
Chapter 6

GPS Observation Equations and Equivalence Properties

In this chapter, first the general mathematical model of GPS observation and its
linearisation are discussed. All partial derivatives of the observational function are
given in detail. These are necessary for forming GPS observation equations. Then, linear
transformation and covariance propagation are outlined. In the data combinations
section, all meaningful and useful data combinations are discussed, such as ionosphere-
free, geometry-free, code-phase combinations, ionospheric residuals, as well as dif-
ferential Doppler and Doppler integration. In the section of data differentiation, single,
double and triple differences as well as their related observation equations and weight
propagation are discussed. The parameters in the equations are greatly reduced
through difference forming; however, the covariance derivations are tedious. In the
last two sections, the equivalent properties between the uncombined and combining
as well as undifferenced and differencing algorithms are discussed. A unified GPS data
processing method is proposed in detail. The method is selectively equivalent to the
zero-, single-, double-, triple-, and user-defined differential methods.

6.1
General Mathematical Models of GPS Observations

Recalling the discussions in Chap. 4, the GPS code pseudorange, carrier phase and
Doppler observables are formulated as (cf. Eqs. 4.7, 4.18, 4.23):

 , (6.1)

 and (6.2)

 . (6.3)

Where ionospheric effects can be approximated as (cf. Sect. 5.1.2, Eq. 5.26)
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and R is the observed pseudorange, Φ is the observed phase, D is Doppler measure-
ment, te denotes the GPS signal emission time of the satellite k, tr denotes the GPS sig-
nal reception time of the receiver i, c denotes the speed of light, subscript i and
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superscript k denote the receiver and satellite, and δtr and δtk denote the clock errors
of the receiver and satellite at the time tr and te, respectively. The terms δion, δtrop, δtide,
and δrel denote the ionospheric, tropospheric, tidal and relativistic effects, respectively.
Tidal effects include Earth tide and ocean loading tide effects. The multipath effect has
been discussed in Sect. 5.6 and is omitted here. εc, εp and εd are the remaining errors,
respectively. f is the frequency, wavelength is denoted by λ, A1 and A2 are ionospheric
parameters, Nk

i is the ambiguity related to receiver i and satellite k, δrel_f is the frequency
correction of the relativistic effects, the ρk

i is the geometric distance, and (cf. Eq. 4.6)
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where ∆t denotes the signal transmitting time and ∆t = tr – te. dρk
i(tr) / dt denotes the

time derivation of the radial distance between the satellite and receiver at the time tr.
All terms in Eqs. 6.1 and 6.2 have units of length (meters).

Considering Eq. 6.4 in the ECEF coordinate system, the geometric distance is a func-
tion of station state vector (xi, yi, zi, x· i, y·i, z· i) (denoted by Xi) and satellite state vector
(xk, yk, zk, x· k, y·k, z·k) (denoted by Xk). GPS observation Eqs. 6.1, 6.2 and 6.3 can then be
generally presented as

)( rel_reltidetropion f
k
ikiki δ,N,δ,δ,δ,δ,δt,δt,X,XO = F  , (6.5)

where O denotes observation and F denotes implicit function. In other words, the GPS
observable is a function of state vectors of the station and satellite, and numbers of
physical effects as well as ambiguity parameters. In principle, through GPS observa-
tions, the desired parameters of the function in Eq. 6.5 can be solved for. This is why
nowadays GPS has been widely used for positioning and navigation (to determine the
state vector of the station), for orbit determination (to determine the state vector of
satellite), for timing (to synchronise clocks), for meteorological applications (i.e. tro-
posphere profiling), and for ionospheric occultation (i.e. ionosphere sounding). In turn,
the satellite orbit is a function of the gravitational field of the Earth and numbers of
disturbing effects such as solar radiation pressure and atmospheric drags. GPS is now
also used for gravity field mapping, as well as solar and Earth system study.

It is obvious that Eq. 6.5 is a non-linear one. The straightforward mathematical method
to solve problem 6.5 is to search for the optimal solution by using some effective search
algorithms. The so-called ambiguity function (AF, see Sect. 8.5 and Sect. 12.2) method is
one of the examples. Generally speaking, solving a non-linear problem is much more com-
plicated than first linearising the problem and then solving the linearised problem.

It is notable that the satellite state vector and the station state vector shall be repre-
sented in the same coordinate system; otherwise coordinate transformation discussed
in Chap. 2 shall be made. Because the rotations are “distance keeping” transformations,
the distances computed in two different coordinate systems must be the same. How-
ever, because of the Earth’s rotation, the velocities expressed in the ECI and ECEF co-
ordinate systems are not the same. Generally, the station coordinates and ionospheric
effects as well as tropospheric effects are given and presented in the ECEF system. A
satellite state vector may be given in both the ECSF system and the ECEF system. This
depends on the need of the concerned applications.
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6.2
Linearisation of the Observational Model

The non-linear multivariable function F in Eq. 6.5 can be further generalised as

),,,()( 21 nyyyFYFO …==  , (6.6)

where variable vector Y has n elements. The linearisation is accomplished by expand-
ing the function in a Taylor series to the first order (linear term) as
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the symbol |Y 0 means that the partial derivative ∂F(Y) / ∂Y takes the value of
Y = Y0 and ε is the truncating error, which is a function of the second order partial
derivative and dY. Y0 is called the initial value vector. Equation 6.7 turns out then
to be
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where F(Y0) is denoted by C (or say, the computed value). So GPS observation Eq. 6.6
is linearised as a linear equation (Eq. 6.8). Denoting the observational error and trun-
cating error as v and O – C as l, partial derivative (∂F / ∂yj)|Y0 = aj, then Eq. 6.8 can be
written as
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where l is also often called “observable” in adjustment or O – C (observed minus com-
puted), and j and i are indices of unknowns and the observations. Equation 6.9 is a
linear error equation. A set of GPS observables then forms a linear error equation sys-
tem:

6.2  ·  Linearisation of the Observational Model
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or in matrix form (denotes dY by X)

L = AX + V , (6.10)

where m is the observable number. A number of adjustment and filtering methods (cf.
Chap. 7) can be applied for solving the GPS problem 6.10. The solved parameter vec-
tor is X (or dY). The original unknown vector Y can be obtained by adding dY to Y0.
V is the residual vector. Statistically, V shall be assumed to be a random vector, and is
normally distributed with zero expectation and variance var(V). To characterise the
different qualities and correlation situations of the observables, a so-called weight
matrix P is introduced to Eq. 6.10. Supposing all observations are linearly indepen-
dent or un-correlated, the covariance of observable vector L is

 )cov( 2ELQLL σ==

(6.11)

or

 , (6.12)

where E is an identity matrix of dimension m × m, superscript –1 is an inversion op-
erator, and cov(L) is covariance of L.

Generally, only if the solved unknown vector dY is small enough, the linearisation
process can be considered done well. Therefore, the initial vector Y0 has to be care-
fully given. In case the initial vector is not well-known or not well-given, the
linearisation process has to be iterated. In other words, the initial vector that is not
well-known has to be modified by the solved vector dY, and the linearisation process
has to be made again until dY converges. If X = 0, then L = V; therefore, the “observ-
able” vector L is also called a residual vector sometimes. If the initial vector Y0 is well-
known or well-given, then the residual vector V can also be used as a criterion to judge
the “goodness or badness” of the original observable vector. This property is used in
robust Kalman filtering to adjust the weight of the observable (cf. Chap. 7).

6.3
Partial Derivatives of Observational Function

Partial Derivatives of Geometric Path Distance with Respect to the
State Vector (xi, yi, zi, x····· i, y····· i, z····· i) of the GPS Receiver

The signal transmitting path is described by (cf. Eqs. 4.3 and 4.6 in Chap. 4)
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where index k denotes the satellite, and the satellite coordinates are related to the sig-
nal emission time te, i denotes the station, and the station coordinates are related to
the signal reception time tr, ∆t = te – tr. Then one has

 

, (6.15)

where the satellite state vector is related to the time tr, and
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Partial Derivatives of Geometric Path Distance with Respect to
the State Vector (xk, yk, zk, x····· k, y····· k, z····· k) of the GPS Satellite

Similar to above, one has
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Partial Derivatives of the Doppler Observable with Respect to
the Velocity Vector of the Station

The time differentiation of the geometric signal path distance can be derived as
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then one has
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6.3  ·  Partial Derivatives of Observational Function
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Partial Derivatives of Clock Errors with Respect to the Clock Parameters

If the clock errors are modelled by Eq. 5.163 (cf. Sect. 5.5)

22 , tetdbttetdbt kkkkiiii ++=++= δδ  , (6.22)

where i and k are the indices of the clock error parameters of the receiver and satel-
lite, then one has
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If the clock errors are modelled by Eq. 5.164 (cf. Sect. 5.5)
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The above derivatives are valid for both the code and phase observable equations.
For the Doppler observable, denote (cf. Eq. 6.3)
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then for the clock error model of Eq. 6.22 one has
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Partial Derivatives of Tropospheric Effects with Respect to
the Tropospheric Parameters

If the tropospheric effects can be modelled by (cf. Sect. 5.2)

I: ρδ dptrop f=    and

II:  , (6.28)

where dρ is the tropospheric effect computed by using the standard tropospheric
model, fp, fz, fa are parameters of the tropospheric delay in path, zenith, azimuth di-
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rections, and F and Fc are the mapping and co-mapping functions discussed in Sect. 5.2.
The derivatives with respect to the parameters fp, fz, fa are then

 . (6.29)

Furthermore, if the tropospheric parameters are defined as a step function or first
order polynomial (cf. Sect. 5.2) by

 , (6.30)

where ∆t = (tn – t0) / n, t0 and tn are the beginning and the ending times of the GPS
survey, and ∆t is usually selected by two to four hours. Then one has

 . (6.31)

The azimuth dependency may be assumed to be (cf. Eq. 5.121)

 , (6.32)

where a is the azimuth, and g1 and g2 are called azimuth-dependent parameters. Then
one gets

 . (6.33)

If parameters g1 and g2 are also defined as step functions or first order polynomials
like Eq. 6.30, the partial derivatives can be obtained in a similar manner to Eq. 6.31.

Partial Derivatives of the Phase Observable with Respect to
the Ambiguity Parameters

Depending on which scale one prefers, there is

 . (6.34)

6.3  ·  Partial Derivatives of Observational Function
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Partial Derivatives of Tidal Effects with Respect to the Tidal Parameters

If the Earth tide model in Eqs. 5.147 and 5.149 are used, then the tidal effects can be
generally written as

332221tideearth hslshs ++=
−

δ  , (6.35)

where s1, s2 and s3 are the coefficient functions, which are given in Sect. 5.4.2 in detail,
and h2, h3 and l2 are the love numbers and Shida number, respectively. Then one has
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Ocean loading tide effects can be modelled as

( )loadloadloadloadtideloading ddd zyxf=

−

δ  , (6.37)

where fload is the factor of the computed ocean loading effect vector (dxload   dyload   dzload).
Then one has

 . (6.38)

6.4
Linear Transformation and Covariance Propagation

For any linear equation system

L = AX    or (6.39)
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a linear transformation can be defined as a multiplying operation of matrix T to
Eq. 6.39, i.e.,

TL = TAX     or (6.40)
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where T is called the linear transformation matrix and has a dimension of k × m. An
inverse transformation of T is denoted by T–1. An invertible linear transformation does
not change the property (and solutions) of the original linear equations. This may be
verified by multiplying T–1 to Eq. 6.40. A non-invertible linear transformation is called
a rank deficient (or not full rank) transformation.

The covariance matrix of L is denoted by cov(L) or QLL (cf. Sect. 6.2); then the co-
variance of the transformed L (i.e., TL) can be obtained by covariance propagation
theorem by (cf., e.g., Koch 1988)

T
LL

T TTQTLTTL == )cov()cov(  , (6.41)

where superscript T denotes the transpose of the transformation matrix.
If transformation matrix T is a vector (i.e., k = 1) and L is an inhomogeneous and

independent observable vector (i.e., covariance matrix QLL is a diagonal matrix with
elements of σ 2

j, where σ 2
j is the variance (σ j is called standard deviation) of the ob-

servable lj), then Eqs. 6.40 and 6.41 can be written as
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Denoting cov(TL) as σ 2
TL, one gets
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Equation 6.43 is called the error propagation theorem.

6.5
Data Combinations

Data combinations are methods of combining GPS data measured with the same re-
ceiver at the same station. Usually, observables are the code pseudoranges, carrier
phases and Doppler at working frequencies such as C/A code, P1 and P2 code,
L1 phase Φ1 and L2 phase Φ2, and Doppler D1 and D2. In the future, there will also be
P5 code, L5 phase Φ5 and Doppler D5. According to the observation equations of the
observables, a suitable combination can be advantageous for understanding and solv-
ing GPS problems.

6.5  ·  Data Combinations
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For convenience, code, phase and Doppler observables are simplified and rewrit-
ten as (cf. Eqs. 6.1–6.3)

 , (6.44)

 , (6.45)

   and (6.46)
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Where j is the index of frequency f, the means of the other symbols are the same as
the notes of Eqs. 6.1–6.3. Equation 6.47 is an approximation for code.

A general code-code combination can be formed by n1R1 + n2R2 + n5R5, where n1,
n2 and n5 are arbitrary constants. However, in order to make such a combination that
still has the sense of a code survey, a standardised combination has to be formed by

 . (6.48)

The newly-formed code R can then be interpreted as a weight-averaged code sur-
vey of R1, R2 and R5. The mathematical model of the observable Eq. 6.44 is generally
still valid for R. Denoting the standard deviation of code observable Ri as σci (i = 1, 2, 5),
the newly-formed code observation R has the standard deviation of
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(cf., e.g., Wang et al. 1979; Bronstein and Semendjajew 1987), one has the property of
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where m is the maximum index. Therefore in our case, one has

  ,   m = 2 or 3

for combinations of two or three code observables.
A general phase-phase linear combination can be formed by

 , (6.49)
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where the combined signal has the frequency and wavelength

 . (6.50)

λΦ means the measured distance (with ambiguity!) and can be presented alternatively as

 . (6.51)

Mathematical model of Eq. 6.45 is generally still valid for the newly-formed λΦ.
Denoting the standard deviation of phase observable λiΦi as σi (i = 1, 2, 5), the newly-
formed observation has a variance of

     and (6.52)

 ,

with m = 2 or 3 for combinations of two or three phases.
That is, the data combination will degrade the quality of the original data.
Linear combinations ΦW = Φ1 – Φ2 and ΦX = 2Φ1 – Φ2 are called wide-lane and x-lane

combinations with wavelengths of about 86.2 cm and 15.5 cm. They reduce the first order
ionospheric effects on frequency f2 to 40% and 20%, respectively. ΦN = Φ1 + Φ2 is called
a narrow-lane combination.

6.5.1
Ionosphere-Free Combinations

Due to Eqs. 6.44–6.47, phase-phase and code-code ionosphere-free combinations can
be formed by (cf. Sect. 5.1)
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The related observation equations can be formed from Eqs. 6.44 and 6.45 as

   and (6.55)

 , (6.56)

where

2
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=−= λ  , (6.57)

εcc and εpc denote the residuals after the combination of code and phase, respectively.
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The advantages of such ionosphere-free combinations are that the ionospheric ef-
fects have disappeared from the observation Eqs. 6.55 and 6.56 and the other terms of
the equations have remained the same. However, the combined ambiguity is not an
integer anymore, and the combined observables have higher standard deviations.
Equations 6.55 and 6.56 are indeed first order ionosphere-free combinations.

Second order ionosphere-free combinations can be formed by (see Sect. 5.1.2 for de-
tails)

   and (6.58)

 , (6.59)

where

 ,

 ,

 .

The related observation equations are the same as Eqs. 6.55 and 6.56, with λ and N
given above.

6.5.2
Geometry-Free Combinations

Due to Eqs. 6.44–6.46, code-code, phase-phase and phase-code geometry-free combi-
nations can be formed by
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d2211 ελλ ∆=− DD  , (6.62)

pcion )(2 εδλΦλ ∆+−=− jNR jjjjj    and   j=1,2,5 , (6.63)
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For an ionospheric model of the second order, one has approximately
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The geometry-free code-code and phase-phase combinations cancel out all other
terms in the observation equations except the ionospheric term and the ambiguity
parameters. Recalling the discussions of Sect. 5.1, δion is the ionospheric path delay
and can be considered a mapping of the zenith delay δ z

ion  or δ ion = δ z
ionF, where F is

the mapping function (cf. Sect. 5.1). So one has

 , (6.65)

where A1 and Az
1 have the physical meaning of total electronic contents at the signal

path direction and the zenith direction, respectively. Az
1 is then independent from the

zenith angle of the satellite. If the variability of the electronic contents at the zenith
direction is stable enough, Az

1 can be modelled by a step function or a first order poly-
nomial with a reasonably short time interval ∆t by

Az
1 = gj   if   tj–1 < t ≤ tj ,   j = 1, 2, …, n+1 (6.66)

or
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where ∆t = (tn – t0) / n, and t0 and tn are the beginning and ending time of the
GPS survey. ∆t can be, e.g., selected by 30 minutes. gj is the coefficient of the poly-
nomial.

Geometry-free combinations of Eqs. 6.60, 6.61 and 6.63 (only for j = 1) can be consid-
ered a linear transformation of the original observable vector L = (R1 R2 λ1Φ1 λ2Φ2)T

by

 , (6.68)

where Eq. 6.65 is used and

 .
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Equation 6.68 is called an ambiguity-ionospheric equation. For any viewed GPS sat-
ellite, Eq. 6.68 is solvable. If the variance vector of the observable vector is

( )
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p
2
p

2
c

2
c σσσσ  ,

then the covariance matrix of the original observable vector is (cf. Sect. 6.2)
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and the covariance matrix of the transformed observable vector (left side of Eq. 6.68)
is (cf. Sect. 6.4)
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Taking all the data measured at a station into account, the ambiguity and the iono-
spheric parameters (as a step function of the polynomial) can be solved by using Eq. 6.68
with the weight of Eq. 6.69. Taking the data station by station into account, all ambigu-
ity and ionospheric parameters can be determined. The different weights of the code
and phase measurements are considered exactly here. Due to the physical property of
the ionosphere, all solved ionospheric parameters shall have the same sign. Even though
the observation Eq. 6.68 is already a linear equation system, an initialisation is still help-
ful to avoid numbers from ambiguities that are too big. The broadcasting ionospheric
model can be used for initialisation of the related ionospheric parameters.

A geometry-free combination of Eq. 6.62 can be used as a quality check of the Dop-
pler data.

6.5.3
Standard Phase-Code Combination

Traditionally, phase and code combinations are used to compute the wide-lane ambi-
guity (cf. Sjoeberg 1999; Hofmann-Wellenhof et al. 1997). The formulas can be derived as
follows. Dividing λj into Eq. 6.63 and forming the difference for j = 1 and j = 2, one gets
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where ΦW = Φ1 – Φ2, NW = N1 – N2, and they are called wide-lane observable and am-
biguity; c is the velocity of light and A1 is the ionospheric parameter. The error term
is omitted here. Equation 6.60 can be rewritten as (by omitting the error term)
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and then one gets
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Substituting Eq. 6.72 into 6.70 yields
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Equation 6.73 is the most popular formula for computing wide-lane ambiguities using
phase and code observables. The un-differenced ambiguity N1 can be derived as follows.
Setting Φ2 = Φ1 – ΦW, N2 = N1 – NW into Eq. 6.61 and omitting the error term, one has
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where fw = f1 – f2 is the wide-lane frequency.
Compared with the adjustment method derived in Sect. 6.5.2, it is obvious that the

quality differences of the phase and code data are not considered by using Eqs. 6.73
and 6.74 for determining the ambiguity parameters. Therefore, the method proposed
in Sect. 6.5.2 is suggested for use.

6.5.4
Ionospheric Residuals

Considering the GPS observables as a time series, the geometry-free combinations of
Eqs. 6.60–6.64 can be rewritten as

cion21 )()()( εδ ∆+∆=− jjj ttRtR  , (6.75)

pion22112211 )()()( εδλλΦλΦλ ∆+∆−−=− jjj tNNtt  and (6.76)

pcion ),(2)()( εδλΦλ ∆+−=− jiijijii tiNtRt  ,   i=1,2,5 , (6.77)
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where
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The differences of the above observable combinations at the two succeeded epochs tj
and tj–1 can be formed:

cion21 )()()( ε∆δ∆∆∆ ∆+∆=− tjtjtjt ttRtR  , (6.79)

pion22112211 )()()( ε∆δ∆∆λ∆λΦ∆λΦ∆λ ∆+∆−−=− tjtttjtjt tNNtt   and (6.80)

pcion ),(2)()( ε∆δ∆∆λ∆Φ∆λ ∆+−=− tjtitijitjiti tiNtRt  ,   i = 1, 2, 5 , (6.81)

where ∆t is a time difference operator, for any time function G(t), ∆tG(tj) = G(tj) – G(tj–1)
is valid.

Because the time differences of the ionospheric effects ∆tδion and ∆t∆δion are gen-
erally very small, they are called ionospheric residuals. In the case of no cycle slips,
i.e., ambiguities N1 and N2 are constant, ∆N1 and ∆N2 equal zero. Equations 6.79–6.81
are called ionospheric residual combinations. The first combination of Eq. 6.79 can
be used for a consistency check of two code measurements. Equations 6.80 and 6.81
can be used for a cycle slip check. Equation 6.81 is a phase-code combination, due to
the lower accuracy of the code measurements; it can be used only to check for big cycle
slips. Equation 6.80 is a phase-phase combination, and therefore it has higher sensi-
bility related to the cycle slips. However, two special cycle slips ∆N1 and ∆N2 can lead
to a very small combination of δ1∆tN1 – δ2∆tN2. Examples of the combinations can be
found, e.g., in (Hofmann-Wellenhof et al. 1997). That is, even the ionospheric residual
of Eq. 6.80 is very small; it may not guarantee that there are no cycle slips.

6.5.5
Differential Doppler and Doppler Integration

Differential Doppler

The numerical differentiation of the original observables given in Eqs. 6.44 and 6.45
at the two succeeded epochs tj and tj–1 can be formed as

 ,   j = 1,2 ,   and (6.82)

 ,   j = 1,2 , (6.83)

where ∆t / ∆t  is a numerical differentiation operator and ∆t = tj – tj–1.
The left-hand side of Eq. 6.83 is called differential Doppler. Ionospheric residuals

are negligible and omitted here. The third terms of Eqs. 6.82 and 6.83 on the right-
hand side are small residual errors. For convenience of comparison, the Doppler ob-
servable model of Eq. 6.46 is copied below:
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 . (6.84)

It is obvious that Eqs. 6.83 and 6.84 are nearly the same. The only difference is that
in Doppler Eq. 6.84 the observed Doppler is an instantaneous one and its model is
presented by theoretical differentiation, whereas the term on the left-hand side of
Eq. 6.83 is the numerically differenced Doppler (formed by phases) and its model is
presented by numerical differentiation. Doppler measurement measures the instan-
taneous motion of the GPS antenna, whereas differential Doppler describes a kind of
average velocity of the antenna during the two succeeded epochs. The velocity solu-
tion of Eq. 6.83 (denoted by (x· y· z· )T) can be used to predict the future kinematic
position by
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In other words, differential Doppler can be used as the system equation of a Kalman
filter for kinematic positioning. The Kalman filter will be discussed in the next chap-
ter. A Kalman filter using differential Doppler will be discussed in Sect. 9.8.

Doppler Integration

Integrating the instantaneous Doppler Eq. 6.84, one has

 .

Using the operator ∆t to the un-differenced phase Eq. 6.45 and code Eq. 6.44, one
gets

   and

 , (6.86)

where the same symbols are used for the error terms (later too). Differencing the first
equation of Eq. 6.86 with the integrated Doppler leads to
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That is, the integrated Doppler can be used for cycle slip detection. Such a cycle slip
detection method is very reasonable. Phase is measured by keeping track of the partial
phase and accumulating the integer count. If any loss of lock of the signal happens
during the time, the integer accumulating will be wrong, i.e., cycle slip happens. There-
fore, an external instantaneous Doppler integration can be used as an alternative method
of cycle slip detection. The integration can be made first by fitting the Doppler with a
suitable order polynomial, and then integrating that within the time interval.

Code Smoothing

Comparing the two formulas of Eq. 6.86, one has

2ε∆λΦ∆λ∆ +−= jtjjtjjt NR    or

3εΦ∆λ∆ += jtjjt R  . (6.88)

Equation 6.88 can be used for smoothing the code survey by phase if there are no cycle
slips.

Differential Phases

The first formula of Eq. 6.86 is the numerical difference of the phases at the two suc-
ceeded epochs tj and tj–1

 ,   j = 1,2 .

All other terms on the right-hand side are of low variation ones except the ambiguity
term. Any cycle slips will lead to a sudden jump of the time difference of the phases.
Therefore, the time differenced phase can be used as an alternative method of cycle
slip detection.

6.6
Data Differentiations

Data differentiations are methods of combining GPS data (of the same type) measured
at different stations. For the convenience of later discussions, tidal effects and relativ-
istic effects are considered corrected before forming the differences. The original code,
phase and Doppler observables as well as their standardised combinations can be re-
written as (cf. Eqs. 6.44–6.47)
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where j (j = 1, 2, 5) is the index of frequency f, subscript i is the index of station num-
ber and superscript k  is the id number of satellite.

6.6.1
Single Differences

Single difference (SD) is the difference formed by data observed at two stations on
the same satellite as

k
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k
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where O is the original observable, and i1 and i2 are two id number of the stations.
Supposing the original observables have the same variance of σ2, then the single dif-
ference observable has a variance of 2σ2. Considering Eqs. 6.89–6.92, one has
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where ρ ·  is the time differentiation of ρ, and dδion(j) and dδtrop are the differenced iono-
spheric and tropospheric effects at the two stations related to the satellite k , respectively.

The most important property of single differences is that the satellite clock error
terms in the model are eliminated. However, it should be emphasised that the satellite
clock error, which implicitly affects the computation of satellite position, still has to be
carefully considered. Ionospheric and tropospheric effects are reduced through differ-
ence forming, especially for those stations that are not very far away from each other.
Because of the identical mathematical models of the station clock errors and ambigu-
ities, not all clock and ambiguity parameters can be resolved in the single difference
equations of Eqs. 6.94–6.96.

For the original observable vector of station i1 and i2,
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can be formed by a linear transformation
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Where common satellites k1, k2, k3 are observed, E is an identity matrix that has the
size of the observed satellite number; in the above example the size is 3 × 3.

The covariance matrix of the single differences is then

ECCCOCO TT 22 2)cov())(SDcov( σσ =⋅=⋅⋅=  , (6.98)

i.e., the weight matrix is

EP
22

1

σ

=  .

That is, the single differences are un-correlated observables in the case of a single
baseline. C in Eq. 6.97 is a general form, so C is denoted by Cs = (–En×n En×n), and n is
the number of commonly viewed satellites.

Single differences can be formed for any baselines as long as the two stations have com-
mon satellites in sight. However, the baselines should be a set of “independent” ones. The
most-used methods are to form the radial baselines or traverse baselines. Supposing the
stations’ id vector is (i1, i2, i3, …, i(m – 1), im) and the baseline between station i1 and i2
is denoted by (i1, i2), then the radial baselines could be formed, e.g., by (i1, i2), (i1, i3),
…, (i1, im), and the traverse baselines could be formed, e.g., by (i1, i2), (i2, i3), …,
(i(m – 1), im). Station i1 is called a reference station and is freely selectable. In some cases,
a mixed radial and traverse baselines have to be formed such as, e.g., by (i1, i2), (i1, i3),
(i3, i4), …, (i3, i(m – 1)), (i3, im). Sometimes the baselines have to be formed by several
groups, and therefore several references have to be selected. A method of forming an in-
dependent and optimal baseline network will be discussed Sects. 9.1 and 9.2.

In case three stations are used to measure the GPS data, the original observable
vector of station i1, i2 and i3 is
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where n is the commonly observed satellite number. The single differences of the
baseline (i, j) are
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If the baselines are formed in a radial way, i.e., baselines are formed as (i1, i2) and
(i1, i3), then one has
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If the baselines are formed in a traverse way, i.e., baselines are formed as (i1, i2)
and (i2, i3), then one has
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It is obvious that the single differences are correlated if the station numbers are
more than two. And the correlation depends on the ways the baselines are formed.
Therefore, a general covariance formula of the single differences of a network is not
possible to be derived. Furthermore, the commonly viewed satellite number n could
be different from baseline to baseline, so the formulation of the covariance matrix could
be more complicated.

A baseline-wise processing of the GPS data of a network by using single differences
is equivalent to an omission of the correlation between the baselines.

6.6.2
Double Differences

Double differences are formed between two single differences related to two observed
satellites as
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where k1 and k2 are the two id numbers of the satellites. Supposing the original
observables have the same variance of σ2, then the double differenced observables have
a variance of 4σ2. Considering Eqs. 6.89–6.92, one has
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where ddδion(j) and ddδtrop are the differenced ionospheric and tropospheric effects
at the two stations related to the two satellites, respectively. For the ionosphere-free
combined observables (denoted by j = 4 for distinguishing), the ionospheric error terms
have vanished from above equations.

The most important property of the double differences is that the clock error terms
in the equation (model) are completely eliminated. It should be emphasised that the
clock error, which implicitly affects the computation of the position of the satellite,
still has to be carefully considered. Ionospheric and tropospheric effects are reduced
greatly through difference forming, especially for those stations that are not very far
away from each other. Double differenced Doppler directly describes the geometry
change. Double differenced ambiguities can be denoted by
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The original ambiguities used in Eq. 6.103 are for convenience in case of reference
satellite changing.

For the single difference observable vector
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the double differences
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can be formed by a linear transformation
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where E is an identity matrix of size m × m, I is a 1 vector of size m (all elements of the
vector are 1), m is the number of formed double differences, and m = n – 1. The cova-
riance matrix of the double differences is then
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For single and double differences
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the linear transformation matrix Cd and the covariance matrix can be obtained by
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For the general case of
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it is obvious that the general transformation matrix Cd and the related covariance
matrix can be represented as

( )mmm EIC
×

−=d    and (6.116)

( )mmmm
TT EICCCOCO

××

+===

2
dd

2
dd 22))(SDcov())(DDcov( σσ  , (6.117)

where Im×m is an m × m matrix whose elements are all 1, and the weight matrix has
the form of
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where n = m + 1. Equation 6.118 can be verified by an identity matrix test (i.e.,
P · cov(DD(O)) = E).

In the case of three stations, supposing n common satellites (k1, k2, …, kn) are
viewed, then the single and double differences can be written as
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Then one has the transformation and covariance

   and

 .

Because of the dependency of the cov(SD) on the baselines forming, cov(DD) is also
dependent on the baselines forming. A baseline-wise processing of a network GPS data
using double differences is equivalent to an omission of the correlation between the
baselines.

6.6.3
Triple Differences

Triple differences are formed between two double differences related to the same sta-
tions and satellites at the two adjacent epochs as

or

 , (6.120)

where t1 and t2 are two adjacent epochs. Supposing the original observables have the
same variance of σ2, then the triple differenced observables have a variance of 8σ2.
Considering Eqs. 6.102–6.104, one has

 , (6.121)

 and (6.122)

 , (6.123)

where

 . (6.124)
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Ionospheric and tropospheric effects are eliminated. If there are no cycle slips dur-
ing the time, the term of Eq. 6.124 is zero. Therefore, triple differences of Eq. 6.122
can also be used as a check for the cycle slips. Through triple difference forming, the
systematic cycle slip turns out to be an effect like an outlier.

The most important property of the triple differences is that only the geometric
changing is left in the models. Triple differences of Doppler describe the acceleration
of the position.

For double differences
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one has
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( )mmmmT EEC
×

×

−=  . (6.127)

Then the related covariance matrix can be represented as
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where Cd2 is the double difference transformation matrix of two epochs. Because double
differences are independent epoch wise, Cd2 is a diagonal matrix of Cd, i.e.,
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It is notable that the triple differences formed by epochs (t1, t2) are correlated to
the differences formed by epochs (t0, t1) and (t1, t2). Such a correlation makes a se-
quential processing of the triple difference data very complicated. Sequentially using
the above covariance formula indicates an omission of the correlation related to the
previous epoch and the next epoch.

Taking the correlation between the baselines into account, an exact correlation de-
scription of the triple differences of a GPS network turns out to be very complicated.

6.7
Equivalence of the Uncombined and Combining Algorithms

Uncombined and combining algorithms are standard GPS data processing methods,
which can often be found in the literature (cf., e.g., Leick 2004, Hofmann-Wellenhof et
al. 2001). Different combinations own different properties and are beneficial for deal-
ing with the data and solving the problem in different cases (Hugentobler et al. 2001,
Kouba and Heroux 2001, Zumberge et al. 1997). The equivalence between the undif-
ferenced and differencing algorithms were proved, and a unified equivalent data pro-
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cessing method was proposed by Xu (2002, cf. Sect. 6.8). The question of whether the
uncombined and combining algorithms are also equivalent is an interesting topic and
will be addressed here in detail (cf. Xu et al. 2006a).

6.7.1
Uncombined GPS Data Processing Algorithms

Original GPS Observation Equations

The original GPS code pseudorange and carrier phase measurements represented in
Eqs. 6.44 and 6.45 (cf. Sect. 6.5) can be simplified as

(6.130)

(6.131)

where

(6.132)

(6.133)

Where symbols have the same meanings as those of Eqs. 6.44−6.47. j is the index of the
frequency f and wavelength λ. A1 and A1

z are the ionospheric parameters in the path
and zenith directions; B1 and B1

z are scaled A1 and A1
z with fs

2 for numerical reasons.
c denotes the speed of light, index c denotes code. Cρ is called geometry and Nj is the
ambiguity. For simplicity, the residuals of the codes (and phases) are denoted with the same
symbol εc (and εp) and have the same standard deviations of σc (and σp). Equations 6.130
and 6.131 can be written in a matrix form with weight matrix P as (Blewitt 1998)

(6.134)

Solutions of Uncombined Observation Equations

Equation 6.134 includes the observations of one satellite viewed by one receiver at one
epoch. Alternatively, Eq. 6.134 can be considered a transformation between the ob-
servations and unknowns, and the transformation is a linear and invertible one. De-
noting

(6.135)
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then one has relations of

(6.136)

and

(6.137)

Where a and b are the coefficients of the ionosphere-free combinations of the observables
of L1 and L2. The solution of Eq. 6.134 has a form of (by multiplying the transforma-
tion matrix T to Eq. 6.134)

(6.138)

The related covariance matrix of the above solution vector is then

(6.139)

Equation 6.139 can be simplified by using the relation of 1 − a = b and neglecting
the terms of (σp / σc)

2 (because (σp / σc) is less than 0.01) as well as letting fs = f1 (so that
q = 1/b). Taking the relationships of ratios of the frequencies into account (f1 = 154 f0
and f2 = 120 f0, f0 is the fundamental frequency), one has approximately
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(6.140)

The precisions of the solutions will be further discussed in Sect. 6.7.3. The para-
meterisation of the GPS observation models is an important issue and can be found in
Chap. 9 or (Blewitt 1998; Xu 2004), if interested.

6.7.2
Combining Algorithms of GPS Data Processing

Ionosphere-free Combinations

Letting transformation matrix

(6.141)

and applying the transform to the Eq. 6.134, one has

(6.142)

The ionosphere parameter in Eq. 6.142 is free in the last three equations, which are tradi-
tionally called ionosphere-free combinations. To solve the ionosphere-free equations or the
whole Eq. 6.142 will lead to the same results. Equation 6.142 has a unique solution vector of

(6.143)

or (noticing (1 − a) = b, cf., Eq. 6.136)

(6.144)
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Equations 6.144 and 6.138 are identical. Therefore the covariance matrix of the so-
lution vector on the left side of Eq. 6.144 is the same as that given in Eq. 6.139. This
shows that the uncombined algorithms and the ionosphere-free combinations are
equivalent in this discussed case.

Geometry-free Combinations

Letting transformation matrix

(6.145)

and applying the transformation to Eq. 6.134, one has

(6.146)

The geometric component in Eq. 6.146 is free in the last three equations, which are
traditionally called geometry-free combinations. The geometry-free equations must
be solved or Eq. 6.146 will lead to the same results. Equation 6.146 has a unique solu-
tion vector of

(6.147)

or (noticing 1/(f1
2g)=b, cf., Eq. 6.136)

(6.148)

Taking the relations of Eq. 6.136 (i.e., b = 1 − a) into account, Eqs. 6.148 and 6.138
are identical. Therefore the covariance matrix of the solution vector on the left side of
Eq. 6.148 is identical with Eq. 6.139. This shows that the uncombined algorithms and
the geometry-free combinations are equivalent in this discussed case.
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Ionosphere-free and Geometry-free Combinations

Letting transformation matrix

(6.149)

one then has

(6.150)

Applying the transformation 6.150 to Eq. 6.134 or applying the transformation 6.149
to Eq. 6.142 leads to the same results, and one has

    or (6.151)

(6.152)

The ionosphere and geometry are both free in the last two equations, which are
called ionosphere-geometry-free combinations. Solving the ionosphere-free and ge-
ometry-free equations or directly solving Eq. 6.152 will lead to the same results. Eq. 6.152
has a unique solution vector of

(6.153)

or (noticing (1 − a)/b = 1, cf., Eq. 6.136)

(6.154)
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Equations 6.154 and 6.138 are identical. This shows that the uncombined algorithms
and the ionosphere-geometry-free combinations are equivalent in this discussed case.

Diagonal Combinations

Letting transformation matrix

(6.155)

one has

(6.156)

If applying the transformation 6.156 to Eq. 6.134 or applying the transformation
6.155 to Eq. 6.151, one has the same results of

(6.157)

In the above equation, the ionosphere and geometry as well as the ambiguities are
diagonal to each other. Such combinations are called diagonal ones. The solution vec-
tor of Eq. 6.157 may be easily derived:

(6.158)

or

(6.159)
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Equations 6.159 and 6.138 are identical. This shows that the uncombined algorithms
and the diagonal combinations are equivalent in the discussed case.

General Combinations

For arbitrary combinations, as soon as the transformation matrix is an invertible one,
the transformed equations are equivalent to the original ones based on algebra theory.
Both the solution vector and the variance-covariance matrix are identical. That is, no
matter what kinds of combinations are used, neither different solutions nor different
precisions of the solutions will be obtained. The different combinations lead to an easier
dealing of the related special problems.

Wide- and Narrow-lane Combinations

Denoting

(6.160)

and letting transformation matrix

(6.161)

one may form the wide and narrow lanes (Petovello 2006) directly by multiplying
Eq. 6.161 to Eq. 6.158 to obtain the related wide- and narrow-lane ambiguities

(6.162)

Indeed, there is T5T4T3T1 = T. Because of the unique property of the solutions of
different combinations, any direct combinations of the solutions must be equivalent to
each other. None of the combinations will lead to better solutions or better precisions
of the solutions. From this rigorous theoretical aspect, the traditional wide-lane ambi-
guity fixing technique may lead to a more effective search, but not a better solution and
precision of the ambiguity.
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6.7.3
Secondary GPS Data Processing Algorithms

In the Case of More Satellites in View

Up to now, the discussions have been limited for the observations of one satellite viewed
by one receiver at one epoch. The original observation equation is given in Eq. 6.134.
The solution vector and its covariance matrix are given in Eqs. 6.138 and 6.139, respec-
tively. The elements of the covariance matrix depend on the coefficients of Eq. 6.134,
and the coefficients of the observation equation depend on the way of parameterisation.
E.g., if instead of B1, B1

z is used, then Eq. 6.134 turns out to be

(6.163)

where k is the index of the satellite. Ionospheric mapping function Fk is dependent on
the zenith distance of the satellite k. The solution vector of Eq. 6.163 is then similar to
that of Eq. 6.138:

(6.164)

where qk = qFk and Q(k) is the covariance matrix, which can be similarly derived and
given by adding the index k to q in Q of Eq. 6.139. The terms on the right-hand side can
be considered secondary “observations” of the unknowns on the left-hand side. If
K satellites are viewed, one has the observation equations of one receiver

(6.165)

and variance matrix
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(6.166)

Multiplying a transformation matrix

(6.167)

to Eq. 6.165, one has the solutions of GPS observation equations of one station

(6.168)

and the related

(6.169)

where mapping function is used to combine the K ionosphere parameters into one. Simi-
lar discussions can be made for the cases of using more receivers. The original obser-
vation vector and the so-called secondary “observation” vector are

(6.170)

Both vectors are equivalent as proved in Sect. 6.7.2 and they can be transformed
uniquely from one to the other. Any further data processing can be considered process-
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ing based on the secondary “observations”. The secondary “observations” own the
equivalence property whether they are uncombined or combining ones. Therefore the
equivalence property is valid for further data processing based on the secondary “ob-
servations”.

GPS Data Processing Using Secondary “Observations”

A by-product of the above equivalence discussions is that the GPS data processing can
be performed directly by using the so-called secondary observations. Besides the two
ambiguity parameters (scaled with the wavelengths), the other two secondary obser-
vations are the electronic density in the observing path (scaled by square of f1) and the
geometry. The geometry includes the whole observation model except the ionosphere
and ambiguity terms. For a time series of the secondary “observations”, the electron
density (or, for simplicity, “ionosphere”) and the “geometry” are real time observations,
whereas the “ambiguities” are constants in case no cycle-slip occurs (Langley 1998a, b).
Sequential adjustment or filtering methods can be used to deal with the observation
time series. It is notable that the secondary “observations” are correlated with each other
(see the covariance matrix Eq. 6.139). However, the “ambiguities” are direct observa-
tions of the ambiguity parameters, and the “ionosphere” and “geometry” are modelled
by Eqs. 6.132 and 6.133, respectively. The “ambiguity” observables are ionosphere-ge-
ometry-free. The “ionosphere” observable is geometry-free and ambiguity-free. The
“geometry” observable is ionosphere-free. It is notable that some algorithms may be
more effective; however, the results and the precisions of the solutions are equivalent
no matter which algorithms are used. It should be emphasized that all the above dis-
cussions are based on the observation Model 6.134. The problem concerning the
parameterisation of the GPS observation model will not affect the conclusions of the
discussions and will be further discussed in Chap. 9.

Precision Analysis

If the sequential time series of the original observations are considered time indepen-
dent as they traditionally have been, then the secondary “observations” and their pre-
cisions are also independent time series. From Eq. 6.140, the standard deviations of
the L1 and L2 ambiguities are approximately 5.1281σc and 6.5317σc. The standard de-
viation of ionosphere and geometry “observations” are about 2.1860σc and 2.9783σc,
respectively. That is, the precisions of the “observed” ambiguities are worse than that
of the others at one epoch. If the standard deviation of the P code is about 1 decimetre
(phase smoothed), then the precisions of the ambiguities determined by one epoch are
worse than 0.5 meters. However, an average filter of m epoch data will raise the preci-
sions by a factor of sqrt(m) (square root of m). After 100 or 10000 epochs, the ambigu-
ities are able to be determined with precisions of about 5 cm or 5 mm. “Ionosphere”
data are observed with better precisions. However, due to the high dynamic of the elec-
tron movements, ionosphere effects may not be easily smoothed to raise the precision.
The “Geometry” model is the most complicated one compared with the others, and dis-
cussions can be found from numerous publications for static, kinematic and dynamic
applications (cf., e.g., ION proceedings, Chap. 10).
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6.7.4
Summary

The equivalence properties between uncombined and combining algorithms are proved
theoretically by algebraic linear transformations. The solution vector and the related
covariance matrix are identical no matter which algorithms are used. Different combi-
nations can lead to a more effective and easier dealing with the data. The so-called iono-
sphere-geometry-free and diagonal combinations are derived, which own better prop-
erties than that of the traditional combinations. A data processing algorithm using the
uniquely transformed secondary “observations” is outlined and used to prove the equiva-
lence. Because of the unique property of the solutions of different combinations, any
direct combinations of the solutions must be equivalent to each other. None of the com-
binations will lead to better solutions or better precisions of the solutions than that of
the others. From this aspect, the traditional wide-lane ambiguity fixing technique may
lead to a more effective search of ambiguity, but it will not lead to a better solution and
precision of the ambiguity.

6.8
Equivalence of Undifferenced and Differencing Algorithms

In Sect. 6.6 the single, double and triple differences as well as their related observa-
tion equations are discussed. The number of unknown parameters in the equations is
greatly reduced through difference forming; however, the covariance derivations are
tedious, especially for a GPS network.

In this section, a unified GPS data processing method based on equivalently
eliminated equations is proposed and the equivalence between undifferenced and
differencing algorithms is proved. The theoretic background of the method is given.
By selecting the eliminated unknown vector as a vector of zero, a vector of satellite
clock error, a vector of all clock error, a vector of clock and ambiguity parameters,
or a vector of user-defined unknowns, the selectively eliminated equivalent obser-
vation equations can be formed, respectively. The equations are equivalent to the
zero-, single-, double-, triple-, or user-defined differencing equations. The advan-
tage of such a method is that the different GPS data processing methods are unified
to a unique one, whereas the observational vector remains the original one and
the weight matrix keeps the un-correlated diagonal form. In other words, by using
this equivalent method, one may selectively reduce the unknown number; however,
one does not have to deal with the complicated correlation problem. Several special
cases of single-, double-, and triple-difference are discussed in detail to illustrate
the theory. The reference-related parameters are dealt with using the a priori datum
method.

6.8.1
Introduction

In GPS data processing practice, the commonly used methods are so-called zero-
difference (un-differential), single-difference, double-difference and triple-differ-
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ence methods (Bauer 1994; Hofmann-Wellenhof et al. 1997; King et al. 1987; Leick
1995; Remondi 1984; Seeber 1993; Strang and Borre 1997; Wang et al. 1988). It is
well-known that the observation equations of the differencing methods can be
obtained by carrying out a related linear transformation to the original equations.
As soon as the weight matrix is similarly transformed according to the law of co-
variance propagation, all methods are equivalent, theoretically. A theoretical proof
of the equivalence between the un-differential and differential methods can be found
in Schaffrin and Grafarend (1986). A comparison of the advantages and disadvantages
of the un-differential and differential methods can be found, e.g., in de Jong (1998).
The advantage of the differential methods is that the unknown parameters are fewer
so that the whole problem to be solved becomes smaller. The disadvantage of the dif-
ferential methods is that there is a correlation problem, which appears in cases of
multiple baselines of single-difference and all double difference as well as triple dif-
ference. The correlation problem is often complicated and not easy to be dealt with
exactly (compared with the un-correlated problem). The advantages and disadvan-
tages reach a balance. If one wants to deal with a reduced problem (cancellation of
many unknowns), then one has to deal with the correlation problem. As an alterna-
tive, we use the equivalent observation equation approach to unify the un-differential
and differential methods, while keeping all the advantages of the un-differential and
differential methods.

In the next sections, the theoretical basis of the equivalently eliminated equations
will be given based on the derivation of Zhou (1985). Several detailed cases are then
discussed to illustrate the theory. The reference-related parameters are dealt with us-
ing the a priori datum method. A summary of the selectively eliminated equivalent
GPS data processing method is outlined at the end.

6.8.2
Formation of Equivalent Observation Equations

For the convenience of later discussion, the method to form an equivalently eliminated
equation system is outlined here. The theory is given in Sect. 7.6 in detail. In practice,
sometimes only one group of unknowns is of interest; it is better to eliminate the other
group of unknowns (called nuisance parameters), for example, because of their size.
In this case, using the so-called equivalently eliminated observation equation system
could be very beneficial (Wang et al. 1988; Xu and Qian 1986; Zhou 1985). The nui-
sance parameters can be eliminated directly from the observation equations instead
of from the normal equations.

The linearised observation equation system can be represented using the matrix:
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X

X
BALV    and   P , (6.171)

where L is an observation vector of dimension n, A and B are coefficient matrices of
dimension n × (s – r) and n × r, X1 and X2 are unknown vectors of dimension s – r and r,
V is residual error, s is the total number of unknowns, and P is the weight matrix of
dimension n × n.
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The related least squares normal equation can be formed then as:
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After eliminating the unknown vector X1, the eliminated equivalent normal equa-
tion system is then

 , (6.176)

where

   and (6.177)

 . (6.178)

The related equivalent observation equation of Eq. 6.176 is then (cf. Sect. 7.6; Xu
and Qian 1986; Zhou 1985)

2)( BXJELU −−=  ,   P , (6.179)

where

PAAMJ T1
11
−

=  . (6.180)

E is an identity matrix of size n, L and P are the original observation vector and weight
matrix, and U is the residual vector, which has the same property as V in Eq. 6.171.
The advantage of using Eq. 6.179 is that the unknown vector X1 has been eliminated;
however, L vector and P matrix remain the same as the originals.

Similarly, the X2 eliminated equivalent equation system is:

11 )( AXKELU −−=    and   P , (6.181)

where

PBBMPBBMK TT
==

−

22
1

22 ,  ,

and U1 is the residual vector (which has the same property as V).
We have separated the observation Eq. 6.171 into two equations, Eqs. 6.179 and

6.181; each equation contains only one of the unknown vectors. Each unknown vec-
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tor can be solved independently and separately. Equations 6.179 and 6.181 are called
equivalent observation equations of Eq. 6.171.

The equivalence property of Eqs. 6.171 and 6.179 is valid under three implicit as-
sumptions. The first one is that the identical observation vector is used. The second is
that the parameterisation of X2 is identical. The third is that X1 could be eliminated.
Otherwise, the equivalence does not hold.

6.8.3
Equivalent Equations of Single Differences

In this section, the equivalent equations are formed to eliminate the satellite clock
errors from the original zero-difference equations first, then the equivalency of
the single differences (in two cases) related to the original zero-difference equations
is proved.

Single differences cancel all the satellite clock errors out of the observation equa-
tions. This can also be achieved by forming equivalent equations where satellite clock
errors are eliminated. Considering Eq. 6.171 the original observation equation and X1
the vector of satellite clock errors, the equivalent equations of single differences can
be formed as outlined in Sect. 6.8.2.

Suppose n common satellites (k1, k2, …, kn) are observed at station i1 and i2. The
original observation equation can then be written as
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where X1 is the vector of satellite clock errors and X2 is the vector of other unknowns.
For simplicity, clock errors are scaled by the speed of light c and directly used as un-
knowns; then the X1-related coefficient matrix is an identity matrix, E.

Comparing Eq. 6.182 with Eq. 6.171, one has (cf. Sect. 6.8.2)
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So the equivalently eliminated equation system of Eq. 6.182 is
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where the satellite clock error vector X1 is eliminated, and the observable vector and
weight matrix are unchanged.

Denoting Bs = Bi2 – Bi1, the least squares normal equation of Eq. 6.183 can then be
formed as (cf. Chap. 7) (suppose Eq. 6.183 is solvable)
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Alternatively, a single difference equation can be obtained by multiplying Eq. 6.182
with a transformation matrix Cs
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where Ps is the weight matrix of single differences, and cov(SD(O)) is the covariance
of the single differences (SD) observational vector (O). Supposing Eq. 6.185 is solv-
able, the least squares normal equation system of Eq. 6.185 is then
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It is obvious that Eqs. 6.187 and 6.184 are identical. Therefore in the case of two
stations, the single difference Eq. 6.185 is equivalent to the equivalently eliminated
Eq. 6.183 and consequently equivalent to the original zero-difference equation.

Suppose n common satellites (k1, k2, …, kn) are observed at station i1, i2 and i3.
The original observation equation can then be written as
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Comparing Eq. 6.188 with Eq. 6.171, one has (cf. Sect. 6.8.2)
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So the equivalently eliminated equation system of Eq. 6.188 is

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎝

⎛

=⋅

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎝

⎛

+−−

−+−

−−

−

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎝

⎛

=

⎟

⎟

⎟

⎠

⎞

⎜

⎜

⎜

⎝

⎛

E

E

E

PX

BBB

BBB

BBB

L

L

L

U

U

U

iii

iii

iii

i

i

i

i

i

i

00

00

00
1

,

2

2

2

3

1
22

321

321

321

3

2

1

3

2

1

σ

 , (6.189)

and the related least squares normal equation can be formed as
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Alternatively, for the Eq. system 6.188, single differences can be formed using trans-
formation (cf. Sect. 6.6.1):
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The correlation problem appears in the case of single differences of multiple baselines.
The related observation equations and the least squares normal equation can be writ-
ten as
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Equations 6.190 and 6.192 are identical. This may be proved by expanding both
equations and comparing the results. Again, this shows that the equivalently eliminated
equations are equivalent to the single difference equations, however, without the need
to deal with the correlation problem.

6.8.4
Equivalent Equations of Double Differences

Double differences cancel all the clock errors out of the observation equations. This
can also be achieved by forming equivalent equations where all clock errors are elimi-
nated. Considering Eq. 6.171 the original observation equation and X1 the vector of
all clock errors, the equivalent equation of double differences can be formed as out-
lined in Sect. 6.8.2.

In the case of two stations, supposing n common satellites (k1, k2, …, kn) are
observed at station i1 and i2, the equivalent single difference observation equation is
then Eq. 6.183. Denoting Bs1 = Bi2 – Bi1, the station clock error parameter as δti1 – δti2
(cf. Eqs. 6.89–6.92), and assigning the coefficients of the first column to the station
clock errors, i.e., Bs1 = (In×1 Bs), Eq. 6.183 turns out to be
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where Xc is the station clock error vector, X3 is the other unknown vector, Bs is the
X3-related coefficient matrix, In×1 is a 1 matrix (where all elements are 1), and clock
errors are scaled by the speed of light.

Comparing Eq. 6.193 with Eq. 6.171, one has (cf. Sect. 6.8.2)
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So the equivalently eliminated equation system of Eq. 6.193 is
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where the receiver clock error vector Xc is eliminated, observable vector and weight
matrix are unchanged. The normal equation has a simple form of
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Alternatively, the traditional single difference observation Eqs. 6.185 and 6.186 can
be rewritten as
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where m = n – 1, and the superscript 1 and k denote the first row and remaining rows
of the matrices (or columns in case of vectors). The double difference transformation
matrix and covariance are (cf. Sect. 6.6.2, Eqs. 6.116–6.118)
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The double difference observation equation and related normal equation are
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i.e.,
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and
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The above three equations can be proved readily. Substituting Eqs. 6.199–6.201 into
Eq. 6.198, then Eq. 6.198 turns out to be the same as Eq. 6.195. So the equivalency be-
tween the double difference equation and the directly formed equivalent Eq. 6.193 is
proved.

6.8.5
Equivalent Equations of Triple Differences

Triple differences cancel all the clock errors and ambiguities out of the observation
equations. This can also be achieved by forming equivalent equations where all clock
errors and ambiguities are eliminated. Considering Eq. 6.171 the original observation
equation and X1 the parameter vector of all clock errors and ambiguities, then the
equivalent equations of triple differences can be formed as outlined in Sect. 6.8.2.

It is well-known that traditional triple differences are correlated between adjacent
epochs and between baselines. In the case of sequential (epoch by epoch) data pro-
cessing of triple differences, the correlation problem is difficult to be dealt with. How-
ever, using the equivalently eliminated equations, the weight matrix remains diago-
nal. The GPS observables remain the original ones.

6.8.6
Method of Dealing with the Reference Parameters

In differential GPS data processing, the reference-related parameters are usually con-
sidered known and are fixed (or not adjusted). This may be realised by the a priori
datum method (for details cf. Sect. 7.8.2). Here we just outline the basic principle.
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The equivalent observation Eq. system 6.179 can be rewritten as
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where

 .

Suppose there are a priori constraints of (cf. e.g. Zhou et al. 1997)

2222 XXW −=    and   P2 , (6.203)

where X–22 is the “directly observed” parameter sub-vector, P2 is the weight matrix with
respect to the parameter sub-vector X22, and W is a residual vector, which has the same
property as U. Usually, X–22 is “observed” independently, so P2 is a diagonal matrix. If
X22 is a sub-vector of station coordinates, then the constraint of Eq. 6.203 is called a
datum constraint. (This is also the reason why the name a priori datum is used). We
consider here X22 a vector of reference-related parameters (such as clock errors and
ambiguities of the reference satellite and reference station). Generally, the a priori
weight matrix P2 is given by covariance matrix QW and

1
2

−

= WQP  . (6.204)

In practice, the sub-vector X–22 is usually a zero vector; this can be achieved through
careful initialisation by forming observation Eq. 6.171.

The least squares normal equation of the a priori datum problem of Eqs. 6.202 and
6.203 can be formed (cf. Sect. 7.8.2). Compared with the normal equation of Eq. 6.202,
the only difference between the two normal equations is that the a priori weight
matrix P2 has been added to the normal matrix. This indicates that the a priori datum
problem can be dealt with simply by adding P2 to the normal equation of observation
Eq. 6.202.

If some diagonal components of the weight matrix P2 is set to zero, then the related
parameters (in X22) are free parameters (or free datum) of the adjustment problem
(without a priori constraints). Otherwise, parameters with a priori constraints are
called a priori datum. Large weight indicates strong constraint and small weight indi-
cates soft constraint. The strongest constraint is to keep the datum fixed. The refer-
ence-related datum (coordinates and clock errors as well as ambiguities) can be fixed
by applying the strongest constraints to the related parameters, i.e., by adding the stron-
gest constraints to the datum-related diagonal elements of the normal matrix.

6.8.7
Summary of the Unified Equivalent Algorithm

For any linearised zero-difference GPS observation Eq. system 6.171
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the X1 eliminated equivalent GPS observation equation system is then Eq. 6.179:

2)( BXJELU −−=    and   P , (6.206)

where
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11 ,  ,

E is an identity matrix, L is original observational vector, P is original weight matrix,
and U is residual vector, which has the same property as V.

Similarly, the X2 eliminated equivalent equation system is Eq. 6.181
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where
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22 ,  ,

and U1 is the residual vector (which has the same property as V).
Fixing the values of sub-vector X22 (of X2) can be realised by adding the stron-

gest constraints to the X22-related diagonal elements of the normal matrix formed
by Eq. 6.206. Alternatively, we may apply the strongest constraints directly to the nor-
mal equation formed by Eq. 6.205 first. In this way, the reference-related parameters
(clock errors, ambiguities, coordinates, etc.) are fixed. And then we may form the
equivalently eliminated observation Eq. 6.206. In this way, the relative and differen-
tial GPS data processing can be realised by using Eq. 6.206 after selecting the to be
eliminated X1.

The GPS data processing algorithm using Eq. 6.206 is then a selectively elimi-
nated equivalent method. Selecting X1 in Eq. 6.205 as a zero vector, then the algo-
rithm is identical to the zero-difference method. Selecting X1 in Eq. 6.205 as the
satellite clock error vector, the vector of all clock errors, the clock error and ambigu-
ity vector, and any user-defined vector, then the algorithm is equivalent to the single-
difference method, double-difference method, triple-difference method, and user-
defined eliminating method, respectively. The eliminated unknown X1 can be solved
separately if desired.

The advantages of this method are (compared with un-differential and differential
methods):

■ The un-differential and differential GPS data processing can be dealt with in an
equivalent and unified way. The data processing scenarios can be selected by a
switch and used in a combinative way;

■ The eliminated parameters can be also solved separately with the same algorithm;
■ The weight matrix remains the original diagonal one;
■ The original observations are used; no differencing is required.

It is obvious that the described algorithm meanwhile has all the advantages of all
un-differential and differential GPS data processing methods.




