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L. Grüne1, D. Nešić2, and J. Pannek3

1 Mathematical Institute, University of Bayreuth
lars.gruene@uni-bayreuth.de

2 EEE Department, University of Melbourne, Australia
d.nesic@ee.mu.oz.au

3 Mathematical Institute, University of Bayreuth
juergen.pannek@uni-bayreuth.de

Summary. The topic of this paper is a new model predictive control (MPC) approach
for the sampled–data implementation of continuous–time stabilizing feedback laws. The
given continuous–time feedback controller is used to generate a reference trajectory
which we track numerically using a sampled-data controller via an MPC strategy. Here
our goal is to minimize the mismatch between the reference solution and the trajectory
under control. We summarize the necessary theoretical results, discuss several aspects
of the numerical implemenation and illustrate the algorithm by an example.

1 Introduction

Instead of designing a static state feedback with sampling and zero order hold by
designing a continuous–time controller which is stabilizing an equilibrium and
discretizing this controller ignoring sampling errors which leads to drawbacks in
stability, see [5, 8], our approach is to use a continuous–time feedback and to
anticipate and minimize the sampling errors by model predictive control (MPC)
with the goal of allowing for large sampling periods without loosing performance
and stability of the sampled–data closed loop. Therefore we consider two sys-
tems, the first to be controlled by the given continuous–time feedback which will
give us a reference trajectory, and a second one which we are going to control
using piecewise constant functions to construct an optimal control problem by
introducing a cost functional to measure and minimize the mismatch between
both solutions within a time interval.

In order to calculate a feedback instead of a time dependent control function
and to avoid the difficulties of solving a Hamilton-Jacobi-Bellman equation for
an infinite horizon problem we reduce the infinite time interval to a finite one by
introducing a positive semidefinite function as cost–to–go. To re–gain the infinite
control sequence we make use of a receding horizon technique. For this approach
we will show stability and (sub-)optimality of the solution under certain standard
assumptions.

We will also show how to implement an algorithm to solve this process of iter-
atively generating and solving optimal control problems. The latter one is done
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using a direct approach and full discretization that will give us one optimization
problem per optimal control problem which can be solved using an SQP method.

Therefore in Section 2 the problem, the necessary assumptions and our control
scheme will be presented. In Section 3 we review the theoretical background
results about stability and inverse optimality from [14]. Having done this the
numerical implementation will be presented and discussed in Section 4 and its
performance will be demonstrated by solving an example in Section 5. Finally
conclusions will be given in Section 6.

2 Problem Formulation

The set of real numbers is denoted as R. A function γ : R≥0 → R≥0 is called
class G if it is continuous, zero at zero and non-decreasing. It is of class K if it
is continuous, zero at zero and strictly increasing. It is of class K∞ if it is also
unbounded. It is of class L if it is strictly positive and it is decreasing to zero as
its argument tends to infinity. A function β : R≥0×R≥0 → R≥0 is of class KL if
for every fixed t ≥ 0 the function β(·, t) is of class K and for each fixed s > 0 the
function β(s, ·) is of class L. Given vectors ξ, x ∈ Rn we often use the notation
(ξ, x) := (ξT , xT )T and denote the norm by | · |.

We consider a nonlinear feedback controlled plant model

ẋ(t) = f(x(t), u(x(t))) (1)

with vector field f : Rn×U→ Rn and state x(t) ∈ Rn, where u : Rn → U ⊂ Rm

denotes a known continuous–time static state feedback which (globally) asymp-
totically stabilizes the system. We want to implement the closed loop system
using a digital computer with sampling and zero order hold at the sampling
time instants tk = k · T , k ∈ N, T ∈ R>0. Then for a feedback law uT (x) the
sampled-data closed loop system becomes

ẋ(t) = f(x(t), uT (x(tk))), t ∈ [tk, tk+1). (2)

Our goal is now to design uT (x) such that the corresponding sampled–data
solution of (2) reproduces the continuous–time solution x(t) of (1) as close as
possible. The solution of the system (1) at time t emanating from the initial
state x(0) = x0 will be denoted by x(t, x0). Also we will assume f(x, u(x)) to
be locally Lipschitz in x, hence a unique solution of the continuous–time closed
loop system to exist for any x(0) = x0 in a given compact set Γ ⊂ Rn containing
the origin.

Remark 1. The simplest approach to this problem is the emulation design in
which one simply sets uT (x) := u(x). This method can be used for this purpose
but one can only prove practical stability of the sampled–data closed loop system
if the sampling time T is sufficiently small, see [8].

In order to determine the desired sampled–data feedback uT we first search for a
piecewise constant control function v whose corresponding solution approximates
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the solution of the continuous–time closed loop system. Therefore the mismatch
between the solutions of

ẋ(t) = f(x(t), u(x(t))), x(t0) = x0 (3)
ξ̇(t) = f(ξ(t), v[0,∞]), ξ(t0) = ξ0 (4)

can be measured. Here ξ(t, ξ0) denotes the solution of the system under control
and v[0,∞] is a piecewise constant function with discontinuities only at the sam-
pling instants tk := k ·T , k ∈ N. In order to measure and minimize the difference
between both trajectories a cost functional of the form

J(ξ(t), x(t), v[0,∞)) :=
∞∑

j=0

T∫
0

l(ξ(t)− x(t), vj)dt (5)

is needed where l : Rn × U → R≥0. This results in an optimal control problem
with infinite horizon which involves solving a Hamilton-Jacobi-Bellman type
equation. In the linear case solutions to different H2 and H∞ control designs are
known but the nonlinear case is typically too hard to be solved.

In order to avoid this computational burden we consider a reduced problem
in a first step by limiting the horizon to a finite length. This will give us a
suboptimal MPC controller whose numerical computation is manageable. Since
T is fixed due to the problem formulation the length of the horizon H can be
given by M ∈ N via H = M · T . Hence the cost functional can be written as

JM (ξ(t), x(t), v[0,M−1]) :=
M−1∑
j=0

T∫
0

l(ξ(t)− x(t), vj)dt + F (ξ(tM ), x(tM )) (6)

using the function F to measure the cost-to-go
∞∑

j=M

T∫
0
l(ξ(t)− x(t), vj)dt.

Remark 2. It is not necessary for F to be a control-Lyapunov-function of (3),
(4) to prove semiglobal practical stability of the closed loop system. Moreover
terminal costs of the form F (ξ(tM ), x(tM )) instead of F (ξ(tM )−x(tM )) are con-
sidered since the infinite horizon value function V∞(ξ, x) := inf

v[0,∞)
J(ξ, x, v[0,∞))

does not have in general the form V∞(ξ − x).

Using this approach an optimal control problem with finite horizon has to be
solved which will return a finite control sequence û[0,M−1]. In order to determine
the sampled–data feedback law uT an infinite sequence of optimal control prob-
lems can be generated and solved using a receding horizon approach. To this
end in a second step only the first control

u = uM (ξ, x) := û0(ξ, x) (7)

is implemented and the horizon is shifted forward in time by T . Hence a new
optimal control problem is given and the process can be iterated. According
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to this procedure the receding horizon control law uT = uM is a static state
feedback for the coupled system that is implemented in a sampled-data fashion.
Then the overall closed loop system is given by

ξ̇(t) = f(ξ(t), uM (ξ(tk), x(tk))), ξ(0) = ξ0, t ∈ [tk, tk+1), (8)
ẋ(t) = f(x(t), u(x(t))), x(0) = x0. (9)

Remark 3. We like to emphasize that it is not only our goal to obtain asymp-
totical stability of (8), (9) which implies tracking since we have that

|(ξ(t), x(t))| ≤ β(|(ξ0, x0)|, t) ∀t ≥ 0, (10)

but also that we achieve this in an appropriate sub–optimal manner.

3 Stability and Inverse Optimality

Since most of the time one can only work with approximated discrete-time mod-
els consistency with the exact discrete-time model as described in [11, 12] is
needed. Under the consistency condition given by Definition 1 in [10] and suit-
able mild additional assumptions one can conclude that asymptotic stability of
the approximate model carries over to semiglobal practical asymptotic stability
for the exact model, see [11, 12] for a general framework and [3] for corresponding
results for MPC algorithms. This justifies the use of numerical approximations,
cf. also Remark 6, below. To conclude semiglobal asymptotical stability of the
closed loop system using the proposed MPC controller we present the following
theorem, which relies on Theorem 1 in [1].

Theorem 1 (Stability)
Suppose the following conditions hold:

1. l and F are continuous;
2. U is bounded;
3a. The continuous–time system (1) is globally asymptotically stable;
3b. There exists a constant r0 > 0 and a function γ ∈ K∞ with

l(y, u) ≥ max
{

max
|x|≤2|y|

|f(x, u)|, γ(|y|)
}
, ∀|y| ≥ r0;

3c. f(·, ·) and u(·) are locally Lipschitz in their arguments;
4. The value function is such that for some ᾱ ∈ K∞ we have that Vi(ξ, x) ≤

ᾱ(|(ξ, x)|) for all i ≥ 0 and all (ξ, x) ∈ R2n.

Then there exists a function β ∈ KL such that for each pair of strictly positive
real numbers (∆, δ) there exists a constant M∗

1 ∈ Z≥1 such that for all (ξ, x) ∈
B∆ and M ≥M∗

1 the solutions of the continuous–time system (8), (9) satisfy

|(ξ(t), x(t))| ≤ max{β(|(ξ0, x0)|, t), δ} ∀t ≥ 0. (11)
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Proof. Make use of the underlying discrete-time system via Theorem 1 in [1] and
Theorem 1 in [10], see [14] for details.

Therefore one can apply the calculated MPC control coming out of an approxi-
mated model in reality without loss of stability.

Remark 4. If F is a control Lyapunov function for the exact discrete-time model
of the uncontrolled sampled-data system

ξ+ = G(ξ, u) := ξ(T, ξ, u), ξ(0) = ξ0, (12)
x+ = H(x) := x(T, x), x(0) = x0 (13)

then it follows from [1] that the theoretical bound M∗
1 for the necessary prediction

horizon decreases which was confirmed in our numerical simulations.

Remark 5. Explicit bounds to guarantee the stability properties of the underly-
ing discrete-time system can be found in [1].

In order to show inverse optimality of our approach we suppose that F is such
that there exists a closed set Xf ⊂ R2n and a control law u = uf(ξ, x) with

1. uf (ξ, x) ∈ U ∀(ξ, x) ∈ Xf

2. If (ξ, x) is ∈ Xf then also (G(ξ, uf (ξ, x)), H(X)) is ∈ Xf .
3. For all (ξ, x) ∈ Xf we have that

F (G(ξ, uf (ξ, x)), H(x)) − F (ξ, x) ≤ −
T∫

0

l(ξ(s, ξ, uf)− x(s, x), uf )ds.

Theorem 2 (Inverse (Sub-)Optimality)
Consider the discrete-time model (12), (13) and suppose that the previous
assumptions are valid. Then there exists a set XM ⊂ R2n and a function
Q : Rn × Rn × U→ R with

Q(ξ, x, uM ) ≥ Q(ξ, x, uM ) :=

T∫
0

l(ξ(s, ξ, uf)− x(s, x), uf )ds (14)

∀(ξ, x) ∈ XM , u ∈ U such that for all (ξ, x) ∈ XM we have that the controller
(7) minimizes the cost functional

J (ξ, x, u[0,∞)) :=
∞∑

i=0

Q(ξi, xi, ui). (15)

Proof. The principle of optimality and the stated assumptions are utilised to
show Q(ξ, x, uM ) ≥ Q(ξ, x, uM ), see [14] for details.
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4 Numerical Solution

For the solution of the optimal control problem we use a direct approach and
therefore replace the problem to minimize (6) with dynamics (3), (4) by numeri-
cal approximations ξ̃(t, ξ0, u) of ξ(t, ξ0, u) and x̃(t, x0, u) of x(t, x0), respectively.
For this approach convergence has been investigated in [7] and under suitable
conditions one can guarantee that the order of convergence is O(T ).

From this formulation one obtains an optimization problem by introducing
the variable z = (ξ0, . . . , ξM , x0, . . . , xM , u0, . . . , uM ) and rewriting the approx-
imated optimal control problem as

Minimize F (z) :=
M−1∑
j=0

T∫
0

l(ξ̃(s, ξj , vj)− x̃(s, xj), vj)ds + F (ξM , xM )

s.t. G(z) :=

⎛⎜⎝[−ξj+1 + ξ̃(h, ξj , vj)]j=0,...,M−1

[−xj+1 + x̃(h, xj)]j=0,...,M−1

(ξ0, x0)− (ξ0, x0)

⎞⎟⎠ = 0

with the constraints coming along with the approximation. This is a well known
problem that can be solved using the KKT conditions by SQP methods if the cost
functional and the constraints are sufficiently often differentiable in a sufficiently
large neighborhood N(z∗) of the local minima z∗. These methods are known to
be stable and efficient even for large scale systems.

The used algorithm computes a sequence (z[k]) via z[k+1] = z[k] + α[k]p[k].
Within this iteration the search direction p[k] is calculated by generating and
solving quadratic subproblems of the form

min
p∈RNz

∇zF (z[k])p +
1
2
pTB[k]p

s.t. G(z[k]) +∇zG(z[k])p = 0.

The algorithm computes the derivatives by forward difference schemes if they are
not given by the user and the matrix B[k] is an approximation of the Hesse matrix
where a BFGS-Rank 2 update is implemented so that the Hesse matrix has to be
calculated only once. Therefore the usual quadratic order of convergence of the
Newton method is reduced but superlinear convergence can still be shown. The
step size α[k] is obtained by minimizing a merit function L̃(z, η, ρ) = L(z, η) +
1
2

Nz∑
j=1

ρjG
2
j (z) such that the natural step size α[k] = 1 of the Newton method is

reduced but one can expect it to be close to 1 in a small neighborhood of z∗.

Remark 6. Since our aim is to allow for large sampling periods T an adaptive
step size control algorithm such as DoPri5, see [4], is necessary within each
interval [kT, (k + 1)T ), k ∈ N, in order to avoid errors in the state trajectories
and the cost functional which therefore has to be transformed. Note that the local
accuracy guaranteed by the step size control here plays the role of the accuracy
parameter δ in the consistency Definition 1 in [10].
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Remark 7. The case of an integration step size h that is different from the
sampling period T has been analysed theoretically for MPC schemes in [3]. An
important aspect of this analysis is that h, or — more generally — the numerical
accuracy parameter, can be assigned arbitrarily and independently of T (where
of course one has to ensure that the sampling instants are included in the set of
gridpoints used for integration in order to match the discontinuities of the control
function). It should be noted that our algorithm fulfils this requirement. In fact,
when we remove the x–subsystem (3) from our scheme and use a local Lyapunov
function as a terminal cost we obtain exactly the direct MPC algorithm discussed
theoretically in [3].

Compared to this standard MPC approach the main difference of our scheme
lies in the fact that we can directly enforce a desired transient behavior induced by
the continuous–time feedback, while in standard MPC schemes the transient be-
havior can only be influenced indirectly through the choice of the cost functional.
Clearly, the design of a suitable continuous–time controller requires a consider-
able amount of a priori work, but this may be rewarded by a better performance
of the resulting sampled–data closed loop.

Remark 8. An important problem is the choice of a good initial guess v[0,M−1]
for the optimization, keeping in mind that we deal with a nonlinear optimization
problem. Even though suboptimal solutions to this problem may be sufficient to
ensure stability, see [6], here we also aim at good performance. Convergence to
the global optimum, however, can only be expected when the initial solution is
already close to it. When passing from tk to tk+1 the shifted optimal control
sequence from the previous step typically yields such a good initial guess, which
is confirmed by our numerical experience that the computational costs for the
optimization are decreasing monotonically during the iteration process.

A more severe problem is the choice of the initial guess at t0 when no previous
optimal control is known. In this case, in our approach the known continuous–
time feedback can be exploited for this purpose when the emulated feedback from
Remark 1 yields solutions which do not deviate too far from the continuous–
time reference. However, this method fails when the emulated feedback leads to
unstable solutions and the time horizon H = M ·T is rather large. Such situations
can sometimes be handled by reducing the length of the horizon H = M · T but
proceeding this way one has to keep in mind that there exists a lower bound for
H from the stability proof. Also, simulations have shown that while on one hand
computational costs grow with the length of the horizon, on the other hand better
performance can be achieved using longer horizons. Therefore, at the moment it
is up to simulations to find a good set of parameters and a good initial guess of
v[0,M−1].

A promising alternative approach and topic of future research is whether some
of the methods developed in [9, 13] can be used in order to construct the initial
guess, an approach that would lead to a predictor–corrector type algorithm in
which the MPC strategy plays the role of the corrector.
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5 Example

Here we present a model of a synchronous generator taken from [2]

ẋ1 = x2, ẋ2 = −b1x3 sinx1 − b2x2 + P, ẋ3 = b3 cosx1 − b4x3 +E + u. (16)

We use the parameter b1 = 34.29, b2 = 0.0, b3 = 0.149, b4 = 0.3341, P = 28.22
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Fig. 1. Improvement by MPC control over emulation for a1 = 0.45, T = 0.1 (left),
T = 0.5 (middle) and reference solution using continuous–time feedback (right)

and E = 0.2405, as well as the continuous–time feedback law u(x) = a1((x1 −
x∗1)b4 + x2) with feedback gain a1 > 0, whose purpose is to enlarge the domain
of attraction of the locally stable equilibrium x∗ ≈ (1.12, 0.0, 0.914) (note that
this equilibrium is locally asymptotically stable also for u ≡ 0). As initial value
we used the vector x0 = (0.5, 0.0, 2.0) and generated results for T = 0.1, T = 0.5
and a1 = 0.45.

One can see that the fast dynamics of the problem require small sampling
periods to maintain stability using the emulated feedback law. The MPC control
on the other hand not only stabilizes the equilibrium even for rather large T but
also keeps the sampled–data solution close to the reference.

6 Conclusion

We proposed an unconstrained model predictive algorithm for the sampled–
data implementation of continuous–time stabilizing feedback laws. Stability and
inverse optimality results were briefly revisited and numerical issues were dis-
cussed. Compared to direct MPC approaches without using continuous–time
feedbacks, advantages of our method are that the sampled–data solutions in-
herit the performance properties of the continuous–time controller and that the
knowledge of the continuous–time controller helps to reduce the computational
cost of the numerical optimization. Future research will include a systematic
study about how this knowledge can be used in a numerically efficient way and
an extension of our approach to dynamic continuous–time controllers.
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[10] Nešić D, Teel A R, Sontag E D (1999) Formulas relating KL stability estimates
of discrete–time and sampled–data nonlinear systems. In: Syst. Contr. Lett. 38:
49–60
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