
Chapter 8

Cycle Slip Detection and Ambiguity Resolution

In phase measurement there is an ambiguity problem. If the signal happens with a loss of
lock, the phase measurement has to be initiated again. This phenomenon is called cycle
slips, i.e., the cycle counting has a new beginning because of an interruption of signal. The
consequence of the cycle slips is that the adjacent carrier phase observable jumps by an
integer number of cycles, and in the related observation model the ambiguity parameter
should be a new one. Correct cycle slip detection becomes a guarantee for a correct ambi-
guity parameterisation. After the discussion of cycle slip detection, emphasis given to the
integer ambiguity resolution problem includes the criteria of the integer ambiguity search.
The historical ambiguity function method is also outlined and discussed.

8.1
Cycle Slip Detection

Recalling the discussions made in Sect. 6.5, several methods of cycle slip detection can
be summarised as follows.

1. Phase-Code Comparison

Using the first equation of 6.88

 , (8.1)

cycle slips of the phase observable in working frequency j can be detected. ∆t, Rj, Φj, Nj, λj,
ε, and j are the time difference operator, code range, phase, ambiguity, wavelength, residual,
and index of the frequency, respectively. In the case of no cycle slips, the time difference of
the ambiguity should be zero, i.e. ∆tNj = 0. Because the noise level of the code range is much
higher than that of the phase, this method can only be used for big cycle slip detection.

2. Phase-Phase Ionospheric Residual

Using Eq. 6.80

 , (8.2)

cycle slips of the two phase observables in frequency 1 and 2 can be detected. ∆t∆δion(tj)
is the so-called ionospheric residual. Generally speaking, the computed ionospheric
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residual of the two adjacent epochs should be very small. Any unusual change of the
ionospheric residual may indicate cycle slips in one or two phases. However, two spe-
cial cycle slips, ∆N1 and ∆N2, can lead also to a very small combination of λ1∆tN1 – λ2∆tN2.
Examples of such combinations can be found, e.g., in (Hofmann-Wellenhof et al. 1997).
Therefore, a big ionospheric residual indicates the cycle slips, whereas a small iono-
spheric residual does not guarantee that there are no cycle slips. Another shortcoming
of this method is that the ionospheric residual itself provides no possibility to check in
which phase the cycle slips happen.

3. Doppler Integration

Using Eq. 6.87

 , (8.3)

cycle slips of the phase observable in working frequency j can be detected. Dj is the
Doppler observable of frequency j. Recalling the discussions made in Chap. 4, the phase
is measured by keeping track of the partial phase and accumulating the integer count.
If there is any loss of lock of the signal during this time, the integer accumulation will
be wrong, i.e., cycle slip happens. Therefore, an external instantaneous Doppler inte-
gration is a good choice for cycle slip detection. The integration can be made first by
fitting the Doppler data with a polynomial of suitable order, and then integrating that
within the desired time interval. Polynomial fitting and numerical integration meth-
ods can be found in Sect. 11.5.2 and 3.4.

4. Differential Phases (of Time)

Using the first equation of 6.86

 ,    j = 1,2, (8.4)

cycle slips can be detected. Except for the ambiguity term, all other terms on the right
side are of low variation ones. Any cycle slips will lead to a sudden jump of the time
difference of the phases. The differenced data may be fitted with polynomials, and the
polynomials can be used for interpolating or extrapolating the data at the checking
epoch; the computed and differenced data then can be compared to decide if there are
any cycle slips.

8.2
Method of Dealing with Cycle Slips

As soon as the cycle slips have been detected, there are two ways to deal with them. One
is to repair the cycle slips, the other is to set a new ambiguity unknown parameter in
the GPS observation equations. To repair the cycle slips, the cycle slips have to be known
exactly. Any incorrect reparation will affect all observations later. Setting a new unknown
ambiguity parameter after a cycle slip is a more secure method. It seems that in this
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way there will be more unknowns in the observation equations. However, there exists a
condition between the former ambiguity parameter N(1) and the new one N(2), i.e.,

 , (8.5)

where I is an integer constant and i, j and k are indices of the receiver, satellite, and ob-
serving frequency, respectively. For any solution of N(1) and N(2) with good qualities,
the integer constant should be able to be easily distinguished. If I = 0, then no cycle slips
have really happened.

If instrumental biases have not been modelled, the biases may destroy the integer
property of the original ambiguity parameters. However, in such a case, the double
differenced ambiguities are still integers.

8.3
A General Criterion of Integer Ambiguity Search

An integer ambiguity search method based on conditional adjustment theory is pro-
posed in this section. By taking the coordinate and ambiguity residuals into account, a
general criterion for ambiguity searching is derived. The search can be carried out in
both ambiguity and coordinate domains. The optimality and uniqueness properties of
the general criterion are also discussed. A numerical explanation of the general criterion
is outlined. An equivalent criterion of the general criterion is derived based on a
diagonalised normal equation. It shows that the commonly used least squares ambiguity
search (LSAS) criterion is just one of the terms of the equivalent general criterion. Nu-
merical examples are given to illustrate the two components of the equivalent criterion.

8.3.1
Introduction

It is well-known that the ambiguity resolution is a key problem that has to be solved in
GPS precise positioning. Some well-derived ambiguity fixing and searching algorithms
have been published during the last ten years. There are four types of methods that are
categorized. The first type includes Remondi’s static initialisation approach (cf., e.g., Remon-
di 1984; Wang et al. 1988; Hofmann-Wellenhof et al. 1997), which requires a static survey
time to solve the ambiguity unknowns even after a complete loss of lock. Normally, the
results are good enough to take a round up ambiguity fixing. The second type includes the
so-called phase-code combined methods (cf., e.g., Goad and Remondi 1984; Han and Rizos
1997; Sjoeberg 1999); the phase and code have to be used in the derivation as if they have
the same precision, and in the case of anti-spoofing (AS), the C/A code has to be used. A
search process is still needed in this case. The third type is the so-called ambiguity function
method (Remondi 1984; Han and Rizos 1997); its search domain is a geometric one. The
fourth type includes approaches; their search domain is only in domain of ambiguity, in-
cluding some optimal algorithms to reduce the search area and to accelerate the search pro-
cess (cf., e.g., Euler and Landau 1992; Teunissen 1995; Cannon et al. 1997; Han and Rizos 1997).
Because of the statistic character of validation criteria, sometimes no valid result is ob-
tained at the end of the search processes. Gehlich and Lelgemann (1997) separated the am-
biguities from the other parameters; this is similar to the equivalent method (cf. Sect. 6.7).
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The effort to develop KSGsoft (Kinematic/Static GPS Software) at the GeoForschungs-
Zentrum (GFZ) in Potsdam began at the beginning of 1994 due to the requirement of
kinematic GPS positioning in aerogravimetry applications (Xu et al. 1998). An optimal
ambiguity resolution method is needed in order to implement it into the software;
however, selecting the published algorithms has turned out to be a difficult task. This
has led to the independent development of this so-called integer ambiguity search
method. It turns out to be a very promising algorithm. Using this general criterion, an
optimal solution vector can be searched for and found out. The searched result is the
optimal one under the least squares principle and integer ambiguity property.

In the following sections, a brief summary of the conditional adjustment is given for
the convenience of discussion. Then the ambiguity searches in the ambiguity domain,
and both ambiguity and coordinate domains are discussed. Properties of the general
criterion are discussed. An equivalent criterion of the general criterion is derived. Nu-
merical examples, conclusions and comments are given.

8.3.2
Summary of Conditional Least Squares Adjustment

The principle of least squares adjustment with condition equations can be summarised
as below (for details cf. Sect. 7.4; Gotthardt 1978; Cui et al. 1982):

1. The linearised observation equation system can be represented by

(8.6)

where L is the observation vector of dimension m, A is the coefficient matrix of di-
mension m × n, X is the unknown vector of dimension n, V is the residual vector of
dimension m, n and m are numbers of unknowns and observations, and P is the
symmetric and quadratic weight matrix of dimension m × m.

2. The condition equation system can be written as

 , (8.7)

where C is the coefficient matrix of dimension r × n, W is the constant vector of
dimension r, and r is the number of conditions.

3. The least squares criterion for solving the observation equations with condition
equations is well-known as

 , (8.8)

where VT is the transpose of the related vector V.
4. The solution of the conditional problem in Eqs. 8.6 and 8.7 under the least squares

principle of Eq. 8.8 is then

(8.9)
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and

 , (8.10)

where AT and CT are the transpose matrices of A and C, superscript −1 is an inversion
operator, Q = (ATPA)−1, K is a gain vector (of dimension r), index c is used to denote
the variables related to the conditional solution, and W1 = ATPL.

5. The precisions of the solutions are then

 , (8.11)

where i is the element index of a vector or a matrix, sd is the standard deviation (or
sigma) of unit weight, p[i] is the ith element of the precision vector, Qc[i][i] is the
ith diagonal element of the quadratic matrix Qc, and

 , (8.12)

 , (8.13)

 . (8.14)

6. For recursive convenience, (VTPV)c can be calculated by using

 . (8.15)

Above are the complete formulas of conditional least squares adjustment. The ap-
plication of such an algorithm for the purpose of integer ambiguity search will be fur-
ther discussed in later sections.

8.3.3
Float Solution

GPS observation equation can be represented with Eq. 8.6. Considering the case with-
out condition (Eq. 8.7), i.e., C = 0 and W = 0, the least squares solution of Eq. 8.6 is

 , (8.16)

and

 , (8.17)

    and (8.18)

 , (8.19)
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where index 0 is used for convenience to denote the variables related to the least squares
solution without conditions. X0 is the complete unknown vector including coordinates
and ambiguities and is called a float solution later on. Solution X0 is the optimal one
under the least squares principle. However, because of the observation and model er-
rors as well as method limitations, float solution X0 may not be exactly the right one,
e.g., the ambiguity parameters are real numbers and do not fit to the integer property.
Therefore, one sometimes needs to search for a solution, say X, which not only fulfils
some special conditions, but also meanwhile keeps the deviation of the solution as small
as possible (minimum). This can be represented by

 , (8.20)

or equivalently by a symmetric quadratic form of (cf. also Eq. 8.35 derived later)

 . (8.21)

In Eq. 8.20, Vx is the residual vector in the case of solution X. For simplification, let:

 ,

 , (8.22)

where Y is the coordinate vector, N is the ambiguity vector (generally, a real vector). The
float solution is denoted by

 ,

where X0 is the solution of Eq. 8.6 without Condition 8.7.

8.3.4
Integer Ambiguity Search in Ambiguity Domain

To use the conditional adjustment algorithm for integer ambiguity searching in the
ambiguity domain, the condition shall be selected as N = W; here W of course is an in-
teger vector. Generally, letting C = (0, E), then Condition 8.7 turns out to be:

 . (8.23)

Using the definitions of C and Q, one has

    and

 .
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The gain KN can be computed by using Eq. 8.10:

 . (8.24)

So under Condition 8.23, the conditional least squares solution in Eq. 8.9 can be writ-
ten as

 . (8.25)

Simplifying Eq. 8.25, one gets:

(8.26)

and

 . (8.27)

The precision computing formulas under Condition 8.23 can be derived as below:

    and (8.28)

 , (8.29)

where (VTPV)0 is the value obtained without Condition 8.23. The second term on the
right side of the last line in Eq. 8.29 is the often-used least squares ambiguity search
(LSAS) criterion for an integer ambiguity search in the ambiguity domain, which can
be expressed as

 . (8.30)

It indicates that any ambiguity fixing will cause an enlargement of the standard devia-
tion. However, one may also notice that here only the enlargement of the standard devia-
tion caused by ambiguity parameter changing has been considered. Furthermore, the
Condition 8.23 does not really exist. Ambiguities are integers, however, they are unknowns.
The formula to compute the accuracy vector of the ambiguity does not exist too, because
the ambiguity condition is considered exactly known in conditional adjustment.
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8.3.5
Integer Ambiguity Search in Coordinate and Ambiguity Domains

In order to see the enlargement of the standard deviation caused by the fixed solution,
the condition shall be selected as X = W; here, W consists of two sub-vectors (coordi-
nate and ambiguity parameter related sub-vectors). And only the ambiguity parameter
related sub-vector is an integer one. Letting C = E, Condition 8.7 is then:

 . (8.31)

One has

 .

Denote X0 = QW1; here X0 is the solution of Eq. 8.6 without Condition 8.31. The gain
K can be computed by using Eq. 8.10:

 . (8.32)

So under Condition 8.31, the conditional least squares solution in Eq. 8.9 can be written as

 . (8.33)

Precision computing formulas under Condition 8.31 can be derived as below:

 ,

 , (8.34)

where (VTPV)0 is the value obtained without Condition 8.31.
Condition 8.31 will force the observation Eq. 8.6 to take the condition W as the solu-

tion and will take the zero value as the precision of the conditional solution (i.e., the preci-
sion is undefined). The reason for this is that the condition is considered exactly known in
conditional adjustment. The second term on the right side of Eq. 8.34 is denoted as

 . (8.35)

This term in Eq. 8.34 indicates that any solution vector X, which is different from the
float solution vector X0, will enlarge the weighted squares residuals. It is well-known
that the float solution is the optimal solution under the least squares principle. There-
fore, statistically, the optimal solution X shall be that X which takes the minimum value
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of δ in Eq. 8.35. Mathematically speaking, Eq. 8.35 is the “distance” between vector X
and X0 in the solution space (of dimension n). If one considers n = 3 and Q−1 to be a
diagonal matrix, then δ is the geometric distance of point X and X0 in a cubic space. So
Eq. 8.35 can be used as a general criterion to express the nearness of the two vectors. By
using criterion of Eq. 8.35, one may search for solution X in the area being searched so
that the value of δ reaches the minimum. Under such a criterion, the deviation of the
result vector X related to the float vector X0 is homogenously considered.

Furthermore, Condition 8.31 is considered exactly known in conditional adjustment.
However, in integer ambiguity searching, we just know the ambiguities are integers, but
their values are indeed not known, or say, they are known with uncertainty (precision)
within an area around the float solution. So the best solution shall be searched for. For
computing the precision of the searched X, the formulas of least squares adjustment shall
be further used, and meanwhile the enlarged residuals shall be taken into account by

 ,

 ,    if    (m > n)    and

 . (8.36)

In other words, the original Q matrix and (VTPV)0 of the least squares problem in Eq. 8.6
are further used. The δ has the function of enlarging the standard deviation. The precision
computing formulas have nothing to do with the conditions. Searching for a minimum δ
leads to a minimum of standard deviation sd and therefore the best precision values.

Equation 8.35 is called the general criterion of an integer ambiguity search, which may
be used for searching for the optimal solution in the ambiguity domain, or both coordinate
and ambiguity domains. In most cases, the search will be started from the ambiguity do-
main. An integer vector N can be selected in the searching area, then the related coordinate
vector Y can be computed using the consistent relation of Y and N (cf. Eqs. 8.26 and 8.24).
The optimal solution searched shall be that X which leads Eq. 8.35 to a minimum value.

In the case of searching in the ambiguity domain, X consists of the selected sub-
vector of Nc in Eq. 8.27 and the computed coordinate sub-vector Yc in Eq. 8.26, i.e.,

⎟
⎟
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⎞

⎜
⎜

⎝

⎛

=

c

c

N

Y
W  . (8.37)

8.3.6
Properties of the General Criterion

1. Equivalence of the Two Searching Scenarios

It should be emphasised that the same searching criterion of Eq. 8.35 and the same for-
mulas of precision estimation in Eq. 8.36 are used in the two integer ambiguity search
scenarios. And the same normal equation of 8.6 is used to compute the Yc using the
selected Nc if necessary. The two searching processes indeed deal with the same prob-
lem, just as different ways of searching are used.
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Suppose by searching in the ambiguity domain, the vector X = (Yc   Nc)
T is found so

that δ reaches the minimum, where Nc is the selected integer sub-vector and Yc is the
computed one. And in the case of searching in both coordinate and ambiguity domains,
a candidate vector X = (Y   N)T is selected so that δ reaches the minimum, where N is
the selected integer sub-vector and Y is the selected coordinate vector. Because of the
optimality and uniqueness properties of the vector X in Eq. 8.35 (please refer to 2, which
is discussed next), here the selected (Y   N)T must be equal to (Yc   Nc)

T. So the theoreti-
cal equivalency of the two searching processes is confirmed.

2. Optimality and Uniqueness Properties

The float solution X0 is the optimal and unique solution of Eq. 8.6 under the principle
of least squares. A minimum of δ in Eq. 8.35 will lead to a minimum of (VTPV)c
in Eq. 8.36. Therefore using criterion of Eq. 8.35 analogously, the searched vector X
is the optimal solution of Eq. 8.6 under the least squares principle and integer
ambiguity properties. The uniqueness property is obvious. If X1 and X2 are such that
δ(X1) = δ(X2) = min or δ(X1) – δ(X2) = 0, then by using Eq. 8.35, one may assume that
X1 must be equal to X2.

3. Geometric Explanation of the General Criterion

Geometrically, δ = (X0 – X)T (Q)–1(X0 – X) is the “distance” between the vector X and
float vector X0. The distance contributed to enlarge the standard deviation sd (cf.
Eq. 8.36). Ambiguity searching is then the search for the solution vector, which owns
the integer ambiguity property and has the minimum distance to the float solution
vector.

8.3.7
An Equivalent Ambiguity Search Criterion and its Properties

Suppose undifferenced GPS observation equation and related LS normal equation are

 ,    P (8.38)

 , (8.39)

where

 , (8.40)

 .

Where all symbols have the same meanings as that of Eqs. 7.117 and 7.118. Equation
8.39 can be diagonalised as (cf. Sect. 7.6.1)
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 , (8.41)

where

 . (8.42)

The related equivalent observation equation of the diagonal normal Eq. 8.41 can be
written (cf. Sect. 7.6.1)

 , (8.43)

where all symbols have the same meanings as that of Eqs. 7.140 and 7.142.
Suppose GPS observation equation is Eq. 8.38 and the related least squares normal

equation is Eq. 8.39, where X2 = N (N is the ambiguity sub-vector) and X1 = Y (Y is the
other unknown sub-vector). The general criterion is (cf. Eq. 8.35)

 , (8.44)

where X = (Y   N)T, X0 = (Y0   N0)T, dX = X0 – X and index 0 denotes the float solution.
The search process in the ambiguity domain is a process to find out a solution X (which
includes N in the searching area and the computed Y) so that the value of δ(dX) reaches
the minimum. The optimality property of this criterion is obvious.

For the equivalent observation Eq. 8.43, the related least squares normal equation is
Eq. 8.41. The related equivalent general criterion is then (putting the diagonal cofactor
of Eq. 8.41 into Eq. 8.44 and taking Eqs. 8.40 and 8.42 into account)

(8.45)

where index 1 is used to distinguish criterion of Eq. 8.45 from Eq. 8.44. The observa-
tion equations 8.38 and 8.43 are equivalent, and the related normal Eqs. 8.39 and 8.41
are also equivalent. Therefore, the Criterion 8.45 is called an equivalent criterion of the
general Criterion 8.44.

Furthermore, Y and N shall be consistent to each other because they are presented
in the same normal Eqs. 8.39 and 8.41. Using condition W = N and notation of Eq. 8.42,
one has from Eqs. 8.26 and 8.24

 . (8.46)

Putting Eq. 8.46 into Eq. 8.45, one has

 . (8.47)

It is notable that the second term δ(dN) of the equivalent criterion Eq. 8.45 is exactly
the same as the commonly used least squares ambiguity search (LSAS) criterion of Eq. 8.30
(cf., e.g., Teunissen 1995; Leick 1995; Hofmann-Wellenhof et al. 1997; Euler and Landau
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1992; Han and Rizos 1997). Through Eq. 8.47 one may clearly see the differences between
the criteria of Eqs. 8.30 and 8.45. When the results searched using Eq. 8.30 are different
from that of using Eq. 8.45, the results from the search using Eq. 8.30 shall be only sub-
optimal ones due to the optimality and uniqueness property of Eq. 8.45. The first term
on the right side of Eq. 8.45 signifies an enlarging of the residuals due to the coordinate
change caused by ambiguity fixing (cf. Sect. 8.3.3). The second term on the right side of
Eq. 8.45 signifies an enlarging of the residuals due to the ambiguity change caused by
ambiguity fixing (cf. Sect. 8.3.4). Equation 8.45 takes both effects into account.

1. Optimality and Uniqueness Properties of the Equivalent Criterion

The float solution X0 is the optimal and unique solution of Eq. 7.117 under the least
squares principle. Criterion Eq. 8.45 is equivalent to criterion Eq. 8.44. A X leads to the
minimum of δ1(dX) in Eq. 8.45, which will lead to the minimum of δ(dX) in Eq. 8.44
and consequentially the minimum of (VTPV)c in Eq. 8.36; therefore using criterion of
Eq. 8.45, analogously, the searched vector X is the optimal solution of Eq. 8.38 under
the least squares principle and integer ambiguity properties. The uniqueness property is
obvious. If one has X1 and X2 so that δ1(dX1) = δ2(dX2) = min., or δ1(dX1) – δ1(dX2) = 0,
then by using Eq. 8.45, one may assume that X1 must be equal to X2.

It is notable that Eqs. 8.44 and 8.45 are equivalent for use in searching; however, they
are neither the same nor equal. For computing the precision, δ  in Eq. 8.36 has to be
computed using Eq. 8.44.

8.3.8
Numerical Examples of the Equivalent Criterion

Several numerical examples are given here to illustrate the behaviour of the two terms
of the criterion. The first and second terms on the right-hand side of Eq. 8.45 are de-
noted as δ(dY) and δ(dN), respectively. δ1(dX) = δ(dY) + δ(dN) is the equivalent cri-
terion of the general criterion and is denoted as δ(total). The term δ(dN) is the LSAS
criterion. Of course, the search is made in the ambiguity domain. The search area is deter-
mined by the precision vector of the float solution. All possible candidates are tested one
by one, and the related δ1(dX) are compared with each other to find out the minimum.

In the first example, precise orbits and dual frequency GPS data of 15 April 1999 at
station Brst (N 48.3805°, E 355.5034°) and Hers (N 50.8673°, E 0.3363°) are used. The
session length is 4 hours. The total search candidate number is 1 020. Results of the two
delta components are illustrated as 2-D graphics with the 1st axis of search number and
the 2nd axis of delta in Fig. 8.1. The red and blue lines represent δ(dY) and δ(dN), re-
spectively. δ(dY) reaches the minimum at the search No. 237, and δ(dN) at 769. δ(total)
is plotted in Fig. 8.2, and it shows that the general criterion reaches the minimum at the
search No. 493. For more detail, a part of the results are listed in Table 8.1.

δ(dN) reaches the second minimum at search No. 771. This example shows that the
minimum of δ(dN) may not lead to the minimum of total delta, because the related
δ(dY) is large. If the delta ratio criterion is used in this case, the LSAS method will
reject the found minimum and explain that no significant ambiguity fixing can be made.
However, because of the uniqueness principle of the general criterion, the search reaches
the total minimum uniquely.
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Fig. 8.1. Two components of the equivalent ambiguity search criterion

Fig. 8.2. Equivalent ambiguity search criterion
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The second example is very similar to the first one. The delta values of the search
process are plotted in Fig. 8.3, where δ(dY) is much smaller than δ(dN). δ(dN) reaches
the minimum at the search No. 5 and δ(dY) at 171. δ(total) reaches the minimum at the
search No. 129. The total 11 ambiguity parameters are fixed and listed in Table 8.2. Two
ambiguity fixings have just one cycle difference at the 6th ambiguity parameter. The
related coordinate solutions after the ambiguity fixings are listed in Table 8.3. The co-
ordinate differences at component x and z are about 5 mm. Even the results are very
similar; however, two criteria do give different results.

In the third example, real GPS data of 3 October 1997 at station Faim (N 38.5295°,
E 331.3711°) and Flor (N 39.4493°, E 328.8715°) are used. The delta values of the search
process are listed in Table 8.4. Both δ(dN) and δ(total) reach the minimum at the search
No. 5. This indicates that the LSAS criterion may sometimes reach the same result as
that of the equivalent criterion being used.

Table 8.1. Delta values of searching process

Table 8.4.
Deltas of the ambiguity search
process

Table 8.2. Two kinds of ambiguity fixing due to two criteria

Table 8.3.
Ambiguity fixed coordinate
solutions (in meters)
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8.3.9
Conclusions and Comments

1. Conclusions

A general criterion and its equivalent criterion of integer ambiguity searching are pro-
posed in this section. Using these two criteria, the searched result is optimal and unique
under the least squares minimum principle and under the condition of integer ambi-
guities. The general criterion has a clear geometrical explanation. The theoretical rela-
tionship between the equivalent criterion and the commonly used least squares ambi-
guity search (LSAS) criterion is obvious. It shows that the LSAS criterion is just one of
the terms of the equivalent criterion of the general criterion (this does not take into
account the residual enlarging effect caused by coordinate change due to ambiguity fix-
ing). Numerical examples show that a minimum δ(dN) may have a relatively large δ(dY),
and therefore a minimum δ(dN) may not guarantee a minimum δ(total). For an opti-
mal search, the equivalent criterion or the general criterion shall be used.

2. Comments

The float solution is the optimal solution of the GPS problem under the least squares
minimum principle. Using the equivalent general criterion, the searched solution is the
optimal solution under the least squares minimum principle and under the condition
of integer ambiguities. However, the ambiguity-searching criterion is just a statistic
criterion. Statistic correctness does not guarantee correctness in all applications. Am-
biguity fixing only makes sense when the GPS observables are good enough and the
data processing models are accurate enough.

Fig. 8.3. Example of equivalent ambiguity search criterion
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8.4
Ambiguity Function

It is well-known that in GPS precise positioning, ambiguity resolution is one of the key
problems that has to be solved. Some well-derived ambiguity fixing and searching al-
gorithms have been published in the past. One of these methods is the ambiguity func-
tion (AF) method, which can be found in many standard publications (Remondi 1984;
Wang et al. 1988; Han and Rizos 1995; Hofmann-Wellenhof et al. 1997).

The principle of the ambiguity function method is to use the single-differenced
phase observation

 , (8.48)

to form an exponential complex function

    or (8.49)

 , (8.50)

where Φ is the phase observable, ρ is the geometric distance of the signal transmitting path,
λ is the wavelength, index j denotes the observed satellite, tk is the kth  observational time,
N is ambiguity, γ is the model of the receiver clock errors, and i is the imaginary unit. All
terms in Eq. 8.48 have the units of cycles and are single-differenced terms. Property

is used in order to get Eq. 8.50.
Making a summation over all satellites and then taking the modulus operation, one

has

 , (8.51)

where property

is used, nj is the satellite number and nj(k) is the observed satellite number at epoch k.
Making a summation of Eq. 8.51 over all the observed time epochs, one has

 , (8.52)

where nk is the total epochs number. The left side of Eq. 8.52 is called the ambiguity
function, where unknowns are the coordinates of the remote station. The values of the
ambiguity function have to be computed for all candidates of coordinates, and the op-
timum solution is found if the function reaches the maximum, i.e.,
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 . (8.53)

The search area can be determined by the standard deviations (σ) of the initial
coordinates (e.g., a cube with side lengths of 3σ or a sphere with a radius of 3σ). The
AF method is indeed an ambiguity free method. The ambiguity can be computed using
the optimal coordinate solution of Eq. 8.53.

Further discussion on the AF method is given in the next sub-section.

8.4.1
Maximum Property of Ambiguity Function

The ambiguity function is discussed in Sect. 8.4. Here a numerical study of the maxi-
mum property of the ambiguity function (AF) is given. It seems that the maximum value
of the AF trends to be reached at the boundary of any given search area. Numerical
examples are given to illustrate the conclusion. However, a theoretical proof has still
not been found up to now; even the author tried to find one, but failed.

Numerical Examples

Several numerical examples are given here to illustrate the behaviours of the ambigu-
ity function criterion. The GPS data of the EU AGMASCO project (cf., e.g., Xu et al. 1997)
are used. Data are combined with the data of IGS network and solved for precise coor-
dinates as references. The station Faim (N 38.5295°, E 331.3711°) is used as the refer-
ence and Flor (N 39.4493°, E 328.8715°) is used as the remote station. The baseline length
is about 240 km. The data length is about four hours of 3 October, 1997. KSGsoft (Xu
et al. 1998) is used for computing a static solution of the coordinates of Flor. The differ-
ences of the KSGsoft solution and IGS solution are (0.26, 1.93, 1.37) cm in the global
Cartesian coordinate system. Related standard deviations of the KSGsoft solution are
(0.04, 0.04, 0.02) cm. The differences are caused partly by the different data lengths. This
assures a good standard for the software being used.

The search step is selected as 1 mm. Tropospheric and ionospheric effects are cor-
rected. In the first example, three hours of data are used. The search area is a 3-D cube
with side lengths of ±(0.7, 0.7, 0.4) cm in (x, y, z). Results show that the AF maximum is
reached at point (–0.7, 0.7, 0.4) cm, which is on the boundary of the area being searched.

A search process (with a search area of ±7 mm and one hour of data) is illustrated
in 2-D graphics with the 1st axis containing search numbers and the 2nd axis containing
AF values in Fig. 8.4. The graphic looks like a 3-D AF projection of the cubic searching
area (the picture could be quite different in other examples). Figure 8.4 clearly shows
the boundary maximum effect of the AF criterion. Expanding the searched area (and,
of course, its boundary), the maximum is reached on the new boundary (of the new
cubic surface).

Alternatively, the search may be made on a spherical surface with an expanding
radius. The results of such an example are illustrated in Fig. 8.5, where only radii of
1, 2, …, 10 mm are given. As the radius expands, the AF maximum becomes greater
and is always reached over the spherical surface with the maximum radius.
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Fig. 8.4. 3-D coordinate search using ambiguity function

Fig. 8.5. Spherical coordinate search using ambiguity function
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Theoretical Indications

The AF Eq. 8.53 is rewritten as

 , (8.54)

 , (8.55)

    and (8.56)

 , (8.57)

where Y is the coordinate vector, Ω  is to be the searched coordinate area and is a closed area
(i.e., it includes the boundary Γ), vj(tk) are the residuals of GPS observation equations (a
continuous function of Y), Sk is a complex function of Y, and G(tk) is the modulus of Sk.

If the GPS data sampling intervals are sufficiently close and the numerical integra-
tion error is negligible (cf. Xu 1992), then one has

 , (8.58)

where T = te – t1, te = t(nk), and t1 and te are the beginning and end time of the observa-
tions. According to the middle value theorem of the integration (cf., e.g., Bronstain and
Semendjajew 1987; Wang et al. 1979) (such a theorem can be found in all integration
related books), one has a time point ξ  (t1 < ξ < te) so that

 , (8.59)

i.e., the AF can be represented by a unique G(t) at time ξ  (the constant factor is omitted
here). Equation 8.54 turns out to be

 . (8.60)

Because of the definition of AF, G(ξ) is a modulus of a complex function.
In complex function analysis theory, there is a so-called maximum theorem (cf., e.g.,

Bronstain and Semendjajew 1987; Wang et al. 1979), i.e.:

Maximum Modulus Theorem: if complex function f(z) is analytic within a limited area Z
and is continuous over the closed Z, then modulus |f(z)| reaches the maximum on the
boundary Γ  of Z.

However, such a theorem cannot be directly used for Eq. 8.60 because the theorem is
valid only for the analytic complex function defined over a complex plane, whereas
function G(ξ) is a complicated three-dimensional complex function.

Maybe the interested reader will consider this in detail and find out a theoretical proof.
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