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Summary. The purpose of this paper is to demonstrate the application of a re-
cently developed theory for distributed nonlinear model predictive control (NMPC)
to a promising domain for NMPC: dynamic management of supply chain networks.
Recent work by the first author provides a distributed implementation of NMPC for
application in large scale systems comprised of cooperative dynamic subsystems. By
the implementation, each subsystem optimizes locally for its own policy, and commu-
nicates the most recent policy to those subsystems to which it is coupled. Stabilization
and feasibility are guaranteed for arbitrary interconnection topologies, provided each
subsystem not deviate too far from the previous policy, consistent with traditional
MPC move suppression penalties. In this paper, we demonstrate the scalability and
performance of the distributed implementation in a supply chain simulation example,
where stages in the chain update in parallel and in the presence of cycles in the in-
terconnection network topology. Using anticipative action, the implementation shows
improved performance when compared to a nominal management policy that is derived
in the supply chain literature and verified by real supply chain data.

1 Introduction

A supply chain can be defined as the interconnection and evolution of a demand
network. Example subsystems, referred to as stages, include raw materials, dis-
tributors of the raw materials, manufacturers, distributors of the manufactured
products, retailers, and customers. Between interconnected stages, there are two
types of process flows: 1) information flows, such as an order requesting goods,
and 2) material flows, i.e., the actual shipment of goods. Key elements to an
efficient supply chain are accurate pinpointing of process flows and timing of
supply needs at each stage, both of which enable stages to request items as
they are needed, thereby reducing safety stock levels to free space and capital
[3]. Recently, Braun et al. [2] demonstrated the effectiveness of model predictive
control (MPC) in realizing these elements for management of a dynamic semi-
conductor chain, citing benefits over traditional approaches and robustness to
model and demand forecast uncertainties. In this context, the chain is isolated
from competition, and so a cooperative approach is appropriate. Limitations of
their approach are that it requires acyclic interconnection network topologies,
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and sequential updates from downstream to upstream stages. Realistic supply
chains contain cycles in the interconnection network, and generally do not op-
erate sequentially, i.e., stages typically update their policies in parallel, often
asynchronously. To be effective in the general case, a distributed MPC approach
should demonstrate scalability (stages are locally managed), stability, permit
parallel updates, and allow for cycles in the interconnection network topology.
The purpose of this paper is to demonstrate the application of a recently de-
veloped distributed implementation of nonlinear MPC (NMPC) [4, 5] to the
problem of dynamic management of supply chain networks. By this implemen-
tation, each subsystem optimizes locally for its own policy, and communicates
the most recent policy to those subsystems to which it is coupled. Stabilization is
guaranteed for arbitrary interconnection topologies (permitting cycles), provided
each subsystem not deviate too far from the previous policy. A contribution of
this paper is to demonstrate the relevance and efficacy of the distributed NMPC
approach in the venue of supply chain management.

2 Problem Description

A supply chain consists of all the stages involved in fulfilling a customer request
[3]. A three stage supply chain network consisting of a supplier S, a manufacturer
M, and a retailer R is shown in Figure 1, and will be the focus of this paper.
Dell employs a “build-to-order” management strategy that is based on a version
of the chain in Figure 1, where R is the customer, M is Dell, S is a chip supplier
[3]. Each variable shown has a superscript denoting the corresponding stage it is

Fig. 1. Block diagram of a three stage supply chain comprised of a supplier S, a
manufacturer M, and a retailer R

associated with. The classic MIT “Beer Game” [7] is used as an example three
stage supply chain. In the beer game, the supplier S may be thought of as the
supplier of bottles to the manufacturer M, who brews and “bottles” the beer,
and then ships it to the retailer R for sale to customers. The supply chain is
therefore driven by customer demand (number of cases sold per day), which
then triggers a series of information flows and material flows. The information
flows are assumed to have negligible time delays, and are represented by the
three left pointing arrows in Figure 1. The material flows are assumed to have
shipment delays, and are represented by the arrows that pass through blocks
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labeled τ2, where τ2 is a constant representing the amount of delay in days to
move the goods. In the case of the supplier, the outgoing information flow (oS

r )
is converted through fabrication into materials, and this conversion process is
modeled as a simple delay. Since material flows downstream, we say that R is
downstream from M (likewise, M is downstream from S), while M is upstream
from R (likewise, S is upstream from M). The customer can be thought of as a
stage downstream (not shown) from R in our model.

Each stage x ∈ {S,M,R} in Figure 1 is characterized by 3 state variables,
defined as follows. The stock level sx is the number of items currently available
in stage x for shipment to the downstream stage. The unfulfilled order of stock
ox

u is the number of items that stage x has yet to receive from the upstream stage.
The backlog of stock bx is the number of committed items that stage x has yet
to ship to the downstream stage. The exogenous inputs (assumed measureable)
are the demand rate dx

r , defined as the number of items per day ordered by
the downstream stage, and the acquisition rate ax

r , defined as the number of
items per day acquired from the upstream stage. The outputs are the order rate
ox

r , defined as the number of items per day ordered from the upstream stage,
and the shipment rate lxr , defined as the number of items per day shipped to
the downstream stage. The order rate is the decision variable (control). By our
notation, all rate variables are denoted by an r subscript. The model, state and
control constraints for any stage x ∈ {S,M,R} are

ṡx(t) = ax
r (t)− lxr (t)

ȯx
u(t) = ox

r (t)− ax
r (t)

ḃx(t) = dx
r (t)− lxr (t)

⎫⎪⎬⎪⎭ , t ≥ 0, (1)

subject to
0 ≤ (sx(t), ox

u(t), bx(t)) ≤ smax

0 ≤ ox
r (t) ≤ or,max

}
, t ≥ 0, (2)

where lxr (t) = dx
r (t − τ1) + bx(t)/tb. The dynamics of the supply chain in the

present work arise either from rates of accumulation, or from one of two types of
material flow delay (see [7], Chapter 11). Equation (1) describes the first-order
dynamics for stock, unfulfilled orders, and backlog, each arising from rates of
accumulation. The constraints on the state and control in (2) reflect that stock,
unfulfilled order and backlog are independently bounded from below by zero and
from above by a common constant smax, and that the control (order rate) is non-
negative and bounded by the positive constant or,max. The objective of supply
chain management is to minimize total costs, which includes avoiding backlog
(keep near zero) and keeping unfulfilled orders and stock near desired (typically
low) levels [7]. Specifically, the control objective for each stage is (sx(t), ox

u(t))→
(sd, o

x
ud(t)), where sd is a constant desired stock (common to every stage) and

ox
ud(t) = tll

x
r (t) is the desired unfulfilled order. The flow constant tl represents the

lead time from the downstream stage. Note that if the demand rate converges to
a steady value dx

r (t)→ dr, then backlog will converge to zero, the shipment rate
converges lxr (t) → dr, and the desired unfulfilled order becomes the constant
ox

ud = tldr. For each stage x ∈ {S,M,R}, the acquisition rate ax
r (t) and the
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demand rate dx
r (t) are defined as follows: S: aS

r (t) = oS
r (t − τ2), dS

r (t) = oM
r (t);

M: aM
r (t) = lSr (t − τ2), dM

r (t) = oR
r (t); and R: aR

r (t) = lMr (t − τ2). The demand
rate at the retailer dR

r (t) is an input defined as the current/projected customer
demand. After substitutions, we have the following models for each of the three
stages. For the supplier stage,

ṡS(t) = oS
r (t− τ2)− oM

r (t− τ1)− bS(t)/tb
ȯS

u(t) = oS
r (t)− oS

r (t− τ2)

ḃS(t) = oM
r (t)− oM

r (t− τ1)− bS(t)/tb

⎫⎪⎬⎪⎭ . (3)

For the manufacturer stage,

ṡM(t) = oM
r (t− τ1 − τ2) + bS(t− τ2)/tb − oR

r (t− τ1)− bM(t)/tb
ȯM

u (t) = oM
r (t)− oM

r (t− τ1 − τ2)− bS(t− τ2)

ḃM(t) = oR
r (t)− oR

r (t− τ1)− bM(t)/tb

⎫⎪⎬⎪⎭ . (4)

For the retailer stage,

ṡR(t) = oR
r (t− τ1 − τ2) + bM(t− τ2)/tb − dR

r (t− τ1)− bR(t)/tb
ȯR

u (t) = oR
r (t)− oR

r (t− τ1 − τ2)− bM(t− τ2)/tb
ḃR(t) = dR

r (t)− dR
r (t− τ1)− bR(t)/tb

⎫⎪⎬⎪⎭ . (5)

We say that two stages have bidirectional coupling if the differential equa-
tion models of both stages depend upon the state and/or input of the other
stage. Equations (3)–(5) demonstrate the dynamic bidirectional coupling be-
tween stages S and M, and stages M and R. Due to the bidirectional coupling,
there are two cycles of information dependence present in this chain. Cycle one:
the model (3) for S requires the order rate oM

r from M, and the model (4) for
M requires the backlog bS from S. Cycle two: the model (4) for M requires the
order rate oR

r from R, and the model (5) for R requires the backlog bM from
M. Cycles complicate decentralized/distributed MPC implementations, since at
any MPC update, coupled stages in each cycle must assume predictions for the
states/inputs of one another. Such predictions are different in general than the
actual locally computed predictions for those states/inputs. When cycles are
not present, life is easier, as the stages can update sequentially, i.e., stages up-
date in order from downstream to upstream, and the actual predictions from
downstream stages can be transmitted to upstream stages at each update. In
accordance with the MPC approach, the first portion of these actual predictions
is implemented by each stage. Thus, the absence of cycles implies that stages
can transmit policies that will be implemented. The sequential update approach
is taken by Braun et al. [2], whose supply chain example contains no cycles.
When cycles are present, on the other hand, actual predictions are not mutually
available. Thus, some predictions must be assumed, incurring an unavoidable
discrepancy between what a stage will do and what coupled stages assume it
will do. One way to address this issue is to assume that the other stages react
worst case, i.e., as bounded contracting disturbances, as done first by Jia and
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Krogh [6]. The implementation employed here address the cycle issue in another
way [4, 5]. Coupled stages receive the previously computed predictions from one
another prior to each update, and rely on the remainder of these predictions as
the assumed prediction at each update. To bound the unavoidable discrepancy
between assumed and actual predictions, each stage includes a local move sup-
pression penalty on the deviation between the current (actual) prediction and
the remainder of the previous prediction.

3 Control Approaches

The nominal feedback policy, derived in [7], is given by

ox
r (t) = lxr (t) + k1[sd − sx(t)] + k2[ox

ud(t)− ox
u(t)], k1, k2 ∈ (0,∞).

In the simulations in Section 4, the state and control constraints (2) are enforced
by using saturation functions. The nominal control is decentralized in that the
feedback for each stage depends only on the states of that stage. Simulation-
based analysis and comparisons with real data from actual supply chains is
presented as a justification for this choice of control in [7].

For the distributed MPC approach, the continuous time models are first dis-
cretized, using the discrete time samples tk = k ∗ δ, with δ = 0.2 days as the
sample period, and k ∈ N = {0, 1, 2, ...}. The prediction horizon is Tp = P ∗ δ
days, with P = 75, and the control horizon is Tm = M ∗ δ days, with M = 10. For
all three stages, the stock sx and unfulfilled order ox

u models are included in the
MPC optimization problem. The backlog bx, on the other hand, is not included
in the optimization problem, as it is uncontrollable. Instead, the backlog is com-
puted locally at each stage using the discretized model, the appropriate exogenous
inputs that the model requires, and the saturation constraint in (2). For update
time tk, the actual locally predicted stock defined at times {tk, ..., tk+P } is de-
noted {sx(tk; tk), ..., sx(tk+P ; tk)}, using likewise notation for all other variables.
The true stock at any time tk is simply denoted sx(tk), and so sx(tk) = sx(tk; tk),
again using likewise notation for all other variables. In line with the notational
framework in the MATLAB MPC toolbox manual [1], the set of measurable inputs
are termed measured disturbances (MDs). By our distributed MPC algorithm,
the MDs are assumed predictions. The set of MDs for each stage x ∈ {S,M,R}
is denoted Dx(tk), associated with any update time tk. The MDs for the three
stages are DS(tk) = {bS

as(k),oM
r,as(k)}, DM = {bM

as(k),bS
as(k),oR

r,as(k)} and
DR = {bR

as(k),bM
as(k), dR

r }, where ox
r,as(k) = {ox

r,as(tk; tk), ..., ox
r,as(tk+P ; tk)} and

bx
r,as(k) is defined similarly using the assumed predicted backlog. The (·)as sub-

script notation refers to the fact that, except for the demand rate at the retailer
dR

r , all of the MDs contain assumed predictions for each of the associated vari-
ables. It is presumed at the outset that a customer demand dR

r (·) : [0,∞)→ R is
known well into the future and without error. As this is a strong assumption, we
are considering stochastic demand rates in our more recent work. Although it is
locally computed, each stage’s backlog is treated as an MD since it relies on the
assumed demand rate prediction from the downstream stage. Note that the initial
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backlog is always the true backlog, i.e., bx
r,as(tk; tk) = bx(tk) for each stage x and

at any update time tk. Let the set X x(tk) = {sd, o
x
ud(tk; tk), ..., ox

ud(tk+P ; tk)} de-
note the desired states associated with stage x and update time tk. Using the equa-
tions from the previous section, the desired unfulfilled order prediction ox

ud(·; tk)
in X x(tk) can be computed locally for each stage x given the MDs Dx(tk). By our
distributed MPC implementation, stages update their control in parallel at each
update time tk. The optimal control problem and distributed MPC algorithm for
any stage are defined as follows.
Problem 1. For any stage x ∈ {S,M,R}, and at any update time tk, k ∈ N:
Given: the current state (sx(tk), ox

u(tk)), the MDs Dx(tk), the desired states
X x(tk), the non-negative weighting constants (Ws,Wou ,Wu,Wδu), and a non-
negative target order rate otarg

r ,

Find: the optimal control ox
r,∗(k)� {ox

r,∗(tk; tk),ox
r,∗(tk+1; tk), ..., ox

r,∗(tk+M−1; tk)}
satisfying

ox
r,∗(k) =arg min

{ P∑
i=1

Ws [sx(tk+i; tk)− sd]
2+Wou [ox

u(tk+i; tk)− ox
ud(tk+i; tk)]2

+
M−1∑
j=0

Wu

[
ox

r (tk+j ; tk)− otarg
r

]2 +Wδu [ox
r (tk+j ; tk)−ox

r (tk+j−1; tk)]2
}
,

where ox
r (tk−1; tk) � ox

r,∗(tk−1; tk−1), subject to the discrete-time version of the
appropriate model (equation (3), (4) or (5)), and the constraints in equation (2). �
Algorithm 1. The distributed MPC law for any stage x ∈ {S,M,R} is as
follows:

Data: Current state: (sx(t0), ox
u(t0), bx(t0)). Parameters: δ, M , P , (Ws,Wou ,Wu,

Wδu), and otarg
r .

Initialization: At initial time t0 = 0, generate Dx(t0) as follows: (a) Choose a
nominal constant order rate ox,nom

r , set ox
r,as(ti; t0) = ox,nom

r , for i = 0, ..., P , and
if x = R or M, transmit ox

r,as(0) to M or S, respectively; (b) Compute bx
r,as(0),

and if x = S or M, transmit to M or R, respectively. Compute X x(t0) and solve
Problem 1 for ox

r,∗(0).
Controller:

1. Between updates tk and tk+1, implement the current control action ox
r,∗(tk; tk).

2. At update time tk+1:
a) Obtain (sx(tk+1), ox

u(tk+1), bx(tk+1)).
b) Generate Dx(tk+1) as follows:

i. Set ox
r,as(tj+k+1; tk+1) = ox

r,∗(tj+k+1; tk), for j = 0, ...,M − 2 and
ox

r,as(tj+k+1; tk+1) = ox
r,∗(tk+M−1; tk) for i = M − 1, ..., P . If x = R

or M, transmit ox
r,as(k + 1) to M or S, respectively.

ii. Compute bx
r,as(k + 1), and if x = S or M, transmit to M or R,

respectively.
c) Compute X x(tk+1) and solve Problem 1 for ox

r,∗(k + 1).
3. Set k = k + 1 and return to step 1. �
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By this algorithm, each stage initially computes an optimal order rate policy
assuming neighboring stages employ a nominal constant order rate. For every
subsequent update, each stage computes an optimal order rate policy, assuming
that the MDs are based on the remainder of the previously computed policies
computed of neighboring stages.

4 Numerical Experiments

The simulations were carried out in MATLAB 7.0, using Simulink 6.2 and the
Model Predictive Control Toolbox 2.2. The nominal and distributed MPC ap-
proaches are compared on the full three stage problem, given a step increase and
decrease in the customer demand rate at the retailer. For simulation purposes,
we choose dR

r (t) = 200 cases/day for t ∈ [0,∞) \ [5, 15) and dR
r (t) = 300 for

t ∈ [5, 15). The response for the three stages under the nominal control policy
(k1 = 1/15, k2 = 1/30) is shown in Figure 2. To implement the distributed MPC
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Fig. 2. Nominal response to step increase at 5 days and decrease at 15 days in retailer
customer demand rate dR

r

Algorithm 1, the anticipative action of the MPC Toolbox is employed so that
each entire assumed prediction can be used. Recall that the assumed predic-
tions are not the actual predictions, although the move suppression terms (Wδu

weighted) in the cost are used to ensure that these predictions are not too far
apart. The forecasted demand rate at the retailer is also used with the antic-
ipation option turned on. A more “apples-to-apples” comparison would be to
incorporate internal models with the nominal approach that use the forecasted
customer demand rate. The response for the three stages under the distributed
MPC policy with anticipation is shown in Figure 3. The weights used in MPC
for each stage are (Wu,Wδu,Ws,Wou) = (1, 5, 5, 1). The stock and unfulfilled
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Fig. 3. Distributed MPC response to the same demand rate dR
r . By using anticipation,

the state responses are improved, and the order rates are smoother.

order state responses are an improvement over the nominal approach, both in
terms of steady-state error and settling time. The nonzero steady-state error in
the unfulfilled order and stock of stages M and R can be predicted by using
system-type analysis. The well known “bullwhip effect” [3, 7] encountered in the
coordination of a multi-stage supply chain is also seen in both figures, indicated
by the increase in the maximum order rate excursion as one moves upstream
from retailer to supplier.

5 Conclusions and Extensions

In this paper, a supply chain management problem was defined using the classic
MIT “Beer Game” [7]. A nominal feedback policy, derived and experimentally
validated in the supply chain literature, was then compared to a distributed
MPC algorithm. The numerical experiments showed that the algorithm yielded
improved performance over the nominal policy when the customer demand rate
can be reliably forecasted. While one might redefine the nominal approach to
include internal models that leverage forecasts, it is clear that MPC trivializes
making use of forecasted inputs via anticipation, while respecting state and con-
trol constraints. As part of our on going work, we will consider a multi-echelon
supply chain problem [3], in which at least two players operate within each
stage. The decision problem becomes more complicated in these chains, since
the update rates of different players in a stage are different in general, requiring
an extension of the distributed MPC theory to asynchronous timing conditions.
Additionally, we will consider stochastic (brownian) demand rate forecasts, and
more realistic production models in the manufacturing stage.
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