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Summary. A multi-stage nonlinear model predictive controller is derived for the real-
time coordination of multiple aircraft. In order to couple the versatility of hybrid sys-
tems theory with the power of NMPC, a finite state machine is coupled to a real time
optimal control formulation. This methodology aims to integrate real-time optimal con-
trol with higher level logic rules, in order to assist mission design for flight operations
like collision avoidance, conflict resolution, and reacting to changes in the environment.
Specifically, the controller is able to consider new information as it becomes available.
Stability properties for nonlinear model predictive control are described briefly along
the lines of a dual-mode controller. Finally, a small case study is presented that con-
siders the coordination of two aircraft, where the aircraft are able to avoid obstacles
and each other, reach their targets and minimize a cost function over time.

1 Introduction

Coordination of aircraft that share common air space is an important problem
in both civil and military domains. Ensuring safe separation among aircraft, and
avoidance of obstacles and no-fly zones are key concerns along with optimization
of fuel consumption, mission duration and other criteria. In previous work [10] we
developed an optimal control formulation for this problem with path constraints
to define the avoidance requirements and flyability constraints. There we con-
sidered a direct transcription, nonlinear programming strategy solved with the
IPOPT solver [11]. Results for conflict resolution, using detailed flight models
and with up to eight aircraft, were obtained quickly, and motivated the imple-
mentation of such strategy in real time.

The level of information for these problems, including recognition of obstacles
and the presence of other aircraft, evolves over time and can be incomplete at a
given instant. This motivates the design of an on-line strategy able to consider
new information as it becomes available. For this purpose we propose a nonlinear
model predictive control (NMPC) approach. This approach integrates real-time
optimal control with higher level logic rules, in order to assist mission design
for flight operations like collision avoidance and conflict resolution. In this work,
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such integration is achieved by coupling a Finite State Machine (FSM) with an
NMPC regulator. The FSM receives the current state of the environment and
outputs a collection of sets, which is used to alter a nominal optimal control
problem (OCP) in the NMPC regulator. For instance, the detection of a new
obstacle leads the FSM to add a new element to the relevant set. The update
then alters a nominal OCP by adding the constraints pertinent to the obstacle
just detected, thus leading to an optimal avoidance maneuver.

In the next section we derive the multi-stage NMPC problem formulation.
Within this framework the NMPC regulator incorporates a 3 degree-of-freedom
nonlinear dynamic model of each aircraft, and considers a path constrained OCP
that minimizes a performance index over a moving time horizon. In addition,
we describe characteristics of the NMPC formulation that allow the aircraft to
meet their targets. Stability properties for NMPC are discussed and adapted to
the particular characteristics of this application in Section 3. In Section 4, our
overall approach is applied to a small case study which demonstrates collision
avoidance as well as implementation of the NMPC controller within the FSM
framework. Finally, Section 5 concludes the paper and presents directions for
future work.

2 Optimization Background and Formulation

We begin with a discussion of the dynamic optimization strategy used to develop
our NMPC controller.

Optimization of a system of Differential Algebraic Equations (DAEs) aims
to find a control action u ∈ U ⊆ Rnu such that a cost functional is minimized.
The minimization is subject to operational constraints and leads to the following
Optimal Control Problem (OCP):

min
u

J [zd(tF ), tF ]

subject to: żd = fd[zd, za, u], t ∈ TH

0 = zd(tI)− zd,I

0 = fa[zd, za, u], t ∈ TH

0 ≤ g[zd, za, u, t], u(t) ∈ U, t ∈ TH

(1)

where zd ∈ Rnd and za ∈ Rna are the vectors of differential and algebraic vari-
ables, respectively. Given u(t), a time horizon of interest TH := [tI , tF ] and ap-
propriate initial conditions zd(tI) = zd,I , the dynamic behavior of the aircraft can
be simulated by solving the system of DAEs: żd = fd[zd, za, u], fa[zd, za, u] = 0,
with this DAE assumed to be index 1. Notice that some constraints are en-
forced over the entire time interval TH . In this study, we solve this problem
with a direct transcription method [4, 5], which applies a simultaneous solu-
tion and optimization strategy. Direct transcription methods reduce the original
problem to a finite dimension by applying a certain level of discretization. The
discretized version of the OCP, a sparse nonlinear programming (NLP) prob-
lem, can be solved with well known NLP algorithms [5] like sequential quadratic
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programming or interior point methods. The size of the NLP resulting from the
discretization procedure can be very large, so the NLP algorithm used for the
solution must be suitable for large scale problems.

In this work, the OCP is transcribed into an NLP via collocation on finite
elements. As described in [5], the interval TH is divided into nE finite elements.
Within element i, the location of collocation point j occurs at the scaled root of
an orthogonal polynomial. In this work, roots of Radau polynomials are used,
as they allow to stabilize the system [3] when high index constraints are present.
State profiles are approximated in each element by polynomials; differential
states are represented by monomial basis polynomials while algebraic states and
controls are represented by Lagrange basis polynomials. These polynomials are
substituted into the DAE model and the DAE is enforced, over time, at Radau
collocation points over finite elements. Continuity across element boundaries is
also enforced for the differential state profiles. With this approximation, the
optimal control problem (1) can be written as:

min φ(w)
subject to: c(w) = 0

wL ≤ w ≤ wU .

(2)

Here, the equality constraint vector c(w) contains the discretized differential
equations and constraints of (1). Notice that inequality constraints are enforced
as equalities via slack variables. In a similar manner, the vector w consists of
the polynomial coefficients for the state, control, algebraic and (possibly) slack
variables.

The NLP (2) is solved using a primal-dual interior point method. Specifically,
we use the Interior Point OPTimizer– IPOPT [11]. This solver follows a barrier
approach, in which the bounds on the variables of the NLP problem (2) are
replaced by a logarithmic barrier term added to the objective function, and a
sequence of these barrier problems is solved for decreasing values of the penalty
parameter. In essence, IPOPT approaches the solution of (2) from the interior of
the feasible region defined by the bounds. A detailed description of IPOPT, both
from the theoretical and algorithmic standpoints, can be found in [11]. In this
study, IPOPT is used through its interface with AMPL [7], a modeling language
that eases the problem declaration and provides the solver with exact first and
second derivatives via automatic differentiation.

2.1 Nonlinear Model Predictive Control

If a perfect model is available for dynamic behavior of the aircraft, as well as full
information regarding the surrounding environment, an a priori computation of
the optimal control actions would be possible. However, neither of these occur in
practice; the dynamic models merely approximate the behavior of the aircraft,
and the system operates in a partially unknown airspace. An alternative to
handle the modeling inaccuracies and relative lack of information, is to compute
the optimal controls (maneuvers) in real time.
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Nonlinear Model Predictive Control (NMPC) is a closed loop control strategy
in which a nonlinear model of the system is used to compute an optimal control
via the solution of an optimal control problem. This computation is performed in
real time, at every sampling interval [1]. Among the main advantages of NMPC,
is the ability to compute the control using higher fidelity nonlinear models (as
opposed to linear-model approximation of the dynamics) and impose constraints
explicitly. For a thorough overview of both the generalities and formal treatment
of NMPC and related on-line control strategies, please refer to [1, 6, 8].

In the context of the methodology presented above, the NMPC controller
requires us to formally represent the DAE model in (2) as the discrete time,
nonlinear, autonomous system

z(k + 1) = f̄ [z(k), u(k)], (3)

where z(k) ∈ Rn and u(k) ∈ Rm are, respectively, the (differential) state and
control variables, evaluated at time points tk with integers k > 0. (Note that since
the DAE system in (2) is index one, the algebraic variables can be represented as
implicit functions of z(k).) The nonlinear function f̄ : Rn×m �→ Rn is assumed
to be twice continuously differentiable with respect to its arguments, and the
evolution in (3) results from the solution of the DAE in (1). The goal is to find
a control law such that a performance index is minimized, and both states and
controls belong to a given set: z(k) ∈ Z and u(k) ∈ U, ∀k.

It is important to distinguish between the actual states and controls, and
the predicted or computed states and controls. For this reason, we introduce the
following notation: z(k) is the actual state of the physical system at time step
k, which is reached by the actual implementation of the control action u(k− 1).
On the other hand, z̄(l) is the predicted state from time step k, l steps into the
future, by the simulation of the system with the computed control action ū(l−1).

At time step k, we define the performance index

J [z(k), ū, N ] =
N−1∑
l=0

ψ[z̄(l), ū(l)] + F [z̄(N)], (4)

which is a function of the initial condition z(k), the vector of control actions
ū used to simulate the system, and the length of the prediction horizon N . In
the interest of finding the best performance index, an optimization problem is
formulated:

min
ū

J [z(k), ū, N ] =
N−1∑
l=0

ψ[z̄(l), ū(l)] + F [z̄(N)]

subject to:
z̄(l + 1) = f̄ [z̄(l), ū(l)]

z̄(0) = z(k)
ḡ[z̄(l), ū(l)] ≤ 0

ū ∈ U.

(5)
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where the inequality constraints ḡ[·] ≤ 0 correspond to inequality constraints
from (2).

This problem can be considered within the framework of (1) and is solved
using the direct transcription strategy outlined in the previous section. The
solution to (5) is given by ū∗

k = [ū∗(0), ū∗(1), . . . , ū∗(N − 1)].
In NMPC, the first element of ū∗ is implemented on the actual system, defining

the control law u(k) = κ̄[z(k)] := ū∗(0) that leads to the closed loop system
z(k + 1) = f̄ [z(k), κ̄[z(k)]] = f̄ [z(k), u(k)]. At the next sampling interval k + 1,
a new control action, u(k + 1), is found in a similar manner.

2.2 Multistage Controller

In the application at hand, some information about the environment is not known
a priori. For instance, the presence of an obstacle could be unknown until such
obstacle is within radar distance of the aircraft. For this reason, it is not possible
to include all the pertinent constraints in the optimization problem a priori.
Also, a new way-point might be assigned to an aircraft at any given time. These
difficulties can be overcome by using a multi-stage controller. Specifically, we
couple a finite state machine (FSM) with the NMPC controller.

An FSM is an event-driven system, that makes a transition from one state to
another when the condition defining the transition is true. In our application,
to each state of the FSM corresponds a set S relevant to a nominal OCP. The
OCP is formed by constraints and variables that are indexed by S. The FSM
is also able to alter parameters relevant to the OCP, for instance, the position
and radius of a recently detected obstacle. The new information is passed to the
nominal OCP by altering the set S, and irrelevant information is removed in a
similar manner.

The states in the FSM correspond to the modes of operation: provide mission:
which assigns missions to to the corresponding aircraft and issues an appropri-
ate trigger, wait: which forces aircraft to wait until a mission is assigned, cruise:
where control actions are computed and implemented for each aircraft to reach
the setpoint defined by the current mission and detect obstacles, avoid: which
obtains geography (e.g. position and radius) of detected obstacles and formu-
lates appropriate constraints for the cruise mode, assess outcome: which veri-
fies whether the targets have been reached and triggers new missions, and lock
mode, described below. Additional information related to the FSM can be found
in [2]. The NMPC controller, formed by a nominal OCP whose constraints and
variables are indexed by the set S, is embedded into the cruise and lock modes.

The NMPC block solves an OCP that includes the following constraints: DAE
system describing the dynamic response of the aircraft and flyability constraints
(like stall speed, maximum dynamic pressure, and others); conflict resolution
enforcing a minimum radial separation among aircraft; and obstacle avoidance
enforcing a minimum separation between aircraft and obstacles. A schematic
view of the coupling between the FSM and the NMPC block is presented in
Figure 1.
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Fig. 1. Schematic view of the coupling between the FSM and the NMPC block. The
current state together with the set-point and radar readings cause the FSM to update
the set S which, in return, alters the structure of the nominal OCP within the NMPC
block. The optimal control action u∗ obtained in the NMPC block is implemented in
the system.

In order for each aircraft to reach a given target in an efficient manner, we
define the following objective functional for each prediction horizon k:

J [z(k), ū, N ] =
∑

i

Pi

⎡⎢⎣1
2

tk
F∫

tk
I

(
ū2

1,i + ū2
2,i

)
dt + ηiΦ(z̄i, z

sp
i )|tk

F

⎤⎥⎦ (6)

where u1,i and u2,i are the forward and vertical load factors for aircraft i, respec-
tively. In this application it suffices to consider the load factor as the acceleration
experienced by the aircraft. We choose to minimize the load factor terms because
there is a direct relation between the acceleration of an aircraft and fuel con-
sumption (higher forward or upward accelerations require more fuel) and pilot
safety and comfort.

In (6), the contributions of each aircraft are added up, weighted by a fac-
tor Pi ≥ 0 representing the priority of each aircraft. Each contribution includes
an integral term, that measures the control effort, and an exact penalty term
Φ(z̄i, z

sp
i )|tk

F
= ‖z̄i(tkF ) − zsp

i ‖1, weighted by a factor ηi  0, that enforces the
target.

The target is imposed with an exact penalty term and not with a hard con-
straint, because it is not possible to know a priori when the aircraft will reach
the target. If the aircraft are far from their targets, the exact penalty formulation
encourages a closer distance to the target, without necessarily reaching it. On
the other hand, if the target can be reached within the time horizon of the NMPC
controller, the exact penalty is equivalent to a hard constraint, provided that the
weighting factor ηi is sufficiently large (see [9]; in this work we use ηi = 105).
If the target can be reached within the time horizon k, the FSM transitions to
the lock mode, which reduces the interval tF by one unit at k + 1, until the
target is reached. The penalty term has important implications on the stability
properties, as discussed in the next section. The objective functional (6) together
with the above constraints and appropriate initial conditions specify the OCP
given to the NMPC block.

The FSM was implemented in Matlab as a collection of switch statements.
The optimization step of the NMPC block is implemented in AMPL using
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IPOPT as the NLP solver. Communication between the NMPC and the FSM
was carried out through files updated in every time horizon. In this work, we use
a prediction horizon of N = 10, tF − tI ≤ 60 seconds, and a sampling time of 6
seconds. We acknowledge that the length of the prediction and implementation
horizons are critical tuning parameters in NMPC. The main trade-off is that
longer horizons provide solutions closer to the off-line, full-length optimization,
but require longer CPU times.

3 Stability Properties

In this section we consider the nominal stability for a particular stage of our
controller which solves (5). Ensuring stability of z(k + 1) = f̄ [z(k), h(z(k)] is a
central problem in NMPC, and can be achieved by several methods [1]. The aim
is to find a control law such that the origin for the closed-loop system (without
loss of generality assumed to be the setpoint) is asymptotically stable, with a
large region of attraction. All techniques require some modification to the OCP
(5) solved on-line, but have the following in common:

• a positive definite, scalar cost function or performance index J(·), with a
final penalty term F (·),
• a nonlinear model f̄(·) describing the dynamic response of the system, from

an initial condition z(0), N steps into the future.
• control constraints U and state constraints Z, and
• a terminal constraint z ∈ Zs.

For instance, setting N = ∞ in (5) leads to an Infinite Horizon nonlinear
control (IH), which can be proved to provide a stabilizing control law. How-
ever, its implementation requires the approximation of an infinite summation,
leading to a difficult optimization problem that normally cannot be solved in
a reasonable time frame. The difficulties associated with the implementation of
the IH, motivated the development of control strategies based on finite-horizon
(FH) optimization. In particular Nonlinear Receding Horizon (NRH) control, is
a group of methodologies (of which NMPC is a member) that specifically aims
to solve problem (5).

Important cases of NRH include the zero-state (ZS) terminal constraint for
which the terminal cost F (·) ≡ 0 and Zs = {0}, meaning that the end point con-
straint is enforced as a hard constraint. ZS can guarantee stability if there exists a
nonempty neighborhood of the origin ZC(N) for which it is possible to find a con-
trol sequence u(k), k = {0, . . . , N −1} capable of driving z(k+1) = f̄ [z(k), u(k)]
to the origin in N steps (i.e. z(N) = 0), and the initial condition z(0) is within
that neighborhood. An important drawback of the ZS methodology is that it can
require prohibitively long time horizons for ZC(N) to exist and, even if ZC(N)
exists for a short horizon, this might result in excessive control effort. In addition,
satisfying the equality constraint can be computationally demanding.

The idea of replacing the equality constraint by an inequality, which is much
easier to satisfy, motivates the Dual Mode (DM) controller, for which the F (·) is
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chosen as an upper bound on the cost of some stabilizing controller that regulates
the system, whenever it is within the neighborhood of the origin defined by Zs.
In the implementation of DM, FH control is applied until z(t) ∈ Zs, at which
point the controller switches to a stabilizing state feedback controller u(t) =
κ(z(t)). Stability of the DM controller can be paraphrased by the following
theorem [1, 6, 8]:

Theorem 1 (Nominal Stability of NMPC). Consider the system described
by (3), then with advancing k > 0, the NMPC controller leads to a monotonic
decrease of J [z(k)] and it is asymptotically stable within a region at least twice
the size of Zs, if we assume:

• F (z) > 0, ∀z ∈ Zs\{0},
• there exists a local control law u = κ(z) defined on Zs, such that f̄(z, κ(z)) ∈

Zs, ∀z ∈ Zs, and
• F (f̄ [z, κ(z)])− F (z) ≤ −ψ[z, κ(z)], ∀z ∈ Zs.

We can apply this result directly for a particular assigned set of way-points if
we assume that the cost of some stabilizing controller (including manual control
of the aircraft) can be overestimated by the exact penalty term in (6) over the
entire test field, i.e., F (z(tkF )) = ηΦ(zi, z

sp
i )|tk

F
and Zs = Z. A practical realiza-

tion of this assumption occurs for η suitably large. Because of this assumption
and the implementation of the exact penalty term, the stability result applies to
(5) for aircraft only in the cruise and lock modes, and the performance index
decreases monotonically within these modes. However, we caution that this re-
sult does not imply monotonic decrease over the entire set of missions. As new
missions are assigned or as different constraints are added in the avoid mode,
the performance index may indeed increase. The analysis of overall stability (the
global case) is left for future work.

4 Two Aircraft Case Study

We now consider the case of two aircraft that accomplish separate missions
(defined by way-points (wp)) in a constrained airspace. The trajectory through
which a given aircraft reaches the target must be obstacle free and, at every
point in time, the different aircraft must maintain a safe distance from each
other. The airspace is known to have obstacles, for some of which the position
and size are known a priori. The aircraft are also equipped with radar, which
can detect a previously unknown obstacle. It is assumed that the radar is able
to determine both shape and location of a given obstacle within its scope.

Aircraft dynamics can be described by the state variables, zd =T [x y h v χ γ],
corresponding to east-range, north-range, altitude, air speed, heading angle and
flight path angle, respectively. The control variables are given by u =T [u1 u2 u3]
and correspond to forward load factor, vertical load factor, and bank angle,
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Fig. 2. Test field for the case studies. Aircraft 1 (dotted) and 2 (solid).

respectively. After some simplifying assumptions, the equations of motion are
stated for each aircraft as:

ẋ = v cos γ cosχ, v̇ = g(u1 − sin γ),

ẏ = v cos γ sinχ, χ̇ = − g
v

(
u2 sin u3

cos γ

)
,

ḣ = v sinγ, γ̇ = − g
v (u2 cosu3 + cos γ) ,

(7)

where g is the standard acceleration. In order to produce flyable maneuvers, con-
straints defining the flight envelope and other restrictions modeling the perfor-
mance capabilities of the aircraft are added to the formulation. Using SI units,
we have the air density, ρ = 1.222 exp(−h/9144.0) and bounds on velocity,
v ≥ vS

√
9144.0/ρ, v2 ≤ 2qmax/ρ and control variables uj ∈ [uj min, uj max], j =

1, . . . 3. Here vS is the stall speed and qmax is the maximum dynamic pressure.
We now consider two aircraft flying in the test field presented in Figure 2,

where the three small cylinders are pop-up obstacles; their presence is not known
a priori. Two missions are assigned to each aircraft: wp1→wp3→wp4 for air-
craft 1, and wp3→wp1→wp2 for aircraft 2. Using the proposed multi-stage
NMPC approach, both aircraft are able to reach the assigned way-points, while
avoiding obstacles and (locally) minimizing the load factor terms. In Figure 3,
notice that aircraft 1 reached the second way-point in 560 seconds, while air-
craft 2 reached the second way-point in 660 seconds. The optimization prob-
lem solved at each NMPC horizon varies in size, since different information is
added and subtracted as the flight evolves. The largest NLP solved consists of
1406 variables and 1342 constraints. The average CPU time required to solve the
NMPC problem was 0.2236 seconds, and the maximum CPU time required was of
0.8729 seconds.1

1 SUN Java Workstation: dual AMD64-250 processors @ 2.4GHz with 16GB RAM,
running Linux operating system.
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Fig. 3. Optimal control actions for aircraft 1 (left) and 2 (right). Forward load factor
(solid, inner axis) and vertical load factor (dashed, outer axis).

5 Conclusions and Future Work

We present a multi-stage, NMPC-based control strategy for the real time coor-
dination of multiple aircraft. The controller couples a finite state machine with
a nonlinear model predictive controller. With the proposed methodology, it is
possible to coordinate several aircraft, such that they can perform several mis-
sions in partially unknown environments. The main advantage of this controller
is its ability to consider new information as it becomes available and its ability
to define several modes of operation.

A case study with two aircraft was presented. It is noticed that the CPU times
required to compute the control action are small compared to the physical time
of the implementation (3.7%, on average). Stability of the controller is achieved
based on properties of the dual mode NMPC controller and robustness can be
promoted by tuning certain parameters within the NMPC regulator. Although
good results can be obtained with the methodology presented, it is desirable to
investigate more general conditions under which the controller is stable for the
entire FSM, in the presence of disturbances, and also with known robustness
margins.

The NMPC controller could also be used to assist in the decision-making
process involved in the unmanned control of aerospace vehicles. We believe that
the concept of combining the versatility of hybrid systems theory with the power
of large-scale optimal control can prove very useful in the design of advanced
control strategies for the efficient coordination of multiple aircraft.
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