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Summary. This paper presents a review of recent contributions that unite predic-
tive control approaches with Lyapunov-based control approaches at the implementa-
tion level (Hybrid predictive control) and at the design level (Lyapunov-based predic-
tive control) in a way that allows for an explicit characterization of the set of initial
conditions starting from where closed–loop stability is guaranteed in the presence of
constraints.

1 Introduction

Virtually all operation of chemical processes is subject to constraints on their
manipulated inputs and state variables. Input constraints arise as a manifes-
tation of the physical limitations inherent in the capacity of control actuators
(e.g., bounds on the magnitude of valve opening), and are enforced at all times
(hard constraints). State constraints, on the other hand, arise either due to the
necessity to keep the state variables within acceptable ranges to avoid, for exam-
ple, runaway reactions (in which case they need to be enforced at all times, and
treated as hard constraints) or due to the desire to maintain them within de-
sirable bounds dictated by performance considerations (in which case they may
be relaxed, and treated as soft constraints). Constraints automatically impose
limitations on our ability to steer the dynamics of the closed-loop system at will,
and can cause severe deterioration in the nominal closed-loop performance and
may even lead to closed-loop instability if not explicitly taken into account at
the stage of controller design.

Currently, model predictive control (MPC), also known as receding horizon
control (RHC), is one of the few control methods for handling state and input
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constraints within an optimal control setting and has been the subject of numer-
ous research studies that have investigated the stability properties of MPC. In
the literature, several nonlinear model predictive control (NMPC) schemes have
been developed (e.g., see [2, 4, 17, 19, 20, 27, 30]) that focus on the issues of
stability, constraint satisfaction, uncertainty and performance optimization for
nonlinear systems. One of the key challenges that impact on the practical im-
plementation of NMPC is the inherent difficulty of characterizing, a priori (i.e.,
before controller implementation or testing for feasibility), the set of initial con-
ditions starting from where a given NMPC controller is guaranteed to stabilize
the closed–loop system. Specifically, the stability guarantee in various MPC for-
mulations (with or without stability conditions, and with or without robustness
considerations) is contingent upon the assumption of initial feasibility, and the
set of initial conditions starting from where feasibility and stability is guaranteed
is not explicitly characterized. For finite–horizon MPC, an adequate characteri-
zation of the stability region requires an explicit characterization of the complex
interplay between several factors, such as the initial condition, the size of the
constraints and uncertainty, the horizon length, the penalty weights, etc. Use of
conservatively large horizon lengths to address stability only increases the size
and complexity of the optimization problem and could make it intractable.

The desire to implement control approaches that allow for an explicit char-
acterization of their stability properties has motivated significant work on
the design of stabilizing control laws using Lyapunov techniques that provide
explicitly–defined regions of attraction for the closed–loop system; the reader
may refer to [15] for a survey of results in this area, for a more recent re-
view, see [5]. In [6, 7, 8], a class of Lyapunov–based bounded robust non-
linear controllers, inspired by the results on bounded control originally pre-
sented in [18], was developed. While these Lyapunov–based controllers have
well–characterized stability and constraint–handling properties, they cannot, in
general, be designed to be optimal with respect to a pre–specified, arbitrary cost
function.

From the above discussion, it is clear that both MPC and Lyapunov–based
analytic control approaches possess, by design, their own, distinct stability and
optimality properties. Motivated by these considerations, this paper presents a
review of recent contributions [9, 10, 22, 23, 24, 25] that unite predictive control
approaches with Lyapunov-based control approaches at the implementation level
(Hybrid predictive control) and at the design level (Lyapunov-based predictive
control) in a way that allows for an explicit characterization of the set of initial
conditions starting from where closed–loop stability is guaranteed in the presence
of constraints.

2 Preliminaries

We focus on the problem of nonlinear systems with input constraints of the form:

ẋ(t) = f(x(t)) + g(x(t))u(t) (1)
‖u‖ ≤ umax (2)



Techniques for Uniting Lyapunov-Based and Model Predictive Control 79

where x = [x1 · · ·xn]′ ∈ IRn denotes the vector of state variables, u = [u1 · · ·um]′

is the vector of manipulated inputs, umax ≥ 0 denotes the bound on the manip-
ulated inputs, f(·) is a sufficiently smooth n× 1 nonlinear vector function, and
g(·) is a sufficiently smooth n ×m nonlinear matrix functions. Without loss of
generality, it is assumed that the origin is the equilibrium point of the unforced
system (i.e. f(0) = 0). Throughout the paper, the notation ‖ · ‖ will be used to
denote the standard Euclidean norm of a vector, while the notation ‖ · ‖Q refers
to the weighted norm, defined by ‖x‖2Q = x′Qx for all x ∈ IRn, where Q is a
positive–definite symmetric matrix and x′ denotes the transpose of x. In order
to provide the necessary background for our results in sections 3 and 4, we will
briefly review in the remainder of this section the design procedure for, and the
stability properties of, both the bounded and model predictive controllers, which
constitute the basic components of our controllers. We focus on the state feed-
back control problem where measurements of x(t) are assumed to be available
for all t.

2.1 Model Predictive Control

We describe here a symbolic MPC formulation that incorporates most existing
MPC formulations as special cases. This is not a new formulation of MPC;
the general description is only intended for the purpose of highlighting the fact
that the hybrid predictive control structure can incorporate any available MPC
formulation. In MPC, the control action at time t is conventionally obtained by
solving, on–line, a finite horizon optimal control problem. The generic form of
the optimization problem can be described as:

u(·) = argmin{Js(x, t, u(·))||u(·) ∈ S}

s.t. ẋ(t) = f(x(t)) + g(x)u

x(0) = x0, x(t + T ) ∈ ΩMPC(x, t)

(3)

Js(x, t, u(·)) =

t+T∫
t

(x′(s)Qx(s) + u′(s)Ru(s))ds + F (x(t + T )) (4)

and S = S(t, T ) is the family of piecewise continuous functions, with period
∆, mapping [t, t + T ] into the set of admissible controls and T is the horizon
length. A control u(·) in S is characterized by the sequence {u[k]} where u[k] :=
u(k∆) with u(t) = u[k] for all t ∈ [k∆, (k + 1)∆). Js is the performance index,
R and Q are strictly positive definite, symmetric matrices and the function
F (x(t + T )) represents a penalty on the states at the end of the horizon. The
set ΩMPC(x, t) could be a fixed set, or may represent inequality constraints
(as in the case of MPC formulations that require some norm of the state, or a
Lyapunov function value, to decrease at the end of the horizon). The stability
guarantees in MPC formulations depend on the assumption of initial feasibility
and obtaining an explicit characterization of the closed–loop stability region of
the predictive controller remains a difficult task.
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2.2 Bounded Lyapunov-Based Control

Consider the system of Eqs.1-2, for which a family of control Lyapunov functions
(CLFs), Vk(x), k ∈ K ≡ {1, · · · , p} has been found. Using each control Lyapunov
function, we construct, using the results in [18] (see also [6, 7]), the following
continuous bounded control law

uk(x) = −kk(x)(LgVk)′(x) ≡ bk(x) (5)

kk(x) =
LfVk(x) +

√
(LfVk(x))2 + (umax‖(LgVk)′(x)‖)4

‖(LgVk)′(x)‖2
[
1 +

√
1 + (umax‖(LgVk)′(x)‖)2

] (6)

LfVk(x) =
∂Vk(x)
∂x

f(x), LgVk(x) = [Lg1Vk(x) · · ·LgmVk(x)]′ and gi(x) is the

i-th column of the matrix g(x). For the above controller, it can be shown, using
standard Lyapunov arguments, that for all initial conditions within the state–
space region described by the set

Ωk(umax) = {x ∈ IRn : Vk(x) ≤ cmax
k } (7)

where cmax
k > 0 is the largest number for which Φk(umax) ⊃ Ωk(umax)\{0}

where
Φk(umax) = {x ∈ IRn : LfVk(x) < umax‖(LgVk)′(x)‖} (8)

then the controller continues to satisfy the constraints, and the time-derivative
of the Lyapunov function is negative–definite for all times. The union of the
invariant regions described by the set

Ω(umax) =
p⋃

k=1

Ωk(umax) (9)

then provides an estimate of the stability region, starting from where the origin
of the constrained closed–loop system, under the appropriate control law from
the family of Eqs.5-6, is guaranteed to be asymptotically stable. Note that CLF-
based stabilization of nonlinear systems has been studied extensively in the non-
linear control literature (e.g., see [1, 11, 18, 29]). The construction of constrained
CLFs (i.e. CLFs that take the constraints into account) remains a difficult prob-
lem (especially for nonlinear systems) that is the subject of ongoing research.
For several classes of nonlinear systems that arise commonly in the modeling of
practical systems, systematic and computationally feasible methods are avail-
able for constructing unconstrained CLFs (CLFs for the unconstrained system)
by exploiting the system structure. Examples include the use of quadratic func-
tions for feedback linearizable systems and the use of back-stepping techniques
to construct CLFs for systems in strict feedback form. Furthermore, we note
here that the bounded control law of Eqs.5-6 will be used in the remainder of
the paper only to illustrate the basic idea of the proposed techniques for uniting
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Lyapunov-based and predictive controllers. Our choice of using this particular
design is motivated by its explicit structure and well-defined region of stability.
However, our results are not restricted to this particular design and any other
analytical bounded control law, with an explicit structure and well-defined region
of stability, can be used.

3 Hybrid Predictive Control

By comparing the bounded controller and MPC designs presented in the previous
section, some tradeoffs with respect to their stability and optimality properties
are evident. The bounded controller, for example, possesses a well-defined region
of admissible initial conditions that guarantee constrained closed–loop stability.
However, its performance may not be optimal with respect to an arbitrary per-
formance criterion. MPC, on the other hand, provides the desired optimality
requirement, but poses implementation difficulties and lacks an explicit charac-
terization of the stability region. In this section, we reconcile the two approaches
by means of a switching scheme that provides a safety net for the implementation
of MPC to nonlinear systems.

3.1 Formulation of the Switching Problem

Consider the constrained nonlinear system of Eqs.1-2, for which the bounded
controllers of Eqs.5-6 and predictive controller of Eqs.3-4 have been designed.
The control problem is formulated as the one of designing a set of switching laws
that orchestrate the transition between MPC and the bounded controllers in a
way that guarantees asymptotic stability of the origin of the closed–loop system
starting from any initial condition in the set Ω(umax) defined in Eq.9, respects
input constraints, and accommodates the optimality requirements whenever pos-
sible. For a precise statement of the problem, the system of Eq.1 is first cast as
a switched system of the form

ẋ = f(x) + g(x)ui(t); ‖ui‖ ≤ umax; i(t) ∈ {1, 2} (10)

where i : [0,∞)→ {1, 2} is the switching signal, which is assumed to be a piece-
wise continuous (from the right) function of time, implying that only a finite
number of switches, between the predictive and bounded controllers, is allowed
on any finite interval of time. The index, i(t), which takes values in the set {1, 2},
represents a discrete state that indexes the control input u(·), with the under-
standing that i(t) = 1 if and only if ui(x(t)) = M(x(t)) and i(t) = 2 if and only
if ui(x(t)) = bk(x(t)) for some k ∈ K. Our goal is to construct a switching law
i(t) = ψ(x(t), t) that provides the set of switching times that ensure stabilizing
transitions between the predictive and bounded controllers, in the event that
the predictive controller is unable to enforce closed–loop stability. This in turn
determines the time-course of the discrete state i(t). While various switching
schemes that focus on closed–loop stability and performance considerations to
various degrees are possible [9, 10, 22, 24], we next present one example of a
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switching scheme (formalized in Theorem 1 below; for the proof, see [9]) that
addresses the above problem while focusing on achieving closed–loop stability.

3.2 Controller Switching Logic

Theorem 1. Consider the constrained nonlinear system of Eq.10, with any ini-
tial condition x(0) ≡ x0 ∈ Ωk(umax), for some k ∈ K ≡ {1, · · · , p}, where Ωk

was defined in Eq.7, under the model predictive controller of Eqs.3-4. Also let
T̄ ≥ 0 be the earliest time for which either the closed–loop state, under MPC,
satisfies

LfVk(x(T̄ )) + LgVk(x(T̄ ))M(x(T̄ )) ≥ 0 (11)

or the MPC algorithm fails to prescribe any control move. Then, the switching
rule given by

i(t) =

{
1, 0 ≤ t < T̄

2, t ≥ T̄

}
(12)

where i(t) = 1 ⇔ ui(x(t)) = M(x(t)) and i(t) = 2 ⇔ ui(x(t)) = bk(x(t)),
guarantees that the origin of the switched closed–loop system is asymptotically
stable.

Remark 1. Theorem 1 describes a stability-based switching strategy for control
of nonlinear systems with input constraints. The main components of this strat-
egy include the predictive controller, a family of bounded nonlinear controllers,
with their estimated regions of constrained stability, and a high–level supervisor
that orchestrates the switching between the controllers. A schematic represen-
tation of the hybrid control structure is shown in Figure 1. The implementation
procedure of this hybrid control strategy is outlined below:

• Given the system model of Eq.1, the constraints on the input and the family
of CLFs, design the bounded controllers using Eqs.5-6. Given the perfor-
mance objective, set up the MPC optimization problem.

• Compute the stability region estimate for each of the bounded controllers,

Ωk(umax), using Eqs.7-8, for k = 1, . . . , p, and Ω(umax) =
p⋃

k=1

Ωk(umax).

• Initialize the closed–loop system under MPC, at any initial condition, x0
within Ω, and identify a CLF, Vk(x), for which the initial condition is within
the corresponding stability region estimate, Ωk.

• Monitor the temporal evolution of the closed–loop trajectory (by checking
Eq.11 at each time) until the earliest time that either Eq.11 holds or the
MPC algorithm prescribes no solution, T̄ .

• If such a T̄ exists, discontinue MPC implementation, switch to the k-th
bounded controller (whose stability region contains x0) and implement it
for all future times.

Remark 2. The main idea behind Theorem 1, and behind the hybrid pre-
dictive controller (including the designs that address issues of unavailability of
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Fig. 1. Schematic representation of the hybrid control structure merging MPC and a
family of fall–back bounded controllers with their stability regions

measurements and uncertainty) is as follows: first design a Lyapunov-based con-
troller that allows for an explicit characterization of the set of initial conditions
starting from where closed–loop stability is guaranteed in the presence of con-
straints. For an initial condition within the stability region of the Lyapunov-based
controller, the predictive controller is implemented in the closed–loop system,
while the supervisor monitors the evolution of the states of the closed–loop sys-
tem. The supervisor checks switching rules designed to detect instability like be-
havior under the predictive controller and to guard against the possibility that
the closed–loop trajectory under the predictive controller escapes out of the re-
gion where the Lyapunov-based controller provides the stability guarantees. In
the theorem above, increase in the value of the Lyapunov-function (that is used
in the design of the Lyapunov-based controller and in characterizing the stability
region) is considered both as instability like behavior and to safeguard against the
closed–loop state trajectory escaping the stability region (since the stability region
is defined by a level set of the Lyapunov-function). The switching rule therefore
dictates switching to the fall-back Lyapunov-based controller in the event of an
increase in the value of the Lyapunov function.

Remark 3. The presence of constraints limits the set of initial conditions
starting from where closed–loop stability can be achieved (the so called null-
controllable region, or Xmax). While a given controller design typically provides
stability from subsets of the null-controllable region, it is important to be able
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to estimate the set of initial conditions starting from where the controller can
guarantee closed–loop stability. The difficulty in characterizing the set of ini-
tial conditions starting from where a given predictive controller is guaranteed
to be stabilizing motivates the use of backup controllers within the hybrid pre-
dictive control structure that provide sufficiently non-conservative estimates of
their stability region. The Lyapunov-based controller of Eqs.5-7 provides such
an estimate of its stability region that compares well with the null controllable
region (how well, is something that can only be determined on a case by case
basis; see [21] for a comparison in the case of a linear system with constraints).
Note also that estimating the stability region under the controller of Eqs.5-7
requires only algebraic computations and scales well with an increase in number
of system states; see [12] for applications to a polyethylene reactor and [26] for
an application in the context of fault-tolerant control.

Remark 4. In addition to constraints, other important factors that influence
the stabilization problem are the lack of complete measurements of the process
state variables and the presence of uncertainty. The problem of lack of avail-
ability of measurements is considered in [22] where the hybrid predictive output
feedback controller design comprises of the state estimator, the Lyapunov-based
and predictive controllers, together with the supervisor. In addition to the set of
switching rules being different from the one under state feedback, an important
characteristic of the hybrid predictive control strategy under output feedback
is the inherent coupling, brought about by the lack of full state measurements,
between the tasks of controller design, characterization of the stability region
and supervisory switching logic design, on one hand, and the task of observer
design, on the other. In [24] we consider the presence of uncertainty in the design
of the individual controllers as well as the switching logic in a way that enhances
the chances of the use of the predictive control algorithms while not sacrificing
guaranteed closed–loop stability.

4 Lyapunov-Based Predictive Control

In this section, we review our recent results on the design of a Lyapunov-based
predictive controller, where the design of the (Lyapunov-based) predictive con-
troller uses a bounded controller, with its associated region of stability, only as an
auxiliary controller. The Lyapunov-based MPC is shown to possess an explicitly
characterized set of initial conditions, starting from where it is guaranteed to be
feasible, and hence stabilizing, while enforcing both state and input constraints
at all times.

4.1 System Description

Consider the problem of stabilization of continuous-time nonlinear systems with
state and input constraints, with the following state-space description:

ẋ(t) = f(x(t)) + g(x(t))u(t); u ∈ U ; x ∈ X (13)
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where x = [x1 · · ·xn]′ ∈ IRn denotes the vector of state variables, u = [u1 · · ·um]′

∈ IRm denotes the vector of manipulated inputs, U ⊆ IRm, X ⊆ IRn denote the
constraints on the manipulated inputs and the state variables, respectively, f(·)
is a sufficiently smooth n× 1 nonlinear vector function, and g(·) is a sufficiently
smooth n×m nonlinear matrix function. Without loss of generality, it is assumed
that the origin is the equilibrium point of the unforced system (i.e., f(0) = 0).

4.2 Lyapunov-Based Predictive Control Design

Preparatory to the characterization of the stability properties of the Lyapunov-
based predictive controller, we first state the stability properties of the bounded
controller of Eqs.5–6 in the presence of both state and input constraints. For
the controller of Eqs.5–6, one can show, using a standard Lyapunov argument,
that whenever the closed–loop state, x, evolves within the region described by
the set:

Φx,u = {x ∈ X : L∗
fV (x) ≤ umax‖(LgV )′(x)‖} (14)

then the controller satisfies both the state and input constraints, and the time-
derivative of the Lyapunov function is negative-definite. To compute an estimate
of the stability region we construct a subset of Φx,u using a level set of V , i.e.,

Ωx,u = {x ∈ IRn : V (x) ≤ cmax
x,u } (15)

where cmax
x,u > 0 is the largest number for which Ωx,u ⊆ Φx,u. Furthermore, the

bounded controller of Eqs.5-6 possesses a robustness property (with respect to
measurement errors) that preserves closed–loop stability when the control action
is implemented in a discrete (sample and hold) fashion with a sufficiently small
hold time (∆). Specifically, the control law ensures that, for all initial conditions
in Ωx,u, the closed–loop state remains in Ωx,u and eventually converges to some
neighborhood of the origin (we will refer to this neighborhood as Ωb) whose
size depends on ∆. This property is exploited in the Lyapunov-based predictive
controller design of Section 4.2 and is stated in Proposition 1 below (the proof
can be found in [25]). For further results on the analysis and control of sampled-
data nonlinear systems, the reader may refer to [13, 14, 28, 31].

Proposition 1. Consider the constrained system of Eq.1, under the bounded
control law of Eqs.5–6 with ρ > 0 and let Ωx,u be the stability region estimate
under continuous implementation of the bounded controller. Let u(t) = u(j∆)
for all j∆ ≤ t < (j + 1)∆ and u(j∆) = b(x(j∆)), j = 0, · · · ,∞. Then, given
any positive real number d, there exist positive real numbers ∆∗, δ

′
and ε∗

such that if ∆ ∈ (0, ∆∗] and x(0) := x0 ∈ Ωx,u, then x(t) ∈ Ωx,u ⊆ X and
lim sup

t→∞
‖x(t)‖ ≤ d. Also, if V (x0) ≤ δ

′
then V (x(τ)) ≤ δ

′ ∀ τ ∈ [0, ∆) and if

δ
′
< V (x0) ≤ cmax

x,u , then V̇ (x(τ)) ≤ −ε∗ ∀ τ ∈ [0, ∆).

We present now a Lyapunov–based MPC formulation that guarantees feasibility
of the optimization problem subject to hard constraints on the state and input,
and hence constrained stabilization of the closed–loop system from an explicitly
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characterized set of initial conditions. For this MPC design, the control action
at state x and time t is obtained by solving, on-line, a finite horizon optimal
control problem of the form:

P (x, t) : min{J(x, t, u(·))|u(·) ∈ S, x ∈ X} (16)

s.t. ẋ = f(x) + g(x)u (17)

V̇ (x(τ)) ≤ −ε∗ ∀ τ ∈ [t, t+ ∆) if V (x(t)) > δ
′

(18)

V (x(τ)) ≤ δ
′ ∀ τ ∈ [t, t+ ∆) if V (x(t)) ≤ δ

′
(19)

where S = S(t, T ) is the family of piecewise continuous functions (functions
continuous from the right), with period ∆, mapping [t, t+T ] into U and T is the
horizon. Eq.17 is the nonlinear model describing the time evolution of the state
x, V is the Lyapunov function used in the bounded controller design and δ

′
, ε∗

are defined in Proposition 1. A control u(·) in S is characterized by the sequence
{u[j]} where u[j] := u(j∆) and satisfies u(t) = u[j] for all t ∈ [j∆, (j + 1)∆).
The performance index is given by

J(x, t, u(·)) =

t+T∫
t

[
‖xu(s;x, t)‖2Q + ‖u(s)‖2R

]
ds (20)

where Q is a positive semi-definite symmetric matrix and R is a strictly positive
definite symmetric matrix. xu(s;x, t) denotes the solution of Eq.1, due to control
u, with initial state x at time t. The minimizing control u0(·) ∈ S is then applied
to the plant over the interval [j∆, (j+1)∆) and the procedure is repeated indefi-
nitely. Closed–loop stability and state and input constraint feasibility properties
of the closed–loop system under the Lyapunov–based predictive controller are
inherited from the bounded controller under discrete implementation and are
formalized in Proposition 2 below (for a proof, please see [25]).

Proposition 2. Consider the constrained system of Eq.1 under the MPC law of
Eqs.16–20 with ∆ ≤ ∆∗ where ∆∗ was defined in Proposition 1. Then, given any
x0 ∈ Ωx,u, where Ωx,u was defined in Eq.15, the optimization problem of Eq.16-
20 is feasible for all times, x(t) ∈ Ωx,u ⊆ X for all t ≥ 0 and lim sup

t→∞
‖x(t)‖ ≤ d.

Remark 5. Note that the predictive controller formulation of Eqs.16–20 re-
quires that the value of the Lyapunov function decrease during the first step
only. Practical stability of the closed–loop system is achieved since, due to the
receding nature of controller implementation, only the first move of the set of
calculated moves is implemented and the problem is re-solved at the next time
step. If the optimization problem is initially feasible and continues to be feasi-
ble, then every control move that is implemented enforces a decay in the value
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of the Lyapunov function, leading to stability. Lyapunov-based predictive con-
trol approaches (see, for example, [16]) typically incorporate a similar Lyapunov
function decay constraint, albeit requiring the constraint of Eq.18 to hold at
the end of the prediction horizon as opposed to only the first time step. An
input trajectory that only requires the value of the Lyapunov function value to
decrease at the end of the horizon may involve the state trajectory leaving the
level set (and, therefore, possibly out of the state constraint satisfaction region,
violating the state constraints), and motivates using a constraint that requires
the Lyapunov function to decrease during the first time step (this also facilitates
the explicit characterization of the feasibility region).

Remark 6. For 0 < ∆ ≤ ∆∗, the constraint of Eq.18, is guaranteed to be
satisfied (the control action computed by the bounded controller design provides
a feasible initial guess to the optimization problem). Note that the constraint
requires the Lyapunov function value to decay, not at the end of the prediction
horizon (as is customarily done in Lyapunov–based MPC approaches), but only
during the first time step. Furthermore, since the state is initialized in Ωx,u,
which is a level set of V , the closed–loop system evolves so as to stay within
Ωx,u, thereby guaranteeing feasibility at future times. Since the level set Ωx,u

is completely contained in the set defining the state constraints, and the state
trajectory under the predictive controller continues to evolve within this set, the
state constraints are satisfied at all times.

Remark 7. In the event that measurements are not continuously available, but
are available only at sampling times ∆s > ∆∗, i.e., greater than what a given
bounded control design can tolerate (and, therefore, greater than the maximum
allowable discretization for the Lyapunov-based predictive controller), it is nec-
essary to redesign the bounded controller to increase the robustness margin, and
generate a revised estimate of the feasibility (and stability) region under the pre-
dictive controller. A larger value of ∆∗ may be achieved by increasing the value
of the parameter ρ in the design of the bounded controller. If the value of the
sampling time is reasonable, an increase in the value of the parameter ρ, while
leading to a shrinkage in the stability region estimate, can increase ∆∗ to a value
greater than ∆s and preserve the desired feasibility and stability guarantees of
the Lyapunov-based predictive controller.

4.3 Switched Systems with Scheduled Mode Transitions

In many chemical processes, the system is required to follow a prescribed switch-
ing schedule, where the switching times are prescribed via an operating schedule.
This practical problem motivated the development of a predictive control frame-
work for the constrained stabilization of switched nonlinear processes that transit
between their modes of operation at prescribed switching times [23]. We consider
the class of switched nonlinear systems represented by the following state-space
description

ẋ(t) = fσ(t)(x(t)) + gσ(t)(x(t))uσ(t)(t)
uσ(t) ∈ Uσ; σ(t) ∈ K := {1, · · · , p}

(21)
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where x(t) ∈ IRn denotes the vector of continuous-time state variables, uσ(t) =
[u1

σ(t) · · ·um
σ (t)]T ∈ Uσ ⊂ IRm denotes the vector of constrained manipulated

inputs taking values in a nonempty compact convex set Uσ := {uσ ∈ IRm :
‖uσ‖ ≤ umax

σ }, where ‖ · ‖ is the Euclidian norm, umax
σ > 0 is the magnitude of

the constraints, σ : [0,∞) → K is the switching signal which is assumed to be
a piecewise continuous (from the right) function of time, i.e., σ(tk) = lim

t→t+k

σ(t)

for all k, implying that only a finite number of switches is allowed on any finite
interval of time. p is the number of modes of the switched system, σ(t), which
takes different values in the finite index set K, represents a discrete state that
indexes the vector field f(·), the matrix g(·), and the control input u(·), which
altogether determine ẋ.

Consider the nonlinear switched system of Eq.21, with a prescribed switching
sequence (including the switching times) defined by Tk,in= {tkin

1
, tkin

2
, . . . } and

Tk,out = {tkout
1

, tkout
2

, . . . }. Also, assume that for each mode of the switched
system, a Lyapunov–based predictive controller of the form of Eqs.16-20 has been
designed and an estimate of the stability region generated. The control problem
is formulated as the one of designing a Lyapunov-based predictive controller that
guides the closed–loop system trajectory in a way that the schedule described by
the switching times is followed and stability of the closed–loop system is achieved.
The main idea (formalized in Theorem 2 below) is to design a Lyapunov–based
predictive controller for each constituent mode in which the switched system
operates, and incorporate constraints in the predictive controller design which
upon satisfaction ensure that the prescribed transitions between the modes occur
in a way that guarantees stability of the switched closed–loop system.

Theorem 2. Consider the constrained nonlinear system of Eq.10, the control
Lyapunov functions Vk, k = 1, · · · , p, and the stability region estimates Ωk, k =
1, · · · , p under continuous implementation of the bounded controller of Eqs.5-6
with fixed ρk > 0, k = 1, · · · , p. Let 0 < Tdesign <∞ be a design parameter. Let
t be such that tkin

r
≤ t < tkout

r
and tmin

j
= tkout

r
for some m, k. Consider the

following optimization problem

P (x, t) : min{J(x, t, uk(·))|uk(·) ∈ Sk} (22)

J(x, t, uk(·)) =

t+T∫
t

[
‖xu(s;x, t)‖2Q + ‖uk(s)‖2R

]
ds (23)

where T is the prediction horizon given by T = tkout
r
− t, if tkout

r
< ∞ and

T = Tdesign if tkout
r

=∞, subject to the following constraints

ẋ = fk(x) + gk(x)uk (24)

V̇k(x(τ)) ≤ −εk if Vk(x(t)) > δ
′

k, τ ∈ [t, t+ ∆kr ) (25)
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Vk(x(τ)) ≤ δ
′

k if Vk(x(t)) ≤ δ
′

k, τ ∈ [t, t+ ∆kr ) (26)

and if tkout
r

= tmin
j

<∞

Vm(x(tmin
j

)) ≤

⎧⎪⎨⎪⎩
Vm(x(tmin

j−1
))− ε∗ , j > 1, Vm(x(tmin

j−1
)) > δ

′

m

δ
′

m , j > 1, Vm(x(tmin
j−1

)) ≤ δ
′

m

cmax
m , j = 1

⎫⎪⎬⎪⎭ (27)

where ε∗ is a positive real number. Then, given a positive real number dmax, there
exist positive real numbers ∆∗ and δ

′

k, k = 1, · · · ,m such that if the optimization
problem of Eqs.22–27 is feasible at all times, the minimizing control is applied
to the system over the interval [t, t + ∆kr ], where ∆kr ∈ (0, ∆∗] and tkout

r
−

tkin
r

= lkr∆kr for some integer lkr > 0 and the procedure is repeated, then,
lim sup

t→∞
‖x(t)‖ ≤ dmax.

Remark 8. Note that the constraint of Eq.25 is guaranteed to be feasible be-
tween mode transitions, provided that the system is initialized within the sta-
bility region, and does not require the assumption of feasibility. This stability
constraint ensures that the value of the Lyapunov function of the currently active
mode keeps decreasing (recall that one of the criteria in the multiple Lyapunov-
function stability analysis is that the individual modes of the switched system
be stable). The constraint of Eq.25 expresses two transition requirements simul-
taneously: (1) the MLF constraints that requires that the value of the Lyapunov
function be less than what it was the last time the system switched into that
mode (required when the switching sequence is infinite, see [3] for details), and
(2) the stability region constraint that requires that the state of the process re-
side within the stability region of the target mode at the time of the switch; since
the stability regions of the modes are expressed as level sets of the Lyapunov
functions, the MLF-constraint also expresses the stability region constraint. The
understanding that it is a reasonably chosen switching schedule (that is, one that
does not result in closed–loop instability), motivates assuming the feasibility of
the transition constraints for all times. Note that the feasibility of the transi-
tion constraints can also be used to validate the switching schedule, and can be
used to abort the switching schedule (i.e., to decide that the remaining switches
should not be carried out) in the interest of preserving closed–loop stability.
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