
Chapter 2

Coordinate and Time Systems

GPS satellites are orbiting around the Earth with time. GPS surveys are made mostly
on the Earth. To describe the GPS observation (distance) as a function of the GPS orbit
(satellite position) and the measuring position (station location), suitable coordinate
and time systems have to be defined.

2.1
Geocentric Earth-Fixed Coordinate Systems

It is convenient to use the Earth-Centred Earth-Fixed (ECEF) coordinate system to
describe the location of a station on the Earth’s surface. The ECEF coordinate system
is a right-handed Cartesian system (x, y, z). Its origin and the Earth’s centre of mass
coincide, while its z-axis and the mean rotational axis of the Earth coincide; the x-axis
is pointing to the mean Greenwich meridian, while the y-axis is directed to complete
a right-handed system (cf., Fig. 2.1). In other words, the z-axis is pointing to a mean
pole of the Earth’s rotation. Such a mean pole, defined by international convention, is
called the Conventional International Origin (CIO). Then the xy-plane is called mean
equatorial plane, and the xz-plane is called mean zero-meridian.

Fig. 2.1.
Earth-Centred Earth-Fixed
coordinates
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The ECEF coordinate system is also known as the Conventional Terrestrial System (CTS).
The mean rotational axis and mean zero-meridian used here are necessary. The true rota-
tional axis of the Earth changes its direction with respect to the Earth’s body all the time.
If such a pole would be used to define a coordinate system, then the coordinates of the
station would also change all the time. Because the surveying is made in our true world, so
it is obvious that the polar motion has to be taken into account and will be discussed later.

The ECEF coordinate system can, of course, be represented by a spherical coordi-
nate system (r, φ, λ), where r is the radius of the point (x, y, z), φ and λ are the geocen-
tric latitude and longitude, respectively (cf., Fig. 2.2). λ is counted eastward from the
zero-meridian. The relationship between (x, y, z) and (r, φ, λ) is obvious:
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An ellipsoidal coordinate system (ϕ, λ, h) may be also defined based on the ECEF
coordinates; however, geometrically, two additional parameters are needed to define
the shape of the ellipsoid (cf., Fig. 2.3). ϕ, λ and h are geodetic latitude, longitude and
height, respectively. The ellipsoidal surface is a rotational ellipse. The ellipsoidal sys-
tem is also called the geodetic coordinate system. Geocentric longitude and geodetic
longitude are identical. The two geometric parameters could be the semi-major radius
(denote by a) and the semi-minor radius (denote by b) of the rotating ellipse, or the
semi-major radius and the flattening (denote by f) of the ellipsoid. They are equivalent
sets of parameters. The relationship between (x, y, z) and (ϕ, λ, h) is (cf., e.g., Torge 1991):
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or

Fig. 2.2.
Cartesian and spherical
coordinates
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N is the radius of curvature in the prime vertical, and e is the first eccentricities. The
geometric meaning of N is shown in Fig. 2.4. In Eq. 2.3, the ϕ and h have to be solved by
iteration; however, the iteration process converges quickly, since h << N. The flattening
and the first eccentricities are defined as:
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In cases where ϕ = ±90° or h is very large, the iteration formulas of Eq. 2.3 could be
instable. Alternatively, using (cf., Lelgemann 2002)
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Fig. 2.3.
Ellipsoidal coordinate system

2.1  ·  Geocentric Earth-Fixed Coordinate Systems
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may lead to a stably iterated result of ϕ. ∆z and e2N are the lengths of O–B– and A–B– (cf.,
Fig. 2.4) respectively. h can be obtained by using ∆z, i.e.,

Nzzyxh −∆+++=

222 )(  .

The two geometric parameters used in the World Geodetic System 1984 (WGS-84)
are (a = 6 378 137 m, f = 1 / 298.2572236). In International Terrestrial Reference Frame
1996 (ITRF-96), the two parameters are (a = 6 378 136.49 m, f = 1 / 298.25645). ITRF
uses the International Earth Rotation Service (IERS) Conventions (cf., McCarthy 1996).
In PZ-90 (Parameters of the Earth Year 1990) coordinate system of GLONASS, the two
parameters are (a = 6 378 136 m, f = 1 / 298.2578393).

The relation between the geocentric and geodetic latitude φ and ϕ may be given by
(cf., Eqs. 2.1 and 2.3):
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2.2
Coordinate System Transformations

Any Cartesian coordinate system can be transformed to another Cartesian coordinate
system through three succeeded rotations if their origins are the same and if they are both
right-handed or left-handed coordinate systems. These three rotational matrices are:
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Radius of curvature in the
prime vertical
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where α is the rotating angle, which has a positive sign for a counter-clockwise rota-
tion as viewed from the positive axis to the origin. R1, R2, and R3 are called the rotat-
ing matrix around the x, y, and z-axis, respectively. For any rotational matrix R, there
are R–1(α) = RT(α) and R–1(α) = R(–α); that is, the rotational matrix is an orthogonal
one, where R–1 and RT are the inverse and transpose of the matrix R.

For two Cartesian coordinate systems with different origins and different length
units, the general transformation can be given in vector (matrix) form as

old0n RXXX µ+=  ,   or (2.8)
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where µ is the scale factor (or the ratio of the two length units), and R is a transforma-
tion matrix that can be formed by three suitably succeeded rotations. xn and xold de-
note the new and old coordinates, respectively; x0 denotes the translation vector and
is the coordinate vector of the origin of the old coordinate system in the new one.

If rotational angle α is very small, then one has sin α ≈ α and cos α ≈ 0. In such a
case, the rotational matrix can be simplified. If the three rotational angles α1, α2, α3 in
R of Eq. 2.8 are very small, then R can be written as (cf., e.g., Lelgemann and Xu 1991):
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where α1, α2, α3 are small rotating angles around the x, y and z-axis, respectively. Us-
ing the simplified R, the transformation 2.8 is called the Helmert transformation.

As an example, the transformation from WGS-84 to ITRF-90 is given by (McCarthy 1996):
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where µ = 0.999999989, the translation vector has the unit of meter.
The transformations between the coordinate systems of GPS, GLONASS and Galileo can

be generally represented by Eq. 2.8 with the scale factor µ = 1 (i.e., the length units used in
the three systems are the same). A formula of velocity transformations between different
coordinate systems can be obtained by differentiating the Eq. 2.8 with respect to the time.

2.3
Local Coordinate System

The local left-handed Cartesian coordinate system (x', y', z') can be defined by plac-
ing the origin to the local point P1(x1, y1, z1), whose z'-axis is pointed to the vertical,
x'-axis is directed to the north, and y' is pointed to the east (cf., Fig. 2.5). The x'y'-plane
is called the horizontal plane; the vertical is defined perpendicular to the ellipsoid.

2.3  ·  Local Coordinate System
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Such a coordinate system is also called a local horizontal coordinate system. For any
point P2, whose coordinates in the global and local coordinate system are (x2, y2, z2)
and (x', y', z'), respectively, one has relations of
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where A is the azimuth, Z is the zenith distance and d is the radius of the P2 in the
local system. A is measured from the north clockwise; Z is the angle between the ver-
tical and the radius d.

The local coordinate system (x', y', z') can indeed be obtained by two succeeded ro-
tations of the global coordinate system (x, y, z) by R2(90° – ϕ)R3(λ) and then by chang-
ing the x-axis to a right-handed system. In other words, the global system has to be
rotated around the z-axis with angle λ, then around the y-axis with angle 90° – ϕ, and
then change the sign of the x-axis. The total transformation matrix R is then
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and there are:

globallocal RXX =    and   localglobal XRX T
=  , (2.12)

where Xlocal and Xglobal are the same vector represented in local and global coordinate
systems. (ϕ, λ) are the geodetic latitude and longitude of the local point.

If the vertical direction is defined as the plump line of the gravitational field at the
local point, then such a local coordinate system is called an astronomic horizontal sys-
tem (its x'-axis is pointed to the north, left-handed system). The plump line of gravity g

Fig. 2.5.
Astronomical coordinate
system
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and the vertical line of the ellipsoid at the point p are generally not coinciding with each
other; however, the difference is very small. The difference is omitted in GPS practice.

Combining Eqs. 2.10 and 2.12, the zenith angle and azimuth of a point P2 (satellite) re-
lated to the station P1 can be directly computed by using the global coordinates of the two
points by

 , (2.13)

where

2.4
Earth-Centred Inertial Coordinate System

To describe the motion of the GPS satellites, an inertial coordinate system has to be de-
fined. The motion of the satellites follows the Newtonian mechanics, and the Newtonian
mechanics is valid and expressed in an inertial coordinate system. For reasons, the Con-
ventional Celestial Reference Frame (CRF) is suitable for our purpose. The xy-plane of the
CRF is the plane of the Earth’s equator; the coordinates are celestial longitude, measured
eastward along the equator from the vernal equinox, and celestial latitude. The vernal equi-
nox is a crossover point of the ecliptic and the equator. So the right-handed Earth-centred
inertial (ECI) system uses the Earth centre as the origin, CIO (Conventional International
Origin) as the z-axis, and its x-axis is directed to the equinox of J2000.0 (Julian Date of 12h

1st January 2000). Such a coordinate system is also called equatorial coordinates of date.
Because of the motion (acceleration) of the Earth’s centre, ECI is indeed a quasi-inertial
system, and the general relativistic effects have to be taken into account in this system. The
system moves around the Sun, however, without rotating with respect to the CIO. This sys-
tem is also called the Earth-centred space-fixed (ECSF) coordinate system.

An excellent figure has been given by Torge (1991) to illustrate the motion of the
Earth’s pole with respect to the ecliptic pole (cf., Fig. 2.6). The Earth’s flattening, com-
bined with the obliquity of the ecliptic, results in a slow turning of the equator on the
ecliptic due to the differential gravitational effect of the Moon and the Sun. The slow
circular motion with a period of about 26 000 years is called precession, and the other
quicker motion with periods from 14 days to 18.6 years is called nutation. Taking the
precession and nutation into account, the Earth’s mean pole (related to the mean equa-
tor) is transformed to the Earth’s true pole (related to the true equator). The x-axis of
the ECI is pointed to the vernal equinox of date.

The angle of the Earth’s rotation from the equinox of date to the Greenwich merid-
ian is called Greenwich Apparent Sidereal Time (GAST). Taking GAST into account
(called the Earth’s rotation), the ECI of date is transformed to the true equatorial co-

2.4  ·  Earth-Centred Inertial Coordinate System
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ordinate system. The difference between the true equatorial system and the ECEF sys-
tem is the polar motion. So we have transformed the ECI system with a geometric way
to the ECEF system. Such a transformation process can be written as

ECIPNSMECEF XRRRRX =  , (2.14)

where RP is the precession matrix, RN is the nutation matrix, RS is the Earth rotation
matrix, RM is the polar motion matrix, X is the coordinate vector, and indices ECEF
and ECI denote the related coordinate systems.

Precession

The precession matrix consists of three succeeded rotational matrices, i.e., (cf., e.g.,
Hofman-Wellenhof et al. 1997; Leick 1995; McCarthy 1996)
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where z, θ, ζ are precession parameters and

z = 2306.''2181T + 1.''09468T2 + 0.''018203T3 ,

θ = 2004.''3109T − 0.''42665T2 − 0.''041833T3  and (2.16)

ζ = 2306.''2181T + 0.''30188T2 + 0.''017998T3 ,

where T is the measuring time in Julian centuries (36 525 days) counted from J2000.0
(cf., Sect. 2.6 time systems).

Fig. 2.6.
Precession and nutation
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Nutation

The nutation matrix consists of three succeeded rotational matrices, i.e., (cf., e.g.,
Hoffman-Wellenhof et al. 1997; Leick 1995; McCarthy 1996)
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where ε is the mean obliquity of the ecliptic angle of date, ∆ψ and ∆ε are nutation
angles in longitude and obliquity, εt = ε + ∆ε, and

ε = 84381.''448 – 46.''8150T – 0.''00059T2 + 0.''001813T3  . (2.18)

The approximation is made by letting cos ∆ψ = 1 and sin ∆ψ = ∆ψ for very small
∆ψ. For precise purposes, the exact rotation matrix shall be used. The nutation pa-
rameters ∆ψ and ∆ε can be computed by using the International Astronomical Union
(IAU) theory or IERS theory:

 

or

 

 

where argument

 

where l is the mean anomaly of the Moon, l' is the mean anomaly of the Sun, F = L − Ω,
D is the mean elongation of the Moon from the Sun, Ω is the mean longitude of the
ascending node of the Moon, and L is the mean longitude of the Moon. The formulas
of l, l', F, D, and Ω, are given in Sect. 11.2.8. The coefficient values of N1i, N2i, N3i, N4i,

2.4  ·  Earth-Centred Inertial Coordinate System
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N5i, Ai, Bi, Ai', Bi', Ai'', and Bi'' can be found in, e.g., McCarthy (1996). The updated for-
mulas and tables can be found in updated IERS conventions. For convenience, the
coefficients of the IAU 1980 nutation model are given in Appendix 1.

Earth Rotation

The Earth rotation matrix can be represented as

RS = R3(GAST) , (2.19)

where GAST is Greenwich Apparent Sidereal Time and

(2.20)

where GMST is Greenwich Mean Sidereal Time. Ω is the mean longitude of the as-
cending node of the Moon; the second term on the right-hand side is the nutation of
the equinox. Furthermore,

1UTGMSTGMST 0 α+=  , (2.21)
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where GMST0 is Greenwich Mean Sidereal Time at midnight on the day of interest.
α is the rate of change. UT1 is the polar motion corrected Universal Time (cf., Sect. 2.6).
T0 is the measuring time in Julian centuries (36 525 days) counted from J2000.0 to
0hUT1 of the measuring day. By computing GMST, UT1 is used (cf., Sect. 2.6).

Fig. 2.7.
Polar motion
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Polar Motion

As shown in Fig. 2.7, the polar motion is defined as the angles between the pole of
date and the CIO pole. The polar motion coordinate system is defined by xy-plane
coordinates, whose x-axis is pointed to the south and is coincided to the mean Green-
wich meridian, and whose y-axis is pointed to the west. xp and yp are the angles of the
pole of date, so the rotation matrix of polar motion can be represented as

(2.22)

The IERS determined xp and yp can be obtained from the home pages of IERS.

2.5
Geocentric Ecliptic Inertial Coordinate System

As discussed above, ECI used the CIO pole in the space as the z-axis (through consid-
eration of the polar motion, nutation and precession). If the ecliptic pole is used as
the z-axis, then an ecliptic coordinate system is defined, and it may be called the Earth
Centred Ecliptic Inertial (ECEI) coordinate system. ECEI places the origin at the mass
centre of the Earth, its z-axis is directed to ecliptic pole (or, xy-plane is the mean eclip-
tic), and its x-axis is pointed to the vernal equinox of date. The coordinate transfor-
mation between the ECI and ECEI systems can be represented as

ECI1ECEI )( XRX ε−=  ,

where ε is the ecliptic angle (mean obliquity) of the ecliptic plane related to the equa-
torial plane. The formula for ε is given in Sect. 2.4. Usually, coordinates of the Sun and
the Moon as well as planets are given in the ECEI system.

2.6
Time Systems

Three time systems are used in satellite surveying. They are sidereal time, dynamic
time and atomic time (cf., e.g., Hofman-Wellenhof et al. 1997; Leick 1995; McCarthy
1996; King et al. 1987).

Sidereal time is a measure of the Earth’s rotation and is defined as the hour angle
of the vernal equinox. If the measure is counted from the Greenwich meridian, the
sidereal time is called Greenwich Sidereal Time. Universal Time (UT) is the Green-
wich hour angle of the apparent Sun, which is orbiting uniformly in the equatorial

2.6  ·  Time Systems
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plane. Because the angular velocity of the Earth’s rotation is not a constant, sidereal
time is not a uniformly-scaled time. The oscillation of UT is also partly caused by the
polar motion of the Earth. The universal time corrected for the polar motion is de-
noted by UT1.

Dynamical time is a uniformly-scaled time used to describe the motion of bodies
in a gravitational field. Barycentric Dynamic Time (TDB) is applied in an inertial co-
ordinate system (its origin is located at the centre-of-mass (Barycentre)). Terrestrial
Dynamic Time (TDT) is used in a quasi-inertial coordinate system (such as ECI). Be-
cause of the motion of the Earth around the Sun (or say, in the Sun’s gravitational field),
TDT will have a variation with respect to TDB. However, both the satellite and the Earth
are subject to almost the same gravitational perturbations. TDT may be used for de-
scribing the satellite motion without taking into account the influence of the gravita-
tional field of the Sun. TDT is also called Terrestrial Time (TT).

Atomic Time is a time system kept by atomic clocks such as International Atomic
Time (TAI). It is a uniformly-scaled time used in the ECEF coordinate system. TDT is
realised by TAI in practice with a constant offset (32.184 sec). Because of the slowing
down of the Earth’s rotation with respect to the Sun, Coordinated Universal Time (UTC)
is introduced to keep the synchronisation of TAI to the solar day (by inserting the leap
seconds). GPS Time (GPST) is also an atomic time.

The relationships between different time systems are given as follows:

1dUTUTC1UT

secUTCTAI

sec184.32TDTTAI

sec0.19GPSTTAI

+=

+=

−=

+=

n
 , (2.23)

where dUT1 can be obtained by IERS, (dUT1 < 0.7 sec, cf., Zhu et al. 1996), (dUT1 is
also broadcasted with the navigation data), n is the number of leap seconds of date
and is inserted into UTC on the 1st of January and 1st of July of the years. The actual n
can be found in the IERS report.

Time argument T (Julian centuries) is used in the formulas given in Sect. 2.4. For
convenience, T is denoted by TJD, and TJD can be computed from the civil date (Year,
Month, Day, and Hour) as follows:

5.981720124/HourDay))1(6001.30(INT)25.365(INTJD +++++= MY  and

TJD = JD / 36 525 , (2.24)

where

Y = Year – 1, M = Month + 12, if Month ≤ 2  ,

Y = Year, M = Month, if Month > 2  ,

where JD is the Julian Date, Hour is the time of UT and INT denotes the integer part of
a real number. The Julian Date counted from JD2000.0 is then JD2000 = JD – JD2000.0,
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where JD2000.0 is the Julian Date of 2000 January 1st 12h and has the value of
2 451 545.0 days. One Julian century is 36 525 days.

Inversely, the civil date (Year, Month, Day and Hour) can be computed from the
Julian Date (JD) as follows:

b = INT(JD + 0.5) + 1537 ,

c = INT((b – 122.1) / 365.25) ,

d = INT(365.25c) ,

e = INT((b – d) / 30.6001) ,

Hour = JD + 0.5 – INT(JD + 0.5) ,

Day = b – d – INT(30.6001e) ,

Month = e – 1 – 12INT(e / 14)  and

Year = c – 4715 – INT((7 + Month) / 10)  , (2.25)

where b, c, d, and e are auxiliary numbers.
Because the GPS standard epoch is defined as JD = 2 444 244.5 (1980 January 6, 0h),

GPS week and the day of week (denoted by Week and N) can be computed by

N = modulo(INT(JD + 1.5), 7)  and

Week = INT((JD – 2444244.5) / 7) , (2.26)

where N is the day of week (N = 0 for Monday, N = 1 for Tuesday, and so on).
For saving digits and counting the date from midnight instead of noon, the Modi-

fied Julian Date (MJD) is defined as

MJD = (JD – 2 400 000.5) . (2.27)

GLONASS time (GLOT) is defined by Moscow time UTCSU, which equals UTC plus
three hours (corresponding to the offset of Moscow time to Greenwich time),
theoretically. GLOT is permanently monitored and adjusted by the GLONASS Central
Synchroniser (cf. Roßbach 2000). UTC and GLOT then has a simple relation

UTC=GLOT+τc–3h ,

where τc is the system time correction with respect to UTCSU, which is broadcasted by
the GLONASS ephemerides and is less than one microsecond. Therefore there is
approximately

GPST=GLOT+m–3h ,

2.6  ·  Time Systems
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where m is called a number of ”leap seconds" between GPS and GLONASS (UTC) time
and is given in the GLONASS ephemerides. m is indeed the leap seconds since GPS
standard epoch (1980 January 6, 0h).

Galileo system time (GST) will be maintained by a number of UTC laboratory clocks.
GST and GPST are time systems of various UTC laboratories. After the offset of GST
and GPST is made available to the user, the interoperability will be ensured.




