

Lecture Notes in Computer Science 4526
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Miroslaw Malek Manfred Reitenspieß
Aad van Moorsel (Eds.)

Service Availability

4th International Service Availability
Symposium, ISAS 2007
Durham, NH, USA, May 21-22, 2007
Proceedings

13

Volume Editors

Miroslaw Malek
Humboldt-Universität zu Berlin
Institut für Informatik, Rechnerorganisation und Kommunikation
Rudower Chaussee 25, 12489 Berlin, Germany
E-mail: malek@informatik.hu-berlin.de

Manfred Reitenspieß
Fujitsu Siemens Computers
Domagkstr. 28, D-80807 München, Germany
E-mail: manfred.reitenspiess@fujitsu-siemens.com

Aad van Moorsel
Newcastle University
School of Computing Science
NE1 7RU, Newcastle upon Tyne, UK
E-mail: aad.vanmoorsel@newcastle.ac.uk

Library of Congress Control Number: 2007927310

CR Subject Classification (1998): C.2, H.4, H.3, I.2.11, D.2, H.5, K.4.4, K.6

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-72735-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72735-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12068531 06/3180 5 4 3 2 1 0

Preface

Program Chairs’ Message

The 4th International Service Availability Symposium (ISAS 2007) continued with the
tradition of its predecessors by bringing together researchers and practitioners from
both academia and industry to address the problems of service availability. The
unique characteristic of a strong academic and industrial partnership was vividly re-
flected in this year’s event, from the Organizing Committee to the contributions and
the participants. Recognizing the value of broadening the scope of ISAS 2007, we
included new topic areas that cover model-driven design and human factors.

We received a total of 25 submissions, each of which was thoroughly reviewed by
at least three members of the Program Committee. Due to the limited time allocated
for the symposium, many worthwhile manuscripts unfortunately did not make it into
the final program. Our sincere thanks go to the Program Committee for conducting a
vigorous review process in a rather tight time schedule. The detailed reviews and their
generous comments have shaped the contributions into an excellent program.

Supported by EU project HIDENETS, we organized a half-day post-symposium
tutorial that connected the research contributions of the workshop with the industrial
standardization efforts in the SA Forum. We are grateful to András Kövi for provid-
ing a tutorial on "Principles of HA Design for Planners.”

We are indebted to the University of New Hampshire for providing the support and
resources needed for hosting ISAS 2007 in Durham, New Hampshire. The local ar-
rangement team led by Scott Valcourt did a tremendous job of assisting the planning
and organizing and coordinating all the local activities. We would also like to ac-
knowledge the involvement and support given by the Service Availability Forum and
GI/ITG Technical Committee on "Dependability and Fault Tolerance."

We hope that you will find many contributions that are of interests to you, in these
proceedings.

May 2007 Aad van Moorsel
 Asif Naseem

Organization

ISAS 2007 was organized by the University of New Hampshire, in cooperation with
GI (German Computer Society) and Service Availability Forum.

ISAS 2007 Steering Committee

F. Tam (Nokia, Finland)
M. Reitenspieß (Fujitsu Siemens Computers, Germany)
D. Penkler (HP, France)
M. Malek (Humboldt University, Germany)
T. Dohi (Hiroshima University, Japan)
S. Benlarbi (Alcatel, Canada)

ISAS 2007 Organizing Committee

Local Chair
Scott Valcourt (University of New Hampshire, USA)

Program Co-chairs
Aad van Moorsel (University of Newcastle, UK)
Asif Naseem (GoAhead, USA)

ISAS 2007 Reviewers

A. Avritzer (Siemens, USA) D. Bakken (Washington S., USA)
S. Benlarbi (Alcatel, Canada) K. Birman (Cornell, USA)
A. Birolini (ETH, Switzerland) A. Bondavalli (University of Florence,

Italy)
S. Bruening (Humboldt University, A. Burghelea (Cisco, USA)

Germany)
J. Carrasco (UPC, Spain) I. Chen (Virginia Tech, USA)
Y. Chen (University of Newcastle, UK) T. Dohi (Hiroshima University, Japan)
C. Fetzer (TU Dresden, Germany) R. Fricks (Motorola, USA)
M. Garzia (Microsoft, USA) A. Gokhale (Vanderbilt, USA)
S. Gokhale (University of Connecticut, M. Hasan (Cisco, USA)

USA)
B. Haverkort (University of Twente, S. Hunter (IBM, USA)

The Netherlands)
Y. Kakuda (Hiroshima CU, Japan) A. Krings (University of Idaho, USA)
V. Loll (Nokia, Denmark) X. Lu (Tokyo I. Tech., Japan)

VIII Organization

M. Lyu (Chinese University, Hong Kong) M. Malek (Humboldt University,
Germany)

R. Mansharamani (Tata, India) V. Mendiratta (Lucent, USA)
K. Mori (Tokyo I. Tech., Japan) B. Murphy (Microsoft, UK)
P. Murray (HP, UK) E. Nett (University of Magdeburg,

Germany)
D. Penkler (HP, France) A. Rindos (IBM, USA)
A. Rodriguez-Vargas (Siemens, Germany) A. Romanovsky (University of

Newcastle, UK)
H. Sun (Sun Microsystems, USA) N. Suri (TU Darmstadt, Germany)
H. Szczerbicka (University of Hannover, S. Tai (IBM, USA)

Germany)
F. Tam (Nokia, Finland) K. Trivedi (Duke University, USA)
B. Vashaw (IBM, USA) E. Vollset (Cornell, USA)
D. Wang (Duke University, USA) K. Wolter (Humboldt University,

Germany)
A. Wolski (Solid Tech., Finland) J. Xu (University of Leeds, UK)
S. Yajnik (Avaya, USA)

Table of Contents

Autonomous Decentralized System for Service Assurance and Its
Application . 1

Kinji Mori

Middleware

A Message Oriented Middleware Solution Enabling Non-repudiation
Evidence Generation for Reliable Web Services . 9

Simon Parkin, David Ingham, and Graham Morgan

Comparing Robustness of AIS-Based Middleware Implementations 20
Zoltán Micskei, István Majzik, and Francis Tam

Service-Oriented Operating System: A Key Element in Improving
Service Availability . 31

Nikola Milanovic and Miroslaw Malek

Software Systems

Implementation of Highly Available Memory Database as SAF
Component . 43

Tadashiro Yoshida, Masaki Hisada, and Seiji Tomita

Fault Tolerant Schemes for Hot-Swappable and Non Hot-Swappable
Mezzanine Cards . 52

Mark Lanus

Experience in Developing a High Availability and Continuous TCP
Using OpenAIS and TCPCP . 63

Ying-Yu Chen, Chien Chen, and Chia-Yuan Huang

Modeling and Analysis

Client-Centric Performance Analysis of a High-Availability Cluster 74
Jesper Grønbæk, Hans-Peter Frejek, Thibault Renier, and
Hans-Peter Schwefel

A Faster Estimation Algorithm for Periodic Preventive Rejuvenation
Schedule Maximizing System Availability . 94

Koichiro Rinsaka and Tadashi Dohi

X Table of Contents

Model-Driven Development and Human Engineering

An Eclipse-Based Framework for AIS Service Configurations 110
András Kövi and Dániel Varró

MDDPro: Model-Driven Dependability Provisioning in Enterprise
Distributed Real-Time and Embedded Systems . 127

Sumant Tambe, Jaiganesh Balasubramanian,
Aniruddha Gokhale, and Thomas Damiano

Applying US DoD Human Engineering Methods to Reduce Procedural
Error Related Outages . 145

Pat O’Brien

Author Index . 155

Autonomous Decentralized System for Service

Assurance and Its Application

Kinji Mori

Department of Computer Science, Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan

Tel.: +81-3-5734-2664, Fax: +81-3-5734-2510
mori@cs.titech.ac.jp

Abstract. The market and users requirements have been rapidly chang-
ing and diversified. Under these heterogeneous and dynamic situations,
not only the system structure itself, but also the accessible informa-
tion services would be changed constantly. Therefor, the integration of
wired and wireless devices, control and information systems to achieve
real-time, high-performance and high-reliability for heterogeneous service
provision and utilization is becoming more and more important. The Au-
tonomous Decentralized System (ADS) has been proposed for resolving
the on-line property to achieve the step-by-step expansion, maintenance
and fault-propagation prevention for high-assurance. In this paper, the
ADS architecture, autonomous community and application example in
the IC card system are discussed.

Keywords: Autonomous Decentralized System, Service Assurance, Au-
tonomous Community, real-time, high-performance.

1 Introduction

The enormous growth of mobile and embedded devices in ubiquitous comput-
ing environment and their interaction with human beings offers rapidly evolv-
ing and frequently accessed information spaces for anyone, anywhere, anytime
[1] [2]. Heterogeneous distributed architectures are required for such systems,
where devices are interconnected by various types of communication links, and
multiple tasks are concurrently run on the system. These devices may be bat-
tery constrained or subject to hostile environments, so communication noise and
individual device failure will be a regular or common event. In addition, the con-
figuration devices will frequently change in terms of mobility and task details.
Finally, because these devices interact with the physical environment, they, and
the network as a whole, will experience a significant range of service content
dynamics [3] [4]. However, the conventional architecture is either overdesigned
or fails to meet the specified constraints. Therefore, finding an effective archi-
tecture to meet the heterogeneous requirements under this dynamic changing
environment is necessary.

M. Malek et al.(Eds.): ISAS 2007, LNCS 4526, pp. 1–8, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 K. Mori

As the breakthrough over the conventional systems, Autonomous Decentral-
ized System (ADS) has been proposed in 1977 [5] [6]. An autonomous decentral-
ized system is defined as such a living thing which is composed of largely au-
tonomous and decentralized components (subsystems). Their technologies have
been developed in the various fields of transportation, factory automation, utility
management, satellite on-board control, newspaper printing factory, information
services, e-commerce, community service, and so on.

In this paper, the ADS concept and architecture are discussed and the appli-
cation based on the autonomous community for IC card ticket system: Suica is
shown to be effectively operated.

2 Requirements

2.1 Application Needs

Convergence of computer and communication technologies has created demand
for ever-increasing levels of assurance. Now network users are demanding and
expecting continuous delivery of services: they want always-on services and con-
nections that are maintained without any internal system faults or failures [7].
And in order to maintain and attract new customers, service providers must offer
personalized and efficient end-user service. The service assurance is characterized
by the following properties:

– Heterogeneity: Systems react continuously to their environment at a speed
imposed by the environment which lead often real-time capabilities. Relia-
bility, robustness and safety constraints derive from situations where service
continuation is impossible. Under the ubiquitous and sensed networked en-
vironment, various applications are integrated to achieve multiple require-
ments, but their requirement levels may be heterogeneous.

– Adaptability: The time for the design and commercialization of a system
have to be done considering that the users requirements that derive from
general trends in society related to aspects like individualization, globaliza-
tion, mobility, fashion, etc., are always changing. Increasing individualization
leads to more diversity in products and services, and therefore to the need for
more adaptability in design. Growing needs for continuous service utilization
and provision leads to online maintenance and testing.

2.2 System Needs

The service assurance represents a shift from a technology-centric orientation to a
customer-centric one in system design [8]. It includes providing high availability,
but adds the requirements of service continuity and realtime. Neither scheduled
maintenance nor unexpected failure ought to prevent or disrupt provision of
service to a customer.

A service assurance solution requires a system be highly available and pro-
vide continuity of service. For satisfying the application needs of heterogeneity

Autonomous Decentralized System for Service Assurance and Its Application 3

and adaptability, reliability, robustness and safety constraints derive from situ-
ations where service continuation is impossible and a certain degree of adaptive
behavior, configuring and organization should be possible.

Application needs and technological background make more requirements of
online expansion, fault-tolerance and online maintenance for the system. The
online property is one of the major requirements of service assurance system.
Current hardware/software design and integration technologies must be devel-
oped in order to cope with such challenges. The individualization in the users
preferences will force that the new devices must be designed under the metrics
of collaborative adaptive systems. The non-stop service utilization and provision
will impose constraints on the design and implementation of systems for sup-
porting online maintenance and testing. Moreover, due to the gigantic size of the
future systems, the design and implementation will be done on a step by step
development considerations.

3 Autonomous Decentralized System

3.1 ADS Concept

Autonomous Decentralized System (ADS) has been proposed to resolve the on-
line property of on-line expansion, on-line maintenance and fault tolerance in a
system, which means that the system can continue operation during partial ex-
pansion, maintenance and at the time of a partial fault [6]. The ADS is defined as
the characteristics that each subsystem can control itself and coordinate with all
of the other operating subsystems. Therefore the following two properties must
be satisfied by each subsystem: Autonomous Controllability and Autonomous
Coordinability.

3.2 ADS Architecture

Each subsystem has its own management system, the Autonomous Control Pro-
cessor (ACP) to manage itself and coordinate with the others. The subsystem
including its application software modules and ACP is an autonomous unit called
”Atom”. The self-contained subsystems including their respective ACPs are in-
tegrated into a system. In the ADS, all of the subsystems are connected only
through the Data Field (DF); all data is broadcasted into the DF and the data
itself logically circulates in the DF (see Figure 1). The data moves around the
application modules in the Atom and the DF in the Atom is called the Atom
Data Field (ADF). In the DF, each data is attached with its ”content code”
which is uniquely defined with respect to the content of the data. To protect the
operation of the subsystems from variation in the system, each subsystem broad-
casts a message containing the content code instead of the receivers address. The
application module is specified only by input and output content codes, and it is
executed by the ACP only when all of the necessary data with the proper input
content codes is received from the DF (Data-Driven Mechanism). The neces-
sary content codes for the Atom are determined dependently on the application
functions within it.

4 K. Mori

Data Field

ADF

Message

ACP ACP ACP

CC DATA

Atom Application
Module

Data FieldData Field

ADF

Message

ACP ACP ACP

CC DATACC DATA

Atom Application
Module

Fig. 1. ADS Architecture

4 Autonomous Community

Community services, which are extended from situation-aware services like
location-based services. Community is constructed among the users, who have
common preference or are in similar situation, and where services characterized
by right now, right here and right me are provided and utilized in accordance
with the cooperation of users. The widespread deployment and use of wireless
data communications have made the location-based services possible to achieve
these requirements.

Under the evolving market, users require the continuous and timely services
based on their preference and current location. For effective service provision,
service providers need the current requirement of the Local Majority. Service
providers (SPs) require for carrying out the marketing on real-time and collect
users’ requirements to provide most suitable service for local majority at each
time. Users’ request should be sent to appropriate service providers according to
their preference and location. The system that generates the service according
to the situation on each occasion by collecting demands of users on real time in
local area and provides suitable users with information to achieve real time and
availability requirements.

Autonomous Community System consists of autonomous subsystems. Com-
munity, which is a dynamic group defined by a service, is created among these
entities. In this community, entities that join a community are called members.
Communication and process among members in the community realize the com-
munity service.

5 Application

5.1 Autonomous Decentralized IC Card Ticket System

A new real-time application of service assurance which has successfully
been developed and implemented utilizing ADS architecture and Autonomous

Autonomous Decentralized System for Service Assurance and Its Application 5

Community concept is the IC card ticket system (Suica), introduced by East
Japan Railway Company in November 2001 [9]. This world-wide largest control
and information system is an integrated combination of wired and wireless sys-
tems, where a contactless IC card communicates by wireless with automatic fare
collection devices (terminals) such as automatic fare collection system (AFCS),
and the terminals communicate by wired with data collection servers. Nowa-
days, the integration of control and information systems is becoming more and
more important. This integration not only make it possible for message to be
exchanged between control and information system, but also makes it possible to
create a adaptive integrated system that can satisfy the heterogeneous require-
ments of applications. The current number of card holders is approximately
about 30 million and the number of transactions that are processed daily is in
the order of 8 million [10]. And from March 18, 2007, this system is not only
available for train system, but also available for other public transport systems.

The gate control and transaction process have been integrated in this system.
It is necessary for terminal AFCS devices to provide high performance and high
reliability because of the nature of railway transportation service. However, it
was difficult to realize both in the IC card ticket system because the short time
and noise of wireless communication. For these reasons, technologies and appli-
cations that can meet these requirements have been introduced. In the system,
IC cards and terminals are designed as autonomous subsystems and configured
in autonomous decentralized architecture. As shown in figure 2, the system con-
sists of three different sub-communities (Data Field) with various time ranges.
These time ranges of data flows are varied according to needs and aims of both

DF2 at "A" station: hourly (10Mbps)

"A" Station Server

Data Collection
Server

・・・IC Card A

Automatic Fare
Collection Gates

DF1 by wireless communications:
within a second　(212Kbps)

IC Card B IC Card D

Fare Adjusting
Machines

IC Card C

Ticket Vending
Machines

"B" Station Server "C" Station Server

DF2 at "C"DF2 at "B"

Terminals

IC Card
F

Terminals

DF3 between stations: daily (64, 128, 256Kbps)

DF1 by wireless communications:
within a second (212Kbps)

DF1

・・・

IC Card
E

DF1 DF1

DF2 at "A" station: hourly (10Mbps)

"A" Station Server

Data Collection
Server

・・・IC Card A

Automatic Fare
Collection Gates

DF1 by wireless communications:
within a second　(212Kbps)

IC Card B IC Card D

Fare Adjusting
Machines

IC Card C

Ticket Vending
Machines

"B" Station Server "C" Station Server

DF2 at "C"DF2 at "B"

Terminals

IC Card
F

Terminals

DF3 between stations: daily (64, 128, 256Kbps)

DF1 by wireless communications:
within a second (212Kbps)

DF1

・・・

IC Card
E

DF1DF1 DF1DF1

Fig. 2. Different Data Fields architecture

6 K. Mori

high performance and reliability. In the DF1, terminals use wireless communi-
cation with IC cards. The terminals and station server are linked to the station
LAN and work on autonomous decentralized process through the DF2. Each
terminal operates autonomously and failures at some terminals do not influence
on the others. In addition, station servers are connected to a data collection
server through the DF3, so if trouble occurs, the trouble does not expand into
the whole system. Therefore, passengers can use all functions, derived from the
Data Field, when they move between the stations.

5.2 Autonomous Decentralized Process

The development of the wireless IC card ticket system is concretely aimed at the
high performance because it is very important to let passengers pass through
gates as smoothly as possible, especially during the rush hours. As a result,
the process must be finished within 200ms. Figure 3 shows the outline of the
technology to process data at high-speed at the automatic gate for fare calcula-
tion. The passenger with a Suica commuter pass has to do is to pass this Suica
card over the reader/writer (R/W) at the ticket gate, and the necessary fare
adjustment is automatically carried out. Since long time is necessary for compli-
cated calculations, a technology that adapt to the particular users situation by
sensing mobility depended Autonomous Decentralized Algorithm is proposed.
In this algorithm, the fares are autonomously calculated in two processes: the
Pre-boarding Process upon entrance and the Post-boarding Process upon exit,
followed by the autonomous cooperative process. This algorithm has succeeded
in shortening each processing time.

Pre-boarding Process Post-boarding Process

Autonomous Decentralized Process

(FAB)

St. A (Get on)

St. KSt. J

St. X St. Y
(FAJ) (FKB)

St. B (Get off)

F0 Minimum fare
rate from St. A

The nearest station to St.A
within the train pass

Autonomous judgment
and calculation

Fare amount:
Adopt the cheaper

from either
(FAJ)+(FKB)+F0 or

(FAB)-F0

Fare between
A and B

The nearest station to
St.B within the train pass

Fare between
St.B and St.K

Pre-boarding Process Post-boarding Process

Autonomous Decentralized Process

(FAB)

St. A (Get on)

St. KSt. J

St. X St. Y
(FAJ) (FKB)

St. B (Get off)

F0 Minimum fare
rate from St. A

The nearest station to St.A
within the train pass

Autonomous judgment
and calculation

Fare amount:
Adopt the cheaper

from either
(FAJ)+(FKB)+F0 or

(FAB)-F0

Fare between
A and B

The nearest station to
St.B within the train pass

Fare between
St.B and St.K

Fig. 3. Autonomous decentralized process

Autonomous Decentralized System for Service Assurance and Its Application 7

5.3 Heterogeneous Data Fields

Figure 4 shows the data process among heterogeneous DFs which improve the
through rate of passengers even in data inconsistent conditions. The R/W sensor
updates its data when it receives a completed signal from an IC card. This signal
is transmitted near the boarder of the communication area, so that the process
is not always completed successfully due to the noise of wireless communication.
In this case, the data through the R/W sensor are not updated, though the ones
in the card are updated. As a result, the data inconsistency will happen and we
call this problem as data lack.

To prevent this problem, Autonomous Decentralized Data Consistency tech-
nology is proposed. The inconsistent data can be recovered by using the au-
tonomous decentralized architecture with different DFs. The inconsistent data
in the R/W are saved as temporary data in the data collection server. If the
next processes are completed normally, the consistency of normal data sent to
the data collection server and the previously saved data are checked. And the
data consistency can be logically completed based on the normal data.

Fig. 4. Heterogeneous DFs process

6 Conclusions

Under the recent severe economic situation, the business in the various fields
has been changing to produce new products and to supply new services with
high assurance. Moreover the life-cycle of these products and services have been
getting short. As the technological trends, the openness and the down-sizing
phenomena have been in progress, and the system is constructed by the multi-
vender’s machines.

8 K. Mori

The ADS concept and autonomous community are explained under the back-
grounds not for the resource utilization, but for the easy-to-use and the easy-to-
construct of the computing and controlling systems for service assurance. This
architecture shows that there exists no master and no direction among subsys-
tems, and then the software productivity is much improved by building block
manner of autonomous software modules. Moreover the real-time application of
the autonomous community is described and its validity has been verified.

References

1. Michael N. Huhns and Munindar P. Singh: Service-Oriented Computing: Key Con-
cepts and Principles. IEEE Internet Computing, vol.1 (2005) 75-81

2. David Oppenheimer and David A. Patterson: Architecture and Dependability of
Large-Scale Internet Services. IEEE Internet Computing, vol.9 (2002) 41-49

3. P. Bellavista and A. Corradi and C. Stefanelli: The Ubiquitous Provisioning of
Internet Services to Portable Devices. IEEE Pervasive Computing, vol.1, no.3.
(2002) 81-87

4. H. Schulzrinne and X. Wu and S. Sidiroglou and S. Berger: Ubiquitous computing
in home networks. IEEE Communications Magazine, vol.41, no.11. (2003) 128-135

5. K. Mori and et al: Proposition of autonomous decentralized concept. Trans. IEE
of Japan, vol.104C, no.12. (1984) 303-340

6. K. Mori: Autonomous Decentralized Systems: concepts, data field architecture and
future trends. Proc. IEEE Conf. on ISADS. (1993) 28-34

7. Roger Cummings: The Evolution of Information Assurance. IEEE Computer,
vol.12 (2002) 65-72

8. Gerardo Canfora and Massimiliano Di Penta: Testing Services and Service-Centric
Systems: Challenges and Opportunities. IEEE IT Professional, vol.3 (2006) 10-17

9. A. Shiibashi: Autonomous decentralized high-speed processing technology and
the application in an integrated IC card fixed-line and wireless system. IEICE,
vol.88-D, no.12. (2005) 2699-2707

10. A. Shiibashi and K. Mori: Autonomous decentralized data consistency for high-
assurance embedded system. Intl. Scientific Journal of Computing, vol.4, no.2.
(2006)

M. Malek et al.(Eds.): ISAS 2007, LNCS 4526, pp. 9 – 19, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Message Oriented Middleware Solution Enabling
Non-repudiation Evidence Generation for Reliable Web

Services

Simon Parkin1, David Ingham2, and Graham Morgan1

1 School of Computing Science, University of Newcastle, NE1 7RU, UK
2 Arjuna Technologies Ltd., Newcastle upon Tyne, NE1 7RU, UK
{S.E.Parkin,Graham.Morgan}@newcastle.ac.uk,

dave.ingham@arjuna.com

Abstract. The paper describes an approach to providing reliable message pass-
ing together with mechanisms for enforcing non-repudiation for use by Web
Services. In particular, we are concerned with message passing that occurs
across organizational boundaries and evaluating the suitability of the Java Mes-
saging Service in this approach.

Keywords: Web Services, Middleware, MOM, Non-repudiation.

1 Introduction

Business communities have traditionally participated in inter-organizational commu-
nications via a number of well known techniques such as face-to-face meetings or
paper mail. Two important properties associated with inter-organization communica-
tions that contribute to successful commerce are reliable information delivery and the
trust in the authentication of the originator of the information. Such reliability stems
from the ability of a communications medium to provide a level of guarantee for
information delivery that is agreed upon by all participants and satisfies the business
function as dictated in some contractual agreement. A signature that all parties agree
upon as proof of originator is used to provide trust in the origins of information. Inter-
organizational disputes are resolved through some legal action directed by appropriate
laws. For example, in law the trust mechanism used to overcome a claim of non-
repudiation relating to a communication is the witnessing of signature(s).

Electronic commerce makes possible the implementation of existing business prac-
tices via enabling digital technologies. Such technologies ease interaction between
organizations and the individual by overcoming traditional problems (e.g., paper
based, voice) associated to the geographic distribution of participants involved in a
business process. The proliferation of the Internet has contributed to the ability of an
enterprise to provide their services to a much larger audience than ever envisaged
before the existence of widely available public access networks. Furthermore, the
properties of electronic communication (e.g., speed, automation) have brought about
business processes that would not be possible using non-digital technologies.

10 S. Parkin, D. Ingham, and G. Morgan

To enable the deployment of applications that span organizational boundaries there
is a need to enable interactions between organizations in a manner that does not rely
on the specific implementation of an organization’s technologies yet can promote
interoperability in a heterogeneous environment. One possibility for developing such
applications is the Object Management Group’s CORBA [10] and related specifica-
tions. CORBA is a mature specification that provides interoperability for distributed
applications built in a heterogeneous environment and is based on the object-oriented
paradigm of program development. However, a service based approach using text
based messaging as opposed to CORBA’s object-oriented approach with binary mes-
saging is considered more suited to inter-organizational application development [11].

Web Services are promoted as providing a suitable paradigm for application inte-
gration across organizational boundaries. Services may be implemented and deployed
using platform specific mechanisms with interoperability achieved via Web Service
standards and communications over standard protocols. The Protocol specified by
Web Services is SOAP [7] (providing RPC) with organizations describing their ser-
vices, and so making them available to clients, via WSDL [12]. WSDL and SOAP are
specified using XML [13]. XML allows a developer to represent different elements of
data in a text file that may be read and processed by applications (providing appropri-
ate message descriptions for loosely coupled systems).

We propose the use of message oriented middleware (MOM) in a solution to satis-
fying reliable communications while tackling the problem of non-repudiation for Web
Services using SOAP and WSDL. We exploit the message passing properties associ-
ated with MOM to prevent partial system failure from inhibiting the delivery of mes-
sages and prevent limited transient unavailability of clients and servers from resulting
in non-completion of a SOAP RPC. Combining persistent messaging with transac-
tional and security mechanisms aids in non-repudiation. Furthermore, our approach
maintains message logs to aid in any inter-organizational disputes relating to non-
repudiation that may occur. We have implemented our system using only standard
technologies, with clients and servers requiring no amendment to use our system. Our
system appears transparent to clients and servers.

The main contribution of our paper is to provide the community with an engi-
neered solution that exhibits the benefits of using MOM for non-repudiation and reli-
ability in the context of Web Services. Our purpose was not simply to implement Web
Service standards associated to non-repudiation and reliability (on which there are
many works).

In the next section we describe our assumptions related to the technologies we use.
Section 3 describes our implementation. Section 4 describes related work with section 5
presenting our conclusions and future work.

2 Background

This section gives a short introduction to SOAP and MOM and explains assumptions
we make regarding server/client interaction.

2.1 Clients and Servers

We assume clients enact an RPC on a server using SOAP [7] over HTTP across pub-
lic access networks (i.e., the Internet). This assumption is based on the fact that SOAP

 A MOM Solution Enabling Non-repudiation Evidence Generation 11

over HTTP is the common configuration for accessing Web Services over the Internet
[9]. This is due to the expectation that the use of HTTP is widespread and HTTP is
conceptually similar to SOAP as they both describe a request/response style protocol
(easing the coupling of these protocols). However, the approach of using SOAP over
HTTP is not without problems: the best-effort expectations of HTTP to transmit
SOAP messages are not appropriate for some applications which require more robust
delivery requirements. For example, inter-organizational interactions via SOAP RPC
may require non-repudiation properties that provide a basis for determining the valid-
ity of messages (as is the subject of this paper).

The use of SOAP is not restricted to client/server interaction that may necessarily
result in request/reply style messaging. SOAP messages may be used in a document-
literal style that does not depend on a client invoking a particular method on a server
and is therefore message based as opposed to RPC based. Furthermore, a SOAP RPC
may not necessarily require a server to generate a reply for every request. In this pa-
per we are primarily concerned with SOAP RPC in which every client request results
in a server generated reply, even if this reply is simply an acknowledgement of deliv-
ery by the server. This decision has been taken as it is assumed clients require an
acknowledgement to enable application level decisions to be made on the successful-
ness of their request. When an RPC crosses organizational boundaries then only via
server acknowledgment may a client be able to state a case that it had understood the
request to be delivered if a dispute relating to the delivery status of a message arose
between client and server.

We assume servers describe their services via WSDL. WSDL provides a means by
which servers may describe their services in a manner that allows clients to contact
and use such services. Such a description includes the name of the service, the loca-
tion of the service (typically a URL), methods available for invocation and the in-
put/output parameter types defined for each method.

2.2 Message Passing

As previously described, SOAP RPC over HTTP is the mechanism we assume clients
and servers use to interact. However, the best effort reliability of HTTP coupled with
lack of non-repudiation techniques requires a different approach to message passing
across organizational boundaries. Therefore, we employ message oriented middle-
ware (MOM) as the basis of our approach for inter-organizational message exchange.

MOM allows two or more applications to exchange messages. The CORBA Noti-
fication Service [6] and JMS [1] are examples of specifications that describe typical
MOM type services. Unlike RPC, there is no requirement for participants in a MOM
message exchange to be contactable at the time of communications. In this sense,
senders and receivers of messages are decoupled with receivers consuming messages
as and when they are able to. This property may be exploited to provide a means of
masking client/server unavailability during the enacting of an RPC. For example, a
server may be unavailable to service an RPC (e.g., due to high processing loads, ad-
ministrative downtime). If an RPC is issued by a client during this period a client may
get an exception raised that the server may not be able to process the request or the
client may timeout the server if the server is unreasonably slow. Either of these
scenarios will result in a client managing its own message resends. Consider this

12 S. Parkin, D. Ingham, and G. Morgan

example further. Assume a client timeouts a server and reissues a request. Unfortu-
nately, the server actually processed the original request but was simply too slow in
returning a response. This results in duplicate request processing, an undesirable prob-
lem in distributed applications, but is a considered a more serious problem for inter-
organizational communications where such processing may carry a financial penalty
for the client. Overcoming this problem requires agreement between clients and serv-
ers on unique identification of requests to allow servers to identify repeat requests.
However, in relation to non-repudiation this scheme is not easy to implement across
organizational boundaries due to the level of trust and the limited degree of informa-
tion sharing organizations will tolerate.

MOM may employ additional mechanisms to provide reliability guarantees for
message exchange. Atomic transactions coupled with persistent messaging provide
fault-tolerance in that the failure of the MOM system or any of the participants in
message exchange will not necessarily result in the loss of messages. Atomic transac-
tions are used to ensure the underlying persistent store remains consistent and as long
as such a store remains correct and reachable then messages will not be lost. Atomic
transactions have an all or nothing property in that an attempted amendment to data is
either successfully carried out or not carried out at all. Persistence of messages cou-
pled with atomic transactions is desirable in non-repudiation techniques as failure
should not render the system incapable of satisfying the requirements of non-
repudiation.

3 Implementation

A Java implementation of our system is achieved via Reliable Routing Nodes (RRNs)
and the Java Messaging Service (JMS) [1]. The messaging transport used by JMS is
HTTP. An RRN receives client requests and server replies and is responsible for at-
tempting to deliver requests/replies to the appropriate servers/clients. Client requests
are uniquely identified within the system to enable the tracking of requests and their
associated replies. The JMS provides reliable persistent message storage and forward-
ing for use by an RRN. Client and server interaction is assumed to be modeled in the
Web Services domain with messages described via SOAP and services described via
WSDL. An RRN is responsible for maintaining a non-repudiation log for recording
requests and their associated responses. This log is persistent in nature and is held in a
MySQL database.

Our system may be structured as a single RRN or a network of RRNs. In the single
RRN approach all clients and servers are serviced by a centralized RRN that is re-
sponsible for handling all messages and associated non-repudiation logs. This ap-
proach is suited to systems that may exist within a single organizational domain
where administration of the RRN system is not shared. When message transmission
spans organizational boundaries an approach that uses a network of RRNs is advo-
cated (figure 1). In this approach an RRN may be placed within each organization
with inter-organizational communications mirrored by inter-RRN communications.
Additional security measures are taken to attempt to ensure messages are genuine and
may be trusted. Administration of RRNs is assumed to be shared amongst organiza-
tions (responsible for RRNs within their own domains).

 A MOM Solution Enabling Non-repudiation Evidence Generation 13

C3

SOAP messages

RRN (B)

S2

RRN (A)

C1

C2

S1

S2 JMS messages

Organisation A Organisation B

Fig. 1. Network of RRNs facilitating inter-organizational interaction

A non-repudiation log is amended whenever a message is received or sent by an
RRN. This log forms the non-repudiation evidence that may be used in inter-
organization disputes regarding requests and replies. The use of reliable persistent
messaging between organizations together with security measures provides the basis
for enabling our approach to non-repudiation. We now describe each component in
more detail. For ease of explanation, we shall only consider a single RRN approach in
our descriptions unless otherwise stated.

3.1 Providing System Transparency for Clients

The client handler is co-located with a client and intercepts client requests before they
reach the underlying transport. This requires no changes to the client implementation
and the interception of messages is transparent to client operations via the use of han-
dlers as defined in the Axis toolkit [3]. Therefore, we assume the use of the Axis
toolkit in client side application development and deployment.

The Axis toolkit eases the development of Web Service based applications by pro-
viding a framework for constructing distributed applications that use SOAP for their
message exchange (Axis toolkit is commonly described as a SOAP engine). The Axis
toolkit includes support for describing Web Services (Web Services Definition Lan-
guage (WSDL)) and allows a Web Service Deployment Descriptor (WSDD) to be
defined that describes the deployment scenario of one or more Web Services. For
example, a WSDD may describe the backend components that are used to implement
a Web Service. A WSDD may also describe a chain of handlers which SOAP mes-
sages pass through during run-time. The ability of a handler to alter messages is ex-
ploited by our system to provide RRN transparency to clients.

The client handler intercepts client requests and performs a series of alterations on
the message before allowing the message to continue in transit. A new SOAP entry
header is created that records the original target endpoint of the request (the Web
Service provided by a server). The original target endpoint of the request is replaced
by the endpoint that identifies an RRN. This substitution enables the redirection of the
request towards the RRN responsible for handling this client’s requests. The type of
response expected by a client is checked via the identification of return parameters in
a message. From such parameters it is possible to determine if a client knows in

14 S. Parkin, D. Ingham, and G. Morgan

advance the expected response. This information is inserted into a new header entry
and is later used to determine the appropriate tracking of the message.

3.2 Managing Requests and Replies

The routing provider (RProvider) is a Web Service that accepts the re-directed re-
quests issued by the client handler. Requests are formatted to an appropriate message
structure for handling by the JMS. Client requests are placed in the request queue
ready to be consumed and processed by the routing server (RServer). In addition to
accepting requests directly from the client handler the RProvider is responsible for
returning replies to clients. Replies are gained from the response queue (JMS). There-
fore, the routing listener (RListener) must derive the appropriately formatted SOAP
message from the messages consumed from the response queue before returning a
reply to a client. Figure 2 shows the flow of messages throughout the components of
an RRN.

RProvider RServer

Request Queue

Response Queue

JMS

Request

Reply

Request

Reply

RListener

RNN

Fig. 2. Components of an RRN

The RServer consumes messages from the request queue and examines the content
of each message to determine the appropriate handling of a message. There are two
possible actions the RServer may take based on message contents: (i) attempt to issue
request to Web Service endpoint as described in a header entry of the message or; (ii)
attempt to forward message to another request queue located in another RRN. In (i)
the appropriate SOAP message is created from the contents of the JMS message and
issued to a Web Service. Replies generated from a request are then formatted to an
appropriate message structure for handling by JMS and placed in the response queue.
In (ii) the target endpoint described in a message is looked up in a locally held routing
table that identifies the RRN the message should be forwarded to. The routing table is
XML based and is held locally on the same machine as an RRN. The successful iden-
tification of a target RRN results in the RServer (of the originating RRN) attempting
to place the message in the target RRN’s request queue. The originator node ID
(unique across RRNs) is attached to the JMS message as a message property to enable
the identification of the originator RRN by the target RRN (required to ensure a reply
may be returned to the originator RRN). Ensuring replies are returned to originating

 A MOM Solution Enabling Non-repudiation Evidence Generation 15

RRNs is the responsibility of the target RRN’s RListener. The RListener consumes
messages from the response queue that have originator node ID fields set and places
such messages on the appropriate originator RRN’s response queue (as dictated by the
node ID field of the message).

3.3 Undeliverable Messages

Messages that the RServer is unable to deliver to a Web Service (target endpoint) or
another RRN’s request queue are placed on a retry queue (JMS). In the case of an
RServer attempting to deliver a message to a Web Service endpoint, messages are
identified as undeliverable if exceptions are raised indicating the Web Service is un-
reachable (either network problems or unavailability of service) or the request timed
out. The aborting of the transaction (see 3.4 for more details) within which an
RServer was attempting to move a message between request queues indicates an un-
deliverable message. Periodically messages are moved from the retry queue to the
request queue to allow the RServer to attempt message delivery again. The number of
retries associated with messages and the frequency with which messages are trans-
ferred from the retry queue to the request queue may be set by an administrator of the
system. Messages are permanently moved to the failed message queue after the
RServer’s repeated attempts to deliver the message ended in failure (number of at-
tempts indicated by administrator). When messages are placed on the failed queue
information related to why the message failed is appended to the message (e.g., trans-
port exception). The use of retry queues and failed queues by the RServer is mirrored
by the response listener in the process of propagating replies back to an originating
RRN.

RServer

Request Queue

Response Queue

JMS

Request

Retry Queue

Failed Queue

Undeliverable
after retry limit
associated with
message reached.

Undeliverable
but delivery will
be attempted
again.

Fig. 3. Handling undeliverable messages

Clients may timeout a request and may not be prepared for a reply when one is
available. Furthermore, a client may reissue a request causing duplicate requests to be
present in the system. In an attempt to prevent such a scenario the local RRN associ-
ates a timeout for each request received. If this timeout expires before a reply is re-
ceived (consumed by RProvider from response queue) a reply is constructed that is in
the form of a custom SOAP fault that contains the unique identifier of the related

16 S. Parkin, D. Ingham, and G. Morgan

request. This reply is returned to the client. By using this unique identifier in subse-
quent retries of a request it is possible for clients to retrieve a reply from a request that
was previously timed out. This approach does not accommodate client timeouts that
expire before an RRN can raise a SOAP fault. However, with clients and an RRN
within the same organizational domains we assume it should be possible to tailor the
timeout in such a way that clients do not timeout their requests before a SOAP fault
may be raised.

3.4 Reliability and Security

Reliable messaging is possible as the JMS specification identifies the ability to ensure
guaranteed message delivery even if partial system failure occurs. As described in 3.2,
persistent store and delayed message forwarding allow the delivery of messages to
endpoints that may suffer transient unavailability (i.e., not able to consume messages
as and when messages become deliverable). Furthermore, the persistent nature of the
queues ensures that failure of the JMS messaging middleware itself will not lead to
the loss of messages (assuming persistent store remains correct and reachable). Our
implementation uses the Arjuna Message Service (ArjunaMS) [2], an implementation
of the JMS 1.1 specification [1].

Atomic transactions are used whenever message queues are accessed by an RRN.
This guarantees that messages are not lost due to RRN failure. If transactions are not
available, messages may be lost if an RRN fails after it has consumed a message from
one queue before it has placed the same message in another queue.

Client

RRNA RRNB

Request Queue

Response Queue

Request Queue

Response Queue

Response
listener

Response
listener

Target

T1 T2
T3

T4 T5

Fig. 4. Transactions satisfying client request

We use the diagram in figure 4 to describe the different transactions involved in
satisfying a client request. To improve the clarity of the diagram we have not shown
all the components of our system nor have we shown the queues associated with un-
deliverable messages. When the client issues a request the client handler forwards the
client request, say M1, to the local RRN (RRNA). RRNA starts a transaction T1 that is
successfully completed when M1 has been placed in the request queue by the
RProvider. The process of moving M1 to the initial target destination (RRNB) is
achieved by the RServer and is contained within T2. The RServer takes M1 from the
request queue of RRNB and issues a request to the target Web Service and waits for a
reply. Once a reply, say M2, is received it is placed in the response queue. However, if
M1 is undeliverable then M1 is placed in the retry queue. This process is performed
within T3. The response listener takes M2 from the response queue and places M2 in

 A MOM Solution Enabling Non-repudiation Evidence Generation 17

the response queue of RRNA within T4. The RListener starts T5 and takes M2 from
the response queue and returns the reply to the client.

In our system we assume that clients and Web Services are non-transactional ob-
jects. Therefore, we may assume that the failure of a client or Web Service may
result in system inconsistencies. For example, if during T3 a message is successfully
delivered to the target Web Service but timeout occurs before a reply is received then
M1 will be placed on the retry queue. However, the target Web Service may be proc-
essing M1 (as it was successfully delivered but the target Web Service was slow
returning a reply). RRNB may reissue M1 to the target Web Service resulting in an
undesirable repeated processing of M1. If the target Web Service participated as a
transactional object within T3 then a timeout (as described previously) may result in
an aborted transaction (T3) causing the rollback of the target Web Service state (re-
moving any state changes the delivery of M1 may have caused) allowing M1 to be
reissued later. This approach may be supported by implementations of WS-Atomic
Transaction [4] and WS-Coordination [5] specifications.

As communications may span organizational boundaries we provide security fea-
tures to ensure that messages sent between RRNs are genuine. A signed digest of the
message that is to be sent between RRNs is created and included in the message as a
JMS message property. The public key associated to the private key that is used to
sign the digest is distributed to all other RRNs. This enables an RRN to verify the
identity of the sender of a message: if signing a digest of the message contents with
the public key identifies the same set of keys as signing the message with the private
key, then the sender is genuine. This precaution provides security in the sense that the
identity of a message sender as that of a known RRN. There is a measure of non-
repudiation incorporated into such a communication as when an RRN signs a message
and it is verified, the administrator of the signing RRN cannot later deny having ever
sent the message.

4 Related Work

The work presented in this paper is an engineered solution to non-repudiation and
reliability that may be adapted to fit associated Web Service standards. In this section
we concentrate on how our system relates to such standards.

A specification exists that enables Web Services to participate in atomic transac-
tions (WS-Atomic Transaction) [4]. As previously mentioned in 3.4, employing
atomic transactions for client/server interactions with an RRN would make our system
more robust. Furthermore, it may be possible to enhance our system with WS-Atomic
Transactions to enable inter-RRN communications. However, allowing clients and
servers to interact directly using WS-Atomic Transactions would have the drawback
of presenting a tightly coupled environment where transient unavailability of transac-
tion participants would result in the aborting of transactions (a scenario our system
attempts to overcome). Furthermore, transactions are a heavyweight process (requir-
ing all participants to carry out two phase commit protocol) and it is unlikely that
every RPC would need to be carried out as an atomic transaction. The use of transac-
tions would also inhibit the ability of a client to be released from RPC interaction
to continue processing and return at a later time to receive a reply (see 3.3). To

18 S. Parkin, D. Ingham, and G. Morgan

implement such a scenario will require more long lived transactions that employ com-
pensation techniques [9], but this approach in itself does not satisfy non-repudiation
requirements.

The nature of the implementation of a WS-Transaction service has to be considered
in relation to our non-repudiation approach. The coordinator is responsible for deter-
mining the outcome of a transaction and is provided by the WS-Coordination service
[5]. This makes the coordinator role crucial to the outcome of transactions with the
need to ensure all transaction participants trust the coordinator. However, the coordi-
nator must take part in our message logging scheme for non-repudiation to provide
similar functionality to our system.

Confluent Software developed its own CORE Web Services Monitoring and
Management Platform [8] (which now forms part of Oracle's Identity and SOA Man-
agement solutions framework [18]). The purpose of the platform is to allow an or-
ganization to implement Service-Oriented Architectures while offering full control
over how a service is deployed and executed. Policies that govern how such a service
operates may also be described and include Quality of Service, security and message
logging. The focus of the CORE platform is on security and logging, although it does
provide support for RPC. Our approach is different as we apply a MOM oriented
solution.

Work carried out by Maheshwari et al [17] and Tai et al [16] specifically describes
a system which enhances Web Service reliability. These works are interesting as
MOM is highlighted as a suitable mechanism for implementing underlying reliability
for Web Services. Similar observations to our own are made in these papers: loosely
coupled MOM architecture is an ideal candidate for underlying messaging infrastruc-
ture implementation for Web Services. However, these works do not address the
non-repudiation element which we ourselves see as an integral part in any inter-
organizational function. However, the reliability element is extensively researched in
these papers, with QoS parameters described and testing provided.

5 Conclusions and Future Work

We have developed a system that provides reliable messaging across organizational
boundaries while implementing suitable mechanisms for non-repudiation for clients
and servers that use SOAP RPC to interact and WSDL to describe services. We have
tackled the problem by using a novel approach of employing MOM technologies to
achieve inter-organizational communications. By using MOM, the loosely coupled
association between sender and receiver has been exploited to prevent limited tran-
sient client/server unavailability from hindering successful completion of an RPC.
Furthermore, the persistent messaging and transactional services available to MOM
technologies ensure that partial failure of our system does not necessarily result in
loss of messages.

Our system is built in a modular fashion. We are in the process of tailoring our ser-
vices so that they adhere more closely to Web Service standards that dictate how non-
repudiation and reliability may be utilized.

 A MOM Solution Enabling Non-repudiation Evidence Generation 19

References

[1] Sun Microsystems, “Java Message Service. Version 1.1, April 12, 2002”,
 http://java.sun.com/products/jms/docs.html as viewed January 2004

[2] D. Ingham, Arjuna Technologies Limited, “ArjunaMS Documentation”,
 http://www.arjuna.com/products/arjunams/index.html as viewed January 2004

[3] Apache Web Services Project, “The Axis Toolkit, version 1.1”, http://ws.apache.org/axis/
as viewed January 2004

[4] Arjuna Technologies, Ltd., BEA Systems, Hitachi, Ltd., International Business Machines
Corporation, IONA Technologies, Microsoft Corporation, Inc., “Web Services Atomic
Transaction (WS-Atomic Transaction)”, http://www-128.ibm.com/developerworks/
library/specification/ws-tx/, as viewed December 2006

[5] Arjuna Technologies, Ltd., BEA Systems, Hitachi, Ltd., International Business Machines
Corporation, IONA Technologies, Microsoft Corporation, “Web Services Coordination
(WS-Coordination) Specification”, http://www-128.ibm.com/developerworks/library/
specification/ws-tx/, as viewed December 2006

[6] OMG, “Notification Service Specification”, OMG TC Document telecom/99/07/01,
2000.

[7] The World Wide Web Consortium (W3C), “Simple Object Access Protocol (SOAP)
(version 1.1)”, W3C Note 08, May 2000

[8] Confluent Software Inc., “Confluent Software Inc Solutions”,
 http://www.confluentsoftware.com/solutions, as viewed September 2003.

[9] K. Gottschalt et al., “Introduction to Web Services Architecture”, IBM Systems Journal,
Vol 42, No 2, 2002

[10] Object Management Group, “The Common Object Request Broker: Architecture and
Specification, 2.3 edition”, OMG Technical Committee Document formal/98-12-01, June
1999

[11] A. Gokhale et al., “Reinventing the Wheel? CORBA vs. Web Services”, WWW2002,
The Eleventh International World Wide Web Conference, Honolulu, Hawaii, USA,
7 – 11 May 2002

[12] The World Wide Web Consortium (W3C), “Web Services Description Language
(WSDL) (version 1.1)”, W3C Note 15, March 2001

[13] The World Wide Web Consortium (W3C), “Extensible Markup Language (XML) 1.0
(second edition), W3C Recommendation 6 October 2000

[14] Akamai Technologies, Computer Associates International, Inc., Fujitsu Limited, Hewlett-
Packard Development Company, International Business Machines Corporation, SAP AG,
Sonic Software Corporation, The University of Chicago and Tibco Software Inc., “Web Ser-
vice Notification (WS Notification) and associated specifications”, http://www-128.ibm.com/
developerworks/library/specification/ws-notification, as viewed December 2006.

[15] BEA Systems, IBM, Microsoft Corporation, Inc, and TIBCO Software Inc., “Web Ser-
vices Reliable Messaging Protocol (WS-ReliableMessaging)”, http://www-128.ibm.com/
developerworks/library/specification/ws-rm/, as viewed December 2006

[16] S. Tai, A. Mikalsen, I. Rouvellou, “Using Message Oriented Middleware for Repiable
Web Services”, Web Services, E-Business, and the Semantic Web, Springer Berlin /
Heidelberg LNCS, Volume 3095/2004, pp 89-104, July 2004

[17] P. Maheshwari, H. Tang, R. Liang, “Enhancing Web Services with Message-Oriented
Middleware”, Proc. IEEE International Conference on Web Services (ICWS’04), 2004

[18] Oracle Corporation, “Oracle Fusion Middleware”, http://www.oracle.com/products/
middleware/index.html, as viewed December 2006

M. Malek et al.(Eds.): ISAS 2007, LNCS 4526, pp. 20 – 30, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Comparing Robustness of AIS-Based Middleware
Implementations∗

Zoltán Micskei1, István Majzik1, and Francis Tam2

1 Dept. of Measurement and Information Systems,
Budapest University of Technology and Economics, Budapest, Hungary

{micskeiz,majzik}@mit.bme.hu
2 Nokia Research Center, Nokia Corporation, Finlan

francis.tam@nokia.com

Abstract. To enable the interoperability of high availability (HA) middleware
systems the Service Availability Forum has released a set of open specifica-
tions. The benefit of having open specifications is the choice of implementa-
tions available from different vendors. When one chooses a product, one of the
selection criteria (besides performance) is the robustness of the implementation,
as the crashing or hanging of such a HA middleware causes the failure of the
whole system. The challenge is to develop the appropriate technology for mea-
suring and comparing robustness of HA middleware implementations. Based on
our earlier results, we present a set of automatic testing tools and a benchmark
suite constructed using these tools. We demonstrate the robustness testing ap-
proach by comparing the results of benchmarking carried out on three HA mid-
dleware implementations.

Keywords: dependability, robustness testing, HA middleware.

1 Introduction

Recently availability became a key factor even in common off-the shelf computing
platforms. High availability (HA) can be achieved by introducing manageable redun-
dancy in the system. The common techniques to manage redundancy and achieve
minimal system outage can be implemented independently from the application, and
can be put on the market as a HA middleware. The standardization of the functional-
ity of such middleware systems has begun as the leading IT companies joined the
Service Availability Forum (SA Forum) to elaborate the Application Interface Speci-
fication (AIS) [1]. One of the benefits of an open specification is that it enables a
company to choose from different vendors, thus reducing the technology risks.

With multiple middleware products developed from the same specification the de-
mand to compare the various implementations naturally arises. The most frequently
examined properties are performance and functionality, but especially in case of HA

∗ The funding of this work by Strategy and Technology, Nokia Networks under the project

HASEK in 2006 is acknowledged.

 Comparing Robustness of AIS-Based Middleware Implementations 21

products the dependability is also an important property to be considered. This paper
outlines an approach to compare robustness, one of the attributes of dependability of
HA middleware systems.

2 Robustness Testing Approach

Robustness is defined as the degree to which a system operates correctly in the pres-
ence of exceptional inputs or stressful environmental conditions. Related work in-
cludes API robustness testing and dependability benchmarks. In the Ballista project
[2] the robustness of several POSIX implementations were compared using type-
specific testing, and several failures were found even in well-known commercial
operating systems. Dependability benchmarks aim for a slightly broader goal, to as-
sess the dependability of the complete system. In DBench [3] a conceptual framework
was designed and several case studies (e.g. for OS and OLTP systems) were carried
out. Based on the above results we elaborated an approach for robustness testing of
high availability middleware systems [4]. Because of the complex state-based nature
of HA middleware, the previous methods had to be extended.

The first step of developing the test strategy was the identification of the potential
sources for activating robustness faults in the HA middleware. Figure 1 illustrates
these sources, considering a typical computing node of a HA distributed system, as
follows:

1. External errors: They affect the operation of the application, thus their effects reach
the HA middleware only indirectly (through normal, erroneous or missing API
calls).

2. Operator errors: In general, operator errors appear as erroneous configuration of
the middleware and erroneous calls using the specific management interface.

3. API calls: The calls of the application components using the public interfaces of
the HA middleware can lead to failures if they use exceptional values, e.g. NULL
pointer or improperly initialized structures.

4. OS calls: The robustness of a system is also characterized by its ability to handle
the exceptions or error codes returned by the OS services it uses.

5. Hardware failures: The most significant HW failures in a HA system are host and
communication failures (that has to be tolerated in the normal operating mode of
the HA middleware) and lack of system resources.

From the above sources the following ones were selected to be included in the first
version of the dependability benchmark suite:

• The standardized middleware API calls are considered as a potential source of
activating robustness faults. Because of the high number of possible exceptional
value combinations and scenarios, the elements of the robustness tests suite were
automatically generated by tools. The challenge in testing the API calls was that
most of the AIS interface functions are state-based, i.e. a proper initialization call
sequence, middleware configuration and test arrangement is required, otherwise a
trivial error code is returned.

22 Z. Micskei, I. Majzik, and F. Tam

Fig. 1. HA middleware fault model Fig. 2. Testbed tools

• The failures of the OS system calls were included for the following reason. They
do not only represent the faults of the OS itself (which has lower probability for
mature operating systems), but failures in other software components, in the under-
lying hardware and in the environment also could manifest in an error code re-
turned by a system call. Possible examples of such conditions are writing data to a
full disk, communication errors when sending a message, etc.

• Studies show that operator errors cause also a significant part of service unavail-
ability, however, the configuration of the HA middleware and the system manage-
ment interface are still under standardization by the SA Forum, thus they were not
included in the current version of the benchmark suite.

3 Testbed Tools and Benchmark Suite

Taking into consideration the potential sources of activating robustness faults, a set of
tools was developed to assist the activation of these faults by generating proper test
values and performing the test calls. This dependability benchmark testbed is depicted
in Figure 2. In the following, we describe these tools and the benchmark suite devel-
oped for testing version B.02.01 of the AIS Availability Management Framework
(AMF). Although the API of the AMF is standardized, the implementations selected
for testing (two versions of openais [5] and one version of SAFE4TRY [6], see
Section 4) influenced the realization of the test execution environment.

3.1 Template-Based Type-Specific Test Generator

The template-based type-specific test generator (TBTS-TG) uses the following ap-
proach to generate robustness test cases that realize calls to the HA middleware API
with exceptional values. Instead of defining the exceptional cases one by one for each
API function, the exceptional values are defined with regard to the parameter types

 Comparing Robustness of AIS-Based Middleware Implementations 23

that are used in the functions. From the description of these types, the tool generates a
test program for each API function, and this test program calls the given function
with all combinations of the specified values. Each combination is executed in a new
process to separate the test cases from each other, and the result code of the call is
logged after completion. The test case is considered to detect a robustness failure if
the test program or the middleware implementation crashes or hangs (e.g. due to a
segmentation fault or a timeout). To help diagnosing the robustness faults, the first
calls contain only a single exceptional value (using valid values in the case of the
remaining parameters).

The inputs and outputs of the tool are presented in Figure 3. The skeleton of the
test program is prepared manually as an XSL template. The metadata of the functions
and types to test are specified in XML files. The exceptional and valid values are
defined as C code snippets. For simple types, e.g. numbers and enumerations, values
recommended by traditional testing techniques were selected, like valid values, boun-
dary values and values outside the domain of the given type. In the case of complex
structures the following systematic method was used: for each member there are test
cases that assign invalid values to the given member while the other members remain
valid.

Fig. 3. Architecture of TBTS-TG tool

The first version of the benchmark suite consisted of standalone C programs that
called the AIS API functions directly (outside of the AMF). In the current version the
AMF service of the middleware starts the test programs configured as SA-aware
components. To support the automatic execution of the benchmark suite a test execu-
tion engine was prepared. This engine runs the same test programs on each HA mid-
dleware, only the following tasks are implementation-dependent (as these are not
standardized by the SA Forum): (i) construction of an implementation-specific con-
figuration file on the basis of a common abstract configuration (which consists of one
service group and one service unit containing the actual test case as a single
component), and (ii) restarting the middleware between the runs of the test cases.

24 Z. Micskei, I. Majzik, and F. Tam

3.2 Mutation-Based Sequential Test Generator

While the TBTS-TG tool tests mostly individual functions, the mutation-based se-
quential test generator (MBST-TG) could be used to generate complex call sequences.
The basic idea of the tool is that mutation operators representing typical robustness
faults, like omitting a call or changing the specified order of calls, are applied to valid
functional test programs that use the HA middleware. In this way a large number of
complex robustness test cases can be obtained automatically.

The challenge of implementing the MBST-TG tool was the parsing and modifica-
tion of the test programs’ C source files. As the available free parsers encountered
various problems when system header files were included in the input files, we fol-
lowed a light-weight approach instead of obtaining the full parse tree (that is required
for compilation). The srcML tool [7] was used to build an XML file representing only
the syntactic structure of the input source files. This syntactic structure is enough to
implement the common mutation operators.

Currently five mutation operators are implemented: omission, relocation and
swapping of calls, modifying conditions, replacing parameters. The inputs of the
MBST-TG (Figure 4) are the source files to be mutated and a configuration file that
describes the parameterization of the mutation operator, e.g. the filters to be used
when searching for a call to apply the mutation. Note that occasionally the mutation
may result in such source code that cannot be compiled (data flow analysis is not
performed, this way, for example, changing of function calls may result in using vari-
ables that were not assigned a value before).

Fig. 4. Architecture of the MBST-TG tool

The mutant candidates came from two sources. The first one was the SAF Test [8]
project, which is an open-source conformance test suite for SA Forum specifications.
Because the test cases in SAF Test are redundant, 10 source files could be selected
that cover the functionality of the others as well. The source files had to be slightly
modified, because the current SAF Test does not use the required LDAP Distin-
guished Name (DN) format for component names. The second source was the func-
tional test suite provided in openais, from which the testamf test file was used for
mutation. The MBST-TG tool was configured to generate (i) two mutants using each
operator in the case of each input file (using one operator each time) and (ii) ten mu-
tants in case of each input file using two random operators each time. Altogether from
these mutants 92 valid mutants were included in the test suite.

 Comparing Robustness of AIS-Based Middleware Implementations 25

3.3 OS Call Wrapper Tool

The OS call wrapper intercepts system calls executed by the HA middleware and
injects exceptional values into their return values (Figure 5). Since the middleware is
tested here as a black box, the system calls can be triggered only indirectly, by start-
ing a workload application.

The OS call wrapper can be configured to intercept or delay selected system calls.
The return value of an intercepted call could be (i) the actual value returned by the
original system call, if the call was also forwarded to the OS, (ii) a predefined valid or
exceptional value or (iii) a randomly selected value from the possible error codes of
the function. The wrapper is implemented using the Unix LD_PRELOAD variable,
which can be used to load predefined libraries instead of system libraries.

Fig. 5. Architecture of the OS call wrapper based testing

As a workload to trigger OS calls from the middleware, a synthetic HA application
was prepared that resembles a search and index engine. The application utilizes the
AMF and checkpoint service of the middleware. Using the strace utility all system
calls of the middleware were logged during the execution of the workload application
on both openais and SAFE4TRY, and the intersection of the two sets of OS calls was
included in the benchmark suite, namely the functions accept, bind, close, gettimeof-
day, munmap, poll, sendmsg, setsockopt and socket.

4 Robustness Testing Results

The benchmark suite created by the above tools was used to test the robustness of the
following implementations: (1) the SAFE4TRY evaluation package from Fujitsu Sie-
mens Computers, which consists of the SAF AIS implementation RTP-SAF-L V2.1A
and the PRIMECLUSTER cluster foundation, and (2) openais, an open source im-
plementation of the AIS specification, including its version 0.80.1 (the latest stable
release) and the trunk (the latest development version directly from the source control
system of the project).

26 Z. Micskei, I. Majzik, and F. Tam

4.1 Results from the Type-Specific Tests

Just by trying to compile the test suite on the system under test, several discrepancies
were found: The header files used in openais differ in eight places from the official
header files of the AIS specification, and thus from the header files used by the test
suite. There is also one misspelling in SAFE4TRY’s header files. Moreover, there are
several types in the specification that are mapped to different types in the implementa-
tions, e.g. SaInt32T is mapped to long in SAFE4TRY and to int in openais.

Table 1 summarizes the exit codes of the test cases that were logged when execut-
ing the benchmark suite. Segmentation faults definitely indicate robustness failures,
since in a HA middleware even invalid inputs should be handled correctly. Timeouts
could indicate normal behavior, because some of the API functions could be param-
eterized to wait for an event to dispatch. However, while examining the concrete
values used in the benchmark it turned out that the large number of timeouts in open-
ais-trunk and openais-0.80.1 is not reasonable. Note for openais-0.80.1 there are less
calls listed in the table because in case of saAmfProtectionGroupTrack the test pro-
gram and the middleware crashed at the beginning of the test and no calls were exe-
cuted for that functions.

Table 1. The number of test cases that exited with the given status code in case of type-specific
testing of the different platforms

Status code openais-0.80.1 openais-trunk SAFE4TRY

 0 (success) 24568 26019 29663

11 (seg. fault) 1110 1468 0

14 (timeout) 467 2178 2

Segmentation faults occurred in 13 functions of openais-trunk and in 12 functions
of openais-0.80.1. Timeouts were observed in 7 functions of openais-trunk, in 7 dif-
ferent functions of openais-0.80.1, and in one function of SAFE4TRY (namely, in
saAmfDispatch when specifying a flag representing blocking; here timeout is the
correct behavior). For the details, see Table 2.

Some of the test cases caused fatal error in the middleware. The tests for 14 func-
tions in openais-0.80.1 and for 6 functions in openais-trunk produced an internal as-
sertion violation and the middleware exited. The following two assertion violations
were observed:

aisexec: amf_lib_exit_fn: Assertion `comp != ((void *)0)' failed.

aisexec: amfcomp.c:1142: amf_comp_register: Assertion `0' failed.

In the case of SAFE4TRY, after executing the test program for saAmfProtection-
GroupTrackStop() the stopping of the middleware was not successful.

Table 3 details the different error codes for the successful calls. Every AMF call
has a handle parameter, which is checked first before any operation. All tested AIS
implementations could process the incorrectly initialized handles well, as it can be
seen from the high number of SA_AIS_ERR_BAD_HANDLE codes. The number of
SA_AIS_ERR_INVALID_PARAM codes show that SAFE4TRY detects much more
invalid parameter combinations. When an assertion was violated in openais, all the

 Comparing Robustness of AIS-Based Middleware Implementations 27

remaining calls for the given test program resulted in library error, that is the reason
of the high number of SA_AIS_ERR_LIBRARY codes. In the case of SAFE4TRY,
library errors were observed for the saAmfHealthcheckConfirm and saAmfHealth-
checkStop functions. In both versions of openais a significant number of test cases
returned invalid error codes, which cannot be considered as a robust behavior.

Table 2. Functions that produced robustness failures in case of type-specific testing

Failure openais-0.80.1 openais-trunk

seg. fault

saAmfComponentErrorClear,
saAmfComponentErrorReport

saAmfComponentNameGet, saAmf-
ComponentRegister, saAmfCompo-
nentUnregister, saAmfHAStateGet,
saAmfHealthcheckConfirm, saAmf-

HealthcheckStart, saAmfHealth-
checkStop, saAmfInitialize,

saAmfProtectionGroupTrackStop,
saAmfSelectionObjectGet

saAmfComponentErrorClear,
saAmfComponentErrorReport
saAmfComponentNameGet,
saAmfComponentRegister,

saAmfComponentUnregister,
saAmfHAStateGet, saAmfHealth-

checkConfirm, saAmfHealth-
checkStart, saAmfHealthcheck-

Stop, saAmfInitialize,
saAmfProtectionGroupTrack,

saAmfProtectionGroupTrackStop,
saAmfSelectionObjectGet

timeout

saAmfComponentErrorClear,
saAmfComponentNameGet,

saAmfCSIQuiescingComplete,
saAmfDispatch, saAmfInitialize,

saAmfHealthcheckConfirm,
saAmfProtectionGroupTrackStop

saAmfComponentErrorClear,
saAmfComponentNameGet,
saAmfComponentUnregister,

saAmfCSIQuiescingComplete,
saAmfDispatch,

saAmfProtectionGroupTrack,
saAmfProtectionGroupTrackStop

Table 3. The number of test cases that finished and returned the given SaAisErrorT error code
in case of type-specific testing of the different platforms

Error code openais-0.80.1 openais-trunk SAFE4TRY

SA_AIS_ERR_BAD_FLAGS 0 0 384

SA_AIS_ERR_BAD_HANDLE 18828 20408 20708

SA_AIS_ERR_EXIST 0 0 1

SA_AIS_ERR_INIT 0 0 6

SA_AIS_ERR_INVALID_PARAM 56 226 6073

SA_AIS_ERR_LIBRARY 3953 2316 52

SA_AIS_ERR_NOT_EXIST 0 1296 1786

SA_AIS_ERR_NOT_SUPPORTED 0 0 144

SA_AIS_ERR_TRY_AGAIN 30 30 0

SA_AIS_ERR_VERSION 336 336 294

SA_AIS_OK 86 128 215

invalid error code 1279 1279 0

28 Z. Micskei, I. Majzik, and F. Tam

In our previous work [4] version 0.69 of openais (based on version A.01.01 of the
AMF specification) was used for benchmarking. In comparison with these previous
experiments, the following could be observed: the simple method of using only inva-
lid pointers and integer values as exceptional parameters did not activate so many
robustness failures in the current versions of openais. One of the reasons for this is
that moving to version B.01.01 of AMF the number of pointer parameters decreased
significantly. 58.6% of the tests in the type-specific robustness test suite resulted in
segmentation fault for version 0.69, while this number was only 4.2% and 4.9% for
the 0.80.1 and trunk versions, respectively. Thus, the robustness of openais was defi-
nitely improved, although it still lags behind the robustness of SAFE4TRY, where the
only robustness problem discovered by the benchmark suite was the error code
SA_AIS_ERR_LIBRARY for two functions.

4.2 Results from the Mutation-Based Testing

The mutant test sequences obtained from SAF Test and testamf were executed on the
three implementations. The number of observed robustness failures is summarized in
Table 4.

Table 4. The number of observed robustness failures / the total number of executed test cases
in case of mutation-based testing of the different platforms

Input openais-0.80.1 openais-trunk SAFE4TRY

SAF Test 8 / 63 0 / 63 1 / 63

testamf 22 / 29 28 / 29 0 / 29

The robustness failures discovered by the SAF Test mutants were the following. In
case of eight mutants, openais-0.80.1 exited with one of the previous or with the fol-
lowing assertion:

./aisexec: symbol lookup error: /opt/openais-
0.80.1/exec//service_amf.lcrso: undefined symbol: assert

In SAFE4TRY, when stopping the middleware after one of tests the following error
occurred:

Error in communication! ERROR: Stopping AMF subsystem was not
successful

Note that the SAF Test programs are constructed in such a way that the return value is
checked after each function call, and if it does not match the predefined value then the
program is aborted with an error message. This feature of the SAF Test programs
makes them difficult to be used in robustness tests, because the subsequent calls are
not executed if a wrong return value is detected.

When the testamf mutants were executed as AMF components in openais-trunk
and openais-0.80.1 the CPU utilization increased to 100% and a hard reset had to be
performed. Thus, Table 4 contains the results from running the testamf mutants as
standalone programs. During the experiments with the mutants the above detailed
assertions were also observed.

 Comparing Robustness of AIS-Based Middleware Implementations 29

It could be observed that mutation based robustness testing highlighted additional
robustness failures that were not detected by the type-specific tests. It gives reasons
for applying such complex test sequences.

4.3 Results from the OS Wrapper

For each of the 9 system calls (see Section 3.3) a separate test case was executed by
starting the workload application and after a while forcing a failover. During the exe-
cution the system calls were forwarded to the OS, and with a predefined probability a
random error code was returned (the probability depended on the frequency of the
call, which was determined in probe runs).

Table 5. The system calls that provided the given outcome using the OS call wrapper

Outcome openais-0.80.1 openais-trunk SAFE4TRY

No failure
observed

accept, close, gettimeofday,
munmap, sendmsg,

setsockopt

accept, bind, close,
gettimeofday,

sendmsg

accept, close,
gettimeofday,

sendmsg, setsockopt

Application
failed

-
munmap,
setsockopt

poll

Middleware
failed

bind, poll, socket poll, socket
bind, munmap,

socket

The first row of Table 5 lists the system calls in which case the workload applica-
tion was executed successfully in spite of the injected fault. The second row shows
such cases when the application exited but the middleware did not fail. The last row
indicates the test cases when also the middleware exited (typically silently, without
error messages). Note that due to the random injection of error codes, these latter
cases just indicate potential robustness faults without objectively comparing the
implementations.

5 Conclusion

In this paper a robustness testing approach for HA middleware systems was pre-
sented. The novelty of the approach is the application of automatic tools that con-
struct the test cases systematically on the basis of the standard interface specification
(API functions) and existing functional test suites. The robustness testing of the HA
middleware implementations demonstrated that these tools can be used efficiently and
their test results are complementary as they detect distinct failure types. It turned out
that there are still several robustness problems both in version 0.80.1 and in the trunk
version of the openais implementation. SAFE4TRY turned out to be much more ro-
bust with regard to the exceptional inputs generated by the benchmark suite. It is
important to emphasize, however, that robustness testing was used only to observe
these problems, and further work is needed to find the causes and to turn the observa-
tions into dependability benefits, e.g. by identifying the wrong implementation
approaches or coding errors that shall be corrected. The work with AIS-based

30 Z. Micskei, I. Majzik, and F. Tam

implementations will be continued in the HIDENETS project (IST 26979) which
develops resilience solutions for distributed applications.

References

1. Service Availability Forum, Application Interface Specification, February 2006.,
URL: http://www.saforum.org/

2. P. Koopman et al., “Automated Robustness Testing of Off-the-Shelf Software Compo-
nents,” in Proceedings of Fault Tolerant Computing Symposium, pp. 230-239, Munich,
Germany, June 23-25, 1998.

3. K. Kanoun et al., “Benchmarking Operating System Dependability: Windows 2000 as a
Case Study,” in Proceedings of 10th Pacific Rim International Symposium on Dependable
Computing, Papeete, French Polynesia, 2004.

4. Z. Micskei, I. Majzik and F. Tam, “Robustness Testing Techniques For High Availability
Middleware Solutions,” in Proc. of Int. Workshop on Engineering of Fault Tolerant Sys-
tems (EFTS 2006), Luxembourg, Luxembourg, 2006.

5. OpenAIS, AIS implementation, URL: http://developer.osdl.org/dev/openais/
6. Fujitsu Siemens Computers, SAFE4 Continuous Services, SAFE4TRY version, URL:

http://www.safe4cs.com
7. Software Development Laboratory, srcML, URL: http://www.sdml.info/projects/srcml/
8. SAF Test, SAF-conformance test suite, URL: http://saftest.sourceforge.net/

M. Malek et al.(Eds.): ISAS 2007, LNCS 4526, pp. 31 – 42, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Service-Oriented Operating System: A Key Element
in Improving Service Availability

Nikola Milanovic1 and Miroslaw Malek2

1 Berlin University of Technology
nmilanov@cs.tu-berlin.de

2 Humboldt University Berlin
malek@informatik.hu-berlin.de

Abstract. The operating system’s role is often neglected in the availability
analysis of modern, service-oriented applications. The usual argumentation is
that the underlying OS seems to be irrelevant in the world of today’s web-
centric applications. We propose a framework for construction of “service-
oriented operating system” and examine the role it plays in physical and
user-perceived service availability by investigating potential abstractions and
integration points between service-oriented applications and OS architecture,
such as treating OS as a set of collaborating services, introducing standard
middleware services as parts of an OS and including support for server consoli-
dation through virtualization. We demonstrate how to address the following de-
pendability attributes at the OS level: service availability (readiness for correct
service), service reliability (continuity of correct service), integrity (absence of
improper system alterations) and maintainability (ability to undergo modifica-
tions and repair). We further argue that availability at the OS level plays the key
role in the availability of service-oriented applications and propose an orthogonal
OS design methodology suited for that purpose.

1 Introduction

The term service-oriented architecture (SOA) emerged in [1] to describe the approach
of building loosely coupled distributed systems with minimal shared understanding
among system components. Sometimes the term service-oriented computing (SOC) is
used instead to describe the computing paradigm that uses SOA. The main building
blocks in SOA are services. Services are self-describing, open components that sup-
port rapid, low-cost development and deployment of distributed applications. The
main goal of SOA is transparent, flexible and dynamic interaction of services and
their clients over multiple interconnected domains. The benefits of SOA include in-
creased efficiency through task outsourcing and component reuse, easier integration,
increased flexibility and agility at business and IT level, development of composite
applications, enabling of multi-vendor application sourcing, and on-demand intercon-
nection with business partners. SOA can be deployed at different levels of granularity:
from exposing fine-grained technical functions to coarse-grained business or scientific
operations and processes. SOA is based on the model of roles: service providers publish

32 N. Milanovic and M. Malek

Fig. 1. Roles and interactions in SOA

machine-readable description of their capabilities to directories, and clients browse
directories to find adequate operations. This model is sometimes called publish-find-
interact (Figure 1).

The de-facto standard for SOA implementation today is the Web Service Architec-
ture (WSA). It defines SOA as a distributed system in which agents, also known as
services, coordinate by message passing [7]. SOA is characterized by the following
properties: logical view of the system, message orientation, description orientation,
fine granularity, and platform neutrality. Web services are, however, not the only way
to realize an SOA.

From the development perspective, SOA is not a revolution but rather, from a histori-
cal viewpoint, an evolution. It is traditionally claimed that SOA has its roots in the fields
of programming languages, distributed systems and business computing (Figure 2) [8].
Conspicuously absent from this figure are operating systems. Modern operating systems
are general purpose systems, although some server operating systems introduce slight
optimizations towards server applications (e.g., modified scheduling quantum or implicit
multiprocessor support). The role of a general purpose OS is to control resources and
provide a base API for the application programs to be written [13]. Therefore, the role is
twofold: providing extended (virtual) machine and resource management (time- and
space-multiplexing). Most operating systems abstractions (e.g., threads of virtual
memory) were not designed explicitly for server or dynamic service-based environ-
ments. The modern application landscape has evolved into a heterogeneous, distrib-
uted and dynamic processes model, where actors are separated by technological,
business and legal barriers. The explosive growth in the development of middleware
technologies aiming to support and connect different aspects of the new process
model emphasises the operating system inadequacy further. In this paper, it is argued
that extension of basic OS concepts to suit the special properties of service-oriented
systems such as dependability can be essential to increase service availability.

The remainder of the paper is structured as follows: we first investigate general
properties of service-oriented systems (Section 2.1) and try to establish possible levels
of abstraction and integration between SOC and OS concepts (Section 2.2). In Section
2.3 we describe properties, such as support for client-server interaction, dependability,

Service-Oriented Operating System: A Key Element in Improving Service Availability 33

prediction, and evolution that can be achieved by structuring an OS according to SOC
principles. Finally, Section 2.4 examines available OS architectures and proposes a
novel orthogonal design methodology. Section 3 concludes with a discussion on
availability enhancements that new OS-level abstractions introduce.

Fig. 2. SOC history

2 Goals

Due to heterogeneous and distributed nature of SOC applications, it is very difficult to
apply classical dependability and availability methodologies to achieve and improve
availability of already deployed SOC applications. The reasons are different applica-
tion containers, legal issues, barriers, access rights, and technologies used in the inte-
gration of component based applications into services. For example, checkpointing or
parsing log files are not trivial operations in complex applications spanning multiple
domains administered by different authorities. Therefore, addressing availability at
the OS level seems to be a reasonable approach to conquer complexity of the SOC
landscape. Having dependability primitives and principles addressed at the OS level
enables unification of dependability properties at the application level. Up to date,
surprisingly little attention has been paid to supporting principles of SOC (and espe-
cially availability) at the OS layer. Some notable exceptions like [15] do not represent
common or systematic trend.

What is a service-oriented operating system? Is it an operating system structured
and built on the principles of service-oriented computing? Or is it an operating system
that is tailored to suit special properties of service-oriented systems? Is it a single-
processor, multi-processor, network or distributed OS? Is it all of the above, or none
of the above? Is there a need for service-oriented operating system? What is wrong
with the existing OS designs and implementations? Do we need a fundamentally
different role(s) apart from memory/process and file management? Should we clearly
address dependability at this level? We will start answering these questions by

34 N. Milanovic and M. Malek

investigating distinguishing properties of service-oriented systems and examining the
possible levels of abstraction and integration between the SOC, OS concepts and
dependability.

We focus on the following dependability attributes, as defined in [16]: service
availability (readiness for correct service), service reliability (continuity of correct
service), integrity (absence of improper system alterations) and maintainability
(ability to undergo modifications and repair).

2.1 Properties of Service-Oriented Systems

The main difference between traditional client-server applications and service-
oriented applications is that instead of monolithic server application and fat client,
thin clients are communicating with relatively coarse-grained server applications built
dynamically out of fine-grained services, possibly hosted by different providers
and/or organizations. Furthermore, the entire application landscape is changed and
enriched: there are multiple application servers containing distributed application
business logic and service implementations, (distributed) databases containing appli-
cation data and multiple clients executing compositions of services that were not
predicted and predefined at deployment time. Services also offer machine readable
description (metadata) and can be ideally selected at runtime. Let us try to summarize
distinctive characteristics of a service-oriented system:

• application components (services) offer metadata of various expressiveness (func-
tional and non-functional properties)

• applications are constructed by service (component) composition using variety of
methods and tools

• efficient service discovery procedure is the key to locating adequate composition
partners

• service level agreements (SLA) or contracts are used to describe conditions be-
tween service consumer (client) and service provider

• applications are inherently distributed and loosely coupled: application dependabil-
ity and security are complex functions of availability/security of remote services,
their application containers and the network

• since services are provided within separate technological, business and legal do-
mains, trust is essential

• due to distributed and loosely-coupled nature of applications, mechanisms for
reliable messaging and consensus (transactions) are required

The fact is that the properties listed here concerning the structure, design, imple-
mentation and runtime of service-based systems are most of the time ignored at the
OS level.

2.2 Possible Levels of Abstraction and Integration

It is possible to identify several levels at which OS and SOC can be abstracted and
integrated:

• OS as a set of collaborating services
• Middleware services as OS services

Service-Oriented Operating System: A Key Element in Improving Service Availability 35

• Server consolidation through virtualization
• Application container services

In the remainder of this section, each level will be investigated in turn.

OS as a set of collaborating services. This is the way to create an OS based on ser-
vice-oriented principles. All OS kernel calls are exposed as services offering machine
readable description in terms of properties such as time, resource usage, security or
dependability. Such OS has a layered structure shown in Figure 3. At the bottom layer
basic kernel services are constructed, described and published. At the composition
layer, kernel services interact (are composed) and the correctness of the composition
is optionally proved. Finally, at the top layer services are managed in terms of trust,
certification, liability or dependability. What is the advantage of architecting such an
OS? Besides natural mapping from the application layer to the OS layer, the possibil-
ity of creating "safe" OS through verification and "reliable" OS through automatic
failover are some exciting possibilities. In essence, OS calls are dynamically constructed
out of available kernel services which communicate using interprocess communication
(IPC) mechanism. Adding contracts to kernel services enables formal and run-time
verification. When some of them are unavailable, automatic failover/substitution can be
performed transparently thus increasing OS robustness.

Fig. 3. Layered view of OS services

Middleware services as OS services. Current service-oriented applications are enabled
with middleware technologies such as message oriented middleware (MOM) [9] or
enterprise service bus (ESB) [2]. The main role of the middleware is to support spe-
cific properties of SOA applications, such as discovery, message routing or security.
Typical ESB architecture is shown in Figure 4.

36 N. Milanovic and M. Malek

Fig. 4. Enterprise service bus

ESB constructs SOA by integrating "accidental architectures" into a decentralized
infrastructure called service bus, which is inherently message-based, asynchronous
and loosely coupled. In ESB all applications are provided as (business) services and
connected via reliable, secure and managed virtual channels. The main consequence is
that orchestration, transformation and maintenance can be moved to the bus and proc-
essed in a controlled manner. The main elements of ESB are: message oriented
middleware (MOM), service containers, management facility, routing and XML-
processing. Arguably, the most important element is MOM. The task of MOM is to
support reliable and asynchronous message exchange. In ESB architecture, all direct
(or legacy) communication channels are replaced by virtual channels, managed by
MOM. That way, strongly coupled, synchronous, point-to-point interactions (method
invocations) are replaced by loosely coupled indirect interaction implemented using
message passing.

ESB can be understood as an application container for service-based applications.
When considering service oriented OS, it would seem natural to move some elements
of the middleware to the OS level. Hence, methods for message passing between
services could be integrated into IPC mechanism, and support for routing (itinerary
based, orchestration and content based) and XML processing (discovery and commu-
nication) could be added to the kernel of the potential OS that should support ESB on
top of it. Parallels between reliability at the kernel level and service (application) level
should be established (e.g., making support for WS-Policy at the application level
easier by facilitating it with adequate primitives in the kernel IPC mechanism).

Server consolidation through virtualization. Another aspect of service-oriented appli-
cations is the trend of server consolidation. With the cost of space, electricity and
maintenance being prevalent compared to the hardware cost, more and more compa-
nies are trying to reduce the costs by migrating multiple applications (with all accom-
panying infrastructure) to single servers by the means of virtualization. Different
kinds of virtualization will be detailed in the Section 2.4, but the basic idea is to pro-
vide OS virtualization support, as well as to investigate the overall usefulness of

Service-Oriented Operating System: A Key Element in Improving Service Availability 37

virtualization in the given context. It has already been argued that virtualization is not
suited for (internet) server systems [14]. The argument is that OS should eliminate the
abstraction of resource virtualization with the ultimate goal of enabling fine-grained
resource control.

Application container services. The majority of modern SOA applications are devel-
oped by integrating existing applications realized using component-based technolo-
gies (e.g., J2EE or .NET). The essential elements of such applications are application
servers (containers). In the context of SOC, application servers are entities that host
remote services. Application servers provide services with infrastructural capabilities
such as transaction processing, logging and security. One of the major problems of
SOC is the need to integrate divergent and incompatible application server support
mechanisms. For example, if two components exposed as services should cooperate in
solving a complex task, it may be necessary to execute the composition within a sin-
gle transaction, which may require integration of different transaction management
mechanisms. This is neither trivial nor always possible. Therefore, additional support
at the OS level can be introduced that will facilitate application server services' inter-
action, simulation and cooperation.

2.3 Properties Achieved with Service-Oriented OS

Assuming that one (or more) level from the previous section is selected as feasible, let
us examine with which properties and through what means a "dependable service-
oriented aware OS" can be developed.

Support for client-service interaction. An SOA system can be represented at the OS
level as a set of processes with assigned resource constraints, such as memory capac-
ity or processor time. Process may or may not correspond one-to-one to external or
internal (kernel) services. Because meta-information (service description) is available,
OS design can be optimized. Service or process composition can be constructed as
graphs that can be mapped into OS concepts such as process groups, jobs or task sets.
Considering service contracts (service level agreements), scheduling can be optimized
such that contracts are adequately fulfilled. Modern server running any available OS
can be seen as a stream processor. Two basic strategies for request processing are
distinguished: threaded and event-driven processing. They, however, do not take into
account the complex distributed and threaded structure of SOA applications where
multiple threads (usually distributed across server boundaries) represent actors such
as application server(s), service implementations, databases, etc. The issue with
threaded scheduling is that only coarse-grained resource control is possible. Further-
more, blocking I/O limits concurrency, hence the issue of reliable asynchronous coor-
dination between the actors using IPC requires us to revisit properties of time- and
space-decoupling, similarly to the context of LINDA coordination language [4]. The
issue of efficient service discovery must also be supported at the OS level, either
through directory or matchmaking mechanisms.

Dependability. Fault isolation is of the paramount importance in the OS design [12].
Using contracts can make sandboxing easier thus improving OS reliability. Even in
the case where kernel function (service) disobeys its contract, a substitution can be
located and recomposed into the request transparently. The issue of automatic failover

38 N. Milanovic and M. Malek

at the OS level highlights two important issues: support for failover at the application
level by introducing adequate mechanisms at the OS level and the concept of the OS
as a set of partially redundant or overlapping kernel services. Revisiting Figure 3, a
mechanism for fault tolerance at the composition layer can be introduced by recom-
position of services from the bottom layer. Principally that would mean that kernel
calls could be constructed dynamically and on-demand. This is similar to the N-
version programming paradigm [10]. Translated to the OS level that would mean that
several versions of the same service (process) are started simultaneously in order to
improve both performance and availability (increase chances of successful task com-
pletion). The challenge here is to invoke functionally equivalent services and vote on
them in such a way that either consensus or majority outcome is considered as a cor-
rect result of a requested service. For performance improvement the fastest response
to a request for a service would be taken. An alternative would be a recovery-block
scheme [11] which seems to be highly suitable for service-oriented infrastructure
where upon failure, functionally equivalent service would be automatically invoked.
In a simplified homogeneous multiple service environment several space and time
redundancy schemes have been reviewed and evaluated in [3].

As SOC is based on client-service interaction, load-balancing should be introduced
at the OS layer by modifying scheduler to support relief techniques such as load de-
crease or call rejection. This is supported by contracts and service level agreements.
Especially in the case of distributed OS, state clean up (rejuvenation, garbage collec-
tion, elimination of useless processing) can improve scheduling performance. Rejuve-
nation techniques such as reboot, restart, and reset of one or more services (processes)
improve availability. Transactions and checkpoints are fundamental elements, but as
far as SOC is concerned, a distributed transaction mechanism may not be the optimal
one as it may lead to potentially long term resource locking. Split (open nested) trans-
action model may be more appropriate, where one big transaction (comprising many
processes) is split into a number of smaller transactions (which can but must not cor-
respond to single services or processes) and each of the sub-transactions may commit
independently, without waiting for others. However, the drawback is that in case of
rollback, compensation actions must be provided up front, which is not always possi-
ble. Potentially interesting issue may be the realization of exception handling mecha-
nism at the composite or managed services layer, see Figure 3, as a means of forward
error correction.

Prediction. We set this property apart, although it is a part of dependability. The main
reason is that available methods for modelling of complex software systems simply
do not scale well for industrial complexity levels. Not only complexity is an issue but
also frequent dynamic configuration change, updates and upgrades. Therefore, OS
should be instrumented in order to enable efficient variable selection and tracking.
Selected variables describing the system current state are used as input to various
failure prediction models which can be data or event driven. Instrumentation can be
performed at the low service level (basic services from Figure 3) and prediction is
then performed at the middle and topmost level, depending on the criteria. The
simplest examples are resource or failure predictions [5], [6].

Self-* properties. Closely related to dependability and prediction is the spectrum of
self-* properties, such as self-diagnosis, self-healing, self-repair, self-management or

Service-Oriented Operating System: A Key Element in Improving Service Availability 39

self-configuration. They all imply certain degree of automation of the otherwise
costly processes. Self-* properties can be realized at the upper layer of the hierarchy
shown in Figure 3, within the framework of managed services. Thus both basic and
composite services become enabled with self-* properties. For example, self-
configuration can be performed through SLA enforcement and self-healing through
automatic failover (substitution) or recomposition.

Security. One of the critical properties is the OS security and its resilience to attacks,
viruses and any attempts to derail the system. The challenge is magnified as the ser-
vice environments are normally widely distributed. Security at the OS level is ad-
dressed at the architecture level (e.g., using microkernel solution), or at the service
level (verification of correctness and creating “safe” OS).

Trust. It is unrealistic to expect that all important properties within an OS can be for-
mally verified in design and/or at runtime. Therefore, an elaborate trust mechanism
has to be introduced, to support correctness at the application level as well as to en-
force internal OS consistency. There are several available forms of trust management,
but the most frequent one is a reputation system. By tracking and logging behavior of
kernel services, reputation tables can be set up and contract validation can be per-
formed. It can lead to dynamic selection of optimal kernel and external services at
runtime, and to discovery of bugs or bad design. The trivial example would be to keep
track of declared performance and usage of server resources. Given enough time,
optimal scheduling and memory management policies for different tasks would be
profiled that way.

Migration and evolution. One of the main requirements of SOA applications is plat-
form neutrality and easy migration. Most of the services are implemented using plat-
form-independent languages (e.g., Java) and are hosted in the platform-independent
containers. The main issue then becomes not so much OS support for migration, as
for independent evolution of different parts of the systems. One of the serious prob-
lems of synchronous (RPC) distributed systems is the requirement for coordinated
evolution of clients and servers. In a closed RPC environment such evolution is com-
paratively easy: a notification that API is going to change is sent and all clients are
updated accordingly. It is clear that such strategy will not work in the SOA world,
because data model is not shared and not all needs can be communicated directly in
advance. Synchronous and named communication is poorly suited to that scenario.
Therefore, OS support for independent evolution by enforcing asynchronous, loosely
coupled and anonymous process communication is essential. That way, independent
evolution on both sides (clients and services) can be performed with minimal shared
understanding.

2.4 Possible OS Architectures

Let us examine possible architectures that are available for the construction of de-
pendable service-oriented operating system. OS design has historically developed
over monolithic OS, layered OS, virtual machine concept, exokernel and client-server
OS. Apart from that, the major distinction is also the resource domain: single proces-
sor machine, multiprocessor machine, the network or a distributed system. While one
can argue that there is not much difference between single processor OS and network

40 N. Milanovic and M. Malek

OS, distributed OS and accompanying middleware have special properties such as
communication delays, incomplete and/or outdated information and incorrect data.
Service-oriented OS can be designed as both single/multiprocessor OS (running on a
single machine) or as a distributed OS. It also may turn out that the best solution is in
the middle: some actors of SOC landscape may execute inside distributed OS (e.g.,
shared business logic or service implementations), while databases may run in their
native OS.

Monolithic design is easily mapped into SOC principles, with main kernel proce-
dure calling OS (kernel) services, which are in turn not self-contained, as they them-
selves call OS utilities. The main problems with this design are dependability and
security: everything (including device drivers) is executing inside kernel, and with
service-oriented OS other middleware elements will be also executing inside the ker-
nel. This presents a big security challenge. Instead of monolithic design, layered de-
sign can be proposed, where process at layer k+1 does not have to worry about the
issues solved (provided by) previous layers 1..k. Security problems in this architecture
can be solved by introducing levels of priorities (e.g., rings like in MULTICS) that are
supported by hardware. This architecture also easily maps to the layers presented in
Figure 3: native, composed and managed services. Another aspect of SOC that was
mentioned is server consolidation though virtualization. There are several virtualiza-
tion methods, belonging roughly into either providing exact copy of the same machine
(e.g., VMWare or Virtual PC), or the copy of a different machine (e.g., Solaris
Zones). To be more precise, virtualization can be performed at the instruction set,
hardware abstraction layer, operating system, library or application level. Introducing
virtualization in the service-oriented OS concept helps not only server consolidation,
but addresses the problems of security (isolation) and kernel debugging and driver
development. Further in that direction is also a concept of exokernel, which is a vir-
tual machine with the subset of resources of the original machine. This idea is also in
line with the problem of fine grained resource control: process has no illusion that
resources are abstracted; quite on the contrary, it is implicitly aware that resources are
constrained. Client-server OS design is based on the idea of a microkernel: clients as
well as OS services run in user mode, and communicate using IPC through microker-
nel. Kernel comprises only interrupts, process management, scheduling and IPC,
while all other OS services run as servers in user mode (e.g., file server). This archi-
tecture is almost inherently service-oriented, and it also offers security advantages
since all drivers and potentially damaging code are removed from the kernel. The
well-known problem is the performance of such OS. However, according to [17] for
some test cases the overhead was under 10%. Finally, introducing contracts for mi-
crokernel services may lead to a speculation that design and runtime verification can
be potentially performed. Coming back to the issue of single machine OS/distributed
OS, in the former case the big challenge is to enable IPC, and in the latter to ensure
consistency.

Design of dependable service-oriented OS presents some unique research chal-
lenges and requires mastering an entire spectrum of problems. In order to summarize
the issues presented, an orthogonal OS design methodology is presented. The dimen-
sions of the design are 1) OS is a set of collaborating kernel services; 2) OS should
support services present in the current SOA middleware and 3) OS should support

Service-Oriented Operating System: A Key Element in Improving Service Availability 41

relevant properties (dynamic client-server interaction, dependability, prediction,
security, self-*, migration, trust). Aspects of separate problem domains such as task
scheduling, stream processing strategies or memory management are found in the
intersection of the three dimensions (Figure 5). Performance is orthogonal to all given
dimensions.

Fig. 5. Orthogonal design

3 Conclusion

We are entering the era of distributed computing where service availability is becom-
ing the dominating requirement, and where multiple services will be contending for
the clients at the service marketplace. The ideas, principles and a framework proposed
in this paper enable systematic design of a new type of dependable OS which is spe-
cifically tailored to enhance availability of modern service-oriented applications. It
does so by considering peculiarities of SOA-based systems and providing supporting
mechanisms at the OS level which enable not only a robust OS design but also en-
hance service availability, reliability, integrity and maintainability.

References

[1] S. Burbeck. The Tao of e-business Services, Emerging Technologies, IBM Software
Group, ftp://www6.software.ibm.com/software/developer/library/ws-tao.pdf, 2000.

[2] D.A. Chappel. Enterprise Service Bus, O’Reilly Media Inc., 2004.
[3] P. W. Chan, M. R. Lyu and M. Malek, Making Services Fault Tolerant, Service Avail-

ability, D. Penkler, M. Reitenspiess and F. Tam (eds.), Lecture Notes in Computer Sci-
ence, LNCS 4328, Springer Verlag, 2006.

[4] D. Gelernter, Generative Communication in Linda. Communications of the ACM, 7(1),
1985.

[5] G. Hoffmann and M. Malek, Call Availability Prediction in a Telecommunication Sys-
tem: A Data Driven Empirical Approach, 25th IEEE Symposium on Reliable Distributed
Systems (SRDS 2006), Leeds, UK, October 2006.

42 N. Milanovic and M. Malek

[6] G. Hoffmann, K. S. Trivedi and M. Malek, A Best Practice Guide to Resource Forecast-
ing for the Apache Webserver, 12th IEEE International Symposium Pacific Rim Depend-
able Computing (PRDC’06), University of California, Riverside, USA, December 2006.

[7] W3C Working Group. Web Services Architecture. http://www.w3.org/TR/ws-arch/, 2004.
[8] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-Oriented Architecture Best

Practices. Prentice Hall PTR, 2004.
[9] Doug Lea, Steve Vinoski, and Werner Vogels. Asynchronous Middleware and Services.

IEEE Internet Computing, 10(1):14–17, 2006.
[10] M.R. Lyu and A. Avizienis. Assuring Design Diversity in N-Version Software: A Design

Paradigm for N-Version Programming, in Proceedings 2nd IEEE International Working
Conference on Dependable Computing for Critical Applications, Tucson, Arizona, Feb-
ruary 18-20 1991, pp. 89-98.

[11] Brian Randell, "System structure for software fault tolerance." IEEE Transactions on
Software Engineering, Vol. SE-1, No. 2, June 1975, pp. 220-232.

[12] A. S. Tanenbaum, J.N. Herder, and H. Bos. Can We Make Operating Systems Reliable
and Secure? IEEE Computer, 39(5):44–51, 2006.

[13] A.S. Tanenbaum and A.S.Woodhull. Operating Systems: Design and Implementation.
Prentice Hall, 2006.

[14] M. Welsh and D. Culler. Virtualization considered harmful: OS design directions for
well-conditioned services. In Proceedings of the 8th Workshop on Hot Topics in Operat-
ing Systems, 2001.

[15] M.Schoebel. Operating System Abstractions for Service-based Systems, Proceedings of
the Fall 2006 Workshop of the HPI Research School on Service-oriented Sys-
tems Engineering, Technical Report 18, HPI, University of Potsdam, 2007.

[16] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing, IEEE Transactions on Dependable and Secure Com-
puting, vol. 01, no. 1, pp. 11-33, Jan-Mar, 2004.

[17] J. N. Herder, H. Bos, B. Gras, P. Homburg and A. S. Tanenbaum, Robustness and Fault
Tolerance Design of a Highly Dependable Operating System, In Proceedings of 6th
European Dependable Computing Conference (EDCC-6), Coimbra, Oct. 2006.

M. Malek et al.(Eds.): ISAS 2007, LNCS 4526, pp. 43 – 51, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Implementation
of Highly Available Memory Database

as SAF Component

Tadashiro Yoshida, Masaki Hisada, and Seiji Tomita

Nippon Telegraph and Telephone Corporation,
1-1 Hikari-no-oka, Yokosuka, Kanagawa, 239-0847 Japan

{yoshida.tadashiro,hisada.masaki,tomita.seiji}@lab.ntt.co.jp

Abstract. This paper describes the implementation of a highly available mem-
ory database with HA (High Availability) middleware based on the SAF
(Service Availability™ Forum) specification. The database achieves high avail-
ability in conjunction with AMF and MSG in a loosely coupled cluster. We
describe its startup and re-synchronization methods; they reduce service inter-
ruption and system downtime, and are significant determiners of the availability
of the shared-nothing architecture. To further enhance availability, we describe
an additional SAF-AIS interface that accepts request from components.

Keywords: memory database, high availability and reliability, loosely coupled
architecture, active and hot standby, synchronization.

1 Introduction

SIP-VoIP and Open Source Software technology have considerably influenced the
development of telecommunication systems that must offer high availability and reli-
ability. Conventional systems are implemented with specially-designed hardware and
software including operating systems and high availability middleware, which count-
ers the trend of continuous cost reduction. The telecommunications industry is ener-
getically tackling the migration to NGN (Next Generation Network) [1],[2],[3] and
3GPP IMS (IP Multimedia Subsystems)[4], both of which are expected to reduce
costs and provide new services through FMC (Fixed Mobile Convergence)[5] and
ICT (Information and Communication Technology).

The open architecture is a necessity because NGN is tasked with achieving the
same service quality (connectivity, voice quality, and reliability) as the conventional
network but at much lower cost. It can also provide flexibility since its components
can be altered to implement additional services. Therefore, products, such as general-
purpose hardware, operating systems, and HA (high availability) middleware, based
on ATCA (Advanced Telecom Computing Architecture) [6], CGL (Carrier Grade
Linux) [7], and SAF (Service Availability™ Forum) [8], represent one of the most
promising solutions.

The memory database is a key component of telecommunication systems [14]. It
provides applications with high performance and reliable data access, and enables

44 T. Yoshida, M. Hisada, and S. Tomita

rapid and cost-saving application development because application developers do not
have to be bothered with complicated operations such as concurrency control, recov-
ery, and so on. In the shared nothing and active/hot standby architecture [9], data
synchronization between the databases in each node, to assure availability, is an
indispensable and crucial function since it allows a failed database to be rapidly re-
placed by its standby, as well as recovery of the basic database function within a sin-
gle environment.

Section 2 describes a system overview of the proposed memory database running as
an SAF SA-Aware component. Section 3 explains two functions, re-synchronization of
databases and startup for establishing an active database, both which are unique to the
shared nothing architecture of the proposed database and contribute to achieving
99.999% availability. Section 4 evaluates one implementation. Finally, Section 5
describes future works and our conclusions.

2 Design Overview

Although modern memory databases offer their own high availability functions, per-
formance can be easily enhanced by using HA middleware based on the SAF-AIS
specification to yield the cluster architecture. AMF’s prompt error handling functions,
moreover, can increase the availability of the entire system.

2.1 Memory Database

The memory database proposed here offers the basic functions of traditional DBMS
(Data Management System) [11],[12], such as transaction management, concurrency
control, recovery management, and so forth. It also provides a data access method
based on SQL-92 and SQL/CLI (Call Level Interface).

Its architecture is specialized to suit telecommunication systems, and achieves real-
time response and high availability [14],[15]:

• Disk I/O is prevented as much as possible by storing data in memory; a snap-
shot of the memory image and transaction logs are written to disk for recovery.

• Data manipulation functions are linked as a library and executed in an applica-
tion process, which reduces communication cost between application and da-
tabase components. Note that the database component has other processes for
recovery and status control.

• Snapshots are recorded at regular intervals and/or when the transaction log
exceeds a threshold, which shortens the restoration time spent patching the
transaction logs to the loaded snapshot.

2.2 Cooperation with HA Middleware

Fig. 1 provides a design overview of the highly available memory database as an
SA-Aware component. Several modules in the memory database component greatly
contribute to increasing availability through their cooperation with SAF AMF (Avail-
ability Management Framework) Area Server.

 Implementation of Highly Available Memory Database as SAF Component 45

Furthermore, a replication-based redundant database can be easily realized by us-
ing the MSG (Message Service) Area Server, which is superior to the shared-disk
architecture in terms of availability; the shared-disk architecture needs disk syncing
when switching over to ensure data consistency between nodes.

2.2.1 Database Monitor
Database Monitor is the main module; it controls the status of the memory database
component. It also performs the role of monitoring modules in the database, reporting
failure to AMF, and so forth. Functions related to SAF area servers are as follows:

• Receiving system request to change component’s HA state such as “Ac-
tive/Standby/Quiescing” from AMF, and starting/closing database components
as requested.

• Asking AMF for passive process monitoring of the Database Monitor; Other
processes in the database component are already monitored by Database Moni-
tor, not AMF.

• Replying to health check requests from AMF. Health checks of sub threads are
also executed in each process of the database components independently and
asynchronously in response to each health check from AMF.

• Reporting failure to AMF using Component Error Report interface. When a
problem occurs in any process and/or thread in the database component, Data-
base Monitor detects it and reports same to AMF.

• Getting address information of nodes in the cluster through CLM to check the
status of other databases as described in 3.2.

2.2.2 Transaction Logger and Standby Monitor
Transaction Logger writes updated information into a hard disk in own node at every
transaction, which ensures the atomicity and consistency of the database.

Memory database process

Trans-
action

Log

Snap-
shot

Node 0(ACT)

MSG

SAF Area Server

Application process (Application component)

AMF

CLM

Memory database process
(Database component)

Application module

Memory database library

Transaction
Logger

Database
Monitor

Call Level
Interface

Concurrency
Control

Standby
Monitor

Process
Monitor

Trans-
action

Log

Snap-
shot

Node 1(STANDBY)

CLM

SAF Area Server

AMF

MSG

Application module

Memory database library

Transaction
Logger

Standby
Monitor

Call Level
Interface

Concurrency
Control

Database
Monitor

Process
Monitor

Data flow
Signal flow

SAF-AIS SAF-AIS

Application process

Fig. 1. Design Overview of Highly Available Memory Database

46 T. Yoshida, M. Hisada, and S. Tomita

It also sends these logs to other nodes by using MSG functions so that the data-
bases in a cluster can synchronize to each other to achieve quick failover when an
active node fails. Although MSG provides three types of sending functions, the newly
developed memory database uses the Synchronous Sending method, which can com-
pletely prevent data loss between nodes and so maintain the performance of the active
database.

Standby Monitor in the standby node extracts transaction logs from the MSG
queue after getting notification from MSG, and applies it to the standby database
asynchronously, in terms of time.

3 Increasing Availability in Shared-Nothing Architecture

Active and standby database components should be synchronized at all times for
quick switchover/failover in the shared-nothing architecture. When starting, the active
database component loads data from own disk, while the standby loads data from the
active node to realize synchronization. After initial synchronization, the active and
standby databases maintain synchronization by passing transaction logs as described
in 2.2.2.

3.1 Re-synchronization Between Active and Standby Databases

When the active database component can not send logs for a certain period of time
due to a problem with the network between nodes or the standby node, it stops
sending them to maintain realtime response to and good concurrency for the active
application. This can cause fatal inconsistency between the active and the standby
databases, especially if the network problem is intermittent; re-synchronization must
be reestablished as soon as possible.

The active database component should inform AMF of this situation at once be-
cause AMF controls the active/standby HA state of components. AMF, however, does
not have any interface that could accept any request to change HA state of the com-
ponents except Component Error Report, nor can it restrain switching over the com-
ponents. Meanwhile, the standby database can not identify the asynchronous situation
by itself because it can not distinguish failure from no transaction, when messages are
not received.

The proposed database resolves this problem by using “Re-synchronize” messages
and the Component Error Report interface of AMF. Fig. 2 and the following text
describe the flow of this function:

1. Database Monitor of the active database component keeps trying to send “Re-
synchronize” messages once it determines that it can not send transaction logs
to the standby.

2. Standby Monitor of the standby database component receives the “Re-
synchronize” message from MSG queue after restoration, and notifies receipt
of same to its Database Monitor.

3. Database Monitor of the standby database component notifies AMF to restart
components by using Component Error Report.

4. AMF in the standby node restarts components.
5. (Regular processes for starting as standby are then performed)

 Implementation of Highly Available Memory Database as SAF Component 47

Node 0(ACT)

MSG

SAF Area Server

Memory database component

Node 1(STANDBY)

SAF Area Server

MSG

Data flow
Signal flow

Re-synchronize
message

Database
Monitor

Standby
Monitor

Memory database component

AMF AMF

Database
Monitor

Standby
Monitor

Error Report

SAF-AIS SAF-AIS

Re-synchronize
message

Fig. 2. Architecture for Re-synchronization

This method is useful in two ways. One is that the system can be implemented
completely according to the SAF-AIS specification. The other is that the database
components can re-synchronize without AMF, although AMF would be used to
restart components that abide by the SAF-AIS specification.

3.2 Reduction of Time to Establish Active Node

Establishing any active node as soon as possible, when all nodes are down, is crucial
to realize 99.999% availability. Note that 99.999% availability means that downtime
is less than approximately 5 minutes a year.

When all nodes start up at almost the same time, AMF decides to assign active
state to the node whose components complete instantiation first. The database com-
ponent, thereafter, begins loading data after receiving a request assigning it to be
active from the AMF in the node. The database in the node selected to be standby has
to wait until the completion of loading in the active node for replication. This takes
quite a long time since it involves disk I/O. If the activating database fails during
loading, AMF gives it up and assigns the active state to another node. In this situation,
it takes longer, at worst twice the usual time, to establish an active node, and avail-
ability is decreased as a result.

One effective solution is for all databases to preload data from own disk in the in-
stantiating phase until one database becomes fully active. The database component
checks the status of other databases independently from SAF area servers, and decides
which HA state is likely to be given by AMF.

Process flow of Database Monitor upon instantiation is as follows:

1. Checks the status of the other databases.
2. (a) Decides to become active and loads data from own disk, if no active data-

base exists. (called “Temporary Active”)

48 T. Yoshida, M. Hisada, and S. Tomita

(b) Decides to become standby and loads data from the active, otherwise.
(called “Temporary Standby”)

3. Returns success of instantiation to AMF.

(AMF assigns active / standby state to the database)

4. (a) Enters active/standby state immediately, if receiving request from AMF to
become active or standby in “Temporary Active” or “Temporary Standby”,
respectively.
(b) Pops loaded data and synchronizes to the active database, if receiving re-
quest to become standby in “Temporary Active”, which means another data-
base in the cluster has become active first.
(c) Turns active, if receiving request to become active in “Temporary
Standby”. Remember that the database in the Temporary Standby has been al-
ready synchronized to the active after instantiation.

It might be useful if AMF had an interface that could return the status of specific
components in another node so that the components would omit to implement these
communication functions.

4 Implementation and Evaluation

This section describes our evaluation of the functions used to increase availability in
the 2N (act/hot standby) loosely coupled architecture [9],[10]. The platform used
Intel® Xeon™ 2.80GHz x 2, DIMM Synchronous 400 MHz 4GB memory, 300GB
10KRPM hard disk with writeback mode, enhanced CGL OS [7],[13] based on
Redhat® Enterprise Linux4 (kernel 2.6.9-5.EL.smp #1 SMP), HA middleware
[8],[13] and the memory database developed in our laboratories. Two nodes were
connected by a Gigabit Ether Channel. For simplicity, the database was the only com-
ponent running on the AMF’s SU (Service Unit); a stress tool was run outside of the
SU. 1GB of data used in the SIP-VoIP applications was stored in the disk.

4.1 Results: Replication Overhead

We measured the overhead of replication associated with transmitting the transaction
log, triggered by insert/update/delete operations, to a standby node as compared to a
standalone system. Table 1 shows the average response time of the 1000 tps update
transaction using one of the tables and a simple SIP application query, to compare the
standalone system and the act/hot standby system.

Table 1. Replication Overhead

Updating

database space
(usec)

Operation on
transaction log

(usec)

Response
(usec)

(a)Standalone 45 133 181
(b)Act/hot Standby 49 490 543
Ratio ((b)/ (a)) 108.9% 368.4% 300.0%

 Implementation of Highly Available Memory Database as SAF Component 49

Replication took approximately 350 usecs, which is about 2.5 times as long as the
operation writing transaction logs into the disk within the standalone. As a result, the
act/hot standby had three times longer response time than the standalone.

We note that the status of applications and database can become inconsistent if
trouble occurs during the commit operation. For instance, if trouble occurs just after
writing transaction logs into the disk and before returning success response to the
application, the database loads transaction logs when re-starting although the applica-
tion believes that the former operation failed. A similar problem exists in the act/hot
standby architecture, if the trouble occurs between right after transmitting transaction
logs but before returning success response to the application. The application
(or transaction monitor) should have a current transaction ID, and check it with one in
the database right after failover.

4.2 Detecting Inconsistency Between Active and Standby Databases

The standby database is inconsistent against the active after recovery from network
trouble until AMF detects the error report as described in 3.1. Fig. 3 plots this period
versus transaction load in the active database; a simple single update query is used as
a transaction. The diamonds and bars in Fig. 3 represent average values and range,
respectively.

It takes 1-2 seconds on average to detect inconsistency, while the range of detec-
tion time is increases slightly with transaction load. That the detection time initially
remains constant is apparently due to MSG’s priority control; the “Re-synchronize”
message is executed with top priority. At high loads, extracting the “Re-synchronize”
degrades detection performance because it takes longer to patch the large quantity of
the extracted transaction logs to the standby database, which triggers disk I/O to store
transaction logs in the standby, before extracting the “Re-synchronize” message.

Taking several seconds to detect data inconsistency is fatal for realtime applica-
tions because hundreds of update transactions could be executed before detection.
Thus, it is strongly recommended that AMF be given an interface that can receive
requests from components since this would provide more rapid control of node status.

Transaction load (tps)

T
im

e
th

at
 A

M
F

 d
et

ec
ts

 in
co

ns
is

te
nc

y
(m

se
c)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 100 1000

Fig. 3. Detection of Database Inconsistency

50 T. Yoshida, M. Hisada, and S. Tomita

4.3 Time to Establish Active Node

Fig. 4 shows the model used in the experiment to assess starting, in which node 1 is
instantiated 1 second after node 0; the parameter is the time between instantiation and
trouble occurrence in node 0. Fig. 5 depicts the results of the experiment. It shows
that the time taken to establish the active node is almost constant, despite the network
trouble, due to the function described in 3.2. For reference, the response in the “no
trouble” condition is plotted in the rightmost column. Note that total time for
activation depends on the data size of the database.

Node 0 Node 1

Startup
Startup

1 second

Instantiating
database
component

Supposed to be
active

Trouble
while loading

Became
active

Time before
trouble

Time to
establish active

Instantiating
database
component

Initializing
SAF area servers

Fig. 4. Model for Startup Check

Times before trouble (sec)

T
im

e
to

 e
st

ab
lis

h
ac

tiv
e

(s
ec

)

0

30

12 14 16 18 20 22 No
trouble

10

20

Fig. 5. Time to Establish Active Node

5 Conclusions

We verified through implementation tests that memory databases can have greatly
improved availability by being run as an SAF component. The memory database
proposed herein can effectively use the process auditing, health checking, and error

 Implementation of Highly Available Memory Database as SAF Component 51

reporting features provided by AMF for recovery, as well as the messaging function
of MSG for replication.

It is crucial to synchronize the active and the standby databases in such a loosely
coupled architecture, because they store data independently. This paper also described
the features of re-synchronization and shortening the time to establish an active data-
base, which are unique to this architecture. The method described in this paper could
be much enhanced by providing AMF with additional interfaces that could receive
requests for controlling switchover and determining HA state of components.

Split brain, the situation in which plural active nodes exist in the cluster, is another
conceivable problem with this architecture. In most situations, this can be avoided by
duplicating the network, i.e. using another reachable communication network such as
a service channel [13]. Memory database system, however, should provide tools that
arbitrate split brained nodes.

The application of NGN, to realize the information society, has just commenced,
and NGN will be enhanced step by step. It is, therefore, important to be able to alter
the data scheme of the database as well as the applications without stopping service,
while maintaining 99.999 % availability. We believe that most application servers
will need to offer even higher availability, as the applications are becoming more
important to our lives.

References

1. ITU-T Study Group 13 (Next Generation Networks), http://www.itu.int/ITU-T/
studygroups/com13/

2. Promoting NTT Group’s Medium-Term Management Strategy, NTT Corporation,
2005,http://www.ntt.co.jp/news/news05e/0511phqg/051109.html

3. 21st century network, BT Group plc, http://www.btplc.com/21cn/
4. 3rd Generation Partnership Project, http://www.3gpp.org/
5. Fixed-Mobile Convergence Alliance, http://www.thefmca.com/
6. Advanced TCA, PCI Industrial Computer Manufacturers Group, http://www.picmg.org/
7. Carrier Grade Linux, OSDL, http://www.osdl.org/lab_activities/carrier_grade_linux/
8. Service Availability Forum, http://www.saforum.org/
9. Sam Drake et al.: Architecture of Highly Available Database, Proc. of International Ser-

vice Availability Symposium (ISAS 2004). In: Lecture Notes in Computer Science, Vol
3335, pp.1-16, Springer-Verlag (2005)

10. A.Wolski, B.Hofhauser: A Self-Managing High-Availability Database: Industrial Case
Study, Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)

11. H.G.Molina, H.D.Ullman, J.Widom, Database Systems: The Complete Book, Prentice
Hall (2002)

12. R.Ramakrishnan, J.Gehrke: Database Management Systems, McGrawHill (2003)
13. H.Shina, T.Ikebe, M.Kaneko: Carrier-Grade Server Architecture for Next-Generation

Network, Proceedings of World Telecommunications Congress 2006, CW1-3 (2006)
14. J. Baulier et al.,: DataBlitz storage manager: main-memory database performance for criti-

cal applications, ACM SIGMOD Record, Vol.28, Issue 2, pp.519-520 (1999)
15. CORPORATE TimesTen Team: In-Memory Data Management for Consumer Transac-

tions The TimesTen Approach, Proceedings SIGMOD ’99 international conference on
Management of data, pp.528-529 (1999)

M. Malek et al.(Eds.): ISAS 2007, LNCS 4526, pp. 52–62, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Fault Tolerant Schemes for Hot-Swappable and
Non Hot-Swappable Mezzanine Cards

Mark Lanus

Availability Engineering Department, Motorola Embedded Communications Computing,
2900 S. Diable Way, DW220,

Tempe AZ, USA 85282
mark.lanus@motorola.com

Abstract. First generation, highly-available computer systems deployed a two-
level physical hierarchy whereby a shelf was composed of field replaceable units
(FRU) and the unit of fault detection, fault isolation, fault containment, fault re-
covery, fault repair, and sparing was the FRU. In 1995, IEEE introduced the non
hot-swappable PCI Mezzanine Card (PMC) draft standard [1] that allows fault de-
tection, isolation, containment, recovery, and sparing to be implemented at the
mezzanine card level but requires fault repair to occur at the carrier board level. In
2005 the PCI Industrial Computer Manufacturers Group (PICMG®) introduced
the hot swappable Advanced Mezzanine Card (AMC) standard [2] that extends
the PMC model to allow all fault management functions, including fault repair, to
be implemented at the mezzanine card level. This paper develops fault manage-
ment strategies and availability models for the monolithic, non hot swap parti-
tioned, and hot swap partitioned hardware architectures.

Keywords: Availability Model, Fault Management Model, Advanced Mezza-
nine Card, AMC, AMC Carrier, PCI Mezzanine Card, PMC, PMC Carrier.

1 Introduction

The evolution of modular hardware architecture from monolithic boards, to non hot-
swappable PMC mezzanine cards [1], to hot-swappable AMC mezzanine cards [2]
described in the abstract suggests the following fault management strategies for car-
rier/mezzanine assemblies.

Monolithic: A carrier or mezzanine failure causes the carrier and all mezzanines to
failover to the redundant carrier/mezzanine assembly and the failed assembly is replaced.

Non Hot swap Partitioned: A mezzanine failure causes only that mezzanine to failover to
the redundant carrier/mezzanine assembly. When the craft arrives to repair the failed
mezzanine, the carrier and all unfailed mezzanines are switched over to the redundant
assembly and the failed assembly is replaced. A carrier failure causes the carrier and all
mezzanines to failover to the standby assembly and the failed assembly is replaced.

Hot swap Partitioned: A mezzanine failure causes only that mezzanine to failover to
the redundant carrier/mezzanine assembly. When the craft arrives to repair the failed

Fault Tolerant Schemes for Hot-Swappable and Non Hot-Swappable Mezzanine Cards 53

mezzanine, the mezzanine is replaced without impacting the unfailed mezzanines. A
carrier failure causes the carrier and all mezzanines to failover to the standby assem-
bly and the failed assembly is replaced.

These fault management strategies are backward compatible. A monolithic hard-
ware module can only implement the monolithic strategy, a non hot swap partitioned
module can implement either the monolithic or non hot swap partitioned strategy, and
a hot swap partitioned module can implement any strategy. Even though the hardware
architecture supports a more sophisticated fault management strategy, the system
integrator may decide to deploy a simpler strategy due to software complexity, human
factors considerations, or sparing policies.

Motivation for performing this work was based on the development of the Mo-
torola AXP-1600 and AXP-1406 AdvancedTCA products. These backplane-based
systems consisted of blades for switching, blades for payload processing, and modules
for shelf management, system management, clock distribution, fan control, and power
entry. One question that arose in the development was, “What is the difference in
availability if we move the system management module from a PMC module on the
switch blade to an AMC module on the switch blade?” Another question was, “What
is the impact on availability if we move from a four processor monolithic payload
blade to a payload blade based on an AMC carrier and four AMC processor mod-
ules?” This modeling work enabled Motorola to answer these questions and base our
decisions on a quantifiable approach.

2 Block Diagram

Figure 1 shows a block diagram for a PMC carrier/mezzanine assembly, showing N
mezzanines (Mezz 1..Mezz N), a small amount of logic to support each mezzanine (Sup
1..Sup N), and a large amount of logic to support all mezzanines (Carrier). This diagram
models a carrier whose entire purpose is to support the mezzanines and does not model a
carrier that provides service independent of the mezzanines. Figure 2 also shows a block
diagram for an AMC carrier/mezzanine assembly—the only difference being that the
mezzanines are shown external to the carrier as they are independently hot-swappable.

Fig. 1. N-Wide PMC and AMC Carrier Block Diagrams

54 M. Lanus

3 Fault Management Strategies

Tables 1, 2, and 3 show the detailed monolithic, non hot swap partitioned and hot
swap partitioned fault management strategies for Mezz, Sup, and Carrier failures on
the active and standby assemblies.

Table 1. Failure Analysis—Monolithic Strategy

HA State Component Phase Action
Recovery Failover all active mezzanines Active Mezz

Sup
Carrier

Repair Hot swap failed carrier/mezzanine assembly

Recovery Take all standby mezzanines out of service Standby Mezz
Sup
Carrier

Repair Hot swap failed carrier/mezzanine assembly

Table 2. Failure Analysis—Non Hot swap Partitioned Strategy

HA
State

Component Phase Action

Recovery Failover failed active mezzanine
Pre-Repair Switchover N-1 unfailed active mezzanines

Mezz
Sup

Repair Hot swap failed carrier/mezzanine assembly
Recovery Failover all active mezzanines

Active

Carrier
Repair Hot swap failed carrier/mezzanine assembly
Recovery Take failed standby mezzanine out of service
Pre-Repair Take N-1 unfailed standby mezzanines out of

service

Mezz
Sup

Repair Hot swap failed carrier/mezzanine assembly
Recovery Take all standby mezzanines out of service

Standby

Carrier
Repair Hot swap failed carrier/mezzanine assembly

Table 3. Fault Analysis—Hot swap Partitioned Strategy

HA
State

Component Phase Action

Recovery Failover failed active mezzanine Mezz
Repair Hot swap failed mezzanine
Recovery Failover failed active mezzanine
Pre-Repair Switchover N-1 unfailed active mezzanines

Sup

Repair Hot swap failed carrier/mezzanine assembly
Recovery Failover all active mezzanines

Active

Carrier
Repair Hot swap failed carrier/mezzanine assembly

Fault Tolerant Schemes for Hot-Swappable and Non Hot-Swappable Mezzanine Cards 55

Table 3. (Continued)

Recovery Take failed standby mezzanine out of service Mezz
Repair Hot swap failed mezzanine
Recovery Take failed standby mezzanine out of service
Pre-
Repair

Take N-1 unfailed standby mezzanines out of
service

Sup

Repair Hot swap failed carrier/mezzanine assembly
Recovery Take all standby mezzanines out of service

Standby

Carrier
Repair Hot swap failed carrier/mezzanine assembly

4 Markov Reward Models

Tables 4 and 5 describe parameters and state names used in all models.

Table 4. Markov Model Parameters

Parameter Description

N Number of mezzanines on carrier
lm Failure rate of Mezz block
ls Failure rate of Sup block
lc Failure rate of Carrier block
D Probability of successful detection of failure
F Probability of successful failover
S Probability of successful switchover
m1 Repair rate of first failure
m2 Repair rate of second failure due to unsuccessful switchover in pre-repair
T Period for exercising diagnostics on standby carrier/mezzanine assembly

Table 5. Markov Model State Names

State Name Description

Normal No failure
Act Cov Fail Covered failure on active assembly
Act Uncov Fail Uncovered failure on active assembly
Act Rep Fail Unsuccessful switchover on active assembly in pre-repair
Sby Cov Fail Covered failure on standby assembly
Sby Uncov Fail Uncovered failure on standby assembly
Double Fault Double failure

4.1 Monolithic Model

Figure 2 shows the Markov Reward Model (MRM) [4], [5] for the monolithic fault
management strategy. This section describes example state transitions.

56 M. Lanus

Fig. 2. Monolithic Model

Normal -> Act Cov Fail: Transition from Normal to a covered failure of the active
assembly. The failure rate is Nlm+Nls+lc as there are N Mezz blocks, N Sup
blocks, and one Carrier block to fail. The probability of successful detection is D,
the probability of successful failover is F^N (successful failover of N Mezz
blocks), so the transition rate is (Nlm+Nls+lc)(DF^N). One could argue that, for
Mezz or Sup failures, only the failed mezzanine needs to failover, the N-1 unfailed
mezzanines can switchover, so the transition rate should be (Nlm+Nls)(DFS^
(N-1))+lcDF^N.

Act Cov Fail -> Double Fault: Transition from Act Cov Fail to the Double Fault state.
The failure rate is Nlm+Nls+lc. (This slightly over-estimates the failure rate for dou-
ble faults, but allows us to condense three Act Cov Fail states to one.)

Normal -> Sby Cov Fail: Transition from the normal state to a covered failure of the
standby unit. The failure rate is Nlm+Nls+ lc and the probability of successful detec-
tion is D. Since this is the standby carrier, failover is not required—only
detection.

Sby Uncov Fail -> Normal: Transition from Sby Uncov Fail to Normal. The transition
rate is 2/T, where T is the period we run detailed diagnostics to find latent faults on
the standby.

Double Fault -> Normal: Transition from Double Fault to Normal. The transition
rate is twice the repair rate for first failures. This state is only reached when we are
already waiting on a repair action due to a previous failure, the craft is already on
the way, and so the repair rate should be faster than the repair rate for first failures.

4.2 Non Hot Swap Partitioned Model

Figure 3 shows the non hot swap partitioned model. The main change from the
monolithic model is that the fault management strategy requires different policies
for Mezz, Sup, and Carrier failures and so the transition with rate Nlm+Nls+ lc
becomes three transitions with rates Nlm, Nls, and lc. This section describes a few
transitions.

Fault Tolerant Schemes for Hot-Swappable and Non Hot-Swappable Mezzanine Cards 57

Fig. 3. Non Hot Swap Partitioned Model

Act Mezz Cov Fail -> Normal: The repair rate is m1. The pre-repair action is to
switchover the N-1 unfailed Mezz blocks and hot swap the carrier/mezzanine assem-
bly. The probability of successful switchover is S^(N-1) so the transition rate is
m1S^(N-1).

Act Mezz Cov Fail -> Act Mezz Rep Fail: m1(1-S^(N-1)) is the product of the repair
rate (m1) and the probability of a second failure during the pre-repair phase
(1-S^(N-1)).

4.3 Hot Swapped Partitioned Model

Figure 4 shows the hot swap partitioned model.

58 M. Lanus

Fig. 4. Hot Swap Partitioned Model

5 Parameters

Table 6 shows the parameter values used in the analysis and rationale for why
these numbers were used. The failure rate for AMC modules was originally esti-
mated at 2000 FITs. Recent development indicates that this number should be
closer to 700 FITs, but time was not available to update the report with this up-
dated value.

Table 6. Parameter Values

Parameter Description Rationale for Parameter Value

N 4 Maximum number of AMCs that fit on ATCA front blade
lm 600 FIT Failure rate estimates of AMC module
ls 100 FIT Failure rate estimates of AMC carrier module
lc 1000 FIT Failure rate estimates of AMC carrier module

Fault Tolerant Schemes for Hot-Swappable and Non Hot-Swappable Mezzanine Cards 59

Table 6. (continued)

D 0.998 Field data analysis of previous systems
F 0.99 Field data analysis of previous systems
S 0.995 Field data analysis of previous systems
m1 1/ (4 hour) Bellcore LSSGR estimate based on field data analysis
m2 1 / (1 hour) Interviews with field engineers on recovery times
T 24 hour Period at which routine diagnostics are run on real system

6 Results

This section describes modeling results. These results will be verified with field data
analysis once the population of fielded systems yields statistically significant data.

Table 7 shows downtime results assuming imperfect detection, failover, and
switchover (probability < 1) and perfect detection, failover, and switchover (probabil-
ity = 1), percent of downtime due to imperfect fault coverage, and the mean time to a
failure that causes a system outage. The second row for the monolithic model shows
the case where fault recovery consists of one failover for the failed mezzanine and
N-1 switchovers for the unfailed mezzanines.

Table 7. Results

Downtime (sec/NE/yr) Model

Imperfect
Coverage

Perfect
Coverage

Percent
Downtime

Due to
Imperfect
Coverage

Mean Time
To System

Outage
(hours)

Monolithic (N failover) 19.8157 0.00728575 99.96% 6,363,580
Monolithic (1 failover,
N-1 switchover)

14.6595 0.00728575 99.95% 8,600,720

Non Hot swap
Partitioned

10.7661 0.004319 99.96% 8,604,160

Hot swap Partitioned 9.63655 0.004319 99.96% 12,371,200

Table 8 shows the steady-state probability and downtime associated with each state
of the monolithic model. Note that only 0.04% of the downtime is due to the Double
Fault state and 99.96% is due to the Act Uncov Fail state.

Table 8. Monolithic Model Results

State Probability Downtime
(sec/NE/yr)

Normal 9.9997 10^-1 0
Double Fault 2.26718 10^-10 0.00714979
Act Cov Fail 1.45712 10^-5 0
Act Uncov Fail 6.28124 10^-7 19.8086
Sby Cov Fail 1.51689 10^-5 0
Sby Uncov Fail 9.11931 10^-8 0
Total 1.0 19.8157

60 M. Lanus

Tables 9 and 10 show detailed analyses of the non hot swap and hot swap parti-
tioned models. The only difference (1.13 sec/NE/yr) is due to the Act Mezz Rep Fail
state of the non hot swap partitioned model, caused by unsuccessful switchover of the
N-1 unfailed mezzanines during pre-repair.

Table 9. Non Hot swap Partitioned Model Results

State Probability Downtime
(sec/NE/yr)

Normal 9.99969 10^-1 0
Double Fault 1.35516 10^-10 0.00427362
Act Mezz Cov Fail 9.48464 10^-6 0
Act Mezz Uncov Fail 1.15004 10^-7 3.62676
Act Sup Cov Fail 1.58077 10^-6 0
Act Sup Uncov Fail 1.91674 10^-8 0.604461
Act Carrier Cov Fail 3.83452 10^-6 0
Act Carrier Uncov Fail 1.65296 10^-7 5.21276
Sby Mezz Cov Fail 9.58044 10^-6 0
Sby Mezz Uncov Fail 5.75971 10^-8 0
Sby Sup Cov Fail 1.59674 10^-6 0
Sby Sup Uncov Fail 9.59951 10^-9 0
Sby Carrier Cov Fail 3.99182 10^-6 0
Sby Carrier Uncov Fail 2.39982 10^-8 0
Act Mezz Rep Fail 3.5819 10^-8 1.12958
Act Sup Rep Fail 5.96983 10^-9 0.188264
Total 1 10.7661

Table 10. Hot swap Partitioned Model Results

State Probability Downtime
(sec/NE/yr)

Normal 9.9997 10^-1 0
Double Fault 1.35516 10^-10 0.00427364
Act Mezz Cov Fail 9.48464 10^-6 0
Act Mezz Uncov Fail 1.15004 10^-7 3.62677
Act Sup Cov Fail 1.58077 10^-6 0
Act Sup Uncov Fail 1.91674 10^-8 0.604464
Act Carrier Cov Fail 3.83452 10^-6 0
Act Carrier Uncov Fail 1.65296 10^-7 5.21278
Sby Mezz Cov Fail 9.58044 10^-6 0
Sby Mezz Uncov Fail 5.75971 10^-8 0
Sby Sup Cov Fail 1.59674 10^-6 0
Sby Sup Uncov Fail 9.59951 10^-9 0
Sby Carrier Cov Fail 3.99182 10^-6 0
Sby Carrier Uncov Fail 2.39982 10^-8 0
Act Sup Rep Fail 5.96983 10^-9 0.188265
Total 1 9.63655

Fault Tolerant Schemes for Hot-Swappable and Non Hot-Swappable Mezzanine Cards 61

7 Conclusions

The change from the monolithic to the non hot swap partitioned strategy generates a
more significant improvement than the change from the non hot swap to the hot swap
partitioned strategy.

The biggest benefit of a partitioned over a monolithic strategy is not the protection
against second failures by leaving N-1 mezzanines in redundant mode between fault
recovery and repair. The biggest benefit is that the monolithic strategy requires N
immediate failovers that could cause a long outage whereas a partitioned strategy only
requires one immediate failover that could cause a long outage and 0 or N-1 deferred
switchovers that could cause a much shorter outage.

The downtime caused by an unsuccessful failover of the N-1 unfailed Mezz/Sup
blocks in the monolithic strategy is N(lm+ls)DF(1-F^(N-1))(1/m1) which is the time
spent in the N-1 Uncov Mezz/Sup Failure state in Figure 5. The interpretation of this
equation is that the failure rate of the N Mezz/Sup blocks is N(lm+ls) and in order to
have unsuccessful failover of the N-1 unfailed Mezz/Sup blocks we first need to
detect the failure with probability D and failover the failed Mezz/Sup block with
probability F. The probability of unsuccessful failover of the unfailed Mezz/Sup
blocks is 1-F^(N-1) and the time spent repairing the second failure is (1/m1). The
downtime caused by an unsuccessful switchover of the N-1 unfailed Mezz/Sup blocks
in the non hot swap partitioned strategy is N(lm+ls)DF(1-S^(N-1))(1/m2) so a good
approximation of the downtime improvement from the monolithic to the non hot swap
partitioned strategy is N(lm+ls)DF[(1-F^(N-1))(1/m1)-(1-S^(N-1))(1/m2)].

Fig. 5. Downtime due to Unsuccessful Failover of N-1 Unfailed Mezzanines

The biggest improvement from a non hot swap to a hot swap partitioned strategy is
that after a mezzanine failure the non hot swap partitioned strategy must eventually
switchover the N-1 unfailed mezzanines whereas the hot swap partitioned strategy does
not require any switchover. A good approximation of the downtime improvement from
the non hot swap to the hot swap partitioned strategy is N(lm+ls)DF(1-S^(N-1))(1/m2).

This analysis models quantifiable parameters like failure rate, failover probability,
switchover probability, and repair rate. However, there are other issues that should be
considered when selecting a fault management strategy for partitioned modules;

62 M. Lanus

Software Simplicity: While the monolithic strategy has the drawback of requiring
extraneous failovers, it has the benefit of simplicity of software implementation.

Human Factors/Sparing Strategy: Consider questions such as “If a mezzanine fails, do
we ship a mezzanine or a complete carrier/mezzanine assembly?” and “If a carrier
fails, do we ship a replacement carrier and require the craft to move unfailed mezza-
nines from the failed carrier to the replacement, or ship complete a complete car-
rier/mezzanine assembly?” These impact the type and number of spare parts required,
human error downtime due to overly-complex repair procedures, and the No Trouble
Found (NTF) rate due to returning a failed assembly containing unfailed sub-
assemblies.

Signaling Complexity: PICMG 3.0 [3] specifies LEDs on carriers to signal the In
Service and Fault states of the carrier. PICMG AMC.0 [2] specifies similar LEDs on
AMC modules. The more complex partitioned strategies complicate signaling re-
quirements and could increase downtime due to human error caused by overly-
complex signaling.

References

1. IEEE, IEEE Std 1386.1-2001, IEEE Standard Physical and Environmental Layers for PCI
Mezzanine Cards (PMC), Approved 14 June 2001.

2. PICMG AMC.0 R1.0, Advanced Mezzanine Card Base Specification, January 3, 2005.
3. PICMG R3.0 Revision 2.0, AdvancedTCA Base Specification, March 18, 2005. R. Sahner,

K. Trivedi, A. Puliafito, Performance and Reliability Analysis of Computer Systems, An
Example-Based Approach Using the SHARPE Software Package, Kluwer Academic
Publishers, 1996.

4. G. Bolch, S. Greiner, H. de Merr, K. Trivedi, Queueing Networks and Markov Chains,
Modeling and Performance Evaluation with Computer Science Applications, John Wiley
and Sons, Inc., 1998.

5. Bellcore, LSSGR: Reliability, Section 12, Generic Requirements GR-512-CORE, Issue 2,
January 1998.

M. Malek et al.(Eds.): ISAS 2007, LNCS 4526, pp. 63 – 73, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Experience in Developing a High Availability and
Continuous TCP Using OpenAIS and TCPCP

Ying-Yu Chen1, Chien Chen2, and Chia-Yuan Huang1

1 Information & Communications Research Laboratories,
Industrial Technology Research Institute,

195 Chung Hsing Rd., Sec. 4, Chu Tung, Hsinchu 310, Taiwan
{itri404393,ricehuang}@itri.org.tw

2 Department of Computer Science, National Chiao Tung University,
Hsinchu, Taiwan, R.O.C

cchen@cis.nctu.edu.tw

Abstract. It has become one of the basic requirements for the service providers
to deliver highly available services to meet the customers’ critical needs. How-
ever, a highly available service does not guarantee that the service is delivered
continuously from the user’s point of view. In this paper, we share the experi-
ence of developing high-availability and continuous TCP using open source
OpenAIS and TCPCP/TCPCP2. We describe the main system design for build-
ing such systems. We specifically discuss two of the problems that need to be
overcome under this kind of design model. For each problem and its corre-
sponding resolution, we show a simulation using ns2 simulator, which provides
a deeper insight into the problems for further studies. We also develop a simple
application which uses OpenAIS and TCPCP2 to achieve its high availability
and service continuity. The results indicate that a high availability and service
continuity service can be obtained with minor degradation in performance.

Keywords: High availability, service continuity, TCP, OpenAIS, TCPCP (TCP
connection passing).

1 Introduction

As technologies advances, users are getting more and more dependent on network
services in their daily lives. Therefore, it is very important that the services delivered
to the users are highly reliable and meet the customers’ expectation. To achieve high
availability, a system usually contains redundant components so that when the main
server fails, it can be replaced immediately by another. However, a service with high-
availability, e.g., 99.999% uptime, does not guarantee that the service is delivered
continuously from the users’ point of view. In case where the service has to be trans-
ferred from one host to another, e.g. failover and switchover, maintaining service
continuity means that the service is transferred with minimal degradation in perform-
ance, and without users being aware of it. The properties of possessing high availabil-
ity and service continuity are referred to as service availability [1].

64 Y.-Y. Chen, C. Chen, and C.-Y. Huang

In this paper, we focus on the failover of TCP connections from one host to another
since lots of important network applications are built on top of TCP such as HTTP,
FTP, SMTP, SSH, etc. It is hard to make these applications continuous unless the
underlying TCP can be made continuous in case of failover. The major challenge is
that TCP is a connection-oriented protocol and many of the connection parameters
such as sequence number, TCP flags, send/receive buffers, etc., which are kept in the
kernel of the active node, have to be synchronized with other standby nodes.

In this paper, we share the experience of developing high availability and continu-
ous TCP using the open source OpenAIS [2] and TCPCP/TCPCP2 [3][4]. We
describe how OpenAIS and TCPCP/TCPCP2 can be used to develop services with
improved service availability. Then, we elaborate on two problems that occur under
this design model. In the case where TCP data flows from the client to the server and
a failure occurs within the interval between two checkpoints, one problem arises when
the standby server tries to resume the service using the last checkpoint information.
Since data that have already been acknowledged have been deleted from the client’s
TCP send buffer, it is not possible for the client to retransmit those data to the server.
One solution is to synchronize TCP acknowledges from servers with checkpoint
interval. That is, the acks will only be sent from server every checkpoint interval.
However, delaying sending acks from server side would have impact on the TCP
throughput. In this paper, the numerical results demonstrate that acks should not be
delayed more than 10~40ms depending on the link rates.

The other is about what TCP congestion control status should be set to the standby
server when the active server fails, since after all it is the last checkpoint information
that we use to resume the TCP connections. However, the congestion window size
recorded in the last checkpoint may no longer reflect the current network condition.
Therefore, we develop a window size prediction method to observe how the perform-
ance is affected when a simple mechanism is added to support service availability.
The simulation results are shown using ns2 [5] simulator. We also reports the results
of a simple application that we developed to observe how the performance is affected
when extra overhead is added to support service availability.

The rest of the paper is organized as follows. Section 2 describes how TCP connec-
tion passing tools TCPCP/TCPCP2 can be used with OpenAIS to develop service
availability services. In Section 3, we describe the problems mentioned above in
detail and the respective solutions. The simulation results are shown using ns2 simula-
tor. In Section 4, we show the performance of our simple service availability
application. The paper concludes in Section 5.

2 Background and Design Model

2.1 OpenAIS and TCPCP/TCPCP2

OpenAIS is the Linux middleware implementation of the SA Forum’s Application
Interface Specification (AIS) [6]. SA Forum AIS standardizes the interfaces between
SA Forum compliant high availability middleware and service applications so that
service availability application software can be developed independent of the underly-
ing platform. Authors in [7] describe the use of Application Management Framework

 Experience in Developing a High Availability and Continuous TCP 65

(AMF) and Checkpoint Service in SA Forum AIS to implement high availability ser-
vices, where AMF [8] supervises redundant resources within the server cluster to de-
liver the service with no single point of failure and Checkpoint Service [9] is used to
record checkpoint data, which can be retrieved to resume the service after the failure.

TCPCP is the implementation of the mechanism that provides APIs for applica-
tions to pass the ownership of TCP connection endpoints from one host to another.
TCPCP2 is another form of TCPCP, and is created based on TCPCP. The two are
similar in principle and both require the kernel modification in the servers. However,
the major advantage over other TCP connection passing methods such as MIGSOCK
[10] is that the client side does not have to be modified. Since TCPCP and TCPCP2
are quite similar in nature, for the rest of the paper, the description is based on
TCPCP2.

TCPCP2 provides a set of APIs to be used by the application to allow the TCP
socket information (SI) (including source/destination IPs and ports, TCP flags, se-
quence number, send/receive buffer, etc.) to be retrieved/set back from/to the kernel.
Therefore, the service process on host A can use TCPCP2 to retrieve SI, and by any
means, which is mentioned in Section 2.2, send the retrieved SI to host B. Host B can
then set the received SI back to its kernel. Sample procedures to take over the TCP
connections can be found in [11]. The APIs provided by TCPCP2 includes:

 tcpcp_stop(). Stop the connected TCP socket form sending and receiving
packets.

 tcpcp_get(). Retrieve the TCP socket information.
 tcpcp_set_si(). Set the SI into TCP socket.
 tcpcp_start(). Allow the TCP socket to resume sending and receiving pack-

ets.

SA Forum AIS and TCP session takeover are currently included in the OSDL Car-
rier Grade Linux Requirements and Roadmap [12], respectively.

2.2 Achieving Service Availability

Neither TCPCP nor TCPCP2 describe when to pass the TCP connections or how to
transfer the retrieved SI to other hosts. Our approach is to combine the ability of
TCPCP2, and the AMF and Checkpoint Service in OpenAIS to achieve our goal. An
overview of the design model is shown in Fig. 1.

During normal operation, the application status and TCP SI (retrieved by
tcpcp_get()) of the active server are periodically transferred to the standby nodes in
the cluster using the Checkpoint service. When the active fails, the error is detected
by the AMF, which then dictate one of the standby nodes to become active. The
newly active node can now use the last checkpoint data received from the failed ac-
tive node to restore the application and TCP status so that it can continue to serve its
connected clients. Notice that the ways of redirecting the IP packets which were
originally intended for the failed node to the standby node are beyond the scope of
this paper. Some references can be found in [13] and [14].

66 Y.-Y. Chen, C. Chen, and C.-Y. Huang

Fig. 1. Design model of a service availability application

3 Problems to Overcome

Despite the simple system design described above, TCP itself is a complicated proto-
col and was originally not designed for such usage. Projects of TCPCP and TCPCP2
are still advancing and some problems still leave to be solved [13][15]. In this section,
we describe two of them and their corresponding solution, and show the simulation
results using ns2 simulator.

3.1 Delaying Acks on Server Side

Consider the situation that the data only flows from the client to the server. Assume
that the fail occurs between the last checkpoint and the next checkpoint, as shown in
Fig. 2. During the last checkpoint and the fail, the client’s TCP may have sent some
data with sequence number 4, 5 and 6 out of its send buffer to the server, and the
server’s TCP may have acknowledged the data in its receive buffer. Therefore, the
client will clean the data with sequence number 4, 5 and 6 in its send buffer. The
problem arises when the standby server tries to resume the service using the last
checkpoint data with sequence number 1, 2 and 3 during a failure, since the client’s
TCP send buffer contains no data with sequence number 4, 5 and 6. The client is
unable to retransmit the data with sequence number 4, 5 and 6 to the server.

A possible solution is to delay the server from sending acks to the client until the
server application has retrieved the received data and reached the next checkpoint. That
is, the acks will only be sent from server every checkpoint interval. By this it is ensured
that even the server fails between checkpoints and the standby server is resumed to the
last status, the client’s TCP send buffer still contains the data that need to be retrans-
mitted. The drawback of such solution is that the estimation of round trip time (RTT)
at the client would be affected, which may lead to a TCP throughput degradation.

We simulate the delay acks by modifying ns2 simulator to support this mechanism. A
client node and a server node are setup, and between them is a router that forwards the
packets from the client to the server. The client keeps sending ftp data to the server.

 Experience in Developing a High Availability and Continuous TCP 67

Fig. 2. Illustration for the checkpoint problem when server fails between checkpoints

The throughput is measured under different delay intervals. The results are shown in
Fig. 3(a)~3(c), where the link rates are set to 0.5, 1 and 2Mbs, respectively, and the
legend on the upper-right corner in each figure is sorted in the sequence of the curves
from top to bottom. It is interesting to observe that the throughput does not decrease
sharply unless the delay interval is increased to a certain value, and such intense de-
crease is at least half the throughput of the best curve (i.e., no checkpoint). The results
show that the delay acks mechanism degrades the TCP performance significantly

(a)

Fig. 3. The throughput when different checkpoint intervals are used. The network link rates are
set to 0.5, 1 and 2 Mbps. (a) Link rate = 0.5 Mbps. (b) Link rate = 1 Mbps. (c) Link rate = 2
Mbps.

68 Y.-Y. Chen, C. Chen, and C.-Y. Huang

(b)

(c)

Fig. 3. (Continued)

when the acks are postponed more than 40ms, 15ms and 10ms for the link rates 0.5, 1
and 2Mbps respectively. Therefore, the checkpoint interval would have to be bounded
within a very small range if delay acks solution is to be applied.

3.2 Congestion Window Prediction

If the failover should happen, the checkpoint data used to resume the service is, after
all, not so fresh. More specifically, the congestion control data recorded in the SI may
no longer reflect the current network condition. Consequently, an improvement may
be considered by allowing different strategies to be applied to the congestion control
status of the resumed TCP connections.

 Experience in Developing a High Availability and Continuous TCP 69

We conduct the simulation using ns2 and compare the performance when the fol-
lowing strategies are used to set the congestion window size of the resumed TCP
connection.

 slow-start. Set the congestion window to one.
 reuse. Use the congestion window size recorded in the last checkpoint.
 predict. Set the congestion window to the well-predicted size.

In this paper, we propose to use the predicted congestion window size by

Congestion Window Sizepredicted = 1.22/(RTT*sqrt(Loss)), (1)

which can be simply derived from [16].

(a)

(b)

Fig. 4. The growth of sequence vs. time when different congestion window is set to the re-
sumed TCP connection. (a) Delay box loss rate = 0~0.01. (b) Delay box loss rate = 0~0.09.

70 Y.-Y. Chen, C. Chen, and C.-Y. Huang

To simulate the network condition, we put a delay box between the server and the
client. The link bandwidth is 2Mbps. The server sends ftp traffic to the client for 40
seconds. At the time 10, 20 and 30 secs, the traffic is interrupted and resumed again.
The reuse strategy described above uses the congestion window size retrieved 0.5 sec
before the interruption to resume the connection. Figure 4(a) and 4(b) show the com-
parison results when the loss rate of the delay box is set to 0 ~ 0.01 and 0 ~ 0.09,
respectively (in the simulation, a sequence number represents a sent packet). It can be
observed that when the loss rate is low (Fig. 4(a)), the slow-start strategy obviously
has the slowest growth of sequence number. On the contrary, when the loss rate is
high (Fig. 4(b)), the gap between slow-start and the other two is reduced. It can also
be observed, although not obvious, that the predict strategy seems to outperform the
reuse strategy when the loss rate is high. This is because the higher loss rate also
means that the network condition is more unstable. Therefore, a well-predicted con-
gestion window may lead to better performance than reusing the old one.

4 A Simple Service Availability Application

It can be anticipated that tradeoff exits between the degree of service availability and
the service performance. The more frequent checkpoint synchronization between
active and standby nodes, the less processor time is spent on the original service.

We develop two versions of a simple file transfer program in order to observe the
difference in performance, one with the service availability using OpenAIS and
TCPCP2, and the other without. The program starts to send a file to the client once
the connection is established, and terminates after the completion of the transfer.

Fig. 5. Comparison of transfer time needed for different file sizes when the program is with and
without service availability. The checkpoint interval is set to 0.5 sec.

Figure 5 compares the time needed to transfer files of different sizes to the client,
with the checkpoint interval of the service availability version set to 0.5 sec. The
result shows that on average, the service availability version takes 6.3% more time
than the ordinary version to transfer a file. Figure 6 shows the time needed to transfer
an 8Mbytes file to the client, with different checkpoint interval settings. It can be
observed that the major decrease in transfer time is when the checkpoint interval is set

 Experience in Developing a High Availability and Continuous TCP 71

from 0.1 to 0.2 sec, and the decrease attenuates as the checkpoint interval increases.
Figure 7 depicts the growth of sequence number when there are no checkpointing,
checkpoint interval = 0.5 sec and checkpoint interval = 0.3 sec, respectively. For the
case with checkpoint interval = 0.5 sec (red cross curve), the growth of sequence
number is suspended for a tiny moment at 0.5+ sec because the program is retrieving
and setting TCP SI. This can also be observed for the case with checkpoint interval =
0.3 sec at 0.6+ sec (green dot curve).

Fig. 6. The time needed to transfer an 8 MBytes file when checkpoint interval is 0.1 ~ 0.5 sec

Fig. 7. The growth of sequence number during 0.45 ~ 0.75 sec

5 Conclusion and Future Works

In this paper, we share our experience in developing high availability and continuous
TCP using open source OpenAIS and TCPCP/TCPCP2. We show that by delaying

72 Y.-Y. Chen, C. Chen, and C.-Y. Huang

sending acks from the server to the client until after the server application has re-
trieved the received data and finished checkpointing, the data in the client’s send
buffer can be prevented from being cleared, and thus making TCP recoverable using
the last checkpoint. However, the delay can not be too long otherwise the throughput
would be severely impaired. We also show that when TCP connections are resumed
from the checkpoint data, the congestion window could be well-predicted and set, to
improve or preserve the original performance. Even though our simple congestion
window prediction function shows minor performance improvement, a more compli-
cated predication function will be invested in the future for further performance
improvement. Finally, we display the performance result of a simple file transfer
application that uses OpenAIS and TCPCP2 to achieve its service availability. The
numerical results show that on average it uses 6.3% more times than the ordinary
version to transfer a file when checkpoint is performed every 0.5 second.

The numerical results and the practical implementation presented in this paper pro-
vide only a partial inspection on the practicability of service availability TCP-based
services. We will further our research on how to strengthen the weaknesses mentioned
in [13] and [15], to facilitate the development of robust service availability TCP-based
services.

Acknowledgments. We would like to thank Chih-Chiang Yang, Hsin-Fan Chen,
Ching-Chun Kao and Lo-Chuan Hu for their support on information about ns2 and
programming skills.

References

1. Service Availability Forum. Standards for a Service Availability Solution. http://
www.saforum.org/about/solution_backgrounder.pdf

2. http://developer.osdl.org/dev/openais/
3. http://tcpcp.sourceforge.net/
4. http://tcpcp2.sourceforge.net/
5. http://www.isi.edu/nsnam/ns/
6. SA Forum Application Interface Specification AIS B.01.01
7. S. Brossier, F. Herrmann, and E. Shokri. On the Use of the SA Forum Checkpoint and

AMF Services. In Proceedings of International Service Availability Symposium 2004
(ISAS 2004), May 2004.

8. SA Forum Application Interface Specification: Availability Management Framework SAI-
AIS-AMF-B.01.01

9. SA Forum Application Interface Specification: Checkpoint Service SAI-AIS-CKPT-
B.01.01

10. B. Kuntz and K. Rajan. MIGSOCK: Migratable TCP Socket in Linux. Technical Report

TR-2001-4, Carnegie Mellon University, Feb. 2002.
11. How to Use TCPCP2.http://prdownloads.sourceforge.net/tcpcp2/how_to_use.pdf?download
12. Open Source Development Labs, Carrier Grade Linux Requirements Definition Docu-

ments V3.2. Feb. 2006.
13. W. Almesberger. TCP Connection Passing. In Proceedings of Ottawa Linux Symposium

2004, vol. 1, pp. 9–21, July 2004.

 Experience in Developing a High Availability and Continuous TCP 73

14. F. Leite. Load-Balancing HA clusters with No Single Point of Failure. In Proceedings of
the 9th International Linux System Technology Conference (Linux-Congress 2002), pp.
122–131, Sep. 2002.http://www.linux-kongress.org/2002/papers/lk2002-leite.html

15. T. Ikebe, Y. Kawarakaki, and J. Yamanaka. Practical TCP Session Take-over Method for
High-availability Network Service. In Proceedings of 6th Asia-Pacific Symposium on In-
formation and Telecommunication Technologies, 2005 (APSITT 2005), pp. 1–6, Nov.
2005.

16. J. Mahdavi and S. Floyd. TCP-Friendly Unicast Rate-Based Flow Control. Technical note
sent to the end2end-interest mailing list, January 1997.

Client-Centric Performance Analysis of a

High-Availability Cluster

Jesper Grønbæk1, Hans-Peter Frejek2, Thibault Renier1,
and Hans-Peter Schwefel1

1 Networking and Security, Department of Electronic Systems
Aalborg University, Fredrik Bajers Vej 7, DK-9220, Aalborg

{ljgr03,tr,hps}@kom.aau.dk
2 Fujitsu Siemens Computers GmbH
Otto-Hahn-Ring 6, D-81739 München
peter.frejek@fujitsu-siemens.com

Abstract. High-Availability as provided by fault-tolerance mechanisms
comes at the price of increased overhead due to additional processing
and communication, which may be a limiting factor to service perfor-
mance as perceived by the clients. In order to quantify this impact and
to understand the underlying mechanisms for performance degradation,
this paper presents an approach for the analysis of client-centric perfor-
mance metrics in cluster-based service deployment scenarios using High-
Availability Middleware. The approach is based on a combination of
measurement based empiric analysis under synthetically generated load
patterns and simple queueing models, that allow for the extrapolation of
empiric results and are used to gain insights into the underlying causes
of the empiric performance behavior. The empiric and numerical results
in the paper are based on an abstracted SIP-like call control service as
deployed in future version of IP-based cellular networks, running on a
two-node cluster system.

1 Introduction

A large part of electronic end-user services today rely on being highly available
and reliable. Services that cannot meet these high dependability requirements
can have a negative impact on user experiences, leading to unnecessary expenses,
or in worst case even to critical accidents. To ease the task of developing and
deploying services in a highly dependable manner, High-Availability (HA) mid-
dleware layer solutions have been emerging on the market to offer generic and
standardised interfaces to the HA services in the platform [1]. Using these inter-
faces, an end-user service can be executed in a fault-tolerant manner on top of
a cluster architecture, which allows to utilize redundancy while the details are
hidden to the end-user service itself. Figure 1 illustrates such an architecture for
an end-user service which is accessed by remote clients. In this HA cluster ap-
proach, the end-user clients are not aware of the presence or the specific type of
utilized fault-tolerance mechanisms, but they can only judge the service quality

M. Malek et al.(Eds.): ISAS 2007, LNCS 4526, pp. 74–93, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Client-Centric Performance Analysis of a High-Availability Cluster 75

End-user client
WAN

Client

Client

Client

Other Clients

Requirements

HA end-user

service

End-user

application

HA Cluster platform

Node 1Node N

HA Services
Database
Shared

memory

Process

management

Reliable

communication

...

HA end-user services

IP telephony

Process

monitoring

ERP

services
E-Commerce

...

HA middleware

IP alias

Fig. 1. A HA cluster paradigm supporting a broad range of end user services with
requirements for high dependability

by their local perception of the end-user service, typically measured by response
times, fraction of successful transactions, or similar metrics.

Providing High-Availability requires additional Hardware and Software, while
the latter can reduce or bound achievable performance as perceived by the end-
user clients. The performance impact thereby strongly depends on end-user ser-
vice design choices as well as configuration options of the HA cluster: e.g., which
information is stored redundantly in order to be present despite node failures
(design decision of end-user service) and how is the redundantly stored in-
formation accessed (typical configuration option of the HA middleware, e.g.
asynchronously or synchronously).

Consequently, adequate approaches to analyze this performance impact are
required to make quantitatively substantiated design decisions during the devel-
opment of the end-user service as well as during its deployment. Such analysis
must consider the end-user service properties, the middleware configuration op-
tions and the networking scenario. This paper introduces a methodology for
client-centric performance analysis of a cluster-based end-user service and pro-
vides performance results for the example of a SIP-type call control end-user
service. This service has been chosen due to the relevance of HA Requirements
to commercial telco operators, now increasingly moving to IP-based solutions, as
emphasized through the ongoing market introduction of the IP-based Multime-
dia Subsystem (IMS) [2]. Furthermore, such a call control service utilizes certain
interesting Middleware functionalities, including replicated data storage, inter-
process communication, and communication to end-user clients via dispatchers.

The approach in this paper is based on experimental measurements comple-
mented by analytic models: the experimental measurements are obtained from

76 J. Grønbæk et al.

syntheticly generated load (incoming requests) created in order to mimic large
client populations as typical in telco networks. An abstracted version of the call-
control end-user service is implemented on top of the HA cluster platform and
middleware. The analytic models are based on simple M/M/1/K-type queueing
models in series with a constant delay stage, which turn out to rather well approx-
imate the experimental system response times. Purpose of the analytic models
is to: (1) interpolate and extrapolate performance metrics beyond the measured
points of the parameter space (which also includes configuration options), and
(2) to obtain insight into the performance relevant mechanisms within the cluster
system. Regarding the latter, a detailed inspection of the model properties and
the deviations of the predicted performance behaviour leads in the considered
example to the adoption of load-dependence service times in the queueing model.
Further enhancements can be expected from non-exponential service time dis-
tributions. Via the use of Phase-type or Matrix-exponential distributions [3,4],
the queueing models thereby stay tractable at low computational complexity.
Finally, an outlook on a more complex tandem queueing model, that allows to
capture the impact of the specifics of the different individual middleware func-
tionalities is described.

In summary, the main contributions of this paper are: (1) the definition of the
overall performance analysis methodology and the identification of a relevant
end-user service example. (2) The description of the measurement approach, in
particular focusing on load generator and monitoring agents, see Sect. 3. (3)
The development of analytic models including the insights obtained from the
additional model accuracy at the price of increased complexity, see Sect. 4. (4)
The empirical measurement results, which serve for illustration in this paper, but
do provide some practical experience to the community nevertheless, see Sect. 5.

2 Performance Analysis Methodology

The methodology developed and applied in this paper uses a combination of ex-
perimental measurements and analytic (stochastic) models. The overall approach
is outlined in Fig. 2. The performance analysis takes its starting point in a test-
scenario. A test-scenario defines performance metrics to evaluate in relation to
one or more specific configuration options. Each studied configuration defines a
test-case. Considering individual test-scenarios and varying load conditions of
the platform, test-cases can be executed while measurements are collected for
subsequent off-line analysis. To extrapolate the analysis results and keep the re-
quired number of experimental measurement runs low, analytic models are used
during the off-line analysis stage.

2.1 Stages in Performance Analysis Methodology

The performance analysis methodology can be described from three main stages:

I - HA end-user service model: The end-user service model is a prerequisite
for this performance analysis. It defines which HA services are used in the cluster

Client-Centric Performance Analysis of a High-Availability Cluster 77

HA cluster platform

Service model

(SIP/Game)

Measurement tools

(Monitoring agents)
Load

generator

Test tools

Offline analysis tools

Configuration

options
Measurement

data

Performance

results
HA cluster

model
Offline processing

Presentation

of results

Log files

Generated

dialog rate

Fig. 2. Overview of the tools constituting the platform for performance analysis

platform and how they are invoked. In addition the model defines service end-
user metrics and associated requirements for performance and dependability.
This allows system integrators to evaluate how end-user clients are affected given
varying configuration options.

In practice the model is used to configure/develop an end-user service im-
plementation used in a measurement platform. Further the model assumptions
form the basis for the traffic models in the analytical approach.

II - Performance measurements: Measurement based analysis plays a very
important role in the analysis approach. Besides evaluation of performance, the
measurements provide a basis to study the behaviour of the platform and the
end-user service in operation. This provides useful information to construct and
verify models for the analytic approach. In addition basic measurements are
needed to parametrize models. As a result this performance analysis method is
dependent on a good measurement platform to deliver the desired measurements.

III - Extrapolation analysis: An analytic system model provide means to
extrapolate basic measurements to extended analysis cases. Such models encom-
pass the HA cluster system and the HA end-user service. The model abstraction
level and type may depend on the performance metrics and HA cluster config-
urations being studied. The approach in this work is solely based on queueing
network models where basic measurements are extrapolated to give HA platform
performance metrics under varying load conditions.

78 J. Grønbæk et al.

2.2 Generic View on Middleware Functionality

The actual experimental analysis, conducted in this work, is executed on a spe-
cific HA cluster and middleware platform. However, in order to allow for a generic
categorization of end-user services and in order to identify analytic modeling sub-
blocks which can be applied generically, a set of basic HA services is identified
in this subsection. These HA services are primarily derived from the SAF spec-
ifications [1] and the comprehensive HA cluster based platform RTP4CS [5]. In
addition other popular HA cluster solutions have been reviewed [6,7,8] for their
similarities and differences in terms of offered HA services. While the solutions
differ in the amount of functionalities and the methods used to enable them,
there are great similarities in the types of services offered to manage the cluster
and bring HA to the end-user service. A set of key HA services identified are:

Process Management (PM): Responsible for fault tolerance of service pro-
cesses running in the cluster.

Process Communication (PC): Enables highly dependable Inter Process
Communication (IPC) between processes in the cluster including both node
local processes and processes situated in other nodes. Could typically be
message based communication.

Context Management (CM): A highly dependable shared memory entity
that decouples end-user service data from the end-user services. Enables
data to survive a breakdown of the end-user service itself.

Cluster Base (CB): This HA service is responsible for maintaining member-
ship of nodes in the cluster. Further it ensures fault tolerance by monitoring
availability of nodes and cluster interconnects to enable recovery operations.

In addition the following service has been considered in relation to RTP.

Dispatchers: Dispatchers are processes used to handle cluster external commu-
nication from clients. They are responsible for distributing incoming mes-
sages from clients to the processes in the cluster. This functionality may
be useful for load balancing and to add support for different high layer
protocols.

2.3 HA End-User Service Model Specification

Typical candidate services for High-Availability implementations include trans-
action-based ticket booking systems, revenue creating entertainment applications
like server-based multi-player online games, and telecommunications services.
The latter includes SW-based switching and call control implementations. Most
of them however operate in a client-server like fashion, in which the requests
of the clients trigger some processing and lead to some type of session state
which needs to be maintained in a fault-tolerant manner. Hence, all of these
application types use similar sets of HA middleware functionality. However, the
actual details on e.g. message sizes, communication volumes, and frequency of
access to HA middleware interfaces will obviously vary.

Client-Centric Performance Analysis of a High-Availability Cluster 79

Due to their historical relevance for the development of HA middleware, we
use a call control server as the service example in this paper. As call control in
IP-based environments is gaining increasing attention, we use abstracted message
flows inspired by the Session Initiation Protocol (SIP) [9] as e.g. used with some
variations in IMS [2]. From SIP, a transaction can be defined as one request
and one or more responses. Additionally, in SIP a dialog is defined to describe a
sequence of transactions each belonging to the same notion of a session.

To simplify complexity for the preliminary implementation and analysis of
the service, in this work a simplified SIP dialog model has been created. Con-
sequently it is referred to as a SIP-like end-user service. The server-part of this
SIP-like service consists of two processes: A proxy process to handle all dialogs
and a location server process providing location information of the clients, here
also called User Agents (UA) (See Fig. 8).

The service model is described considering a rough simplification of a call-
setup and release dialog including two instant messages being sent. The dialog
is depicted in Fig. 3. In case of the INVITE transaction intermediate responses
(Trying and Ringing) are not considered. Also in this simplification only two
parties are involved in mimicking a caller UA, the HA cluster and the called
UA. The four transactions lead to three different job classes in the HA cluster.
A job class refers to one or more transactions where the same actions are being
executed in the HA cluster. In this simple sequence of transactions, actions
refer to interprocess communication with a location server process and usage of
context management to store dialog states. Clearly, a real deployment of a call
control server would handle multiple kinds of dialogs with varying requirements
for resource and context usage. This should be considered in future work.

As we assume here that the four transactions within a dialog are created
in sequence with no intermediate delay on the user-side, only one parameter
is required for the traffic model, namely the generated Dialog Rate (DR) ’Λ’.

INVITE

200 OK

MESSAGE

200 OK

MESSAGE

200 OK

BYE

200 OK

Synchronous call to location server

Context creation and context save

Send reply

Load context

Save context

Send reply

Load context

Release context

Send reply

Actions in transaction:

Class #1

Class #2

Class #3

Fig. 3. SIP-like dialog and corresponding HA service actions

80 J. Grønbæk et al.

It defines the rate at which new dialogs are initiated. Assuming large user popu-
lations which independently of each other initiate dialogs, the stochastic process
of the dialog initiation instances can be approximated by a Poisson process,
which is fully characterized by the single rate parameter.

3 Measurement Platform

To realise performance measurement results from specific performance
test-scenarios, means must be established to conduct performance tests. This
challenge consists of creating an environment where the HA cluster in a tested
configuration can be loaded realistically. Further, measurements must be col-
lected with low overhead to minimize the impact on the performance results.

In this work measurements have been considered from an off-line analysis ap-
proach. I.e. measurement samples are made during a test period whereafter they
are collected centrally for subsequent analysis. In the present case the approach
is to define a given configuration, generate measurement data with test tools
and process the results subsequently (see Fig. 2). An advantage of the off-line
approach is that no CPU resources are required to parse, process and transfer
measurements. The cost is typically the amount of memory required to store
raw measurements. However memory is considered a cheap resource. Therefore
off-line analysis potentially reduces overhead significantly [10].

Measurements are collected by dedicated applications developed in this work
called monitoring agents. Agents in each node sample performance variables and
store them locally. To ensure that measurements from all nodes are comparable
in time all nodes are located in the same NTP synchronized domain. As the
measurement platform operates in the same LAN as the used NTP time server
a precision in the synchronization of 0.5 ms to 2 ms can be expected for each
node [11].

A measurement platform consists of a HA cluster test-bench and a client node.
The client node is responsible for mimicking the load from thousands of clients
making use of the end-user services in the cluster. Hence it is defined as a load
generator. These two entities are depicted in Fig. 4.

In this work the SIP-like end-user service is used to define the capabilities
of the load generator and also the initial configuration of the HA cluster. The
SIP-like end-user services and the SIP-like clients are emulated in the load gen-
erator and the cluster by simplified implementations that make use of the HA
middleware services and conduct the communication and platform operations in
a call setup and release dialog. The SIP-like stub implementations can then be
configured to support the test-scenarios to be conducted.

In the execution of a test-scenario the load generator has the role of con-
trolling the measurements in the distributed system. It uses a control channel
to send commands to nodes i.e. when to start sampling. The control channel
uses the public network but is not active during performance tests. Input to the
load generator is the dialog rate ’Λ’. The load generator can then start a test-case

Client-Centric Performance Analysis of a High-Availability Cluster 81

Secondary
Load

generator Primary

node
Load

Control channel

NTP synchronized

domain

- SIP End-user service

- Test-scenario

Cluster resource

metrics

CPU

Mem

Interconnects

Public NW

HA Services

Context: in, out

Msg: in, out

Resource

consumption

...

SIP-like clients

SIP like end-

user services

and HA

services

Generated

Dialog rate

End-user metrics

Dialog rate

(throughput)

Dialog response time

Dialog fail fraction

Fig. 4. Measurement platform with NTP synchronized nodes

execution by sending a notification to the cluster nodes to start measurements
where after it generates the desired load.

These principles for the measurement platform are general. However, its im-
plementation is specific to the HA cluster being studied. In this work the Fujitsu
Siemens Computers (FSC) Reliable Telco Platform (RTP) for Linux has been
analysed.

3.1 Generating Load

Load generators need to be able to generate the desired timing behavior (in
our case a Poisson process for dialog starts) for the traffic patterns as created
by potentially thousands of clients. The emulated clients will be competing for
the same resources in the load generator which may impact the resulting traffic
patterns. Under these conditions two aims are relevant: accuracy and efficiency.
Accuracy of the load generator is important to avoid measurements being af-
fected by the load generator itself. Requests should be transmitted as close to
their scheduled time as possible to avoid load generator delays adding noise to
measurements. Efficiency must ensure that many transactions can be executed
concurrently to deliver the required load towards the cluster and avoid the load
generator being the bottleneck.

In this work a load generator has been constructed considering these aspects.
Resulting design choices have been to (1) avoid high level programming languages
where e.g. garbage collectors could affect execution, (2) avoid a threading based
design where overhead is introduced for CPU context switching. In addition,
inappropriate scheduling and management of concurrent resources may degrade
efficiency[12]. Instead an event-driven design has been introduced where a single
threaded processing loop handles dialog generation, send, receive, update and

82 J. Grønbæk et al.

time-out events. The challenge is here to schedule the processing of events to
avoid delays. In this work an empirical solution has been used to determine a
scheduling policy.

In all conducted test-scenarios the load generator has been capable of load-
ing the cluster to its limits. However, the load generator does impose a mea-
surable impact on the dialog response time (DRT). For instance at a rate of
1666 dialogs/s the cluster is averagely loaded to a mean CPU consumption of
55% and average dialog response times are 2165 μs. In this case the delay in
the load generator is measured to approximately 160 μs. To compensate for this
delay it is subtracted from the measured client-based response times. More on
the specific implementation can be found in [13] and some of these principles on
load generation are generally discussed in [14].

3.2 Monitoring Agents

As mentioned before performance measurements are gathered by monitoring
agents in all of the nodes. A monitoring agent in the load generator collect
statistics about dialogs to register the successfully executed dialogs (through-
put), fraction of failed dialogs, and the dialog response time (DRT). These are
the service end-user metrics considered in this service example.

In the cluster nodes performance measurements of cluster resource metrics
like CPU, memory and network interfaces are needed for an understanding of
the cluster-internal performance-relevant procedures. Existing tools can readily
deliver such measurements like ps, top and mpstat. However, these tools are
designed to provide instant and user friendly system statistics and are as such not
very efficient. Instead dedicated node monitoring agents have been developed.
En each cluster node they collect statistics from the /proc/ file system of Linux.
This is basically a collection of file pointers to memory areas where the OS kernel
provides direct access to kernel performance counters. Consequently they can be
read with low resource overhead which has also been demonstrated in [10] and
[15]. As previously emphasized, samples are not parsed but just stored directly
in memory for later processing.

The node monitoring agents can be set to different sampling rates. For the
experimental system considered in Sect. 5, at sampling rates of 100 Hz the
node monitoring agent consumes on average less than 0.5 % CPU making them
sufficient for this purpose.

4 Analytic Response Time Models

As dialogs from different concurrent calls may overlap at the cluster-based SIP-
like call control server, they compete for the same processing and communica-
tion resources, hence an approach based on queueing models appears intuitively
worthwhile. Furthermore, the cluster system also uses actual physical queues
internally. In this section, a basic queueing model, a load-dependent extension,
and a tandem queueing model are considered for extrapolation analysis.

Client-Centric Performance Analysis of a High-Availability Cluster 83

4.1 Basic Queueing Model

The basic queueing model is presented in Fig. 5 and consists of a deterministic
delay stage (M/D/∞ queue) followed by an M/M/1/K queueing system, hence
it requires three parameters for its calibration: the duration of the deterministic
delay, Cd, the exponential service rate, μ, and the buffer size K. The rational to
introduce the deterministic delay stage is to allow to introduce a lower-bound
on the transaction response times. With this model, the entire cluster is seen
as a black-box without considering its multiple processes and multi-processing
capabilities. The queueing system works on the level of transactions whereas
client-centric performance metrics are defined at a dialog level. The exponential
assumptions in the finite M/M/1/K queue are approximately correct for the
arrival process of the call-control example in scenarios of higher load, namely
with many overlapping dialogs; note that the dialog arrival rate is assumed to
be Poisson, but the individual four transactions within a dialog are actually
deterministically spaced (here with zero spacing in between). In order to in-
clude the sequence of dependent transactions within a dialog in the model, the
mapping from dialog processing to transaction processing could be performed
by introducing a feedback from the output of the M/M/1/K queue, as shown
dotted in Fig. 5. However, as we are interested in high-load scenarios with many
overlapping dialogs, this feedback is not considered, but instead the model input
is on a transaction basis, where λ = 4Λ.

Note that this model basically models transactions. This is in line with the
implementation of the simple SIP-like end-user service, which does not block
access to the service at a dialog level but at the transaction level due to the
finite queue. Thus the model correctly captures this aspect. However, a real end-
user service implementation would be expected to block at the dialog level when
resources become sparse, making this basic model insufficient.

The assumption of exponential service times in the M/M/1/K stage will be
revisited later.

Closed-form expressions for the mean system time E[S] for the M/M/1/K
model can be found in any standard queueing theory book:

E[S]mm1k =
E[X]

λ(1 − PB)
=

ρ + ρK+1(Kρ − K − 1)
λ(1 − ρK)(1 − ρ)

, ρ =
λ

μ
. (1)

E[X] is the mean queue length an PB is the blocking probability. As the model
above works on transaction level, the mean dialog response time results as
DRTmean = 4(E[S]mm1k + Cd).

Parametrization of Model: Three different approaches have been studied for the
parametrization of the basic model using basic measurements from the mea-
surement platform. (1) Black-box (BB) measurements are only based on client
metrics. The system is considered in a low load situation (here at 1.1 dialogs/s),
where the probability of queueing is low. The parameters of the delay stage Cd

then results as the minimum of the measured transaction response times. The
mean service time x̄ of the M/M/1/K system is then the estimated mean of the

84 J. Grønbæk et al.

M/M/1/K - queuing system

Delay

stage

K

Feedback

Fig. 5. A basic M/M/1/K queueing model with an additional delay stage

transaction response times shifted by their minimum. K, however, is not easily
obtainable from measurements, and not at all obtainable from low-load mea-
surements. Hence, it is calculated from knowledge of configured queue lengths
of the incoming message queue in the cluster (which was identified via empirical
experiments to be the bottleneck in the current service example on the used
cluster implementation): The queue length is 400 KB, and an individual request
consumes 500 B, hence K ≈ 800.

To potentially provide a better estimate of x̄, (2) White-box (WB) measure-
ments are employed as the second calibration approach. They are based on cluster
internal delay measurements of single transactions. The measurements are made
in a medium load situation where the cluster is loaded approximately 50%. Rea-
sons for this choice will be provided when discussing load-dependence aspects.

As a third method, a (3) Least-Square (LS) approach based on the resulting
dialog response times is used to fit x̄ and Cd. This parameter estimation approach
is not targeted at extrapolation as it requires many individual measurements.
However it enables a best case comparison of the model capabilities in relation
to measurements.

4.2 Load-Dependent Model

Figure 6 depicts the empirical job time distributions as obtained by cluster-
internal white-box measurements for the four different transactions in a dialog.
Only Transaction 1 (dotted) is significantly different. In addition to context
access it also includes the request to the location database in the call control
server. The distributions are shown for low load and high load, where the job
times are generally shorter in high-load scenarios. A likely explanation for this
behavior is the superscalar architecture of the processors and the typically in-
creasing efficiency of caching mechanisms for highly repetitive code execution.
Similar results have been considered in [16].

In order to mimic the experimentally observed load dependence in a simplified
manner in the queueing model, a threshold based service rate adjustment is in-
cluded in the M/M/1/K model, making the service rate queue-length dependent:

μ(n) =
{

μ1 for n < Q
μ2 for n ≥ Q

. (2)

Client-Centric Performance Analysis of a High-Availability Cluster 85

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5
High load, DR: 3055.5556

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5
Low load, DR: 277.7778

 Trans. 1: μ=189.4

Trans. 2: μ=53.52

Trans. 3: μ=52.33

Trans. 4: μ=56.42

Trans. 1: μ=189.6

Trans. 2: μ=35.91

Trans. 3: μ=35.33

Trans. 4: μ=38.47

Fig. 6. The job time distribution of processing a request

Parametrization of the Load-dependent Model: In this case, the WB approach
is needed for parametrization. μ1 is still defined from job-time measurements
at medium load where μ2 is measured at high load to improve results when
queueing (and for the model an accurate service time) has a significant impact
on mean system time.

The threshold Q is chosen heuristically at Q = 10.

4.3 Extended Tandem Queueing Model

The basic models are limited in relation to considering a broad range of configu-
ration options. Further they do not provide insight into the interaction between
HA cluster services, HA end-user services and their consumption of system re-
sources. These restrictions limit the kind of analysis than can be conducted. Con-
sequently this is a motivation to consider extending the basic queueing model
into a queueing network.

A very simple example is presented in Fig. 7. In this case the delay stage has
been split into networking nodes and dispatcher processes. Dispatcher processes
and the SIP-like service process are defined as M/M/1 queueing systems. This
exemplifies how processes potentially could be modelled. The particular queueing
network is called a tandem queueing network as there is only one route for the
jobs to follow.

The mean transaction time then follows as E[Stotal] = E[Sdpi] + E[Ssip] +
E[Sdpo]+2E[Snw]. The individual expected values are approximated by assuming
product form and Poisson arrivals in each stage.

Parametrization of Model: As a drawback of the increased power-fullness of
the model, the number of parameters is increased: each queueing system in the
queueing model needs to be parametrized individually via white-box measure-
ments. Service times for the SIP-like service have already been discussed in the
previous sections. Mean delays from the network can be estimated by round-trip
time measurements. In this work job-time distribution measurements of the dis-
patcher have not been available. Instead a very rough approximation of its mean

86 J. Grønbæk et al.

Queuing network

dpi

RTP queue

Service queueUDP queue

nw sip

dponw

Fig. 7. Tandem queueing network

service time (assuming E[Sdpi] = E[Sdpo]) can been derived, from residual mean
service times in a low load situation, when knowing the other mean service times
in the system. This estimator also includes other delays caused e.g. by the load
generator.

5 Measurements and Model Results

With the implemented measurement platform and a model basis, specific mea-
surement scenarios can be conducted and the analytic modelling approaches can
be validated.

5.1 Measurement-Based Results

The RTP HA cluster environment, used for measurements, is specified in Table 1
and its deployment is depicted in Fig. 8. It consists of a 2-node setup with a
primary and a secondary backup node. In the subsequent results we consider
a test-scenario studying varying context replication methods. Context Manage-
ment is handled by a master process at the primary node and a backup process
on the secondary. The replication method defines how context is copied to the
secondary node. While more options exist, only synchronous, asynchronous and
no replication configuration options are considered in this section. In the asyn.
replication configuration the end-user service stores the context without ver-
ifying that it has been replicated correctly before continuing. In case of syn.
replication the end-user service process is blocked until replication completes.
This allows for error handling in case the replication fails. With no replication
only the master process is active and no copying is conducted.

For extrapolation analysis mainly the end-user metrics have been studied in
this work. Consequently only these results are presented here.

In the presented test-scenario a test-case is conducted for each setting of the
context replication mode. For each test-case a set of test-runs are conducted
each defining a specific load scenario. For these initial results each test-run has

Client-Centric Performance Analysis of a High-Availability Cluster 87

Table 1. Basic cluster hardware and software configuration

Cluster configuration

Size One primary and one secondary node.

Processor and Mem-
ory

2-way Intel Xeon class server nodes, 6.256 GB

Interconnects 1 Gigabit Ethernet

Public network 1 Gigabit Ethernet

OS Linux, SLES 9.0 - Kernel 2.6

Software Fujitsu Siemens RTP V2.1A00 and PRIMECLUSTER V4.2A00

been conducted for 30 seconds where the first 5 seconds are a warm-up interval
not used in the results. In a majority of the test runs, steady state of the load
generation, resource consumption metrics and client metrics is reached within a
few seconds.

Figure 9 depicts a measurement output of end-user metrics under different
configurations of the context replication mode. The left graph depicts the mea-
sured mean DRT as the generated dialog rate increases. The mean response time
is low until the system utilization gets nearer to 1, where it rapidly grows but
then levels out due to the finiteness of input queues.

Cluster Interconnect

Public Network

Primary node

(active)
Secondary node

(backup)

UDP

Dispatcher

Receive GW

Context

Master

SIP Proxy

service

SIP location

service

Context

Backup

Messaging/

IPC
Send GWReceive GW

Send GW
Messaging

/IPC

HA end-user

service

Dispatcher

PC

CM CM

PC

PCPC

L4: TCP

L3: IP

L2: ICF + Ethernet

Cluster comm.

L1: 1Gb Ethernet

HA end-user

service

Legend

Library

Service process

HA platform

servicePC

Fig. 8. The deployment of the SIP-like service in the HA cluster

88 J. Grønbæk et al.

0 1000 2000 3000 4000

10
1

10
2

Λ [dialogs/s]

R
es

po
ns

e
tim

e
[m

s]
Mean Dialog response time

0 1000 2000 3000 4000
0

1000

2000

3000

4000

Λ [dialogs/s]

T
hr

ou
gh

pu
t [

di
al

og
s/

s]

Throughput

No

Asyn.

Syn.

No

Asyn.

Syn.

Fig. 9. Measured end-user client results at no, asynchronous and synchronous replica-
tion

The effect of high utilization is seen in the right half of Fig. 9 depicting
the throughput. When requests are dropped, the transaction is timed out at
the client, causing the entire dialog to be dropped. In this case this leads to a
decreasing throughput as the generated dialog rate is increased.

Clearly no replication presents the best case in terms of performance. Asyn-
chronous replication uses more resources for the message based reliable com-
munication which increases service times and consequently causing a drop in
the amount of clients which can be handled. Under synchronous replication the
service is blocked while the primary node communicates with the secondary
node. This becomes a bottleneck and clearly motivates for a parallelization of
the service to process other transactions concurrently.

These measurement results can now be compared to extrapolation analysis
conducted in the queueing models.

5.2 Basic Model

The basic model has been parametrized as described in Sect. 4. The parameters
are listed in Table 2.

Table 2. Parameters of the M/M/1/K queue

Black-box White-box LS-est.

Mean service time x̄ 58.25 µs 78.90 µs 78.18 µs

Queue length K 800 slots 800 slots 850 slots

Delay stage Cd 260 µs 260 µs 375 µs

The calculated DRT of different parametrization methods is presented in
Fig. 10 in relation to measurements. The legend also specifies a relative er-
ror, which is the relative deviation of the analytic model from the measurement
result averaged over the 13 measurement points.

Client-Centric Performance Analysis of a High-Availability Cluster 89

Starting with the LS-estimated parameters, a goodmatch between the measure-
ment points and the graph from the analytic model can be observed. Actually at
ρ = 1 the model predicts a maximum throughput of 3198 dialogs/s which matches
the measurements. Thus the model type, a constant delay stage in sequence with
an M/M/1/K queue, seems principally capable of representing the main charac-
teristics of the considered cluster implementation of the call control service.

Moving on to the black-box results there is a clear underestimation of DRT
in all cases. Comparing to the LS-estimated parameters of x̄ it is approximately
20 μs lower in case of the black-box model (Table 2). A large part of this de-
viation may be caused by the approach to attribute the minimum observed
delays completely to the deterministic delay stage, at which no queueing occurs.
Another potential inaccuracy is the assumption of exponentially distributed di-
alog transaction times, which in fact show higher variance in their empirical
distribution.

The calibration problem of determining the delay contributions of the con-
stant delay stage, does not occur with white-box measurements. The white-box
measurements are in this case close to the LS-estimated parameters, providing a
much better extrapolation result. Thus white-box measurements have been used
throughout the further extrapolation analysis cases in this paper.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−3

10
−2

10
−1

Λ [dialogs/s]

D
ia

lo
g

re
sp

on
se

 ti
m

e
[s

]

M/M/1/K Model test

ρ = 1

M/M/1/K, BB extr., err=67.3%
M/M/1/K, WB extr., err=32.1%
M/M/1/K, parm. est., err=11%
Measured response times (asyn.)

Fig. 10. M/M/1/K, extrapolated and parameter estimated results in relation to mea-
surements

The queue size K has been determined from the RTP configuration settings to
a slightly lower value than in the parameter estimate. Possibly there could be an
inconsistency between actual RTP queue length and the configured. There could
also be unmodelled handling of message buffer overflow i.e. retries or other un-
considered delays, in the load generator and the cluster system, during overload
situations.

When looking at the delay stage, there is a significant difference between
the parameters extracted from simple measurements and the parameter estima-
tion approach. The LS-estimate is dominated by a majority of measurements at

90 J. Grønbæk et al.

high load, where also the errors to minimize are most significant. As a result
the first two measurements in the data set have a small significance. However
the measurements in low load situations are important for the other extrapola-
tion approaches. Consequently the cause of the difference between estimates and
extrapolated results are of interest. A part of the explanation could be the pre-
viously presented gain from processing optimizations. As load increases some of
the queueing effect is eliminated by faster job times causing deviation from the
model in low load situations. Clearly, also other processes in the HA platform,
not considered by this model, can have an influence; i.e. the UDP dispatcher
and/or messaging services.

5.3 Load-Dependent Queueing Model

In Fig. 11 the DRT results from the load-dependent model are presented con-
sidering the no replication case and an M/M/1 model with WB parameters
(job-times measured at high load). Now two parameters exist to describe the
load at medium and high load. The model exerts a higher mean DRT at lower
loads in relation to the M/M/1 model while at high loads it corresponds to the
M/M/1 model. In relation to the visual measurement points and the relative
error the load dependent model seems slightly better. These results do not prove
that load dependencies can describe most of the deviations between the basic
model and measurements. However, the load dependency-effects clearly appear,
making this model variant relevant in future improvements of the modelling
method.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−3

10
−2

10
−1

Load dependent server

Λ [dialogs/s]

D
ia

lo
g

re
sp

on
se

 ti
m

e
[s

]

M/M/1, extr., err=23.3%
M/M/1, loaddepend., extr., err=18.2%
Measured response times

Fig. 11. DRT at no replication with a load dependent model

5.4 Extended Tandem Queueing Model

Finally Fig. 12 considers measurement results from the extended model. Not sur-
prisingly the outcome is very close to what the basic queueing model produced.
Clearly the most significant influence on the output comes from the processing
in the SIP HA end-user service, i.e. in the considered service and deployment
example, the bottleneck is the SIP process.

Client-Centric Performance Analysis of a High-Availability Cluster 91

0 500 1000 1500 2000 2500 3000 3500
10

−3

10
−2

10
−1

Queueing network Model test

Λ [dialogs/s]

D
ia

lo
g

re
sp

on
se

 ti
m

e
[s

]

M/M/1, extr., err=163%
QN Jackson, extr., err=160%
Measured response times (asyn.)

Fig. 12. Queueing model, extrapolated results in relation to measurements and an
M/M/1 model

A very rough approximation of the dispatcher mean service time has been
made. In reality neither its service time distribution nor mean service time is
known. This provides reasonable results for the analysis of mean system times
but could potentially cause faulty results in other metrics to consider e.g. re-
source consumption or dialog response time distributions.

To use the basic queueing model, in establishing the performance impact of
overhead from different configuration options, an assessment of the mean ser-
vice time for each configuration is needed. This has successfully been done for
each of the considered cases in Fig. 9. However, it requires reconfiguration efforts
for each configuration to study. As opposed to the basic model the considered
queuing network allows a specification of the processes in the HA cluster sys-
tem. This could potentially be used to consider different configuration options
related to the processes and their interaction. For instance the timely overhead
from a synchronous call between cluster nodes could be established and possibly
allow extrapolation from the asyn. replication to syn replication without addi-
tional measurements. It is also expected that the queueing network model can
handle cases for analysis where the basic model is not sufficient. I.e. when jobs
from transactions are routed to different processes in the the system e.g. in load
balancing cases. This should be studied further in future work with more com-
plex HA end-user services and configurations considering multiple job classes.
In addition the secondary node should be included in the model to consider its
configuration options.

Clearly it is also of interest to include more performance variables than mean
DRT. Assuming these basic models are sufficient, other end-user metrics may
easily be derived from state probabilities. E.g computation of tail probabilities
can be used to define how long users could risk waiting for service. Potentially
the queueing models can also be used to calculate steady state performance
metrics for utilization of CPU, network and disk drives [17].

92 J. Grønbæk et al.

6 Summary and Outlook

Due to the expected future increase of communicating end-user services that ben-
efit from High-Availability (and reliability), the interest in generically applicable
mechanisms and tools to account for fault-tolerance in the deployed service is ex-
pected to rise accordingly; one major candidate that simplifies the development
and deployment of such HA services are cluster solutions with supporting HA
middleware, which provide functionalities such as process management and reli-
able inter-process communication, reliable data storage and access transparently
to end-user clients and to some extend also to network operators. As the price
for the increased availability and reliability are increased costs due to additional
Hardware and Software as well as increased run-time overhead due to additional
communication and processing in the cluster middleware, it is of particular im-
portance, to be able to quantify the impact of certain cluster configurations on
performance as perceived by the end-users.

This paper has introduced a performance evaluation approach which uses
both measurement-based analysis under emulated client load patterns as well as
simple analytic queueing models to characterize the end-user performance be-
haviour. The approach is applied to the example of an abstracted SIP-like call
control service, for which simple analytic queueing models based on M/M/1/K
queues fed by constant delay stages show a remarkable good prediction of re-
sponse time with only very limited calibration effort. Further improvements re-
sults, if load-dependence properties and non-exponential service times are taken
into account, which can be achieved with only introducing few additional model
parameters that are easy to calibrate.

As the call control service has some rather simple structure, although not
uncommon in reality, more complex service patterns may also lead to more
complex analytic models, in particular of specific insights into the impact of
different functionalities of the HA middleware need to be obtained. An approach
for such scenarios has been outlined in Sect. 5.4 using tandem or more complex
queue models, for which the computational effort for calculations of response
times however is rather strongly dependent on details of the model, in particular
the applicability of exponential assumptions. The application of the analysis
approach to more complex service types is however left for future work. Also,
the paper only presents a selected subset of the available measurement results;
more detailed case studies applying the introduced approach and based on the
described tools will be presented in the future.

References

1. Service Availability Forum: Service Availability Forum - Application Interface
Specification. (November 2004)

2. Kim, P., Boehm, W.: Support for real-time applications in future mobile networks:
the ims approach. In: Proceedings of WPMC 03. (October 2003)

3. Neuts, M.: Matrix-geometric solutions in stochastic models. John Hopkins Uni-
versity Press (1981)

Client-Centric Performance Analysis of a High-Availability Cluster 93

4. Lipsky, L.: Queueing theory: A linear algebraic approach. MacMillian Publishing
Company, New York (1992)

5. Fujitsu Siemens Computers: SAForum Implementation Guide. (April 2006)
6. GoAhead: SelfReliant Technical Product Description. (September 2005)
7. Guinn, K., Padghan, S.: Achieving high availability in linux-based cluster environ-

ments. Dell Power Solutions (August 2006)
8. Sun Microsystems: Sun Cluster Overview for Solaris OS. (September 2004)
9. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,

R., Handley, M., Schooler, E.: SIP: Session Initiation Protocol, RFC3261. Network
Working Group. (Hune 2002)

10. Sottile, M.J., Minnich, R.G.: Supermon: A high-speed cluster monitoring system.
In: CLUSTER ’02: Proceedings of the IEEE International Conference on Cluster
Computing, Washington, DC, USA, IEEE Computer Society (2002) 39—46

11. Skoog, P., Arnold, D.: Nanosecond-level precision timing comes to military appli-
cations. COTS Journal 7 (2005)

12. Mosberger, D., Jin, T.: httperf: A tool for measuring web server performance. In:
First Workshop on Internet Server Performance, ACM (June 1998) 59—67

13. Grønbæk, J.: Model based performance analysis of an ha cluster. Technical report,
Department of Electronic Systems, Aalborg University (2007)

14. Jamjoom, H., Shin, K.: Eve: A scalable network client emulator (2003) Eve: A
Scalable Network Client Emulator, University of Michigan Technical Report, Tech.
Rep. CSE-TR-478-03, 2003.

15. Smith, C., Henry, D.: High-performance linux cluster monitoring using java. In:
Proceedings of the 3rd Linux Cluster International Conference. (2002)

16. Engblom, J.: Analysis of the execution time unpredictability caused by dynamic
branch prediction. In: IEEE Real Time Technology and Applications Symposium.
(2003) 152–159

17. Jenq, B.C., Kohler, W.H., Towsley, D.: A queueing network model for a distributed
database testbed system. IEEE Trans. Softw. Eng. 14(7) (1988) 908–921

A Faster Estimation Algorithm for Periodic

Preventive Rejuvenation Schedule Maximizing
System Availability

Koichiro Rinsaka1 and Tadashi Dohi2

1 Department of Business Administration, Kobe Gakuin University
Kobe 650–8586, Japan

2 Department of Information Engineering, Hiroshima University
Higashi-Hiroshima 739–8527, Japan

dohi@rel.hiroshima-u.ac.jp

Abstract. It is of great importance to perform preventive rejuvenation
of software systems with service degradation. In this paper we develop a
faster estimation algorithm for the optimal periodic rejuvenation sched-
ule which maximizes the steady-state system availability. In the case with
unknown system failure time distribution, a non-parametric estimation
approach based on the empirical distribution of system failure time has
been proposed in the literature, but often failed to obtain the exact es-
timates for the small sample cases. We improve the existing availability
estimation algorithm in terms of convergence speed and derive the more
effective estimation scheme based on the kernel density of system fail-
ure time. Throughout simulation experiments, the proposed estimation
scheme is compared with the existing approach and can be validated in
the sense of asymptotic optimality.

Keywords: system availability, software aging, preventive maintenance,
periodic rejuvenation, non-parametric statistics, kernel density estima-
tion.

1 Introduction

When many software systems around us are executed continuously for long peri-
ods of time, some of the faults cause them to age due to the error conditions that
accrue with time and/or load. Especially, the aging-related bugs, which are due to
the phenomenon of resource exhaustion, may exist in operating systems, middle-
ware and application software. For instance, operating system resources such as
swap space and free memory available are progressively depleted due to defects
in software such as memory leaks and incomplete cleanup of resources after use.
It is well known that software aging will affect the performance of applications
and eventually cause them to fail [1], [2], [7], [15], [25], [32]. Software aging has
been observed in widely-used communication software like Internet Explorer,
Netscape and xrn as well as commercial operating systems and middleware.

M. Malek et al.(Eds.): ISAS 2007, LNCS 4526, pp. 94–109, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Faster Estimation Algorithm for Periodic Preventive Rejuvenation 95

A complementary approach to handle software aging and its related tran-
sient failures, called software rejuvenation, has already become popular [17] as
a typical and low cost environment diversity technique of operational software.
Software rejuvenation is a preventive and proactive solution that is particularly
useful for counteracting the phenomenon of software aging. It involves stopping
the running software occasionally, cleaning its internal state and restarting it.
Cleaning the internal state of a software might involve garbage collection, flush-
ing operating system kernel tables, reinitializing internal data structures and
hardware reboot. In general, two approaches: measurement-based approach and
modeling-based approach, are taken to study the software dependability caused
by aging-related bugs. The former mainly focuses on the detection/identification
of software aging phenomena, and explains them physically in real applications
[1], [2], [7], [15], [25]. On the other hand, the latter corresponds to both design
and environment diversity techniques and their quantitative evaluation.

Huang et al. [17] represented a degradation phenomenon of telecommunication
billing application by a two-step failure model. From the clean state the software
system jumps into a degraded state from which two actions are possible: reju-
venation with return to the clean state or transition to the system failure state.
They modeled a four-state process by a continuous-time Markov chain (CTMC)
and derived the steady-state system availability and the expected operation cost
per unit time in the steady state. Dohi et al. [9], [10] extended the Huang et al.’s
CTMC model [17] to the continuous and discrete-time semi-Markov processes
(SMPs). Rinsaka and Dohi [24] analyzed the stochastic behavior of fault-tolerant
software systems in order to investigate both effects of redundancy and preven-
tive rejuvenation. Tai et al. [28] presented an approach on on-board preventive
maintenance which rejuvenates a mission critical system by letting the system
components rotate, and successfully enhanced the mission reliability.

As another examples, the effects of aging as crash/hang failure, referred to
as hard failure, and of aging as soft failure that can lead to performance degra-
dation, are actually observed in many applications. Pfening et al. [21] modeled
a performance degradation process by the gradual decrease of processing rate
in a non-stationary Markovian queueing system, and formulated a determina-
tion problem of the optimal preventive rejuvenation schedule by a Markov deci-
sion process. Eto and Dohi [12] analyzed a non-queueing model with multistage
service degradation levels and characterized the optimal preventive rejuvena-
tion policy via a semi-Markov decision process. Garg et al. [14] considered a
transaction-based software system, which involves arrival and queueing of jobs,
and analyzed both effects of aging; hard failures that result in an unavailability
and soft failures that result in performance degradation.

Bobbio et al. [6] formulated workload-based rejuvenation scheduling prob-
lems with a cumulative damage model. Since the system workload is deeply
related to the software aging phenomena, the workload-based analysis of aging
and rejuvenation may be significant to implement the preventive maintenance
of operational software systems. Bao et al. [4], [5] proposed an adaptive pre-
ventive rejuvenation scheme and estimated the rejuvenation timing with the

96 K. Rinsaka and T. Dohi

real aging data. Wang et al. [31] further presented the performability analysis
of clustered systems with rejuvenation under varying workload. Vaidyanathan
and Trivedi [29] developed a comprehensive approach to bridge the gap between
the measurement-based approach and the analytical modeling approach, named
measurement-based semi-Markov workload model. Avritzer et al. [3] also pro-
posed three algorithms for detecting the need for preventive rejuvenation by
monitoring the changing values of a customer-effecting performance metric such
as response time. The underlying model there is a multiserver Markovian queue
and the resulting algorithms are based on simple parametric statistics. Reinecke
et al. [22] and van Moorsel and Wolter [30] considered interesting restart poli-
cies as an application-level rejuvenation technique, and derived the computation
algorithms to minimize higher moments of job completion time. They also con-
sidered on-line algorithms based on the time series analysis technique with auto
correlation for determining the application level restart time. Recently, an nice
practice guide to the resource forecasting for the Apache web server was pro-
vided by Hoffmann et al. [16]. They summarized the experimental approach and
statistical analysis as well as the modeling technique.

In this paper we consider again a basic two-step failure model considered by
the seminal contributions in [9], [17] among several modeling techniques. Garg
et al. [13] introduced the idea of periodic rejuvenation (deterministic interval
between successive rejuvenations) into the Huang et al.’s model [17] and repre-
sented the stochastic behavior by using a Markov regenerative stochastic Petri
net. Suzuki et al. [27] and Iwamoto et al. [18] extended the Garg et al.’s model
[13] to the continuous and discrete-time SMPs. Similar to the works in [9], [10],
they developed statistically non-parametric algorithms to estimate the optimal
preventive rejuvenation schedule from the complete samples of system failure
time data without censoring. The fundamental idea in [9], [10], [18], [27] was to
represent the steady-state system availability as a function of the empirical distri-
bution on system failure time. In other words, since their estimation algorithms
are statistically consistent, the resulting estimators approach to the real (but un-
known) optimal solutions asymptotically, even if one does not specify the system
failure time distributions. This property is very powerful to implement the reju-
venation protocol under uncertain usage environment of operational software.

However, it is worth mentioning that the estimators of the optimal preventive
rejuvenation schedule mentioned above are based on an implicit assumption of
large sample on system failure time, and that they can be validated only for
the case with a sufficient number of system failure data. In other words, for
an operational software system with higher availability requirement, since we
seldom encounter the frequent system failures in operational phase, it would be
impossible to get the exact estimates by using the empirical distribution for the
small sample cases. In this paper we develop a faster estimation algorithm for the
optimal periodic rejuvenation schedule which maximizes the steady-state system
availability. We improve the existing availability estimation algorithm in terms of
convergence speed and derive the more effective estimation scheme based on the
kernel density of system failure time. Throughout simulation experiments, the

A Faster Estimation Algorithm for Periodic Preventive Rejuvenation 97

proposed estimation scheme is compared with the existing approach and can be
validated in the sense of asymptotic optimality. The results are really applicable
to implement an on-line rejuvenation protocol in the case with unknown failure
time distribution, and will be useful for the software end users in the operational
phase.

2 Two-Step Failure Model with Periodic Rejuvenation

2.1 Model Description

Consider the similar stochastic model with periodic software rejuvenation to
Garg et al. [13] and Suzuki et al. [27] in continuous time. Suppose that the
operation of a software system starts at time t = 0 in the highly robust state
(normal operation state). Let Z0 be the random time interval when the highly
robust state changes to the failure-probable state, having the common continuous
probability distribution function Pr{Z0 ≤ t} = F0(t) with finite mean μ0 (> 0).
Let X denote the transition time from the failure-probable state to the system
failure state, which is the non-negative random variable having the continuous
probability distribution function Pr{X ≤ t} = Ff (t) with finite mean μf (>
0). The preventive rejuvenation is performed at a pre-scheduled time which is
measured from the start (or restart) of software operation in the robust state.
The continuous probability distribution function of the time to invoke preventive
rejuvenation is at the moment given by Fr(t) with finite mean t0 (≥ 0). In
this case the time to complete preventive rejuvenation is also the non-negative
random variable having the continuous probability distribution function Fc(t)
with finite mean μc (> 0). After completing the preventive rejuvenation, the
software system can become as good as new at the beginning of the next highly
robust state. On the other hand, if the system failure occurs before triggering
preventive rejuvenation, then the recovery operation starts immediately, where

04

2

3

1

Fa(t)

Fr(t)

Fc(t)

Ff(t)

F0(t)

Fr(t)

Fc(t)

Fig. 1. Transition diagram of Markov regenerative process

98 K. Rinsaka and T. Dohi

the time to complete the recovery, Y , is the non-negative random variable having
the continuous probability distribution function Pr{Y ≤ t} = Fa(t) with finite
mean μa (> 0). After completing the recovery operation, the software system
can become as good as new. The same cycle from the start/restart of software
operation to the next start/restart repeats again and again over an infinite time
horizon.

To analyze the stochastic behavior of underlying periodic software rejuvena-
tion model, we introduce the Markov regenerative process [13], [27]. Figure 1
illustrates the transition diagram of the stochastic model under consideration,
where

State 0: highly robust state (normal operation state)
State 1: failure probable state
State 2: preventive rejuvenation state from failure probable state
State 3: system failure state
State 4: preventive rejuvenation state from highly robust state.

In the figure the states denoted by circles (0, 2, 3, 4) and square (1) are regen-
eration and non-regeneration points, respectively. Since this stochastic process
involves only one non-regeneration point, it is relatively easy to transform the
underlying Markov regenerative process to a semi-Markov process. Before doing
this, suppose that the time to invoke the preventive rejuvenation is given by a
constant t0 without any loss of generality. This is because the preventive reju-
venation should be scheduled for the pre-scheduled constant interval in practice
[13], [27], so that

Fr(t) = U(t − t0) =
{

1 for t ≥ t0
0 otherwise (1)

where U(·) is the unit step function. We call t0 (≥ 0) the preventive (periodic)
rejuvenation schedule in this paper.

2.2 Semi-markov Analysis

We analytically derive the steady-state system availability. Since five states:
State 0 ∼ State 4 in Fig. 1 are reduced to three states; normal state (State N),
system failure state (State F) and preventive rejuvenation state (State R), we
have the equivalent semi-Markov process to the Markov regenerative process.
Define G(t) = (F0 ∗ Ff)(t), where ‘∗’ denotes the Stieltjes convolution, i.e.,

(A ∗ B)(t) =
∫ t

0

A(t − x)dB(x) (2)

for two continuous functions A(t) and B(t) with positive support. Figure 2
depicts the equivalent semi-Markov transition diagram to Fig. 1. We call the

A Faster Estimation Algorithm for Periodic Preventive Rejuvenation 99

NF R

Fa(t) Fr(t)

Fc(t)G(t)

Fig. 2. Transition diagram of semi-Markov process

probability distribution G(t) system failure time distribution. From the standard
argument of semi-Markov process, let Pi,j(t), i, j = N, F, R, be the transition
probability that the system makes transition from State i to State j at time t.
Then, we have

PN,N (t) =
∫ t

0

Fr(x)d(G ∗ PF,N)(x) +
∫ t

0

G(x)d(Fr ∗ PR,N)(x) + G(t) · Fr(t),

(3)

PN,F (t) =
∫ t

0

F r(x)d(G ∗ PF,F)(x) +
∫ t

0

G(x)d(Fr ∗ PR,F)(x), (4)

PN,R(t) =
∫ t

0

Fr(x)d(G ∗ PF,R)(x) +
∫ t

0

G(x)d(Fr ∗ PR,R)(x), (5)

PF,N (t) = (Fa ∗ PN,N)(t), (6)
PF,F (t) = Fa(t) + (Fa ∗ PN,F)(t), (7)
PF,R(t) = (Fa ∗ PN,R)(t), (8)
PR,F (t) = (Fc ∗ PN,F)(t), (9)
PR,N (t) = (Fc ∗ PN,N)(t), (10)
PR,R(t) = Fc(t) + (Fc ∗ PN,R)(t), (11)

where in general φ(·) = 1 − φ(·).

Theorem 1. For an arbitrary i = N, F, R, the steady-state system availability
AV (t0) as a function of t0 is given by

AV (t0) = lim
t→∞Pi,N (t) = S(t0)/T (t0), (12)

where

S(t0) =
∫ t0

0

G(t)dt, (13)

T (t0) =
∫ t0

0

G(t)dt + μaG(t0) + μcG(t0). (14)

100 K. Rinsaka and T. Dohi

3 Statistical Estimation Algorithms

3.1 Optimal Preventive Rejuvenation

In Section 2, we obtained the steady-state system availability AV (t0). Of our
next concern is to seek the optimal preventive rejuvenation schedule t∗0 which
maximizes the system availability AV (t0). We make the following parametric
assumption:

(A-1) μa > μc.

The assumption (A-1) means that the mean time to complete the recovery opera-
tion is strictly larger than the mean time to complete the preventive rejuvenation.
This assumption is intuitively reasonable to motivate triggering the preventive
rejuvenation in terms of maximizing system availability. The following result
characterizes the optimal preventive rejuvenation schedule.

Theorem 2. (1) Suppose that the system failure time distribution G(t) = (F0 ∗
Ff)(t) is strictly IFR (increasing failure rate) under the assumption (A-1), i.e.,
the corresponding hazard rate

r(t0) =

∫ t0
0 ff (t0 − x) dF0(x)

G(t0)
(15)

is strictly increasing in t0, where ff (x) = dFf (x)/dx. Define the following non-
linear function:

q(t0) = T (t0) −
{
(μa − μc)r(t0) + 1

}
S(t0). (16)

(i) If q(∞) < 0, then there exists a finite and unique optimal preventive reju-
venation schedule t∗0 (0 < t∗0 < ∞) satisfying q(t∗0) = 0, and the maximum
steady-state system availability is given by

AV (t∗0) =
1

(μa − μc)r(t∗0) + 1
. (17)

(ii) If q(∞) ≥ 0, then the optimal preventive rejuvenation schedule is t∗0 → ∞,
i.e., it is optimal not to perform the preventive rejuvenation. Then the steady-
state system availability becomes

AV (∞) =
μ0 + λf

μ0 + λf + μa
. (18)

(2) Suppose that the system failure time distribution G(t) is DFR (decreasing
failure rate) under the assumption (A-1), i.e., r(t0) is decreasing in t0. Then,
the steady-state system availability AV (t0) is a quasi-convex function of t0, and
the optimal preventive rejuvenation schedule is given by t∗0 → ∞.

From Theorem 2, if the parametric form of system failure time distribution
function G(t) is given, it is possible to derive the optimal preventive rejuvenation
schedule analytically.

A Faster Estimation Algorithm for Periodic Preventive Rejuvenation 101

3.2 Non-parametric Estimation

Next, suppose that n observations; 0 = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn, sampled from
an absolutely continuous system failure time distribution G, are available. Based
on this fixed sample, we define the empirical distribution function:

Gn(t0) =
{

j/n for xj ≤ t0 < xj+1,
1 for xn ≤ t0

(19)

for 0 ≤ t0 < ∞. Using the well-established technique in [9], [27], we define the
total time on test statistics for the sample data xj , j = 0, 1, 2, · · · , n, by

∫ t0

0

Gn(y)dy =

⎧⎪⎪⎨
⎪⎪⎩

∑j
k=1(n − k + 1)(xk − xk−1),

for xj ≤ t0 < xj+1,∑n
k=1(n − k + 1)(xk − xk−1),

for xn ≤ t0.

(20)

From Eqs.(19) and (20), it can be seen that a non-parametric estimate of AV (t0)
(empirical system availability) is given by

AVn(t0) =
∑j

k=1(n − k + 1)(xk − xk−1)

μaj/n+μc(n−j)/n+
∑j

k=1(n−k+1)(xk−xk−1)
(21)

for an arbitrary discrete point t0 = xj , j = 0, 1, · · · , n. Because it is evident that
for t0 ∈ (xj , xj+1) AVn(t0) ≤ AVn(xj), the maximum system availability can be
attained by any of data points xj .

Theorem 3. (i) A non-parametric estimate of the optimal preventive rejuvena-
tion schedule which maximizes AV (t0) is given by t̂∗0 = xj∗ , where

j∗ =
{

j | max
0≤j≤n

n
∑j

k=1(n − k + 1)(xk − xk−1)
[j/n + μc/(μa − μc)]

∑n
k=1 xk

}
. (22)

(ii) The estimate given in (i) is strongly consistent, i.e., t̂∗0 converges to the
optimal solution t0

∗ uniformly with probability one as n → ∞, if a unique optimal
preventive rejuvenation schedule exists.

From Theorem 3, it is seen that the consistent estimate t̂∗0 with asymptotical
optimality can be obtained from the complete sample of xj without specifying
the system failure time distribution G. However, as mentioned in Section 1, the
resulting estimate is derived based on only the empirical distribution Gn(t0).
This implies that a sufficient number of failure data are needed to get an exact
estimate of the optimal preventive rejuvenation schedule.

4 Kernel Density Estimation

In order to refine the estimate given in Theorem 3 it would be useful to improve
the convergence speed of the empirical distribution, i.e., Gn(t0) → G(t0) and

102 K. Rinsaka and T. Dohi

Table 1. Typical kernel functions [26]

Kernel K(t)

Rectangular
1

2
for |t| < 1, otherwise 0

Gaussian
1√
2π

e−(1/2)t2

Triangular 1 − |t| for |t| < 1, otherwise 0

Biweight
15

16

(
1 − t2

)2
for |t| < 1, otherwise 0

Epanechnikov
3

4

(
1 − 1

5
t2

)
/
√

5 for |t| <
√

5, otherwise 0

∫ t0
0

Gn(y)dy → ∫ t0
0

G(y)dy for fixed t0. In this section, we replace the empirical
distribution in an estimate of the steady-state system availability in Eq.(21) by
the kernel type empirical distribution. Suppose that the system failure time data
x1, x2, · · · , xn are the sample from the probability density function f0 ∗ff , where
f0(t) = dF0(t)/dt. Define the kernel density estimator [8], [20], [23], [26] by

(f0 ∗ ff)n,k(t) =
1

nh

n∑
i=1

K

(
t − xi

h

)
, (23)

where h (> 0) is the window width called the smoothing parameter or bandwidth,
and the function K(·) is called the kernel function which satisfies the following
condition:∫ ∞

−∞
K(t)dt = 1,

∫ ∞

−∞
tK(t)dt = 0, 0 <

∫ ∞

−∞
t2K(t)dt < ∞. (24)

Usually, but not always, the function K(·) is selected as a symmetric probability
density function. In Table 1, we summarize the typical kernel functions used in
statistical inference [26]. In this paper, we apply the following Gaussian kernel
function:

K(t) =
1√
2π

e−(1/2)t2 (25)

to estimate the density function of the system failure time, (f0∗ff)(t). The main
reason to use it is its tractability and convergence property. Based on the kernel
estimator in Eq.(23), we define an estimate of

∫ t0
0 G(y)dy by

KDEn(t0) =
∫ t0

0

{
1 − (F0 ∗ Ff)n,k(t)

}
dt, (26)

where (F0 ∗ Ff)n,k(t) =
∫ t

0 (f0 ∗ ff)n,k(y)dy in Eq.(23).

A Faster Estimation Algorithm for Periodic Preventive Rejuvenation 103

Theorem 4. (i) A non-parametric kernel density estimate of the optimal pre-
ventive rejuvenation schedule which maximizes AV (t0) is given by t̂∗∗0 which is
the solution of the maximization problem:

max
0≤t0≤∞

KDEn(t0)
[(F0 ∗ Ff)n,k(t0) + μc/(μa − μc)]

∑n
k=1 xk/n

. (27)

(ii) The estimate given in (i) is strongly consistent, i.e., t̂∗∗0 converges to the
optimal solution t0

∗ uniformly with probability one as n → ∞, if a unique optimal
preventive rejuvenation schedule exists.

From Theorem 4 it is easy to see that the estimate of the optimal periodic
preventive rejuvenation schedule is obtained by calculating the optimal point
t∗∗0 maximizing the tangent slope from the point (−μc/(μa−μc), 0) to the curve
(t0, KDEn(t0)) in the two-dimensional plane (see [9], [10], [18], [27]).

When we utilize the kernel method mentioned above, the problem of choosing
the design parameter h in Eq.(23) is of crucial importance. The most plausible
way to select the bandwidth is to minimize the mean integrated squares error
(MISE) [23]:

MISE = E
∫ ∞

−∞

[
(f0 ∗ ff)n,k(x) − (f0 ∗ ff)(x)

]2

dx. (28)

Further, we obtain the following approximate form:

MISE =
∫ ∞

−∞
E

[
(f0 ∗ ff)n,k(x) − (f0 ∗ ff)(x)

]2

dx

=
∫ ∞

−∞

{
E

[
(f0 ∗ ff)n,k(x)

]
− (f0 ∗ ff)(x)

}2

dx

+
∫ ∞

−∞
Var

[
(f0 ∗ ff)n,k(x)

]
dx

≈ 1
4
h4r2

∫ ∞

−∞
(f0 ∗ ff)′′n,k(x)2dx + n−1h−1

∫ ∞

−∞
K(t)2dt, (29)

where ‘′′’ denotes the twice differentiation. It can be shown that the best band-
width in terms of minimization of Eq.(29) is given by [20]

hideal = r−2/5

{∫ ∞

−∞
K(t)2dt

}1/5 {∫ ∞

−∞
(f0 ∗ ff)′′(x)2dx

}−1/5

n−1/5. (30)

Under the assumption that the kernel function is given by the normal distribution
with density ϕ and variance σ2, it can be seen that∫ ∞

−∞
(f0 ∗ ff)′′n,k(x)2dx = σ−5

∫ ∞

−∞
ϕ′′(x)2dx =

3
8
ϕ−1/2σ−5. (31)

Finally, substituting the Gaussian kernel in Eq.(25) into Eq.(30) yields

hideal = (4π)−1/10 3
8
π−1/2σn−1/5

104 K. Rinsaka and T. Dohi

=
(

4
3

)1/5

σn−1/5 ≈ 1.06σn−1/5. (32)

From Eq.(32) it is easily checked that the ideal bandwidth becomes small as the
number of observed data increases.

5 Simulation Experiments

Of our next interest is the investigation of asymptotic properties and convergence
speed of estimators proposed in this paper. Suppose that the random variables,
Z0 and X , obey the following exponential and the Weibull distributions:

F0(t) = 1 − e−t/µ0 , μ0 > 0, (33)

Ff (t) = 1 − e−(t
θ)γ

, γ > 0, θ > 0, (34)

respectively. It is assumed throughout the numerical examples that μ0 = 240.00,
γ = 2.00, θ = 2400.00, μa = 0.50 and μc = 0.16. In this situation, if we can
know both the probability distributions F0(t) and Ff (t) completely, then the
optimal periodic preventive rejuvenation schedule and its associated maximum
system availability can be calculated as t∗0 = 1742.14 (hr) and A(t∗0) = 0.999826,
respectively. First, let us consider the estimation of an optimal periodic pre-
ventive rejuvenation schedule maximizing the steady-state system availability
when the system failure time data are already observed but the correspond-
ing probability distribution is unknown. We generate 30 pseudo random num-
bers based on Eqs.(33) and (34) as the system failure time data. For the 30
pseudo random numbers, we determine the bandwidth as hideal = 583.18 from
Eq.(32). Finally, we estimate the optimal periodic preventive rejuvenation sched-
ule and its associated maximum system availability as t̂∗∗0 = 1982.33 (hr) and
AV (t̂∗∗0) = 0.999850, respectively.

Next, we investigate the asymptotic behavior of the proposed kernel density
estimator and compare it with the existing non-parametric estimation approach
based on the empirical distribution. To do it, the Monte Carlo simulations are
carried out with pseudo random numbers based on the exponential and the
Weibull distributions given in Eqs.(33) and (34). Figure 3 reveals the asymp-
totic behavior of the optimal preventive rejuvenation schedule. It is found that
the both estimates converge to the real optimal solution when more than 40
data are available. In Fig. 4, we plot the convergence behavior of estimates of
system availability. From this figure, 20 data are enough to estimate the accurate
availability A(t∗0) = 0.999826.

Finally, we examine the convergence speed and accuracy of the kernel method
for the different failure time distribution. In Figs 5 through 10 we calculate
the relative absolute error averages, RAEAt0 and RAEAAV , of estimates of
the optimal preventive rejuvenation schedule and maximum system availability,
respectively where

RAEAt0 =
1

mt∗0

m∑
j=1

∣∣∣t̂∗∗0j
− t∗0

∣∣∣ (35)

A Faster Estimation Algorithm for Periodic Preventive Rejuvenation 105

0

1000

2000

3000

4000

0 20 40 60 80 100

t̂ 0**

no.data

Empirical
Kernel

Real Optimal

Fig. 3. Asymptotic behavior of estimate
of the optimal preventive rejuvenation
schedule

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

0 20 40 60 80 100

A
V

(t̂ 0**
)

no.data

Empirical
Kernel

Real Optimal

Fig. 4. Asymptotic behavior of estimate
of the maximum system availability

and

RAEAAV =
1

mAV (t∗0)

m∑
j=1

∣∣∣AV (t̂∗∗0j
) − AV (t∗0)

∣∣∣ . (36)

In this experiment, m = 1, 000 simulation runs are executed with γ = 1.5, 2.0, 4.0,
where t̂∗∗0j

is the optimal periodic preventive rejuvenation schedule estimated in
the j-th simulation run. From Figs. 5–10, when the number of sample data is ex-
tremely small, the relative absolute error average of estimates of the maximum
system availability based on the kernel density estimation is not necessarily out-
standing. However, it can be observed that the convergence speed of the optimal
preventive rejuvenation schedule by the kernel density method is rather faster than
the existing one based on the empirical distribution. The most significant point is
that the kernel density estimation is superior to the existing method from the view-
point of the estimation accuracy. From Fig.7, it is seen that RAEAt0s based on the

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 20 40 60 80 100

R
A

E
A

t 0

no.data

Empirical
Kernel

Fig. 5. Relative absolute error average of
estimates of the optimal preventive reju-
venation schedule (γ = 1.5)

0.0e+000

2.0e-005

4.0e-005

6.0e-005

8.0e-005

1.0e-004

0 20 40 60 80 100

R
A

E
A

A
V

no.data

Empirical
Kernel

Fig. 6. Relative absolute error average of
estimates of the maximum system avail-
ability (γ = 1.5)

106 K. Rinsaka and T. Dohi

empirical distribution and the kernel density methods, are 25.7% and 23.5%, re-
spectively, when 20 failure time data are observed. Also, from Fig. 8, RAEAAV s
based on the empirical and the kernel methods are 0.0023% and 0.0019%. Hence
the RAEAt0 and RAEAAV can be improved 8.6% and 17.4% in respective cases.
Therefore, it can be concluded that the statistical estimation algorithm based on
the kernel density estimation can improve the convergence speed of the estimate.
This enables us to apply the proposed estimation algorithmto the actual faultman-
agement for an operational software system with high availability requirement.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 20 40 60 80 100

R
A

E
A

t 0

no.data

Empirical
Kernel

Fig. 7. Relative absolute error average of
estimates of the optimal preventive reju-
venation schedule (γ = 2.0)

0.0e+000

2.0e-005

4.0e-005

6.0e-005

8.0e-005

1.0e-004

0 20 40 60 80 100

R
A

E
A

A
V

no.data

Empirical
Kernel

Fig. 8. Relative absolute error average of
estimates of the maximum system avail-
ability (γ = 2.0)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 20 40 60 80 100

R
A

E
A

t 0

no.data

Empirical
Kernel

Fig. 9. Relative absolute error average of
estimates of the optimal preventive reju-
venation schedule (γ = 4.0)

0.0e+000

2.0e-005

4.0e-005

6.0e-005

8.0e-005

1.0e-004

0 20 40 60 80 100

R
A

E
A

A
V

no.data

Empirical
Kernel

Fig. 10. Relative absolute error aver-
age of estimates of the maximum system
availability (γ = 4.0)

6 Conclusions

In this paper, we have developed a faster estimation algorithm based on the
kernel density estimation for the optimal periodic rejuvenation schedule which
maximizes the steady-state system availability. Throughout the Monte Carlo
simulation experiments, we have compared the proposed algorithm with the

A Faster Estimation Algorithm for Periodic Preventive Rejuvenation 107

existing one based on the empirical distribution of the system failure time data.
It has been shown quantitatively that our approach could improve the existing
availability estimation algorithm in terms of convergence speed and was rather
effective in the sense that the large sample data are not needed.

In the future, we will further improve the proposed kernel density approach
in terms of convergence speed. For instance, although we assumed the Gaussian
kernel function and the bandwidth based on MISE, these design factors are not
always suitable in every estimation phase. Especially, the selection problem of
kernel function is quite sensitive to improve the estimation accuracy and the
convergence speed. In fact, several authors tried to improve the kernel density
estimator from the various points of view in more generalized statistical inference
framework [11], [19]. The optimal design problem to trigger the software rejuve-
nation should be studied more and more so as to meet the practical requirement
on adaptive and autonomic computing.

References

1. Adams, E., 1984. Optimizing preventive service of the software products. IBM
Journal of Research & Development, 28 (1): 2–14.

2. Avritzer, A. and Weyuker, E. J. 1997. Monitoring smoothly degrading systems for
increased dependability. Empirical Software Engineering, 2 (1): 59–77.

3. Avritzer, A., Bondi, A., Grottke, M., Weyuker, E. J. and Trivedi, K. S. 2006.
Performance assurance via software rejuvenation: monitoring, statistics and algo-
rithms. Proceedings of International Conference on Dependable Systems and Net-
works (DSN-2006): 435–444, IEEE CS Press.

4. Bao, Y., Sun, X. and Trivedi, K. S. 2003. Adaptive software rejuvenation: degrada-
tion model and rejuvenation scheme. Proceedings of International Conference on
Dependable Systems and Networks (DSN-2003): 241–248, IEEE CS Press.

5. Bao, Y., Sun, X. and Trivedi, K. S. 2005. A workload-based analysis of software
aging, and rejuvenation. IEEE Transactions on Reliability, 54 (3): 541–548.

6. Bobbio, A., Sereno, M. and Anglano, C. 2001. Fine grained software degradation
models for optimal rejuvenation policies. Performance Evaluation, 46 (1): 45–62.

7. Castelli, V., Harper, R. E., Heidelberger, P., Hunter, S. W., Trivedi, K. S.,
Vaidyanathan, K. V. and Zeggert, W. P. 2001. Proactive management of software
aging. IBM Journal of Research & Development, 45 (2): 311–332.

8. Cacoullos, T. 1966. Estimation of a multivariate density. Annals of the Institute of
Statistical Mathematics, 18 (2): 178–189.

9. Dohi, T., Goševa-Popstojanova, K. and Trivedi, K. S. 2001. Estimating soft-
ware rejuvenation schedule in high assurance systems. Computer Journal, 44 (6):
473–485.

10. Dohi, T., Iwamoto, K., Okamura, H. and Kaio, N. 2003. Discrete availability mod-
els to rejuvenate a telecommunication billing application. IEICE Transactions on
Communications (B), E86-B (10), 2931–2939.

11. Duin, R. P. W. (1976). On the choice of smoothing parameters for Parzen esti-
mators of probability density functions. IEEE Transactions on Computers, C-25
(11), 1175–1179.

108 K. Rinsaka and T. Dohi

12. Eto, H. and Dohi, T. 2006. Analysis of a service degradation model with preventive
rejuvenation. Service Availability: Third International Service Availability Sympo-
sium (ISAS 2006) (eds., D. Penkler, M. Reitenspiess and F. Tam), LNCS 4328,
17–29, Springer-Verlag.

13. Garg, S., Telek, M., Puliafito, A. and Trivedi, K. S. 1995. Analysis of soft-
ware rejuvenation using Markov regenerative stochastic Petri net. Proceedings of
6th International Symposium on Software Reliability Engineering (ISSRE-1995):
24–27, IEEE CS Press.

14. Garg, S., Pfening, S., Puliafito, A., Telek, M. and Trivedi, K. S. 1998. Analysis of
preventive maintenance in transactions based software systems. IEEE Transactions
on Computers, 47 (1): 96–107.

15. Grottke, M., Lie, L., Vaidyanathan, K. V. and Trivedi, K. S. 2006. Analysis of
software aging in a web server. IEEE Transactions on Reliability, 55 (3): 411–420.

16. Hoffmann, G. A., Trivedi, K. S. and Malek, M. 2006. A best practice guide to
resource forecasting for the Apache webserver. Proceedings of 12th Pacific Rim
International Symposium on Dependable Computing (PRDC-2006): 183–193, IEEE
CS Press.

17. Huang, Y., Kintala, C., Kolettis, N. and Fulton, N. D. 1995. Software rejuvenation:
analysis, module and applications. Proceedings of 25th International Symposium on
Fault Tolerant Computing (FTC-1995): 381–390, IEEE CS Press.

18. Iwamoto, K., Dohi, T. and Kaio, N. 2007. Maximizing system availability for op-
erational software systems with periodic rejuvenation. Journal of Autonomic and
Trusted Computing, (in press).

19. Izenman, A.J. (1991). Recent developments in nonparametric density estimation.
Journal of American Statistical Association, 86 (413), 205–224.

20. Parzen, E. 1962. On the estimation of a probability density function and the mode.
Annals of Mathematical Statistics, 33 (3): 1065–1076.

21. Pfening, S., Garg, S., Puliafito, A., Telek, M. and Trivedi, K. S. 1996. Opti-
mal rejuvenation for tolerating soft failure. Performance Evaluation, 27/28 (4):
491–506.

22. Reinecke, P., Van Moorsel, A. P. A. and Wolter, K. 2004. A measurement study
of the interplay between application level restart and transport protocol. Service
Availability: First International Service Availability Symposium (ISAS 2004) (eds.,
M. Malek, M. Manfred and J. Kaiser), LNCS 3335, 86–100, Springer-Verlag.

23. Rosenblatt, M. 1956. Remarks on some nonparametric estimates of a density func-
tion. Annals of Mathematical Statistics, 27 (3): 832–837.

24. Rinsaka, K. and Dohi, T. 2005. Behavioral analysis of fault-tolerant software sys-
tems with rejuvenation. IEICE Transactions on Information and Systems (D),
E88-D (12): 2681–2690.

25. Shereshevsky, M., Crowell, J., Cukic, B. Gandikota, V. and Liu, Y. 2003. Soft-
ware aging and multifractality of memory resources. Proceedings of International
Conference on Dependable Systems and Networks (DSN-2003): 721–730, IEEE CS
Press.

26. Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis, Chap-
man and Hall.

27. Suzuki, H., Dohi, T., Goševa-Popstojanova, K. and Trivedi, K. S. 2002. Analy-
sis of multi step failure models with periodic software rejuvenation. Advances in
Stochastic Modelling (eds., J. R. Artalejo and A. Krishnamoorthy): 85–108, Notable
Publications.

A Faster Estimation Algorithm for Periodic Preventive Rejuvenation 109

28. Tai, A. T., Alkalai, L. and Chau, S. N. 1999. On-board preventive maintenance: a
design-oriented analytic study for long-life applications. Performance Evaluation,
35 (3/4): 215–232.

29. Vaidyanathan, K. V. and Trivedi, K. S. 2005. A comprehensive model for software
rejuvenation. IEEE Transactions on Dependable and Secure Computing, 2 (2):
124–137.

30. van Moorsel, A. P. A. and Wolter, K. 2006. Analysis of restart mechanisms in
software systems. IEEE Transactions on Software Engineering, 32 (8): 547–558.

31. Wang, D., Xie, W. and Trivedi, K. S. 2007. Performability analysis of clus-
tered systems with rejuvenation under varying workload. Performance Evaluation,
(in press).

32. Yurcik, W. and Doss, D. 2001. Achieving fault-tolerant software with rejuvenation
and reconfiguration. IEEE Software, 18 (4): 48–52.

An Eclipse-Based Framework for

AIS Service Configurations

András Kövi1,2 and Dániel Varró1,2

1 Department of Measurement and Information Systems
Budapest University of Technology and Economics
H-1117, Magyar Tudsok krt. 2, Budapest, Hungary

kovi@mit.bme.hu
2 OptXware Research & Development LLC.

H-1137, Katona J. u. 39., Budapest, Hungary
varro@mit.bme.hu

Abstract. In the paper, we propose an Eclipse-based model-driven
framework to support an integrated development, analysis and deploy-
ment of Application Interface Specification (AIS) service configurations.
Service configurations are first captured by platform-independent models
(PIM), which directly correspond to the AIS standard itself, and abstract
from vendor-specific details. Specificities of vendor-specific AIS middle-
ware are incorporated into platform-specific models (PSM), which are
derived from PIMs by automatic model transformations. Model analysis
can be carried out either on the PIM-level to ensure standard compliance
of a given service configuration, or on the PSM-level to detect availability
bottlenecks by formal analysis early in the service configuration design.
Finally, deployment descriptors of the selected AIS platform are gener-
ated from verified service configurations by automatic code generation
techniques.

1 Introduction

As the range of business functionality is rapidly increasing to better meet cus-
tomer needs, quality requirements are increasingly important in addition to rapid
time-to-market development cycles. Availability, i.e. the continuity of a service,
is one of the most important factors in the overall quality of business-intensive
services.

However, in order to meet availability requirements, a service needs to be de-
signed for availability by using well-founded development techniques. In order
to avoid the re-development of best-practice solutions for achieving high avail-
ability, architectural-level solutions have been proposed based on best practices
of constructing dependable systems.

The specifications of the Service Availability Forum. The Service Avail-
abilityTMForum (SAF) [32] aims at providing standardized solutions for mak-
ing services highly available. The Application Interface Specification (AIS) of
the Forum defines the standard interfaces for accessing Highly Available (HA)

M. Malek et al.(Eds.): ISAS 2007, LNCS 4526, pp. 110–126, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Eclipse-Based Framework for AIS Service Configurations 111

middleware and infrastructure services that reside logically between applications
and the operating system.

The entities defined in the AIS specifications (e.g. service units, message
queues, applications, etc.) are described semi-formally by the Information Model
(IM) in the form of UML classes [12]. The Information Model Management Ser-
vice (IMM) [14] is the service in AIS that provides a set of APIs and adminis-
trative operations to create, access and manage the objects of the IM.

In the SA Forum ecosystem the Software Management Framework (SwMF)
[15] provides all the functionality to migrate a system configuration to a desired
new one. During the migration both the IM is updated and the required software
entities are installed.

Problem statement. Although the classes in the IM define the common con-
cepts that are used to build up SAF AIS compliant applications, standard de-
scriptions do not alone guarantee that a certain service configuration will meet
its quality of service (QoS) requirements. Moreover, the portability of service
configurations between different commercial-off-the-shelf (COTS) AIS middle-
ware implementations is problematic, i.e. deployment of a service configuration
to a certain middleware makes it inappropriate for another AIS platform without
changes, mainly due to the lack of standardization for the description of service
configurations.

Objectives. In this paper we argue for the use of model-driven development
techniques in the context of services to overcome the problems above. For this
purpose, we present an Eclipse-based framework, which simultaneously supports
the model-based development, analysis and deployment of SAF AIS compliant
services. More specifically,

1. we propose modeling tools for describing AIS service configurations either
by domain-specific modeling or using a UML Profile (see Sec. 3);

2. we present analysis tools to detect non-compliancy of a certain service config-
uration to the AIS standard, and highlight QoS bottlenecks in a configuration
by using formal analysis tools (see Sec. 4);

3. finally, we demonstrate how automatic code generation and model transfor-
mation techniques can be used to derive vendor-specific deployment descrip-
tors for service configurations (see Sec. 5).

2 An Overview of the Approach

In the following, we present an architectural overview of our framework to sum-
marize its major components (see Fig. 1). Later, each of these components will
be described in detail.

Modeling of AIS service configurations. We propose to adapt a model-
driven development approach for AIS service configurations. For this purpose,
platform independent models (PIM) of services are first constructed in accor-
dance with the requirements specification. A well-formed PIM should conform

112 A. Kövi and D. Varró

Fig. 1. Architecture overview

to the metamodel of the AIS standard itself. In a subsequent step, platform-
specific models (PSM) corresponding to AIS middleware of a specific vendor can
be derived automatically by model transformations. These models are captured
either by a domain-specific editor for AIS models based on the Eclipse Modeling
Framework (EMF), or using a UML Profile for AIS services embedded into the
off-the-shelf UML tool of IBM Rational Software Architect. Best practices of
creating service configurations are grouped into design pattern libraries, which
are made available to service architects.

Model analysis. The metamodel of the AIS standard can be complemented
with constraints, defined in the Object Constraint Language (OCL), which cap-
ture additional well-formedness rules of the AIS standard in a formal way. When
a PIM of a service configuration is available in the form of an EMF model, its
conformance to the standard can be checked by validating the OCL constraints
on the PIM (Sec. 3.2) using the OCL validation framework of EMF. Assuming
that, HA parameters of a certain AIS platform are available for the designer, the
PSM (Sec. 3.4) of a service configuration can be annotated with these service
parameters. Based upon such an annotation, we can carry out formal analysis
to detect availability bottlenecks early in the service development process by
transforming the PSM of a service configuration into General Stochastic Petri
Nets (Sec. 4.1), and analyzing different characteristics of those petri nets.

Service deployment. After analyzing a service configuration for a given AIS
middleware, the actual deployment descriptors of the service configuration can
be generated by automated code generation techniques, such as Java Emission
Templates (JET) (Sec. 5).

The toolkit. This integrated model-driven development framework is based on
standard, open interfaces as provided by Eclipse, and especially, the Eclipse
Modeling Framework (EMF). The advantage of using Eclipse and EMF for
the implementation is that there is a wide spectrum of tools that facilitate

An Eclipse-Based Framework for AIS Service Configurations 113

development for the Eclipse platform, moreover, EMF has become the de-facto
standard for model exchange in the industry nowadays. EMF is capable of gen-
erating the editor code and an example editor program for our metamodel that
reduces the development time and the possibility of programming faults. In ad-
dition, EMF facilitates the validation of models, which will be described later in
Sec. 4.

3 Modeling of Service Configurations

3.1 Requirements Specification

The service configuration development workflow starts with gathering require-
ments for service deployment. This information includes the type and number
of components, the definition of services, service groups and the application it-
self. Since system resources for deployment are finite, priorities between services
should be set up based upon the required availability for different services as
part of the requirements specification.

There are well established schemes for defining the requirements of applica-
tions in specific application domains, however, it is still an open issue how these
requirements can automatically be incorporated into the service configuration in
the general case. Therefore, this phase of developing service configurations for
AIS middleware is subject to future work.

3.2 Platform Independent Model (PIM)

In a model-driven approach, the development of service deployment configuration
commences with the creation of a Platform Independent Model (PIM), which is
the AIS configuration of the service. This PIM model of a service configuration
is independent of the underlying platform implementation, thus it can be reused
for different AIS platforms.

This PIM serves multiple purposes:

– it is used to integrate the service into the SAF ecosystem
– it is the input for the deployment procedure
– it can serve as input for generation of the source code of the service to speed

up application implementation

Attributes and relations of conceptual AIS elements (service groups, service
units, etc.) and other resources that are used by the service, for example, message
queues and log streams, should be set up in this step.

AIS-PIM metamodel. The metamodel of the PIM (PIMM) of an AIS com-
pliant application is built up from the entities defined in the specifications, thus,
it ensures the compliance of the configuration model to the standard itself. As
discussed in Sec. 1, the SA Forum Information Model (IM) contains a UML
representation of service entities, e.g. it contains the Service Unit class that is

114 A. Kövi and D. Varró

Fig. 2. Service unit and component class hierarchy

used to represent a service unit. Therefore, we have chosen the IM to serve as
the basis of our PIM metamodel.

However, the Information Model, as defined by the SA Forum, is unable to
identify certain semantic relations between service entities. For instance, issues
like which service is the owner of a message queue or which log stream is opened by
which application, are not represented in the IM model. Furthermore, for clarity
purposes, we used the ontology listed in the AMF specification (Sec. 3.2 Logical
Entities of [13]), which explicitly represents the type hierarchy of components and
services, rather than the simple aggregated class concept used in the UML model
of the IM. We believe that, the clarity of the AIS metamodel is highly improved
by these changes.

The modified component and

Fig. 3. Example model with stereotypes

service unit hierarchy is depicted
in Fig. 2. The general Component
class is specialized into Local Com-
ponent and External Component
classes by classifying components
according to the location of the
component from the point of view of the AMF cluster. Then the Local Com-
ponent is further specialized into Non-SA Aware Component and SA Aware
Component classes. Finally, the specialized case of the SA Aware Component is
the Proxy Component, which corresponds to the proxy components in AMF. On
the other hand, the Service Unit class is specialized into two descendant classes:
the Local Service Unit and the External Service Unit class. A Local Service Unit
contains only Local Components while the External Service Unit comprises only
External Components.

Because of the generality of the Component, Service Unit and Local Compo-
nent classes, their usage in service configuration models is not allowed; and thus
to avoid their instantiation, they are made abstract.

In Fig 3 a valid service configuration example is depicted. The class of the objects
is indicated by the stereotypes, e.g. Local Service Unit, Proxy Component, etc.

An Eclipse-Based Framework for AIS Service Configurations 115

Since this paper intends to give an overview of our framework and the tech-
niques we use in it, only the most important changes to the metamodel are listed
in the following:

– Component class extended with reference attributes to all types of SAF re-
sources (e.g. message queue, lock, log stream) to support the indication of
resource usage.

– Runtime attributes, that store the runtime state of the object, are deleted
from the classes since such information is useless at design time. E.g. the
attribute that stores the administrative state of a component or the one
that contains the number of restarts of a service unit is removed.

3.3 Design Patterns

Building up the PIM manually from scratch can be a time consuming and er-
ror prone task. In an ideal case, a previously elaborated solution for a specific
problem can be reused with changing some parameters. To help the developer
in such cases design patterns are offered by our framework.

There are two types of design patterns for PIM development:

– Fault tolerance related patterns speed up modeling by providing param-
eterized procedures for automatic creation of ordinary objects and setting
up their attributes,

– AMF best practice patterns are previously elaborated and stored solu-
tions for more complex problems in certain application domains.

Fault tolerance (FT) related patterns help create and configure all the
necessary objects for a given fault tolerant architecture. For example, if one cre-
ates a service group with 2N redundancy model then there will surely be at
least two service units in that service group. Similarly, such ”preconfigured” so-
lutions can be provided to the user for all redundancy models defined in the
AMF specification.

Another useful group of FT related design patterns are in connection with
the topic of software redundancy. We talk about software redundancy when the
simple multiplication of components in a service deployment does not provide
sufficient fault tolerance, especially, against faults in the software. Such pro-
tection is essential for mission critical systems where erroneous behavior of a
component can lead to catastrophic results. There are generally used patterns
for these problems, e.g. N-version programming (NVP) [1] or N self configuring
programming (NSCP) [23]. These redundancy schemes can be applied on SAF
AMF managed software systems as well. As an example in the followings we
show how the NVP scheme can be used.

In the NVP scheme several software variants compute simultaneously the
same job/request, and when all of them are ready, a voter makes the decision
on the final result.

Let us assume that we have three different software variants and want to use
them in an NVP scheme (see Fig. 4). An SAF compliant service needs the follow-
ing entities for this scheme: separate Service Unit for the execution environment,

116 A. Kövi and D. Varró

Fig. 4. NVP scheme for three software variants

for each variant and the voter, separate Service Groups for the different func-
tionality groups, and finally, message queues are necessary for communication.

In Fig. 5 the AMF configuration for the described scheme is depicted. The
execution environment sends the input requests through the message queues
prefixed ”In ” to the respective variants and the variants send their results to
the voter through the ”Out queues. (Note that, not all usage relations and
AMF components are visible in the figure to prevent making it unnecessarily
complicated.)

AMF configuration for all the previously mentioned software redundancy
schemes can be defined in an akin way.

Fig. 5. AMF configuration for NVP scheme with three variants

AMF best practices. The other group of design patterns is best practices,
which contain previously stored system architectures and implementation related
solutions for certain application domains. System architectures can be for ex-
ample, configurations for sensor networks or different systems that need a given
level of reliability or availability. These best practices can have parameters as
well that make them more flexible and more widely reusable (e.g. the number of
sensors, data collectors, monitoring systems, etc).

3.4 Platform Specific Model (PSM)

Although the specifications of AIS standardize the interfaces an application may
use to access the HA services of the middleware, there may be differences between
platform/middleware implementations in the sense that how they are configured,
andwhich services and functionalities are implemented.Thus, it is advantageous to
create a Platform Specific Metamodel (PSMM) for each platform implementation.

An Eclipse-Based Framework for AIS Service Configurations 117

Platform Specific Metamodel (PSMM). This metamodel contains all the
entities and their relations in the given platform implementation. These entities
may have extended or restricted features compared to the corresponding entities
of the PIM metamodel. Furthermore, there may be additional entities for non
standard services that a vendor-specific AIS implementation provides.

Using the notions of the PSMM the Platform Specific Model (PSM) of the
service (Service PSM) can be created that describes a service configuration on
the given platform implementation. However, the PSM of the service is preferably
not created from scratch every time it is deployed to a different platform. If the
PIM of the service exists it can be transformed into a PSM using a specific PIM to
PSM mapping. The model transformation describes which element or elements
in the PIM are mapped into which element(s) in the PSM model. (Technical
details of such model transformations are discussed in Sec. 3.5)

3.5 Implementation Details

In the previous sections we described the configuration development workflow
and its elements. A tool that facilitates this workflow has to provide a user
interface that exposes all the required functionalities for creating, modifying,
verifying, validating and transforming the introduced models. This user interface
is called the modeling front-end.

The modeling front-end. UML is one possible language that we use to create
service configuration models. UML provides a wide range of extension mech-
anisms (stereotypes, tagged values, etc.) to customize the basic language, and
create domain specific dialects. A UML profile is the notion that encapsulates
all the extensions of a specific dialect. We created a UML profile for AIS, i.e. a
dialect, that contains stereotypes corresponding to the entity types of the AIS
specifications, e.g. local service unit, service group, local component. An exam-
ple for a stereotyped model created with IBM Rational Software Architect can
be seen in Fig. 6.

Service models. Representation of the Eclipse Modeling Framework (EMF) [8]
is the de facto industrial standard for storing and manipulating models in Eclipse.
Metamodels in EMF are called Ecore models. The EMF model development
workflow starts with the creation of the metamodel (i.e. an Ecore model). In our
case it is the metamodel of the PIM and the PSMs. Then we use the automatic
code generation facility that generates us the Java classes for the model, the
model editor API, a sample model editor and class stubs for testing. EMF Ecore
models are stored in XML files and this assures their easy reusability in other,
non EMF based applications as well. EMF provides automated support for load-
ing and serializing models from metamodel-specific XML formats corresponding
to the XMI 2.0 standard. These EMF models can also serve as the basis of model
validation as described in Sec. 3.

Domain Specific Model Editor. Domain specific model editors are generated
editors, which are customized for specific application domains. In the Eclipse
environment there are specific frameworks that provide means to easily develop

118 A. Kövi and D. Varró

domain specific model editors. Most widely used and best elaborated is the
Graphical Editing Framework (GEF) [9], which provides APIs for the creation
of graphical editors. Since most editors provide the same functionalities, only the
context and the outlook differs in many cases, the Graphical Modeling Framework
(GMF) [10] has been started to support the development of rich domain-specific
model editors. GMF provides means to define different aspects of the editor using
specific models, and then automatically generate the source code for it.

Design patterns. Us-

Fig. 6. Example stereotyped service configuration model

ing the automatically
generated specific
model editor API, the
modification of PIM
and PSM models is
possible from code.
The design patterns
library uses this AIS
specific API to carry
out a sequence of
model manipulation
operations. In our ini-
tial framework, design patterns are implemented as simple parameterized meth-
ods (without graphical user interface). Application of a design pattern on a
model is done by calling the respective method with specific parameters.

Model transformations. As mentioned above, model transformation is the
mean that is used to generate the PSM from the PIM or the platform specific
deployment descriptors from the PSM. The VIATRA2 transformation frame-
work provides such model transformations by combining the formal paradigms
of abstract state machines and graph transformation, which provide a rule and
pattern based manipulation of models. As model transformations are out of the
scope of this paper, here we do not describe them in detail. For more information
on this topic see [34, 2].

4 Model Analysis

4.1 Static Analysis of Service Configuration Models

After creating a service configuration model, it is essential to verify its com-
pliance with the AIS standard. This is carried out by formal verification of
the model against constraints that are defined in its metamodel. These well-
formedness and semantic constraints come from various requirements, e.g. mul-
tiplicity restrictions or attribute values, or a constraint may be composed of (i.e.
it may refer to) other constraints as well. In Fig. 7 the types of model element

An Eclipse-Based Framework for AIS Service Configurations 119

constraints and the direction of possible implications are depicted, while Fig. 8
shows an example for each type of constraint implication.

Object Constraint Language.

Fig. 7. Types of model element constraints.
The arrows indicate the possible directions of
implication.

For specifying constraints in object
oriented models the Object
Constraint Language (OCL) [26] of
OMG [19] is a widely used standard
formalism. It can be used to express
additional constraintsonmetamod-
els that cannot be expressed, or are
very difficult to express, with the
metamodel itself.

Metamodel constraints. The OCL constraints are defined on the classes of
the metamodel and their attributes. To ensure the correctness of the model we
have to define constraints in the following cases:

1. Value range restrictions for attributes. (E.g. the size of the message queue
(saMsgQueueSize attrib.) has to be greater than zero)

2. Structural multiplicity restrictions. (E.g. number of SUs in an SG)
3. Attribute dependencies where the value of one attribute depends on the value

of some other attributes. E.g. if the component capability model of a com-
ponent (saAmfCompCapability attribute) is x active and y standby then the
maximum number of standby component service instances should be greater
than zero (saAmfCompMaxStandbyCsi attribute).

Source Destination Example

Attr Attr The redundancy model of the service group (SG) (defined by the

asAmfSGRedundancyModel attribute of the corresponding class) prescribes the

required capabilities of a component. (E.g in a SG with N-Way redundancy

model all components have to implement the x_active_and_y_standby

component capability model.)

Attr Multip Redundancy model of the service group (SG) can define the lower multiplicity

(i.e. the minimum number) of service units (SUs). (E.g. the 2N redundancy

model supposes the existence of at least two service units.)

Multip Struct Each service unit of a service group should be deployed to different nodes in

order to provide protection against node failures.

Fig. 8. Examples for different constraints

120 A. Kövi and D. Varró

4. Association dependencies. E.g. service unit - service instance relations
through the rankedSUs attribute.

In the following, we show two example OCLs on the PIMM. First, the sim-
ple example for value range restriction constraint is the relative distinguished
name (RDN) constraint for name attribute of the component class, which de-
scribes that there cannot be two components with identical names in a
service unit :

context Serv i ceUn i t inv :
s e l f . components −> f o rA l l (c1 , c2 |

c1 <> c2 implies c1 . name <> c2 . name)

The respective part of the metamodel is depicted in Fig. 9. RDN constraints
have to be stated for many other elements as well, like service groups, service
units, etc.

A more complex sample OCL is the ”service types checking” constraint for
service instances:

context Se rv i c e In s t anc e inv :
i f s e l f . rankedSUs −> notEmpty then

l e t requiredCSTs : Set<CSType> =
s e l f . c s i s . csType −> asSet () in

s e l f . rankedSUs −> f o rA l l (su : Se rv i c eUn i t |
su . components . csTypes −>

asSet () −> i n c l ud e sA l l (requiredCSTs)
)

endif

The ”service types checking” verifies that whether each service unit that the
service instance is assigned to, by the ranked service units (rankedSUs) attribute,
provides every service type the service instance requires. This constraint is a
required condition for the successful assignment of the given service instance.
The referenced part of the metamodel is depicted in Fig. 10.

Implementation. Checking of OCL constraints in an EMF based tool can be car-
ried out by using the EMF OCL and Validation frameworks. At the time of writ-
ing the article there was no stable release of the mentioned frameworks, therefore,

Fig. 9. Relation of service unit and
component class

Fig. 10. Relation of service unit and
service instance

An Eclipse-Based Framework for AIS Service Configurations 121

most of the checks were actually (re)implemented in plain Java. However, the next
EMF release, the Eclipse Modeling Framework Technologies (EMFT), promises
to support the validation of OCL constraints over EMF models.

4.2 Non-functional Analysis

For users it is always a problem that the correctness of the configuration does
not assure the appropriate functionality of the system.

Unfortunately, the compliance of a service configuration to the AIS standard
does not alone guarantee that the quality of service requirements are met by the
service configuration after deployment. For example, in high availability systems
the expected availability and reliability of a service is a major parameter that has
to satisfy certain required levels. Another problem is that during the installation
of the new services some parts of the system may temporarily go down, however,
the continuity of services has to be maintained in these periods as well, and this
fact imposes constraints on the upgrade scenarios.

For these reasons, our framework supports formal analysis of availability as
well. Often analysis techniques and tools can be integrated likewise.

Availability and reliability analysis. In HA systems the most important
measures are the availability and reliability of the services. Standard depend-
ability analysis techniques can be used to determine the value of these measures
in a particular system to detect quality bottlenecks early in the design. In [24] the
design, implementation and application of a tool is described that is able to con-
struct automatically a dependability model (in the form of Generalized Stochastic
Petri Nets) from a system architecture model. Then the dependability model can
be solved by an external solver (e.g. the SPNP package [6]), computing in this
way the system-level reliability or availability measures. The input for the tool
is the stereotyped UML model of the system. In our case the PSM is adopted to
the input of the tool chain by simple, rather syntactic model transformations,
e.g. annotation by stereotypes, indication of usage dependencies, etc.

5 Automated Generation of Configurations

In the last phase of the configuration development we have to obtain the PSM
of the deployed service configuration (Deployment PSM later), and then merge
it with the Service PSM. The final step is the generation of the platform specific
deployment descriptors using the Merged PSM.

In the following, first we discuss the solutions for reengineering a deployment
configuration into a PSM, then we introduce different technologies and methods
that are used for configuration generation.

5.1 Reengineering a Deployed Configuration

Before a new service could be integrated into an existing deployment the De-
ployment PSM has to be created. The following methods are available for reengi-
neering the currently deployed service configuration:

122 A. Kövi and D. Varró

1. Using model transformations the deployment descriptors are derived into a
Deployment PSM

2. An IMM revealer agent traverses through the configuration tree and returns
the Deployment PSM as the result of a request.

PSM creation by transformations. To eliminate the human faults, such as
mistyping or misunderstanding the model, model transformations are used for
automatic generation of the Service PSM. Moreover, the system deployment con-
figuration files are not standardized, thus, vendor specific transformations have
to be written for each platform implementation. Such transformations can be im-
plemented, for instance, in the VIATRA2 model transformation framework [34]
in the form of importer plugins and graph transformations. As model transfor-
mations is a complex topic and does not connect inherently to the subject of this
paper, here we do not deal with it, but more information can be found in [24].

IMM revealer agent. In systems where the IMM service is available a com-
ponent can be written that traverses the Information Model and returns the De-
ployment PSM. As mentioned in Sec. 3.5 Ecore models, and thus the PSMs as
well, are stored in an XML format. As a consequence, the agent simply has to
return the PSM XML, which can instantly be used by the configuration developer
tool without any modifications.

5.2 Generating the Deployment Descriptors

The final step of the model-driven configuration development process is the gen-
eration of platform specific deployment descriptors. In Eclipse we can use Java
Emitter Templates (JET) [11] for code generation from EMF models. JET is
an easy to use and effective tool to generate the structured, platform specific
configuration descriptor files automatically from the PSMs. JET templates take
an object as input and produce formatted text using the different properties and
attributes of the input object. These templates use a simple JSP [33] like syntax
to describe the format of the output text.

In our case, the Merged PSM is passed to the templates as parameter, and the
resulting text is saved into a file. Separate JET templates need to be created for
each different output configuration file. An example JET template is listed in
the following.

Listing 1.1. Example JET template

<%@ j e t package=” h e l l o ” class=”GreetingTemplate ”
sk e l e t on=” generator . s k e l e t on ” %>

<%AISModel model = (AISModel) argument ;
f o r each (SAFApp app in model . App l i ca t i ons) {%>

<%=app . safApp%>,
<%}%>

Alternatively, we could also use the code generation features of VIATRA2 for
the same task.

An Eclipse-Based Framework for AIS Service Configurations 123

6 Related Work

Model-driven development for Web services. The work presented in this
paper was influenced by several proposals in different fields. First, proposals
for the model-driven development of service configurations have already been
elaborated for Web services, which have certain similarities with the SA Forum
service configurations that we deal with, e.g. a complete framework based on the
high-level modeling of Web services and their interactions with Web applications
is described in [25]. In [18] a method is described for importing Web service
descriptions into UML models, then integrating them, and finally generating the
XML descriptors for the composite Web service. This process is similar to our
approach to the integration of PSMs into a Merged PSM.

As we stated in Sec. 3.1 there are solutions for integrating some specific re-
quirements into service configurations. As an example, a methodology is de-
scribed for incorporating reliability attributes into Web service configurations
in [17]. Furthermore, this process is carried out with model transformations us-
ing the VIATRA2 transformation framework. Other approaches that use model
transformations for the integration of non-functional requirements can be found
in [7, 31] and [22].

However, these solutions are different from our approach in that (i) only parts
of the development process are supported and (ii) since Web service configura-
tions have a standardized format the generation of platform specific descriptors
is not an issue.

Non-functional model-driven analysis for services. We have used basic
principles that are described in [5] and [24] for defining the model constraints,
and carrying out the validation of the Service PSM models. Another solution
for reliability prediction of a system based on UML models is described in [30].
They extend the Schedulability Performance and Time (SPT) UML profile [20]
then perform analysis with transforming the UML model into a labeled transition
system (LTS) using XML-based transformations. This solution sticks more to the
standards based model-driven approach by using the standardized UML-XML
mappings. However, the adaptability of the SPT Profile for AIS based services is
unclear. Additional techniques for model-transformation based analysis of non-
functional properties of service configurations are presented in [16, 3]. Finally,
a method is introduced in [4] for generating optimal deployment configurations
to a definite set of server nodes that guarantees the required availability and
performance characteristics for all services.

Eclipse based configuration development tools. During our research we
found only the OpenClovis IDE as an available Eclispe-based configuration devel-
oper tool for an AIS compliant platform,. The OpenClovis IDE [28] implements
a subset of the functionalities that we proposed in this paper, e.g. creating and
modifying AIS configuration models, generating source code and template based
configuration development. The main difference between our proposal and the

124 A. Kövi and D. Varró

OpenClovis IDE is that the latter implements only platform specific parts of the
toolchain for the OpenClovis Application Service Platform middleware [27].

Our contribution. As a summary, the novelty of our approach compared to
the previously enumerated works is that we define (i) a complete model-driven
methodology for service configuration development (ii) dedicated to the SA Forum
ecosystem, (iii) by developing a toolchain using Eclipse-based technologies. As
a result, we defined a flexible toolkit that can easily be adopted to different
needs of different platform implementations, meanwhile helping the developers
with standard compliant platform independent model development for highly
available service configurations. Even if some components of our framework are
in an early prototype phase, we believe that the current paper provides relevant
specification for future improvements.

7 Conclusions

In this paper, we presented an integrated model-driven configuration develop-
ment method for AIS services and described a prototype toolchain that supports
this process. Furthermore, we showed how such a tool can be implemented on
the basis of Eclipse frameworks.

Although the specifications of AIS define the entities of the system and op-
erations that an application may invoke, the format of the service configuration
has not been standardized. Thus, the configuration of different platform im-
plementations can be widely different. So as to support the modeling of the
platform independent and platform specific views of the service configuration,
we defined the Platform Independent Model and the Platform Specific Model.
We use automatic model transformations for the PIM to PSM transformation
as well, as transformations for model validation to speed up these processes, and
to avoid human errors. Finally, the deployment descriptors for a given platform
can automatically be generated from the PSM.

In the future we consider the following improvements:

– Semantics-based model analysis. Currently we define OCL constraints
on the metamodel and then check them using the code generated by the
EMFT-OCL framework. The problem with this approach is that, if a new
constraint is introduced or an existing one is modified the validation code
has to be regenerated or rewritten. Ontology-based model analysis provides
a code-independent way for validating constraints. In ontology-based model
analysis we define a formal ontology, which contains the metamodel as a
T-Box (Terminology Box) and the model as an A-Box (Assertion Box). Then
the ontology is passed to a reasoner like RACER [29] that decides whether
the ontology is consistent or not. Simple OCL constraints can be imple-
mented in the T-Box, while complex constraints are verified by using model
queries. Such model analysis architecture provides more flexibility, however,
it is restricted to a select of OCLs.

An Eclipse-Based Framework for AIS Service Configurations 125

– Integration of SwMF. We think it is important to be able to generate stan-
dardized configuration descriptors as well (besides platform specific descrip-
tors) that can be used by systems implementing the Software Management
Framework (SwMF). Thus, we consider the development of a transformation
for PIM that provides the essential Entity types file, which is used to describe
the software entities that are delivered by a software bundle.

Acknowledgements

This work was partially supported by the HIDENETS project [21] of the Euro-
pean Union.

References

1. A. Avizienis. The methodology of n-version programming, 1995.
2. A. Balogh, A. Németh, A. Schmidt, I. Ráth, D. Vágó, D. Varró, and A. Pataricza.

The VIATRA2 model transformation framework. In ECMDA 2005 – Tools Track,
2005.

3. A. Balogh and A. Pataricza. Quality-of-service analysis of dependable application
models. 2006. Accepted for the 5th International Workshop on Critical Systems
Development Using Modeling Languages (CSDUML 2006).

4. András Balogh, Dániel Varró, and András Pataricza. Model-based optimization of
enterprise application and service deployment. In ISAS, pages 84–98, 2005.

5. Luciano Baresi, Reiko Heckel, Sebastian Thöne, and Dániel Varró. Style-based
modeling and refinement of service-oriented architectures. Software and Systems
Modeling, 5(2):187–207, June 2006.

6. Gianfranco Ciardo, Kishor S. Trivedi, and et al. Spnp: Stochastic petri net package
- version 5.0.

7. Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. Software perfor-
mance model-driven architecture. In SAC ’06: Proceedings of the 2006 ACM sym-
posium on Applied computing, pages 1218–1223, New York, NY, USA, 2006. ACM
Press.

8. Eclipse modeling framework. http://www.eclipse.org/modeling/.
9. Graphical editing framework. http://www.eclipse.org/gef/.

10. Graphical modeling framework. http://www.eclipse.org/gmf/.
11. Java emitter templates. http://www.eclipse.org/emft/projects/jet/.
12. Service AvailabilityTMForum. Information Model Classes, SAI-XMI-A.01.01, 2005.
13. Service AvailabilityTMForum. Availability Management Framework, SAI-AIS-

B.01.02, February 2006.
14. Service AvailabilityTMForum. Information Model Management Service, SAI-AIS-

B.01.02, February 2006.
15. Service AvailabilityTMForum. Software Management Framework, SAI-AIS-

A.01.01.02 draft version, 2007.
16. László Gönczy. Dependability analysis and synthesis of web services. In Proc. 13th

PhD Mini-Symposium, Budapest, Hungary, 2004.
17. László Gönczy, János Ávéd, and Dániel Varró. Model-based deployment of web

services to standards-compliant middleware. In Immaculada J. Martinez Pedro Isa-
ias, Miguel Baptista Nunes, editor, Proc. of the Iadis International Conference on
WWW/Internet 2006(ICWI2006). Iadis Press, 2006.

http://www.eclipse.org/modeling/
http://www.eclipse.org/gef/
http://www.eclipse.org/gmf/
http://www.eclipse.org/emft/projects/jet/

126 A. Kövi and D. Varró

18. Roy Gronmo, David Skogan, Ida Solheim, and Jon Oldevik. Model-driven web
services development. eee, 00:42–45, 2004.

19. Object Management Group. Object Constraint Language specification.
http://omg.org/technology/documents/formal/ocl.htm.

20. Object Management Group. UML Profile for Schedulability, Performance and
Time Specification, January 2005.
http://www.omg.org/technology/documents/formal/schedulability.htm.

21. Highly DEpendable ip-based NETworks and Services. http://hidenets.aau.dk.
22. Henk Jonkers, Maria-Eugenia Iacob, Marc M. Lankhorst, and Patrick Strating.

Integration and analysis of functional and non-functional aspects in model-driven
e-service development. In EDOC, pages 229–238, 2005.

23. Jean-Claude Laprie, Christian Béounes, and Karama Kanoun. Definition
and analysis of hardware- and software-fault-tolerant architectures. Computer,
23(7):39–51, 1990.

24. I. Majzik, P. Domokos, and M. Magyar. Tool-supported dependability evaluation
of redundant architectures in computer based control systems. In E. Schnieder
and G. Tarnai, editors, FORMS/FORMAT 2007, the 6th Symposium on Formal
Methods for Automation and Safety in Railway and Automotive Systems, 25-26
January 2007, pages 342–352, GZVB, Braunschweig, Germany, 2007. ISBN 13:978-
3-937655-09-3.

25. Ioana Manolescu, Marco Brambilla, Stefano Ceri, Sara Comai, and Piero Fraternali.
Model-driven design and deployment of service-enabled web applications. ACM
Trans. Inter. Tech., 5(3):439–479, 2005.

26. Object Management Group. http://omg.org.
27. OpenClovis. Application service platform (asp), release 2.2.

http://www.openclovis.org/project/asp.
28. OpenClovis. Openclovis ide. http://www.openclovis.org/project/ide.
29. Renamed abox and concept expression reasoner (RACER).

http://www.racer-systems.com/.
30. Genaina Rodrigues, David Rosenblum, and Sebastian Uchitel. Reliability predic-

tion in model driven development. In ACM/IEEE 8th International Conference
on Model Driven Engineering Languages and Systems, 2005.

31. Simone Rttger and Steffen Zschaler. Model-driven development for non-functional
properties: Refinement through model transformation.

32. Service AvailabilityTMForum. http://saforum.org.
33. Java server pages. http://java.sun.com/products/jsp/.
34. VIATRA2 Framework, an Eclipse GMT subproject.

http://www.eclipse.org/gmt/ .

http://omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/schedulability.htm
http://hidenets.aau.dk
http://omg.org
http://www.openclovis.org/project/asp
http://www.openclovis.org/project/ide
http://www.racer-systems.com/
http://saforum.org
http://java.sun.com/products/jsp/
http://www.eclipse.org/gmt/

MDDPro: Model-Driven Dependability

Provisioning in Enterprise Distributed Real-Time
and Embedded Systems�

Sumant Tambe1, Jaiganesh Balasubramanian1, Aniruddha Gokhale1,
and Thomas Damiano2

1 Vanderbilt University, Nashville, TN, USA
{sutambe,jai,gokhale}@dre.vanderbilt.edu

2 MITRE Corporation

Abstract. Service oriented architecture (SOA) design principles are in-
creasingly being adopted to develop distributed real-time and embedded
(DRE) systems, such as avionics mission computing, due to the avail-
ability of real-time component middleware platforms. Traditional ap-
proaches to fault tolerance that rely on replication and recovery of a
single server or a single host do not work in this paradigm since the fault
management schemes must now account for the timely and simultane-
ous failover of groups of entities while improving system availability by
minimizing the risk of simultaneous failures of replicated entities. This
paper describes MDDPro, a model-driven dependability provisioning tool
for DRE systems. MDDPro provides intuitive modeling abstractions to
specify failover requirements of DRE systems at different granularities.
MDDPro enables plugging in different replica placement algorithms to
improve system availability. Finally, its generative capabilities automate
the deployment and configuration of the DRE system on the underlying
platforms.

Keywords: Dependability Design Tools, Model-Driven Engineering,
Generative programming, Real-time SOA systems.

1 Introduction

Dependability is a crucial design consideration for mission-critical distributed
real-time and embedded (DRE) systems, such as avionics mission computing,
and supervisory control and data acquisition (SCADA) systems. DRE systems
development processes are increasingly adopting the service oriented architecture
(SOA) design principles due in large part to the availability of real-time compo-
nent middleware platforms, such as the Lightweight CORBA Component Model
(LwCCM) [1]. The SOA approach when applied to DRE systems gives rise to
what we term enterprise DRE systems, which are a loose coupling of interacting

� This work is supported in part or whole by subcontracts from LMCO ATL and BBN
for the DARPA Adaptive and Reflective Middleware Systems Program.

M. Malek et al.(Eds.): ISAS 2007, LNCS 4526, pp. 127–144, 2007.
© Springer-Verlag Berlin Heidelberg 2007

128 S. Tambe et al.

real-time and embedded services that are composed, assembled, deployed and
configured on the underlying platforms to realize the end-to-end functionality.
With the newer SOA-style design, however, new challenges emerge in the design
of dependability management solutions for enterprise DRE systems, which stem
from the following limitations of contemporary mechanisms:

Limitations of existing dependability mechanisms. A substantial amount
of research in dependable distributed computing has predominantly concentrated
on providing fault tolerance solutions to intrinsically homogeneous, two-tier
client-server systems with mostly request-response semantics or cluster-based
server systems with transactional semantics. These research artifacts most often
assume single language and single platform systems, which when incorporated
in middleware platforms form point solutions, limit reuse, and are too restrictive
for enterprise DRE systems.

Lack of support for mixed-mode dependability semantics. DRE systems
of interest to us require mix mode dependability wherein parts of the system may
require ultra high availability calling for solutions that require active replication
schemes while other parts of the systems may demand passive forms of replication
to overcome issues with non-determinism.

Lack of support for variable failover granularity and failure risk man-
agement. In enterprise DRE systems, traditional approaches to fault tolerance
that rely on replication and recovery of a single server process or a single host
are not sufficient since the fault management schemes must now account for the
timely and simultaneous failover of groups of entities while also improving the
system availability by minimizing the risk of simultaneous failures of groups of
replicated entities.

Lack of intuitive and scalable dependability provisioning tools. Stan-
dardized middleware solutions to dependability, such as FT-CORBA [2], provide
a one-size-fits-all approach, which do not support the different properties, such
as mixed-mode dependability semantics, required by enterprise DRE systems.
Moreover, dependability provisioning in DRE systems tend to use imperative,
programmatic mechanisms which are tedious, inflexible, non reusable and error
prone, and cannot scale to large enterprise DRE systems, where heterogeneity
of the underlying platforms is the norm.

To address the challenges outlined above, design-time tools that can auto-
mate the dependability provisioning problem for enterprise DRE systems are
needed. This paper describes MDDPro (Model Driven Dependability Provision-
ing), which is a Model-driven Engineering (MDE) [3] tool for design-time de-
pendability provisioning in enterprise DRE systems. We demonstrate

• how the intuitive modeling capabilities in our tool can model fault tolerance
elements in DRE systems at different granularities,

• how system availability can be enhanced by applying replica placement de-
cision algorithms on the models, and

MDDPro: MDDPro in Enterprise DRE Systems 129

• how generative programming capabilities in the tool can be used to rapidly
and reliably provision dependability in DRE systems.

The rest of the paper is organized as follows: Section 2 describes the chal-
lenges in designing the dependability provisioning tool for enterprise DRE sys-
tems; Section 3 describes the design and implementation of our dependability
provisioning tool; Section 4 describes related research; and Section 5 provides
concluding remarks and directions for future research.

2 Design Considerations for Automated Dependability
Provisioning

Several factors must be considered when developing a dependability provisioning
tool, such as MDDPro, for enterprise DRE systems. In this section we use a
sample enterprise DRE system as a guiding example to outline the requirements
of such a design-time tool.

2.1 Enterprise DRE System Case Study

Figure 1 illustrates a sample enterprise DRE system drawn from representative
domains, such as avionics mission computing or shipboard computing, where
variables of interest are sensed by the sensor equipment, which are software
controlled and fed to a set of planners who determine the appropriate control
action to be taken, and subsequently relay this information to the actuator
software components.

Enterprise DRE systems are often deployed over heterogeneous platforms,
which consist of multiple different networks, hardware and several layers of soft-
ware. We consider the fact that failures may occur in any of these entities. For
example, node failures, operating system crashes, middleware broker process fail-
ures, and even network link failures are common. In our current discussion we
do not consider multiple cascaded failures.

Quite often the critical functionality of enterprise DRE systems is spread
across multiple components. For example, the planning activity in Figure 1 is
spread across two planning components, which could be deployed in separate
application servers on different hosts. Since these distributed set of components
form a unit of critical functionality, for high availability and even for the correct

Fig. 1. A Sample Enterprise DRE System

130 S. Tambe et al.

operation of the system, it may be required that all such components in the
critical path be protected against failure.

Moreover, if any of these individual components fail, it may not be sufficient to
recover only the failed component but rather the failover should recover a group
of critical components. This is because failure recovery takes finite amount of
time and therefore by the time the failed functionality is recovered, the system
may lose some critical system events. Therefore, it is highly desirable in such
situations to failover to another replica of the protected group of the components
although the failure may occur in only a single component. Thus, the fault
recovery granularity can be much larger than the system elements affected by
the single failure. The functionality and the topology of replica workflow could
be different from that of the primary set of components to account for graceful
degradation.

Risk management and availability considerations in enterprise DRE systems
involve how individual or groups of critical components are replicated and de-
ployed. Effective deployment of replica (or replica groups) minimize the risk of
simultaneous failures in individual replica groups thereby improving the avail-
ability of the system.

2.2 Design Considerations

Using the enterprise DRE system case study illustrated in Figure 1 and the
dependability management requirements outlined above, we now describe the
design considerations for an automated dependability provisioning tool for en-
terprise DRE systems. In the following we describe the desired characteristics of
such a design tool.

1. Variable granularity of system protection: Enterprise DRE systems
are composed of several independently deployable assemblies of components
that communicate together in a workflow fashion to carry out the system’s
functionality. Quite often the unit of modularity in the system design is larger
than a single deployed component and results in some critical functionality
of the system being spread across multiple components and/or assemblies.
As outlined in the case study, in terms of the availability perspective, the
entire critical functionality which is spread across multiple components must
now be protected from failures. Moreover, failure of any one component in
the workflow now implies the failure of the entire flow. In such a situation,
the system must failover to a redundant workflow as opposed to a single com-
ponent. One strategy for the failover mechanism could be to allow graceful
degradation. The functionality of the replica components may not be the
exact duplicate of the original. For example, the replica component can pos-
sibly implement an algorithm that is less resource hungry compared to the
primary.

A design-time tool must allow the specification of these requirements of
enterprise DRE system. Section 3.2 describes how MDDPro provides intu-
itive abstractions to capture these dependability requirements of enterprise
DRE systems.

MDDPro: MDDPro in Enterprise DRE Systems 131

2. Mixed-mode dependability requirements: Enterprise DRE systems are
large-scale and comprise several different components each of which ac-
complishing specific tasks of the entire system functionality. Some parts of
the system may require ultra high reliability mandating active replication
schemes. However, due to the overhead associated with active replication
and the non determinism issues [4, 5] involved in active replication, it may
be necessary to restrict the use of active replication to a small part of the
enterprise DRE systems. Other parts of the system may then use other forms
of replication, such as passive replication, or depend on simple restart mech-
anisms depending on the criticality of the component and available resources
in the system.

The design-time tool must enable enterprise DRE system developers to
capture these mixed-mode dependability semantics of the system. When
combined with the granularity of protection units and other performance
requirements of the system, this provisioning task becomes complex to per-
form manually using ad hoc and programmatic techniques. Section 3.2 de-
scribes how MDDPro provides intuitive abstractions to capture mixed-mode
dependability requirements of enterprise DRE systems.

3. Effective replica deployment for maximizing availability: As alluded
to above, enterprise DRE systems may have a number of different protected
units of functionality that are assembled together to form the system. More-
over, different parts of the system may use different replication schemes.
Considering both these requirements, it is now necessary to introduce re-
dundancy in the system that accounts for the units of protection used and
the replication styles used. Redundancy in the system improves system avail-
ability, however, high levels of reliability are realized only when replicas are
placed in such a way that the risk of simultaneous failures of replicas is min-
imized. Effective replica placement also impacts several other performance
characteristics of the entire system. For example, effective replica placement
may be necessary to maintain a bounded and fast state synchronization
among the replicas.

A design-time tool can be used to ensure that the system simultaneously
satisfies multiple QoS requirements such as performance, predictability and
availability, by incorporating deployment state space search algorithms that
automatically find effective deployments. This feature boils down to the gen-
eral problem of constraint satisfaction. Optimality is a harder problem than
constraint satisfaction, however, we do not consider it yet in our design. Sec-
tion 3.3 describes how we have designed our MDDPro tool that can plug
in different replica placement algorithms that find effective deployments for
enterprise DRE systems.

4. Automated provisioning of dependability: Even though the model-
ing techniques can help capture dependability requirements while replica
placement algorithms can provide effective deployment decisions, these must
ultimately be realized in the context of the underlying hosting platforms,
such as the component middleware. Component middleware often use XML

132 S. Tambe et al.

metadata that describes how components of an enterprise DRE system
should be hosted in the middleware and how they must be connected to
each other. For large-scale systems, the amount of metadata becomes very
large and ad hoc techniques, such as handcrafting these descriptors becomes
infeasible and error prone.

Dependability provisioning makes this task harder since the metadata
must now account for the protection units and provisioning the multiple
replication schemes within the enterprise DRE system. This requires sub-
stantial degree of middleware configuration by allocating different resources
end-to-end. Replication adds to the number of connections that must be
established between the different protection units and their replicas. The
replication style makes this task even harder. For example, when active repli-
cation is used, the middleware must be configured to use a group commu-
nication substrate that is used by the communication between replicas. On
the other hand, in passive replication, the secondary replicas must be provi-
sioned on the middleware to accept periodic state updates from the primary.
Section 3.4 describes how generative programming [6] techniques used within
our MDDPro tool automates the metadata generation to provision depend-
ability for enterprise DRE systems within the middleware platforms.

Solution Approach. Model Driven Engineering (MDE) [3] is a promising ap-
proach to provision the dependability requirements for enterprise DRE systems
because it raises the level of the abstraction of system design to a level higher
than third-generation programming languages by providing a scalable and intu-
itive abstractions that are closer to the domain. The model-per-concern paradigm
within MDE alleviates system complexity because it abstracts away the irrel-
evant details from the developer’s current “view” of the system. Generative
tools provided by MDE approaches can seamlessly integrate multiple views of
the system and produce a consistent set of metadata used by underlying hard-
ware/software platforms for configuration. The MDDPro tool described in this
paper is therefore based on the MDE approach.

3 Dependability Provisioning Using Model-Driven
Engineering

In this section we describe the design and implementation of our MDDPro
design-time, automated dependability provisioning tool, which uses a model-
driven engineering (MDE) approach in its design and satisfies the requirements
of such a tool outlined in Section 2.2.

3.1 Overview of Enabling Technologies

Before delving into the details of our design-time dependability provisioning tool,
we first provide an overview of the enabling technologies we have leveraged to
develop MDDPro.

MDDPro: MDDPro in Enterprise DRE Systems 133

MDDPro has been developed in the context of the CoSMIC (Component Syn-
thesis with Model Integrated Computing) [7] MDE toolsuite. CoSMIC is an open
source MDE tool suite used to simplify the development of component-based
DRE applications focusing particularly on the assembly, deployment, configu-
ration, and validation of component-based enterprise DRE systems. CoSMIC
comprises a collection of domain-specific modeling languages (DSMLs), which
define the concepts, relationships, and constraints used to express domain en-
tities [8], and generative programming capabilities that automate the different
development concerns of DRE systems.

The different capabilities in CoSMIC including the MDDPro tool described
in this paper have been developed using the Generic Modeling Environment
(GME) [9]. GME is a metaprogrammable modeling environment that enables
domain experts to develop visual modeling languages and generative tools asso-
ciated with those languages. The modeling languages in GME are represented
as metamodels. A metamodel in GME depicts a class diagram using UML-like
constructs showcasing the elements of the modeling language and how they are
associated with each other.

A key CoSMIC DSML developed in GME is the Platform Independent Com-
ponent Modeling Language (PICML) [10], which enables graphical manipulation
of modeling elements, such as component ports and attributes. PICML also
performs various types of generative actions, such as synthesizing XML-based
deployment plan descriptors defined in the OMG Deployment and Configuration
(D&C) specification [11]. CoSMIC provides the Component QoS Modeling Lan-
guage (CQML), which is a mapping of the platform-independent PICML mod-
els to models that are specific to the lightweight CORBA Component Model.
Figure 2 illustrates the CQML model for the enterprise DRE system case study
from Figure 1. Our MDDPro tool is an enhancement to the CQML DSML and
its generative capabilities.

3.2 Modeling Dependability Requirements in MDDPro

We now describe how the MDDPro tool addresses Requirements (1) and (2)
described in Section 2.2. CQML allows modelers to annotate the system elements
modeled with platform-specific details and different quality of service (QoS)
requirements as shown in Figure 2. MDDPro is responsible for the dependability
QoS attributes in CQML. The artifacts that can be annotated are component
instances, component implementations, connections between component ports,
component assemblies, among others.

MDDPro allows an enterprise DRE system deployer to model the dependabil-
ity requirements in the QoS view of the DRE system as shown in Figure 3. The
QoS view leverages the basic structure of the DRE system in terms of the com-
ponent instances in an assembly, component ports and their inter connections. It
allows FT elements to be modeled orthogonally to the system components and
therefore achieves separation of dependability concerns from the primary system
composition and functionality concerns.

The following modeling elements are supported within MDDPro:

134 S. Tambe et al.

• Failover units (FOUs), which enable control over the granularity of pro-
tected system components, such as software components, component assem-
blies, or entire component workflows. Failure of any one element belonging
to a FOU is treated equivalent to the failure of all the elements in the FOU
and the system effectively “fails over” to another replica of the FOU. This
modeling abstraction not only captures the failover granularities of system
entities, but also the degree of replication for each FOU and other systemic
requirements, such as the periodicity of liveness monitoring for FOUs. The
degree of replication is represented as a pair of numbers representing mini-
mum and maximum number of replicas. The programming language artifacts
that implement the replica components could be different from that of the
primary components allowing graceful degradation of the functionality if the
dependability solution desires it.

Frequently, the liveness of distributed components is monitored using a
“heart beat” protocol. The frequency of the heartbeat is one configurable
parameter in the liveness monitoring, which can be configured in MDDPro.
The heartbeat itself is configurable in two ways: push model or pull model.
Thus, the directionality of the heartbeat can also be configured in MDDPro.
In Section 3.4 we show how modeling of FOUs enable us to automatically
synthesize and configure liveness monitoring components as well as heartbeat
producing components. Conceptually, a FOU is an abstraction to capture the
availability requirements at the control plane of the dependability solution.

• Replication groups (RGs), which allows capturing the replication re-
quirements of software components within a FOU. These models specify
replication strategies, such as active, passive or other variants, and the state
synchronization policies for components. A replication group captures the

Fig. 2. CQML Model of the Enterprise DRE System Case Study

MDDPro: MDDPro in Enterprise DRE Systems 135

Fig. 3. Availability Requirements Modeling in CQML

configuration parameters related to the data plane of the deployment so-
lution. Multiple replicas of the system components synchronize their state
with each other as per the configuration of the data plane. For example,
data synchronization frequency of the replicas is configurable. Moreover, the
topology of state synchronization among replicas is also a data plane level
configuration issue handled in MDDPro.

• Shared Risk Groups (SRGs), which defines one way of grouping of the
resources in the target network of the applications that share a risk of simul-
taneous failure. Application components share a risk of simultaneous failure
by virtue of the failure of the resources they share, such as processes, nodes,
racks or even data centers on which they are hosted. Risk factors are deter-
mined by assigning the metrics, such as co-failure probabilities to a hierarchy
of the network resources in a risk group that affects the availability of the
system. The computation of the co-failure probabilities themselves is beyond
the scope of this paper and is assumed to be done apriori using reliability
engineering methodologies.

The primary purpose behind modeling the shared risk groups and their
respective co-failure probabilities is to facilitate automated deployment deci-
sions of the components in the system such that the probability of failure of
entire system is minimized thereby increasing the availability. One way of re-
ducing the co-failure probability is to increase the physical distance between

136 S. Tambe et al.

the nodes where the components are deployed. Here, the physical distance
can be thought of as the distance from a remote host or a remote blade or a
remote data center and so on. An advantage of using distance metric is that
it is simpler and quite intuitive than co-failure probability. In Section 3.3 we
show how the shared risk group model is used by the MDDPro model in-
terpreter to determine a suitable and effective deployment that satisfies the
availability requirements and minimizes risks of simultaneous failures. In
our prototype implementation of the algorithm we use the simpler distance
metric to guide the decision of the replica placement.

The Figure 4 shows a model of the Shared Risk Group hierarchy. Hosts 1 to
5 are part of a domain and are contained under a common “RootRiskGroup”
at the top. A RootRiskGroup represents comparatively larger structures
such as a ship or an entire building. All the hosts in the domain share a
common risk of failure of the largest composing structure represented by a
RootRiskGroup. We limit the scope of our dependability solution at that
level. The RootRiskGroup is further divided in to smaller units of Shared
Risk Groups as shown in the figure. For example, Host1, Host4 and Host5
share a common risk of a failure of the NodeGroup1 but failure of Node-
Group2 that consists of Host4 and Host 5 does not affect Host1.

The distance between hosts is simply computed as the number of tree
edges between two hosts. For example, the distance between the Host2 and
Host3 is 2. Similarly the distance between the Host2 and the Host4 or Host5
is 5. Based on such a Shared Risk Group hierarchy, deployment decisions
are taken to maximize the distance between the primary component and its
replicas as shown in the Figure 4.

Fig. 4. Shared Risk Group Hierarchy Modeling in CQML

MDDPro: MDDPro in Enterprise DRE Systems 137

3.3 Improving Availability Via Effective Replica Placement

Requirement (3) in Section 2.2 states that the dependability solution for enter-
prise DRE systems must minimize the risk of simultaneous failures of replicated
functionality. This requires effective replica placement algorithms, where replica-
tion is provided for protection units that are modeled as failover units described
in Section 3.2.

MDDPro uses GME’s plugin capabilities to add model interpreters. One such
model interpreter addresses the replica placement problem. The placement model
interpreter provides a strategizable framework that can use different constraint-
based algorithms to determine an effective replica placement plan to minimize
the co-failure probability of the system as a whole.

Formulation of replica placement problem instance in MDDPro. In
one instantiation of the formulation of the replica placement problem within our
strategizable model interpreter, we use mathematical vectors to represent the
distance of the replicas from the primary component. If the primary component
has N replicas, then we form N orthogonal vectors, where each vector represents
the distance from the primary component node in terms of hops captured in the
shared risk group hierarchy. The magnitude of the resultant vector of the N
orthogonal vectors is used to compare different deployment configurations and
to find the one that satisfies the constraints.

In this formulation of the placement problem algorithm, we have taken care
to avoid generation of some obviously undesirable deployment configurations of
the system. For example, it does not allow deployment configuration where all
the replicas of a component are located in the same host. This is obviously unde-
sirable in dependable enterprise DRE systems because placing multiple replicas
in the same host increases the risk of simultaneous failure of replicas.

Prototype heuristic algorithm using the distance metric. The prototype
placement algorithm that we have developed maximizes the distance of the repli-
cas from the primary replica but the pair-wise distance between replicas them-
selves can be small. In other words, the replicas themselves can group together
in closely located hosts that are farthest from the primary host. Such a deploy-
ment configuration is skewed and undesirable. To alleviate the problem we apply
a penalty function to the resultant magnitude of the vector. The penalty function
gives more precedence to uniform deployments than highly skewed deployments.
The penalty function that we have used is a simple standard deviation of the
distances of individual replicas from the primary component. We can gener-
ate better configurations by penalizing highly skewed deployment configurations
heavily compared to the more uniform deployment configurations.

For example, consider two resultant vectors v1{4, 4, 4} and v2{1, 1, 8} having
3 dimensions. Although the magnitude of v2 is much greater than v1, the deploy-
ment configuration captured in v1 is more desirable than v2 because the replicas
are spread across more uniformly around the primary unlike v2. The heuris-
tic algorithm for the prototype implementation of the deployment algorithm is
illustrated in Listing 1.

138 S. Tambe et al.

1. Compute the distance from each of the replicas to the primary for a placement.

2. Record each distance as a vector, where all vectors are orthogonal.

3. Add the vectors to obtain a resultant.

4. Compute the magnitude of the resultant.

5. Use the resultant in all comparisons (either among placements or against a threshold)

6. Apply a penalty function to the composite distance (e.g. pairwise replica distance)

Listing 1: Replica Placement Heuristics

3.4 Automated Dependability Provisioning Via Generative
Programming

The model interpreters and generative tools in MDDPro use the dependability
requirements captured in the models for synthesizing metadata used to provision
dependability for enterprise DRE systems. In order to realize such an automation
in the provisioning process several artifacts of dependability must be addressed:
(a) the designer of the dependable system has to annotate the desired degree of
replication of the protected components in the model, (b) the generative tools
have to process the replication requirements and produce deployment metadata
that reflects the number of physical software components that will actually be
deployed but not necessarily be represented in the model, (c) derive the complex
connection topology interconnecting the generated components, which is dic-
tated by the degree and style of replication of the primary component as well as
replication requirements of the components it interacts with, and (d) generating
the fault-tolerance infrastructure components that produce a periodic heartbeat
as well as monitor the liveness of the replicated components.

Deployment metadata generation framework. As noted in Section 3.1,
the real-time component middleware platforms used to host the enterprise DRE
systems use standardized XML-based metadata descriptors to describe the de-
ployment plans of the entire system, which the runtime system uses to actually
deploy the different components of the system. Our challenge involved enhanc-
ing the metadata descriptors to include dependability provisioning decisions. For
this goal to realize, MDDPro’s generative capabilities had to be integrated with
the existing generators available in CQML without obtrusive changes to exist-
ing capabilities. This approach ensures that generators for QoS issues beyond
dependability, such as security, can seamlessly be integrated with CQML.

To address these concerns, we have developed an extensible framework called
The Deployment Plan Framework that allows augmentation of metadata gener-
ation “on-the-fly” as it is being generated. The framework exposes a fixed set
of hooks to be filled in by the developer of the existing and any new CQML
model interpreters including the MDDPro model interpreters. The main job of

MDDPro: MDDPro in Enterprise DRE Systems 139

the deployment framework is to generate the standardized metadata describ-
ing the components, their implementations, their inter-connections and so on.
Additionally, it invokes predefined hook methods implemented by different QoS
model interpreters of CQML. The MDDPro interpreter implements a subset of
a large set of different possible hook methods. The hook methods “inject” auto-
generated standardized metadata in response to the availability requirements
captured in the model. The metadata generated on-the-fly blends into the other
standardized metadata.

This architecture allows large scale reuse of earlier code base that deals with
the basic structure and composition capabilities of PICML/CQML. The de-
veloper producing QoS enhancements to the existing modeling capabilities of
CQML need not be concerned with the other complexity of the framework and
the format of the standardized descriptors, but simply add/modify the metadata
for the QoS dimension they are addressing. Our MDDPro model interpreter ex-
ploits these capabilities of the Deployment Plan Framework to ”inject” three
different kinds of metadata.

1. Replica component instances of the primary protected component de-
pending upon replication degree annotated in the model. For example, if
replication degree of an FOU is 3, then two replicas of the primary FOU are
created. Thus, two replicas of each component in the FOU are effectively
added by the interpreter.

2. Component connection metadata is injected based on the replication
style and degree of replication. The incoming connections to the protected
components are marked with special annotations so that the run-time sys-
tem can use suitable implementations to realize them. One such possible
annotation is IOGR, i.e. Interoperable Object Group Reference. IOGR is a
part of the FT-CORBA [2] standard.

3. Deployment metadata is the assignment of components to computing
resources available in the system. This metadata includes information for
all the primary protected components, their replicas and the dependability
infrastructure components (e.g. Heartbeat components).

Handling complex connections. As shown in Figure 5, shows the effect of the
replication style and the degree of replication on the complexity of the connection
establishment. In an unprotected system, the Processor component and the Plan-
ner component have exactly one connection between them. The Figure 5 captures
the multiplicative increase in the number of connections when both, the Proces-
sor component and the Planner component, are protected using active replica-
tion. Each Processor component, primary as well as its replica has to make three
connections to each member of the Planner replica group because the degree of
replication of the Planner fail over unit (FOU) is three. In general, if the source
component of the connection is replicated M times and the destination component
is replicated N times then the number of connections grow by a factor of M x N.

Note that the diagram only indicates the necessary number of connections the
middleware has to establish when components are deployed. These connection

140 S. Tambe et al.

Fig. 5. Complexity of connection generation

may or may not actually be used to send requests across because it really depends
upon where request/reply suppression is in place. Nevertheless, the component
container has to prepare for any unforeseen failures and has to establish con-
nections apriori in order to avoid the latency of connection establishment later
when failures occur. The model interpreter that we have developed completely
hides away the complexity of modeling the component replica instances and the
connections between them.

Automatic generation of liveness monitoring infrastructure. The model
interpreter also generates the infrastructure components necessary for liveness
monitoring of the protected components. It uses the availability requirements in
the models to generate supporting run-time components to realize
ready-to-deploy, robust, and fault-tolerant enterprise DRE systems. This in-
cludes generating, configuring, and deploying the status monitoring and fault
recovery components without the need for the application developer having to
model/develop them explicitly.

The generated architecture shown in Figure 6 has two important components:
theheartbeat (HB)componentand theFaultProtectionCenter component (FPC).

MDDPro: MDDPro in Enterprise DRE Systems 141

The purpose of the HB components is to send a periodic heartbeat beacon to the
FPC or respond to the periodic liveness poll request received from the FPC. The
FPC is the central controlling component that ensures the liveness of the protected
components using either pull or push model of the heartbeat beacon. The HB com-
ponents are collocatedwith the protected components.The underlying assumption
is that the HB component and the protected component would fail simultaneously
in the face of a failure. The central FPC component is also replicated to avoid sin-
gle point of failure. Multiple copies of the FPC components send heartbeat beacons
among themselves to ensure that FPC themselves are alive and are doing continu-
ous liveness monitoring of the system.

As shown in Figure 6, every protected component has its own collocated
HB component and there is one FPC for every FOU. All the HB components
belonging to one FOU send heartbeat to its corresponding FPC. Multiple simul-
taneously active FOUs have equal number of FPCs, which communicate with
themselves to prevent single point of failure.

The heartbeat frequency at which the liveness indications are sent between
HBs and FPCs is configurable in the model. The advantage of this architecture is
that the infrastructure components for liveness monitoring can be auto-generated
using generative technologies. The necessary deployment metadata required to
collocate the HB components with their respective protected components and to
establish the connections between HB components and the FPC components is
auto-generated by the model interpreter from the requirements. Moreover, the
metadata that captures the configuration of HB components such as push/pull
model and heartbeat frequency is auto-generated for every HB component.

Fig. 6. Generated Deployment of Dependability Infrastructure Elements

142 S. Tambe et al.

4 Related Work

Although there has been substantial research in dependability mechanisms and
algorithms over the past several decades, applying modeling and generative tech-
niques to automate dependability provisioning has recently caught researchers’
attention. In this section we compare our work on model-driven engineering of
dependability with related research.

The CORRECT [12] project describes a project that is looking at applying
step-wise refinement and OMG’s Model Driven Architecture [13] to automati-
cally generate Java code used in a fault tolerant distributed system. The project
uses UML to describe the software architecture in both a platform-independent
and platform-specific form. Model-to-model transformations are used to incre-
mentally enrich the models with platform-specific artifacts until the Java skele-
ton code is generated. MDDPro, on the other hand, is designed to automatically
generate the complete source code (not just the skeletons) for the component
liveness monitoring infrastructure that detects exceptional conditions.

The research on software systems reliability using MDA [14] focuses on a
platform-independent means to support reliability design following the princi-
ples of a model driven architecture and approach. The research aims to sys-
tematically address dependability concerns from the early to the late stages of
software development by expressing dependability architectures using profiles.
Design profiles are mapped to deployment domains, where the reliability config-
urations of how the components communicate and are distributed is explained.
Unlike the previous approach, MDDPro uses an extensible way to automatically
generate platform specific metadata and programming language artifacts that
realize parts of the dependability provisioning solution.

UML has been used perform model-driven dependability analysis [15] for com-
posite web services. The UML representation is based on BPEL, and extensions
are added to characterize the fault behavior of the elements comprising the web
services. Model transformations are used to map the UML models to Block
Diagrams, Fault Trees and Markov models to analyze the dependability char-
acteristics of the composite web services. On the other hand, our approach in
MDDPro enhances the productivity of the system developers rather than system
dependability analysts.

Although our research on MDDPro has similar goals, we use the concept of
domain-specific modeling languages, which provides more richer and semanti-
cally powerful modeling concepts than the general-purpose modeling elements
provided by UML. Additionally our framework allows plugging in multiple
different model interpreters that can synthesize metadata for multiple different
middleware platforms provide deployment planning.

5 Conclusions

This paper describes how model driven engineering (MDE) can be used to simplify
and automate dependability provisioning in enterprise distributed real-time and
embedded (DRE) systems. We describe the capabilities of the MDDPro

MDDPro: MDDPro in Enterprise DRE Systems 143

(Model Driven Dependability Provisioning) MDE tool which we have built as part
of the CoSMIC tool suite. Our work is suitable for component-oriented systems
that have multiple different quality of service requirements and which are deployed
and configured via declarative mechanisms. Both these traits are common to sys-
tems that use the service oriented architecture. In the remainder of this section
we describe the lessons we learned in this effort and our future work in this realm.

Lessons Learned and Future Work

Capturing availability requirements in terms of degree of replication, replication
style at the modeling time and generating component infrastructure components
increasesproductivitytoagreatextentbutmanyunresolvedchallengesstill remain.

• Availability model analysis is useful to determine the effect of the avail-
ability requirements on other QoS aspects of the system. Our prototype
implementation of MDDPro is simplistic because it neglects the effects on
system resource consumption due to replication. Unconstrained increase in
the degree of replication of the protected components in the system may re-
sult in excessive resource consumption and may adversely affect other QoS
guarantees of the system such as timeliness and CPU load. An analysis tech-
nique needs to be in place that would help the system designers take correct
decisions about the system availability without adversely affecting the re-
source consumption and other QoS characteristics of the system.

• Run-time adaptation of the fault-tolerance infrastructure as well as the
replicated application components is highly desirable in enterprise DRE sys-
tems because these systems usually exhibit modal behavior. System func-
tionality as well QoS priorities may change as the mode of operation of the
system changes. Our approach to the availability modeling is static in nature
and depends on the availability of the target domain information and their
associations with each other in terms of co-failure probability. Although the
placement model interpreter does take deployment decisions at design time
using a strategizable constraint-solver framework, it does not make the sys-
tem adaptive at run-time. Runtime monitoring subsystems such as RACE
can be used to implement a general purpose resource constraint-solver frame-
work at runtime, not unlike the one we have in our design-time placement
model interpreter. Such a framework would make intelligent (re)deployment
decisions based on changing environment (failures, resource consumption)
and modes of the eDRE systems.

• Ensuring state consistency across replicas of components or FOUs in a
general is a challenge. Our availability model abstracts away the details of
the fault monitoring part of the FT subsystem and generates component
based infrastructure automatically for precisely doing that. However, state
synchronization and ensuring state consistency across replicated components
of the system is a hard problem. The primary challenges in this space are
capturing and provisioning a variety of state synchronization mechanisms be-
cause different component developers may implement different mechanisms
as they see fit. Several different ways of ensuring state synchronization are

144 S. Tambe et al.

used, for example, central repository/database-based approach, transmission
of periodic state updates using point-to-point communication or multicast
communication. Modeling the topology transmission of state update mes-
sages is also important in case of non repository-based techniques because
the runtime failover critically depends on the order in which replica compo-
nents receive state updates.

All artifacts described in this paper are available in open source from the CoS-
MIC web site (www.dre.vanderbilt.edu/cosmic).

References

1. Object Management Group: Lightweight CCM FTF Convenience Document.
ptc/04-06-10 edn. (June 2004)

2. Object Management Group: Fault Tolerant CORBA Specification. OMG Docu-
ment orbos/99-12-08 edn. (December 1999)

3. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2) (2006) 25–31
4. Pascal Felber and Priya Narasimhan: Experiences, Approaches and Challenges

in building Fault-tolerant CORBA Systems. Transactions of Computers 54(5)
(May 2004) 497–511

5. Priya Narasimhan and Tudor Dumitras and Aaron M. Paulos and Soila M. Pertet
and Charlie F. Reverte and Joseph G. Slember and Deepti Srivastava: MEAD:
support for Real-Time Fault-Tolerant CORBA. Concurrency - Practice and Expe-
rience 17(12) (2005) 1527–1545

6. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Reading, Massachusetts (2000)

7. Gokhale, A., Schmidt, D.C., Natarajan, B., Gray, J., Wang, N.: Model Driven
Middleware. In Mahmoud, Q., ed.: Middleware for Communications. Wiley and
Sons, New York (2004) 163–187

8. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-Integrated Development
of Embedded Software. Proceedings of the IEEE 91(1) (January 2003) 145–164

9. Ledeczi, A., Bakay, A., Maroti, M., Volgysei, P., Nordstrom, G., Sprinkle, J.,
Karsai, G.: Composing Domain-Specific Design Environments. IEEE Computer
(November 2001) 44–51

10. Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A., Schmidt,
D.C.: A Platform-Independent Component Modeling Language for Distributed
Real-time and Embedded Systems. Elsevier Journal of Computer and System
Sciences (2006) 171–185

11. Object Management Group: Deployment and Configuration Adopted Submission.
OMG Document mars/03-05-08 edn. (July 2003)

12. Capozucca, A., Gallina, B., Guelfi, N., Pelliccione, P., Romanovsky, A.: CORRECT
- Developing Fault-Tolerant Distributed Systems. ERCIM News 64(1) (2006)

13. Object Management Group: Model Driven Architecture (MDA). OMG Document
ormsc/2001-07-01 edn. (July 2001)

14. G.Rodrigues: A Model Driven Approach for Software Systems Reliability. In: In
the proceedings of the 26th ICSE/Doctoral Symposium, May 2004 - Edinburgh,
Scotland, ACM Press (May 2004)

15. Zarras, A., Vassiliadis, P., Issarny, V.: Model-Driven Dependability Analysis of
Web Services. In: Proc. of the Intl. Symp. on Dist. Objects and Applications
(DOA’04), Agia Napa, Cyprus (October 2004)

www.dre.vanderbilt.edu/cosmic

M. Malek et al.(Eds.): ISAS 2007, LNCS 4526, pp. 145 – 154, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Applying US DoD Human Engineering Methods to
Reduce Procedural Error Related Outages

Pat O’Brien

Reliability and Availability
Motorola, Embedded Communications Computing

214-882-1049
epob@obrienbusdev.com, Harry.Weber@motorola.com

Abstract. Human errors committed by network equipment (NE) maintainers
cause the largest portion of all network outages and down time. This paper
describes the application of US Department of Defense Human Engineering
methods to resolve conflicts in standards; and, to identify and remove the root
causes of design induced procedural errors. It demonstrates the application of
human Fault Mode and Effects Analysis in the design of Motorola’s
AdvancedTCA® equipment. It also shows the resulting feedback loop to
engineers to change the human-machine interface. The paper gives examples of
reduced procedural error rates expected to result from the changes in the
interface design.

Keywords: Human Factors Engineering, Procedural Errors, Interface Design,
Usability, Man-Machine Interaction.

1 Situation

Motorola intends to field a superior AdvancedTCA® (ATCA®) platform. Initial
concerns were to ensure the desired functionality was present in the network
equipment (NE). The industry and Motorola succeeded at this and support a wide
range of high volume broadband voice, data and other communication applications.
With this accomplished secondary concerns of reducing lifecycle costs and achieving
6NINES (99.9999%) availability have come to the forefront.

Lifecycle costs and availability depend upon maintenance induced costs and down
time. Theoretically, equipment could be so reliable that it simply would not fail, thus,
maintenance related outages and costs would drop to zero. Ten years ago, some
logisticians explored how far this notion could be taken and designed supply chain
models based upon an assumption that UPS, DHL and other delivery drivers would
maintain the physical system. The equipment would be so simple to maintain that the
logistics/delivery drivers would have a key to the equipment room, would find the
physical address of parts and would, themselves, replace the parts.

Unfortunately, such notions remain unrealistic for the most part. Rather,
maintenance remains a critical component of keeping systems running. Additionally,
the increasing complexity of NE has resulted in increasingly complex procedures.
Procedural errors account for nearly 50% of network outages with the range across

146 P. O’Brien

network operators being from 30 to 60%, based upon analysis of Automated
Reporting Management Information System data.

Multiple standards have tried to define the human-machine interfaces to reduce
procedural errors. Relying on these standards does not, however, necessarily reduce
procedural errors. The standards are incomplete and impose conflicting requirements for
the human interface both within and across standards. The PCI Industrial Computer
Manufacturers Group (PICMG®) standards guiding the design of NE are a notable
example. PICMG is a permissive standard and allows a broad range of “user definable”
parameters. Thus, manufacturers are able to design components with advantages over
their competitors’ products. However, so many parameters are undefined that one can
follow PICMG and still have an unusable, error inducing interface.

For example, throughout its standards, PICMG specifies 9pt Arial typeface but
then does not leave adequate space in the designated indicator areas of faceplates to
place three 9pt Arial characters. Allowing for three characters is important because
the shortest romance language abbreviations in an open-ended abbreviation set must
be a minimum of three characters long to prevent confusion. Thus, designers are
forced to use symbols, transilluminated indicators, alternate type faces and other
solutions that are not addressed by the standard.

This lack of precision in the PICMG standards requires some means for filling the
gaps and creating integrated, consistent interfaces. Interestingly, turning to other
national, international and commercial best practices and standards (i.e., ANSI, ISO,
OSHA, Mil-Std, GR-78-CORE, GR-2914-CORE, etc.) can increase conflicts in
requirements. An example of conflicts across standards for the simple matter of LED
colors is shown in Table 1. The table lists colors PICMG says should be supported
and the range of colors specified by various standards.

Such minor deviations when distributed across all the NE in an equipment room
results in procedural errors. One vendor’s ‘green’ LED placed next to another
vendor’s ‘green’ LED is perceived as being ‘yellow’; a ‘yellow’ LED placed next to

Table 1. Color Specification Conflicts Among Common Standards

PICMG* ANSI*** ANSI (range) Mil-
Std**

NASA

Blue 470nm 445-480nm Not used Not used
Green 525nm 505-535nm 555nm 520nm
Yellow 590nm 583-593nm 575nm ~570nm
Orange Not used Not used 585nm Not

defined
Red 630nm 615-650nm 660nm ~635nm

 * PICMG says these colors shall be supported
 ** ANSI 40-2003 and ANSI Z535.1 conflict. 40-2003 does not support an Orange

 LED definition but ANSI
 Z535.1 supports Orange labeling and signs.

 *** Note that ANSI ‘Yellow’ is redder than Mil-Std ‘Orange’

 Applying US DoD Human Engineering Methods 147

another vendor’s ‘amber’ LED appears ‘green’; an ‘amber’ LED placed next to
another vendor’s ‘yellow’ LED appears ‘red’.

Managing superficial interface design features is only part of reducing procedural
errors. Incomplete and conflicting standards are compounded by engineers’ limited
understanding of human engineering. Furthermore, an engineer’s practical experience
often conflicts with the characteristics of the maintainer population. Most designers
have also never had to use their interfaces under actual field conditions and scenarios.
This results in errors in the superficial design of the interface due to faulty
assumptions about network operations, real world scenarios; and, the physical
capabilities, knowledge, training and experience of maintainers. Examples of some
problems identified are shown in Table 2. The range of areas the problems can
potentially impact is assessed across the Human System Integration domains shown in
Table 3.

2 Problem

The problem was how to reduce procedural errors when the root cause was not in the
written procedures themselves but rather in the standards or platform design.
Equipment design features were found to induce errors or lead to work-arounds that
damaged equipment. Also, some engineers mistakenly believed that because they met
all the “shalls” or mandatory requirements in PICMG standards, they had achieved a
useable interface with low probability of a human error. It is actually more the case
that to allow innovation, the standards needed to be somewhat incomplete and the
engineers needed to close the gaps themselves. Finally, the actual field data indicated
that the interfaces and procedures are designed poorly. This was indicated by both the
Automated Reporting Management Information System data that 50% of all
downtime is caused by procedural errors; and, by customer anecdotal reports of
problems and repair times well beyond what was expected based upon experience
with the equipment in the lab.

3 Solution

Given the industry average of 50% downtime being caused by procedural errors
Motorola and its customers determined to make a major reduction in this figure. The
solution selected was to implement best practices in Human Engineering (HE). The
method selected was Mil-HDBK-46855A Human Engineering Program Process and
Procedures.

The aspiration was to comply to all PICMG and Telcordia human factors
requirements where specified and to use other best practices such as ISO 4192, the
FAA-HFDS-001, NASA-STD-3000 and other human engineering design standards
and methods to resolve conflicts in PICMG and Telcordia requirements or to fill
missing requirements. The solution required not only adherence to standards but also
basic research using ethnography, motion-time studies, human Fault Mode and

148 P. O’Brien

F
e
a
tu

r
e

R
e
la

te
d

 S
ta

n
d

a
r
d

s
P

r
o
b

le
m

Im

p
a
c
t

L
E

D
s

P
IC

M
G

 3
.0

 B
a
se

 S
p

e
c
if

ic
a
ti

o
n

G
R

-7
8

-C
O

R
E

,
G

R
-2

9
1

4
-C

O
R

E
,
A

N
S

I
4

0
-

2
0

0
3

,
M

il
-S

td
-7

5
9

B

L
E

D
 c

o
lo

rs
 a

re
 n

o
t

sp
e
c
if

ie
d

,
re

su
lt

in
g

in
 m

u
lt

ip
le

,
d

if
fe

re
n

t
a
n

d
 c

o
n

fu
si

n
g

c
o

lo
rs

 b
e
in

g
 u

se
d

 f
o

r
Y

e
ll

o
w

,
G

re
e
n

,

A
m

b
e
r,

 R
e
d

,
e
tc

.

C
o

n
fu

si
n

g
 o

n
e
 c

o
lo

r
fo

r
a
n

o
th

e
r

le
a
d
s

to

in
c
o

rr
e
c
t

m
a
in

ta
in

e
r

a
c
ti

o
n

s.

L
E

D
 s

e
m

a
n

ti
c
s

P
IC

M
G

 3
.0

 B
a
se

 S
p

e
c
if

ic
a
ti

o
n

,
G

R
-2

9
1
4

-

C
O

R
E

,
N

A
S

A
-S

T
D

-3
0

0
0

P
IC

M
G

 L
E

D
 s

e
m

a
n

ti
c
s

u
se

 3
 L

E
D

s
to

d
ia

g
n

o
se

 3
 s

ta
te

s
ra

th
e
r

th
a
n

 t
h

e
 8

p
o

ss
ib

le
 a

n
d

 w
a
st

e
fu

ll
y
 u

se
 R

e
d

 a
n

d

G
re

e
n

 L
E

D
s

to
 i

n
d
ic

a
te

 o
p
p

o
si

te
 s

ta
te

s

in
 v

io
la

ti
o

n
 o

f
b

e
st

 p
ra

c
ti

c
e
s

su
c
h
 a

s

N
A

S
A

-S
T

D
-3

0
0

0

M
a
in

ta
in

e
rs

 d
o

 n
o

t
h

a
v
e
 a

d
e
q

u
a
te

d
ia

g
n

o
st

ic
 f

e
e
d

b
a
c
k
 f

ro
m

 t
h

e
 L

E
D

s

c
a
u

si
n

g
 t

h
e
m

 t
o

 s
e
e
k
 c

o
n

so
le

s

u
n

n
e
c
e
ss

a
ri

ly
,

h
a
m

m
e
r

o
n

 f
a
c
e
p

la
te

s ,

b
re

a
k
 e

je
c
to

rs
 h

a
n

d
le

s
a
n
d

 H
/S

 s
w

it
c
h

e
s

e
tc

 i
n

 a
 c

a
sc

a
d

e
 o

f
tr

ia
l-

a
n

d
-e

rr
o

r

a
tt

e
m

p
ts

 t
o

 d
e
te

rm
in

e
 F

R
U

 s
ta

te
s.

B
la

d
e
 e

je
c
to

r
h

a
n
d

le
s

P
IC

M
G

 3
.0

 B
a
se

 S
p

e
c
if

ic
a
ti

o
n

,
G

R
-2

9
1
4

-

C
O

R
E

,
M

il
-S

td
-1

4
7

2
F

T
h

e
 m

e
c
h

a
n

ic
a
l

a
d

v
a
n

ta
g

e
 o

f
h

a
n

d
le

d
e
si

g
n

 i
s

n
o

t
a
d

e
q
u

a
te

 f
o

r
5

th
 p

e
rc

e
n

ti
le

fe
m

a
le

s
to

 a
p

p
ly

 t
h

e
 i

n
se

rt
io

n
 a

n
d

e
x
tr

a
c
ti

o
n

 f
o

rc
e
s

fo
r

F
R

U
s

a
ll

o
w

e
d

 b
y

P
IC

M
G

 a
n

d
 T

e
lc

o
rd

ia

F
e
m

a
le

s
a
s
k
 m

a
le

s
to

 i
n

se
rt

 s
o

m
e

b
la

d
e
s,

 l
e
a
d

in
g
 t

o
 s

u
b

-o
p

ti
m

a
l

m
a
n

-

p
o

w
e
r

m
a
n

a
g
e
m

e
n

t
c
o

st
s.

 A
lt

e
rn

a
ti

v
e
ly

,

m
a
in

ta
in

e
rs

 b
re

a
k
 h

a
n

d
le

s,
 b

e
n
d

fa
c
e
p

la
te

s,
 h

a
m

m
e
r

o
n

 f
a
c
e
p

la
te

s,
 p

u
ll

o
n

 h
a
n

d
le

s
w

it
h

 p
li

e
rs

 a
n
d

 u
se

 o
th

e
r

h
a
rm

fu
l

m
e
a
n

s
to

 i
n

se
rt

 a
n
d

 e
je

c
t

F
R

U
s

S
h

e
lf

 “
A

”
 s

id
e
 –

 “
B

”
 s

id
e
 c

o
n

fu
si

o
n

P

IC
M

G
 3

.0
 B

a
se

 S
p

e
c
if

ic
a
ti

o
n

,
G

R
-2

9
1
4

-

C
O

R
E

E
n

g
in

e
e
rs

 r
e
v
e
rs

e
d

 t
h

e
 l

a
b

e
li

n
g
 a

n
d

w
ir

in
g
 f

ro
m

 f
ro

n
t

o
f

th
e
 c

h
a
ss

is
 t

o
 t

h
e

re
a
r

in
 c

o
n

tr
a
d

ic
ti

o
n

 t
o

 t
y
p

ic
a
l

in
d
u

st
ry

c
o

n
v
e
n

ti
o
n

s.

T
h

is
 c

a
u

se
d

 m
a
in

ta
in

e
rs

 t
o

 d
is

c
o
n
n

e
c
t

th
e
 w

ro
n

g
 s

o
u

rc
e
 o

f
in

p
u

t
p
o

w
e
r

d
u

ri
n

g

m
a
in

te
n

a
n

c
e
 p

ro
c
e
d
u

re
s

o
n
 c

h
a
ss

is

o
p

e
ra

ti
n

g
 i

n
 a

 s
im

p
le

x
 p

o
w

e
r

m
o

d
e
.
T

h
e

re
su

lt
 w

a
s

a
 t

o
ta

l
p

o
w

e
r

o
u

ta
g
e
 t

o
 t

h
e

c
h

a
ss

is
.

C
h

a
ss

is
 f

in
is

h

P
IC

M
G

 3
.0

 B
a
se

 S
p

e
c
if

ic
a
ti

o
n

,
N

E
B

s
a
n

d

G
R

-6
8

-C
O

R
E

R
e
q

u
ir

e
m

e
n

ts
 f

o
r

a
 d

u
ra

b
le

 f
in

is
h

c
a
u

se
d

 e
n

g
in

e
e
rs

 t
o

 u
se

 b
u

rn
is

h
e
d

m
e
ta

l.
 T

h
e
 g

la
re

 w
a
sh

e
d

 o
u

t
L

E
D

,

c
a
u

se
d

 r
e
fl

e
c
ti

o
n

s
a
n

d
 o

th
e
r

v
is

u
a
l

n
o
is

e

th
a
t

m
a
d

e
 L

E
D

s
n

o
t

v
is

ib
le

 f
ro

m
 c

e
rt

a
in

a
n

g
le

s
a
n

d
 d

is
ta

n
c
e
s.

M
a
in

ta
in

e
rs

 s
to

p
p

e
d

 r
e
ly

in
g
 o

n
 L

E
D

s

a
n

d
 o

th
e
r

v
is

u
a
l

c
u

e
s

fo
r

fe
e
d

b
a
c
k
 a

n
d

re
so

rt
e
d

 t
o
 t

ri
a
l-

a
n
d

-e
rr

o
r

‘h
a
m

m
e
ri

n
g
’

o
n

 p
a
rt

s
to

 g
e
t

th
e
m

 t
o

 i
ll

u
m

in
a
te

.

L
E

D
 a

n
d

 l
ig

h
t

p
ip

e
 s

h
ie

ld
in

g

P
IC

M
G

 3
.0

,
G

R
-2

9
1

4
-C

O
R

E
 a

n
d
 M

il
-S

td

U
n

sh
ie

ld
e
d
 L

E
D

s/
li

g
h

t
p

ip
e
s

a
ll

o
w

e
d

su
b

tr
a
c
ti

v
e
 c

o
lo

r
m

ix
in

g
 a

n
d

 d
is

to
rt

io
n

o
f

L
E

D
 c

o
lo

rs
.

T
h

e
 s

ta
te

 o
f

L
E

D
s
 c

o
u

ld

n
o

t
b

e
 t

ru
st

e
d

.

M
a
in

ta
in

e
rs

 c
o
u

ld
n

’t
 t

e
ll

 t
h

e
 L

E
D

 s
ta

te

a
n

d
 s

to
p

p
e
d

 u
si

n
g
 L

E
D

s,
 p

re
fe

rr
in

g
 t

o

p
o

u
n

d
 o

n
 f

a
c
e
p

la
te

s
to

 g
e
t

u
n

it
s

to

‘w
o

rk
’.

E
xa

m
pl

e
H

um
an

-m
ac

hi
ne

In
te

rf
ac

e
D

es
ig

n
P

ro
bl

em
s

an
d

Im
pa

ct
 o

n
A

va
ila

bi
lit

y
an

d
L

if
ec

yc
le

 C
os

ts
2

T
ab

le
.

 Applying US DoD Human Engineering Methods 149

H
u

m
a
n

E
n

g
in

ee
ri

n
g

M
a
n

p
o
w

er

P
er

so
n

n
el

T

ra
in

in
g

S
a
fe

ty

H
e
a
lt

h
 H

a
za

rd
s

H
u

m
a
n

S
u

rv
iv

a
b

il
it

y

E
ff

e
c
ts

 o
f

d
e
s
ig

n
 o

n

s
k

il
l,

 k
n

o
w

le
d

g
e
 a

n
d

a
p
ti

tu
d
e
s
,
a
n
d
 p

h
y
s
ic

a
l

c
a
p
a
b
il

it
ie

s

re
q

u
ir

e
m

e
n

ts

C
o

m
p

a
ti

b
il

it
y
 o

f

d
e
s
ig

n
 w

it
h

a
n

th
ro

p
o

m
e
tr

ic
 a

n
d

b
io

m
e
d
ic

a
l

c
ri

te
ri

a
 f

o
r

th
e
 t

a
rg

e
t

p
o

p
u

la
ti

o
n

D
e
s
ig

n
-d

ri
v
e
n
 h

u
m

a
n

p
e
rf

o
rm

a
n
c
e

re
li

a
b

il
it

y
,

e
ff

e
c
ti

v
e
n
e
s
s
,

e
ff

ic
ie

n
c
y
 a

n
d

 s
a
fe

ty

p
e
rf

o
rm

a
n
c
e

re
q

u
ir

e
m

e
n

ts

S
im

p
li

c
it

y
 o

f

o
p

e
ra

ti
o
n

,

m
a
in

te
n

a
n

c
e
 a

n
d

M
a
n

p
o

w
e
r

re
q

u
ir

e
m

e
n

ts

D
e
p

lo
y
m

e
n

t

c
o

n
s
id

e
ra

ti
o

n
s

O
rg

a
n

iz
a
ti

o
n

a
l

s
tr

u
c
tu

re

O
p
e
ra

ti
n
g
 s

tr
e
n
g
th

M
a
n

n
in

g
 c

o
n

c
e
p

ts

M
a
n

p
o

w
e
r

p
o

li
c
ie

s

P
e
rs

o
n

n
e
l

s
e
le

c
ti

o
n

a
n

d
 c

la
s
s
if

ic
a
ti

o
n

D
e
m

o
g
ra

p
h

ic
s

A
c
c
e
s
s
io

n
 r

a
te

s

A
tt

ri
ti

o
n

 r
a
te

s

C
a
re

e
r

p
ro

g
re

s
s
io

n

a
n

d
 r

e
te

n
ti

o
n

 r
a
te

s

P
ro

m
o
ti

o
n
 f

lo
w

P
e
rs

o
n

n
e
l

a
n

d
 t

ra
in

in
g

p
ip

e
li

n
e
 f

lo
w

Q
u

a
li

fi
e
d

 p
e
rs

o
n

n
e
l

w
h

e
re

 a
n

d
 w

h
e
n

n
e
e
d
e
d

P
ro

je
c
te

d
 u

s
e
r

p
o

p
u

la
ti

o
n

 r
e
c
ru

it
in

g

T
ra

in
in

g
 c

o
n

c
e
p

ts
 a

n
d

s
tr

a
te

g
y

T
ra

in
in

g
 t

a
s
k

s
 a

n
d

tr
a
in

in
g

 d
e
v

e
lo

p
m

e
n

t

m
e
th

o
d

s

M
e
d

ia
,

e
q
u

ip
m

e
n

t
a
n

d

fa
c
il

it
ie

s

S
im

u
la

ti
o

n

O
p

e
ra

ti
o

n
a
l

te
m

p
o

T
ra

in
in

g
 s

y
s
te

m

s
u

it
a
b

il
it

y
,

e
ff

e
c
ti

v
e
n
e
s
s
,

e
ff

ic
ie

n
c
y
 a

n
d
 c

o
s
ts

C
o

n
c
u

rr
e
n

c
y
 o

f

s
y
s
te

m
 w

it
h

 t
ra

in
e
rs

S
a
fe

ty
 o

f
d

e
s
ig

n
 a

n
d

p
ro

c
e
d

u
re

s
u

n
d

e
r

d
e
p

lo
y
e
d

 c
o

n
d

it
io

n
s

H
u

m
a
n

 e
rr

o
r

T
o

ta
l

s
y
s
te

m

re
li

a
b

il
it

y
 a

n
d

 f
a
u

lt

re
d

u
c
ti

o
n

T
o

ta
l

s
y
s
te

m
 r

is
k

H
e
a
lt

h
 h

a
z
a
rd

s

in
d
u
c
e
d
 b

y
 s

y
s
te

m
s
,

e
n

v
ir

o
n

m
e
n

t
o

r
ta

s
k

re
q

u
ir

e
m

e
n

ts

A
re

a
s
 o

f
s
p
e
c
ia

l

in
te

re
s
t

in
c
lu

d
e
 b

u
t

n
o
t

li
m

it
e
d

 t
o

:

A
c
o

u
s
ti

c
s

C
h
e
m

ic
a
l

s
u

b
s
ta

n
c
e
s

R
a
d

ia
ti

o
n

O
x
y
g
e
n

d
e
fi

c
ie

n
c
y
 a

n
d

 a
ir

p
re

s
s
u
re

T
e
m

p
e
ra

tu
re

e
x
tr

e
m

e
s

S
h
o
c
k
 a

n
d

T
h

re
a
ts

 i
n
 t
h
e

e
n

v
ir

o
n
m

e
n

t

P
o
te

n
ti
a
l
in

j u
ry

 t
o

p
e

rs
o
n

n
e
l

P
ro

te
c
ti
v
e

e
q

u
ip

m
e
n

t

M
e

d
ic

a
l
in

j u
ry

F
a

ti
g
u

e
 a

n
d

 s
tr

e
s
s

s
u

p
p

o
rt

C
o
s
t

o
f

d
e
s
ig

n
-d

ri
v
e
n

h
u

m
a
n
 e

rr
o
r,

in
e
ff

ic
ie

n
c
y
 o

r

in
e
ff

e
c
ti

v
e
n
e
s
s

W
o

rk
lo

a
d
,
s
it

u
a
ti

o
n

a
l

a
w

a
re

n
e
s
s
 a

n
d
 h

u
m

a
n

p
e
rf

o
rm

a
n

c
e
 r

e
li

a
b

il
it

y

a
n

d
 e

d
u

c
a
ti

o
n

a
l

p
ro

fi
le

s

v
ib

ra
ti

o
n

L
a
s
e
r

p
ro

te
c
ti

o
n

H
u m

an
Sy

st
em

s
In

te
gr

at
io

n
D

om
ai

ns
, M

il-
H

d
bk

- 4
6

8
5

5
T

ab
le

 3
.

re
d

u
c
ti

o
n

C
o

g
n

it
iv

e
,

p
h

y
s
ic

a
l

150 P. O’Brien

Effects Analysis and other methods to identify root causes of errors. A sample of
human engineering activities performed in this effort contains:

• Mission and scenario analysis
• Task analysis and cognitive task analysis
• Functional flow diagramming
• Decision-action diagramming
• Link analysis
• Motion-time study
• Fault Mode and Effects Analysis

The result of these activities was publication of multiple human engineering design
reviews and studies; and requests submitted to a Change Control Board to change the
product design.

4 Problems and Solutions

Executing the design reviews against standards, performing motion-time studies and
ethnographic studies with customer craftspersons, conducting contextual inquiry and
talk-aloud protocol analysis, and using other methods on site with customers and in
our labs identified multiple sources of procedural errors. Some examples of these and
their solutions follow.

Port-Starboard Versus Read Right-to-Left

Designers had a choice between two conventions for labeling the front and back of an
equipment chassis. The PICMG standard did not specify a convention. The initial
design selected was to use a convention of labeling FRUs from left to right with “1”
or “A” on the left and following markings increasing to the right on both the front and
the back of the equipment. The two options are shown in Figure 1. During usability
testing of the power entry module (PEM) replacement procedure, a test subject
mistakenly cut power to the simplex power on PEM, this resulted in a total loss of
power to the chassis. The root cause was essentially confusion between which circuit
breaker at an input power source went to which PEM. Upon investigating
maintainers’ mental models of the equipment, it was judged that fewer such mistakes
would be associated with the “port-starboard” convention rather than using a “left-to-
right” convention. Figure 2 shows the probabilities of a maintainer making the
mistake of cutting the wrong pair of two adjacent circuit breakers when the PEM
labeling and wiring is reversed.

As seen from Figure 2 and based upon judgment based on experience and Nuclear
Regulatory Commission data, there is a relatively high probability of a total shelf
outage occurring when using a “read left-to-right” convention rather than the normal

 Applying US DoD Human Engineering Methods 151

Fig. 1. Two Optional Metaphors for Chassis Labeling

‘port-starboard”. The initial “read left-to-right” design was estimated to result in an
outage during 18% of all PEM replacement procedures, or p = .18. The “port-
starboard” convention was estimated to result in an outage three times in one
thousand, p = .003.

Glare and Color Distortion

Motorola engineers preferred a burnished metal finish to meet durability
requirements. This created a high glare surface that caused multiple reflections and
“visual noise”. In the case of critical indicators embedded in a field of noise,
maintainers learn to ignore points of light, including meaningful LEDs through a
process called “habituation”. Additionally, Figure 3 shows unshielded LEDs and light
pipes. These caused some indicators to appear illuminated when they are not
illuminated and distort the colors of other indicators.

In a visually noisy environment, the human is unreliable because the signals are not
reliably perceived and can be confused or ignored as part of the background noise. As
seen in Figure 3, there are multiple sources of reflected light, false indications and
color distortions that create visual noise. Such distortions can trigger the maintainer to
take an incorrect action or fail to respond to a spot of color the brain has learned to
ignore. Change requests to put a matte gray finish on the equipment and to shield
LEDs and light pipes were submitted and accepted.

152 P. O’Brien

R
ev

er
se

d
La

be
lin

g
to

 C
ir

cu
it

B
re

ak
er

 E
ve

nt
 T

re
e,

 P
ro

ba
bi

lit
y

E
st

im
at

ed
 fr

om
 N

U
RE

G
/C

R
-1

27
8:

 H
an

db
oo

k
of

 H
um

an
 R

el
ia

bi
lit

y
A

na
ly

si
s

PE
M

 fa
ul

t g
en

er
at

es

w
or

k
or

de
r

to
 r

ep
la

ce

PE
M

M
ai

nt
ai

ne
r

fli
ps

 n
on

-

ta
rg

et
 P

E
M

 b
re

ak
er

sw
itc

h

E
rr

or
 w

as
 o

n
ta

rg
et

sh
el

f a
lte

rn
at

iv
e

PE
M

M
ai

nt
ai

ne
r

re
co

gn
iz

es

er
ro

r

Fi
na

l O
ut

co
m

e
M

ai
nt

ai
ne

r
fli

ps
 c

or
re

ct

sw
itc

h
to

 c
or

re
ct

 e
rr

or

W
or

k

O
rd

er

S
he

lf
 r

em
ai

ns
 in

 S
im

pl
ex

M
od

e,
 p

 =
 .0

0

T
ot

al
 S

he
lf

 O
ut

ag
e,

p
=

 .1
8

T
ar

ge
t P

E
M

 p
ro

pe
rl

y

de
-e

ne
rg

iz
ed

,
or

en
er

gi
ze

d.
 M

ai
nt

ai
ne

r

pr
oc

ee
ds

 w
it

h
or

co
m

pl
et

es
 p

ro
ce

du
re

S
ec

on
d

sh
el

f
at

ta
in

s

S
im

pl
ex

 P
ow

er
 M

od
e,

 p

=
 .0

02

N
o

N
o

N
o

N
o

N
o

Y
es

Y
es

Y
es

S
he

lf
 R

et
ur

ns
 to

 D
up

le
x

P
ow

er
 M

od
e,

 p
 =

 .0
14

Y
es

Y
es

T
ot

al
 S

he
lf

 O
ut

ag
e

(o
r

th
ir

d
sh

el
f

at
ta

in
s

S
im

pl
ex

 P
ow

er
 m

od
e)

, p

=
 .0

04

p
=

 .2
0

p
=

 1
.0

p
=

 .8
0

p
=

 .9
0

p
=

 .1
0

p
=

 .9
0

p
=

 .1
0

p
=

 .8
0

p
=

 .2
0

p
=

 .0
0

Fi
g.

2
.

 Applying US DoD Human Engineering Methods 153

Fig. 3. Color Distortions, Reflections and False Indications

Faceplate Layout and Label Orientation

Faceplates are a major part of the human-machine interface. While the industry
aspires to allocate all interaction with equipment to a development environment, the
reality is that many applications and customers’ logistics and maintenance
philosophies continue to require substantial amounts of information to be conveyed to
maintainers through the faceplate of the equipment rather than a console. Faceplate
design, thus, remains a source of human error.

Faceplate design can be a complex problem involving the task sequences and
information needs of the operator/maintainer as they execute critical scenarios. The
design involves clustering information into an architecture that makes the most
critical information for a scenario highly noticeable. Even mistakes made at a
superficial level can, however, drive a human to respond to the information provided
incorrectly. Simple errors that designers made involved violations in the orientation of
labels and violation of the Laws of Pragnanz, which are rules that govern how mental
processes cluster information into meaningful groups of information. Figure 4 shows
an engineer’s original faceplate design reworked by human engineers.

The original concept separated LEDs from their labels, used different labeling
scheme for LAN LEDs that caused the user to have to count LEDs to find the number
and used a noisy interface. NUREG/CR-1278 estimates errors in selecting the right
action in such instances to range from .01 to .001. The convoluted interface was
estimated to be in the direction of .01 where as the cleaner interface was expected to
perform in the average error range of .003.

154 P. O’Brien

Fig. 4. Bad and Better Human-Machine Interface Design

5 Summary

While engineers strive to make NE so reliable that it does not require maintenance,
the reality is that about 50% of all network outages are caused by a human error.
These outages are the sum of major design errors, such as the case of reversed wiring
and labeling from the normal convention with a quantifiable chance of a total system
outage, and the sum of hundreds of minor errors in interface design. The human can
be seen as a “black box” in the system with its own coefficients of availability and
reliability. In the case where a human is not strong enough to lift a chassis into place,
insert or eject a part, the human can be seen as being unavailable, leading to the
system being unrepairable. In the case of the interface being confusing, the human is
driven to perform his/her duties unreliably.

While the industry as a whole does not gather detailed data for diagnosing the
engineering causes of human error, research such as NUREG/CR-1278 indicates that
human errors occur as frequently as 1 in 10 items in a checklist from a Method of
Procedure and that mistakes like pulling the wrong ejector handle, flipping the wrong
breaker or switch, or, disconnecting the wrong cable happen as often as 1 in 100
operations. To counter these error rates, best practice human engineering methods
such as those prescribed by the US DoD can be used to great benefit in identifying
simple errors on the part of designers that can lead to a simple mistakes. Application
of human-factors analysis can resolve current deficiencies in industry standards and
lead to a reduction in the likelihood of system outage.

Author Index

Balasubramanian, Jaiganesh 127

Chen, Chien 63
Chen, Ying-Yu 63

Damiano, Thomas 127
Dohi, Tadashi 94

Frejek, Hans-Peter 74

Gokhale, Aniruddha 127
Grønbæk, Jesper 74

Hisada, Masaki 43
Huang, Chia-Yuan 63

Ingham, David 9

Kövi, András 110

Lanus, Mark 52

Majzik, István 20
Malek, Miroslaw 31

Micskei, Zoltán 20
Milanovic, Nikola 31
Morgan, Graham 9
Mori, Kinji 1

O’Brien, Pat 145

Parkin, Simon 9

Renier, Thibault 74
Rinsaka, Koichiro 94

Schwefel, Hans-Peter 74

Tam, Francis 20
Tambe, Sumant 127
Tomita, Seiji 43

Varró, Dániel 110

Yoshida, Tadashiro 43

	Title page
	Preface
	Organization
	Table of Contents
	Autonomous Decentralized System for Service Assurance and Its Application
	Introduction
	Requirements
	Application Needs
	System Needs

	Autonomous Decentralized System
	ADS Concept
	ADS Architecture

	Autonomous Community
	Application
	Autonomous Decentralized IC Card Ticket System
	Autonomous Decentralized Process
	Heterogeneous Data Fields

	Conclusions

	A Message Oriented Middleware Solution Enabling Non-repudiation Evidence Generation for Reliable Web Services
	Introduction
	Background
	Clients and Servers
	Message Passing

	Implementation
	Providing System Transparency for Clients
	Managing Requests and Replies
	Undeliverable Messages
	Reliability and Security

	Related Work
	Conclusions and Future Work
	References

	Comparing Robustness of AIS-Based Middleware Implementations
	Introduction
	Robustness Testing Approach
	Testbed Tools and Benchmark Suite
	Template-Based Type-Specific Test Generator
	Mutation-Based Sequential Test Generator
	OS Call Wrapper Tool

	Robustness Testing Results
	Results from the Type-Specific Tests
	Results from the Mutation-Based Testing
	Results from the OS Wrapper

	Conclusion
	References

	Service-Oriented Operating System: A Key Element in Improving Service Availability
	Introduction
	Goals
	Properties of Service-Oriented Systems
	Possible Levels of Abstraction and Integration
	Properties Achieved with Service-Oriented OS
	Possible OS Architectures

	Conclusion
	References

	Implementationof Highly Available Memory Database as SAF Component
	Introduction
	Design Overview
	Memory Database
	Cooperation with HA Middleware

	Increasing Availability in Shared-Nothing Architecture
	Re-synchronization Between Active and Standby Databases
	Reduction of Time to Establish Active Node

	Implementation and Evaluation
	Results: Replication Overhead
	Detecting Inconsistency Between Active and Standby Databases
	Time to Establish Active Node

	Conclusions
	References

	Fault Tolerant Schemes for Hot-Swappable and Non Hot-Swappable Mezzanine Cards
	Introduction
	Block Diagram
	Fault Management Strategies
	Markov Reward Models
	Monolithic Model
	Non Hot Swap Partitioned Model
	Hot Swapped Partitioned Model

	Parameters
	Results
	Conclusions
	References

	Experience in Developing a High Availability and Continuous TCP Using OpenAIS and TCPCP
	Introduction
	Background and Design Model
	OpenAIS and TCPCP/TCPCP2
	Achieving Service Availability

	Problems to Overcome
	Delaying Acks on Server Side
	Congestion Window Prediction

	A Simple Service Availability Application
	Conclusion and Future Works
	References

	Client-Centric Performance Analysis of a High-Availability Cluster
	Introduction
	Performance Analysis Methodology
	Stages in Performance Analysis Methodology
	Generic View on Middleware Functionality
	HA End-User Service Model Specification

	Measurement Platform
	Generating Load
	Monitoring Agents

	Analytic Response Time Models
	Basic Queueing Model
	Load-Dependent Model
	Extended Tandem Queueing Model

	Measurements and Model Results
	Measurement-Based Results
	Basic Model
	Load-Dependent Queueing Model
	Extended Tandem Queueing Model

	Summary and Outlook

	A Faster Estimation Algorithm for Periodic Preventive Rejuvenation Schedule Maximizing System Availability
	Introduction
	Two-Step Failure Model with Periodic Rejuvenation
	Model Description
	Semi-markov Analysis

	Statistical Estimation Algorithms
	Optimal Preventive Rejuvenation
	Non-parametric Estimation

	Kernel Density Estimation
	Simulation Experiments
	Conclusions

	An Eclipse-Based Framework for AIS Service Configurations
	Introduction
	An Overview of the Approach
	Modeling of Service Configurations
	Requirements Specification
	Platform Independent Model (PIM)
	Design Patterns
	Platform Specific Model (PSM)
	Implementation Details

	Model Analysis
	Static Analysis of Service Configuration Models
	Non-functional Analysis

	Automated Generation of Configurations
	Reengineering a Deployed Configuration
	Generating the Deployment Descriptors

	Related Work
	Conclusions

	MDDPro: Model-Driven Dependability Provisioning in Enterprise Distributed Real-Time and Embedded Systems
	Introduction
	Design Considerations for Automated Dependability Provisioning
	Enterprise DRE System Case Study
	Design Considerations

	Dependability Provisioning Using Model-Driven Engineering
	Overview of Enabling Technologies
	Modeling Dependability Requirements in MDDPro
	Improving Availability Via Effective Replica Placement
	Automated Dependability Provisioning Via Generative Programming

	Related Work
	Conclusions

	Applying US DoD Human Engineering Methods to Reduce Procedural Error Related Outages
	Situation
	Problem
	Solution
	Problems and Solutions
	Summary

	Author Index

