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Summary. This paper considers discrete-time nonlinear, possibly discontinuous, sys-
tems in closed-loop with model predictive controllers (MPC). The aim of the paper is
to provide a priori sufficient conditions for asymptotic stability in the Lyapunov sense
and input-to-state stability (ISS), while allowing for both the system dynamics and
the value function of the MPC cost to be discontinuous functions of the state. The
motivation for this work lies in the recent development of MPC for hybrid systems,
which are inherently discontinuous and nonlinear. For a particular class of discontinu-
ous piecewise affine systems, a new MPC set-up based on infinity norms is proposed,
which is proven to be ISS to bounded additive disturbances. This ISS result does not
require continuity of the system dynamics nor of the MPC value function.

1 An Introductory Survey

One of the problems in model predictive control (MPC) that has received an
increased attention over the years consists in guaranteeing closed-loop stability
for the controlled system. The usual approach to ensure stability in MPC is to
consider the value function of the MPC cost as a candidate Lyapunov function.
Then, if the system dynamics is continuous, the classical Lyapunov stability
theory [1] can be used to prove that the MPC control law is stabilizing [2]. The
requirement that the system dynamics must be continuous is (partially) removed
in [3, 4], where terminal equality constraint MPC is considered. In [3], continuity
of the system dynamics on a neighborhood of the origin is still used to prove
Lyapunov stability, but not for proving attractivity. Although continuity of the
system is still assumed in [4], the Lyapunov stability proof (Theorem 2 in [4])
does not use the continuity property. Later on, an exponential stability result
is given in [5] and an asymptotic stability theorem is presented in [6], where
sub-optimal MPC is considered. The theorems of [5, 6] explicitly point out that
both the system dynamics and the candidate Lyapunov function only need to
be continuous at the equilibrium.

Next to closed-loop stability, one of the most studied properties of MPC con-
trollers is robustness. Previous results developed for smooth nonlinear MPC,
such as the ones in [5, 7], prove that robust asymptotic stability is achieved,
if the system dynamics, the MPC value function and the MPC control law are
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Lipschitz continuous. Sufficient conditions for input-to-state stability (ISS) [8] of
smooth nonlinear MPC were presented in [9, 10] based on Lipschitz continuity of
the system dynamics. A similar result was obtained in [11], where the Lipschitz
continuity assumption was relaxed to basic continuity. An important warning
regarding robustness of smooth nonlinear MPC was issued in [12], where it is
pointed out that the absence of a continuous Lyapunov function may result in
a closed-loop system that has no robustness.

This paper is motivated by the recent development of MPC for hybrid sys-
tems, which are inherently discontinuous and nonlinear systems. Attractivity was
proven for the equilibrium of the closed-loop system in [13, 14]. However, proofs
of Lyapunov stability only appeared in the hybrid MPC literature recently, e.g.
[15, 16, 17, 18]. In [17], the authors provide a priori sufficient conditions for
asymptotic stability in the Lyapunov sense for discontinuous piecewise affine
(PWA) systems in closed-loop with MPC controllers based on ∞-norm cost
functions. Results on robust hybrid MPC were presented in [15] and [19], where
dynamic programming and tube based approaches were considered for solving
feedback min-max MPC optimization problems for continuous PWA systems.

In this paper we consider discrete-time nonlinear, possibly discontinuous, sys-
tems in closed-loop with MPC controllers and we aim at providing a general
theorem on asymptotic stability in the Lyapunov sense that unifies most of the
previously-mentioned results. Besides closed-loop stability, the issue of robust-
ness is particularly relevant for hybrid systems and MPC because, in this case,
the system dynamics, the MPC value function and the MPC control law are typ-
ically discontinuous. We present an input-to-state stability theorem that can be
applied to discrete-time non-smooth nonlinear MPC. For a class of discontinuous
PWA systems, a new MPC set-up based on ∞-norm cost functions is proposed,
which is proven to be ISS with respect to bounded additive disturbances.

2 Preliminaries

Let IR, IR+, Z and Z+ denote the field of real numbers, the set of non-negative
reals, the set of integers and the set of non-negative integers, respectively. We
use the notation Z≥c1 and Z(c1,c2] to denote the sets {k ∈ Z+ | k ≥ c1} and
{k ∈ Z+ | c1 < k ≤ c2}, respectively, for some c1, c2 ∈ Z+. We define with
ZN the N -dimensional Cartesian product Z × . . . × Z, for some N ∈ Z≥1. For
a sequence {zj}j∈Z+ with zj ∈ IRl let ‖{zj}j∈Z+‖ := sup{‖zj‖ | j ∈ Z+}. For
a sequence {zj}j∈Z+ with zj ∈ IRl, z[k] denotes the truncation of {zj}j∈Z+ at
time k ∈ Z+, i.e. z[k] = {zj}j∈Z[0,k] . For a set P ⊆ IRn, we denote by ∂P the
boundary of P , by int(P) its interior and by cl(P) its closure. Let P1 ∼ P2 �
{x ∈ IRn | x + P2 ⊆ P1} denote the Pontryagin difference of two arbitrary sets
P1 and P2. A polyhedron is a convex set obtained as the intersection of a finite
number of open and/or closed half-spaces.
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Consider now the following discrete-time autonomous nonlinear systems:

xk+1 = G(xk), k ∈ Z+, (1a)

x̃k+1 = G̃(x̃k, wk), k ∈ Z+, (1b)

where xk, x̃k ∈ IRn are the state, wk ∈ IRl is an unknown disturbance input
and, G : IRn → IRn, G̃ : IRn × IRl → IRn are nonlinear, possibly discontinuous,
functions. For simplicity of notation, we assume that the origin is an equilibrium
in (1), meaning that G(0) = 0 and G̃(0, 0) = 0. Due to space limitations, we
refer to [20] for definitions regarding Lyapunov stability, attractivity, asymptotic
stability in the Lyapunov sense and exponential stability of the origin for the
nominal system (1a).

Definition 1. A real-valued scalar function ϕ : IR+ → IR+ belongs to class K if
it is continuous, strictly increasing and ϕ(0) = 0. A function β : IR+×IR+ → IR+
belongs to class KL if for each fixed k ∈ IR+, β(·, k) ∈ K and for each fixed
s ∈ IR+, β(s, ·) is non-increasing and limk→∞ β(s, k) = 0.

Definition 2. (ISS) Let X with 0 ∈ int(X) and W be subsets of IRn and IRl,
respectively. The perturbed system (1b) is called ISS for initial conditions in X

and disturbance inputs in W if there exist a KL-function β and a K-function
γ such that, for each x0 ∈ X and all {wp}p∈Z+ with wp ∈ W for all p ∈ Z+, it
holds that the state trajectory satisfies ‖xk‖ ≤ β(‖x0‖, k) + γ(‖w[k−1]‖) for all
k ∈ Z≥1.

Note that the regional ISS property introduced in Definition 2 can be regarded
as a local version of the global ISS property defined in [8] and it is similar to the
robust asymptotic stability property employed in [11].

3 The MPC Optimization Problem

Consider the following nominal and perturbed discrete-time nonlinear systems:

xk+1 = g(xk, uk), k ∈ Z+, (2a)
x̃k+1 = g̃(x̃k, uk, wk), k ∈ Z+, (2b)

where xk, x̃k ∈ IRn and uk ∈ IRm are the state and the control input, respectively,
and g : IRn × IRm → IRn, g̃ : IRn × IRm × IRl → IRn are nonlinear, possibly
discontinuous, functions with g(0, 0) = 0 and g̃(0, 0, 0) = 0. In the sequel we will
consider the case when MPC is used to generate the control input in (2). We
assume that the state and the input vectors are constrained for both systems
(2a) and (2b), in a compact subset X of IRn and a compact subset U of IRm,
respectively, which contain the origin in their interior. For a fixed N ∈ Z≥1,
let xk(xk,uk) � (x1|k, . . . , xN |k) denote the state sequence generated by the
nominal system (2a) from initial state x0|k � xk and by applying the input
sequence uk � (u0|k, . . . , uN−1|k) ∈ UN , where UN � U× . . .× U. Furthermore,



96 M. Lazar et al.

let XT ⊆ X denote a desired target set that contains the origin. The class of
admissible input sequences defined with respect to XT and state xk ∈ X is
UN (xk) � {uk ∈ UN | xk(xk,uk) ∈ XN , xN |k ∈ XT }.
Problem 1. Let the target set XT ⊆ X and N ≥ 1 be given and let F : IRn →
IR+ with F (0) = 0 and L : IRn × IRm → IR+ with L(0, 0) = 0 be mappings,
possibly discontinuous. At time k ∈ Z+ let xk ∈ X be given and minimize the
cost function J(xk,uk) � F (xN |k) +

∑N−1
i=0 L(xi|k, ui|k), with prediction model

(2a), over all input sequences uk ∈ UN (xk).

In the MPC literature, F (·), L(·, ·) and N are called the terminal cost, the stage
cost and the prediction horizon, respectively. We call an initial state x ∈ X

feasible if UN (x) 	= ∅. Similarly, Problem 1 is said to be feasible for x ∈ X if
UN (x) 	= ∅. Let Xf (N) ⊆ X denote the set of feasible initial states with respect
to Problem 1 and let

VMPC : Xf (N)→ IR+, VMPC(xk) � inf
uk∈UN (xk)

J(xk,uk) (3)

denote the MPC value function corresponding to Problem 1. We assume that
there exists an optimal sequence of controls u∗

k � (u∗
0|k, u

∗
1|k, . . . , u

∗
N−1|k) for

Problem 1 and any state xk ∈ Xf (N). Hence, the infimum in (3) is a minimum
and VMPC(xk) = J(xk,u∗

k). Then, the MPC control law is defined as

uMPC(xk) � u∗
0|k; k ∈ Z+. (4)

The following stability analysis also holds when the optimum is not unique in
Problem 1, i.e. all results apply irrespective of which optimal sequence is selected.

4 General Results on Stability and ISS

Let h : IRn → IRm denote an arbitrary, possibly discontinuous, nonlinear func-
tion with h(0) = 0 and let XU � {x ∈ X | h(x) ∈ U}.

The following theorem was obtained as a kind of general and unifying result
by putting together the previous results on stability of discrete-time nonlinear
MPC that were mentioned in the introductory survey.
Assumption 1. Terminal cost and constraint set : There exist α1, α2 ∈ K, a
neighborhood of the origin N ⊆ Xf (N) and a feedback control law h(·) such
that XT ⊆ XU, with 0 ∈ int(XT ), is a positively invariant set [20] for system
(2a) in closed-loop with u = h(x), L(x, u) ≥ α1(‖x‖) for all x ∈ Xf (N) and all
u ∈ U, F (x) ≤ α2(‖x‖) for all x ∈ N and

F (g(x, h(x))) − F (x) + L(x, h(x)) ≤ 0 for all x ∈ XT . (5)

Assumption 2. Terminal equality constraint : XT = {0}, F (x) = 0 for all x ∈ X

and there exist α1, α2 ∈ K and a neighborhood of the origin N ⊆ Xf (N) such
that L(x, u) ≥ α1(‖x‖) for all x ∈ Xf (N) and all u ∈ U and L(x∗i|k, u

∗
i|k) ≤

α2(‖xk‖), for any optimal u∗
k ∈ UN (xk), initial state xk =: x∗0|k ∈ N and

i = 0, . . . , N − 1, where (x∗1|k, . . . , x
∗
N |k) =: xk(xk,u∗

k).
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Theorem 1. (Stability of Non-smooth Nonlinear MPC) Fix N ≥ 1 and
suppose that either Assumption 1 holds or Assumption 2 holds. Then:

(i) If Problem 1 is feasible at time k ∈ Z+ for state xk ∈ X, Problem 1 is
feasible at time k+1 for state xk+1 = g(xk, u

MPC(xk)). Moreover, XT ⊆ Xf (N);
(ii) The origin of the MPC closed-loop system (2a)-(4) is asymptotically stable

in the Lyapunov sense for initial conditions in Xf (N);
(iii) If Assumption 1 or Assumption 2 holds with α1(s) � asλ, α2(s) � bsλ

for some constants a, b, λ > 0, the origin of the MPC closed-loop system (2a)-(4)
is exponentially stable in Xf (N).

The interested reader can find the proof of Theorem 1 in [20]. Next, we state
sufficient conditions for ISS (in the sense of Definition 2) of discrete-time non-
smooth nonlinear MPC.

Theorem 2. (ISS of Non-smooth Nonlinear MPC) Let W be a compact
subset of IRl that contains the origin and let X be a robustly positively invariant
(RPI) set [20] for the MPC closed-loop system (2b)-(4) and disturbances in W,
with 0 ∈ int(X). Let α1(s) � asλ, α2(s) � bsλ, α3(s) � csλ for some positive
constants a, b, c, λ and let σ ∈ K. Suppose L(x, u) ≥ α1(‖x‖) for all x ∈ X and
all u ∈ U, VMPC(x) ≤ α2(‖x‖) for all x ∈ X and that:

VMPC(g̃(x, uMPC(x), w)) − VMPC(x) ≤ −α3(‖x‖) + σ(‖w‖), ∀x ∈ X, ∀w ∈W.
(6)

Then, the perturbed system (2b) in closed-loop with the MPC control (4) obtained
by solving Problem 1 at each sampling-instant is ISS for initial conditions in X

and disturbance inputs in W. Moreover, the ISS property of Definition 2 holds
for β(s, k) � α−1

1 (2ρkα2(s)) and γ(s) � α−1
1

(
2σ(s)
1−ρ

)
, where ρ � 1− c

b ∈ [0, 1).

For a proof of Theorem 2 we refer the reader to [20]. Note that the hypotheses of
Theorem 1 and Theorem 2 allow g(·, ·), g̃(·, ·, ·) and VMPC(·) to be discontinuous
when x 	= 0. They only imply continuity at the point x = 0, and not necessarily
on a neighborhood of x = 0.

5 A Robust MPC Scheme for Discontinuous PWA
Systems

In this section we consider the class of discrete-time piecewise affine systems, i.e.

xk+1 = g(xk, uk) � Ajxk + Bjuk + fj if xk ∈ Ωj , (7a)

x̃k+1 = g̃(x̃k, uk, wk) � Aj x̃k + Bjuk + fj + wk if x̃k ∈ Ωj , (7b)

where wk ∈ W ⊂ IRn, k ∈ Z+, Aj ∈ IRn×n, Bj ∈ IRn×m, fj ∈ IRn, j ∈ S
with S � {1, 2, . . . , s} a finite set of indices. The collection {Ωj | j ∈ S} defines
a partition of X, meaning that ∪j∈SΩj = X and int(Ωi) ∩ int(Ωj) = ∅ for
i 	= j. Each Ωj is assumed to be a polyhedron (not necessarily closed). Let
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S0 � {j ∈ S | 0 ∈ cl(Ωj)} and let S1 � {j ∈ S | 0 	∈ cl(Ωj)}, so that S = S0∪S1.
We assume that the origin is an equilibrium state for (7a) with u = 0. Therefore,
we require that fj = 0 for all j ∈ S0. Note that this does not exclude PWA
systems which are discontinuous over the boundaries. Next, let ‖ · ‖ denote the
∞-norm and consider the case when the ∞-norm is used to define the MPC
cost function, i.e. F (x) � ‖Px‖ and L(x, u) � ‖Qx‖ + ‖Ru‖. Here P ∈ IRp×n,
Q ∈ IRq×n and R ∈ IRr×m are assumed to be known matrices that have full-
column rank. In the PWA setting we take the auxiliary controller h(x) � Kjx
when x ∈ Ωj , where Kj ∈ IRm×n, j ∈ S.

In [17] the authors developed ways to compute (off-line) the terminal weight
P and the feedbacks {Kj | j ∈ S} such that inequality (5) holds and XT is a
positively invariant set for the PWA system (7a) in closed-loop with the piecewise
linear (PWL) state-feedback h(·). Then, it can be shown that PWA systems
in closed-loop with MPC controllers calculated as in (4) and using an ∞-norm
based cost in Problem 1 satisfy the hypothesis of Theorem 1, thereby establishing
Lyapunov stability for the origin of the closed-loop system. A similar result for
quadratic cost based MPC and PWA prediction models can be found in [20].
However, since both the system (7) and the hybrid MPC value function will be
discontinuous in general, it follows, as pointed out in [12], that the closed-loop
system may not be robust (ISS) to arbitrarily small disturbances, despite the
fact that nominal asymptotic stability is guaranteed.

In this section we present a new design method based on tightened constraints
for setting up ISS MPC schemes for a class of discontinuous PWA systems. One
of the advantages of the proposed approach is that the resulting MPC opti-
mization problem can still be formulated as a mixed integer linear programming
(MILP) problem, which is a standard problem in hybrid MPC. Note that in
this case the assumption of Section 3 on the existence of an optimal sequence of
controls is satisfied, see, for example, [14, 20].

Let η � maxj∈S ‖Aj‖, ξ � ‖P‖ and define, for any µ > 0 and i ∈ Z≥1,

Li
µ �

{
x ∈ IRn | ‖x‖ ≤ µ

i−1∑
p=0

ηp

}
.

Consider now the following (tightened) set of admissible input sequences:

ŨN (xk) �
{
uk ∈ U

N | xi|k ∈ Xi, i = 1, . . . , N − 1, xN |k ∈ XT

}
, k ∈ Z+, (8)

where Xi � ∪j∈S{Ωj ∼ Li
µ} ⊆ X for all i = 1, . . . , N − 1 and (x1|k, . . . , xN |k)

is the state sequence generated from initial state x0|k � xk and by applying the
input sequence uk to the PWA model (7a). Let X̃f (N) denote the set of feasible
states for Problem 1 with ŨN (xk) instead of UN (xk), and let ṼMPC(·) denote
the corresponding MPC value function. For any µ > 0, define Bµ � {w ∈ IRn |
‖w‖ ≤ µ} and recall that XU = {x ∈ X | h(x) ∈ U}.

Theorem 3. Assume that 0 ∈ int(Ωj∗) for some j∗ ∈ S. Take N ∈ Z≥1, θ >
θ1 > 0 and µ > 0 such that µ ≤ θ−θ1

ξηN−1 ,
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Fθ � {x ∈ IRn | F (x) ≤ θ} ⊆ (Ωj∗ ∼ LN−1
µ ) ∩ XU

and g(x, h(x)) ∈ Fθ1 for all x ∈ Fθ. Set XT = Fθ1 . Furthermore, suppose that
Assumption 1 holds and inequality (5) is satisfied for all x ∈ Fθ. Then:

(i) If x̃k ∈ X̃f (N), then x̃k+1 ∈ X̃f (N) for all wk ∈ Bµ, where x̃k+1 =
Aj x̃k + Bju

MPC(x̃k) + fj + wk. Moreover, XT ⊆ X̃f (N).
(ii) The perturbed PWA system (7b) in closed-loop with the MPC control

(4) obtained by solving Problem 1 (with ŨN (xk) instead of UN (xk) and (7a) as
prediction model) at each sampling instant is ISS for initial conditions in X̃f (N)
and disturbance inputs in Bµ.

The proof of Theorem 3 is given in the appendix. The tightened set of admissi-
ble input sequences (8) may become very conservative as the prediction horizon
increases, since it requires that the state trajectory must be kept farther and
farther away from the boundaries. The conservativeness can be reduced by in-
troducing a pre-compensating state-feedback, which is a common solution in
robust MPC.

6 Illustrative Example

To illustrate the application of Theorem 3 and how to construct the parameters
θ, θ1 and µ for a given N ∈ Z≥1, we present an example. Consider the following
discontinuous PWA system:

xk+1 = g̃(xk, uk, wk) � g(xk, uk) + wk � Ajxk + Bjuk + wk if xk ∈ Ωj , j ∈ S,
(9)

where S = {1, . . . , 5}, A1 =
[−0.0400 −0.4610
−0.1390 0.3410

]
, A2 =

[
0.6552 0.2261
0.5516 −0.0343

]
, A3 =[−0.7713 0.7335

0.4419 0.5580

]
, A4 =

[−0.0176 0.5152
0.6064 0.2168

]
, A5 =

[−0.0400 −0.4610
−0.0990 0.6910

]
, B1 = B2 = B3 =

B4 = [ 1 0 ]� and B5 = [ 0 1 ]�. The state and the input of system (9) are con-
strained at all times in the sets X = [−3, 3]× [−3, 3] and U = [−0.2, 0.2], respec-
tively. The state-space partition is plotted in Figure 1. The method presented in
[17] was employed to compute the terminal weight matrix P =

[
2.3200 0.3500
−0.2100 2.4400

]
and the feedback K = [−0.04 −0.35 ] such that inequality (5) of Assumption 1
holds for all x ∈ IR2, the ∞-norm MPC cost with Q = [ 1 0

0 1 ], R = 0.01 and
h(x) = Kx. Based on inequality (5), it can be shown that the sublevel sets of
the terminal cost F (·), i.e. also Fθ, are λ-contractive sets [20] for the dynamics
g(x, h(x)), with λ = 0.6292. Then, for any θ1 with θ > θ1 ≥ λθ it holds that
g(x, h(x)) ∈ Fθ1 for all x ∈ Fθ. This yields µ ≤ (1−λ)θ

ξηN−1 . However, µ and θ must
also be such that Fθ ⊆ (Ω5 ∼ LN−1

µ ) ∩ XU. Hence, a trade-off must be made in
choosing θ and µ. A large θ implies a large µ, which is desirable since µ is an up-
per bound on ‖w‖, but θ must also be small enough to ensure the above inclusion.
We chose θ = 0.96 and θ1 = λθ = 0.6040. Then, with η = 1.5048, ξ = 2.67 and a
prediction horizon N = 2 one obtains that any µ with 0 ≤ µ ≤ 0.0886 is an ad-
missible upper bound on ‖w‖. For µ = 0.0886 it holds that Fθ ⊆ (Ω5 ∼ L1

µ)∩XU

(see Figure 2 for an illustrative plot). Hence, the hypothesis of Theorem 3 is
satisfied for any w ∈ Bµ = {w ∈ IR2 | ‖w‖ ≤ 0.0886}.
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Fig. 1. State-space partition for system (9)

Fig. 2. State trajectories for the MPC closed-loop system (9)-(4) with x0 =
[0.003 1.7]� - dashed line and x0 = [−2.8 0.7]� - solid line

Then, we used the multi parametric toolbox (MPT) [21] to calculate the MPC
control law (4) as an explicit PWA state-feedback, and to simulate the resulting
MPC closed-loop system (9)-(4) for randomly generated disturbances in Bµ. The
explicit MPC controller is defined over 132 state-space regions. The set of feasible
states X̃f (2) is plotted in Figure 2 together with the partition corresponding to
the explicit MPC control law.

Note that, by Theorem 3, ISS is ensured for the closed-loop system for initial
conditions in X̃f (2) and disturbances in Bµ, without employing a continuous
MPC value function. Indeed, for example, ṼMPC(·) and the closed-loop PWA
dynamics (9)-(4) are discontinuous at x = [0 1]� ∈ int(X̃f (2)).
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7 Conclusion

In this paper we have presented an overview of stability and robustness theory for
discrete-time nonlinear MPC while focusing on the application and the extension
of the classical results to discontinuous nonlinear systems. A stability theorem
has been developed, which unifies many of the previous results. An ISS result
for discrete-time discontinuous nonlinear MPC has also been presented. A new
MPC scheme with an ISS guarantee has been developed for a particular class of
discontinuous PWA systems.
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A Proof of Theorem 3

Let (x∗1|k, . . . , x
∗
N |k) denote the state sequence obtained from initial state x0|k �

x̃k and by applying the input sequence u∗
k to (7a). Let (x1|k+1, . . . , xN |k+1)

denote the state sequence obtained from the initial state x0|k+1 � x̃k+1 = xk+1+
wk = x∗1|k + wk and by applying the input sequence uk+1 � (u∗

1|k, . . . , u
∗
N−1|k,

h(xN−1|k+1)) to (7a).
(i) The constraints in (8) are such that: (P1) (xi|k+1, x

∗
i+1|k) ∈ Ωji+1 ×Ωji+1 ,

ji+1 ∈ S, for all i = 0, . . . , N−2 and, ‖xi|k+1−x∗i+1|k‖ ≤ ηiµ for i = 0, . . . , N−1.

This is due to the fact that x0|k+1 = x∗1|k +wk, xi|k+1 = x∗i+1|k +
∏i

p=1 Ajpwk for

i = 1, . . . , N − 1 and ‖
∏i

p=1 Ajpwk‖ ≤ ηiµ, which yields
∏i

p=1 Ajpwk ∈ Li+1
µ .

Pick the indices ji+1 ∈ S such that x∗i+1|k ∈ Ωji+1 for all i = 1, . . . , N −2. Then,
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due to x∗i+1|k ∈ Ωji+1 ∼ Li+1
µ , it follows by Lemma 2 of [9] that xi|k+1 ∈ Ωji+1 ∼

Li
µ ⊂ Xi for i = 1, . . . , N − 2. From xN−1|k+1 = x∗N |k +

∏N−1
p=1 Ajpwk it follows

that F (xN−1|k+1) − F (x∗N |k) ≤ ξηN−1µ, which implies that F (xN−1|k+1) ≤
θ1 + ξηN−1µ ≤ θ due to x∗N |k ∈ XT = Fθ1 and µ ≤ θ−θ1

ξηN−1 . Hence, xN−1|k+1 ∈
Fθ ⊂ XU ∩ (Ωj∗ ∼ LN−1

µ ) ⊂ XU ∩ XN−1 so that h(xN−1|k+1) ∈ U and xN |k+1 ∈
Fθ1 = XT . Thus, the sequence of inputs uk+1 is feasible at time k + 1 and
Problem 1 with ŨN (xk) instead of UN (xk) remains feasible. Moreover, from
g(x, h(x)) ∈ Fθ1 for all x ∈ Fθ and Fθ1 ⊂ Fθ it follows that Fθ1 is a positively
invariant set for system (7a) in closed-loop with uk = h(xk), k ∈ Z+. Then, since

Fθ1 ⊂ Fθ ⊆ (Ωj∗ ∼ LN−1
µ ) ∩ XU ⊂ Xi ∩ XU for all i = 1, . . . , N − 1

and XT = Fθ1 , the sequence of control inputs (h(x0|k), . . . , h(xN−1|k)) is feasible
with respect to Problem 1 (with ŨN (xk) instead of UN (xk)) for all x0|k � x̃k ∈
Fθ1 . Therefore, XT = Fθ1 ⊆ X̃f (N).

(ii) The result of part (i) implies that X̃f (N) is a RPI set for system (7b) in
closed-loop with the MPC control (4) and disturbances in Bµ. Moreover, since
0 ∈ int(XT ), we have that 0 ∈ int(X̃f (N)). The choice of the terminal cost and
of the stage cost ensures that there exist a, b > 0, α1(s) � as and α2(s) � bs

such that α1(‖x‖) ≤ ṼMPC(x) ≤ α2(‖x‖) for all x ∈ X̃f (N). Let x̃k+1 denote the
solution of (7b) in closed-loop with uMPC(·) obtained as indicated in part (i) of
the proof and let x∗0|k � x̃k. Due to full-column rank of Q there exists γ > 0 such
that ‖Qx‖ ≥ γ‖x‖ for all x. Then, by optimality, property (P1), xN−1|k+1 ∈ Fθ

and from inequality (5) it follows that:

Ṽ (x̃k+1)− Ṽ (x̃k) ≤ J(x̃k+1,uk+1)− J(x̃k,u∗
k) = −L(x∗0|k, u

∗
0|k) + F (xN |k+1)

+ [−F (xN−1|k+1) + F (xN−1|k+1)]− F (x∗N |k) + L(xN−1|k+1, h(xN−1|k+1))

+
N−2∑
i=0

[
L(xi|k+1,uk+1(i + 1))− L(x∗i+1|k, u

∗
i+1|k)

]
≤ −L(x∗0|k, u

∗
0|k) + F (xN |k+1)− F (xN−1|k+1) + L(xN−1|k+1, h(xN−1|k+1))

+

(
ξηN−1 + ‖Q‖

N−2∑
p=0

ηp

)
‖wk‖

(5)
≤ −‖Qx∗0|k‖+ σ(‖wk‖) ≤ −α3(‖x̃k‖) + σ(‖wk‖),

with σ(s) � (ξηN−1 + ‖Q‖
∑N−2

p=0 ηp)s and α3(s) � γs. Thus, it follows that
ṼMPC(·) satisfies the hypothesis of Theorem 3. Hence, the closed-loop system
(7b)-(4) is ISS for initial conditions in X̃f (N) and disturbance inputs in Bµ. �




