
Chapter 9

The parameterisation problems of the bias parameters in the GPS observation model
are outlined in the Sect. 12.1 of the first edition of this book. The problems are then
mostly solved and the theory will be addressed here in detail (cf. Xu 2004; Xu et al.
2006b). The equivalence properties of the algorithms of GPS data processing are de-
scribed. The standard algorithms are outlined.

9.1
Parameterisation of the GPS Observation Model

The commonly used GPS data processing methods are the so-called uncombined and com-
bining, undifferenced and differencing algorithms (e.g., Hofmann-Wellenhof et al. 2001;
Leick 2004; Remondi 1984; Seeber 1993; Strang and Borre 1997; Blewitt 1998). The obser-
vation equations of the combining and differencing methods can be obtained by carrying
out linear transformations of the original (uncombined and undifferenced) equations. As
soon as the weight matrix is similarly transformed according to the law of variance-cova-
riance propagation, all methods are theoretically equivalent. The equivalences of combin-
ing and differencing algorithms are discussed in Sects. 6.7 and 6.8, respectively. The equiva-
lence of the combining methods is an exact one, whereas the equivalence of the differencing
algorithms is slightly different (Xu 2004, cf. Sect. 9.2). The parameters are implicitly ex-
pressed in the discussions; therefore, the parameterisation problems of the equivalent
methods have not been discussed in detail. At that time, this topic was considered one of
the remaining GPS theoretical problems (Xu 2003, p 279–280, Wells et al. 1987, p 34), and
it will be discussed in the next subsection.

Three pieces of evidence of the parameterisation problem of the undifferenced GPS ob-
servation model are given first. Then the theoretical analysis and numerical derivation are
made to show how to parameterise the bias effects of the undifferenced GPS observation
model independently. A geometry-free illustration and a correlation analysis in the case of
a phase-code combination are discussed. At the end, conclusions and comments are given.

9.1.1
Evidence of the Parameterisation Problem of the Undifferenced Observation Model

Evidence from Undifferenced and Differencing Algorithms

Suppose the undifferenced GPS observation equation and the related LS normal equa-
tion are
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 ,    P (9.1)

 , (9.2)

where all symbols have the same meanings as that of Eqs. 7.117 and 7.118. Equation 9.2
can be diagonalised as (cf. Sect. 7.6.1)

 . (9.3)

The related equivalent observation equation of the diagonal normal Eq. 9.3 can be
written (cf. Sect. 7.6.1)

 , (9.4)

where all symbols have the same meanings as that of Eqs. 7.142 and 7.140. If X1 is the
vector containing all clock errors, then the second equation of Eq. 9.3 is the equiva-
lent double differencing GPS normal equation. It is well known that in a double
differencing algorithm, the ambiguity sub-vector contained in X2 must be the double
differencing ambiguities; otherwise, the problem will be generally singular. It is no-
table that X2 is identical with that of in the original undifferenced observation Eq. 9.1.
Therefore, the ambiguity sub-vector contained in X2 (in Eq. 9.1) must be a set of double
differencing ambiguities (or an equivalent set of ambiguities). This is the first piece
of evidence (or indication) of the singularity of the undifferenced GPS observation
model in which the undifferenced ambiguities are used.

Evidence from Uncombined and Combining Algorithms

Suppose the original GPS observation equation of one viewed satellite is (cf. Eq. 6.134)

 ,    P; (9.5)

then the uncombined or combining algorithms have the same solution of (cf. Eq. 6.138)

 , (9.6)
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where all symbols have the same meanings as that of Eqs. 6.134 and 6.138. Then one
notices that the ionosphere (B1) and geometry (Cρ) are functions of the codes (R1 and
R2) and are independent from phases (Φ1 and Φ2) in Eq. 9.6. In other words, the phase
observables do not have any contribution to the ionosphere and geometry. And this is
not possible. Such an illogical conclusion is caused by the parameterisation of the am-
biguities given in the observation model of Eq. 9.5. If one takes the first evidence dis-
cussed above into account and defines that for each station one of the satellites in view
must be selected as reference and the related ambiguity has to be merged into the clock
parameter, then the phases do have contributions to ionosphere and geometry. One
notices again that the parameterisation is a very important topic and has to be dis-
cussed more specifically. An improper parameterisation of the observation model will
lead to incorrect conclusions through the derivation from the model.

Evidence from Practice

Without using a priori information, a straightforward programming of the GPS data
processing using an undifferenced algorithm leads to no results (i.e., the normal equa-
tion is singular, cf. Xu 2004). Therefore an exact parameterisation description is nec-
essary and will be discussed in the next section.

9.1.2
A Method of Uncorrelated Bias Parameterisation

We restrict ourselves here to discuss the parameterisation problem of the bias param-
eters (or constant effects, i.e., the clock errors and ambiguities) only.

Recall the discussions of the equivalence of undifferenced and differencing algo-
rithms in Sect. 6.8. The equivalence property is valid under three conditions: observa-
tion vector L used in Eq. 9.1 is identical; parameterisation of X2 is identical; and X1 is
able to be eliminated (cf. Sect. 6.8).

The first condition is necessary for the exactness of the equivalence because of the
fact that through forming differences, the unpaired data will be cancelled out in the
differencing.

The second condition states that the parameterisation of the undifferenced and
differencing model should be the same. This may be interpreted as the following: the
rank of the undifferenced and differencing equations should be the same if the
differencing is formed by a full rank linear transformation. If only the differencing
equations are taken into account, then the rank of the undifferenced model should
equal the rank of the differencing model plus the number of eliminated independent
parameters.

It is well known that one of the clock error parameters is linearly correlated with
the others. This may be seen in the proof of the equivalence property of the double
differences, where the two receiver clock errors of the baseline may not be separated
from each other and have to be transformed to one parameter and then eliminated
(Xu 2002, Sect. 6.8). This indicates that if in the undifferenced model all clock errors
are modelled, the problem will be singular (i.e. rank defect). Indeed, Wells et al. (1987)
noticed that the equivalence is valid if measures are taken to avoid rank defect in the
bias parameterisation. Which clock error has to be kept fixed is arbitrary. Because of
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the different qualities of the satellite and receiver clocks, a good choice is to fix a
satellite clock error (the clock is called a reference clock). In practice, the clock error
is an unknown; therefore, there is no way to keep that fixed except to fix it to zero. In
such a case, the meaning of the other bias parameters will be changed and may repre-
sent the relative errors between the other biases.

The third condition is important to ensure a full-ranked parameterisation of the
parameter vector X1, which is going to be eliminated.

The undifferenced Eq. 9.1 is solvable if the parameters X1 and X2 are not over-
parameterised. In the case of single differences, X1 includes satellite clock errors and
is able to be eliminated. Therefore, to guarantee that the undifferenced model Eq. 9.1
is not singular, X2 in Eq. 9.1 must be not over-parameterised. In the case of double
differences, X1 includes all clock errors except the reference one. Here we notice that
the second observation equation of 9.1 is equivalent to the double differencing obser-
vation equation and the second equation of 9.2 is the related normal equation. In a
traditional double differencing observation equation, the ambiguity parameters are
represented by double differencing ambiguities. Recall that for the equivalence prop-
erty, the number (or rank) of ambiguity parameters in X2 that are not linearly corre-
lated must be equal to the number of the double differencing ambiguities. In the case
of triple differences, X1 includes all clock errors and ambiguities. The fact that X1
should able to be eliminated leads again to the conclusion that the ambiguities should
be linearly independent.

The two equivalent linear equations should have the same rank. Therefore, if all
clock errors except the reference one are modelled, the number of independent
undifferenced ambiguity parameters should be equal to the number of double
differencing ambiguities. According to the definition of the double differencing ambi-
guity, one has for one baseline

 (9.7)

where i1 and i2 are station indices, kj is the jth satellite’s identification, n is the com-
mon observed satellite number and is a function of the baseline, and N is ambiguity.
Then there are n – 1 double differencing ambiguities and 2n undifferenced ambigu-
ities. Taking the connection of the baselines into account, there are n – 1 double
differencing ambiguities and n new undifferenced ambiguities for any further baseline.
If i1 is defined as the reference station of the whole network and k1 as the reference
satellite of station i2, then undifferenced ambiguities of the reference station cannot
be separated from the others (i.e., they are linearly correlated with the others). The
undifferenced ambiguity of the reference satellite of station i2 cannot be separated
from the others (i.e., it is linearly correlated with the others). That is, the ambiguities
of the reference station cannot be determined, and the ambiguities of the reference
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satellites of non-reference stations cannot be determined. Either they should not be
modelled or they should be kept fixed. A straightforward parameterisation of all
undifferenced ambiguities will lead to rank defect, and the problem will be singular
and not able to be solved.

Therefore, using the equivalence properties of the equivalent equation of GPS data
processing, we come to the conclusion that the ambiguities of the reference station
and ambiguities of the reference satellite of every station are linearly correlated with
the other ambiguities and clock error parameters. However, a general method of
parameterisation should be independent of the selection of the references (station
and satellite). Therefore, we use a two-baseline network to further our analysis. The
original observation equation can be written as follows:

(9.8)

(9.9)

(9.10)

where only the bias terms are listed and L and δ  represent observable and clock
error, respectively. Observation equations of station i1, i2 and i3 are Eqs. 9.8, 9.9 and
9.10. Define that the baseline 1, 2 are formed by station i1 and i2, as well as i2 and
i3, respectively. Select i1 as the reference station and then keep the related ambi-
guities fixed (set to zero for simplification). For convenience of later discussion,

9.1  ·  Parameterisation of the GPS Observation Model
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select δ i1 as the reference clock (set to zero, too) and select k1, k2 as reference
satellites of the station i2, i3 (set the related ambiguities to zero), respectively. Then
Eqs. 9.8–9.10 become

(9.11)

(9.12)

(9.13)

Differences can be formed through linear operations. The total operation is a full
rank linear transformation, which does not change the least squares solution of the
original equations. Single differences can be formed by the following (Eq. 9.11 re-
mains unchanged and therefore will not be listed again):

(9.14)
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(9.15)

where two observations are unpaired due to the baseline definitions. Double differ-
ences can be formed by

(9.16)

(9.17)

Using Eqs. 9.16 and 9.11, Eq. 9.17 can be further modified to

(9.18)

9.1  ·  Parameterisation of the GPS Observation Model
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or

(9.19)

From the last equation of Eqs. 9.16 and 9.19, it is obvious that the clock error
and the ambiguities of satellite k7, which is not observed by the reference station,
are linearly correlated. Keeping one of the ambiguities of the satellite k7 at station i2
or i3 is necessary and equivalent. Therefore, for any satellite that is not observed
by the reference station, one of the related ambiguities should be kept fixed (station
selection is arbitrary). In other words, one of the ambiguities of all satellites has to
be kept fixed. In this way, every transformed equation includes only one bias pa-
rameter and the bias parameters are linearly independent (regular). Furthermore,
the differencing cannot be formed for the unpaired observations of every baseline.
However, in the case of an undifferenced adjustment, the situation would be dif-
ferent. We notice that the equation for k6 in Eq. 9.18 can be transformed to a double
differencing one in Eq. 9.19. If more data is used in the undifferenced algorithm
than in the differencing method, the number of undifferenced ambiguity para-
meters will be larger than that of the double differencing ones. Therefore, we have
to drive the so-called data condition to guarantee that the data are able to be dif-
ferenced, or equivalently, we have to extend the way of double differencing forming
so that the differencing will be not limited by special baseline design. Both will be
discussed in Sect. 9.2.

The meanings of the parameters are changed by independent parameterisation,
and they can be read from Eqs. 9.11–9.13. The clock errors of the satellites observed
by the reference station include the errors of receiver clock and ambiguities. The re-
ceiver clock errors include the error of ambiguity of the reference satellite of the same
station. Due to the inseparable property of the bias parameters, the clock error pa-
rameters no longer represent pure clock errors, and the ambiguities represent no longer
pure physical ambiguity. Theoretically speaking, the synchronisation applications of
GPS may not be realised using the carrier-phase observations. Furthermore, Eq. 9.19
shows that the undifferenced ambiguities of i3 have the meaning of double differencing
ambiguities of the station i3 and i1 in this case.

Up to now, we have discussed the correlation problem of the bias parameters and
found a method of how to parameterise the GPS observations regularly to avoid the
problem of rank defect. Of course, many other ways to parameterise the GPS observa-
tion model can be similarly derived. However, the parameter sets should be equiva-
lent to each other and can be transformed from one set to another uniquely as long as
the same data is used.
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9.1.3
Geometry-Free Illustration

The reason why the reference parameters have to be fixed lies in the nature of range
measurements, which cannot provide information of the datum origin (cf., e.g., Wells
et al. 1987, p 9). Suppose d is the direct measurement of clock errors of satellite k and
receiver i, i.e. dk

i = δi + δk, no matter how many observations were made and how the
indices were changed, one parameter (i.e. reference clock) is inseparable from the oth-
ers and has to be fixed. Suppose h is the direct measurement of ambiguity N and clock
errors of satellite k and receiver i, i.e., hk

i = δi + δk + Nk
i , the number of over-parame-

terised biases is exactly the number of total observed satellites and used receivers. This
ensures again that our parameterisation method to fix the reference clock and one
ambiguity of every satellite as well as one ambiguity of the reference satellite of every
non-reference station is reasonable. The case of combination of d and h (as code and
phase observations) will be discussed in the next section.

9.1.4
Correlation Analysis in the Case of Phase-Code Combinations

A phase-code combined observation equation can be written by (cf. Sect. 7.5.2)

 , (9.20)

where L1 and L2 are the observational vectors of phase (scaled in length) and code,
respectively; V1 and V2 are related residual vectors; X2 and X1 are unknown vectors of
ambiguity and others; A12 and A11 are related coefficient matrices; P0 is a symmetric
and definite weight matrix; and wp and wc are weight factors of the phase and code
observations.

The phase, code and phase-code normal equations can be formed respectively by

 ,

 ,    and

 , (9.21)

where

 ,

 ,

 , (9.22)

9.1  ·  Parameterisation of the GPS Observation Model
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 ,    and

 .

The covariance matrix Q is denoted

 , (9.23)

where (Gotthardt 1978; Cui et al. 1982)

 ,

 , (9.24)

    and

 .

i.e.,

 ,

    and (9.25)

 .

Thus the correlation coefficient Cij is a function of wp and wc, i.e.,

 , (9.26)

where indices i and j are the indices of unknown parameters in X1 and X2. For wc = 0
(only phase is used, X1 and X2 are partly linear correlated) and wc = wp (X1 and X2 are
uncorrelated), there exists indices ij, so that

 . (9.27)

In other words, there exists indices i and j, the related unknowns are correlated if
wc = 0 and uncorrelated if wc = wp. In the case of a phase-code combination, wc = 0.01wp
can be selected, and one has

 , (9.28)

whose value should be very close to 1 (strong correlated) in the discussed case. Equa-
tions 9.26, 9.27 and 9.28 indicate that for the correlated unknown pair ij, the correla-
tion situation may not change much by combining the code to the phase because of
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the lower weight of the code related to the phase. A numerical test confirmed this con-
clusion (Xu 2004).

9.1.5
Conclusions and Comments

In this section, the singularity problem of the undifferenced GPS data processing is
pointed out and an independent parameterisation method is proposed for bias pa-
rameters of the GPS observation model. The method is implemented into software,
and the results confirm the correctness of the theory and algorithm. Conclusions can
be summarised by

1. Bias parameterisation of undifferenced GPS phase observations with all clock er-
rors except the reference one, and all undifferenced ambiguities are linearly corre-
lated. The linear equation system of undifferenced GPS is then singular and cannot
be solved theoretically;

2. A linear independent bias parameterisation can be reached by fixing the reference
clock of the reference station, fixing one of the ambiguities of every satellite of
arbitrary station (called reference station of every satellite), and fixing the ambi-
guities of the reference satellite of every non-reference station. The selections of
the references are arbitrary; however, the selections are not allowed to be dupli-
cated;

3. The linear independent ambiguity parameter set is equivalent to the parameter set
of double differencing ambiguities, and they can be transformed from one to an-
other uniquely if the same data is used;

4. The physical meanings of the bias parameters are varied depending on the way of
parameterisation. Due to the inseparable property of the bias parameters, the
synchronisation applications of GPS may not be realised using the carrier-phase
observations;

5. The phase-code combination does not change the correlation relation between the
correlated biases significantly.

Due to the facts regarding the use of the undifferenced algorithm, it is worthy to
give some comments:

1. In the undifferenced algorithm, the observation equation is a rank defect one if the
over-parameterisation problem has not been taken into account. The numerical
inexactness introduced by eliminating the clock error parameters and the use of a
priori information of some other parameters are the reason why the singular prob-
lem is solvable in practice so far;

2. Using the undifferenced and differencing methods, solutions of the common pa-
rameters must be the same if the undifferenced GPS data modelling is really an
equivalent one and not over-parameterised;

3. A singular undifferenced parameterisation may become regular by introducing
conditions or by fixing some of the parameters through introducing a priori infor-
mation.

9.1  ·  Parameterisation of the GPS Observation Model
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9.2
Equivalence of the GPS Data Processing Algorithms

The equivalence theorem, an optimal method for forming an independent baseline
network and a data condition as well as the equivalent algorithms using secondary
observables are discussed in this section (cf. Xu et al. 2006c).

9.2.1
Equivalence Theorem of GPS Data Processing Algorithms

In Sect. 6.7 the equivalence properties of uncombined and combining algorithms of
GPS data processing are given. Whether uncombined or combining algorithms are
used, the results obtained are identical and the precisions of the solutions are identi-
cal, too. It is notable that the parameterisation is very important. The solutions de-
pend on the parameterisation. For convenience, the original GPS observation equa-
tion and the solution are listed as (cf. Sect. 6.7)

 , (9.29)

and

 , (9.30)

where the meanings of the symbols are the same as that of Eqs. 6.134 and 6.138.
In Sect. 6.8, the equivalence properties of undifferenced and differencing algorithms

of GPS data processing are given. Whether undifferenced or differencing algorithms
are used, the results obtained are identical and the precisions of the solutions are
equivalent. It is notable that the equivalence here is slightly different from the equiva-
lence in combining algorithms. To distinguish them, we call the equivalence in
differencing case a soft equivalence. The soft equivalence is valid under three so-called
conditions. The first is a data condition, which guarantees that the data used in
undifferenced or differencing algorithms are the same. The data condition will be
discussed in the next section. The second is a parameterisation condition, i.e., the
parameterisation must be the same. The third is the elimination condition, i.e., the
parameter set to be eliminated should be able to be eliminated. (Implicitly, the param-
eter set of the problem should be a regular one). Because of the process of elimination,
the cofactor matrices of the undifferenced and differencing equations are different. If
the cofactor of an undifferenced normal equation has the form of
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 , (9.31)

then we call the diagonal part of the cofactor

(9.32)

an equivalent cofactor. The equivalent cofactor has the same diagonal element blocks
as the original cofactor matrix Q and guarantees that the precision relation between
the unknowns remains the same. The soft equivalence is defined as follows: the solu-
tions are identical and the covariance matrices are equivalent. Such a definition is im-
plicitly used in the traditional block-wise least squares adjustment. It is notable that
the parameterisation is very important and the rank of the normal equation of the
undifferenced observation equation must be equal to the rank of the normal equa-
tion of the differencing observation equation plus the number of the eliminated inde-
pendent parameters. For convenience, the original GPS observation equation and the
equivalent differencing equation can be generally written as (cf. Eqs. 9.1 and 9.4)

 ,    P (9.33)

 . (9.34)

In Sect. 9.1 the way to parameterise the GPS observables independently is pro-
posed. A correct and reasonable parameterisation is the key to a correct conclusion by
combining and differencing derivations. An example is given in Sect. 6.7 where an
illogical conclusion is derived due to the inexact parameterisation.

For any GPS survey with a definitive space-time configuration, observed GPS data
can be parameterised (or modelled) in a suitable way and listed together in a form of
linear equations for processing. Combining and differencing are two linear transfor-
mations. Because the uncombined and combining data (or equations) are equivalent,
differencing the uncombined or combining equations is (soft) equivalent. Inversely,
the combining operator is an invertible transformation; making or not making the
combination operation on the equivalent undifferenced or differencing equations
(Eqs. 9.33 and 9.34) is equivalent. That is, the mixtures of the combining and differencing
algorithms are also equivalent to the original undifferenced and uncombined algo-
rithms. The equivalence properties can be summarised in a theorem as follows.

Equivalence Theorem of GPS Data Processing Algorithms

Under the three so-called equivalence conditions and the definition of the so-called
soft equivalence, for any GPS survey with definitive space-time configuration, GPS data
processing algorithms – uncombined and combining algorithms, undifferenced and
differencing algorithms, as well as their mixtures – are at least soft equivalent. That is,
the results obtained by using any algorithm or any mixture of the algorithms are iden-
tical. The diagonal elements of the covariance matrix are identical. The ratios of the
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precisions of the solutions are identical. None of the algorithms are preferred in view
of the results and precisions. Suitable algorithms or mixtures of the algorithms will
be specifically advantageous for special kinds of data dealings.

The implicit condition of this theorem is that the parameterisation must be the
same and regular. The parameterisation depends on different configurations of the
GPS surveys and strategies of the GPS data processing. The theorem says that if the
data used are the same and the model is parameterised identically and regularly, then
the results must be identical and the precision should be equivalent. This is a guiding
principle for the GPS data processing practice.

9.2.2
Optimal Baseline Network Forming and Data Condition

It is well known that for a network with n stations there are n-1 independent baselines.
An independent baseline network can be stated in words: all stations are connected
through these baselines, and the shortest way from one station to any other stations is
unique. Generally speaking, a shorter baseline leads to a better common view of the
satellites. Therefore, the baseline should be formed so that the length of the baseline
falls as short as possible. For a network, an optimal choice should be that the summa-
tion of weighted lengths of all independent baselines should be minimal. This is a spe-
cific mathematic problem called a minimum spanning tree (cf., e.g., Wang et al. 1977).

Algorithms exist to solve this minimum spanning tree problem with software. There-
fore, we will just show an example here. An IGS network with ca. 100 stations and the
related optimal and independent baseline tree is shown in Fig. 9.1. The average length
of the baselines is ca. 1300 km. The maximum distance is ca. 3700 km.

In the traditional double differencing model, the unpaired GPS observations of
every designed baseline have to be omitted because of the requirement of differencing
(in the example of Sect. 9.1.2, two observations of k6 will be omitted. However, if the
differencing is not limited by baseline design, no observations have to be cancelled

Fig. 9.1. Independent and Optimal IGS GPS Baseline Network (100 stations)
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out). Therefore, an optimal means of double differencing should be based on an opti-
mal baseline design to form the differencing first, then, without limitation of the base-
line design, to check for the unpaired observations in order to form possible
differencing. This measure is useful for raising the rate of data used by the differencing
method. An example of an IGS network with 47 stations and one day’s observations
has shown (Xu 2004) that 87.9% of all data is used in difference forming based on the
optimal baseline design, whereas 99.1% of all data is used in the extended method of
difference forming without limitation of the baseline design. That is, the original data
may be nearly 100% used for such a means of double differencing.

In the undifferenced model, in order to be able to eliminate the clock error param-
eters, it is sufficient that every satellite is observed at least at two stations (for eliminat-
ing the satellite clock errors) and at every station there is a satellite combined with one
of the other satellites that are commonly viewed by at least one of the other stations (for
eliminating the receiver clock errors). The condition ensures that extended double
differencing can be formed from the data. The data has to be cancelled out if the condi-
tion is not fulfilled or the ambiguities including in the related data have to be kept fixed.

For convenience, we state the data condition as follows.

Data Condition: All satellites must be observed at least twice (for forming single dif-
ferences) and one satellite combined with one of the other satellites should be com-
monly viewed by at least one of the other stations (for forming double differences).

It is notable that the data condition above is valid for single and double differencing.
For triple differencing and user defined differencing the data condition may be simi-
larly defined. The data condition is one of the conditions of the equivalence of the
undifferenced and differencing algorithms. The data condition is derived from the
difference forming; however, it is suggested to use it also in undifferenced methods to
reduce the singular data. The optimal baseline network forming is beneficial for
differencing methods to raise the rate of used data.

9.2.3
Algorithms Using Secondary GPS Observables

As stated in Sects. 6.7 and 9.2, the uncombined and combining algorithms are equivalent.
A method of GPS data processing using secondary data is outlined in Sect. 6.7.3. However,
a concrete parameterisation of the observation model is only possible after the method of
independent parameterisation is discussed in Sect. 9.1. The data processing using secondary
observables leads to equivalent results of any combining algorithms. Therefore the con-
crete parameterisation of the GPS observation model has to be specifically discussed again.
The observation model of m satellites viewed at one station is (cf. Eqs. 6.134 and 9.5)

 ,    k = 1, …, m , (9.35)

9.2  ·  Equivalence of the GPS Data Processing Algorithms
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where the relation

(9.36)

can be used to map the ionospheric parameters in the path directions to the param-
eter in the zenith direction. The meanings of the symbols are the same as stated in
Sect. 6.7. Solutions of Eq. 9.35 are (similar to Eq. 9.6)

 ,    Q(k), k = 1, …, m , (9.37)

where the covariance matrix Q(k) can be obtained by variance-covariance propaga-
tion law. The vector on the left side of Eq. 9.37 is called the secondary observation
vector. In the case where K satellites are viewed, the traditional combinations of the
observation model and the related secondary solutions are the same as the Eqs. 9.35
and 9.37, where the m = K. However, taking the parameterisation method into account,
at least one satellite has to be selected as reference and the related ambiguities cannot
be modelled. If one were to suppose that the satellite of index K is the reference one,
then the first m = K − 1 observation equations are the same as Eq. 9.35. The satellite
K-related observation equations can be written as

 ,    k = K , (9.38)

where the ambiguities are not modelled and the constant effects will be absorbed by
the clock parameters. Solutions of Eq. 9.38 are

 ,    Q(K) . (9.39)

It is notable that the solutions of the traditional combinations are Eq. 9.37 with
m=K, whereas for the combinations with independent bias parameterisation, the so-
lutions are the combinations of the Eq. 9.37 with m = K − 1 and Eq. 9.39. It is obvious
that the two solutions are different. Because the traditional observation model used is
an inexact one, the solutions of the traditional combinations are also inexact. The bias
effects (of ambiguities) that are not modelled are merged into the clock bias param-
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eters. Due to the fact that the bias effects cannot be absorbed into the non-bias pa-
rameters, only the clock error parameters will be different in the results and the clock
errors will have different meanings. Further, the ionosphere-free and geometry-free
combinations are correct under the independent parameterisation.

It shows that through exact parameterisation, the combinations are not any more
independent from satellite to satellite. For surveys with multiple stations, through cor-
rect parameterisation the combinations will be not any more independent from sta-
tion to station. Therefore, traditional combinations will lead to incorrect results be-
cause of the inexact parameterisation.

The so-called secondary observables on the left-hand side of Eqs. 9.37 and 9.39
can be further processed. The original observables can be uniquely transformed to
secondary observables. The secondary observables are equivalent and direct meas-
urements of the ambiguities and ionosphere as well as geometry. Any further GPS
data processing can be based on the secondary observables (cf. Sect. 6.7).

9.3
Non-Equivalent Algorithms

As stated in the equivalence theorem of GPS algorithms, the equivalence properties
are valid for GPS surveys with definitive space-time configuration. As long as the mea-
sures are the same and the parameterisation is identical and regular, the GPS data pro-
cessing algorithms are equivalent. It is notable that if the surveys and the parameteri-
sation are different, then the algorithms are not equivalent to each other. For example,
algorithms of single point positioning and multi-points positioning, algorithms of
orbit-fixed and orbit co-determined positioning, algorithms of static and kinematic
as well as dynamic applications, etc., are non-equivalent algorithms.

9.4
Standard Algorithms of GPS Data Processing

9.4.1
Preparation of GPS Data Processing

Preparation of GPS data processing can be carried out either in a pre-processing
process or in the main data processing process. It depends on the strategy and the
purpose of the data processing. Only in the case of data post-processing (i.e., data
are available before the processing) is pre-processing possible. In the case of data
quasi real time or real time processing, usually data are only available up to the in-
stantaneous epoch. Data availability also causes different strategies of the data pro-
cessing.

Data preparation may include raw GPS data decoding. ASCII code data are usually
given in RINEX format (Gurthner 1994). Even in the unified format, different decod-
ers may work a little bit differently from one another. This has to be noted only if one
is going to process the data decoded by using different decoders. Usually, most GPS
data processing software has its own internal input data format. Transforming the
data from the RINEX format (maybe also from multiple stations) into the internal
input data format should be no principle problem.
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Cycle slip detection is one of the most important works in data preparation. Marks
are given for further use in the data where the cycle slips are detected. There are two
types of cycle slips; one is repairable, and another is not repairable. Non-repairable
cycle slips have to be modelled by new ambiguity unknowns. Repairing and setting
new unknowns are equivalent if the repair is made correctly and the new unknown is
well-solved. By real time data processing, such a process has to be done in the main
data processing process.

Orbit data are also needed. Depending on the purposes of the data processing,
broadcast navigation data, IGS precise orbits and IGS predicted orbits can be used
where the satellite clock error model is also included. In broadcast data, there is also
an ionospheric model available. Even for the GPS precise orbit determination, initial
orbits are still needed.

Further preparations depend on the organisation and purpose of the data process-
ing. Generally speaking, standard tropospheric models are needed for use (cf. Sect. 5.2).
An ionospheric model (from broadcast) can be used as an initial model (cf. Sect. 5.1)
if the non-ionosphere-free combination is used. An ionospheric model can be also
obtained from the ambiguity-ionospheric equations (see discussions in Sect. 6.5.2).
Earth tide and ocean loading tide as well as relativistic effects have to be computed for
use (cf. Sect. 5.4).

In the case of orbit determination and/or geopotential determination, an initial
geopotential model is needed. The initial models of the solar radiation and air drag
have to be computed. All corrections can be computed in real time or in advance and
then listed in tables for use. Coordinate transformations between the ECEF system
and the ECSF system are also needed.

9.4.2
Single Point Positioning

Single point positioning is a sub-process of GPS data processing, which is needed in
almost all GPS data processing. Station coordinates and receiver clock error are deter-
mined with such a sub-process. Depending on the accuracy requirement, single point
positioning can be done with single frequency code or phase data, dual-frequency code
or phase data, and combined code-phase data. Generally speaking, single point posi-
tioning has a lower accuracy than that of relative positioning, where systematic errors
are reduced (through keeping the reference fixed). However, the receiver clock bias
determined by single point positioning is accurate enough to correct the second type
of clock error influence (the influence scaled by the velocity of the satellite, cf. Sect. 5.5).

Code Data Single Point Positioning

The GPS code pseudorange model is (cf. Sect. 6.1):

 , (9.40)

where R is the observed pseudorange, te denotes the GPS signal emission time of the
satellite k, tr denotes the GPS signal reception time of the receiver i, c is the speed of
light, subscript i and superscript k denote the receiver and satellite, and δ tr and δtk are
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the clock errors of the receiver and satellite at the times tr and te, respectively. The terms
δ ion, δ trop, δ tide and δ rel denote the ionospheric, tropospheric, tidal, and relativistic effects,
respectively. The multipath effect is omitted here. The remaining error is denoted as ε.
ρk

i is the geometric distance. The computed value (denoted as C) of the pseudorange is

 , (9.41)

where the clock error of the satellites can be interpolated from the IGS orbit data or
broadcast navigation message, models of other effects can be found in Chap. 5, and
the initial value of receiver clock error is assumed to be zero. It should be emphasised
that the earth rotation correction has to be taken into account by the geometric dis-
tance computation no matter if it is done in the Earth or space fixed coordinate sys-
tems (cf. Sect. 5.3.2).

The linearised observation Eq. 9.40 is then (cf. Sects. 6.2 and 6.3)

 , (9.42)

where lk is the so-called O – C (observed minus computed pseudorange), vk is the re-
sidual, vector (∆x   ∆y   ∆z)T is the difference between the coordinate vector (xi    yi    zi)

T

and the initial coordinate vector (xi0   yi0   zi0)T, ∆t is the receiver clock error in length
(i.e. ∆t = δ trc), and the initial coordinate vector is used for computing the geometric
distance. Equation 9.42 can be written in a more general form as

 , (9.43)

where akj is the related coefficient given in Eq. 9.42. Putting all of the equations from
all observed satellites together, we find the single point positioning equation system
has a general form of

L = AX + V ,    P , (9.44)

where L is called the observation vector, X is the unknown vector, A is the coefficient
matrix, V is the residual vector, and P is the weight matrix of the observation vector.
The least squares solution of observational Eq. 9.44 is then (cf. Sect. 7.2)

X = (ATPA)–1ATPL . (9.45)

The formulas for computing the precision vector of the solved X can be found in
Sect. 7.2. It is notable that the coefficients of the equation are computed using the ini-
tial coordinate vector, and the initial coordinate vector is usually not (exactly) known;
therefore, an iterative process has to be carried out to solve the single point positioning
problem. For the given initial vector, a modified one can be obtained by solving the
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above problem; the modified initial vector can be used in turn as the initial vector to
form the equations, and the problem can be solved again until the process converges.
Because there are four unknowns in the single point positioning equation, at least four
observables are needed to make the problem solvable. In other words, as soon as four
or more satellites are observed, single point positioning is always possible.

For static reference stations, as soon as the coordinates are known with sufficient
accuracy, the unknown vector (∆x   ∆y   ∆z)T can be considered zero. Then the Eq. 9.43
turns out to be

 , (9.46)

and the receiver clock error can be computed directly by

 , (9.47)

where K is the total number of observed satellites at this epoch. Equation 9.47 can be
used to compute the receiver clock error of the static reference.

Dual Codes Ionosphere-Free Single Point Positioning

The above-mentioned single point positioning (using single frequency code data) is
accurate enough for correcting the second type of clock error influence (the influence
scaled by the velocity of the satellite). For more precise single point positioning, dual-
frequency code data can be used to form the ionosphere-free combinations (cf.
Sect. 6.5). Assuming that for frequencies 1 and 2, the single point positioning equa-
tion of Eq. 9.44 can be formed as

L1 = AX + V1 ,    P1 , (9.48)

L2 = AX + V2 ,    P2 ,

then the ionosphere-free combination can be formed by (cf. Sect. 6.5.1)

 ,    P , (9.49)

where

 ,

and V is the residual vector. Because the ionospheric effects have been cancelled out
of Eq. 9.49, the ionospheric model can be also omitted by computing L1 and L2 in
Eq. 9.48. The solution of Eq. 9.49 is then the solution of the dual codes ionosphere-
free single point positioning problem.
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Phase Single Point Positioning

GPS carrier phase model is (cf. Sect. 6.1)

 , (9.50)

where λΦ  is the observed phase in length, Φ  is the phase in cycle, wave length is
denoted as λ, and Nk

i is the ambiguity related to receiver i and satellite k, except
for the ambiguity term and the sign difference of the term of ionospheric effect;
other terms are the same as that of the pseudorange discussed at the beginning of
this section.

The computed value (denoted as C) of phase is

 , (9.51)

where Nk
i0 is the initial ambiguity parameter related to the receiver i and satellite k.

Scaling the ambiguity parameter in length and denoting

 , (9.52)

the phase single point positioning equation is (very similar to Eq. 9.43)

 . (9.53)

Putting all equations related to all observed satellites together, the single point po-
sitioning equation system has a general form of

L = AX + EN + V ,    P , (9.54)

where L is called the observation vector, X is the unknown vector of coordinates and
clock error, A is the X related coefficient matrix, E is an identity matrix of order K, K is
the number of observed satellites, N is the unknown vector of ambiguity parameters
∆Nk

i, V is the residual vector, and P is the weight matrix. If K satellites are observed,
then there are K ambiguity parameters, three coordinate parameters and one clock
parameter, so that the phase single point positioning problem is not solvable at the
first few epochs. Using the ambiguity parameters obtained from the ambiguity-iono-
spheric equations (cf. Sect. 6.5) as the initial ambiguity values, N is then zero (can be
cancelled), and Eq. 9.54 has the same form as that of Eq. 9.44. In this way, the equa-
tion system of single frequency phase point positioning can be formed and solved every
epoch. Even the codes are used in the ambiguity-ionospheric equations, ambiguity
parameters can be obtained with high accuracy through a reasonable weight and in-
strumental bias model (cf. Sects. 6.7 and 9.2).
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Dual Phases Ionosphere-Free Single Point Positioning

The single point positioning equation of the dual phase observables for frequencies 1
and 2 can be formed as

L1 = AX + EN1 + V1 ,    P1    and (9.55)

L2 = AX + EN2 + V2 ,    P2 .

Then the ionosphere-free combinations can be formed by (cf. Sect. 6.5.1)

 ,    P , (9.56)

where

    and (9.57)

 . (9.58)

V is the residual vector, and index c is used to denote the ionosphere-free combina-
tions. Equation 9.56 is the dual phases ionosphere-free single point positioning equa-
tion system. The solution of Eq. 9.56 is then the solution of the dual phases ionosphere-
free single point positioning problem.

Phase-Code Combined Single Point Positioning

Phase and code ionosphere-free single point positioning Eqs. 9.56 and 9.49 can be writ-
ten in more compact forms as

Lp = A11X1 + A12N + Vp ,    Pp    and (9.59)

Lc = A11X1 + Vc ,    Pc ,

where index p and c denote the phase and code related variables, X1 is the vector of the
coordinate and receiver clock error, N is the ambiguity vector, P is the weight matrix, and
V is the residual vector. To guarantee the same coefficient matrix A11 for both the phase
and code observation equations, data of commonly observed satellites have to be used.

Usually the code single point positioning problem (second equation system of Eq. 9.59)
is always solvable (as soon as more than four satellites are observed). And the ambiguity
parameter number is equal to the number of phase observables. Therefore, the phase-code
combined single point positioning problem in Eq. 9.59 is usually solvable at every epoch.

Block-wise least squares adjustment for solving the phase-code combined problem
has been discussed in Sect. 7.5.2. The algorithm can be used directly to solve the com-
bined Eq. 9.59.
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9.4.3
Standard Un-Differential GPS Data Processing

In single point positioning, un-differenced GPS data are used. Usually, only four un-
knowns are solved for, as discussed in Sect. 9.4.2. Single point positioning has also a
speciality of epoch-wise solution. Based on the algorithms of single point position-
ing, standard static un-differential GPS data processing should take more unknown
models and more station data into account. In a kinematic case, because of the move-
ment of the receiver, coordinates of the receiver are time variables; therefore, model
parameters are usually pre-determined or determined with another algorithm in or-
der to reduce the number of the unknowns.

The GPS code pseudorange and carrier phase are modelled as (cf. Sect. 6.1, Eqs. 6.1
and 6.2, or Eqs. 9.40 and 9.50)

    and (9.60)

 . (9.61)

Except for the ambiguity parameter and the sign of the ionospheric effect term, the
other terms on the right sides of Eqs. 9.60 and 9.61 are the same.

For any standard data combinations (cf. Sect. 6.5 for details) as given in Eqs. 6.48
and 6.51, the above models of Eqs. 9.60 and 9.61 are still valid. Of course, on the left
sides of Eqs. 9.60 and 9.61 the combined pseudorange and combined phase (scaled by
wavelength) are used, and on the right side the ambiguity and ionospheric effect are
combined ones respectively. Exactly, for combinations of

 , (9.62)

 ,    or (9.63)

 , (9.64)

where the combined signal has the frequency and wavelength

 , (9.65)

the combined ambiguity and ionospheric effects are

 , (9.66)

    and

 , (9.67)
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where n1 and n2 are the selected real constants, indices 1 and 2 are referred to frequen-
cies 1 and 2, and indices comc and comp denote the code and phase combined terms.

The computed pseudorange and phase range are

    and (9.68)

 , (9.69)

where superscript 0 denotes the initial values of individual models, indices c and p denote
the terms related to the code and phase measurements, and index com denotes the com-
bined terms. In the case of ionosphere-free combinations, the ionospheric effect terms will
vanish. Otherwise, we should assume that the ionospheric effects are known by the given
model or by the ambiguity-ionospheric equations.

The linearisation of GPS observation equations is generally discussed in Sect. 6.2, and the
related partial derivatives are given in Sect. 6.3. Equations 9.62 and 9.64 can be linearised as

Lc = A11Xcoor + A12Xclock + A13Xtrop + A14Xtide + Vc ,    Pc    and

Lp = A11Xcoor + A12Xclock + A13Xtrop + A14Xtide + A15N + Vp ,    Pp , (9.70)

where Xcoor is the coordinate vector, Xclock is clock error vector, indices trop and tide
are used to denote the related unknown vectors, N is the ambiguity vector, P is the
weight matrix, V is the residual vector, and A is the related coefficient matrix. The data
of commonly observed satellites have to be used to guarantee the common coefficient
matrices A for both phase and code observation equations.

To process the data of more stations, Eq. 9.70 shall be formed station by station and
then combine them together. It is notable that some of the parameters are common
ones for all stations, such as satellite clock errors and love numbers of the earth tide.
In the case of orbit determination (cf. Chap. 11 for details), the orbit parameters and
force model parameters are also common ones. The total observation equations of the
un-differential GPS can then be written symbolically as

Lc = A1X1 + A4X4 + Vc ,    Pc    and (9.71)

Lp = A1X1 + A4X4 + A5X5 + Vp ,   Pp ,

where X1 is a sub-vector of the common variables of the both equations, X4 is the other
variable vector of the both equations, and X5 is the ambiguity vector. Adding 0X5 to
the first equation and denoting X2 = [X4 X5]T, Eq. 9.71 can be further simplified as

Lc = A1X1 + A2X2 + Vc ,    Pc    and (9.72)

Lp = A1X1 + A3X2 + Vp ,    Pp .

Equation 9.72 can be considered an epoch-wise formed observation equation or
observation equation of all observed epochs. Most adjustment algorithms discussed
in Chap. 7 can be used directly to solve the above equation system.
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9.4.4
Equivalent Method of GPS Data Processing

As already discussed in Sect. 6.8, the equivalently eliminated equations of Eq. 9.72 can
be formed as (cf. Sect. 6.8 and 7.6 for details)

Uc = Lc – (E – Jc)A2X2 ,    Pc    and (9.73)

Up = Lp – (E – Jp)A3X2 ,    Pp ,

where

 , (9.74)

 ,

 ,    and

 .

E is an identity matrix of size J, L and P are the original observation vector and weight
matrix, and U is the residual vector, which has the same statistic property as V in
Eq. 9.72. As soon as the X1 in Eq. 9.72 is able to be eliminated, the equivalent Eq. 9.73
can be formed whether Eq. 9.72 is an epoch-wise equation or an all epoch equation.

Equation 9.73 is the zero-difference (un-differential) GPS observation equation sys-
tem if the variable vector X1 in Eq. 9.72 is considered a zero vector.

Equation 9.73 is the equivalent single-difference GPS observation equation system
if the variable vector X1 in Eq. 9.72 is considered an unknown vector of satellite clock
errors.

Equation 9.73 is the equivalent double-difference GPS observation equation sys-
tem if the variable vector X1 in Eq. 9.72 is considered an unknown vector of satellite
and receiver clock errors.

The second equation of 9.73 is the equivalent triple-difference GPS observation
equation system if the variable vector X1 in the second equation of 9.72 is considered
an unknown vector of all clock errors and ambiguities.

The un-differential and differential GPS data processing can be dealt with in an
equivalent and unified way. The advantages of this method are:

1. The weight remains the original one, so one does not have to deal with the correla-
tion problem;

2. The original data are used, so one does not need to form the differences;
3. The un-differential and differential GPS data processing can be easily selected by a

switch or can be used in a combined way, so that the number of unknowns (i.e.,
matrix size) of the whole adjustment and filtering problem can be greatly reduced.

The combinative way of using the equivalent method can be realised as follows.
First, equivalent triple differences are used to determine the unknowns other than the
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clock error and ambiguity parameters. Taking these parameters as known, the obser-
vation Eq. system 9.72 can be reduced so that only the clock error and ambiguity pa-
rameters are included. Then second, equivalent double differences are used to deter-
mine the ambiguity vector. Again, taking the ambiguity vector as known, Eq. 9.72 can
be further reduced so that only the clock error parameters are included. Then third,
equivalent single differences are used to determine the receiver clock errors. At the
end, Eq. 9.72 can be reduced so that only satellite clock errors are included in the
equations, and they can be determined. The last two steps can be also done together
in one step.

By the way, the ambiguity parameters are usually dealt with in an un-differential
form for all methods, so that the problems caused by changing the reference satellite
in a double difference case can be avoided. This is especially important for kinematic
GPS applications.

9.4.5
Relative Positioning

Relative positioning is traditionally carried out with differential positioning. The key
point of relative positioning is to keep the coordinates of the reference station fixed.
In other words, the initial coordinate values of the reference station are considered
true values so that the related unknowns are either not necessary to be adjusted or
equal to zero. Therefore, the following two ways outline how relative positioning can
be done. (1) Cancelling the reference coordinate unknowns out of Eq. 9.72; (2) The a
priori datum method discussed in Sect. 7.8.2 and 6.8.6 is used to keep the coordinates
fixed on the initial values. Both methods are equivalent. The a priori datum method
(cf. Sect. 7.8.2 and 6.8.6) can be also used to keep some of the un-differential ambigu-
ity parameters and clock parameters fixed. Keeping the reference coordinates fixed
in relative positioning may lead to a better determination of the other parameters in
the reference-related equations, and therefore may lead to an indirect reduction of the
residuals.

9.4.6
Velocity Determination

Single Point Velocity Determination

Analogous to the single point positioning discussed in Sect. 9.4.2, single point veloc-
ity determination can be carried out by using Doppler data. The GPS Doppler obser-
vation is modelled as (cf. Eq. 6.46)

 , (9.75)

where D is the observed Doppler measurement, te denotes the GPS signal emission time
of the satellite k, tr denotes the GPS signal reception time of the receiver i, subscript i
and superscript k denote receiver and satellite, and δ tr and δ tk denote the clock er-
rors of the receiver and satellite at the time tr and te, respectively. The remaining error
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is denoted as ε , f is the frequency, wavelength is denoted as λ , δ rel_f is the frequency
correction of the relativistic effects, ρk

i is the geometric distance, and dρk
i / dt denotes

the time derivation of the radial distance between satellite and receiver at the time tr.
The computed value (denoted as C) of Doppler is

 , (9.76)

where the first term on the right-hand side can be computed by using Eqs. 6.14
and 6.15.

The time derivative of the satellite clock error and the satellite position as well
as velocity can be computed from the IGS orbit data or broadcast navigation mes-
sage; the relativistic effect on frequency can be found in Chap. 5. It is obvious that
the initial position of the receiver is also needed for computing Eq. 9.76. Initial ve-
locity of the receiver is assumed zero. It should be emphasised that the earth rotation
correction has to be taken into account by the geometric distance computation (cf.
Sect. 5.3.2).

The linearised observation Eq. 9.76 is then (cf. Sects. 6.2 and 6.3 as well as partial
derivative Eq. 6.20)

 , (9.77)

where lk is the O – C (observed minus computed Doppler), vk is the residual, the
receiver’s velocity vector is (x�i   y

�

i   z
�

i)
T, (x   y   z)T is the coordinate vector with index k

for satellite and i for receiver. ∆D is the receiver clock drift in cycle/second (i.e.,
∆D = f(dρ tr / dt). Equation 9.77 can be written in a more general form as

 , (9.78)

where akj is the related coefficient given in Eq. 9.77. If one puts all of the equations
that are related to all of the observed satellites together, the equation system of single
point velocity determination has a general form of

L = AX + V ,    P , (9.79)

where L is called the observation vector, X is the unknown velocity vector including
clock drift, A is the coefficient matrix, V is the residual vector, and P is the weight matrix
of observation vector. The least squares solution of observation Eq. 9.79 is then (cf.
Sect. 7.2)

X = (ATPA)–1ATPL . (9.80)

9.4  ·  Standard Algorithms of GPS Data Processing



Chapter 9  ·  Parameterisation and Algorithms of GPS Data Processing214

The formulas for computing the precision vector of the solved X can be found in
Sect. 7.2. It is notable that the coefficients of the equation are computed using the
initial velocity vector, and the initial velocity vector is usually not known; therefore,
an iterative process has to be carried out to solve the single point velocity determin-
ing problem. For the given initial velocity vector, a modified one can be obtained by
solving the problem; the modified initial velocity vector can be used in turn to form
the equation and solve it again until the process converges. Such an iterative process is
needed if the kinematic motion is very fast. Because there are four unknowns in the
single velocity determining equation, at least four observables are needed to make the
problem solvable; in other words, when four or more satellites are observed, it is al-
ways possible to determine the single point velocity.

For static stations, the unknown velocity vector (x�   y�   z�)T can be considered the
zero one. Then the Eq. 9.77 turns out to be

 , (9.81)

and the receiver frequency error can be computed directly by

 , (9.82)

where K is the total number of observed satellites. Equation 9.82 can be used to com-
pute the frequency drift of the static reference receiver. The frequency drift of kine-
matic receiver can be also computed by static initialisation.

Differential Doppler Data Processing

A more general model of Doppler data processing takes the satellite clock frequency
bias (clock drift) into account:

 , (9.83)

where index i and k denote the receiver and satellite, and ∆D is the related frequency
bias. For the satellite frequency bias, the initial value from the IGS data or navigation
data can be used. If one puts together all of the equations related to all observed satel-
lites of all of the stations, Eq. 9.83 has a general form of

LD = A1X1 + A2X2 + VD , PD . (9.84)

where X1 is a sub-vector of the common variables, X2 is the vector of the other vari-
able, and A is the related coefficient matrix. The equivalently eliminated equations of
Eq. 9.84 can be formed as (cf. Sect. 6.8 for details)

UD = LD – (E – JD)A2X2 , PD , (9.85)
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where

    and (9.86)

 .

E is an identity matrix of size JD, L and P are the original observation vector and weight
matrix, and U is the residual vector, which has the same property as V in Eq. 9.84.

Equation 9.85 is the equivalent single-difference GPS Doppler observation equation if
the variable vector X1 in Eq. 9.84 is considered a vector of satellite clock frequency bias.

Equation 9.85 is the equivalent double-difference GPS Doppler observation equa-
tion if the variable vector X1 in Eq. 9.84 is considered a vector of the satellite and re-
ceiver clock frequency bias.

Relative Velocity Determination

Relative velocity determining is usually carried out with a differential method. The
key point of relative velocity determination is to keep the velocity of the reference sta-
tion as fixed, or zero. Therefore, relative velocity determination can be done the fol-
lowing two ways: (1) Cancel the reference velocity unknowns out of the Eq. 9.84; (2) Use
the method of a priori datum discussed in Sect. 7.8.2 to keep the reference velocity
fixed on the initial values.

9.4.7
Kalman Filtering Using Velocity Information

As already discussed in Sect. 6.5.5, velocity information from the differential Doppler
can be used to describe the system that is needed in Kalman filtering. Whether the
receiver is moving or resting, the differential Doppler includes information about the
motion state of the receiver. Therefore, using velocity information as a system descrip-
tion should be better than any empirical model.

The principle of Kalman filtering using velocity information can be outlined as
follows (cf. also Sect. 7.7):

For the initial (or predicted) vector Z
–

, the normal equation of the phase observa-
tion equation can be formed by

 , (9.87)

where Mz is the normal matrix, and Bz is the vector on the right side of the equation.
These are formed by using initial vector Z

–
; Z includes sub-vector X (coordinates) and

N (ambiguities). The estimated solution of Eq. 9.87 is then

 . (9.88)

The normal equation of the differential Doppler observation equation (cf. Eq. 9.85,
only the velocity vector is unknown) can be formed by
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 , (9.89)

where X� is the velocity vector of the receiver; it is also used as an index to denote the
related normal matrix and vector on the right side of the equation. The solution of
Eq. 9.89 is then

 . (9.90)

Thus for the next epoch, denoted as k, the predicted vector turns out to be

 , (9.91)

where ∆t is the time interval of the epoch k – 1 and k, and

 . (9.92)

Equation 9.91 indicates that the differential Doppler has to be used in Eq. 9.90 as
observations, because the velocity is considered an average one here. The related
covariance matrix of the predicted vector is then

 . (9.93)

The weight matrix is

 . (9.94)

The normal Eq. 9.87 of epoch k is

 , (9.95)

and the Kalman filter solution of Eq. 9.95 is then

 . (9.96)

It is notable that the normal equation 9.95 must be computed using the predicted
vector Z

–
(k) of Eq. 9.91.

Repeating the steps from Eqs. 9.89 to 9.96 for the further epoch is a process of
Kalman filtering using velocity information. The algorithm outlined above is suitable
both for the kinematic and static data processing. This is true especially for static data
processing, because the station has not been exactly assumed as fixed (as described
by Eq. 9.89); such an algorithm will modify the property of the strong dependency on
the initial value of the Kalman filter. The forming of normal Eq. 9.89 is an iterative
process (cf. Sect. 9.4.6), i.e., the velocity information has to be used for forming the
equation. Equation 9.89 represents a realistic system description.
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9.5
Accuracy of the Observational Geometry

Recalling the discussions made in the adjustment of Chap. 7, the precision vector of
the solved vector is usually represented as (cf., e.g., Eq. 7.8)

    and (9.97)

 ,    if    (m>n) .

where i is the element index, m0 is the so-called standard deviation (or sigma), p[i] is
the ith element of the precision vector, Q[i][i] is the ith diagonal element of the qua-
dratic matrix Q (the inverse of the normal matrix), V is the residual vector,
superscript T is the transpose of the vector, P is the weight matrix, n is the unknown
number, and m is the observation number.

Equation 9.97 is used to describe the precision of the individual parameter of the
unknown vector X. The parameters can be usually classified into several groups ac-
cording to their physical properties, e.g., position unknowns and clock unknowns; in
turn the position unknowns can be classified by stations, and the clock errors can be
classified by satellites and receivers, etc. To describe the precision of a group of un-
knowns, a so-called mean-squares-root precision can be defined as

 , (9.98)

where j is the first index and J is the last index of the parameters of the discussed group,
and n is the total parameter number of the group. Of course, here we assume the pa-
rameters are ordered in groups. Putting Eq. 9.97 into above, one has

 , (9.99)

where DOP is the shortening of the Dilution of Precision factor. So we see that the
DOP factor is a very important factor to describe the precision of a group of param-
eters that are the same kind. Supposing in the unknown vector X[i], i = 1, 2, 3 are
coordinate x, y, z of a receiver, and i = 4 is the receiver clock error, then the Position
DOP (PDOP) is defined by j = 1, J = 3 in Eq. 9.99, and the Time DOP (TDOP) is de-
fined by j = J = 4 in Eq. 9.99. The Geometric DOP (GDOP) is defined by j = 1, J = 4 in
Eq. 9.99 (cf. Hofmann-Wellenhof et al. 1997). For the case of multiple stations, the
definition can be similarly extended.

The PDOP is a factor, which indicates the factor of precision of the position. Quite
often, one would prefer to express the position precision in a local coordinate system,
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i.e., in horizontal and vertical components. Recalling the relation between the global
and local coordinates (cf. Sect. 2.3), there are

Xlocal = RXglobal ,    and    Xglobal = RTXlocal , (9.100)

where Xlocal and Xglobal are identical vectors represented in local and global coordi-
nate systems. R is the rotation matrix given in Eq. 2.11. According to the covariance
propagation theorem, one has then

Qlocal = RQglobalR
T ,    and    Qglobal = RTQlocalR , (9.101)

where Qglobal is the sub-matrix of Q, which is related to the coordinates part. Suppos-
ing in the unknown vector Xlocal[i], i = 1, 2, 3 are coordinates of horizontal x, y, and
vertical z of a receiver, then the Horizontal Dilution of Precision (HDOP) and Vertical
Dilution of Precision (VDOP) are defined as

 . (9.102)

For many stations, the definition can be similarly given.




