
An Eclipse-Based Framework for

AIS Service Configurations

András Kövi1,2 and Dániel Varró1,2

1 Department of Measurement and Information Systems
Budapest University of Technology and Economics
H-1117, Magyar Tudsok krt. 2, Budapest, Hungary

kovi@mit.bme.hu
2 OptXware Research & Development LLC.

H-1137, Katona J. u. 39., Budapest, Hungary
varro@mit.bme.hu

Abstract. In the paper, we propose an Eclipse-based model-driven
framework to support an integrated development, analysis and deploy-
ment of Application Interface Specification (AIS) service configurations.
Service configurations are first captured by platform-independent models
(PIM), which directly correspond to the AIS standard itself, and abstract
from vendor-specific details. Specificities of vendor-specific AIS middle-
ware are incorporated into platform-specific models (PSM), which are
derived from PIMs by automatic model transformations. Model analysis
can be carried out either on the PIM-level to ensure standard compliance
of a given service configuration, or on the PSM-level to detect availability
bottlenecks by formal analysis early in the service configuration design.
Finally, deployment descriptors of the selected AIS platform are gener-
ated from verified service configurations by automatic code generation
techniques.

1 Introduction

As the range of business functionality is rapidly increasing to better meet cus-
tomer needs, quality requirements are increasingly important in addition to rapid
time-to-market development cycles. Availability, i.e. the continuity of a service,
is one of the most important factors in the overall quality of business-intensive
services.

However, in order to meet availability requirements, a service needs to be de-
signed for availability by using well-founded development techniques. In order
to avoid the re-development of best-practice solutions for achieving high avail-
ability, architectural-level solutions have been proposed based on best practices
of constructing dependable systems.

The specifications of the Service Availability Forum. The Service Avail-
abilityTMForum (SAF) [32] aims at providing standardized solutions for mak-
ing services highly available. The Application Interface Specification (AIS) of
the Forum defines the standard interfaces for accessing Highly Available (HA)

M. Malek et al.(Eds.): ISAS 2007, LNCS 4526, pp. 110–126, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Eclipse-Based Framework for AIS Service Configurations 111

middleware and infrastructure services that reside logically between applications
and the operating system.

The entities defined in the AIS specifications (e.g. service units, message
queues, applications, etc.) are described semi-formally by the Information Model
(IM) in the form of UML classes [12]. The Information Model Management Ser-
vice (IMM) [14] is the service in AIS that provides a set of APIs and adminis-
trative operations to create, access and manage the objects of the IM.

In the SA Forum ecosystem the Software Management Framework (SwMF)
[15] provides all the functionality to migrate a system configuration to a desired
new one. During the migration both the IM is updated and the required software
entities are installed.

Problem statement. Although the classes in the IM define the common con-
cepts that are used to build up SAF AIS compliant applications, standard de-
scriptions do not alone guarantee that a certain service configuration will meet
its quality of service (QoS) requirements. Moreover, the portability of service
configurations between different commercial-off-the-shelf (COTS) AIS middle-
ware implementations is problematic, i.e. deployment of a service configuration
to a certain middleware makes it inappropriate for another AIS platform without
changes, mainly due to the lack of standardization for the description of service
configurations.

Objectives. In this paper we argue for the use of model-driven development
techniques in the context of services to overcome the problems above. For this
purpose, we present an Eclipse-based framework, which simultaneously supports
the model-based development, analysis and deployment of SAF AIS compliant
services. More specifically,

1. we propose modeling tools for describing AIS service configurations either
by domain-specific modeling or using a UML Profile (see Sec. 3);

2. we present analysis tools to detect non-compliancy of a certain service config-
uration to the AIS standard, and highlight QoS bottlenecks in a configuration
by using formal analysis tools (see Sec. 4);

3. finally, we demonstrate how automatic code generation and model transfor-
mation techniques can be used to derive vendor-specific deployment descrip-
tors for service configurations (see Sec. 5).

2 An Overview of the Approach

In the following, we present an architectural overview of our framework to sum-
marize its major components (see Fig. 1). Later, each of these components will
be described in detail.

Modeling of AIS service configurations. We propose to adapt a model-
driven development approach for AIS service configurations. For this purpose,
platform independent models (PIM) of services are first constructed in accor-
dance with the requirements specification. A well-formed PIM should conform

112 A. Kövi and D. Varró

Fig. 1. Architecture overview

to the metamodel of the AIS standard itself. In a subsequent step, platform-
specific models (PSM) corresponding to AIS middleware of a specific vendor can
be derived automatically by model transformations. These models are captured
either by a domain-specific editor for AIS models based on the Eclipse Modeling
Framework (EMF), or using a UML Profile for AIS services embedded into the
off-the-shelf UML tool of IBM Rational Software Architect. Best practices of
creating service configurations are grouped into design pattern libraries, which
are made available to service architects.

Model analysis. The metamodel of the AIS standard can be complemented
with constraints, defined in the Object Constraint Language (OCL), which cap-
ture additional well-formedness rules of the AIS standard in a formal way. When
a PIM of a service configuration is available in the form of an EMF model, its
conformance to the standard can be checked by validating the OCL constraints
on the PIM (Sec. 3.2) using the OCL validation framework of EMF. Assuming
that, HA parameters of a certain AIS platform are available for the designer, the
PSM (Sec. 3.4) of a service configuration can be annotated with these service
parameters. Based upon such an annotation, we can carry out formal analysis
to detect availability bottlenecks early in the service development process by
transforming the PSM of a service configuration into General Stochastic Petri
Nets (Sec. 4.1), and analyzing different characteristics of those petri nets.

Service deployment. After analyzing a service configuration for a given AIS
middleware, the actual deployment descriptors of the service configuration can
be generated by automated code generation techniques, such as Java Emission
Templates (JET) (Sec. 5).

The toolkit. This integrated model-driven development framework is based on
standard, open interfaces as provided by Eclipse, and especially, the Eclipse
Modeling Framework (EMF). The advantage of using Eclipse and EMF for
the implementation is that there is a wide spectrum of tools that facilitate

An Eclipse-Based Framework for AIS Service Configurations 113

development for the Eclipse platform, moreover, EMF has become the de-facto
standard for model exchange in the industry nowadays. EMF is capable of gen-
erating the editor code and an example editor program for our metamodel that
reduces the development time and the possibility of programming faults. In ad-
dition, EMF facilitates the validation of models, which will be described later in
Sec. 4.

3 Modeling of Service Configurations

3.1 Requirements Specification

The service configuration development workflow starts with gathering require-
ments for service deployment. This information includes the type and number
of components, the definition of services, service groups and the application it-
self. Since system resources for deployment are finite, priorities between services
should be set up based upon the required availability for different services as
part of the requirements specification.

There are well established schemes for defining the requirements of applica-
tions in specific application domains, however, it is still an open issue how these
requirements can automatically be incorporated into the service configuration in
the general case. Therefore, this phase of developing service configurations for
AIS middleware is subject to future work.

3.2 Platform Independent Model (PIM)

In a model-driven approach, the development of service deployment configuration
commences with the creation of a Platform Independent Model (PIM), which is
the AIS configuration of the service. This PIM model of a service configuration
is independent of the underlying platform implementation, thus it can be reused
for different AIS platforms.

This PIM serves multiple purposes:

– it is used to integrate the service into the SAF ecosystem
– it is the input for the deployment procedure
– it can serve as input for generation of the source code of the service to speed

up application implementation

Attributes and relations of conceptual AIS elements (service groups, service
units, etc.) and other resources that are used by the service, for example, message
queues and log streams, should be set up in this step.

AIS-PIM metamodel. The metamodel of the PIM (PIMM) of an AIS com-
pliant application is built up from the entities defined in the specifications, thus,
it ensures the compliance of the configuration model to the standard itself. As
discussed in Sec. 1, the SA Forum Information Model (IM) contains a UML
representation of service entities, e.g. it contains the Service Unit class that is

114 A. Kövi and D. Varró

Fig. 2. Service unit and component class hierarchy

used to represent a service unit. Therefore, we have chosen the IM to serve as
the basis of our PIM metamodel.

However, the Information Model, as defined by the SA Forum, is unable to
identify certain semantic relations between service entities. For instance, issues
like which service is the owner of a message queue or which log stream is opened by
which application, are not represented in the IM model. Furthermore, for clarity
purposes, we used the ontology listed in the AMF specification (Sec. 3.2 Logical
Entities of [13]), which explicitly represents the type hierarchy of components and
services, rather than the simple aggregated class concept used in the UML model
of the IM. We believe that, the clarity of the AIS metamodel is highly improved
by these changes.

The modified component and

Fig. 3. Example model with stereotypes

service unit hierarchy is depicted
in Fig. 2. The general Component
class is specialized into Local Com-
ponent and External Component
classes by classifying components
according to the location of the
component from the point of view of the AMF cluster. Then the Local Com-
ponent is further specialized into Non-SA Aware Component and SA Aware
Component classes. Finally, the specialized case of the SA Aware Component is
the Proxy Component, which corresponds to the proxy components in AMF. On
the other hand, the Service Unit class is specialized into two descendant classes:
the Local Service Unit and the External Service Unit class. A Local Service Unit
contains only Local Components while the External Service Unit comprises only
External Components.

Because of the generality of the Component, Service Unit and Local Compo-
nent classes, their usage in service configuration models is not allowed; and thus
to avoid their instantiation, they are made abstract.

In Fig 3 a valid service configuration example is depicted. The class of the objects
is indicated by the stereotypes, e.g. Local Service Unit, Proxy Component, etc.

An Eclipse-Based Framework for AIS Service Configurations 115

Since this paper intends to give an overview of our framework and the tech-
niques we use in it, only the most important changes to the metamodel are listed
in the following:

– Component class extended with reference attributes to all types of SAF re-
sources (e.g. message queue, lock, log stream) to support the indication of
resource usage.

– Runtime attributes, that store the runtime state of the object, are deleted
from the classes since such information is useless at design time. E.g. the
attribute that stores the administrative state of a component or the one
that contains the number of restarts of a service unit is removed.

3.3 Design Patterns

Building up the PIM manually from scratch can be a time consuming and er-
ror prone task. In an ideal case, a previously elaborated solution for a specific
problem can be reused with changing some parameters. To help the developer
in such cases design patterns are offered by our framework.

There are two types of design patterns for PIM development:

– Fault tolerance related patterns speed up modeling by providing param-
eterized procedures for automatic creation of ordinary objects and setting
up their attributes,

– AMF best practice patterns are previously elaborated and stored solu-
tions for more complex problems in certain application domains.

Fault tolerance (FT) related patterns help create and configure all the
necessary objects for a given fault tolerant architecture. For example, if one cre-
ates a service group with 2N redundancy model then there will surely be at
least two service units in that service group. Similarly, such ”preconfigured” so-
lutions can be provided to the user for all redundancy models defined in the
AMF specification.

Another useful group of FT related design patterns are in connection with
the topic of software redundancy. We talk about software redundancy when the
simple multiplication of components in a service deployment does not provide
sufficient fault tolerance, especially, against faults in the software. Such pro-
tection is essential for mission critical systems where erroneous behavior of a
component can lead to catastrophic results. There are generally used patterns
for these problems, e.g. N-version programming (NVP) [1] or N self configuring
programming (NSCP) [23]. These redundancy schemes can be applied on SAF
AMF managed software systems as well. As an example in the followings we
show how the NVP scheme can be used.

In the NVP scheme several software variants compute simultaneously the
same job/request, and when all of them are ready, a voter makes the decision
on the final result.

Let us assume that we have three different software variants and want to use
them in an NVP scheme (see Fig. 4). An SAF compliant service needs the follow-
ing entities for this scheme: separate Service Unit for the execution environment,

116 A. Kövi and D. Varró

Fig. 4. NVP scheme for three software variants

for each variant and the voter, separate Service Groups for the different func-
tionality groups, and finally, message queues are necessary for communication.

In Fig. 5 the AMF configuration for the described scheme is depicted. The
execution environment sends the input requests through the message queues
prefixed ”In ” to the respective variants and the variants send their results to
the voter through the ”Out queues. (Note that, not all usage relations and
AMF components are visible in the figure to prevent making it unnecessarily
complicated.)

AMF configuration for all the previously mentioned software redundancy
schemes can be defined in an akin way.

Fig. 5. AMF configuration for NVP scheme with three variants

AMF best practices. The other group of design patterns is best practices,
which contain previously stored system architectures and implementation related
solutions for certain application domains. System architectures can be for ex-
ample, configurations for sensor networks or different systems that need a given
level of reliability or availability. These best practices can have parameters as
well that make them more flexible and more widely reusable (e.g. the number of
sensors, data collectors, monitoring systems, etc).

3.4 Platform Specific Model (PSM)

Although the specifications of AIS standardize the interfaces an application may
use to access the HA services of the middleware, there may be differences between
platform/middleware implementations in the sense that how they are configured,
andwhich services and functionalities are implemented.Thus, it is advantageous to
create a Platform Specific Metamodel (PSMM) for each platform implementation.

An Eclipse-Based Framework for AIS Service Configurations 117

Platform Specific Metamodel (PSMM). This metamodel contains all the
entities and their relations in the given platform implementation. These entities
may have extended or restricted features compared to the corresponding entities
of the PIM metamodel. Furthermore, there may be additional entities for non
standard services that a vendor-specific AIS implementation provides.

Using the notions of the PSMM the Platform Specific Model (PSM) of the
service (Service PSM) can be created that describes a service configuration on
the given platform implementation. However, the PSM of the service is preferably
not created from scratch every time it is deployed to a different platform. If the
PIM of the service exists it can be transformed into a PSM using a specific PIM to
PSM mapping. The model transformation describes which element or elements
in the PIM are mapped into which element(s) in the PSM model. (Technical
details of such model transformations are discussed in Sec. 3.5)

3.5 Implementation Details

In the previous sections we described the configuration development workflow
and its elements. A tool that facilitates this workflow has to provide a user
interface that exposes all the required functionalities for creating, modifying,
verifying, validating and transforming the introduced models. This user interface
is called the modeling front-end.

The modeling front-end. UML is one possible language that we use to create
service configuration models. UML provides a wide range of extension mech-
anisms (stereotypes, tagged values, etc.) to customize the basic language, and
create domain specific dialects. A UML profile is the notion that encapsulates
all the extensions of a specific dialect. We created a UML profile for AIS, i.e. a
dialect, that contains stereotypes corresponding to the entity types of the AIS
specifications, e.g. local service unit, service group, local component. An exam-
ple for a stereotyped model created with IBM Rational Software Architect can
be seen in Fig. 6.

Service models. Representation of the Eclipse Modeling Framework (EMF) [8]
is the de facto industrial standard for storing and manipulating models in Eclipse.
Metamodels in EMF are called Ecore models. The EMF model development
workflow starts with the creation of the metamodel (i.e. an Ecore model). In our
case it is the metamodel of the PIM and the PSMs. Then we use the automatic
code generation facility that generates us the Java classes for the model, the
model editor API, a sample model editor and class stubs for testing. EMF Ecore
models are stored in XML files and this assures their easy reusability in other,
non EMF based applications as well. EMF provides automated support for load-
ing and serializing models from metamodel-specific XML formats corresponding
to the XMI 2.0 standard. These EMF models can also serve as the basis of model
validation as described in Sec. 3.

Domain Specific Model Editor. Domain specific model editors are generated
editors, which are customized for specific application domains. In the Eclipse
environment there are specific frameworks that provide means to easily develop

118 A. Kövi and D. Varró

domain specific model editors. Most widely used and best elaborated is the
Graphical Editing Framework (GEF) [9], which provides APIs for the creation
of graphical editors. Since most editors provide the same functionalities, only the
context and the outlook differs in many cases, the Graphical Modeling Framework
(GMF) [10] has been started to support the development of rich domain-specific
model editors. GMF provides means to define different aspects of the editor using
specific models, and then automatically generate the source code for it.

Design patterns. Us-

Fig. 6. Example stereotyped service configuration model

ing the automatically
generated specific
model editor API, the
modification of PIM
and PSM models is
possible from code.
The design patterns
library uses this AIS
specific API to carry
out a sequence of
model manipulation
operations. In our ini-
tial framework, design patterns are implemented as simple parameterized meth-
ods (without graphical user interface). Application of a design pattern on a
model is done by calling the respective method with specific parameters.

Model transformations. As mentioned above, model transformation is the
mean that is used to generate the PSM from the PIM or the platform specific
deployment descriptors from the PSM. The VIATRA2 transformation frame-
work provides such model transformations by combining the formal paradigms
of abstract state machines and graph transformation, which provide a rule and
pattern based manipulation of models. As model transformations are out of the
scope of this paper, here we do not describe them in detail. For more information
on this topic see [34, 2].

4 Model Analysis

4.1 Static Analysis of Service Configuration Models

After creating a service configuration model, it is essential to verify its com-
pliance with the AIS standard. This is carried out by formal verification of
the model against constraints that are defined in its metamodel. These well-
formedness and semantic constraints come from various requirements, e.g. mul-
tiplicity restrictions or attribute values, or a constraint may be composed of (i.e.
it may refer to) other constraints as well. In Fig. 7 the types of model element

An Eclipse-Based Framework for AIS Service Configurations 119

constraints and the direction of possible implications are depicted, while Fig. 8
shows an example for each type of constraint implication.

Object Constraint Language.

Fig. 7. Types of model element constraints.
The arrows indicate the possible directions of
implication.

For specifying constraints in object
oriented models the Object
Constraint Language (OCL) [26] of
OMG [19] is a widely used standard
formalism. It can be used to express
additional constraintsonmetamod-
els that cannot be expressed, or are
very difficult to express, with the
metamodel itself.

Metamodel constraints. The OCL constraints are defined on the classes of
the metamodel and their attributes. To ensure the correctness of the model we
have to define constraints in the following cases:

1. Value range restrictions for attributes. (E.g. the size of the message queue
(saMsgQueueSize attrib.) has to be greater than zero)

2. Structural multiplicity restrictions. (E.g. number of SUs in an SG)
3. Attribute dependencies where the value of one attribute depends on the value

of some other attributes. E.g. if the component capability model of a com-
ponent (saAmfCompCapability attribute) is x active and y standby then the
maximum number of standby component service instances should be greater
than zero (saAmfCompMaxStandbyCsi attribute).

Source Destination Example

Attr Attr The redundancy model of the service group (SG) (defined by the

asAmfSGRedundancyModel attribute of the corresponding class) prescribes the

required capabilities of a component. (E.g in a SG with N-Way redundancy

model all components have to implement the x_active_and_y_standby

component capability model.)

Attr Multip Redundancy model of the service group (SG) can define the lower multiplicity

(i.e. the minimum number) of service units (SUs). (E.g. the 2N redundancy

model supposes the existence of at least two service units.)

Multip Struct Each service unit of a service group should be deployed to different nodes in

order to provide protection against node failures.

Fig. 8. Examples for different constraints

120 A. Kövi and D. Varró

4. Association dependencies. E.g. service unit - service instance relations
through the rankedSUs attribute.

In the following, we show two example OCLs on the PIMM. First, the sim-
ple example for value range restriction constraint is the relative distinguished
name (RDN) constraint for name attribute of the component class, which de-
scribes that there cannot be two components with identical names in a
service unit :

context Serv i ceUn i t inv :
s e l f . components −> f o rA l l (c1 , c2 |

c1 <> c2 implies c1 . name <> c2 . name)

The respective part of the metamodel is depicted in Fig. 9. RDN constraints
have to be stated for many other elements as well, like service groups, service
units, etc.

A more complex sample OCL is the ”service types checking” constraint for
service instances:

context Se rv i c e In s t anc e inv :
i f s e l f . rankedSUs −> notEmpty then

l e t requiredCSTs : Set<CSType> =
s e l f . c s i s . csType −> asSet () in

s e l f . rankedSUs −> f o rA l l (su : Se rv i c eUn i t |
su . components . csTypes −>

asSet () −> i n c l ud e sA l l (requiredCSTs)
)

endif

The ”service types checking” verifies that whether each service unit that the
service instance is assigned to, by the ranked service units (rankedSUs) attribute,
provides every service type the service instance requires. This constraint is a
required condition for the successful assignment of the given service instance.
The referenced part of the metamodel is depicted in Fig. 10.

Implementation. Checking of OCL constraints in an EMF based tool can be car-
ried out by using the EMF OCL and Validation frameworks. At the time of writ-
ing the article there was no stable release of the mentioned frameworks, therefore,

Fig. 9. Relation of service unit and
component class

Fig. 10. Relation of service unit and
service instance

An Eclipse-Based Framework for AIS Service Configurations 121

most of the checks were actually (re)implemented in plain Java. However, the next
EMF release, the Eclipse Modeling Framework Technologies (EMFT), promises
to support the validation of OCL constraints over EMF models.

4.2 Non-functional Analysis

For users it is always a problem that the correctness of the configuration does
not assure the appropriate functionality of the system.

Unfortunately, the compliance of a service configuration to the AIS standard
does not alone guarantee that the quality of service requirements are met by the
service configuration after deployment. For example, in high availability systems
the expected availability and reliability of a service is a major parameter that has
to satisfy certain required levels. Another problem is that during the installation
of the new services some parts of the system may temporarily go down, however,
the continuity of services has to be maintained in these periods as well, and this
fact imposes constraints on the upgrade scenarios.

For these reasons, our framework supports formal analysis of availability as
well. Often analysis techniques and tools can be integrated likewise.

Availability and reliability analysis. In HA systems the most important
measures are the availability and reliability of the services. Standard depend-
ability analysis techniques can be used to determine the value of these measures
in a particular system to detect quality bottlenecks early in the design. In [24] the
design, implementation and application of a tool is described that is able to con-
struct automatically a dependability model (in the form of Generalized Stochastic
Petri Nets) from a system architecture model. Then the dependability model can
be solved by an external solver (e.g. the SPNP package [6]), computing in this
way the system-level reliability or availability measures. The input for the tool
is the stereotyped UML model of the system. In our case the PSM is adopted to
the input of the tool chain by simple, rather syntactic model transformations,
e.g. annotation by stereotypes, indication of usage dependencies, etc.

5 Automated Generation of Configurations

In the last phase of the configuration development we have to obtain the PSM
of the deployed service configuration (Deployment PSM later), and then merge
it with the Service PSM. The final step is the generation of the platform specific
deployment descriptors using the Merged PSM.

In the following, first we discuss the solutions for reengineering a deployment
configuration into a PSM, then we introduce different technologies and methods
that are used for configuration generation.

5.1 Reengineering a Deployed Configuration

Before a new service could be integrated into an existing deployment the De-
ployment PSM has to be created. The following methods are available for reengi-
neering the currently deployed service configuration:

122 A. Kövi and D. Varró

1. Using model transformations the deployment descriptors are derived into a
Deployment PSM

2. An IMM revealer agent traverses through the configuration tree and returns
the Deployment PSM as the result of a request.

PSM creation by transformations. To eliminate the human faults, such as
mistyping or misunderstanding the model, model transformations are used for
automatic generation of the Service PSM. Moreover, the system deployment con-
figuration files are not standardized, thus, vendor specific transformations have
to be written for each platform implementation. Such transformations can be im-
plemented, for instance, in the VIATRA2 model transformation framework [34]
in the form of importer plugins and graph transformations. As model transfor-
mations is a complex topic and does not connect inherently to the subject of this
paper, here we do not deal with it, but more information can be found in [24].

IMM revealer agent. In systems where the IMM service is available a com-
ponent can be written that traverses the Information Model and returns the De-
ployment PSM. As mentioned in Sec. 3.5 Ecore models, and thus the PSMs as
well, are stored in an XML format. As a consequence, the agent simply has to
return the PSM XML, which can instantly be used by the configuration developer
tool without any modifications.

5.2 Generating the Deployment Descriptors

The final step of the model-driven configuration development process is the gen-
eration of platform specific deployment descriptors. In Eclipse we can use Java
Emitter Templates (JET) [11] for code generation from EMF models. JET is
an easy to use and effective tool to generate the structured, platform specific
configuration descriptor files automatically from the PSMs. JET templates take
an object as input and produce formatted text using the different properties and
attributes of the input object. These templates use a simple JSP [33] like syntax
to describe the format of the output text.

In our case, the Merged PSM is passed to the templates as parameter, and the
resulting text is saved into a file. Separate JET templates need to be created for
each different output configuration file. An example JET template is listed in
the following.

Listing 1.1. Example JET template

<%@ j e t package=” h e l l o ” class=”GreetingTemplate ”
sk e l e t on=” generator . s k e l e t on ” %>

<%AISModel model = (AISModel) argument ;
f o r each (SAFApp app in model . App l i ca t i ons) {%>

<%=app . safApp%>,
<%}%>

Alternatively, we could also use the code generation features of VIATRA2 for
the same task.

An Eclipse-Based Framework for AIS Service Configurations 123

6 Related Work

Model-driven development for Web services. The work presented in this
paper was influenced by several proposals in different fields. First, proposals
for the model-driven development of service configurations have already been
elaborated for Web services, which have certain similarities with the SA Forum
service configurations that we deal with, e.g. a complete framework based on the
high-level modeling of Web services and their interactions with Web applications
is described in [25]. In [18] a method is described for importing Web service
descriptions into UML models, then integrating them, and finally generating the
XML descriptors for the composite Web service. This process is similar to our
approach to the integration of PSMs into a Merged PSM.

As we stated in Sec. 3.1 there are solutions for integrating some specific re-
quirements into service configurations. As an example, a methodology is de-
scribed for incorporating reliability attributes into Web service configurations
in [17]. Furthermore, this process is carried out with model transformations us-
ing the VIATRA2 transformation framework. Other approaches that use model
transformations for the integration of non-functional requirements can be found
in [7, 31] and [22].

However, these solutions are different from our approach in that (i) only parts
of the development process are supported and (ii) since Web service configura-
tions have a standardized format the generation of platform specific descriptors
is not an issue.

Non-functional model-driven analysis for services. We have used basic
principles that are described in [5] and [24] for defining the model constraints,
and carrying out the validation of the Service PSM models. Another solution
for reliability prediction of a system based on UML models is described in [30].
They extend the Schedulability Performance and Time (SPT) UML profile [20]
then perform analysis with transforming the UML model into a labeled transition
system (LTS) using XML-based transformations. This solution sticks more to the
standards based model-driven approach by using the standardized UML-XML
mappings. However, the adaptability of the SPT Profile for AIS based services is
unclear. Additional techniques for model-transformation based analysis of non-
functional properties of service configurations are presented in [16, 3]. Finally,
a method is introduced in [4] for generating optimal deployment configurations
to a definite set of server nodes that guarantees the required availability and
performance characteristics for all services.

Eclipse based configuration development tools. During our research we
found only the OpenClovis IDE as an available Eclispe-based configuration devel-
oper tool for an AIS compliant platform,. The OpenClovis IDE [28] implements
a subset of the functionalities that we proposed in this paper, e.g. creating and
modifying AIS configuration models, generating source code and template based
configuration development. The main difference between our proposal and the

124 A. Kövi and D. Varró

OpenClovis IDE is that the latter implements only platform specific parts of the
toolchain for the OpenClovis Application Service Platform middleware [27].

Our contribution. As a summary, the novelty of our approach compared to
the previously enumerated works is that we define (i) a complete model-driven
methodology for service configuration development (ii) dedicated to the SA Forum
ecosystem, (iii) by developing a toolchain using Eclipse-based technologies. As
a result, we defined a flexible toolkit that can easily be adopted to different
needs of different platform implementations, meanwhile helping the developers
with standard compliant platform independent model development for highly
available service configurations. Even if some components of our framework are
in an early prototype phase, we believe that the current paper provides relevant
specification for future improvements.

7 Conclusions

In this paper, we presented an integrated model-driven configuration develop-
ment method for AIS services and described a prototype toolchain that supports
this process. Furthermore, we showed how such a tool can be implemented on
the basis of Eclipse frameworks.

Although the specifications of AIS define the entities of the system and op-
erations that an application may invoke, the format of the service configuration
has not been standardized. Thus, the configuration of different platform im-
plementations can be widely different. So as to support the modeling of the
platform independent and platform specific views of the service configuration,
we defined the Platform Independent Model and the Platform Specific Model.
We use automatic model transformations for the PIM to PSM transformation
as well, as transformations for model validation to speed up these processes, and
to avoid human errors. Finally, the deployment descriptors for a given platform
can automatically be generated from the PSM.

In the future we consider the following improvements:

– Semantics-based model analysis. Currently we define OCL constraints
on the metamodel and then check them using the code generated by the
EMFT-OCL framework. The problem with this approach is that, if a new
constraint is introduced or an existing one is modified the validation code
has to be regenerated or rewritten. Ontology-based model analysis provides
a code-independent way for validating constraints. In ontology-based model
analysis we define a formal ontology, which contains the metamodel as a
T-Box (Terminology Box) and the model as an A-Box (Assertion Box). Then
the ontology is passed to a reasoner like RACER [29] that decides whether
the ontology is consistent or not. Simple OCL constraints can be imple-
mented in the T-Box, while complex constraints are verified by using model
queries. Such model analysis architecture provides more flexibility, however,
it is restricted to a select of OCLs.

An Eclipse-Based Framework for AIS Service Configurations 125

– Integration of SwMF. We think it is important to be able to generate stan-
dardized configuration descriptors as well (besides platform specific descrip-
tors) that can be used by systems implementing the Software Management
Framework (SwMF). Thus, we consider the development of a transformation
for PIM that provides the essential Entity types file, which is used to describe
the software entities that are delivered by a software bundle.

Acknowledgements

This work was partially supported by the HIDENETS project [21] of the Euro-
pean Union.

References

1. A. Avizienis. The methodology of n-version programming, 1995.
2. A. Balogh, A. Németh, A. Schmidt, I. Ráth, D. Vágó, D. Varró, and A. Pataricza.

The VIATRA2 model transformation framework. In ECMDA 2005 – Tools Track,
2005.

3. A. Balogh and A. Pataricza. Quality-of-service analysis of dependable application
models. 2006. Accepted for the 5th International Workshop on Critical Systems
Development Using Modeling Languages (CSDUML 2006).

4. András Balogh, Dániel Varró, and András Pataricza. Model-based optimization of
enterprise application and service deployment. In ISAS, pages 84–98, 2005.

5. Luciano Baresi, Reiko Heckel, Sebastian Thöne, and Dániel Varró. Style-based
modeling and refinement of service-oriented architectures. Software and Systems
Modeling, 5(2):187–207, June 2006.

6. Gianfranco Ciardo, Kishor S. Trivedi, and et al. Spnp: Stochastic petri net package
- version 5.0.

7. Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. Software perfor-
mance model-driven architecture. In SAC ’06: Proceedings of the 2006 ACM sym-
posium on Applied computing, pages 1218–1223, New York, NY, USA, 2006. ACM
Press.

8. Eclipse modeling framework. http://www.eclipse.org/modeling/.
9. Graphical editing framework. http://www.eclipse.org/gef/.

10. Graphical modeling framework. http://www.eclipse.org/gmf/.
11. Java emitter templates. http://www.eclipse.org/emft/projects/jet/.
12. Service AvailabilityTMForum. Information Model Classes, SAI-XMI-A.01.01, 2005.
13. Service AvailabilityTMForum. Availability Management Framework, SAI-AIS-

B.01.02, February 2006.
14. Service AvailabilityTMForum. Information Model Management Service, SAI-AIS-

B.01.02, February 2006.
15. Service AvailabilityTMForum. Software Management Framework, SAI-AIS-

A.01.01.02 draft version, 2007.
16. László Gönczy. Dependability analysis and synthesis of web services. In Proc. 13th

PhD Mini-Symposium, Budapest, Hungary, 2004.
17. László Gönczy, János Ávéd, and Dániel Varró. Model-based deployment of web

services to standards-compliant middleware. In Immaculada J. Martinez Pedro Isa-
ias, Miguel Baptista Nunes, editor, Proc. of the Iadis International Conference on
WWW/Internet 2006(ICWI2006). Iadis Press, 2006.

http://www.eclipse.org/modeling/
http://www.eclipse.org/gef/
http://www.eclipse.org/gmf/
http://www.eclipse.org/emft/projects/jet/

126 A. Kövi and D. Varró

18. Roy Gronmo, David Skogan, Ida Solheim, and Jon Oldevik. Model-driven web
services development. eee, 00:42–45, 2004.

19. Object Management Group. Object Constraint Language specification.
http://omg.org/technology/documents/formal/ocl.htm.

20. Object Management Group. UML Profile for Schedulability, Performance and
Time Specification, January 2005.
http://www.omg.org/technology/documents/formal/schedulability.htm.

21. Highly DEpendable ip-based NETworks and Services. http://hidenets.aau.dk.
22. Henk Jonkers, Maria-Eugenia Iacob, Marc M. Lankhorst, and Patrick Strating.

Integration and analysis of functional and non-functional aspects in model-driven
e-service development. In EDOC, pages 229–238, 2005.

23. Jean-Claude Laprie, Christian Béounes, and Karama Kanoun. Definition
and analysis of hardware- and software-fault-tolerant architectures. Computer,
23(7):39–51, 1990.

24. I. Majzik, P. Domokos, and M. Magyar. Tool-supported dependability evaluation
of redundant architectures in computer based control systems. In E. Schnieder
and G. Tarnai, editors, FORMS/FORMAT 2007, the 6th Symposium on Formal
Methods for Automation and Safety in Railway and Automotive Systems, 25-26
January 2007, pages 342–352, GZVB, Braunschweig, Germany, 2007. ISBN 13:978-
3-937655-09-3.

25. Ioana Manolescu, Marco Brambilla, Stefano Ceri, Sara Comai, and Piero Fraternali.
Model-driven design and deployment of service-enabled web applications. ACM
Trans. Inter. Tech., 5(3):439–479, 2005.

26. Object Management Group. http://omg.org.
27. OpenClovis. Application service platform (asp), release 2.2.

http://www.openclovis.org/project/asp.
28. OpenClovis. Openclovis ide. http://www.openclovis.org/project/ide.
29. Renamed abox and concept expression reasoner (RACER).

http://www.racer-systems.com/.
30. Genaina Rodrigues, David Rosenblum, and Sebastian Uchitel. Reliability predic-

tion in model driven development. In ACM/IEEE 8th International Conference
on Model Driven Engineering Languages and Systems, 2005.

31. Simone Rttger and Steffen Zschaler. Model-driven development for non-functional
properties: Refinement through model transformation.

32. Service AvailabilityTMForum. http://saforum.org.
33. Java server pages. http://java.sun.com/products/jsp/.
34. VIATRA2 Framework, an Eclipse GMT subproject.

http://www.eclipse.org/gmt/ .

http://omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/schedulability.htm
http://hidenets.aau.dk
http://omg.org
http://www.openclovis.org/project/asp
http://www.openclovis.org/project/ide
http://www.racer-systems.com/
http://saforum.org
http://java.sun.com/products/jsp/
http://www.eclipse.org/gmt/

	Introduction
	An Overview of the Approach
	Modeling of Service Configurations
	Requirements Specification
	Platform Independent Model (PIM)
	Design Patterns
	Platform Specific Model (PSM)
	Implementation Details

	Model Analysis
	Static Analysis of Service Configuration Models
	Non-functional Analysis

	Automated Generation of Configurations
	Reengineering a Deployed Configuration
	Generating the Deployment Descriptors

	Related Work
	Conclusions

