

4.2 Applying EPF to the Proposed Extension of the Wiener Attack

Now we analyze how much complexity could be reduced when we apply EPF to
the proposed extension of the Wiener attack. Define a variable ”Λ” to denote
the difference of p+q

2 and A, i.e., Λ = p+q
2 − A. Note that A is the esitmated

value of p+q
2 , thus Λ is represented the uncertainty part of p+q

2 . Replacing A by
p+q
2 − Λ into the right inequality of (20) yields

2dk(p + q − 1) − 2d
< N + (2dk − 1) (2(p+q

2 − Λ) − 1)
= 2dk(p + q − 1) + ϕ(N) − 2Λ(2dk − 1)

(22)

Eliminating 2dk(p + q − 1) in both sides of (22), we have

2Λ(2dk − 1) − 2d < ϕ(N). (23)

According to (22), we have the following conclusion: The parameters Λ, k, and
d in (23) play the main role to determine whether the Wiener attack can work
or not. Since d and k are pre-determined parameters in the key-generation of
RSA, the only variable we could control is the parameter Λ which represents
the uncertainty part of p+q

2 . This implies the more accuracy A is estimated,
the smaller quantity of Λ will be. Therefore, to raise the security boundary of
private-exponent d, we should focus our effort on finding out the MSBs of p + q
as many as possible. In the following, Table 3 gives the experiment results about
how many MSBs of p + q that EPF can be found out.

The statistics data in Table 3 comes from the averages of computing 100
instances for p+q

2 , A and Λ. Note that 2A is the estimation of p + q. Thus 2A is

set to be 2
⌊√

N
⌋

+ hn according to EPF.

Table 3. The Difference between Estimated and Real Values

Modulus N p+q
2 A =

2�√
N�+hn

2 Λ = p+q
2 − A

1024 bits 512 bits 512 bits 500 bits

Standard deviation 0 0 1.89

2048 bits 1024 bits 1024 bits 1009 bits

Standard deviation 0 0 4.03
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In Table 3, for the case of 1024-bit N, the average bit-length of Λ is 500 bits
with the standard deviation 1.89. This implies that p+q

2 and A usually match
in 10 MSBs at least, where 10 is computed from 512 − 	500 + 1.89
. For the
case of 2048-bit RSA modulus, the average bit-length of Λ is 1009 bits with the
standard deviation 4.03. Thus, p+q

2 and A usually also match in 10 MSBs at
least, where 10 is computed from 1024 − 	1009 + 4.03
.

4.3 Better Result Compared with Verheul and Tilborg’s Extension

We compare our improvement with Verheul and Tilborg’s result. Consider the
case of 1024-bit RSA modulus N, in order to further reduce the quantity of
Λ, we do an exhaustive-searching for finding out the s MSBs of Λ and write
Λ = (2500−s)Λ1 +Λ2, where Λ1 ∈

[
2s−1, 2s

]
, and Λ2 ∈

[
2500−s, 2501−s

]
. Suppose

that Λ1 can be totally gotten by exhaustive-searching and Λ2 is still an unknown
part. Under such assumption, p+q

2 can be estimated as A + (2500−s)Λ1 more
accurately instead of just estimating as A. In addition, the values of p+q

2 and
A + (2500−s)Λ1 usually match 12 + s MSBs from tha above result. Thus the
uncertainty part of p+q

2 , Λ2, remains 500 − s bits.
Now we analyze how much improvement after adopting brute-guessing for Λ1.

Applying uncertainty part of p+q
2 , Λ2, to (23) yields

2Λ2(2dk − 1) − 2d < ϕ(N). (24)

In order to satisfy (24), we should compute the bit-length of each side. Denote
|d| and |k| to be represented the bit-length of d and k respectively, thus the
bit-length of 2Λ2(2dk − 1) − 2d is

1 + (500 − s) + 1 + |d| + |k|

which is mainly determined by 2Λ2(2dk−1) in (24). Furthermore, to satisfy (24)
we have to set

1 + (500 − s) + 1 + |d| + |k| < 1024 (25)

where 1024 is the bit-length of ϕ(N) in (24). Since the bit-length of d and k
are almost the same with high probability in the key-generation algorithm of
RSA-Small-d, we can assume |d| = |k|. Suppose that |d| = |k| = 256 + r. i.e.,
the private-exponent d exceeds 256 bits (N1/4) more r bits. Applying 256 + r.to
(25) we get

1 + (500 − s) + (1 + 2(256 + r) < 1024 ,

which is equivalent to
2r − 10 < s. (26)

By (26), we have a conclusion which is simlilar to Verheul and Tilborg’s result:
To extend the Wiener’s boundary r bits, we only have to do an exhaustive-
searching for about 2r − 10 bits, where r = log2 d − log2 N1/4. Compared with
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Verheul and Tilborg’s result [10], which costs an exhaustive-searching for 2r + 8
bits, our result is 18 bits fewer than Verheul and Tilborg’s. Thus it is more
efficient to applying our method on the extension of the Wiener attack.

Suppose that the complexity that the current computer can work with is
under O(256). This means brute-searching for any number whose bit-length less
than 56 is feasible. Verheul and Tilborg’s extension can attack successfully on
d < N1/4224, where 24 comes from by solving r for 2r + 8 = 56. With our result
in (26): Solving r for 2r − 10 = 56 yields r = 33. Hence, the proposed method
can attack successfully on d < N1/4233, which is more 9 bits than Verheul and
Tilborg’s result.

Table 4 shows the comparisons between the original Wiener attack, Verheul
and Tilborg’s extension (V-T Extension), and our improvement.

Table 4. The comparison between each attack

Upper Bound of d Complexity

The Wiener Attack d < N1/4 Polynomial time

V-T Extension d < N1/4224 exhaustive-searching for 2r + 8 bits

Our Improvement d < N1/4233 exhaustive-searching for 2r − 10 bits

5 Conclusion

This work presents a novel approach, called EPF, to determine the estimated
prime-factors of N through the continued fractions. Experiment results shows
that the 12 MSBs of p + q can be estimated correctly for the 1024-bit N . This
technique reduces the error between the real and estimated ϕ(N), and raises
the security boundary of private-exponent d. Besides, We show a result that
Verheul and Tilborg’s extension of the Wiener attack can be consider as brute-
guessing for MSBs of p+q. By applying EPF to the proposed result, the security
boundary of d can be raised again. Assuming that exhaustive-searching for 56
bits is feasible, Verheul and Tilborg’s extension raises 24 bits over the Wiener’s
boundary. The proposed method raises 9 bits over the Verheul and Tilborg’s
boundary. Therefore, the instance of RSA with d < N1/4233 can be totally
broken by the technique of the continued fractions.

An open problem has been mentioned many times in the past research.
Whether exists a better method to evaluate the estimated value of ϕ(N)? The
boundary of the Wiener attack can be raised again as the accuracy of the es-
timate of ϕ(N). In the futrue, we will try to design an efficient and accurate
method based on the continued fractions and other mathematic materials.
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Abstract. In this paper, we introduce a timing attack scheme against
a 160-bit modular multiplication with Blakley’s algorithm. It is assumed
that a set of public inputs are multiplied by a secret parameter and
running time of each multiplication is given, but the multiplication result
is not known and a machine similar to victim machine isn’t available. The
proposed attack extracts all 160 bits of the secret parameter. Running
time of Blakley’s algorithm is analyzed and it is shown that running
time of each step is dependent on the running time of other steps. The
dependencies make the parameters of the attack be dependent on the
secret key, while it makes the attack rather complicated. A heuristic
algorithm is used to find the parameters of the attack. As a real scenario,
the attack is applied against on-line implementation of Digital Signature
Algorithm, which employs Blakley’s modular multiplication. Practical
results show that secret key of DSA will be found using 1,000,000 timing
samples.

Keywords: timing attack, modular multiplication, Blakley’s algorithm,
DSA.

1 Introduction

Any cryptographic primitive, such as a digital signature, can be considered in
two different aspects. It can be viewed as an abstract mathematical function that
takes some inputs and produces outputs. Alternatively, it can be viewed as an
implementation of a mathematical function in the real-world software/hardware
system. In the latter view, the cryptographic system interacts with environment
through side channels, such as power consumption channel and execution time
channel. Side channel attacks use the leaked data from the side channels to
attack on a certain cryptographic system, while make some assumptions about
the implementation. Among different side channel attacks, the timing attack has
special feature, i.e. very limited equipment is required to gather timing data.

Idea of timing attack was first introduced publicly by Kocher in [10]. He
showed that difference between the required execution times for various inputs,
can be exploited in order to find secret parameters of the underlying system.

J. Katz and M. Yung (Eds.): ACNS 2007, LNCS 4521, pp. 129–140, 2007.
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Kocher mentioned some systems, which maybe vulnerable to timing attack, in-
cluding RSA and DSA. He also showed how RSA implementation, which employs
square-and-multiply algorithm to implement modular exponentiation is vulnera-
ble to timing attack. Dhem et al. described a practical timing attack on an RSA
implementation [4]. These attack schemes are not applicable to CRT based im-
plementations of RSA. In [16], Schindler proposed another timing attack scheme
on RSA implementation based on CRT method and Montgomery multiplication.
Contrary to Kocher’s and Dhem’s attacks, Schindler’s attack does not directly
find the secret key. His attack factorizes RSA-modulus, instead. Schindler also
introduced advance statistical and stochastic method to model and optimize
timing attack in [17,18]. Brumley and Boneh employed and improved Schindler’s
idea to attack remotely on the RSA implementation which is used in OpenSSL
library [2]. They showed that not only smart cards but also general purpose
applications such as cryptographic operations in network communication and
operating systems are vulnerable to timing attack. All these attacks are based
on timing vulnerability of modular exponentiation, in which the exponent and
modulus are constant, but a different base is used in each exponentiation.

Another timing attack, based on the vulnerability of modular exponentiation,
was introduced against GPS identification system in [3]. Differing from previous
attacks, the exponent isn’t constant in this attack. GPS uses two secret keys,
short-term key which is generated in each execution and a long-term key that is
permanent for each user. The short-term key is used in a modular exponentiation
and in a modular addition with the long-term key. In the attack, timing samples
are used to find out only the hamming weight of the short-term key. Using inputs
and outputs of GPS algorithm and the hamming weight, bits of the long-term
key are guessed.

In addition to RSA and GPS, several block ciphers have been also examined
under timing attack such as DES [8], RC5 [7] , Rijndael [11] . Timing analysis has
been also applied on web privacy [5], in which a malicious web site can determine,
using response of browser to the request, whether or not the user has recently
visited some other, unrelated web page. The attack on web privacy was formally
modeled by Focardi et al. [6]. Timing attack may also be combined with other
side channel attacks in order to improve its performance and efficiency, such
hybrid attacks were introduced in [14,15].

Modular multiplication is used in some cryptographic algorithms, such as
public key encryption and digital signature. In such cases, a secret parameter of
system is maybe multiplied by a public value. By default, modular multiplication
is not an NP problem, if attacker knows the public input and the multiplication
result, he simply finds out the secret parameter. But in some cryptographic
algorithms, such as ElGamal Signature and Digital Signature Algorithm, the
multiplication result isn’t known value; it is kept secret [13].

To our best knowledge, until now almost all known timing attacks, except tim-
ing attacks against block ciphers, are based on time measurement of a modular
exponentiation. In this paper we present new timing attack on modular multi-
plication. We use a technique like Dhem’s technique, which is used to attack on
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RSA, and propose practical timing attack on Blakley’s modular multiplication
algorithm. In the proposed attack, it is assumed that Blakley’s modular multi-
plication is used to compute a.b mod q, attacker knows b, q, and running time
of algorithm but he is unaware of the multiplication result. The timing attack
finds the parameter a. Running time of each step of Blakley’s algorithm is not
independent of other steps, so correlation between running time of steps will
be considered in the attack. The attack is applied on DSA’s on-line signature
generation phase. Experimental results show that 1,000,000 time measurements
are sufficient to find 160 bits of the secret key.

This paper is organized as follows. Blakley’s modular multiplication algo-
rithm and its application in DSA’s signature generation phase are described in
section 2. The proposed timing attack is explained in section 3. Running time of
Blakley’s algorithm and inter-steps dependencies are also discussed in section 3.
Section 4 introduces a heuristic algorithm to solve some involved problems with
attack. Practical results of applying the attack on an on-line implementation of
DSA are presented in section 5 and section 6 concludes this paper.

2 Blakley’s Modular Multiplication Algorithm

Blakley or interleaved algorithm is one of the algorithms are deployed in imple-
menting modular multiplication [1]. Blakley’s algorithm interleaves multiplica-
tion and modular reduction. At each step of multiplication, intermediate results
are reduced to desired modulus q. If all numbers are t bits, the algorithm is as
following:

Step 3 is like left shift in multiplication. If current bit of operand a, aj , is 1,
operand b is added to partial product, p. Steps 4 and 5 as well as steps 8 and 9
reduce partial product to modulo q. After step 3 or 7, there is always p < 2q, so
one subtraction, in steps 4 or 8, is sufficient to reduce partial product to modulo q.

In the remainder of this paper following definitions are used:

Addition-1: The modular addition is done in steps 3, 4, and 5 to compute
p = p + p mod q.

Addition-2: The modular addition is done in steps 7, 8, and 9 to compute
p = p + b mod q.

Er1,i : When the condition of step 5 in round j = i is true, an extra assignment
is done, this is called as occurrence of Er1,i.

Er2,i : When the condition of step 9 in round j = i is true, an extra assignment
is done, this is called as occurrence of Er2,i.

Er : Either Er1,i or Er2,i.
p1,i : Value of p, which is used in the right hand side of Addition-1 in round

j = i.
p2,i : Value of p, which is used in the right hand side of Addition-2 in round

j = i.

Blakley’s algorithm has a few conditional statements that cause running time
of the algorithm be dependent on the input values. Hence, it is vulnerable to
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timing attack. In our attack scheme, it is assumed that attacker knows b, q and
can measure running time of the algorithm, but he does not know the multi-
plication result. The input parameter a is the secret parameter. Such situation
exist in signature generation phase of DSA. DSA signs a hash of message M ,
h(M), and produce two values r and s as following:

. r = (gk mod p) mod q.

. s = k−1.(h(M) + x.r) mod q.

Where g, p and q are public parameters, k is a random number which is generated
for each message, and x is the long-term key, i.e. signer’s permanent secret key.
In order to improve performance and reduce bit size of intermediate results, it
is preferred that compute the output s in the following steps:

1. z = x.r mod q.
2. z′ = h(M) + z mod q.
3. s = k−1.z′ mod q.

It is assumed that modular multiplications is implemented using Blakley’s
algorithm instead of Montgomery multiplication. As, Montgomery algorithm is
not suitable for a single modular multiplication. Suppose a, b, and q are t-digit
integers with 0 < a, b < q. Montgomery algorithm requires a precomputation
on inputs, a, b. Neglecting the cost of the precomputation on the input, Mont-
gomery multiplication algorithm computes a.b.R−1 mod q, where R is a constant
parameter of the algorithm, while the result is obtained through 2t(t+1) single-
precision multiplications. The computation of a.b mod q is done in 4t(t + 1)
single-precision operations through the application of Montgomery multiplica-
tion to a.b.R−1 mod q and R2 mod q. Using classical modular multiplication
(Multiplication a.b then division by q) would require 2t(t + 1) single-precision
operations and no precomputation. Hence, the classical algorithm is superior
for doing a single modular multiplication [12]. But Blakley’s algorithm is more
computational effective that classic modular multiplication, because it requires
less memory to store intermediate results and it does not use the complicated
division operation. In addition to using Blakley’s algorithm, it is assumed that
the secret key x is passed as parameter a to Blakley’s algorithm. With these
assumptions, the conditions of the timing attack are met, i.e. the attacker knows
r and q, while z is kept as a private intermediate result. But attacker can not
measure the running time of modular multiplication in step 1 directly.

There are two general implementations of DSA: on-line and off-line. In on-line
implementation, both r and s are computed when there is signing request. But
in off-line implementation, r is computed regardless of a signing request and
the computed (r, k−1) is stored. When there is a signing request, only s will be
computed using h(M) and a stored (r, k−1). In this paper, the on-line imple-
mentation of DSA are attacked. In this case an attacker measure the running
time for computing r, z, z′, and s altogether. The execution time of r, s, and
z′ will be considered as noise included in a measured timing data. Attacker can
compensate for the noise by increasing the number of measurements.
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3 Timing Attack

Our approaches for guessing bits likes the approach which Dhem et al. used to
attack on RSA, modular exponentiation [4]. In which, to guess a bit of secret key;
it is assumed that the bit is one and algorithm is simulated on attacker’s machine
using gathered inputs from the under attack machine. According to a feature
of implementation, extra reduction in Montgomery algorithm, the input set is
divided into two subsets. Statistics of the running time of these two subsets are
obtained. According to an oracle function, which is defined on the statistics, the
bit of the secret key is guessed. In our attack, occurrence of the Er2,i is used as
implementation feature. The statistic is the average running time and the oracle
function uses difference between the averages. With the following assumptions,
attacker uses “Timing Attack” algorithm to guess bit ai.

. Attacker collects a set of inputs, which are used for a parameter b of Blakley’s
algorithm, B = {b(1), b(2), . . . , b(n)}.

. Attacker measures running timing of the algorithm for each input, T =
{T1, T2, . . . , Tn}, where Ti is the running time of the algorithm for input b(i).

. Attacker knows a few most significant bits of the parameter a, i.e. a′ =<
at−1at−2at−3 . . . ai+1 >, where < aiaj > denotes concatenation of the ai and
aj bits.

ALGORITHM Timing Attack

INPUT: B, T , q, d, and a′

OUTPUT: ai

1. Generate a temporary key, a′′ =< a′1 >
2. Run Blakley’s algorithm from j = t − 1 to j = i using a′′ for each b(k) ∈ B.
3. According to the occurrence of Er2,i, T is divided into two sets, T ′

0 and T ′
1:

T ′
0 = {Tj ∈ T |Er2,i does not occur}

T ′
1 = {Tj ∈ T |Er2,i occurs}

4. Compute average of T ′
0 and T ′

1, which are named T0 and T1 respectively.

5. Find difference between the average of times: d = T1 − T0.

6. If d > d, ai is guessed as zero,
else ai is guessed as one.

Note that step 2 of the “Timing Attack” algorithm, simulating Blakley’s Algo-
rithm using gathered data from victim’s machine, is done on attacker’s machine.
The variable d is the statistic of attack, the variable can be either of two random
variables d0 or d1. When the bit ai is actually one, d is equal to d1, and when
the bit is zero, d is equal to d0. The “Timing Attack” algorithm will guess bit ai

correctly, if distributions of the random variables d0 and d1 are not overlapped,
in this case the input d is the border between distribution of d0 and d1. In step
6, it is decided whether d equals d0 through comparing it with d, and a guess on
ai is given according to the result. Attacker repeats this algorithm to find out
the subsequent bits.
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Correctness of “Timing Attack” depends upon following claims:

Claim 1: Distributions of the random variables d0 and d1 are not overlapped,
therefore we can find the border, d.

Claim 2: ∀d′ ∈ d0 and ∀d′′ ∈ d1 we have d′ > d′′, so the step 6 guesses the ai

correctly.

In following sections, we investigate the claim 1 and 2 and propose an algo-
rithm to find the d.

3.1 Running Time of Blakley’s Algorithm

This subsection elaborates the claim 1 and 2. In order to investigate the claims,
distributions of d0 and d1 should be obtained. It requires that running time of
Blakley’s algorithm be inspected in more details. The running time of Blakley’s
algorithm can be formulated as following:

T (r) =
0∑

i=t−1

(t1 + αit2 + βi(t1 + γit2)) (1)

where:

. t1: is the running time of either steps 3 and 4 or steps 7 and 8.

. t2: is running time of either step 5 or step 9.

. αi: is 1 if Er1,i occurs, otherwise it is 0.

. βi: is one if bit ai is one.

. γi: is 1 if Er2,i occurs, otherwise it is 0.

Running time of each modular addition in Blakley’s Algorithm is not inde-
pendent of other modular additions. The dependency between running time of
steps of Blakley’s algorithm is a major difficulty in obtaining the distributions.
To consider effect of modular multiplications on each other, Extra Reductions
Neighborhood Window, ERNW, is used. ERNW{x, y} of an Er is a set, contain-
ing x numbers of Ers may be occurred before the Er and y numbers of Ers can
be occurred after the Er. It is supposed that occurrence of the Er is independent
of other Ers that do not belong to the window. For example, if ai+1 = 1, ai = 1
and ai−1 = 0, the ERNW{1, 1} of Er2,i is {Er1,i, Er1,i−1}, and ERNW{2, 2}
of Er2,i is {Er2,i+1, Er1,i, Er1,i−1, Er1,i−2}. The Er2,i−1 does not belong to this
set, because ai−1 = 0 and Er2,i−1 cannot occur.

To compute the distributions, we need expected number of messages in T ′0 and
T ′1 and their running time. Equation 1 states that running time of a message
is a summation of running time of modular additions. Two random variables,
p and b, are involved in running time of modular additions. Expected number
of messages and running time of each message are approximated in (p, b)−plan.
The (p, b)−plan can be divided into some regions according to a Er and its
ERNW{x, y}. For example if Er2,i and its ERNW{1, 0} = {Er1,i} are consid-
ered, the (p, b)−plan is first partitioned into two regions, a region where Er1,i
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is occurred and a region where it does not occurred. Each of these regions are
then divided into two sub-regions according to Er2,i. This partitioning is shown
in Fig. 1. An unique code is assigned to each region that shows a situation of
Er1,i and Er2,i, for example “region 01” contain all p1,i that cause Er1,i occurs
but Er2,i does not occur.

Fig. 1. (p, b)−plane for ERNW = {1, 0} of Er2,i

The “Approximate the d0 or d1” algorithm uses such partitioning, obtains
expected messages numbers in T ′0 and T ′1 and their running time, and finds an
approximation for d0 or d1 for given ERNW{x, y}.

ALGORITHM Approximate the d0 or d1

INPUT: B, T , ERNW{x, y} of Er2,i, and a′

OUTPUT: Approximation for d0 or d1.
1. To obtain an approximation for d0 , create ERS = ERNW{x, y}.
To obtain an approximation for d1, create
ERS = ERNW{x, y}

⋃
Er2,i = {Er1, Er2, Er3, . . . , Erx︸ ︷︷ ︸

x

, Er2,i, Er1, Er2, . . . , Ery︸ ︷︷ ︸
y

}.

2. According to Ers belong to ERS, the (p, b)−plane is divided into 2|ERS| regions.
Each region specifies a situation of Er occurrence and a code is assigned to this region
as < Er1Er2 . . . Ery >. For example, the region < 00 . . . 0 > covers all (p, b) that none
of modular additions has extra reduction.
3. According to Er2,i, B is divided into two subsets, i.e. B0 and B1. B0

contains all inputs that Er2,i does not occur for them, if a′′ =< a′1 > is used to
simulate the Blakley’s algorithm. B1 contains remaining members of B. B0 and B1 also
define two regions in (p, b)-plane.
4. For B0 and B1, find their regions overlap size with the created regions in step 2.
5. Find approximation for average running time of B0 and B1:

T0 =
∑

for all regions(Overlap Sized with B0)(Ham(the code of region))

T1 =
∑

for all regions(Overlap Sized with B1)(Ham(the code of region))

Where Ham(< . . . >) is a hamming weight of a code.

6. Return T1 − T0
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Table 1. d0 and d1 for some ERNW

ERNW {} {Er1,i, Er1,i−1} {Er1,i+1, Er1,i, Er1,i−1, Er2,i−1} {Er1,i+1, Er2,i+1, Er1,i, Er1,i−1}

d0 0 1
4 t2

1
2 t2

120
192 t2

d1 t2
7
16 t2

1
3 t2

1
3 t2

Dividing (p, b)−plane in step 2 and finding overlap size in step 4 of the algo-
rithm, will be very complicated, if there is no constraint on inputs. We consider
the following assumptions:

1. p and b have uniform distributions in interval [0, q].
2. p and b, which are used in the right hand side of the Addition-2, are inde-

pendent.

The validity of these assumptions will be discussed in subsection 3.2. Using
these assumptions, d0 and d1 are approximated for some ERNW , which are
shown in Table 1. It can be seen from the table that:

– When bigger ERNW are considered, i.e. dependency between more bits are
considered, d0 increases and d1 decreases.

– For adequate large ERNW , we have d0 > d1.

It is easy to experimentally apply the approximation algorithm to larger
ERNW and verify that d0 > d1. Table 1 also indicates that d0 and d1 are
dependent on ERNW members. Hence they are dependent on the bits of the
input a, which is assumed as secret parameter of a cryptographic function. At-
tacker can not find distribution of d0 and d1 directly, because he does not know
the secret parameter. Even if he had a machine similar to the victim’s machine,
he could not directly find the distribution of the random variables, because the
distributions are dependent on the secret parameter value. In the section 4 a
heuristic algorithm is described to have a solution for the problem.

3.2 Assumptions

Two assumptions yield d0 > d1. First, it is supposed that p and b are dis-
tributed uniformly on interval [0, q]. If an uniform random number generator
is used, operand b, which is passed as input to Blakley’s algorithm, has uni-
form distribution. p is obtained from b. It is easy to show that if has b uniform
distribution, p will distribute uniformly, so the first assumption is valid.

Second, it is supposed that the used p and b in the right hand side of the
Addition-2 are independent. Blakley’s algorithm scans bits of the a from the
most significant to the least significant bit. Before the first most significant “1”
of the a, the Addition-2 hasn’t been executed. In a few rounds after the most
significant one, if Addition-2 executes, p and b are not independent; however the
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Table 2. Correlation coefficient for a few rounds

i t − 1 t − 2 t − 3 t − 4 t − 5 t − 6

ai 0 0 1 1 1 1

Correlation Coefficient - - - 0.500 0.167 0.071

correlation coefficient of p and b decreases in each round. Correlation coefficient
in each round is dependent on previous bits of a. Table 2 shows the value of bit
ai and the correlation coefficient of p2,i and b in each round, in an exemplary
experiment.

Therefore the second assumption is also valid, except a few rounds in start of
Blakley’s algorithm. Due to these correlations in the rounds, the random variable
d (step 5 of “Timing Attack”) does not show expected behavior, so d0 ≤ d1 in a
few rounds in start of Blakley’s algorithm. Thus, the attacker can not guess the
most significant bits correctly by simply comparing random variable d, against
distributions of d0 and d1. The following heuristic algorithm solves this problem,
too.

4 Threshold Finding Algorithm

Here, we propose a simple heuristic algorithm to solve the above mentioned
problems. First, obtaining the exact distribution of random variables d0 and d1
is not necessary to run the attack, but separating the distributions of d0 and d1
is sufficient. “Find Threshold” algorithm separates the distributions and finds
the border, d, between the distribution of d0 and the distribution of d1. The
step 6 in the “Timing Attack” uses the d to guess a bit of the secret key. It was
already shown that d0 > d1, hence in this step if d > d it means that d ∈ d0
and the bit ai is guessed as 0, but if d < d then d ∈ d1. Second, when attacker
uses the “Find Threshold” algorithm, he won’t be worry about misbehavior of
random variable d in start of attack.

“Find Threshold” assumes that attacker knows position of the most significant
“1” of the secret parameter a, which is shown by o. He tests all cases of a
few subsequent bits and find d. The method is described formally in “Find
Threshold” algorithm.

After d is obtained, the “Timing Attack” algorithm is applied on B, T and
a(i), and the remaining bits, at−o−w−1 to a0, are found. Attacker gets 2w guesses
for < at−o−w−1 . . . a0 > which only one of them is valid. Other constraints on
parameters might be used to find the correct guess. For example when we are
attacking on DSA. Obtained secret key, x, must satisfy y = gx mod q.

In addition to finding an estimation of d, the attacker ignores misbehavior of
d with this algorithm. As if w is large enough, the correlation between p and b is
degraded and the assumptions which were discussed in subsection 4.1 are valid,
hence it is expected that d0 > d1.
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ALGORITHM Find Threshold
INPUT: Position of the most significant one, o, size of guessing window, w.
A set of inputs of Blakley’s Algorithm, B = {b(1), b(2), . . . , b(n)}.
Running time of algorithm for each input. Ti is running time of b(i), T = {T1, T2, . . . , Tn}
OUTPUT: d
1. Construct 2w guesses for w successive bits after the most significant one:

a(0) = 00 . . . 0︸ ︷︷ ︸
o−1

1 00 . . . 0︸ ︷︷ ︸
w

, a(1) = 00 . . . 0︸ ︷︷ ︸
o−1

1 00 . . . 1︸ ︷︷ ︸
w

, a(2) = 00 . . . 0︸ ︷︷ ︸
o−1

1 00 . . . 10︸ ︷︷ ︸
w

,. . . ,

a(2w−1) = 00 . . . 0︸ ︷︷ ︸
o−1

1 11 . . . 1︸ ︷︷ ︸
w

,.

2. For each a(i), apply the “Timing Attack” algorithm using B, T and a(i).
In this case no bit is guessed, only obtained d will be used. The obtained d is added
to set D′.

3. Threshold d is average of D′.

Table 3. Attack result, when w = 2

|T | × (105) 5 5 5 10 10 10 10

d 11370.3 12911.6 11178.7 13096.8 10529.2 11765.0 10239.8

Err.Num. 5 0 1 0 1 0 1

5 Practical Results

The proposed timing attack was practically applied on pure modular multipli-
cation and on-line implementation of DSA. Here, only the results of the attack
against DSA are presented. Victim machine is an on-line implementation of DSA
running in MS-DOS operating system on Athlon-XP 800 MHz. Two internal 32
bit counters of CPU are used as timing measurement facilities [9]. Running time
is measured with respect to the number of required CPU cycles to run the DSA
algorithm.

There are two parameters in our attacks, i.e. size of T , the number of timing
measurements, and size of the guessing window, w, which is used to in “Find
Threshold” algorithm. Table 3. and Table 4. show d and the number of incorrect
guesses in a run of attack for a constant secret key x, for different numbers of
timing measurements and window sizes of 2 and 3, respectively.

In these tables, d and the number of incorrect guesses are not reported, when
the number of measurements is less than 5×105. As in such a case, the distribu-
tions of d0 and d1 are overlapped and the border between them, d, is meaningless.
Hence, applying the attack is impossible. These tables show that as the number
of measurements increases, the number of errors degrades. The tables also show
that, using bigger window is less erroneous. When very small window are used,
d is prone to error. So, obtained d is unreliable to properly separate the distri-
bution of d0 and d1. Our practical attacks found 160 bit of DSA secret key using
window size 3 and 106 timing measurements.
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Table 4. Attack result, when w = 3

|T | × (105) 5 5 5 10 10 10 10

d 11288.3 11731.3 11064.1 13004.4 10410.6 11691.1 10124.6

Err.Num. 1 0 5 0 0 0 0

The running time of the attack and the amount of required time to gather the
timing samples are directly related to the size of the parameters w and |T |. Al-
though increasing the size of parameters enhances the results of attack, it causes
more running time. The Running time of the “Timing Attack” algorithm is O(|T |),
running time of “Find Threshold” algorithm is exponentially related to w. An in-
creasing in the window size from w to w + 1, doubles the attack time to find valid
a(i), because the number of a(i) is 2w.

In our experiments, given the T and the ai, it takes about 70 min. to run the
“Timing Attack”. Empirical running time of “Threshold Finding” is dependent
on the w. When w = 3 it takes about 12 min.

6 Conclusion

In this paper, we proposed a new timing attack on an implementation of modular
multiplication, which is called as Blakley’s modular multiplication algorithm. To
our best knowledge this is first time that timing attack is applied on modular
multiplication. To attack, it is assumed that the secret key is passed as parameter
a to Blakley’s algorithm, attacker knows the parameter b, and can measure the
running time of Blakley’s algorithm. Blakley’s algorithm may be employed for
multiplication in public key cryptography or digital signature. If the assumptions
are valid, their implementations are vulnerable.

In this paper we focused on DSA and applied our timing attack on on-line
implementation of DSA. Our experimental results shows that the proposed tim-
ing attack finds out the secret key used in DSA, practically. The attack only
gathers timing sample from victim machine and does not require extra infor-
mation about implementation details or a machine similar to victim’s machine.
The set of measured timing data are divided into two subsets based on the extra
reduction in the Addition-2 of Blakley’s algorithm. It is shown that the secret
key can be guessed according to the difference between averages of these subsets.

Our timing attack is against a specific implementation of modular multipli-
cation. The modular multiplication a.b mod q is a symmetric operation in a and
b, this is not anymore the case in the internal operations performed by the
Blakley’s Algorithm. So, if x (DSA secret key) is passed as input b of Blakley’s
Algorithm then not much information leaks and our attack is not applicable.
Using Er1,i instead of Er2,i in attack, timing attack on more general implemen-
tation of Blakley’s algorithm, in which secret parameter is passed as parameter
b, use mathematical model to prove d0 > d1, and timing attack on other imple-
mentation of modular multiplication are open problems.
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Abstract. The Advanced Encryption Standard is used in many embedded de-
vices to provide security. In the last years, several researchers have proposed
to enhance general-purpose processors with custom instructions to increase the
efficiency of cryptographic algorithms. In this work we have evaluated the impact
of such instruction set extensions on the implementation security of AES. We have
compared several AES implementation options which incorporate state-of-the-
art software countermeasures against power-analysis attacks—with and without
the use of instruction set extensions. For both scenarios we provide a thorough
analysis for different countermeasures with regard to security, performance, and
memory. We have found that even a moderate level of protection requires a con-
siderable overhead both in terms of speed and memory. The instruction set exten-
sions, which have been solely designed to increase performance, help to reduce
this overhead, but it still remains high. An implementation with proper protection
through software countermeasures is only feasible in a setting where the need for
resistance against power analysis outweighs the need for performance.

Keywords: Advanced Encryption Standard, side-channel attacks, software coun-
termeasures, instruction set extensions, implementation security, DPA, power
analysis.

1 Introduction

Today, more and more computational tasks are performed on small embedded systems.
Most of these systems feature an embedded processor with a wordsize of 8, 16, or 32 bit.
32-bit processors are common in mid-range to high-end embedded systems like PDAs
and cellphones but can also be found in wireless sensor networks and even in some high-
end smartcards. Many applications require the execution of cryptographic algorithms
in order to achieve some security assurances, e.g. data confidentiality or authentication.
But while the algorithms themselves are secure, a straightforward implementation on a
device is very likely to be vulnerable to side-channel attacks. Such attacks measure
and analyze some physical property of the device while it performs cryptographic
operations, with the goal of extracting the key used by the device. Power-analysis
attacks, which exploit the power consumption, have been studied very thoroughly, and
many proposals have been made on how to make them more effective as well as on how
to defend against them.
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While it is unlikely that side-channel attacks can be fully prevented, appropriate
countermeasures can hamper an attack to the point where it becomes practically in-
feasible. Some hardware countermeasures have proven to be rather effective in doing
this. On the other hand, counteracting power-analysis in software is very hard, as the
programmer normally has only a very limited influence on the power consumption of
the processor. To make things even worse, in the last years new attack variants have
emerged, which are very effective against software implementations of cryptographic
algorithms.

We have investigated the current situation regarding software countermeasures
against state-of-the-art power-analysis attacks. We have focused on 32-bit embedded
processors and on the AES algorithm, but most of the discussed methods also work for
processors of different wordsize and other cryptographic algorithms. This paper is orga-
nized as follows: In Section 2 we discuss software countermeasures for power analysis
in principal. We elaborate on the effectiveness of these countermeasures in Section 3.
Section 4 focuses on state-of-the-art attacks on protected software implementations. In
Section 5 we estimate the effect of different countermeasures on performance, memory,
and implementation security. We draw conclusions in Section 6.

2 Power-Analysis Countermeasures for Software Implementations

In order to secure software implementations of cryptographic algorithms against power-
analysis attacks there are two suitable approaches, namely masking and hiding. Mask-
ing conceals all intermediate values during the calculation with a random mask. Hiding
techniques try to break or at least weaken the link between processed intermediate
values and the side-channel leakage at a certain moment of time. In this section we
give an overview of these two types of countermeasures.

2.1 Masking

Masking means to conceal each intermediate value a with a random value m, which
is called mask. These masks are generated by the device for each execution of the
algorithm and they are not known by an attacker. Generally, we can distinguish between
Boolean and arithmetic masking. In arithmetic masking, intermediate values and masks
are combined with an arithmetic operation like addition or multiplication. For AES,
Akkar et al. suggested a multiplicative masking scheme [1] where the intermediate
values are concealed with a multiplicative mask am = a ·m (mod n). Boolean masking
uses the exclusive-or operation to combine intermediate values and masks am = a ⊕ m.
Masking schemes for software implementations of AES based on Boolean masking
have been proposed in [5] and [6].

Power-analysis attacks are prevented by masking because each intermediate value
is masked with a random value and thus the power consumption caused by this value
can not be predicted by an attacker. This holds under the condition, that each masked
value am is independent of a. Usually the masks are applied to the plaintext values
at the beginning of the algorithm. During the execution of the algorithm one has to
keep track of the modification of the masks by the operations of the algorithm. For
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the AES operations ShiftRows and AddRoundKey, this can be done with virtually no
effort, because they are linear and do not change the applied masks. The MixColumns
operation combines different values of one column of the AES State, and therefore, one
has to calculate the modified masks after this operation. To monitor the change of the
masks through the nonlinear SubBytes transformation, a more elaborated approach is
needed. A very common way to implement the SubBytes transformation in software is
to use lookup tables: aout = S(ain), where S denotes the AES S-box, which is used on
every byte of the State for SubBytes. In order to mask the SubBytes transformation,
we have to calculate a masked table S′ such that S′(am) = S′(a ⊕ m) = S(a) ⊕ m′.
When implementing such a masking scheme, care has to be taken that all intermediate
values stay masked during the critical computations of the algorithm. At the end of
the calculation of the algorithm all masks have to be removed. Especially unintended
unmasking has to be considered. This can happen in a device which leaks the Hamming
distance of subsequently processed values, i.e. the Hamming weight of the exclusive-or
of these two values [12]. Two subsequent values with the same Boolean mask would
therefore be unmasked.

Provably secure masking schemes for AES have been published in [2] and [15].
These schemes focus on hardware implementations. In [16] a proposal for a software
implementation of the scheme presented in [15] has been made. This scheme has higher
performance rates than a conventional lookup scheme, as long as a set of masks is
only used for a single encryption. In schemes where masks are used for more than one
encryption, the lookup table approach is still faster. This is one of the reasons why we
have chosen a lookup based scheme for our implementation.

Masking schemes are an appropriate choice to defeat first-order power-analysis at-
tacks. Nevertheless, masked implementations are still vulnerable to higher-order and
template attacks. Higher-order attacks are discussed in [14], [19], [17], and [8]. A
template based attack on a protected AES software implementation has been published
by Oswald et al. in [13]. Due to the presence of these powerful attacks it is mandatory
to combine masking schemes with a second type of countermeasures to raise the level
of security.

2.2 Hiding

In general, hiding can take place in two domains, namely in the time domain and in the
amplitude domain. Hiding in the time domain tries to randomize the time of occurrence
of a specific operation, whereas hiding in the amplitude domain tries to reduce the effect
of the performed operation on the overall power consumption.

For software implementations, hiding in the time domain is normally easier to
achieve. The goal is to distribute the occurrence of critical operations and intermediate
values over a given period during each execution of an algorithm. This leads to a re-
duced correlation of targeted values at specific points of time. Two appropriate methods
to achieve this randomization are the insertion of dummy operations and shuffling of
operations. Both insertion and shuffling are controlled by random values generated
by the device. Inserted dummy operations should not be distinguishable from normal
operations. Otherwise an attacker could be able to remove their effect from the power
trace. Shuffling of operations means that for each execution of the algorithm, the order
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of the occurring intermediate values is changed. How these two methods can be applied
to a software implementation of AES is described in Section 3.3.

Hiding in the amplitude domain is rather hard for software implementations. Nev-
ertheless, a designer has the opportunity to choose only such instructions which leak a
minimum amount of information. This technique highly depends on the used device
and its leakage properties. The statistic effects of hiding have been investigated in
[11], [4], and [3].

3 Effectiveness of Software Countermeasures

This section gives a thorough evaluation of software countermeasures that can be ap-
plied to secure an AES implementation on a 32-bit platform. In this context we have
considered two classes of processing platforms. The first class consists of typical 32-bit
embedded processors with a standard RISC instruction set architecture. The second
class includes processors which have explicit support for cryptographic operations in
their instruction set (cryptographic instruction set extensions).

For the instruction set extensions we have used the “advanced word-oriented AES ex-
tensions with implicit ShiftRows” described in [18]. These instructions work on 32-bit
words performing either four parallel AES S-box lookups (sbox4s/isbox4s/sbox4r)
or a MixColumns transformation for a single State column (mixcol4s/imixcol4s).
In the following, we will give the definition of the functionality of the sbox4s and
mixcol4s instructions. Note that rs1 and rs2 denote the two 32-bit input operands
and rd the 32-bit result of the instruction. Brackets with indices are used to select a
part of the respective 32-bit value, while | concatenates four 8-bit or two 16-bit values
to a 32-bit value. S-box substitutes an 8-bit value according to the AES S-box, while
MixColumns transforms a 32-bit value following the AES MixColumns operation.

sbox4s rs1, rs2, rd: rd[31..0] := S-box(rs1[31..24]) | S-box(rs2[23..16])
| S-box(rs1[15..8]) | S-box(rs2[7..0]);

mixcol4s rs1, rs2, rd: rd[31..0] := MixColumns(rs1[31..16] | rs2[15..0]);

The definition of isbox4s and imixcol4s is similar, with the difference that the
inverse AES S-box and the InvMixColumns transformation are used, respectively. Fi-
nally, the sbox4r instruction has only one input operand, whose bytes are transformed
with the AES S-box and where the result is rotated 8 bits to the left:

sbox4r rs1, rd: rd[31..0] := S-box(rs1[23..16]) | S-box(rs1[15..8])
| S-box(rs1[7..0]) | S-box(rs1[31..24]);

The sbox4r instruction is designed for use in the AES key schedule, while the other
instructions are intended to speed up the AES round transformations.

In the following sections we analyze different options for power-analysis counter-
measures. The most powerful attacks are listed and implementation-specific details for
use of the instruction set extensions are given. The maximum correlation coefficient ρ
is stated for each attack. The security gain can be approximated by the quotient of the
correlation coefficient for an attack on an unprotected and on a protected implemen-
tation: An attack on the protected implementation requires at least (ρunprotected

ρprotected
)2 more
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power traces [12]. For our estimations we have ρunprotected = 1 and can therefore state
the security gain as ( 1

ρ )2, where ρ always denotes the correlation coefficient for an
attack on the protected implementation. Note that we state ρ for noise-free environ-
ments, which is sufficient to make a relative comparison of unprotected and protected
implementations. The correlation coefficients observed in practical attacks will be lower
due to noise. The correlation coefficient has been determined under the assumption that
the Hamming weight of processed values leaks through the power consumption. Many
devices leak the Hamming distance of subsequently processed values, but it is very hard
to determine the correlation coefficient for such a setting without taking many details
of the processor architecture and software implementation into account. We therefore
take the Hamming-weight leakage model as a lower bound for devices that leak the
Hamming distance. This assumption holds as long as the software implementation
avoids potential vulnerabilities due to the Hamming-distance leakage, e.g. unintended
unmasking as explained in Section 2.1.

3.1 Unprotected Implementation

An unprotected 32-bit AES software implementation is vulnerable to a multitude of
attacks. One of the most powerful attacks is a first-order DPA on an 8-bit intermediate
result after the S-box lookup (ρ = 1). The key expansion can also be targeted directly
with a template-like attack as described in [10]. This attack extracts the Hamming
weights of 8-bit intermediate values of the key expansion and uses the dependency of
these values to narrow down the number of potential keys. The use of the instructions
set extensions from [18] allows to calculate the key schedule with 32-bit values only,
which makes this kind of attack infeasible.

3.2 Masking

A masked implementation protects critical intermediate values with a random mask.
An intermediate value of the AES operation can be considered critical when it depends
on a small portion of the (round) key and on the plaintext or ciphertext. In this case
the attacker can guess the part of the key and verify her guess through analysis of
the measured power traces. The choice of masks and the processing order of masked
values must always be done carefully with regard to the leakage of the device to prevent
problems like unintended unmasking.

If the masking countermeasure is implemented properly, it can prevent first-order
DPA attacks. However, a masked implementation is still vulnerable to higher-order
DPA attacks. In such an attack, several points of each power trace are combined to
a single value with a preprocessing function pre. The resulting value again depends
on some predictable value. The preprocessed values can then be subjected to a first-
order DPA attack. Normally, a second-order DPA attack is sufficient to break a masked
implementation. The targeted values for preprocessing are either a masked intermediate
value and the corresponding mask, or two intermediate values with the same mask.

The best vantage point to break a masked AES implementation is the masked S-box
lookup, which is used for SubBytes. This lookup requires masked 8-bit input and output
values, which are easier to target than the masked 32-bit values resulting from other
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transformations (e.g. MixColumns). The cost for precomputing a single masked S-box
is very high, and it is therefore necessary to reuse masked S-box tables. This results in
the processing of 8-bit values with the same mask, which can be targeted in a second-
order attack (ρ = 0.24, see [12]). But even if no 8-bit value carries the same mask,
the preprocessing function could use the power consumption of the mask itself (which
must occur at some time in the computation) as second value. In the worst case for the
attacker, this 8-bit mask will only occur in form of a 32-bit word, where the other 24 bits
are random (this can only be achieved with the help of the instruction set extensions).
Even in this case, the level of protection against a second-order DPA attack is rather
low (ρ ≈ 0.1).

A possibility to prevent the S-box lookup in software is to perform most of the AES
round as table lookup (T-box lookup). However, the precomputation of masked T-boxes
would be much more costly than the precomputation of masked S-boxes. Moreover, a
T-box lookup still requires an 8-bit masked input value, which can be targeted in an
attack.

A masked implementation could use more than one mask for every intermediate
value. However, it seems very difficult to generate a masked S-box table without proce-
ssing the definite input and output masks at some point of time. All in all, the vulnera-
bility to second-order DPA attacks is very hard to remove in a masked AES implemen-
tation.

3.3 Randomization

In the following, we will denote countermeasures of hiding in the time domain (cf.
Section 2.2) as randomization. In a randomized AES implementation, the occurrence
of a specific intermediate value at a specific point in time is reduced to a certain proba-
bility. This can be done by shuffling of operations and by random insertion of dummy
operations. In this case an attacker needs to capture more power traces, in order to
compensate for this uncertainty.

Simple solutions, like the random insertion of nop instructions, are likely to be
detected and removed by an attacker. Therefore, if dummy operations are added, it
is important that they can not be distinguished from the genuine operations. This can be
achieved by performing the AES transformations on some dummy data.

The best degree of randomization can be achieved by using both the shuffling of
operations and the insertion of dummy operations. In AES, the smallest unit of data,
whose processing can be randomized, is the 8-bit input and output value used in the
S-box lookup. The 16 S-box lookups per AES round can therefore be shuffled, resulting
in a probability of p = 1

16 for a specific value at a specific point in time. Dummy
operations can be inserted by processing a certain number of dummy values. Processing
of complete dummy States (i.e. 4×4-byte matrices) seems to be a good granularity for
that purpose. If N dummy States are processed in addition to the genuine State, then the
probability for the occurrence of a specific value goes down to p = 1

(N+1)·16 .

It would be very inefficient to perform a selection for each of the (N + 1) · 16 byte
values separately. Moreover, the AES algorithm does not allow to perform all critical
round transformations with just a single byte. The smallest value which is sufficient
for all those transformations is a single State column. For practical implementation
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it is sufficient to determine the processing order of the bytes in an orthogonal way:
The States are processed one after the other, i.e. the processing of the genuine State
is randomly embedded within the processing of the dummy States. For each State, the
columns are processed in a fixed order beginning with a randomly chosen column. For
each column, the bytes are processed separately and also in a fixed order starting with
a randomly chosen byte.

The randomization degree p determines the resistance against DPA attacks. The
power traces obtained from an implementation with randomization are often referred
to misaligned power traces. A direct DPA attack on the misaligned traces would require
( 1

p)2 more traces to compensate for the randomization. However, Clavier et al. [4] have
proposed to sum up all points in the power trace, where the targeted value can occur.
This approach is often referred to as “windowing”. With this approach, an attacker only
requires 1

p = (N + 1) ·16 more traces to defeat the randomization.
Therefore we can assume that the number of power traces to attack a randomized

AES implementation scales up with a factor of only (N + 1) ·16, as ρ = 1
p = 1

(N+1)·16 .
Most of the overhead of a randomized implementation comes from the preparation of
the randomization and the byte-wise processing of the AES State. Doubling the security
(which corresponds to doubling of (N +1)) roughly doubles the total running time. This
results in a very large overhead.

3.4 Masking and Randomization

For better protection, an AES implementation needs to combine masking and random-
ization countermeasures. However, there are still several possible attacks which can
break such an implementation rather efficiently.

An attacker will try to defeat the masking with a second-order attack. At least one of
the attacked intermediate values (i.e. a masked 8-bit value) is protected by randomiza-
tion. As we have already outlined in Section 3.3, a very effective way to defeat random-
ization is to sum up the power consumption at all moments in time where the attacked
value can occur (recall that for our considered randomization there are (N + 1) · 16
points in time, where N is the number of dummy States). The second attacked value can
either be the mask of the first value, or another randomized intermediate value carrying
the same mask as the first value.

There are two main strategies on how to use the second value in an attack. On the
one hand, this value can be employed to introduce a bias in the occurring masks. On the
other hand, the value can be combined with the first one to yield a result that depends
on the unmasked value.

4 Attacks on Masked and Randomized AES Implementations

We have shown in the previous section, that a protection by masking or randomization
alone can not withstand power-analysis attacks. In this section we analyze the possible
attacks on software implementations which use a combination of both countermea-
sures. The attacks presented in this section have either been published and evaluated or
are natural extensions or combinations of existing attacks. The method of windowing
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(cf. Section 3.3) published by Clavier et al. [4] is fundamental for all of the examined
attacks, as it is a very good way to compensate the effects of the randomization coun-
termeasure. The possibility of second-order DPA attacks has already been mentioned
in the original publication of Kocher et al. [9]. Second-order attacks on software imple-
mentations of block ciphers have been analyzed in [14].

In [13], Oswald et al. have evaluated the effectiveness of template-based attacks
against masked software implementations and have shown that such methods can be
very effective. However, as long as the targeted operation used for template-building
remains randomized in time, we assume that it is very hard to create well-matching
templates, which lead to better results than techniques based on counteracting random-
ization, e.g. windowing.

4.1 Biasing Masks

A very powerful attack is to introduce a bias into the masks used by the device, which
leads to a dramatic decrease of security. This idea has been introduced by Jaffe [7], and
practically evaluated by Oswald et al. [13]. In practice, an attacker can bias a mask by
examining a point of the power trace where the mask is processed and by discarding
all traces which have a value above (or below) a certain threshold. Figure 1 shows the
timeline of a power trace, where the time of occurrence of targeted values is marked
at the top. Below the timeline, it is shown how the power consumption values at these
times would be used in a biased-mask attack. Windowing is used to sum up the power
consumption at all points in time in the selected traces where the attacked value can
occur (due to randomization). A classical first-order DPA attack is performed on the
resulting preprocessed power values.

Without instruction set extensions, the 8-bit masks of the S-box can be targeted
directly during the generation of the masked S-box. With instruction set extensions,
the masked S-box can be generated using only 32-bit masks (provided that four masked
S-boxes are used). A bias of either the 8-bit or 32-bit mask has a devastating effect
on the security. For example, biasing the 8-bit masks to a Hamming weight (HW) ≥ 6
yields ρ = −0.1 (for N = 1). For 32-bit masks, a bias of HW ≥ 20 results in ρ = −0.05
(again for N = 1).

Increasing the degree of randomization does not lower the correlation coefficient
very effectively (see Table 2). Note that a possible defence against this attack could
consist of randomizing the time of occurrence of each mask. However, the mask and
values directly dependent on the mask occur at several points in the computation, e.g.
generation of the mask, appliance of the mask to the S-box, calculation of the mask
after MixColumns, (re)masking of the key schedule. Proper randomization of all these
operations would be quite challenging and also incur a considerable overhead in terms
of performance.

4.2 Combining Second-Order DPA and Windowing

A second-order DPA can be combined with windowing to break the masking and ran-
domization. This approach can be seen as performing multiple second-order DPA at-
tacks in parallel. The attack can be done by combining the power consumption for the
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Mask m

Masked value (a   m)

...

t

...

Select/reject trace

Fig. 1. Information extraction from power traces in a biased-mask attack

mask processing with each of the (N +1) ·16 points in time where the targeted masked
value can occur (due to randomization) using a second-order preprocessing function.

However, due to the randomization, the attacker does not know which of the resulting
values corresponds to her targeted value. This is the same problem as in an implementa-
tion which has only randomization countermeasures. Consequently, an efficient solution
is to sum up all (N +1) ·16 preprocessed values and to perform a first-order DPA attack
on the result. Figure 2 depicts this approach.

Mask m

Masked value (a    m)

...

t

2nd-order DPA preprocessing

...

...

Fig. 2. Information extraction from power traces for second-order DPA combined with
windowing

The effectiveness of this attack can be evaluated for both attack stages separately.
In the first stage, the second-order DPA preprocessing function is applied to each pair
of values (mask and masked value). For our randomization scheme we have an 8-bit
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masked value. As already stated in Section 3.2 we have ρ = 0.24 for 8-bit masks and ρ ≈
0.1 for 32-bit masks (using instruction set extensions). The summation of the second
attack stage corresponds to windowing, which scales down the correlation coefficient
with a factor of 1√

(N+1)·16
. The overall correlation coefficient is therefore very high:

For the 8-bit masks we get ρ = 0.24√
(N+1)·16

, and for 32-bit masks we get ρ ≈ 0.1√
(N+1)·16

.

So in order to achieve ρ = 0.01, we would need at least N = 5.
Principally, it would be desirable to randomize the occurrence of the mask to the

same degree as the masked value. This measure would require to sum up all possible
combinations where mask and masked value can appear. The number of combinations
is ((N +1) ·16)2, which would lead to a reduction of the correlation by a factor of (N +
1) ·16 after windowing. At N = 1, the correlation would already be about as low as ρ =
0.003 for 32-bit masks. However, as already mentioned in Section 4.1, randomization
of the mask would be very costly in terms of performance.

4.3 Targeting Weak Randomization

Targeting two randomized intermediate values which carry the same mask is normally
less efficient than to target one fixed (e.g. the mask) and one randomized value. How-
ever, a weak randomization can be broken more easily with this strategy.

In this context, a weak randomization is one where two intermediate values with the
same mask always occur with a fixed distance in time. An example for this are the S-box
inputs of the first and second AES round, when the used S-boxes have the same input
masks and the two lookups are not randomized separately. The attacker can therefore
apply the second-order DPA preprocessing function to each such pair of values, which
is depicted in Figure 3. The rest of the attack is exactly the same as the previously
described one (summation followed by first-order DPA).

1st value

(a   m)

...

t

2nd-order DPA preprocessing

...

...

2nd value

(b   m)

Fig. 3. Information extraction from power traces when attacking a weak randomization
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Targeting two 8-bit intermediate values with the same mask is equivalent to targeting
one intermediate value and the according 8-bit mask. The correlation coefficient is
therefore ρ = 0.24√

(N+1)·16
. However, it might be necessary to hold some parts of the

plaintexts constant and guess more than a single key byte to be able to set up a good
hypothesis.

The effectiveness of this attack can again be evaluated for both attack stages inde-
pendently. In the first stage, the second-order DPA preprocessing function is applied
to each pair of values with the same mask. For our randomization scheme we have
two masked 8-bit values, which yields ρ = 0.24 [12]. The summation of the second
attack stage again corresponds to windowing, which reduces the correlation coefficient
by a factor of 1√

(N+1)·16
. The resulting correlation coefficient remains rather high with

0.24√
(N+1)·16

(e.g. ρ = 0.01 would require N = 35).

To counteract this attack it would be necessary to randomize the S-box lookup in
the first and second AES round separately (and similarly in the two last rounds). This
countermeasure would render the described attack less efficient than the other described
attacks.

4.4 “Classical” Second-Order DPA on Windowed Traces

Another way to combine second-order DPA and windowing is to perform windowing
first to counteract the effects of randomization, and to do a “classical” second-order
DPA attack on the result. Figure 4 depicts the processing steps performed on every
power trace. The resulting value can then be subjected to a first-order DPA attack. A
preprocessing function pre, which is generally very effective, is the absolute difference
of the inputs: pre(a,b) = |a − b| [12]. For this function, it is important that both a and
b are of the same magnitude, e.g. if a is a single point from the trace and b is a sum of
n points, then the preprocessing function should scale a up to b: pre(a,b) = |n ·a − b|.

Mask m

Masked value (a   m)

...

t

2nd-order DPA preprocessing

...

Fig. 4. Information extraction from power traces in a “classical” second-order DPA
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For a randomization degree of N = 1, the correlation is about ρ = 0.013 for 8-bit
masks and ρ = 0.012 for 32-bit masks. Doubling the randomization degree approxi-
mately halves the correlation coefficient.

5 Performance Estimation

The security evaluation of the last section has shown that there are powerful attacks
which can break implementations even when they employ very sophisticated counter-
measures. Under the assumptions of our analysis, one might be inclined to regard the
use of software countermeasures as futile. Nevertheless there are scenarios, where a
protected implementation might be desired, even if the provided protection is rather
moderate:

– In a device with a fixed processor, the use of software countermeasures is likely to
be the only available option. In some applications, a certain degree of implementa-
tion security could still be much better than none at all.

– The most powerful attacks used in our security evaluation might not be applicable
due to other security measures of the device (e.g. limited number of AES encryp-
tion/decryptions, plaintext/ciphertext not selectable by the attacker, etc.).

– The device has some hardware countermeasures (e.g. noise generators) and the
resistance against power-analysis should be amplified by the software countermea-
sures.

In order to provide performance estimations for different countermeasures, we have
implemented AES-128 encryption with both masking and a scalable randomization.
With the help of this implementation we have estimated the performance for several
design options and degrees of randomization. First, we present the most important
design decisions and implementation characteristics of our solution. Then we give the
performance figures for interesting implementation variants regarding expected security
level, speed, and memory requirements.

5.1 Features of Our Protected AES Implementation

Some basic design decisions for our 32-bit implementation are similar to the secure
AES implementation for 8-bit microcontrollers presented in [5]. This mainly concerns
the basic types of countermeasures (masking and randomization), the concept of ran-
domized zones, etc. We assume the availability of a random number generator to pro-
vide mask values and randomization parameters.

The masking scheme requires six distinct byte masks as input. Two mask bytes
are used to derive a masked S-box lookup table with input mask M and output mask
M′. The four other bytes (denoted M1, M2, M3, and M4) mask each input column to
the MixColumns transformation. The corresponding output masks can be derived by
performing MixColumns on the mask values alone. More precisely, M1 to M4 are used
as an input column for the MixColumns transformation, resulting in the output masks
M1′, M2′, M3′, and M4′.



Protecting AES Software Implementations on 32-Bit Processors 153

All operations which yield intermediate results depending on a relatively small por-
tion of the key are executed in a randomized fashion. Randomization is achieved both
by shuffling of operations as well as the addition of dummy operations. The processing
of the AES State is shuffled so that each byte is processed at one of 16 moments in
time with equal probability. Dummy operations are inserted as normal AES round tran-
formations, but work on a random State (dummy State). The processing of the genuine
State is randomly embedded in between the processing of several dummy States. The
parts of the encryption where execution is randomized are denoted as randomized zones.
The randomized zone at the beginning of AES encryption reaches up to and including
the SubBytes operation of round 2, while the randomized zone at the end starts with
SubBytes in round 9. Figure 5 gives a general overview of the program flow for the
AES implementation and shows the masks on the State as well as the randomized
transformations.

Randomization of operations is costly in terms of performance. Therefore it is de-
sirable to keep the randomized zones as short as possible. In our implementation we
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Table 1. Performance and RAM requirements of AES-128 encryption implementations

Countermeasures Pure Software ISE Memory (RAM)
cycles cycles bytes

None 1,637 196 176
1SB WR 6,465+1,888N 2,023+1,028N 476
4SB WR 14,958+1,888N 3,631+1,028N 1248
4SB SR 15,332+2,208N 3,978+1,348N 1388

have reordered the round transformations, so that ShiftRows is not included in the
randomization. This reordering requires the first and last round key to be transformed
with ShiftRows or InvShiftRows.

In order to reduce the overhead for masking, the AddRoundKey operation is used for
remasking whenever possible. This requires masks to be applied on some of the round
keys. The masks on these round keys must be renewed whenever the masks change.
When the masks are changed for each AES encryption—which is the ideal case—then
it would be equally efficient to change the mask explicitly during the AES encryption.

In our implementation, the rounds 3 to 8 are not masked. AddRoundKey of round 2
removes the masks from the State, and AddRoundKey of round 8 masks the State again.
All unmasked intermediate values have therefore been subjected to three AddRoundKey
transformations and depend on sufficiently many key bytes, to prevent an efficient DPA
attack. The advantage of the unmasked inner rounds is that the AES instruction set
extensions can be fully used.

The randomization follows the concepts described in Section 3.3. In the randomized
zones, only values which depend on a single State byte are processed. This allows for a
randomization degree of (N + 1) ·16, where N is the number of dummy States.

5.2 Performance Figures

Table 1 contains the execution times and RAM requirements for several implementa-
tions of AES-128 encryption with masking and randomization countermeasures. The
performance figures are given for the case without instruction set extensions (pure
software) as well as with instruction set extensions (ISE). The RAM requirements for a
specific implementation is always the same for both cases. The cycle counts are given
in dependence on the number of dummy States (N).

We have given performance figures for three protected implementations, which em-
ploy both masking and randomization countermeasures. The cycle counts include all
overhead when the masks are refreshed for each new encryption. The first implemen-
tation (1SB WR) uses 1 masked S-box and a weak randomization (weak in the sense
defined in Section 3.4). The second implementation (4SB WR) is similar, but uses 4
masked S-boxes. The last implementation (4SB SR) has a strong randomization.

For comparison, the performance figures of an unprotected implementation, as stated
in [18], are provided.

Table 2 gives a complete analysis of the security/performance trade-off for the three
protected implementations. Note that SW denotes the software implementation, while
ISE denotes the respective implementation with instruction set extensions. The table
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Table 2. Analysis of the security/performance trade-off

Implementation Performance BM 2W WR W2 max(ρ)
1SB WR (SW), N = 0 6,465 -0.14 0.06 0.06 0.03 -0.14
1SB WR (SW), N = 3 12,129 -0.07 0.03 0.03 < 0.01 -0.07
1SB WR (SW), N = 5 15,905 -0.06 0.02 0.02 < 0.01 -0.06
1SB WR (SW), N = 11 27,233 -0.04 0.02 0.02 < 0.01 -0.04
1SB WR (ISE), N = 0 2,023 -0.14 0.06 0.06 0.03 -0.14
4SB WR (ISE), N = 0 3,631 -0.05 0.03 0.06 0.02 0.06
4SB SR (ISE), N = 0 3,978 -0.05 0.03 N/A 0.02 -0.05
4SB SR (ISE), N = 1 5,326 -0.04 0.02 N/A 0.01 -0.04
4SB SR (ISE), N = 3 8,022 -0.03 0.01 N/A < 0.01 -0.03
4SB SR (ISE), N = 5 10,718 -0.02 0.01 N/A < 0.01 -0.02
4SB SR (ISE), N = 11 18,806 -0.01 < 0.01 N/A < 0.01 -0.01

lists the estimated correlation coefficients for the four attacks presented in Section 3.4:
Biased mask attack (BM), combined second-order DPA and windowing attack (2W),
weak randomization attack (WR), and “classical” second-order DPA attack on win-
dowed traces (W2). The maximum correlation coefficient is listed in the last column.

For the pure software implementation, the biased-mask attack (BM) is the most pow-
erful one. In software, the only option is to increase the randomization degree N. But
the correlation coefficient only decreases very slowly with rising N. When instruction
set extensions are available, we can work exclusively with 32-bit masks if we use four
masked S-boxes instead of one (4SB WR). In that case, the attack exploiting the weak
randomization becomes the most efficient one. To counteract, we use the implementa-
tion with strong randomization (4SB SR), which makes this attack inapplicable. Then
the biased-mask attack becomes again the most effective one. With heavy randomization
(N = 11), the correlation coefficient can be pushed down to ρ =−0.01. This corresponds
to an increase of the security level by four orders of magnitude in comparison to an
unprotected implementation. This comes at the price of an execution time, which is
increased by two orders of magnitude (cf. Table 1). Compared to the unprotected pure
software implementation, the execution time is increased by one order of magnitude.

6 Conclusions

In this paper we have provided a thorough analysis of power analysis countermeasures
in software in the face of state-of-the-art attacks. We have concentrated on 32-bit em-
bedded processors, but most of the results could also be applied to 8-bit and 16-bit
processors. By means of an AES implementation we have shown the impact of power
analysis countermeasures on the performance and RAM requirements. When restricted
to the original instruction set architecture, the attainable degree of protection of our
protected implementation is increased by three orders of magnitude. If the processor
is equipped with custom instructions for AES, then a protection level of four orders of
magnitude is achievable. But the performance penalty is rather high, so that it is prob-
ably not acceptable for all applications. As of now, no set of software countermeasures
seems suited to offer a reasonable degree of protection at a negligible overhead.
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Future Work. The use of existing instruction set extensions for AES is not sufficient
to support power analysis countermeasures. A promising approach which we will in-
vestigate in the future is to enhance the extensions with hardware countermeasures.
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18. S. Tillich and J. Großschädl. Instruction Set Extensions for Efficient AES Implementation
on 32-bit Processors. In L. Goubin and M. Matsui, editors, Cryptographic Hardware and
Embedded Systems – CHES 2006, 8th International Workshop, Yokohama, Japan, October
10-13, 2006, Proceedings, volume 4249 of Lecture Notes in Computer Science, pages 270–
284. Springer, 2006.

19. J. Waddle and D. Wagner. Towards Efficient Second-Order Power Analysis. In M. Joye
and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Systems – CHES
2004, 6th International Workshop, Cambridge, MA, USA, August 11-13, 2004, Proceedings,
volume 3156 of Lecture Notes in Computer Science, pages 1–15. Springer, 2004.



Constant-Round Authenticated Group Key

Exchange with Logarithmic Computation
Complexity�

Junghyun Nam1, Juryon Paik2, Ung Mo Kim2, and Dongho Won2,��

1 Department of Computer Science, Konkuk University, Korea
jhnam@kku.ac.kr

2 Department of Computer Engineering, Sungkyunkwan University, Korea
juryon.paik@gmail.com, umkim@ece.skku.ac.kr, dhwon@security.re.kr

Abstract. Protocols for group key exchange (GKE) are cryptographic
algorithms that describe how a group of parties communicating over a
public network can come up with a common secret key. Due to their
critical role in building secure multicast channels, a number of GKE
protocols have been proposed over the years in a variety of settings.
However despite many impressive achievements, it still remains a chal-
lenging problem to design a secure GKE protocol which scales very well
for large groups. Our observation is that all constant-round authenti-
cated GKE protocols providing forward secrecy thus far are not fully
scalable, but have a computation complexity that scales only linearly in
group size. Motivated by this observation, we propose a new and the first
forward-secure authenticated GKE protocol that achieves both constant
round complexity and logarithmic computation complexity. In particu-
lar, our GKE protocol is fully scalable in all key metrics when considered
in the context of a broadcast network. The scalability of the protocol is
achieved by using a complete binary tree structure combined with a so-
called “nonce-chained authentication technique”. Besides its scalability,
our protocol features provable security against active adversaries under
the decisional Diffie-Hellman assumption. We provide a rigorous proof
of security for the protocol in a well-defined formal model of communi-
cation and adversary capabilities. The result of the current work means
that forward-secure generation of session keys even for very large groups
can be now done both securely and efficiently.

Keywords: Cryptography, group key exchange, scalability, binary tree,
nonce-chained authentication, provable security.

1 Introduction

The primary goal of cryptography is to provide a means for communicating
confidentially and with integrity over a public channel. Roughly speaking,
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confidentiality ensures that communications and messages are kept secret be-
tween authorized parties, and integrity guarantees that any unauthorized mod-
ifications to the transferred data will be detected. In practice, these two main
security properties are best achieved with key exchange protocols which allow the
parties communicating over an insecure network to establish a common secret
key called a session key. Typically, the communicating parties, who want confi-
dentiality and integrity, first generate a session key by running an appropriate key
exchange protocol and then use this key together with standard cryptographic
algorithms for message encryption and authentication. Thus, the problem of
establishing confidential and integrity-preserving communication is commonly
reduced to the problem of getting a right protocol for session key generation.
Needless to say, a tremendous amount of research effort has been devoted to the
design and analysis of key exchange protocols in a variety of different settings
(e.g., [19,24,37,8,25] and their follow-ups).

The first priority in designing a key exchange protocol is placed on ensur-
ing the security of session keys to be established by the protocol. Even if it
is computationally infeasible to break the cryptographic algorithms used, the
whole system becomes vulnerable to all manner of attacks if the keys are not se-
curely established. But unfortunately, the experience has shown that the design
of secure key exchange protocols is notoriously difficult; there is a long history
of protocols for this domain being proposed and later found to be flawed (see
[16] for a comprehensive list of examples). Thus, key exchange protocols must
be subjected to a thorough and systematic scrutiny before they are deployed
into a public network, which might be controlled by an adversary. This concern
has prompted active research on formal models [6,7,40,5,11,15,2,28] for security
analysis of key exchange protocols, and highlighted the importance of proofs of
protocol security in a well-defined model. Although rigorously proving a proto-
col secure can often be a lengthy and complicated task, proofs are advocated
as invaluable tools for obtaining a high level of assurance in the security of key
exchange protocols [27,11,29,2,33,17].

Efficiency is another important consideration in designing key exchange pro-
tocols. In particular, it may become a critical practical issue in the group setting
where quite a large number of parties are likely to get involved in session key
generation. The efficiency of a group key exchange (GKE) protocol is typically
measured with respect to communication cost as well as computation cost in-
curred by the protocol. Three common measures for gauging the communication
cost of a protocol are (1) the round complexity, the number of rounds until the
protocol terminates, (2) the message complexity, the maximum number of mes-
sages both sent and received per user in the protocol, and (3) the bit complexity,
the maximum number of bits (i.e., the maximum combined length of messages)
both sent and received per user in the protocol. In order for a GKE protocol
to be scalable, it is desirable in many real-life applications that the protocol
be able to complete in a constant number of rounds. The computation cost of
a protocol is directly related to the computation complexity which we define
as the maximum amount of computation done by a single user in the protocol.
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By computation, we do not mean simple traverses of the identities of the
protocol participants, but mean any kinds of cryptographic operations such as
public-key and symmetric-key operations, modular arithmetic operations, hash
function evaluations, etc. Although the above definitions of various complexities
are largely based on those given in the full version of [29]1, there is a notewor-
thy difference in defining message and bit complexities. Our definitions for these
complexities counts both the sent and received traffics whereas those in the full
version of [29] considers only the sent one. We believe this modification provides
a more accurate way to measure the communication efficiency of any distributed
protocols.

Motivation. Efficient and secure generation of session keys for large groups is
a difficult problem that needs more work to solve it. The difficulty of the prob-
lem is well indicated by the fact that it took nearly two decades before we got
the first provably-authenticated GKE protocol [11] even with round complexity
O(n) in a group of size n. Still up to now, there are only a very limited num-
ber of constant-round protocols [9,29,30,21] carrying a claimed proof of security
against active adversaries in a formal model. However, all these constant-round
protocols suffer from the number of public-key operations that scales linearly in
group size, and thus exhibit O(n) computation complexity under the definition
above. These best-known protocols are categorized as key agreement protocols,
but the situation is not much different for authenticated key transport protocols
[23,35,26]. Indeed, we are unaware of any, provably secure or not, authenticated
GKE protocols achieving both constant round complexity and logarithmic com-
putation complexity. The protocols of [23,35,9,26] requires one distinct user to
perform O(n) modular exponentiations or public-key encryptions. The other pro-
tocols from [29,30,21] is all a novel extension of the protocol (i.e., protocol 3) by
Burmester and Desmedt [12], but commonly require each user to perform O(n)
signature verifications. For moderate size groups, these previous solutions are
clearly appealing. But for large groups, many applications will likely demand a
protocol whose computation complexity scales logarithmically with group size.
It is this observation that prompted the present work aimed at designing an
authenticated GKE protocol which scales very well for large groups.

Contribution. The result of this work is the first forward-secure authenticated
GKE protocol that achieves O(1) round complexity and O(log n) computation
complexity. In Tables 1 and 2, we summarize the computation and commu-
nication requirements of our protocol and other authenticated GKE protocols
[23,35,9,29].2 (By the tables, we are not arguing that one is overall superior to
another, but meant to provide an asymptotic analysis for comparing scalabil-
ity of different protocols.) Like the protocols of [23,35], our GKE protocol is
categorized as a key transport protocol. The protocol of [9]3 features optimal

1 The full version of [29] is available at http://www.cs.umd.edu/∼jkatz
2 Although the protocols from [30,21] may perform better in practice than the protocol

of [29], they fall into the same category from the computation complexity perspective.
3 We refer to [17] for a security enhancement to this protocol.



Constant-Round Authenticated Group Key Exchange 161

Table 1. Computation requirements of authenticated GKE protocols

Exp Sig/Dec Ver/Enc Div Mul

Boyd-Nieto [9] O(1)/ /O(n)

Katz-Yung [29] O(1) O(1)/ O(n)/ O(1) O(n log n)

Hirose-Yoshida [23] O(n) O(n)/ O(n)/ O(n)

Mayer-Yung [35] O(1)/ O(n)/O(n)

Here O(log n) O(1)/ O(log n)/ O(1) O(log n)

Note. “Mayer-Yung [35]” refers to a-MKT with Consistency 1 of [35].
Exp: the maximum number of modular exponentiations performed per user.
Sig/Dec: the maximum numbers of signature generations and public-key decryptions performed per
user.
Ver/Enc: the maximum numbers of signature verifications and public-key encryptions performed per
user.
Div: the maximum number of modular divisions performed per user.

Mul: the maximum number of modular multiplications performed per user.

Table 2. Communication requirements of authenticated GKE protocols

Rounds Messages Bits

PtP Broadcast PtP Broadcast

Boyd-Nieto [9] 1 O(n) O(n) O(n2) O(n)

Katz-Yung [29] 3 O(n) O(n) O(n) O(n)

Hirose-Yoshida [23] 3 O(n) O(n) O(n) O(n)

Mayer-Yung [35] 4 O(n) O(n) O(n2) O(n)

Here 3 O(n) O(log n) O(n) O(log n)

Note. “Mayer-Yung [35]” refers to a-MKT with Consistency 1 of [35].
Rounds: the number of communication rounds required to complete the protocol.
Messages: the maximum number of messages both sent and received per user.
Bits: the maximum number of bits both sent and received per user.
PtP: the point-to-point network model.
Broadcast: the broadcast network model.

round complexity [4], but lacks perfect forward secrecy [20]. As Table 1 shows,
the maximum computation rate per user is bounded by O(log n) in our proto-
col, whereas this rate per user rises up to O(n) in the other protocols. Thus
from a theoretical point of view, our main contribution is to show the possibility
of achieving logarithmic computation complexity in constructing forward-secure
constant-round protocols for authenticated group key exchange. However, it is
also important from a practical viewpoint to notice that for reasonable values of
n, the actual computation in our protocol can be heavier than that in the other
protocols.

Our result can be even stronger in a broadcast network model, where each
message sent is assumed to be received by all parties in the network. In the
broadcast model, our protocol distinguishes itself from the other protocols in that
it achieves O(log n) message and bit complexities as shown in Table 2. (Recall
that both the sent and received traffics are considered for estimating message and
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bit complexities.) Thus if we assume a broadcast network, our protocol can be
regarded as the first forward-secure authenticated GKE protocol that not only
achieves O(1) round complexity but also bounds all other complexities (i.e., bit,
message, and computation complexities) by O(log n).

Furthermore, our protocol is provably secure against a powerful active ad-
versary under the decisional Diffie-Hellman assumption. We provide a rigorous
proof of security for the protocol in a refinement of the standard security model
[11,9,29,30,21]. From the standpoint of the adversary’s capabilities, our security
model is a unique combination of previous results from [11,10,2,36], which are in
turn based on earlier work of Bellare, Pointcheval, and Rogaway [5]. In partic-
ular, our model maximizes the overall attacking ability of the adversary in two
ways. Firstly, we allow the adversary to query the Test oracle as many times as
it wants [2]. Secondly, we incorporate strong corruption [5] into the model by al-
lowing the adversary to ask users to release any short-term and long-term secret
information. A detailed discussion on this is deferred to Section 2. Our security
proof of course captures important security notions of perfect forward secrecy
and known key security [18]. In addition since security is proved in the strong
corruption model, our protocol also guarantees that the release of short-term
secrets used in some sessions does not jeopardize the security of other sessions.

Tree-Based Protocols. A number of GKE protocols, including ours, have
leveraged a tree structure in order to provide better scalability. As is widely
known, the protocols of Wallner et al. [41] and Wong et al. [42] are based on a
logical tree of key encryption keys. These protocols make substantial progress
towards scalable key management in very large groups, by reducing the cost of
rekeying operations associated with group updates from O(n) to O(log n). But,
these group rekeying methods (and their many optimizations and extensions,
e.g., [39]) fail to provide (perfect) forward secrecy, requiring long-term pairwise
secure channels between a key server and all users.

The approach using logical key trees has been extended by Kim et al. [31,32]
to the forward-secure case. Their protocols require no secure channels of any kind
and offer distributed functionality. Later, Lee et al. [34] present a pairing-based
variant of the TGDH protocol of [31]. All these works [31,32,34], however, provide
no explicit treatment of key exchange for initial group formation, focusing only
on key updates upon group membership changes.

Ren et al. [38] make use of a binary key tree in their generic construction
where an authenticated GKE protocol is built upon any authenticated protocol
for two-party key exchange. Barua et al. [3] and Dutta et al. [22] construct their
protocols by combining a ternary tree structure with the one-round tripartite
protocol of Joux [25]. Back in 1994, Burmester and Desmedt [12] also proposed a
tree-based GKE protocol. This protocol (i.e., protocol 2 of [12]) seems to be the
first GKE protocol utilizing a binary tree structure, and differs from all other
protocols mentioned above in that there exists a bijective mapping between
protocol participants and tree nodes. But, this protocol, in common with other
protocols from [3,38,22], has round complexity O(log n), in contrast to O(1) in
our protocol.
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After the first version of this paper was written, we became aware that in 1996,
Burmester and Desmedt [13] presented a graph-based protocol called CKDS. The
CKDS protocol (more precisely, the multicast version of CKDS) has a potential
to achieve the same level of complexities as our protocol, in the sense that the
minimum spanning tree of the graph it used could have a height of O(log n).
But unlike our provably-authenticated protocol, this protocol assumes a passive
adversary and justifies its security on purely heuristic grounds without providing
no formal analysis of security.

2 Formal Setting

Any form of security analysis of a cryptographic construction should be preceded
by clear definitions of its security goals and tools. In this section we provide such
a preliminary formalism for group key exchange.

2.1 Communication and Adversary Model

Participants. Let U be a set of all users who are potentially interested in
participating in a group key exchange protocol. The users in any subset of U
may run the group key exchange protocol at any point in time to establish a
session key. Each user may run the protocol multiple times either serially or
concurrently, with possibly different groups of participants. Thus, at a given
time, there could be many instances of a single user. We use Ππ

i to denote the
π-th instance of user Ui. Before the protocol is executed for the first time, each
user Ui ∈ U creates a long-term public/private key pair (PKi, SKi) by running a
key generation algorithm K(1κ). All instances of a user share the public/private
keys of the user even if they participate in their respective sessions independently.
Each private key is kept secret by its owner while the public keys of all users are
publicized.

Partners. Intuitively, the partners of an instance is the set of all instances that
should compute the same session key as the instance in an execution of the
protocol. Like most of previous works, we use the notion of session IDs to de-
fine partnership between instances. Literally, a session ID (denoted as sid) is a
unique identifier of a communication session. Following [14,15,28], we assume that
session IDs are assigned and provided by some higher-level protocol. While this
assumption is unnecessary in some protocols [9,29] which use only broadcast mes-
sages (in these protocols, a session ID can readily be defined as the concatenation
of all message flows), it seems very useful in other protocols where some proto-
col messages are not broadcast and thus not all participants have the same view
of a protocol run. Supporting this assumption, Katz and Shin [28] have recently
made an interesting observation: since a user may be running many instances of
a key exchange protocol concurrently, users in practice need a means to identify
the sessions to which incoming messages belong. Therefore, in some sense, pre-
defined session IDs are implicit even in the models [11,9,29] that use a customized
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definition of session IDs. We let SID be the algorithm used by the higher-level
protocol to generate session IDs, and assume that SID is publicly available.

We also need the notion of group IDs to define partnership properly. A group
ID (denoted as gid) is a set consisting of the identities of the users who intend to
establish a session key among themselves. This notion is clearly natural because
it is impossible (not even defined) to ever execute a group key exchange protocol
without participants. Indeed, a group ID is a both necessary and important input
to any protocol execution.

In order for an instance to start to run the protocol, we require that both sid
and gid should be given as input to the instance. We use sidπ

i and gidπ
i to denote

respectively sid and gid provided to instance Ππ
i . Note that gidπ

i should always
include U itself. Session IDs and group IDs are public and hence available to the
adversary. Indeed, the adversary in our model generates these IDs on its own; it
generates a session ID by running SID and a group ID by choosing a subset of
U . However, there is an important point regarding the generation of session IDs.
Our model does not require the adversary to be honest in generating session IDs.
This means that the adversary may try to replay a session ID as many times as
necessary for its attack, but only at its own risk. In other words, the uniqueness
of a session ID is not guaranteed by the model but should be checked by users
themselves.

An instance is said to accept when it successfully computes a session key in
a protocol execution. Let accπ

i be a boolean variable that evaluates to true if
Ππ

i has accepted, and false otherwise. We say that any two instances Ππ
i and

Πω
j are partners of each other, or equivalently, partnered iff all the following

three conditions are satisfied: (1) sidπ
i = sidω

j , (2) gidπ
i = gidω

j , and (3) accπ
i =

accω
j = true. We also say that two instances Ππ

i and Πω
j are potential partners

of each other, or equivalently, potentially partnered iff the first two conditions
above hold. We use pidπ

i and ppidπ
i to denote respectively the partners and the

potential partners of the instance Ππ
i . Then it follows by the definitions that

pidπ
i ⊆ ppidπ

i .

Adversary. The adversary in our model controls all message exchanges in the
protocol and can ask participants to open up access to any secrets, either long-
term or short-term. These capabilities of the adversary are modeled via various
oracles to which the adversary is allowed to make queries. Unlike most previous
models for group key exchange, we allow the adversary to query the Test oracle
as many times as it wants4. This approach was recently suggested by Abdalla
et al. [2] for password authenticated key exchange in the three-party setting and
was also proved there to lead to a stronger model (for more details, see Lemmas 1
and 2 in Appendix B of [2]). What we found interesting is that allowing multiple
Test queries is very useful in proving Theorem 1 which claims the security of our
unauthenticated protocol against a passive adversary. We also strengthen the
model by incorporating strong corruption [5] in which the adversary is allowed

4 The model in [1] appears to be the first one for group key exchange that does not
restrict the adversary to ask only a single Test query.
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to ask user instances to release both short-term and long-term secrets. We treat
strong corruption in a different manner than [5]5, and follow [36] in that we
provide the adversary with an additional oracle called Dump which returns all
short-term secrets used by an instance. Other oracles (Execute, Send, Reveal,
and Corrupt) are as usual. In the following, we describe these relatively familiar
oracles first and then Dump and Test oracles.

– Execute(sid, gid): This query prompts an honest execution of the protocol
between a set of instances consisting of one instance for each user in gid,
where the instances are all given the session ID sid and the group ID gid
as their input. The transcript of the honest execution is returned to the
adversary as the output of the query. This models passive attacks on the
protocol.

– Send(Ππ
i , M): This query sends message M to instance Ππ

i . The instance Ππ
i

proceeds as it would in the protocol upon receiving message M ; the instance
updates its state performing any required computation, and generates and
sends out a response message as needed. The response message, if any, is the
output of this query and is returned to the adversary. This models active at-
tacks on the protocol, allowing the adversary to control at will all message
flows between instances. A query of the form Send(Ππ

i , sid‖gid) prompts Ππ
i

to initiate an execution of the protocol using session ID sid and group ID gid.
– Reveal(Ππ

i )6: This query returns to the adversary the session key held by
Ππ

i . This oracle call captures the idea that exposure of some session keys
should not affect the security of other session keys [18]. The adversary is not
allowed to ask this query if it has already queried Test(Πω

j ) for some Πω
j in

pidπ
i (see below for the description of the Test oracle).

– Corrupt(Ui): This query returns to the adversary all long-term secret infor-
mation of Ui including the private key SKi

7. This models the adversary’s
capability of breaking into a user’s machine and gaining access to the long-
term data set stored there. The adversary can issue this query at any time
regardless of whether Ui is currently executing the protocol or not. This or-
acle call captures the idea that damage due to loss of Ui’s long-term secrets
should be restricted to those sessions where Ui will participate in the future.

– Dump(Ππ
i ): This query returns all short-term secrets used in the past or

currently being used by instance Ππ
i

8. But, neither the session key computed
by Ππ

i nor any long-term secrets of Ui are not returned. This models the
adversary’s capability to embed a Trojan horse or other form of malicious

5 In the strong corruption model of [5], the Corrupt oracle returns both long-term and
short-term secrets.

6 While the Reveal oracle does not exist in the so-called ROR model of Abdalla et
al. [2], it is available to the adversary in our model and is used to enable a modular
approach in the security proof of our protocol. Anyway, allowing Reveal queries
causes no harm, but rather provides more clarity.

7 This definition of the Corrupt oracle corresponds to the so-called weak corruption
model [5].

8 This combined with the Corrupt oracle represents strong corruption.
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code into a user’s machine and then log all the session-specific information
of the victim. The adversary is not allowed to ask this query if it has already
queried Test(Πω

j ) for some Πω
j in ppidπ

i .
– Test(Ππ

i ): This query provides a means of defining security. The output of
this query depends on the hidden bit b that the Test oracle chooses uniformly
at random from {0, 1} during its initialization phase. The Test oracle returns
the real session key held by Ππ

i if b = 1, or returns a random session key
drawn from the key space if b = 0. The adversary is allowed to query the
Test oracle as many times as necessary. But, the query can be asked only
when instance Ππ

i is fresh (see Section 2.2 for the definition of freshness).
All the queries to the oracle are answered using the same value of the hidden
bit b that was chosen at the beginning. Namely, the keys returned by the
Test oracle are either all real or all random.

Remark 1. The Dump oracle is essentially similar to the Session-state reveal ora-
cle introduced in the model of Canetti and Krawczyk [14]. But as noted in [36],
there is a technical difference between these two oracles. The Session-state reveal
oracle can be queried only to obtain the internal state of an incomplete session,
whereas the Dump oracle allows the adversary to obtain the recording of local
history of an either incomplete or complete session.

Definition 1. An adversary is called active iff it is allowed to access all the
oracles described above, and called passive iff it is allowed to access all but the
Send oracle.

We represent the amount of queries used by an adversary as an ordered sequence
of six non-negative integers, Q = (qexec, qsend, qreve, qcorr, qdump, qtest), where the
six elements refer to the numbers of queries that the adversary made respectively
to its Execute, Send, Reveal, Corrupt, Dump, and Test oracles. We call this usage
of queries by an adversary the query complexity of the adversary. Note that by
Definition 1, the query complexity of a passive adversary is always represented
as a sequence of the form Q = (qexec, 0, qreve, qcorr, qdump, qtest).

2.2 Security Definition and Assumptions

Freshness. The notion of freshness is used in the definition of security to pro-
hibit the adversary from asking the Test query against an instance whose session
key (or some information about the key) can be exposed by trivial means.

Definition 2. The instance Ππ
i is considered unfresh iff any of the following

conditions hold:

1. accπ
i = false.

2. The adversary queried Corrupt(Uj) for some Uj in gidπ
i before some instance

in ppidπ
i accepts.

3. The adversary queried Dump(Πω
j ) for some Πω

j in ppidπ
i .

4. The adversary queried Reveal(Πω
j ) or Test(Πω

j ) for some Πω
j in pidπ

i .

All other instances are considered fresh.
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Remark 2. By “Test(Πω
j )” in the fourth condition of Definition 2, we require that

for each different set of partners, the adversary should access the Test oracle only
once. One may think that this restriction weakens the ability of the adversary.
However this is not the case because when all information on partnering is public,
obtaining the same data multiple times (from the instances partnered together)
is no different than obtaining it once.

Security. The security of a group key exchange protocol P against an adversary
A is defined in terms of the probability that A succeeds in distinguishing random
session keys from real session keys established by the protocol P . That is, the
adversary A is considered successful in attacking P if it breaks the semantic
security of session keys generated by P . This notion of security is defined in the
context of the following two-stage game, where the goal of adversary A is to
correctly guess the value of the hidden bit b chosen by the Test oracle.

– Stage 1: A makes any allowed oracle queries at will as many times as it
wishes.

– Stage 2: Once A decides that Stage 1 is over, it outputs a bit b′ as a guess
for the value of the hidden bit b used by the Test oracle. A wins the game if
b = b′.

In the game above, the adversary can keep querying the oracles even after it
asked some Test queries. However, when there was the query Test(Ππ

i ) asked,
the adversary is prohibited from querying Dump(Πω

j ) for some Πω
j ∈ ppidπ

i and
from querying Reveal(Πω

j ) for some Πω
j ∈ pidπ

i . This restriction reflects the fact
that the adversary can win the game unfairly by using the information obtained
via the query Dump(Πω

j ) or Reveal(Πω
j ).

Given the game above, the advantage of A in attacking the protocol P is
defined as AdvP (A) = |2 · Pr[b = b′] − 1|. Note that this definition is equivalent
to say that the advantage of A is the difference between the probabilities that
A outputs 1 in the following two experiments constituting the game: the real
experiment where all queries to the Test oracle are answered with the real session
key, and the random experiment where all Test queries are answered with a
random session key. Thus, if we denote the real and the random experiments
respectively as Expreal

P (A) and Exprand
P (A), the advantage of A can be equivalently

defined as AdvP (A) = |Pr[Expreal
P (A) = 1] − Pr[Exprand

P (A) = 1]|, where the
outcomes of the experiments is the bit output by A.

We say that the group key exchange protocol P is secure if AdvP (A) is negligi-
ble for all probabilistic polynomial time adversaries A. To quantify the security
of protocol P in terms of the amount of resources expended by adversaries,
we let AdvP (t, Q) denote the maximum value of AdvP (A) over all A with time
complexity at most t and query complexity at most Q.

Decisional Diffie-Hellman (DDH) Assumption. Let G be a cyclic (multi-
plicative) group of prime order q. Since the order of G is prime, all the
elements of G, except 1, are generators of G. Let g be a random fixed gen-
erator of G and let x, y, z be randomly chosen elements in Z

∗
q where z �= xy.
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Informally stated, the DDH problem for G is to distinguish between the distri-
butions of (gx, gy, gxy) and (gx, gy, gz), and the DDH assumption is said to hold
in G if it is computationally infeasible to solve the DDH problem for G. More
formally, we define the advantage of D in solving the DDH problem for G as
Advddh

G (D) = |Pr[D(G, g, gx, gy, gxy) = 1] − Pr[D(G, g, gx, gy, gz) = 1]|. We say
that the DDH assumption holds in G (or equivalently, the DDH problem is hard
in G) if Advddh

G (D) is negligible for all probabilistic polynomial time algorithms
D. We denote by Advddh

G (t) the maximum value of Advddh
G (D) over all D running

in time at most t.

Signature Schemes. Let Σ = (Kgen, Sign, Vrfy) be a signature scheme,
where Kgen is the key generation algorithm, Sign is the signature generation
algorithm, and Vrfy is the signature verification algorithm. Let SuccΣ(A) de-
note the probability that A succeeds in generating an existential forgery under
adaptive chosen message attack. We say that a signature scheme Σ is secure if
SuccΣ(A) is negligible for every probabilistic polynomial time adversary A. We
use SuccΣ(t) to denote the maximum value of SuccΣ(A) over all A running in
time at most t.

3 A Scalable Protocol for Unauthenticated Group Key
Exchange

This section presents a new group key exchange protocol called SKE (Scalable
Key Exchange). Let G = {U1, U2, . . . , Un} be a set of n users wishing to establish
a session key among themselves. As stated in the Introduction, our goal is to
design a forward-secure GKE protocol with round complexity O(1) and compu-
tation complexity O(log n). Towards the goal, we arrange the users in a complete
binary tree where all the levels, except perhaps the last, are full; while on the
last level, any missing nodes are to the right of all the nodes that are present.
Fig. 1 shows an example of a complete binary tree of height 3 with 6 leaves and
6 internal nodes. Users in G are placed at nodes in a straightforward way that
Ui has U2i as its left child and U2i+1 as its right child. Let Ni denote the node
at which Ui is positioned and let Gi denote the subgroup consisting of all users
located in the subtree rooted at node Ni. Each internal node Ni is associated
with a node key ki. In the protocol, the node key ki is first generated by Ui and
then shared as the subgroup key among the users in Gi. Accordingly, k1 serves
as the group key (i.e., session key) shared by all users in G.

3.1 Description of SKE

In describing the protocol, we assume that the following public information has
been fixed in advance and is known to all parties in the network: (1) the structure
of the tree and the users’ positions within the tree, (2) a cyclic multiplicative
group G of prime order q, where the DDH assumption holds, and a generator g
of G, and (3) a function I mapping elements of G to elements of Zq. A standard
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Fig. 1. A complete binary tree for G = {U1, . . . , U12}

way of generating G where the DDH assumption is assumed to hold is to choose
two primes p, q such that p = kq +1 for some small k ∈ N (e.g., k = 2) and let G

be the subgroup of order q in Z
∗
p. For our purpose, we require that I : G → Zq

be bijective and (for any element in G) efficiently computable. Whether there
are appropriate bijections from G into Zq depends on the group G. If p is a
safe prime (i.e., p = 2q + 1), then such a bijection I can be constructed as
follows:

I(x) =

{
x if x ≤ q

p − x if q < x < p.

The protocol SKE runs in two communication rounds.

Round 1: All users, except U1 at the root, send a message to their parent as
follows:

– Each user Ui at a leaf node chooses a random ri ∈ Zq, computes zi = gri ,
and sends M1

i = Ui‖1‖zi to its parent.
– Each user Ui at an internal node chooses two random si, ti ∈ Zq, com-

putes ki = gsiti , ri = I(ki) and zi = gri , and sends M1
i = Ui‖1‖zi to its

parent.

Meanwhile, U1 chooses two random s1, t1 ∈ Zq and computes k1 = gs1t1 .
Round 2: Each internal user Ui (including U1) sends a message to its descen-

dants (i.e., the users in Gi \ {Ui}) as follows:

1. First, Ui computes x2i = zsi

2i and y2i = kix
−1
2i . If Ui has the right child

(this is the case for all internal users, except possibly for the last one),
it also computes x2i+1 = zsi

2i+1 and y2i+1 = kix
−1
2i+1.

2. Then, Ui computes wi = gsi and sends M2
i = Ui‖2‖wi‖y2i‖y2i+1 (or

M2
i = Ui‖2‖wi‖y2i if Ui has only the left child) to its descendants.



170 J. Nam et al.

Key computation: Using messages from ancestors, each user Ui �= U1 com-
putes every node key kj on the path from the parent to the root as follows:

while i ≥ 2
do j ← 
i/2�

kj = yi · wri

j

if j > 1
then rj = I(kj)

i ← j

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Having derived the root node key k1, all users in G simply set the session
key K equal to k1.

Consider, for example, the user U11 in Fig. 1. (For simplicity, let us exclude user
identities and sequence numbers from consideration.) U11 sends z11 = gr11 to U5
in the first round and receives w5‖y10‖y11, w2‖y4‖y5 and w1‖y2‖y3 respectively
from U5, U2 and U1 in the second round. U11 then computes, in sequence, k5 =
y11 · wr11

5 , r5 = I(k5), k2 = y5 · wr5
2 , r2 = I(k2) and k1 = y2 · wr2

1 . Finally, U11
sets its session key to k1.

It can be easily verified that the SKE protocol achieves the complexity bounds
claimed in Section 1. Notice in SKE that the users at level � perform about �
operations of any kind. This means that the maximum amount of computation
done by a user scales linearly with the height of the tree, i.e., logarithmically
with the number of users in G. Hence, the computation complexity of SKE is
O(log n) as claimed. The message and bit complexities of SKE in a broadcast
network are also O(log n), since the maximum numbers of messages and bits
both sent and received by a user increase linearly as the tree height grows. In a
point-to-point network, the message and bit complexities rise up to O(n) because
the root user has to send a same message n − 1 times. (Hereafter, for brevity
of exposition, all statements regarding message and bit complexities assume a
broadcast network.)

Of course, the SKE protocol is not authenticated, and is categorized as a
key transport protocol because the session key is generated by one user (i.e.,
U1) and then transferred to all other users. In the next section, we will show
how to convert this unauthenticated protocol into an authenticated one without
compromising the protocol’s scalability.

3.2 Security Result for Protocol SKE

The following theorem presents our result on the security of protocol SKE. It
says, roughly, that the group key exchange protocol SKE is secure against passive
adversaries under the DDH assumption for G.

Theorem 1. Let Q = (qexec, 0, qreve, qcorr, qdump, qtest). Then for any ad-
versary with time complexity at most t and query complexity at most Q, its
advantage in breaking the security of protocol SKE is upper bounded by:

AdvSKE(t, Q) ≤ qtestqexec(2�log |U|�+1 − 1)Advddh
G (t′),
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where t′ = t + O(|U|qexectSKE) and tSKE is the time required for execution of
protocol SKE by any party.

At a high level, the proof of Theorem 1 proceeds by a mathematical induction
on the height of the binary tree used in protocol SKE. Let SKEh denote the
protocol SKE but with the height of its input tree restricted to some fixed value
h > 0. Namely, SKEh is exactly the same as SKE, except that it can be run only
for those groups such that 2h ≤ n < 2h+1. Then the basis step is to show that
protocol SKE1 is secure against passive adversaries. The induction step is to
prove that for each h ≥ 1, protocol SKEh+1 is secure against passive adversaries
under the assumption of the security of protocol SKEh against passive adver-
saries. The actual proof of the theorem is omitted here due to lack of space, and
will be given in the full version of this paper.

4 A Scalable Protocol for Authenticated Group Key
Exchange

Perhaps one of the most pleasing results of research on group key exchange
is the one-round compiler presented by Katz and Yung [29] (in short, the KY
compiler). The KY compiler shows how we can transform any group key exchange
protocol secure against a passive adversary into one that is secure against an
active adversary. It certainly is elegant in its scalability, usefulness, and proven
security. The transformation itself is quite simple: it first adds an additional
round for exchanging nonces among users and then lets all the messages of
the original protocol be signed and verified with the nonces. In this section,
we convert the unauthenticated protocol SKE into the authenticated protocol
SKE+ by using a modified version of the KY compiler.

4.1 Description of SKE+

Let again G be the set of users wishing to establish a common session key.
During the initialization phase of SKE+, each user Ui ∈ G generates its long-
term verification/signing keys (PKi, SKi) by running Kgen(1κ) and makes the
verification key PKi public. Recall that each user Ui receives as input a pair of
session and group IDs (sidi, gidi) to start to run the protocol. Upon receiving
(sidi, gidi), Ui verifies that (1) sidi is currently not in use for some active instance
of it and (2) there is a bijective mapping between users in gidi and nodes of the
tree to be used. By checking the first condition, Ui is ensuring that the session
ID is unique for all its active instances. This means that as far as security is
concerned, reusing a session ID previously assigned to a closed session is legal
and thus session IDs can be erased once their corresponding sessions have ended.
If either of both conditions above is untrue, then Ui declines to participate in
the protocol run associated with (sidi, gidi). Otherwise, Ui performs the protocol
SKE+ as follows:
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Round 1: Each user Ui ∈ G chooses a random nonce φi ∈ {g0, g1, . . . , gq−1}
and sends M̃0

i = Ui‖0‖φi to its parent, sibling, descendants, and sibling’s
descendants. Let ncsi be an ordered sequence defined as follows:

ncsi =

⎧
⎪⎨
⎪⎩

((Ui, φi), (U2i, φ2i), (U2i+1, φ2i+1)) if Ui has two children
((Ui, φi), (U2i, φ2i)) if Ui has only the left child
((Ui, φi)) otherwise.

Let ϕ(i) = 
i/2�. Then, after receiving all nonces (from its children, sibling,
ancestors, and ancestors’ siblings), each Ui computes the ordered sequences
ncsi, ncsϕ(i), ncsϕ(ϕ(i)), . . ., ncs1 as defined above. Notice that the maximum
number of nonces received by any single user is at most 2
logn�.

Round 2: This round proceeds like the first round of protocol SKE, except that
users have to sign their outgoing messages:
– Each user Ui �= U1 computes zi as specified in SKE and generates a

signature σ1
i = SignSKi

(Ui‖1‖ zi‖sidi‖ncsϕ(i)‖ncsϕ(ϕ(i))‖ · · · ‖ncs1). Then
Ui sends M̃1

i = Ui‖1‖zi‖σ1
i to its parent.

– The operation of U1 is exactly the same as in SKE. That is, U1 chooses
two random s1, t1 ∈ Zq and computes k1 = gs1t1 .

Round 3: All users operate as in Round 2 of SKE, but verifying the correctness
of incoming messages and signing outgoing messages. We describe this round
only for users who have both left and right children; users with left child only
behave correspondingly.
– When user Ui receives M̃1

j = Uj‖1‖zj‖σ1
j from Uj for j = 2i and j = 2i+

1, it first checks that VrfyPKj
(Uj‖1‖zj‖sidi‖ncsi‖ncsϕ(i)‖ · · · ‖ncs1, σ1

j ) =
1. If any of the verifications fail, Ui aborts the protocol without ac-
cepting (i.e., without computing a session key). Otherwise, Ui computes
x2i, y2i, x2i+1, y2i+1 and wi as in protocol SKE, generates a signature
σ2

i = SignSKi
(Ui‖2‖wi‖y2i‖y2i+1‖ sidi‖ncsi‖ncsϕ(i)‖ · · · ‖ncs1), and sends

M̃2
i = Ui‖2‖wi‖y2i‖y2i+1‖σ2

i to its descendants.
Key computation: Each user Ui �= U1, for all messages M̃2

j from its ancestors
in the tree, checks that VrfyPKj

(Uj‖2‖wj‖y2j‖y2j+1‖sidi‖ncsj‖ncsϕ(j)‖ · · · ‖
ncs1, σ2

j ) = 1. If any of the verifications fail, Ui terminates without accepting.
Otherwise, Ui derives the root node key k1 as in SKE and sets the session
key K equal to k1.

The above transformation from SKE to SKE+ requires round complexity to
be increased by a constant factor and the other (bit, message, and computation)
complexities by a factor of log n. The latter part of these increases is because
the users at (or close to) leaves additionally have to receive about 2 logn nonces
and to perform about log n signature verifications. Consequently, the asymptotic
bounds for the complexities remain unchanged between SKE and SKE+. This
unchanged scalability well explains why the KY compiler could not be directly
applicable to SKE: as soon as we invoke the KY compiler on an arbitrary GKE
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protocol, the message and bit complexities of the resulting protocol rise at least
up to O(n) because the compiler requires each user to receive nonces from all
other users.

The primary idea behind the KY compiler is to use the set of n nonces shared
by users as a unique session identifier for all time points. Based on this idea, the
KY compiler mandates the users to always include their nonce set in signing and
verifying protocol messages. In this way, not only the freshness of any exchanged
message is guaranteed but also no message can be relayed between user instances
holding different sets of nonces. It is this observation that the KY compiler
exploits to achieve provable security of the compiled protocol.

Our transformation, though similar in spirit as that by the KY compiler,
reduces the number of nonces to be received per user to the order of log n while
achieving provable security of the protocol SKE+. The two main observations
underlying this result are that: (1) at a given point of time, each pre-defined
session ID is unique for all concurrent runs of SKE+ (see Section 2.1 for the
justification of pre-defined session IDs) and (2) even with at most O(log n) nonces
per user, SKE+ is able to guarantee the freshness of the messages exchanged
among users. The first observation is clear from the description of SKE+; no
two active instances of a user possess a same session ID. The second observation
becomes quite obvious once we notice that there is a chain of nonces in SKE+: for
all 2 ≤ i ≤ n, two ordered sequences ncsi and ncsϕ(i) are linked by the common
element φi. This chain of nonces enables each user Ui to verify the freshness of
all messages from its ancestors, even when those messages are not signed with
φi. In other words, the use of the nonce chain ensures that no singed message is
replayed between two sessions even with a same session ID. We call this technique
nonce-chained authentication. These two observations, taken together, suggest
that a pre-defined session ID combined with the nonce-chained authentication
technique serves as a unique session identifier for all time points and thereby
obviates the need for each user to receive n nonces.

4.2 Security Result for Protocol SKE+

Here we claim that the group key exchange protocol SKE+ is secure against
active adversaries under the security of protocol SKE against passive adversaries.
The following theorem makes this claim precise.

Theorem 2. Let Q = (qexec, qsend, qreve, qcorr, qdump, qtest) and Q′ = (qexec +
qsend/2, 0, qreve, qcorr, qdump + qsend/2, qtest). For any adversary with time com-
plexity at most t and query complexity at most Q, its advantage in breaking the
security of protocol SKE+ is upper bounded by:

AdvSKE+(t, Q) ≤ AdvSKE(t′, Q′) + |U| · SuccΣ(t′) +
q2
send + qexecqsend

|G| ,

where t′ = t + O(|U|qexectSKE+ + qsendtSKE+) and tSKE+ is the time required for
execution of SKE+ by any party.
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Proof Idea. We can prove the theorem by finding a reduction from the security
of protocol SKE+ to the security of protocol SKE. Assuming an active adversary
A+ who attacks protocol SKE+, we construct a passive adversary A that uses
A+ in its attack on SKE. As in a typical reductionist approach, the adversary
A simply runs A+ as a subroutine and answers the oracle queries of A+ on
its own. The idea in constructing A is to use the fact that in attacking SKE+,
the adversary A+ is able to relay messages only between user instances with
the same session ID and the matching nonce sequences. Based on this idea,
the adversary A obtains a transcript T of SKE for each unique combination of
session ID and nonce sequences by calling its own Execute oracle, and generates
a transcript T+ of SKE+ by patching T with appropriate signatures. A then use
the messages of T+ in answering A+’s Send queries directed to user instances
which have the same session ID and nonce sequences as used in generating T+.
In this way, A+ is limited to sending messages already contained in T+, unless
signature forgery and nonce repetition occur. In essence, A is ensuring that A+’s
capability of attacking protocol SKE+ is demonstrated only on the session key
associated with the patched transcript T+ and thus is translated directly into
the capability of attacking protocol SKE. Due to space limitations here, we will
provide the proof of the theorem in the full version of this paper.
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Abstract. The one-way function tree (OFT) scheme proposed by Balenson et al.
is widely regarded as an efficient key management solution for multicast commu-
nication in large dynamic groups. Following Horng’s claim that the original OFT
scheme was vulnerable to a collusion attack, Ku et al. studied the collusion attack
on OFT and proposed a solution to prevent the attack. The solution, however, re-
quires to broadcast about h2 + h (h is the height of the key tree) keys for every
eviction operation, whereas the original OFT scheme only requires about h keys.
This modified OFT scheme thus loses a key advantage that the original OFT has
over the logical key hierarchy (LKH) scheme, that is a halving in broadcast size.
In this paper, we revisit collusion attacks on the OFT scheme. We generalize the
examples of attacks given by Horng and Ku et al. to a generic collusion attack on
OFT, and derive necessary and sufficient conditions for such an attack to exist.
We then show a solution for preventing collusion attacks while minimizing the
average broadcast size. Our simulation results show that the proposed solution
allows OFT to outperform LKH in many cases.

1 Introduction

Multicast communications can greatly save bandwidth and sender resources in deliver-
ing data to groups of recipients. However, cryptographic key management schemes are
required to ensure the confidentiality of a multicast communication. More specifically,
backward security requires that a joining member cannot learn previous messages, and
forward security requires that an evicted member cannot learn future messages. The
adjective perfect can be added to the two properties, if they can be satisfied against an
arbitrary number of colluding members [2].

To satisfy perfect forward and backward security, the group key must be changed
whenever a member is added to or evicted from a group. The new key needs to be
conveyed to all members at the minimum communication cost since the group is usually
large and dynamically changing. Among other methods, the OFT (one-way function
tree) scheme, originally proposed by Balenson et al., is one of the most popular schemes
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for this purpose [1,2,3,4,17]. A key advantage of OFT over another popular method, the
Logical Key Hierarchy (LKH) [6], is that OFT halves the number of bits broadcasted
upon adding or evicting a member. Specifically, if a key has k bits and the key tree
used by OFT and LKH has a height h, then the broadcast size of OFT is hk + h bits,
whereas that of LKH is 2hk + h bits. OFT achieves such a halving in broadcast size by
deriving its key tree in a bottom-up manner, in contrast to LKH’s top-down approach.
Consequently, unlike the independently chosen keys in LKH, the keys in an OFT key
tree are functionally dependent, and this functional dependency allows OFT to save half
of the broadcasted bits.

Unfortunately, the same functional dependency among keys that brings OFT the
reduced communication cost also subjects it to collusion attacks. Although OFT was
claimed to achieve perfect forward and backward security [2], only the collusion among
evicted members was considered. A collusion that includes current members was
claimed to be uninteresting, because a (current) member knows the group key. How-
ever, the claim implicitly assumes the colluding members are trying to learn the current
group key, which is not necessarily true. An evicted member may collude with a current
member to learn group keys that were used after the former was evicted but before the
latter joins the group. In this case, OFT will fail on both forward security and backward
security. In 2002, Horng first showed an example of collusion attacks on OFT [16]. In
2003, Ku and Chen provided new attack examples to show that the two assumptions
required by Horng’s attack were actually not necessary conditions [11]. Ku and Chen
also proposed a modified OFT scheme that is immune to the collusion attack. The solu-
tion, however, needs to broadcast (h2 +h)k bits on every member eviction (and hk bits
on each member addition). Ku and Chen’s scheme thus loses a key advantage which
OFT has over LKH, that is a halving in broadcast size. Because their scheme requires a
broadcast of quadratic size on evicting any member, it is only suitable for applications
where member eviction is rare.

In this paper, we revisit collusion attacks on the OFT scheme. To better understand
collusion attacks on OFT, we first generalize the examples of attacks given by Horng
and Ku et al. to a generic attack. Instead of these examples of two or three members, we
study the collusion among arbitrary number of evicted and joining members with arbi-
trary number of other, non-colluding members leaving or joining in between. Based on
this understanding of the general attack, we derive necessary and sufficient conditions
for a collusion attack on OFT to exist. These conditions reveal that the solution by Ku et
al. is unnecessarily conservative. Their solution prevents potential collusion attacks by
invalidating any knowledge that is brought out of the group by evicted members. How-
ever, our results show that such knowledge is not always useful to a joining member in
colluding.

We study a different approach where such leaked knowledge is not immediately in-
validated but is recorded by a key manager who is responsible for managing the group.
When a member joins the group, the key manager then checks whether it is possible for
this new member to collude with previously evicted members. If a potential collusion
exists, the key manager will update keys as part of the joining operation such that the
collusion becomes impossible. Because additional re-keying is performed only when
a collusion is possible, this solution has the advantage of minimizing broadcast size.
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Following the discussion of a straightforward stateful method that has an unacceptable
storage requirement, we present a modified version of the method whose storage re-
quirement is proportional to the size of the key tree. These methods pose no additional
communication cost on evicting a member but may require more broadcasted bits when
a member joins. We study the average performance of the scheme using experiments,
and the result show that our scheme is more efficient than LKH in many cases.

The contribution of this paper is two fold. First, our study provides a better under-
standing of the collusion attack on the OFT scheme. The previous work by Horng and
Ku et al. have only described specific examples of collusion attacks involving two or
three colluding nodes but left the general case open [16]. Our results show exactly what
can be computed by an arbitrary collection of joining and evicted nodes. Second, the
solution we shall propose makes the OFT scheme secure against general collusion at-
tacks while minimizing the communication overhead. Ku and Chen’s solution renders
OFT strictly less efficient than LKH, whereas our experimental results show that the
solution in this paper enables OFT to outperform LKH in small to medium groups. The
results also reveal that OFT’s approach of using functionally dependent keys actually
renders the scheme less efficient in large groups, if collusion attacks are to be prevented.
The rest of the paper is organized as follows. Section 2 reviews the OFT scheme and
examples of collusion attacks given by Horng and Ku et al. Section 3 generalizes these
examples to a generic attack and derives the necessary and sufficient conditions for
the collusion attack. Section 4 studies a solution that minimizes broadcast size while
preventing collusion attack. Section 5 studies the performance of our solution through
experiments. Section 6 concludes the paper and gives future directions.

2 Related Work

Various aspects of multicast security, including group key management, have been ex-
tensively studied, as surveyed in [5,7,8,12,13]. In [9], an architecture is provided for
the management of cryptographic keys for multicast communications. Various security
aspects, including ephemeral secrecy, long-term secrecy, and perfect forward secrecy,
are outlined in [14]. Popular tree-based group key management schemes include the
Logical Key Hierarchy (LKH) scheme [6,15,22], the One-way Function Tree (OFT)
scheme [1,2,3,4,17], and the One-way Function Chain (OFC) scheme [8]. Unlike many
solutions that depend on a trusted group controller, the authors in [10] propose a group
key management scheme based on El Gamal, which only requires a partially trusted
controller who does not need accesses to the communication keys. The solution in [19]
integrates the one-way key derivation with key trees to reduce the communication
overhead of rekeying operations. In the solution, the total number of encrypted keys
transmitted during a rekeying operation is reduced by not sending new keys to those
members who can derive the keys by themselves. The solution proposed in [20] inher-
its the architecture of the logical key tree algorithm but rekeys the group using a new
algorithm. The batch rekeying scheme in [21] is based on one-way function tree and
minimum exact covering.

The LKH scheme is shown to be immune to collusion attacks in [18]. On the other
hand, Horng first showed that the OFT scheme is vulnerable to a collusion attack in [16].
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This result was later revisited by Ku et al. in [11]. We first review the original OFT
scheme in Section 2.1 and then review the examples of collusion attack on OFT given
by Horng and Ku et al. in Section 2.2. In this paper, we do not address collusion attacks
on the OFC scheme [8], which comprises an interesting future work.

2.1 The OFT Scheme

The original OFT scheme is an efficient key management scheme for large, dynam-
ically changing groups [1,2,3,4,17]. A key manager maintains a balanced binary key
tree for each group. The key trees are computed bottom up using a one-way func-
tion g() and a concatenation function f() as follows. First, each leaf node v is as-
signed a randomly chosen node key xv , and a blinded node key is computed from the
node key as g(xv). The node key of each interior node v is then computed by con-
catenating the blinded node keys of its left child left(v) and right child right(v) as:
xv = f(g(xleft(v)), g(xright(v))). For example, the key tree in the left hand side of
Figure 1 can be constructed as x4 = f(g(x8), g(x9)), x2 = f(g(x4), g(x5)),x7 =
f(g(x14), g(x15)), x3 = f(g(x6), g(x7)), and x1 = f(g(x2), g(x3)).

Each group member is associated with a leaf node in the key tree, and is given its
node key. For each node v on the path from that leaf node to the root, the group member
is also given the blinded node key of v’s sibling. The group member can thus compute
the group key, that is the node key of the root1. For example, in the left hand side of
Figure 1, a member Alice who is associated with the node 8 will be given the blinded
keys g(x9), g(x5), and g(x3). Alice can then compute the group key as: x4 =
f(g(x8), y9), x2 = f(g(x4), y5), and x1 = f(g(x2), y3).

A new member always joins at a leaf node closest to maintain the balance of the key
tree. After the joining, the existing leaf node becomes the left child of a new interior
node and is assigned a new node key. The right child is a new node associated with the
joining member. The whole path from the interior node to the root will be updated due
to the two new keys, and the updated blinded keys must be conveyed to those members
who need them. For example, in Figure 1, the joining member Bob causes the existing
node 5 to be split into two nodes, with each assigned a new node key. The node keys
of node 5, node 2, and node 1 then need to be updated, and their blinded version will
be broadcasted to the members who need them (for example node 8 and 9 will need the
updated g(x5)). A similar process applies to the other joining member Candy.

The eviction of a member is similar to the addition with following differences. The
sibling of the node associated with the leaving member replaces its parent, and is as-
signed a new node key. Keys on the path leading that node to the root are then updated
and their blinded versions are broadcasted, as in the case of addition. However, if the
sibling of the leaving member is an interior node, then we cannot directly change its
node key due to the functional dependency among keys. Instead, we need to change the
node key of a leaf node in the subtree whose root is that interior node. For example, in
Figure 1, the evicted member Alice causes the node 9 to replace the node 4. The node
keys of nodes 4, node 2, and node 1 will then be updated, and their blinded version will
be broadcasted to those who need them.

1 In a later version of the scheme, the key used for communication is not the node key itself but
is derived from the node key using another one-way function [2].



Preventing Collusion Attacks on the One-Way Function Tree (OFT) Scheme 181

 
 

1 

2 

9 

5 

Alice 

4 

8 

3 

15 

6 7 

14 Bob Candy 

1 

2 

5 4 

3 

15 

6 7 

14 13 12 11 10 

Bob Candy 

Before After 

Fig. 1. OFT Key Tree and Collusion Attacks

Let the height of a balanced key tree be h. Then approximately h new blinded keys
must be broadcasted on each member addition or eviction (on the other hand, a unicast
is used to send the joining member its blinded keys). In addition, h bits are broadcasted
to notify members about the position of the joining or eviction. In contrast, the broadcast
size of Logical Key Hierarchy (LKH) is 2h multiplied by the key size (plus the same
h bits for the position of the addition or eviction). The reason that OFT can achieve a
halving in broadcast size is that keys in an OFT key tree are functionally dependent, but
keys in a LKH key tree are all independent. In OFT, an updated node key is propagated
through the sibling of the node, whereas in LKH the key is propagated through the
children of the node. The fact that a node has two children but only one sibling explains
the difference in the broadcast size of LKH and OFT.

2.2 Examples of Collusion Attack on OFT

Horng observed that the functional dependency among keys in an OFT key tree subjects
the OFT scheme to a special collusion attack [16]. Horng gave two conditions for such
an attack to exist. Referring to Figure 1, the attack example given by Horng can be
described as follows. Suppose Alice, associated with the node 8, is evicted at time t1,
and later Candy joins the group at time t2 (ignore Bob’s joining for the time being).
By the OFT scheme, the node key of node 3 is not affected by the eviction of Alice, so
Alice knows the blinded version of this key between t1 and t2. Moreover, the node key
of node 2 is updated when Alice is evicted, and then remains the same even after Candy
joins. Candy can thus see the blinded version of this key between t1 and t2. Knowing
the blinded node key of both node 3 and node 2 between t1 and t2, Alice and Candy
can collude to compute the group key during that time interval. The OFT scheme thus
fails to provide forward security (Alice knows future group key) and backward security
(Candy knows previous group key).

Intuitively, the above example is a result of the unchanging keys of the root’s chil-
dren. Horng thus stated two necessary conditions for such an attack to exist, that is the
two colluding nodes evicted and joining at different side of the root and no key update
happening between time t1 and t3 [16]. Later, Ku and Chen showed through two more
attack examples that Horng’s conditions are actually not necessary [11]. First, referring
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to Figure 1, if Alice is evicted at time t1 and Bob joins later at time t2, then they can
collude to compute the node key of node 2 between t1 and t2 due to a similar reason.
In addition, both Alice and Bob know the blinded node key of node 3 between t1 and
t2, so they can compute the group key between the same time interval. Second, assume
Alice is evicted at time t1, and Bob and Candy join at time t2 and t3, respectively, with
t1 < t2 < t3. By similar arguments, Alice knows the blinded node key of node 3 be-
tween t1 and t3, and Candy knows the blinded node key of node 2 between t2 and t3.
They can thus collude to compute the group key between t2 and t3. The two examples
show that Horng’s two conditions are actually not necessary.

Ku and Chen also provided a solution to prevent the collusion attack on OFT [11].
Intuitively, an evicted member brings out knowledge about some keys that will remain
the same for a certain time interval after the eviction. Ku and Chen modify the OFT
scheme to change all the keys known by an evicted member upon the eviction. For
example, when Alice is evicted in Figure 1, the node key of node 5 and node 3 will be
updated (in addition to that of node 4, node 2, and node 1, as required by the original
OFT scheme). With this solution, no evicted member can bring out any knowledge
about future keys, so a collusion with future joining members is prevented. However,
the solution updates the node key of all the h siblings on the path of an evicted node
(node 5 and node 3 in above example). Each such update requires the broadcast of h
keys (for example, to update the node key of node 3, we must update one of the leaf
nodes in the subtree rooted as node 3). The broadcast size is thus h2 multiplied by
the key size plus h bits. Because such a broadcast is required for every eviction, the
modified OFT is less efficient than LKH (which broadcast 2h keys on an eviction) in
most cases, unless member eviction is rare.

3 Generic Collusion Attack on OFT

Section 3.1 first studies a special case, that is an evicted node colludes with another node
who joins later. This turns out to be the only interesting case. Section 3.2 then discusses
the general case where multiple evicted nodes and joining nodes may collude.

3.1 Collusion Between an Evicted Node and a Joining Node

We first consider the collusion attack between a node A evicted at time tA and a node
C joining the group at time tC (tA < tC ). Without loss of generality, we assume A is
the leftmost node in the key tree, as shown in Figure 2 (notice that this figure actually
combines two different key trees at tA and tC , which will be justified later in this sec-
tion). We also need following notations. For any node v, we use xv[t1,t2] and yv[t1,t2]
for its node key and blinded node key between time t1 and t2, respectively. We shall
also interchangeably refer to a node and the member who is associated with that node.
I is the node where the path of A to the root and that of C merges. Let L, R, I ′, I ′′ be
the left child, right child, parent of I , and parent of I ′, and let R′ and R′′ be the right
child of I ′ and I ′′, respectively. Let B, D, E, and F denote the subtree with the root L,
R, right(I ′), and right(I ′′), respectively. Let tDMIN , tEMIN , and tFMIN be the time
of the first key update after tA that happens in D, E, and F , respectively. Let tBMAX ,
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tEMAX , tFMAX be the time of the last key update before tC that happens in B, E, and
F , respectively. We then have the following result.

Proposition 1. Referring to Figure 2, the only node keys that can be computed by A
and C when colluding are:

– xI in the time interval [tBMAX , tDMIN ],
– xI′ in [tBMAX , tDMIN ] ∩ ([tA, tEMIN ] ∪ [tEMAX , tC ]),
– xI′′ in [tBMAX , tDMIN ] ∩ ([tA, tEMIN ] ∪ [tEMAX , tC ]) ∩ ([tA, tFMIN ] ∪

[tFMAX , tC ]),

and so on, up to the root. Notice that these intervals may be empty.

Proof: When the node A is evicted, it knows the blinded node key of each sibling
on its path to the root before the time tA. This includes yR[−,tA] and yR′[−,tA] (recall
that the dash means the time when each key is last updated before tA). By the OFT
scheme, the node key of R will not change until a new node joins a node in D (that
is, the subtree with the root R) or a node in D leaves, and similarly the node key of
R′ will not change until a key is updated in E. That is, yR[−,tA] = yR[−,tDMIN ] and
yR′[−,tA] = yR′[−,tEMIN ]. The node A thus knows these values even after it is evicted.
On the other hand, when node C joins, it is given the blinded node key of the siblings
on its path to the root. The node C then knows the values yL[tC ,−] and yR′[tC ,−] (recall
that the dash here means the time of the next update of these keys after tC ). By the
OFT scheme, the node key of L and R′ will not be updated when C joins so they have
remained the same since the last key update in B and E, respectively. Then we have
yL[tC,−] = yL[tBMAX,−] and yR′[tC ,−] = yR′[tEMAX ,−], which are both known by C.

When A and C colludes, what can be computed depends on the relationship
between the timestamps. As shown in Figure 3, A and C can first compute the
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subgroup key xI[tBMAX ,tDMIN ] = f(yR[−,tDMIN ], yL[tBMAX,−]). We notice that this
statement assumes tBMAX < tDMIN . Under this assumption, nodes A and C
can compute yI[tBMAX ,tDMIN ] = g(xI[tBMAX ,tDMIN ]). This will enable them
to further compute another subgroup key I ′ in two different time intervals. Let
tDEMIN = MIN(tDMIN , tEMIN ) and tBEMAX = MAX(tBMAX , tEMAX). Then
xI′[tBMAX ,tDEMIN )] can be computed by A and C as f(yI[tBMAX ,tDMIN ], yR′[−,tEMIN ])
and xI′[tBEMAX ,tDMIN ] can be computed as f(yI[tBMAX ,tDMIN ], yR′[tEMAX ,−]). In an-
other word, they can compute the node key of I ′ in [tBMAX , tDMIN ]∩ ([tA, tEMIN ]∪
[tEMAX , tC ]). Clearly, this result can be easily extended to the parent of I ′ and so on,
up to the root.

 

tA tC 

tBMAX 

tEMIN tEMAX

tDMIN

yR’ yR’ 

yR 
yL 

Fig. 3. The Timeline of Collusion Attacks

On the other hand, the above result also depicts all that A and C can compute by
colluding. By the OFT scheme, when A is evicted all the node keys along its path to the
root are updated, so A no longer knows them. Similarly, C cannot learn any node key on
its path to the root prior to its joining. Besides the blinded keys of nodes R, R′, and R′′

(and all the sibling nodes on the path from I to the root), A may also know the blinded
node key of sibling nodes in the subtree B for a time interval after tA, and similarly C
may know about nodes in the subtree D for a time interval before tC . However, such
knowledge does not help them in computing any keys. By the OFT scheme, a node key
can only be computed from the blinded key of its two children, but we can never pick a
node from the set B − {L} and another from D − {R} such that they are the children
of the same node. �

One subtlety lies in the dynamics of the key tree. The key tree from which A is evicted
is different from the one that C joins. Although we show A and C in the same key tree
in Figure 2 for simplicity purpose, the tree structure may have been changed after A
leaves and before C joins. However, the key facts that our results depend on will not be
affected by such changes. First, A knows yR[−,tDMIN ] and yR′[−,tEMIN ] regardless of
any changes that may happen to the subtree with root L, and the definition of tDMIN

and tEMIN excludes any change in the subtree with root R and R′ to happen before
tDMIN and tEMIN , respectively. It is worth noting that the whole subtree with root
L may disappear due to evictions, and consequently the node R will replace its parent
I (and the node R will be replaced by right(R)) by the OFT scheme. In this case, it
seems that A will no longer know yR even when no key update happens in the set D,
invalidating the result that A knows yR[−,tDMIN ]. However, this is not true. When the
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node R replaces I , the OFT scheme also requires it to be assigned a new node key,
which means at least one of the leaf nodes in the set D must change its node key. That
is, a key update does happen in D in this operation, and our result still holds. Similarly,
C knows the value yL[tBMAX ,−] regardless of any change in the key tree after the last
key update in the set B.

3.2 The General Case

We first consider other cases of collusion between pairs of evicted and joining nodes
and show that the above eviction-joining scenario turns out to be the only interesting
case, as explained by Proposition 2. We then discuss the collusion among more than
two nodes, and we show that it is sufficient to only consider collusion between pairs of
nodes, which is stated in Proposition 3.

Proposition 2. A pair of colluding nodes A and C cannot compute any node key which
they are not supposed to know by the OFT scheme, if

– A is evicted after C joins.
– A and C both join.
– A and C are both evicted.

Proof: First, we consider the joining-eviction case. In Figure 2, suppose C first joins
the group and later A is evicted. If A and C collude, then they trivially know all node
keys in the intersection of their paths to the root (for example, node I and I ′) and the
siblings (for example, node R′) before C joins and after A is evicted, because A is
in the group before C joins and C stays in the group after A is evicted. In addition,
although A knows the blinded node key of some siblings in the subtree B and C knows
the blinded node key of some siblings in the subtree D, these keys cannot be combined
to compute any node key since no two nodes share a parent. In summary, two nodes
colluding in the joining-eviction case cannot compute any node key besides what they
already know.

Next consider the eviction-eviction case. Suppose in Figure 2 A is first evicted at time
tA and later C is evicted at time tC . Because C stays in the group longer than A does,
their knowledge about the shared keys in the intersection of their paths (such as I and
I ′) and the siblings (such as R′) is the same as C’s knowledge. That is, colluding with
A does not help C with respect to these keys. Similar to the above cases, A’s knowledge
about nodes in the subtree B cannot be combined with C’s knowledge about nodes in D
to compute any node key. The only exception is their knowledge about L and R, which
can potentially be combined to compute I (and consequently I ′ and so on). However,
the OFT scheme updates the node key of R when C is evicted, so A can at best know
yR[−,tA] = yR[tA,tC ] (if no other key update happens between tA and tC ), which is
useless to C. In summary, two evicted nodes colluding cannot compute any node key in
addition to what is already known by the later-evicted node. The joining-joining case is
similar to the eviction-eviction case and is omitted. �

Proposition 3. An arbitrary collection of evicted nodes and joining nodes can collude
to compute some node key not already known, if and only if the same node key can be
computed by a pair of nodes in the collection.
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Proof: The if part is trivial, and the only if part can be justified as follows. To com-
pute xv[t1,t2], the colluding nodes must know both yleft(v) and yright(v) for some
time intervals that are supersets of [t1, t2]. Suppose yleft(v) is known by m nodes in
time period [tai, tbi](1 ≤ i ≤ m), and yright(v) is known in [tcj , tdj](1 ≤ j ≤ n).
Because (

⋃m
i=1[tai, tbi]) ∩ (

⋃n
j=1[tcj , tdj]) is a superset of the non-empty time inter-

val [t1, t2], it cannot be empty, either. Consequently, there must exist a pair of i and
j such that [tai, tbi] ∩ [tcj , tdj] �= φ. The pair of nodes that has such knowledge (no
single node can possess this knowledge because we assume xv[t1,t2] is not already
known by the colluding nodes) can thus collude to compute xv during the time interval
[tai, tbi] ∩ [tcj, tdj ]. �

We now show that the attack examples given by Ku et al., as described in Section 2.2,
are special cases of our generic attack. Referring to Figure 1, the first example says that
Alice evicted at t1 colludes with Bob joining at t2, and Candy joins at t3 (t1 < t2 < t3).
This corresponds to the case where A = 8, C = 5, I = 2, I ′ = 1 (referring to Figure 2),
and Candy joins at t3 in the set E. We thus have tBMAX = t1, tDMIN = t2, and
tEMIN = tEMAX = t3. It then follows that Alice and Bob can collude to compute
x2[t1,t2] and x1[t1,t2] (notice that [t1, t2] ∩ ([t1, t3] ∪ [t3, t2]) = [t1, t2]). The second
example says that Alice evicted at t1 colludes with Candy joining at t3, with Bob joining
in between at t2. This corresponds to the case where A = 8, C = 6, I = 1 (I ′ does not
exist), and Bob joins in the set B. We thus have tBMAX = t2 and tDMIN = t3, and
consequently Alice colluding with Candy can learn x1[t2,t3].

4 A Solution for Preventing Collusion Attacks

The previous section shows that a joining node may collude with previous evicted nodes
to compute node keys in certain time intervals, which none of them is supposed to
know. However, these results also show that such a collusion is not always possible, and
whether it is possible depends on the temporal relationship among joining and evicted
nodes. As discussed in Section 2.2, Ku and Chen’s solution prevents any evicted node
from bringing out knowledge about future node keys. Although it suffices to prevent
any collusion attack, this conservative approach has a quadratic broadcast size (in the
height of the key tree) on every member eviction and thus is less efficient than the LKH
scheme in most cases.

One apparent way to reduce the broadcast size is to update additional keys only when
a collusion attack is indeed possible. Unfortunately, this cannot be achieved with Ku and
Chen’s approach of updating the siblings along the path of an evicted node, because at
the time a node is evicted, we do not yet know with whom it may collude in the future.
On the other hand, our results in Section 3 make it possible to check whether a joining
node can collude with any previously evicted node. If a collusion is possible, we can
update a minimum number of additional keys to prevent the joining node from com-
bining its knowledge with the evicted node for that specific collusion. This approach
minimizes the communication cost for each joining operation (the eviction operation
has no additional communication cost) because a key is updated only when necessary.

We first describe a stateful method that explicitly records all the knowledge of evicted
nodes. This straightforward method simply applies the results in the previous section to
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check for possible collusions. However, because the method needs to keep information
about all evicted nodes, the storage requirement is proportional to the number of all
evicted nodes, which is not acceptable in most applications. Later in this section, we
modify this method such that its storage requirement becomes proportional to the size
of the key tree. Both methods will eliminate collusion attacks while minimizing the
broadcast size.

A Stateful Method. For the stateful method, the key manager tracks all evicted nodes
and checks whether a joining node can collude with any previously evicted node. If a
collusion is possible, additional key updates are performed to remove the joining node’s
knowledge about past node keys such that the collusion becomes impossible. The key
manager needs to record two kinds of knowledge. First, the knowledge about future
node keys that each evicted node brings out of the group. Second, the knowledge about
past node keys that a joining member is given when it joins. For this purpose, the key
manager stores a modified key tree as follows. Each node in the OFT key tree is now
associated with a pair < tu, L >, where tu is a timestamp and L is a collection of
timestamp pairs < tx1, ty1 >, < tx2, ty2 >, . . ., < txn, tyn >.

The OFT scheme will be modified such that the timestamp tu records the time that
the current node was last updated, and each pair < txi, tyi > records the time interval in
which some evicted node knows the blinded node key of the current node. For example,
Figure 4 shows such a modified OFT tree. Due to space limitation, only the three nodes
I , L, and R have part of their timestamps shown in the figure. In the example, nodes
A, B, and D were evicted at time tA, tB , and tD, respectively. Another node C joined
at time tC . The node R was only updated once between tA and tB , and the update
happened at time t2. The node I was last updated at time t1, which is before tD (t1 is
equal to either t2 or t3). In the table attached to R, the timestamp t2 records the time of
its last update. The first pair < tA, t2 > records the fact that node A knows the value
yR[tA,t2]. The second pair < tB, − > records that B knows the value yR[tB ,−] (that is,
the value of yR from tB until now). In the table attached to I , t1 is the last update time
of I , and < tD, − > records that node D knows the value yI[tD,−]. In the table of L,
the timestamp t3 records the time of its last update.

The OFT scheme is modified as follows to update the timestamps and to stop collu-
sions when they become possible. When a node v is evicted at time t, the key manager
will also insert a pair < t, − > into each sibling node along the path of v to the root.
For example, in Figure 4 the pair < tB, − > is inserted to the table attached to node R
when node B is evicted at time tB because R is a sibling of L and L is on the path of B
to the root. After a node v joins the group, the key manager will check if v can collude
with any previously evicted node to compute any node key along the path of v to the
root. In Figure 4, after the node C joins the group, for each node on the path of C to the
root (excluding C), the key manager needs to do the following. Taken R as an exam-
ple, the key manager will check whether the intersection [t3, −] ∩ ([tA, t2] ∪ [tB, −])
is empty. If the intersection is not empty, then the node key xL will be updated, such
that C can no longer collude with A and B to compute the node key xI (in applications
where only the root’s key needs to be secure, the key manager can ignore the collusion
of a subgroup key here).
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Fig. 4. A Stateful Method for Preventing Collusion Attack

Whenever the key manager updates the node key of a node v, regardless of the reason
of this update, it will take following two additional actions. First, it will change the
corresponding timestamp tu associated with v to be the time of the current update.
Second, it will scan all pairs of timestamps associated with v and change every dash in
these pairs to the current time. The second action records the fact that the key update has
invalidated the evicted node’s knowledge about this node key. For example, in Figure 4
when the node A leaves, a pair < tA, − > is inserted into the table attached to R. Later
at time t2 the node key R is updated for some reason, and the dash in < tA, − > is
replaced by the current time t2, leading to the pair < tA, t2 > shown in the figure. This
reflects the fact that A no longer knows the new node key of R after time t2.

An Improved Method With Linear Storage Requirement. The stateful method keeps all
necessary information for checking possible collusions. This requires the key manager
to build up an infinitely increasing list of evicted nodes, which is not acceptable in most
applications. A closer look at the method reveals that it is not necessary to keep the
whole list, if no collusion is to be tolerated. Actually for each node, it suffices to only
keep at most one pair of timestamps (plus the timestamp for its last update). The storage
requirement is thus linear in the size of the key tree, because for each node at most three
timestamps need to be stored. Following two observations jointly lead to this result.

First, in Figure 4, if tA < tB < t2, then after B is evicted the list of timestamps
associated with R will be < tA, − >, < tB, − >. However, the pair < tB, − > is re-
dundant and can be removed because [tB, −] is a subset of [tA, −]. In another word,
after the first pair of timestamps with a dash appears in the list, no other pair of times-
tamps needs to be stored until the next key update happens to the current node. Second,
suppose in Figure 4 tA < t2 < tB is true, so none of < tA, − > and < tB, − > is
redundant. We then have that t2 < tB ≤ t3 (tB ≤ t3 holds, because t3 is the time when
xL is last updated and the eviction of B will update xL). Now that we know t2 < t3,
the pair < tA, t2 > can be safely removed, because the interval [tA, t2] will never have
a non-empty intersection with [t3, −].
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Based on these two observations, we modify the eviction operation and key update
operation of the stateful method as follows. First, when a node v is evicted at time t and
a pair of timestamps < t, − > is to be inserted into each sibling node along the path
of v to the root, the key manager inserts this pair only if the pair of timestamps already
associated with v does not contain a dash. Second, whenever the node key of a node v
is updated, the key manager deletes any pair of timestamps associated with the sibling
of v that does not contain a dash. For example, in Figure 4 if another node in the subtree
with root R′ is evicted after tD but before I is updated, then nothing will be inserted
into the table shown in the figure. If I is updated and the dash in < tD, − > is replaced,
then this new pair will stay until the next key update in the subtree with root R′.

5 Empirical Results

This section compares the average communication overhead of our solution, the LKH
scheme, the original OFT scheme, and Ku and Chen’s modified OFT scheme. Among
the four schemes, the original OFT scheme is vulnerable to collusion attacks, and it is
included as a baseline to show the additional overhead for preventing collusion attacks.
Both our scheme and the modified OFT scheme by Ku and Chen can prevent collusion
attacks. The keys in an LKH key tree are independently chosen, so LKH is not vul-
nerable to the collusion attack discussed in previous sections. We expect our scheme
to outperform Ku and Chen’s scheme in most cases, because the latter has a quadratic
broadcast size for every eviction operation. We also expect our scheme to have a smaller
average-case broadcast size than the LKH scheme in some cases.

The communication overhead is measured as the total number of keys broadcasted
during a random sequence of joining and eviction operations. We do not consider the
unicast of keys to a new member. As discussed in previous sections, collusions depend
critically on the order of joining and eviction operations (on the other hand, the specific
time duration between these operations is not significant). Starting from an initial key
tree of G nodes, a sequence of totally N operations are performed using each of the
four schemes. The probability that each operation is the eviction of a member is P (and
that of a joining operation 1 − P ). As required by the OFT scheme, the position for
each joining operation is chosen to be a leaf node closest to the root. For each eviction
operation, the node to be evicted is randomly chosen among all existing leaf nodes.

The left hand side of Figure 5 shows the total broadcast size (the number of keys
to be broadcasted) versus the size of the key tree. Totally 20000 operations are per-
formed (about half of them are evictions). As expected, the communication overhead of
our solution is much less than that of Ku and Chen’s scheme (their scheme broadcasts
about five times more keys). Compared to the original OFT scheme, our scheme only
has small additional overhead until the key tree size increases over 20000 nodes. The
broadcast size of our scheme is also smaller than LKH when the key tree size is smaller
than 40000. Table 1 shows a more detailed comparison between the two schemes.

For larger key trees, our scheme is less efficient than LKH. As shown in the second
row of Table 1, the broadcast size of our scheme is about double the size of LKH when the
key tree has 80000 or more nodes. This can be explained by the fact that more collusions
are possible in a larger tree, as shown in Table 1, and the larger height of the tree also
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increases the number of keys to be broadcasted upon each key update. Ku and Chen’s
scheme also has a similar trend as ours, which confirms that to prevent collusion attacks,
both modified OFT schemes are less scalable than LKH. However, because our scheme
only perform additional key updates when necessary, the broadcast size for each oper-
ation is already minimal. This indicates an inherent disadvantage of using functionally
dependent keys in the face of collusion attacks. For large groups where perfect forward
and backward security is important, the LKH scheme will be a better choice.

Table 1. Comparing Our solution to LKH

Key Tree Size 2000 5000 8000 10000 20000 40000 60000 80000 100000
Our Solution/LKH 0.59 0.60 0.62 0.70 0.84 1.08 1.61 2.19 2.24
No. of Collusions 242 1063 2113 5154 10385 18991 38417 54720 61799
Height of The Tree 10 12 12 13 14 15 15 16 16

The right hand side of Figure 5 shows the total broadcast size versus the number of
operations, with about half of the operations being evictions, on a key tree with 10000
keys. Because collusion attacks depend on the order of operations but not on the spe-
cific time durations, we can also regard the number of operations as the intensity of
operations, and Figure 5 thus also shows the broadcast size versus the degree of group
dynamics. The broadcast size of all four schemes increases with the number (inten-
sity) of operations. The original OFT scheme, the LKH scheme, and our modified OFT
scheme all scale in roughly the same manner, whereas Ku and Chen’s scheme is less
scalable. The column chart inside Figure 5 shows the total number of collusions. Inter-
estingly, while the number of collusions remains roughly the same when the number
of operations goes over 6000, Ku and Chen’s scheme still shows a significant increase
in the broadcast size, because their scheme requires additional key updates for every
eviction operation even when such operation do not cause collusion (in contrast, our
scheme scales in the same way as the original OFT).
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Fig. 6. The Broadcast Size Versus the Ratio of Eviction

Figure 6 shows the total broadcast size versus the ratio of evictions among all oper-
ations. The two experiments differ in the key tree size and in the total number of per-
formed operations. In both experiments, the original OFT scheme and the LKH scheme
have a constant broadcast size because in both schemes the joining and eviction re-
quire the same amount of keys to be broadcasted. The broadcast size of Ku and Chen’s
scheme increases linearly in the ratio of eviction, because their scheme requires addi-
tional key updates and hence additional broadcasted bits on every eviction operation
but not on the joining operation. Our scheme shows an interesting pattern. The broad-
cast size first increases with the eviction ratio and then decreases after the ratio reaches
about 40%. This is explained by the column chart inside the figure, which shows the
total number of collusions. Because a collusion requires both joining nodes and evicted
nodes, the total number of collusions reaches a maximal value when about half of the
operations are evictions. The maximal broadcast size shifts a little to the left (40% in-
stead of 50%) because our scheme requires additional key updates for joining nodes,
but not for evicted nodes. Each joining node thus contributes to the overall broadcast
size slightly more than an evicted node does.

6 Conclusion

We studied collusion attacks on the one-way function tree (OFT) scheme. The OFT
scheme achieves a halving in broadcast size in comparison to the LKH scheme. How-
ever, OFT’s approach of using functionally dependent keys in the key tree also renders
the scheme vulnerable to collusion attacks between evicted members and joining mem-
bers. We have generalized previous observations made by Horng and Ku et al. [16]
into a generic collusion attack on OFT. This generalization also gave a necessary and
sufficient condition for the collusion attack on OFT. Based on this condition, we have
proposed a modified OFT scheme. The scheme is immune to the collusion among an
arbitrary number of joining and evicted members, and it minimizes the broadcast size
for each operation. The scheme has a storage requirement proportional to the size of
the key tree. Experiments show that our scheme has smaller communication overhead
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than the LKH scheme for small to medium groups. For large groups, the increasing
number of collusions renders the OFT scheme a less efficient choice than LKH. As
future work, we will investigate cases where the compromise of some sub-group keys
is an acceptable risk. Such a relaxed security requirement will likely lead to reduced
communication overhead.
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Abstract. The practical success of broadcast encryption hinges on the
ability to (1) revoke the access of compromised keys and (2) determine
which keys have been compromised. In this work we focus on the latter,
the so-called traitor tracing problem. The first method utilizes a Bayesian
hierarchical model to replace a crucial step in a well known tracing al-
gorithm. Previously, this step relied on worst case bounds, which often
overestimate the number of tests needed to diagnose compromised keys.
The second is an adaptive tracing algorithm that selects forensic tests
according to the information gain criteria. The results of the tests refine
an explicit model of our beliefs that certain keys are compromised. In
choosing tests based on this criteria, we significantly reduce the num-
ber of tests, as compared to the state-of-the-art techniques, required to
identify compromised keys.

1 Introduction

Digital piracy is a burning problem for the entertainment industry. After all,
digital data can be perfectly and quickly copied. If consumers may freely copy
entertainment content and offer that content on the Internet, the market for en-
tertainment content would evaporate. To solve this problem, several frameworks
for broadcast encryption [3] have been devised and are in wide use in the market,
like CPRM, CPPM, DTCP and AACS [1] [2]. All of these methods are based
on encryption of the content: the device manufacturer is given cryptographic
keys to decrypt the content, and in return is obligated by the license to follow
a set of rules limiting the physical copies that can be made from a single piece
of content. Maintaining the secrecy of the cryptographic keys is essential for
maintaining the integrity of distribution. scheme. In the event that some keys
are compromised and made public, a content protection scheme should be able
to revoke their ability to access future content. To combat this eventuality, each
device is assigned a set of device keys that can be indirectly used to decrypt the
content. The device keys, owned by compliant devices, repeatedly encrypt the
content encrypting key (called the media key) in a structure called a media key
block (MKB). Each device uses a device key to decrypt the media key block to
obtain a valid media key to decrypt the content. The revoked devices, on the
other hand, cannot decrypt the MKB and obtain a valid media key to decrypt
the content.

J. Katz and M. Yung (Eds.): ACNS 2007, LNCS 4521, pp. 194–206, 2007.
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To circumvent the content protection scheme, an adversary may break a de-
vice, extract the device keys, and build a circumvention device (also known as
a clone device or a clone box) comprising the extracted device keys. To identify
which original devices (called traitors) have donated their keys to the circumven-
tion device, traitor-tracing technologies [4] are used. Traitor-tracing technology
uses carefully crafted media key blocks called forensic media key blocks. When a
circumvention device is found, the license agency feeds a series of forensic media
key blocks to the device. By observing the clone’s responses the licensing agency
can determine precisely which device keys the circumvention device comprises.
The licensing agency can then produce new media key blocks that revoke those
compromised device keys such that newly released content cannot be played by
the circumvention device.

Since many devices can donate their keys the clone box, it is important that a
traitor tracing method is resistant to collusion; this represents the real challenge
in traitor tracing. The state-of-art and practice broadcast encryption and traitor-
tracing technology comprises a subset-difference scheme, described in [11]. Trac-
ing under this scheme has proven to be theoretically efficient: To determine the
compromised keys, the traitor tracing method requires on the order of T 3 log(T )
forensic media key blocks to defeat a circumvention device comprising T sets of
compromised device keys. However, this method has not proven to be a com-
pletely practical solution. Measures can be taken by the circumvention device to
slow down the testing process. For example, each testing iteration may take a
minute or more. A circumvention device comprising 100 compromised keys (i.e.,
T = 100) may require over 15 years to determine the device keys the circumven-
tion device has compromised. In effect, such a circumvention device had defeated
the content protection system.

The main contribution of this paper is to present two much more efficient,
thus, practical traitor tracing schemes. Efficiency is measured by the number
of forensic media key blocks required to detect traitors from the circumven-
tion device. The first method, BayesNNLTrace, maintains the strict black-box
assumptions of previous methods, but uses a Bayesian hierarchical model for
diagnosis instead of relying on worst case bounds. The second method, IGTrace,
assumes the tracing algorithm has some prior knowledge about the behavior of
the clone box. It leverages this knowledge as well as the clone box’s response to
forensic MKBs to infer an explicit model of which keys have been compromised.
Not only does this allow for accurate diagnosis, we can also quantify how in-
formative a potential forensic MKB is, which we then use to guide the tracing
process. Overall, adaptively choosing the best forensic MKB at each step and
continuously updating our beliefs about which keys are compromised allow us to
substantially reduce the number of forensic MKBs needed to identify traitors.

In rest of the paper, we will show the state of art subset tracing in more details
in Section 2. This section provides the foundation for all subsequent sections.
We will then show the first Bayesian approach to improve the subset tracing in
Section 3 when no known strategy is known/assumed. We then show another
Bayesian approach for subset tracing in Section 5 with a known strategy. Our
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experimental results in Section 6 shows order of magnitude of improvement in
the number of forensic MKBs needed to defeat the clone box.

2 NNL Subset Tracing

Naor, et. al [11] present a broadcast encryption framework using subset covers.
Let D be the set of devices and K be the set of device keys. Every device d ∈ D
owns a subset of keys, denoted by Kd. Similarly, associated with every key k ∈ K
is a set of users Dk = {d ∈ D : k ∈ Kd}.

Suppose we want to broadcast some media M , which, for all intent and pur-
pose, is a binary string. We would like to encrypt M in such a way that a set of
legitimate devices L ⊆ D is able to decrypt and view the media. The first step
is to encrypt M with some key K, referred to as the media key. We will use the
term key without a qualifier to refer to device keys. We then find a subset of
device keys C such that all legitimate devices are covered. That is, C is chosen
such that

⋂
k∈C Dk = L. Now, for every k ∈ C we separately encrypt the media

key, giving us Ek(K). Ultimately, the following items are broadcast

– The encrypted media: EK(M)
– The encrypted media key: 〈Ek1 (K), Ek2(K), . . . , Ek|C|(K)〉
– An index of the device keys used to encrypt the media key

These items together are referred to as a media key block (MKB). Every device
d ∈ L will own a key used in the MKB and every device r ∈ D/L, referred to as
a traitor, will own none. Hence, it cannot recover the content.

Naor, et.al give a black box tracing algorithm where the only means to diag-
nosis traitors is to submit tests, sometimes referred to as forensic MKBs, to the
clone box and observe its response. Their tracing algorithm relies on two things:

1. For every key k ∈ K such that |Dk| > 1, there exists keys k1 and k2 such
that Dk1 ∪Dk2 = Dk and Dk1 ∩Dk2 = ∅. This is referred to as the bifurcation
property. By this property, we can replace k with k1 and k2 and still cover
the same set of devices.

2. We have access to a method that, given a set of keys F , finds at least one
key in F owned by the clone box. This is referred to as subset tracing; the
name is due to the fact that each key is associated with a subset.

The algorithm maintains a covering of all legitimate devices F , referred to as
the frontier. The algorithm proceeds by repeatedly identifying a compromised
key k ∈ F , removing it, and adding to F k1 and k2 satisfying the bifurcation
property. If |Dk| = 1 then the single device in Dk is a traitor. This process is
reiterated until the clone box is unable to play the MKB associated with the
frontier.

We can formalize subset tracing as follows: the frontier F is a set of keys and
the clone box owns a subset C ⊆ F of these keys. Let m = |F|. The set C is,
of course, unknown to the tracing algorithm. The task is to determine, within
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Algorithm 1.
1: NNLTrace(F , a, b, pTa , pTb)
2: if a = b − 1 then
3: return b
4: else
5: c ← �a+b

2 �
6: Tc ← {fc+1, . . . , f|F |}
7: if |pTc − pTa | ≥ |pTc − pTb | then
8: return NNLTrace(F , a, c, pTa , pTc)
9: else

10: return NNLTrace(F , c, b, pTc , pTb)

some specified confidence ε, at least one key k ∈ F that is owned by the clone
box. That is, Pr(k ∈ C) > 1 − ε.

The structure of a forensic MKB, or simply a test, is quite simple: we disable
certain keys by encrypting a random bit string instead of the media key. The
remaining keys are said to be enabled. This way, all devices that rely on disabled
keys are unable to decrypt, or play, the content. There are two caveats. The first
is that a device, including a clone box, can determine if a key it owns has been
disabled. In this way, its possible for a clone box to know it is under test. The
second is that since a clone box may contain both enabled and disabled keys, it
can still decrypt content when one of its keys is disabled as well as stop playing
when some of its keys are enabled. Its response in these situation constitutes an
anti-tracing strategy. We will assume that if all of the keys in a clone box are
enabled then it will always play. Of course, if none of the keys are enabled then
it is impossible for it to play.

From here on, a test can be simply thought of as a set T ⊆ F of keys. The keys
in T are enabled and the keys in F/T are disabled. Let pT be the probability
that the clone box plays test T . Since the clone box is assumed stateless, we can
treat the outcome of the test as a Bernoulli random variable. If the probability
of playing two tests, T and T ′, are not equal then it must be case that the clone
box owns a device key in the exclusive-or of the two sets. Formally,

pT 	= pT ′ −→ ∃c ∈ C, c ∈ T ⊗ T ′

This motivates NNLTrace (Algorithm 1), a binary-search-like method for iden-
tifying a compromised key. We initially call the procedure with the arguments
(F , 0, m, pF , 0). The algorithm proceeds by progressively reducing the interval
(a, b) in which we know there must be a compromised device-key. It does this
by determining the probability that the midpoint test Tc plays and recursing on
the the side with the larger difference in the endpoint probabilities.

Technically, we can recurse on either side as long as the probability of the
endpoint tests are not equal. However, this allows for the possibility that the
algorithm will become trapped at an interval where the end-point probabilities
are arbitrarily close to one another. The challenge in this style of tracing algo-
rithm is that we must estimate pTc by repeatedly submitting Tc to the clone
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box. The closer pTa and pTb
are to one another, the more tests that are needed

to confidently decide which is the larger subinterval. The authors show that
O(log2(m) log(1

ε )/Δ2) tests are needed, where |pTa − pTb
| ≥ Δ (Claim 8). Since

our algorithm recurses on the larger side, we have Δ > 1
m and, therefore, the

number of tests is upperbounded by O(m2 log2(m) log(1
ε )). Since NNLTrace will

recurse log(m) times, the overall number of tests required for NNLTrace to suc-
ceed with probability at least 1 − ε is upperbounded by O(m2 log log m

ε log3 m).
In the subset difference key distribution scheme the final frontier size will be

O(2r) [11]. Since the size of the frontier can increase by at most one at every
iteration of the top-level procedure, the subset tracing procedure is called O(2r)
times. Combining this with the bound from the previous paragraph, we have
that for r traitors, the entire traitor tracing process will require O(r3 log3 r)
tests. As discussed previously, this algorithm, though theoretically efficient, is
easily defeated in practice.

3 Bayesian Approach to Subset Tracing

The NNLTrace routine requires the ability to determine, given three tests Ta,
Tb, and Tc, if |pTa − pTc | > |pTb

− pTc | (Line 7, Algorithm 1. Henceforth we
abbreviate PTa as Pa. We require that this decision is made with a probability
of error less than some specified threshold ε. In this section we introduce a
principled method for making this decision based on methods from Bayesian
statistics. Instead of relying on worst-case bounds to determine the number of
times each test is submitted, we model our uncertainty about pa, pb, and pc

using a Bayesian hierarchical model. This model is conditioned on the actual
responses of the clone box and not a hypothetical worst case. Tests, therefore,
are repeated only if we are unable to confidently determine if |pa−pc| > |pb −pc|.

To do this, we think of the probability of playing as a random variable, which
we will denote by PT in order to distinguish it from the actual probability the
test plays pT . For now, assume we have some fixed probability density function
(pdf) specifying Pr(PT = p), abbreviated as Pr(p). This is referred to as the
prior distribution of PT since it is not conditioned on any observations. After
observing the outcome of a test, T = t, we would like to refine our belief about
PT ; t = 1 implies the clone box was able to decrypt the content, t = 0 implies it
wasn’t. This is provided by Bayes Theorem:

Pr(PT = p|T = t) =
Pr(T = t|PT = p)Pr(PT = p)

Pr(T = t)

We refer to Pr(Pt = p|T = t) as the posterior distribution. When there is no risk
of confusion we will abbreviate the notation by only writing the observation, i.e.
Pr(PT = p|T = t) = Pr(p|t).

We will model PT with the Beta distribution, which is defined for p in the
interval [0, 1]:

Beta(p; α, β) =
1

B(α, β)
pα−1(1 − p)β−1
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Fig. 1. (a) Beta distribution for different values of (α, β). (b) Example of posterior
distribution of P . The gray curves show the posterior distribution of P after receiving
each of 10 observations: S = {0, 0, 0, 1, 0, 1, 0, 1, 1, 0}.

where B(α, β) = Γ (α)Γ (β)
Γ (α)+Γ (β) is the Beta function and Γ (α) =

∫∞
0 tα−1e−tdt is the

Gamma function. The B(α, β) term acts as a normalizing constant. The shape
of the distribution is controlled by two parameters, α and β. Various settings of
these parameters are illustrated in Figure 1(a). The expectation and variance
of P ∼ Beta(α, β) are, respectively, α

α+β and αβ
(α+β)2(α+β+1) .

The choice to use the Beta distribution comes from the fact that it is the
conjugate prior of the Bernoulli and, implicitly, the Binomial distribution. That
is, if the prior distribution for PT is Beta(α, β) then the posterior distribution
Pr(PT | T = t) is simply Beta(α + t, β + (1 − t)). Given observations {Ti = ti}
for i = 1 to n, where

∑
i ti = k, the posterior distribution of PT is Beta(α +

k, β +(n−k)). These convenient facts make updating the posterior distribution,
illustrated in Figure 1(b), extremely simple. For a more general introduction to
Bayesian statistics see, e.g., [6].

Ultimately we need to determine if |pa − pc| > |pb − pc|. Let P = {(p, q, r) ∈
[0, 1]3 : |p − r| > |q − r|}. Then,

D(t̄) = Pr(|Pa − Pc| > |Pb − Pc| | t̄)

=
∫

(pa,pb,pc)∈P
Pr(pa | t̄)Pr(pb | t̄)Pr(pc | t̄). (1)

It will also be useful to calculate the probability that the two gaps are equal,
within some tolerance δ:

Eδ(t̄) = Pr(| |Pa − Pc| > |Pb − Pc| | < δ)

=
∫

(pa,pb,pc)∈Qδ

Pr(pa | t̄)Pr(pb | t̄)Pr(pc | t̄). (2)

where Qδ = {(p, q, r) ∈ [0, 1]3 : | |p − r| > |q − r| | < δ}. Finding a closed form
solution for Equation 1 and 2 is unlikely. Instead, we use a simple sample-
based approach to inference. The basic idea is that if we have a large enough
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sample from a distribution, we can approximate the above integrals. Sampling
from a Beta distribution can be done quickly and we do not require approximate
sampling methods such as Markov Chain Monte Carlo [10].

After every test, if D(t̄) > 1 − ε, D(t̄) < ε, or Eδ(t̄) > 1 − ε then we can
recurse on the appropriate subinterval. If not, then we require further testing.
In our approach, we repeat the test T with the highest variance in the posterior
distribution of PT .

4 Clone-Box Strategy

It has been conjectured [9] that the following strategy will force the above al-
gorithms to submit the most tests: the clone box tries to decode the media key
with one of its device keys chosen uniformly at random. If the key chosen is
enabled then the clone box successfully plays the test; if it disabled then it does
not. That is,

pT =
|T ∩ C|

|C|
We refer to this as the uniform choice strategy. The motivation for this strategy
is that it is advantageous for the clone box to minimize the difference between
pa and pb. However, the subset tracing procedure always recurses on the larger
subinterval and so at every step the gap is reduced by, at most, a factor of 2.
This gives us the following lower bound on the gap on the last iteration:

|pa − pa+1| ≥ 1
2log2 |C| =

1
|C|

This lower bound is achieved by the uniform choice strategy.
If we assume that the clone box implements this strategy, then its reasonable

to ask if we can leverage this information to reduce the number of tests. In
the next section we introduce IGTrace which does exactly this. We will see in
Section 6 that this method offers a dramatic reduction in the testing time.

5 Subset Tracing with a Known Strategy

In this section, we will be more specific about what defines a clone-box strategy.
As before, F and C denote the frontier and the set of keys in the clone box,
respectively. Let m = |F| and n = |C|. Denote by T the random variable as-
sociated with the outcome of a test or a set of enabled keys comprising a test.
The intended interpretation should be clear from the context. Let R be the set
of possible responses to a test. In previous sections the set of responses R was
limited to the set {0, 1}; it either plays or it does not. The approach we present
here can accommodate a richer set of responses, a possibility we will study more
closely in the experimental section. Associated with each key k ∈ F is a binary
random variable Fk; Fk = 1 is meant to imply that k ∈ C. We refer to these
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random variables, collectively, as F . In many contexts it is useful to treat F as
the set of keys for which Fk = 1.

For our purposes, a strategy is a conditional probability distribution (CPD)
specifying the probability the box plays a test conditioned on the fact that it
contains a specific subset of keys. Formally, it specifies

Pr(T = t | F )

for all tests T ⊆ F , all possible valuations of F , and all responses t ∈ R. The
CPD is also subject to the same constraints as before

if T ∩ F = ∅ then Pr(T = 0 | F ) = 1

if T ∩ F = F then Pr(T = 0 | F ) = 0

where the response 0 indicates the clone box did not play.
The question we would like to answer is: provided with a set of test-response

pairs T1 = t1, . . . , TN = tN , abbreviated as T̄ = t̄, what is the posterior prob-
ability that the clone box contains a particular set of keys F . Applying Bayes
rule we have:

Pr(F | T̄ = t̄) =
Pr(T̄ = t̄ | F )Pr(F )

Pr(T̄ = T̄ )

=
∏

i Pr(Ti = ti | F )Pr(F )
Pr(T̄ = T̄ )

(3)

where the second equality derives from the fact that the results of tests are
independent conditioned on F . The goal of the subset tracing procedure is to
find a key that is, with high probability, contained by the clone box. Formally,
for some threshold ε, does there exist k ∈ F such that

Pr(Fk = 1 | T̄ = t̄) =
∑

F⊆F :k∈F

Pr(F | T̄ = t̄) > 1 − ε

The term Pr(F ) specifies the prior probability that the clone box contains
a set of keys F . Without any background knowledge we choose the uniform
distribution. It is possible to embed domain specific knowledge in the prior to
give the process a “head start”. For example, if we knew that a particular subset
of devices were more likely to have their keys compromised then we could increase
the prior probability that the clone box contained one of those keys.

The denominator of Equation 3, Pr(T̄ = t̄), is the marginal probability of
observing the responses to the set of tests; it also acts as a normalizing constant
and is defined as:

Pr(T̄ = t̄) =
∑
F⊆F

Pr(T̄ = t̄ | F ).

Note that the sum is taken over a set of size 2m, making this a difficult quantity
to calculate directly. Related work on adaptive diagnosis in distributed systems



202 P. Zigoris and H. Jin

approximate this quantity using the mini-bucket algorithm [12]. For our appli-
cation, there exists methods for efficiently calculating Pr(T̄ = t̄) exactly, but
they are outside the scope of this paper [13].

There is an important difference between this approach and the previous
algorithms: here, we directly model our belief that the clone box contains a
key. In (Bayes)NNLTrace, this belief was indirectly modeled by the probability
that the probability of tests playing were different. In a sense, there was no
negative evidence. Two tests playing with different probabilities only supported
the existence of certain keys in the clone box. Now, the response of the box
can indicate that certain keys are not contained in the box. This is one reason
why this new approach offers such an improvement over (Bayes)NNLTrace. The
other advantage to explicitly modeling the clone box’s contents is that we can
make a more informed choice about the next test to submit to the clone box.
The details of this are described in Section 5.1.

The entire procedure is specified in Algorithm 2. Note that this procedure
returns, in addition to the compromised key, the updated beliefs about the clone
box. This information can be propagated by the top-level traitor tracing algo-
rithm to subsequent calls to the subset tracing procedure. This, too, can have a
significant impact on performance, although we do not document it here.

Algorithm 2. Strategy based subset tracing procedure
1: IGTrace(F , P r(F ))
2: if response of clone-box to T = F is 0 then
3: return [∅, P r(F )] //in this case, C = ∅
4: loop
5: for all k ∈ F do
6: if Pr(Fk = 1) > 1 − ε then
7: return [k, Pr(F )]
8: select a test T (see Section 5.1)
9: submit test to clone-box and get response t

10: Pr(F ) ← Pr(F | T = t)

5.1 Test Selection with Information Gain

We can imagine the testing process as a decision tree where every node specifies
the next test to submit to the clone box. The response of the clone box dictates
the subtree on which to recurse. Every leaf in the decision tree will have a key
associated with it and reaching it in the recursion implies the associated key has
been compromised. Ideally, we could minimized the expected number of tests
needed by mapping out an entire testing strategy. However, this task was shown
to be NP-Complete [7].

Instead of devising such a decision tree at once, we take a greedy approach
to test selection. With a direct model of our beliefs about F , we can ask: how
informative is a single test T ? That is, how much would our uncertainty about
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F decrease provided with a response by the clone-box to T ? At every step we
simply choose the test that maximizes the decrease in uncertainty.

The first step is to quantify our uncertainty about F . We will measure uncer-
tainty as the entropy:

H(F | T̄ = t̄) = −
∑
F⊆F

Pr(F | T̄ = t̄) log2 Pr(F | T̄ = t̄)

Note that if we are certain of the contents of the clone-box then H(F ) = 0.
The entropy is maximized at m when the distribution of Pr(F ) is uniform. We
measure the quality of a new test T as the mutual information between the T
and F . In the machine learning literature it is often referred to as the information
gain of T . It is defined as

I(F ; T | T̄ = t̄) = H(F | T̄ = t̄) −
∑
t∈R

Pr(T = t | T̄ = t̄)H(F | T̄ = t̄, T = t)

This is equal to the expected reduction in entropy by seeing the result of test
T , taken with respect to the marginal probability of each response t ∈ R. For a
more detailed explanation of entropy and mutual information, see, e.g., [10].

Now we can view test selection as solving the following optimization problem:

T ∗ = argmaxT⊆FI(F ; T | T̄ = t̄)

Of course, this obscures the fact that there are 2m possible tests to consider. We
know of no algorithm for efficiently solving this problem. Therefore, its necessary
to approximate this by only considering a small subset of the possible tests. The
simplest approach is to pick a set at random. Another approach is described in
Algorithm 3. In this approach we maintain a set of tests S called the retention
set. At every iteration we try adding a new key to each test in S, creating a new
set of tests S′. We then update S to be the top s tests in S′. If after an iteration
the retention set does not change, then we return the top test in S. The total
number of tests evaluated by this procedure is O(s2m2). The proof is as follows:
Denote by T j

i the jth most informative test at iteration i. There are at most sm

iterations since |T j
i | ≤ m and at every iteration, at least one of the tests must

increase in size. Let T j
i = {T j

i ∪ {k} : k 	∈ T j
i } be the set of tests generated in

lines 6- 8. Clearly, |T j
i | < m so at every iteration we need to evaluate at most

sm tests.
Note that there are many alternatives to using entropy to measure uncertainty.

For instance, the Gini impurity(a generalization of variance) and misclassifica-
tion impurity are popular measures for learning decision trees [5]. We chose
entropy because it has proven effective for selecting tests in adaptive diagnosis
tasks. Rish, et al. [12] apply a method similar to ours to the task of diagnosing
faults in distributed system. A similar approach has been used to play a prob-
abilistic version of the game of Mastermind [8]. Mastermind is a popular board
game created in the 70’s where two players engage in a query-response loop. In
the original formulation, game play is completely deterministic. The goal is for
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Algorithm 3. Test selection procedure
1: InfoGainTestSelect
2: S ← {T = ∅}
3: Sold ← ∅
4: while S �= Sold do
5: Sold ← S
6: for all T ∈ S do
7: for all K �∈ T do
8: add T ′ = T ∪ {K} to S
9: sort S by descending information gain

10: remove all but the top s tests from S
11: return the first test in S

one player, the code-breaker, to identify the code put down by the code-maker.
In many ways, it is similar to the task we are face with. We can imagine the
clone box as a secret code that we are trying to reveal. In our game, though, we
are only required to find one bit in the ‘code’ and the code-maker is under fewer
constraints.

6 Experiments

In this section we present empirical work comparing the number of tests needed
by the described methods. All experiments were repeated 20 times for random
choices of compromised keys. In all experiments, we use ε = 0.001 and R = {0, 1}
Preliminary experiments showed that the number of tests is not particularly sen-
sitive to s, the retention set size, so in all experiments s = 2. We only report
results for the uniform choice strategy since it is, theoretically, the most chal-
lenging strategy to defeat. Preliminary experiments also confirmed this was the
case.

All experiments were run using Matlab running under Linux, with 3GB of
memory and a 2Ghz Pentium 4 processor. The posterior distribution and infor-
mation gain were calculated exactly. Both operations scale exponentially with
the size of the frontier so we did not evaluate our method on very large frontiers.
Elsewhere we describe an efficient algorithm [13], but it is beyond the scope of
this paper. The code is optimized to take advantage of Matlab’s efficient matrix
operations and for a frontier of size 18, test selection takes around 45 seconds.

Table 1 highlights the results of the experiments. It is immediately clear that
IGTrace outperforms both other methods in all cases where there is more than 1
compromised key. For larger frontiers and only 1 compromised key, BayesNNL-
Trace seems to need slightly fewer tests. But for larger numbers of compromised
keys, which is of more interest to us, there is an order of magnitude improve-
ment. Note, too, that there is substantially less variance in the number of tests
needed by IGTrace.

BayesNNLTrace compares extremely well with NNLTrace in all cases, as well.
One obvious shortcoming of NNLTrace is that it does not automatically take
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Table 1. Comparative performance of the three tracing methods for a variety of frontier
sizes and clone box sizes. Each entry lists the mean and standard deviation of the
number of tests. Column headers indicate the number of compromised keys.

1 2 4 8

|F | = 8
IGTrace 6±0.8 19±8.0 41±12.6 42±16.1

BayesNNLTrace 22±3.1 109±19.9 539±168.5 823±231.4
NNLTrace 271±0.0 605±181.5 919±423.8 1424±160.6

|F | = 10
IGTrace 13±2.0 24±8.4 52±11.1 86±38.7

BayesNNLTrace 25±4.4 142±34.4 518±270.1 1173±438.1
NNLTrace 380±54.7 948±299.2 1408±601.2 2632±607.4

|F | = 12
IGTrace 19±2.0 32±9.4 57±18.6 113±36.5

BayesNNLTrace 28±4.6 148±41.9 784±221.4 1322±602.7
NNLTrace 481±55.4 1263±415.1 1686±949.3 3562±1223.1

|F | = 14
IGTrace 29±1.0 38±9.5 64±14.7 129±26.1

BayesNNLTrace 28±3.9 176±34.7 855±244.7 1510±624.5
NNLTrace 555±51.4 1366±399.4 2326±1221.7 4506±1547.4

|F | = 16
IGTrace 38±1.1 47±9.0 68±14.0 159±41.6

BayesNNLTrace 29±3.0 188±46.4 914±346.3 2258±923.2
NNLTrace 637±0.0 1493±478.0 3660±1239.4 4278±1588.7

|F | = 18
IGTrace 49±1.6 57±7.3 86±15.9 150±30.3

BayesNNLTrace 32±3.0 197±52.0 1203±320.4 1518±705.1
NNLTrace 728±69.2 1845±488.9 4525±1457.6 6229±3199.4

advantage of situations where the clone box is deterministic. BayesNNLTrace,
however, naturally accommodates this scenario, as seen in the first column, where
the number of compromised keys is 1. BayesNNLTrace only repeats each test
about 7 times.

7 Conclusion

Traitor tracing is an essential component in any broadcast encryption scheme.
Previous algorithms, while theoretically efficient, do not offer a practical solution.
In this work we have presented two methods, BayesNNLTrace and IGTrace, that
significantly improve the number of tests required by the tracing algorithm to
defeat a clone box.

In situations where some information about the clone box strategy is obtained,
IGTrace can be applied. However, this begs the question: how does one obtain
such information? In the future, it is worth investigating methods for learning
this strategy along the way, perhaps by representing the clone box strategy as a
latent variable.

Similarly, it would also be interesting to investigate the sensitivity of IGTrace
to errors in the clone box strategy. We would like it to be such that if the actual
strategy deviates from the modeled strategy we are still guaranteed to make
accurate diagnoses.
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Abstract. Many protocols that are based on homomorphic encryption are private
only if a client submits inputs from a limited range S . Conditional disclosure of
secrets (CDS) helps to overcome this restriction. In a CDS protocol for a set S , the
client obtains server’s secret if and only if the client’s inputs belong to S and thus
the server can guard itself against malformed queries. We extend the existing CDS
protocols to work over additively homomorphic cryptosystems for every set from
NP/poly. The new construction is modular and easy to apply. As an example,
we derive a new oblivious transfer protocol with log-squared communication and
a millionaire’s protocol with logarithmic communication. We also implement pri-
vate, universally verifiable and robust multi-candidate electronic voting so that all
voters only transmit an encryption of their vote. The only hardness assumption
in all these protocols is that the underlying public-key cryptosystem is IND-CPA
secure and the plaintext order does not have small factors.

Keywords: Conditional disclosure of secrets, crypto-computing, homomorphic
encryption, oblivious transfer, two-party computation.

1 Introduction

Homomorphic encryption is a powerful tool that provides efficient private implementa-
tions for many basic operations such as scalar product, oblivious transfer and oblivious
polynomial evaluation. However, basic versions of these protocols without zero-
knowledge proofs of correctness are secure only in a semihonest model, where all
parties submit inputs from a limited range, and are not protected against malicious
behaviour. Consequently, a malicious adversary can completely or partially learn the
secret inputs. Conditional disclosure of secrets [GIKM00, AIR01], also known as input
verification gadget [BGN05], is a protection mechanism against such attacks. Unfortu-
nately, current solutions [AIR01, BGN05] are secure only if the plaintext space has a
prime order, whereas most additively homomorphic encryption schemes have a com-
posite plaintext order. We provide the first conditional disclosure of secrets protocol
that works in conjunction with all currently known additively homomorphic encryption
schemes. Hence, we can efficiently and more securely solve many practical problems.

Formally, we consider only two-party protocols between a client and a server, though
our results can be extended to the multiparty setting. At the end of such a protocol the
client should learn the desired value whereas the server should learn nothing. Our main
goal is to achieve relaxed-security; that is, the protocol must be secure against malicious
clients and semihonest servers. Such a model is widely used in current cryptographic
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literature [NP99, AIR01] and is well-justified in practical applications: as the number
of possible service providers is relatively small compared to the clients, it is possible to
force semihonest behaviour with auditing. Moreover, service providers must preserve
their reputation and thus they are less likely to act maliciously.

For clarity and brevity, we state our main results in the public key model, where the
client is guaranteed to know a valid secret key and the server knows the corresponding
public key. The choice of the model is not too restrictive: with a proper initialisation
phase all our protocols can be implemented in the standard model, see Sect. 7. On the
other hand, such a model enables to prove security of parallel compositions. Compos-
ability together with our new basic construction leads to a simpler and more modular
way to construct complex protocols. Shortly put, relaxed-security follows directly from
the protocol design and there is no need to handcraft the proof. More precisely, we
show how to decompose a protocol into elementary tasks that can be efficiently im-
plemented with any additively homomorphic IND-CPA secure cryptosystem, provided
that the plaintext order does not have unknown small factors.

In Sect. 3, we establish basic security notions and derive a necessary machinery to
analyse parallel compositions. The core results of our papers are presented in Sect. 4.
We note that most existing additively homomorphic protocols are based on the possibil-
ity of computing the next three basic primitives on ciphertexts: addition of ciphertexts,
multiplication with a constant, and disclose-if-equal (DIE). In a disclose-if-equal proto-
col, the server obliviously releases secret β only if the client sends a valid encryption of
x, where the coefficient x can be freely chosen by the server. The current cryptographic
literature is full of many useful and efficient two-message protocols that are based on
these three primitives. Unfortunately, the standard DIE protocol defined say in [AIR01],
and then used in many subsequent papers, is secure only if the plaintext space has a
prime order and thus can only be used in conjunction with the lifted ElGamal cryptosys-
tem where one has to compute discrete logarithms to decrypt. We provide a new DIE
protocol that works in conjunction with all currently known additively homomorphic
encryption schemes. As a result, we can naturally simplify or extend many protocols
that utilise the DIE functionality, e.g. [AIR01, Ste98, Lip05, BK04, FNP04, LLM05].

The rest of the paper provides many useful applications of these generic building
blocks. In Sect. 5, we present a two-message protocol for conditional disclosure of se-
crets (CDS), where the client learns a secret β only if his message q is a valid encryption
of x ∈ S, where S is a publicly known set. Hence, the server can use β as a one-time
pad to protect the protocol output, i.e., the client learns nothing unless Decsk(q) ∈ S.
The latter forms a basis of the CDS transformation that can guard any two-message
protocol, where the first message is a vector of ciphertexts, against malicious clients.
A slightly extended CDS construction provides an efficient solution to the millionaire
problem and conditional oblivious transfer. Another extension of CDS provides a way
to implement electronic voting and auctions without non-interactive zero-knowledge
proofs in the multi-party setting using threshold-decryption. Finally, we compare our
results with conventional cryptographic methods to provide some interesting insights
and show the theoretical significance of our results, see Sect. 7.

History. The new DIE protocol, together with the CDS protocol and the CDS transfor-
mation date from August 2004 and has been available on eprint since 2005.
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2 Cryptographic Preliminaries

Distributions. For a a finite set X , let U(X) denote the uniform distribution over
X and x ← X denote a uniform draw from X . Two distributions D1 and D2 over
a discrete support X are statistically ε-close, D1

ε∼ D2, if their statistical difference
maxS⊆X |Pr [D1 ∈ S] − Pr [D2 ∈ S]| ≤ ε. A shorthand D1 ≡ D2 denotes D1

0∼ D2.

Homomorphic encryption. A public-key cryptosystem π is defined by three algo-
rithms. A key generation algorithm Gen returns a secret and public key pair (sk, pk).
Corresponding Encpk(·) and Decsk(·) algorithms are used to encrypt and decrypt mes-
sages. Let M and C denote the corresponding message and ciphertext spaces. Then we
require Decsk(Encpk(x)) = x for every x ∈ M and assume that there exists efficient
membership test for the ciphertext space C. Privacy of encrypted messages is guaran-
teed by IND-CPA security. For any stateful probabilistic algorithm A, its IND-CPA
advantage quantifies the ability to distinguish ciphertexts:

AdvIND-CPA
π (A) = 2 ·

∣∣∣∣∣Pr

[
(sk, pk)←Gen, (x0, x1)←A(pk), i ← {0, 1}
c ← Encpk(xi) : A(x0, x1, c) = i

]
− 1

2

∣∣∣∣∣ ,

where the probability is taken over coin tosses of all relevant algorithms. A cryptosys-
tem π is (ε, τ)-IND-CPA-secure if AdvIND-CPA

π (A) ≤ ε for any τ -time adversary A.
A cryptosystem π is additively homomorphic, if M = ZN for some N , and for any

(sk, pk) ← Gen and valid messages x1, x2 ∈ M the distribution of products Encpk(x1)·
Encpk(x2) coincides with the distribution of ciphertexts Encpk(x1 + x2). To be precise,
the equivalence

Encpk(x1) · Encpk(x2) ≡ Encpk(x1 + x2)

must hold for any fixed ciphertext Encpk(x1). That is, given Encpk(x1)·Encpk(x2), even
an unbounded adversary learns nothing beyond x1+x2. A cryptosystem π is multiplica-
tively homomorphic, if Encpk(x1) ·Encpk(x2) ≡ Encpk(x1 ·x2) for any (sk, pk) ← Gen
and x1, x2 ∈ M, where M is a multiplicative group where computing the discrete
logarithm is hard. In many practical applications, multiplicatively homomorphic cryp-
tosystems Enc are converted to additively homomorphic cryptosystems Enc by using
the lifted encryption rule Encpk(x) := Encpk(gx). Such lifted cryptosystems have re-
duced utility, as the new decryption rule requires computation of discrete logarithms
and one can successfully decrypt only a small fraction of ciphertexts.

Many well-known homomorphic cryptosystems are IND-CPA secure under reason-
able complexity assumptions, e.g. [Elg85, Pai99, DJ01]. Existing additively homomor-
phic cryptosystems have a composite plaintext order with large factors. For example,
the plaintext order of the Paillier cryptosystem [Pai99] is an RSA modulus and thus
its smallest prime factor is approximately

√
N . The Goldwasser-Micali cryptosystem

[GM82] is the only known exception, as it is additively homomorphic over Z2. Such
plaintext space is too small for many applications. All known cryptosystems with a large
prime plaintext order are multiplicative, e.g., the ElGamal cryptosystem [Elg85].
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3 Basic Properties of Two-Message Protocols

Throughout the paper, we consider two-message protocols where a client sends a query
q to a server that replies with a, and then the client computes a desired output from
a. The server should learn nothing about the query. The client should learn f(α, β),
where α denotes client’s private input vector and β denotes server’s private input vector.
Mostly, we consider the relaxed-security against unbounded clients and computation-
ally bounded servers, but sometimes we consider also the setting where both parties are
computationally bounded. A protocol is correct if the client always recovers f(α, β)
when both parties are honest. A priori we do not assume correctness from all protocols,
as sometimes it is sufficient to know that a client cannot learn anything beyond f(α, β).

In the simplest case, the query q consists of encrypted inputs (α1, . . . , αm) and the
server uses properties of additively homomorphic encryption to compose an appropri-
ate reply. We call such protocols additively homomorphic two-message protocols. Here,
we explicitly assume that the server knows public key pk and thus can efficiently ver-
ify that the query consists of valid ciphertexts and ignore malformed queries. Notably,
many interesting tasks can be solved with additively homomorphic two-message proto-
cols. Computationally-private information retrieval [AIR01, Ste98, Lip05], solutions to
millionaire’s problem [BK04, Fis01], and various protocols for privacy-preserving data
mining tasks [FNP04, WY04, GLLM04] form only a small set of such protocols.

Relaxed-security in the PKI model. As usual, we define security by comparing the
real and ideal model. However, we explicitly assume that the client knows the secret
key, the server knows the corresponding public key and only the client can deviate
from the protocol specification. Formally, a trusted key generator initially runs the key
generation algorithm Gen for a cryptosystem π, and then privately sends (sk, pk) to the
client and pk to the server. In particular, the server knows that pk corresponds to this
fixed client. This key pair is then possibly used in many different protocol runs.

Note that the PKI model is normal and even desirable in many applications, e.g. e-
voting. Still, we stress that we use the PKI model only for the sake of simplicity of
security proofs. In Sect. 7, we show how to replace the trusted key generator by a key
transfer protocol with a marginal degradation of security.

Since the server obtains no output and is always semihonest, we can decompose
the standard security definition into two orthogonal requirements: client-privacy and
server-privacy. A two-message protocol is (ε, τ)-client-private, if for any τ -time state-
ful adversary A, the next inequality holds:

2 ·
∣∣∣∣∣Pr

[
(sk, pk)←Gen, (α0, α1)←A(pk),
i ← {0, 1} , q ← qpk(αi) : A(α0, α1, q) = i

]
− 1

2

∣∣∣∣∣ ≤ ε ,

where qpk(αi) denotes the first message computed by the honest client. Server-privacy
has a slightly more complicated definition, since we must transform any efficient ad-
versary from the real world to an efficient adversary in the ideal model, where a trusted
third party (TTP) computes f(α, β). Hence, the definition incorporates a simulator Sim
and a distinguisher B and we need to explicitly quantify their efficiency. The simulator
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Sim gets (sk, q) as an input and can send α∗ once to the TTP. Then Sim obtains the
value of f∗ = f(α∗, β) and can proceed with the simulation. For brevity, let us define

pr = Pr [(sk, pk)←Gen, (β, q)←A(sk), a ← apk(q, β) : B(β, q, a) = 1] ,

pi = Pr [(sk, pk)←Gen, (β, q)←A(sk), â ← Simsk(q, f∗) : B(β, q, â) = 1] ,

where a(q, β) denotes the answer of the honest server with the input β to the query
q. A protocol implements (τ, δ, t, ε)-server-privately a function f , if for any τ -time
adversary A there exists a (t + δ)-time simulator Sim such that |pr − pi| ≤ ε for any
t-time distinguisher B. In the information-theoretical setting, algorithms A, Sim and
B are unbounded. A protocol is ε-server-private if for any adversary A there exists a
simulator Sim such that their output distributions are statistically ε-close. We say that a
protocol is (ε1, τ ; ε2)-relaxed-secure if it is (ε1, τ)-client-private and ε2-server-private.
Relaxed-security is widely used standard security assumption, see [NP99, AIR01].

Extractability and simulatability. Usually, the client-privacy follows directly from se-
curity assumptions. For example, additively homomorphic protocols are client-private
by the construction, provided that the cryptosystem is IND-CPA secure. Proofs of
server-privacy can be significantly simplified by considering the following notions of
extractability and simulatability. As client can be malicious, the simulator Sim must
somehow deduce the intended input α∗. In the PKI model, the simulator can use sk to
determine the input α∗ directly from q. A two-message protocol is extractable if there
exists an efficient algorithm Extsk(·) such that Extsk(qpk(α)) = α for all valid inputs
and Extsk(q) = ⊥ for all invalid queries q that do not correspond to any input.

In many protocols, the server’s reply can be perfectly or almost perfectly simulated
knowing only the corresponding client’s output f∗ and a secret key sk. We formalise
this as simulatability. Consider a protocol transcript (q, a) between the honest client
and server. Let f∗ = f(α, β) be the corresponding client’s output. Then the server’s
reply is ε2-simulatable if there exists an efficient algorithm Sim∗sk such that the output
distributions (q, a) and (q, â) are statistically ε2-close even for a fixed q, where â ←
Sim∗sk(q, f

∗). The notion of (t, ε2)-simulatability is defined analogously. Extractability
together with simulatability implies server-privacy:

Theorem 1. If a two-message protocol is extractable, ε2-simulatable and the server
ignores malformed queries, then the protocol is also ε2-server-private in the PKI model.

Proof. We construct a universal simulator Sim as follows. If the query q is malformed
then the simulator ignores it. Otherwise, Sim extracts the intended input α∗ ← Extsk(q)
and sends α∗ to the TTP. Given the reply f∗ = f(α∗, β) from the TTP, the simulator
uses Sim∗sk(q, f

∗) to simulate the reply â. Since malformed queries are discarded in
both worlds, the distributions (β, q, a) and (β, q, â) are statistically ε2-close. 	


Forked composition. We can use Thm. 1 to prove that a parallel composition of ex-
tractable and simulatable protocols preserves server-privacy. It makes sense to consider
protocols that share the query phase as we can always merge different queries into a
single query. Let two-message protocols Π1, . . . , Πs share the first message q. Then the
forked composition Forked[Π1, . . . , Πs] is defined as follows:
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1. The client computes the query q and sends it to the server.
2. The server uses q to compute replies a1, . . . , as according to Π1, . . . , Πs.
3. The server sends a1, . . . , as to the client.
4. The client computes the private output (f1, . . . , fs) according to Π1, . . . , Πs.

It is easy to prove that a client can learn nothing beyond f1(α, β), . . . , fs(α, β).

Theorem 2. Let Π1, . . . , Πs be extractable and respectively εi-simulatable implemen-
tations of functionalities fi. Then the composition Forked[Π1, . . . , Πs] is an extractable
and (ε1 + · · · + εs)-simulatable implementation of the functionality f = (f1, . . . , fs).

Proof. Extractability is clear. By the definition of simulatability, there exist simula-
tors Sim∗sk,i that output simulated replies âi such that (q, ai) and (q, âi) are statisti-
cally εi-close even for fixed q. Now, define a simulator Sim∗sk that given q and f∗ =
(f1(α∗, β), . . . , fs(α∗, β)) runs Sim∗sk,i(q, f

∗
i ) for i ∈ {1, . . . , s} and outputs â1, . . . ,

âs. By the construction, the distributions (q, a1, . . . , as) and (q, â1, . . . , âs) are statisti-
cally (ε1 + · · · + εs)-close even for a fixed q and the simulatability follows. 	


Reducing communication further with CPIR. In many two-message protocols, the
client must access only a short part of the reply a to recover the output f(α, β) whereas
the rest of a consists of random noise. Hence, we can significantly decrease the total
communication |q| + |a|, if the client could fetch only useful parts of a. The latter
can be done using computationally private information retrieval (CPIR). In a 1-out-
of-n CPIR protocol, the server maintains a database β = (β1, . . . , βn) of �-bit strings
and the client can fetch βi so that a computationally bounded server learns nothing.
The basic properties of CPIR protocols are determined by parameters n and �. It is
trivial to achieve communication complexity Θ(n�) just by sending the whole database
so one considers only CPIR protocols with sublinear communication. There is a wide
range of such protocols. Recent protocols achieve communication that is low-degree
polylogarithmic in the database size, see [Lip05, GR05] for further references.

Now, assume that the server’s reply has a structure a = (a1, . . . , an) and the client
needs to recover at most t elements. Then the client can use t parallel CPIR queries to
fetch desired parts ai1 , . . . , ait . Note that the CPIR queries can be sent together with
the protocol Π messages, provided that the CPIR instance is run independently from Π
or joining queries does not decrease client-privacy. Server-privacy cannot decrease, as
the replies of CPIR queries are computed from the original reply a.

4 Three Basic Crypto-computing Primitives

“Crypto-computing” is often used to describe two-message protocols, where a server
uses some basic operations on client’s garbled inputs to compute reply that reveals
only f(α, β). The first comparative study [SYY99] showed how to crypto-compute
predicates with logarithmic circuit depth using the Goldwasser-Micali cryptosystem.
Later, this construction was somewhat generalised to compute the greater-than predi-
cate [Fis01]. Here, we provide three basic crypto-computing primitives for additively
homomorphic cryptosystems with large factors of the plaintext space. Note that the
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server can crypto-compute ciphertexts of sums and products with one public factor
obliviously from ciphertexts, as

Encpk(x1 + x2) ≡ Encpk(x1) · Encpk(x2) · Encpk(0) (1)

Encpk(x · y) ≡ Encpk(y)x · Encpk(0) (2)

hold by the definition of additively homomorphic cryptosystems. Here the multiplica-
tion by Encpk(0) is necessary to re-randomise the replies.

But there is also a third generic operation that implicitly “tests” whether a ciphertext
c is an encryption of x. The existence of this operation depends additionally on the
order of the plaintext group. More precisely, a disclose-if-equal (DIE) protocol allows
releasing of a secret β only if Decsk(c) = x where the server can freely choose x. The
idealised functionality of DIE protocol is defined as follows

f(α, β) =

{
β, if α = x ,

⊥, if α �= x .

The simplest implementation of DIE protocol was given in the paper [AIR01]:

1. The client sends c ← Encpk(α) to the server.
2. If c ∈ C then the server sends a reply a ← (c ·Encpk(−x))r ·Encpk(β) for r ← M.
3. The client outputs Decsk(a) = (α − x)r + β.

If the plaintext space has a prime order, then (α − x)r has uniform distribution over
M when x �= α. Consequently, the protocol is perfectly simulatable: if f(α, β) = ⊥
a simulator should output a random encryption Encpk(m) for m ← M and Encpk(β)
otherwise. Therefore, the basic DIE protocol is also relaxed-secure.

On the other hand, the protocol is not correct, since the client obtains a random
output when Decsk(c) �= x. If x is public then the correctness is not an issue, as the
client knows whether Decsk(c) = x or not. Otherwise, the construction guarantees only
that the client learns nothing about β when Decsk(c) �= x. Moreover, if the server sets
the first k-bits of β to 0, then the honest client can detect α �= x with failure probability
2−k, i.e., there is a trade-off between reliability and throughput.

Unfortunately, the basic DIE protocol is not secure if the message space has a com-
posite order. As an example, consider the Paillier cryptosystem, where N = pq is an
RSA modulus. If a malicious client sends c ← Encpk(p + x) then Decsk(a) = β +
rp mod N and the client can recover β mod p although Decsk(c) �= x. Since the
DIE protocol is a building block in many existing protocols, then such leakage might
cause a domino effect that can completely reveal server’s input. For example, the circuit
CDS protocol in Sect. 5 is extremely vulnerable against such attacks. Therefore, we de-
vise a new DIE protocol that works in conjunction with all currently known additively
homomorphic cryptosystems. As a result, we can naturally simplify many protocols
[AIR01, Ste98, Lip05, BK04, FNP04, LLM05] that use the lifted ElGamal cryptosystem
or zero-knowledge correctness proofs to guarantee security of the DIE protocol.

New general construction for DIE. Server-privacy of the basic DIE protocol hinges
on the fact that αZN = {αr : r ∈ ZN} = ZN for any α �= 0. If the message space
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Query phase:
The client sends ← Encpk(α) to the server.

Transfer phase:
If the ciphertext is invalid /∈ C then the server returns ⊥.
Otherwise, the server returns ← (c · Encpk(−x))r · Encpk(encode(β)) for r ← M.

Post-processing:
The client computes y = Decsk( ) and returns decode(y).

Protocol 1: Disclose-if-equal protocol of �-bit secrets for the constraint Decsk(q) = x

contains non-trivial additive subgroups (ideals) {0} �= G � ZN then the client can
choose a ciphertext c so that the reply a enables to restore the coset β+G. Consequently,
a malicious client can learn up to log2 N − log2 Φ bits of information, where Φ is
the minimal size of the non-trivial subgroup G. To seal the leakage, we must use a
probabilistic encoding for β such that the total entropy of G together with the encoding
encode(β) is roughly log2 N . Let us define an encoding for �-bit strings

encode(β) = β + 2� · t mod N for t ← ZT ,

decode(y) = (y mod N) mod 2� ,

where T = �2−� · N and � < �log2 N. As there are no modular wrappings, the
decoding is always correct. More importantly, Prot. 4 is now secure for small enough �.

Theorem 3. Let π be an additively homomorphic cryptosystem such that the smallest
factor of the plaintext order is larger than γ > 2. Then Protocol 4 for transferring �-bit
strings is extractable and (2�−1/γ)-simulatable.

Proof. Extractability is clear and thus we consider only simulatability. If α �= x, then
by construction y = encode(β) + g where g is chosen uniformly from a non-zero
subgroup G ⊆ ZN . If G = ZN then y is uniformly distributed over ZN . Otherwise
G can be represented as pZN , where p is a non-trivial factor of N , and y mod p ≡
β + 2� · t mod p, where t ← ZT and T = �2−� · N. Since 2 and p are relatively
prime,

{
2� · t : t ∈ Zp

}
= Zp and the term 2� · t mod p covers all elements of Zp

almost uniformly. More precisely, the elements of Zp can be divided into two sets:

T0 =
{
c ∈ Zp : Pr[β + 2� · t mod p = c] = a

T

}
with |T0| = p − b ,

T1 =
{
c ∈ Zp : Pr[β + 2� · t mod p = c] = a+1

T

}
with |T1| = b ,

where a =
⌊

T
p

⌋
and b = T − ap. Consequently, the statistical difference between y

mod p and the uniform distribution U(Zp) can be expressed as

ε =
|T0|
2

·
(

1
p

− a

T

)
+

|T1|
2

·
(

a + 1
T

− 1
p

)
=

b(p − b)
Tp

≤ p

4T
≤ N

4γT
,
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as p(p − b) ≤ p2/4 and p ≤ N/γ. Since 2�+1 ≤ N we get T = �2−�N ≥ N/2�+1

and thus ε ≤ 2�−1/γ. Now note that the distributions encode(β)+U(pZN ) and U(ZN )
are still ε-close, as we can express

Pr [encode(β) + U(pZN ) = c mod N ] =
p

N
· Pr [encode(β) = c mod p] .

Hence, we can use a simulator Sim∗sk(q, f
∗) that outputs Encpk(encode(β)) if f∗ = β

and Encpk(m) for m ← ZN otherwise. 	


Corollary 1. Let π be an (τ, ε1)-IND-CPA-secure additively homomorphic cryptosys-
tem such that the smallest factor of the plaintext order is larger than γ > 2. Then
Protocol 4 for transferring �-bit strings is (τ, ε1; ε2)-relaxed-secure for ε2 = 2�−1/γ.

The maximal throughput of DIE protocol. First, note that if we want to achieve
ε-server-privacy then we must choose � = �log2(2εγ), where γ is the lower bound to
non-trivial factors of N . Usually, it is sufficient to take ε = 2−80 and thus N cannot
have smaller factors than 280 if the server wants to release Boolean secrets. For the
Paillier cryptosystem the smallest factor of N is approximately

√
N , and consequently,

one can transfer � = �log2(2
√

Nε) ≈ 0.5 log2 N + log2 ε bits. For standard 1024-bit
RSA modulus and ε = 2−80, one can take � = 433.

As our DIE protocol is extractable and simulatable, a forked composition of t proto-
cols enables transfer of a t�-bit secret, where the achieved server-privacy is |β|�γ · 2�−1.
Smaller values of � increase the maximal length of β but also decrease the ratio between
the desired communication |β| and the total communication |q| + |a| and make the pro-
tocol less efficient. In other words, a bad encoding encode(β) with a small capacity can
significantly decrease efficiency. As our target distribution is U(ZN ) then it is straight-
forward to derive entropy bounds for the capacity: H(ZN ) ≈ H(encode(β)+ pZN ) ≤
H(encode(β))+H(pZN ) ≤ log2 |encode(β)|+H(pZN ), where |encode(β)| denotes
the size of the support. As the encoding must be uniquely decodable, the capacity of
a single reply � ≤ log2

N
|encode(β)| � minp H(pZn) = log2 Φ, where Φ is the smallest

prime factor of N . Thus, the encoding is optimal up to a constant additive term log2 ε.
The result can be generalised for any target distribution using a more detailed analysis.

5 Generic Construction for Conditional Disclosure of Secrets

Many protocols are secure only if client submits inputs α from a limited range S.
Cleverly chosen α /∈ S can either partially or completely reveal the server’s input β.
Therefore, the server must somehow verify that α ∈ S. Classically, this is done by
a zero-knowledge proof that Decsk(c) ∈ S. However, this either increases the num-
ber of messages or requires a security model with a common reference string or ran-
dom oracles. A conditional disclosure of secrets (CDS) reaches the same goal with-
out extra messages and exotic assumptions. In a CDS protocol, the client should learn
a secret β only if Decsk(q) ∈ S, where the query vector q consists of ciphertexts
Encpk(α1), . . . , Encpk(αm) and the set S is public. Since the server can use β as a
one-time pad to encrypt the original reply a, the client learns nothing about the outputs
of the original protocol if α /∈ S and the modified protocol becomes server-private.
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A CDS protocol can be straightforwardly constructed as a forked composition of
individual DIE protocols for {Decsk(c) = x}x∈S that share the same secret β but such
composition is inefficient. Therefore, we show how to use Benaloh-Leichter secret shar-
ing scheme [BL88] together with slightly extended DIE protocols to achieve a more
computation and communication efficient CDS protocol (circuit CDS).

Conjunctive affine zero tests. First, we present an optimisation for specific sets. Re-
call that our DIE protocol is secure since encode(β) + U(G) ε∼ U(ZN ) if G �= {0}.
Similarly, we can construct CDS protocols for conjunctive affine zero tests Ψ0(α) =∧v

j=1[
∑m

i=1 sijαi
?=xj ], where {xi} and {sij} are public constants:

1. The client sends q = (c1, . . . , cm) where ci = Encpk(αi).
2. The server halts if some c1, . . . , cn is not a valid ciphertext, otherwise it replies

a =
∏v

j=1

(∏m
i=1 c

sij

i · Encpk(−xj)
)rj · Encpk(encode(β)) for r1, . . . , rv ← ZN .

3. The client restores y = Decsk(a) and outputs decode(y).

As y =
∑v

j=1 (
∑m

i=1 αisij − xi) rj + encode(β) = encode(β) + G1 + · · · + Gv,
then y = encode(β) + U(G) for a non-zero sub-group G if some zero-tests do not
hold. The latter follows from the fact that r1, . . . , rv are independently chosen. Hence,
the claims of Thm. 3 hold also for the CDS protocol given above. Of course, when the
plaintext order is prime then there is no need to use probabilistic encoding and we can
use the construction given in [AIR01]. Notably, such simplified construction has been
used in [BGN05] together with a cryptosystem that has a composite plaintext order.
Paradoxically, the latter construction is still computationally secure, as the client must
compute arbitrary discrete logarithms to recover a coset β + G.

Circuit CDS protocol. For any set S, we can write the predicate ΨS(α) := [α ∈ S]
as a monotonous combination of affine zero tests, i.e., the formula consists of Boolean
operations ∧ and ∨ together with atomic terms Ψ0(α) =

∧v
j=1[

∑m
i=1 sijαi

?=xj ]. For
efficiency reasons, we might express the input α as a bit-vector. The server can later
use properties of additively homomorphic encryption to restore the original ciphertexts.

First, the server uses the Benaloh-Leichter secret sharing scheme to assign sub-
secrets βi to each leaf test Ψ0(α) so that the client can reconstruct the secret β ∈
{0, 1}� if Ψ(α) holds and the secrets of true leaves are revealed. Fig. 1 illustrates
how secret β is propagated through the circuit of Ψ(α) = [α > x] without optimi-
sation. Namely, the master secret β is assigned to the topmost gate of the circuit. For
every ∨-gate, the output secret is just pushed downwards. For every ∧-gate ψ with
u children and a secret βψ assigned to it, sub-secrets β1, . . . , βu−1 ← {0, 1}� and
βu ← βψ − β1 − · · · − βu−1 mod 2� are assigned to the children. One can also use
threshold operations: THRv(x1, . . . , xs) = 0 if and only if at least v values xj are
equal to 1. For a THRv gate, generate a random (v − 1)-degree polynomial fψ with
fψ(0) = βψ and assign the secret fψ(i) to its ith child. Finally, the server uses a forked
composition of CDS protocols for leaf tests Ψ0 to release sub-secrets associated to each
leaf. The client recomputes the secret from leaf values by inversely following the secret
generation.
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Fig. 1. An unoptimised circuit for Ψ(α) = [α > x] where secrets are pushed down to DIE leafs.
The circuit can be further optimised by replacing ∧-gates with conjunctive affine equality tests.

Theorem 4. If the leaf CDS protocol is extractable and ε2-simulatable, then the circuit
CDS protocol for ΨS is extractable and L(ΨS) · ε2-simulatable, where L(ΨS) is the
number of leaves. If the cryptosystem is (τ, ε1)-IND-CPA secure and q consists of m
ciphertexts, then the protocol is (τ − O(1), mε1; L(ΨS) · ε2)-relaxed-secure.

Proof. Given the main secret β it is straightforward to reconstruct the leaf-level
secrets. Otherwise, if ΨS(α) = 0 then the sub-secrets βi that are assigned to true
atoms Ψ0(α) = 1 are independent and are uniformly distributed. Hence, a world with
L(ΨS) ideally implemented leaf CDS protocols can be perfectly simulated in the world
where β is released only if α ∈ S. Now, the simulatability follows directly from
Thm. 2. The second claim follows from Thm. 1 and the basic properties of IND-CPA
encryption. 	


If the CDS protocol is based on the new DIE protocol, then we can estimate how many
bits are needed to transfer �-bit secrets. For the 1024-bit Paillier cryptosystem and 2−80-
sever-privacy, a single ciphertext can fit 393 bits provided that the corresponding circuit
has less than 240 leaves; the message expansion is roughly |a| /� ≈ 5.2 · L(Ψ).

As negations can be expressed by conjunctive affine zero tests, then they can appear
only in the leaf level, i.e., the formula Ψ(α) must be in a negation normal form (NNF).
Many practically interesting sets have compact NNF-s, but for some circuits Ψ such
normal form is exponentially larger. We can circumvent the problem by using auxiliary
inputs w. Consider the circuit representation of Ψ that consists of unary ¬-gates and
binary ∧- and ∨-gates. Denote all output wires of logical gates by auxiliary labels wi.
Now, we can represent assignments wu ← ws∧wt and wu ← ws∨wt with the formulae

[wu
?=1] ∧ [ws

?=1] ∧ [wt
?=1] ∨ [wu

?=0] ∧ [ws
?=0] ∨ [wu

?=0] ∧ [ws
?=0] .

[wu
?=0] ∧ [ws

?=0] ∧ [wt
?=0] ∨ [wu

?=1] ∧ [ws
?=1] ∨ [wu

?=1] ∧ [ws
?=1] ,

and wu ← ¬ws as [wu
?=0]∧ [ws

?=1]∨ [wu
?=1]∧ [ws

?=0]. Therefore, we can in principle
construct a new formula Ψ(α, w) in NNF such that Ψ(α) = 1 ⇐⇒ ∃w : Ψ(α, w) = 1
and the size of Ψ(α, w) is proportional to the gate count of Ψ(α). Consequently, we
can always construct efficient circuit CDS protocols for efficiently recognisable sets.
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Query phase:
The client sends = (c1, . . . , cm) to the server, where ci ← Encpk(αi) for i ∈ {1, . . . , m}.

Transfer phase:
The server computes the reply = (d1, . . . , dn) according to the original protocol Π
The server applies one-time pad ei ← di · Encpk(ti) for ti ← N and i ∈ {1, . . . , m}.
The server computes the CDS reply cds for Decsk( ) ∈ S with secret a β = t1‖ . . . ‖tm.
The server replies (e1, . . . , en) and cds.

Post-processing:
The client recovers the secrets ti from cds and computes d̂i ← ei · Encpk(−ti).
Next, the client proceeds with the original protocol Π.

Protocol 2: DS transformation for additively homomorphic two-message protocols

CDS transformation. It is straightforward to use a CDS protocol to transform any
additively homomorphic two-message protocol that is secure in the semihonest model
to a modified two-message protocol that is relaxed-secure. Let the query q consist of
m ciphertexts (c1, . . . , cm). Protocol Π is secure in the semihonest model, when there
exist a set of valid inputs S such that the client learns only f(α, β), provided that
Decsk(q) = (α1, . . . , αm) ∈ S. Let us use a sufficiently long secret β as a one-time
pad to decrypt the original reply a and release the secret only if Decsk(q) ∈ S. Then the
corresponding protocol is clearly relaxed-secure. In many cases, the reply a consists of
re-randomised ciphertexts and we can reduce the length of the secret β, see Prot. 5.

Theorem 5. If the two-message additively homomorphic protocol Π is correct, (τ, ε1)-
client-private and ε2-simulatable for α ∈ S and the CDS protocol for the set S is
ε3-simulatable, then Protocol 5 is correct and (τ, ε1; max {ε2, ε3})-relaxed-secure.

Proof. Due to the re-randomisation, the recovered replies d̂i have the same distribution
as di, thus correctness is evident. Client-privacy is evident as both protocols share the
query q. For server-privacy, note that if α ∈ S, we can first use the original simulator
to simulate di and then apply the CDS transformation to the simulation output. The
corresponding simulation is ε2-close to the real run, since the original reply is not more
than ε2 away from the simulated one. Otherwise, (e1, . . . , en) are random ciphertexts
and thus perfectly simulatable. Now if we add a simulated CDS reply âcds, then the
aggregated reply âcds, e1, . . . , en is ε3-close to the real protocol transcript, as the CDS
is ε3-simulatable. The claim follows, as Decsk(q) is either in S or not. 	


Optimisations. If all replied ciphertexts of the original protocol are in the fixed range,
i.e., Decsk(di) ∈ {0, 1}� then full recovery of ti is not necessary. It is sufficient to send
ti mod 2� together with a extra bit needed to indicate a possible wrapping ti ≥ N −2�

and the message expansion rate can be less than L(Ψ). Secondly, note that the commu-
nication overhead of the CDS transformation is linear in |a|. Therefore, the transfor-
mation is quite inefficient when |a| is long. To get better performance, the server can
use symmetric encryption to garble the original reply and a CDS protocol to release the
corresponding key. The output is still computationally simulatable and thus we achieve



A New Protocol for Conditional Disclosure of Secrets and Its Applications 219

computational server-privacy. A block cipher in counter mode is the best encryption
method, as then the client can efficiently decrypt only necessary parts of a.

6 Practical Applications of Crypto-computing Techniques

In this section, we show how to use additively homomorphic two-message protocols
to solve several important cryptographic tasks. Here, the query q is a vector of cipher-
texts, and the reply is computed by combining the identities (1) and (2) with Prot. 4.
Note that the outputs of crypto-computed sums and products are perfectly simulat-
able provided that the end result is re-randomised. Consequently, client-privacy fol-
lows form (τ, ε1)-IND-CPA security and server-privacy follows from the basic proper-
ties of forked composition, see Thm. 1 and 2. Shortly put, the resulting protocols are
(τ − O(1), mε1; nε2)-relaxed-secure, where m is the number of ciphertexts and n is
the number of DIE instances, provided that the basic DIE protocol is ε2-simulatable.

Sometimes we must also prove that knowledge of f(α, β) is equivalent to the knowl-
edge of f1(α, β), . . . , fs(α, β), i.e., design a protocol for f based on generic opera-
tions. As for 1024-bit Paillier and 2−80-server-privacy, we can transfer 393 bits in the
individual DIE reply whenever the number of DIE instances is less than 240, the result-
ing protocols are really efficient.

Oblivious transfer. Recall that a 1-out-of-n oblivious transfer (OT) protocol imple-
ments an ideal functionality f(α; β1, . . . , βn) = βα if α ∈ {1, . . . , n} and ⊥ other-
wise. Already in [AIR01], the authors showed that such a protocol can be expressed as
a forked composition of n individual DIE protocols:

– release β1 if α = 1,
...

– release βn if α = n.

Therefore, we get a relaxed-secure implementation of oblivious transfer by using Prot. 4
to implement all instances of DIE protocols. Moreover, a client can use any CPIR pro-
tocol to obliviously choose the αth reply of the DIE. Hence, we have just described a
generic transformation from any CPIR to a relaxed-secure oblivious transfer.

An alternative approach was taken by Chang [Cha04] who proved that the basic
DIE protocol from [AIR01] leaks at most βα1 mod p1 and βα2 mod p2 whenever
the plaintext order is a product of two primes p1 and p2. In the corresponding 1-out-of-
n OT protocol an honest client has to encrypt values that depend on the secret key and
thus the client-privacy does not follow directly from IND-CPA security.

Millionaire’s protocol with logarithmic communication. The millionaire’s problem
is: given client’s private input α and server’s private input x, decide whether α > x.
Although numerous solutions have been proposed for this problem, none of the pro-
posals is completely satisfactory. For example, the two-message protocol of Blake and
Kolesnikov [BK04] is server-secure only in the semihonest model since encrypted in-
puts must be in correct range, it can leak information otherwise. To solve that type of



220 S. Laur and H. Lipmaa

problems, consider a circuit CDS protocol for a public set Sx ={α ∈ {0, 1}m : α > x}.
Writing α bit by bit (αm−1, . . . , α0), we obtain

ΨSx(α) =([αm−1
?=1] ∧ [xm−1

?=0])∨
([αm−1

?=xm−1] ∧ [αm−2
?=1] ∧ [xm−2

?=0])∨
([αm−1

?=xm−1] ∧ [αm−2
?=xm−2] ∧ [αm−3

?=1] ∧ [xm−3
?=0]) ∨ · · · ∨

([αm−1
?=xm−1] ∧ [αm−2

?=xm−2] ∧ · · · ∧ [α1
?=x1] ∧ [α0

?=1] ∧ [x0
?=0]) .

Here, every row corresponds to one conjunctive affine equality test. Fig. 1 depicts the
corresponding unoptimised circuit. Now consider the modified protocol where β0 is
a publicly fixed �-bit secret and the server randomly reorders the leaf CDS replies
a1, . . . , am. Finally, the client outputs 1 if one of the recovered CDS outputs is β0.
As the formula ΨSx(α) is a disjunction of affine zero tests, then in the ideal world,
the client learns a randomly shuffled set {β0, ⊥, . . . , ⊥} if α > x and {⊥, ⊥, . . . , ⊥}
otherwise. Hence, the modified protocol is server-private even if x is private and we
have obtained a relaxed-secure solution to the millionaire problem that fails with prob-
ability 2−�. The total communication of our solution is 2m ciphertexts, the client’s
computation is Θ(m) and the server’s computation is Θ(m2), and we only assume that
the underlying additively homomorphic cryptosystem is IND-CPA secure. The server’s
workload can be reduced Θ(m) as in the Blake-Kolesnikov protocol, if we first crypto-
compute a recursion ti = (αi − xi)ri + · · · + (αm−1 − xm−1)rm−1 for ri ← ZN and
then re-randomise it by crypto-computing ui = tisi for si ← ZN .

Interestingly enough, one can view our solution as an efficient generalisation of the
Fischlin protocol [Fis01]. The latter can be alternatively described as a CDS protocol
based on additively homomorphic cryptosystem over Z2. Due to the small message
space, the Fischlin’s protocol requires a parallel run of � protocols to achieve the same
reliability as our protocol, i.e., our protocol is � times more efficient.

Conditional OT. In a conditional oblivious transfer protocol for public predicate Ψ ,
the client has a private input α and the server has a private input (x, β0, β1). The client
obtains β1 if Ψ(α, x) = 1 and β0 otherwise. Assume that the master secret β is recon-
structed identically for the circuits without witnesses Ψ and ¬Ψ and the reconstruction
process and the number of true leaves leaks nothing about x except Ψ(α, x). In partic-
ular, assume that the master secret can be reconstructed from randomly shuffled shares.
Let BΨ(α,x) and B¬Ψ(α,x) be the shuffled CDS replies in the ideal world. Then given a
shuffled set of sets {BΨ(α,x), B¬Ψ(α,x)}, one can learn only βΨ(α,x) and nothing more,
provided that the number of leaf tests is equal |BΨ(α,x)| = |B¬Ψ(α,x)|.

This leads to the following COT protocol. First, the server assigns β0 to ¬Ψ and
β1 to Ψ and adds trailing zeroes to leaf secrets of one circuit and trailing ones to the
remaining sub-secrets. Next, the server constructs replies for each leaf CDS and sends
randomly shuffled replies back. Finally, the client restores sets BΨ (α, x) and B¬Ψ(α,x)

and reconstructs βΨ(α,x). The failure probability is bounded by 2−k·L(Ψ) where k is the
number of trailing zeroes and ones. Since [α > x] and [α ≤ x] have such symmetrical
circuits, we can construct a COT protocol for [α > x] and for many other relations.

Electronic voting and auctions without random oracles. E-voting and auction proto-
cols based on homomorphic encryption [CGS97, DJ01, LAN02] are natural extensions
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of homomorphic two-message protocols, since the secret key is known by the elec-
tion tallier (or a coalition of talliers) to whom the server forwards the second mes-
sage. In such protocols, conditional disclosure of secrets can be used to guarantee
security of the election authority against malicious voters and a semihonest server. As
in [BGN05], consider an electronic voting protocol where every voter sends an encryp-
tion ci ← Encpk(vi) to talliers. We assume that the protocol is secure if vi ∈ S for some
publicly known set S; this is true in typical e-voting protocols [CGS97, DJ01].

In the existing protocols, it is usually assumed that every voter accompanies his or
her vote with a non-interactive zero-knowledge proof that vi ∈ S. Instead, the talliers
can jointly apply the CDS protocol, with output secret 0, to ci (this can be done very
efficiently if S is the set of powers of a fixed integer) and then threshold-decrypt the
result. If the plaintext is equal to 0, talliers accept the vote as correct. Of course, every
step of the talliers has to be accompanied by a zero-knowledge proof of correctness (to
each other and to every possible outside observer), but since the number of talliers is
significantly smaller than the number of voters, this is doable in practise, see [BGN05].

As the result, we get a voter-private, universally verifiable and robust e-voting
scheme where the voters only have to perform one encryption, assuming only that there
exists an IND-CPA secure additively homomorphic public-key cryptosystem. The same
trick can be used to eliminate the need for random oracles in a similar electronic auction
scheme of [LAN02] and in many other similar protocols. Compared to the protocols
of [BGN05], our protocols are more efficient since they are based on genuine addi-
tive homomorphic cryptosystem whereas [BGN05] uses a lifted version of ElGamal
and thus there one has to compute discrete logarithms. Moreover, their cryptosystem is
secure under less established security assumptions.

Multiplicative relations and polynomial arithmetic. Finally, we illustrate the power
of using auxiliary witnesses. It is well known that multiplicative relation [z ?=xy] does
not have a compact NNF. However, we can still construct efficient circuit CDS protocol
by introducing a suitable witness w. Let x, y ∈ {0, 1}m and z ∈ {0, 1}2m be sent to the
server by individually encrypting each bit of x, y, z and let w0, . . . , wm−1 be auxiliary
variables such that wi = xyi. Then xy = w0 + 2w1 + · · · + 2m−1wm−1 and the
formula Ψ[z=xy] can be expressed as a conjunction of tests: (1) xm−1, . . . , x0 ∈ {0, 1},
(2) [yi

?=0]∧[wi
?=0]∨[yi

?=1]∧[wi
?=x] for i ∈ {0, . . . , m − 1} and x is crypto-computed

as x0 + · · · + 2m−1xm−1, and (3) [z ?=w0 + · · · + 2m−1wm−1].
Several papers, see e.g. [KS05], use additively homomorphic two-message protocols

in a setting where one encrypts the coefficients of some polynomials, where the im-
portant quantity is the set of roots of this polynomial. For example, if F1 is the set of
roots of f1(x) and F2 is the set of roots of f2(x) then F1 ∪ F2 is the set of roots of
f1(x) · f2(x). Consequently, we can also construct a CDS protocol for the set to prove
that g(x) = f1(x) · f2(x), as the ith coefficient gi = f10f2i + · · · + f1if20. Now, we
can also verify that for some sets F1, F2 and G, it holds that F1 ∪ F2 = G.

7 Theoretical Implications

Although we stated our results in the PKI model, where a trusted key generator gen-
erates a key pair (sk, pk) ← Gen and privately transfers (sk, pk) to the client and pk
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to the server, they can be easily implemented in the standard model. Namely, we can
eliminate the PKI assumption if the client executes once, separately and in an isolated
manner (that is, no other messages of different protocols are sent by the client at the
same time), with every server a zero-knowledge proof of knowledge that pk is valid
and that he knows the corresponding secret key. This is followed by the real protocol.
In the security proof, the simulator extracts the secret key by rewinding and thereafter
continues to work as previously. Since we require statistical server-security—and thus
can use an unbounded simulator—then it is actually sufficient to have a zero-knowledge
proof that the key is correct: the simulator just computes the secret key corresponding to
the (correct) public key. It is even irrelevant whether the client computes the public key
with a correct distribution, since for the proof we only need the existence of the secret
key. Therefore, the amortised message complexity is still two-messages in the standard
model, as the verification of a public key must be carried out only once.

It is well known that secure two-party protocols require at least three messages, there-
fore, it is impossible to obtain full security of two-message protocols in the malicious
model. In fact, one cannot achieve more than relaxed-security in two messages even
in the PKI model. Consequently, the CDS-transformation presented in Sect. 5 is a uni-
versal round-optimal transformation from semihonest model to relaxed-secure model
whenever the first message contains only ciphertexts. Moreover, computational and
communication resources are linear in the size of the circuit that is needed to test a
validity of an input. More formally, assume that for sets Sm of m-bit strings exists a
polynomial-size formula Ψ(α, w) such that α ∈ Sm iff ∃w : Ψ(α, w) = 1. Then
there exists also a polynomial-size formula Ψ(α, w) in a negation normal form such
that α ∈ Sm iff ∃w : Ψ(α, w) = 1. Therefore, there exist a family of polynomial-time
CDS protocols for an arbitrary set S in NP/poly. Such protocols can be automatically
generated in polynomial time for every set S that can be described by any NP relation.

Alternative classical round-preserving methods that guard against malicious clients
are based on non-interactive zero-knowledge proofs, i.e., we have to either rely on ran-
dom oracles or use the common reference string (CRS) model. While CRS is a plausible
model for protocol design, constructing efficient non-interactive zero-knowledge proto-
cols for NP in the CRS model has been a long-standing open problem. Thus, our result
is also appealing from the complexity-theoretical viewpoint.

As stated already in Sect. 6, the DIE-based OT protocol leads to a general trans-
formation from CPIR to information-theoretically server-private OT, as the client can
use the CPIR protocol to fetch only the answer of the αth DIE protocol. In particular,
there exists a generic CPIR construction for any IND-CPA secure additively homomor-
phic cryptosystem [Ste98] with sublinear-but-superpolylogarithmic communication.
Therefore, there exists also an OT protocol with comparable communication under the
sole assumption that IND-CPA secure additively homomorphic cryptosystems exists.
Under the assumption that IND-CPA secure length-flexible additively homomorphic
cryptosystem exist, one can construct a CPIR protocol [Lip05] with communication
Θ(k · log2 n + � · log n) where k is the security parameter. Consequently, we can
construct an OT with communication Θ(k · log2 n + � · log n), if an IND-CPA se-
cure length-flexible additively homomorphic cryptosystem exists. Finally due to the
results of Gentry and Ramzan [GR05], there also exists an OT protocol with optimal
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communication Θ(log n + � + k), if we assume that Φ-Hiding is hard and that an
IND-CPA secure additively homomorphic cryptosystem exists.

Another two-message OT protocol was proposed by Kalai [Kal05]. Her protocol is
secure in the standard model, whereas our protocol requires a zero-knowledge proof that
the public key is valid. On the other hand, the query of Kalai’s protocol does not consist
of ciphertexts and thus cannot be used for the CDS protocol. Moreover, Thm. 3 holds
even with incorrectly formed pk provided that the corresponding encryption rule is ad-
ditively homomorphic and it is still possible to detect invalid ciphertexts. Therefore, we
can omit the zero-knowledge proofs for pk provided that we can verify that the plain-
text order does not have too small factors. For small enough γ and public plaintext order
this can be done efficiently by using Lenstra’s Elliptic Curve Method, see App. A for
further details. Hence, it is possible to achieve two messages as non-amortised round-
complexity in the standard model under stronger computational assumptions.

Finally, note that small detectable factors of N can be effectively eliminated. Namely,
a server can eliminate a known factor p by multiplying a ciphertext Encpk(x) with
Encpk(pr) for r ← ZN . Then the client can learn only a coset x + pZN , i.e., we have
established a new cryptosystem over a new message space ZN/pZn � ZN/p.
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Scalar Product Computation for Privacy-Preserving Data Mining. In Information
Security and Cryptology - ICISC 2004, volume 3506 of Lecture Notes in Computer
Science, 2004. Springer-Verlag.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption and How to Play
Mental Poker Keeping Secret All Partial Information. In Proceedings of the Four-
teenth Annual ACM Symposium on Theory of Computing, 1982. ACM.

[GR05] Craig Gentry and Zulfikar Ramzan. Single-Database Private Information Retrieval
with Constant Communication Rate. In The 32nd International Colloquium on
Automata, Languages and Programming, ICALP 2005, volume 3580 of Lecture
Notes in Computer Science, 2005. Springer-Verlag.

[Kal05] Yael Tauman Kalai. Smooth Projective Hashing and Two-Message Oblivious
Transfer. In Advances in Cryptology — EUROCRYPT 2005, volume 3494 of Lec-
ture Notes in Computer Science, 2005. Springer-Verlag.

[KS05] Lea Kissner and Dawn Song. Privacy-Preserving Set Operations. In Advances in
Cryptology — CRYPTO 2005, 25th Annual International Cryptology Conference,
volume 3621 of Lecture Notes in Computer Science, 2005. Springer-Verlag.

[LAN02] Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey Auctions without
Threshold Trust. In Financial Cryptography — Sixth International Conference,
volume 2357 of Lecture Notes in Computer Science, 2002. Springer-Verlag.

[Len87] Hendrik W. Lenstra, Jr. Factoring integers with Elliptic Curves. Annals of Mathe-
matics, 126(2), 1987.

[Lip05] Helger Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communica-
tion. In The 8th Information Security Conference (ISC’05), volume 3650 of Lecture
Notes in Computer Science, 2005. Springer-Verlag.

[LLM05] Sven Laur, Helger Lipmaa, and Tanel Mielikäinen. Private Itemset Support Count-
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A Non-interactive Partial Public Key Validation

Next, we propose another technique to transform the proposed protocols to be secure in
the the standard model. It does not need extra messages but needs an extra amount of
computations by an honest server. Namely, Thm. 3 holds even with incorrectly formed
pk provided that the corresponding encryption rule is additively homomorphic and it
is still possible to detect invalid ciphertexts. In particular, the Paillier cryptosystem is
homomorphic even if a public modulus N is incorrectly formed. Thus, the verifica-
tion of pk can just consist of computing a lower bound γ on factors of N . For small
enough γ this can be done efficiently by using Lenstra’s Elliptic Curve Method [Len87]
which works in time exp((

√
2 + o(1))

√
ln p · ln ln p) where p is the smallest factor of

N [ZD06]. If we want the server’s computation to be polynomial in log N then we
have to take a sufficiently small �. To provide some concrete numbers note that ECM
allows “efficient” detection of 88-bit factors. Assume that the desired server-privacy
level is 2−40. Such a choice of ε2 is most probably sufficient in practise. Then, in the
case of the DIE protocol, one has � = 47, which is sufficient for several applications. In
Spring 2006, we verified this approach by using the suggested optimal parameters from
[Zim06b], on an AMD Athlon 64 3000+ processor by using the GMP-ECM software.
As an example, if N = pq, where p is an 88-bit prime and q is an (1024 − 88)-bit
prime then one has to run the ECM algorithm on an expected 206 curves with bounds
B1 = 50 000 and B2 = 5 000 000. Testing on one curve with these parameters takes
approximately 2.5 seconds, and thus testing that the smallest factor is greater than 289

takes 9 minutes on average. On the other hand, if q is an 66-bit prime then it takes an
expected 77 curves with bounds B1 = 11 000 and B2 = 1 100 000. On the same plat-
form, testing one curve with these parameters takes approximately 0.66 seconds and
checking the bound 267 takes 51 seconds on average. Given the advances in the ECM,
we would expect the quoted timings to decrease dramatically over the next few years.
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Abstract. Existing protocols for private set intersection are based on
homomorphic public-key encryption and the technique of representing
sets as polynomials in the cryptographic model. Based on the ideas of
these protocols and the two-dimensional verifiable secret sharing scheme,
we propose a protocol for private set intersection in the information-
theoretic model. By representing the sets as polynomials, the set inter-
section problem is converted into the task of computing the common
roots of the polynomials. By sharing the coefficients of the polynomials
among parties, the common roots can be computed out using the shares.
As long as more than 2n/3 parties are semi-honest, our protocol correctly
computes the intersection of n sets, and reveals no other information
than what is implied by the intersection and the secrets sets controlled
by the active adversary. This is the first specific protocol for private
set intersection in the information-theoretic model as far as we know.

Keywords: Secure multi-party computation, privacy-preserving set
intersection, unconditional security.

1 Introduction

This paper studies the following problem: n parties each with a secret set want
to compute the intersection of these sets without leaking anything else about
the secret sets. This problem is a specific case of secure multi-party computa-
tion, which is introduced by Yao [10], and extended by Goldreich, Micali and
Wigderson [5]. The goal of secure multi-party computation is to design a protocol
for the parties each with a secret input to compute securely a public function of
their inputs. The protocol should be correct and private. Correctness means that
every party believes the correctness of the output. Privacy means that no party
can learn more than what is implied by its output and its own input. For the
set intersection problem, the inputs are the parties’ secret sets and the output
is the intersection of these sets (all the parties get the intersection and nothing
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about other parties’ secret sets). Protocols for private set intersection are useful
in online recommendation services, online dating services, medical databases,
data mining, etc., as pointed out by Freedman, Nissim and Pinkas [4].

Related work. The set intersection problem is studied in [4,7,8], where sev-
eral protocols are presented in the cryptographic model based on homomorphic
public-key encryption. In the information-theoretic model, many general secure
computation protocols are proposed (e.g. [3,1,6,2]). Solutions to the set intersec-
tion problem can be derived from these general protocols from the theoretical
point of view, however, how to modify the general protocols to solve the set
intersection problem is not known.

Our work. This paper presents a protocol for the set intersection problem in the
information-theoretic model. The protocol uses the idea of representing a set as a
polynomial [4,7,8] and the two-dimensional verifiable secret sharing used in the
general unconditionally secure protocols (e.g. [3,2]). Our protocol follows the
share-compute-recover paradigm for general constructions in the information-
theoretic model. By representing the parties’ secret sets as polynomials, the set
intersection problem is converted into the task of computing the common roots
of these polynomials. Then the coefficients of the polynomials are shared using
two-dimensional secret sharing scheme and the common roots of the polynomials
are computed out using the shares. This is the first specific protocol for the
intersection problem in the information-theoretic model as far as we know.

Assuming that an active adversary corrupts less than n/3 parties, the pro-
posed protocol enables n parties each with a secret set to compute privately the
intersection of these sets and leaks no other information than what is implied
by the intersection and the secret sets controlled by the adversary. The security
of the protocol is proved and efficiency is analyzed in Section 4.

The proposed protocol is efficient in terms of communication complexity. The
protocol demands 6 rounds of communication and exchanges O(n4k2) elements
in E, where k is the size of the secret sets and E is a large finite field. The most
efficient general protocol in the information-theoretic model is due to [2]. The
protocol uses circuit randomization technique (for details, see[1]) and consists of
preparation phase, input phase, and computation phase. If the protocol is ap-
plied to the set intersection problem, then at least nk random numbers should
be shared in the pre-processing phase, which needs O(n4k) elements to be ex-
changed. As no article considers applying the general unconditionally secure
protocols to the set intersection problem before, so we cannot estimate the total
communication complexity, thus only a partial comparison is provided here.

2 Preliminaries

2.1 Adversary and Communication Models

Adversary model. A cheating party in a protocol is modelled as an adversary
who can corrupt parties. There are two kinds of adversaries. A passive adversary
learns the information hold by the corrupted parties, but the corrupted parties
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still act correctly according to the protocol. An active adversary not only learns
the information hold by the corrupted parties but also takes full control of them.
The two models are called passive model and active model respectively.

Communication model. There are two communication models in secure com-
putation: cryptographic model and information-theoretic model. The first model
assumes that parties are connected by public channels, and parties have bounded
computation power (probabilistic polynomial time) and the adversary can see
all the messages exchanged among the parties. The second model assumes that
there are pair-wise secure channels among parties, and parties have unbounded
computation power and the adversary can not learn the messages exchanged
between the honest (i.e. uncorrupted) parties.

In the paper, we assume both passive and active adversaries, and we assume
the information-theoretic model.

2.2 Polynomial Representation of Sets

Notation. Let E denote a large finite field. E[x] consists of all the polynomi-
als whose coefficients are chosen from E, and the probability that a random
polynomial (i.e. the coefficients are chosen randomly from E) in E[x] represents
elements of U is negligible.

We use the technique of representing sets as polynomials [4]. Let S be a set of
size k. A polynomial of degree k can be constructed: f(x) = a0 +a1x+ ...+akxk,
f(a) = 0 if and only if a ∈ S, where the coefficients of f(x) are chosen from E.

In [7,8], Kissner and Song convert the set intersection problem into the task
of computing the roots of a polynomial by use of the polynomial representation
of sets. This paper follows the idea of the protocols for set intersection in [7,8].
We briefly review their idea as follows.

Let r(x) be a random polynomial in E[x]. If a is the root of f(x) then a
is the root of f(x)r(x) too, that is, f(x)r(x) preservers all the roots of f(x).
Let S1, ...Sn be n sets, and the polynomials f1(x), ..., fn(x) represent S1, ...Sn

respectively. Let r1(x), ..., rn(x) be n random polynomials in E[x]. Then the
roots of f1(x)r1(x) + ... + fn(x)rn(x) represent the intersection of S1 ∩ ... ∩ Sn.

2.3 Two-Dimensional Verifiable Secret Sharing

Secret sharing is firstly introduced by Shamir [9]. A secret s can be shared with
a polynomial of degree t: f(x) such that f(0) = s. Let α1, ..., αn be public
parameters chosen in E. Pi’s share is Piecei(s) = f(αi), i = 1, ..., n. Shamir’s
secret sharing scheme is extended to two-dimensional secret sharing [3,6]. Each
secret value is shared among the players with a polynomial of degree t, and each
share is again shared among the parties with a polynomial of degree t. Let Piecei

denote a share, and Pieceij (sometimes written as Piecei,j, e.g. Piecei,2k(s))
denote a share-share.

Sharing. To share a secret s, a party chooses a random two-dimensional poly-
nomial p(x, y) =

∑t
i,j=0 rijx

iyj such that p(0, 0) = s, and sends to Pi the
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two polynomials fi(x) = p(x, αi), f̃i(y) = p(αi, y), i = 1, ..., n. Pi’s shares are
Piecei(s) = fi(0), Pieceji(s) = f̃i(αj) = p(αi, αj), j = 1, ..., n. We say that the
party t-shares s or s is t-shared.

Verifying the correctness of sharing. For i = 1, ..., n, each party Pj (j �= i)
sends to Pi the share-share Pieceij(s) = fj(αi), and Pi checks if the received
value is equal to f̃i(αj).

Linear function. Let a, b be two secrets shared among the parties, and r be a
constant integer, parties can compute locally the sharing of the new secrets ra
and a + b.

Multiplication of two secrets. Let a, b be two secrets shared among the
parties, the goal is to produce the t-sharing of a new secret c = ab among the
parties. The computation procedure develops in two steps: local computation
and degree reduction.

The degree reduction phase involves mainly a sub-protocol: re-share protocol.
The re-share protocol allows parties to produce t-shares of a secret given its t′-
shares. In the active model, when a party t-shares his share Piecei(s), he proves
that the shared value is indeed Piecei(s). The details for re-sharing protocol can
be found in [6].

Reconstruction. Let s be t-shared among the parties. To reveal the secret s
to a designated party, all other parties send their shares of s to the designated
party, then the party recovers the secret using Lagrange Interpolation.

Error correction. In the active model, a party may receive wrong shares from
corrupted parties when reconstructing a secret. Parties can perform locally error
correction to get n correct shares, and recover the secret (see [3] for details).

3 The Proposed Protocol for Private Set Intersection

A protocol in the passive model is constructed first. The protocol in the active
model is constructed based on the protocol in the passive model. The two pro-
tocols develop similarly except that some verifications and proofs are added to
the second protocol.

3.1 Construction in the Passive Model

Let P1, ..., Pn be n parties connected with pair-wise secure channels. Assume
parties are computationally unbounded and a passive adversary is allowed to
corrupt t < n/2 parties. P1, ..., Pn have secret sets S1, ..., Sn respectively. Let
k be the size of the sets and S[j] denote the j-th element of S. Then a set S
can be represented as a polynomial of degree k in E[x]: f(x) = (x − S[1])...(x −
S[k])=a0 + a1x + ... + akxk.

The main idea. Each party represents his secret set as a polynomial of k
degree. Let f1(x) = a10 + a11x + ... + a1kxk, f2(x) = a20 + a21x + ... + a2kxk,
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..., fn(x) = an0 + an1x + ... + ankxk be the n parties’ polynomials respectively.
Let r1(x), ..., rn(x) be n random polynomials of degree k. If the coefficients of
fi(x), ri(x), i = 1, ..., n, are shared, then the shares of the coefficients of the
polynomial F (x) = f1(x)r1(x) + f2(x)r2(x) + ... + fn(x)rn(x) can be computed.
Each party publishes his shares of the coefficients of F (x), then every party can
recover the polynomial F (x) and evaluate it at each element of his secret set. If
the function value equals to zero then the element belongs to the intersection,
else the element does not belong to the intersection. Thus the parties compute
out the intersection of the sets. The protocol is composed of three phases: input
phase, computation phase and output phase.

Input Phase
Step 1. Each party represents his secret set as a polynomial and shares the
coefficients of the polynomial among the parties.

- For i = 1, ..., n, Pi represents his secret set as a polynomial fi(x).
- For i = 1, ..., n, Pi t-shares the coefficients of his polynomial (e.g. Pi uses

fij(x) to share aij , j = 0, ..., k).

Step 2. The parties produce jointly the t-sharing of n random polynomials of
degree k.

- For i = 1, ..., n, Pi produces n random polynomials of degree k: ri1(x) =
bi10 + bi11x + ... + bi1kxk, ri2(x) = bi20 + bi21x + ... + bi2kxk, ..., rin(x) =
bin0 + bin1x + ... + binkxk.

- For i = 1, ..., n, Pi t-shares the coefficients of the n random polynomials
among the parties. E.g. Pi uses rij0(x), rij1(x), ..., rijk(x) to share bij0,
bij1,..., bijk respectively, j = 1, ..., n.

- For i = 1, ..., n, Pi computes the t-shares of the following n polynomials of
degree k rj(x) =

∑n
j′=1 rj′1(x) = wj0 +wj1x+ ...+wjkx

k, j = 1, ..., n, as be-
low: Piecei(wj0) =

∑n
j′=1 Piecei(bj′10), Piecei(wj1) =

∑n
j′=1 Piecei(bj′11),

..., Piecei(wjk) =
∑n

j′=1 Piecei(bj′1k), j = 1, ..., n.

Computation Phase
Let fj(x)rj(x) = zj0 + zj1x + ... + zj,2kx2k, j = 1, ..., n, and F (x) = f1(x)r1(x)
+ f2(x)r2(x) +... + fn(x)rn(x)= z0 + z1x + ... + z2kx2k.
Step 1. Compute the 2t-shares of the coefficients of f1(x)r1(x), f2(x)r2(x), ...,
fn(x)rn(x).

- For i = 1, ..., n, Pi computes locally the following values: Piecei(aj0)Piecei

(wj0), Piecei(aj0)Piecei(wj1), ..., Piecei(ajk)Piecei(wjk), j = 1, ..., n.

Step 2. Call the re-sharing protocol, and convert the 2t-shares of the coefficients
of f1(x)r1(x), f2(x)r2(x), ..., fn(x)rn(x) into t-sharing.

- For i = 1, ..., n, Pi t-shares the following values: Piecei(aj0)Piecei(wj0),
Piecei(aj0)Piecei(wj1), ..., Piecei(ajk)Piecei(wjk), j = 1, ..., n.
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- For i = 1, ..., n, Pi reconstructs the t-shares of aj0wj0, ..., ajkwjk: Piecei

(aj0wj0), Piecei(aj0wj1), ..., Piecei(ajkwjk), j = 1, ..., n.
- For i = 1, ..., n, Pi computes the t-shares of the coefficients of f1(x)r1(x),

f2(x)r2(x), ..., fn(x)rn(x) as below: Piecei(zj0) = Piecei(aj0wj0), Piecei

(zj1) = Piecei(aj0wj1)+Piecei(aj1wj0), ..., Piecei(zj,2k) = Piecei(ajkwjk),
j = 1, ..., n.

Step 3. Parties compute the t-shares of the 2k + 1 coefficients of F (x).

- For i = 1, ..., n, Pi computes the following 2k + 1 values: Piecei(zj) =∑n
j′=1 Piecei(zj′j), j = 0, ..., 2k.

Output Phase
Step 1. Each party sends his t-shares of the coefficients of F (x) to all other
parties.

Step 2. Find out the intersection.

- For i=1, ..., n, Pi reconstructs the 2k+1 coefficients of F (x) using Piece1(zj),
Piece2(zj), ..., Piecen(zj), j = 0, ..., 2k.

- For i = 1, ..., n, Pi evaluates F (x) at each element of his set. If the evaluation
is zero then the element belongs to the intersection, else the element does
not belong to the intersection. All the elements at which the evaluation is
zero form the intersection S1 ∩ ... ∩ Sn.

In the above protocol, it needs to compute the shares of the coefficients of
the multiplication of two polynomials given the shares of the coefficients of these
two polynomials. For example, let f(x), g(x) be two polynomials of degree k,
whose coefficients are shared among parties, we want to compute the sharing of
h(x) = f(x)g(x). Let cj , j = 0, ..., k be the coefficients of f(x), dj , j = 0, ..., k
be the coefficients of g(x), and let uj , j = 0, ..., 2k be the coefficients of h(x).
We have: u0 = c0d0, u1 = c0d1 + c1d0, ..., uk = c0dk + c1dk−1 + ... + ckd0,
uk+1 = c1dk + c2dk−1 + ... + ckd1, ..., u2k = ckdk. In these 2k + 1 expressions,
there are (k + 1)(k + 2) items of the form cidj , and the t-shares of cidj can
be computed out using the t-shares of ci, dj . Then the t-shares of u′j , j′ =
0, ..., 2k can be computed out as below: Piecei(u0) = Piecei(c0d0), Piecei(u1)
= Piecei(c0d1) + Piecei(c1d0), ..., Piecei(uk) = Piecei(c0dk) + Piecei(c1dk−1)
+ ... + Piecei(ckd0), Piecei(uk+1) = Piecei(c1dk) + Piecei(c2dk−1) + ... +
Piecei(ckd1), ..., Piecei(u2k) = Piecei(ckdk).

3.2 Construction in the Active Model

In the protocol described above, an active adversary can disrupt the security
in two ways. One is pointed at [7,8]: the adversary can use zero-polynomial
f(x) = 0 to replace the the polynomial used to represent a set. The other is that
the adversary can send wrong shares to parties when sharing a secret.

If a party uses zero-polynomial to represent his set, then it is equivalent to
that the party’s set is the union set and he can compute the intersection of other
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parties’ sets. In order to prevent the parties from using zero-polynomial, it is
enough to define 1 as the default value of the coefficients of the k-degree items.

In input phase and computation phase, whenever a secret is shared the cor-
rectness of sharing should be verified using the share-shares. Additionally, a party
should prove that he indeed shares the required value (not a random value) in
the re-sharing protocol.

In output phase, each party publishes his shares in order to compute out the
coefficients of F (x). For each coefficient of the polynomial F (x), each party gets
n shares among which at most t shares are from the adversary (there are at most
t wrong shares). In case there are wrong shares, parties can use error correction
procedure to correct errors and reconstruct the coefficients correctly.

Using the above methods of preventing cheating activities, the protocol in
Section 3.1 can be made secure against an active adversary as below.

Input Phase
Step 1. Each party represents his secret set as a polynomial and shares the
coefficients of the polynomial among the parties.

- For i = 1, ..., n, Pi represents his secret set as a polynomial fi(x).
- For i = 1, ..., n, Pi two-dimensionally shares the coefficients of fi(x).
- For i = 1, ..., n, Pi checks the correctness of each of the received shares using

the corresponding share-shares under the help of other parties.

Step 2. Parties produce jointly the t-sharing of n randompolynomials of degree k.

- For i = 1, ..., n, Pi chooses randomly n polynomials of degree k: rij(x) =
bij0 + bij1x + ... + bijkxk, j = 1, ..., n.

- For i = 1, ..., n, Pi two-dimensionally t-shares the coefficients bij0, bij1, ...,
bijk, j = 1, ..., n.

- For i = 1, ..., n, Pi verifies the correctness of each of the received shares under
the help of other parties.

- For i = 1, ..., n, Pi computes the t-shares of the following n polynomials of
degree k rj(x) =

∑n
j′=1 rj′1(x) = wj0 +wj1x+ ...+wjkx

k, j = 1, ..., n, as be-
low: Piecei(wj0) =

∑n
j′=1 Piecei(bj′10), Piecei(wj1) =

∑n
j′=1 Piecei(bj′11),

..., Piecei(wjk) =
∑n

j′=1 Piecei(bj′1k), j = 1, ..., n.

Computation Phase
Let fj(x)rj(x) = zj0 + zj1x + ... + zj,2kx2k, j = 1, ..., n, and F (x) = f1(x)r1(x)
+ f2(x)r2(x) +... + fn(x)rn(x)= z0 + z1x + ... + z2kx2k.
Step 1. Compute the 2t-shares of the coefficients of f1(x)r1(x), f2(x)r2(x), ...,
fn(x)rn(x).

- For i = 1, ..., n, Pi computes locally the following values: Piecei(aj0)Piecei

(wj0), Piecei(aj0)Piecei(wj1), ..., Piecei(ajk)Piecei(wjk), j = 1, ..., n.

Step 2. Call the re-sharing protocol, and convert the 2t-shares of the coefficients
of f1(x)r1(x), f2(x)r2(x), ..., fn(x)rn(x) into the t-shares.
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- For i = 1, ..., n, Pi two-dimensionally t-shares the values: Piecei(aj0)Piecei

(wj0), Piecei(aj0)Piecei(wj1), ..., Piecei(ajk)Piecei(wjk), j = 1, ..., n.
- For i = 1, ..., n, Pi checks the correctness of each of the received shares using

the corresponding share-shares under the help of other parties.
- For i = 1, ..., n, Pi proves that the shared values are indeed the multi-

plication of his shares: Piecei(aj0)Piecei(wj0), Piecei(aj0)Piecei(wj1), ...,
Piecei(ajk)Piecei(wjk), j = 1, ..., n.

- For i = 1, ..., n, Pi reconstructs the t-shares of aj0wj0, ..., ajkwjk: Piecei

(aj0wj0), Piecei(aj0wj1), ..., Piecei(ajkwjk), j = 1, ..., n.
- For i = 1, ..., n, Pi computes the t-shares of the coefficients of f1(x)r1(x),

f2(x)r2(x), ..., fn(x)rn(x) as below: Piecei(zj0) = Piecei(aj0wj0), Piecei

(zj1) = Piecei(aj0wj1)+Piecei(aj1wj0), ..., Piecei(zj,2k) = Piecei(ajkwjk),
j = 1, ..., n.

Step 3. Parties compute the t-shares of the 2k + 1 coefficients of F (x).

- For i = 1, ..., n, Pi computes the following 2k + 1 values: Piecei(zj) =∑n
j′=1 Piecei(zj′j), j = 0, ..., 2k.

Output Phase
Step 1. Each party sends his t-shares of the coefficients of F (x) to all other
parties.
Step 2. Find out the intersection.

- For i = 1, ..., n, Pi performs the error correction procedure to get n correct
shares for each of the 2k + 1 coefficients of F (x).

- For i = 1, ..., n, Pi reconstructs the 2k + 1 coefficients of F (x) using the
correct shares.

- For i = 1, ..., n, Pi evaluates F (x) at each element of his set. If the evaluation
is zero then the element belongs to the intersection, else the element does
not belong to the intersection. All the elements at which the evaluation is
zero form the intersection S1 ∩ ... ∩ Sn.

4 Security and Efficiency Analysis of the Proposal

4.1 Correctness and Security

Theorem 1. In the passive model, suppose at most t < n/2 parties collude, the
protocol in Section 3.1 is a solution to the private set intersection problem.

Proof. The correctness of the protocol is based on the polynomial F (x) =
f1(x)r1(x) + f2(x)r2(x) + ... + fn(x)rn(x), and the privacy is based on the ran-
domness of r1(x), r2(x), ..., rn(x) and the properties of the secret sharing scheme.

Correctness. Firstly, all the parties get the correct polynomial F (x). When
the input phase ends, all the coefficients of f1(x), ..., fn(x), r1(x), ..., rn(x)
are shared correctly among the parties. When the computation phase ends, the
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coefficients of F (x) are shared correctly among the parties. In the output phase,
each party publishes his shares and all the party can compute out the coefficients
of F (x), which means that, all the parties learn the polynomial F (x).

Secondly, all the parties learn the correct intersection S1 ∩ ... ∩Sn from F (x).
If the element a belongs to the intersection S1 ∩ ... ∩ Sn, then f1(a) = 0, ...,
fn(a) = 0 and f1(a)r1(a) = 0, ..., fn(a)rn(a) = 0, and F (a) = f1(a)r1(a) + ...
+ fn(a)rn(a) = 0. It is to say that, if a belongs to S1 ∩ ... ∩ Sn, then each party
learns F (a) = 0 when evaluating F (x) at the element a. If a does not belong to
S1∩...∩Sn, then at least there is one set, i.e., Si does not include a and fi(a) �= 0),
i ∈ {1, ..., n}, so the probability that fi(a)ri(a) = 0 is negligible (remember that
the probability that ri(x) represents the elements of sets is negligible) and the
probability that F (a) = f1(a)r1(a) + ... + fn(a)rn(a) = 0 is negligible. Thus if
a does not belong to S1 ∩ ... ∩ Sn, then the probability that a party whose set
includes a determines wrongly that a ∈ S1 ∩ ...∩Sn is negligible. This completes
the correctness proof.

Privacy. Before output phase, the protocol leaks no information about coeffi-
cients of the polynomials, or equivalently, the secret sets. In computation phase,
the parties need to reconstruct some secrets when running the re-sharing pro-
tocol. In the re-sharing protocol, a party is allowed to reconstruct Piecei(c), a
share of the multiplication of two shared secrets, say a, b. As there are at most t
parties collude and t parties cannot recover the shared secrets, so the facts that
parties reconstruct the Piecei(c)s does not leak anything information about c,
not even to say the secrets a or b.

In output phase, the parties only learn S1 ∩ ... ∩ Sn from F (x). The poly-
nomials r1(x), ..., rn(x) are random due to the fact that at least n − t parties
honestly choose random polynomials from E(x) when jointly producing n ran-
dom polynomials. The randomness of r1(x), ..., rn(x) hides the elements at which
the evaluation of F (x) is nonzero. This completes the privacy proof. ��
Theorem 2. In the active model, suppose at most t < n/3 parties collude, the
protocol in Section 3.2 is a solution to the private set intersection problem.

Proof. An active adversary cannot disrupt the privacy of the protocol due to
two reasons. First, less than t + 1 colluding parties cannot recover a shared
secret before output phase according to the properties of verifiable secret sharing
scheme. Second, the protocol allows at most t parties to collude. So an active
who corrupts t parties cannot recover the shared secrets. The proof of privacy
is similar to that of Theorem 1, and is omitted here.

Correctness. An active adversary cannot affects the correctness of the protocol.
In input phase, the coefficients of f1(x), ..., fn(x) are correctly t-shared, since
verification of correct sharing is performed whenever a secret is shared. Similarly,
the coefficients of the random polynomials r1(x), ..., rn(x) are correctly t-shared
among the parties. In the computation phase, the parties communicate only
when the re-sharing protocol is recalled. In the re-sharing protocol, when a party,
say Pi, re-shares his share, all parties jointly verify the correctness of sharing,
and Pi is asked to prove that the shared value is indeed the shares that he holds.
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So the computation phase is correct. The correctness of the output phase is
similar to the proof of Theorem 1 and is omitted here. ��

4.2 Efficiency

The protocol only uses simple operation like addition and multiplication, so we
only consider the communication complexity of the protocol. The communication
complexity is measured in elements in E.

The protocol in the passive model requires 3 rounds of communication. In
input phase, the sharing in step 1 and step 2 can be executed in parallel in 1
round. In computation phase, the re-sharing of secrets needs 1 round of com-
munication. In the output phase, parties publish their shares, which requires 1
round of communication.

The communication complexity of the protocol in the passive model is O(n3k2).
The communication complexity is dominated by computation phase, where each
party needs to share n(k + 1)(k + 2) secret values and the total communication is
O(n3k2).

In the active model, the protocol requires 6 rounds of communication. In input
phase, sharing of secrets requires 1 round and verification of correct sharing
requires 1 round. In computation phase, re-sharing of shares needs 1 round,
verification of correct sharing needs 1 round, and proof that the shared value is
indeed the required share needs 1 round. In output phase, publishing the shares
needs 1 round.

The communication complexity of the protocol in the active model is O(n4k2).
The communication complexity is dominated by computation phase. In com-
putation phase, each party re-shares n × (k + 1)2 secret values, which needs
n × (k + 1)(k + 2) × n2 elements to be sent. So the communication complexity
of the computation phase is O(n4k2).

5 Conclusion

This paper considers the private set intersection problem in the information-
theoretic model. We adopt the technique of polynomial representation of sets
used in the previous protocols in the cryptographic model. By representing sets
as polynomials, the set intersection problem is converted into the problem of com-
puting the common roots of polynomials. This paper follows the share-compute-
recover paradigm for the general protocols in the information-theoretic model,
and presents a protocol based on the two-dimensional secret sharing scheme.
The protocol consists of input phase, computation phase, and output phase.
The protocol allows an active adversary to corrupt t < n/3 parties and demands
6 rounds of communication and O(n4k2) elements in a large finite field to be
exchanged. It is interesting to consider whether the protocol can be improved
with the ”dispute control” technique [2] to allow t < n/2 colluding parties. In
the information-theoretic model, other problems like cardinality set intersection,
set union, etc. are also worthy of consideration.
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Abstract. Recently there has been a significant amount of work on
privacy-preserving set operations, including: set intersection [14,6,21,9],
testing set disjointness [17], multi-set operations [18], and set union
[16,1,18]. In this paper, we introduce novel protocols for privacy-
preserving set union in the malicious adversary model. More specifically,
each participant inputs a set of values, and at the end of the protocol,
each participant learns the items that are in at least one participant’s
set without learning the frequency of the items or which participant(s)
contributed specific items. To our knowledge our protocol is the most ef-
ficient privacy-preserving set union protocol for the malicious adversary
model to date.

1 Introduction

Recently there has been a significant amount of work on privacy-preserving set
operations, including: set intersection [14,6,21,9], testing set disjointness [17],
multi-set operations [18], and set union [16,1,18]. In this paper, we introduce
a new protocol for privacy-preserving set union (PPSU) in the malicious ad-
versary model. We are only aware of one other PPSU protocol that is secure
in the malicious adversary model, which was introduced in [18], and our new
protocol is more efficient than this protocol. An application of this work is the
following scenario: Suppose several hospitals treat a rare disease and that a re-
search group needs various information about patients with the disease in order
to develop alternative treatments. Because cases of the disease are so sparse, the
research group needs more than a single hospital’s data. Unfortunately, some
patients may have gone to multiple hospitals and these patients’ information
will taint the quality of the collected data. By using a secure set union proto-
col the research group can gather the information from multiple hospitals while
omitting duplicate patients without learning the identity of the patients. Fur-
thermore, PPSU has been used as a building block in some privacy-preserving
data mining protocols [16,23] and privacy-preserving graph algorithm protocols
[1], and thus we believe that improved protocols for PPSU will be useful in
many application domains.

Contributions: The contributions of this work are not only in a preliminary
protocol for PPSU, but also in several extensions of this protocol. We now
summarize our results:

J. Katz and M. Yung (Eds.): ACNS 2007, LNCS 4521, pp. 237–252, 2007.
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– Preliminary Protocols: Our preliminary protocols securely compute the set
union for: i) two parties in the honest but curious adversary model with
O(n) communication, ii) multiple parties in the honest-but-curious adversary
model with O(k2n) communication, and iii) multiple parties in the malicious
adversary model with O(n2k2 + k3n) communication (for sets of size n and
k participants). This is described in section 5. Note that for the complexities
given in this paper there is always an implicit security parameter.

– Padding: Our preliminary protocols reveal the number of items in each par-
ticipant’s sets. In section 6.1 we introduce modifications to our preliminary
protocol that allow participants to pad their sets with “dummy” items in
order to obfuscate this information. This is described in section 6.1.

– Cardinality: For some applications computing the size of the set union with-
out revealing the actual union is preferred. In section 6.2 we introduce a
protocol that reveals only the cardinality of the set union.

– Empty-set attack: One problem with any set union protocol is that a dishon-
est participant can use the empty-set as their input set. This is particularly
damaging if there are few participants; e.g., when there are only two partic-
ipants then this reveals the honest party’s set. In section 6.3 we introduce
counter-measures against this attack.

– Over-threshold set union: As discussed in [18] there are some situations where
participants want to know all items that are in at least t sets. In section 6.4
we introduce protocols that compute this “over-threshold” set union.

Outline: The rest of this paper is organized as follows. In section 2 we for-
mally describe the set union problem and the security models considered in this
paper. In section 3 we provide a detailed summary of previous work in privacy-
preserving set operations. In section 4, we introduce several building blocks that
are used in our protocols, but which are not contributions of this paper. In sec-
tion 5 we introduce preliminary protocols for privacy-preserving set union. In
section 6, we describe several extensions to the preliminary protocols. Finally,
we conclude our paper in section 7.

2 Problem Definition

There are k participants, labeled P1, . . . , Pk, that have respective sets S1, . . . , Sk

that are drawn from a universe of items U . As a shorthand notation, we use ηi

to represent |Si|. To denote the specific items in a set Si we use the notation
(Si)1, . . . (Si)ηi . Note that the above notation implies an ordering on the items,
but this is just for ease of notation; that is, we do not assume the items are in
any specific order. To simplify the notation when giving the complexity analysis
of our protocols we use n = maxn

i=1 ηi and we assume that every party has n
items. The desired output of the protocol is that the participants learn ∪k

i=1Si.
We define security in the standard way (see [10] for more details), that is we

define an ideal model (using a trusted third party) and show that any polynomial-
time adversary in our protocol can be simulated by a polynomial-time adversary
in the ideal model.
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Ideal Model: In the ideal model the participants send their sets to a trusted third
party T , and then this party broadcasts the union of the sets along with the size
of each individual set to all of the participants. Note that this reveals slightly
more than the set union, specifically each participant’s set size is revealed.

Honest-But-Curious Adversaries: In this adversary model the participants will
faithfully follow the prescribed protocol, but will try to learn additional infor-
mation after the protocol. To prove security in this model, we show that the
transcript that is produced by our protocol could be simulated by an adversary
that has the output of the protocol. More specifically, we require that the simu-
lator be able to generate a transcript that is computationally indistinguishable
from the real transcript.

Malicious Adversaries: In the malicious adversary model the adversary will de-
viate from the protocol in an arbitrary fashion. The purpose of this deviation
can be several things, including: i) to learn more information about honest par-
ticipants’ values, ii) to change the result of the protocol, or iii) to terminate
the protocol prematurely. In this paper we do not consider early termination to
be a problem (although our protocols could be modified to prevent this using
standard techniques such as [11]). Thus to show our protocol is secure in this
model we show that: i) any transcript generated by the protocol can be simu-
lated given the results of the protocol and ii) that any result-changing action by
an adversary could be achieved by changing the adversary’s inputs in the ideal
protocol.

3 Related Work

The PPSU problem can be solved with the generic results of secure multiparty
computation [24,11]. While recent advances in malicious circuit evaluation [3]
show that it is possible to simulate a circuit efficiently in the malicious model,
the communication complexity of such a the scheme will still be the number
of gates in the circuit times a security parameter times a polynomial of k (the
specific polynomial depends on the scheme being used). The straight-forward
circuit for set union has O(k2n2 log |U|) gates (when given k parties whose sets
each contain n elements).

As mentioned earlier, many privacy-preserving protocols have been introduced
for set operations other than set union, including: set intersection [14,6,21,9],
testing set disjointness [17], and multi-set operations [18]. One might think that,
because of DeMorgan’s Law, a secure protocol for set union follows directly
from a secure protocol for set intersection. Specifically, one can compute ∪n

i=1Si,
by computing ∩n

i=1Si = U − (∩n
i=1(U − Si)). While this method does correctly

compute the set union, when U is significantly larger than ∪n
i=1Si this method

is inefficient. Thus, the results of this paper are most beneficial for applications
where the sets are chosen from large domains.

There have also been several protocols that privately compute set union
[16,1,18]. However, the previous solutions have not been fully satisfactory
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solutions. In [16], the protocol reveals superfluous information, such as the car-
dinality of the intersection between some participants’ sets, in order to improve
efficiency. The protocols in [1] was proven secure only in the honest-but-curious
adversary model (this protocol was for two parties and required O(n log |U |)
communication). Finally, the protocol given in [18] is secure in the malicious
model, but according to our analysis1 the communication complexity of their
honest-but-curious approach is O(k3n2), whereas our scheme has communica-
tion complexity O(k2n2 + k3n).

4 Building Blocks

In this section we outline the building blocks that are used by our protocols.

4.1 Homomorphic Encryption

In this paper we use a public-key semantically-secure [12] additively homomor-
phic encryption scheme, such as [22]. Throughout this paper we will denote the
encryption and decryption functions by Epk and Dsk respectively. Recall that
it is possible to add the plaintexts of two encrypted values by multiplying the
ciphertexts; that is, when given the encryptions Epk(x) and Epk(y), we can com-
pute Epk(x + y) by computing Epk(x) ∗ Epk(y). Also, when given Epk(x) it is
possible to compute Epk(c∗x) for any constant c by computing Epk(x)c. Finally,
we use homomorphic schemes where it is possible to re-encrypt a ciphertext value
to generate another ciphertext with the same plaintext value.

We utilize a threshold version of Paillier’s scheme throughout this paper, such
as the one presented in [2,4,8]. More specifically, we require a (k, k)-threshold
decryption algorithm, that is, the decryption key is distributed among all k
players, and the participation of all k players are required to decrypt a value.
We use the same model as [18], and we assume that the threshold keys have
already been distributed amongst the participants. The communication required
to perform a joint decryption is O(k).

4.2 Polynomial Representation of Sets

Several previous set operation results use polynomials to represent sets or multi-
sets [9,18]. Specifically, to represent a multi-set S = {s1, . . . , sn} we use the
polynomial (x−s1)(x−s2) · · · (x−sn), which we denote by fS(x). An important
property of this representation is that a value y is in the set S if and only if
fS(y) = 0.

To hide the value of a polynomially-represented set, it is often useful to encrypt
the set’s polynomial using homomorphic encryption. Suppose we are given a
polynomial f(x) = anxn + an−1x

n−1 + · · · + a1x + a0, then the encryption of

1 Based on our analysis of the THRESHOLD-PERFECT-HBC protocol given in [18].
An explicit protocol for the malicious model was not given, but by adding zero-
knowledge proofs to the steps such a protocol could be constructed.
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f , denoted by Epk(f), is the encryption, using Epk on the coefficients of f , i.e.,
Epk(an), . . . , Epk(a0). As described in previous work [9,18] when given Epk(f) it
is possible to perform many operations on f . In this paper, we use the following
operations:

1. Polynomial Evaluation: Given Epk(f), the public parameters of Epk and a
value x it is possible to compute Epk(f(x)).

2. Polynomial Addition: Given Epk(f) and Epk(g) for two polynomials f and
g, then it is possible to compute Epk(f + g).

3. Polynomial Multiplication: Given Epk(f) and g for two polynomials f and g
it is possible to compute Epk(f ∗ g).

4. Polynomial Derivation: Given Epk(f) it is possible to compute the encrypted
polynomial of the derivative of f , i.e. it is possible to compute Epk(f ′).

4.3 Zero Knowledge Proofs

To extend our protocols to the malicious adversary model, we utilize zero knowl-
edge proofs. In what follows, we outline the proofs of knowledge that are used in
this paper. These proofs are similar to those used in [18] and can be efficiently
realized using [2] and [5]. These proofs can be made non-interactive using the
Fiat-Shamir heuristic [7].

In what follows, Epk is a threshold additive-homomorphic encryption scheme.

1. POPK(Epk(x)) represents a proof that the prover knows the plaintext x
(i.e., it is a proof of plaintext knowledge). Furthermore, this proof can be
done with O(1) communication complexity.

2. Proof of Correct Multiplication: Given Epk(x) (where x may be unknown
to the prover) and a value y, it is possible to publish values Epk(y) and
Epk(z) and prove that z = xy. We denote this proof by ZKPK(y|a =
Epk(y) ∧ b = Epk(z) ∧ z = x ∗ y). Furthermore, this proof can be done with
O(1) communication complexity.

3. Proof of Correct Polynomial Evaluation: When the prover is given Epk(f) for
some polynomial f , then the prover can generate values Epk(x) for a known
value x and Epk(z) along with a proof that z = f(x). If the polynomials have
degree n then, this proof requires O(n) proofs of correct multiplication. We
denote this proof by ZKPK(x|y = Epk(f(x)) ∧ z = Epk(x)).

4. Proof of Correct Polynomial Multiplication: When a prover is given Epk(f)
for some polynomial f and another polynomial g, then the prover can gen-
erate Epk(g) and Epk(h) along with a proof that h = f ∗ g. If the poly-
nomials f and g have respective degree m and n, then this protocol re-
quires O(mn) proofs of correct multiplication. We denote this proof by
ZKPK(f |h = f ∗ g ∧ y = Epk(f)).

5. Proof of Correct Polynomial Construction: If a prover has posted encryp-
tions of a list of values Epk(x1), . . . , Epk(xn). Then the prover can post the
encrypted polynomial (x − x1) · · · (x − xn) along with a proof that it was
constructed properly. This requires O(n2) proofs of correct multiplication.



242 K. Frikken

4.4 Mixes and Shuffles

In our protocols we use a cryptographic protocol for shuffling (e.g., mixing) a list
of encrypted values. Specifically, a shuffle protocol uses list of encrypted values
Epk(x1), . . . , Epk(xn) as input and the output of the protocol is another list of
encrypted values Epk(y1), . . . , Epk(yn). Furthermore, the y-list is a permutation
of the original x-list and any group of participants that is not a quorum (of
the threshold encryption scheme) cannot associate a specific y-value back to a
specific x-value. In our protocols we utilize a robust shuffling protocol where
the participants obtain proof(in zero-knowledge) that the shuffle was performed
correctly. Such a robust mix can be made from standard protocols [20,19,15]. We
actually use a slight variation of a standard mix, in that our protocols shuffle
tuples. That is, the input to the protocol is a list of tuples of encrypted values
and the output is a permuted list of re-encrypted tuples that have a different
tuple order, but the individual values inside of a tuple are in the same order.
This can be achieved with techniques from [13]. The communication required to
robustly mix n tuples with k participants is O(k2n).

4.5 Bulletin Board

Our protocols use a bulletin board abstraction (i.e., all parties post informa-
tion to a common area) that can be constructed using standard cryptographic
techniques. We measure the communication requirements of our protocols as
the amount of information posted on the bulletin board. It is worth noting that
we do not need a robust bulletin board for our application (we are not trying
to be secure against adversaries that try to force early termination). Thus our
protocols could just utilize standard broadcast techniques.

5 Preliminary Protocols

In this section we give preliminary protocols for the honest-but-curious adversary
model and the malicious adversary model. As a starting point we introduce a
protocol for the two-party honest but curious adversary model, then we extend
this to multiple parties, and we then extend it to the malicious model. It is worth
noting that the malicious protocol is similar to the honest-but-curious protocol,
but the protocols are presented as two separate protocols to enhance readability.
As not to clutter this initial presentation, we postpone the discussion of several
extensions to these protocols until the next section.

5.1 Two-Party Honest But Curious

In this section we propose a two-party protocol for set union in the honest but
curious adversary model where only one party learns the result. This protocol
is the most efficient such protocol to date that the authors are aware of, and
requires only O(n) communication. The main idea of this technique is as follows:
Suppose that a participant has the encrypted polynomial, denoted by Epk(fS)
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for some set S, then this participant can blindly evaluate this polynomial on
each of his set items; we will denote a specific such value by Epk(fS(s)). Now
fS(s) = 0 if and only if s ∈ S (with high probability). So if we create a tuple of
the form: (Epk(fS(s) ∗ s) ; Epk(fS(s))), then this tuple will be (0 ; 0) if s ∈ S
and otherwise s can be recovered from the decrypted tuple values.

Thus a high level protocol for the two-party case is as follows: Participant
P1 encrypts his set as a polynomial and sends it to P2 (using a homomorphic
scheme that is chosen by P1). P2 then computes the above tuples and sends them
back to P1 in a random order. P1 then decrypts the tuples to learn the values
in S2 that are not in S1, these values are then added to the items in S1 to pro-
duce the output of the protocol. The full description of the protocol is given in
Figure 1.

Setup: Participant P1 chooses a homomorphic encryption scheme, and denote
the public encryption function by Epk.
1. P1 sends Epk(fS1) along with the public parameters of Epk to P2.
2. For each value s ∈ S2, P2 chooses a random value r (chosen uniformly) and

computes a tuple (Epk(fS1(s) ∗ s ∗ r) ; Epk(fS1(s) ∗ r)). P2 randomly per-
mutes all of the tuples and sends them to P1.

3. P1 initially sets the output set to be S1. For each tuple (Epk(x) ; Epk(y))
from the previous step, P1 decrypts x and y. If both values are 0, then P1

continues to the next tuple. Otherwise, P1 adds x ∗ y−1 to the output set.

Fig. 1. Two-party HBC protocol for Set Union

Complexity Analysis: Step 1 of the protocol requires O(n) communication and
computation. It requires O(n) computation to compute the value fS1(s) for
a single value s, and so Step 2 requires O(n2) computation. However, Step 2
requires only O(n) communication. Finally, Step 3 requires O(n) computation.
Thus this protocol requires O(n2) computation, O(n) communication, and O(1)
rounds. The computation can be reduced to O(n log log n) using the bucketing
techniques of [9]2.

Security Analysis: We must show that the communication transcript from this
protocol is simulatable from the results of the protocol alone along with one of the
participant’s inputs. This is trivial to do in the case of P2 since all communication
from P1 is encrypted with a semantically-secure homomorphic encryption scheme
(where the private key is known only to P1). The proof to show that the protocol
is secure against P1 is also straightforward, but is not as trivial. Suppose that
a simulation algorithm has: |S2|, S1, and S1 ∪ S2. Clearly, the simulator can
compute S2 − S1 from the above information. The simulator then proceeds as
follows: i) it computes |S2| − |S2 − S1| tuples of the form (Epk(0) ; Epk(0)), ii)
it computes a tuple (Epk(s ∗ r) ; Epk(r)) for a randomly chosen value r for each
item s ∈ S2 − S1, and iii) it randomly permutes the tuples from the previous

2 This requires minor modifications to the protocol.
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two steps and outputs this as the simulated transcript. It is straightforward to
show that this simulated transcript is indistinguishable from the values sent to
P1 in Step 2 of the protocol.

5.2 Multi-party Honest But Curious

In this section we introduce the preliminary protocol for the honest-but-curious
adversary model for multiple participants. To compute the union of the individ-
ual sets, the protocol computes the multi-set union (using techniques of [18]) for
each of the following sets of participants {P1}, {P1, P2}, . . . , {P1, . . . , Pn}. Then
each participant Pi reports every item in Si that is not in the multi-set union of
S1, . . . , Si−1 using the reporting technique from the previous section. The tuples
are then mixed, to hide the source of each tuple, and then are decrypted to
reveal the items in the set union. The full description of the protocol is given in
Figure 2.

Complexity Analysis: In what follows we list the communication requirements
of each step of the protocol:

1. Step 1.a: This requires O(n) communication for each participant, and thus
this requires O(kn) total communication.

2. Step 1.b: This requires O(in) communication for participant Pi, and thus
this requires O(k2n) total communication.

3. Step 1.c: Each participant has to post O(n) tuples, and thus this requires
O(kn) total communication.

4. Step 2.b: Each participant has to post O(kn) tuples, and thus this requires
O(k2n) total communication.

5. Step 3: Since we are mixing O(kn) values in a non-robust manner this re-
quires O(k2n) total communication.

6. Step 4: Each decryption requires O(k) communication, and so this requires
O(k2n) total communication.

In summary, this protocol requires O(k2n) communication and O(k) rounds.

Security Analysis: We must show that the communication transcript from this
protocol is simulatable from the results of the protocol alone. This is a relatively
straight-forward simulation, and so we are a bit informal throughout this discus-
sion. Suppose that a simulation algorithm is given η1, . . . , ηk along with ∪k

i=1Si.
Now the simulation algorithm can easily create k simulation sets SS1, . . . , SSk

such that |SSi| = ηi and ∪k
i=1SSi = ∪k

i=1Si. Now the simulation algorithm sim-
ply mimics the protocol in Figure 2 (for the shuffling phase it acts as all of the mix
servers) and outputs the transcript of this session. We claim that this simulated
transcript is indistinguishable from transcript generated by the real protocol to
any adversary that does not establish a quorum of participants. First, in steps 1
and 2 everything is encrypted with a semantically-secure cryptosystem so these
values will be indistinguishable. Step 3 is indistinguishable because both are runs
of a mix protocol. Finally, Step 4 is indistinguishable because both are randomly
permuted lists tuples, and we claim that decrypted tuples that reveal a set value
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Setup: The participants have agreed on a threshold Homomorphic encryption
scheme, and denote the public encryption function by Epk.
1. Build tuples:

(a) Post polynomial representation of sets: Participant Pi posts Epk(fSi) to
the bulletin board.

(b) Post polynomials: Participant Pi (for i = 2, . . . , k) posts Epk(
∏i

j=1(fSj ))
to the bulletin board.

(c) Post tuples: Participant Pi posts the following tuples to the bulletin
board:

i. P1 posts (Epk(s) ; (Epk(1)) for each value s ∈ S1.
ii. Participants Pi (for i = 2, . . . , k) posts tuples for every s ∈ Si as

follows:
(
Epk(

∏i−1
j=1(fSj (s) ∗ s) ; Epk(

∏i−1
j=1(fSj (s))

)
.

2. Randomize tuple values: For each tuple in (Epk(x) ; Epk(y)) that was posted
by any participant in the previous step, the participants do the following
(Note that this step can be done in parallel for all tuples):
(a) Each participant, Pi chooses a non-zero random values ri chosen uni-

formly.
(b) The participants multiply the tuple’s values by their random value. That

is, Pi posts
(
Epk(x ∗

∏i
j=1 rj) ; Epk(y ∗

∏i
j=1 rj)

)
to the bulletin board.

Note that Pi must wait until Pi−1 has posted his tuples before Pi can
post his tuples.

3. Shuffle: The parties engage in a secure shuffle protocol for all of the tuples
generated by Pk in the previous step.

4. Decrypt results: For each tuple (Epk(x) ; Epk(y)), the parties jointly decrypt
x and y. If both values are 0, then the parties continue to the next tuple.
Otherwise, the parties add x ∗ y−1 to the output set.

Fig. 2. Multi-party HBC protocol for Set Union

s are indistinguishable from a tuples (s ∗ r ; r) for some random value r. This
follows from Step 2 of the protocol, because as long as one participant is honest
the values will be multiplied by a random value unknown to the adversary.

5.3 Malicious Model

In this section we introduce the protocol for the malicious model. This protocol
is similar to the honest-but-curious protocol, however there are a few crucial
differences. The main difference is that the parties commit to their set values
and then at each step of the protocol the parties prove in zero knowledge that
they are following the protocol correctly. The full description of the protocol is
in Figure 3.

Complexity Analysis: In what follows we list the communication requirements
of each step of the protocol:

1. Step 1: Each participant has to post O(n) values, and thus the total com-
munication is O(kn).
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Setup: The participants have agreed on a threshold Homomorphic encryption
scheme, and denote the public encryption function by Epk.
1. Commit to sets: Participant Pi posts the following values to the bulletin board

Epk((Si)1), . . . , Epk((Si)ηi
) along with a proof of plaintext knowledge.

2. Build tuples:
(a) Post polynomial representation of sets: Participant Pi posts Epk(fSi) to

the bulletin board along with a proof of correct polynomial construction
(using the commitments from the previous step).

(b) Post polynomials: Participant Pi (for i = 2, . . . , k) posts Epk(
∏i

j=1(fSj ))
to the bulletin board along with a proof of correct polynomial multipli-
cation.

(c) Post tuples: Participant Pi posts the following tuples to the bulletin
board:

i. P1 posts (Epk(s) ; (Epk(1)) for each value s ∈ S1 along with a proof
of correct construction.

ii. Participants Pi (for i = 2, . . . , k) posts tuples for every s ∈ Si as

follows:
(
Epk(

∏i−1
j=1(fSj (s) ∗ s) ; Epk(

∏i−1
j=1(fSj (s))

)
along with zero

knowledge proofs that this tuple is formed correctly. Specifically, the
participant posts a proof of correct polynomial evaluation and a proof
of correct multiplication.

3. Randomize tuple values: For each tuple in (Epk(x) ; Epk(y)) that was posted
by any participant in the previous step, the participants do the following
(Note that this step can be done in parallel for all tuples):
(a) Each participant, Pi chooses a random values ri. Pi also posts a com-

mitment of this random value Epk(ri) to the bulletin board along with a
proof that ri is non-zero.

(b) The participants multiply the tuple’s values by their random value. That

is, Pi posts
(
Epk(x ∗

∏i
j=1 rj) ; Epk(y ∗

∏i
j=1 rj)

)
to the bulletin board

along with a proof of correct construction. Note that Pi must wait until
Pi−1 has posted his tuples before Pi can post his tuples.

4. Shuffle: The parties engage in a secure shuffle protocol for all of the tuples
generated in the previous step by Pk.

5. Decrypt results: For each tuple (Epk(x) ; Epk(y)), the parties jointly decrypt
x and y. If both values are 0, then the parties continue to the next tuple.
Otherwise, the parties add x ∗ y−1 to the output set.

Fig. 3. Malicious protocol for Set Union

2. Step 2.a: Each participant has to post O(n2) data (the size of the correct
polynomial construction proof), and thus the total communication is O(kn2).

3. Step 2.b: This requires O(in2) communication for participant Pi (who must
do a proof of correct polynomial multiplication between a polynomial of size
O(in) and a polynomial of size O(n)), and thus this requires O(k2n2) total
communication.

4. Step 2.c: This requires O(in2) communication for participant Pi (who must
do a proof of correct polynomial evaluation for a polynomial of size O(in)
on O(n) values), and thus this requires O(k2n2) total communication.
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5. Step 3.a: This requires each participant to post O(kn) communication, and
thus the total communication is O(k2n).

6. Step 3.b: This requires each participant to post O(kn) communication, and
thus the total communication is O(k2n).

7. Step 4: This requires a robust mix of O(kn) values with k participants. Thus
this requires O(k3n) total communication.

8. Step 5: Each decryption requires O(k) communication, and so this requires
O(k2n) total communication.

In summary, this protocol requires O(k2n2 + k3n) communication and O(k)
rounds.

Security Analysis: In this section we give an argument for security for the ma-
licious model protocol. All of the communication in steps 1-4 are either values
encrypted with a homomorphic encryption scheme or are zero knowledge proofs.
It is easy to verify that the zero knowledge proofs do not reveal anything other
than predicates of the form: was this step done properly. Thus all of these steps
can easily be simulated in a way that is indistinguishable from the real transcript.
However, we must show that the decrypted values in Step 5 of the protocol can
be simulated from the output of the protocol in a manner that is indistinguish-
able from the values in the protocol (even if a group of participants deviates
from the protocol). If any of the zero knowledge proofs fail, then the protocol
terminates and Step 5 is not reached, and so in what follows we assume that the
zero knowledge proofs have all passed.

In Step 1 of the protocol the participants submit of list of committed values.
Clearly, this same set of values could be injected into the ideal model (assuming
that the ideal model allows multi-set inputs). We must show that the simula-
tor with the result from the ideal model will produce a list of values that are
indistinguishable from these values. To do this, we first define the simulation
algorithm. Suppose that S =

⋃k
i=1 Si, and that N =

∑k
i=1 |Si|. The simulation

then proceeds as follows: i) it produces N − |S| tuples of the form (0 ; 0) and
for each value s ∈ S it creates a tuple of the form (s ∗ r ; r) for a randomly
chosen value r. The simulation algorithm randomly permutes these N tuples
and outputs this as the transcript for Step 5.

The following list enumerates the state of the N tuples that are produced in
each of the steps of the protocol

1. Step 2: Participant Pi’s jth tuple will be (0 ; 0) if (Si)j is in one of the

sets S1, . . . , Si−1. Otherwise, it will be
(
(Si)j ∗ v ; v

)
for a value v that may

reveal information.
2. Step 3: This step multiplies the values in each tuple by a random non-zero

value using a standard protocol (i.e., everyone multiplies it by their own
random non-zero value). Thus participant Pi’s jth tuple will be (0 ; 0) if
(Si)j is in one of the sets S1, . . . , Si−1. Otherwise, it will be

(
(Si)j ∗ r ; r

)

for a randomly chosen value r. Thus at the end of this protocol there will
be N − |S| tuples of the form (0 ; 0) and for each value s ∈ S it creates a
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tuple of the form (s ∗ r ; r) for a randomly chosen value r. This is just like
the simulation algorithm except that the order of the tuples in the protocol
at the end of this step reveals information.

3. Step 4: The tuples are randomly shuffled with a robust mix. Thus, the tuples
will be the same as in the previous step but are in a random order.

6 Extensions

In this section we introduce various extensions of the preliminary protocols in the
previous section, including: padding sets, computing the cardinality, countering
the empty-set attack, and computing the over-threshold set union.

6.1 Padding

As mentioned earlier, the preliminary protocols leak the number of values that
each party has in their set. In this section we introduce a method for padding a
list to obfuscate this value, and thus all that is revealed is an upper bound on the
cardinality of each party’s set. Suppose that a participant Pi wants to report a set
Si and a size ηi where ηi ≥ |Si|. In the HBC protocol Pi would make the following
changes: i) The participant would use a polynomial gSi,ηi = fSj ∗ xηi−|Si| and
would use this as his polynomial in Step 2 and ii) when reporting his “dummy”
values in Step 3 of the protocol the participant posts (Epk(0) ; Epk(0)).

The changes to the malicious protocol are a little more involved (to prevent
the participants from failing a zero knowledge proof). The main change is that
the subject will commit to a larger set of values where the dummy values set
to a value not in U and a dummy item’s random hiding factor in Step 3 is set
to 0. It is also required that the proofs that a random values are non-zero are
removed for a participant’s own values. The rest of the protocol then remains
unchanged.

6.2 Cardinality

There are some situations where the goal is to reveal only the cardinality of the
set union. It is relatively straight-forward to modify the preliminary protocols
to compute the cardinality. In Step 1 (of the HBC protocol) and Step 2 (in
the malicious protocol) all that needs to be changed is that when creating the
tuples, participant Pi used 1 instead of (Si)j . Now, when the tuples are decrypted
duplicate items will still be (0 ; 0) but first-time items will be (r ; r) (for some
random value r). Thus, the number of tuples that are not (0 ; 0) is the cardinality
of the set union.

6.3 Empty-Set Attack

It is possible for a malicious party to set their set to the empty-set. This
is particularly damaging when there are only two participants, as this will
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reveal the honest participant’s exact set. We now outline several strategies for
countering this attack:

1. A simple solution is to require that each participant’s set is not the empty-
set. One way of doing this is to make sure that the leading coefficient of
the polynomial is non-zero. However, this has limited effectiveness, because
the adversary can use n items that are very infrequent as their input set.
Or worse, the adversary could use a non-decomposable polynomial (i.e., one
that is never 0, for the protocol).

2. A more complicated approach would be to make sure that each party’s set
has certain properties. However, these requirements would vary from domain
to domain, and so each new domain would require a separate protocol for
determining if a set is valid. Thus, this is not a general solution.

3. Another approach is for participants to require some overlap between the
other participant’s set and their own. Thus in the two party-case the par-
ticipants would first engage in a cardinality of set intersection protocol and
would continue only if this cardinality was over a threshold. This check can
be done without revealing the actual cardinality. This is not a perfect ap-
proach, because an adversary can still test if an honest participant has a
specific item (or small set of items), but it does help prevent complete reve-
lation of the honest party’s set in a single run of the protocol.

6.4 Over-Threshold Set Union

In this section we introduce a protocol for computing all items that appear t or
more times. This protocol does not reveal how many times an item appears (even
if it is in the result). A similar protocol was given in [18], but the given protocol
reveals how many times an item in the result appeared. Of course, many of the
ideas from [18] could be combined to make such a protocol, we believe that the
following protocol will be more efficient than such a protocol. However, some
of the ideas in the following protocol were also presented in [18] (specifically
taking the (t − 1)th derivative to determine if an item has appeared t or more
times). We present this protocol for the honest-but-curious model in Figure 4; a
malicious model protocol will be given in the full version of the paper3.

The main idea behind this protocol is that each participant first learns which of
its items appears t or more times, and then these values are used in a standard set
union protocol to merge the items and to hide the multiplicity of the items. Clearly,
this intermediate result is simulateable from the output alone (i.e., given all items
that appear t or more times a participant can compute which items in its set appear
t or more times). To compute which items are in t or more sets the participants
compute the (t − 1)th derivative of the polynomial for the multi-set union of every
participant’s set. Note that when this polynomial evaluates to 0 for a specific set
item then the item will have appeared t or more times with high probability.

3 It is worth noting that the protocol in Figure 4 would not work by simply adding zero
knowledge proofs, because this would not prevent a party from submitting multiple
copies of the same value.
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Setup: The participants agree on a threshold Homomorphic encryption scheme,
and denote the public encryption function by Epk.
1. Compute multi-set union: Using Step 1 of the protocol in Figure 2 the par-

ticipants compute Epk(
∏k

j=1(fSj )), which we denote my Epk(m).

2. The participants then compute the value Epk(m(t−1)) (i.e., the (t − 1)th
deriviative of the multi-set union).

3. For each value s ∈ Si participant Pi posts the following tuple(
Epk(m(t−1)(s)) ; Epk(s)

)
to the bulletin board.

4. Using Step 2 of the protocol in Figure 2 the participants multiply the first
value of each tuple by a random value and post the new values to the bulletin
board.

5. For each tuple
(
Epk(m(t−1)(s) ∗ r) ; Epk(s)

)
that was posted in the previous

step (the participants compute Epk((m(t−1)(s) ∗ r) + s) and jointly decrypt
this value so that only the participant that contributed the value will learn
the plaintext.

6. For each item that a participant posted in Step 3 they obtain either the
value itself or a random value. Each participant then builds a new set of the
items that survived elimination and pads the list to its original size. The
participants then engage in a privacy-preserving protocol for Set Union with
these new sets.

Fig. 4. HBC protocol for Over-Threshold Set Union

7 Conclusions

In this paper we introduced protocols for privacy-preserving set union that are
more efficient than previous such protocols. We believe that these new proto-
cols will have many applications in data mining and other domains. We also
introduced a new over-threshold set union protocol.
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Abstract. Based on the notion of accumulators, we propose a new cryptographic
scheme called universal accumulators. This scheme enables one to commit to a
set of values using a short accumulator and to efficiently compute a membership
witness of any value that has been accumulated. Unlike traditional accumulators,
this scheme also enables one to efficiently compute a nonmembership witness
of any value that has not been accumulated. We give a construction for universal
accumulators and prove its security based on the strong RSA assumption. We fur-
ther present a construction for dynamic universal accumulators; this construction
allows one to dynamically add and delete inputs with constant computational
cost. Our construction directly builds upon Camenisch and Lysyanskaya’s dy-
namic accumulator scheme. Universal accumulators can be seen as an extension
to dynamic accumulators with support of nonmembership witness. We also give
an efficient zero-knowledge proof protocol for proving that a committed value is
not in the accumulator. Our dynamic universal accumulator construction enables
efficient membership revocation in an anonymous fashion.

1 Introduction

Accumulators were first introduced by Benaloh and de Mare [4] as a method to con-
dense a set of values into one short accumulator, such that there is a short witness for
each value that has been accumulated. In the mean time, it is infeasible to find a witness
for a value that has not been accumulated. Barić and Pfitzmann [3] proposed a construc-
tion of a collision-resistant accumulator under the strong RSA assumption. Camenisch
and Lysyanskaya [10] further proposed a dynamic accumulator in which elements can
be efficiently added into or removed from the accumulator. Accumulators have been
used in many applications [3,4,10,20], including membership testing, time stamping,
authenticated directory, and certificate revocation.

None of the existing accumulator schemes provide nonmembership witnesses for
values that have not been accumulated. This feature of nonmembership witnesses is
highly desirable in many applications. The following are two examples where a non-
membership witness is important.
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1. Suppose a credit report agency compiles a list of users who have gone into
bankruptcy within the last three years, and it also publishes the accumulator for this
list. When Alice applies an auto loan from a bank, the bank wants Alice to prove
that she is not in the bankruptcy list. In a similar application, suppose a Certifi-
cate Authority (CA) revokes a number of certificates before their expiration dates.
A certificate user may need to efficiently prove that her certificate has not been
revoked when using her certificate.

2. Suppose the Center for Disease Control and Prevention maintains a list of patients
who have a certain infectious disease (e.g., Measles or Cholera). In some appli-
cations, a patient needs to prove that she has the disease in order to purchase dis-
counted medicines from the local pharmacy stores. Whereas in other applications,
one needs to prove that she does not have the disease.

In this paper, we propose the notion of universal accumulators, which enables a
trusted group manager to condense a list of values into a short accumulator. For each
value in the list, there is a short membership witness; and for each value not in the list,
there exists a short nonmembership witness. It is computationally infeasible to find a
membership witness for a value that was not accumulated or to find a nonmembership
witness for a value that was accumulated. The notion of universal comes from the fact
that each possible value in the input domain has a witness (either a membership witness
or a nonmembership witness). Using universal accumulators, one can easily solve the
problems in the aforementioned applications.

We further propose the notion of dynamic universal accumulators, which allow one
to dynamically add and delete inputs, such that the the cost of an addition or a deletion
is independent of the size of the accumulated set. We construct an efficient dynamic uni-
versal accumulator under the strong RSA assumption. Dynamic universal accumulators
enable efficient membership revocation: A group manager issues a credential for each
group member. The group manager also maintains a credential revocation list using a
dynamic universal accumulator. To revoke a member, the group manager simply inserts
the serial number of the revoked credential into the revoked list. To prove membership,
a valid group member first shows her group credential, then shows that the credential’s
serial number is not in the revocation list by presenting the nonmembership witness.

We also develop an efficient zero-knowledge proof protocol such that, if a value is
stored in a cryptographic commitment, then one can prove that the value is not accumu-
lated in a zero-knowledge fashion. This enables membership revocation in an anony-
mous setting. To prove membership anonymously, the group member first proves that
she has a valid group credential, then proves that the credential’s serial number is not in
the revocation list.

Note that many applications that require nonmembership proofs (such as ones in
Application 1) can be solved using membership-proof techniques. Take the certificates
revocation as an example, instead of proving the nonmembership of a revocation list,
one can prove the membership of a legitimate user list to show that her certificate has not
been revoked. This idea was used by, e.g., Camenisch and Lysyanskaya [10]. However,
even though proving membership is efficient in [10], the maintenance overhead of the
witness could be very expensive if the user list is huge and frequently-changing. For
example, consider a certificate system that has thousands or millions of users. Suppose
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the list of valid users increases every hour (i.e., each hour there are several new users
added into the list). And suppose the list of revoked users is small in size and relatively
static (e.g., changes every month). Using the scheme in [10], a legitimate user may have
to update her witness every hour, whereas using our scheme, she only need to update
her nonmembership witness once a month.

1.1 Our Contribution

The contributions of this paper are as follows.

– We introduce the notion of universal accumulators, which support short witnesses
for both membership and nonmembership.

– We construct an efficient dynamic universal accumulator based on the strong RSA
assumption. The update of witness in our scheme can be efficiently performed with-
out the help of the trusted group manager. Proofs of membership or nonmembership
can be achieved with a constant number of modular exponentiations.

– We give an efficient zero-knowledge proof protocol to prove that a committed
value was not accumulated. This enables efficient membership revocation in anony-
mous credential systems, group signature schemes, and direct anonymous attesta-
tion schemes. Universal accumulators may be of interest in other applications as
well.

1.2 Organization of This Paper

The rest of this paper is organized as follows. We first give notations and security as-
sumptions in section 2. In section 3, we give a formal definition of universal accu-
mulators and present our construction. In section 4, we present the notion of dynamic
universal accumulators and describe the corresponding construction. In section 5, we
present a zero-knowledge proof protocol to prove that a committed value has not been
accumulated in an accumulator. In section 6, we discuss several applications of dy-
namic universal accumulators to membership revocations in the anonymous setting, we
also compare our solution with other existing membership revocation techniques.We
conclude our paper in section 7.

2 Notations and Assumptions

2.1 Notations

We use φ(·) to denote the Euler totient function. Let n = pq be a RSA modulus, we use
Z
∗
n to denote the set of all positive integers that are less than n and relative prime to n.

We use QRn to denote the set of quadratic residues modulo n.
A negligible function, denoted by neg(·), represents a positive function that vanishes

faster than the inverse of any fixed positive polynomial. That is, for every polynomial
p(·) and for every large enough integer n, neg(n) < 1/p(n). If S is a probability
space, then the probability assignment x ←R S means that an element x is chosen at
random according to S. If F is a finite set, then x ←R F denotes that x is chosen
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uniformly from F . If p is a predicate and S1, S2, . . . , Sm are probability spaces, then
the notation Pr [x1 ←R S1, x2 ←R S2, . . . xm ←R Sm : p(x1, x2, · · · , xm)] denotes
the probability that p(x1, · · · , xm) will be true after the ordered execution of the prob-
abilistic assignments x1 ←R S1, . . . , xm ←R Sm. Let A and B be interactive Turing
machines, we use (a ← A(·) ↔ B(·) → b) to denote that a and b are two random
variables corresponding to the outputs of A and B as a result of their joint computation.

We use the notation used by Camenisch and Stadler in [14] for the various zero-
knowledge proofs of knowledge of discrete logarithms and proofs of the validity of
statements about discrete logarithms. For instance,

PK{(α, β) : y = gαhβ ∧ (u ≤ α ≤ v)}

denotes a zero-knowledge proof of knowledge of integers α and β, such that y = gαhβ

holds and u ≤ α ≤ v.

2.2 Security Assumptions

The security of our construction is based on the strong RSA assumption, which assumes
that it is infeasible to solve the following problem: Given an RSA modulus n and a
random x ←R Z

∗
n, find e > 1 and y ∈ Z

∗
n such that ye = x mod n. The strong RSA

was introduced by Barić and Pfitzmann [3] and has been used in proving the security of
many cryptographic schemes (e.g., [19,18,16]). It can be formally stated as follows:

Assumption 1 (strong RSA assumption). For every probabilistic polynomial-time
algorithms A,

Pr
[
n ← G(1k), x ←R Zn, (y, e) ← A(n, x) : ye =x (mod n)∧1 < e < n

]
=neg(k)

where G(1k) is a algorithm that generates a RSA modulus n of size k, and neg(k) is a
negligible function.

Our security proofs also use the following lemma ([23,16]):

Lemma 1. For any integer n, given integers u, v ∈ Z
∗
n and a, b ∈ Z, such that

ua = vb mod n and gcd(a, b) = 1, one can efficiently compute x ∈ Z
∗
n such that

xa = v mod n.

To see the correctness of this lemma, observe that, as gcd(a, b) = 1, one can use
the extended Euclidian algorithm to find c, d ∈ Z such that bd = 1 + ac. Let x =
(udv−c mod n), then

xa = uadv−ac = (ua)dv−ac = (vb)dv−ac = v (mod n).

3 Universal Accumulators

We now give a formal definition of universal accumulators and present our construction.
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3.1 Definition of Universal Accumulators

Definition 1. Let k be a security parameter, a secure universal accumulator for a family
of input {Xk} is a family of functions {Fk} with the following properties:

– Efficient Generation: There is an efficient probabilistic polynomial time algorithm
G that on input 1k produces a random function f of Fk. Additionally, G also out-
puts some auxiliary information about f , denoted as auxf .

– Efficient Evaluation: Each f ∈ Fk is a polynomial time function, on input (g, x) ∈
Gf × Xk, outputs a value h ∈ Gf , where Gf is the input domain for the function f ,
and Xk is the input domain for the elements to be accumulated.

– Quasi-Commutative: For all f ∈ Fk, for all g ∈ Gf , and for all x1, x2 ∈ Xk,
f(f(g, x1), x2) = f(f(g, x2), x1). If X = {x1, . . . , xm} ⊂ Xk, we use f(g, X)
to denote f(f(. . . (g, x1), . . .), xm).

– Membership Witness: For each f ∈ Fk, there is a membership verification func-
tion ρ1. Let c ∈ Gf and x ∈ Xk. A value w1 is called membership witness if
ρ1(c, x, w1) = 1.

– Nonmembership Witness: For each f ∈ Fk, there is a nonmembership verification
function ρ2. Let c ∈ Gf and x ∈ Xk. A value w2 is called nonmembership witness
if ρ2(c, x, w2) = 1.

– Security: A universal accumulator scheme is secure if, for all probabilistic
polynomial-time adversary Ak ,

Pr

[
f ← G(1k); g ←R Gf ; (x, w1, w2, X) ← Ak(f, Gf , g) :
x ∈ Xk; X ⊂ Xk; ρ1(f(g, X), x, w1) = 1; ρ2(f(g, X), x, w2)=1

]
= neg(k)

In other words, it is computationally infeasible to find both a valid membership wit-
ness and a valid nonmembership witness for any x in Xk. Note that this is equivalent
to say that, given any set X ∈ Xk, it is computationally infeasible to find x ∈ X
with a valid nonmembership witness or find x ∈ Xk\X with a valid membership
witness.

The preceding definition is similar to the one of Camenisch and Lysyanskaya [10],
the main difference is that our definition requires witnesses for nonmembership
elements.

3.2 Our Construction

Our construction builds upon the construction of Camenisch and Lysyanskaya [10]. The
difference is that we give an efficient solution for nonmembership witness.

Construction 1 (Universal Accumulators). Let k be a security parameter. Let � =
	k/2
 − 2. We use Xk to denote the set of all primes in Z2� . Xk is the input domain
for the elements to be accumulated.1 We use Fk to denote the family of functions cor-
responding to safe-prime products of length k. The construction takes the following
steps.

1 As in [10], the input domain Xk has to be primes. If the required input domain is the set of all
possible strings, we need to map arbitrary strings to prime numbers. A number of approaches
for doing this have been proposed in the literature, see, e.g., [3,19,20].
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– The generation algorithm G takes 1k as input and outputs a random modulus n of
length k that is a safe prime, that is, n = pq, where p = 2p′+ 1, q = 2q′+ 1, p and
q have equal length, and p, q, p′, q′ are all prime number.

– We use fn to denote the function corresponding to modulus n. The auxiliary infor-
mation auxf for fn is the factorization of n. The input domain Gf for fn is defined
as Gf = {g ∈ QRn : g �= 1} where QRn denotes the group of quadratic residues
modulo n.

– For f = fn, f(g, x) = gx mod n.
– For f = fn, the membership verification function ρ1 is defined as ρ1(c, x, cx) = 1

if and only if (cx)x = c, where cx ∈ Gf is the membership witness for x. The
nonmembership verification function ρ2 is defined as ρ2(c, x, a, d) = 1 if and only
if ca = dxg (mod n), where (a, d) ∈ Z2� × Gf is the nonmembership witness
for x.

It is easy to see that, given (g, x), we can efficiently compute f(g, x). It is also
easy to see that f is quasi-commutative, that is, f(f(g, x1), x2) = f(f(g, x2), x1) =
gx1x2 mod n. Note that membership and nonmembership witnesses can be computed
with or without the auxiliary information. It is much more expensive to compute witness
without the auxiliary information. In our application, we do not need to compute witness
using the auxiliary information; but they may be useful in other settings.

One difference between our construction and Camenisch and Lysyanskaya’s accu-
mulator scheme [10] is that their construction does not require to publish g. In our
construction, g needs to be public for nonmembership queries. Note that a party that
knows g and the value of the accumulator, and suspects that x1, . . . , xn are the values
used to compute the accumulator, can easily verify its guess. This is not really a prob-
lem because (1) it is not required to hide the accumulated values, and (2) it is easy to
prevent this attack by adding a random value x0 to the set of values used to compute
the accumulator.

How to compute witness without the auxiliary information. Suppose X = {x1, . . . ,
xm} is a subset of Xk and g is a random value in QRn. Let u denote

∏m
i=1 xi. By

definition f(g, X) = gu mod n. As in the previous accumulator schemes [4,3,10], for
any x ∈ X , we can compute the membership witness for x as cx = gu/x mod n. To
verify the witness, one checks that x ∈ Xk and (cx)x = c mod n.

For any x ∈ Xk\X , since x, x1, . . . , xm are distinct prime numbers, gcd(x, u) = 1.
We can find a ∈ Z2� and b ∈ Z such that au + bx = 1. The value a and b can be
computed as follows: we first use Euclid algorithm to find a′ and b′ such that a′u +
b′x = 1. As x is a positive integer in Z2� , we can always find an integer k such that
a′ + kx ∈ Z2� . Observe that (a′ + kx)u + (b′ − ku)x = 1, therefore a = a′ + kx and
b = b′ − ku. Let d = g−b mod n, the nonmembership witness for x is (a, d). To verify
the witness, one checks that x ∈ Xk , a ∈ Z2� , and ca = dxg (mod n), which holds
because ca = gua = g1−bx = g−bxg = dxg (mod n).

How to compute witness with the auxiliary information. The membership witness
and nonmembership witness can be computed efficiently given the auxiliary information
auxf . Suppose there is a trusted group manager who knows auxf , maintains the set X ,
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and has already computed the accumulator c = f(g, X), the group manager can compute
(non)membership witness for any x ∈ Xk with one short modular exponentiation.

For x ∈ X , the group manager first checks whether x ∈ X , then computes a =
x−1 mod φ(n), and finally computes cx = ca mod n. The membership witness
for x is cx. It is easy to verify the correctness of the witness as (cx)x = (ca)x =
cx−1·x mod φ(n) = c (mod n).

For x ∈ Xk\X , let u′ = u mod φ(n), the group manager first checks whether
gcd(x, u′) = 1.

– If gcd(x, u′) = 1, the group manager finds a and b such that au′ + bx = 1, and
sets the nonmembership witness for x as (a, g−b mod n). The nonmembership
witness is correct because ca = (gu)a = (gu′

)a = gu′a = g1−bx = g−bxg =
dxg (mod n).

– If gcd(x, u′) �= 1, the group manager finds a and b such that au + bx = 1,
then computes b′ = b mod φ(n), and sets the nonmembership witness for x as
(a, g−b′

mod n). The nonmembership witness is correct because ca = gua =
g1−bx = (g−b)xg = (g−b′

)xg = dxg (mod n).

Observe that, the second case is slightly more expensive than the first case. The
reason is that, in the second case, the group manager needs to find a and b such that
au + bx = 1 where u could potentially be large, i.e., size linear to m. Yet, in either
case, the exponent in the modular exponentiation computed by the group manager is
smaller than φ(n). Thus the nonmembership witness can be calculated efficiently. Also
observe that, the number of x ∈ Xk such that gcd(x, u′) �= 1 is less than k, as x must
be a prime.

Note that computing witness using auxiliary information may not apply to all sce-
narios. In some applications, it is not allowed to reveal the auxiliary information to the
party who computes the accumulator, since the auxiliary data enables her to prove arbi-
trary statements. In the case when the party who computes the accumulator is trusted,
it is acceptable to give her the auxiliary information.

Theorem 1. Under the strong RSA assumption, the above construction is a secure uni-
versal accumulator.

Proof. We assume all the arithmetic operations in this proof are modulo n unless spec-
ified otherwise. The strong RSA assumption says that given a RSA modulus n and a
random value g ←R QRn, it is computationally infeasible to find x and y such that
x > 1 and yx = g.

Suppose there exists a polynomial time adversary A, which on input n and g ∈ QRn,
outputs cx ∈ Gf , d ∈ Gf , x ∈ X�, a ∈ Z2� , and X = {x1, . . . , xm} ⊂ X�, such that
c = gx1···xm , (cx)x = c, and ca = dxg. We can construct an algorithm B to break the
strong RSA assumption by invoking A.

Let u to denote
∏m

i=1 xi. We consider two cases. In the first case, assume x ∈ X ,
the adversary can compute u, a, d, and x, such that c = gu and ca = dxg. That is, the
adversary computes u, a, d, and x such that gau−1 = dx. Because x ∈ X , x | u, and
gcd(au − 1, x) = 1. By lemma 1, we can efficiently find y such that yx = g.
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In the second case, assume x �∈ X , the adversary can compute u, cx, and x, such
that c = gu and (cx)x = c. In other words, the adversary can find u, cx, and x such
that gu = (cx)x. As x1, . . . , xm are all prime, and x �∈ X , clearly gcd(x, u) = 1. By
lemma 1, we can efficiently find y such that yx = g.

We now construct an efficient algorithm B that breaks the strong RSA assumption as
follows. Given a RSA modulus n and g ←R QRn, B invokes A with input n and g, and
obtains outputs cx, d, x, a, X from A. By the preceding arguments, B can efficiently
compute y from cx, d, x, a, X such that yx = d, which contradicts to the strong RSA
assumption. �

Corollary 1. In the above construction, for any f ∈ Fk and any given set X ⊂ Xf , it
is computationally infeasible to find x ∈ X with a valid nonmembership witness.

Proof. This follows directly from Theorem 1. �

Note that, in our security definition of the universal accumulator, we limit the adversary
to choose x only from Xk. It is acceptable because when a user proves membership or
nonmembership to a verifier, the verifier can first check whether x ∈ Xk, if not, the
verifier can reject the proof. If a user can prove that a value x was not accumulated in
an accumulator in an anonymous fashion (see Section 5), Corollary 1 guarantees that x
is not a member of the accumulated set X .

4 Dynamic Universal Accumulators

Camenisch and Lysyanskaya [10] proposed the concept of dynamic accumulators in
which one can dynamically add and delete elements. In this section, we first give the
definition of dynamic universal accumulators, then present a dynamic universal accu-
mulator based on our construction in the previous subsection.

4.1 Definition of Dynamic Universal Accumulators

Definition 2. A universal accumulator is dynamic if it has the following properties:

– Efficient Update of Accumulator There exists an efficient algorithm D such that,
suppose c = f(g, X), if x̂ �∈ X , then D(c, x̂) = ĉ such that ĉ = f(g, X ∪ {x̂}); if
x̂ ∈ X , then D(auxf , c, x̂) = ĉ such that ĉ = f(g, X\{x̂}).

– Efficient Update of Membership Witness Let c and ĉ be the original and updated
accumulators respectively and x̂ be the new updated element. There exists an ef-
ficient algorithm W1 such that, if x �= x̂, x ∈ X , and ρ1(c, x, w) = 1, then
W1(w, c, ĉ, x, x̂) = ŵ such that ρ1(ĉ, x, ŵ) = 1.

– Efficient Update of Nonmembership Witness Let c and ĉ be the original and up-
dated accumulators respectively and x̂ be the new updated element. There exists
an efficient algorithm W2 such that, if x �= x̂, x �∈ X , and ρ2(c, x, w) = 1, then
W2(w, c, ĉ, x, x̂) = ŵ such that ρ2(ĉ, x, ŵ) = 1.

Of course, it is easy to perform updates using computations that are linear in the size
of the accumulated set X , i.e., compute the witnesses from the scratch. In the above
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definition, the term “efficient” means that the time complexity of each update operation
is independent of the size of X . Note that, update of a membership witness or a non-
membership witness is achieved without the auxiliary information. That is, given the
original and new accumulators, one can update its witness locally. This is a very useful
feature: Suppose the group manager updates the set X , computes the new accumulator,
and broadcasts its value to all users. Each user can update her witness locally without
any help from the group manager.

In terms of security requirement, loosely speaking, a dynamic universal accumulator
is secure against an adaptive adversary if the adversary cannot win the following game.
Suppose a group manager sets up the function f and the value g and hides the auxiliary
information auxf . The adversary adaptively modifies the set X . Whenever a value x
is inserted into or deleted from X , the manager calls algorithm D and publishes the
updated accumulator. In the end, the adversary outputs x̂ �∈ X and a valid membership
witness for x̂ or outputs x̂ ∈ X and a valid nonmembership witness for x̂. The formal
security definition of dynamic universal accumulator is stated as follows.

Definition 3. Let {Fk} be the family of universal accumulator functions defined in
Definition 1. Let M be an interactive Turing machine that receives input (f, auxf , g),
where f ∈ Fk, auxf is the auxiliary information about f , and g ∈ Gf . M maintains
a list of values X which is initially empty. The initial accumulator c is set to be g. M
responds to two types of messages: for message (add, x), it makes sure that x ∈ Xk,
adds x to the set X , modifies c by running D, and then sends back the updated c; for
message (delete, x), it checks that x ∈ X , deletes it from the set X , updates c by
running D, and sends back the updated c. In the end, M outputs the current values for
X and c. A dynamic universal accumulator scheme is secure if, for all probabilistic
polynomial-time adversary Ak,

Pr

⎡
⎣

f ← G(1k); g ←R Gf ;
(x, w1, w2, X) ← Ak(f, Gf , g) ↔ M(f, auxf , g) → (X, c) :
x ∈ Xk; X ⊂ Xk; c = f(g, X); ρ1(c, x, w1) = 1; ρ2(c, x, w2) = 1

⎤
⎦ = neg(k)

We now show that if a secure universal accumulator is dynamic under Definition 2, then
this dynamic universal accumulator is secure against adaptive adversaries.

Remark 1. A dynamic universal accumulator is secure against an adaptive adversary if
the underlying universal accumulator is secure.

The above remark is straight-forward using reduction argument. We can show that if
an adversary A breaks the security property in Definition 3, we could build another
adversary B to break the security property of a universal accumulator in Definition 1
by invoking A. On input (f, Gf , g), B passes these values to A. Because A needs to
interacts with the manager M for updating elements, we let B act as the manager: if
A sends an (add, x) query, B simply inserts x into X and computes c = f(g, X); if
A sends a (delete, x) query, B removes x from X and computes c = f(g, X). In the
end, if A outputs an element x ∈ Xk with a valid membership witness w1 and a valid
nonmembership witness w2, B outputs (x, X, w1, w2). Clearly, B breaks the security
property in Definition 1.
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4.2 Our Construction

Construction 2 (Dynamic Universal Accumulators). Our construction is built on
Construction 1 with the following additional functionalities:

– Update of Accumulator: Adding a value x̂ to the accumulator c can be computed
as ĉ = cx̂ mod n. Deleting a value x̂ from the accumulator is computed as ĉ =
D(φ(n), c, x̂) = cx̂−1 mod φ(n) mod n, where φ(n) is the auxiliary information.

– Update of Membership Witness: Let w be the original membership witness of x.
Let c and ĉ be the original and new accumulators, respectively. This construction is
the same as the one in [10].

1. Addition. Suppose x̂ has been added, the new membership witness can be com-
puted as ŵ = f(w, x̂) = wx̂ mod n. It is easy to verify that ρ1(ĉ, x, ŵ) = 1.

2. Deletion. Suppose x̂ �= x has been deleted, the new membership witness ŵ can
be computed as follows. Algorithm W1 chooses two integer a and b such that
ax + bx̂ = 1 and then ŵ = wbĉa mod n. We can verify that:

ŵx = (wbĉa)x = ((wbĉa)xx̂)1/x̂ = (cbx̂cax)1/x̂ = ĉ (mod n)

– Update of Nonmembership Witness: Let (a, d) be the original nonmembership wit-
ness of x.

1. Addition. Suppose x̂ �= x has been added, given c, ĉ, x, x̂ such that ĉ = cx̂

mod n, the new nonmembership witness (â, d̂) can be computed as follows.
Algorithm W2 first finds two integers â0 and r0 such that â0x̂ + r0x = 1. It
is easy to find such â0 and r0 because x̂ and x are distinct primes. Multiplying
by a to both side of the above equation, we have â0ax̂ + r0ax = a. W2 then
computes â = â0a mod x, and find r ∈ Z such that âx̂ = a+rx. Note that â ∈
Z2� . In the end, W2 computes d̂ = dcr mod n. We can verify ρ2(ĉ, x, â, d̂)= 1,
or, ĉâ = d̂xg holds:

ĉâ = câx̂ = ca+rx = crxca = crxdxg = (dcr)xg = d̂xg (mod n)

2. Deletion. Suppose x̂ has been deleted, given c, ĉ, x, x̂ such that c = ĉx̂ mod n,
the new nonmembership witness (â, d̂) can be computed as follows. Algorithm
W2 chooses an integer r such that ax̂ − rx ∈ Z2� (there always exists such r
because x ∈ Z

∗
2�), then let â = ax̂ − rx and d̂ = dĉ−r mod n. We can verify

ρ2(ĉ, x, â, d̂) = 1, or, in other words, ĉâ = d̂xg holds:

ĉâ = ĉax̂−rx = caĉ−rx = dxgĉ−rx = (d(ĉ)−r)xg = d̂xg (mod n)

Note that we can add or delete several values together simply by letting x̂ be the
product of the added or deleted values. This is also true for updating (non)membership
witness.
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5 Efficient Proof That a Committed Value Was Not Accumulated

We now present a useful building block for certificate revocation in an anonymous set-
ting – a protocol that proves a committed value was not accumulated in the accumulator.
Suppose that a group manager compiles a list of revoked users and publishes the accu-
mulator for the set of revoked serial numbers2. If a regular user wants to prove that she
is not in the revocation list, she simply shows her serial number and the correspond-
ing nonmembership witness. However, such approach reveals the user’s serial number
(thus the identity as well). The building block presented in this section enables such
nonmembership proof in an anonymous fashion, i.e., without revealing the serial num-
ber. The idea here is that the user first commits her serial number in her certificate, then
proves that the committed serial number was not accumulated in the revocation list. We
shall describe in details how this building block is used for certificate and membership
revocation in the anonymous setting in the next section.

The commitment scheme that we use in this section is developed by Fujisaki and
Okamoto [18] and improved by Damgård and Fujisaki [17]. The parameters of the this
commitment scheme are (n1, g1, h1), where n1 is a special RSA modulus of length k1,
h1 is a random value in QRn1 , and g1 is a random value in the group generated by h1.
To commit a value x, the committer chooses a random r ←R Zn1 and computes the
commitment commit(x, r) = gx

1hr
1 mod n1. The Fujisaki and Okamoto’s commitment

scheme is statistically hiding and computationally binding if factoring is hard. Note that
the protocol described next could also work for other commitment schemes, such as the
Pedersen commitment [22], with only minor modifications.

For our protocol, we require an element h in QRn such that logg h is unknown to
the prover, where g and n are the parameters of the universal accumulators described
in the previous sections. To prove that given a commitment c1 and an accumulator c,
the value committed in c1 has not been accumulated in c, we build the following zero-
knowledge proof protocol. The common inputs to the protocol are c1, n1, g1, h1, c, n, g,
and h. The prover has additional inputs: x, r, a, d such that c1 = gx

1hr
1 mod n1 and

ca = dxg mod n, where the first equation shows that x is the committed value of c1
and the second equation shows that x was not accumulated in c.

Protocol 1. PK{(x, r, a, d) : c1 = gx
1hr

1 ∧ ca = dxg ∧ x ∈ Z2� ∧ a ∈ Z2�}

1. The prover chooses, uniformly at random, values w, rx, ra, rw , rz , and re of
length k. The prover computes the following values (modulo n): cx = gxhrx ,
ca = gahra , cd = dgw, cw = gwhrw , z = xw, cz = gzhrz , and ce = (cd)xhre .
The prover sends (cx, ca, cd, cw, cz, ce) to the verifier and carry out the following
zero-knowledge proofs of knowledge.
Note that ce = (cd)xhre = (dgw)xhre = dxgxwhre = g−1cagzhre .

2. The prover proves to the verifier that the value committed in c1 in bases (g1, h1) is
the same as the value committed in cx in bases (g, h):

PK{(ε, ρ, ρx) : c1 = gε
1h

ρ
1 mod n1 ∧ cx = gεhρx mod n}

2 We assume that each group member in the system has a unique prime serial number.
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3. The prover proves to the verifier that the value committed in ce in bases (cd, h) is
the same as the value committed in cx:

PK{(ε, ρe, ρx) : ce = (cd)εhρe ∧ cx = gεhρx}

4. The prover proves to the verifier that ceg is also a commitment in bases ((c, g), h),
and the values committed in ceg are the same as the values committed in ca, cz , and
the power of h in ceg is the same as in ce in bases (cd, h):

PK{(σ, τ, ε, ρa, ρz, ρe) :
ceg = cσgτhρe ∧ ca = gσhρa ∧ cz = gτhρz ∧ ce = (cd)εhρe}

5. The prover proves to the verifier that cz is a commitment to the product of values
committed in cx and cw:

PK{(σ, τ, ε, ρz, ρw, ρx, ρ) :
cz = gτhρz ∧ cw = gσhρw ∧ cx = gεhρx ∧ cz = (cw)εhρ}

6. The prover proves to the verifier that cx is a commitment to an integer of length �,
and that ca is a commitment to an integer of length �:

PK{(ε, σ, ρx, ρa) : cx = gεhρx ∧ ca = gσhρa ∧ ε ∈ Z2� ∧ σ ∈ Z2�}

Note that the preceding protocol is similar to the one proposed by Camenisch and
Lysyanskaya [11]. The zero-knowledge proof protocol in [11] is used to prove knowl-
edge of a signature, whereas our protocol is to prove knowledge of a nonmembership
witness. The details of the zero-knowledge proof protocols in each step are omitted,
as these zero-knowledge proof protocols are standard in the literature, e.g., a protocol
for proving knowledge of equality of representation modulo two composite modulus
in step 2 , 3, and 4 can be found in [13], a protocol for zero-knowledge proof that a
committed value is the product of two other committed values in step 5 can be found
in [12,17], a protocol for proving that a committed value lies in a given range in step 6
can be found in [6].

Theorem 2. The preceding protocol is a zero-knowledge proof of knowledge of the
values (x, r, a, d) such that c1 = gx

1hr
1 mod n1 and (a, d) is a valid nonmembership

witness of x for accumulator c.

Proof. The completeness property of Protocol 1 is obvious. The zero-knowledge prop-
erty of Protocol 1 is also clear. The simulator first computes the commitments cx, ca,
cd, cw, cz , and ce at random. Then the simulator invokes the simulator for the zero-
knowledge proofs of knowledge of each step. Because the commitments reveal nothing
statistically and the proofs of knowledge protocols at each step are zero-knowledge, the
preceding protocol is zero-knowledge.

We now show that there exists a knowledge extractor that outputs a valid committed
value x and a valid nonmembership witness for x. Our extractor will invoke the ex-
tractor for the zero-knowledge proof protocols at each step as a building block. If our
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extractor fails, then we are able to set up a reduction to break the strong RSA assump-
tion. Suppose the extractor succeeds and computes (x, a, w, z, r, rx, ra, rw, rz , re) such
that

c1 = gx
1hr

1 (1)

cx = gxhrx (2)

ce = (cd)xhre (3)

ca = gahra (4)

cz = gzhrz (5)

ceg = cagzhre (6)

cz = gxwhrz (7)

where the equations (1) and (2) come from the extractor in step 2 of the protocol, the
equations (2) and (3) come from the extractor in step 3 of the protocol, the equation (4),
(5), and (6) come from the extractor in step 4 of the protocol, the equation (5) and (7)
come from the extractor in step 5 of the protocol. From equations (5) and (7), we get
z = xw. Equations (3) and (6) imply that (cd)xg = cagz . Let d = cd/gw, we have
dx = (cd/gw)x = cx

d/gz = cag−1, or equivalently, ca = dxg. Since we also know that
x and a are of length �, we can output (x, r, a, d) such that c1 is a commitment of x,
and (a, d) is a valid nonmembership witness for x. �

6 Application to Certificate and Membership Revocation

In this section, we show that the dynamic universal accumulator we constructed can be
used for efficient membership revocation for group signatures, anonymous credentials,
and direct anonymous attestation schemes; right after a brief review of these schemes.

6.1 Review of Group Signatures, Anonymous Credentials, and Direct
Anonymous Attestation

Group signatures, first introduced by Chaum and van Heyst [15], provide anonymity
for signers. In a group signature scheme, each group member can sign messages such
that the resulting signatures do not reveal the identity of the signer. A number of group
signature schemes have been proposed, e.g., [1,2,5,14]. Formally speaking, a group-
signature scheme with membership revocation is a digital signature scheme comprised
of the following procedures:

– Setup: On input a security parameter, this probabilistic algorithm outputs the initial
group public key and the secret key for the group manager.

– Join: A protocol between the group manager and a user that results in the user
becoming a new group member. The user’s output is a membership certificate and
a membership secret.

– Sign: A probabilistic algorithm that on input a group public key, a membership
certificate, a membership secret, and a message m outputs group signature of m.
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– Verify: An algorithm for establishing the validity of a group signature of a message
with respect to a group public key.

– Open: An algorithm that, given a message, a valid group signature on it, a group
public key and a group managers secret key, determines the identity of the signer.

– Revocation: An algorithm for the group manager to remove a member from the
group. This algorithm results in an updated group’s public key and some other
information to be stored in a public server.

– Membership Update: An algorithm for the users to update their membership certifi-
cates and membership secrets using the information available in the public server
and the current group public key.

A secure group signature scheme must satisfy the anonymity and unlinkability prop-
erty. The anonymity property says that, given a valid signature of some message, iden-
tifying the actual signer is computationally hard for everyone but the group manager.
The unlinkability property means that deciding whether two different valid signatures
were computed by the same group member is computationally hard.

In an anonymous credential system [21,9,11], a user can demonstrate to a veri-
fier that she has a credential, but the verifier cannot infer anything about who the
user is other than the fact that the user has the right credential. The Camenisch and
Lysyanskaya [9,11] credential system has a similar construction to the group signature
schemes. Essentially, their system enables a credential holder to prove to a verifier that
the credential holder has a signature signed by the certificate authority.

Direct Anonymous Attestation (DAA) was first proposed by Brickell, Camenisch,
and Chen [7]. DAA enables remote authentication of a Trust Platform Module (TPM),
while preserving the privacy of the user of the platform that contains the module. The
DAA scheme can be seen as a group signature without the feature that a signature can be
opened. The DAA scheme presented in [7] is similar to the signature scheme proposed
in [11].

6.2 Incorporating Revocation into Group Signature Schemes

In this subsection, we use the group signatures scheme developed by Ateniese et al. [1]
as an example, and show that our universal accumulator scheme can be integrated into
the group signatures scheme to enable efficient revocation.

– Setup: In [1], the group manager chooses two ranges Γ and Λ and chooses n =
pq where p and q are safe primes. The group manager also picks a, a0, g, h ∈
QRn, and chooses a secret elements x and computes y = gx mod n. The group
public key is (n, a, a0, g, h, y) and the secret key is (p, q, x). In addition, the group
manager creates n′ for the universal accumulators described in section 3, such that
Γ ⊆ Xk. The group manager also chooses a random g′ ∈ QRn′ and publishes
(n′, g′) as the public parameters of the universal accumulator.

– Join: In [1], a user interacts with the group manager. In the end, the user obtains
ei ∈ Γ , xi ∈ Λ, and Ai such that axia0 ≡ Aei

i mod n. In addition, given the cur-
rent revocation list {e1, . . . , em}, the group manager computes the nonmembership
witness for ei, and sends the witness to the user.
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– Sign and Verify: In [1], the prover with private key (Ai, ei, xi) proves to the ver-
ifier that she is a member of the group. More specifically, the prover uses zero-
knowledge proof of knowledge to prove the knowledge of (Ai, ei, xi) such that
axia0 ≡ Aei

i mod n. In addition, the prover proves to the verifier that ei is not
in the revocation list. This can be done using the zero-knowledge proof protocol in
Section 5. That is, the prover can first commit ei and then prove that (1) the value
committed is the same as the value in her private key, and (2) the value committed
has not been accumulated in {e1, . . . , em}.

– Revocation: To revoke a member with private key (Ai, ei, xi) from the group, the
group manager inserts ei into the revocation list. Let c be the current accumulator.
The group member updates c = f(c, ei) = cei mod n′.

– Membership Update: Let ĉ be the current accumulator and c be previous accumu-
lator stored in the public server. Each group member updates her nonmembership
witness accordingly using ĉ and c using the algorithms presented in Section 4.

Analogously, we could integrate our revocation scheme using universal accumulators
with other group signature schemes [2,5,14], anonymous credentials schemes [9,11],
compact e-cash scheme [8], and DAA scheme [7] with minor modifications. Observe
that the group manager could generate both a valid membership witness and a valid
nonmembership witness for a given group member. In our scheme, we assume that
the group manager is trusted and it will not generate nonmembership witnesses for the
members that are already in the revocation list.

7 Conclusion

We proposed a new cryptographic scheme called universal accumulators which enables
one to condense to a set of values using a short accumulator, to efficiently compute a
witness of the membership of any value that has been accumulated, and to efficiently
compute a witness of the nonmembership of any value that has not been accumulated.
We gave a construction for universal accumulators and proved its security based on the
strong RSA assumption. We then presented a construction for dynamic universal accu-
mulators in which one can add (or delete) inputs into (or from) the accumulated set with
constant cost. Dynamic universal accumulators can be used for efficient membership
revocation in the anonymous setting. Universal accumulators may be of independent
interest in other applications as well.
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Unlinkable Secret Handshakes and

Key-Private Group Key Management Schemes
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Abstract. We present the first practical unlinkable secret handshake
scheme. An unlinkable secret handshake is a two-way authentication pro-
tocol in a PKI setting which protects privacy and anonymity of all in-
formation about the participants to everyone except of their intended
authentication partners. Namely, if entity A certified by organization
CAA wants to authenticate itself only to other entities certified by CAA,
and, symmetrically, entity B certified by CAB wants to authenticate
itself only to entities also certified by CAB , then a secret handshake
protocol authenticates these parties and establishes a fresh shared key
between them if and only if CAA = CAB and the two parties entered
valid certificates for this CA into the protocol. If, however CAA �= CAB,
or CAA = CAB but either A or B is not certified by this CA, the secret
handshake protocol reveals no information to the participants except of
the bare fact that their inputs do not match. In other words, an Un-
linkable Secret Handshake scheme is a perfectly private authentication
method in the PKI setting: One can establish authenticated communi-
cation with parties that possess the credentials required by one’s policy,
and at the same time one’s affiliation and identity remain perfectly secret
to everyone except of the parties to whom one wants to authenticate.

Efficient secret handshake schemes, i.e. authentication protocols which
protect the privacy of participants’ affiliations, were proposed before, but
participants in these schemes remained linkable. Namely, an attacker
could recognize all the instances of the protocol executed by the same
entity. Secondly, the previous schemes surrendered user’s privacy if the
certificates of this user were revoked, and our scheme alleviates this prob-
lem as well. Unlinkable schemes were proposed as well, but they either
relied on single-use certificates, or did not support revocation, or required
instantaneous propagation of revocation information.

Crucial ingredients in our construction of unlinkable secret handshakes
are chosen-ciphertext secure key-private encryption and multi-encryption
schemes, and the first efficient construction of a key-private group key
management scheme, which is a stateful analogue of (key-private) public
key broadcast encryption.

1 Introduction

Privacy of Authentication in the PKI Model. “Unlinkable Secret Handshake”
is a name we give to an Authenticated Key Exchange [AKE] scheme which, in
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addition to the standard security properties needed of an AKE scheme provides
privacy properties of affiliation hiding, policy hiding, and unlinkability. In order
to explain these privacy properties we need to recall how authentication (and
authenticated key exchange) works in the public-key infrastructure [PKI] model.
In the PKI model each party holds a certificate cert on its public key issued by
some Certification Authority [CA], the fact which we denote as cert ∈ CA. (In the
general PKI model, certificates can be put together in arbitrarily long chains,
but here we consider only a “flattened PKI model” which does not support
certificate chains.) We call the CA an affiliation of that party and we use the
terms “certified by” and “affiliated with” interchangeably. We refer to the parties
affiliated with a given CA as its group, and we call the CA a group manager.

In addition to a list of certificates, each party also holds an authentication
policy, represented by a list of CA’s, which specifies that this party wants to
establish authenticated communication only with entities affiliated with these
CA’s. In some applications parties affiliated with some CA might have a policy
to authenticate only to other entities affiliated with the same CA, e.g. with the
employees of the same company, or with the members of the same organization.
In a common case a player’s policy will include all the CA’s this player is affiliated
with, but in general the two lists might have nothing in common.

Two-sided authentication in the PKI model is successful depending on
whether there is a match between the affiliations and the policies of the two
interacting parties. For simplicity of discussion, let each player hold only a single
certificate, and let its authentication policy consist also of only a single “target”
CA. In a secure PKI-based authentication scheme, if party A enters into the
computation a certificate certA and policy CAA, and party B enters certificate
certB and policy CAB, both players accept (and output a fresh authenticated
session key) only if certA ∈ CAB and certB ∈ CAA.

The standard way in which players A and B discover if their affiliations and poli-
cies match is to announce for one party to announce its affiliation and policies to the
other.Thismatch-discovery process is then followedby the cryptographic protocol,
consisting of the players’ verifying each other’s certificates and running an AKE
protocol on the public keys in these certificates. However, this means that some
player’s affiliations and/or policies are effectively available to anyone who requests
it. This unrestricted leakage of authenticationpolicy and/or affiliation information
of a party is a privacy threat, because in many applications both one’s affiliation
and one’s policy is a sensitive information that should be protected from unnec-
essary exposure. (Note also that most commonly one’s policy immediately reveals
one’s affiliation.)The only entities that have the right to know that playerA is affili-
ated with CA1 and by policy wants to communicate securely with entities affiliated
withCA2, are entities that are indeed affiliatedwithCA2. No one elseneeds to know
anything about A’s affiliation and policy. In fact, an un-authorized observer should
not be able to link any two instances of the AKE protocol executed by any party.
Note that linkability has been recognized as a privacy threat in the context ofmany
applications, and this motivated research into identity escrow [KP98], electronic-
cash, e.g. [CFN88], or unlinkable credentials [CL01], among other applications.
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In contrast, an (Unlinkable) Secret Handshake [SH] scheme is an AKE protocol
with the following privacy property: An adversary playing the role of player B,
who does not hold a valid certificate certB ∈ CAA where CAA is a policy specified
by A in this AKE protocol instance, does not learn anything about party A.
More specifically, the protocol provides (1) affiliation/policy hiding, in the sense
that without authorization one cannot tell the affiliation and the authentication
policy of any party, and (2) unlinkability, in the sense that an un-authorized
adversary cannot link any two instances of the SH protocol executed by the
same player. (Of course, B’s privacy against malicious player A is protected in
the analogous way.) Note that it makes no sense to require that affiliation/policy
hiding holds against “insiders”, i.e. parties which do satisfy A’s policy. However,
in some applications it might make sense to require unlinkability from insiders,
and even though we do not model such insider-unlinkability formally, our scheme
can be modified to support it, although the on-line computation cost would then
grow from 2 logn to O(Δ log n) exponentiations.

Prior Work on Secret Handshakes. Linkable versions of a Secret Handshake
scheme were given before, based on bilinear maps [BDS+03, BHS04], computa-
tional Diffie-Hellman [CJT04], orRSA [JKT07a, JKT07b]. (As shown in [JKT07b],
the RSA-based secret handshake scheme proposed in [Ver05] is insecure because it
fails to protect players’ affiliations.) All these solutions are efficient and practical,
but all of them display two privacy vulnerabilities: First, even though the affilia-
tions and policies of the participants in these schemes are protected in the sense
of affiliation/policy hiding, these schemes do not meet the unlinkability property.
In fact, instances of the SH protocol executed by a single party can be efficiently
linked by any observer. Secondly, these schemes do not protect affiliation privacy of
players whose certificates need to be revoked, e.g. in case of key corruption or loss.
There have been several proposed solutions to the unlinkable secret handshake
problem, but neither of them solves the problem in a satisfactory way. First, all
the above schemes have trivially unlinkable variants if players use single-use cer-
tificates, but such single-use certificates require too much storage and make revo-
cation impractical. The scheme of Tsudik and Xu [TX05] relies on a group secret
shared by all the group members, and thus it requires perfect synchrony in revo-
cation information between the participating players, or otherwise the players fail
to authenticate one another. The scheme of Xu and Yung, [XY04] is not based on
any shared secrets, but it only offers a weak version of the privacy property called
k-anonymity. This notion allows the attacker to learn that the participants’ af-
filiation is contained in the set of k publicly revealed CA’s. Moreover, since the
real affiliation of player A belongs to an intersection of the k-element sets released
each time A runs the protocol, protocol instances can be linked with significant
probability. Finally, [AB07] proposed an unlinkable scheme but their scheme does
support revocation.

Our Contributions: (1) The primary contribution of this paper is the first con-
struction of an efficient unlinkable Secret Handshake scheme, with no information
leakage due to certificate revocation, with no reliance on single-use certificates,
with support of revocation, and without the requirement that the both players
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assume the same revocation information. The scheme takes only a few commu-
nication rounds and its bandwidth is Δ · log n standard public key encryption
ciphertexts, where n is the upper bound on the number of group members and
Δ is a parameter equal to the maximum tolerated lag between revocation up-
dates received by the two protocol participants. The computational costs consist
of Δ · log n off-line exponentiations and 2 logn on-line exponentiations, if the
scheme is instantiated with the least expensive CCA-secure variant of ElGamal
encryption, e.g. DHAES [ABR01]. For practical values like Δ = 10 and n ≤ 216,
the bandwidth comes to 20KB, assuming computational Diffie-Hellman holds
on groups of residues of 1024-bit primes, and the on-line computation involves
32 (short) exponentiations with a fixed base, i.e. less than 100 milliseconds.
(2) We provide very strong definitions of both security and privacy for an
SH scheme. Security is modeled as in a standard AKE protocol (e.g. [CK02]),
and hence our definition implies security against the man-in-the-middle at-
tack, and it offers independence between keys on every session, thus neutral-
izing session-interference attacks. (This was unknown for the protocols given
in [BDS+03, BHS04, CJT04].) Similar AKE-based definition for secret hand-
shakes was given for 2-party secret handshake protocols in [JKT07b], but here
we strengthen the privacy property so that it includes unlinkability of the protocol
instances in addition to affiliation and policy hiding modeled in [JKT07b].
(3) The main ingredient in our solution is a construction of a key-private public-
key group key management [PKGKM], which is a stateful version of the public-
key broadcast encryption. We show an efficient key-private PKGKM scheme
based on the “Logical Key Hierarchy” GKM scheme of Wallner et al. [WHA97],
and we show a CCA-secure version of it. Key-privacy for standard encryption
has been recognized as an important tool for achieving anonymity and privacy
properties in various protocols. A key-private (stateful) broadcast encryption
might find such applications as well. As a side contribution, we extend results of
Bellare et al. [BBs03] on batched encryption, to ElGamal encryption compiled
into its CCA-secure version via the Fujisaki-Okamoto construction [FO99].

Note on Intrinsic Limitations of Affiliation/Policy Hiding AKE’s. The security
notion for AKEs implies complete independence between protocol sessions in
the sense that a key agreed on any chosen session remains secure regardless of
what happens to keys agreed on all other sessions, including the most extreme
case when all these other keys are simply revealed in the clear. In the works
on secure AKE’s, e.g. [CK02], this is modeled by giving the adversary against
an AKE scheme an access to a “key revelation” oracle which can reveal keys
computed on any protocol session except the session that the adversary is at-
tacking. In particular, this implies that any AKE session remains secure even if
the adversary sees whether or not all other protocol sessions were successful or
not. (Adversary can do that by revealing the keys computed in these sessions
and testing whether they are non-empty and equal.) In contrast to security, the
privacy property of affiliation/policy hiding cannot be achieved if (1) the propa-
gation of a revocation list is not instantaneous, (2) an adversary can engage with
any player in a protocol session, and (3) the adversary can observe whether or
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not any of these sessions were successful. This is because an active adversary who
corrupts some player can find out the affiliation/policy (assume these are equal)
of any player A who has not yet updated his or her revocation list. Namely,
an adversary can engage in a protocol with A assuming the corrupted player’s
identity, and since A’s revocation list is not updated, the protocol succeeds, and
the adversary observes that and learns that A is affiliated with the same group
as the corrupted player. The adversary then arranges a session between A and
any other player B, e.g. by engaging both players and acting as a man in the
middle, and if the adversary observes whether the session was successful, he/she
can conclude if B’s affiliation/policy matches that of A’s. Note that this attack
can be staged even if player B always has the most recent revocation list, either
because the protocol is supposed to tolerate the lag in A’s and B’s revocation
lists or because A might have updated his revocation list before running the
protocol with B.

Therefore, an AKE scheme cannot protect the affiliation/policy hiding of even
the players who always immediately update their revocation lists if (1) there are
players who do not, (2) the adversary can engage any player in the protocol,
and (3) the adversary can observe if a session is successful. Given this intrinsic
limitation to privacy of authentication protocols, we believe that the most use-
ful relaxation that would enable privacy protection in practical applications is
to remove the third item. In other words, we must require that the adversary
cannot tell an execution of a successful protocol that is executed over the secure
channel established by an instance of the AKE scheme, from an execution of a
“simulation” of such protocol, which a player will perform whenever an AKE in-
stance fails. In other words, the AKE scheme can offer affiliation/policy privacy
but only for a special class of protocols which utilize the keys agreed-upon by
this AKE, namely for protocols that can be simulated in this fashion. This class
includes, for example, protocols which have fixed number of rounds and whose
message sizes can be fixed without big efficiency losses. The privacy-preserving
execution of such protocol involves padding every message to the fixed upper
bound, and its simulation consists of sending random messages of the same size.
In both cases the protocol messages need to be encrypted with key-private sym-
metric encryption (which standard symmetric encryption schemes provide), but
in the simulation the key is chosen at random. We defer the full specification of
such privacy-preserving protocols to the full version [JL07].

Organization. We define key-privacy for PKGKM’s in Section 2, and Unlinkable
SH’s in Section 3. In Section 4 we introduce multi-encryption, which we use to
build key-private GKM in Section 5, and from that we build an SH scheme in
Section 6. All proofs have been delegated to the full version of this paper [JL07].

2 Key-Private Group Key Management: Definition

We describe the syntax of a (Public-Key) Group Key Management [PKGKM]
scheme, and we define two PKGKM properties: (1) Semantic security under
the chosen-ciphertext attack, IND-CCA, which is an adaptation of the standard
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security notion of IND-CCA for standard encryption [GM84] to GKM schemes;
and (2) Key-privacy under CCA, IK-CCA, which is also an adaptation of the
IK-CCA notion of key-privacy introduced by Bellare et al. [BBDP01] for
standard encryption.

In a Public-Key GKM scheme we consider a group of players administered by
a group manager, who creates a public (encryption) key, issues private (decryp-
tion) keys to the group members, and can revoke any member by broadcasting
a revocation information, which is used to update both the public and the pri-
vate keys. A PKGKM scheme is a stateful version of a Public-Key Broadcast
Encryption scheme, considered e.g. by Dodis and Fazio [DF02] and by Boneh
et al. [BBW06]. In a PK BE scheme, the public and private keys are fixed, and
the encryptor can encrypt a message for any subset of players. In a PKGKM
scheme, messages are always encrypted under the most recent public key, and
the revocation information used in computing this key determines the subset of
players who can decrypt.

A PKGKM scheme is a tuple of algorithms (Setup, KGen, Revoke(PKUpdate,
SKUpdate), Enc, Dec):

– Setup(1k), on input a security parameter k, generates parameters params.
– KGen(params), executed by the group manager, generates the initial group

public key PK (0), the initial master secret MSK(0), and members’ initial
private keys SK (0)

1 , ...,SK (0)
n .

– Revoke(MSK(t), i, t), executed by the group manager in epoch t (initially
t = 0) revokes key SK i of member Ui by generating an update message
U (t+1), and updating the master secret to MSK(t+1). Message U (t+1) is used
to update the public key as PK (t+1) = PKUpdate(PK(t), U (t+1)), and each
decryption key as SK j

(t+1) = SKUpdate(SK j
(t), U (t+1)), for each j �= i.

– Enc(PK (et), m) encrypts message m on public key PK(et).
– Dec(SK i

(dt), C) is a decryption algorithm which either returns some message
m or rejects.

Initialization of the Static Adversary: To express security properties of
the PKGKM scheme in the static adversary model, it’s convenient to denote
the initialization pattern for the static adversary who corrupts subset Rev of
players, on public parameters params, as Init(params, Rev). This initialization
involves an execution of KGen(params) and t executions of Revoke, for t from
1 to τ = |Rev|, which generates the initial public/private keys and t update
messages U (1), . . . , U (τ), which in turn define a set of public/private keys PK (t)

and SK i
(t), for all i �∈ Rev and 0 ≤ t ≤ τ . The static adversary receives params,

the public keys, and the private keys of the players in Rev. In the key-privacy
definitions, when we initialize the keys of two groups G0, G1, on the same public
parameters params, we’ll generate the two sets of keys for these two groups as
Init(params, Rev0, 0) and Init(params, Rev1, 1).

Δ-Limited Completeness. We stress that we do not assume that the key update
messages are propagated immediately to all the participants, and hence there
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can be a discrepancy between the epoch of the public key used by the encryptor
and the epoch of the private key used by the decryptor. The PKGKM scheme we
construct in this paper handles such discrepancy between the epochs up to some
value Δ, and otherwise it does not guarantee proper decryption. In practice the
group members will have to retrieve update messages in an anonymous way, e.g.
using onion-routing, often enough to offset this Δ-limitation on the tolerated
epoch difference.

Let params = Setup(1k) and all the private/public keys are generated via
Init(params,Rev, ε). Let Rev(t) denotes the first t indices in Rev. We call a PKGKM
scheme Δ-Limited εcomp-Complete if it holds with probability at least 1 − εcomp

that for any message m, for any 0 ≤ et, dt ≤ τ and i �∈ Rev(max{et, dt}), if
|et − dt| ≤ Δ then

Dec(SK
(dt)
i , C) = m if C = Enc(PK(et), m)

IND-CCA Security and IK-CCA Privacy for PKGKM’s. We define the IND/IK-
CCA security notions for a PKGKM scheme only for static adversaries. Both no-
tions are analogous to the IND-CCA security notion and the IK-CCA key-privacy
notion for standard public key schemes. The differences in the IND-CCA game
for a PKGKM scheme proceeds are as follows: (1) The game proceeds on some
set Rev of corrupted players chosen before the game starts; (2) The adversary is
given the initial group public key together with τ = |Rev| update messages and
the private keys of the players in Rev, as generated by Init(params, Rev); (3) The
queries to the decryption oracle the adversary can make are of the form (C, i, t),
where i �∈ Rev and t ≤ τ , and the decryption oracle responds with Dec(SK (t)

i , C);
(4) The encryption challenge, on adversarially chosen pair of messages (m0, m1),
is computed as C∗ = Enc(PK (τ), mb); and (5) After receiving C∗ the adversary
cannot make decryption queries of the form (C∗, i, t) for any i, t. As in the stan-
dard IND-CCA notion, we say that the PKGKM scheme is IND-CCA if the
probability that the adversary guesses b is at most negligibly larger than 1/2.

The IK-CCA game for a PKGKM scheme is defined in a similar way, except
that the adversary is given two sets of private/public keys, for groups G0 and
G1, the adversary can access decryption oracles for both groups, the encryption
challenge is computed as C∗ = Enc(PK b

(τ), m) on adversarially chosen message
m, and after receiving C∗ the adversary cannot ask for decryption of C∗ to
either group. Again, the PKGKM scheme is IK-CCA if the probability that
the adversary guesses b is at most negligibly larger than 1/2. We provide both
definitions in the full version of this paper on eprint [JL07].

3 Unlinkable Secret Handshake Scheme: Definition

Similarly as in the Group Key Management setting, the model for a Secret
Handshake scheme consists of a set of groups G, each managed by its manager,
and a set of users U . For notational convenience in describing the security model
of a Secret Handshakes scheme, we’ll assume that every user U ∈ U is a member
of a unique group G ∈ G, which we’ll denote G = Membership(U). We say that
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U ∈ G if G = Membership(U). Each U ∈ G has its unique index in this group,
denoted i = Index(U). We stress that the restriction that each user is a member
of a unique group is taken only for notational convenience in defining the security
and privacy properties of a Secret Handshake scheme. It is not a restriction on
the actual applications of such scheme, where the same user can indeed be a
member of many groups.

Syntax of a Secret Handshake Scheme. We define a Secret Handshake (SH)
scheme as a tuple of algorithms (Setup, KGen, Revoke(PKUpdate, SKUpdate),
Handshake), where all algorithms except Handshake have the same syntax as in a
GKM scheme. As in the GKM scheme, we’ll denote by Init the static initialization
pattern involving an execution of KGen followed by |Rev| instances of Revoke,
one per each element in the set Rev of revoked players, chosen beforehand.

The new procedure, Handshake, is an interactive protocol executed by any
user U , on public inputs params and private inputs (SK ,TPK , r), where SK =
SKG,i

(dt) for G = Membership(U), i = Index(U), dt is U ’s current epoch for
group G, TPK = PK TG

(et) is a public key of some “target” group TG , not
necessarily equal to G, at some epoch et, and r is the role of U in this execution,
which is equal either to init for initializer or resp for responder. Since it’s an
interactive protocol, it is intended that two users, U and U ′, execute two match-
ing instances of the Handshake protocol and exchange the messages generated on
these protocol instances. Adopting the standard terminology for Key Agreement
protocols, we refer to every instance of Handshake protocol as a session, and we’ll
call the matching instances of this protocol matching sessions. We will denote an
instance of the protocol executed by θ-th instance of user U as Πθ

U . Consider the
session instance Πθ

U running on inputs (SK ,TPK , r), and instance Πθ′

U ′ running
on inputs (SK ′,TPK ′, r′). We call these two sessions matching if (1) r �= r′, (2)
Membership(U) = PKGroup(TPK ′), and (3) Membership(U ′) = PKGroup(TPK ),
where PKGroup(PK) identifies the group of the public key. We call two matching
instances Πθ

U and Πθ′

U ′ partnered if the protocol transcript on these two sessions
are the same, i.e. if the messages sent by Πθ

U are delivered to Πθ′

U ′ and vice
versa. Two partnered sessions should both accept and output the same authen-
ticated and random key K, which can be then used for any subsequent secure
communication. If a session instance does not output a key then it rejects.

Δ-Limited Completeness: Informally, we require that if U and U ′ run matching
instances of the Handshake protocol, i.e. U is a member of group G and wants
to authenticate itself to members of group TG , while U ′ is a member of group
G′ = TG and wants to authenticate itself to members of group TG ′ = G,
then both players accept and output the same key on this session. However, we
can only guarantee such completeness property if neither of the two players is
revoked from their respective groups and if the epochs of the public and private
keys these players use are no farther than Δ apart, for both groups.

Formally, set params = Setup(1k), and initialize two groups G = 0 and
G = 1 on two sets Rev0, Rev1 ⊂ {1, ..., n} with the static initialization pat-
tern Init(params, Rev0, 0) and Init(params, Rev1, 1). Let RevG(t) denote the first
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t indices in RevG and let τG = |RevG(τ)|. We call an SH scheme Δ-Limited ε-
Complete if the following holds: For any 0 ≤ etG, dtG ≤ τG s.t. |etG − dtG| ≤ Δ,
and any iG �∈ RevG(max{etG, dtG}), for both G = 0 and G = 1, if U and U ′

run two sessions of the Handshake protocol on inputs

U ’s inputs: (SK (dt0)
0, i0

,PK (et1)
1 , init) U ′’s inputs: (SK (dt1)

1, i1
,PK (et0)

0 , resp)

then if all the protocol messages are properly exchanged between these two
instances, then with probability 1 − ε they both output a common key K.

Security of a Secret Handshake Scheme: Denote a set of groups as G, a set of
users U partitioned between these groups via the Membership function, and for
each group G ∈ G some set RevG ⊂ {1, ..., n}. We define SH security via a game
between an adversary A and the challenger simulating a network of players,
on common input (1k, U , G, {RevG}G∈G). First, the challenger picks params ←
Setup(1k) and initializes each group G ∈ G by the static initialization procedure
Init(params, RevG, G), which produces all the public/private keys and gives A all
the public keys, update messages, and the private keys of the revoked members
in each group. After that, A adaptively issues to the challenger any number of
commands of the following type, and outputs a single bit when it’s done:

- [Handshake, U , dt, PK et
TG, r]: The challenger initializes an instance Πθ

U where
θ is the next index that has not yet been used for player U , and then
starts the protocol for user U in epoch dt, i.e. runs Handshake on inputs
(SK

(dt)
G,i ,PK et

TG, r) where G = Membership(U), i = Index(U), dt ≤ |RevG|,
and et ≤ |RevTG|. The challenger keeps the state of the instance, and hands
to the adversary any message it generates.

- [Message, U , θ, m]: The challenger wakes up the Πθ
U instance of the Handshake

protocol on message m, if such instance exists, and follows the protocol on be-
half of that instance. If the instance outputs another message, the challenger
hands it to the adversary. If the instance rejects, the challenger abandons it.
If the instance outputs a key, the challenger records it by saving the tuple
(Πθ

U ,PK et
TG, K).

- [Reveal, U , θ]: If either the Πθ
U session or some session partnered with Πθ

U

was tested (see below), or if session Πθ
U did not output a key, the challenger

returns ⊥. Otherwise, the challenger returns the key K output on this session
to A.

- [Test, U , θ]: The challenger picks a random bit b. If this is the only Test
query A makes, if session Πθ

U outputted some key K, if the adversary has
not revealed the key on either Πθ

U or some session Πθ′

U ′ partnered with Πθ
U ,

and if Πθ
U executed on the target public key PK et

TG s.t. et = |RevTG| (i.e. if
the target public key PK on that session is updated so that all adversary’s
keys in group TG are revoked), then the challenger returns K to A if b = 0,
or a random string of length |K| if b = 1. If any of these conditions are not
met, the challenger returns ⊥.

Let AdvSHA,k denote the probability that A outputs the correct bit b chosen
by the challenger. (If A never makes the Test query we pick b at random.) We
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say that a SH scheme is (t, ε, n, n′, R, qS)-secure if for |U| = n, |G| = n′, for
maximum R sessions per user, for all subsets {RevG}G∈G, and all algorithms
A running in time t which invoke a total of qS SH protocol instances, we have
|AdvSHA,k − 1

2 | < ε.

Unlinkability and Affiliation/Policy-Hiding of a Secret Handshake Scheme: We
define unlinkability and affiliation /policy-hiding similarly to SH-security, via
a game between an adversary A and a challenger on common input (1k, U , G)
and the specification of corrupt (and revoked) players {RevG}G∈G). As in the
SH-security game, the challenger picks params ← Setup(1k) and initializes each
group by Init(params, RevG, G). After the initialization, the challenger picks a
random bit b ∈ {0, 1}. Since our AKE protocols protect privacy only for the
privacy-preserving protocols (see the note in the introduction), we model the
privacy adversary without access to a key-revealing oracle. In the full version
of the paper [JL07] we give a full model where the adversary has an access to
a protocol-execution oracle instead, and privacy of an AKE scheme holds only
if the protocol is privacy-preserving and compiled using a privacy simulator. In
these proceedings we simply restrict the privacy adversary A to issuing only the
Handshake and Message commands to the challenger.

The challenger in this privacy game services A’s commands depending on bit
b the challenger chooses: If b = 0 then the challenger executes each command
by following the corresponding protocol on behalf of the user entities, as in the
SH-security game. However, if b = 1, the challenger uses a special interactive
machine SIM to serve the commands issued to the instances whose target keys
are updated so that all adversary’s keys are revoked. For other instances, the
challenger follows the protocol on behalf of the user as in the SH-security game.
The SIM machine is initialized on string params, it can keep state between invo-
cations, but has no access to group keys created by the challenger in all the Init
instances. The challenger executes as follows using SIM:

- [Handshake, U , dt, PK et
TG, r]: If the target key PK et

TG satisfies et = |RevTG|
(i.e. if it is updated so that all adversary’s keys in group TG are revoked),
then the challenger picks a next index θ that has not been used yet by U
and an additional globally unique (random) string θ̂, which we will call an
identifier for the Πθ

U session. The challenger hands [Handshake, θ̂, θ̂-list] to
SIM where θ̂-list contains the identifiers of all sessions which match Πθ

U .
If et < |RevTG|, the challenger initializes an instance Πθ

U for θ the next
index not used by U , runs the Handshake protocol on behalf of Πθ

U as in the
SH-security game, and hands any message generated by Πθ

U to the adversary.
- [Message, U , θ, m]: If [Handshake, U , dt, PK et

TG, r] has been issued and
et = |RevTG|, the challenger retrieves θ̂ identifier for this session, passes
[Message, θ̂, m] to SIM, and forwards SIM’s answer to A. If et < |RevTG|, the
challenger follows the real protocol on behalf of Πθ

U as in the SH-security
game, and hands any message generated by Πθ

U to the adversary.
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Let AdvSHA,k denote the probability that A outputs the correct bit b chosen
by the challenger in the above game. We say that a SH scheme is (t, ε, n, n′, qS)-
unlinkable and affiliation/policy hiding if there exists a simulator algorithm SIM
running in time polynomial in k s.t. for |U| = n, |G| = n′, for R setting the max-
imum number of sessions per user, for all subsets {RevG}G∈G , and all algorithms
A running in time t which invoke a total of qS SH protocol instances, we have
|AdvSHA,k − 1

2 | < ε.

4 Security and Key-Privacy for Batched Encryption

Our construction of a key-private (Public-Key) Group Key Management scheme
(PKGKM), is based on the so-called “multi-encryption” [ME] introduced by
Bellare et al. [BBs03]. A multi-encryption is a non-standard method of encrypt-
ing a message under many independent public keys, where the encryptor uses
the same randomness when encrypting the message under each key. The reason
we rely on multi-encryption instead of standard encryption in our key-private
group key management scheme construction, is that it reduces the cost of de-
cryption procedure from O(N) exponentiations to O(1), where N is the number
of component ciphertexts.

Here is why: In our key-private (public-key) group key management scheme
[PKGKM], the ciphertext is a vector of ciphertexts. We cannot tag any informa-
tion that links each component to the public key, as that would leak information
about the group. As a consequence, the decrypting party will not know which
of these component ciphertexts it should decrypt, and hence it can decrypt the
PKGKM ciphertext only in an oblivious way, i.e. by attempting to decrypt each
of the component (standard) ciphertexts. Now, if the N component ciphertexts
are computed in a standard way, such oblivious decryption would take O(N)
exponentiations. However, if the component ciphertexts are computed using the
same randomness vector, then the decryption procedure requires only O(1) expo-
nentiations and O(N) fast symmetric operations, e.g. xors and tests for equality.

In the rest of this section we (1) define a multi-encryption [ME] version of
a public-key encryption scheme, and the IND-CCA and IK-CCA notions for it.
Then we (2) define a version of multi-encryption in which decryption is oblivi-
ous, and we discuss converting an ME to an oblivious multi-encryption [OME].
Finally, (3) we show examples of IND/IK-CCA encryption schemes which yield
IND/IK-CCA ME and OME schemes.

Multi-Encryption and its Security and Privacy Properties. We define multi-
encryption as a version of a standard public-key encryption, where the same
message is encrypted under a set of public keys, and the encryptor uses the same
randomness in each encryption. A standard public-key encryption is given by a
triple of algorithms (KGen, Enc, Dec), but for the purpose of multi-encryption we
need to split the key-generation procedure into two parts, Setup, which generates
some public parameters params, e.g. params = (p, q, g) where p, q are primes and
g is an element of order q in Z

∗
p, and KGen(params) proper, which for example

picks private key x at random in Zq and sets the public key as y = gx mod p.
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The multi-encryption ΠME version of the public key encryption scheme Π =
(Setup, KGen, Enc, Dec) is a tuple of algorithms (Setup, KGenME , EncME , DecME),
(note that the setup does not change), where:

KGenME(params) executes KGen(params) n times to produce a vector of n
public keys pk = {pki}i=1,...,n and the corresponding private keys sk.
EncME(pk, m) picks a (long-enough) random string r and outputs a vector
of ciphertexts c = {ci}i=1,...,n where ci = Enc(pki, m; r) [i.e. the encryption
of m under key pki using randomness r].
DecME(ski, c) outputs Dec(ski, ci) where c = (c1, . . . , cn).

The IND-CCA notion of security and the IK-CCA notion of key-privacy for a
multi-encryption scheme ΠME is defined analogously to the IND-CCA secu-
rity and IK-CCA key-privacy definitions for the underlying standard encryption
scheme Π . In the security notion (IND-CCA), the difference between security
of multi-encryption and standard encryption is that (1) in the multi-encryption
case the adversary receives a vector of public keys pk instead of a single key pk,
(2) the challenge ciphertext is a multi-encryption vector c∗ = EncME(pk, mb) for
the randomly chosen message mb instead of a single ciphertext c∗ = Enc(pk, mb),
and (3) the adversary has an adaptive access to a “flexible” decryption oracle,
which takes as input the index i of the decryptor and the ciphertext vector
c = {ci}, and outputs Dec(ski, ci). Also, after the adversary sees the encryption
challenge ciphertext c∗ = (c∗1, ..., c

∗
n) the adversary’s queries (i, c) must satisfy

ci �= c∗i where c = (c1, ..., cn).
The changes between IK-CCA notion for multi-encryption and the IK-CCA

notion for standard encryption are analogous. We note that the above IND-
CCA and IK-CCA notions for multi-encryption scheme are for a static adversary,
which cannot corrupt parties after the protocol starts.

Oblivious Multi-Encryption. An oblivious multi-encryption scheme is a multi-
encryption scheme as described above, except that the decryptor is not told which
ciphertext is directed to him. In other words, an oblivious multi-encryption scheme
ΠOME is a version of the public key encryption scheme Π = (Setup, KGen, Enc,
Dec) is a tuple of algorithms (Setup, KGenME , EncME , DecOME), where Setup is as
in the underlying standard encryptionΠ , algorithmsKGenME , EncME are as in the
multi-encryption scheme ΠME formed from Π as defined above, and the decryp-
tion procedure DecOME(ski, c) proceeds differently than DecME(ski, c): Namely,
if c = (c1, . . . , cn), the decryption procedure computes mj ← Dec(ski, cj), for
each j ranging from 1 to n. If all mj ’s are equal to the rejection symbol ⊥, then
DecOME(ski, c) outputs ⊥ as well. Otherwise, it outputs the first mj s.t. mj �=⊥.

The IND-CCA and IK-CCA notions for oblivious multi-encryption scheme
ΠOME are very similar to those for the (non-oblivious) multi-encryption ΠME

(see above), and the only difference is in the adversary’s interaction with the
(flexible) decryption oracle: First, the decryption oracle implements the DecOME

procedure instead of DecME . Second, after getting the encryption challenge c∗ =
(c∗1, . . . , c∗n), the decryption query (i, c) made by the adversary must satisfy c �=
c∗. (Note that c can contain one or more component ciphertexts of c∗, as long



282 S. Jarecki and X. Liu

as c �= c∗.) Analogous changes are made for the IK-CCA notion of an oblivious
multi-encryption scheme.

Constructing IND+IK-CCA Secure and Complete Oblivious Multi-Encryption
Schemes. Consider the following conversion from an OME scheme ΠOME =
(Setup, KGenME , EncME , DecOME) to another OME scheme Π ′OME = (Setup,
KGenME , Enc′ME , Dec′OME), where Enc′ME(pk, m) picks random r ← {0, 1}k

for the security parameter k, computes c ← EncME(pk, (m, r)) and outputs ci-
phertext C = (c, H(c, m, r)), where H(·) → {0, 1}2k is a hash function (modeled
as a random oracle in the security analysis); and Dec′OME(sk, C) parses cipher-
text C as (c, h), and outputs m̂ if (m, r) ← DecOME(sk, c) s.t. h = H(c, m̂, r̂).

Theorem 1. If ΠME is an IND+IK-CCA ME scheme, then Π ′OME is an
(n2−k)-complete IND+IK-CCA OME scheme in ROM.

Examples of IND+IK-CCA Oblivious Multi-Encryption Schemes. Bellare et al.
showed a generic method for converting IND-CCA standard encryption into
an IND-CCA ME. It required a technical property of “reproducibility” of the
underlying encryption.1 It’s easy to extend their results to IK privacy. I.e., the
same reproducibility implies that IK-CCA encryption yields IK-CCA ME. By
combining the results of [BBDP01] and [BBs03] with the discussion above, this
yields IND/IK-CCA and complete OME from DHAES and Cramer-Shoup. We
extend these results in the following sense: Fujisaki and Okamoto showed a way
to convert one-way encryption schemes, with additional technical property of γ-
uniformity, into IND-CCA encryption schemes, in the ROM model, via a hybrid
with symmetric encryption [FO99]. Their main theorem can be easily extended
to cover also key privacy. We refer to the full paper [JL07] for details.

5 Key-Private PKGKM from Oblivious Multi-encryption

Our key-private public-key group key management scheme is based on the so-
called Wallner Tree key distribution scheme proposed by Wallner et al [WHA97]
[WGL98], which uses a binary tree to assign subsets of keys to group members.
Our key of a node in the tree is a pair of public/private keys (pkz

(t), skz
(t)) in

epoch t. We could encrypt a message under the top key pkε
(t), as it is known to

all members of the group. However, such scheme would work only if the public
key used by the encryptor has the same epoch as the private key used by the
decryptor, e.g. if both parties have the most recent key-update message.

Such synchrony assumption is not realistic in practice. On the other hand,
we can relax this assumption and construct a practical group key management
scheme with Δ-limited completeness, i.e. a scheme which works assuming a limit
Δ on the discrepancy between the key epochs assumed by the encryptors and
decryptors. Our way to use the set of keys is similar to the extension of the
1 We note that the notion of multi-encryption introduced in [BBs03] is stronger than

here. Namely, the messages encrypted for each public key need not be the same.
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Wallner Tree construction in which any subset of Δ players can be revoked in a
batch. Let Rev(t) be a set of Δ indices corresponding to Δ most recently revoked
users. Let co-path(u) be the co-path of user u and R̃(t) be a Δ × log n table of
indices whose i-th column is made of indices in set co-path(ri) for i-th element
ri in Rev(t). In any column i, the element in row j is the j-bit long element in
co-path(ri). Let R(t) be a transformation of the R̃(t) matrix, where every element
of R(t) which is a prefix of some index i in the revoked set Rev(t) is replaced by
a special symbol �. For example, if n = 16, Δ = 3, and Rev(t) = {000, 011, 101}
then

R̃(t) =

⎛
⎜⎜⎝

1 1 0
01 00 11
001 010 100
0000 0111 1010

⎞
⎟⎟⎠ −→ R(t) =

⎛
⎜⎜⎝

� � �
� � 11

001 010 100
0000 0111 1010

⎞
⎟⎟⎠ (1)

In this way, matrix R(t) consists of nodes which cover all the leaves except those
in set Rev(t). Therefore, if the encryptor encrypted a message m under public
keys pkz

(t−Δ) for all indices z ∈ R(t), then every node except those in Rev(t)

would be able to get m using its key from epoch t−Δ. Let PK(t) be a log n×Δ
table of public keys from epoch t − Δ corresponding to the indices in R(t). If
some entry in R(t) is a symbol “�”, then the entry in the same position of PK(t)

is also a “�”. Continuing the above example we have

PK(t) =

⎛
⎜⎜⎜⎝

� � �

� � pk
(t−3)
11

pk
(t−3)
001 pk

(t−3)
010 pk

(t−3)
100

pk
(t−3)
0000 pk

(t−3)
0111 pk

(t−3)
1010

⎞
⎟⎟⎟⎠ (2)

We can then encrypt a message m under PK(t) using an OME scheme, as C(t)

given below. For the entries in PK(t) that are marked “�”, the corresponding
ciphertexts are filled with randomness, in the format of real ciphertexts.

C(t) =

⎛
⎜⎜⎜⎝

$ $ $
$ $ Enc

pk
(t−3)
11

(m)
Enc

pk
(t−3)
001

(m) Enc
pk

(t−3)
010

(m) Enc
pk

(t−3)
100

(m)
Enc

pk
(t−3)
0000

(m) Enc
pk

(t−3)
0111

(m) Enc
pk

(t−3)
1010

(m)

⎞
⎟⎟⎟⎠ (3)

Then each user Ui for i �∈ Rev(t) could use its key set of epoch t − Δ, i.e.
{skz

(t−Δ) : z ∈ path(i)}, to decrypt the message m. (Actually, {skz
(t−Δ) : z ∈

path(i)} remain the same until epoch t.)
However, instead of requiring the decryptor to be Δ epochs behind the encryp-

tor, we want to tolerate any lag between the encryptor and decryptor epochs, et
and dt, as long as |et − dt| ≤ Δ. To do this, we will make each member of the
group store its key set for (Δ+1) consecutive epochs. Each player’s secret key
SK

(t)
i is a log n × (Δ+1) key table whose j-th column is a key set of user Ui in

epoch τ = t − (Δ+1)+j. The keys in each column are arranged so that skz
(τ),
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for τ ∈ {t−Δ, t}, is in row number |z|, i.e. the bit-length of index z.2 For the
same example above, the node 0111 has the secret key table:

SK
(t)
0111 =

⎛
⎜⎜⎜⎝

sk
(t−3)
0 �= sk

(t−2)
0 �= sk

(t−1)
0 = sk

(t)
01

sk
(t−3)
01 = sk

(t−2)
01 �= sk

(t−1)
01 = sk

(t)
01

sk
(t−3)
011 = sk

(t−2)
011 �= sk

(t−1)
011 = sk

(t)
011

sk
(t−3)
0111 = sk

(t−2)
0111 = sk

(t−1)
0111 = sk

(t)
0111

⎞
⎟⎟⎟⎠ (4)

where �= means the key changed from one epoch to the next one.
Let (Setup, KGenME , EncOME , DecOME) be an IND/IK-CCA secure and com-

plete Oblivious Multi-Encryption scheme. The IND/IK-CCA and Δ-complete
PKGKM scheme can be constructed as follows:

– Setup(1k): Output (params, n, Δ), where params ← Setup, n is the maximum
number of members in each group (assumed to be a power of 2), and Δ is
the maximum difference between the encryptor’s epoch and the decryptor’s
epoch for which we guarantee correctness of decryption.

– KGen(params): For Wallner Tree of depth log n. Use KGenME(params) to
generate a set of public/private key pairs (pkz

(0), skz
(0)) for all tree nodes

z. Store all these key pairs as MSK(0). To simplify the description of the key
generation process, we let the group manager revoke Δ dummy members, so
that PK(0) has the format as eq.(2), and user Ui’s key SKi

(0) is a log n ×
(Δ+1) key-table, whose j-th column is filled with keys {skz

(j−Δ−1) | z ∈
path(i), z �= ε}, as in eq.(4).

– Revoke(MSK(t−1), r(t)): The update message U (t) consists of the standard
Wallner Tree update message which revokes user r(t) (and updates both the
standard Wallner Tree keys and the keys pk

(t−1)
z , sk

(t−1)
z for tree-nodes z on

the path from the root to the leaf corresponding to player r(t). Additionally,
the update message contains also the PK(t) table as in eq.(2). The table
contains a set of keys from epoch t − Δ which is determined by the tree-
leaves assigned to the last Δ revoked members.

– PKUpdate(U (t)): Extract PK(t) from U (t).
– SKUpdate(SKi

(t−1), U (t)): User Ui extracts the key update part from U (t),
perform the Wallner Tree user key update to get the new set of keys of
epoch t, i.e. {skz

(t)}, for z in the key path of Ui. Denote ski
(t) as the resulting

Wallner-tree secret key set for user Ui in epoch t. Then Ui discards ski
(t−Δ−1)

from the first column of his key table SKi
(t−1), and append ski

(t) to the last
column, so that SKi

(t) in the format of eq.(4).
– Enc(PK(t), m): Compute C ← EncOME(PK(t), m) and format it as an

log n × Δ table, as in eq.(3).

2 In this way all the keys in Ui’s key set are present in column τ except of the group
secret skε

(τ). The users could use these group secrets too, but this makes the de-
scription of the scheme slightly more complicated, and it does not improve the per-
formance by much.
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– Dec(SKi
(t), C): For each key sk in the left-most column ski

(t−Δ) in Ui’s
key table SKi

(t), from top level down, compute m ← DecOME(sk, C). If
m �= ⊥, output m. If the trials fail for all sk ∈ ski

(t−Δ), then repeat the
above procedure for the keys in the right-most column ski

(t) in SKi
(t). If all

trials fail, output ⊥.

Note on Efficiency. The GKM encryption cost is a multi-encryption with Δ log n
keys, i.e. Δ log n standard encryptions. The GKM decryption cost is O(log n)
multi-encryption decryptions. We can reduce both costs by modifying the OME
scheme so that the OME scheme is used as Key Encapsulation, to encrypt a
random key k for an IND-CCA symmetric encryption scheme, padded with a tag
of s zero bits. The key k is then used to encrypt the message using the symmetric
encryption. The resulting OME scheme remains IND/IK-CCA and complete, but
(1) All the public-key encryption costs can be done off-line, before the encryptor
knows the plaintext, which in particular pushes all the encryption cost in the
secret handshake scheme of Section 6 off-line; and (2) Heuristically, the oblivious
decryptor rejects an attempt to decrypt a ciphertext using a wrong key with
1 − 2−s probability. For all the ElGamal-based OME schemes we provide (using
DHAES, Cramer-Shoup, or DDH-based ElGamal with the Fujisaki-Okamoto
transformation), this means that the decryption cost in the above GKM scheme
takes only 2 logn exponentiations and O(Δ(log n)2) xor’s.

Theorem 2. If the underlying oblivious multi-encryption scheme is ε-complete
and IND+IK-CCA secure then the above PKGKM scheme is ε′-complete and
IND+IK-CCA, where ε′ = 2Δ log nε.

6 Unlinkable Handshakes from Key-Private PKGKM

Let (Setup, KGen, Revoke, Enc, Dec) be a Δ-complete IND/IK-CCA GKM scheme
and H : {0, 1}∗ → {0, 1}k is a hash function modeled as random oracle in the
security analysis. The SH scheme uses the same algorithm Setup, KGen, and
Revoke, and the Handshake protocol is shown in Figure 1. Each player’s inputs
in the protocol is a triple (SK ,TPK , resp/init) where SK is that player’s GKM
key for his/her group, TPK is the public key of this player’s target group, and
resp/init is the player’s role in the protocol. Let final be a special symbol, different
from resp and init. Parameter k̂ can be set as k̂ = 2k. In particular, it must be
large enough so that the probability that two sessions choose the same nonce is
negligible in k. Hash function H has a k̂-bit range.

We refer to the full paper [JL07] for proofs of the following claims:

Theorem 3 (Δ-limited completeness). Suppose the underlying Group Key
Management scheme is Δ-Limited ε-complete. Then our Secret Handshake
scheme is Δ-Limited ε′-complete, where ε′ = 2ε.

Theorem 4 (Security of the SH Scheme). If the underlying Group Key
Management scheme is (t, ε, n, qD)-IND-CCA secure and Δ-limited εc-complete,



286 S. Jarecki and X. Liu

Ui(SK i, TPK i, init) Uj(SK j ,TPK j , resp)
Gi = SKGroup(SK i) Gj = SKGroup(SK j)
TGi = PKGroup(TPK i) TGj = PKGroup(TPK j)

si
R← {0, 1}k̂ si �� sj

R← {0, 1}k̂

φj ← Enc(TPK j , (Gj , s, resp, Kj))
φi ← Enc(TPK i, (Gi, s, init, Ki))

sj ,φj�� for s = si|sj ; Kj
R← {0, 1}k

for s = si|sj ; Ki
R← {0, 1}k

(G′
j , s

′
j , r

′
j , K

′
j) ← Dec(SK i, φj);

if r′
j = resp and (G′

j , s
′
j) = (TGi, s),

hi ← H(init, Ki, K
′
j)

φi,hi �� (G′
i, s

′
i, r

′
i, K

′
i) ← Dec(SK j , φi);

if r′
i = init and (G′

i, s
′
i) = (TGj , s),

hj ← H(resp, K′
i, Kj)

hj��
if hj = H(resp, Ki, K

′
j) if hi = H(init, K′

i, Kj)

output K̂ = H(final, Ki, K
′
j). output K̂ = H(final, K′

i, Kj).

Fig. 1. Privacy-protecting AKE protocol Handshake(Ui, Uj)

then the SH scheme constructed in Section 6 is (t′, ε′, n, n′, R, qS , qH)-secure,
for at most qS commands, qH hash queries, n′ groups, n members per group,
and maximum R sessions for each member, for R = qD/n, qS = qD, t′ =
t− (R+2)nn′Δ log n · texp, where texp is the cost of a single exponentiation, and
ε′ = nn′R · (ε + (qH + qS) · 2−k̂ + εc).

Theorem 5 (Anonymity and Affiliation/Policy Hiding Property of the
SH Scheme). If the underlying group key management scheme is (t1, ε1, n, qD)-
IND-CCA and (t2, ε2, n, qD)-IK-CCA secure, then the SH scheme constructed in
Section 6 is (t′, ε′, n, n′, R, qS , qH)-private (unlinkable and affiliation/policy hid-
ing), for at most qS commands, qH hash queries, n′ groups, n members per group,
and maximum R sessions for each member, for R = qD/n, qS = qD, t =
min{t1, t2} − (R + 2)nn′Δ log n · texp, where texp is the cost of a single exponen-
tiation, and ε = nn′R(ε1 + ε2 + (qH + qS) · 2−k̂ + εc).
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Abstract. In a proxy re-encryption scheme a semi-trusted proxy con-
verts a ciphertext for Alice into a ciphertext for Bob without seeing the
underlying plaintext. A number of solutions have been proposed in the
public-key setting. In this paper, we address the problem of Identity-
Based proxy re-encryption, where ciphertexts are transformed from one
identity to another. Our schemes are compatible with current IBE de-
ployments and do not require any extra work from the IBE trusted-party
key generator. In addition, they are non-interactive and one of them
permits multiple re-encryptions. Their security is based on a standard
assumption (DBDH) in the random oracle model.

Keywords: proxy re-encryption, identity-based encryption, bilinear
maps.

1 Introduction

In a proxy re-encryption scheme, a proxy can convert an encryption computed
under Alice’s public-key into an encryption intended for Bob. Such a scheme
can be used by Alice to temporarily forward encrypted messages to Bob without
giving him her secret key. The fundamental property of proxy re-encryption
schemes is that the proxy is not fully trusted, i.e., it does not know the secret
keys of Alice or Bob and does not learn the plaintext during the conversion. The
proxy and Bob, however, are not allowed to collude, thus it is usually assumed
that at least one of the two is honest or that their collusion is preventable or
detectable via other means.

A number of proxy re-encryption protocols have been proposed in the context
of public-key encryption [1,2,3,4,5]. In this work we extend the notion of proxy
re-encryption to the area of Identity-Based Encryption (IBE), in which senders
encrypt messages using the recipient’s identity (a string) as the public key. For
example, Charles could encrypt a message for Alice by just using her email ad-
dress. First introduced by Shamir in 1984 and then realized by Boneh-Franklin [6]
and by Cocks [7] several years later, identity-based encryption has proven useful
in solving many key-distribution issues, and has facilitated the development of a
variety of novel cryptographic protocols, e.g., secret handshakes [8], public-key
searchable encryption [9,10], CCA2-secure public-key encryption [11], and digi-
tal signatures [12]. The Boneh-Franklin scheme is particularly efficient, and has
been commercially deployed [13].
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Our identity-based proxy re-encryption (IB-PRE) schemes allow a proxy to
translate a ciphertext encrypted under Alice’s identity into one computed under
Bob’s identity. To permit this translation, Alice generates and provisions the
proxy with a delegation key (or “re-encryption key”), that the proxy uses to per-
form the re-encryption. No information about the secret keys of Alice or Bob can
be deduced from this value, nor does the proxy learn anything about the under-
lying plaintext of the messages it processes. Our constructions are compatible
with existing Boneh-Franklin IBE deployments, and can be implemented using
existing secrets and parameters.

Users in an Identity-Based Encryption scheme request keys from a trusted
party known as a Private Key Generator (PKG). Thus, in principle, it is possible
that delegation keys could be generated by the PKG directly, rather than by
individual scheme users. However, we categorically exclude this possibility and
we focus only on non-interactive schemes where individual users delegate their
own decryption rights without the involvement of the Private Key Generator.
This is for theoretical and practical reasons: (1) From a theoretical point of view,
having the PKG, or any other trusted party, generating the proxy keys makes the
problem of finding IB-PRE schemes quite unchallenging given prior art, (2) from
a practical point of view, it is clearly undesirable to have the PKG involved in the
generation of proxy keys. It would constitute a considerable bottleneck in many
applications, it would force the PKG to be on-line and available even during
the generation of proxy keys (other than IBE keys), and, in certain applications,
it would make the PKG liable for creating (potentially unwanted) decryption
rights.

Previous Work. Mambo and Okamoto proposed a technique for delegating
decryption rights in [1]. Blaze, Bleumer and Strauss [2] later presented the first
secure “atomic” re-encryption primitive: an Elgamal-based scheme in which the
proxy could not learn the message being processed. Unfortunately, the BBS ap-
proach was inherently bidirectional: a corrupted proxy could re-encrypt cipher-
texts not only from Alice to Bob, but also from Bob to Alice. Jakobsson [4], and
Zhou, et. al. [14] addressed this collusion problem via quorum-based protocols
which divided the proxy into many distinct components.

More recent works have focused on unidirectional schemes, where collusion be-
tween a delegator and the proxy does not compromise the delegatee. Dodis and
Ivan [5] realized a form of unidirectional proxy encryption by doubly-encrypting
messages under two separate keys (or by splitting a single decryption key into
two parts). Their approach permits a form of proxy re-encryption when parties
pre-distribute shared secrets. Ateniese, Fu, Green and Hohenberger [3] proposed
several non-interactive unidirectional proxy re-encryption schemes that elimi-
nated the need for pre-shared keys and permitted arbitrary delegations. That
work left an interesting open problem, which we address in this paper: namely, to
construct chosen-ciphertext secure (CCA) proxy re-encryption schemes. Canetti
and Hohenberger [15] also addressed this problem in the public key setting,
proposing a CCA-secure bidirectional proxy re-encryption scheme. Though the
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constructions differ from ours, their security definition is compatible and we
adopt some aspects of their presentation for consistency.

Finally, Boneh, Goh and Matsuo [16] presented a “hybrid” form of proxy re-
encryption based on IBE. In such schemes, the PKG performs all delegations;
thus users are unable to perform offline (“non-interactive”) delegations and each
delegation requires an online request to the PKG. Furthermore, the Boneh-Goh-
Matsuo approach specifies a new private-key generation algorithm and it seems
therefore incompatible with existing IBE deployments.

Paper Outline. The outline of the rest of this paper is as follows. In section 3 we
present definitions for Identity-Based Proxy Re-encryption and for the hardness
assumptions used in our proofs. In section 4 we introduce our constructions. In
section 5 we discuss several applications for the new primitives. Finally, section 6
lists open research problems and provides our conclusions.

2 Properties of Our Schemes

Ateniese et. al. [3] proposed a series of properties by which to evaluate proxy re-
encryption schemes. We briefly reiterate some of these properties, in particular
those that our scheme provides and that, we believe, are relevant for practical
instantiations of Identity-Based Proxy Re-encryption.

- Unidirectionality. A unidirectional scheme permits user A to delegate to user
B, without permitting A to decrypt user B’s ciphertexts.

- Non-Interactivity. Non-interactive schemes permit user A to construct a re-
encryption key rk idA→idB while offline, (i.e.,without the participation of B
or the Private Key Generator).

- Multiple-use capability. A multi-use scheme permits the proxy (or proxies) to
perform multiple consecutive re-encryptions on a ciphertext, e.g., re-encrypt
from idA to idB, then re-encrypt the result from idB to idC and so on.

- Space-optimality. Many existing schemes (e.g., [5,16,3]) incur additional com-
munication costs in order to support re-encryption. This inefficiency takes
several common forms, including: (a) ciphertext expansion upon re-
encryption (see the practical implementations of [3]), (b) a required pre-
distribution stage in which secrets are shared with delegatees (as in [5]), or
(c) the inclusion of ciphertext material that is discarded during re-encryption
(see [16]).

In this paper we focus on unidirectional schemes only. Notice that a bidirectional
scheme can always be achieved by running a unidirectional one in both directions,
i.e., from Alice to Bob and vice versa. Thus, a unidirectional IB-PRE is clearly
a more powerful primitive than a bidirectional one but also harder to devise.

In addition, we believe that non-interactivity is a fundamental property and
our schemes provide it. In a non-interactive scheme, Alice can generate the re-
encryption key from Bob’s identity, without ever involving Bob. In the identity-
based setting, this property provides an interesting twist: Alice can delegate
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decryption rights to delegatees that do not exist yet or will join the system
later. Moreover, as noted by Boneh and Franklin [6], identities can be seen as
credentials and express conditions. For instance, an encryption under “Alice ||
security-clearance || time period” can be opened by Alice only if she has security
clearance and within the time period specified in the string. Analogously, in
our schemes, Alice can specify the conditions under which the delegation of
decryption rights has to happen. We will explore applications of this feature in
section 5.

In section 4.2 we discuss an optimization that provides for space-optimal proxy
re-encryption in some circumstances. Finally, one of our schemes is multi-use in
the sense that once a re-encryption from Alice to Bob is computed, the resulting
ciphertext can be re-encrypted again from Bob to Charles, etc., multiple times.
Finding a unidirectional and multi-use scheme was left as an open problem in
prior art for the public-key case. We show how to achieve this property for
our IB-PRE but at the cost of allowing the ciphertext to expand linearly with
respect to the number of re-encryptions (however, this appears to be inevitable
for a non-interactive scheme).

3 Definitions

We begin by describing the setting and computational problems used within this
work. We then formally define an Identity-Based Proxy Re-encryption scheme
and propose a new, generalized security definition.

Definition 1 (Bilinear Map). We say a map e : G × G → GT is a bilinear
map if:

1. G, GT are groups of the same prime order q.
2. For all a, b ∈ Z

∗
q , g ∈ G, e(ga, gb) = e(g, g)ab.

3. The map is non-degenerate (i.e., if G = 〈g〉, then GT = 〈e(g, g)〉).
4. e is efficiently computable.

For simplicity our constructions are defined in the symmetric setting as above.
However they also work in the asymmetric setting with a bilinear map of the
form: ê : G1 × G2 → GT .

Definition 2 (DecisionalBilinearDiffieHellmanAssumption(DBDH)).
Our schemes are based on the assumed intractability of the Decisional Bilinear
Diffie-Hellman problem (DBDH) in G, GT . This assumption is believed to hold
in certain groups, and used as the basis of several Identity-Based Encryption
schemes, e.g., [17,18].

We define the DBDH problem as follows: Let (G, GT ) be a pair of bilinear groups
with an efficiently computable pairing e : G × G → GT , and let g be a ran-
dom generator of G. The DBDH problem is to decide, given a tuple of values
(g, ga, gb, gc, T ) ∈ G

4 × GT (where a, b, c ∈R Z
∗
q), whether T = e(g, g)abc or if T

is a random element of GT .
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Let k be a security parameter of sufficient size. Formally, we say that the DBDH
assumption holds in (G, GT ) if for all probabilistic polynomial time algorithms
A, the following condition is true:

∣∣∣∣∣∣
Pr

[
a, b, c

$← Z
∗
q ; 1 ← A(g, ga, gb, gc, e(g, g)abc).

]
−

Pr
[
a, b, c

$← Z
∗
q ; T

$← GT ; 1 ← A(g, ga, gb, gc, T ).
]
∣∣∣∣∣∣
≤ ν(k)

Where ν(·) is defined as a negligible function, i.e., for all polynomial functions
p(·), ν(k) < 1/p(k).

3.1 Identity-Based Proxy Re-encryption

An Identity-Based Proxy Re-encryption (IB-PRE) scheme is an extended Iden-
tity Based Encryption scheme. The first extension is an algorithm that generates
re-encryption keys that can be given to the proxy. The proxy uses the second
algorithm to apply these re-encryption keys to ciphertexts and “atomically”
re-encrypt them from one identity to another. In a non-interactive scheme, re-
encryption keys may be generated by the delegator using only her IBE secret
key— the IBE master secret is not required.

Encryption Levels. Our definitions refer to the notion of an “encryption level”
as an implicit property of a ciphertext. A ciphertext generated directly using the
Encrypt algorithm is termed a “level-1” ciphertext. Applying the re-encryption
algorithm to a level-� ciphertext results in a level-(� + 1) ciphertext. Specific
constructions may optionally place bounds on the number of consecutive re-
encryptions; for instance, non-“multi-use” schemes such as [5,16,3] are limited
to a single re-encryption. In our definitions below, we define MaxLevels as the
highest-possible encryption level (for a single-use scheme, this value is 2).

Definition 3 (Non-interactive Identity-Based Proxy Re-encryption
(IB-PRE)). A non-interactive identity-based proxy re-encryption scheme is tu-
ple of algorithms (Setup, KeyGen, Encrypt, Decrypt, RKGen, Reencrypt):

- Setup(1k, MaxLevels) accepts a security parameter and optionally a value
indicating the maximum number of consecutive re-encryptions permitted
by the scheme. The algorithm outputs both the master public parameters
(params) which are distributed to users, and the master secret key (msk)
which is kept private.

- KeyGen(params, msk, id) on input an identity id ∈ {0, 1}∗ and the master
secret key, outputs a decryption key sk id corresponding to that identity.

- Encrypt(params, id, m) on input a set of public parameters, an identity id ∈
{0, 1}∗, and a plaintext m ∈ M, output cid, the encryption of m under the
specified identity.

- RKGen(params, sk id1 , id1, id2) on input a secret key sk id1 (derived via the
KeyGen algorithm) and identities (id1, id2) ∈ {0, 1}∗, outputs a re-encryption
key rkid1→id2 .
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- Reencrypt(params, rk id1→id2 , cid1) on input a ciphertext cid1 under identity
id1, and a re-encryption key rk id1→id2 (generated by the RKGen routine),
outputs a “re-encrypted” ciphertext cid2 .

- Decrypt(params, sk id, cid) decrypts the ciphertext cid using the secret key
sk id, and outputs a plaintext or the distinguished symbol ⊥.

Correctness. Intuitively, an IB-PRE scheme is correct if the Decrypt algorithm
always outputs the expected decryption of a properly-generated ciphertext (when
supplied with the appropriate decryption key). We define “proper generation”
as the process of (1) encrypting a plaintext using Encrypt, and subsequently (2)
iteratively applying the Reencrypt algorithm up to MaxLevels − 1 times using
valid re-encryption keys.

Slightly more formally, let cid1 ← Reencryptn(· · · , Encrypt(params, ·, m)) be a
properly-generated ciphertext. Then∀m∈M,∀id1, id2 ∈{0, 1}∗,∀n < MaxLevels−
1, where sk id1 = KeyGen(msk, id1), sk id2 = KeyGen(msk, id2), rk id1→id2 ←
RKGen(params, sk id1 , id1, id2), the following propositions hold:

- Decrypt(params, sk id1 , cid1) = m
- Decrypt(params, sk id2 , Reencrypt(params, rk id1→id2 , cid1)) = m

Security. Security definitions for Identity-Based Encryption (see [6]) address
the case where keyholders collude by combining secrets. Identity-Based Proxy
re-encryption schemes require a further extension of this collusion guarantee,
to model the presence of colluding proxies provisioned with re-encryption keys.
Many existing security definitions (e.g., [2,5,3]) address the proxy via separate
definitional games. We choose instead to incorporate all of these properties into
a single game, by providing re-encryption keys to the adversary via an oracle.

When the adversary possesses re-encryption keys, we must naturally restrict it
in some ways to avoid a trivial condition, e.g., to prevent it from obtaining a set
of re-encryption keys leading from the challenge identity id∗ to some identity for
which the adversary holds a decryption key. In the CCA case, these restrictions
are more complex. To simplify the presentation, we adopt the notion of derivative
ciphertexts introduced in [15].

Definition 4 (Security of Non-Interactive Identity Based Proxy Re-
Encryption (IND-prID-CPA, IND-prID-CCA)). Let S be an IB-PRE scheme de-
fined as a tuple of algorithms (Setup, KeyGen, Encrypt, Decrypt, RKGen, Reencrypt).
Security is defined according to the following gameExpA, IND-prID-ATK, where ATK ∈
(CPA, CCA).

1. Setup. Run Setup(1k) to get (params, msk), and give params to A.
2. Findphase.Amakesthequeries(extract, rkextract, decrypt, reencrypt).

If ATK = CPA, the queries (decrypt, reencrypt) are answered with ⊥.
- On (extract, id), return KeyGen(params, msk, id).
- On (rkextract, id1, id2), extract the key skid1 =KeyGen(params, msk, id1)

and return RKGen(params, sk id1 , id1, id2).
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- On (decrypt, id, c): Extract skid = KeyGen(params, msk, id) and return
Decrypt(params, sk id, c).

- On (reencrypt, id1, id2, c): Extract skid = KeyGen(params, msk, id), and
derive a re-encryption key rk id1→id2 = RKGen(params, skid1 , id1, id2). Re-
turn Reencrypt(params, rk id1→id2 , id1, id2, c).

At the conclusion of this phase A selects id∗ ∈ {0, 1}∗ and (m0, m1) ∈ M2. A
is restricted to choices of id∗ such that “trivial” decryption is not possible using
keys extracted during this phase (e.g., by using re-encryption keys to translate
from id∗ to identity id′ for which A holds a decryption key).

3. Challenge. When A presents (choice, id∗, m0, m1), select i
$← {0, 1} and

compute c∗ = Encrypt(params, id∗, mi). Return c∗ to A.
4. Guess stage. A makes queries as in the Find stage, with the following re-

strictions.
(a) A is restricted from querying on (decrypt, id, c) if 〈id, c〉 is a challenge

derivative. This notion is defined inductively (as in [15]):
i. 〈id∗, c∗〉 is a challenge derivative.
ii. If〈id, c〉 is a challenge derivative, andAhas issued the query (reencrypt,

id, id′, c) to receive a value c′, then 〈id′, c′〉 is a challenge derivative.
iii. If 〈id, c〉 is a challenge derivative, A has issued query (rkgen, id, id′) to

receive rk id→id′ , and c′ = Reencrypt(rk id1→id2 , id, id′, c), then 〈id′, c′〉 is
a challenge derivative.

(b) A is restricted from querying on (extract, id) if there exists a challenge
derivative 〈id, c〉.

(c) A is restricted from querying on (rkextract, id, id′) if A has previously is-
sued the query (extract, id′) and there exists a challenge derivative 〈id, c〉.

(d) A is restricted from querying on (reencrypt, id, id′, c) if the query would
produce (perhaps implicitly) a challenge derivative 〈id′′, c′′〉 and Ahas pre-
viously issued the query (extract, id′′).

At the conclusion of this stage, A outputs i′, where i′ ∈ {0, 1}.

The outcome of the game is determined as follows: If i′ = i then A wins the game.
A’s advantage in the above game, Adv IND-prID-ATK

A is defined as |Pr [i′ = i] − 1/2|.
For ATK ∈ (CPA, CCA) we say that the Identity-Based Proxy Re-encryption
scheme S is IND-prID-ATK-secure if for all probabilistic polynomial time
algorithms A, Adv IND-prID-ATK

A ≤ ν(k).

Bidirectional and PKG-based IBE Proxy Re-encryption. To underscore
the importance of non-interactive unidirectional proxy re-encryption, we note
that it is possible to construct a bidirectional or PKG-based scheme from any
unidirectional scheme. In the bidirectional case, RKGenbi is implemented via
two separate calls to RKGen: derive rk id1→id2 and rk id2→id1 , which are together
functionally equivalent to rk id1↔id2 . Similarly, RKGenpkg can be implemented by
deriving secret keys (sk id1 , sk id2) at the PKG using the KeyGen routine and sub-
sequently calling RKGen as in the bidiretional case. We leave further discussion
and non-generic constructions of these alternative forms of proxy re-encryption
for future work.
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4 Non-interactive Unidirectional Proxy Re-encryption
Schemes

The first schemes we present are based on Boneh and Franklin’s IBE scheme [6],
and are secure under the Decisional Bilinear Diffie-Hellman Assumption (DBDH)
in the random oracle model. While ciphertexts in the proposed schemes have a
different form from those in the standard Boneh-Franklin scheme, the master
parameters and secret keys remain unchanged. As a result, it is possible to
implement proxy re-encryption within an existing Boneh-Franklin deployment
(i.e., using pre-existing parameters and keys).

4.1 A First Attempt (IBP1)

Consider a bilinear map e : G×G → GT , where G = 〈g〉. Let H1 and H2 be two
independent hash functions1 such that: H1 : {0, 1}∗ → G and H2 : GT → G.
Finally, let s and gs be the master secret and public key of the PKG, respectively.
For some r ∈R Z

∗
q , an encryption of m ∈ GT under Alice’s identity can be

computed as:
IBEAlice(m) = (gr, m · e(gs, H1(Alice))r)

Suppose Alice wants to delegate her decryption rights to Bob. She must generate
a re-encryption key to give to the proxy. Let IBEBob(·) be a standard identity-

based encryption under Bob’s identity. Alice selects a random X
$← GT and

generates the re-encryption key as:

rkAlice→Bob = H1(Alice)−s · fulldomainhash2(X), IBEBob(X),

Given an encryption for Alice, IBEAlice(m) = (c1, c2) the proxy can transform it
into an encryption for Bob by releasing: (c′1 = c1, c

′
2 = c2 ·e(gr, rkAlice→Bob), c′3 =

IBEBob(X)). Indeed, notice that:

c′1 = gr

c′2 = m · e(gr, H2(X)),
c′3 = IBEBob(X).

Bob can recover X from c′3 and then m by computing c′2/e(c′1, H2(X)).

In practice, the scheme presented above can be seen as a variant of the efficient
Dodis/Ivan [5] key-splitting approach applied to settings where the decryption
process makes use of a bilinear map. Note that (1) The scheme is unidirectional
since the key rkAlice→Bob can be used to convert ciphertexts from Alice to Bob
but not vice versa. (2) It is non-interactive since Bob is not involved during

1 Both H1(·) and H2(·) are more properly “hash-and-encode” functions (see Boneh-
Franklin [6] for a detailed definition). Each function consist of a standard hash
function which maps inputs to elements of the finite field of order q and then uses
an admissible encoding function, MapToPoint, to map those elements into points
in G.
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the generation of the re-encryption key. (3) It provides non-transitivity since the
proxy is not allowed to create new re-encryption keys from the existing ones. (4)
Finally, we observe that the scheme is multi-use since the proxy can re-encrypt
the result of a re-encryption and do it multiple times. To see this, consider the
re-encryption ciphertext above: (c′1, c

′
2, c
′
3). Notice that c′3 is just a standard IBE

encryption for Bob! A proxy equipped with a re-encryption key rkBob→Charles

could just apply the re-encryption algorithm recursively to c′3 and allow Charles
to recover X which in turn allows him to recover the original message m.

Scheme Description. We now provide a formal description of the scheme
(IBP1).

- Setup. Let e : G × G → GT be a bilinear map, where G = 〈g〉 and GT

have order q. Let H1, H2 be independent full-domain hash functions H1 :
{0, 1}∗ → G and H2 : GT → G. To generate the scheme parameters, select

s
$← Z

∗
q , and output params = (G, H1, H2, g, gs), msk = s.

- KeyGen(params, msk, id). To extract a decryption key for identity id∈{0, 1}∗,
return sk id = H1(id)s.

- Encrypt(params, id, m). To encrypt m under identity id, select r
$← Z

∗
q and

output cid = (gr, m · e(gs, H1(id))r).

- RKGen(params, sk id1 , id2). Select X
$← GT and compute 〈R1, R2〉 = Encrypt

(params, id2, X). Return rkid1→id2 = 〈R1, R2, sk−1
id1

· H2(X)〉.
- Reencrypt(params, rk id1→id2 , cid1). To re-encrypt a level-� ciphertext from id1

to id2, first parse cid1 as (C1, . . . , C2�) and rk id1→id2 as (R1, R2, R3). Next:
1. If � = 1, output cid2 = 〈C1, C2 · e(C1, R3)), R1, R2〉.
2. If � > 1, treat the elements 〈C2�−1, C2�〉 as a first-level ciphertext δ.

Compute 〈C′1, C′2, C′3, C′4〉 = Reencrypt(rkid1→id2 , δ). Output the cipher-
text cid2 = 〈C1, · · · , C2�−2, C

′
1, C

′
2, C

′
3, C

′
4〉.

- Decrypt(params, sk id, cid). Parse the level-� ciphertext cid as (C1, . . . , C2�).
Next:
1. If � = 1 output m = C2/e(C1, sk id).
2. If � > 1, treat the pair 〈C2�−1, C2�〉 as a first-level ciphertext c′id, and

compute X� = Decrypt(sk id, c
′
id). For i = (�−1) descending to 1, compute

Xi = C2i/e(C2i−1, H2(Xi+1)). Finally, output X1 as the plaintext.

Each level-� ciphertext in the above scheme contain 2� elements. In principle,
the scheme permits an arbitrary number of re-encryptions on a ciphertext, with
a two-element ciphertext expansion on each re-encryption.

Correctness. We first show correctness for first-level ciphertexts (i.e., those
produced by Encrypt). Let cid1 = (gr, m · e(gs, H1(id1))r) be the first-level en-
cryption of m under id1, and sk1 = H1(id1)s be the corresponding decryption
key. The decryption process produces the following result:

(m · e(gs, H1(id1))r)/e(gr, H1(id1)s) = m
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The correctness under re-encryption is shown as follows. Given a first-level ci-
phertext cid1 = (gr, C2) and a correctly-formed re-encryption key rk id1→id2 =
(〈R1, R2〉 = Encrypt(params, id2, X), R3), we obtain the “second-level” cipher-
text cid2 = (gr, C′2 = C2 · e(gr, R3), R1, R2) where C′2 is:

C′2 = C2 · e(gr, R3)
= m · e(gs, H1(id1))r) · e(gr, H1(id1)−s · H2(X))

= m · e(g, H2(X))r

Given sk id2 = H1(id2)s we decrypt cid2 = (gr, C′2, R1, R2) as follows. Begin by
decrypting the first-level ciphertext ĉid2 = 〈R1, R2〉 under skid2 : X = Decrypt
(params, sk id2 , ĉid2). Then compute C′2/e(gr, H2(X)) to obtain m. Having shown
correctness for a single re-encryption, the correctness for multiple re-encryptions
follows. Given level-� ciphertext cidi and sk idi , strip the the final two elements
and treat them as a first-level ciphertext under idi, decrypting to reveal X�. Use
the value X� as a decryption secret for the previous two elements, and repeat
until the final two elements remain. The final value in this chain contains the
original message m.

Security. We next show that IBP1 scheme defined above meets the IND-prID-
CPA definition if the Decisional Bilinear Diffie-Hellman assumption holds in
(G, GT ). Our proof is in the random oracle model, and is an extension of the
original proof of Boneh/Franklin [6].

Theorem 1. If there exists a p.p.t. adversary A that wins the IND-prID-CPA
game on IBP1 with non-negligible advantage, then there exists an adversary B
that solves the DBDH problem over G, GT with non-negligible advantage.

A proof sketch of Theorem 1 is presented in Appendix A.

4.2 An Optimization

Ciphertexts in scheme section 4.1 expand upon re-encryption. This is caused by
the inclusion within the re-encrypted ciphertext of a portion of the re-encryption
key. There are scenarios where Bob knows that the original ciphertext was in-
tended for Alice (this information can even be appended to the ciphertext) and
there is no need for multiple re-encryptions. In such cases we can simplify our
construction by using a result of Sakai et. al. [19]. Specifically, in the Boneh-
Franklin IBE symmetric setting, Alice and Bob inherently share a secret key
KAB = e(H1(Alice), H1(Bob))s. Alice can use this value to compute the re-
encryption key as follows:

rkAlice→Bob = H1(Alice)−s · H3({KAB}||Alice → Bob).

Where {KAB} denotes binary representation, and H3 : {0, 1}∗ → G is an inde-
pendent full domain hash function. The string “Alice → Bob” is added to ensure
that a re-encryption key from Bob to Alice is computed under a distinct secret
(bidirectional re-encryption). Note that the resulting scheme permits only a sin-
gle re-encryption for each ciphertext. A primary advantage of this construction
is the absence of ciphertext expansion during re-encryption.



298 M. Green and G. Ateniese

4.3 A Chosen Ciphertext Secure Scheme (IBP2)

The scheme presented above is secure under chosen plaintext attack. While this
is the level of security provided by many IBE and proxy re-encryption schemes
(e.g., [3,18] and the practical proxy encryption constructions of Dodis/Ivan [5]),
it is important to consider stronger definitions such as security under adaptive
chosen ciphertext attack.

Background. A common approach to building CCA-secure Identity-Based En-
cryption schemes in the random oracle model is to begin with a CPA-secure
construction, and then apply the generic Fujisaki-Okamoto conversion [20] (see
e.g., [6,21]). It is tempting to believe that this approach is by itself sufficient
to construct CCA-secure IB-PRE schemes. Unfortunately, this does not appear
to be the case. Notice that a re-encryption proxy grants adversaries an alterna-
tive means by which adversaries may decrypt ciphertexts: a malicious delega-
tee B may decrypt A’s ciphertexts by first using the proxy to re-encrypt from
idA → idB, and then decrypting the result under his own secret key. When a
malicious delegatee uses the proxy to “alternatively decrypt” in this manner,
he need not follow the specified F-O decryption algorithm, and can ignore the
critical ciphertext validity checks. Unfortunately, the validity checks of the F-O
approach cannot be moved into the re-encryption process, as they fundamentally
require access to the decryption secret.

Intuition. In order to surmount the issues raised above, we propose an ap-
proach that provides the proxy with the means to verify ciphertext validity and
reject improperly-formed ciphertexts. As a result of this check, a malicious del-
egatee no longer gains any advantage by using the re-encryption proxy as an
oracle. The building block of our construction is a Hierarchical Identity-Based
Proxy Re-encryption scheme, which we implement using a modified form of the
Gentry-Silverberg HIBE [22] (this scheme is in turn based on the Boneh/Franklin
scheme). To achieve IND-prID-CCA-secure IB-PRE, we make use of the Canetti,
Halevi and Katz (CHK) [11] technique, which allows us to transform a HIBE
into a CCA-secure IBE scheme with a type of publicly-verifiable ciphertext va-
lidity check. In order to present a more efficient construction, we re-use random-
ness and implement the CHK transform using a Boneh/Lynn/Shacham short
signature [23].

The Construction. We now present a single-use, non-interactive CCA-secure
IB-PRE construction (IBP2).

- Setup. Let n() be a polynomial function of the security parameter k. Let
e : G × G → GT be a bilinear map, where G, GT have order q and G = 〈g〉.
To generate the scheme parameters, select s

$← Z
∗
q and output params =

(H1, H2, H3, H4, H5, g, gs), msk = s, with independent hash functions H1−6
defined as below:

H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → G

H3 : {0, 1}∗ → G, H4 : GT × {0, 1}n → Z
∗
q

H5 : GT → {0, 1}n
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- KeyGen(params, msk, id). To extract a decryption key for identity id∈{0, 1}∗,
return sk id = H1(id)s.

- Encrypt(params, id, m ∈ {0, 1}n). To encrypt m under identity id ∈ {0, 1}∗,
first:
1. Select σ

$← GT , and set r = H4(σ, m).
2. Compute 〈A, B, C〉 = (gr, σ · e(gs, H1(id)r), m ⊕ H5(σ)).
3. Compute S = H3(id||〈A, B, C〉)r.
4. Output the ciphertext c = 〈S, A, B, C〉.

- RKGen(params, sk id1 , id1, id2). To compute a re-encryption key from id1 →
id2:
1. Select N

$← {0, 1}n(k), and compute K = e(sk id1 , H1(id2)).
2. Output rkid1→id2 = 〈N, H2(K||id1||id2||N) · skid1〉.

- Reencrypt(params, rk id1→id2 , cid1). To re-encrypt a first-level ciphertext, first
parse cid1 as (S, A, B, C), and parse rk id1→id2 as 〈N, R〉. Next:
1. Let h = H3(id1||〈A, B, C〉).
2. Check if e(g, S) = e(h, A). If not, return ⊥.

3. Otherwise, select t
$← Z

∗
q and compute B′ = B/ e(A,R·ht)

e(gt,S) .
4. Output the re-encrypted ciphertext cid2 = (A, B′, C, id1, N).

- Decrypt(params, sk id, cid). To decrypt a first-level (non re-encrypted) cipher-
text, first parse cid as (S, A, B, C). Next:
1. Let h = H3(id, 〈A, B, C〉).
2. Select t

$← Z
∗
q , and compute σ′ = B/ e(A,skid·ht)

e(gt,S) .
3. Compute m′ = C ⊕ H5(σ′), and r′ = H4(σ′, m′).
4. Verify that S = hr′

and A = gr′
. If either check fails, return ⊥, otherwise

output m′.
To decrypt a second-level (re-encrypted) ciphertext, first parse cid as
(A, B, C, idsrc, N). Next:
1. Compute K = e(H1(idsrc), sk id).
2. Compute σ′ = B · e(A, H2(K||idsrc||id||N)).
3. Compute m′ = C ⊕ H5(σ′), and r′ = H4(σ′, m′).
4. Verify that A = gr′

. If this check fails, return ⊥, otherwise output m′.

Correctness. We begin by showing correctness for first-level ciphertexts (i.e.,
those produced by Encrypt). Let cid1 = 〈S, A, B, C〉 be the first-level encryption
of m under id1, with h = H3(id1||〈A, B, C〉).

cid1 = 〈hr, gr, σ · e(gs, H1(id)r), m ⊕ H5(σ)〉

Let sk1 = H1(id1)s be the corresponding decryption key. For a random t ∈ Z
∗
q ,

the decryption process proceeds as follows:

(σ · e(gs, H1(id1))r)/
e(gr, H1(id1)s · ht)

e(gt, hr)
= σ

H5(σ) ⊕ (m ⊕ H5(σ)) = m

gH4(σ,m) ?= gr

hH4(σ,m) ?= hr
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The correctness of re-encryption is shown as follows. Given the first-level cipher-
text cid1 presented above, and a correctly-formed re-encryption key rk id1→id2 =
〈N, R〉, the re-encryption process begins with a ciphertext validity check:

e(g, hr) ?= e(h, gr)

Recall that R = sk id1 · W where W = H2(e(H1(id1)s, H1(id2))||id1||id2||N).
To generate the “second-level” ciphertext cid2 = (A, B′, C, id1, N), we choose
t ∈R Z

∗
q and obtain:

B′ = (σ · e(gs, H1(id1))r))/
e(gr, R · ht)

e(gt, hr)
= σ/e(gr, W )

Finally, we decrypt the re-encrypted ciphertext cid2 = (A, B′, C, id1, N) =
(gr, σ/e(gr, W ), m ⊕ H5(σ), id1, N) as follows. Given sk id2 = H1(id2)s:

H2(e(H1(id1), H1(id2)s)||id1||id2||N) = W

(σ/e(gr, W )) · e(gr, W ) = σ

(m ⊕ H5(σ)) ⊕ H5(σ) = m

gH4(σ,m) ?= gr

Security. We claim that IBP2 meets the IND-prID-CCA definition if the Deci-
sional Bilinear Diffie-Hellman assumption holds in (G, GT ). Our proof is in the
random oracle model. Due to space limitations we are unable to include the
proof here. However, it can be found in the full version of this paper [24].

5 Applications of Identity-Based Proxy Re-encryption

Proxy Re-encryption has a number of practical applications, which have been
detailed in previous works. All of these applications translate directly to the
Identity-Based setting but with some additional features.

Secure Email with IBE. The most natural application of proxy re-encryption
is to allow Bob to read Alice’s encrypted emails while she is on vacation. Messages
are encrypted under the email address ”alice@company.com” and are translated
by the proxy into encryptions under ”bob@company.com”. The proxy does not
learn the content of the messages being translated.

Attribute-based Delegations. As noted by Boneh and Franklin [6], identities
can be created to include attributes or to express conditions. For instance, a
message encrypted under ”alice ‖ lawyer ‖ from 01/01/2008” can be read by
Alice only if she is a lawyer and not before the beginning of year 2008. This idea
applies directly to our IBE-PRE scheme and it allows Alice to specify under
which conditions the proxy is allowed to translate her ciphertexts into Bob’s.
For instance, consider the case of temporary delegations [3] where the time is
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divided in time intervals t1, t2, . . ., tk and Alice can specify that the proxy can
translate her ciphertexts for Bob only during ti. With our scheme, Alice could
just create the proxy key:

rkAlice‖ti→Bob,

so that any encryption under Alice ‖ti can be converted into an encryption for
Bob but not during other time periods. This eliminates the need for designing a
separate and specialized scheme as it was done in [3].

Even more interestingly, Alice could specify the conditions under which Bob
can read her messages. For instance, a re-encryption key of this form:

rkAlice→Bob‖after Nov 2007‖security−clearance,

would specify that encryptions under Alice’s identity can be converted into en-
cryptions for Bob but that Bob can read the messages only in the future, after
Nov 2007, and under the condition that he is able to obtain a security clearance.

Bridging IBE and PKE. Hybrid proxy re-encryption is a concept put forward
by Boneh, Goh and Matsuo [16] to create a bridge between IBE and public-key
based encryption (PKE). Our scheme can also be used to translate from IBE
to PKE. Indeed, consider the ciphertext after the re-encryption, which has the
form:

c′1 = gr, c′2 = m · e(gr, H2(K)), c′3 = IBEBob(K).

Notice that c′3 is a standard (semantically-secure) id-based encryption of a
key K. This encryption can be substituted with a public-key based one (or even
a semantically-secure symmetric one). In this way, an encryption under Alice’s
identity is converted into an encryption under Bob’s public-key. Our approach
provides some advantages over the one in [16]. Indeed, no TTP is involved in
creating re-encryption keys and parameters in our scheme are compatible with
those of the standard Boneh-Franklin IBE.

Travel Key. Boneh and Franklin [6] suggested to use an IBE system to store
temporary keys into the laptop during travel so that, if the laptop is lost or
stolen, only those keys get exposed. The idea is to let Bob act as a PKG that
generates his own master secret and public keys. Alice could use Bob’s master
public-key to encrypt messages for Bob under identities day1, day2, ... etc., for
all days in which Bob is traveling. Bob can store into his laptop just the keys
corresponding to those days while leaving his master secret key safely stored
elsewhere.

This solution, however, requires Bob to inform of his travels any of his poten-
tial correspondents and have them act according to the encryption scheme (that
is, they have to encrypt under day1, day2, etc.). An alternative solution is to
set up a proxy (Bob’s mail server, for instance) with a re-encryption key of the
form:

rkBob→Bob′s−Travel−Key .

Every encryption intended for Bob will be encrypted under Bob’s travel key,
which is the only secret key stored into his laptop. Notice that the proxy does
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not have to be trusted and can be set-up by a system administrator who won’t
be able to read Bob’s messages.

Access Control in Networked File Storage. In [3], the authors describe an
application of proxy re-encryption to the distribution of key material within a
cryptographic filesystem. Each file stored on an untrusted file server is encrypted
using a symmetric key; these keys are encrypted under a public master key which
is stored alongside the encrypted material. When a user wishes to decrypt a file,
the semi-trusted keyserver re-encrypts these encapsulated symmetric keys from
the master key to the keys of individual users who can then decrypt. The key
server provides access control for the encrypted material, but does not itself
possess the ability to decrypt files.

This application translates naturally to the Identity Based setting with the
additional benefit of allowing the holder of the master key to specify access
control policies directly within the identity strings of the users. A re-encryption
key can even be generated before an individual has joined the system.

6 Conclusions and Future Work

In this work we introduced new constructions enabling non-interactive, unidirec-
tional proxy re-encryption in the IBE setting. Our schemes are very efficient and
can be deployed within standard IBE frameworks. New compelling applications
can be realized thanks to our schemes, most notably attribute-based delegation
and access control.

An interesting open problem is to find efficient constructions for multi-use
CCA-secure IBE-PRE schemes. Another important open problem is to find effi-
cient IBE-PRE secure in the standard model (rather than in the RO model).

Acknowledgments. We would like to thank Susan Hohenberger for helpful dis-
cussion and suggestions.
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A Security Proof of IBP1

Proof sketch. Let A be a p.p.t. algorithm that has non-negligible advantage
ε in ExpA, IND-prID-CPA against IBP1. We use A in order to construct a second
algorithm B which has non-negligible advantage at solving the DBDH prob-
lem in G, GT . Algorithm B accepts as input an appropriately-distributed tuple
〈G = 〈g〉, ga, gb, gc, T 〉 ∈ G

4 × GT and outputs 1 if T = e(g, g)abc. We now de-
scribe the algorithm B, which interacts with algorithm A via the IND-prID-CPA
interface.

Oracle Queries. B simulates the random oracle H1 : {0, 1}∗ → G as follows: On
receipt of a query for id (on which it has not previously been queried), select

z
$← Z

∗
q and randomly flip a weighted coin to set α ← 1 with probability γ (see

below), and α ← 0 otherwise. If α = 0 then compute h ← (gc)z , else compute
h ← gz. Record the tuple (id, h, z, α). Finally, return h as the result of the query
(if id has previously been queried, simply locate the existing tuple and return the
previously-computed h). Note that the distribution of the values h returned by
the simulated oracle is random, regardless of the choice of α. B simulates (initial)
queries to the random oracle H2 : GT → G by simply returning elements ∈R G.

Our simulation proceeds as follows:

1. Setup.Bgenerates the scheme’s master parameters params=(G, H1,H2,g, ga)
and gives this tuple to A.

2. Find. When A submits (extract, id), B evaluates H(id) as described above,
to obtain (id, h, z, α). B outputs sk id = (ga)z to A.

When A submits (rkextract, id1, id2), B selects r
$← Z

∗
q , x

$← G and X
$← GT ,

then evaluates H1(id1) and H1(id2) to obtain the values (α1, z1), (α2, z2) (for
id1, id2 respectively). Now:

(a) If α1 = 0 then B returns rkid1→id2 =
(
(gb)r, T rz2 · X, x

)
to A (note that

this key is incorrectly formed, see section below).
(b) If α1 = 1 then B returns the correctly-formed tuple rkid1→id2 =

(gr, e(ga, H1(id2)r) · X, (ga)−z1 · H2(X)).

3. Challenge. At the conclusion of the Find phase, A outputs (id∗, m0, m1)

with the condition that A’s choice of id∗ is not trivial.2 B selects i
$← {0, 1},

2 We reject a choice of id∗ when A has previously extracted a series of re-encryption
keys, and a decryption key sk id′ such that A can consecutively re-encrypt ciphertexts
from id∗ to id′.

http://eprint.iacr.org/2006/473.pdf
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then evaluates H1(id∗) to recover (id∗, h, z, α) from the H1 table. B returns
c∗ = 〈gb, T z · mi〉 to A.

4. Guess. A makes queries (extract, . . .) and (rkextract, . . .) as in the Find

stage, except that A is restricted from making any query that would result
in a trivial situation (a valid decryption path from id∗ to an identity for
which the adversary possesses a secret key). At the conclusion of this phase,
A outputs its guess i′ ∈ {0, 1}.

Conditions for Abort. Let αi represent the value α generated by H1(idi).
Prior to outputting a value, B verifies several conditions:

(a) The value α corresponding to id∗ is 0.
(b) For each of A’s queries (extract, idi), αi = 1.
(c) For each of A’s queries (rkextract, idi, idj), where idi → idj lies along a

path leading from id∗, αj = 0.
(d) For each of A’s queries (rkextract, idi, idj), where idi → idj does not lie

along a path leading from id∗, αi = 1.

If any of the above conditions are false, B aborts the simulation. Otherwise,
if i′ = i, B outputs 1, or 0 otherwise.

Claim. If 〈g, ga, gb, gc, T 〉 is a DBDH tuple and B does not abort, then A’s view is
identical to the real attack— with the significant exception of re-encryption keys
having the form rk id∗→·. We argue below that A cannot detect these improperly-
formed re-encryption keys, and thus cannot distinguish the simulation. Hence,
when the input to B is a DBDH tuple, then the challenge ciphertext c∗ is a correct
encryption of mi under id∗ and thus from definition of A and the argument above
it holds that

∣∣Pr [ i = i′ ] − 1
2

∣∣ = ε and thus B outputs 1 with probability 1
2 plus

a non-negligible quantity. When the input to B is random, c∗ represents the
encryption of a random element in GT and is independent of B’s choice of i (and
therefore Pr [ i = i′ ] = 1

2 ). Thus, B succeeds in distinguishing DBDH tuples with
non-negligible advantage.

Invalid Re-encryption keys. In the simulation above, every re-encryption key that
lies along a path from id∗ is incorrectly formed. (At the same time, it is easy
to see that all other re-encryption keys are correctly formed.) Unfortunately,
this condition is unavoidable, as the simulator does not possess the knowledge
required in order generate a valid re-encryption key from the challenge identity
id∗. To complete our proof, therefore, we make a separate argument that no
adversary A can distinguish our simulation from a “real-world” interaction in
which all values have the correct form. The heuristic argument for security is
simple: each correctly-formed re-encryption key rk id1→id2 consists of a semanti-
cally secure encryption (R1, R2) of some element X ∈R GT , along with the value
R3 = (H1(id2)−s ·H2(X)) ∈ G. An incorrectly-formed re-encryption key replaces
R3 with some value x ∈R G; this x can naturally be expressed as (H1(id2)−s · y)
for some unknown y ∈ G. Intuitively, an adversary who can distinguish mal-
formed re-encryption keys in our simulation must therefore be able to determine
that (R1, R2) do not encrypt some value Y ∈ GT s.t. H2(Y ) = y. We formalize
the statement via the following Lemma.
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Lemma 1 (Indistinguishability of simulations). If there exists a p.p.t. al-
gorithm A′ with non-negligible advantage ε′ at distinguishing the simulation
above from a “correct” simulation (in which all values are correctly-formed),
then we can construct an algorithm B′ that solves the DBDH problem in (G, GT )
with non-negligible advantage.

Probability of abort. A variety of conditions in the above simulation can lead the
simulator to abort. Boneh and Franklin [6] provide a technique for computing
the value γ used in simulating the random oracle H1, and for placing bounds
on the abort probability. We refer the reader to this discussion, and provide a
detailed argument in the full version. �
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Abstract. Constructing identification schemes is one of the fundamen-
tal problems in cryptography, and is very useful in practice. An identity-
based identification (IBI) scheme allows a prover to identify itself to a
public verifier who knows only the claimed identity of the prover and
some common information. In this paper, we propose a simple and effi-
cient framework for constructing IBI schemes. Unlike some related frame-
work which constructs IBI schemes from some standard identification
schemes, our framework is based on some more fundamental assump-
tions on intractable problems. Depending on the features of the underly-
ing intractable problems presumed in our framework, we can derive IBI
schemes secure against passive, active and concurrent adversaries. We
show that the framework can capture a large class of schemes currently
proposed, and also has the potential to cover many newly constructed
schemes. As an example, based on the Katz-Wang standard signature
scheme, we propose a new IBI scheme that is secure against active ad-
versaries in a concurrent manner. It can be seen that our framework also
help simplify the security proofs for new IBI schemes. Finally, and of
independent interest, we define a new notion for proof systems called
Witness Dualism. This notion is weaker than that of witness indistin-
guishable and we show that it is enough for constructing an IBI scheme
secure against the most powerful type of adversaries defined.

Keywords: Identity-based cryptography, Identification schemes,
Concurrent attacks.

1 Introduction

In an identity-based cryptosystem, there is an authority having a master pub-
lic/secret key pair. This authority can provide a user with a user secret key which
is derived from the user’s identity and the master secret key. In an identity-based
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identification (IBI) scheme, a user, playing the role of a prover, identifies itself
to a verifier, who knows only the prover’s identity and the master public key.

There are three notions for the security of IBI schemes: security against im-
personation under passive attacks (id-imp-pa), active attacks (id-imp-aa), and
concurrent attacks (id-imp-ca). In a passive attack, an adversary can obtain
communication transcripts between the real prover and a verifier. In an active
or concurrent attack, the adversary can directly communicate with the prover
by playing the role of a cheating verifier. The difference between id-imp-aa and
id-imp-ca is that in the former case, the adversary can have only one active ses-
sion at a time, but in a concurrent attack, the adversary can have concurrent
(or parallel) active sessions.

In this paper, we propose a simple and efficient method to construct IBI
schemes. Our method is based on two notions, namely trapdoor weak-one-more
relation and trapdoor strong-one-more relation. We show that the former one
can be constructed from intractable problems such as trapdoor one-way per-
mutations and the Computational Diffie-Hellman (CDH) problem; and the lat-
ter one can be constructed from the factoring problem, the RSA problem and
any strongly unforgeable [1] (referred to as non-malleability in [17]) signature
schemes. By applying a trapdoor weak-one-more relation with an honest verifier
zero knowledge proof of knowledge, we get an IBI scheme secure against passive
attacks. While if we apply a trapdoor strong-one-more relation with a witness
dualism proof of knowledge, we obtain an IBI scheme secure against active and
concurrent attacks. Since the notion of witness dualism is weaker than that of
witness indistinguishability [9], any proof system which is witness indistinguish-
able can readily be used in our framework as a witness dualism proof system.
Besides proposing the generic framework for constructing IBI schemes with vari-
ous levels of security, we also propose a concrete scheme. The scheme is based on
the Katz-Wang strongly unforgeable signature scheme. The concrete IBI scheme
falls in our framework and can be shown easily to be id-imp-ca secure.

1.1 Related Work

Since Shamir introduced the identity-based cryptosystems [16], a lot of IBI
schemes have been proposed. A survey can be found in [2]. In [2], the authors
proposed a method to construct IBI schemes by using digital certificates: the
master key generation center (or called authority) picks a public/secret key pair
(pk, sk) for a standard identification (SI) scheme, and provides these to prover I
along with a certificate cert consisting of the authority’s signature on (I, pk). The
prover sends pk, and cert to a verifier and identifies itself using the SI scheme.
The verifier needs to know only I and the public key of the authority. Although
simple, this method (named certificate-based IBI) is inefficient, and its signifi-
cance is to answer a fundamental question: secure IBI schemes (in the standard
model) exists if and only if one-way function exists. In [2], another framework
is proposed that transforms any standard identification scheme which satisfies
certain conditions (referred to as convertible SI schemes) to IBI schemes in the
random oracle model [4].
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Independently in [14], a transformation is proposed that converts some digital
signature scheme to an IBI scheme. The authors showed that the resulting IBI
scheme is id-imp-pa secure if the underlying signature scheme is existentially
unforgeable against adaptive chosen message attack [10]. One aspect of this
transformation is that it is not necessarily to be in the random oracle model,
however, the signature scheme (the BLS short signature scheme [7]) they used
to construct a concrete IBI scheme is only proven secure in the random oracle
model.

In this paper, we propose a more “natural” and efficient method to construct
IBI schemes. Comparing with the approach of[2] which requires a underlying
provably secure convertible standard indentification (SI) scheme, our method
starts directly from the definitions of some intractable problems. And more im-
portantly, our construction explicitly explains the features a hard problem should
have in order to achieve passive and active/concurrent security.

Our method is also more generic than that of [14], in the sense that construct-
ing IBI schemes from standard signature schemes is just one of the many possible
instantiations in our framework. Additionally, we can construct IBI schemes se-
cure against active and concurrent attacks from strongly unforgeable signature
schemes. In Sec. 5, we also construct a concrete IBI scheme that is secure against
concurrent attacks from the Katz-Wang signature scheme [13].

2 Identity-Based Identification Schemes

An interactive proof system (P,V) is said to be canonical if it follows a three-
move structure where prover P initiates a communication with verifier V by
sending a commitment Cmt, distributed uniformly over a set CmtSet, to V; V
then replies with a challenge Ch chosen uniformly from a set ChSet; and P fin-
ishes the communication by sending a response Rsp to V. V accepts or rejects ac-
cording to the output of a deterministic function 1/0 ← Dec(StV , Cmt‖Ch‖Rsp)
where StV is the initial state of V. The bitstring Cmt‖Ch‖Rsp is called a
conversation between P and V.

Let k ∈ N be a security parameter. A canonical interactive proof system
(P,V) has commitment length β(·) if |CmtSet| ≥ 2β(k), has challenge length
�(·) if |ChSet| ≥ 2�(k), and is non-trivial if the function 2−β(k) is negligible in k.

Definition 1 (Identity-Based Identification (IBI)). An identity-based
identification (IBI) scheme consists of four probabilistic polynomial-time (PPT)
algorithms (MKGen,UKGen,P,V).

1. MKGen: On input1k, it generates amaster public/secret keypair (mpk, msk).
2. UKGen: On input msk and some identity I of a user, it outputs a user

secret key usk[I].
3. (P,V) – User Identification Protocol: The prover with identity I runs

interactive algorithm P with initial state usk[I], and the verifier runs V with
initial state (mpk, I). The first and last messages of the protocol belong to
the prover. The protocol ends when V outputs either ‘accept’ or ‘reject’.
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We require that for all k ∈ N, I ∈ {0, 1}∗, (mpk, msk) ← MKGen(1k), and
usk[I] ← UKGen(msk, I), V (initialized with mpk, I) always outputs ‘accept ’
after interacting with P (initialized with usk[I]).

The security of an IBI scheme is commonly considered against three types of
attacks: impersonation under passive attacks (id-imp-pa), active attacks
(id-imp-aa) and concurrent attacks (id-imp-ca). The following definitions are due
to [2].

Definition 2 (id-imp-pa). For an IBI scheme (MKGen,UKGen,P,V), the
id-imp-pa security is defined by the following game, which is carried out by a
simulator against an adversary A.

1. (mpk, msk) ← MKGen is executed and mpk is given to A. Two sets are
maintained: HU and CU. Initially, both HU and CU are empty.

2. A can make queries to the following oracles:

(a) INIT(I) – create a user with identity I: If I ∈ HU ∪ CU , ⊥ is re-
turned indicating that I has already been created. Otherwise, usk[I] ←
UKGen(msk, I) is executed and I is added into HU. A symbol ‘1’ is
returned indicating that the creation is successful.

(b) CORR(I) – corrupt a user with identity I: If I /∈ HU , ⊥ is returned,
otherwise, I is deleted from HU and added into CU, and usk[I] is re-
turned.

(c) CONV(I) – get a conversation between a user (as the prover) and a
verifier: If I /∈ HU , ⊥ is returned, otherwise, a conversation between a
prover with initial state usk[I] and a verifier with initial state (mpk, I)
is returned.

3. A can adaptively query INIT, CORR and CONV, and then output an iden-
tity Ib ∈ HU , which corresponds to the user that A wants to impersonate.
After receiving Ib, the simulator removes Ib from HU and adds it into CU.

4. A begins a run of the user identification protocol with a verifier V (initialized
with (mpk, Ib)) which is simulated by the simulator. A can continue querying
INIT, CORR and CONV. The simulate halts when V outputs ‘accept’ or
‘reject’.

The id-imp-pa advantage of A on security parameter k is defined as the probability
that V outputs ‘accept’. The IBI scheme (MKGen,UKGen,P,V) is said to be
id-imp-pa secure if the id-imp-pa advantage is negligible for any PPT adversary A.

id-imp-aa and id-imp-ca security. The id-imp-aa security is defined by a sim-
ilar game, but the conversation oracle, CONV, is replaced by a proving oracle,
PROV. A can select any identity I ∈ HU and start a conversation with PROV
which is the simulation of P(usk[I]). The difference between id-imp-aa and id-
imp-ca is that in the former case, A can have only one active session with PROV
at a time, but in the latter case, A can have concurrent (or parallel) active
sessions.
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3 A Generic IBI Scheme Secure Against Passive Attacks

In this section, we propose a generic construction of IBI schemes that can be
proven secure against passive attacks (namely, id-imp-pa secure in the sense of
Def. 2). In the following, we define a relation called trapdoor weak-one-more
relation, which enables our generic construction to capture many concrete IBI
schemes which include GQ-IBI [11], Sh-IBI [16] (under the RSA assumption)
and Hs-IBI [12], ChCh-IBI [8] (under the CDH assumption)1.

A binary relation R on W × Δ is a finite set of ordered pairs (x, y) such that
x ∈ W and y ∈ Δ. x is called a witness of y. We denote the set of witnesses of
y by W (y).

Definition 3 (Trapdoor Weak-One-More Relation Family). A family
of trapdoor weak-one-more relations R is a triple of PPT algorithms (Gen,
Ver, Inv):

1. Gen: On input 1k, where k ∈ N is the security parameter, Gen generates
(〈R〉, t) where 〈R〉 denotes the description of relation R on W × Δ and t a
trapdoor information.

2. Ver: For any k ∈ N, (〈R〉, t)←Gen(1k), Ver(1k, 〈R〉, x, y) = 1 if and only
if (x, y) ∈ R, otherwise, it outputs 0.

3. Inv: On input (1k, 〈R〉, y, t), it outputs x such that (x, y) ∈ R for any y ∈ Δ.
4. Weak-one-more resistance: Consider the following game against an ad-

versary A which is given 〈R〉 but not t, and has access to two oracles:
(a) A challenge oracle RAM that on any input returns a new random target

point y ∈ Δ.
(b) An inversion oracle INV that on any input y,

i. if y is an output of RAM, a witness of y is returned, and the same
witness is returned if the same value of y is queried again;

ii. if y is not an output of RAM, ⊥ is returned indicating that the input
is invalid.

A wins if A finds witnesses for all the target points output by RAM and
makes strictly fewer queries to INV. We say that (〈R〉, t) is a trapdoor weak-
one-more relation if the probability to win the game is negligible in k for any
PPT A.

The trapdoor weak-one-more relation family can be instantiated easily and in
many different ways. In the following, we describe several methods and show
that they satisfy the definition of trapdoor weak-one-more relation family.

3.1 Instantiations of Trapdoor Weak-One-More Relations

Trapdoor One-way Permutation Based. Let f : Δ → Δ be a trapdoor
one-way permutation. The following theorem describes a method to construct a
trapdoor weak-one-more relation from any trapdoor one-way permutation.
1 The abbreviations of these IBI schemes were first used by Bellare, Namprempre and

Neven in [2].
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Theorem 1. The binary relation RTOP = {(x, y) : x, y ∈ Δ; f(x) = y} is a
trapdoor weak-one-more relation.

Proof. It is obvious that RTOP is efficient to generate, verify, and find witness
with trapdoor. Now we show that it also satisfies the weak-one-more resistance.
Suppose there exists an adversary A which breaks the weak-one-more resistance.
We build an adversary B to break the one-wayness of f . B is given a random
instance y∗ ∈ Δ, and B is to find the inverse x∗ ∈ Δ such that f(x∗) = y∗.
Suppose A makes at most Q(k) queries to RAM. Initially, B randomly selects
a number 1 ≤ i ≤ Q(k) and simulates the weak-one-more resistance game as
follows:

To answer j-th query to RAM, if j �= i, B randomly selects xj ∈ Δ and returns
yj = f(xj) to A; if j = i, y∗ is returned. When A makes a query to INV on yj ,
if yj �= y∗, xj is returned; otherwise, B aborts. If A finds a witness x̃ such that
f(x̃) = y∗, B outputs x̃ and halts. If A halts, B halts.

It is easy to see that if A wins with probability at least ε, B breaks the one-
wayness of f with probability at least ε/Q(k). �

Computational Diffie-Hellman (CDH) Assumption Based. To be more
concrete, and also make our weak-one-more relation family more explicitly linked
to the techniques of some actual IBI schemes (e.g. Hs-IBI [12] and ChCh-IBI [8]),
we describe another instantiation of the weak-one-more relation defined above
in Def. 3.

For a security parameter k ∈ N, let q be a k-bit prime. Let G1 be an additive
cyclic group of order q and G2 be a multiplicative cyclic group of the same order.
Let P be a generator of G1. A bilinear map is defined as e : G1 × G1 → G2 with
the following properties: bilinear : For any U, V ∈ G1, and a, b ∈ Zq, e(aU, bV ) =
e(U, V )ab; non-degenerate: e(P, P ) �= 1; and computable: there exists an efficient
algorithm to compute e(U, V ) for any U, V ∈ G1.

The Computational Diffie-Hellman (CDH) problem in G1 is to compute abP
from 〈P, aP, bP 〉 where a, b are randomly selected from Zq. Based on the CDH
problem, we can construct a trapdoor weak-one-more relation as follows: on input
1k, Gen outputs (G1, G2, q, P, e, Ŝ = sP ) where s is randomly selected from Zq,
the relation is defined as RCDH = {(x, y) : x, y ∈ G1; e(P, x) = e(Ŝ, y)} and s is
the trapdoor information.

Theorem 2. If the CDH problem is hard, RCDH is a trapdoor weak-one-more
relation.

The proof is similar to that for Theorem 1 and is omitted here.

Digital Signature Schemes Secure under Known Message Attacks. Be-
sides trapdoor one-way permutation based and some concrete CDH assumption
based instantiations, we now show that the trapdoor weak-one-more relation
can also be constructed from a signature scheme which is only existentially un-
forgeable against known message attack (euf-kma) in the sense of [10]. This also
demonstrates that the trapdoor weak-one-more relation defined above can be
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very useful for capturing some potentially new concrete construction methods
of IBI schemes. This is also a new application for signature schemes which are
proven secure under the weak notion of existential unforgeability, namely, against
only known message attacks.

Let SIG = (KG, S, V) be a signature scheme defined on some message space
MS. Here, we assume that |MS| ≥ 2�(k) where �(k) is super logarithmic in k.
The security of euf-kma [10] is defined as follows: an adversary has signatures for
a set (denoted by Mknown) of messages which are uniformly selected from MS,
the adversary’s goal is to produce a signature for a message in MS \ Mknown.

We can construct a trapdoor weak-one-more relation from SIG as follows:
on input 1k, Gen runs the key generation algorithm KG to generate a pub-
lic/private key pair (pk, sk), the relation is defined as RSIG = {(x, y) : y ∈
MS; V(pk, y, x) = 1} and sk is the trapdoor information.

Theorem 3. If SIG is euf-kma, RSIG is a trapdoor weak-one-more relation.

Proof. Suppose there exists an adversary A which breaks the weak-one-more re-
sistance. We build another adversary F which breaks SIG under the known mes-
sage attacks. Suppose A makes at most Q(k) queries to RAM. Initially, F obtains
Q(k) − 1 message-signature pairs {(m1, σ1), · · · , (mQ(k)−1, σQ(k)−1)} where mj

(1 ≤ j ≤ Q(k) − 1) is uniformly selected from MS. Thus, Mknown =
{m1, · · · , mQ(k)−1}). F then uniformly selects m∗ from MS, and randomly in-
serts m∗ into the message sequence. For simplicity, we assume any two messages
in Mknown ∪ {m∗} are different. The proof then proceeds as in the proof of The-
orem 1, F answers A’s queries to RAM and INV by simply sending back the cor-
responding message/signature, F fails if A makes a query to INV on message m∗.

If A wins the weak-one-more resistance game with probability at least ε, F
breaks the signature scheme with probability at least ε/Q(k). �

3.2 Our Generic Construction of IBI Schemes

We now start describing our method of constructing an IBI scheme. The method
is based on the trapdoor weak-one-more-relation family (Def. 3) and the Honest
Verifier Zero-Knowledge (HVZK) proof with special soundness defined as follows.

Definition 4. A trapdoor weak-one-more relation R on W × Δ has an HVZK
proof with special soundness if there exists a non-trivial canonical proof system
(P̃, Ṽ) such that for any y ∈ Δ,

1. Completeness. If P̃ knows x such that (x, y) ∈ R, then Pr(Ṽaccepts) = 1.
2. Special Soundness. A witness of y can be computed from any two accept-

able transcripts (Cmt, Ch1, Rsp1) and (Cmt, Ch2, Rsp2) such that Ch1 �=
Ch2.

3. Honest Verifier Zero Knowledge. There exists a polynomial time algo-
rithm SIM such that on input (〈R〉, y) its output distribution is computa-
tionally indistinguishable from the distribution of a real conversation between
P̃(initialized with a witness of y) and Ṽ(initialized with 〈R〉, y).
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Let H : {0, 1}∗ → Δ be a hash function that is considered to be a random oracle
[4] for security analysis. We construct an IBI scheme as follows.

1. MKGen: (〈R〉, t) ← Gen(1k). Set mpk = 〈R〉 and msk = t.
2. UKGen: on input I ∈ {0, 1}∗, run x ← Inv(1k, 〈R〉, H(I), t) and set

usk[I] = x.
3. (P,V): set P to be the prover algorithm P̃ of the HVZK proof with initial

state x, and V the verifier algorithm Ṽ of the HVZK proof with initial state
(〈R〉, H(I)).

The following theorem states that an IBI scheme constructed as above is id-imp-
pa secure (Def. 2).

Theorem 4. Let R be a trapdoor weak-one-more relation which has an HVZK
interactive proof with special soundness. If the challenge length �(k) of the HVZK
proof is super logarithmic in k, the IBI scheme constructed above is id-imp-pa
secure in the random oracle model.

Proof. Given an adversary A that can break the IBI scheme with advantage ε,
we construct an adversary B which breaks the weak-one-more resistance of the
underlying trapdoor weak-one-more relation with advantage ε′ ≥ (ε − 2−�(k))2.

B simulates the id-imp-pa game by setting the mpk = 〈R〉. B maintains two
user lists HU and CU, which are empty at the beginning. B also maintains a
table T, each row of T contains an identity I and the value of H(I). T is also
empty at the beginning. B answers A’s queries as follows:

1. H-query: On input I ∈ {0, 1}∗, B checks if I is in table T. If I is not in
T, B asks its challenge oracle RAM to get a random point y ∈ Δ, and sets
H(I) = y by putting (I, y) in table T. If I is already in table T, the existing
value is returned.

2. INIT(I): If I ∈ HU ∪ CU, ⊥ is returned. Otherwise, B checks whether I is
in table T. If I is in T, I is added into HU and a symbol ‘1’ is returned.
Otherwise, B asks RAM to get a random point y ∈ Δ, and sets H(I) = y
by putting (I, y) in table T, I is then added into HU and a symbol ‘1’ is
returned.

3. CORR(I): If I /∈ HU, ⊥ is returned. Otherwise, B asks INV to generate a
witness w for H(I) and returns w to A. I is then deleted from HU and added
into CU.

4. CONV(I): If I /∈ HU, ⊥ is returned. Otherwise, B runs the simulation algo-
rithm SIM in Def. 4 to generate a simulated transcript and returns it to A.

If A successfully impersonates a user Ib that is created but not corrupted (i.e.
H(Ib) is returned by RAM, but the witness of H(Ib) is still not known to B) with
probability ε, by the Reset Lemma (Appendix A) and the special soundness, B
can extract a witness of H(Ib) with probability at least (ε − 2−�(k))2. Thus B
breaks the weak-one-more resistance of R with a non-negligible probability. �

By applying the generic construction above, we can derive the id-imp-pa securiy
of GQ-IBI [11], Sh-IBI [16] under the RSA assumption, and Hs-IBI [12], ChCh-
IBI [8] under the CDH assumption.
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4 Transforming to a Generic IBI Scheme Secure Against
Active and Concurrent Attacks

To construct an IBI scheme secure against active and concurrent attacks (namely,
id-imp-aa secure and id-imp-ca secure), we do not need to do so from scratch.
Interestingly, as described in this section, we only need to replace the trap-
door weak-one-more relation of our generic construction described in Sec. 3 with
a trapdoor strong-one-more relation and the HVZK proof with a witness in-
distinguishable proof, for transforming our generic construction secure against
passive attacks (i.e. id-imp-pa) to a generic IBI scheme secure against active and
concurrent attacks.

4.1 Trapdoor Strong-One-More Relations

Definition 5 (Trapdoor Strong-One-More Relation). A family of trapdoor
strong-one-more relations R is a triple of PPT algorithms (Gen′, Ver′, Inv′)
such that the following properties hold:

1. Gen′: On input 1k, where k ∈ N is the security parameter, the probabilistic
polynomial-time algorithm Gen′ outputs (〈R〉, t) where 〈R〉 denotes the de-
scription of a binary relation R on W ×Δ and t is the trapdoor information
of R.

2. Ver′: For every k ∈ N, (〈R〉, t)←Gen′(1k), Ver′(1k, 〈R〉, x, y) = 1 if and
only if (x, y) ∈ R.

3. Inv′: It is a (probabilistic or deterministic) polynomial-time algorithm such
that on input (1k, 〈R〉, y, t), it outputs an x such that (x, y) ∈ R for any
y ∈ Δ.

4. Non triviality: |Δ| is greater than p(k) where p(·) is any positive polyno-
mial.

5. Strong-one-more resistance: It is defined by a game. The adversary A is
given 1k, 〈R〉 as input where (〈R〉, t)←Gen′(1k) and access to two oracles:
(a) A challenge oracle RAM that on any input returns a new random target

point y ∈ Δ.
(b) An inversion oracle INV that on any input y:

i. If y is from the output of RAM, INV returns a witness of y, and the
same witness is returned if y is queried again later.

ii. If y is not from the output of RAM, a symbol ⊥ is returned indicating
that the input is invalid.

The adversary wins if he can find a pair (x′, y′) ∈ R such that y′ is one
output of RAM but (x′, y′) does not appear in the input/output pairs of the
inversion oracle (i.e. the adversary can find one more distinct pair than the
pairs given by the inversion oracle)2. A relation is a trapdoor strong-one-
more relation if the probability to win the game is negligible in k for any
polynomial-time adversary.

2 There are two cases: in the first case, y′ has never been queried to the inversion
oracle; in the second case, the inversion oracle has returned a witness x of y′ before,
but x′ �= x.
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In the following, we describe some primitives that can be used to construct
trapdoor strong-one-more relations.

Factoring Assumption Based. A Blum-Williams generator is a modulus
generator that returns Blum-Williams (BW) moduli N [18,5], meaning that
N = pq with p ≡ q ≡ 3 mod 4. Let QRN = {x2 mod N |x ∈ Z

∗
N} be the set of

all quadratic residues modulo N . It is known that if N is a BW modulus, then
squaring is a permutation on QRN . Let Z

∗
N [+1] = {x ∈ Z

∗
N |JacN (x) = +1}

where JacN (x) is the Jacobi symbol of x with respect to N . We also know that
if N is a BW modulus, −1 is a non-square modulo N with Jacobi symbol +1,
and for every element x ∈ Z

∗
N [+1], either x or −x is a square modulo N .

We construct a trapdoor strong-one-more relation as follows: on input 1k, Gen′

runs the Blum-Williams generator to generate (N, p, q). (p, q) is the trapdoor for
relation RSQ = {(X, Y ) ∈ Z

∗
N × Z

∗
N [+1] : X > (N − 1)/2; Y ≡ ±X2 mod N}.

On input Y ∈ Z
∗
N [+1], Inv′ uniformly chooses an X ∈ Z

∗
N over the two square

roots (greater than (N − 1)/2) of ±Y (remember either Y or −Y is a square).

Theorem 5. Assume the factoring problem is hard, RSQ is a trapdoor strong-
one-more relation.

Proof. The proof is by contradiction. Assume there exists an adversary A which
can break the strong-one-more resistance, then we can build an adversary B to
factor N . Here is the simulation.

When A asks a challenge query, B uniformly selects an x ∈ Z
∗
N at random

such that x > (N − 1)/2, and returns y
R← ±x2 mod N to A. When A asks the

inversion query on y, B returns x to A. If A aborts, B also aborts.
Suppose A wins the strong-one-more resistance game, then one of the following

two events must occur3. E1 : A outputs a witness x′ for a challenge y that has
appeared in an inversion query. Denote the witness selected by B in the challenge
query by x, then x′ �= ±x, and B is able to factor N . E2 : A outputs a witness
x′ for a challenge y that has not appeared in an inversion query. Denote the
witness selected by B in the challenge query by x, if x′ = x, B aborts with
failure. Otherwise, x′ �= ±x, and B is able to factor N . Since x is uniformly
selected at random, Pr[x′ �= ±x] = 1/2.

Thus, if A can break the strong-one-more resistance with probability ε, B can
factor N with probability at least ε/2. �

RSA Assumption Based. On input 1k, the RSA key generator outputs a
modulus N that is the product of two distinct odd primes p, q where |p| = |q| =
k/2, and exponents e, d such that ed ≡ 1 mod ϕ(N) where ϕ(N) = (p−1)(q−1) is
the Euler’s totient function. A prime-exponent RSA key generator only outputs
keys with e prime. The RSA problem is hard if

Advrsa
A (k)=Pr[(N, e, d) R← Krsa(1k); y R← Z∗N ; x←A(1k, N, e, y) : xe ≡y mod N ]

is negligible in k for all polynomial-time algorithm A.
3 There is a chance that y and -y are returned in two challenge queries, but this only

happens with a negligible probability.
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We construct a trapdoor strong-one-more relation as follows: on input 1k,
Gen′ first runs the prime-exponent RSA key generator to generate (N, e, d)
such that e > 2�(k) where �(k) is super-logarithmic in k, and then randomly
picks g

R← Z
∗
N . (N, d) is the trapdoor for relation RRSA = {((x1, x2), Y ) ∈

(Ze × Z
∗
N ) × Z

∗
N : g−x1x−e

2 ≡ Y mod N . On input Y ∈ Z
∗
N , Inv′ randomly

chooses x1
R← Ze, and then calculates x2 = (gx1Y )−d mod N .

Theorem 6. Assume the RSA problem is hard, RRSA is a trapdoor strong-one-
more relation.

Proof (Sketch). Assume there exists an adversary A which can break the strong-
one-more resistance with probability ε, then we can build another adversary B
which solves the RSA problem with probability at least (1 − 1/e)ε.

Given the RSA challenge y, adversary B sets g = y and simulates the strong-
one-more resistance game as follows:

When A asks a challenge query, B randomly selects x1
R← Ze, x2

R← Z
∗
N , and

returns Y = g−x1x−e
2 mod N to A. When A asks the inversion query on Y , B

returns (x1, x2) to A. If A aborts, B also aborts.
If B can obtain two different witnesses (x1, x2) and (x̂1, x̂2) for the same

challenge Y , since e is prime and 0 < |x1− x̂1| < e, two integers a, b can be found
such that a(x1 − x̂1) + be = 1, then B outputs gb(x2x̂

−1
2 )a mod N . By analyzing

the probability of two similar events E1 and E2 in the proof of Theorem 5, we
can see that B breaks the RSA problem with probability at least (1 − 1/e)ε. �

Strongly Unforgeable Signature Based. Let SIG be defined as in Sec. 3.1,
SIG is strongly unforgeable [1] under known message attack [10] (seuf-kma) if
no polynomial-time adversary is feasible to produce a message-signature pair
(m, σ) such that (m, σ) is not in his known list of message-signature pairs.

By using the same construction as in Sec. 3.1, we can get the following
theorem.

Theorem 7. If SIG is strong unforgeable under known message attack, and for
any message m ∈ MS4 there are more than one valid signatures, RSIG is a
trapdoor strong-one-more relation.

Proof (Sketch). Assume there exists an adversary A which can break the strong-
one-more resistance, we build a forger F as follows.

Suppose A asks at most Q(k) challenge queries. F first gets Q(k) message-
signature pairs (the messages are not chosen by him). Then F answers A’s
challenge/inversion queries by simply sending back the corresponding message/
signature.

By analyzing the probability of two similar events E1 and E2 in the proof of
Theorem 5, we can see that F has a non-negligible probability to win the strong
unforgeability game. �

4 Again, we assume |MS| ≥ 2�(k) where �(k) is super logarithmic in k.
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4.2 Transformation to a Generic IBI Scheme Secure Against Active
and Concurrent Attacks

With reference to the generic construction of IBI schemes with id-imp-pa security
described in Sec. 3.2, we use it to construct a generic IBI scheme with id-imp-
aa security and id-imp-ca security, by replacing the original R with a trapdoor
strong-one-more relation (Def. 5) and (P̃, Ṽ) with a non-trivial interactive proof
with witness dualism defined below.

Definition 6 (Witness Dualism). Let R be a trapdoor strong-one-more rela-
tion. We say that R has Witness Dualism if there exists a non-trivial interactive
proof system (P, V ) with special soundness such that for every y ∈ Δ, and for every
x ∈ W (y), there exists at least one x′ ∈ W (y) such that x′ �= x and for any verifier
V ′ and any auxiliary input z for V ′, the ensembles, V ′P (y,x)(y, z) and V ′P (y,x′)(y, z),
generated as V ′s view of the interactive proof, are indistinguishable.

The notion of Witness Dualism is related to Witness Indistinguishability [9]. For
witness dualism, given a witness x of y, the notion only requires it to be indistin-
guishable with another witness x′, rather than with all other witnesses in W (y).
Hence it is a weaker notion when compared with witness indistinguishability.

Theorem 8. Let R be a trapdoor strong-one-more relation which has Witness
Dualism, if the challenge length �(k) of the interactive proof system is super
logarithmic in k, then the generic IBI scheme in Sec. 3.2 (replace the HVZK
proof by (P, V)) is id-imp-aa and id-imp-ca secure in the random oracle model.

Proof. Given an adversary A that can break the IBI scheme, we construct an
adversary B which breaks the strong-one-more resistance of the underlying trap-
door strong-one-more relation.

B simulates the id-imp-aa (id-imp-ca) game by setting the mpk = 〈R〉. B
maintains two user lists HU and CU, which are empty at the beginning. B also
maintains a table T, each row of T contains an identity I and the value of H(I)
and a witness of H(I). T is also empty at the beginning. B answers A’s oracle
queries as follows:

1. H-query: On input I ∈ {0, 1}∗, B checks if I is in table T. If I is not in T,
B asks RAM to get a random point y ∈ Δ, then B sets H(I) = y by putting
(I, y, ⊥) in table T5. If I is already in table T, the existing value is returned.

2. INIT(I): If I ∈ HU∪CU, ⊥ is returned. Otherwise, B checks if I is in table T.
If I is in table T, I is added into HU and a symbol ‘1’ is returned. Otherwise,
B asks RAM to get a random point y ∈ Δ, then B sets H(I) = y by putting
(I, y, ⊥) in T, I is then added into HU and a symbol ‘1’ is returned.

3. CORR(I): If I /∈ HU, ⊥ is returned. Otherwise, B finds the row correspond-
ing to I in table T. If the witness is unknown, B asks the inversion oracle for
a witness x of H(I), and replaces the ⊥ symbol in that row by x. B returns
x to A. I is then deleted from HU and added into CU.

5 The symbol “⊥” denotes the value is unknown yet.
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4. PROV(I): If I /∈ HU, ⊥ is returned. Otherwise, B finds the row correspond-
ing to I in table T and retrieves x. If the witness is unknown, B asks the
inversion oracle for a witness x of H(I), and replaces the ⊥ symbol in that
row by x. then B runs a copy of P with initial state x.

Finally, if A can successfully impersonate a user Ib that is created but not
corrupted (i.e. H(Ib) is returned by RAM, but A does not ask for its witness),
by the Reset Lemma (Appendix A) and the special soundness, B can extract a
witness xb of H(Ib) with probability at least (ε − 2−�(k))2.

If B has never asked the inversion oracle for a witness of H(Ib), B successfully
breaks the strong-one-more resistance. Otherwise, because of the Witness Du-
alism, with probability at least 1/2, the witness extracted (with the help of A)
is different from the one in table T (by following the same proof of [9], witness
dualism is also preserved under concurrent composition).

Thus B breaks the strong-one-more resistance of the underlying trapdoor
strong-one-more relation with probability at least 1/2(ε − 2−�(k))2. �

By applying the RSA-based trapdoor strong-one-more relation together with a
witness indistinguishable interactive proof with special soundness [15], we can
derive the Okamoto-RSA-IBI scheme [15,2] that is imp-ca secure.

In the next section, we construct a concrete IBI scheme that is imp-ca secure
from strong unforgeable signature schemes.

5 A Concrete IBI Scheme Secure Against Concurrent
Attacks

In this section, we construct an IBI scheme from the Katz-Wang signature
scheme [13] which is shown to be strongly unforgeable under the DDH assump-
tion [6] for any message space MS ⊂ {0, 1}∗. Let G be a cyclic group of prime
order q with generator g, H : {0, 1}∗ → {0, 1}k and H ′ : {0, 1}∗ → {0, 1}k be
hash functions which are assumed to behave as independent random oracles for
security analysis. Let k ∈ N be the security parameter and k < |q|. We first
review the signature scheme due to Katz and Wang.

The Katz-Wang Signature Scheme: To generate a public/secret key pair,
h ∈ G and x ← Z

∗
q are first chosen randomly. y1 = gx and y2 = hx are then

computed and the public key is set to PK = (h, y1, y2) and the secret key to x.
To sign a message m, the following steps are carried out.

1. Choose random r ← Zq.
2. Compute A = gr, B = hr, and c = H ′(A, B, m).
3. Compute s = cx + r mod q and set signature σ = (c, s).

To verify the signature, A = gsy−c
1 and B = hsy−c

2 are computed and if c =
H ′(A, B, m), the signature is valid.

The IBI Scheme: Based on the Katz-Wang signature scheme, we build an IBI
scheme with id-imp-ca security. The scheme is described in Fig. 1. Next, we prove
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MKGen: Choose a cyclic group G of prime order q with generator g
such that |q| > k. Choose hash functions H : {0, 1}∗ → {0, 1}k and
H ′ : {0, 1}∗ → {0, 1}k. Randomly choose h ∈ G

∗ and x ← Z
∗
q . Compute

y1 = gx and y2 = hx. Set master public key to MPK = (G, q, g, h, y1, y2,
H, H ′) and master secret key to x.

UKGen: Randomly choose r ← Zq , compute A = gr, B = hr, c = H ′(A,
B, H(I)), and s = cx + r mod q. The user secret key is σ = (c, s).

User Identification Protocol: randomly choose r′ ∈ Zq, and compute
A ← gsy−c

1 , B ← hsy−c
2 , A′ ← gr′

, B′ ← hr′
, c′ ← H ′(A′, B′, H(I)).

Prover P (c, s) Verifier V (MPK, I)
λ

R← Zq, T1 ← gλ, T2 ← hλ

z′ R← Zq, α
′ R← Zq

T ′
1 ← gz′

(A′yc′
1 )−α′

T ′
2 ← hz′

(B′yc′
2 )−α′

A, B, A′, B′, T1, T2, T
′
1, T

′
2

�
c ← H ′(A, B, H(I))
c′ ← H ′(A′, B′, H(I))
U ← Ayc

1, R ← Byc
2

U ′ ← A′yc′
1 , R′ ← B′yc′

2
α0

R← Zqα0�
α ← α0 − α′ mod q
z ← λ + αs mod q

z, z′, α, α′
�

α + α′ ?
= α0

T1
?
= gzU−α

T2
?
= hzR−α

T ′
1

?
= gz′

U ′−α′

T ′
2

?
= hz′

R′−α′

Fig. 1. The IBI scheme based on Katz-Wang signature scheme

its security by following our framework described in the previous section. It can
be seen that the user identification protocol in Fig. 1 is actually a proof that the
prover knows at least one of two valid signatures.

Lemma 1. The user identification protocol in Fig. 1 has special soundness.

Proof. Given two successful conversations where V outputs ‘accept’:

(A, B, A′, B′, T1, T2, T
′
1, T

′
2, α0, z, z′, α, α′)

(A, B, A′, B′, T1, T2, T
′
1, T

′
2, α̂0, ẑ, ẑ′, α̂, α̂′)

such that α0 �= α̂0, it must be the case that at least one of the inequalities
α �= α̂ and α′ �= α̂′ take place. For example, if α �= α̂, (s, c) can be obtained from
s = (z − ẑ)(α − α̂)−1 and c = H ′(A, B, H(I)). Hence we can see that at least
one of (s, c) and (s′, c′) can be extracted. �
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Lemma 2. The user identification protocol in Fig. 1 is witness dualism (Def. 6).

Proof. For the two valid signatures σ = (c, s) (with respect to r) and σ′ = (c′, s′)
(with respect to r′) of the message H(I), the ensembles, V ′P (y,σ)(y, z) (with
illusive witness σ′) and V ′P (y,σ′)(y, z) (with illusive witness σ), generated as V ′s
view of the protocol, are identically distributed, where y refers to (MPK, I) and
z is any auxiliary input for V ′. �

Remark: In this IBI scheme, the user is required to use the same illusive witness
(c′, s′) (with respect to r′) in all the conversations, and the ‘Dual Witness’ of
(c, s) is exactly (c′, s′).

By combining these two lemmas and Theorem 8, we obtain the following
theorem.

Theorem 9. The IBI scheme in Fig. 1 is secure against impersonation under
concurrent attacks (id-imp-ca).
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A Reset Lemma

Lemma 3 (Reset Lemma [3]). Let CP be a prover in a canonical IBI scheme
with challenge set ChSet and challenge length �(·). StV and StCP are the initial
states of the verifier and CP, respectively. Let acc(StCP , StV ) be the probability
that the verifier accepts, and res(StCP , StV ) the probability that the following
reset experiment returns 1:

Choose random tape ρ for CP; (Cmt, St′
CP ) ← CP(StCP , ρ)

Ch1
R← ChSet(StV ); (Rsp1, St′′

CP ) ← CP (Ch1, St′
CP );

d1 ← Dec(StV , Cmt‖Ch1‖Rsp1)

Ch2
R← ChSet(StV ); (Rsp2, St′′′

CP ) ← CP (Ch2, St′
CP );

d2 ← Dec(StV , Cmt‖Ch2‖Rsp2)
If (d1 = 1 and d2 = 1 and Ch1 �= Ch2) then return 1 else return 0

Then,

res(StCP , StV ) ≥ (acc(StCP , StV ) − 2−�(k))2.
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Abstract. We present two transforms to acquire chosen ciphertext se-
curity from tag based techniques. The first one requires the separability
of underlying primitives. By separability, informally, we mean the en-
cryption algorithm has special structures and can process the identity
and the message independently. Compared with generic transforms [8],
it significantly reduces the ciphertext size overhead with only marginal
computation cost. Compared with [11], the only known technique which
directly achieves chosen ciphertext secure public key encryption from
separable identity based primitives, it only requires selective-Tag/ID se-
curity of underlying primitives. Our second transform is less efficient but
performs generically. Both transforms preserve the public verifiability of
underlying primitives, and can be extended to hierarchical identity based
encryption (HIBE) and threshold settings. As an independent interest,
we also investigate the security requirements of chameleon hash functions
to build strongly unforgeable one-time signatures.

1 Introduction

Indistinguishability against chosen ciphertext attack (CCA) is the standard se-
curity notion for public key encryption (PKE) schemes, which was established
in [19,25,27,17,4]. While it is comparatively easy in the random oracle model
[5], constructing a CCA-secure PKE is usually hard in the standard model. Up
to now, there are only a few methods known to solve the problem in the stan-
dard model: Naor-Yung paradigm [25,17,28], universal hash proof [15,16,24],
and an approach from tag/identity based encryption (TBE/IBE) techniques
[9,13,10,22,8].

Along the last trend, most recently, Boyen, Mei and Waters [11] proposed
two efficient techniques, referred as the BMW IBE transform and the BMW key
encapsulation mechanism (KEM) transform, both of which achieve CCA-security
from separable IBEs. Here, by separability, informally, we mean the encryption
algorithm has special structures and can process the identity and the message
independently. Another direct construction of KEM from a separable TBE was
discovered by Kiltz [22].

Let’s review the rough idea of the BMW PKE transform, which is based on
separable IBEs. Write the encryption algorithm into two independent functions,

J. Katz and M. Yung (Eds.): ACNS 2007, LNCS 4521, pp. 323–339, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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f1(params, m, r) and f2(params, id, r), where params is the public system pa-
rameter, m is a plaintext, id is an arbitrary identity and r is the internal coin by
the encryption algorithm. The public key of the PKE is then params and the
secret key is msk, which is the master secret key of the according IBE. For en-
cryption, one computes u = f1(pk, m, r) then hashes u into an “identity” id by a
collision resistant (or injective) hash function. The ciphertext is then c = 〈u, v〉,
where v = f2(pk, id, r). Adaptive chosen-ID security is required here because
the challenge identity is decided after the adversary selects the pair of chosen
plaintexts. For decryption on c = 〈u, v〉, first reconstruct id from u, and decrypt
c using the IBE decryption algorithm under identity id. Intuitively, to attack
this PKE, an adversary may submit c′ which maybe regarded as a ciphertext
with different identity id′ for the underlying IBE, however, this will not provide
useful information to it, because of the semantic security of underlying IBEs.

Though the BMW PKE transform is very efficient in ciphertext size, the
range of its application is quite limited, because it demands adaptive chosen-
ID security. Additionally, note that the BMW PKE transform doesn’t give a
direct security reduction to that of the underlying IBE, since the simulator is
supposed to submit the challenge identity with the pair of chosen plaintexts to its
challenger, and the identity id is in fact determined by the challenge ciphertext.
One may find it difficult to prove the security of the resulting PKE scheme
sometimes, e.g., the BMW PKE transform + Gentry IBE [18].

We note that selective-Tag/ID security suffices for the TBE/IBE to KEM
transform, because the challenge session key, thus the challenge identity, can
be chosen even before interacting with the adversary. For the time being, we
feel it no rush to build new KEMs, since BMW KEM [11] and Kiltz KEM [22]
are already efficient enough for most applications requiring chosen ciphertext
security at hand. On the other hand, we argue that such KEMs may be not
publicly verifiable, thus may not fit into threshold settings in their original forms,
which forms another motivation of this work.

Sketch of Our Ideas. Instead of a normal collision resistant hash function,
we use a collision resistant chameleon hash function to construct the identity
id. Interestingly, this simple modification achieves CCA-secure PKEs with public
verifiability, whose security can be reduced to underlying IBEs. Recall a collision
resistant chameleon hash function hashes a message x together with auxiliary
randomness w, such that with a trapdoor, one can efficiently find a collision on
(x′, w′), such that (x, w) and (x′, w′) will be hashed to the same vale. While
without the trapdoor, it is computationally infeasible to do so.

In the new strategy, for setup, the simulator generates a pair of public/secret
keys (hk, td) for a chameleon hash function. The simulator then commits to an
identity id∗, hashed from a dummy challenge ciphertext ū with some randomness
r̄, and submits id∗ to its challenger, who generates the public key and returns
params to the simulator. The public key of PKE now consists of params and an
additional hash key hk. For correctly reconstructing the identity id, the random-
ness r for hash function should be also appended to the ciphertext. Later upon
receiving the real challenge ciphertext c = 〈u∗, v∗〉 from the IBE challenger, it
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finds a collision (u∗, r∗) using td, i.e., both (u∗, r∗) and (ū, r̄) will be hashed to
id∗. In this way, the simulator can embed its own challenge into the challenge
ciphertext for an IBE adversary, in other words, the security of the PKEs can
be reduced to the underlying IBEs. Note that the BMW PKE transform doesn’t
give such a direct security reduction, since the target id is in fact determined
by the challenge ciphertext itself. Alternatively, we can construct an adversary
against the chameleon hash. Because this time the simulator does not have the
trapdoor, while the challenge is partially determined according to the adversary,
the chameleon hash needs to be collision resistant.

Moreover, as a supplement to our initial idea, a similar observation as [22]
shows that a TBE scheme with selective-Tag and chosen ciphertext security
suffices for the job. Since TBE is a possibly weaker primitive than IBE where the
extract algorithm is not explicitly used, one may obtain efficient schemes using
corresponding transforms. In fact, the BMW PKE scheme, an IBE private key
is never generated, since it is more efficient to decrypt directly using the master
key. Instantiate the method with Kiltz TBE [22], we obtain a corresponding
PKE scheme with publicly verifiability and without pairings. Interestingly, all
constructions of IBE schemes in the standard model in fact satisfy separability.

We go on to show how to remove the limitation of separability by sacrificing
a little efficiency of above transform. Actually, a chameleon hash may also serve
as a one-time signature by hashing with online key generation and switching.
With similar idea of [13], one acquires a generic transform based on TBE/IBE
and chameleon hash functions.

Compared with the BMW PKE transform, our transforms result in a slightly
larger ciphertext overhead. We believe this is tolerable, since our requirement
of underlying primitive is much weaker. Both transforms preserve the public
verifiability of underlying primitives. Especially it transforms CPA-secure (�+1)-
level HIBEs to CCA-secure �-level HIBEs. It is worth noting that the chosen
ciphertext security of resulting �-level HIBE can be reduced to the semantic
security of (�+1)-level HIBEs similarly.

Finally, as an independent interest, we investigate the necessary security re-
quirements of building one-time strongly unforgeable signatures from chameleon
hash functions. Although this intuition hides behind a lot of work, but it has
not been formalized before.

Related Work. First CCA-secure construction of public key encryption, also
known as Naor-Yung paradigm, was due to [25,17], and further generalized by
Sahai [28], which is quite inefficient. Cramer and Shoup gave the first practical
CCA-secure public key encryption scheme [15] in the standard model and later
generalized to universal hash proof system [16]. These two approaches utilize
certain non-interactive proofs of “well-formness”. Apart from the above, Canetti,
Halevi and Katz [13] presented a generic construction from weak IBEs, where no
such non-interactive proofs are needed. Boneh and Katz [10] further improved
the efficiency of [13]. The full version of [13,10] appeared as [8].

The notion of identity based encryption was due to Shamir, whose origi-
nal intention was to simplify the management of public key certificates. Boneh
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and Franklin [9] defined the first formal security notion for identity based en-
cryption, namely indistinguishability against chosen-ID and chosen ciphertext
attack (IND-ID-CCA) and gave the first functional scheme based on pairings.
Independently, Cocks [14] proposed another identity based encryption based on
decisional quadratic residue assumption. Canetti, Halevi and Katz [12] defined
another useful security notion with weaker attack model, namely security against
selective-ID attack and chosen plaintext/ciphertext attack (IND-sID-CPA/CCA).
On the other hand, Gentry and Silverberg generated the notion of identity based
encryption to hierarchical identity based encryption (HIBE).

Boneh and Boyen proposed two efficient IBE schemes (referred as BB1 and
BB2) with selective-ID security [6]. They further generalized to adaptive chosen-
ID security [7], but the scheme is quite inefficient. Waters subsequently presented
the first practical IBE scheme [30]. Most recently, Gentry gave a more efficient
IBE scheme, which however, relies on a very strong assumption [18].

Most recently, independently from our work, Abe, Cui, Imai and Kiltz [1] con-
sidered building tag-KEM [2] from special ID-Based KEMs (IBKEMs), called
partitioned IBKEMs, which are essentially the same as separability. A tag-KEM
is more flexible in building secure hybrid encryptions, which differs slightly from
our goal of building PKEs, however. We remark that we are additionally inter-
ested in directly building PKEs, from black-box TBEs/IBEs using chameleon
hash functions.

Organizations. The rest of the paper will be arranged as follows: we give some
definitions in Section 2, then give our transforms and analyze their securities
in Section 3 and Section 4. We explain applications of our results in Section 5.
Finally in Section 6, we give detailed comparisons among some typical schemes.

2 Preliminary

In this section, we give some notations and definitions, then review some hard
problems related to pairings.

Notations. If x is a string, let |x| denotes its length, while if S is a set then
|S| denotes its size. If S is a set then s ← S denotes the operation of picking
an element s of S uniformly at random. We write z ← A(x, y, . . .) to indicate
that A is an algorithm with inputs (x, y, . . .) and an output z. Denote x||y as
the string concatenation of x and y. If k ∈ N, a function f(k) is negligible if
∃ k0 ∈ N, ∀ k > k0, f(k) < 1/kc, where c > 0 is a constant.

2.1 Public Key Encryption

A public key encryption scheme consists of three algorithms PKE =
(PKEkg, PKEenc, PKEdec). The randomized key generation algorithm taking a
security parameter k as the input, generates a public key pk and a corresponding
secret key sk, which is denoted as (pk, sk) ← PKEkg(1k). The randomized en-
cryption algorithm taking pk and a plaintext m taken from the message space as
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inputs, with internal coin flipping r, outputs a ciphertext c, which is denoted as
c ← PKEenc(pk, m, r), in brief c ← PKEenc(pk, m). The deterministic decryption
algorithm taking sk and a ciphertext c as input, outputs the corresponding m, or
“⊥” (indicating invalid ciphertext), denoted as m ← PKEdec(sk, c). We require
a PKE scheme should satisfy the standard correctness requirement, namely for
all (pk, sk) ← PKEkg(1k) and all m, PKEdec(sk, PKEenc(pk, m)) = m.

IND-CCA-Security. We say a public key encryption scheme is (ε, q, T )-IND-CCA
secure, if the advantage of any adversary A with at most q queries to a decryption
oracle DO, is at most ε within time T in the following experiment.

Advind-cca
PKE,A

def= Pr[(pk, sk) ← PKEkg(1k); (m0, m1, s) ← ADO(pk);

b ← {0, 1}; c∗ ← PKEenc(pk, mb); b′ ← ADO(c∗, s) : b′ = b] − 1/2

where DO returns the corresponding decryption result on a query on ciphertext
c, whereas A is forbidden to query c∗ at DO. We say a PKE is IND-CCA-secure,
if for polynomially bounded q and T , ε is negligible.

2.2 Tag Based Encryption

Informally, a tag based encryption (TBE) is a public key encryption scheme
where the encryption and the decryption operations take an additional “tag”
which is public binary string with proper length.

A TBE scheme consists of three algorithms TBE = (TBEkg, TBEenc, TBEdec).
The randomized key generation algorithm TBEkg, taking a security parameter k
as the input, outputs a public key pk and a corresponding secret key sk, denoted
as (pk, sk) ← TBEkg(1k). The randomized encryption algorithm TBEenc taking
a public key pk, a tag t and a plaintext m taken from the message space as
inputs, with internal coin flipping r, outputs a ciphertext c, which is denoted
as c ← TBEenc(pk, t, m, r), in brief c ← TBEenc(pk, t, m). The deterministic
algorithm TBEdec taking a secret key sk, a tag t and a ciphertext c as inputs,
outputs a plaintext m, or “⊥” indicating invalid ciphertext, which is denoted
m ← TBEdec(sk, t, m). We require for all (pk, sk) ← TBEkg(1k), all m and all
t, TBEdec(sk, t, TBEenc(pk, t, m)) = m.

Separability. A TBE is said to be sparable if the encryption algorithm can
be arranged in two parts, such that one part is uniquely determined by pk,
m and the random coin r, in brief u ← f1(pk, m, r), and the other part is
uniquely determined by the pk, t and r, in brief v ← f2(pk, t, r). The ciphertext
is c = 〈u, v〉.

IND-sTag-CCA-Security. We consider a weak security called indistinguishability
against selective-tag and chosen ciphertext attack IND-sTag-CCA. Namely, the
tag to be used in the challenge is chosen before the key generation phase. Again,
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the scheme is (ε, q, T )-IND-sTag-CCA-secure if any adversary A with at most q
queries to a decryption oracle DO, has advantage at most ε within time T in the
following experiment.

Advind-stag-cca
TBE,A

def= Pr[(t∗, s0) ← A(1k); (pk, sk) ← TBEkg(1k);

(m0, m1, s1) ← ADO(pk, s0);

b ← {0, 1}; c∗ ← TBEenc(pk, t∗, mb); b′ ← ADO(c∗, s1) : b′ = b] − 1/2

where DO returns the corresponding decryption result on a query of a ciphertext
c under tag t, whereas A is forbidden to query any ciphertext under tag t∗ at
DO. We say a TBE is IND-sTag-CCA-secure, if for polynomially bounded q and
T , ε is negligible.

2.3 Identity Based Encryption

An identity based encryption (IBE) can be regarded as a special tag based en-
cryption equipped with an additional extraction algorithm, with inputs a master
secret key and an tag, outputs a secret key that is capable to decrypt ciphertext
corresponding to this tag.

An IBE scheme consists of four algorithms IBE = (IBEkg, IBEext, IBEenc,
IBEdec). The randomized key generation algorithm IBEkg, taking a security pa-
rameter k as the input, outputs a public parameter params and a master se-
cret key msk, denoted as (params, msk) ← TBEkg(1k). The extract algorithm,
possibly randomized, takes inputs of params, msk and an identity id, outputs
a secret key skid for id, denoted as skid ← IBEext(params, msk, id), in brief
skid ← IBEext(msk, id). The randomized encryption algorithm TBEenc takes
params, an identity id and a plaintext m taken from the message space as
inputs, with internal coin flipping r, outputs a ciphertext c, which is denoted
as c ← IBEenc(params, id, m, r), in brief c ← IBEenc(params, id, m). The deter-
ministic algorithm IBEdec takes a secret key skid, an identity id and a ciphertext
c as inputs, outputs a plaintext m, or a special symbol “⊥”, which is denoted
m ← IBEdec(skid, id, c). We require for all (params, msk) ← IBEkg(1k), skid ←
IBEext(msk, id) and all m, we have IBEdec(skid, id, IBEenc(params, id, m)) = m.

Separability. An IBE is said to be sparable if the encryption algorithm can be
arranged in two parts, such that one part is uniquely determined by params,
m and the random coin r, in brief u ← f1(params, m, r), and the other part is
uniquely determined by the params, id and r, in brief v ← f2(params, id, r).
The ciphertext is c = 〈u, v〉.

IND-sID-CPA-Security. We consider security of indistinguishability against
selective-ID and chosen plaintext attack (IND-sID-CPA). We say an identity based
encryption is (ε, q, T )-IND-sID-CPA-secure if the advantage of any adversary A
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is at most ε, with access q times to an extraction oracle EO within time T in
the following experiment.

Advind-sid-cpa
IBE,A

def= Pr[(id∗, s0) ← A(1k); (params, msk) ← IBEkg(1k);

(m0, m1, s1) ← AEO(params, s0); b ← {0, 1};

c∗ ← IBEenc(params, id∗, mb); b′ ← AEO(c∗, s1) : b′ = b] − 1/2

where EO returns the corresponding secret key on a query on identity id, whereas
A is forbidden to query id∗ at EO. We say an IBE is IND-sID-CPA-Secure, if for
polynomially bounded q and T , ε is negligible.

2.4 Digital Signature

A signature scheme consists of three algorithms S = (G, S, V). The randomized
key generation algorithm G takes a security parameter k, and generates signing
key sigk and verification key vk. The possibly randomized signing algorithm
S takes as inputs sigk and m ∈ {0, 1}∗, where m is a message, and outputs a
signature σ. The deterministic verification algorithm V takes as inputs vk, m and
σ, and outputs a symbol β ∈ {accept, reject}, denoted as β ← V(vk, m, σ). We
require that for all (sigk, vk) ← G(1k), all m ∈ {0, 1}∗, V(vk, m, S(sigk, m)) =
accept.

(Strong) Unforgeability. We consider strong unforgeability against adaptive
chosen message attack sUF-CMA [3]. Let S = (G, S, V) be a signature scheme.
Let A and k be an adversary and a security parameter, respectively.

Denote {(σi, mi)}qs as the set contains all qs pairs of queries and replies
between A and SO, where SO is a signing oracle which for a given message m,
returns a corresponding signature σ. The success probability of A is defined as

Sucsuf-cma
S,A (k) def= Pr[(vk, sigk) ← Gen(1k); (σ∗, m∗) ← ASO(vk)

: V(vk, m∗, σ∗) = accept∧ (σ∗, m∗) /∈ {(σi, mi)}qs ]

We say S is (t, ε)-sUF-CMA secure if for any A in time bound t, A’s success
probability is at most ε. Especially, we say that S is sUF-CMA secure if ε is
negligible.

2.5 Collision Resistant Chameleon Hash Function

A collision resistant chameleon hash function consists of three algorithms
CMH = (CMkg, CMhash, CMswch). The randomized key generation algorithm
CMkg taking a security parameter k as the input, outputs a hash key hk and
a trapdoor td, denoted as (hk, td) ← CMkg(1k). The randomized hashing algo-
rithm takes inputs a public key hk, an auxiliary random coin w drawn from space
R and a value x ∈ {0, 1}∗, outputs a binary string y of fixed length l, denoted as
y ← CMhash(hk, x, w). The switch algorithm CMswch takes inputs the trapdoor
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td, a pair of messages x, x′, the corresponding auxiliary random coin w, outputs
a pair of (x′, w′) with x′ 
= x, such that CMhash(hk, x, w) = CMhash(hk, x′, w′),
denoted as r′ ← CMswch(td, x, w, x′). Finally, for all x, x′ ← {0, 1}∗ and w ∈ R,
we require w′ ← CMswch(td, x, w, x′) is uniformly distributed in R and we call
this property the uniformness of a chameleon hash function. We next give two
flavors of security requirements for a chameleon hash, namely collision resistance
(CR) and oracle collision resistance (OCR).

Collision Resistance. We say a chameleon hash function is (εH, TH)-collision
resistant (CR) if any adversary A without access to the trapdoor td, the success
probability of finding collisions is at most εH within time T in the following
experiment.

Succcr
CMH,A

def= Pr[(hk, td) ← CMkg(1k); x ← A(hk);

w ← R; y ← CMhash(hk, x, w); (x′, w′) ← A(hk, x, w)
: (x′, w′) 
= (x, w) ∧ y = CMhash(hk, x′, w′)]

We say a chameleon hash function is collision resistant, if for polynomially
bounded TH, εH is negligible.

Oracle Collision Resistance. We say a chameleon hash function is (εH, TH)-
oracle collision resistant (OCR) if any adversary A without access to the trap-
door td, the success probability of finding a pair of collisions is at most εH within
time TH in the following experiment.

Succocr
CMH,A

def= Pr[(hk, td) ← CMkg(1k); x̄ ← {0, 1}∗; w̄ ← R;

y ← CMhash(hk, x̄, w̄); x ← A(hk, y); w ← CMswch(td, x̄, w̄, x);
(x′, w′) ← A(hk, x, w) : (x′, w′) 
= (x, w) ∧ y = CMhash(hk, x′, w′)]

We say a chameleon hash function is oracle collision resistant, if for polynomially
bounded TH, εH is negligible.

Discussions. Oracle collision resistance has not been formally discussed before.
However, it seems a very natural definition for chameleon hash functions, since
it considers a collision cannot be found even after the adversary gets some hint
from a switch oracle. Simultaneously, compared with the game defining collision
resistance, the adversary seems to have quite limit power in choosing its target,
since it is required to find collisions on a specified random hash value. At present,
we don’t know whether there are implications or separations between the above
two notions. However, there are practical implementations of such chameleon
hash functions provably secure under proper assumptions. We provide such an
example here: A chameleon hash by combining Pedersen commitment with a
normal collision resistant hash function appeared in [23], and it has been proven
to be collision resistant under the discrete log assumption [23]. But one can
easily come with a proof that it is also oracle collusion resistant under one-more
discrete log assumption [26], which is equivalent to discrete log assumption in
the generic group model [29]. We omit the details here.
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Chameleon Hash as One-Time Signature. A strongly existentially un-
forgeable [3] one-time signature can be derived from an oracle collision resistant
chameleon hash function. For key generation, run (hk, td) ← CMkg(1k), select
random (x̄, w̄) from corresponding spaces and compute y = CMhash(hk, x̄, w̄).
The verification key is vk = (hk, y) and the signing key is sigk = (td, x̄, w̄). For
signing, on message m, compute s ← CMswch(td, x̄, w̄, m), the signature on m
is s. The correctness of the construction is easily verified.

To see strong unforgeability, a forger, given vk, will try to output (m′, s′), such
that (m′, s′) 
= (m, s), where s is the signature on m chosen by the forger, and
(m′, s′) a valid message/signature pair under vk. Then if y = CMhash(hk, m′, s′),
a collision occurs for (m, s), which is against the assumption of oracle collision
resistance. We then conclude the above signature scheme is strongly existentially
unforgeable against (exactly one-time) adaptive chosen message attack.

2.6 Hard Problems

Let G1 and G2 be two multiplicative cyclic groups of prime order p and g be a
generator of G1. A bilinear map e : G1 × G1 → G2 satisfies the following prop-
erties: (i) Bilinearity: For all x, y ∈ G1 and a, b ∈ Z, e(xa, yb) = e(x, y)ab. (ii)
Non-degeneracy: e(g, g) 
= 1. (iii) Computability: There is an efficient algorithm
to compute e(x, y) for any x, y ∈ G1. We review some hard problems related
to bilinear maps: the decision bilinear Diffie-Hellman (DBDH) problem, the de-
cision bilinear Diffie-Hellman inversion (DBDHI) problem, the decision linear
(DLIN) problem and the decision augmented bilinear Diffie-Hellman exponent
(DABDHE) problem. We say an assumption holds, if the advantage ε of any
probabilistic polynomial bounded algorithm is negligible for the corresponding
problem.

DBDH Problem. We say that the DBDH problem is (ε, T )-hard in (G1, G2), if
given 5-tuple (g, ga, gb, gc, w) ∈ (G1)4 × G2 as input, any randomized algorithm
A with running time at most T , distinguishes the BDH-tuple from a random
tuple with advantage at most ε.

Advdbdh
G1,G2,A

def=
∣∣Pr[A(g, ga, gb, gc, e(g, g)abc) = 0] − Pr[A(g, ga, gb, gc, w) = 0]

∣∣

DBDHI Problem. We say that the DBDHI problem is (ε, q, T )-hard in
(G1, G2), if given (q + 2)-tuple (g, gx, gx2

, ..., gxq

, w) ∈ (G1)q+1 × G2, where
x ∈ Zp as input, any randomized algorithm A with running time at most T ,
decides whether w = e(g, g)1/x with advantage at most ε.

Advdbdh
G1,A

def= | Pr[A(g, gx, gx2
,..., gxq

, e(g, g)1/x)=0]−Pr[A(g, gx, gx2
,..., gxq

,w)=0]|

DLIN Problem. We say that the DLIN problem is (ε, T )-hard in G1, if given
6-tuple (g1, g2, g

r1
1 , gr2

2 , z, w) ∈ (G1)6 as input, where (r1, r2) ∈ (Zp)2, any ran-
domized algorithm A with running time at most T , decides whether w = zr1+r2

with advantage at most ε.

Advdbdh
G1,A

def=
∣∣Pr[A(g1, g2, g

r1
1 , gr2

2 , z, zr1+r2)=0] − Pr[A(g1, g2, g
r1
1 , gr2

2 , z, w)=0]
∣∣
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It is believed that DLIN problem is hard even in a bilinear group pair where
pairing is efficiently computable and its security can be proven in the generic
group model.

DABDHE Problem. We say that the DABDHE problem is (ε, q, T )-hard in
(G1, G2), if given (q+4)-tuple (g1, g2, g

x
1 , ..., gxq

1 , gxq+2

1 , w) ∈ (G1)q+3 ×G2, where
x ∈ Zp as input, any randomized algorithm A with running time at most T ,
decides whether w = e(g1, g2)q+1 with advantage at most ε.

Advdabdhe
G1,G2,A

def= | Pr[A(g1, g2, g
x
1 , ..., gxq

1 , gxq+2

1 , e(g1, g2)xq+1
) = 0]

− Pr[A(g1, g2, g
x
1 , ..., gxq

1 , gxq+2

1 , w) = 0]|

3 Separable TBE/IBE to PKE Transforms

3.1 The Transforms

We give Transform T1 that achieves chosen ciphertext security from separable
tag based primitives in Figure 1, then analyze its security in Theorem 1.

Theorem 1. The public key encryption acquired via T1 is (ε + εH, q, T + TH +
O(qk))-IND-CCA-secure assuming the separable tag based encryption is (ε, q, T )-
IND-sTag-CCA-secure and the collision resistant chameleon hash function is
(εH, TH)-collision resistant.

Proof. We show how to build an adversary B breaks either the TBE or the
chameleon hash by interacting with a PKE adversary. Denote 〈u∗, v∗, r∗2〉 as the
challenge ciphertext for A. We distinguish two types of adversaries:

Type 1: For any valid decryption query 〈u(i), v(i), r
(i)
2 〉, where 1 ≤ i ≤ q, there

is (u(i), r
(i)
2 , t(i)) 
= (u∗, r∗2 , t∗), where t(i) = CMhash(hk, u(i), r

(i)
2 ) and t∗ =

CMhash(hk, u∗, r∗2). We construct an adversary that breaks the TBE.
Type 2: There is at least one valid decryption query 〈u(i), r

(i)
2 , t(i)〉 = 〈u∗, r∗2 , t∗〉

for some 1 ≤ i ≤ q. We construct an adversary that breaks the collision
resistance of chameleon hash.

Type 1 Adversary: Define B as follows:

Setup: B runs (hk, td) ← CMkg(1k). Let u′ = f1(pk, m′, r′1), where m′ is
a dummy message and r′1 is random coin for TBEenc. B computes t∗ =
CMhash(hk, u′, r′2), where r′2 is an auxiliary random coin for chameleon hash.
B then submits t∗ to its own challenger as the tag to be challenged. After
receiving public key pk′ from its challenger, B sets pk = (pk′, hk) and sends
pk as the public key to a PKE adversary A.
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Transform: T1
PKEkg(1k):

(pk′, sk′) ← TBEkg(1k)

hk ← CMkg(1k)
pk ← 〈pk′, hk〉
sk ← sk′

return (pk, sk)

PKEenc(pk, m):
pk = 〈pk′, hk〉
r1 ← R1

r2 ← R2

u ← f1(pk′, m, r1)
t ← CMhash(hk, u, r2)
v ← f2(pk′, t, r1)
c ← 〈u, v, r2〉
return c

PKEdec(sk, c):
c = 〈u, v, r2〉
t ← CMhash(hk, u, r2)
m ← TBEdec(sk, t, u||v)
return m

† The trapdoor for chameleon hash function can be erased since it is not used
elsewhere. R1 and R2 are corresponding spaces of random coins for TBEenc
and CMhash.

Fig. 1. The Separable TBE to PKE Transform

Encryption Query: When B receives from A a pair of plaintexts (m0, m1)
that A wants to be challenged on, B forwards (m0, m1) to its own challenge
oracle. After receiving its challenge ciphertext 〈u∗, v∗〉 (under tag t∗), B
computes r∗2 ← CMswch(td, u′, r′2, u

∗). B then sends c∗ = 〈u∗, v∗, r∗2〉 to A as
the challenge ciphertext. Due to the uniformness of the chameleon hash, the
distribution of the challenge is exactly as a real attack.

Decryption Queries: For decryption query c = 〈u(i), v(i), r
(i)
2 〉, B checks

whether (u(i), r
(i)
2 ) = (u∗, r∗2) and v(i) 
= v∗. If yes, this is an invalid cipher-

text and B rejects. Otherwise, B sends 〈u(i), v(i), t(i)〉 to its own decryption
oracle and forwards to A whatever its decryption oracle replies.

Guess: When A outputs a guess b′ on c∗, B outputs the same bit as its answer.

From the description of B, it is easily verified that the key generation is simu-
lated perfectly. Furthermore, because of the uniformness property, r∗2 is uniformly
distributed, thus the challenge oracle is also perfectly simulated. Finally, if A
succeeds, B also succeeds.

Type 2 adversary: For Type 2 adversary has many similarities with Type 1,
so we only give the sketch. For setup, B receives hk from its challenger. B then
generates (pk′, sk′) ← TBEkg(1k) and sets the public key as (pk′, hk). B keeps
sk′ as the secret key. Since B has sk′, all decryption queries can be answered
perfectly. For challenge, upon receiving (m0, m1) from A, B first picks b ← {0, 1}
and sets u∗ = f1(pk′, mb, r), where r is chosen uniformly from corresponding
randomness space. B then outputs u∗ to its hash challenger. After receiving r∗2
from the challenger, B sets t∗ ← CMhash(hk, u∗, r∗2) and v∗ = f2(pk′, t∗, r), and
sends 〈u∗, v∗, r∗2〉 to A as the challenge ciphertext. One can verify this is a valid
challenge. Finally, when decryption query 〈u(i), v(i), r

(i)
2 〉 is queried for some i,

where CMhash(hk, u(i), r
(i)
2 ) = t∗ and (u(i), r

(i)
2 ) 
= (u∗, r∗2), B outputs (u(i), r

(i)
2 )

as a collision for its challenger. We conclude B break collision resistance with
the same probability as A’s advantage in guessing b.

Summarizing two cases, we have the claimed results. �
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We further present another transform (T1′) based on IBE in Figure 2. Since
an (ε, q, T )-IND-sID-CPA-Secure identity based encryption implies an (ε, q, T )-
IND-sTag-CCA-secure tag based encryption, we have an immediate corollary for
the security of this transform.

Transform: T1′

PKEkg(1k):

(params,msk) ← IBEkg(1k)

hk ← CMkg(1k)
pk ← 〈params,hk〉
sk ← msk
return (pk, sk)

PKEenc(pk, m):
pk = 〈params,hk〉
r1 ← R1

r2 ← R2

u ← f1(params,m, r1)
t ← CMhash(hk, u, r2)
v ← f2(params, id, r1)
c ← 〈u, v, r2〉
return c

PKEdec(sk, c):
c = 〈u, v, r2〉
id ← CMhash(hk, u, r2)
skid ← IBEext(sk, id)
m ← IBEdec(skid, id, u||v)
return m

† Again, td can be erased. R1 and R2 are corresponding spaces of random coins
for IBEenc and CMhash.

Fig. 2. The Separable IBE to PKE Transform

Corollary 1. The public key encryption acquired via T1′ is (ε + εH, q, T +
TH+O(qk))-IND-CCA-secure assuming the separable identity based encryption is
(ε, q, T )-IND-sID-CPA-Secure and the collision resistant chameleon hash function
is (εH, TH)-collision resistant.

3.2 Further Improvements

Note that the performance of T1 and T1′ can be further optimized by replacing
chameleon hash functions using practical hash functions (e.g. SHA-1, or SHA-
2 for higher security). We have to modify our assumptions and corresponding
proofs. Instead of possessing td of a chameleon hash function, the simulator B
is given one chance of accessing a collision oracle (possibly inefficient) that finds
collision on the hash function. The uniformness of such hash functions should
also be rephrased accordingly. With these changes, it is still possible to prove
the security of the modified constructions according to previous strategies. The
details are omitted here.

4 A Generic TBE to PKE Transform

We give the description of a generic TBE to PKE transform using chameleon
hash in Figure 3, and naturally it can be rewritten to fit IBE case accordingly.
The transform mimics [13] with a one-time signature replaced by a chameleon
hash function that is discussed in Section 2.5. This transform shows another
tradeoff between computational cost and ciphertext size for generic TBE/IBE
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Transform: T2
PKEkg(1k):

(pk, sk) ← TBEkg(1k)
return (pk, sk)

PKEenc(pk, m):
(hk, sk) ← CMkg(1k)
ū ← C
r̄ ← R
t′ ← CMhash(hk, ū, r̄)
t ← hk||t′

u ← TBEenc(pk, t,m)
r ← CMswch(td, ū, r̄, u)
c ← 〈u, t, r〉
return c

PKEdec(sk, c):
c = 〈u, hk||t′, r〉
test if t′ ?

= CMhash(hk, u, r)
if invalid, return “⊥”
m ← TBEdec(sk, t, u)
return m

† C and R are corresponding spaces of ciphertext and random coins of CMhash
respectively.

Fig. 3. A Generic TBE to PKE Transform Using Chameleon Hash

transforms. It is not hard to come up with an IBE version of T2, just as we did
previously to T1. We omit the details here. Finally, Theorem 2 guarantees the
security of T2.

Theorem 2. The public key encryption acquired via T2 is (ε + εH, q, T +
TH+O(qk))-IND-CCA-secure assuming the tag based encryption is (ε, q, T )-IND-
sTag-CCA-secure and the chameleon hash function is (εH, TH)-oracle collision
resistant.

Proof Sketch. The idea of the proof is quite similar to [13]. Let A be a PKE
adversary. Denote 〈u(i), t(i), r(i)〉, where 1 ≤ i ≤ q, as decryption queries by A.
Denote 〈u∗, t∗, r∗〉 be the challenge ciphertext for A. We consider two types of
adversaries.

Type 1: For any 〈u(i), t(i), r(i)〉, where t(i) 
= t∗, we build an adversary B against
the underlying TBE.

Type 2: There exists a query 〈u(i), t∗, r(i)〉, where (u(i), r(i)) 
= (u∗, r∗), t∗ =
hk∗||t′∗ and t′∗ = CMhash(hk∗, u(i), r(i)). We construct an adversary B
against the oracle collision resistance of the underlying chameleon hash.

Type 1 Adversary. For setup, B runs (hk, td) ← CMkg(1k), chooses dummy ū
and random coin r̄ and sets t′ ← CMhash(hk, ū, r̄). Then B outputs t∗ = (hk||t′)
as the selective tag for a TBE challenger. After receiving pk from the TBE
challenger, B forwards pk to A. For decryption, since there is no query with tag
t(i) = t∗, all decryption queries of A can be forwarded to the TBE challenger
and answered perfectly. For challenge, after A submits a pair of chosen message
(m0, m1), B forwards to the TBE challenger and receives a challenge ciphertext
u∗. B then computes r∗ ← CMswch(td, ū, r̄, u∗), and gives 〈u∗, t∗, r∗〉 to A as
the challenge. Finally, B outputs whatever A outputs as its guess. From above
descriptions we can see that B succeeds with exactly the probability of A.
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Type 2 Adversary. For setup, B runs (pk, sk) ← TBEkg(1k). B then for-
wards pk to A as the public key of the PKE. Additionally, on B’s request, a
chameleon hash challenger runs (hk∗, td∗) ← CMkg(1k) and computes t′∗ ←
CMhash(hk∗, ū, r̄), where ū and r̄ are uniformly sampled from corresponding
spaces. Then t∗ = hk||t′∗ is given to B. For decryption, since B knows sk, all
decryption queries will be handled perfectly. For challenge, B receives (m0, m1)
from A and sets u∗ ← TBEenc(pk, t∗, mb) for b ← {0, 1}. B submits u∗ to the
chameleon hash challenger, who computes r∗ ← CMswch(td∗, ū, r̄, u∗) and re-
turns r∗ to B. B then gives 〈u∗, t∗, r∗〉 to A as a challenge. After receiving a
ciphertext query of the form 〈u(i), t∗, r(i)〉 where t′∗ = CMhash(hk∗, u(i), r(i))
and (u(i), r(i)) 
= (u∗, r∗), B outputs (u(i), r(i)) as a collusion for the chameleon
hash. It is verified that B breaks the oracle collision resistance of chameleon hash
at exactly A’s advantage in correctly guess b.

Summarizing the above two cases we prove the claim. �
Although additional computational cost may be involved in the key generation
and evaluation of the chameleon hash, it can be improved by pre-computation.
It is worth repeating that oracle collision chameleon hash functions can be built
from many number theoretic assumptions, and the public verifiability of under-
lying primitives is preserved by using T2.

5 Applications

5.1 Practical CCA-Secure PKE Schemes

Our methods achieves CCA-security with tight reductions to underlying selective-
Tag based primitives. Instantiate T1 with IND-sTag-CCA-secure TBE, one gets
more efficient scheme with public verifiability. We give such a scheme based on
Kiltz TBE [22]. To remark, the Cramer-Shoup encryption [15] can be viewed as
applying the BMW transform [11] to a related TBE with adaptive chosen tag
security. Finally, instantiate T1′ with Gentry IBE, one gets an efficient PKE
based on DABDHE assumption.

The Scheme

PKEkg(1k):
g1, h ← G1

x1, x2, y1, y2 ← Z
∗
p

g2, z ← G2

s.t. gx1
1 = gx2

2 = z
u1 ← gy1

1
u2 ← gy2

2
choose H1, H2 : {0, 1}∗ → Z

∗
p

pk ← (g1, g2, u1, u2, z, h, H)
sk ← (x1, x2, y1, y2)
return (pk, sk)

PKEenc(pk, m):
r1, r2, r3 ← Z

∗
p

u1 ← gr1
1

u2 ← gr2
2

e ← M · zr1+r2

t ← H2(g
H1(u1,u2,e)
1 hr3)

v1 ← ztr1ur1
1

v2 ← ztr2ur2
2

c ← 〈u1, u2, e, v1, v2, r3〉
return c

PKEdec(sk, c):
c = 〈u1, u2, e, v1, v2, r3〉
t ← H(g

H(u1,u2,e)
1 hr3)

test whether

v1 = utx1+y1
1 ∧ v2 = utx2+y2

2
if invalid, return “⊥”
otherwise m ← e

u
x1
1 u

x2
2

return m

† (G1, G2) is a bilinear group pair with prime order p. H1, H2 can be replaced by
injective mappings.

Fig. 4. Secure PKE Based on DLIN Assumption
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A Publicly Verifiable CCA-Secure PKE without Pairings. We instanti-
ate our method with Kiltz TBE [22], and present an efficient IND-CCA-secure
public key encryption scheme in Figure 4. We note that while Kiltz KEM [22]
combined with a CCA-secure symmetric key encryption achieves better perfor-
mance regarding chosen ciphertext security, but our scheme enjoys addition-
ally a capability of threshold decryptions. Here we instantiate the chameleon
hash by using a collision resistant hash function combined with the Pedersen
commitment [23].

5.2 Extensions

CCA-Secure Hierarchical Identity Based Encryption. Since most IBEs in
the standard model can be extended to the hierarchical IBE setting, our methods
operate also on these HIBE schemes. Applying our transforms to an (�+1)-level
semantically secure HIBE against chosen plaintext attack results in an �-level
CCA-secure HIBE with marginal computational cost, small ciphertext overhead
and tight security reduction.

Table 1. Comparisons of Schemes

Scheme Assumption Ciphertext Without Generic? Public
Overhead Pairing? Verifiable?

KD DDH 2|G| + |Mac| yes — —
CHK/BB1 DBDH 2|G1| + O(k2) — yes yes
CHK/BB2 DBDHI 2|G1| + O(k2) — yes yes
BK/BB1 DBDH 3|G1| + |Mac| — yes —
BK/BB2 DBDHI 3|G1| + |Mac| — yes —
BK/Kiltz DLIN 5|G1| + |Mac| yes yes —
Kiltz(kem) DLIN 4|G1| yes — —
BMW/BB1 DBDH 2|G1| — — —
BMW/Waters DBDH 2|G1| — — —
T1/Kiltz DLIN 4|G1| + |r| yes — yes
T1′/BB1 DBDH 2|G1| + |r| — — yes
T1′/Gentry DABDHE |G1|+|G2| + |r| — — yes
T2/BB1 DBDH 2|G1| + |hk| + |t| + |r| — yes yes

† KD is Kurosawa-Desmedt [24]. Kiltz is Kiltz TBE [22]. Waters is Waters IBE [30].
Gentry is Gentry IBE [18]. All schemes in the table are PKEs, except that BMW/BB1
and Kiltz(kem) [22] are CCA-secure KEMs. Such KEMs can combine with symmetric
key encryption (SKE) (e.g. block ciphers run in CMC mode [20] or EME mode [21])
which has no overhead, however, such operations are usually computationally less effi-
cient than passively secure SKEs combined with Macs. The cost of computing one-time
signatures and symmetric key primitives are neglected here. p is the order of G1. G

is a group where DDH problem is hard. (G1, G2) is a bilinear group pair. One may
assume |G| = 1024 (or 160 by using elliptic curve) and |G1| = 512 and |G2| = 1024
for symmetric bilinear group. r is a random coin for chameleon hash functions and is
chosen uniformly from Zp, where p is the order of G1. hk is a hash key, and t′ is a
hash value. For practical implementations of chameleon hash, the size of hk and t′ can
be further optimized by reusing the system parameters. One-time signatures based on
number-theoretic assumptions are no better than T2.
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Non-interactive CCA-Secure Threshold Decryption. If the underlying tag
based primitive is publicly verifiable, one can easily build non-interactive thresh-
old encryption against chosen ciphertext attack with our method. It is quite
natural if one follows previous work, e.g., [11], and the details and concrete in-
stantiations are omitted here. We note that alternatively, this can be achieved
by building a tag-KEM [2], combined with a semantically secure DEM. However,
one may need to take care on the security of underlying primitives to build the
tag-KEM. A recent work [1] addresses this in more details.

6 Comparisons

We compare some typical PKE schemes in Table 1. Note that our transforms can
be further improved according to the discussions in Section 3.2, thus we come
to conclusion that our transforms are efficient and widely applicable.
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Abstract. ID-based public key cryptosystem can be a good alterna-
tive for certificate-based public key setting, especially when efficient key
management and moderate security are required. Certified e-mail pro-
tocols provide for fair exchange in which the intended recipient gets the
e-mail content if and only if the mail originator receives an irrefutable
receipt for the e-mail. In this paper we present an optimistic certified
e-mail protocol in an ID-based setting. The protocol makes use of ver-
ifiable encryption of ID-based digital signatures as building blocks. We
offer arguments for the fairness, efficiency, and provable security of our
new protocol.

Keywords: ID-based cryptography, certified e-mail protocols, verifiably
encrypted signatures, bilinear pairings.

1 Introduction

1.1 ID-Based Public Key Cryptography

ID-based public key cryptography (ID-PKC) is a paradigm proposed by Shamir
in 1984 [1] to simplify key management and remove the necessity of public key
certificates. In ID-PKC, an entity’s public key is directly derived from certain
aspects of its identity, such as an IP address belonging to a network host or
an e-mail address associated with a user. That is, the user’s public key can
be calculated directly from his/her identity rather than being extracted from a
certificate issued by a certificate authority. Private keys are generated for entities
by a trusted third party, which is called a private key generator (PKG). The
direct derivation of public keys in ID-PKC eliminates the need for certificates
and some of the problems associated with them.

In 2001, the first entire practical and secure ID-based public key encryption
scheme was presented in [2] by Boneh and Franklin, who took advantage of the
properties of suitable bilinear maps (the Weil or Tate pairing) over supersingular
elliptic curves. Since then, a rapid development of ID-PKC has taken place.
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Many other ID-based primitives based on pairings have been proposed: digital
signatures, authenticated key exchange, non-interactive key agreement, blind
and ring signatures, signcryption, and so on. ID-based public key cryptography
has become a good alternative for certificate-based public key setting, especially
when efficient key management and moderate security are required.

1.2 Certified E-Mail Protocols

Exchanging items over insecure networks is considered a difficult problem, called
the fair exchange problem. Fairness means that at no point during the execution
of the protocol can either of the entities participating in the exchange gain any
(significant) advantage over the other if the protocol is suddenly halted.

There have been two main approaches for achieving fair exchange. The first
approach is to ensure that the exchange occurs simultaneously. One way of pro-
viding simultaneous exchange is to have the participants exchange information
bit-by-bit in an interleaving manner [3].

The second approach is to ensure that the exchange will be completed even
though one of the entities participating in the exchange refuses to continue. Fair
exchange protocols which employ this approach require a trusted third party
(TTP) as arbitrator. The use of the on-line TTP greatly reduces the efficiency
of the protocol. With the assumption that the participators are honest in most
situations, more preferable solutions, called optimistic fair exchange protocols
based on off-line TTP, are proposed in [4,5]. In these protocols, the off-line TTP
does not participate in the actual exchange protocol in normal cases, and is
invoked only in abnormal cases to dispute the arguments.

Certified e-mail protocols are closely related to fair exchange protocols. In
a certified e-mail system, the intended recipient gets the e-mail content if and
only if the mail originator receives an irrefutable receipt for the e-mail from the
recipient. A certified e-mail protocol should minimally provide [6]:

– Fairness: No party should be able to interrupt or corrupt the protocol to
force an outcome to his/her advantage. That is, the protocol should ter-
minate with either party having obtained the desired information, or with
neither one acquiring anything. useful.

– Monotonicity: Each exchange of information during the protocol should
add validity to the final outcome. The protocol should not require any mes-
sages, certificates, or signatures to be revoked to guarantee a proper termi-
nation of the protocol.

– TTP invisibility: A TTP is visible if the end result of an exchange makes
it obvious that the TTP participated during the protocol.

– Timeliness: It guarantees that both parties will achieve their desired items
in the exchange within finite time.

– Confidentiality (optional): When confidentiality is needed, only the in-
tended receiver can obtain the message content. No other parties including
TTP can get it.

In recent years, fruitful achievements have been made in this field. On-line
certified e-mail protocols are presented in [7,8,9]. Micali registered in U.S patent
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off-line optimistic protocols for fair exchange [10] including a certified e-mail
protocol. Riordan and Schneier [11] present a protocol where the TTP acts as
a public publishing location (which might be implemented as a secure database
server). The authors describe both an on-line and an off-line version of the pro-
tocol. Ateniese et al. [12] suggested an off-line protocol which allows a stateless
recipient: when a fairness problem occurs, a sender should take action to resolve
the problem while the fairness on the recipients side is always guaranteed. Later,
Park et al. [13] proposed an off-line protocol suitable for mobile environments
which keeps the same properties including four passes as in Ateniese et al. [12]
except that it reduces the recipient computation load. However, all these above
works are in traditional certificate-based public key setting.

1.3 Contributions and Organization

In this paper, we present an optimistic certified e-mail protocol in ID-based
public key setting. The paper is organized as follows. In Section 2, we present
a verifiable encryption of ID-based signatures. In Section 3, we present an opti-
mistic certified e-mail protocol in ID-based setting. We provide protocol analysis
and comparisons in Section 4. Finally, we conclude in Section 5.

2 Cryptographic Blocks

2.1 Bilinear Maps

Let (G1, +) and (G2, ·) be two cyclic groups of order q, ê : G1 × G1 → G2 be a
map which satisfies the following properties.

1. Bilinear: ∀P, Q ∈ G1, ∀α, β ∈ Zq, ê(αP, βQ) = ê(P, Q)αβ ;
2. Non-degenerate: If P is a generator of G1, then ê(P, P ) is a generator of G2;
3. Computable: There is an efficient algorithm to compute ê(P, Q) for any

P, Q ∈ G1.

Such an bilinear map is called an admissible bilinear pairing. The Weil pairings
and the Tate pairings of elliptic curves can be used to construct efficient admis-
sible bilinear pairings. Let P be a generator of G1. The computational Diffie-
Hellman problem (CDHP) is to compute abP for any given P, aP, bP ∈ G1.
We assume through this paper that there is no polynomial time algorithm to
solve CDHP with non-negligible probability.

2.2 A Verifiable Encryption of ID-Based Signatures

In the design of optimistic fair exchange protocols, verifiably encrypted signa-
ture schemes (VESSs) are usually being used as the kernel building blocks. VESS
is a special extension of general signature primitive, which enables user Alice to
give user Bob a signature encrypted with an adjudicator ’s public key, and enables
Bob to verify that the encrypted signature indeed contains such a signature. The
adjudicator is an off-line TTP, who can reveal the signature when needed.



Certified E-Mail Protocol in the ID-Based Setting 343

Based on the ID-based signature scheme due to Cha and Cheon [14], we
provide an efficient ID-based VESS as following:

– Setup: Given a security parameter λ ∈ N , generate (G1, G2, q, ê, P ), pick a
random s ∈ Z∗q and set Ppub = sP . Choose two hash functions H1 : {0, 1}∗ →
G∗1, H2 : {0, 1}∗ × G1 → Zq. The system parameters Ω = (G1, G2, q, ê, P,
Ppub, H1, H2). The master key (PKG’s private key) is s.

– Extract : Given an identity IDX ∈ {0, 1}∗, compute QX = H1(IDX) ∈ G∗1,
DX = sQX . PKG uses this algorithm to extract the user secret key DX , and
gives DX to the user by a secure channel.

– Sign : Given a private key DX and a message m, pick k ∈ Z∗q at random,
compute U = k ·QX , h = H2(m, U), V = (k+h)DX , and output a signature
(U, V ).

– Verify : Given a signature (U, V ) of an identity IDX for a message m,
compute h = H2(m, U), and accept the signature if and only if ê(P, V ) =
ê(Ppub, U + h · QX).

– Adj KGen : Given an adjudicator’s private key DT , pick sT ∈ Z∗q at ran-
dom, compute PT = sT ·P , and � = Sign(DT , PT ), output the adjudication
warrant (PT , �) and the adjudication key sT .

– VE Sign : Given a secret key DX , a message m ∈ {0, 1}∗ and an adjudica-
tion warrant (PT , �) of IDT ,
1. choose k1, k2 ∈ Z∗q at random, and compute U = k1 · QX , Y = k2P ,
2. compute h = H2(m, U), V ′ = (k1 + h)DX + k2PT

3. output the verifiably encrypted signature (U, V ′, Y, PT , �).
– VE Verify : Given a verifiably encrypted signature (U, V ′, Y, PT , �) of IDX

for message m, compute h = H2(m, U), and accept the signature if and only
if V erify(IDT , PT , �) = 1 and ê(P, V ′) = ê(Ppub, U + h · QX) · ê(Y, PT ).

– Adjudication: Given the adjudication key sT , and a valid verifiably en-
crypted signature (U, V ′, Y, PT , �) of IDX for message m, compute V =
V ′ − sT Y , and output the original signature (U, V )

Validity requires that verifiably encrypted signatures and adjudicated verifi-
ably encrypted signatures verify as ordinary signatures, i.e., for ∀m ∈ {0, 1}∗,
IDX , IDT ∈ {0, 1}∗, DX = Extract(IDX , s), DT = Extract(IDT , s),
((PT , �), sT ) = Adj KGen(DT ), satisfying:

1. V E V erify(IDX , IDT , m, V E Sign(DX, m, (PT , �))) = 1;
2. V erify(IDX , m, Adjudication(sT , V E Sign(DX , m, (PT , �)))) = 1.

The correctness of our scheme is easily proved as follows. For a verifiably en-
crypted signature (U, V ′, Y, PT , �) of an identity IDX for a message m,
V erify(IDT , PT , �) = V erify(IDT , PT , Sign(DT , PT )) = 1, and

ê(P, V ′) = ê(P, (k1 + h)DX + k2PT ))
= ê(Ppub, (k1 + h) · QX) · ê(k2 · P, PT )
= ê(Ppub, U + h · QX) · ê(Y, PT )

That is V E V erify(IDX , IDT , m, V E Sign(DX, m, (PT , �))) = 1.
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On the other hand, V = V ′ − sT Y = (k1 + h)DX + k2PT − sT k2P = (k1 +
h)DX . So we have ê(P, V ) = ê(P, (k1 + h)DX) = ê(Ppub, U + h · QX). Hence,
V erify(IDX , m, Adjudication(sT , V E Sign(DX , m, (PT , �)))) = 1.

Readers can see that (Setup, Extract , Sign , Verify) in the above scheme
constitute the Cha-Cheon’s ID-based signature scheme [14]. In fact, the above
way of constructing ID-based VESS can be applied to a kind of ID-based signa-
ture schemes with the following property:

– Given input an identity IDX and a message m, the signing algorithm gen-
erates a signature (σ1, σ2), and the verification equation can be described
as ê(P, σ2) = f(IDX , m, σ1), where f(.) is a determinable polynomial-time
function.

The Construction
– ID-based signature scheme IBS={Setup,Extract,Sign,Verify}.
– Adj KGen : the same as that in the above scheme.
– VE Sign : Given a secret key DX , a message m and a warrant (PT , �),

1. compute (σ1, σ2) = Sign(m, DX).
2. choose k2 ∈ Z∗q at random, and compute Y = k2P , γ = σ2 + k2PT ;
3. output the verifiably encrypted signature (σ1, γ, Y, PT , �).

– VE Verify : Given a (σ1, γ, Y, PT , �) of IDX for message m, compute h =
H2(m, U), and accept the signature if and only if V erify(IDT , PT , �) = 1
and ê(P, γ) = f(IDX , m, σ1) · ê(Y, PT ).

– Adjudication: Given the adjudication key sT , and a (U, V ′, Y, PT , �) of
IDX for message m, compute σ2 = γ − sT Y and output (σ1, σ2)

The construction can be applied to many existing ID-based signature schemes,
such as Paterson’s scheme [15], Hess’s scheme [16], Cheon-Kim-Yoon’s scheme
[17], and so on.

Some general performance enhancements can be applied to our scheme. Pair-
ings are usually been constructed with the Weil pairings or the Tate pairings of
(hyper)elliptic curves. For a fixed R ∈ G1, there are efficient algorithms [18] to
compute kR by pre-computation. We may assume that such a computation is
at most 1/5 an ordinary scalar multiplication in (G1, +). In our scheme, P, Ppub

are fixed. The signer’s private key and public key are fixed for himself. In most
instances, PT is also fixed and the verifier need not re-verify (PT , �) every time.
We compare our ID-based VESS with the schemes in [19,20] (not ID-based) in
the following table. (Denote by M a scalar multiplication in (G1, +), by E an
Exp. operation in (G2, .), and by ê a computation of the pairing. For RSA-based
scheme [20], denote by Exp an Exp. operation.)

VE Sign VE Verify Adjudication certificate
Boneh [19] 1.4M 3ê 1M needed

Nenadic [20] 6Exp 2Exp 1Exp needed
Proposed 0.8M 3ê + 1M(or 5ê + 2M) 1ê + 1M not needed
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In fact, the basic idea of the encryption is similar to the work of Zhang et.al.
[21] and the work of Gu et.al. [22]. However, in their works, there is only one
TTP (i.e. adjudicator) in the system, and his key pair is not ID-based.

3 An Efficient ID-Based Optimistic Protocol

In a certified e-mail protocol, the sender Alice sends an e-mail m to Bob and
wants to obtain a receipt for it. The recipient Bob should not obtain m without
issuing the receipt.

Using the ID-based VESS described in Section 2 as building block, we present
an ID-based optimistic certified e-mail protocol. We will assume that the com-
munication is carried over private and authenticated channels.

Let Alice be the sender with identity IDA and secret key DA. Bob is the
recipient whose identity is IDB and secret key is DB. The identity of TTP
is IDT and the corresponding secret key is DT . TTP runs Adj KGen(DT ) to
generate adjudication warrant (PT , �) and adjudication key sT . H(.) is a suitable
hash function. Our new ID-based optimistic certified e-mail protocol works as
following (shown in Figure 1):

Alice Bob
Token,H(m,Token)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

V E Sign(DB ,H(m,Token),(PT ,�))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
m,Token−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Sign(DB,H(m,Token))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 1. ID-based optimistic certified e-mail protocol

- Step1: Alice makes a Token which contains relevant information such as IDA,
IDB and IDT and other pertinent information the protocol, and sends
(Token, H(m, Token)) to Bob.

- Step2: Bob computes a verifiably encrypted signature

πB = V E Sign(DB, H(m, Token), (PT , �)),

and sends πB to Alice.
- Step3: Alice sends (m, Token) to Bob if

V E V erify(IDB, IDT , H(m, Token), πB) = 1.

Otherwise, Alice aborts or ask Bob to re-send.
- Step4: Bob computes an ordinary signature δB = Sign(DB, H(m, Token)) as

receipt, and sends δB to Alice.
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If Bob does not send the receipt δB in Step 4, then Alice can contact the TTP
for adjudication by running the following Dispute protocol:

- Step1: Alice sends πB and (m, Token) to TTP.
- Step2: TTP reads the Token and verifies the validity of πB. Then, he computes

δB = Adjudication(sT , πB), and sends δB to Alice and (m, Token) to Bob.

In case of dispute, Alice has to reveal the message m to the TTP. If message
privacy has to be preserved, it is sufficient to substitute m with EnB(m) in the
protocol, where EnB() represents the ID-based encryption under Bob’s identity.
To improve the efficiency, EnB(m) can be implemented with (Ek(m), IBEB(k)),
where IBEB(.) is an ID-based encryption, such as Boneh-Franklin scheme [2],
and Ek(.) is a symmetric-key encryption algorithm, such as AES.

In the protocol, TTP works in an optimistic way. That is, TTP does not par-
ticipate in the actual exchange protocol in normal cases (no argument appears),
and is invoked only in abnormal cases to dispute the arguments for fairness. If
no dispute occurs, only Alice and Bob need to participate in the exchange.

4 Analysis and Comparisons

It is easy to show that the protocol above is a certified e-mail protocol which
provides TTP invisibility, monotonicity and timeliness. Moreover, the protocol
optionally provides confidentiality of the message.

– TTP invisibility: Clearly our protocol provides TTP invisibility since the
structure of the receipt does not indicate whether the TTP was involved or
not in dispute resolutions.

– Monotonicity: The protocol provides also monotonicity since any signature
(including the receipt) will not be revoked in order to guarantee a proper
termination of the protocol.

– Confidentiality: Confidentiality is achieved by encrypting the actual mes-
sage content in such a way that only the recipient can open it and this is
achieved through standard encryption technology.

– Timeliness: We assume only resilient channels. A resilient channel will even-
tually deliver a message sent through it within a time lapse which may be ar-
bitrarily long, yet finite. Moreover, the recipient does not need to include any
time limit into the signature SB and the sender A has the ability to decide
to abort the protocol and adopt a scheme for protocol resolution that can be
executed in a finite period of time. Therefore, our protocol provides timeliness.

4.1 Fairness

The protocol’s fairness is built around the assumption that the sender Alice
can verify that the verifiable encryption indeed contains a valid receipt. Only
the TTP can recover the receipt from the verifiable encryption. That is, the
ID-based VESS is secure.
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Besides the ordinary notion of signature security in the signature component,
Boneh et.al. [19] proposed two security properties of verifiably encrypted signa-
tures: Unforgeability and Opacity. Informally, Unforgeability requires that
it is difficult to forge a valid verifiably encrypted signature for a new message,
while Opacity means it is difficult, given a verifiably encrypted signature, to
extract an ordinary signature on the same message. In this section, we extend
these security notions to ID-based VESS.

We consider an adversary F which is assumed to be a polynomial time prob-
abilistic Turing machine which takes as input the global scheme parameters and
a random tape. To aid the adversary we allow it to query the following oracles:

– Extract oracle E(.): For input an identity IDX , this oracle outputs the
corresponding secret key DX

– Adj KGen oracle AK(.): For input an adjudicator’s identity IDT , this oracle
computes and outputs an adjudication warrant (PT , �) of IDT .

– VE Sign oracle V S(.): For input (IDX , m, (PT , �)), this oracle computes
and outputs a verifiably encrypted signature π.

– Adjudication oracle A(.): For input IDX , m and a valid verifiable encrypted
signature π of IDX for m with an adjudication warrant (PT , �) of IDT , this
oracle computes and outputs the corresponding ordinary signature δ.

Note: An ordinary signing oracle is not provided, because it can be simulated by
a call to V S(.) followed by a call to A(.). In the random oracle model, F also has
the ability to issue queries to the hash function oracles H1(.), H2(.) adaptively.

Definition 1. The advantage in existentially forging a verifiably encrypted
signature of an adversary F is defined as

AdvEUF
F (k)=Pr

⎡
⎢⎢⎣

Ω ← Setup(1λ),
(IDX , IDT , m, π) ← FH1(.),H2(.),E(.),AK(.),V S(.),A(.)(Ω) :

V E V erify(IDX , IDT , m, π) = 1,
(IDX , .) /∈ El, (IDX , m, .) /∈ Ol,

⎤
⎥⎥⎦

where El is the query and answer list coming from E(.), and Ol is the query
and answer lists of AK(.), V S(.) and A(.) during the attack. The probability is
taken over the coin tosses of the algorithms, of the oracles, and of the forger. An
ID-based VESS is said to be existential unforgeable, if for any adversary F ,
AdvEUF

F (k) is negligible.

Definition 2. The advantage in opacity attack of an algorithm F is defined as

AdvOPA
F (k)=Pr

⎡
⎢⎢⎢⎢⎣

Ω ← Setup(1λ),
(IDX , IDT , m, π, δ) ← FH1(.),H2(.),E(.),AK(.),V S(.),A(.)(Ω) :
V E V erify(IDX , IDT , m, π) = 1, V erify(IDX , m, δ) = 1,

A(IDX , m, π) = δ, (IDX , .) /∈ El,
(IDX , m, .) /∈ Al, (IDX , m, .) /∈ AKl

⎤
⎥⎥⎥⎥⎦
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where Al and AKl are the query and answer lists coming from A(.) and AK(.)
during the attack (We note that F can request V S(.) with input (IDX , m, .)).
The probability is taken over the coin tosses of the algorithms, of the oracles,
and of the forger. An ID-based VESS is said to be opaque, if for any adversary
F , AdvOPA

F (k) is negligible.

Theorem 1. In the random oracle model, if there is an adversary F0 which per-
forms, within a time bound T , an existential forgery against our ID-based VESS
with probability ε, then there is an adversary F1 which performs an existential
forgery against Cha-Cheon’s scheme with probability no less than ε, within a
time bound T +(3nAK +2nV S +nA)M , where nV S, nA and nAK are the number
of queries that F0 can ask to V S(.), A(.) and AK(.) respectively, M denotes a
scalar multiplication in G1.

Proof. see the appendix A.

Theorem 2. In the random oracle mode, let F0 be an adversary which has
running time T and success probability ε in opaque attack. We denote by nh1 ,
nE, nAK , nA and nV S the number of queries that F0 can ask to the oracles
H1(.), E(.), AK(.), A(.) and V S(.) respectively. Then there is a polynomial-time
Turing machine F1 who can solve the computational Diffie-Hellman problem
within expected time T + (nh1 + nE + 3nAK + nA + 5nV S)M with probability
ε/(nh1 · nAK · nV S).

Proof. see the appendix B.

Now, let’s discuss the fairness of our protocol. At the end of Step 2, if Al-
ice aborts after receiving πB = V E Sign(DB, H(m, Token), (PT , �)), Alice
can’t get the receipt δB = Sign(DB, H(m, Token)) by himself. If Alice re-
quests to TTP for dispute with valid πB and (m, Token), TTP computes δB =
Adjudication(sT , πB), sends (m, Token) to Bob and sends δB to Alice. That is,
either party gets what he wants, or neither party does. At the end of Step3,
if Alice has send Bob with (m, Token) while hasn’t received the receipt δB,
Alice can request to TTP for dispute with valid πB and (m, Token). As a re-
sult, Alice will receive a receipt on (m, Token) and Bob will get the message
(m, Token).

4.2 Comparison

We compare now our protocol with some previously proposed protocols.
On-line certified e-mail protocols, such as [7,8,9], require TTP participates in

all the transactions. The use of the on-line TTP greatly reduces the efficiency of
such protocols.

Some of the off-line protocols are not monotonic, for instance, the protocol
in [23] requires signatures to be revoked in order to guarantee fairness. Some
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solutions, such as [11], require a visible TTP, since the form of the receipt changes
depending on whether the trusted entity was invoked or not. The work of Micali
[10] shows that it is possible to achieve a simple certified e-mail protocol with
only three messages. However, the protocol needs to transmit data with an actual
message size more than two times, and a time limit has to be incorporated into
the message by the sender to force the recipient to send the receipt within a
specified period of time. Furthermore, for each message received, the recipient
is forced to communicate with the trusted intermediary in case of dispute and
such a communication has to happen before the time limit expires. Asokan et.al.
[24] present a fair-exchange protocol which is provably secure in the random
oracle model. However, the scheme seems expensive in terms of communication
complexity, performance, and amount of data transmitted. This is mainly due to
the cut-and-choose interactive proof technique employed to achieve a verifiable
escrow.

Recently, Ateniese et al. [6] suggested an off-line protocol with four passes
which allows a stateless recipient. In fact, our protocol keeps almost the same
properties as that in [6]. Comparatively, our protocol works in ID-based setting,
and is more efficient in performance. What more, ID-based cryptography can
bring us simple key management and remove the necessity of public key certifi-
cates in our certified e-mail systems. However, our protocol also have the key
escrow problem which is a inherent property of ID-based cryptography. This can
be solved to a certain extent by the introduction of multiple PKGs and the use
of threshold techniques.

5 Conclusion

In this paper we present an optimistic certified e-mail protocol in ID-based set-
ting. In the protocol, the trusted third party (TTP) works in an optimistic
way. That is, TTP does not participates in the actual exchange protocol in
normal cases (no argument appears), and is invoked only in abnormal cases to
dispute the arguments for fairness. The protocol provides fairness, TTP invisi-
bility, monotonicity, timeliness and confidentiality (optionally). What’s more, we
believe it is easy to amend the protocol to be used in exchanging other digital
items and the corresponding digital signatures in the e-commerce with fairness
and efficiency in ID-based setting.
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A Proof of Theorem 1

Proof. Without any loss of generality, we may assume that F0 queries V S(.)
with (IDX , m, PT , �) or queries A(.) with (IDX , m, π = (U, Y, V ′, PT , �)) only
if F0 has queried AK(.) with some identity IDT and got reply (PT , �). From
F0, we can construct an adversary F1 of Cha-Cheon’s scheme as follows:

1. A challenger C runs Setup(1λ) of Cha-Cheon’s scheme and gives the system
parameters Ω = (G1, G2, q, ê, P, Ppub, H1, H2) to F1.

2. F1 runs F0 with input Ω. During the execution, F1 emulates F0’s oracles as
follows:
– H1(.), H2(.), E(.): F1 replaces these oracleswith his own H1(.), H2(.), E(.)

oracles respectively. That is , F1 asks his H1(.), H2(.), E(.) oracles with
the inputs of F0, and lets the outputs be the replies to F0, respectively.

– AK(.): For input IDT , F1 randomly selects sT ∈ Z∗q , computes PT =
sT P , requests to his signing oracle Sign(.) with (IDT , PT ) and gets reply
�. F1 outputs (PT , �) as the reply.

– V S(.): For input (IDX , m, (PT , �)), F1 requests to his own signing or-
acle Sign(.) with input (IDX , m) and gets reply (U, V ), then he picks
randomly r ∈ Z∗q , and outputs (U, V + rPT , rP, (PT , �)) as the reply.

– A(.): For input (IDX , m, π = (U, V ′, Y, PT , �)), F1 computes V = V ′ −
sT Y , (with assumption, (PT , �) is the reply of some request to AK(.),
so F1 knows sT .) and replies with (U, V ).

3. If F0 outputs (ID∗, m∗, (U, V ′, Y, PT , �)), then F1 outputs (ID∗, m∗, (U, V )),
where V = V ′ − sT Y .

If F0’s has not queried oracles E(.) with ID∗, and has not queried oracles
AK(.), A(.) and V S(.) with input (or part of input) (ID∗, m∗), then F1 has not
queried oracles E(.) and Sign(.) with input ID∗ and (ID∗, m∗) respectively. If
(U, V ′, Y, PT , �) is a valid verifiably encrypted signature of ID∗ for m∗, then
(U, V ′ − sT Y ) is a valid signature of ID∗ for m∗. That is , F1 succeeds in
existential forgery against Cha-Cheon’s scheme with probability no less than
that of F0 succeeds in his game.

F1’s running time is roughly the same as F0’s running time plus the time
taken to respond to F0’s oracle queries. Neglect operations other than the pairing
ê(∗, ∗) and the scalar multiplication in (G1, +), the total running time is T +
(3nAK + 2nV S + nA)M as required.
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B Proof of Theorem 2

Proof. We may assume that for any ID, F0 queries H1(.) with ID before ID
is used as (part of) an input of any query to E(.), AK(.), V S(.), or A(.). From
the adversary F0, we construct a Turing machine F1 which can solve the CDHP
as follows:

1. A challenger C generates (G1, G2, q, ê) and selects randomly P, aP, bP ∈ G1.
C gives (G1, G2, q, ê, P, aP, bP ) to F1 as inputs.

2. F1 selects hash functions H1 : {0, 1}∗ → G∗1, H2 : {0, 1}∗× G1 → Zq, selects
randomly μ ∈ Z∗q and sets Ppub = μbP .

3. F1 sets variables v = 1, j = 1, r = 1 and list Vl = Φ (Φ denotes NULL).
4. F1 picks randomly t, γ and ι satisfying 1 ≤ t ≤ nh1 , 1 ≤ γ ≤ nAK , 1 ≤ ι ≤

nV S , and picks randomly xi ∈ Zq, i = 1, 2, ...nh1.
5. F1 gives Ω = (G1, G2, q, ê, P, Ppub, H1, H2) to F0 as input and lets F0 run

on. During the execution, F1 simulates F0’s oracles as follows:
– H1(.): For input ID, F1 checks if H1(ID) is defined. If not, he defines

H1(ID) = xvP and sets IDv ← ID, v ← v + 1. F1 returns H1(ID) to
F0.

– H2(.): For input (m, U), F1 checks if H2(m, U) is defined. If not, he picks
a random h ∈ Zq, and sets H2(m, U) = h. F1 returns H2(m, U) to F0.

– E(.): For input IDi, F1 lets di = xiPpub be the reply to F0.
– AK(.): For input IDT , if r = γ, F1 lets PT = bP ; otherwise, F1 selects

randomly sT ∈ Z∗q , PT = sT P . F1 computes � = Sign(DT , PT ), sets
r ← r + 1 and replies with (PT , �).

– V S(.): For input IDi, message m and warrant (PT , �), F1 emulates the
oracle as follows:

• If j = ι, i = t and PT = bP ,
a. Pick randomly k2, h ∈ Z∗q ;
b. U = aP − h(H1(IDi)), Y = μ(k2P − aP ), V ′ = μk2(bP );
c. If H2(m, U) has been defined, F1 aborts (a collision appears).
Otherwise, set H2(m, U) = h.
d. Add (i, j, ., U, V ′, Y, PT , �) to Vl.

• Otherwise,
a. Pick randomly r2, zj , h ∈ Z∗q ;
b. Compute U = zjP − h(H1(IDi)), Y = k2P , V ′ = zjPpub + k2PT ;
c. If H2(m, U) has been defined, F1 aborts (a collision appears).
Otherwise, set H2(m, U) = h.
d. Add (i, j, k2, U, V ′, Y, PT , �) to Vl.

Set j ← j + 1 and let (U, V ′, Y, PT , �) be the reply to F0.
– A(.): For input IDi, m and valid verifiably encrypted signature π =

(U, V ′, Y, PT , �), F1 obtains the corresponding item (i, j, k2, π)
(or (i, j, ., π)) from the Vl. If i = t, j = ι and PT = bP , F1 declares
failure and aborts. Otherwise, F1 computes V = V ′ − k2PT , and replies
to F0 with (U, V ).
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6. If F0’s output is (IDi, m
∗, π∗ = (U, V ′, Y, PT , �), δ∗ = (U, V )), then F1

obtains the corresponding item (i, j, k2, π
∗) (or (i, j, ., π∗)) on the Vl. If i = t,

j = ι and PT = bP , F1 computes and successfully outputs abP = μ−1V .
Otherwise, F1 declares failure and aborts.

This completes the description of F1.
Because of the randomness of U , the probability of F1 aborts as a result

of collision of H2(m, U) is negligible. If F0 succeeds in his attack with output
(IDi, m

∗, π∗ = (U, V ′, Y, PT , �), δ∗ = (U, V )), and the corresponding item in Vl

is (t, ι, ., π∗) and PT = bP , then μ−1V = μ−1aμbP = abP . F0 succeed in his
attack, so F0 has not query A(.) with (IDt, m

∗, .). Hence, F1’s simulations are
indistinguishable form F0’s real oracles. Because t is chosen randomly in 1 and
nh1 , γ is chosen randomly in 1 and nAK , and ι is chosen randomly in 1 and nV S ,
F1 can output abP with probability ε/(nh1nAKnV S). It is easy to see that F1’s
running time is roughly T + (nh1 + nE + 3nAK + nA + 5nV S)M as required.
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Current authentication techniques for data stored in p2p networks are static
and centralized. Also, several authentication methods based on signatures on a
per-object basis are vulnerable to replay attacks, where an old, out-of-date or
invalid, data object is returned as the answer to a get operation.

In this paper, we introduce a new model for distributed data authentication
in p2p networks and present an efficient realization of this model for securely
performing dictionary operations on a p2p network. Our authentication struc-
ture and protocol are resilient against replay attacks and extend the function-
ality of p2p networks by supporting authenticated versions of operations put,
get and remove, thus providing a transparent security layer to higher-level p2p
applications.

By using only the basic operation of object location, our technique achieves
generality and can be applied to a broad class of p2p architectures (e.g., existing
DHT implementations). Our authentication scheme is based on the design of an
efficient distributed Merkle tree (DMT)—the first distributed version of Merkle’s
authentication tree [23]. Thus, our construction can serve as a general-purpose
authentication structure for decentralized computing architectures with minimal
trust assumptions.

1.1 Motivation

Data storage and retrieval are essential tasks in p2p systems, where large data
collections (e.g., documents, media files, database records) are shared over a net-
work among participating peers. An important security problem in p2p system
is data authentication in the presence of faulty or malicious network nodes. For
instance, adversarial network nodes may wish to degrade the performance of a
p2p storage system by providing false responses to queries.

We wish to ensure the integrity of shared data and to provide cryptographi-
cally sound techniques that allow a user to verify that retrieved data from the
system is authentic and unaltered. Moreover, in a dynamic setting, where data
evolve over time through updates, we want to also ensure that data items re-
trieved by queries have the most up-to-date versions. We consider the standard
query model in p2p storage systems, where data items are stored as key-value
pairs of the type (k, x) (keys are unique identifiers and values are associated with
keys) and managed through operation put(k, x) (which inserts a new pair in the
system) and query get(k) (which returns the value associated with key k). This
is the core functionality exported by distributed data structures.

Assuming an established PKI, a straightforward approach to authentication
is to individually sign each data item stored in the p2p system: when the data
source wishes to add (k, x), it computes the signature σ of pair (k, x) using its
private key and inserts (k, (σ, x)) into the data structure. A query for key k now
returns the pair (σ, x), where σ allows the user to verify whether x is the valid
answer. However, this “sign-all” approach is vulnerable to replay attacks for old
values because it does not provide any mechanism for invalidating signatures
on currently invalid pairs, such as pairs that have expired, were removed from
the p2p system, or whose values have been modified. Therefore, in response to



356 R. Tamassia and N. Triandopoulos

operation get(k), a malicious network node can return an invalid (old or out-of-
date) value that is still verifiable. Note that most p2p systems do not support
explicit item deletion; e.g., DHTs only keep a soft state, where data items expire
after a time interval and are removed from the system (thus, to maintain these
items, the source has to reinsert them). Nevertheless, even when some form
of item deletion is supported, replay attacks are still possible: invalid signed
pairs can simply be cached and never deleted. In general, we need a mechanism
ensuring that only recent signatures are used to validate answers to queries and
that deletions are correctly handled by the system.

Replay attacks can be prevented by introducing time-stamps in the signed val-
ues and a validity period for the signature, called time quantum [26]. However,
this extension of the “sign-all” approach incurs a significant computational over-
head: after each time quantum, each of all the valid pairs that currently reside
in the system need to be retrieved, resigned by data source and then reinserted
in the system. Thus, it is preferable to maintain at all times a global authen-
tication state of the system that includes only the currently valid data items
and essentially authenticates that data is properly updated. This is achieved
by signature amortization, the state-of-the-art technique for dynamic data au-
thentication, where a data source signs only one digest (short cryptographic
description) of the entire collection of (valid) stored data items owned by this
source. The canonical method for amortizing one signature over a large data set
is Merkle’s authentication tree [23]; however, there is currently no distributed
implementation of this scheme. Existing p2p storage systems and DHT imple-
mentations that support an authentication service for the stored data are all
using “sign-all” techniques. Thus, a replay attack is feasible for malicious net-
work nodes; and if, instead, signature refreshing is used to solve the problem,
this leads to inefficient and impractical authentication schemes.

1.2 Related Work

Merkle tree. The Merkle tree [23] is a simple and widely-used cryptographic
construction for efficiently certifying set membership. The idea is to use a bal-
anced tree and a cryptographic collision-resistant hash function (e.g., SHA-1) to
produce a short cryptographic description of a large data set. Elements of the set
are stored at the tree leaves and internal nodes store the result of applying the
hash function to the concatenation of the values stored at the children nodes.
The root value is signed and, when verified, the collision-resistant property prop-
agates authentication from the root to the leaves. Certifying that an element is
in the set is performed by using a verification path to recompute the authentic
root value. This path consists (of the hash values) of the siblings of the nodes in
the path from the leaf associated with the element to the root. Updates in the
Merkle tree are handled with complexity proportional to the height of the tree
(e.g., [26]). An extension to the symmetric-key setting is given in [12], where it is
shown that verification along a path can be performed in parallel. No distributed
implementation for Merkle trees currently exists.
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Authenticated data structures. Authenticated data structures (ADSs) (see,
e.g., [37, 11, 21, 26]) use a three-party model where data created by a trusted
data source is replicated at several untrusted responders that answer query from
users on behalf of the source. Signature amortization is used, similarly to the
Merkle tree, but specially designed according to the supported query type. A
significant amount of work has been done on developing efficient authenticated
data structures for various type of queries (e.g., [6, 11, 21, 5, 1, 38]). The related
model of outsourced database (ODB) systems studies the special case where
SQL queries (essentially, range queries over indexes) are issued over databases
published at remote sites (e.g., [18, 25, 24, 28]). Both models involve servers that
keep a copy of the entire data set. Thus, they do not capture the architecture of
p2p networks, where data is shared and distributed on a per-item basis.

Distributed hash tables. Distributed hash tables (DHTs) are a popular class
of p2p storage networks that support the dictionary functionality (e.g., [36, 16,
33, 34, 20, 40, 29, 31]). Using distributed routing techniques over an overlay
network, a DHT can locate the value associated with a query key with O(log n)
expected communication steps, where n is the number of participating nodes,
each maintaining O(log n) routing information. Based on DHTs, several practical
distributed storage systems over p2p networks have been developed that support
efficient retrieval (e.g., [7, 31, 4, 14, 32]). Other distributed data structures with
similar efficiency provide more elaborate functionalities over p2p networks; for
instance, skip-graphs [2] and their extensions (e.g., [13, 10]) support searching
over ordered keys.

Trees over p2p overlay networks. The development of DHTs was followed
by the design of various search and aggregation trees build over DHTs or other
type of distributed trees (e.g., [15, 19, 30]). However, these trees can neither
be used to implement a distributed Merkle tree nor meet the requirements for
efficient data authentication over p2p networks, since these constructions are
static or correspond to special-purpose search trees inappropriate to efficiently
realize an authentication tree—which is sensitive to node losses or structural
changes because of the use of the cryptographic hash function.

Security in p2p systems. Security issues related to p2p systems are dis-
cussed in [35, 39], where the authentication problem is treated simply using per-
object signatures. Although with respect to routing and searching, numerous
DHTs have been shown to tolerate significant network-node failures—random
(e.g., [36, 16, 33, 31]) or malicious (e.g., [3, 8, 27])—data authentication has
not been systematically studied in p2p networks. Existing p2p storage systems
(e.g., [4, 7, 29, 31, 32]) support an elementary authentication service for retrieved
data which is of the “sign-all” type, where stored contents are individually signed
by their source. Often, authentication involves the so-called self-certified data [9],
where large data items (e.g., a file system) get partitioned into blocks, which are
stored as separate objects in the system and are bound together using collision-
resistant hashing in some tree-like hierarchy, and where the root-block is signed.
Although this technique resembles a Merkle tree, it only implements signature
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amortization among a large item and not among all data items owned by a
source, which are still separately signed. Additionally, this authentication struc-
ture is static (no updates are supported) and, generally, unbalanced (e.g., parts
of file systems can be flat and other can be extremely skewed). Overall, currently
used authentication solutions are vulnerable to replay attacks (even if item re-
moval is supported, as, e.g., in [32]) and lack efficiency for supporting signature
refreshing and updates. Finally, privacy and anonymity issues or other security
issues (e.g., the Sybil attack) related to p2p systems have been studied.

1.3 Paper Outline and Our Contributions

In Section 2, we introduce a new model for distributed data authentication over
p2p networks, where management and retrieval of shared data resources are
totally decentralized, yet cryptographically verifiable by the interested parties. In
this model, data objects that are originated at a trusted source become available
to users through an untrusted p2p storage network and authentication protocols
guarantee the correct functionality of the underlying storage system. We present
an efficient realization of this model for the basic dictionary operations performed
on a dynamic set of data objects and describe data authentication protocols that
allow users to verify the integrity of the data objects retrieved by the network
and allow the source to verify the integrity of updates executed by the network.

The main idea behind our security solution is conceptually simple: we use an
authentication tree to produce a cryptographic commitment of the stored data
set, against which any update or query operation is checked for correctness.
Implementing this idea in a dynamic distributed environment entails certain
challenges. First, we design a balanced tree-like authentication structure that
can be dispersed among network nodes and, at the same time, provide efficient
retrieval of verification paths and allow efficient structural adjustments after
updates. Additionally, we ensure that the commitment is updated correctly after
any changes on the data set, even in the presence of malicious network nodes.

In Section 3, we present our main result, the first efficient scheme for imple-
menting a fully dynamic distributed Merkle tree (DMT), using only the object-
location functionality exported by any p2p system or DHT. Our scheme has
certain properties that allow its efficient distribution over a p2p network and
is designed to support locality for answer verification and facilitate the use of
caching, thus achieving efficiency and resilience against malicious nodes. More-
over, balance is maintained at low cost over the course of updates on the tree.
We analyze its performance and compare it with naive implementations. Our
scheme, designed for both bottom-up and top-down access, constitutes a new,
general-purpose, dynamic distributed tree.

In Section 4 and based on our DMT construction, we realize an efficient au-
thenticated distributed hash table (ADHT), which extends DHTs in various ways.
In particular, we show how our DMT can be extended to an authentication
structure that provides authenticated and efficient versions of operations get,
put, and also operation remove, supporting authenticated deletions, the first of
this type. We compare ADHT with the “sign-all” solution. Our ADHT provides
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efficient distributed storage, secure against replay attacks and consistent with
the update history. Our ADHT can in turn support a more general data au-
thentication scheme for dictionary operations. In particular, we present the first
efficient distributed authenticated dictionary. In a totally distributed setting over
a p2p network with n nodes and using only the basic object-location opera-
tion, we show how to authenticate membership queries in a fully dynamic set of
m data elements in O(log n log m) time using O(m log m) storage, with similar
complexities for supporting updates.

In Table 1, we summarize the comparison of our work with existing methods
for distributed data authentication. Our scheme is the first to provide secure
and efficient data authentication in totally decentralized environments over p2p
networks. We conclude and discuss future work in Section 5.

Table 1. Qualitative comparison of our method with existing authentication models

decentralized replay-safe efficient

“Sign-all” method in p2p networks • •
“Sign-all” method in p2p networks & timestamps • •
ADS & ODB data authentication models • •
Our results • • •

2 Authentication Model

We introduce a new model for distributed data authentication, where data items
are stored, queried and authenticated in a totally decentralized fashion. This
model captures fundamental security requirements that arise in p2p distributed
storage systems. The model consists of:

– a trusted data source S, originator of a dynamic data set D;
– an untrusted distributed p2p network N that exports a specific functionality

for storing, accessing and retrieving shared data resources; the nodes of N
distributively store set D and answer queries about D on behalf of source
S; D evolves over time through updates submitted by S to network N ; and

– users who issue queries about D by accessing any node of network N .

In our model, network nodes are untrusted and can exhibit adversarial behav-
ior in updates submitted by the source or queries posed by a user. A network
node responsible for an update of D may maliciously fail to perform the update
and cause the p2p system to become inconsistent with the sequence of updates
issued by S (e.g., N attempts an “universe-split” attack, where two different
states of set D are represented in the system). Also, a network node responsible
for a query on D may maliciously falsify the returned answer (e.g., N attempts
to compromise data integrity or launch a replay attack).

To guard the source and the users against attacks, our goal is to design an
authentication scheme, a set of authentication structures and corresponding pro-
tocols that augment the functionality of network N with verification features.
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In particular, the scheme allows the source to check that an update has been
correctly performed by N , according to the history of previously performed up-
dates. The scheme also allows a user to verify that the answer to a query is
authentic, as if it was coming directly from S.

An authentication scheme should be secure, informally meaning that the ver-
ification protocols reliably characterize the behavior of the network. Security,
implies that when the p2p system is not under attack, then any update or
query operation always passes the verification test (completeness); and, for any
polynomial-time (on some security parameter) adversary that controls N and
observes a chosen history of polynomial size of updates on D, succeeding in fal-
sifying the verification test for an update or query is an event of negligible (on
the security parameter) probability (soundness). Note that the above notion of
security includes safety against replay attacks.

An authentication scheme should also be decentralized. Protocols and data-
management procedures that are associated with data authentication should be
distributed, designed as much as possible in accordance with the underlying
p2p architecture. Or else, a security solution in a decentralized setting would be
centralized, which would automatically diminish the advantages of the system.

An authentication scheme should finally be efficient, imposing low compu-
tational, communication and storage overhead to the parties participating in
the protocols and network N . Cost parameters that should be minimized are:
the storage cost, the amount of authentication information stored at S and N
or needed by a user to verify an answer; the update and query costs, the com-
putational and communication costs incurred due to authentication at N after
updates and queries on data set D; and the verification cost, the computational
cost incurred by S or a user to verify the correctness of an update or query.

(a) (b)

Fig. 1. (a) ADS model: each responder Ri stores set D on behalf of source S and
answers users’ queries. (b) Distributed authentication: D is dispersed as D1, D2, . . .
over p2p network N ; updates and queries are performed by contacting any node of N .

Our model drastically differs from those of authenticated data structures
(ADS) (see Figure 1) and outsourced database systems (ODB) in that it is
inherently decentralized. Data and authentication information are distributed
over a p2p storage network at the data-item level and they are accessed by
the source and the users through the interface of the network by contacting
any of its nodes. In contrast, ADS model involves data replication at remote
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responder-servers, thus data distribution occurs only at the data-set level, and
ODB model involves data outsourcing to a designated server, thus adopting cen-
tralizeddatamanagement.Thus,we extend the client-servermodel of data authen-
tication to a distributed authentication model that operates over anyp2p network.

In developing an authentication scheme, it is desirable that as few as possible
assumptions are made about network N . Ideally, the underlying network should
be any structured p2p network, for instance any DHT. By designing an authen-
tication scheme using popular and well-studied distributed data structures, we
leverage a broad class of existing p2p architectures, thus providing p2p systems
with a transparent security layer at the application level. In this paper, we fol-
low this principle and achieve generality by building our authentication scheme
over the primitive search operation locate, which returns the network node cor-
responding to a given abstract object identifier. Since our constructions do not
depend on the details of the p2p system implementation, we gain simplicity,
extensibility and usability.

In what follows, we denote with N a DHT over which we wish to build an
authentication scheme. Note that the scheme inherits the following properties
shared by most DHT implementations: (1) a DHT with n network nodes uses
O(log n) storage per node and performs a locate operation (also, put and get) in
O(log n) network hops (node-to-node communication steps) with high probabil-
ity; (2) node additions, deletions, and failures are handled dynamically through
a distributed algorithm that incrementally updates the routing information; (3)
some form of redundancy is used, which replicates data objects to a constant
number of neighboring nodes so that node failures are tolerated also with respect
to data recovery; and (4) caching techniques are used to improve data retrieval.

Finally, we consider all other types of misbehavior by network nodes (e.g.,
against routing or the DHT functionality) to be denial-of-service attacks, a dis-
tinct or orthogonal problem to data authentication. Of course, these attacks can
also limit the functionality of the authentication scheme; but they will not com-
promise its security. Actually, since our authentication scheme is agnostic of the
implementation of the underlying DHT, we can strengthen the resilience against
malicious nodes in our model by using a specific DHT that tolerates certain DoS
attacks (e.g, a DHT that authenticates routing information).

Our authentication scheme implements the signature amortization technique.
In particular, we assume that the users of the system know and trust the public
key of the source S. Using Merkle’s authentication tree, S maintains at all times
a digest of the data set. Queries are authenticated in the standard way: along
with the answer, N returns the digest signed by S and a proof linking the answer
to the digest. Updates are authenticated by using the digest to check that the
current state of the data set is consistent with the update history.

3 An Efficient Distributed Merkle Tree

In this section, we present a distributed Merkle tree (DMT), an efficient im-
plementation of an authentication tree built over a p2p network realizing a
DHT. This is the core construction in our authentication scheme and a result of
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independent interest: since numerous security protocols and cryptographic con-
structions are based on Merkle’s tree, a DMT yields distributed versions of such
protocols and constructions. We first discuss our design goals.

Build on a data set D, the distributed authentication tree should be dynamic,
allowing for efficient hash updates after changes in D. It should also be balanced,
providing verification paths (membership proofs) of size that is logarithmic in
|D|, and its height balance should be efficiently maintainable after updates. In
order to optimize its verification properties and further improve its usability, we
are particularly interested in facilitating the construction (location) of the veri-
fication paths of the DMT; that is, the verification path of any data item should
be retrieved by the network as fast as possible. All the above should be imple-
mented in a distributed way, using only the locate operation, which is provided
by the network and takes O(log n) time for a network of n nodes. Accordingly,
cost parameters we wish to minimize are: the path location cost, the cost for con-
structing a verification path (proof), the update cost, the cost for maintaining
the authentication structure after updates on D, and the storage cost. Both the
location and update costs each consists of (1) processing cost, i.e., computational
cost for the participating nodes in the system, and (2) communication cost, i.e.,
cost of locate operations or direct communications between nodes.

To gain some intuition behind our construction, assume that set {x1, . . . , xn}
is distributed over the network (each element stored at a unique network node)
and consider a Merkle tree computed over this set. All hash values in the tree
need be distributed in the network. The first problem to consider is how the hash
values are indexed, i.e., with which keys they are stored in the system. The hash
value is a value that is unknown to network nodes, thus the value itself cannot be
used as a key. Additionally, for immediate location of verification paths, network
node storing element xi should also store information about the verification
path that corresponds to xi. We briefly describe two less efficient approaches for
realizing a DMT. One solution is to replicate the tree structure to all involved
network nodes and use unique identifiers for storing hash values in the DHT. The
cost to construct a verification path is O(log n) locate operations, however, the
cost to maintain the tree after structural updates is high, O(n log n), and also the
O(n2) total storage is prohibitive. Alternatively, a network node can store the
entire verification path (hashes) of the element it stores. The path location cost
is O(1), however any update on the data set now incurs O(n log n) cost; the total
storage cost is O(n log n). Our approach is to distribute information about routes
in the network that construct verification paths, essentially combining the above
ideas: using unique identifiers, hash values are stored in the network and the
network node storing an element also stores the identifiers of the corresponding
verification path. For efficiency in the dynamic case, we use a weight-balanced
(BB[α]) hash tree. Details about the construction and its analysis follow.

3.1 Our Construction

We consider the more general case, where an authentication structure over m
data items {x1, x2, . . . , xm}, owned by the same source and stored in a p2p



Efficient Content Authentication in Peer-to-Peer Networks 363

network of size n ≥ m that realizes a distributed hash table. We design our
distributed Merkle tree using the primitive locate operation over the network.
Without loss of generality, we assume that objects are stored at distinct network
nodes. Our results generalize to the cases where more than one data item are
stored at nodes and also where more than one sources produce these items.

Our scheme is described as follows (see Figure 2). For convenience, tree nodes
are denoted by lower-case letters and network nodes by capital letters.

Let T be a balanced binary tree built over the elements of (dynamic) data
set {x1, x2, . . . , xm}, with one-to-one correspondence between leaves and ele-
ments, and let h be a cryptographic hash function. Each tree node u in T has
a unique identified idu (drawn efficiently from some space). Conventionally, the
identifier of a leaf is set to be the corresponding element. Tree T is used as a
hashing structure in the standard way: each non-leaf tree node u with children
nodes v1 and v2 in T is associated with (or stores, conceptually) hash value
L(u), which equals to h(L(v1)‖L(v2)), i.e., the hash of the hash values that
v1, v2 are associated with, and each leaf wi stores the hash value L(wi) = h(xi)
of the corresponding element xi. We augment the hashing structure as fol-
lows: we require that each internal tree node also stores the hash values of its
children.

(a) (b)

Fig. 2. (a) Hash tree T over elements x1, . . . , xm: node u, with identifier idu storing
hash Lu, is mapped to network node U and leaf w, storing x3 with verification path
p, to network node W . (b) Distribution of T over the network: U stores information Iu

related to u; W stores {x3, idp} and structural/balancing information of p.

Next, we use the tree identifiers for distributing tree T into the nodes of the
underlying p2p network. Each non-leaf tree node u is mapped to a network
node U through a function f and according to idu, i.e., U = f(idu). Node
U stores some information Iu related to u: the (three) hash values associated
with node u, the tree identifiers of the parent tree node and the children of
u and local structural information about node u. Moreover, a leaf node wi,
corresponding to element xi, is also mapped to a network node Wi = f(xi)
through function f .1 Along with xi, node Wi stores some information Ixi related

1 We impose no restrictions on f(·); in general, it is a known function used by the
underlying p2p network for mapping objects to network nodes (many DHTs use the
SHA-1 function), implemented by the locate operation supported by the network.
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to the (verification) path pi in T from wi to the root r of T ; in particular, this
information includes:

– the ids of the tree nodes of path p, denoted as idp;
– structural and balancing information of tree nodes in p; for each node u in p

with children v1 and v2, Wi stores: (1) whether v1 or v2 belongs in p; (2) the
balancing information of node u, which is a pair (b1, b2), expressing balancing
information related to the subtrees defined by v1 and v2 respectively.

The above scheme distributes tree nodes and verification paths over a p2p
network and correctly implements a DMT. Our construction is designed mainly
for bottom-up tree traversal, which is appropriate for most security-related and
cryptographic applications, although it can be easily extended to support also
top-down traversal, similar to search tree (see Section 4). Accordingly, our tree is
accessed very efficiently: given a data element xi, the corresponding verification
path is distributively retrieved using O(log m) locate operations for mapping
identifiers in idp to network nodes. Using route distribution, that is, maintaining
the invariance that each network node knows the route for its verification path,
we can actually achieve extra efficiency, as we discuss at the end of the section.

Finally, we choose our tree T to be a weight-balanced tree and, in particular,
a BB[α] tree [22] (weight-balanced trees with important balancing properties).
This choice is related to efficiency in maintaining the structure of the hash tree
after updates in the data set (element insertions or deletions). We consider two
types of updates along a verification path: hash updates (due to rehashing) and
structural updates (due to re-balancing changes, i.e., rotations). Route distri-
bution supports efficient hash updates, since O(log m) locate operations suffice
in updating the hash values of a path idp. Similarly, structural updates can be
executed by successively contacting the network nodes corresponding to idp and
performing any necessary local update at node U using information Iu, however,
the incur an additional cost. Any rotation at level k of T triggers an extra update
cost for publishing the new routes to the O(2k) in total involved network nodes.
Using a BB[α] tree, where α is a balancing parameter bounding the ratio of the
weights (i.e., size of corresponding subtree) of neighboring tree nodes, we achieve
that on average O(1) rotations occur after an update and they occur more often
at nodes closer to leaves than at nodes higher in T . This gives on average a very
good performance in an amortized sense, since expensive reconstructions happen
rarely. The following lemma formalizes the above argument.

Lemma 1. For any series of m update operations on an initially empty set, the
DMT based on a BB[α] hash tree T , with α ∈ (1

4 , 1 −
√

2
2 ), has O(log n log m)

amortized structural update cost. Moreover, during these operations, structural
updates at level k of T with cost O(2k) occur with frequency O( 1

2k ).

Proof. (Sketch.) The proof is based on the update technique in our scheme and
the properties of BB[α] trees (e.g., see analysis in [22]). Consider any update in
the data set that results in a structural update in the tree T , in particular, along
the verification path pi of element xi, and assume that the corresponding network
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node Wi storing xi has been located. Node Wi can initiate a structural update
along pi by examining pi in bottom-up fashion and contacting the appropriate
network nodes. If pi is structurally updated to p′i and a rotation occurs at node u
in T , let Tu be the subtree in T defined by u. Each network node corresponding
to leaf node xi in Tu or a neighboring node v of u in Tu must respectively update
its local information Ixi and Iv. In total, O(|Tu|) network nodes must be notified
about the updates in T . This is possible by accessing Tu in a top-down fashion
(starting at u), contacting the corresponding network nodes and communicating
the necessary updates, a process completed after O(|Tu|) locate operations using
O(|Tu| × log n) communication. Overall, the structural update cost is O(|Tu|)
locate operations. By the properties of BB[α] trees with parameter α in the
appropriate range, we have that the total cost for updating all verification paths
in the DHT, for a sequence of t update operations (insertions or deletions) on an
initially empty set, is O(t log t). Thus, for the same series of update operations,
the total structural update cost is O(log n × t × log t) (time and communica-
tion). For t = O(m), we get that the amortized overall structural update cost
is O(log n log m) over a sequence of operations of size linear on m. Using the
additional property shown in [22], namely that costly rotations at levels close to
the root occur rarely with frequency inversely proportional to the corresponding
subtree size, the proof is completed. ��

The following theorem summarizes the efficiency of our DMT and our main
result. A p2p network with n nodes is called efficient if location operations take
time O(log n).

Theorem 1. There exists a scheme for implementing a distributed Merkle tree
T on a data set of size m over a peer-to-peer network N with n nodes (m ≤ n)
with the following properties:

1. Tree T uses space O(m log m), distributed over O(m) network nodes, and
incurs O(log m) storage overhead per network node.

2. A verification path of T has size O(log m) and can be accessed with O(log m)
locate operations on N ; thus, if N is efficient, the expected computational
and communication cost for accessing a verification path is O(log n log m).

3. A hash update on tree T involves O(log m) location operations; thus, for an
efficient network N , the expected computational and communication cost of
a hash update is O(log n log m).

4. A structural update on tree T involves O(m log m) location operations, amor-
tized over a series of O(m) structural updates on an initially empty tree;
thus, for an efficient network N , the expected amortized computational and
communication cost of a structural update is O(log n log m).

Proof. (Sketch.) Tree T is balanced, thus verification paths have O(log m) size.
The storage complexity is O(m log m), since internal tree nodes require O(1)
storage and leaves O(log m) storage. Through route distribution, constructing
any verification path requires only O(log m) locate operations, performed by the
initiating node according to pi. Similarly, hash updates are performed by bottom-
up traversal of nodes in pi. Structural updates are performed as in Lemma 1. ��
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Note that above, storage is optimal for route distribution and in accordance with
storage requirements for an efficient network, where each network node stores
O(log n) routing information; thus, our DMT does not asymptotically increase
the storage requirements of the underlying network.

Improvement through caching. We discuss a simple extension that under a
reasonable assumption, can improve the costs of for path location and update.
Assuming that network-node failures occur less often than queries and updates
on the DMT, we can improve the efficiency of our scheme as follows. The goal
is to transform the multiplicative O(log n) factor (introduced due to locate op-
erations for retrieving or updating hash values) into an additive term in the
complexity of our scheme. This is achieved by caching network node identifiers:
the idea is to have each network node corresponding to a leaf of T to cache in
its memory the identifiers of the O(log m) network nodes that store the hash
values of its corresponding verification path. That is, once such a network node
is first contacted, its identifier is remembered. Since network nodes can fail or
go down, it is possible that cached nodes are no longer nodes of the network.
In this case, we have a cache miss which will trigger a location operation. Al-
though we can still use some techniques to avoid this overhead (e.g., by caching
neighboring nodes storing the same information due to redundancy), we observe
that when the rate of network node failures is sufficiently small then we can ac-
tually amortize the O(log n) factor due to occasional location operations (cache
misses) in the cost for operating on the tree. In particular, if network nodes
fail independently with probability O( 1

log m ) during the time interval of a tree
traversal, then the expected number of network node failures that occur during
a path location or update is O(1). Thus, using caching the expected complexity
for path location and updates on the tree is O(log n + log m).

Table 2 summarizes the comparison between the various schemes for imple-
menting a DMT. We see that our scheme provides an very efficient solution that,
using caching and under reasonable assumptions, can be asymptotically optimal
in an amortized sense. Finally, we note that, when m > n, we can appropriate
extend our scheme by having each network node maintaining an additional data
structure (for locating the stored elements). Our scheme supports authentica-
tion of data collections of one data source; we can support multiple data sources
simply by using multiple instantiations of our DMT.

Table 2. Efficiency comparison of various schemes for realizing a DMT for a data set
of size m over a p2p network of size n. Expected complexity is denoted with ∗ and
amortized expected complexity is denoted with ∗∗.

storage path location hash update structural update

tree replication O(m2) O(log n log m)∗ O(log n log m)∗ O(m log n)∗

path replication O(m log m) O(1) O(m log n)∗ O(m log n)∗

route distribution O(m log m) O(log n log m)∗ O(log n log m)∗ O(log n log m)∗∗

w/ caching O(m log m) O(log n)∗ O(log n)∗ O(log n) ∗∗
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4 An Efficient Authenticated Distributed Hash Table

In this section, we design an authentication scheme for membership operations on
dynamic sets in our authentication model. First, we use our DMT construction
to realize authentication protocols for verifying the basic operations of any DHT
and we design an efficient authenticated distributed hash table (ADHT ).

Consider a source S that produces m data objects as key-value pairs, which are
stored in a DHT that supports the basic put-get operations. We design protocols
for augmenting this functionality to a new p2p storage system that provides
better information assurance, supporting the following authenticated operations:

– auth put: a key-value pair is inserted in the system by source S in an au-
thenticated way, so that S verifies the correctness of the insertion;

– auth get: the value of an existing in the system key is retrieved by a user in
an authenticated way, so that the user verifies the authenticity of the value;

– auth remove: an existing key-value pair is removed from the system by source
S in an authenticated way, so that S verifies the correctness of the removal.

Implementation. To realize the above functionality of an ADHT, we use the
technique of signature amortization over the data set that exists in the system.
The main idea is use the DMT of the previous section as a distributed authen-
tication structure for implementing the following invariant: at all times, source
S maintains (by storing locally) a cryptographic digest of the currently correct
(up-to-date) data set. Query verification is achieved by having S signing the
digest along with a fresh timestamp and storing this information in the sys-
tem. Update verification is achieved by having the source computing the new
digest that correctly corresponds to the new data set after the update, using
authentication information that is first verified against the current digest.

The digest is defined as the root hash value of the tree T that is build over
the data set and that corresponds to the DMT maintained in the p2p system.
We augment the construction of T as follows. First, we add an additional level
of hashing in T : the leaf node corresponding to pair (k, x) now stores hash value
h(h(k)‖h(x)). Moreover, each non-leaf tree node u with children nodes v1 and
v2 in T stores a hash value L(u) that also encodes the structural and balanc-
ing information of u, that is, L(u) = h(L(v1)‖L(v2)‖h(su)), where su encodes
whether u is a left or right child and its balancing information.2 Additionally, we
augment T to also serve as a search tree3: key-value pairs are sorted according to
their keys (we assume they are drawn from a totally order set) and are stored at
the leaves matching their left-to-right ordering; also, each non-leaf node u stores
a corresponding search key, e.g., the maximum key stored at the leaves of Tu. We
assume that, using bootstrapping techniques, both S and the users have access
(through direct connection) to an active node of the p2p network and that there
exists a publicly known function for creating identifiers for the new nodes in T .

We next describe the exact protocols for the authenticated operations.
2 For BB[α] trees, this is the ratio |Tv1 |/|Tu|, assuming that v1 is the left child of u.
3 Not needed, if the DHT supports searches for both exact and near matches [2, 13, 10].
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Queries. Queries are performed by any user by first contacting a network node
and issuing a get request on a key. For queries, the verification path of a leaf is
simply the corresponding leaf-to-root path. A path retrieval query is executed
by the system over the DMT and what is returned to the user is: (1) the corre-
sponding value, (2) the verification path (collection of hash values and relative
information for computing the root hash) and (3) the signed digest. The user
accepts the answer if and only if (i) hashing over the value and the verifica-
tion path results in a hash value that equals the root hash (digest) and (ii) the
signature on the digest is valid and contains a fresh timestamp.

Updates. Updates are performed by the source S by first contacting a network
node and issuing an update request. For updates, the verification path of a leaf
is augmented to also include the sibling nodes of the nodes in leaf-to-root path.
The system then reports to S the verification path p� of the leaf � of the DMT T
that is related to the update, i.e., the sibling leaf of the new leaf (put operation)
or the leaf to be deleted (remove operation). For put operations, � can be located
through top-down traversal of T ; we assume that S stores, and updates when
needed, the identifier of the root. Path p� contains all the necessary information
for computing the digest, given the information stored at � (note that, in the
case of a put operation, it contains the information stored at the sibling of �).
In particular, p� contains all the structural and balancing information that is
needed for any hash or structural update on it. This information serves as a con-
sistency proof for the source S and is used to compute the new digest in three
steps. First, the verification path is checked to be authentic by hashing along the
path and recomputing the current digest; this also verifies that the structural
and balancing information is also authentic, consistent with the current digest
stored by S. In the check fails, the protocol rejects: the system failed to correctly
execute the previous update. Otherwise, S locally executes the tree update by
operating on path p�; this is feasible because both hash updates and structural
tree adjustments only happen along this path in a bottom-up fashion. Finally,
S hashes over the new tree path and computes and stores the new digest. Once
the new digest is computed, S timestamps and signs it and returns the signed
copy for storage in the system. Then a regular hash-tree update is performed by
the system to execute the put or remove operation. By this interaction, S needs
only to keep O(1) authentication information, the current signed digest. Asymp-
totically, no additional computational or communication cost is introduced by
this extra interaction between the system and the source.

Security. The security of our protocols can be proved with using standard re-
ductions to the security of the cryptographic primitives that are used in our
authentication scheme, under standard hardness assumptions. By using a family
of collision-resistant hash functions and a signature scheme secure against adap-
tive chosen-message attacks, we have that the authentication scheme in ADHT
is secure: any successful attack by the network against the security of our scheme
corresponds to either a forged signature or a hash collision.
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Before stating the main result of this section, we recall that a p2p network
with n nodes is called efficient if location operations take time O(log n).

Theorem 2. There exists an authenticated distributed hash table over an effi-
cient peer-to-peer network with n nodes that supports authenticated operations
auth put, auth get and auth remove on a data set of size m ≤ n and has the
following properties:

1. The distributed authentication scheme is secure.
2. The storage at the source is O(1); the storage at the network is O(m log m).
3. The query cost is O(log m), that is, O(log m) locate operations; or, equiva-

lently, the expected time and communication complexity to answer a query
is O(log n log m).

4. The amortized update cost is O(log m), that is, O(log m) locate operations;
or, equivalently, the amortized expected time and communication complexity
of an update is O(log n logm).

Table 3 summarizes the comparison of our ADHT and its extension ADHT-c
using caching with the existing data authentication schemes for dynamic con-
tent in p2p storage networks. Existing authentication methods support data
integrity by separately signing all data items stored by the same source, but
they are either vulnerable to replay attacks (“Sign-all”), since old items can still
be incorrectly verified, or induce a significant update cost when timestamping
is used to eliminate replay attacks (“Sign-all”-t), since all data items should be
resigned after any update or refreshed at regular time intervals. Using a loga-
rithmic space overhead per network node, ADHT provides a secure, efficient and
distributed new authentication scheme for verifying basic operations over p2p
storage systems and offers a transparent security layer that is independent of
the exact implementation of the system.

Table 3. Comparison of ADHT with “sign-all” schemes for authenticating queries on
data set of size m over a network of size n, m ≤ n. Expected complexity is denoted
with ∗ and amortized expected complexity is denoted with ∗∗.

storage signing cost query cost update cost replay-safe

“Sign-all” O(m) O(m) O(log n)∗ O(log n)∗ no

“Sign-all”-t O(m) O(m) O(log n)∗ O(m log n)∗ yes

ADHT O(m log m) O(1) O(log n log m)∗ O(log n log m)∗∗ yes

ADHT-c O(m log m) O(1) O(log n + log m)∗ O(log n + log m)∗∗ yes

Distributed Authenticated Dictionary. An immediate application of our
ADHT is a distributed authenticated dictionary, where membership queries on
a dynamic data set of key-value pairs are authenticated. Suppose that keys
are drawn from a totally ordered universe. Our DMT is built on top of the
data elements sorted according to their keys. To support authentication of neg-
ative answers, we use the technique of [17]: pairs of keys that are consecutive
in the ordering used in the Merkle tree are inserted in the system for proving
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non-membership in the set. E.g., if (k, v), (k′, v′) are members of the set and
k′ is the immediate successor key of k, then value v contains also key k′. The
DMT is again used also as a search tree. This scheme has asymptotically the
same performance as the ADHT described above, given by Theorem 2.

Load-balance issues. Although our authentication structure achieves load bal-
ance with respect to data distribution over the p2p network (given the properties
of the underlying DHT), as described, it does not achieve load balance with re-
spect to network access. For instance, network nodes that store the tree root
are accessed much more often than other network nodes. This turns out to be
an important issue that appears to hold in general: all existing techniques for
achieving authentication over DHTs that use signature amortization, including
our technique or techniques based on self-certified data, introduce congestion at
certain network nodes. The problem is challenging, since load-balancing and ef-
ficient content authentication in p2p systems correspond to contradictory design
goals: signature amortization introduces heavily accessed points in the system,
whereas for load-balancing we wish network nodes to be accessed with uniform,
rather than skewed, distribution. However, we propose the following simple solu-
tion for load-balance in an amortized sense: after any structural update at node
u in the tree, we choose new tree identifiers for all nodes in the corresponding
subtree Tu. Asymptotically no extra cost is incurred, since the structural up-
date already propagates over Tu, thus the system can afford redistributing Tu to
new network nodes. Identifiers are chosen according to a random, well-defined
and unpredictable way, such that no significant communication overhead is in-
troduced in the structure. Effectively, over time, we expect to achieve smoother
(closer to uniform) access patterns for network nodes.

5 Conclusions and Future Work

We consider the problem of data authentication in p2p storage networks. We
introduce a new model for authenticating data in decentralized computing en-
vironments that extends the model of authenticated data structures and better
captures the security needs of existing distributed systems. We design the first
efficient implementation of a distributed Merkle tree (DMT) and show how it
can be applied to the design of an authenticated distributed hash table that sup-
ports efficient verification of membership and update operations over dynamic
data sets and eliminates the threat of replay attacks.

As future work, we plan to implement the DMT construction and experimen-
tally test its efficiency and study load-balance, concurrency and other perfor-
mance issues. We leave as open problems the design of authenticated schemes
for more general queries, beyond set-membership, and the study of additional
security issues in this new model, such as DoS attacks and Byzantine behavior.
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Abstract. As various applications of wireless ad hoc networks have been
proposed, security has become one of the big research challenges and is
receiving increasing attention. Recently, Several security schemes for
wireless ad hoc networks have been proposed using identity-based sign-
cryption schemes. However, almost all identity-based signcryption
schemes that have been proposed until now are based on a single private
key generator, which is not suitable for multi-domain ad hoc networks. In
this paper, we propose a new identity-based signcryption scheme based
on multiple private key generators, which is more suitable for multi-
domain ad hoc networks. We prove its semantical security under the De-
cisional Bilinear Diffie-Hellman assumption in the random oracle model.

Keywords: Ad hoc networks, identity-based signcryption, bilinear
pairings, provable security.

1 Introduction

An ad hoc network is a collection of autonomous nodes that communicate with
each other by forming a multi-hop wireless network. The property of not re-
lying on the support from any fixed infrastructure makes it useful for a wide
range of applications, such as instant consultation between mobile users in the
battlefields, emergency, and disaster situations, where geographical or terres-
trial constraints demand totally distributed networks. While ad hoc network
provides a great flexibility for establishing communications, it also brings a lot
of research challenges. One of the important issues is the security due to all
the characteristics of these networks, such as the vulnerability of the wireless
links, the limited physical protection of each node and the dynamically changing
topology. Recently, Several security schemes for ad hoc networks have been pro-
posed using identity-based (ID-based) signcryption schemes, such as key manage-
ment scheme [18], authenticated broadcasting scheme [5], and routing protocols
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TIDS [11], ISSRP [23] and ISMANET [24]. The using of ID-based signcryption
has the following advantages:

1. There is no need to authenticate a public key because of using the ID-based
cryptography.

2. Confidentiality, integrity, non-repudiation and authentication are provided
simultaneously because of using the signcryption technique.

3. Computational costs and communication overheads can be reduced.

However, almost all ID-based signcryption schemes that have been proposed un-
til now are based on a single private key generator (PKG), which is not suitable
for multi-domain ad hoc networks [15] formed by a consortium of different or-
ganizations. It is unrealistic to assume that different organizations use a single
PKG. Therefore, it is necessary to find an ID-based signcryption scheme based
on multiple PKGs.

1.1 Related Work

ID-based cryptography was introduced by Shamir in 1984 [26]. The distinguish-
ing property of ID-based cryptography is that a user’s public key can be any
binary string, such as an email address that can identify the user. This removes
the need for senders to look up the recipient’s public key before sending out
an encrypted message. Usually, private keys of users’ are issued by a trusted
authority called the PKG. ID-based cryptography is supposed to provide a more
convenient alternative to conventional public key infrastructure. In 2001, Boneh
and Franklin [6] proposed the first practical ID-based encryption scheme using
pairings on elliptic curves. Since then, most researches on ID-based cryptography
are based on this system.

Confidentiality, integrity, non-repudiation and authentication are the impor-
tant requirements for many cryptographic applications. A traditional approach
to achieve these requirements is to sign-then-encrypt the message. Signcryp-
tion, first proposed by Zheng in 1997 [28], is a cryptographic primitive that
performs digital signature and public key encryption simultaneously, at lower
computational costs and communication overheads than the signature-then-
encryption approach. Several efficient signcryption schemes have been proposed
since 1997 [3,29,12,25,22,14,27,21] and a first example of formal security proof in
a formal security model was published in 2002 [2]. However, until 2002, none of
these schemes were ID-based. Malone-Lee [20] proposed a first method to achieve
an ID-based signcryption solution. Libert and Quisquater [19] pointed out that
Malone-Lee’s scheme [20] is not semantically secure because the signature of the
message is visible in the signcrypted message. Chow et al. [10] designed an ID-
based signcryption scheme that provides both public verifiability and forward
security. Boyen [7] presented an ID-based signcryption scheme that provides not
only public verifiability and forward security but also ciphertext unlinkability
and anonymity. In [9], Chen and Malone-Lee improved Boyen’s scheme [7] in ef-
ficiency. In [4], Barreto et al. constructed the most efficient ID-based signcryption
scheme to date.
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1.2 Our Contribution

In this paper, we present an ID-based signcryption scheme based on multiple
PKGs. We prove its semantical security under the Decisional Bilinear Diffie-
Hellman assumption in the random oracle model. We believe that our scheme
is more suitable for multi-domain ad hoc networks than previously proposed
schemes.

1.3 Organization

The rest of this paper is organized as follows. Some preliminary works are given
in Section 2. The formal model of ID-based signcryption is described in Section 3.
The proposed ID-based signcryption scheme is given in Section 4. We analyze the
proposed scheme in Section 5. Finally, the conclusions are given in Section 6.

2 Preliminaries

In this section, we briefly describe the basic definition and properties of the
bilinear pairings.

Let G1 be a cyclic additive group generated by P , whose order is a prime q,
and G2 be a cyclic multiplicative group of the same order q. A bilinear pairing
is a map ê : G1 × G1 → G2 with the following properties:

1. Bilinearity: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G1, a, b ∈ Zq.
2. Non-degeneracy: There exists P and Q ∈ G1 such that ê(P, Q) �= 1.
3. Computability: There is an efficient algorithm to compute ê(P, Q) for all

P ,Q ∈ G1.

The modified Weil pairing and the Tate pairing [6] are admissible maps of
this kind. The security of our scheme described here relies on the hardness of
the following problems.

Definition 1. Given two groups G1 and G2 of the same prime order q, a bilinear
map ê : G1 × G1 → G2 and a generator P of G1, the Decisional Bilinear Diffie-
Hellman problem (DBDHP) in (G1, G2, ê) is to decide whether h = ê(P, P )abc

given (P, aP, bP, cP ) and an element h ∈ G2. We define the advantage of a
distinguisher against the DBDHP like this

Adv(D) = |Pa,b,c,∈RZq,h∈RG2 [1 ← D(aP, bP, cP, h)]

−Pa,b,c,∈RZq [1 ← D(aP, bP, cP, ê(P, P )abc)]|.

Definition 2. Given two groups G1 and G2 of the same prime order q, a bilinear
map ê : G1 × G1 → G2 and a generator P of G1, the Computational Bilinear
Diffie-Hellman problem (CBDHP) in (G1, G2, ê) is to compute h = ê(P, P )abc

given (P, aP, bP, cP ).

The decisional problem is of course not harder than the computational one.
However, no algorithm is known to be able to solve any of them so far.
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3 Formal Model of ID-Based Signcryption

3.1 Generic Scheme

A generic ID-based signcryption scheme based on multiple PKGs consists of the
following five algorithms. We suppose that there are two trusted authorities, say
PKG1 and PKG2.

Setup1: Given a security parameter k, this algorithm generates the system’s
public parameters params.

Setup2: Given the system’s public parameters params, the PKG1 generates a
master secret key s1 and a corresponding public key P 1

pub. Similarly, The
PKG2 generates a master secret key s2 and a corresponding public key P 2

pub.
Extract: Given an identity ID in PKGl(l = 1, 2), the PKGl computes the

corresponding private key SID and transmits it to its owner in a secure way.
Signcrypt: To send a message m to Bob, Alice obtains the ciphertext σ by

computing Signcrypt(m, SIDA , IDB).
Unsigncrypt: When Bob receives σ, he computes Unsigncrypt(σ, IDA, SIDB )

and obtains the plaintext m or the symbol ⊥ if σ is an invalid ciphertext be-
tween identities IDA and IDB.

For consistency, we of course require that if σ = Signcrypt(m, SIDA , IDB),
then we have m = Unsigncrypt(σ, IDA, SIDB ).

3.2 Security Notions

Malone-Lee [20] defines the security notions for ID-based signcryption schemes.
These notions are indistinguishability against adaptive chosen ciphertext attacks
and unforgeability against adaptive chosen messages attacks. We modify his def-
initions slightly to adapt for our ID-based signcryption scheme based on multiple
PKGs.

Definition 3 (Confidentiality). An ID-based signcryption scheme based on
multiple PKGs (IDSCMP) is said to have the indistinguishability against adap-
tive chosen ciphertext attacks property (IND-IDSCMP-CCA2) if no polynomially
bounded adversary has a non-negligible advantage in the following game.

1. The challenger C runs the Setup1 and Setup2 algorithms with a security
parameter k and sends the system parameters to the adversary A.

2. A performs a polynomially bounded number of queries (these queries may be
made adaptively, i.e. each query may depend on the answer to the previous
queries).
– Key extraction queries: A chooses an identity ID in PKGl(l = 1, 2). C

computes SID = Extract(ID) and sends SID to A.
– Signcryption queries: A produces two identities IDi, IDj and a plaintext

m. C computes SIDi =Extract(IDi) and σ = Signcrypt(m, SIDi , IDj)
and sends σ to A.
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– Unsigncryption queries: A produces two identities IDi and IDj, and
a ciphertext σ. C generates the private key SIDj = Extract(IDj) and
sends the result of Unsigncrypt(σ, IDi, SIDj ) to A (this result can be
the ⊥ symbol if σ is an invalid ciphertext).

3. A generates two equal length plaintexts m0, m1 and two identities IDA and
IDB on which he wants to be challenged. He cannot have asked the private
key corresponding to IDB in the first stage.

4. C takes a bit b ∈R {0, 1} and computes σ = Signcrypt(mb, SIDA , IDB)
which is sent to A.

5. A can ask a polynomially bounded number of queries adaptively again as in
the first stage. This time, he cannot make a key extraction query on IDB

and cannot make an unsigncryption query on σ to obtain the corresponding
plaintext.

6. Finally, A produces a bit b′ and wins the game if b′ = b.

The advantage of A is defined as Adv(A) = |2P [b′ = b] − 1|, where P [b′ = b]
denotes the probability that b′ = b.

Notice that the adversary is allowed to make a key extraction query on identity
IDA in the above definition. This condition corresponds to the stringent require-
ment of insider security for confidentiality of signcryption [1]. On the other hand,
it ensures the forward security of the scheme, i.e. confidentiality is preserved in
case the sender’s private key becomes compromised.

Definition 4 (Unforgeability). An ID-based signcryption scheme based on
multiple PKGs (IDSCMP) is said to have the existential unforgeability against
adaptive chosen messages attacks (EUF-IDSCMP-CMA) if no polynomially
bounded adversary has a non-negligible advantage in the following game.

1. The challenger C runs the Setup1 and Setup2 algorithms with a security
parameter k and sends the system parameters to A.

2. A performs a polynomially bounded number of queries just like in the Defi-
nition 3.

3. Finally, A produces a new triple (σ, IDA, IDB) (i.e. a triple that was not pro-
duced by the signcryption oracle), where the private key of IDA was not asked
in the second stage. A wins the game if the result of Unsigncrypt(σ,IDA,
SIDB ) is not the ⊥ symbol.

The advantage of A is defined as the probability that it wins.

Note that the adversary is allowed to make a key extraction query on the identity
IDB in the above definition. Again, this condition corresponds to the stringent
requirement of insider security for signcryption [1].

4 An ID-Based Signcryption Scheme for Multiple PKGs

In this section, we look at signcryption between members of separate domains.
This idea was first suggested in an authenticated key agreement protocol [8].
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We present an ID-based signcryption scheme for multiple PKGs, which is more
suitable for multi-domain ad hoc networks than previously proposed schemes.
The following shows the details of our scheme.

Setup1: Define G1, G2 and ê as in previous section. Let H1, H2 and H3 be
three cryptographic hash functions where H1 : {0, 1}∗ → G1, H2 : G2 →
{0, 1}n and H3 : {0, 1}∗ → Z∗q . Let P be a generator of G1. Note that the
system’s public parameters {G1, G2, n, ê, P, H1, H2, H3} are globally agreed,
e.g., recommended by an international standards body.

Setup2: The PKG1 chooses a master secret key s1 ∈R Z∗q and computes P 1
pub =

s1P . The PKG1 publishes P 1
pub and keeps the master secret key s1 secret.

Similarly, the PKG2 chooses a master secret key s2 ∈R Z∗q and computes
P 2

pub = s2P . The PKG2 publishes P 2
pub and keeps the master secret key s2

secret.
Extract: Suppose that Alice registers with PKG1 and gets her private key

SIDA = s1QIDA , where QIDA = H1(IDA), and Bob registers with PKG2
and gets his private key SIDB = s2QIDB , where QIDB = H1(IDB).

Signcrypt: To send a message m to Bob, Alice follows the steps below.
1. Choose x ∈R Z∗q and compute U = xP .
2. Compute τ = ê(P 2

pub, QIDB )x.
3. Compute k = H2(τ).
4. Compute c = m ⊕ k.
5. Compute r = H3(m, U, k).
6. Compute V = xP 1

pub + rSIDA .
The ciphertext is σ = (c, U, V ).

Unsigncrypt: When receiving σ = (c, U, V ), Bob follows the steps below.
1. Compute τ = ê(U, SIDB ).
2. Compute k = H2(τ).
3. Recover m = c ⊕ k.
4. Compute r = H3(m, U, k).
5. Accept the message if and only if the following equation holds:

ê(P, V ) = ê(U, P 1
pub)ê(P

1
pub, QIDA)r .

Note that we accept the assumption in [8] that the two PKGs share common
system parameters and differ in the master secret key. Of course, our scheme
can use different system parameters by using the method in [16,17].

5 Analysis of the Scheme

5.1 Correctness

The correctness can be easily verified by the following equations.

ê(U, SIDB ) = ê(xP, s2QIDB ) = ê(xs2P, QIDB ) = ê(P 2
pub, QIDB )x
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and

ê(P, V ) = ê(P, xP 1
pub + rSIDA) = ê(P, xP 1

pub)ê(P, rs1QIDA)

= ê(xP, P 1
pub)ê(s1P, QIDA)r

= ê(U, P 1
pub)ê(P

1
pub, QIDA)r

5.2 Security

Theorem 1 (Confidentiality). In the random oracle model, we assume we
have an IND-IDSCMP-CCA2 adversary called A that is able to distinguish ci-
phertext during the game of Definition 3 with an advantage ε when running
in a time t and asking at most qH1 identity hashing queries, at most qH2 H2
queries, at most qH3 H3 queries, at most qK key extraction queries, qS sign-
cryption queries and qU unsigncryption queries. Then, there exists a distin-
guisher C that can solve the Decisional Bilinear Diffie-Hellman problem in a
time O(t + (qH3qS + q2

S + 4qU )Tê) with an advantage

Adv(C)DBDH(G1,P ) >
ε(2k − qU ) − qU

qH12k+1 ,

where Tê denotes the computation time of the bilinear map.

Proof. We assume the distinguisher C receives a random instance(P, aP, bP, cP, h)
of the Decisional Bilinear Diffie-Hellman problem. His goal is to decide whether
h = ê(P, P )abc or not. C will run A as a subroutine and act as A’s challenger in
the IND-IDSCMP-CCA2 game. During the game, A will consult C for answers
to the random oracles H1, H2 and H3. Roughly speaking, these answers are
randomly generated, but to maintain the consistency and to avoid collision, C
keeps three lists L1, L2, L3 respectively to store the answers. The following
assumptions are made.

1. A will ask for H1(ID) before ID is used in any key extraction query, sign-
cryption query and unsigncryption query.

2. Ciphertext returned from a signcryption query will not be used by A in an
unsigncryption query.

At the beginning of the game, C gives A the system parameters with P 2
pub = cP

and P 1
pub = dP , where d ∈R Z∗q . Note that c and d are unknown to C. This value

simulates the master secret key value for the PKG2 and PKG1 in the game.
Then, C chooses a random number j ∈ {1, 2, . . . , qH1}. A asks a polynomially
bounded number of H1 queries on identities of his choice. At the j-th H1 query, C
answers by H1(IDj) = bP (We suppose that the identity IDj belongs to PKG2,
otherwise we exchange P 2

pub for P 1
pub). For queries H1(IDe) with e �= j, C chooses

be ∈R Z∗q , puts the pair (IDe, be) in list L1 and answers H1(IDe) = beP .
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We now explain how the other kinds of queries are treated by C.

– H2 queries: On a H2(τe) query, C searches a pair (τe, ke) in the list L2. If
such a pair is found, C answers ke, otherwise he answers A by a random
binary sequence k ∈R {0, 1}n such that no entry (·, k) exists in L2 (in order
to avoid collisions on H2) and puts the pair (τe, k) into L2.

– H3 queries: On a H3(me, Ue, ke) query, C checks if there exists (me, Ue, ke, re)
in L3. If such a tuple is found, C answers re, otherwise he chooses r ∈R Z∗q ,
gives it as an answer to the query and puts the tuple (me, Ue, ke, r) into L3.

– Key extraction queries: When A asks a question Extract(IDe), if IDe =
IDj , then C fails and stops. If IDe �= IDj , then the list L1 must contain a
pair (IDe, be) for some be (this indicates C previously answered H1(IDe) =
beP on a H1 query on IDe). The private key corresponding to IDe is then
beP

2
pub = cbeP or beP

1
pub = dbeP . It is computed by C and returned to A.

– Signcryption queries: At any time, A can perform a signcryption query for a
plaintext m and identities IDA and IDB. We have the following three cases
to consider.

• Case 1: IDA �= IDj . C computes the private key SIDA corresponding to
IDA by running the key extraction query algorithm. Then C answers the
query by a call to Signcrypt(m, SIDA , QIDB ).

• Case 2: IDA = IDj and IDB �= IDj . C chooses x, r ∈R Z∗q and computes
U = xP − rQIDA , V = xP 1

pub, and τ = ê(U, SIDB )(C could obtain SIDB

from the key extraction algorithm because IDB �= IDj). C runs the H2
simulation algorithm to find k = H2(τ) and computes c = m ⊕ k. C
then checks if L3 already contains a tuple (m, U, k, r′) with r′ �= r. In
this case, C repeats the process with another random pair (x, r) until
finding a tuple (m, U, k, r) whose first three elements do not appear in a
tuple of the list L3. This process repeats at most qH3 + qS times as L3
contains at most qH3 + qS entries (A can issue qH3 H3 queries and qS

signcryption queries, while each signcryption query contains a single H3
query). When an appropriate pair (x, r) is found, the ciphertext (c, U, V )
appears to be valid from A’s viewpoint. C has to compute one pairing
operation for each iteration of the process.

• Case 3: IDA = IDj and IDB = IDj . C chooses x∗, r∗ ∈R Z∗q , com-
putes U∗ = x∗P − r∗QIDA , V ∗ = x∗P 1

pub, and chooses τ∗ ∈R G2
and k∗ ∈R {0, 1}n such that no entry (·, k∗) is in L2 and computes
c∗ = m ⊕ k∗. C then checks if L3 already contains a tuple (m, U∗, k∗, r′)
with r′ �= r∗. If not, C puts the tuple (m, U∗, k∗, r∗) into L3 and (τ∗, k∗)
into L2. Otherwise, C chooses another random pair (x∗, r∗) and repeats
the process as above until he finds a tuple (m, U∗, k∗, r∗) whose first
three elements do not appear in an entry of L3. Once an appropriate
pair (x∗, r∗) is found, C gives the ciphertext σ∗ = (c∗, U∗, V ∗) to A. As
A will not ask for the unsigncryption of σ∗, he will never see that σ∗ is
not a valid ciphertext of the plaintext m for identities IDA and IDB.
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– Unsigncryption queries: For a unsigncryption query on a ciphertext σ′ =
(c′, U ′, V ′) for identities IDA and IDB. We have the following two cases to
consider.

• Case 1: IDB = IDj. C always answers A that σ′ is invalid.
• Case 2: IDB �= IDj . C computes τ ′ = ê(U ′, SIDB ) (C could obtain

SIDB from the key extraction algorithm because IDB �= IDj). C then
runs the H2 simulation algorithm to obtain k′ = H2(τ ′) and computes
m′ = c′ ⊕ k′. Finally, C runs the H3 simulation algorithm to obtain
r′ = H3(m′, U ′, k′) and checks if ê(P, V ′) = ê(U ′, P 1

pub)ê(P
1
pub, QIDA)r′

holds. If the above equation does not hold, C rejects the ciphertext.
Otherwise C returns m′.

It is easy to see that, for all queries, the probability to reject a valid ciphertext
does not exceed qU/2k.

After the first stage, A picks a pair of identities on which he wishes to be
challenged. Note that C fails if A has asked a key extraction query on IDj

during the first stage. We know that the probability for C not to fail in this
stage is qH1−qK

qH1
. Further, with a probability exactly 1

qH1−qK
, A chooses to be

challenged on the pair (IDi, IDj) with i �= j. Hence the probability that A’s
response is helpful to C is 1

qH1
. Note that if A has submitted a key extraction

query on IDj, then C fails because he is unable to answer the question. On the
other hand, if A does not choose (IDi, IDj) as target identities, C fails too.

Then A outputs two plaintexts m0 and m1. C chooses b ∈R {0, 1} and
signcrypts mb. To do so, he sets U∗ = aP , obtains k∗ = H2(h)(where h is
C candidate for the DBDH problem) from the H2 simulation algorithm, and
computes cb = m ⊕ k∗. Then C chooses V ∗ ∈R G1 and sends the ciphertext
σ∗ = (cb, U

∗, V ∗) to A.
A then performs a second series of queries which is treated in the same way

as the first one. At the end of the simulation, he produces a bit b′ for which he
believes the relation σ∗ = Signcrypt(mb′ , SIDi , IDj) holds. At this moment, if
b = b′, C outputs h = ê(U∗, SIDj ) = ê(aP, cbP ) = ê(P, P )abc as a solution of the
DBDH problem, otherwise C stops and outputs “failure”.

Taking into account all the probabilities that C will not fail its simulation, the
probability that A chooses to be challenged on the pair (IDi, IDj), and also the
probability that A wins the IND-IDSCMP-CCA2 game, the value of Adv(C) is
calculated as follows.

Adv(C) = (
(ε + 1)

2
(1 − qU

2k
) − 1

2
)(

1
qH1

)

=
ε(2k − qU ) − qU

qH12k+1

The bound on C’s computation time derives from the fact that every signcryp-
tion query requires at most qH3 +qS pairing operations and every unsigncryption
query requires at most 4 pairing operations. �	



382 F. Li, Y. Hu, and C. Zhang

Theorem 2 (Unforgeability). The proposed scheme is secure in the sense of
unforgeability.

Proof. The unforgeability against adaptive chosen messages attacks derives from
the security of Hess’s ID-based signature scheme [13] under the Computational
Diffie-Hellman assumption. One can show that an attacker that is able to forge
a signcrypted message must be able to forge a signature for the following scheme
which is a variant of Hess’s signature.

Setup and Extract are the same as above. The others are described as
follows.

Sign: To sign a message m, the signer follows the steps below.
1. Choose x ∈R Z∗q and compute U = xP .
2. Compute r = H3(m, U).
3. Compute V = xP 1

pub + rSIDA .
The signature on message m is σ = (U, V ).

Verify: When receiving σ = (U, V ), the verifier follows the steps below.
1. Compute r = H3(m, U).
2. Accept the signature if and only if the following equation holds:

ê(P, V ) = ê(U, P 1
pub)ê(P

1
pub, QIDA)r .

�	

Theorem 3 (Public verifiability). The proposed scheme provides the public
verifiability.

Proof. When necessary, Bob may forward (m, U, V ) to others, who can be con-
vinced that it came originally from Alice by computing r = H3(m, U) and veri-
fying

ê(P, V ) = ê(U, P 1
pub)ê(P

1
pub, QIDA)r.

Therefor, our scheme provides the public verifiability. �	

6 Conclusions

We have proposed an ID-based signcryption scheme based on the bilinear pair-
ings. Our scheme can work in multiple PKGs environment. We proved that our
scheme satisfies the confidentiality, the unforgeability, and the public verifiabil-
ity. As compared with previously proposed schemes based on a single PKG, our
scheme is more suitable for multi-domain ad hoc networks.
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Abstract. Security of group communication for large mobile wireless
sensor network hinges on efficient key distribution and key management
mechanism. As the wireless medium is characterized by its lossy nature, re-
liable communication cannot be assumed in the key distribution schemes.
Therefore, self-healing is a good property for key distribution in wireless
applications. The main idea of self-healing key distribution scheme is that
even if during a certain session some broadcast messages are lost due to
network faults, the users are capable of recovering lost session keys on their
own, without requesting additional transmission from the group manager.
The only requirement for a user to recover the lost session keys, is its mem-
bership in the group both before and after the sessions in which the broad-
cast packets containing the keys are sent. Self-healing approach of key
distribution is stateless in the sense that a user who has been off-line for
some period is able to recover the lost session keys immediately after com-
ing back on-line. In this paper, we propose two constructions for scalable
self-healing key distribution with t revocation capability. The novelty of
our constructions are that we apply a different and more efficient self-
healing mechanism compared to the ones in the literature using one-way
key chain. The main improvements that our proposed schemes achieve
over previous approaches are

(a) communication bandwidth reduces from O((tj + j − t − 1) log q) to
O((t + 1) log q), and

(b) computation costs for our first and second constructions reduce from
O(2tj + j) to O(2t + 1) and O(2(t2 + t)) respectively,

where m is the maximum number of sessions, j is the current session
number, t is the maximum number of compromised group members that
may collude and q is a large prime number. We achieve this result with-
out any increase in the storage complexity. The schemes are scalable
to very large groups in highly mobile, volatile and hostile network. We
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prove in an appropriate security framework that our constructions are
computationally secure and achieve both forward secrecy and backward
secrecy.

Keywords: sensor network, session key distribution, self-healing,
revocation, computational security.

1 Introduction

Secure group communication relies on secure and robust distribution of group
keys. A single symmetric key known only to the group members can effectively
protect a multicast group. However, only legitimate users should have access to
the group communication in order to achieve privacy. Thus the group key (ses-
sion key) must be updated each time when new users join or old users leave the
group and securely redistributed to the existing members of the group. This is
referred to as group rekeying. The newly joint users should not be able to derive
the previous group keys, even if they are able to derive future group keys with
subsequently distributed keying information. Similarly, the revoked users should
not be able to derive the future session keys, even if they are able to compute the
previous session keys with previously distributed keying information. If a group
is rekeyed on each membership change, the frequency of rekeying becomes the
primary bottleneck as the size of the group grows and/or the rate of member-
ship change increases. Therefore, scalable group rekeying is an important and
challenging problem to be addressed in order to support secure multicast com-
munication for dynamic groups, where typical systems are large: tens of millions
of users. How to distribute and update session key efficiently over an unreliable
channel is an interesting research topic.

Self-Healing Key Distribution: In this paper, we address self-healing key distri-
bution scheme with revocation [22] that deals with the problem of distributing
session keys for secure communication to a dynamic group of users over an un-
reliable, lossy network in a manner that is resistant to packet lost and collusion
attacks. The main concept of self-healing key distribution schemes is that users,
in a large and dynamic group communication over an unreliable network, can
recover lost session keys on their own, even if lost some previous key distribution
messages, without requesting additional transmissions from the group manager.
This reduces network traffic and risk of user exposure through traffic analysis
and also decreases the work load on the group manager. The key idea of self-
healing key distribution schemes is to broadcast information that is useful only
for trusted members. Combined with its pre-distributed secrets, this broadcast
information enables a trusted member to reconstruct a shared key. On the con-
trary, a revoked member is unable to infer useful information from the broadcast.
The only requirement that a user must satisfy to recover the lost keys through
self-healing, is its membership in the group both before and after the sessions
in which the broadcast packet containing the key is sent. A user who has been
off-line for some period is able to recover the lost session keys immediately after
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coming back on-line. Thus self-healing approach of key distribution is stateless.
The scheme is said to have t-revocation capability if the key distribution mech-
anism cannot be broken by any coalition of up to t users.

Our Contribution: This paper focuses on designing computationally secure and
efficient key distribution schemes with self-healing property and revocation ca-
pability for large and dynamic groups over insecure wireless networks. We pro-
pose two new constructions for self-healing key distributions adopting a new
self-healing technique. The novelty of our self-healing approach is that it uses
one-way key chain that is more efficient compared to the self-healing techniques
used in the previous schemes [4, 12, 14, 22]. This yields an improved secret-
sharing based self-healing key distribution scheme (Construction 2) compared
to the secret-sharing based scheme in [4]. We obtain further improvement (Con-
struction 1) using polynomial based revocation which is more efficient compared
to all the previous scheme. The main attraction of this paper is that our con-
structions have significant improvements in terms of both communication and
computation overhead without any increase in the storage complexity. Table 1
summarizes the comparison of our schemes with the previous approaches (m
being the maximum number of sessions, j stands for the current session number
and q is a prime large enough to accommodate a cryptographic key).

Table 1. Comparison among different self-healing key distribution schemes in j-th
session

Schemes Storage Overhead Communication Overhead Computation Overhead

Construction 3 of [22] (m − j + 1)2 log q (mt2 + 2mt + m + t) log q 2mt2 + 3mt − t
Scheme 3 of [14] 2(m − j + 1) log q [(m + j + 1)t + (m + 1)] log q mt + t + 2tj + j
Scheme 2 of [4] (m − j + 1) log q (2tj + j) log q 2j(t2 + t)

Construction 1 of [12] (m − j + 1) log q (tj + j − t − 1) log q 2tj + j
Our Construction 1 (m − j + 1) log q (t + 1) log q 2t + 1
Our Construction 2 (m − j + 1) log q (t + 1) log q 2(t2 + t)

We emphasize that each user in both the proposed constructions requires
(m − j + 1) log q memory and size of the broadcast message at the j-th session
is (t + 1) log q with computation costs 2t + 1 and 2(t2 + t) respectively. Our key
distribution schemes are scalable to very large groups in highly mobile, volatile
and hostile wireless network as the communication and computation overhead
does not depend on the size of the group, instead they depend on the number of
compromised group members that may collude together. We have shown in an
appropriate security model that our proposed constructions are computationally
secure and achieve both forward secrecy and backward secrecy.

Related Works: Broadcast encryption is a closely related area which has received
much attention from both the network and cryptography community. Efficient
key distribution and key management mechanisms are at the core of this. The
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area of broadcast encryption was formally defined by Fiat and Naor [10] after
the work of Berkovits [1] and has been extensively studied since then. A num-
ber of approaches have been proposed and has grown up in different directions:
rekeying schemes for dynamic groups, broadcast schemes with tracing capabil-
ity, users revocation from a predefined subset of users etc. A few of them are
[2, 3, 5, 6, 7, 8, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27]. How-
ever, the underlying networks are assumed to be reliable in all the above works.
Self-healing key distribution with revocation was first introduced by Staddon
et al. in [22]. They provide formal definitions and security notions that were
later generalized by Liu et al. [14] and Blundo et al. [4]. The constructions given
in [22] suffers from high storage and communication overhead. Liu et al. [14]
introduced a novel personal key distribution scheme and combining it with the
self-healing technique in [22], they proposed a new construction that improves
the storage and communication overhead greatly. Blundo et al. [4] showed an
attack to the first construction in [22] and developed a new self-healing tech-
nique different from [22] under a slightly modified framework. More recently,
Hong et al. [12] proposed self-healing key distribution constructions having less
storage and communication complexity. Recently, Dutta and Mukhopadhyay [9]
proposed a new storage efficient self-healing key distribution scheme.

Applications: The spectrum of applicability of self-healing key distribution is quite
large. Self-healing key distribution is a potential candidate to establish session
keys for secure communication to large and dynamic groups in highly mobile,
volatile and hostile wireless network, where frequent membership changes may
be necessary and ability to revoke users during certain exchanges is desirable. In
such situations the session keys need to be used for a short time-period or need
to be updated frequently. Mobile wireless ad hoc networks have wide applica-
tions in military operations, rescue missions and scientific explorations, where
there are usually no network infrastructure support and the adversary may inter-
cept, modify, and/or partially interrupt the communication. In such applications,
security becomes a critical concern. The traditional approaches for key distri-
bution and group re-keying used for reliable network, are not suitable for large
and dynamic wireless networks because of the lossy nature of wireless medium.
Therefore, self-healing is a good property for key distribution in wireless mobile
and ad hoc networks, where the nodes/devices are powered by batteries and have
the unique feature of moving in and out of range frequently. Hence expensive
computations like the ones required by public key cryptography are not suitable
for such networks. For example, military networks consist of mobile devices car-
ried by soldiers, automatic weapons, sensing devices etc. and there could be a
need in a battle field for a rapid revocation of devices caught by the enemy. Also
there might be situations where some users are not constantly on-line or experi-
ence burst packet losses. It can rejoin the group once the power is on again. All
these aspects can take great advantage from self-healing key distribution schemes
with revocation capability. Self-healing key distribution schemes have also found
applicable in broadcast communication over low-cost channels, pay-per-view
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TV, information service delivering sensitive content/information to authorized
recipients and several other Internet-related settings.

Organization: The rest of the paper is organized as follows. Section 2 presents no-
tations to be used in the paper and our security model. Section 3 describes the de-
tails of our constructions. We provide a proof of security of our proposed schemes
in Section 4. Section 5 focuses on the performance analysis of the schemes and
their comparison with the previous works. Finally, we conclude in Section 6.

2 Preliminaries

This section briefly define our security model for self-healing key distribution.

Table 2. Notations

U : set of all users in the networks
Ui : i-th user
GM : group manager
n : total number of users in the network
m : total number of sessions
t : the maximum number of compromised user
Fq : a field of order q
Si : personal secret of user Ui

SKj : session key generated by the GM in session j
Bj : broadcast message by the GM during session j
Zi,j : the information learned by Ui through Bj and Si

Rj : the set of all revoked users in session j
H : a cryptographically secure one-way function
SF : forward key seed generated by the GM
SB : backward key seed generated by the GM
KF

i : i-th forward key in the forward key chain
KB

i : i-th backward key in the backward key chain

2.1 Our Security Model

We now state the following definitions that are aimed to computational security
for session key distribution adopting the security model of [14, 22].

Definition 2.1 (Session Key Distribution with privacy [22]) Let t, i∈{1, . . . , n}
and j ∈ {1, . . . , m}.

1. D is a session key distribution with privacy if

(a) for any user Ui, the session key SKj is efficiently determined from Bj

and Si.
(b) for any set R ⊆ U , |R| ≤ t, and Ui /∈ R, it is computationally infeasible

for users in R to determine the personal key Si.
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(c) what users U1, . . . , Un learn from Bj cannot be determined from broad-
casts or personal keys alone. i.e. if we consider separately either the set
of m broadcasts {B1, . . . , Bm} or the set of n personal keys {S1, . . . , Sn},
then it is computationally infeasible to compute session key SKj (or other
useful information) from either set.

2. D has t-revocation capability if given any R ⊆ U , where |R| ≤ t, the group
manager GM can generate a broadcast Bj, such that for all Ui /∈ R, Ui can
efficiently recover the session key SKj, but the revoked users cannot. i.e. it
is computationally infeasible to compute SKj from Bj and {Sl}Ul∈R.

3. D is self-healing if the following is true for any j, 1 ≤ j1 < j < j2 ≤ m: For
any user Ui who is a member in sessions j1 and j2, the key SKj is efficiently
determined by the set {Zi,j1 , Zi,j2}.

Definition 2.2 (t-wise forward and backward secrecy [14]) Let t, i ∈ {1, . . . , n}
and j ∈ {1, . . . , m}.
1. A key distribution scheme D guarantees t-wise forward secrecy if for any

set R ⊆ U , where |R| ≤ t, and all Ul ∈ R are revoked before session j, it
is computationally infeasible for the members in R together to get any in-
formation about SKj, even with the knowledge of group keys SK1, . . . , SKj−1
before session j.

2. A session key distribution D guarantees t-wise backward secrecy if for any set
J ⊆ U , where |J | ≤ t, and all Ul ∈ J join after session j, it is computation-
ally infeasible for the members in J together to get any information about
Kj, even with the knowledge of group keys SKj+1, . . . , SKm after session j.

3 Our Constructions

In this section, we present two constructions for self-healing key distribution with
revocation capability. We use revocation polynomial in our first construction and
apply secret sharing in our second construction. Unlike previous approaches, we
adopt a different technique to perform self-healing which is more efficient from
both communication and computation point of view compared to the previous
techniques.

We consider a setting in which there is a group manager (GM) and n users
U = {U1, . . . , Un}. All of our operations take place in a finite field, Fq, where q
is a large prime number (q > n). In our setting, we never allow a revoked user
to rejoin the group in a later session. Let H : Fq −→ Fq be a cryptographically
secure one-way function.

3.1 Construction 1: Revocation Using Polynomial

– Setup: The group manager randomly picks two initial key seeds, the forward
key seed SF ∈ Fq and the backward key seed SB ∈ Fq. It repeatedly applies
(in the pre-processing time) the one-way function H on SB and computes
the one-way key chain of length m:

KB
i = H(KB

i−1) = Hi−1(SB)



Efficient Self-healing Key Distribution with Revocation for WSNs 391

for 1 ≤ i ≤ m. The j-th session key is computed as

SKj = KF
j + KB

m−j+1,

where KF
j = Hj−1(SF ). The group manager chooses independently and uni-

formly at random m t-degree polynomials f1(x), . . . , fm(x) ∈ Fq[x], t < m, n.
Each user Ui, for 1 ≤ i ≤ n, receives its personal secret keys corresponding
to the m sessions Si = {f1(i), . . . , fm(i)} and the forward key seed SF from
the group manager via the secure communication channel between them.

– Broadcast: Let Rj = {Ul1 , . . . , Ulwj
} be the set of all revoked users for sessions

in and before j such that |Rj | = wj ≤ t. In the j-th session the group
manager locates the backward key KB

m−j+1 in the backward key chain and
computes the polynomials

rj(x) = (x − l1) · · · (x − lwj ),

hj(x) = KB
m−j+1rj(x) + fj(x).

The polynomial rj(x) is called the revocation polynomial in session j and
the polynomial fj(x) plays the role of masking polynomial in session j. The
group manager broadcasts the following message Bj:

Bj = Rj ∪ {hj(x)}.

– Session Key Recovery: When a non-revoked user Ui receives the j-th session
key distribution message Bj , it evaluates the polynomial rj(x) at point i and
recovers

KB
m−j+1 =

hj(i) − fj(i)
rj(i)

.

Finally, Ui computes the j-th forward key KF
j = Hj−1(SF ) and evaluates

the current session key

SKj = KF
j + KB

m−j+1.

– Add Group Members: When the group manager adds a new group member
starting from session j, it picks an unused identity v ∈ Fq, computes the
personal secret keys corresponding to the current and future sessions Sv =
{fj(v), fj+1(v), . . . , fm(v)} and gives {v, Sv, K

F
j } to this new group member

via the secure communication channel between them.
– Re-initialization: The system fails when all m sessions are exhausted, or when

number of revoked users becomes more than t. At this phase, re-initialization
is required and a new setup is executed.

Complexity:
Storage overhead: Storage complexity of personal key for each user is m log q

bits. The group members that join later need to store less data. Foe example,
the personal key for a user joining in j-th session occupies (m − j + 1) log q
bits memory space.
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Communication overhead: Communication bandwidth for key management is
(t + 1) log q bits. Here we ignore the communication overhead for the set of
identities of revoked users, as these identities of revoked users can be picked
from a small finite field [12].

3.2 Construction 2: Revocation Using Secret Sharing

– Setup: Let t be a positive integer. The group manager GM chooses indepen-
dently and uniformly at random m polynomials f1(x), . . . , fm(x) ∈ Fq[x],
each of degree t. The group manager randomly picks two initial key seeds,
the forward key seed SF ∈ Fq and the backward key seed SB ∈ Fq. It re-
peatedly applies (in the pre-processing time) the one-way function H on SB

and computes the one-way backward key chain of length m:

KB
i = H(KB

i−1) = Hi−1(SB) for 1 ≤ i ≤ m.

The j-th session key is computed as

SKj = KF
j + KB

m−j+1,

where KF
j = Hj−1(SF ).

Each user Ui, for 1 ≤ i ≤ n, receives its personal secret keys corresponding
to the m sessions Si = {f1(i), . . . , fm(i)} and the forward key seed SF from
the group manager via the secure communication channel between them.

– Broadcast: Let Rj be the set of all revoked users for sessions in and before
j such that |Rj | ≤ t and Gj be the set of all non-revoked users in session
j. In the j-th session the GM first chooses a set of indices (different from
0) Wj = {x1,j , . . . , xt,j} such that IRj ⊆ Wj , but Wj ∩ IGj = ∅, where IRj

represents the indices of the users in Rj , IGj denotes the set of indices of users
in Gj and ∅ is the empty set. The GM then computes Zj = KB

m−j+1 + fj(0)
and broadcasts the following message Bj:

Bj = {x1,j, . . . , xt,j ; fj(x1,j), . . . , fj(xt,j); Zj}.

– Session Key Recovery and Message Recovery: When a non-revoked user
Ui receives the j-th session key distribution message Bj, it interpolates
{(xl,j , fj(xl,j)}l=1,...,t and (i, fj(i)) to recover fj(0) by Lagrange’s interpola-
tion formula as follows:

fj(0) =
t∑

l=0

Λlfj(xl,j),

where

Λl =
t∏

k=0
k �=l

−xk,j

xl,j − xk,j

with x0,j = i. Then Ui recovers the key KB
m−j+1 as

KB
m−j+1 = Zj − fj(0).
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Finally, Ui computes the j-th forward key KF
j = Hj−1(SF ) and evaluates

the current session key

SKj = KF
j + KB

m−j+1.

– Add Group Members: When the group manager adds a new group member
starting from session j, it picks an unused identity v ∈ Fq, computes the
personal secret keys corresponding to the current and future sessions Sv =
{fj(v), fj+1(v), . . . , fm(v)} and gives {v, Sv, K

F
j } to this new group member

via the secure communication channel between them.
– Re-initialization: The system fails when all m sessions are exhausted, or when

number of revoked users becomes more than t. At this phase, re-initialization
is required and a new setup is executed.

Complexity:
Storage overhead: Storage complexity of personal key for each user is m log q

bits. The group members that join later need to store less data. Foe example,
the personal key for a user joining in j-th session occupies (m − j + 1) log q
bits memory space.

Communication overhead: Communication bandwidth for key management is
(t + 1) log q bits. Here we ignore the communication overhead for the broad-
cast of points xl,j for l = 1, . . . , t, as these identities can be picked from a
small finite field.

3.3 Self-healing

We now explain our self-healing mechanism in the above constructions: Let Ui

be a group member that receives session key distribution messages Bj1 and Bj2

in sessions j1 and j2 respectively, where 1 ≤ j1 ≤ j2, but not the session key
distribution message Bj for session j, where j1 < j < j2. User Ui can still recover
all the lost session keys Kj for j1 < j < j2 as follows:

(a) Ui recovers from the broadcast message Bj2 in session j2, the backward key
KB

m−j2+1 and repeatedly apply the one-way function H on this and computes
the backward keys KB

m−j+1 for all j, j1 ≤ j < j2.
(b) Ui computes the forward keys KF

j for all j, j1 ≤ j ≤ j2 by repeatedly
applying H on the forward seed SF or on the forward key KF

j1
of the j1-th

session.
(c) Ui then recovers all the session keys SKj = KF

j +KB
m−j+1, for j1 ≤ j ≤ j2.

Note that a user revoked in session j cannot compute the backward keys
KB

m−j1+1 for j1 > j, although it can compute the forward keys KF
j1 . As a result,

revoked users cannot compute the subsequent session keys SKj1 for j1 > j, as
desired.

Similarly, a user Ui joined in session j cannot compute the forward keys KF
j2

for j2 < j as Ui knows only the j-th forward key KF
j , not the initial forward
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seed value SF , although it can compute the backward keys KB
m−j2+1 for j2 < j.

This forbids Ui to compute the previous session keys as desired.

4 Security Analysis

In this section we show that our Constructions realizes self-healing key distribu-
tion schemes with revocation capability. More precisely, we can prove Theorem 4.1
and Theorem 4.2 which state the security result of Construction 1 and Construc-
tion 2 respectively in our security model described in Section 2.1

Theorem 4.1 Construction 1 is secure, self-healing session key distribution
scheme with privacy, t-revocation capability with respect to Definition 2.1 and
achieve t-wise forward and backward secrecy with respect to Definition 2.2.

Proof: Our goal is security against coalition of size at least t. We will show
that the Construction 1 is computationally secure with respect to revoked users
assuming the difficulty of inverting one-way function, i.e. for any session j it is
computationally infeasible for any set of revoked users of size at most t before
and on session j to compute with non-negligible probability the session key SKj ,
given the View consisting of personal keys of revoked users, broadcast messages
before, on and after session j and session keys of revoked users before session j.

Consider a coalition of t revoked users, say U1, U2, . . . Ut, who are revoked on
or before the j-th session. The revoked users are not entitled to know the j-th
session key SKj . We can model this coalition of t users as a polynomial-time algo-
rithm A′ that takes View as input and outputs its guess for SKj .We say that A′
is successful in breaking the construction if it has a non-negligible advantage in
determining the session key SKj . Then using A′, we can construct a polynomial-
time algorithm A for inverting one-way function H and have the following claim:

Claim: A inverts one-way function H with non-negligible probability if A′ is
successful.

Proof: Given any instance y = H(x) of one-way function H, A first generates an
instance View for A′ as follows: A randomly selects a forward key seed SF ∈ Fq

and constructs the following backward key chain by repeatedly applying H on y:

KB
1 = y, KB

2 = H(y), KB
3 = H2(y), . . . , KB

j = Hj−1(y), . . . , KB
m = Hm−1(y).

A computes the j-th forward key KF
j = Hj−1(SF ) and sets the j-th session key

SKj = KF
j + KB

m−j+1.

A chooses at random m polynomials f1(x), . . . , fm(x) ∈ Fq [x], each of degree
t < n. Each user Ui, for 1 ≤ i ≤ n, receives its personal secret keys corresponding
to the m sessions Si = {f1(i), . . . , fm(i)} and the forward key seed SF from A via
the secure communication channel between them. For 1 ≤ j ≤ m, A computes
broadcast message Bj as:

Bj = Rj ∪ {hj(x)}
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where Rj = {U1, . . . , Ut} is the set of revoked users for sessions in and before j
such that Rj−1 ⊆ Rj for 2 ≤ j ≤ m, and

hj(x) = KB
m−j+1rj(x) + fj(x), with rj(x) = (x − 1) · · · (x − t).

Then A sets View as

View =

⎧
⎪⎪⎨
⎪⎪⎩

fj(1), . . . , fj(t) for j = 1, . . . , m,
Bj for j = 1, . . . , m,
SF ,
SK1, . . . , SKj−1

⎫
⎪⎪⎬
⎪⎪⎭

A gives View to A′, which in turn selects X ∈ Fq randomly, sets the j-th
session key to be SK′j = KF

j + X and returns SK′j to A. A checks whether
SK′j = SKj . If not, A chooses a random x′ ∈ Fq and outputs x′.

A′ can compute the j-th forward key KF
j = H(SF ) as it knows SF from View

for j = 1, . . . , m. Note that from View, A′ knows at most t points on the t-degree
polynomial fj(x) and at most j − 1 session keys SK1, . . . , SKj−1. Consequently
A′ has knowledge of at most j − 1 backward keys KB

m, . . . , KB
m−j+2. Observe

that SK′j = SKj provided A′ knows the backward key KB
m−j+1. This occurs if

either of the following two holds:

(a) A′ is able to compute the t-degree polynomial fj(x) from View and conse-
quently can recover the backward key KB

m−j+1 as follows:

KB
m−j+1 =

hj(i) − fj(i)
rj(i)

,

where i 	= 1, . . . , t. Note that rj(i) = 0 for i = 1, . . . , t.
From View, A′ knows only t-points on the t-degree polynomial fj(x) and

will not be able to compute fj(x). Consequently, A′ will not be able to
recover Km−j+1 from Bj as described in (a) above.

(b) A′ is able to choose X ∈ Fq so that the following relations hold:

KB
m = Hj−1(X), KB

m−1 = Hj−2(X), . . . , KB
m−j+2 = H(X)

This occurs with a non-negligible probability only if A is able to invert the
one-way function H. In that case, A returns x = H−1(y).

The above arguments show that if A′ is successful in breaking the security of
Construction 1, then A is able to invert the one-way function. 
�

(of claim)
Hence Construction 1 is computationally secure under the hardness of invert-

ing one-way function. We will now show that Construction 1 satisfies all the
conditions required by Definition 2.1.

1) (a) Session key efficiently recovered by a non-revoked user Ui is described in
the third step of our Construction 1.
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(b) For any set R ⊆ U , |R| ≤ t, and any non-revoked user Ui /∈ R, we
show that the coalition R knows nothing about the personal secret Si of Ui.
For any session j, Ui’s personal secret Si = fj(i) is a point over a t-degree
polynomial fj(x). Since the coalition R gets at most t points over the t-
degree polynomial fj(x), it is computationally infeasible for coalition R to
learn fj(i) for Ui /∈ R.
(c) The j-th session key SKj = KF

j + KB
m−j+1, where KF

j = H(KF
j−1) =

Hj−1(SF ), KB
j = H(KB

j−1) = Hj−1(SB), SF is the forward seed value given
to all initial group members and SB is the secret backward seed value. Thus
SKj is independent of the personal secret Si = fj(i) for i = 1, . . . , n. So the
personal secret keys alone do not give any information about any session
key. Since the initial backward seed SB is chosen randomly, the backward
key KB

m−j+1 and consequently the session key SKj is random as long as
SB, KB

1 , KB
2 , . . . , KB

m−j+2 are not get revealed. This in turn implies that
the broadcast messages alone cannot leak any information about the session
keys. So it is computationally infeasible to determine Zi,j from only personal
key Si or broadcast message Bj.

2) (t-revocation property) Let R be a collection of t-revoked users collude in
session j. It is impossible for coalition R to learn the j-th session key SKj

because knowledge of SKj implies the knowledge of either the backward key
KB

m−j+1 or the knowledge of the personal secret fj(i) of user Ui /∈ R. The
coalition R knows the points {fj(i) : Ui ∈ R}. The size of the coalition R
is at most t. Consequently, the colluding users only have at most t-points
on the polynomial fj(x). But degree of the polynomial fj(x) is t. Hence
the coalition R cannot recover fj(x), which in turn makes KB

m−j+1 appears
random to R. Therefore, SKj is completely safe to R from computation point
of view.

3) (Self-healing property) From the third step of our Construction 1, any user
Ui that is a member in sessions j1 and j2 (1 ≤ j1 < j2), can recover the
backward key KB

m−j2+1 and hence can obtain the sequence of backward keys
KB

m−j1
, . . . , KB

m−j2+2 by repeatedly applying H on KB
m−j2+1. User Ui also

holds the forward key KF
j1

= Hj1−1(SF ) of the j1-th session and hence can
obtain the sequence of forward keys KF

j1+1, . . . , K
F
j2−1 by repeatedly applying

H on KF
j1

. Hence, as shown in Section 3.3, user Ui can efficiently recover all
missed session keys.

We will show the Construction 1 satisfies all the conditions required by
Definition 2.2.

1) (t-wise forward secrecy) Let R ⊆ U , where |R| ≤ t and all user Ul ∈ R
are revoked before the current session j. The coalition R can not get any
information about the current session key SKj even with the knowledge of
group keys before session j. This is because of the fact that in order to know
SKj , Ul ∈ R needs to know at least t+1 points on the polynomial fj(x). Since
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size of the coalition R is at most t, the coalition R has at most t personal
secrets fj(i), i.e. gets t points on the polynomial fj(x). But at least t + 1
points are needed on the polynomial fj(x) to recover the current session key
SKj for any user Ul ∈ R. Besides, because of the one-way property of H,
it is computationally infeasible to compute KB

j1
from KB

j2
for j1 < j2. The

users in R might know the sequence of backward keys KB
m, . . . , KB

m−j+2, but
cannot compute KB

m−j+1 and consequently SKj from this sequence. Hence
the Construction 1 is t-wise forward secure.

2) (t-wise backward secrecy) Let J ⊆ U , where |J | ≤ t and all user Ul ∈ J
join after the current session j. The coalition J can not get any informa-
tion about any previous session key SKj1 for j1 ≤ j even with the knowl-
edge of group keys after session j. This is because of the fact that in or-
der to know SKj1 , Ul ∈ J requires the knowledge of j1-th forward key
KF

j1
= H(KF

j1−1) = Hj1−1(SF ). Now when a new member Uv joins the group
starting from session j+1, the GM gives (j+1)-th forward key KF

j+1 instead of
the initial forward key seed SF , together with the values fj+1(v), . . . , fm(v).
Note that KF

j+1 = H(KF
j ). Hence it is computationally infeasible for the

newly joint member to trace back for previous forward keys KF
j1 for j1 ≤ j

because of the one-way property of the function H. Consequently, our proto-
col is t-wise backward secure. In fact, this backward secrecy is independent
of t. 
�

A similar result holds for our Construction 2 and we can prove Theorem 4.2
stated below following the same line of proving Theorem 4.1.

Theorem 4.2 Construction 2 is secure, self-healing session key distribution
scheme with privacy, t-revocation capability with respect to Definition 2.1 and
achieves t-wise forward and backward secrecy with respect to Definition 2.2.

5 Performance Analysis

Comparison of storage overhead, communication complexity and computation
cost of each user (not the GM) in our constructions with the existing self-healing
session key distribution schemes is provided in Table 1 (see Introduction). It
is demonstrated in Table 1 that our proposed constructions are more efficient
than the previous schemes. In particular, our Construction 1 is the most efficient
key distribution scheme with self-healing and revocation property among all the
previous approaches. In one hand our constructions reduce the communication
complexity (bandwidth) to O(t), whereas optimal communication complexity
achieved by the previous schemes is O(tj) at the j-th session. Achieving less
computation cost is on the other side of the coin. For a user Ui at the j-th
session, the computation cost is incurred by recovering all previous session keys
upto the j-th session (worst case) by self-healing mechanism. The backward
key used at the j-th session in our Construction 1 is KB

m−j+1 = hj(i)−fj(i)
rj(i)

.
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Consequently, user Ui needs to computes two points hj(i), rj(i) on the polyno-
mials hj(x) and rj(x) which require at most 2t multiplication operations. Since
division can be regarded as multiplication, total number of multiplication op-
erations required to get KB

m−j+1 is 2t + 1. After obtaining KB
m−j+1, user Ui

can easily compute KB
m−j+2, K

B
m−j+3, . . . , K

B
m−1, K

B
m by applying the one-way

function H each time. Then Ui is able to compute all previous session keys
SKj1 = KF

j1 + KB
m−j1+1 for all 1 ≤ j1 ≤ j. Thus the computation cost for each

user is 2t+1, whereas the computation complexity of the revocation polynomial
based scheme in [12] is j(2t + 1). Similarly, for Construction 2 the computation
complexity is 2{(t + 1)2 − (t + 1)} = 2(t2 + t) which is the number of multi-
plication operations needed to recover a t degree polynomial by using Lagrange
formulation. Thus the communication complexity and computation cost in our
constructions do not increase as the number of session grows. These are the most
prominent improvement of our schemes over the previous works. The storage
overhead of each user for personal key in both our self-healing key distribution
schemes is O((m − j + 1) log q), which is same as that of [4, 12].

Remark and Future Work: Our security model excludes the following property of
self-healing key distribution unlike the security model provided by [14, 22]: Let
1 ≤ j1 < j < j2 ≤ m. For any disjoint subsets L1, L2 ⊂ U , where |L1 ∪ L2| ≤ t,
no information about the session key SKj , j1 < j < j2 can be obtained by
the coalition L1 ∪ L2, where the set L1 is a coalition of users removed before
session j1 and the set L2 is a coalition of users joined from session j2. Our
protocol does not satisfy this property as illustrated by the following simple
example: Let L1 = {U3}, L2 = {U6} and j1 = 2, j2 = 5. The above property
states that U3 and U6 jointly should not be able to know SKj , j = 3, 4. But
U3 knows KF

2 and U6 knows KB
m−5+1. Consequently, U2 can compute KF

3 , KF
4

and U6 can compute KB
m−4+1, K

B
m−3+1. Hence, U3 and U6 together can compute

SKj = KF
j +KB

m−j+1, j = 3, 4. As a future work we are interested to incorporate
this property in our scheme.

6 Conclusion

In this paper, we develop and analyze two efficient computationally secure self-
healing key distribution schemes with revocation capability, enabling a very large
and dynamic group of users to establish a common key for secure communication
over an insecure wireless network. We introduce a novel self-healing mechanism
for session key-recovery on possible packet lost in the lossy environment using
one-way key chain. Our proposed key distribution mechanism significantly im-
proves the communication and computation costs over the previous approaches
without any increase in the storage complexity. The schemes are properly ana-
lyzed in an appropriate security model to prove that they are computationally
secure and achieve both forward secrecy and backward secrecy.
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Abstract. We present two broadcast authentication protocols based
on delayed key disclosure. Our protocols rely on symmetric-key cryp-
tographic primitives and use cryptographic puzzles to provide efficient
broadcast authentication in different application scenarios, including
those with resource-constrained wireless devices such as sensor nodes.
The strong points of the protocols proposed are that one protocol allows
instantaneous message origin authentication, whereas the other has low
communication overhead. In addition to formalizing and analyzing these
specific protocols, we carry out a general analysis of broadcast authenti-
cation protocols based on delayed key disclosure. This analysis uncovers
fundamental limitations of this class of protocols in terms of the required
accuracy of message propagation time estimations, if the protocols are
to guarantee security and run efficiently.

1 Introduction

Recent research in broadcast authentication for wireless networks [26,25,31,22,21]
addresses the question of how to develop efficient mechanisms and protocols for
broadcast message authentication in networks of low-cost and resource-
constrained wireless devices (e.g., sensor networks). The main challenge here con-
cerns efficiency: reducing the cost of message generation by the sender and the
verification of message authenticity by the receiver. The approaches proposed in-
clude the use of symmetric-key primitives and delayed key disclosure [26,27,16,8],
one-time signatures [25,6], and solutions based on devices’ awareness of presence
in the vicinity of the sender [31].

In this work, we propose two new broadcast authentication protocols based
on delayed key disclosure. Our protocols are based on symmetric-key crypto-
graphic primitives and rely on cryptographic puzzles to provide efficient broad-
cast authentication in a wide range of application scenarios, including those
with resource-constrained wireless devices such as sensor nodes. The first proto-
col (BAP-1) achieves instantaneous message-origin authentication upon message
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reception. Our second protocol (BAP-2) achieves broadcast authentication using
a single transmission per authenticated message.

Similar to previously proposed broadcast authentication protocols based on
delayed key disclosure [26], we also use authenticated keys derived from one-way
(hash) chain elements. However, instead of relying on delayed key transmission
(and consequently, delayed message verification), we use cryptographic puzzles
to hide the key up to the point in time when the key can be safely disclosed.
In our first protocol (BAP-1), the key is sent in a puzzle before the message,
thereby allowing instantaneous message verification. This allows the message
to be verified upon reception, assuming that the puzzle is solved by the time
the entire message is received. Our second protocol (BAP-2) achieves broad-
cast authentication with delayed key disclosure by transmitting a single message
containing the original message, its message authentication code (MAC), and
the key. BAP-2 therefore reduces the communication overhead in terms of the
number of messages needed for message authentication. We provide a detailed
security analysis of both protocols and use this analysis to highlight applications
where each of these protocols is suitable.

In addition to proposing and analyzing our protocols, we carry out a gen-
eral analysis of broadcast authentication protocols based on delayed key disclo-
sure. This analysis uncovers fundamental limitations of this class of protocols in
terms of the required accuracy of message propagation time estimations and of
time synchronization, if the protocol is to guarantee security and run efficiently.
More specifically, our analysis shows that, if a protocol is to work both securely
and efficiently, the message propagation times in the network must be known
in advance. This requirement limits the applicability of this class of protocols.
However, the design of these protocols makes them well suited for networks with
known (or predictable) topologies and for delay-tolerant networks of low-cost
and resource-scarce devices.

In summary, we make the following contributions in this work. First, we
propose two new protocols for broadcast authentication based on delayed key
disclosure. These proposed protocols represent two new points in the security-
performance subspace of this class of protocols. Second, we analyze the class
of broadcast authentication protocols based on delayed key disclosure, where
we highlight the importance of the accurate estimation of message propagation
times for the performance of protocols in this class.

The rest of the paper is organized as follows. In Section 2, we state the problem
and describe our system and attacker model. In Section 3, we describe our broad-
cast authentication protocols. In Section 4, we present our analysis of broadcast
authentication protocols based on delayed key disclosure. In Section 5, we survey
related work and we conclude the paper in Section 6.

2 Problem Statement and Background

The objective of broadcast authentication is to guarantee message-origin authen-
tication and hence also the integrity of messages transmitted by a sender to
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the receivers. That is, all receivers in the network can verify that each broad-
casted message has been generated by the claimed source and that it has not
been modified in transmission. This problem is generally solved using asymmet-
ric cryptographic primitives such as digital signatures [28,11], where the sender
signs a message with his private key and broadcasts the signature along with the
message. Any receiver holding the sender’s public key can verify the correctness
of the signature and validate if the message was indeed generated by the claimed
sender.

Achieving efficient broadcast authentication using symmetric-key primitives
is more challenging. One naive solution is that the sender appends message au-
thentication codes (MACs) to the messages, generated with the keys that the
sender shares with the receivers (one MAC per receiver). This solution clearly
does not scale and adds substantial overhead to the network, especially in the
case of multi-hop wireless networks. Another solution is that the sender shares a
single key with all receivers, in which case a single MAC is sufficient to authen-
ticate the sender. The downside of this solution is that a single compromised
node is sufficient to compromise the whole scheme.

In this work, our goal is to provide a scalable and efficient broadcast authenti-
cation protocol for resource-constrained devices using symmetric-key primitives.
We now provide a definition of broadcast authentication, incorporating both
message-origin authentication and a parameterized notion of recentness.

Definition 1

i) A broadcast protocol guarantees (message-origin) authentication iff whenever
a node B receives a message m and concludes that it was sent by node A,
then m was indeed sent by A.

ii) A broadcast protocol guarantees T -recentness iff whenever a node B receives
a message m and concludes that it was sent within T time units before its
reception, then m was indeed sent within this time interval.

iii) A broadcast protocol guarantees T -authentication iff it guarantees both au-
thentication and T -recentness.

2.1 System and Attacker Model

We now describe the class of systems we consider. A system consists of a collec-
tion of nodes connected via (e.g., wireless) communication links. The nodes can
be connected directly or can communicate over multiple hops. We neither impose
restrictions on the network topology nor do we assume that the network nodes
are aware of the network topology or of their respective locations. The network
is operated by an authority. This authority can be on-line, meaning that the au-
thority operates on-line servers (that can be reached by single-hop or multi-hop
communication), or off-line, meaning that the services of the authority cannot be
reached over the network. We assume that all network nodes can establish pair-
wise secret keys. This can be achieved by manually pre-loading all keys onto the
nodes in a network setup phase, using probabilistic key pre-distribution protocols
[12,5], or through an on-line key distribution center [17]. We also assume that
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every network node holds authentic (public) commitments of hash chains gen-
erated by other network nodes. These commitments are distributed by the net-
work authority prior to network operation. We discuss this further in Section 2.2.
Finally, any network node is a potential broadcast message source and all other
nodes are designated message receivers.

We adopt the following attacker model. We assume that the attacker Mallory
(M) controls the communication channel in the sense that he can insert, eaves-
drop, delay, schedule, modify, or block transmitted messages. Additionally the
attacker can send messages ahead of time, if he can predict them. We assume
that the attacker is not a part of the network controlled by the authority and
cannot gain access to network keys or disclose any messages exchanged between
the nodes or between the nodes and the authority in the setup phase. We also
assume that network nodes can be compromised by the attacker. However, we
will assume that the sender participating in the broadcast authentication proto-
col is not compromised, as then broadcast authentication would be meaningless.
Finally, we require M to be computationally bounded ; specifically we assume that
we can create cryptographic puzzles that are time-consuming for the attacker to
solve (see Section 3.3).

Before presenting our solutions to the broadcast authentication problem, we
briefly describe authentication based on one-way chains using delayed key dis-
closure.

2.2 Authentication Using One-Way-Chains and Delayed Key
Disclosure

The use of hash-chains for authentication was first introduced by Lamport in
[19]. Hauser et al. used hash-chains in [16] to authenticate routing updates in
routing protocols by assigning the elements of a hash-chain to points in time.
Cheung [8] added the notion of late key disclosure, which was then used by Perrig
et al. for broadcast authentication in TESLA [26].

The basic idea is as follows: The sender (whose messages should be authen-
ticated) creates a hash-chain by selecting a random element H0 as the root and
by iteratively applying to it a one-way (pre-image-resistant) function F . This
produces the sequence H0, H1, . . . , Hn, where Hi = F i(H0), for 1 ≤ i ≤ n.
As F is one-way, a receiving node possessing Hi cannot feasibly compute the
predecessor Hi−1; only the owner of the root can do so, by computing forward
from H0. However, given a string s, any node possessing Hi can easily check if
s = Hi−1 by checking if F (s) = Hi. The sender then commits to the hash chain
by distributing Hn in an authentic way to each receiver. Moreover, if required,
the receiver synchronizes his clock with the sender’s at this point.

We associate hash values with keys in the following way. For each Hi, we apply
another one-way function F ′ to derive a key Kn−i, for the corresponding time
interval n − i. F ′ is used to avoid using the string Hi for two different purposes:
as a hash value in the chain and as a key. In the following, we will use the chain
element and the corresponding key interchangeably, since this does not affect
our observations.
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Hi−1HiHi+1

Kn−(i+1) Kn−i Kn−(i−1)

Hn H0
FF

(F ′)(F ′)(F ′)

Intervaln−(i+1) Intervaln−i Intervaln−(i−1)

time

To authenticate a messages m, the sender assigns the message to a time in-
terval. Then, to send m in the (n− i)th time interval, the sender appends to m a
keyed MAC, MACKn−i(m), as well as the chain element for the preceding time
interval, Hi+1, in clear text. This hash value opens the commitment to Hi+1,
and hence the receiver can determine the key Kn−(i+1) and thereby authenticate
the previous message.

3 Broadcast Authentication Using Cryptographic Puzzles

In this section, we present our broadcast authentication protocols. We begin by
stating our assumptions. We assume that the sender and the receivers have syn-
chronized clocks. Recently, several proposals for (secure) time synchronization in
wireless networks have emerged that successfully address this problem [13,23,30].
In wired networks, we assume that the nodes are securely synchronized using on-
line synchronization servers or precise local clocks. In some application scenarios,
we can also rely on nodes synchronizing their clocks using GPS [15] receivers.
In Section 4, we will analyze the implications of time synchronization in more
detail. We further assume that a broadcasting node (A) has generated a one-way
(hash) chain and distributed its corresponding commitment to the designated re-
ceivers (B) in an authentic manner. As described in Section 2.2, the elements of
this chain are used by the sender to derive message authentication keys, whereas
the chain commitment value is used by the receivers to verify the authenticity of
the used keys. Finally, we assume that the sender can create, and receivers can
solve (within some given time), cryptographic puzzles. In Section 3.3, we dis-
cuss different puzzle schemes and their implications for the proposed broadcast
authentication protocols.

We now present two broadcast authentication protocols based on crypto-
graphic puzzles and delayed key disclosure, which we call BAP-1 and BAP-2.

3.1 BAP-1

BAP-1 is designed to achieve instantaneous message verification upon message
receipt. The protocol is shown on Figure 1. In this protocol, the message sender
first chooses the cryptographic key ki, which corresponds to the time interval
i = [ti, ti+1[ (where [ti, ti+1[ denotes the set {t ∈ R|ti ≤ t < ti+1}), according
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A(lice) B(ob)
generate ki = hn−i(H0)

corresponding to the time
interval i = [ti, ti+1[

(tA
s1)

Puzzle(ki) (tB
r1) receive Puzzle′

solve Puzzle′ yielding k′

i

(tA
s2)

MACki
(m)

(tB
r2) receive MAC′

(tA
s3) m (tB

r3) receive m′;
If MAC′ is received within the

time interval i, and if the
solution k′

i of Puzzle′

corresponds to time interval i

(i.e., k′

i = ki) and to A, and
if MAC′ = MACki

(m′)
then conclude that the message

m′ = m and is authentic and
T-recent (where T ≤ |tB

r3 − ti|)
else reject m

Fig. 1. BAP-1 protocol. The protocol achieves broadcast authentication through de-
layed key release based on cryptographic puzzles. Instant message authentication is
achieved if the receiver solves the puzzle, and therefore obtains the key, before receiv-
ing the message. All messages received by B are marked with ′ to denote that they
might have been modified in transit by an attacker.

to the scheme described in Section 2.2. The sender then encapsulates ki within
a cryptographic puzzle Puzzle(ki), and broadcasts the puzzle at time tAs1. The
puzzle serves to hide the key for a given time, which depends on the puzzle
complexity and on the solver’s processing speed. Immediately after the last bits
of the puzzle have been sent (at tAs2), the sender starts transmitting the message
authentication code MACki(m), computed over the broadcast message m, using
the key ki contained in the puzzle. Finally, when the last bits of MACki(m) are
sent (at tAs3), the sender transmits the broadcast message m.

From the receiver’s side, the protocol proceeds as follows: At time tBr1, the
receiver B receives the puzzle Puzzle′ and starts solving it to retrieve the key
k′i. Here, all messages received by B are marked with ′ to denote that they
may have been modified in transit by the adversary. Concurrent to solving the
puzzle, B receives MAC′ and subsequently the message m′. In order to verify
the authenticity of the message immediately upon its receipt, the receiver must
solve the puzzle before receiving the last bits of the message (i.e., prior to tBr3).
This case is optimal in terms of verification speed and we study it in more
detail in Section 3.1. After the receiver solves the puzzle, he then verifies (i)
if MAC′ was received within the time interval i, (ii) if the key k′i is indeed
authentic and corresponds to the current time slot i and to the claimed sender
A (i.e., if k′i can be bound to the public commitment Hn previously distributed
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Fig. 2. The diagram shows the sender and a receiver of a broadcast message. At the
bottom, the attacker receives the message earlier than the receiver. In order to create
a valid, spoofed message, he must not only solve the puzzle and create a valid MAC
(MAC′), he must also have it delivered to the receiver inside the validity window of
the key.

by the sender and to its intended time release slot, see Section 2.2), and (iii)
if the message authentication code MACki(m′) computed with the derived key
over the received message equals the received authentication code MAC′. If all
verifications succeed, then the receiver concludes that the message m′ = m is
both authentic (i.e., generated by the claimed source A) and T -recent (i.e., has
been sent by A within T time units before reception, where T ≤ |tBr3−ti|). Hence,
the receiver concludes that the message is T -authentic according to Definition 1.

Security and Performance Analysis. From the previous protocol descrip-
tion, we can derive the main protocol performance condition: the BAP-1 pro-
tocol achieves optimal performance in terms of message verification time, if the
receiver can solve the puzzle by the time that he receives the last bit of the mes-
sage. If this condition is met, the receiver can verify the message immediately
upon reception. The fulfillment of this condition depends on the receiver’s pro-
cessing speed (i.e., the speed that it can solve puzzles), the MAC and the message
propagation delays (depending on the speed of the underlying communication
channel and the network topology), and on the transmission time (depending
on the bit rate and the size of the MAC and the message). Note that for the
message verification to succeed, the MAC needs to reach the receiver within the
key’s validity window.

The main security condition of this protocol is that the attacker M is not
able to solve the puzzle before the validity of the key expires (each key is valid
for only a certain time interval, as described in Section 2.2). This prevents the
attacker from being able to create a valid MAC for his own messages. Besides
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solving the puzzle and jamming the original MAC, the attacker has to create
his own MAC and deliver it before the validity window ends. The relationship
between the message propagation time, key validity window, and the minimum
time within which the attacker needs to solve the puzzle is shown on Figure 2.
The sender can enhance the security level of the protocol by creating puzzles that
are harder (and thereby require more time) to solve or by tightening the key va-
lidity window. For a more detailed discussion on cryptographic puzzles and how
they are constructed, see Section 3.3. Note that the receiver has much more time
to solve the puzzle than the attacker. Namely, to achieve instant verification, the
receiver needs to solve the puzzle before the message has been received, which
will typically be after the validity period of the key has expired (depending on
the message size). Alternatively, the receiver can continue solving the puzzle af-
ter he receives the message, in which case the message will be verified with a
delay. We want to point out that a puzzle in combination with the hash-chain
and the corresponding disclosure schedule protects the MAC (and therefore the
integrity and authenticity of the corresponding message) during transportation
up to the point of reception. Therefore the required restrictions on the compu-
tational resources of the adversary do not depend on the computational power
of the honest nodes involved, but mainly depend on the transmission time given
by the communication medium and the network topology.

m

Puzzle(k )i

,MAC (m),
ki

MAC'

A
M

1

M
2

B

... Puzzle(k )i

Fig. 3. This figure shows a scenario in which the attacker controls two devices (M1 and
M2), M1 located close to the sender (A), whereas M2 is located close to the receiver
(B). Furthermore the attacker nodes are connected by a fast link (dashed line).

From Figure 2, we can draw conclusions about how the attacker’s physical
distance from the sender and the receiver affects his ability to successfully break
the scheme. Namely, if the attacker is located close to the sender, he will quickly
obtain the puzzle (i.e., the propagation delay of the puzzle from the sender to
the attacker will be short), and therefore can start solving it earlier. However,
after solving the puzzle, the attacker still needs to forge a new message, create
a new MAC’, and send MAC’ to the attacked receiver. Therefore being close
to the sender (instead of to the receiver) means that the propagation time of
MAC’ from the attacker to the receiver will be long, thus reducing the attacker’s
ability to solve the puzzle and send MAC’ before the key becomes invalid. This
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is illustrated in Figure 3, where the attacker M1 eavesdrops on the puzzle sent
by the sender and, after solving it, forges MAC’, and sends it to the receiver
(using multi-hop communication). Equally, if the attacker is placed close to the
receiver, then he will get the puzzle at the same time as the receiver, but will
have almost no time to solve it before the first bits of MACki(m) are received
by the receiver or before the key’s validity expires. From these considerations we
conclude that the optimal placement for the attacker is the one that minimizes
the sum of the puzzle propagation delay from the sender to the attacker and the
MAC’ propagation delay from the attacker to the receiver. This means that the
attacker is best located along the fastest (e.g., shortest) communication path
between the sender and the receiver.

Note that, if the attacker controls two devices, M1 and M2, one located close
to the sender and the other close to the receiver, connected with a fast (e.g.,
wired) link, then the attacker can shorten the communication time of MAC’ to
the receiver, and therefore gain time to solve the puzzle and obtain the key.
This scenario is illustrated in Figure 3. However, if the broadcast source has a
direct link to all receivers, the attacker cannot increase his chances of success,
as he cannot speed up the propagation of the signal between the sender and the
receiver.

These arguments show that the key validity interval and the puzzle hardness
need to be appropriately set to reflect the attacker’s expected strength and his
possible locations. In the following analysis, we consider the worst-case scenario,
in which the attacker controls two devices placed in the vicinity of the sender and
the receiver, connected via a fast wired link (i.e., effectively forming a worm-hole
between two locations). We start by stating the conditions for a message to be
successfully authenticated by an honest receiver:

– The key ki included in the puzzle must be an element of the hash chain.
– If the puzzle has been received at tBr1, then tBr1 must be in the time interval

associated to the key ki in the puzzle.
– The arrival time tBr2 of MACki(m) must be before tBr1 + δM , the point of

time, when Bob assumes that Mallory would have solved the puzzle and
therefore is able to create his own message m̃ with a valid MAC MACki(m̃).
Note that this is where the assumption about the computational power of
Mallory comes into play.

– The message m is successfully authenticated by MACki(m).

Therefore we get the following conditions on the parameters for the protocol
to achieve the desired security properties:

– tBr1 ∈ [ti, ti+1[, i.e., the puzzle has been received in the validity period of the
corresponding key (element of the hash-chain).

– tMr1 + δM /∈ [ti, ti+1[, i.e., the intruder is not able to solve the puzzle in the
validity interval i of the associated key.

– tMr1 + δM ≥ tBr2, i.e., the intruder cannot solve the puzzle before Bob receives
MACki(m) and therefore cannot create a valid MAC for his own message.
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– In order for the protocol to achieve instantaneous message authentication,
we need tBr1 + δB ≤ tBr3, i.e., Bob can solve the puzzle before he receives the
message authenticated by the key in the puzzle.

The above analysis shows that secure broadcast authentication can be achie-
ved if tMr1 + δM /∈ [ti, ti+1[ and tMr1 + δM ≥ tBr2 hold. Furthermore, the protocol
achieves instantaneous message authentication if tBr1 + δB ≤ tBr3 is fulfilled.

In terms of our definition of broadcast authentication, the protocol authenti-
cates the message m, since no node other than the owner of the one-way chain
knows ki before ti+1 and therefore only the owner can create a valid MAC for the
message. Similarly m is T -recent since it is verified by the corresponding MAC
using the key of the time interval i = [ti, ti+1[. Therefore the protocol achieves
T -recentness, where T ≤ |tBr3 − ti|, in case of the successful authentication of the
message.

This analysis also shows that the ability of the receiver to verify a given
message depends on the assumption that the sender can estimate message prop-
agation delays. If the sender can reach all the receivers through a direct link
(e.g., a sender is a node with a high-power radio), then estimating propagation
delays is not difficult, as it only depends on the link communication speed, which
is predictable. However, if the sender broadcasts in a multi-hop network, the es-
timation of propagation delays will depend on network topology and is more
challenging. As we show in Section 4, incorrect propagation delay estimates af-
fect the performance (but not the security) of all protocols that are based on
delayed key disclosure by resulting in valid messages being rejected by a subset
of network nodes.

Note that the given analysis makes worst-case assumptions in terms of the
attacker’s abilities, i.e., the attacker receives each message instantaneously from
the sender and similarly can deliver messages to the intended receiver without
any delay. In reality, it will be more difficult to successfully attack the protocol.
For example, if we assume that the puzzle and the MAC are concatenated to-
gether within the message, then the attacker has to jam the entire message, solve
the puzzle, and create a valid MAC for his own message. Finally the new MAC
has to be concatenated with the puzzle and must be delivered to the receiver be-
fore the validity interval of the key (inside the puzzle) ends. In a scenario where
we have optimal conditions in terms of propagation delay (to the receivers), syn-
chronized clocks, and predefined message-sizes, we can choose a sufficiently small
validity interval for keys that minimizes the possibility of a successful attack.

3.2 BAP-2

BAP-2 is based on an approach similar to BAP-1 in that late key disclosure
is achieved using cryptographic puzzles. The main difference is that, in BAP-2,
not only the key, but also the message and its MAC is encapsulated within
a puzzle. This collapses three messages into one and also reduces the time
that the attacker has to solve the puzzle in order to break the scheme. The
BAP-2 protocol is shown on Figure 4. In this protocol, the sender generates
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Fig. 4. BAP-2 protocol. The protocol achieves broadcast authentication through de-
layed key release based on cryptographic puzzles. Message authentication is achieved if
the receiver receives the puzzle before the attacker has solved it. All messages received
by B are marked with ′ to denote that they might have been modified in transit by
the adversary.

the key ki = hn−i(H0) for time interval i. Hence the sender encapsulates the
message m, its message authentication code MACki(m), and the key ki in a
puzzle Puzzle(m, MACki(m), ki). After receiving the puzzle Puzzle′, the re-
ceiver solves it and then verifies (i) that the Puzzle′ was received during the
time interval i, (ii) that the key k′i (derived from Puzzle′) is indeed authentic
and that it corresponds to the current time slot i and to the claimed sender A,
and (iii) that the message authentication code MAC′ derived from the puzzle
corresponds to MACk′

i
(m′) computed with the derived key k′i over the derived

message m′. If and only if all three verifications succeed, the receiver concludes
that the message m′ = m is both authentic (i.e., generated by the claimed source
A) and T -recent (where T ≤ |i|). Consequently, BAP-2 reaches T -authentication
according to Definition 1, where T ≤ |i|.

One advantage of BAP-2 over BAP-1 is that the attacker has less time to
solve the puzzle. Namely, as soon as the first bits of the puzzle are received by
the receiver, the attacker looses the possibility to forge the message. Therefore,
the key validity time intervals can be shortened in BAP-2 with respect to the
intervals in BAP-1, assuming the same message size, key size, and propagation
delays. One drawback of this solution is the loss of instantaneous message verifi-
cation and the inability to prepare the puzzles beforehand (unless the messages
are largely predictable or drawn from a small, well-defined set).
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The security analysis of BAP-2 closely resembles that of BAP-1 and we there-
fore omit further details. Similar to BAP-1, we require that the attacker cannot
generate a valid message prior to solving the puzzle and cannot solve the puzzle
before the validity of the key expires.

3.3 Cryptographic Puzzles

In this section, we discuss possible realizations of the cryptographic puzzles used
in our protocols. Cryptographic puzzles were first suggested by Merkle [9] and
led to the invention of public-key cryptography. In [29], Rivest et al. present a
construction of time-lock puzzles based on repeated squaring. The main contri-
bution of time-lock puzzles is that they are non-parallelizable as solving them
requires iterated application of an inherently sequential set of operations. How-
ever, solving this kind of puzzle requires the use of modular arithmetic and is
therefore prohibitively expensive in networks composed of resource-constrained
devices. Juels and Brainard [18] propose client puzzles based on one-way hash
functions with partially disclosed hash input values. Their client puzzles use
light-weight cryptographic primitives, but as they rely on exhaustive search,
they are parallelizable. The main advantage of both time-lock and client puzzles
is that they are simple to construct, but take significant time to solve. If the time
required for puzzle construction is not prohibitive (e.g., can be performed during
idle time), another puzzle construction scheme can be used. Namely, puzzles can
be constructed by iterating a strong encryption function (such as AES [24]) a
predefined number of times over a protected message, while either partially or
entirely disclosing the used encryption keys. To solve this puzzle, a receiver needs
to decrypt the ciphertext the same number of times as it was encrypted. Puzzles
constructed based on iterated encryption are therefore non-parallelizable.

We now summarize desirable properties for puzzle schemes usable for broad-
cast authentication. (i) Puzzle generation should be computationally inexpensive
for the sender. (ii) A puzzle should be solvable by a receiver within a given, fi-
nite time interval. In particular, a sender should be able, with the same puzzle
scheme, to generate puzzles which a receiver can solve in short time as well
as puzzles for which a receiver needs more time to solve. (iii) Solving a puzzle
should not be parallelizable. This prevents a puzzle being solved faster by several
colluding devices.

Although none of the described puzzle construction schemes satisfies all these
requirements, both hash-based client puzzles and puzzles based on iterative en-
cryption can be used for broadcast authentication in networks of resource scarce
devices (e.g., sensor networks). Hash-based client puzzles neither incur heavy cost
in terms of storage nor in terms of puzzle generation; these puzzles are therefore
well suited for scenarios in which any sensor node is a potential broadcasting
node. A drawback of client puzzles is that they are parallelizable and therefore
introduce a security risk in the broadcast authentication scheme if the attacker’s
strength (in terms of the number and type of devices that it holds) is underesti-
mated. Puzzles based on iterated encryption functions are costly to generate, but
are non-parallelizable; these puzzles can therefore be used in scenarios in which
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a subset of selected network nodes (i.e., network sinks, base stations, or clus-
ter heads) broadcast messages to the network of resource-constrained (sensor)
nodes. Given that these selected nodes have higher computational and storage
capabilities than “regular” sensor nodes, they can compute and store puzzles for
all the keys prior to their use in broadcast communication. These puzzles can
therefore be computed for all keys in parallel with the creation of hash chains
from which the keys are derived.

4 Analysis of Broadcast Authentication Protocols Using
Delayed Key Disclosure

In this section, we analyze common properties shared by all broadcast authen-
tication protocols based on one-way chains and delayed key disclosure. The
common elements found in all these schemes are validity windows and a dis-
closure schedule for the keys, i.e., for the elements of the one-way chain (see
Section 2.2 for further explanations). We will focus our analysis on the impact
of clock synchronization and propagation delay on the security and performance
of these protocols.

In the next subsection, we model the commonalities of this protocol class as
a protocol pattern that can be found in any of these schemes. Therefore security
properties related to this skeleton are relevant for this entire class of protocols.
Examples of protocols in this class are the BAP-1 and BAP-2 protocols just
presented, Cheung’s authentication scheme [8], and TESLA, including all its
variants [27].

4.1 The Protocol Pattern

As explained in Section 2.2, the key idea of using one-way chains for authen-
tication is to associate elements of the chain in reverse order to time intervals.
Therefore there are two important notions related to an element of the one-way
chain: (i) the validity window of the element, i.e., the interval in which it should
be used, and (ii) the point in time when the key is published, in order to prove
the correctness of a MAC (built with a key derived from the element) and to
prove the key’s membership in the one-way chain.

In the protocol pattern below, we consider that the sender holds a one-way
chain consisting of elements (Hk)0≤k≤n. To prove the origin of a message to a
receiver, the sender appends the message authentication code MAC(mi, Ki) to
a message mi sent in time interval [ti, ti+1[, where Ki is derived from Hi. [ti, ti+1[
denotes the validity window of the element Hi, i.e., Ki is only accepted in this
interval as a key. Finally the chain element Hi is released (published) at ti + d,
i.e., d time units after the start of Ki’s validity window.

Note that these parameters may vary in different implementations. For exam-
ple, in TESLA [26] the chain element Hi is released two validity windows after
it has been used to create a key for a MAC. Therefore dTESLA = 2 · |ti+1 − ti|.
In our protocols, we do not send the chain element after the message, but imple-
ment the delayed key disclosure by hiding the key in a puzzle. Therefore dBAP
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Fig. 5. Common Pattern for Delayed Key Disclosure Protocols

is determined by the difficulty of the puzzle and the assumptions made about
the attacker’s computational power.

In Figure 5, the superscripts S (Sender) and R (Receiver) indicate the clock
taken as a reference. Furthermore we make the following definitions and
assumptions:

t0: sender and receiver synchronize their clocks.
tSi , tSi+1: start and end of the validity interval for key Ki.

tSSM : MAC(mi, Ki) is sent.
tRRM : the receiver has received MAC(mi, Ki).

d: key disclosure delay, i.e. Hi is disclosed at tSi + d.
pd: the propagation delay of the message.
Δc: clock difference between sender and receiver.

Concerning the synchronization of the receiver’s and sender’s clock, we assume
that at time tSi on the sender’s clock, the receiver’s clock shows tSi +Δc. For our
observations, it is suffices to assume that Δc is constant since we consider here
a relatively short time interval.

In order for the protocol to guarantee T -authentication, the following condi-
tions must be fulfilled:

i) The MAC for message mi is computed using the key Ki, which is valid in
the interval when the puzzle and the MAC are sent.

ii) In order for the receiver to accept the message as being authentic, MAC
(mi, Ki) (but not necessarily the message mi) must be received within the
validity interval of Ki.

From the sender’s point of view, the receiver receives the message at tSRM =
tSSM+pd. At this point in time, the receiver’s clock shows tRRM = tSRM+Δc+pd. In
order for the receiver to accept the message as valid, the inequality tRRM < tSi+1
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must be fulfilled. Note at this point, that the boundaries (ti and ti+1) of the
validity interval are given in the protocol specification and therefore tSi = ti.
Given tRRM = tSRM + Δc + pd, we have the condition tSRM + Δc + pd < ti+1 for
the receiver to accept the message as being sent by the holder of the one-way
chain. Since tSRM ≥ ti, we conclude ti+Δc+pd < ti+1. Note that tSRM = ti is the
earliest point in time when the key Ki would be used to authenticate a message.
Therefore for the message to be successfully authenticated and therefore to be
accepted by the receiver, we have the condition that:

Δc + pd < ti+1 − ti (1)

From the security standpoint, the time when the key is disclosed is particularly
critical. Under the assumption of perfect cryptography, this is the only possibility
for the attacker to acquire the key and therefore to create a valid message.

To analyze the performance and security properties of the schemes, we will
now consider the possible values of the parameters involved, case by case.

4.2 Impact of the Accuracy of Time Synchronization

As we mentioned in the description, we assume that sender and receiver have
synchronized their clocks at t0. At ti we assume the clocks to show a differ-
ence of Δc time units, due to clock drift. We therefore have the following two
possibilities:

Δc < 0: The receiver’s clock is slower than the sender’s clock. By (1), even with a
larger propagation delay pd, the message would still be accepted by the
receiver. Therefore the receiver would accept messages authenticated by
keys that are, according to the sender’s clock, no longer valid. From the
security point of view, the critical point is reached if |Δc| > d−(ti+1−ti).
This opens the possibility of an attack against the scheme if the intruder
is able to jam the original message and waits (or solves the puzzle) for
the key, which he could then use to create a valid MAC for his own
message.

Δc > 0: The receiver’s clock is faster than the sender’s clock. In this case, the
validity window on the client side shrinks and therefore no attacks are
possible, except breaking the one-way chain (or the puzzle). On the
other hand, a message could be invalidated by the receiver, although it
would still be valid from the sender’s perspective.

4.3 Impact of the Propagation Delay

In this section, we analyze the impact of propagation delay on the performance of
such a scheme. For simplicity, in this analysis, we assume perfect synchronization
(i.e., Δc = 0). Therefore the inequality reduces to pd < ti+1 − ti, as a necessary
condition for the receiver to accept messages. If he receives a message after a key
is no longer valid, he will reject the message. This implies that, under the assump-
tion of perfectly synchronized clocks, this class of protocols can only be used in an
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environment where the propagation delays of all nodes involved are known in ad-
vance, since the validity window and the disclosure delay have then to be chosen
appropriately. In multi-hop networks, propagation delays are difficult to estimate
in advance [13]. Since the disclosure delay has then to be set according to the max-
imum propagation delay, this would delay the time of verification drastically.

4.4 Differences to Schemes Using Public Key Cryptography

As indicated in Section 2, the broadcast authentication problem is easily solved
using asymmetric cryptography, but the computational cost is high. Hence, in or-
der for a protocol to meet the requirements of resource-constraintdevices, schemes
using symmetric cryptography were introduced. But clearly, some form of asym-
metry is needed in the solutions. The direct use of symmetric cryptography fails
as the ability to verify the authenticity of a message is equivalent to the ability to
authenticate an arbitrary message. One-way chains introduce the required asym-
metry by letting the holder of the root element commit to a set of keys (the chain),
while only publishing a single element (the last element of the chain). By using the
elements of the chain as keys in keyed MAC functions, we transfer the asymmetry
of knowing a certain key (chain element) to the ability to create a valid message
authentication code. Since the key is needed to prove the validity of the MAC, the
key must be disclosed. Upon disclosure, the asymmetry of the MAC is lost since,
from this point on, anybody can create MACs using this key.

The asymmetry of the scheme is preserved by using a predefined disclosure
schedule: if a MAC is created before the disclosure of the key, only the holder
of the root of the one-way chain could have created it. Therefore we gain an
additional property, namely evidence of when the message has been sent by
the sender given by the time interval in which the key is intended to being
used (before disclosure). This gives us T-recentness, where T is defined by the
disclosure schedule and the arrival time of the message. These considerations
also help illustrate the tradeoff in schemes using this technique. For efficiency
reasons, the key should be disclosed as early as possible for the receiver to be
able to verify instantaneously the authenticity of the corresponding message.
But for security reasons, the key should not be disclosed too early, so that an
attacker cannot create a valid MAC by using a disclosed key.

5 Related Work

Efficient broadcast (and multicast) authentication in wireless networks is an
active field of research. In recent years, a number of proposals emerged that
address this problem. To our knowledge, the first authentication scheme based on
delayed key disclosure was introduced by Cheung [8] in the context of secure link
state updates in routing protocols for wired networks. This technique was later
used by Perrig et al. in [26], who propose TESLA, a broadcast authentication
protocol based on delayed key disclosure. This approach relies on explicit key
disclosure after the message (i.e., message and MAC). In [27], Perrig and Tygar
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present a suite of broadcast authentication protocols, including a Tesla variant
named TIK, that achieves instant message verification with a single message
release. A number of extensions of TESLA are presented in [20,22,21].

In TESLA and its variants, the time of message verification is delayed until
the point in time when the key is disclosed by the message source. In comparison,
our schemes achieve similar properties by sending the authentication key hidden
in a puzzle with, or prior to, the message. Therefore our schemes reduce the
number of messages needed to guarantee authenticity. Since our protocols are
based on cryptographic puzzles, the security and also the performance of BAP-1
and BAP-2 depend on the computational power of the attacker and the honest
nodes involved.

In the case of instantaneous message authentication, all schemes based on
delayed key disclosure exhibit a trade-off between security and performance. As
we have pointed out in the Section 4, the smaller the validity window of a key
is chosen, the smaller the propagation must be. Since the message should be
authenticated right after reception, the disclosure delay (and therefore also the
validity window) of the key must be chosen small in order to guarantee au-
thentication. As a consequence, the allowed propagation delay is equally small.
Therefore TIK (the TESLA variant guaranteeing instantaneous message authen-
tication) and BAP-1 suffer from the same restrictions on the allowed propagation
delay. BAP-1 achieves broadcast authentication under the assumption that the
puzzle has been solved up to the point where the message is received, whereas
in TIK, the key bits need to be sent right after the message.

Besides the approaches based on delayed key disclosure, alternatives based on
one-time signatures have been proposed in the context of broadcast authentica-
tion [27,7]. Other approaches include broadcast authentication based on receiver
proximity awareness [31]. Moreover, there are similar contributions in the field of
multicast authentication that are more related to wired networks, e.g., [3], [14], [4].

Information-theoretically secure broadcast authentication mechanisms were
proposed by a number of researchers [1], [10]. These protocols typically have a
high overhead with many receivers and do not scale in large (sensor) networks.
Canetti et al. present a broadcast authentication protocol in which a message
is authenticated with k different MAC’s [4] and in which no coalition of w (cor-
rupted) receivers can forge a packet for a specific receiver.

Boneh, Durfee, and Franklin show in [2] that a compact collusion-resistant
broadcast authentication protocol cannot be built without relying on digital
signatures or on time synchronization.

6 Conclusion

In this paper, we have introduced two broadcast authentication protocols based on
symmetric-key primitives and delayed key disclosure. We showed that these pro-
tocols achieve T -authentication, a form of authentication that includes a notion of
recentness. By identifying the core components of broadcast authentication proto-
cols using delayed key disclosure, we were able to uncover fundamental limitations
of this class of protocols. Our results show that there is a trade-off between security
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and performance for protocols of this class. Furthermore, for performance and se-
curity reasons, the propagation delay inside a network must be known beforehand
in order to choose the protocol parameters correctly. Since these delays are difficult
to predict in multi-hop wireless networks, this class of protocols is not well suited
for such networks. However, these protocols are well suited for wireless broadcasts
where the receivers are in the direct range of the transmitter.

Acknowledgment. The authors would like to thank Ueli Maurer for a useful
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Abstract. XTR public key system was introduced at Crypto 2000,
which is based on a method to present elements of a subgroup of a multi-
plicative group of a finite field. Its application in cryptographic protocols
leads to substantial savings both in communication and computational
overhead without compromising security. It was shown how the use of
finite extension fields and subgroups can be combined in such a way that
the number of bits to be exchanged is reduced by a factor 3.

In this paper we show how to more compress the communication over-
head. The compressed XTR leads to a factor 6 reduction in the repre-
sentation size compared to the traditional representation and achieves as
twice compactness as XTR. The computational overhead of it is a little
worse than that of XTR, however the compressed XTR requires only
about additional 6% computational effort. If finding 4-th roots of unity
is pre-computed, then the computational overhead is only 1% compared
to that of original XTR. Furthermore, the required size of public key
data of it reduces about 26% from that of XTR.

1 Introduction

In the classical Diffie-Hellman (DH) key exchange scheme, two system param-
eters are fixed: a large prime number q and a generator g of the multiplicative
group of the basic prime field Fq. In the basic DH scheme the two parties each
send a random power of g to the other party. Assuming both parties know q and
g, each party transmits about log2(q) bits to the other party.

In [4], ElGamal suggested that finite extension fields can be used instead of
prime fields, but no direct computational or communication advantages where
implied. In [10], Schnorr proposed a variant of the classical Diffie-Hellman
scheme, in which g does not generate the whole multiplicative group of the
prime field Fq, but only a small subgroup of which the order contain relatively
small compared to q. This considerably reduces the computational cost of the
DH scheme, but has no effect on the number of bits to be exchanged.
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After that, it has tried to make use of traces to represent and calculate powers
of elements of a subgroup of a finite field to achieve efficient and compact sub-
group representation. The LUC cryptosystem uses the trace over Fq to represent
elements of the order q + 1 subgroup of F

∗
q2 [11]. Compared to the traditional

representation LUC leads to a factor 2 reduction in the representation size. The
variant described in [5] uses the subgroup of order q2 + q + 1 of F

∗
q3 instead,

but as a result sizes are reduced by only a factor 1.5. In [2], Brouwer et al. in-
troduced for the first time how the use of finite extension fields and subgroups
can be combined in such a way that the number of bits to be exchanged is re-
duced by a factor 3. More specifically, it was shown that elements of an order p
subgroup of F

∗
q6 can be represented using 2 log2(q) bits if p divides q2 − q + 1.

Despite its communication efficiency, the method of it is rather troublesome and
computationally not particularly efficient.

In 2000 Lenstra-Verheul introduced XTR [7], a cryptosystem using the trace
over Fq2 to represent elements of the order q2 − q + 1 subgroup of F

∗
q6 , there by

achieving a factor 3 size reduction. Also, the resulting calculations are apprecia-
bly faster than using the standard representation. XTR of security equivalent
to 1024-bit RSA achieves speed comparable to cryptosystems based on random
elliptic curves over random prime fields (ECC) of equivalent security. The corre-
sponding XTR public keys are only about twice as large as ECC keys, assuming
global system parameters - without the last requirement the sizes of XTR and
ECC public keys are bout the same. Furthermore, parameter initialization from
scratch for XTR takes a negligible amount of computing time, unlike RSA and
ECC. Combined with its very easy programmability, this makes XTR an excel-
lent public key system for a very wide variety of environments, ranging from
smart cards to web servers.

In this paper we present a greatly improved version of XTR that leads to a
factor 6 reduction in the representation size compared to the traditional rep-
resentation. That is to say, we achieve a factor 2 reduction compared to the
original XTR. We show that if the characteristic of q is three, i.e. q = 32k−1 for
some integer k, then we can use the trace over Fq to represent elements of the
order q −

√
3q +1 subgroup of F

∗
q6 . Also, the resulting calculations such as expo-

nentiations are as faster as that of XTR. Given Tr(q6,q)(g) and n, Tr(q6,q)(gn)
takes about 1381 multiplications in Fq, which is only about 6% increase com-
pared to the cost of computation of Tr(q6,q2)(hn) for given Tr(q6,q2)(h) and n,
where the size of n is 160 bits. If q is fixed, then finding square root of −1 can
be pre-computed. In this case, the computational overhead is only 1% compared
to that of original XTR. Furthermore, the required size of public key data of it
reduces about 26% from that of the original XTR.

In Section 2 we describe XTR, and in Section 3 we introduce XTR over
characteristic three, which achieves a factor 2 reduction in the representation size
compared to XTR. Section 4 shows efficient calculations of XTR exponentiation
over characteristic three. Applications and comparisons to the original XTR are
given in Section 5.
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2 XTR

2.1 Description of XTR

XTR uses a subgroup of prime order p of the order q2 − q + 1 subgroup of F
∗
q6 .

The latter group is referred to as the XTR supergroup denoted as Gq2−q+1 and
the order p subgroup Gp is referred to as the XTR group. The XTR supergroup
Gq2−q+1 is not contained in any proper subfield of Fq6 due to the following fact.

Fact 1. [8] Let p be a prime factor of Φm(q), where m-th cyclotomic polynomial
for a positive integer m not divisible by q. Then the subgroup Gp of F

∗
qm is not

contained in any proper subfield of Fqm .

Combined with the choice of p it follows that computing discrete logarithms in
Gp is as hard, in general, as it is in F

∗
q6 [7].

Before describing XTR more detail, we introduce two definitions about opti-
mal normal basis.

Definition 1. Type I Optimal Normal Basis (Type-I ONB)
If m+1 is a prime and q is a generator of F

∗
m+1, then the set {ωm, ωm−1, · · · ,

ω2, ω} forms an optimal normal basis of type I in Fqm and called Type-I ONB.
Here, ω is the primitive (m+1)-th root of unity.

Definition 2. Type II Optimal Normal Basis (Type-II ONB)
If 2m + 1 is a prime and either of the following two conditions holds,

• q is a primitive root module 2m + 1,
• q is a quadratic residue module 2m + 1 and p �≡ 1 mod (2m + 1),

then the set {βm, βm−1, · · · , β2, β} forms an optimal normal basis of type II in
Fqm and called Type-II ONB. Here, β = γ+γ−1 and γ is the primitive (2m+1)-th
root of unity.

XTR uses Fq2 arithmetic to achieve Fq6 security, without requiring explicit con-
struction of Fq6 . Let q be a prime that is 2 mod 3. It follows that (X3 − 1)/
(X − 1) = X2 + X + 1 is irreducible over Fq and the zeros α and αq of it form
an Type-I ONB for Fq2 over Fq. In XTR elements of Gp are represented by their
trace over Fq2 . For h ∈ F

∗
q6 the trace Tr(q6,q2)(h) over Fq2 is defined as the sum

of the conjugates over Fq2 of h, i.e. Tr(q6,q2)(h) = h + hq2
+ hq4 ∈ Fq2 . Let p

and q be primes with p dividing q2 − q + 1. Also let h be a generate of Gp and
let c = Tr(q6,q2)(h). Suggested lengths to provide adequate levels of security are
log2(q) ≈ 170 and log2(p) ≈ 160.

cn denotes Tr(q6,q2)(hn) ∈ Fq2 , for some q and h of order p dividing q2 − q +1
as above. Efficient computation of cn given q, p and c depends on the recurrence
relation

cu+v = cucv − cq
vcu−v + cu−2v, (1)
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for u, v ∈ Z. It simplifies for u = v to

c2u = c2
u − 2cq

u. (2)

In [7], Lenstra and Verheul proved that computing cu+v and c2u take four and
two multiplications in Fq respectively, when cu, cv, cu−v, and cu−2v are given.

2.2 XTR Exponentiation

In XTR, an algorithm for computing Tr(q6,q2)(hn) given Tr(q6,q2)(h) and a scalar
n ∈ Z is needed like the algorithm for computing hn in public key system based
on discrete logarithm problem. By using two formula (1),(2) above, we define the
following two functions called as XTR addition and XTR doubling respectively;

A[u, v, w, z] = u · v − vq · w + z,

D[u] = u2 − 2uq.

XTR Exponentiation ([7], Algorithm 2.3.7)
INPUT: c and n where n > 2
OUTPUT: cn

1. Compute initial values:
1.1. C3 ← c, C0 ← D[C3], C1 ← A[C0, C3, C3, 3], and C2 ← D[C0]
1.2. If n is even, n replace n− 1.

Let n = 2m + 1 and m =
∑ l

j=0 mj2j with mj ∈ {0, 1} and ml = 1.
2. for j = l − 1 down to 0

2.1. T1 ← D[Cmj
]

2.2. T2 ← D[C1+mj
]

2.3. if (mj = 0) then T3 ← A[C0, C1, Cq
3 , Cq

2 ]
if (mj = 1) then T3 ← A[C2, C1, C3, Cq

0 ]
2.4. C0 ← T1
2.5. C1 ← T3
2.6. C2 ← T2

3. If n is odd then return C1
else return C2

Theorem 1. ([7], Theorem 2.3.8) Let c and a positive integer n be given. Com-
puting the sum cn of the nth powers of the roots takes 8 log2(n) multiplications
in Fq.

Thus, given the representation Tr(q6,q2)(h) ∈ Fq2 of the conjugates of h, the
representation Tr(q6,q2)(hn) ∈ Fq2 of the conjugates of the nth power of h can
be computed at the cost of 8 log2(n) multiplications in Fq, for any integer n.

Denote the above XTR exponentiation with input c and n outputs cn as

XTR Exp[c, n] = cn.

2.3 XTR-DH Key Agreement

XTR can be used in any cryptosystem that relies on the discrete logarithm
problem. This section contains a description of an application of XTR that
provides confidentiality service, for example Diffie-Hellman key agreement.
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Public Parameters : q, p, c = Tr(q6,q2)(h)
If Alice and Bob want to agree on a secret key K they do the following.

1. Alice selects at random a ∈ Zp, uses XTR Exp[c, a] = ca ∈ Fq2 , and sends ca

to Bob.
2. Bob receives ca from Alice, selects at random b ∈ Zp, uses XTR Exp[c, b] =

cb ∈ Fq2 , and sends cb to Alice.
3. Alice receives cb from Bob, computes XTR Exp[cb, a] = cba, and determines

K based on cba := Tr(q6,q2)(hba).
4. BobusesXTR Exp[ca, b]=cab, anddeterminesK based on cab :=Tr(q6,q2)(hab).

3 XTR over Characteristic Three

The original XTR uses the trace over Fq2 to represent elements of the order
q2 − q + 1 subgroup of F

∗
q6 , thereby achieving a factor 3 size reduction. This

section shows that if q is 3 to the odd power then elements in Gq2−q+1 can be
represented as elements in Fq using the trace over Fq. It achieves a factor 6
size reduction, which is the half size reduction compared to the original XTR
representation.

3.1 New XTR Group

We assume that q = 3t for any odd integer t, say t = 2k − 1. Then,
√

3q = 3k is
an integer and q2 − q + 1 is factorized as

q2 − q + 1 = (q +
√

3q + 1)(q −
√

3q + 1).

In this section, we define a new XTR group Gp =< g > which is a sub-
group of Gq−√3q+1, namely, XTR uses a subgroup of prime order p of the order
q −

√
3q + 1 subgroup of F

∗
q6 . The order p subgroup < g > generated by g is

referred as the New XTR group. Since p does not divide any qs −1 for s = 1, 2, 3,
the new XTR group Gp generated by g cannot be embedded in the multiplicative
group of any true subfield of Fq6 . Combined with the choice of p it follows that
computing discrete logarithms in Gp is as hard, in general, as it is in F

∗
q6 (cf. [7],

Section 5).

Gp =< g > � Gq−√3q+1 � Gq2−q+1 � Gq3−1 (3)

Here, A � B denotes A is a subgroup of B.
From q = 3t and t is odd it follows q is a generator of F

∗
5, so that {ω +

ω−1, ω2 + ω−2} form an Type-II ONB for Fq2 over Fq, where ω is a root of the
polynomial (X5 − 1)/(X − 1) = X4 + X3 + X2 + X + 1. For the simplicity, we
denote x = x1 · (ω + ω−1) + x2 · (ω2 + ω−2) ∈ Fq2 as (x1, x2).

Lemma 1. Let x, y, z ∈ Fq2 with q = 3t and t is odd.

i. Computing xq is for free.
ii. Computing x2 takes two multiplications in Fq.
iii. Computing x ∗ z − y ∗ zq takes four multiplications in Fq.
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Proof. Let x = (x1, x2), y = (y1, y2) and z = (z1, z2) ∈ Fq2 for xi, yi, zi ∈ Fq,
i ∈ {1, 2}. From (ω+ω−1)q = ω2+ω−2 and (ω2+ω−2)q = ω+ω−1, xq = (x2, x1).
It follows that qth powering in Fq2 does not require arithmetic operations and
can thus be considered to be for free.

From x2 =
(
(x1 + x2)(x1 − x2) + 2x1x2, 2(x1+ x2)(x1 − x2) + 2x1x2

)
, x2 is

obtained from two multiplications in Fq.
Finally, to compute x ∗ z − y ∗ zq four multiplications in Fq suffice, because it

is easily verified that

x∗ z−y∗ zq =
(
(x2 − 2x1 + y2 − y1)∗z1 + (x1 − x2 + 2y1 − y2) ∗ z2

)
∗ (ω + ω−1)

+
(
(x2 − x1 + 2y2 − y1)∗z1 + (x1 − 2x2 + y1 − y2)∗z2

)
∗(ω2 + ω−2).

�	

3.2 Compression and Restoration

For some q and g of order p dividing q −
√

3q + 1, define d and e as the trace
Tr(q6,q2)(g) over Fq2 and the trace Tr(q6,q)(g) over Fq, respectively. We use the
shorthand dn = Tr(q6,q2)(gn) and en = Tr(q6,q)(gn), i.e. en and dn are the sum
of the conjugates over Fq2 and Fq of gn respectively. Immediately, d = d1 and
e = e1.

dn = Tr(q6,q2)(gn) = gn + gnq2
+ gnq4 ∈ Fq2

en = Tr(q6,q)(gn) = gn + gnq + gnq2
+ gnq3

+ gnq4
+ gnq5 ∈ Fq.

Compression. From the definition of dn and en, en can be easily derived from
dn due to the following equation

en = dn + dq
n. (4)

For any dn = x(ω + ω−1) + y(ω2 + ω−2) ∈ Fq2 , we have that en = (x + y) ∗ (ω +
ω−1) + (x + y) ∗ (ω2 + ω−2) ∈ Fq because of Lemma 1-i. Note that as dn ∈ Fq2

and dn /∈ Fq, x �= y.
Define a compression function with input an element of Fq2 represented by

two elements of Fq, say (x, y), outputs an element of Fq.

Compression[x, y]= x + y

Restoration. Contrary to the compression from dn to en, this section explains
how to get dn from en, called it as restoration in this paper.

Lemma 2. The roots of X2 − enX + e
√

3q
n ∈ Fq[x] are dn and dq

n.

Proof. It is sufficient to prove dn∗dq
n = e

√
3q

n because dn+dq
n = en from equation

(4). For simplicity, we prove dn ∗ dq
n = e

√
3q

n when n = 1.
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d∗dq = (g + gq2
+ gq4

) · (gq + gq3
+ gq5

)

= g1+q+ g1+q3
+ g1+q5

+ gq2+q+ gq2+q3
+ gq2+q5

+ gq4+q + gq4+q3
+ gq4+q5

�= g
√

3q + (gq)
√

3q + (gq2
)
√

3q + (gq3
)
√

3q + (gq4
)
√

3q + (gq5
)
√

3q + 3

= (g+gq+gq2
+gq3

+gq4
+gq5

)
√

3q

= e
√

3q.

The third equality is derived from the series of subgroups in equation (3), that
is to say, gq+1 = g

√
3q (from <g> � Gq−√3q+1) and gq3+1 = 1 (from <g> �

Gq3−1). �	

From Lemma 2, we can find two roots dn and dq
n by solving the quadratic for-

mula, which are

{dn, dq
n} =

en ±
√

e2
n − 4e

√
3q

n

2
. (5)

Let en = z ∈ Fq and the roots of the quadratic equation be {(x, y), (y, x)},
where x, y ∈ Fq and x �= y. Actually, z = x + y. Define a restoration function
with input en, outputs {dn, dq

n} ∈ Fq2 .

Restoration[en]= {dn, dq
n}.

4 Efficient Method of Restoration - Finding dn and dq
n

from en

As we have looked around at the previous section, we need to solve the quadratic
formula described in Lemma 2 to extract dn and dq

n from en. In other words, we

have to compute the square root extraction
√

e2
n − 4e

√
3q

n .
In a finite field Frs where r ≡ 3 (mod 4) and odd s, the best algorithm known

[3,9] to compute a squire root executes O(s log2 r) multiplications in Frs . By
that method, a solution of X2 = A is given by X = A

rs+1
4 , assume that A

is a quadratic residue. Recently, Barreto et al. (c.f. [1], Section 4) presented an
improvement to it. The complexity is reduced to O(log2 s+log2 r) multiplications
in Frs . If the characteristic r is fixed and small compared to s, the complexity
is simply O(log2 s).

4.1 Square Root Extraction

Let R = e2
n − 4e

√
3q

n ∈ Fq. Here, q = 32k−1 for any inter k. As dn or dq
n /∈ Fq

√
R

is not an element of Fq. Thus, we can not utilize Barreto et al.’s method directly
to compute square root of R even if q ≡ 3 (mod 4).
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Fact 2. −1 has a square root in Fq if and only if q ≡ 1 (mod 4).

As q ≡ 3 (mod 4),
√

−1 /∈ Fq, but in Fq2 .

Lemma 3.
√

−R ∈ Fq, where −R = 2e2
n + e

√
3q

n .

Proof. Let F
∗
q =< g1>.

√
gn
1 = g

n/2
1 ∈ Fq if n is even and

√
gn
1 is not in Fq if n is

odd for gn
1 ∈ F

∗
q . From (g(q−1)/2

1 )2 = 1 and g1 is a generator of Fq, g
(q−1)/2
1 = −1.

We confirm easily that (q − 1)/2 is odd if q = 32k−1. Then we see that R = gn1
1

for some odd n1 since
√

R �∈ Fq. Hence −R = R · (−1) = g
n1+(q−1)/2
1 and

n1 + (q − 1)/2 is even. Therefore,
√

−R ∈ Fq. �	

From Lemma 3, one of
√

−R is (−R)
q+1
4 and it is efficiently computed by using

the idea of Barreto et al. [1]. The basic idea is as follows.
They noticed that, if q = 32k−1 for some k:

q + 1
4

=
32k−1 + 1

4
= 6 ·

k−2∑
i=0

(32)i + 1,

so that (
− R

)(q+1)/4 =
[(

(−R)2
)∑k−2

i=0 (32)i]3 · (−R).

The quantity
(
(−R)2

)∑ k−2
i=0 (32)i

is efficiently computed in an analogues fashion
to Itoh-Teechai-Tsujii inversion [6], based on the Frobenius map in character-
istic three. Let A ∈ Fq. Then, one can compute A

∑ k−2
i=0 (32)i

with no more than

log2(k−1)� + HW (k−1) − 1 multiplications in Fq. Here, 
·�and HW (·) de-
note the maximum integer less than its operand and the Hamming weight of
its operand respectively. Thus, we need at most 
log2(k−1)� + HW (k−1) + 1
multiplications in Fq to compute (−R)(q+1)/4 in total.

Next we must find
√

−1 ∈ Fq2 to compute
√

R =
√

−R ·
√

−1. 4-th roots
of unity in Fq2 are ±1, ±

√
−1. We select an element x in F

∗
q2 at random then

x(q2−1)/4 becomes any of ±1, ±
√

−1. If x(q2−1)/4 is not ±1 then it is one of
square root of −1. 4-th roots of unity are also efficiently computed just by small
modification of Barreto et al.’s idea [1].

q2 − 1
4

=
34k−2 − 1

4
= 2 ·

2k−2∑
i=0

(32)i,

so that (
x
)(q2−1)/4 =

(
x2)∑2k−2

i=0 (32)i

.

As x ∈ Fq2 , to find a 4-th root of unity it takes on average 2 ·
(

log2(2k−1)�+

HW (2k−1)
)

multiplications in Fq2 using the Frobenius map in characteris-
tic three. Thus, 6 ·

(

log2(2k−1)� + HW (2k−1)

)
multiplications in Fq as one
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multiplication in Fq2 takes three1 multiplications in Fq. Note that if q is fixed,
then finding square root of −1 can be pre-computed.

4.2 Computation of dn and dq
n

Thanks to the equation (5) and the results of the previous section, for given
en ∈ Fq

{dn, dq
n} =

en ±
√

R

2
= 2 · (en ±

√
−R ·

√
−1)

= 2en ± (2e2
n + e

√
3q

n )
q+1
4 ·

√
−1. (6)

Table 1 shows the number of multiplications in Fq required to compute
equation (6), where as customary we do not count the cost of additions and
subtractions in Fq.

Table 1. The number of multiplications in Fq for computation of dn and dq
n, where

q = 3t and t = 2k − 1 for some integer k

Operation # of multiplications in Fq

e2
n 1

e
√

3q
n free if Fq has Type-II ONB over F3

(2e2
n + e

√
3q

n )
q+1
4 �log2(k−1)� + HW (k−1) + 1√

−1 6 ·
(
�log2(2k−1)� + HW (2k−1)

)

(2e2
n + e

√
3q

n )
q+1
4 ·

√
−1 2

2en ± (2e2
n + e

√
3q

n )
q+1
4 ·

√
−1 6 ·

(
�log2(2k−1)� + HW (2k−1)

)
+

�log2(k−1)� + HW (k−1) + 4

For efficient computation of
√

3q-th power of en (∈ Fq), i.e. e
√

3q
n , we should

select q such that Fq has optimal normal basis (ONB) over F3. As q = 32k−1,√
3q = 3k. Thus,

√
3q-th power is performed by shift of coefficients when Fq

has ONB over F3. However, Fq never has Type-I ONB over F3 since 2k is not
prime. Therefore, we should check whether Fq has Type-II ONB over F3 or not
for given k. For example, we may select k = 55, 70, 82, 89, and 94, which satisfy
that Fq has Type-II ONB over F3.

Note that a multiplication (2e2
n + e

√
3q

n )
q+1
4 ∗

√
−1 takes two multiplications

in Fq because (2e2
n + e

√
3q

n )
q+1
4 ∈ Fq and

√
−1 ∈ Fq2 .

1 Multiplication in Fq2 can be done using four multiplications in Fq. These straightfor-
ward results can simply be improved to three multiplications by using a Karatsuba-
like approach: to compute (x1, x2) ∗ (y1, y2) one computes x1 ∗ y1, x2 ∗ y2, and
(x1 + x2) ∗ (y1 + y2), then (x1, x2) ∗ (y1, y2) becomes

(
(x1 + x2) ∗ (y1 + y2) + x2 ∗

y2, (x1 + x2) ∗ (y1 + y2) + x1 ∗ y1
)
.
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Theorem 2. Given en for any integer n, computing dn and dq
n take about 6 ·(


log2(2k−1)� + HW (2k−1)
)
+ 
log2(k−1)� + HW (k−1) + 4 multiplications in

Fq under assumption that Fq has Type-II ONB over F3.

5 Compressed XTR Exponentiation

In this section it is shown how en can be computed based on e1 and an arbitrary
integer n.

Restoration - compute d1 and dq
1 from Restoration[e1]. Between {d1, d

q
1} choose

one of them at random, denoted d′.
XTR exponentiation - compute d′n from XTR Exp[d′, n] described in section
2.2.
Compression - compute Compression[d′n] = d′n + (d′n)q. Actually, Compres-
sion[d′n] = en.

At the compression step, we can easily check d′n + (d′n)q = en. d′ is one of
{d1, d

q
1}. If d′ = d1 then it is trivial because of the definition of en. Otherwise,

i.e. d′ = dq
1 then d′n + (d′n)q = dq

n + dn because dn ∈ Fq2 , which concludes the
justification of the compression step.

Denote the above XTR exponentiation over characteristic three with input e1
and n outputs en as

XTR Exp3[e1, n] = en.

Theorem 3. Let e1 and a positive integer n ∈ Zp be given. Assume that Fq has
Type-II ONB over F3. Then, computing en takes about 8 log2(n) + 6 ·(

log2(2k−1)� + HW (2k−1)

)
+ 
log2(k−1)� + HW (k−1) + 4 multiplications

in Fq.

Proof. Immediate from Theorem 2, XTR Exponentiation algorithm ([7],
Algorithm 2.3.7), and Lemma 1.

5.1 Application to XTR-DH

In this section we describe XTR version Diffie-Hellman key agreement over char-
acteristic three.

Public Parameters : q(= 32k−1), p, Tr(q6,q)(g) := e
Suppose that Alice and Bob who both have access to the XTR public key data,

want to agree on a shared secret key K. This can be done using the following
XTR version.

1. Alice selects at random a ∈ Zp, uses XTR Exp3[e, a] = ea ∈ Fq, and sends ea

to Bob.
2. Bob receives ea from Alice, selects at random b ∈ Zp, uses XTR Exp3[e, b] =

eb ∈ Fq, and sends eb to Alice.
3. Alice receives eb from Bob, computes XTR Exp3[eb, a] = eba, and determines

K based on eba = Tr(q6,q)(gba).
4. Bob uses XTR Exp3[ea, b]=eab, and determinesKbased on eab=Tr(q6,q)(gab).
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5.2 Comparison to Original XTR

In this section, we compare XTR over characteristic three to the original XTR.
Let XTR and XTR3 denote the original XTR [7] and XTR over characteristic
three respectively.

XTR group Gp

XTR - XTR group Gp =<h> is a subgroup of Gq2−q+1, where h ∈ F
∗
q6 .

• p and q are prime, and q ≡ 2( mod 3).
XTR3 - XTR group Gp =<g> is a subgroup of Gq−√3q+1, where g ∈ F

∗
q6 .

• p is prime and q = 32k−1.
Note that suggested lengths to provide adequate levels of security are
log2(q) ≈ 170 and log2(p) ≈ 160.

XTR Exponentiation

XTR - For given Tr(q6,q2)(h) and n ∈ Zp computing Tr(q6,q2)(hn) takes
8 log2(n) multiplications in Fq.

• Fq2 has Type-I ONB over Fq.
XTR3 - For given Tr(q6,q)(g) and n ∈ Zp computing Tr(q6,q)(gn) takes
8 log2(n) + 6 ·

(

log2(2k−1)� + HW (2k−1)

)
+ 
log2(k−1)� + HW (k−1) + 4

multiplications in Fq.
• Fq2 has Type-II ONB over Fq.
• Fq has Type-II ONB over F3.

Denote by P and Q the sizes of the prime p and q to be generated, respectively.
To achieve security at least equivalent to 1024-bit RSA, 6Q should be set to
about 1024, i.e., Q ≈ 170, and P can for instance be set at 160. In XTR3,
k = 55 satisfies that Fq has Type-II ONB over F3, and also the size of Q ,where
k = 55, is about 170. In the case when k = 55, the result of 6 ·

(

log2(2k−1)� +

HW (2k−1)
)
+ 
log2(k−1)� + HW (k−1) + 4 is at most 101. In general, the size

of n is about 160-bit. Under these conditions, Tr(q6,q)(gn) takes about 1359
multiplications in Fq, which is only about 6% increase compared to the cost of
computation of Tr(q6,q2)(hn). If q is fixed, then finding square root of −1 can be
pre-computed. Then, the computational overhead is only 1% compared to that
of original XTR.

Communication Overhead. The communication overhead of XTR-DH in
XTR3 is about half of XTR-DH proposed in [7] and one six of traditional im-
plementations of the Diffie-Hellman protocol that are based on subgroups of
multiplicative groups of finite fields, and that achieves the same level of security.

Size of Public Key Parameter. In XTR, the public key data are q, p, and
Tr(q6,q2)(h). Thus, the total length is 3Q + P . However, in the case of XTR3,
the public key data are q(= 32k−1), p, and Tr(q6,q)(g), and the total length of it
is 2Q + P . If we select Q ≈ 170 and P ≈ 160 then the required length of public
key data of XTR3 is reduced about 26% from that of XTR.
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Abstract. The NTRU cryptosystem is a ring-based public key system
using hard problems over lattices. There has been an extensive research
on efficient implementation of NTRU operations, including recent re-
sults such as Bailey et al.’s software implementation over a resource-
constrained device and Gaubatz et al.’s hardware implementation using
only 3,000 gates. In this paper, we present a new algorithm to improve
further the performance of NTRU. We speed up the encryption and de-
cryption operations of NTRU up to 32% using some temporary memory,
and if we can use precomputation, then the speed-up becomes up to 37%.
Our method is based on the observation that specific sub-operations are
repeated frequently in the underlying polynomial operations of NTRU.

1 Introduction

The NTRU cryptosystem [1] is a public key cryptosystem over polynomial rings,
whose security is based on hard problems over lattices. After the introduction
of NTRU encryption, a digital signature scheme using NTRU lattices, which
is called NTRUsign [2], was also proposed. Since Coppersmith and Shamir [3]
presented an attack against NTRU using lattice basis reduction algorithms, there
have been various attempts to break NTRUencrypt [4] and NTRUsign [5,6,7].
However, none of these attacks revealed any significant weakness in the lattice
problems used for NTRU [8].

On the other hand, there has been an extensive research on the efficient im-
plementation of NTRU. Hoffstein and Silverman [9,10] proposed to use special
forms of polynomials to reduce the amount of computation in NTRU while pre-
serving its security, and Bailey et al. [11] showed that NTRU can be efficiently
implemented over resource-constrained devices. Recently, Gaubatz, Kaps and
Sunar [12] presented a hardware implementation of NTRU using no more than
3,000 gates, showing it is possible to use public key cryptography on sensor
nodes. Now NTRU is being considered for the IEEE P1363.1 standard [13].
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In this paper, we present a method to improve further the performance of
NTRU. We speed up the encryption and decryption operations of NTRU by 25
to 37%, based on the observation that specific patterns are repeated frequently
in a convolution operation, which is a dominant polynomial operation of NTRU.
Our contributions are as follows:

– We propose an efficient method to find such patterns, which resembles the
sliding window method for exponentiation. Hence we name our method a
sliding window method for NTRU. We show that our method is optimal in
the sense that it can find the maximum number of these patterns within a
given window size.

– We propose a new convolution algorithm that improves on the algorithm
given in [11]. According to our experiments, the new algorithm accelerates
the encryption and decryption operations of NTRU up to 32% using some
temporary memory. If we can use off-line precomputation, then the speed-up
becomes up to 37%.

2 Preliminaries

2.1 Convolution

Let Z be the set of integers. The polynomial ring over Z, denoted by Z[X ], is
the set of all polynomials with coefficients in Z. We work in the quotient ring
R = Z[X ]/(XN − 1). An element a ∈ R can be written as a polynomial or a
vector,

a(X) =
∑N−1

i=0 aiX
i = [a0, a1, . . . , aN−1].

Then multiplication of a ∈ R and b ∈ R can be represented as the convolution
product c, which is given by c(X) = a(X) ∗ b(X) with

ck =
∑k

i=0 aibk−i +
∑N−1

i=k+1 aibN+k−i =
∑

i+j≡k ( mod N) aibj,

since XN ≡ 1 mod (XN − 1).
In principle, this operation requires N2 integer multiplications. However, for

a typical product used by NTRU, either a or b has small coefficients, so the
computation of a ∗ b can be done very fast.

2.2 The NTRU Public-Key Cryptosystem

In this section, we briefly review the NTRU cryptosystem. While there are several
variants of NTRU, an improved version given in [9,11] can be described as follows:

– NTRU has three public parameters (N, p, q), where gcd(p, q) = 1 and p � q.
– Coefficients of polynomials are reduced mod p or q.
– The inverse of polynomial f mod q, denoted by f−1 mod q, is defined as the

polynomial satisfying f ∗ f−1 ≡ 1 mod q.
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The working draft of IEEE P1363.1 standard [13] presents a few typical param-
eter sets for NTRU, one of which is (N, p, q) = (251, 2, 197).

Key Generation. Randomly choose polynomials F, g ∈ R with small coeffi-
cients. Then compute f := 1+ pF and h := pf−1 ∗ g mod q, where mod q means
that every coefficient in a polynomial is reduced mod q. The private key is the
polynomial f and the public key is the polynomial h.

Encryption. Let m be the polynomial representing a message. Then randomly
choose a polynomial r of degree N − 1 with small coefficients, and compute the
ciphertext e := r ∗ h + m mod q.

Decryption. In order to decrypt e, first compute a := e ∗ f mod q, choosing
the coefficients of a to satisfy A ≤ ai < A + q. The value of A is fixed and
is determined by a simple formula depending on the other parameters. Then
recover the plaintext m as m := a mod p.

Why Decryption Works. The polynomial a satisfies

a ≡ e ∗ f mod q
≡ (r ∗ h + m) ∗ f mod q (since e ≡ r ∗ h + m)
≡ pr ∗ g + m ∗ f mod q (since h ∗ f ≡ pg ∗ f−1 ∗ f ≡ pg)

Consider the last polynomial pr ∗ g + m ∗ f . By an appropriate choice of param-
eters, one can adjust its coefficients to lie in an interval of length less than q.
Hence we can recover

a = pr ∗ g + m ∗ f = pr ∗ g + m ∗ (1 + pF )

exactly, not merely modulo q. In other words, m ≡ a mod p.

2.3 Fast Convolution

The most time consuming part of NTRU encryption is computation of the con-
volution product r(X) ∗ h(X) mod q. Similarly, the most time consuming part
of NTRU decryption is computation of e(X) ∗ f(X) mod q, and thus e(X) ∗
F (X) mod q, since e(X) ∗ f(X) ≡ e(X) + pe(X) ∗ F (X).

Note that while the coefficients in polynomials h(X) and e(X) are almost
randomly distributed modulo q, we can control the forms of r(X) and F (X).
Thus, r(X) and F (X) are usually selected to have binary coefficients, i.e., 0 or 1,
so that coefficients may be computed without any multiplication. For example,
if r(X) is a binary polynomial with Hamming weight HW (r), i.e., with HW (r)
ones, computation of the product r(X) ∗ h(X) mod q requires approximately
HW (r) × N operations, where each operation is an addition plus a reduction
modulo q. Therefore, if we can use r(X) and F (X) with low Hamming weights,
the encryption and decryption procedures become very efficient. In [13], appro-
priate values for HW (r) and HW (F ) are given according to the choice of public
parameters (N, p, q).1

1 Note that too small values of HW (r) and HW (F ) may compromise security, since
the sizes of spaces for r and f become very small.
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Algorithm 1. Fast Convolution Algorithm (reproduced from [11])
Input: b an array of d locations for ‘1’ representing the polynomial a(X); c(X) the

polynomial; N the number of coefficients in a(X), c(X).
Output: t the array where t(X) = a(X) ∗ c(X).
1: for 0 ≤ j < 2N do
2: tj ← 0
3: end for
4: for 0 ≤ j < d do
5: for 0 ≤ k < N do
6: tk+b[j] ← tk+b[j] + ck

7: end for
8: end for
9: for 0 ≤ j < N do

10: tj ← (tj + tj+N) mod q
11: end for

Bailey et al. [11] presents an efficient convolution algorithm under the assump-
tion that one of the two input polynomials has binary coefficients. Algorithm 1
shows its simplified form, where c(X) ∈ R is a general polynomial and a(X) ∈ R
is a binary polynomial with HW (a) = d. That is, a(X) represents r(X) and
F (X) in NTRU.

In Algorithm 1, line 6 repeats dN times and requires two additions each time,
i.e., one for the addition of ck and the other for the computation of index k+b[j].
On the other hand, line 10 repeats N times and it requires two additions and
one modular reduction each time. Therefore the total number of operations of
Algorithm 1 is exactly 2(d + 1)N additions and N modular reductions.

3 Sliding Window Method for NTRU

The speed of a convolution operation, and thus the performance of NTRU en-
cryption and decryption, can be improved significantly if some memory is avail-
able. In this section, we show the motivation for our work, and give an improved
convolution algorithm, which we call the sliding window method for NTRU. The
new algorithm is based on the observation that for a binary polynomial a(X) ∈ R
which is produced by randomly selecting HW (a) ones out of N possible posi-
tions, the distribution of ones has some desirable properties.

3.1 Basic Idea

We begin by examining the structure of a convolution operation. Note that
multiplication of a ∈ R and c ∈ R can be represented as the convolution product
t ∈ R:

tk =
∑k

i=0 aick−i +
∑N−1

i=k+1 aicN+k−i =
∑

i+j≡k ( mod N) aicj .
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Because t ∈ R can also be written as a vector, this operation can be rewritten
as the following matrix form:

t(X) = a(X) ∗ c(X) =

⎛
⎜⎜⎜⎜⎜⎝

a0 aN−1 aN−2 · · · a2 a1
a1 a0 aN−1 · · · a3 a2
a2 a1 a0 · · · a4 a3
...

...
...

. . .
...

...
aN−1 aN−2 aN−3 · · · a1 a0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

c0
c1
c2
...

cN−1

⎞
⎟⎟⎟⎟⎟⎠

.

We can observe that each row in the above N ×N matrix is produced by rotating
the previous row to right by one position.

Now we give a small example with a binary polynomial a(X) = X + X2 +
X5 + X6 + X8 + X9 with N = 10, d = 6. For simplicity, we will write a binary
polynomial as a bit string throughout this section. Thus a(X) will be written as
0110011011. Then a(X) ∗ c(X) can be written as

t(X) = a(X) ∗ c(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1 1 0 0 1 1
1 0 1 1 0 1 1 0 0 1
1 1 0 1 1 0 1 1 0 0
0 1 1 0 1 1 0 1 1 0
0 0 1 1 0 1 1 0 1 1
1 0 0 1 1 0 1 1 0 1
1 1 0 0 1 1 0 1 1 0
0 1 1 0 0 1 1 0 1 1
1 0 1 1 0 0 1 1 0 1
1 1 0 1 1 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0
c1
c2
c3
c4
c5
c6
c7
c8
c9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence t0 will be computed as t0 = c1 + c2 + c4 + c5 + c8 + c9, which requires
six additions.2 Among these additions, now we concentrate on the term c1 + c2.
We can see that this term also occurs in the computation of t3 and t7. This is
because the pattern ‘11’ is repeated three times in the binary representation of
a(X). To be more precise, c1 + c2 in the computation of t0, t3, t7 corresponds
to 113, 111, 112 in a(X) = 0111001120113, respectively. Since the term c1 + c2
occurs three times, we can compute this term only once, store it in a look-up
table, and reuse it when it is required, which can reduce the number of additions
by two. This reduction can also be applied to other terms related to the pattern
‘11’. For example, the term c2 + c3 occurs in the computation of t1, t4 and t8,
the term c3 + c4 in t2, t5 and t9, the term c4 + c5 in t3, t6 and t0, and so on. Thus
the overall savings by the pattern ‘11’ becomes 2 × N = 20.

Note that the above idea can be applied to other patterns such as ‘101’, ‘1001’,
‘111’, etc., if only we can find these patterns in the binary representation of the
polynomial so that these patterns may not share ‘1’s. The following lemma shows
a general rule for the relation between pattern occurrences and the amount of
computation.
2 For the sake of convenience in explanation, we do not consider the cost for index

computation and reduction mod q here.
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Lemma 1. If a pattern containing n ‘1’s, occurs m times in the binary
representation of a polynomial with N coefficients, then we can reduce the num-
ber of integer additions by N(m − 1)(n − 1) at the cost of memory to store N
intermediate integers.

Proof. It is straightforward since the number of integer additions related to such
a pattern is reduced to N(m + n − 1) from Nmn. ��

Therefore, patterns p1, p2, . . . , pl can be used to reduce the number of integer
additions by

N
∑l

i=1(mi − 1)(ni − 1), (1)

where pi contains ni ‘1’s and it occurs mi times. (Note that either a pattern
with a single ‘1’ or a pattern that occurs just once does not introduce any speed-
up.) Thus a method to maximize (1) is crucial for fast NTRU computation. For
example, for a string 01101101100, using a pattern ‘11’ such that 01101101100
will provide more saving than using ‘101’ such that 01101101100.

3.2 Finding Patterns

In this subsection, we present an efficient pattern-finding algorithm and analyze
its performance. Our algorithm is based on the following facts, which will be
justified throughout this subsection:

– It is sufficient to consider only the patterns that have a few (or no) zeros
between two ones, i.e., ‘11’, ‘101’, ‘1001’, and so on.

– There is an efficient greedy method to find such patterns, i.e., we just scan the
given bit string once, marking the positions of pattern occurrences. Actually,
we can show this approach is optimal.

Now we examine the first claim. Lemma 2 gives a clue to the question, “which
pattern do we have to try to find?” First, the distance between two bit positions
is defined as the difference of their indices. For example, in a string 1001, the
distance between two ‘1’s is 3.

Lemma 2. Consider a task that chooses a bit according to a distribution where
the probability that 1 is selected is p. We repeat this task independently to choose
coefficients of a binary polynomial. Let Z be the distance between two neighboring
occurrences of 1’s. Then Pr[Z > d] = (1 − p)d.

Proof. First, fix a specific nonzero position. Since we assume the independence
between coefficients, we can see that Pr[Z = t] = (1 − p)t−1p. Therefore, we
obtain

Pr[Z > d] =
∑∞

i=d{(1 − p)ip} = (1−p)dp
1−(1−p) = (1 − p)d. ��

According to [13], binary polynomials F (X) and r(X) are randomly selected
such that dF and dr coefficients are equal to 1, respectively, and the remain-
ing coefficients equal to 0. While this situation is not exactly the same as the
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assumption in Lemma 2, the approximation p ≈ dF/N or p ≈ dr/N shows a
similar behavior to a real distribution, as shown in Table 1. Although the values
given in this table are experimental results according to the method of [13], they
are almost the same as the values estimated from Pr[Z = d] = (1 − p)d−1p,
where p = dF/N = dr/N .

Table 1. Distribution of distances d between two neighboring 1’s in F (X) and r(X)

parameter set (N, dF = dr) d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

ees251ep6 (251, 48) 0.191 0.156 0.126 0.101 0.083 0.066
ees347ep2 (347, 66) 0.191 0.155 0.125 0.102 0.082 0.067
ees397ep1 (397, 74) 0.186 0.152 0.124 0.101 0.082 0.067
ees491ep1 (491, 91) 0.186 0.152 0.123 0.101 0.082 0.067
ees587ep1 (587, 108) 0.184 0.151 0.123 0.101 0.082 0.067
ees787ep1 (787, 140) 0.177 0.147 0.120 0.099 0.081 0.067

Lemma 2 and Table 1 show that for practical parameter sets given in [13], the
distance between two neighboring 1’s is less than or equal to 5 with probability
about 2/3. Thus we can expect that patterns such as ‘11’, ‘101’, ‘1001’, ‘10001’
and ‘100001’ should cover a fairly large portion of F (X) and r(X), and provide
considerable speed-up. We define these patterns as simple patterns with length
2 through 6, respectively.3

Now what we have to do is to develop an efficient method that finds the
patterns ‘11’, ‘101’, ‘1001’, and so on. We define the window size w, and find
only the simple patterns that have up to w − 2 zeros between two ones. Hence
there could be separated ones that cannot be paired with neighboring ones. For
notational convenience, let p0 be a separated ‘1’, and let p1 = ‘11’, p2 = ‘101’,
p3 = ‘1001’, and so on.

We use a greedy algorithm that scans the input bit string from right to left
just once. Algorithm 2 shows this algorithm. The reason why we start from right
can be found in the behavior of Algorithm 1 that we use as a basis for our new
convolution algorithm. That is, if we examine the construction of a specific tj ,
we can see that the coefficients ck accumulated to tj are scanned from higher
degrees to lower degrees, except one wrap-around at cN−1.

We call our method a sliding window method for NTRU, since its bit-scanning
behavior resembles that of the well-known sliding window method for exponen-
tiation. The only differences are that there should be only up to two ‘1’s in a
single window, and the scanning is done in the opposite direction. It is easy to
see that Algorithm 2 requires exactly N bit comparisons regardless of w, and
the arrays b0, b1, . . . , bw−1 cover all positions of ‘1’s in x.

3 We need not consider patterns containing more than two ‘1’s, since these patterns
occur too rare. For example, for a fixed position of ‘1’, the probability that the next
two bits are all ‘1’s, i.e., the probability that it makes a pattern ‘111’ is p2 ≈ 0.037
for N = 251, d = 48.
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Algorithm 2. Finding Simple Patterns with Window Size ≤ w

Input: x a binary string; N length of x; w window size.
Output: b0 an array representing the positions for separated ‘1’s; b1 . . . bw−1 arrays

representing the positions for p1, . . . , pw−1, respectively.
1: i ← N − 1
2: while i ≥ 0 do
3: if xi = 1 then
4: if pj = xi−j . . . xi for some j in {1, 2, . . . , w − 1}, then
5: append i to bj

6: i ← i − (j + 1)
7: else
8: append i to b0

9: i ← i − w
10: end if
11: else
12: i ← i − 1
13: end if
14: end while

The following example illustrates our method for w = 4, N = 28:

100001 1001000100101010110001. (2)

The arrays b0 through b3 will be as follows:

b0 = [27, 5, 0], b1 = [23], b2 = [20], b3 = [16, 9]. (3)

Theorem 1. Algorithm 2 is an optimal algorithm to find the maximum number
of simple patterns with length ≤ w in a bit string.

Proof. Note that if there is an interval containing w − 1 or more consecutive
zeros, then there cannot be any simple pattern with length ≤ w that overlaps
this interval. Therefore these zero intervals partition the input string x into
many segments, and the distance of two neighboring ones that belong to a same
segment should always be less than w−1. Now we only have to show that within
a single segment, the greedy algorithm is optimal, which is straightforward since
we can find k simple patterns in a segment with 2k or 2k + 1 ones. ��

We remark that although Algorithm 2 is an optimal algorithm for a linear bit
string, we may find one more simple pattern by merging the first and last ‘1’s
in the string if we can deal with a circular string.

3.3 New Convolution Algorithm

If the positions for simple patterns are given by Algorithm 2, then Algorithm 3
can be used to accelerate a convolution operation. Algorithm 3 can be viewed
as an improved version of Algorithm 1, and it is a sliding window method using



440 M.-K. Lee et al.

Algorithm 3. Sliding Window Method for Fast Convolution
Input: b0, . . . , bw−1, where bi is an array of di positions of pi from the polynomial

a(X); c(X) the polynomial; N the number of coefficients in a(X), c(X); w window
size.

Output: t the array where t(X) = a(X) ∗ c(X).
1: for 0 ≤ j < w − 1 do
2: cj+N ← cj

3: end for
4: for 1 ≤ i ≤ w − 1 do
5: for 0 ≤ j < N do
6: Ti[j] ← cj + cj+i

7: end for
8: end for
9: for 0 ≤ j < 2N do

10: tj ← 0
11: end for
12: for 0 ≤ j < d0 do
13: for 0 ≤ k < N do
14: tk+b0[j] ← tk+b0[j] + ck

15: end for
16: end for
17: for 1 ≤ i ≤ w − 1 do
18: for 0 ≤ j < di do
19: for 0 ≤ k < N do
20: tk+bi[j] ← tk+bi[j] + Ti[k]
21: end for
22: end for
23: end for
24: for 0 ≤ j < N do
25: tj ← (tj + tj+N) mod q
26: end for

precomputation tables. Lines 1 through 8 is the precomputation stage, and it
requires 2(w − 1)N +(w − 1) integer additions including index computation. On
the other hand, lines 9 through 26 is the convolution stage which requires 2(d0 +
d1+· · ·+dw−1+1)N additions and N modular reductions. Thus the total amount
of computation of Algorithm 3 is 2(d0+d1+ · · ·+dw−1+w)N +(w−1) additions
and N modular reductions, and the total amount of temporary memory for the
precomputation table is N(w − 1) integers. Recall that Algorithm 1 requires
2(d+1)N additions and N modular reductions. Since d0 +d1 + · · ·+dw−1 +w is
much smaller than d + 1, we can expect a significant speed-up by Algorithm 3.
For example, if we use parameters N = 251, d = dF = dr = 48, then d + 1 = 49
and d0 + d1 + · · · + dw−1 + w = 42.399, 38.802, 36.748, 35.707, 35.171, 35.050 for
w = 2, 3, 4, 5, 6, 7, respectively, according to our experiment. We also see that
large values for w are not so attractive since their amount of computation is
almost the same as that of smaller w, while the amount of required memory is
almost proportional to w. Hence we decide to fix w = 5.
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4 Experimental Results

Now we present our experimental results for w = 5 with various parameter sets
given in [13]. Table 2 shows the performance of NTRU encryption and decryp-
tion operations over a Pentium IV 3.0GHz CPU with 1.0GB RAM. We used
C language and Microsoft Visual Studio .NET 1.0 environment. The third and
fourth columns of this table represent the required time to perform an encryption
and a decryption, respectively, using the original convolution algorithm (Algo-
rithm 1). The fifth and seventh columns represent the required time when we
use the improved algorithm. We can see that the new algorithm accelerates these
operations by 25 to 32%. Note that this result is consistent with the values that
we can estimate from the analysis given in Section 3.3 assuming a convolution
operation consumes most of the computation time for encryption or decryption.
That is, for w = 5, the gain is estimated as (49 − 35.707)/49 ≈ 27.13%.

Note that in some situation, the sender might know the identity of the
recipient in advance, or she might send messages frequently to the same re-
cipient. In this case, information related to the recipient’s public key can be
preprocessed. By setting a(X) ← r(X) and c(X) ← h(X), the values Ti[j]
in Algorithm 3 can be precomputed, i.e., lines 1 through 8 can be performed
off-line. In this case, Ti[j]’s are not any more in a temporary memory, but they
should be stored in a precomputation table. By this precomputation, we can
further reduce the amount of on-line computation, which is given in the sixth
column of Table 2. Now the performance gain over Algorithm 1 becomes 33 to
37%. These values are also consistent with the estimation from Section 3.3, i.e.,
(49 − 35.707 + 5 − 1)/49 ≈ 35.29%.

Table 2. Timings for various NTRU operations with w = 5 (μsec)

parameter set (N, p, q, dF = dr) Using Alg. 1 Using Alg. 3

Enc. Dec. Enc.1 Enc.2 Dec. Memory†

ees251ep6 (251, 2, 197, 48) 1043 1045 766 683 783 1004
ees347ep2 (347, 2, 269, 66) 1937 2001 1380 1260 1392 1388
ees397ep1 (397, 2, 307, 74) 2510 2523 1783 1604 1796 1588
ees491ep1 (491, 2, 367, 91) 3760 3796 2649 2530 2650 1964
ees587ep1 (587, 2, 439, 108) 5327 5379 3685 3517 3742 2348
ees787ep1 (787, 2, 587, 140) 9343 9419 6420 6107 6408 3148

†Number of integers to be stored, i.e., N(w − 1)

5 Discussion

We proposed a method to speed up NTRU operations by reusing sub-operations
that appear frequently. Our experiments show that several kilobytes of memory
is sufficient to accelerate NTRU encryption and decryption by 25 to 37%.

The IEEE draft standard [13] proposes to use two classes of polynomials
for r or F . The first one is to use binary polynomials with predefined Ham-
ming weight, which is explained in Section 2.3. The second one is to use a
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product-form polynomial, i.e., r = r1 ∗ r2 + r3 or F = F1 ∗ F2 + F3, where
r1, r2, r3, F1, F2, F3 are binary polynomials with much smaller Hamming weight
than those of r and F in the first class. We remark that our sliding window
method is applied only to the first case, and it is evaluated to be still slower by
about 20–30% than the second case without the window method, according to
our analysis. Therefore, it could be an interesting research topic to improve the
convolution algorithm for product-form polynomials.

We performed the above experiments and comparison on a Pentium IV proces-
sor. However, note that speed-ups are more critical on resource-constraineddevices
such as a Mica-Z mote with ATmega128 microcontroller. Therefore, implementa-
tion over such devices is necessary for complete analysis of our algorithm.
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Abstract. Recently, in order to eliminate the use of certificates in cer-
tified public key cryptography and the key-escrow problem in identity
based cryptography, the notion of certificateless public key cryptogra-
phy was introduced. In this paper, to construct an efficient certificateless
signature (CLS) scheme, we present a new approach compactly and or-
thogonally combining short signatures using bilinear maps. Our approach
is conceptually simple but effective to improve efficiency greatly. In the
proposed CLS scheme a full private key of a user is a single group ele-
ment and signature verification requires only one pairing operation. In
addition, our CLS scheme has a flexible structure which can be easily
extended to a certificateless signature scheme with additional properties
such as certificateless ring and blind signature schemes.

1 Introduction

In a traditional public key cryptography (PKC), a random public key of a user is
associated with the user by a certificate, that is, a signature of trusted Certificate
Authority (CA) on the public key. Inevitably this feature causes CA to require
a large amount of storage and computing time managing the certificates [8]. To
simplify the certificate management process, Shamir introduced the concept of
identity based cryptography (ID-PKC) where the certificate of a random public
key does not be needed any more since publicly known information such as
e-mail address is used as user’s public key [15]. However, an inherent problem
of ID-PKC is that a Key Generation Center (KGC) generates any user’s private
key using a master-key of KGC. Obviously a malicious KGC is able to forge the
signature of any signer. This is called “key escrow” problem. In 2003, Al-Riyami
and Paterson introduced the concept of certificateless public key cryptography
(CL-PKC) which eliminates the use of certificates in PKC and solve the key
escrow problem in ID-PKC [1]. The basic idea of CL-PKC is to construct a
public/private key pair for a user by combining a master key of KGC with
a random secret value generated by the user. In this paper we concentrate on a
certificateless signature (CLS) scheme.

Despite of the usefulness of a CLS scheme, it is not easy to construct a secure
and efficient CLS scheme because the construction of a CLS scheme conceptually
involves mechanisms to authenticate an identity of a user, the public key of the
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user, and a message to be signed at the same time. For the security model
of a CLS scheme reflecting such authentication mechanisms, unlike that of an
ordinary signature scheme, we should consider two types of forgers, Type I and
Type II forgers : A Type I forger represents a normal third party attacker who
has no access to the master key but is allowed to replace public keys of users.
A Type II forger represents a malicious KGC who is equipped with the master
key but is not able to replace public keys. However, although many researches
on a CLS scheme [1,17,12,9,10,20,11,6] are performed, only few schemes [10,20]
are known to be secure against these forgers.

Naturally, such complicated authentication mechanisms should be a critical
consideration to design an efficient CLS scheme. To improve efficiency it would
be desirable to integrate the functionalities of authentication imbedded in a CLS
scheme compactly while maintaining security.

Our Results. In the paper, to construct an efficient CLS scheme, we first present
novel combinations of short signature schemes using a bilinear group: In the
key setup phase, the Boneh-Shacham-Lynn short signature [5] or Boneh-Boyen’s
short signature [2] is used for KGC to generate a signature, that is, a partial
private key corresponding to an identity of a user. The Boneh-Boyen short sig-
nature [2] is used for the user to generate a full private key, which plays a crucial
role of a private self-certificate on the public-key of his/her choice, using the
previous partial private key. In our scheme, signature verification requires only
one pairing operation, compared to at least four pairing operations in the pre-
vious works [10,12,20], and signature generation requires no pairing operation.
Moreover, a full private key for a user, which is computed by applying two short
signature schemes sequentially, is just a single group element.

The compact feature of a full private key of a user, which aggregates two
signatures, provides the minimum loss against key exposure. In other words,
even if an adversary obtains a full private key, he cannot extract the partial
private key from the full private key which is a signature on the partial private
key. Because the partial private key is used as a long-lived key this provides a
proactive property such that the user’s public key can be replaced periodically.

We show that our CLS schemes are provably secure in the random oracle
model. For security model we consider a realistic model where a Type I forger is
not allowed to obtain a valid signature for the public key replaced by the forger.
In practical environments, it is too strong to assume that the signer knows the
private key associated with the replaced public key (by others). This model was
already developed in several recent works [11,20].

Finally our method provides flexibility for extending to CLS schemes with
additional properties such as certificateless blind and ring signature schemes.
In fact, applying a similar method in [18,19,7] to our schemes we can directly
construct certificateless ring and blind signature schemes.

Related Works. The first CLS scheme was proposed by Al-Riyami and Pater-
son [1]. Unfortunately, it was found insecure against a Type I forger by Huang
et al. [10]. They also proposed a CLS scheme and proved its security in the
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random oracle model. In [17], Yum and Lee proposed a generic construction of
CLS. However, Hu et al. presented that their construction is insecure against a
Type I forger and improved it. Gorantla and Saxena [9] proposed an efficient
CLS scheme. However, it was also found insecure against a Type I forger by Cao
et al. [6]. In [12], Li et al. proposed a CLS scheme. It seems to be secure but a
security analysis for the scheme was not formalized. Recently, Zhang et al. [20]
proposed a CLS scheme and showed its security in the random oracle model.

Organization. The rest of this paper is organized as follows. In Section 2, we
describe some fundamental backgrounds and define our security model for a CLS
scheme. In Section 3 we propose an efficient CLS scheme and its security proofs.
In Section 4 we propose a CLS scheme with a pairing operation and its security
proofs. In Section 5, we analyze the performances of the proposed CLS schemes.
In Section 6, we present extension of our CLS schemes. We conclude the paper
in Section 7.

2 Preliminaries

We review some fundamental backgrounds required in this paper, namely bilinear
pairing, certificateless signature scheme.

2.1 Bilinear Pairings and Some Problems

Let G1 be a cyclic additive group of prime order q and G2 be a cyclic multi-
plicative group of same order q. We assume that the discrete logarithm problems
(DLP) in both G1 and G2 are intractable.

Admissible Bilinear Map. We call e : G1 × G1 → G2 an admissible bilinear
map if it satisfies the following properties:

– Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1 and a, b ∈ Z
∗
q .

– Non-degenerancy: There exists P ∈ G1 such that e(P, P ) �= 1.
– Computability: There exists an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.

The modified Weil and Tate pairings in elliptic curve are examples of the admis-
sible bilinear maps. We consider following problems in the group G1.

Computational Diffie-Hellman (CDH) problem: The CDH problem is to
compute abP when given P , aP and bP for some a, b ∈ Z

∗
q .

Inverse Computational Diffie-Hellman (ICDH) problem: The ICDH
problem is to compute a−1P when given P and aP for some a ∈ Z

∗
q .

Modified Inverse Computational Diffie-Hellman (mICDH) problem:
The mICDH problem is to compute (a + b)−1P when given b, P and aP for
some a, b ∈ Z

∗
q .
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The CDH, ICDH and mICDH problems are polynomial time equivalent [16].
We assume that the CDH, ICDH and mICDH problems in G1 are intractable.
That is, there is no polynomial time algorithm solving these problems with non-
negligible probability.

2.2 Certificateless Signature Scheme

We briefly recall a formal definition of a certificateless signature scheme [10].
The CLS scheme is specified by seven polynomial time algorithms.

Setup: This algorithm takes a security parameter k as input and returns the
system parameters params and a secret master key master-key.

Partial-Private-Key-Extract: This algorithm takes params, master-key and
a user’s identity ID as input. It returns a partial private key DID correspond-
ing to the user.

Set-Secret-Value: This algorithm takes the security parameter k and a user’s
identity ID as input. It returns the user’s secret value xID.

Set-Public-Key: This algorithm takes a user’s secret value xID as input. It
returns the user’s public key PKID.

Set-Private-Key: This algorithm takes a user’s partial private key DID and
public key PKID, and his secret value xID as input. It returns the user’s
full private key SKID.

Sign: This algorithm takes params, a message m, and a user’s full private key
SKID as input. It returns a signature σ.

Verify: This algorithm takes params, a message m, a user’s identity ID, a
public key PKID, and a signature σ as input. It returns 0 or 1. With output
value 1, we say that σ is a valid signature of a message m.

The Setup and Partial-Private-Key-Extract algorithms are performed by a
Key Generation Center (KGC). Once a partial private key is given to a user via
secure channel, the user runs the Set-Secret-Value algorithm and chooses a
secret value to generate its own public/private key pair.

The security model of CLS is different from that of a normal signature scheme.
As defined in [1,10,20], we should consider two types of forger for a CLS scheme,
a Type I forger FI and a Type II forger FII . The forger FI represents a nor-
mal third party attacker against the CLS scheme. That is, FI is not allowed
to access to the master-key but FI may request public keys and replace public
keys with values of its choice. The forger FII represents a malicious KGC who
generates partial private key of users. The forger FII is allowed to have access
to the master-key but not replace a public key. We consider two games against
the Type I and Type II forgers as follows.

Game I. The first game is performed between a challenger C and the Type I
forger FI for a certificateless signature scheme Π as follows.
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– Initialization: C runs Setup algorithm and generates a master secret key
master-key, public system parameters params. C keeps master-key secret
and then gives params to FI . Note that FI does not know the master key
master-key.

– Queries: FI may adaptively issue the following queries to C.
• ExtrPartSK(ID): When FI requests the partial private key for a user

with identity ID, C responds the user’s partial private key DID running
Partial-Private-Key-Extract algorithm.

• ExtrFullSK(ID): When FI requests the full private key for a user with
identity ID, C responds the user’s full private key SKID running
Partial-Private-Key-Extract, Set-Secret-Value and Set-Private-
Key algorithms.

• ReqestPK(ID): When FI requests the public key for a user with identity
ID, the challenger C responds the user’s public key PKID running Set-
Secret-Value and Set-Public-Key algorithms.

• RepalcePK(ID): FI can replace the original public key PKID to a new
public key PK ′ID chosen by him.

• SIGN(m, ID): When FI requests a signature on a message m for a user
with identity ID, the challenger C responds a valid signature σ for m
running Sign algorithm with the matching public key PKID for ID. If
the public key PKID has been replaced earlier by FI , then C cannot know
the corresponding private key SKID and thus the signing oracle’s answer
may not be correct. In such case, to correctness of the signing oracle’s
answer, we assume that FI additionally submits the corresponding secret
information to the signing oracle.

– Output: Eventually, FI outputs (IDt, mt, σt), where IDt is the identity of
a target user, mt is a message, and σt is a signature for mt. FI wins the
game if
1. ExtrPartSK(IDt), ExtrFullSK(IDt), and SIGN(mt, IDt) queries have

never been queried.
2. Verify(params, mt, IDt, PKt, σt) outputs 1, that is, the signature σt for

a message mt is valid under PKt which may be replaced by FI .

We define SuccΠFI
to be the success probability that FI wins in the above game.

Game II. The second game is performed between a challenger C and the Type
II forger FII for a certificateless signature scheme Π as follows.

– Initialization: C runs Setup algorithm and generates a master secret key
master-key, public system parameters params. The challenger C gives public
params and secret master-key to FII .

– Queries: FII may adaptively issue the following queries to C.
• ExtrFullSK(ID): When FII requests the full private key for a user with

identity ID, C responds the user’s full private key SKID running
Partial-Private-Key-Extract, Set-Secret-Value and Set-Private-
Key algorithms.
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• RequestPK(ID): When FII requests the public key for a user with iden-
tity ID, the challenger C responds the user’s public key PKID running
Set-Secret-Value and Set-Public-Key algorithms.

• SIGN(m, ID): When FII requests a signature on a message m for a user
with identity ID, the challenger C responds a valid signature σ for m
running Sign algorithm with matching public key PKID for ID.

– Output: Eventually, FII outputs (IDt, mt, σt), where IDt is the identity of
a target user, mt is a message, and σt is a signature for mt. FII wins the
game if
1. ExtrFullSK(IDt) and SIGN(mt, IDt) queries have never been issued.

2. Verify(params, mt, IDt, σt) outputs 1, that is, the signature σt for a
message mt is valid under PKt.

We define SuccΠFII
to be the success probability that FII wins in the above game.

Note that FII does not need additional extraction query to obtain partial private
keys since the master key master-key is given to FII .

Definition 1. We say that a certificateless signature scheme Π is existentially
unforgeable against chosen message attacks, if for any polynomially bounded forg-
ers FI and FII, the success probabilities of both FI and FII are negligible. In
other words,

SuccΠFI
(k) < ε and SuccΠFII

(k) < ε

where k is the security parameter.

3 New Certificateless Signature Scheme

In this section, we propose a new efficient CLS scheme and prove the security of
the proposed scheme. We denote this CLS scheme by eCLS.

3.1 Our Construction

Setup. To generate system parameters and master key, run as follows:
1. Generate (G1, G2, e) where G1 and G2 are cyclic groups of prime order

q and e is an admissible bilinear map.
2. Choose a random s ∈ Z

∗
q and a generator P of G1. Compute Ppub = sP .

3. Choose three cryptographic hash functions H1 : {0, 1}∗ → G1, H2 :
G1 → Z

∗
q , and H3 : {0, 1}∗ → Z

∗
q .

Return the private master-key= s and the system parameters params=
{e, G1, G2, q, P, Ppub, H1, H2, H3}. We assume that params is available to all
users.

Partial-Private-Key-Extract. On input params, master-key, and identity
IDA of user A. Compute QA = H1(IDA) and return a partial private key
DA = sQA for user A.
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Set-Secret-Value. On input k and IDA, choose a random value xA ∈ Z
∗
q and

return xA as A’s secret value.
Set-Public-Key. On input params and xA, compute RA = xAP and return

the public key PKA = RA.
Set-Private-Key. On input xA, RA, and DA. Compute yA = H2(RA) and

SA = 1
xA+yA

DA. Return the (full) private key SKA = SA.
Sign. On input params, IDA, SA, and a message m, perform the following steps:

1. Choose a random r ∈ Z
∗
q .

2. Compute U = rQA = rH1(IDA).
3. Set h = H3(m, U).
4. Compute V = (r + h)SA.
5. Return σ = (U, V ) as the signature on the message m.

Verify. On input params, IDA, RA, m, and σ = (U, V ). Compute QA =
H1(IDA), yA = H2(RA), and h = H3(m, U). Check if e(V, RA + yAP ) =
e(U + hQA, Ppub) holds. If the equation holds, it outputs 1, otherwise 0.

We can easily show that our CLS scheme satisfies completeness property as
follows:

e(V, RA + yAP ) = e((r + h)SA, xAP + yAP )
= e((r + h)(xA + yA)−1sQA, (xA + yA)P )
= e((r + h)sQA, P )
= e((rQA + hQA, sP ) = e(U + hQA, Ppub).

3.2 Security Analysis

Theorem 1. Our certificateless signature scheme eCLS is existentially
unforgeable against a Type I forger in random oracle model under the CDH
assumption.

Proof. Suppose there exists a forger FI which has advantage in attacking our CLS
scheme eCLS. We want to build an algorithm C that uses FI to solve the CDH
problem. C receives a CDH instance (P, aP, bP ) for randomly chosen a, b ∈ Z

∗
q

and P ∈ G1. Its goal is to compute abP . C runs FI as a subroutine and simulates
its attack environment. C sets Ppub = aP where a is the master key, which is
unknown to C, and gives system parameters to FI . Without loss of generality, we
assume that any extraction (ExtrPartSK, RequestPK, ExtrFullSK) and signature
(SIGN) queries are preceded by H1 query, and the SIGN and ExtrFullSK queries
are preceded by RequestPK query. To avoid collision and consistently respond to
these queries, C maintains four lists LH1 , LH2 , LH3 , LK = {〈ID, PKID, xID, c(=
0 or 1)〉} which are initially empty. C then simulates the oracle queries of FI as
follows:

– H1 query: Suppose FI makes at most qH1 queries to H1 oracle. First, C
chooses j ∈ [1, qH1 ] randomly. When FI makes an H1 query on IDi where
1 ≤ i ≤ qH1 , if i = j (we let IDi = ID∗ at this point), C returns QIDi = bP
and adds 〈IDi, QIDi , ki = ⊥〉 to LH1 . Otherwise C picks a random ki ∈ Z

∗
q

and returns QIDi = kiP , and adds 〈IDi, QIDi , ki〉 to LH1 .
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– H2 query: When FI makes this query on PKIDi , if the list LH2 contains
〈PKIDi , yIDi〉, C returns yIDi . Otherwise, C picks a random yIDi ∈ Z

∗
q and

returns yIDi , and adds 〈PKIDi , yIDi〉 to LH2 .
– H3 query: When FI makes this query on (mi, Ui), if the list LH3 contains

〈mi, Ui, hi〉, C returns hi. Otherwise C picks a random hi ∈ Z
∗
q and returns

hi, and adds 〈mi, Ui, hi〉 to LH3 .
– ExtrPartSK(IDi) query: When FI makes this query on IDi, if IDi �= ID∗, C

finds 〈IDi, QIDi , ki〉 in LH1 , and returns DIDi = kiaP . Otherwise C outputs
FAIL and aborts the simulation.

– RequestPK(IDi) query: When FI makes this query on IDi, if the list LK

contains 〈IDi, PKIDi , xIDi , c〉, C returns PKIDi . Otherwise, C picks a ran-
dom xIDi ∈ Z

∗
q . Then C returns PKIDi = xIDiP and adds 〈IDi, PKIDi ,

xIDi , 1〉 to LK .
– ExtrFullSK(IDi) query: When FII makes this query on IDi, if IDi = ID∗, C

outputs FAIL and aborts the simulation. Otherwise, C finds 〈IDi, QIDi , ki〉
and 〈IDi, PKIDi , xIDi , c〉 in LH1 and LK , respectively. C performs as follows:

• If the list LH2 contains 〈PKIDi , yIDi〉, C returns SKIDi = 1
xIDi

+yIDi
kiaP .

• If the list LH2 does not contain 〈PKIDi , yIDi〉, C picks a random yIDi ∈
Z
∗
q and returns SKIDi = 1

xIDi
+yIDi

kiaP , and adds 〈PKIDi , yIDi〉 to
LH2 .

– ReplacePK(IDi, PK ′IDi
) query: When FI makes this query on (IDi, PK ′IDi

),
C performs as follows:

• If the list LK contains 〈IDi, PKIDi , xIDi , c〉, C sets PKIDi = PK ′IDi

and c = 0.
• If the list LK does not contain 〈IDi, PKIDi , xIDi , c〉, C makes a Re-

questPK query on IDi itself. Then C sets PKIDi = PK ′IDi
and c = 0.

– SIGN(m, IDi) query: When FI makes this query on (IDi, m), C finds 〈IDi,
QIDi , ki〉 and 〈IDi, PKIDi , xIDi , c〉 in LH1 and LK , respectively. Then C
performs as follows:

• If c = 1, C picks two random ri, hi ∈ Z
∗
q and finds 〈PKIDi , yIDi〉 in LH2 .

If it does not exist, C picks a random yIDi ∈ Z
∗
q and adds 〈PKIDi , yIDi〉

to LH2 . C computes Ui = ri(xIDi + yIDi)P − hiQIDi and Vi = riaP . C
then returns (Ui, Vi) and adds 〈mi, Ui, hi〉 to LH3 (C outputs FAIL and
aborts the simulation if the 〈mi, Ui, hi〉 has already been defined in the
list LH3).

• If c = 0, C gets additionally information x′IDi
from FI . Using the x′IDi

,
C then simulates as in the above case (c = 1).

Eventually, FI outputs a valid signature (IDt, mt, σt = (Ut, Vt)). If IDt �= ID∗,
C outputs FAIL and aborts the simulation. Otherwise, C finds 〈mt, Ut, ht〉 in
LH3 . Then by replays of C with the same random tape but different choices
of H3 (it is to apply the ’forking’ technique formalized in [14]), C gets another
valid signature tuple (IDt, mt, h

′
t, σt = (Ut, V

′
t )) such that ht �= h′t. C finds

〈IDt, PKIDt , xIDt , c〉 in LK . If c = 0, that is, FI generated a public/private
key pair and replaced the public key of IDt. In such case, as the proof in [10],
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we assume that C keeps track of the public/private key pair generated by FI .
Hence, after C finds 〈PKIDi , yIDi〉 in LH2 , he can compute as follows:

(xIDt + yIDt)
Vt − V ′t
ht − h′t

= SKIDt = abP.

Therefore, if a Type I forger who can break our scheme eCLS exists, then an
attacker who solves the CDH problem exists. �

Theorem 2. Our certificateless signature scheme eCLS is existentially
unforgeable against a Type II forger in random oracle model under the mICDH
assumption.

Proof. Suppose there exists a forger FII which has advantage in attacking our
CLS scheme eCLS. We want to build an algorithm C that uses FII to solve the
mICDH problem. C receives a mICDH instance (P, aP, b) for randomly chosen
a, b ∈ Z

∗
q and P ∈ G1. Its goal is to compute (a + b)−1P . C runs FII as a

subroutine and simulates its attack environment. C picks a random s ∈ Z
∗
q

and sets master-key= s. C then gives system parameters with master-key to
FII . Without loss of generality, we assume that any extraction (RequestPK,
ExtrFullSK) and signature (SIGN) queries are preceded by H1 query, and the
SIGN and ExtrFullSK queries are preceded by RequestPK query. To avoid collision
and consistently respond to these queries, C maintains four lists LH1 , LH2 , LH3 ,
LK = {〈ID, PKID, xID〉} which are initially empty. C then simulates the oracle
queries of FII as follows:

– H1 query: When FII makes this query on IDi, C picks a random ki ∈ Z
∗
q

and returns kiP , and adds 〈IDi, ki〉 to LH1 .
– H2 query: When FII makes this query on PKIDi , if PKIDi = aP , C sets

yIDi = b and returns yIDi , and adds 〈PKIDi , yIDi〉 to LH2 . If the list LH2

contains 〈PKIDi , yIDi〉, C returns yIDi . Otherwise, C picks a random yIDi ∈
Z
∗
q and returns yIDi , and adds 〈PKIDi , yIDi〉 to LH2 .

– H3 query: When FII makes this query, C performs as in the proof of
Theorem 1.

– RequestPK(IDi) query: Suppose FII makes at most qPK queries to public
key request oracle. First, C chooses j ∈ [1, qPK ] randomly. When FII makes
a RequestPK query on IDi, if i = j (we let IDi = ID∗ at this point), C sets
PKIDi = aP and returns PKIDi , and adds 〈IDi, PKIDi , xIDi = ⊥〉 to LK .
Otherwise C picks a random xIDi and returns PKIDi = xIDiP , and adds
〈IDi, PKIDi , xIDi〉 to LK .

– ExtrFullSK(IDi) query: When FII makes this query on IDi, if IDi = ID∗,
C outputs FAIL and aborts the simulation. Otherwise, C finds 〈IDi, ki〉 and
〈IDi, PKIDi , xIDi〉 in LH1 and LK , respectively. C performs as follows:

• If the list LH2 contains 〈PKIDi , yIDi〉, C returns SKIDi = 1
xIDi

+yIDi
kisP .

• If the list LH2 does not contain 〈PKIDi , yIDi〉, C picks a random yIDi ∈
Z
∗
q and returns SKIDi = 1

xIDi
+yIDi

kisP , and adds 〈PKIDi , yIDi〉
to LH2 .
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– SIGN(m, IDi) query: When FII makes this query on (IDi, m), C finds 〈IDi,
QIDi , ki〉 and 〈IDi, PKIDi , xIDi〉 in LH1 and LK , respectively. C picks two
random ri, hi ∈ Z

∗
q and finds 〈PKIDi , yIDi〉 in LH2 (if it does not exist, C

makes a H2 query on PKIDi itself). C computes (Ui = ri(PKIDi +yIDiP )−
hikiP , Vi = risP and returns (Ui, Vi), and adds 〈mi, Ui, hi〉 to LH3 (C out-
puts FAIL and aborts the simulation if the 〈mi, Ui, hi〉 has already been
defined in the list LH3).

Eventually, FII outputs a valid signature (IDt, mt, σt = (Ut, Vt)). If IDt �= ID∗,
C outputs FAIL and aborts the simulation. Otherwise, C finds 〈mt, Ut, ht〉 in
LH3 . Then, as in the proof of Theorem 1, C gets another valid signature tuple
(IDt, mt, h

′
t, σt = (Ut, V

′
t )) such that ht �= h′t. Since C knows the master key s,

after C finds 〈IDt, kt〉 in LH1 , he can compute as follows:

Vt − V ′t
kts(ht − h′t)

=
1

a + b
P.

Therefore, if a Type II forger who can break our scheme eCLS exists, then an at-
tacker who solves the CDH problem exists. �

4 Certificateless Signature Scheme with a Pairing
Operation

In this section, we propose a CLS scheme with a pairing operation, and prove
the security of the proposed scheme. We denote this CLS scheme by oCLS.

4.1 Our Construction

Setup. To generate system parameters and master key, run as follows:
1. Generate (G1, G2, e) where G1 and G2 are cyclic groups of prime order

q and e is an admissible bilinear map.
2. Choose a random s ∈ Z

∗
q and a generator P of G1. Compute Ppub = sP

and g = e(P, P ).
3. Choose three cryptographic hash functions H1 : {0, 1}∗ → Z

∗
q , H2 :

G1 → Z
∗
q , and H3 : {0, 1}∗ → Z

∗
q .

Return the private master-key= s and the system parameters params=
{e, G1, G2, q, g, P, Ppub, H1, H2, H3}. We assume that params is available to
all users.

Partial-Private-Key-Extract. On input params, master-key, and identity
IDA of user A. Compute qA = H1(IDA) and return a partial private key
DA = 1

s+qA
P for user A.

Set-Secret-Value. On input k and IDA, choose a random value xA ∈ Z
∗
q and

return xA as A’s secret value.
Set-Public-Key. On input params and xA, compute QA = Ppub + H1(IDA)P

and RA = xAQA. Return the public key PKA = RA.
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Set-Private-Key. On input xA, RA, and DA. Compute yA = H2(RA) and
SA = 1

xA+yA
DA. Return the (full) private key SKA = SA.

Sign. On input params, IDA, SA, and a message m, perform the following steps:
1. Choose a random r ∈ Z

∗
q .

2. Compute U = gr = e(P, P )r .
3. Set h = H3(m, U).
4. Compute V = (r + h)SA.
5. Return σ = (U, V ) as the signature on the message m.

Verify. On input params, IDA, RA, m, and σ = (U, V ). Compute QA =
(s + qA)P = Ppub + H1(IDA)P , yA = H2(RA), and h = H3(m, U). Check if
e(V, RA + yAQA) = Ugh holds. If the equation holds, it outputs 1,
otherwise 0.

We can easily show that our CLS scheme satisfies completeness property as
follows:

e(V, RA + yAQA) = e((r + h)SA, xA(Ppub + qAP ) + yA(Ppub + qAP ))

= e
(
(r + h)

1
(xA + yA)(s + qA)

P, (xA + yA)(s + qA)P
)

= e((r + h)P, P )
= e(P, P )r+h = Ugh.

4.2 Security Analysis

To prove the security of the oCLS, we review the k-CAA (Collusion Attack
Algorithm with k traitor) problem.

k-CAA [13] problem: The k-CAA problem is to compute 1
s+t0

P for some
t0 ∈ Z

∗
q when given

P, sP, t1, t2..., tk ∈ Z
∗
q ,

1
s + t1

P , 1
s + t2

P ,..., 1
s + tk

P .

Theorem 3. Our certificateless signature scheme oCLS is existentially
unforgeable against a Type I forger in random oracle model under the k-CAA
assumption.

Proof. Suppose there exists a forger FI which has advantage in attacking our
CLS scheme oCLS. We want to build an algorithm C that uses FI to solve the
k-CAA problem. C receives a k-CAA instance (P, sP, t1, ..., tk, 1

s+t1
P, ..., 1

s+tk
P )

where k ≥ qH1 (we suppose FI makes at most qH1 queries to H1 oracle). Its
goal is to compute 1

s+t0
P for some t0. C runs FI as a subroutine and simu-

lates its attack environment. C sets g = e(P, P ) and Ppub = sP where s is the
master key, which is unknown to C, and gives system parameters to FI . With-
out loss of generality, we assume that any extraction (ExtrPartSK, RequestPK,
ExtrFullSK) and signature (SIGN) queries are preceded by H1 query, and the
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SIGN and ExtrFullSK queries are preceded by RequestPK query. To avoid colli-
sion and consistently respond to these queries, C maintains four lists LH1 , LH2 ,
LH3 , LK = {〈ID, PKID, xID, c(= 0 or 1)〉} which are initially empty. C then
simulates the oracle queries of FI as follows:

– When FI makes H2, H3, and ReplacePK queries, C performs as in the proof
of Theorem1.

– H1 query: FI makes an H1 query on IDi where 1 ≤ i ≤ qH1 , C chooses
j ∈ [1, qH1 ] randomly. If i = j (we let IDi = ID∗ at this point), C returns
qIDi = t0, otherwise qIDi = ti. C then computes QIDi = sP + qIDiP and
adds 〈IDi, QIDi , qIDi〉 to LH1 .

– ExtrPartSK(IDi) query: When FI makes this query on IDi, if IDi �= ID∗, C
returns DIDi = 1

s+ti
P . Otherwise C outputs FAIL and aborts the simulation.

– RequestPK(IDi) query: When FI makes this query on IDi, if the list LK

contains 〈IDi, PKIDi , xIDi , c〉, C returns PKIDi . Otherwise, C finds 〈IDi,
QIDi , qIDi〉 in LH1 , and picks a random xIDi ∈ Z

∗
q . C then returns PKIDi =

xIDiQIDi and adds 〈IDi, PKIDi , xIDi , 1〉 to LK .
– ExtrFullSK(IDi) query: When FII makes this query on IDi, if IDi = ID∗,

C outputs FAIL and aborts the simulation. Otherwise, C finds 〈IDi, PKIDi ,
xIDi , c〉 in and LK , respectively. C performs as follows:

• If the list LH2 contains 〈PKIDi , yIDi〉, C returns SKIDi = (xIDi +
yIDi)−1 1

s+qIDi
P .

• If the list LH2 does not contain 〈PKIDi , yIDi〉, C picks a random yIDi ∈
Z
∗
q and returns SKIDi=(xIDi+yIDi)

−1 1
s+qIDi

P , and adds 〈PKIDi , yIDi〉
to LH2 .

– SIGN(m, IDi) query: When FI makes this query on (IDi, m), C finds 〈IDi,
QIDi , ki〉 and 〈IDi, PKIDi , xIDi , c〉 in LH1 and LK , respectively. Then C
performs as follows:

• If c = 1, C picks two random ri, hi ∈ Z
∗
q and finds 〈PKIDi , yIDi〉

in LH2 . If it does not exist, C picks a random yIDi ∈ Z
∗
q and adds

〈PKIDi , yIDi〉 to LH2 . C computes Ui = g−hie((ri + hi)P, QIDi) and
Vi = (ri + hi) 1

s+qIDi
P . C then returns (Ui, Vi) and adds 〈mi, Ui, hi〉 to

LH3 (C outputs FAIL and aborts the simulation if the 〈mi, Ui, hi〉 has
already been defined in the list LH3).

• If c = 0, C gets additionally information x′IDi
from FI . Using the Q′IDi

=
x′IDi

(sP + qIDiP ), C then simulates as in the above case (c = 1).

Eventually, FI outputs a valid signature (IDt, mt, σt = (Ut, Vt)). If IDt �= ID∗,
C outputs FAIL and aborts the simulation. Otherwise, C performs as in the proof
of Theorem 1., and then he computes as follows:

(xIDt + yIDt)
Vt − V ′t
ht − h′t

= SKIDt =
1

s + q0
P.

Therefore, if a Type I forger who can break our scheme oCLS exists, then an at-
tacker who solves the k-CAA problem exists. �
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Theorem 4. Our certificateless signature scheme oCLS is existentially
unforgeable against a Type II forger in random oracle model under the mICDH
assumption.

Proof. This proof is same as the proof of Theorem 2. The different points are as
follows:

– H1 query: When FII makes this query on IDi, C picks a random qIDi ∈ Z
∗
q

and returns qIDi . C then computes QIDi = sP +qIDiP and adds 〈IDi, QIDi ,
qIDi〉 to LH1 .

– H2 query: When FII makes this query on PKIDi , if PKIDi = saP +qIDiaP ,
C sets yIDi = b and returns yIDi , and adds 〈PKIDi , yIDi〉 to LH2 . If the list
LH2 contains 〈PKIDi , yIDi〉, C returns yIDi . Otherwise, C picks a random
yIDi ∈ Z

∗
q and returns yIDi , and adds 〈PKIDi , yIDi〉 to LH2 .

– H3 query: When FII makes this query, C performs as in the proof of
Theorem 1.

– RequestPK(IDi) query: Suppose FII makes at most qPK queries to public
key request oracle. First, C chooses j ∈ [1, qPK ] randomly. When FII makes
a RequestPK query on IDi, C finds 〈IDi, QIDi , qIDi〉 in LH1 . If i = j (we let
IDi = ID∗ at this point), C sets PKIDi = saP +qIDiaP and returns PKIDi ,
and adds 〈IDi, PKIDi , xIDi = ⊥〉 to LK . Otherwise C picks a random xIDi

and returns PKIDi = xIDi(sP + qIDiP ), and adds 〈IDi, PKIDi , xIDi〉 to
LK .

– ExtrFullSK(IDi) query: When FII makes this query on IDi, if IDi = ID∗, C
outputs FAIL and aborts the simulation. Otherwise, C finds 〈IDi, QIDi , qIDi〉
and 〈IDi, PKIDi , xIDi〉 in LH1 and LK , respectively. C performs as follows:

• If the list LH2 contains 〈PKIDi , yIDi〉, C returns SKIDi = (xIDi +
yIDi)−1 1

s+qIDi
P .

• If the list LH2 does not contain 〈PKIDi , yIDi〉, C picks a random yIDi ∈
Z
∗
q and returns SKIDi=(xIDi+yIDi)−1 1

s+qIDi
P , and adds 〈PKIDi , yIDi〉

to LH2 .
– SIGN(m, IDi) query: When FII makes this query on (IDi, m), C finds 〈IDi,

QIDi , qIDi〉 and 〈IDi, PKIDi , xIDi〉 in LH1 and LK , respectively. C picks two
random ri, hi ∈ Z

∗
q and finds 〈PKIDi , yIDi〉 in LH2 (if it does not exist, C

makes a H2 query on PKIDi itself). C computes Ui = g−hi · e(PKIDi , riP )·
e(yIDi(s + qIDi)P, riP ), Vi = riP and returns (Ui, Vi), and adds 〈mi, Ui, hi〉
to LH3 (C outputs FAIL and aborts the simulation if the 〈mi, Ui, hi〉 has
already been defined in the list LH3).

Eventually, FII outputs a valid signature (IDt, mt, σt = (Ut, Vt)). If IDt �= ID∗,
C outputs FAIL and aborts the simulation. Otherwise, C finds 〈mt, Ut, ht〉 in
LH3 . Then, as in the proof of Theorem 1, C gets another valid signature tuple
(IDt, mt, h

′
t, σt = (Ut, V

′
t )) such that ht �= h′t. Since C knows the master key s,

after C finds 〈IDt, QIDt , qIDt〉 in LH1 , he can compute as follows:

(s + qIDt)
Vt − V ′t
ht − h′t

=
1

a + b
P.
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Therefore, if a Type II forger who can break our scheme oCLS exists, then an at-
tacker who solves the CDH problem exists. �

5 Performance Analysis

We now compare our CLS schemes with other previously known CLS schemes
[10,12,20] in Table 1.

Table 1. Comparison of Certificateless Signature Schemes

Sign Verify

Schemes e G1 G2 e G1 G2

HSMZ05 [10] 2 2 0 5 1 0

LCS05 [12] 0 2 0 4 1 0

ZWXF06 [20] 0 3 0 4 0 0

eCLS 0 2 0 2 2 0

oCLS 0 1 1 1 1 1

(e: pairing operation, G1: multiplication in G1, G2: exponentiation in G2)

According to the result in [3,4], the pairing operation is several times more
expensive than the scalar multiplication in G1. Hence reducing the number of
pairing operations is critical. As we shown in Table 1, our CLS schemes are more
efficient than other previous schemes. In particular, our verification procedure
requires only one (or two) pairing operation because checking the validity of the
public key is not done separately.

6 Extension

The ring signature guarantees the anonymity of the signer. In certificateless
ring signature (CLRS) schemes, to guarantee the signer anonymity, a signature
generated should not reveal any information about both a signer’s identity and
his public key. This is different from the previous (certificate or identity-based)
ring signature schemes, because the ring signature schemes hide a public key
or identity of the actual signer. Using the similar techniques as in [19,7], it is
possible that our CLS schemes are expanded to CLRS schemes. Also, applying
the method in [18] to our CLS scheme, we can easily modify our eCLS to a
certificateless blind signature scheme.

7 Conclusion

The certificateless public key cryptography is receiving significant attention be-
cause it is a new paradigm that simplifies the public key cryptography. In this
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paper, we proposed two efficient CLS schemes which are provably secure in
the random oracle model. Particularly, our signature verification requires only
one pairing operation. In addition, our CLS scheme can be easily extended to
certificateless ring and blind signature schemes.
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Abstract. In PKC 2006, Chow, Boyd and González Neito introduced
the notion of security mediated certificateless (SMC) cryptography. SMC
cryptography equips certificateless cryptography with instantaneous re-
vocation. They presented a formal security model with two constructions
for SMC encryption. This paper studies SMC signatures. We first present
a security analysis of a previous attempt by Ju et al. in constructing a
SMC signature scheme. We then formalize the notion of SMC signatures
and propose the first concrete provable scheme without bilinear pairing.
Our scheme is existential unforgeable in the random oracle model based
on the intractability of the discrete logarithm problem, has a short pub-
lic key size, and achieves a trust level which is the same as that of a
traditional public key signature.

Keywords: security mediated, certificateless, SMC cryptography.

1 Introduction

Efficient revocation of public key certificates has always been a critical issue in the
public key infrastructure (PKI). Several methods such as certificate revocation list
(CRL), online certificate status protocol (OCSP) [22] and Novomodo (a scalable
and small-bandwidth certificate validation scheme) [21] had been proposed to solve
the certificate management issue. However, the search for a satisfactory solution
continues. In USENIX 2001, Boneh et al. [5] first introduced a method for obtain-
ing instantaneous revocation in RSA-type cryptosystems (more details are given
in [4]). Rather than revoking the user’s certificate, this new approach revokes the
user’s ability to perform the cryptographic operations such as signing and decryp-
tion. They introduced a new entity, which is an online semi-trusted server called
as a security mediator (SEM). To sign or decrypt a message, a client must first ob-
tain a message-specific token from its SEM. Without this token, the client cannot
accomplish the intended task. To revoke the user’s ability to sign or decrypt, the
SEM is instructed to stop issuing tokens for the future request of that user.

J. Katz and M. Yung (Eds.): ACNS 2007, LNCS 4521, pp. 459–477, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In 2003, Al-Riyami and Paterson [1] introduced an intermediate model be-
tween the traditional public key cryptography (TPKC) and the identity-based
cryptography (IBC), known as certificateless public key cryptography (CLPKC).
In CLPKC, both the partial private key and user secret key are necessary in
signing or decryption. On the other hand, the identity (ID) and the user pub-
lic key are both required in verification and encryption respectively. Without
using certificates that are essential in IBC, CLPKC achieves implicit certifica-
tion (through the partial private key) while does not suffer from the inherent
key escrow problem in IBC (through the user secret key). Thus, CLPKC still
maintains the advantages enjoyed in TPKC and IBC.

For the key revocation in CLPKC, a pragmatic way to deal with the revocation
problem is to concatenate a validity period to the ID. However, this involves the
need to re-issue the partial private key periodically for each validity period, thus
burdens the trusted key generation center (KGC), and requires users to store
different IDs that are concatenated with different validity dates. Besides, this
method does not fit an environment when immediate revocation is required.

Recently, Chow, Boyd and González Nieto initiated the study of SMC cryp-
tography from a formal point of view in [9]. SMC cryptography solves the in-
stantaneous key revocation problem in CLPKC while maintaining the merits in
CLPKC: implicit certification without key escrow. In short, SMC cryptography
achieves a set of features that no previous paradigms can satisfy simultaneously,
so it provided a new compromise between the various desirable features.

1.1 Related Work

Chow, Boyd and González Neito discussed various facets of SMC cryptography
and formalized the notion of SMC encryption in [9]. We note that Ju et al.
has also discussed the idea of SMC cryptography briefly in [17]. Based on the
Libert and Quisquater revocation mechanism [20] and Al-Riyami and Paterson
various certificateless schemes [1], Ju et al. introduced a signature scheme, an
encryption scheme and a hierarchical variant. Generally, [17] did not provide
the necessary details clearly compared with [9]. More details are given in the
Appendix. Ju et al.’s [17] signature scheme was derived from the Al-Riyami and
Paterson certificateless signature (CLS) scheme [1] (the key construction and
the Verify algorithms are just identical), although the authors did not cite it
clearly. Their scheme only achieves level 2.

There are a number of CLS scheme proposals after [1], which are based on ei-
ther bilinear pairing [8,13,16,18,19,27] or identity-based signatures (IBS) [15,26].
Huang et al.’s scheme [16] is the revised version of Al-Riyami and Paterson’s in-
secure scheme [1], and Cao et al.’s scheme [8] is revised from the insecure scheme
of Gorantla-Saxena [13]. Liu et al.’s scheme [18] is the only one proposed without
random oracles; however, it is also the least efficient.

1.2 Trust Levels

Trust levels referred to the three different levels of trust placed on the trusted
third party as defined by Girault [12], the higher level the more desirable.
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– Level 1: The authority knows (or can easily compute) the private keys and
is capable of impersonating any user without being detected.

– Level 2: The authority does not know the private keys, but it can impersonate
any user by generating false certificates without being detected.

– Level 3: The authority cannot compute the private keys and if it generates
false certificates for users, such generation can be detected.

Table 1 summarizes the comparison of various security mediated signature.

Table 1. Properties of Security Mediated Signatures

Schemes in Implicit Escrow Trust

Different Paradigms Certification Freeness Level

Security mediated (traditional) signature [4,5,20] ✘ ✘ 1
Security mediated identity-based signature [11] ✓ ✘ 1

Security mediated certificateless signature ✓ ✓ 3

While key escrow is inherent in IBC, the same problem is not necessary in-
herent in all security mediated traditional signatures (with trust level 1). The
above table considers the security mediated traditional signatures in [4,5,20], in
which the certification authority is the one who is responsible in generating the
user private key, they could only achieve trust level 1.

1.3 Our Contributions

We initiate the formal study of revocation in certificateless signatures paradigm.
Our contributions are three-fold.

Attack. We show that the previous attempt by Ju et al. in constructing SMC
signature scheme is flawed. More precisely, their scheme does not support revo-
cation at all since the user can get the SEM private key after interacting with
the SEM, i.e. after receiving a partial signature. Consequently, the user can sign
any subsequent messages thereafter without the assistance of the SEM. In short,
the complication involved the SEM is redundant and useless.

Recently, the Al-Riyami and Paterson CLS scheme was shown to be insecure
by a realistic key replacement attack by Huang et al. in [16]. We show that Ju
et al.’s SMC signature scheme is vulnerable to a similar attack as well.

Security Model. We formalize the security model of SMC signature. We
highlight the differences between our model and existing certificateless signature
model. We also discuss the subtleties in the definition of “public key” arose from
the probabilistic key generation, which introduces a public component selected
by the KGC instead of the user.
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Efficient Construction. We then present the first concrete provable secure
SMC signature scheme without bilinear pairing. Our scheme is existential un-
forgeable in the random oracle model based on the intractability of the discrete
logarithm problem and achieves a trust level which is the same as that of a tra-
ditional digital signature scheme. It is worth noting that our proposed scheme
can be transformed into an efficient CLS scheme without pairing.

Organization. Section 2 provides the framework and the security model of
SMC signatures. Section 3 presents both the insider and outsider attacks on
Ju et al.’s SMC signature. Section 4 shows the proposed construction of SMC
signature together with its security and performance analysis.

2 Security Mediated Certificateless Signatures

Here we present the framework and the security model of SMC signature scheme.
We adopt the compact but versatile model of [15] improved from [1,16,26].

2.1 Framework

Definition 1. A security mediated certificateless signature scheme consists of
five tuples of polynomial time algorithms as follows:

1. Setup is a probabilistic algorithm that takes as input a security parameter
in the form of 1k and returns a master key s and a parameter list params.

2. KeyGen is a probabilistic algorithm that takes as input a parameter list params.
It picks a secret value at random. The public key is computed based on the se-
lected value. It returns a pair of matching public and private keys (PID, xID).

3. Register is a probabilistic algorithm that takes as input a parameter list
params, the master key s, an user identity ID and a public key PID. It
returns the SEM private signing key DID.

4. Sign is an interactive probabilistic protocol between the user and the SEM.
Their common inputs include a parameter list params, a message m, and
an user identity ID. The SEM has an additional input of DID to run the
sub-algorithm SEM-Sign; while the user has an additional input of xID to run
the sub-algorithm User-Sign. The protocol finishes with either a signature
σ, or ⊥ when the SEM refuses to give a valid partial signature, for example
in the case where the user’s signing capability has been revoked.

5. Verify is a deterministic algorithm that takes as input a parameter lists
params, a message m, an user identity ID, an user public key PID and a
signature σ. It returns true or false.

More precisely, the scheme flows as follows. First, the KGC will take as input a
security parameter 1k to generate the params and the master key s by running
the Setup algorithm. Then, the user who holds identity ID runs the KeyGen al-
gorithm to generate the public key PID and the secret value xID. The public key
PID is registered with the KGC via authentication and the Register algorithm,
during which the KGC will use the master key s to generate the SEM private



Security Mediated Certificateless Signatures 463

signing key DID. This key needs to be transmitted to the SEM authentically
and confidentially through a secure channel. The secrets held by the SEM and
the user are different. During the running of the Sign protocol, the SEM and the
user uses their corresponding secret to sign the message cooperatively. Finally, a
recipient needs both the public key and ID to verify the validity of the signature
by using the Verify algorithm.

We keep the following new features of the model introduced in [15]:

1. The SEM private key generation by the KGC is probabilistic.
2. The SEM private key generated and the user private key can be “mixed”

together in some randomized way each time during signature generation.
3. A single probabilistic algorithm is used for creating the public/private key

pair.

The first point worths more discussion. In most of the existing concrete CLS
schemes (i.e. excluding generic constructions using other signature schemes like
IBS as a building block), deterministic algorithm is used such that there is only
one partial private key (the SEM private key in our context) corresponding to
each identity. If a probabilistic algorithm is used, the randomness introduced may
give rise to a new “public component” that should be included in the signature.
This gives ambiguity in what is meant by “user public key”. No discussion has
been made on this subtle point so far. We defer our discussion on this issue to
Section 4.4, with the hope that the abstract concept can be better understood
based on a concrete scheme.

2.2 Security Model

We consider the security against existential forgery on adaptive chosen message
and identity attacks. The security model of SMC signature is a mixture of the
models in [9,15]. There are two types of adversary with different capabilities.
The Type I adversary AI acts as a dishonest user. The Type II adversary AII
acts as a malicious KGC (we do not consider a rogue SEM explicitly since it is
strictly weaker than the Type II adversary).

A SMC signature scheme is secure against the existential forgery on adap-
tive chosen message and identity attacks (EUF-CMIA) against adversary A =
〈AI , AII〉 if no polynomial time algorithm A has a non-negligible advantage
against a challenger C in the following game:

1. Setup: C takes as input 1k, runs the Setup algorithm, and gives A the
resulting params. The master key is given to A if it is a Type II adversary.

2. Attack: A issues a sequence of requests, each request being either a query
of Create, Replace, SEM-Extract, User-Extract, SEM-Sign, User-Sign or
Complete-Sign for a particular entity.
Create queries create users by either registering the user public key when
playing against AI , or executing the Key-Gen algorithm for AII . Replace
queries let AI to change user public key at its wish. Two Extract queries
return the SEM and user private key respectively. Sign queries are to be
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explained shortly. These queries may be asked adaptively, subjected to the
rules on adversary behaviors to be defined below.

3. Forgery: A outputs a signature σ on message m signed by user ID with pub-
lic key PID. The only restriction is that (m, ID) does not appear in the set
of previous Sign queries. A wins the game if Verify(params, σ, m, ID, PID)
is true. The advantage of A is defined as the probability that it wins.

Differences from the Existing Certificateless Signature Models: We
highlight the differences from the existing models on the following types of query.

1. SEM-Sign: On input a message m and an identity ID, the adversary is re-
turned with the partial signing result by using DID.

2. User-Sign: On input a message m and a public key PID, the adversary is
returned with the partial signing result by using xID, even if the public key
PID is previously replaced by the (Type I) adversary.

3. Complete-Sign: On input a message m and a public key PID, the adversary
is returned with the complete signing result by using xID and DID, even if
the user public key PID is previously replaced by the (Type I) adversary.

The first two queries capture the adversary’s capabilities to ask for partial
signing results, which are not considered in the traditional certificateless setting.
The last one appears in a weaker form in the existing certificateless signature
model [15,26], such that signing query for a replaced public key requires the
adversary to submit the corresponding private key. If an invalid one is submitted
(or no key is submitted at all), an invalid signature will be given. This restriction
makes the model weaker than its counterpart in encryption [1,9], where the
decryption oracle gives valid result even if the public key has been replaced.

It may seem unrealistic to entertain any signing query of the replaced public
key from the first glance. We try to give some intuition here. Suppose the ad-
versary has an access of a cryptographic device (e.g. giving standard signatures)
with some public/private key pair. It is not impossible that the combination
of this particular public key with a certain identity may enable the adversary
to forge. In this case, the signing query models some useful knowledge about
the replaced public key that the adversary may obtain outside our system. Our
security formulation guarantees unforgeability in this case.

Now we spell out some restrictions placed on the adversaries.

SMC Signatures Type I Adversary: Adversary AI does not have access to
the master key. On the other hand, AI may request and replace the public keys,
extract the SEM private key and the user private key and make the sign queries.
Here are several natural restrictions on such a Type I adversary:

1. AI cannot extract the SEM private key of the challenge identity ID∗.
2. AI has not issued any SEM-Sign query on the forged message m for the

challenged identity ID∗.
3. AI cannot make a Complete-Sign query on the forged message m for the

challenged identity ID∗.
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SMC Signatures Type II Adversary: Adversary AII does have access to
the master key, but cannot replace the public keys of entities. Adversary AII
can compute the SEM private key itself, request the public keys, extract users’
private key and make the sign queries, all for the identities of its choice. The
restrictions on this type of adversary are:

1. AII cannot replace the public keys of the challenge identity ID∗.
2. AII cannot extract the user private key for ID∗ at any point.
3. AII cannot make an User-Sign query on the forged message m for the

challenged identity ID∗.
4. AII cannot make a Complete-Sign query on the forged message m for the

challenged identity ID∗.

Definition 2. A SMC signature scheme is secure against EUF-CMIA if there
is no efficient adversary in the above game with a non-negligible advantage in
the security parameter k for both types of adversary.

3 Critical Review on Ju et al.’s Scheme

First, we review the construction of Ju et al.’s scheme.

– Setup: Given a security parameter k, the KGC performs the steps below:
1. Run the Bilinear Diffie-Hellman parameter generator IG [6] with input

k in order to generate output 〈G1, G2, e〉 where G1 and G2 are groups of
some prime order q and a bilinear map ê : G1 × G1 → G2.

2. The system parameters are params= 〈G1, G2, ê(·, ·), P, P0, H1(·), H2(·)〉
where P is an arbitrary generator in G1, P0 = sP where s is picked uni-
formly at random from Z∗q , H1 and H2 are cryptographic hash functions
where H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ × G2 → Z∗q .

3. The master key is s.
– Key Generation: Given an user with identity IDA ∈ {0, 1}∗,

1. The KGC computes QA = H1(IDA) ∈ G1 and DIDA = sQA.
2. The KGC randomly chooses DU

IDA
∈ G1.

3. The KGC sends the SEM private key DU
IDA

to the user A and DS
IDA

=
DIDA − DU

IDA
to the SEM, over a confidential and authentic channel.

4. The user A selects xA ∈ Z∗q as his private key and constructs his public
key as 〈XA, YA〉 = 〈xAP, xAP0〉.

– Sign: Now user A with identity IDA wants to get a signature on m ∈ {0, 1}∗.
1. A chooses a random element a ∈ Z∗q , computes the following values:

r = ê(aP, P ) ∈ G2, υ = H2(m, r) ∈ Z∗q , and T U = υDU
IDA

.
2. A sends υ to the SEM, who checks if A’s public key has been revoked.
3. If not, the SEM computes T S = υDS

IDA
and sends it to A.

4. Upon receiving T S, A computes T = xA(T S + T U ) + aP .
5. The final signature is 〈T, υ〉.

– Verify: When receiving 〈T, υ〉 on message m ∈ {0, 1}∗ for identity IDA and
public key 〈XA, YA〉, the verifier performs the following steps:
1. If ê(XA, P0) �= ê(YA, P ), return ⊥ and abort.
2. Compute r′ = ê(T, P ) · ê(QA, −YA)υ .
3. Accept the signature if and only if υ = H2(m, r′) holds.
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3.1 Insiders Attack Against Revocation

The whole point of introducing a SEM is for the instant revocation of the user’s
ability to sign. The user cannot issue signature without the cooperation of the
SEM since the SEM holds a SEM private key of each user, which is essential
to compute a signature. In other words, the user must seek help from the SEM
every time he/she wants to issue a new signature. It is thus natural to assume
that a malicious user may interact with the SEM in anyway to gain knowledge
about the partial private key and later produce a signature autonomously.

Now we show that it is easy for a malicious user to get his/her SEM private key
by only one interaction with the SEM. After getting hold of the partial private
key, the user can sign any subsequent messages thereafter at will without the
assistance of the SEM anymore. This flaw is very disastrous since the scheme is
no longer having the merit of security mediated cryptography, i.e. it does not
provide the instantaneous key revocation property as claimed.

The flaw is that in their Sign algorithm, the SEM computes T S = υDS
IDA

and sends it to the user A. The user A can easily compute the value of DS
IDA

by
using the equation DS

IDA
= υ−1 · T S as υ is a value to be included in the final

signature anyway. Then, the user A can generate signature on any message with
the complete knowledge of DS

IDA
, DU

IDA
and xA.

Here, we point out some considerations in proposing a provable secure SMC
signature scheme. Firstly, we should ensure that the adversary does not gain any
advantage from the above queries. The SEM private key and the user private
key must be protected when issuing a partial signature. Leaking either one part
of the private keys will result in an insecure scheme.

3.2 Key Replacement Attack by Any Malicious Outsider

Ju et al. scheme [17] follows the approach used in the Al-Riyami and Paterson
CLS scheme [1] while the latter was derived from the Hess IBS scheme [14]. The
Al-Riyami and Paterson scheme was proven insecure in the defined model of
[16]. The insecurity lies in that [1] adopted a similar approach as [14] without
considering the adversary’s ability in CLPKC. Caution must be taken consider-
ing the ability of the adversary in replacing any public key, as no certificate is
needed in authenticating the user public key.

Now we show that Ju et al.’s scheme [17] is vulnerable to the public key
replacement attack by Type I adversary, similar to the technique in [16]. As
defined in [1], Type I adversary represents a dishonest user who can replace user
public key at will (as there is no certificate to authenticate the public key).

Our break is a strong one, which is universal forgery against no message attack,
i.e. no signing oracle is required in the Type I adversarial model (the attack does
not need any help from the SEM and the user in signing any message for any
identity ID) and the forger can sign any message. Details are given below:

Sign: To sign a message m with identity IDi, where Qi = H1(IDi):

1. Select a random T ∈ G1, compute r = ê(T, P )ê(Qi, −P0) and υ = H2(m, r).
2. Set xi = υ−1 ∈ Z∗q , compute X ′i = xiP and Y ′i = xiP0.
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3. Replace the user public key with 〈X ′i, Y ′i 〉, a clearly valid one.
4. Return 〈T, υ〉 as a signature of m.

The forged signature is valid since

r′ = ê(T, P ) · ê(Qi, −Y ′i )υ = ê(T, P ) · ê(Qi, −xiP0)υ = ê(T, P ) · ê(Qi, −P0) = r.

Although it may be possible to fix the scheme by the countermeasures in [16],
it still fails to provide instantaneous revocation capability. Instead of fixing, we
propose a much more efficient provably secure scheme in the next section.

4 Our Proposed Construction

This section presents our proposed scheme derived from the Schnorr signature
scheme [24]. The similar partial private key construction was used in [2]. The
merit of this approach is that no pairing computation is needed at all.

– Setup. Given the security parameter k, the KGC performs the following.
1. Generate two primes p and q such that q|p − 1.
2. Pick a generator g of Z∗p .
3. Pick s ∈ Z∗q uniformly at random and compute Y = gs.
4. Choose hash functions H0 : {0, 1}∗ → {0, 1}�, H1 : {0, 1}∗ → Z∗q and

H2 : {0, 1}∗ → Z∗q .
5. Return params = (p, q, g, Y, H0, H1, H2) and master key is s.

– KeyGen: The user performs the following.
1. Randomly select xID ∈ Z∗q as the user private key.
2. Compute PID = gxID ∈ Z∗q as the user public key.

– Register: Now user ID wants to register a public key PID:
1. The KGC authenticates and registers (ID, PID), randomly picks w ∈ Z∗q .
2. The KGC computes W = gw and d = w + sH1(ID||W ).
3. The KGC sends the SEM private key DID = 〈W, d〉 and the (ID, PID)

pair to the SEM over a confidential and authentic channel.
– Sign: Suppose the user ID wants to get the signature of message m, the SEM

checks whether ID is revoked; if not, the interaction between the signer and
the SEM is as follows (I denotes the first part and II denotes the second):

• SEM-Sign (I): randomly chooses rS ∈ Z∗q , computes RS = grS , sends
c = H0(RS) to the user.

• User-Sign (I): randomly chooses rU ∈ Z∗q , sends RU = grU to the SEM.
• SEM-Sign (II): computes

R = RS · RU , hS = H2(ID||W ||0||PID||R||m), t = rS + d · hS ;

and sends back 〈RS , t〉 to the user.
Note that the partial signing result generated by the SEM does not

need to transmit to the user through a secure channel since any party
other than the SEM and the user does not gain any advantage from it.

Depending on the scenarios, the user may want to verify the correct-
ness of the partial signature given by the SEM by checking whether the
equality RS = gt(W · Y H1(ID||W ))−hS holds.
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• User-Sign (II): checks if c = H0(Rs); if they are equal, computes

R = RS · RU , hU = H2(ID||PID||1||W ||R||m), v = rU + xID · hU + t.

The final signature is σ = 〈R, V, (ID||PID||W )〉.
– Verify: Given σ, accepts if and only if the following equality holds:

R = gV PID
−H2(ID||PID ||1||W ||R||m)(W · Y H1(ID||W ))−H2(ID||W ||0||PID||R||m).

The correctness of the proposed scheme can be easily verified as follows.

R′ = gV PID
−hU (W · Y H1(ID||W ))(−hS)

= grS+rU+d·hS+xID·hU g−xID·hU (gw · gsH1(ID||W ))(−hS)

= grS+rU+d·hSg(w+sH1(ID||W ))(−hS)

= grS+rU+d·hSg(d)(−hS)

= grS+rU = R

4.1 Generic Construction

One of the major characteristics of SMC signature is that the SEM private key
generated by the KGC and the user private key are required in different partial
signing algorithm; which is different with

1. the traditional CLS model [1,16,26], where the partial private key generated
by the KGC and the user private key are combined into a single private key,

2. the new CLS model [15], where the partial private key generated by the KGC
and the user private key are both inputs of the same signing algorithm.

The signing algorithm of the generic CLS construction in [15] can actually be
partitioned into two parts – the first part takes the partial private key (but not
the user private key) for partial signature generation, and the second part which
takes the user private key and the partial signature to give the final one.

Based on these observations, it is tempting to use the above partition to give
a generic construction of SMC signature scheme. Nevertheless, similar to the
weakness of the generic construction of SMC encryption in [9] (where decryp-
tion oracle may not work if the public key has been replaced), such approach
cannot give us signing oracles which still work after the public key has been
replaced.

4.2 Extension from CLS

Another possible approach to construct SMC signature scheme is to extend from
existing concrete CLS scheme. We note that Zhang et al.’s scheme [27] can be
partitioned in the way as described above, and the resulting scheme supports
partial signing queries even if the public key has been replaced. However, such
level of security is achieved at the expense of high computational complexity.
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4.3 Efficiency Analysis

We denote “Exp” the exponentiation in Z∗p , “MtP” the MapToPoint encoding
function in [6] and ê(·, ·) the pairing operation. The “n” letters appear in the
“MtP” columns denote n multiplications in Z∗p are required in encoding an
identity or a message, where n denotes the bit-length of an identity or a message
to be signed. Generally speaking, the operations are listed according to their
efficiency in descending order.

Regarding our scheme’s performance, the SEM private key generation requires
only 1 Exp. To verify, 4 Exp’s are needed. For signing, each of the user and the
SEM compute 1 Exp. Table 2 compares the performance of our proposal with
existing CLS schemes. Note that we include the total computational requirement
of both the SEM and user in signing, and ignore the MapToPoint operation to de-
rive the public key during the signing and the verification. These considerations
are unfavorable to our proposal.

It is clear that our proposal outperforms all existing ones.

Table 2. Efficiency Analysis of Certificateless Signature Schemes

Key Generation Signing Verification

Exp MtP ê(·, ·) Exp MtP ê(·, ·) Exp MtP ê(·, ·)
Cao et al. [8] 1 1 0 3 0 1 1 0 4

Huang et al. [16] 1 1 0 3 0 1 1 0 4

Li et al. [19] 1 1 0 2 0 0 1 0 4

Zhang et al.[27] 1 1 0 3 2 0 0 2 4

Liu et al.[18] 2 n 0 4 n 0 0 n 6

Our Proposed Scheme 1 0 0 2 0 0 4 0 0

Generic constructions of certificateless signature are proposed in [26] and [15].
([26] is later shown to be insecure by [15]). Comparing our proposed scheme with
the construction in [15], our scheme produces signatures of shorter length, as the
signature in [15] is a concatenation of an IBS and a traditional signature.

4.4 Subtleties of the Public Component Selected by the KGC

In our scheme, there is a public component W = gw where w is randomly
chosen by the KGC. W is public since it is in the final signature. No existing
certificateless signature schemes have such component. Subtleties appear such
that whether this element can be considered as part of the public key.

This component W appears is in the generation and extraction of the SEM
key. It also appears in the SEM-Sign query to get signatures for some purported
public key as well as in the forgery returned by the adversary.

For the SEM key generation, W is generated together with the SEM private
key d = w + sH1(ID||W ), which both are sent to the KGC. The KGC only



470 W.-S. Yap et al.

knows the correct value of d corresponding to the value of W given by the KGC.
Since the KGC is responsible for checking whether the user’s signing right has
been revoked anyway, it is actually natural to assume the KGC will not sign for
whatever purported W . In our security analysis, we also impose such restriction.

Similarly, no extraction of the SEM key according to an adversarially chosen
W , since (W, d) is considered as a SEM key as a whole. However, considering
the fact that the verifier does not hold a legitimate copy of W (that the SEM
is holding), i.e. any verifier can only use the W included in the signature during
the verification, then forgery with W replaced is considered as valid.

4.5 The Importance of the Key Binding

In order to achieve trust level 3, we can use the binding technique that ensures
only one public key, for which the user knows the corresponding private key can
be created. This technique was first employed in [1,26] in order to prevent the
KGC from issuing two valid partial private keys (in certificateless context, or
the SEM private keys in our terms) for a single user.

With the binding technique in place, the existence of two working public keys
for an ID can only result from the existence of the SEM private keys binding
that identity to two different public keys; only the KGC could have created these
two SEM private keys since only the KGC has the master key.

This technique is useful when higher security level is required, especially in
corporate and military environment. It is acceptable that only one permanent
public key is available for one identity. When the user private key found com-
promised or the user is removed from his/her duty, the ID will be revoked
permanently. Nevertheless, we note a drawback of the binding technique, which
makes the user who holds ID can no longer use a new public key P ′ID.

If such permanent revocation is undesirable, when either the SEM private key
or the user private key is compromised, some “out-of-band” non-cryptographic
signature should be given by the party concerned, so no one can claim later that
something malicious is happening even there exist two “working” public keys.

4.6 Security

Before the security proof, we review the definition of discrete logarithm problem.

Definition 3. Discrete Logarithm Problem (DLP). The DLP is the prob-
lem of finding a given (p, q, g, ga) with uniformly random choices of a ∈ Z∗q and
g ∈ Z∗p . The DL assumption states that there is no polynomial time algorithm
with a non-negligible advantage in solving the DLP.

The security proofs below borrow some proof ideas from [7]. The first one is
to ensure certain random oracle responses to be the same in two executions of
the adversary, irrespective of when the corresponding queries are made by the
adversary. This is done by letting one oracle query to trigger the determination
of a number of related oracle responses. Another one is the use of commitment to
help the correct programming of the random oracle. This trick has been adopted
elsewhere, for example, in Nicolosi et al.’s proactive two-party signatures [23].
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Theorem 1. Our SMC signature scheme is existential unforgeable against the
Type I adversary in the random oracle model assuming the DLP in G is hard.

Proof. Let AI be a forger that breaks the proposed signature scheme under
adaptive chosen message and identity attack. We show that how B can use AI
to solve the DLP instance (p, q, g, ga).

B sets Y = ga and system parameters as (p, q, g, Y ). B then gives the system
parameters to AI . It also maintains a list of tuples (IDi, Wi, ei, di, Pi, xi) which
is denoted as H list

1 . Next, B randomly selects an index I such that 1 ≤ I ≤ qH1 ,
where qH1 denotes the maximum number of queries to the random oracle H1. B
also picks eI ∈ Z∗q at random and sets WI = gaY −eI .

Adversary B interacts with AI in the Attack phase of the game as follows:

H0 Queries: When AI queries H0, B checks the corresponding H list
0 and outputs

ci if such query has already been made. Otherwise, B picks ci ∈ {0, 1}� at
random, updates the H list

0 and outputs ci as answer.

H1 Queries: When AI queries H1 on input (IDi||Wi), B checks the corre-
sponding H list

1 and outputs ei if such value is defined. Otherwise, B picks
ei ∈ Z∗q at random and outputs ei as answer. H list

1 is also updated, such that
(IDi, Wi, ei, ⊥, Δ̃, Δ̃) is stored, where Δ̃ means the old value (if exists) is kept.

H2 Queries: When AI issues a query on these hash values, B parses the input as
(ID||μ||b||ν||Ri||mi). If the query cannot be parsed as this form, simply returns
a random value hi ∈ Z∗q . If b = 0, B sets Wi = μ and Pi = ν. If b = 1, B sets
Wi = ν and Pi = μ. After that, B checks whether the value H1(ID||Wi) has
been defined. If no, B runs the simulation of H1 as usual to define it.

B then checks the corresponding H list
2 . If an entry for the query is found,

the same answer will be given to A. Otherwise, B randomly selects hi and h′i
from Z∗q , assigns hi = H2(ID||μ||0||ν||Ri||mi) and h′i = H2(ID||ν||1||μ||Ri||mi).
By symmetry, H2(ID||ν||1||μ||Ri||mi) must have not been defined beforehand
if H2(ID||μ||0||ν||Ri||mi) has not. Finally, all queries and the corresponding
answer will be stored in the H list

2 .

SEM-Extract: Suppose the query is on IDi.

1. If i �= I, then B picks di, ei ∈ Z∗q at random and computes Wi = gdiY −ei .
B updates the corresponding record in the H list

1 to (IDi, Wi, ei, di, Δ̃, Δ̃),
where Δ̃ means the old value is kept. (Wi, di) is returned as the answer.

2. Else if i = I, B aborts.

The above simulation is faithful since Wi · Y H1(IDi||Wi) = gdiY −eiY ei = gdi .

User-Extract: Suppose the query is on IDi. Assume the public key for IDi has
not been replaced (no such query is allowed otherwise), B responds as follow.

1. i �= I: If the public key does not exist, B picks xi ∈ Z∗q at random and
updates the H list

1 (i.e. stores xi and gxi). Otherwise, returns the xi stored.
2. i = I: B aborts.
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Replace: Suppose the public key for IDi is replaced with value P ′i , B just updates
H list

1 accordingly (i.e. stores (P ′i , ⊥) for user public/private key).

SEM-Sign: Note that at any time during the simulation, equipped with those
SEM private keys for any IDi �= IDI , AI is able to generate partial signatures
on any message if the public key had not been replaced. We assume that the B
would not help the user to sign for any purported W value, instead, SEM uses
the stored one. For IDi = IDI , assume that AI issues a query (mi, PI) where
mi denotes a message and PI denotes a current public key chosen by AI that is
associated with IDI . Given WI = gaY −eI where eI = H1(IDI ||WI), B creates
a partial signature as follows:

1. Pick ti, hi ∈ Z∗q at random and set RS = gtiga(−hi).
2. Execute H0 oracle simulation, get ci = H0(Rs) and send it to A.
3. After getting RU from A, set hi = H2(IDI ||WI ||0||PI ||RS · RU ||m).
4. Send 〈RS , ti〉 to A.

Embedding hi as the response of H2 is not possible if AI has queried the
H2 value of (IDI ||WI ||0||PI ||RS ·RU ||m) beforehand. We consider the case that
H0(RS) has previously queried and the case that it was not. In the first case,
AI probably knows RS and may have deliberately queried such value. However,
since ti is chosen randomly by B independent of AI ’s view, the probability that
AI made such H0 query is at most (qH + qS)/2k. In the second case, the view
of AI is completely independent of RS . The probability that RS · RU appeared
(by chance) in a previous H2 query is against at most (qH + qS)/2k.

User-Sign: Note that at any time during the simulation, if equipped with those
user private keys for any ID, AI is able to generate partial signatures on any
message. For replaced public key PI , the simulation is as follows.

1. An �-bit commitment cI is obtained from the adversary, which models the
first message that SEM should be sent to initiate the User-Sign process.

2. Pick υi, ξi ∈ Z∗q at random and set RU = gυiPI
(−ξi).

3. Search for H list
0 to find R′S such that H0(R′S) = cI .

4. If found, set ξi = H2(IDI ||PI ||1||WI ||RU · RS ||m).
5. After obtained 〈RS , ti〉, check if H0(RS) = cI , stop User-Sign.
6. If R′S is previously found, but R′S �= RS , declare failure and abort.
7. If R′S was not found, and H2(IDI ||PI ||1||WI ||RU · RS ||m) �= ξi, declare

failure and abort since H0(RS) = cI but B cannot program H2 accordingly.
8. If B is lucky enough to reach this step, send 〈RU , υi + ti〉 to A.

The above simulation fails if H0(RS) = cI , but no R′S can be found or R′S �=
RS . For the first case, the probability that AI can predict H0(RS) = cI without
asking the random oracle is at most 1/2�. For the second case, collision must have
occurred and the probability for this is at most ((qH + qS)(qH + qS +1)/2)/2� ≤
(qH + qS + 1)2/2�. We just assume A asked for H2(IDI ||PI ||1||WI ||RU · RS ||m)
if R′S was not found since A knew the value of RS before B.
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Complete-Sign: If both the SEM private key and the user private key are avail-
able, signing is trivial. If either one of them is unavailable, this request can be
simulated faithfully as a combination of the above two simulation, but much
easier since we no longer need the technicality to solve the problem that either
one of the RS and RU is unknown.

Forgery: The next step of the simulation is to apply the general forking lemma
in [7]: Let 〈R∗, V ∗〉 be a forgery of a signature on message m∗ with respect to
〈ID∗, PID∗ , W ∗〉 that is output by AI at the end of the attack. If AI does not
output ID∗ = IDI as a part of the forgery then B aborts (the probability that
B does not abort the simulation is O(1/qH1)).

Consider the case that W ∗ has not been replaced, i.e. W ∗ = WI = gaY −eI

where eI = H1(IDI ||WI). B then replays AI with the same random tape but
different H2 after the point (ID∗||W ∗||0||PID∗ ||R∗||m∗). Suppose H2 outputs hS

and h′S in the first round and the second round respectively, where hS �= h′S . Note
the special step in the simulation of H2 ensures H2(ID∗||PID∗ ||1||W ∗||R∗||m∗)
remains the same after forking. Moreover, since eI = H1(ID∗||W ∗) is defined at
the very beginning of the game, it remains the same as well.

So we get another valid forgery 〈R∗, V ′〉, i.e.

R∗ = gV ∗
PID

−H2(ID∗||PID∗ ||1||W ∗||R∗||m∗)(W ∗ · Y H1(ID∗||W ∗))−hS

R∗ = gV ′
PID

−H2(ID∗||PID∗ ||1||W ∗||R∗||m∗)(W ∗ · Y H1(ID∗||W ∗))−h′
S

B thus gets V ∗−ahS = V ′−ah′S. DLP’s solution is a = (V ∗−V ′)/(hS −h′S).
In the second case, W ∗ is replaced. We would like to apply forking lemma so

that H1(ID∗||W ∗) changes from h to h′ after forking, but H2 queries related to
W ∗ remain the same. Since W ∗ never appears in Sign query of any kind, it is
thus safe to rearrange all those H2 queries before the forking, without affecting
the adversary’s view. After forking, we get another valid forgery 〈R∗, V ′〉 where

R∗ = gV ∗
PID

−H2(ID∗||PID∗ ||1||W ∗||R∗||m∗)(W ∗ · Y h)−H2(ID∗||W ∗||0||PID∗ ||R∗||m∗)

R∗ = gV ′
PID

−H2(ID∗||PID∗ ||1||W ∗||R∗||m∗)(W ∗ · Y h′
)−H2(ID∗||W ∗||0||PID∗ ||R∗||m∗)

B solves the DLP by a = (V ∗−V ′)/(H2(ID∗||W ∗||0||PID∗ ||R∗||m∗)(h−h′)).

Theorem 2. Our SMC signature scheme is existential unforgeable against the
Type II adversary in the random oracle model assuming the DLP in G is hard.

Proof. Let AII be a forger that breaks our scheme under adaptive chosen mes-
sage attack. We show how B can use AII to solve the DLP instance (p, q, g, ga).

B first randomly picks s ∈ Z∗q , gives the system parameters as (p, q, g, Y = gs)
and the master key s to AII . It also maintains a list of tuples (IDi, Wi, ei, di,
Pi, xi) which is denoted as H list

1 . Next, B randomly selects an index I such that
1 ≤ I ≤ qH1 , where qH1 denotes the maximum number of queries to the random
oracle H1. B sets PI = ga, picks zI , eI ∈ Z∗q at random and computes WI = gwI

and dI = zI + seI where eI = H1(IDI ||WI).
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Adversary B interacts with AII in the Attack phase of the game as follows:

H0 Queries: When AII queries H0, B checks the corresponding H list
0 and out-

puts ci if such query has already been made. Otherwise, B picks ci ∈ {0, 1}� at
random, updates the H list

0 and outputs ci as answer.

H1 Queries: When AII queries H1 on input (IDi||Wi), B checks the cor-
responding H list

1 and outputs ei if such value is defined. Otherwise, B picks
ei ∈ Z∗q at random and outputs ei as answer. H list

1 is also updated, such that
(IDi, Wi, ei, ⊥, Δ̃, Δ̃) is stored, where Δ̃ means the old value (if exists) is kept.

H2 Queries: When AII issues a query on these hash values, B parses the input as
(ID||μ||b||ν||Ri||mi). If the query cannot be parsed as this form, simply returns
a random value hi ∈ Z∗q . If b = 0, B sets Wi = μ and Pi = ν. If b = 1, B sets
Wi = ν and Pi = μ. After that, B checks whether the value H1(ID||Wi) has
been defined. If no, B runs the simulation of H1 as usual to define it.

B then checks the corresponding H list
2 . If an entry for the query is found,

the same answer will be given to AII . Otherwise, B randomly selects hi and h′i
from Z∗q , assigns hi = H2(ID||μ||0||ν||Ri||mi) and h′i = H2(ID||ν||1||μ||Ri||mi).
By symmetry, H2(ID||ν||1||μ||Ri||mi) must have not been defined beforehand
if H2(ID||μ||0||ν||Ri||mi) has not. Finally, all queries and the corresponding
answer will be stored in the H list

2 .

SEM-Extract: Note that at any time during the simulation, equipped with the
master key s, AII is able to generate SEM private key for any ID.

User-Extract: Suppose the query is on IDi. B responds as follow.

1. i �= I: If the public key does not exist, B picks xi ∈ Z∗q at random and
updates the H list

1 (i.e. stores xi and gxi). Otherwise, returns the xi stored.
2. i = I: B aborts.

SEM-Sign: Note that at any time during the simulation, equipped with the mas-
ter key s, AII is able to generate partial signatures 〈RS , ti〉 on any message.

User-Sign: Note that at any time during the simulation, equipped with those
user private keys for any IDi �= IDI , AII is able to generate partial signatures
on any message. For IDi = IDI , the simulation is as follows.

1. An �-bit commitment cI is obtained from the adversary, which models the
first message that SEM should be sent to initiate the User-Sign process.

2. Pick υi, ξi ∈ Z∗q at random and set RU = gυiPI
(−ξi).

3. Search for H list
0 to find R′S such that H0(R′S) = cI .

4. If found, set ξi = H2(IDI ||PI ||1||WI ||RU · RS ||m).
5. After obtained 〈RS , ti〉, check if H0(RS) = cI , stop User-Sign.
6. If R′S is previously found, but R′S �= RS , declare failure and abort.
7. If R′S was not found, and H2(IDI ||PI ||1||WI ||RU · RS ||m) �= ξi, declare

failure and abort since H0(RS) = cI but B cannot program H2 accordingly.
8. If B is lucky enough to reach this step, send 〈RU , υi + ti〉 to A.



Security Mediated Certificateless Signatures 475

The above simulation fails if H0(RS) = cI , but no R′S can be found or R′S �=
RS . For the first case, the probability that AI can predict H0(RS) = cI without
asking the random oracle is at most 1/2�. For the second case, collision must have
occurred and the probability for this is at most ((qH + qS)(qH + qS +1)/2)/2� ≤
(qH + qS + 1)2/2�. We just assume A asked for H2(IDI ||PI ||1||WI ||RU · RS ||m)
if R′S was not found since A knew the value of RS before B.

Complete-Sign: If the user private key is available, signing is trivial. Other-
wise, this request can be simulated faithfully similar to above, but much eas-
ier since we no longer need the technicality to solve the problem that RS is
unknown.

Forgery: The next step of the simulation is to apply the general forking lemma
in [7]: Let 〈R∗, V ∗〉 be a forgery of a signature on message m∗ with respect to
〈ID∗, PID∗ , W ∗〉 that is output by AII at the end of the attack. If AII does
not output ID∗ = IDI as a part of the forgery then B aborts (the probability
that B does not abort the simulation is O(1/qH1)).

B then replays AII with the same random tape but different H2 after the point
(ID∗||PID∗ ||1||W ∗||R∗||m∗). Suppose H2 outputs hU and h′U in the first round
and the second round respectively, where hU �= h′U . Since eI = H1(ID∗||W ∗)
and H2(ID∗||W ∗||0||PID∗ ||R∗||m∗) are defined before H2(ID∗||PID∗

||1||W ∗||R∗||m∗) outputs hU and h′U , they remain the same as well.
So we get another valid forgery 〈R∗, V ′〉, i.e.

R∗ = gV ∗
PID

−hU (W ∗ · Y H1(ID∗||W ∗))−H2(ID∗||W ∗||0||PID∗ ||R∗||m∗)

R∗ = gV ′
PID

−h′
U (W ∗ · Y H1(ID∗||W ∗))−H2(ID∗||W ∗||0||PID∗ ||R∗||m∗)

Since PID = ga, B thus gets V ∗ − ahU = V ′ − ah′U . DLP’s solution is
a = (V ∗ − V ′)/(hU − h′U ). It works even the discrete logarithm of W ∗ is
unknown.

5 Conclusion

We presented a formal study of security mediated certificateless signatures (SMC
signatures). We showed that Ju et al.’s construction [17] is insecure. We formal-
ize the security model of SMC signature, and discussed the subtleties arose from
a public component introduced by the probabilistic SEM private key genera-
tion. We then proposed the first provable secure SMC signature scheme. Our
scheme is efficient in the sense that no bilinear pairing is involved. It is provable
secure in the random oracle model based on the intractability of the discrete
logarithm problem. We also extended our scheme to achieve trust level 3 by
adopting the technique used in [1,26]. It is worth noting that our scheme can
be easily extended to be an efficient CLS scheme without pairing. Distributing
the power of the SEM by threshold signature technique [25] will be our future
work.
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A Chow et al. vs. Ju et al.

Chow et al. [9] provided two constructions of encryption schemes: a generic
construction in the standard model (which is earlier than [18]), with the restric-
tion that decryption may not work after public key replacement, and a concrete
scheme assuming random oracles, with the aforementioned restriction removed.

Ju et al.’s [17] security model for the encryption scheme does not allow the
adversary to ask for the private key of the target user (weak semantic security
against insider attacks in the term of [20]). Obviously, such assumption is too
strong. They suggested to strengthen their scheme by using the technique of [3],
but Chow et al.’s scheme [9] took a step further with a solution more elegant
and efficient than such modification. Moreover, it is easy to show the hierarchical
variant in [17] is insecure against chosen ciphertext attack.

B Errata of Chow et al.’s Generic SMC Encryption

Below give two errata of the generic SMC encryption in [9]. Both are about the
encryption algorithm. Decryption algorithms should be revised accordingly.

1. Instead of α = H(C1, C2, �), α should be H(C1, C2, �, s1); otherwise, a chosen
ciphertext attack is possible [10].

2. Instead of (C1, C2)=(IBE.Encparams(IDA, s1), C2 = PKE.Enc�
EK(s2)), it should

be (C1, C2) = (IBE.Encparams(IDA, s1||H(VK)), C2 = PKE.EncVK
EK(s2)), i.e. the

IBE encryption also encrypts the hash value of VK, and the label as the input
of the public key encryption should be VK instead of the label � of the SMC
encryption. This amendment has been made in the PKC ’06 presentation.
Without such change, a chosen ciphertext attack is possible.
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Abstract. In 1990, Boyar, Chaum, Damg̊ard and Pedersen introduced
convertible undeniable signatures which limit the self-authenticating
property of digital signatures but can be converted by the signer to or-
dinary signatures. Michels, Petersen and Horster presented, in 1996, an
attack on the Elgamal-based seminal scheme of Boyar et al. and pro-
posed a repaired version without formal security analysis. In this paper,
we modify their protocol so that it becomes a generic one and it pro-
vides an advanced feature which permits the signer to universally convert
achronously all signatures pertaining to a specific time period. We sup-
ply a formal security treatment of the modified scheme: we prove, in the
generic group model, that the protocol is existentially unforgeable and
anonymous under chosen message attacks, assuming new assumptions
(though reasonable) on the underlying hash function.

1 Introduction

In 1996, Michels, Petersen and Horster [14] proposed a convertible undeniable
signature protocol whose security relies on the difficulty of the discrete logarithm
problem in the multiplicative group of a finite field. This scheme has received lit-
tle attention from the cryptographic community whereas we are convinced that
it deserves better than oblivion. This paper focuses on the security treatment
and on the proposal of an additional functionality for Michels-Petersen-Horster
convertible undeniable signatures. Our analysis points out new security proper-
ties for the underlying hash functions which may be of independent interest.

Related work. A property of conventional digital signature schemes is that
once a signature is released, everybody can check its validity. However there are
numerous situations where this self-authenticating property is not desirable. In
1989 Chaum and van Antwerpen [7] introduced the concept of undeniable signa-
tures whose purpose is to perform public key digital signatures which cannot be
verified without interacting with the signer. In addition to the confidentiality and
privacy concerns in themselves, this primitive finds applications in such different
fields as electronic payment systems, certificate management or cyberdemocracy.
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In 1991, the concept has been refined by giving the possibility to transform
an undeniable signature into an ordinary digital signature. These convertible
undeniable signatures, proposed in [4] by Boyar, Chaum, Damg̊ard and Pedersen,
provide individual and universal conversions of the signatures. Unfortunately,
this Elgamal-like scheme has been broken in 1996 by Michels, Petersen, and
Horster [14] who proposed a repaired version with heuristic security.

The universal conversion of all convertible undeniable signature protocols pro-
posed before 2005, consists in revealing a part of the signer’s secret key. This
conversion makes all signatures, past as well as future, be universally verifiable.
This property may be undesirable in some context since the corresponding keys
cannot be used to generate undeniable signatures any more. To overcome this
problem, Laguillaumie and the second author introduced and formalized, in 2005
[13], the time-selective convertible undeniable signatures which supports signers
in gradually converting the undeniable signatures in a controlled fashion. They
proposed a scheme which permits the signer to universally convert chronologi-
cally signatures pertaining only to a specific time period: given a time-selective
convertible undeniable signature σ for a time period t, it is computationally in-
feasible to determine which signing secret key was used to generate σ; but with
the knowledge of a matching universal receipt for some time period p′ ≥ p, it
is easy to determine whether σ is a valid time-selective convertible undeniable
signature or not. A tantalizing challenge is to generalize the concept of time-
selective convertible signature to event-selective convertible signature where a
signature becomes universally verifiable if a specific event happens that makes
the signer publish the corresponding receipt information. This primitive will
enable the signer to gradually convert signatures achronously (i.e. with time
periods made completely independent of each other). Up to now, no concrete
realization of this concept has been proposed in the literature.

Our contributions. In this paper, we revisit the Michels-Petersen-Horster con-
vertible undeniable signature scheme. First of all, we modify it such that it be-
comes a generic algorithm. This point of view allows to look at cryptographic
constructions in an abstract way and “move” them to other groups without the
original restriction of subgroup of the multiplicative group of a finite field. In
addition, we suggest a slight modification of this scheme which gives the first
realization of achronous gradually convertible undeniable signatures.

The security of many cryptographic tools relies on assumptions about the
hardness of certain algorithmic problems. Techniques from [17] suggest that it is
highly improbable to reduce the security of the Michels-Petersen-Horster signa-
tures to the discrete logarithm problem in the standard security model. There-
fore, we investigate their security in the so-called generic group model, following
previous work from [5,21] where the security of a generic version of the proto-
col DSA was analyzed. However, it is worth noting that the real, non-generic
security of the scheme may be completely different in different groups [8].

This security analysis points out new sufficient security properties for the un-
derlying hash functions. These new notions of random affine preimage resistance
and random linear collision resistance are satisfied by generic hash functions
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(i.e. in the random oracle model [3]). The former property is necessary for our
scheme to be secure, while the latter is for the RSA-FDH signature scheme [3].

Notations. The set of n-bit strings is denoted by {0, 1}n and the set of all finite
binary strings (or messages) is denoted by {0, 1}∗. Let A be a probabilistic Turing
machine running in polynomial time (a PPTM, for short), and let x be an input
for A. The probability space that assigns to a string σ the probability that A, on
input x, outputs σ is denoted by A(x). The support of A(x) is denoted by A[x].
Given a probability space S, a PPTM that samples a random element according
to S is denoted by x

R←− S. For a finite set X , x
R←− X denotes a PPTM that

samples a random element uniformly at random from X . A two-party protocol
is a pair of interactive PPTMs (Prove, Verify).

2 Gradually Convertible Undeniable Signatures

2.1 Definition

As in ordinary digital signatures, undeniable signature schemes establish two
complimentary algorithms: one for signing (Sign) and the other for controlling the
signature at some later time (Cont), but this algorithm is not publicly available
since it requires the knowledge of the signer’s secret key to be executed. Besides,
the signer can prove his authorship of an undeniable signature by running a
confirmation protocol (Conf) with a verifier and a falsely implicated signer may
deny his involvement by running a denial protocol (Deny) with a verifier.

Designated verifier proofs were introduced by Jakobsson, Sako and Impagli-
azzo in 1996 [11] and have been widely used for undeniable signature schemes.
In [12], Kudla and Paterson present a security model for these signatures where
the confirmation and denial protocols are actually implemented with such proofs.
They proposed non-interactive designated verifier proofs suited to combination
with Chaum-van Antwerpen original undeniable signature scheme resulting in a
secure1 and efficient undeniable signature scheme. Unfortunately, we cannot use
these non-interactive non-transferable proofs, to obtain the security results with-
out the random oracle model. Therefore, in this paper, we will use interactive
version of the designated verifier proofs described in [12].

In addition, the signer has at its disposal an algorithm (Conv) which permits to:

– convert a given undeniable signature into a regular, universally verifiable
signature. This operation does not affect other undeniable signatures.

– publish a universal trapdoor relative to a specific time period p by the means
of which all undeniable signatures for the time period p become universally
verifiable.

1 In the random oracle model, assuming the intractability of the decisional Diffie-
Hellman problem in the underlying group [9,15,16].
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The verification of the converted signatures is performed thanks to the algorithm
Vf.

Definition 1 (Gradually Convertible Undeniable Signature). Let π ∈ N.
A gradually convertible undeniable signature scheme with π time periods Σ is a
9-tuple Σ = (Setup, SKg, VKg, Sign, Cont, Conf, Deny, Conv, Vf) such that:

– Σ.Setup, the common parameter generation algorithm, is a PPTM which takes
an integer k as input. The output are the public parameters P. k is called
the security parameter.

– Σ.SKeyGen, the signer key generation algorithm, is a PPTM which takes the
public parameters as input. The output is a pair (sks,pks) where sks is
called a signing secret key and pks a signing public key.

– Σ.VKeyGen, the verifier key generation algorithm, is a PPTM which takes the
public parameters as input. The output is a pair (skv,pkv) where skv is
called a verifying secret key and pkv a verifying public key.

– Σ.Sign, the signing algorithm, is a PPTM which takes the public parameters,
a message, an integer in [[1, π]] and a signing secret key as inputs and outputs
a bit string.

– Σ.Cont, the controlling algorithm, is a PPTM which takes the public param-
eters, a message m, a bit string σ, an integer p ∈ [[1, π]] and a signing key
pair (sks,pks) as inputs and outputs a bit. If the bit output is 1 then the bit
string σ is said to be a signature on m for pks for the time period p.

– Σ.{Conf.Deny}, the confirming/denying protocols (respectively), are two-party
protocols (Prove, Verify) such that:

• Prove and Verify take as input a message m, an integer p ∈ [[1, π]], a
bit-string σ, a signing public key pks and a verifying public key pkv and
the public parameters;

• Prove takes as input sks the signing secret key corresponding to pks;
• Verify takes as input skv the verifying secret key corresponding to pkv;

Conf.Verify ( resp. Deny.Verify ) outputs an element in {⊥, 1} ( resp. {⊥, 0}).
– Σ.Conv, the conversion algorithm, is a PPTM which takes as input the public

parameters, an integer in [[1, π]], a signing key pair and a bit string Υ (either
a pair message/signature or the empty string) and outputs a bit string.

– Σ.Vf, the verifying algorithm for converted signature, is a PPTM which takes
as input the public parameters, a message m, and a bit string σ, an integer
p ∈ [[1, π]], a signing public key pks and a bit string Λ and outputs a bit. If
the bit output is 1 then the bit string Λ is said to be a receipt of the validity
of σ.

where the protocols Σ.Conf and Σ.Deny are a designated verifier proof of mem-
bership system for the languages (respectively):

{(P , m, σ, p,pks) ∈ Σ.Setup[k] × {0, 1}∗2 × [[1, π]] × Σ.SKg[P ]
∣∣Σ.Vf[P , m, σ, p]} = {1}

{(P , m, σ, p,pks) ∈ Σ.Setup[k] × {0, 1}∗2 × [[1, π]] × Σ.SKg[P ]
∣∣Σ.Vf[P , m, σ, p]} = {0}
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and for all k ∈ N, for all P ∈ Σ.Setup[k], for all S = (pks, sks) ∈ Σ.SKg[P ],
for all m ∈ {0, 1}∗ and for all p ∈ [[1, π]], we have:

∀σ ∈ Σ.Sign[P , m, p, sks], Σ.Cont[P , m, σ, p, (sks,pks)] = {1}
∀σ ∈ Σ.Sign[P , m, p, sks], ∀Λ ∈ Σ.Conv[P , p, S , (m,σ)], Σ.Vf[P , m, σ, p,pks, Λ] = {1}

∀σ ∈ Σ.Sign[P , m, p,pks], ∀Λ ∈ Σ.Conv[P , p, S , ε], Σ.Vf[P , m, σ, p,pks, Λ] = {1}
∀σ, Λ ∈ {0, 1}∗, Σ.Vf[P , m, σ, p,pks, Λ] = {1} ⇒ Σ.Cont[P , m, σ, p, (sks, pks)] = {1}.

Remark 1. The first two properties capture the validity and the non-transferable
property of the protocols Conf and Deny (i.e. the use of designated verifier proofs
insures that a verifier will gain no information in an execution of one of these
protocols [12]). The three last properties are the properties of correctness :

– a well-formed signature is always accepted by the algorithm Cont;
– a receipt correctly constructed is always accepted by the algorithm Vf;
– and if there exists a bit-string Λ which makes accepted a bit-string σ by the

algorithm Vf, then σ is a valid signature.

2.2 Security Model

Registered public key model. In public key cryptography, the notion of
anonymity is to be handled with great attention. For instance, in order to ensure
anonymity, it is important that users register their public key by a certifying
authority. Hence, in our security analysis, it is assumed that the users’ keys
have been already registered to an authority. The registration procedure would
always contain a proof of knowledge of the associated private key. To further
simplify the security analysis, we will assume that this procedure will be the
direct registration of the keys2.

Security against existential forgery under chosen message attack. The
standard notion of security for digital signatures was defined by Goldwasser,
Micali and Rivest [10] as existential forgery against adaptive chosen message
attacks (EF-CMA). In [13], the corresponding notion for time-selective convertible
undeniable signatures is defined along the same lines. The definition of resistance
to forgery for gradually convertible undeniable signatures that we propose is
similar. In fact, we suppose that the adversary has access to the universal receipts
for every time period p ∈ [[1, π]] and is allowed to query a converting oracle Cv, a
confirming oracle C amd a denying oracle D on any couple message/signature of
its choice. As usual, in the adversary answer, there is the natural restriction that
the returned message/signature has not been obtained from the signing oracle.

Definition 2 (Unforgeability - EF-CMA). Let π be a positive integer, let
Σ = (Setup, SKg, VKg, Sign, Cont, Conf, Deny, Conv, Vf) be a gradually convertible

2 It is often necessary to require the security of the schemes even if the adversary is
the key registration center. In this case, one must replace the proof of knowledge
associated to the key registration by a zero-knowledge one.
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undeniable signature scheme with π time periods and let A be an PPTM. We
consider the following random experiment, where k is a security parameter:

Experiment Expef−cma
Σ,A (k)

P R←− Σ.Setup(k),
(pks, sks)

R←− Σ.SKg(P)
for j = 1 to π do Λj ← Σ.Conv(P , j, (sks,pks), ε)

(m�, σ�, p�)
R←− AS,Cv,C,D(P ,pks, {Λj}j∈[[1,π]])∣∣∣∣∣∣∣∣

S : (m,p) −→ Σ.Sign(P , m, p, sks)
Cv : (m, p, σ) −→ Σ.Conv(P , p, (sks,pks), (m, σ))
C : (m, p, σ, pkv) −→ Σ.Conf(m, p, σ,pkv, pks)
D : (m,p, σ, pkv) −→ Σ.Deny(m, p, σ,pkv,pks)

return 1 if and only if the following properties are satisfied:
- Σ.Vf[P ,pks, m

�, σ�, Λp� ] = {1}
- m was not queried to S

We define the success of A, via Succef-cma
Σ,A (k) Pr

[
Expef-cma

Σ,A (k) = 1
]
.

Given (k, t) ∈ N
2 and ε ∈ [0, 1], the scheme Σ is said to be (k, t, ε)-EF-CMA

secure, if no EF-CMA-adversary A running in time t has Succef-cma
Σ,A (k) ≥ ε. The

scheme Σ is said to be EF-CMA secure if, for any security parameter k ∈ N, any
polynomial function t : N → N, and any negligible function ε : N → [0, 1], it is
(k, t(k), ε(k))-EF-CMA secure.

Anonymity. We state the precise definition of anonymity under a chosen mes-
sage attack (Ano-CMA) which captures the notion that an attacker cannot deter-
mine under which key a signature was performed [9]. We consider a Ano-CMA-
adversary A that runs in two stages. In the find stage, it takes as input two
signing public keys pks0 and pks1 and outputs a message m�, a time period p�

together with some state information I. In the guess stage, A gets a challenge
gradually convertible undeniable signature σ� formed by signing at random the
message m� under one of the two keys for the time period p� and it must say
which key was chosen. In both stages, the adversary has access to a signing
oracle S for both signing key pairs, to a converting oracle Cv, to a confirming
oracle C and to a denying oracle D. The attacker is also given the universal
receipts of both potential signers for all3 time period p ∈ [[1, π]] \ {p�}. The only
restriction on A is that it cannot query the triple (m�, σ�, p�) on the converting
and confirming/denying oracles.

Definition 3 (Anonymity - Ano-CMA). Let π be a positive integer, let
Σ = (Setup, SKg, VKg, Sign, Cont, Conf, Deny, Conv, Vf) be a gradually convertible
undeniable signature scheme with π time periods and let A be an PPTM. We
consider the following random experiment, for r ∈ {0, 1}, where k is a security
parameter:

3 This is the main difference with time-selective convertible undeniable signatures from
[13] where this universal receipts was given only for p ∈ [[1, p� − 1]].
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Experiment Expano-cma−r
Σ,A (k)

P R←− Σ.Setup(k)

(pks0, sks0)
R←− Σ.SKeyGen(P),

(pks1, sks1)
R←− Σ.SKeyGen(P)

(m�, p�, I)
R←− AS,Cv,C,D(find, P ,pks0,pks1)∣∣∣∣∣∣∣∣

S : (m,p, i) −→ Σ.Sign(P , m, p, sksi)
Cv : (m, p, σ, i) −→ Σ.Conv(P , p, (sksi,pksi), (m, σ))
C : (m, p, σ, pkv, i) −→ Σ.Conf(m,p, σ, pkv,pksi)
D : (m,p, σ, pkv, i) −→ Σ.Deny(m,p, σ,pkv,pksi)

σ� R←− Σ.Sign(P , m, sksr, p
�)

for j from 1 to π do
Λ0

j ← Σ.Conv(P , j,pks0, sks0, ε) and Λ1
j

R←− Σ.Conv(P , j, pks1, sks1, ε)

d ← AS,Cv,C,D(guess, I, {Λ0
j , Λ

1
j}j∈[[1,π]]\{p�})

Return d

We define the advantage of A, via

Advano−cma
Σ,A (k)

∣∣∣Pr
[
Expano−cma−1

Σ,A (k) = 1
]

− Pr
[
Expano−cma−0

Σ,A (k) = 1
]∣∣∣ .

Given (k, t) ∈ N
2 and ε ∈ [0, 1], the scheme Σ is said to be (k, t, ε)-Ano-CMA

secure, if no Ano-CMA-adversary A running in time t has Advano−cma
Σ,A (k) ≥ ε.

The scheme Σ is said to be Ano-CMA secure if, for any security parameter k ∈ N,
any polynomial function t : N → N, and any negligible function ε : N → [0, 1], it
is (k, t(k), ε(k))-Ano-CMA secure.

3 Hash Functions and New Security Properties

Hash functions take messages of arbitrary length and outputs a fixed length
string. In cryptographic uses of a hash function H : {0, 1}∗ −→ H , these prop-
erties are considered prerequisites:

– Preimage resistance: given h ∈ H , it should be computationally intractable
to find a message m such that H(m) = h.

– Collision-resistant: it should be computationnally intractable to find two
different messages m1 and m2 such that H(m1) = H(m2).

In this section, we formulate generalization of these security notions and study
their properties.

Definitions. The proof of security of our variant of Michels-Petersen-Horster
signatures makes use of new non-standard variations of the preimage resistance
and the collision resistance assumptions for hash functions. These assumptions
are of independent interest as they have interesting relations with the classical
ones. We call them random affine preimage resistance and random linear col-
lision resistance. Although stronger than the standard assumptions, they are
quite realistic.
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According to [18], an hash function family is a family of functions (Hk :
Kk × {0, 1}∗ −→ {0, 1}k)k∈N, where Kk is a finite non-empty set. We will write
the first argument of Hk as a subscript, so that HK,k(m) = Hk(K, m). In the
following, we denote elements from {0, 1}k as the corresponding k-bits integers
in binary representation and we will denote for every integer N ∈ Z, HN

K,k the

map defined by: HN
K,k :

{
{0, 1}∗ −→ ZN

m �−→ HK,k(m) mod N.

The new security definitions can be quantified as follows:

Definition 4 (Random affine preimage resistance). Let n be an integer,
let (Hk : Kk × {0, 1}∗ −→ {0, 1}k)k∈N be an hash function family and let A be a
PPTM. The success SuccraPre(n)

H,A (k) of A against the n-random affine preimage
resistance of H = (Hk)k∈N is defined by:

max
2k−1≤N<2k

α1,...,αn∈Z
∗
N

β1,...,βn∈Z
∗
N

⎧
⎨
⎩Pr

⎡
⎣K

R←− Kk; (m, i, j) R←− A(K, α1, . . . , αn, β1, . . . , βn)
m ∈ {0, 1}∗, (i, j) ∈ [[1, n]]2, i �= j
αi + βjHN

K,k(m) = 0 mod N

⎤
⎦

⎫
⎬
⎭ .

An adversary A against the n-random affine preimage resistance of a hash func-
tion family (Hk)k∈N can be transformed easily into an adversary against the
classical preimage resistance of (Hk)k∈N with success probability greater than
SuccraPre(n)

H,A (k)/n2 and time-complexity of A increased by the time necessary
to compute n modular multiplications modulo N . In particular, the 1-random
affine preimage resistance is equivalent to the classical preimage resistance.

Definition 5 (Random linear collision resistance). Let n be an integer, let
(Hk : Kk × {0, 1}∗ −→ {0, 1}k)k∈N be an hash function family and let A be a
PPTM. The success SuccrlColl(n)

H,A (k) of A against the n-random affine preimage
resistance of H = (Hk)k∈N is defined by:

max
2k−1≤N<2k

λ1,...,λn∈Z
∗
N

⎧⎨
⎩Pr

⎡
⎣K

R←− Kk; (m, m′, i, j) R←− A(K, λ1, . . . , λn)
m, m′ ∈ {0, 1}∗, (i, j) ∈ [[1, n]]2, m �= m′

λi · HK,N (m) = λj · HK,N (m′) mod N

⎤
⎦
⎫⎬
⎭ .

As for random affine preimage resistance, the 1-random linear collision resistance
is equivalent to the classical collision resistance. Unfortunately, it is impossible
to prove that the n-random linear collision resistance can be reduced generically
to the collision resistance for n ≥ 2.

Remark 2. This security requirement is however reasonable since if the hash
function family underlying the protocol RSA-FDH [3] does not satisfy it, then it
is existential forgeable against a one chosen-message attack: given an RSA public
key (N, e), the adversary can simply pick at random r1, . . . , rn ∈ ZN , compute
λi = re

i mod N for all i ∈ [[1, n]], and try to find a random linear collision with
parameters N, λ1, . . . , λn. If a collision m, m′ ∈ {0, 1}∗, (i, j) ∈ [[1, n]]2, (such that
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λi ·HK,N (m) = λj ·HK,N (m′) mod N is found), then the adversary queries the
signature σ on m to the signing oracle and can compute the signature of m′ as
σ′ = ri · σ · r−1

j mod N .

Generic security. The best known general collision-finding attack against a
hash function family is the so-called birthday-attack. If we assume that the
values of the hash-function family (Hk)k∈N are uniformly distributed over {0, 1}k

and that the generalisation of the birthday attack4 against the random affine
preimage resistance and the random linear collision resistance of (Hk)k∈N is the
best possible attack (which is true in the random oracle model), then it is possible
to give exponential lower bounds on the minimum of n and of the number of
hash functions evaluation required to have non-negligible probability of success.
Indeed, for any integer N ≥ 2, and for (i, k) ∈ ZN , it is straightforward [20]
that

#{j ∈ ZN |i · j mod N ≤ k} = gcd(i, N) ×
(⌊

k

gcd(i, N)

⌋
+ 1

)
.

Therefore if D denotes the product of two independent random variables uni-
formly distributed over ZN , we have ∀k ∈ ZN

Pr(D ≤ k) =
1

N2

N−1∑
i=0

gcd(i, N)
(⌊

k

gcd(i, N)

⌋
+ 1

)
,

and consequently, D is close to the uniform distribution ove ZN . The results
from [2] are sufficient to conclude; details will appear elsewhere.

4 Michels-Petersen-Horster Convertible Undeniable
Signatures Revisited

4.1 Description of the Scheme

Let π be an integer. Following the notations from § 2.1, we describe in this
section our variant of Michels-Petersen-Horster scheme. It is parameterized by a
prime order group generator [1], an hash function family and two pseudo-random
function families [18].

Let G be a group of prime order q generated by the prime order group gen-
erator. A reduction function is a map that sends an element of the group G

[5,21] to an integer in Zq. In our security analysis, the reduction function must
satisfy the so called almost-invertibility: given an arbitrary integer in Zq, then
with nonnegligeable probability one can efficiently find one preimage.

4 These attacks consist in picking messages m1, . . . , mr, computing hi = Hk(mi)
mod N for i ∈ [[1, r]] and γi,j = −hiβj mod N (resp. γi,j = hiλj mod N) for
j ∈ [[1, n]]. They are successful if there is a triple (i, j, 
) ∈ [[1, r]] × [[1, n]]2 (resp. a
4-tuple (i, i′, j, j′) ∈ [[1, r]]2 × [[1, n]]2) s. t. γi,j = α� (resp. γi,j = γi′,j′ and j �= j′).
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Definition 6. Let F be a reduction function F : G → Zq. An almost-inverse of
F is a probabilistic algorithm G, possibly outputting ⊥, such that:

Pr
b∈RZq

[G(b) ∈ S ∧ F (G(b)) = b] ≥ 1
3
.

A reduction function F is (δ, t)-almost-invertible, with almost-inverse G, if fur-
thermore: D ≈δ U where D = {G(b) | b

R←− Zq∧G(b) ∈ G} and U = {a | a
R←− G}.

The notation D ≈δ U means that no distinguisher with running time t can get
an advantage greater than δ.

Description of the scheme
– Σ.Setup: on input a security parameter k, the underlying generators output

a group G of prime order q generated by an element P , a reduction function
F : G → Zq, a hash function h : {0, 1}∗ → Zq and two pseudo-random
functions H1 : Zq × [[1, π]] → {0, 1}k and H2 : {0, 1}k × {0, 1}∗ × G → Zq.
The public parameters are (q, G, P, h, H1, H2).

– Σ.SKg: The signer picks at random its secret key u, v
R←− [[1, q−1]], computes

U ← uP and V ← vP and sets (U, V ) as its public key.
– Σ.VKg: The verifier picks at random its secret key w

R←− [[1, q−1]], computes
W ← wP . and set it as its public key.

Protocol EDL.Prove
Common input: (U1, U2, V1, V2), Y
P ’s input: x
V’s output: b

① P C1, C2, C3−−−−−−−−−−−−−−−−→ V
(a, b, k)

R←− [[1, q − 1]]3

C1 ← [k] · U1 ; C2 ← [k] · U2

C3 ← [a] · U1 + [b] · Y

❶ V r−−−−−−−−−−−−−−−−→ P
r

R←− [[1, q − 1]]

② P a, b, c−−−−−−−−−−−−−−−−→ V
c ← k − x(r + b) mod q

• V’s execution ending
C̃1 ← [c] · U1 + [r + b] · V1

C̃2 ← [c] · U2 + [r + b] · V2

C̃3 ← [a] · U1 + [b] · Y

if (C1, C2, C3)(C̃1, C̃2, C̃3)
then b ← Accept else b ←⊥

Protocol EDL.Fake
Common input: (U1, U2, V1, V2), Y
P ’s input: y
V’s output: b

① P C1, C2, C3−−−−−−−−−−−−−−−−→ V
(c, d, k)

R←− [[1, q − 1]]3

C1 ← [c] · U1 + [d] · V1 ; C2 ← [c] · U2 + [d] · V2

C3 ← [k] · U1

❶ V r−−−−−−−−−−−−−−−−→ P
r

R←− [[1, q − 1]]

② P a, b, c−−−−−−−−−−−−−−−−→ V
b ← d − r mod q ; a ← k − by mod q

• V’s execution ending
C̃1 ← [c] · U1 + [r + b] · V1

C̃2 ← [c] · U2 + [r + b] · V2

C̃3 ← [a] · U1 + [b] · Y

if (C1, C2, C3)(C̃1, C̃2, C̃3)
then b ← Accept else b ←⊥

Fig. 1. Interactive designated verifier proof of membership of the language EDL(G)
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Protocol IDL.Prove
Common input: (U1, U2, V1, V2), Y
P ’s input : x
V’s output : b

① P C0, C1, C2, C3−−−−−−−−−−−−−−−−→ V
(a, b, k0, k1, k2)

R←− [[1, q − 1]]5

C0 ← [k0] · (V2 − [x] · U2)
C1 ← [k1] · U1 − [k2] · V1

C2 ← [k1] · U2 − [k2] · V2

C3 ← [a] · U1 + [b] · Y

❶ V r−−−−−−−−−−−−−−−−→ P
r

R←− [[1, q − 1]]

② P a, b, c, d−−−−−−−−−−−−−−−−→ V
c ← k1 − xk0(r + b) mod q
d ← k2 − k0(r + b) mod q

• V’s execution ending
C̃1 ← [c] · U1 − [d] · V1

C̃2 ← C0 + [c] · U2 − [r + b] · V2

C̃3 ← [a] · U1 + [b] · Y

if (C1, C2, C3)(C̃1, C̃2, C̃3) ∧ C0 �= OG2

then b ← Accept else b ←⊥

Protocole IDL.Fake
Common input: (U1, U2, V1, V2), Y
P ’s input: y
V’s output: b

① P C0, C1, C2, C3−−−−−−−−−−−−−−−−→ V
(c, d, k1, k2)

R←− [[1, q − 1]]4

C0
R←− G \ {OG} ; C1 ← [c] · U1 − [d] · V1

C2 ← C0 + [c] · U2 − [k1] · V2

C3 ← [k2] · U1

❶ V r−−−−−−−−−−−−−−−−→ P
r

R←− [[1, q − 1]]

② P a, b, c, d−−−−−−−−−−−−−−−−→ V
b ← k1 − r mod q ; a ← b − k2y mod q

• V’s execution ending
C̃1 ← [c] · U1 − [d] · V1

C̃2 ← C0 + [c] · U2 − [r + b] · V2

C̃3 ← [a] · U1 + [b] · Y

if (C1, C2, C3)(C̃1, C̃2, C̃3) ∧ C0 �= OG2

then b ← Accept else b ←⊥

Fig. 2. Interactive designated verifier proof of membership to the language IDL(G)

– Σ.Sign: on message m and period p, the signer does the following:
• r

R←− [[1, q − 1]], R ← rP . If F (R) = 0 it tries with another value r.
• ep ← H1

v (p), d ← H2
ep

(m, R), T ← dP

• s ← (F (T ) · d · h(m) · v − u · F (R) − 1)r−1 mod q
The signature is the tuple (R, T, s).

– Σ.Cont: to control the validity of a signature (R, T, s), the signer checks that:
(v · F (T ) · h(m)) · T = F (R) · U + s · R + P using its private key v.

– Σ.{Conf/Deny}: the signer provides a designated verifier proof of the equal-
ity/inequality of two discrete logarithms, namely, F (R) ·U + s ·R+P to the
base (F (T ).h(m)) · T and V to the base P (see § 4.2).

– Σ.Conv: there exist two types of conversions, namely
• The gradual conversion for the signature corresponding to the time pe-

riod p could be done by releasing the value ep.
• The individual conversion can be achieved by releasing the value of d.

– Σ.Vf: The signature corresponding to the period p, once ep or d is revealed,
could be checked by any verifier using the equations: (d · F (T ) · h(m))V =
F (R) · U + s · R + P and T = dP .



Gradually Convertible Undeniable Signatures 489

4.2 Proofs of Equality/Inequality of Discrete Logarithms

Let G be a group. To confirm or deny that a bit string is a signature in our
undeniable signature scheme, it is necessary to prove that a given quadruple
(U1, V1, U2, V2) ∈ G

4 is a Diffie-Hellman quadruple (or not), i.e. belongs to the
set EDL(G) = {(U1, V1, U2, V2) ∈ G

4, logU1
(V1) = log U2(V2)}, (or to the set

IDL(G) = G
4 \ EDL(G)).

To face blackmailing or mafia attacks against our undeniable signatures, we
use interactive designated verifier proofs, as introduced in [11] by Jakobsson,
Sako, and Impagliazzo, in Chaum’s proofs of equality (cf. Fig. 1) and inequality
(cf. Fig. 2) of discrete logarithm of [6]. The idea is to replace the generic commit-
ment scheme by a trapdoor commitment [11] and using classical techniques, the
proofs are readily seen to be complete, sound, and above all non-transferable.
The protocols, involve a point Y = yU1 where y is the secret key of the verifier,
and the prover must be convinced that Y is well-formed (in the registered public
key model, the registration procedure is used to force the users to know the
secret-key corresponding to their public key).

5 Security Analysis

We note first that the property of non-transferability is fulfilled by our scheme as
a direct consequence of the use of designated-verifier proofs in the confirm/deny
protocols. Further, we state that our scheme resists existential forgeries and that
signatures are anonymous. Both security reductions stand in the generic group
model [19].

5.1 Resistance to Forgery

The theorem below states that our variant of Michels-Petersen-Horster scheme
is EF-CMA-secure in the generic group model assuming the preimage resistance,
the random affine preimage resistance and the random linear collision resistance
of the underlying hash function family.

Theorem 1. Let A be an EF-CMA-adversary in the generic group model, oper-
ating in time t, after n group queries and m signing queries, such that m  n2

and n � 1, with success probability Succef-cma
Σ,A .

There exist adversaries B, C, and D operating in time t′ against the n-random
affine preimage resistance, the n-random linear collision resistance and the
preimage resistance of the underlying hash function (respectively) such that:

t′ ≤ t + 5nτG ln n + 5m lnn(2τG + τH1 + τH2 + τF + τh)

and

6·SuccraPre(n)
h,B +2·SuccrlColl(n)

h,C +3·n2SuccPre(n)
h,D ≥

Succef-cma
Σ,A

8
−5n4/q−3mn3

where δ is the advantage of an adversary playing a distinguisher for G, τg, τF ,
τH1 , τH2 and τh are the running time for G, F , H1, H2 and h respectively.
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The EF-CMA-adversary A will output a valid signature σ� = (R�, T �, s�) on
a message m� for the time period p� with success probability Succef-cma

Σ,A . In our
security analysis, this event is divided into subevents according to whether R�

and T � are created during the simulation by a signature query or a group query.
In the list used to maintain the group oracle, a group element created during

a group query will have a “group” tag, while the tag “sign” will correspond to
elements created in a signature query. Moreover, a signature query on a message
mi for the time period pi will be answered by a triple (Ri, Ti, si), where Ri, Ti ∈
G. Hence, in addition we will specify the type of an element that has the tag
sign: we denote Type(Ri) = 0 and Type(Ti) = 1. The different forgeries output
by A will be classified as follows:

– Type 0: Tag(R�) = group, Tag(T �) = group
– Type 1: Tag(R�) = group, Tag(T �) = sign and Type(T �) = 0
– Type 2: Tag(R�) = group, Tag(T �) = sign and Type(T �) = 1
– Type 3: Tag(R�) = sign, Tag(T �) = group and Type(R�) = 0
– Type 4: Tag(R�) = sign, Tag(T �) = group and Type(R�) = 1
– Type 5: Tag(R�) = sign, Tag(T �) = sign, Type(R�) = 0 and Type(T �) = 0
– Type 6: Tag(R�) = sign, Tag(T �) = sign, Type(R�) = 0 and Type(T �) = 1
– Type 7: Tag(R�) = sign, Tag(T �) = sign, Type(R�) = 1 and Type(T �) = 0
– Type 8: Tag(R�) = sign, Tag(T �) = sign, Type(R�) = 1 and Type(T �) = 1

We denote εi the probability that the forgery σ� = (R�, T �, s�) output by A is
of type Type i (for i ∈ {1, . . . , 8}). We have:

8∑
i=1

εi = Succef-cma
Σ,A

The adversaries, B, C and D will simulate the group and signing oracles accord-
ing to the alleged kind of forgery returned by A. More precisely, adversary C will
use the forgery to find a random linear collision if it is of type Type 6, D will ex-
ploit a forgery of the type Type 0 to break the preimage resistance and finally, the
adversary B will utilize all the remaining cases to find a random affine preimage.

The group oracle. In this model [19], one assumes that group operations can
be perfomed only by means of an oracle. More specifically, suppose that G is
an (additive) group of prime order q generated by P . Then G is isomorphic to
the additive group Zq and in the generic model, one assumes that instead of
having explicit formulas for the group element iP , the adversary has only access
to an “encoding” σ(i) ∈ S ⊂ {0, 1}∗, that represents the element iP . The generic
algorithm A will then consult the oracle for two types of queries:

– A requests the encoding of i: the oracle will select randomly a value σ(i), to
represent the element iP , from the given set of bit-srings.

– Given two encodings σ(i) and σ(j), A requests (without knowing necessarily
i and j) the encoding of (σ(i±j). Again the oracle responds with a randomly
chosen bit-string.

The only condition on the oracle responses is that if the same group element is
queried a second time, the same corresponding encoding must be returned. We
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will group the above queries in a single type of query, namely, (
−→
i , −→α ) where−→

i refers to the set of indices of the group elements whereas −→α denotes the set
of exponents. The answers to such queries are elements zi of S ⊂ {0.1}∗. Let
L = {z1, z2, z3, . . . , zn+2} be the sequence of queries’ answers where n denotes
the total number of queries to the group oracle. We use an interpretation similar
to the one in [21], using polynomials Fi(X) over Fq:

– Polynomials F1 and F2 are set to F1 = 1 and F2 = X , which correspond
to the generator and the public key U respectively. The corresponding bit-
strings are z1 and z2 respectively.

– At the -th query (
−→
i , −→α ), the polynomial F� is defined as

∑|−→α |
j=1 αjF−→i j

. If
F� is already listed5 as Fh, then F� is marked and the corresponding answer
to Fh is returned. Otherwise, z� is selected at random from S, recorded6

using Record(z�‖F�‖group‖notype) and then returned to A.

It is easy to see that the simulation driven by this interpretation is similar to
the one of the regular algorithm provided that all the answers corresponding to
unmarked polynomials are distinct and no polynomial F� vanishes at X = u.
In these conditions, we call the sequence of encodings a safe sequence. The
probability of such a sequence is given by the following lemma [21]:

Lemma 1. Assume n2 ≤ q. The probability of unsafe sequence is upper-bounded
by 5(n + 1)2/q.

The signing oracle. Basically, the signing oracle Σ will receive queries, of the
form (m, p) and will respond with a valid signature σ = (R, T, s) according to
the following simulation:

Simulation of Σ: on query (m, p) do the following:

– R
R←− S, ep ← H1

v (p), d ← H2
ep

(m, R),

– Repeat: a, b
R←− Zq, t ← (a − b · F (R))a−1d−1v−1h(m)−1 mod q

Until T = g(t) �=⊥,
– Record(R‖aX + b‖sign‖0), Record(T ‖d‖sign‖1),
– s ← (d · v · t · h(m) − 1)b−1 mod q,
– Return (R, T, s).

The confirming/denying oracles. The use of designated verifier proofs of
membership and of the registered public key model makes these oracles useless
for the attacker. Therefore, we do not describe them in our security proof.
5 The adversaries B, C and D will maintain, in addition to the outputs’ list L, three

further lists, namely, the list of corresponding polynomials, denoted F , the list of
tags T and the list of types S .

6 The command Record(R‖F‖t‖s) will abort in some cases, namely when (R, F ′, ?, ?)
already exists and F ′ �= F . The probability that this event happens can be upper-
bounded by n/q, where n is the number of queries to the group oracle.
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Proof. Let (R�, T �, s�) be the forgery output by A on the message m� for the
time period p�. Due to space limitations, we will detail only the reduction in the
case where this forgery is of type Type 0, Type 2 and Type 6.

Description of B. B picks uniformly at random an integer i ∈ {1, 2, 3, 4, 5, 7, 8}
which is its guess for the type of the forgery output by A. In the following
simulation, we suppose that A returns a forgery of type Type 2 and that i = 2
(the other cases are treated similarly).

The forgery produced by A satisfies the following equation7

a − b · F (R�) = (ad − bc) · v · F (T �) · h(m),

where R� = aU + bP and T � = cU + dP . Since T � was generated during a
signature query as a “T ” (Type(T ) = 1) we have c = 0 (the adversary must know
the discrete logarithm of T in base P in case the attacker asks for the signature
conversion). Hence, the equation turns out to be a−b·F (R) = a·d·v ·F (T )·h(m)
or

1 − a

b
F (R) = d · v · v · F (T ) · h(m).

Thus, in order to find a random affine preimage, B must plug the values αi and βj

in answers to the group and the signature queries (respectively). More precisely,
he must answer group queries (a, b) by R such that 1 − aF (R)/b = α, similarly,
signature queries must be answered by (R, T, s), such that −d · v · v · F (T ) = β:

Game 0: We consider an EF-CMA-adversary A in the generic group model. In
any game Game i, we denote Si the event “(R�, T �, s�) is a valid
forgery of type Type 2 and i = 2”. By definition, we have Pr[S0] =
ε2/7.

Game 1: We use the interpretation described above for the generic oracle which
considers a safe sequence L. This event’ s probability Pr[S1] satisfies

| Pr[S1] − Pr[S0]| ≤ 5(n + 1)2/q.

Game 2: In this game we modify the simulation of the group oracle. On query
(a, b) such that the corresponding polynomial F = aX + b is new, B
does the following:
• Repeat

pick α from the corresponding oracle
compute r ← (1 − α)ab−1

compute R̃ ← g(r)
• Until R̃ �= Fail.
• Return R̃.

However, B stops after 5 lnn trials. The event S2 differs from the
previous one if R̃ remains undefined. Since the experiments are mu-
tually independent (a and b are uniformly distributed), we may use

7 This follows from the verification equation (v · F (T �) · h(m))T � = F (R�) · U + s� ·
R� + P .



Gradually Convertible Undeniable Signatures 493

a lemma from elementary probability theory [21, Lemma 5] to bound
the corresponding probability by 1/n2. The overall probability when
l ranges the set of queries indices is then 1/n. Hence, we have

Pr[S2] ≥ (1 − 1/n) Pr[S1].

Game 3: In this simulation, the groupe oracle replaces R̃ from the previous
game by R a new random encoding. It executes Record(R‖aX +
b‖group) and return the value R as the response to the oracle query.
Since the inputs to G are uniformly distributed (α is picked at ran-
dom), we can use n times the almost-invertibility of F (the so-called
Hybrid Technique) to bound the probability of S3:

| Pr[S3] − Pr[S2]| ≤ nδG.

Game 4: In this game, B changes the simulation of the signing oracle. On query
(m, p) it does the following:
• Compute ep ← H1

v (p)
• Pick the next α in the instance of the random affine preimage

problem
• Pick a ∈ Z

∗
q ,

• Compute b ← a(αh(m) − 1)F (R)−1

• Record(R‖aX + b‖sign‖0)
• Compute d ← H2

ep
(m, R).

• Repeat
Pick the next β in the instance of the random affine preimage

problem
Compute t ← −d−1v−1β

Until T̃ = G(t) �= Fail.
• Compute s ← −F (R)a−1.
• Return (R, T̃ , s)

Here again, B aborts after 5 lnn trials. Using the hybrid technique as
above, we have

Pr[S4] ≥ (1 − m/n2) Pr[S3,].

Game 5: In this game, B replaces T̃ by T and executes Record(T ‖d‖sign‖1).
Applying the same technique, we get

| Pr[S5] − Pr[S4]| ≤ mδG + mn/q.

Game 6: In this game, B exploits the forgery (R�, T �, s�) returned by A. Since
Tag(R�, T �) = (group, sign) and Type(R�, T �) = (0, 1) and B gener-
ated the correct i, there exist i, j such that R� = Ri, T

� = Tj and
1 − ai

bi
F (Ri) = αi and −dj · v · F (Tj) = βj , the equation satisfied by

the forgery turns out to be αi + βjh(m) = 0. B would then find a
random affine preimage with success probability greater than

ε2/7 + 5n2/q − nδ − mδ − 2mn/q

and time

t′ ≤ t + 5n lnn + m(τH1 + τH2 + 5τg ln n + τh + 2τF ).



494 L. El Aimani and D. Vergnaud

Description of C. C will simulate Γ and Σ such that the simulation exploits a
forgery (R�, T �, s�) of the type Type 6. Hence C will simulate Γ in the standard
way described in 5.1. Furthermore, he will have to plug the λ’s in answers to
signature queries in a way that the returned signature (R�, T �, s�) satisfies 1 −
b
aF (R�) = λ. More precisely, on (m, p), C does the following:

– Pick the next λ in the instance of the random affine preimage problem -
– Compute ep = H1

v (p)
– Repeat

Pick α ∈R Zq,
Compute r ← λ−1

α
Until R = g(r) �= Fail

– Compute d = H2
ep

(m, R)
– Repeat

Pick a ∈R Zq, Compute b = αa and t = (a − bF (R))(a · d · v · h(m))−1

Until T = g(t) �= Fail
– Record (R||aX + b||sign, 0) - Record (T ||d||sign||1)
– Compute s = (d · v · h(m) · F (T ) − 1) · b−1

– Return (R, T, s).

It is easy to conclude that this simulation, together with the above forgery
returned by the attacker will lead to a find a random linear collision.

Description of D. D will attempt to exploit a forgery (R�, T �, s�) such that
Tag(R�, T �) = (group, group) (Type 0) to find a preimage of a certain value, say
a. The equation satisfied by the forgery is ai − biF (Ri) = (aibj − ajbi)F (Rj) · v ·
h(m). For this, D will simulate the signing oracle in the standard way given in 5.1.
To simulate Γ , D selects in advance i, j ∈R [[1, n]]. If i < j, then on the i-th query
(ai, bi), D will select Ri ∈R S and record it using Record(Ri‖aiX+bi‖group). On
the j−th query (aj , bj), compute Tj ← g(a·(ai−biF (R))(aibj−ajbi)−1v−1). With
probability at least 1/n2, D would have chosen the correct i, j and the success
of having Tj �=⊥ is at least 1/3 (almost invertibility of F and randomness of a).
If j ≤ i, D will proceed in a similar manner. ��

5.2 Anonymity

Theorem 2. Let A be an Ano-CMA-adversary operating in time t, after n group
queries and m signing queries, with success advantage ε, such that m  n2,
m  q and n � 2, then there exist adversaries B1, B2 and C, operating in time
t′ and attempting to break the pseudo-randomness property of H1, the pseudo-
randomness of H2 and the random linear collision of h (respectively) with success
probability Succprf

H1,B1
, Succprf

H2,B2
and SuccrlColl(n)

h,C such that:

t′ ≤ t + 5nτg ln n + 5m ln n(τH2 + τh + τg) + mτH1

and

Succprf
H1,B1

+ Succprf
H2,B2

+ 2
SuccrlColl(n)

h,C
n

≥ ε

n
+

18n

q
− nδ + δ +

3mδ

n
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where δ is the advantage of an adversary playing a distinguisher for g, τg, τF ,
τH1 , τH2 and τh are the running time for g, F , H1, H2 and h respectively.

Proof. The proof is similar to the previous one and will be given in the full
version of the paper. ��

6 Conclusion

We properly defined security notions for convertible undeniable signatures that
support the additional property of achronous gradual conversion. Adapting the
scheme proposed by Michels, Petersen and Horster in 1996, we realized the first
scheme featuring this usefull notion of conversion. In addition, we gave the first
security analysis of the Michels-Petersen-Horster protocol, thereby addressing a
problem left open since 1996. We have modified this scheme such that it be-
comes a generic one, which allows to use it for instance in the setting of elliptic
curves (and therefore offers attractive practical advantages in terms of signature
length and performances). In this context, in comparison with the time-selective
convertible undeniable signatures from [13], the computational costs for the con-
firmation/disavowal protocols and the conversion algorithms, are much smaller.
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