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Summary. This paper first introduces several interpolation schemes, which have been
derived for the linear time invariant case, but with an underlying objective of trading
off performance for online computational simplicity. It is then shown how these can
be extended to linear parameter varying systems, with a relatively small increase in
the online computational requirements. Some illustrations are followed with a brief
discussion on areas of potential development.

1 Introduction

One of the key challenges in predictive control is formulating an optimisation
which can be solved fast enough while giving properties such as guaranteed
closed-loop stability and recursive feasibility. Furthermore one would really like
good expectations on performance. A typical compromise is between algorithm
or computational complexity and performance/feasibility. This paper looks at
how reparameterising the input sequence using interpolation gives one possi-
ble balance, that is, it focuses on maximising feasible regions for a given al-
gorithm /computational complexity without sacrificing asymptotic performance.
The paper also considers some of the barriers to progress and hence suggests pos-
sible avenues for further research and in particular the potential for application
to nonlinear systems. Several types of interpolation will be discussed, including
interpolation between control laws [17, 1], where complexity is linked to the state
dimension and interpolations based on parametric programming solutions [4].

Section 2 gives background information and Section 3 introduces the concep-
tual thinking in how interpolation techniques can widen feasibility while restrict-
ing complexity; to aid clarity, this is introduced using linear time invariant (LTT)
models. Section 4 then extends these concepts to allow application to LPV and
some classes of nonlinear systems. Section 5 gives numerical illustrations and the
paper finishes with a discussion.
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2 Background

This section introduces notation, the LPV model used in this paper, basic con-
cepts of invariance, feasibility and performance, and some prediction equations.

2.1 Model and Objective

Define the LPV model (uncertain or nonlinear case) to take the form:

o(k +1) = A(k)a(k) + Blk)u(k), k=0,...,00, (la)
[A(k) B(k)] € 2 2 Co{[A; Bil,...,[Am Bul}, (1b)

The specific values of [A(k) B(k)] are assumed to be unknown at time k. Other
methods [5, 6] can take knowledge of the current values of the system matrices
or bounded rates of change of these matrices into account but these cases are
not considered in this paper. However, it is conceivable to extend the algorithms
presented in this paper to these settings as well.

When dealing with LTI models (m = 1), we will talk about the nominal case.
The following feedback law is implicitly assumed :

u(k) = —Kux(k); Vk. (2)
For a given feedback, the constraints at each sample are summarised as:

(k) € X = {o: Ayw <1}, Vk
k) € 8o = {w: Ayw < 1},Vk.
u(k) €U = {u: Ayu <1}, Vk o(k) € So = {z: Ayz <1}

(3)
where 1 is a column vector of appropriate dimensions containing only 1’s and
A, = [Ay; —A,K]. We note that the results of this paper have been proven only
for feedback gains giving quadratic stabilisability, that is, for feedback K, there
must exist a matrix P = PT > 0 € R" X"+ such that

¢ Pd; < P, Vj, &;=A; — BjK. (4)

Problem 1 (Cost Objective). For each of the algorithms discussed, the un-
derlying aims are: to achieve robust stability, to optimise performance and to
guarantee robust satisfaction of constraints. This paper uses a single objective
throughout. Hence the algorithms will seek to minimise, subject to robust satis-
faction of (3), an upper bound on:

J = (x(k)"Qz(k) + u(k)" Ru(k)). (5)

k=0

2.2 Invariant Sets

Invariant sets [2] are key to this paper and hence are introduced next.
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Definition 1 (Feasibility and robust positive invariance). Given a system,
stabilizing feedback and constraints (1,2,3), a set S C R™ is feasible iff S C Sp.
Moreover, the set is robust positive invariant iff

reS = (A-BK)xeS, V[AB]en. (6)

Definition 2 (MAS). The largest feasible invariant set (no other feasible in-
variant set can contain states outside this set) is uniquely defined and is called
the Mazimal Admissible Set (MAS, [7]).

Define the closed-loop predictions for a given feedback K as z(k) = ®*z(0);
u(k) = —K®*~12(0); & = A — BK, then, under mild conditions [7] the MAS
for a controlled LTI system is given by

S:rn){gc:@kavES()}z{aszavg1}7 (7)
k=0

with n a finite number. In future sections, we will for the sake of brevity use
the shorthand notation AS = {x : Ma < A1}. The MCAS (maximum control
admissible set) is defined as the set of states stabilisable with robust constraint
satisfaction by the specific control sequence:

u, =—Kx;+¢, 1=0,...,n.—1,

8
u; = —Kux;, 7> Ne. (8)
By computing the predictions given a model/constraints (1,3) and control law
(8), it is easy to show that, for suitable M, N, the MCAS is given as ([18, 19]):
Smcas = {z:3C st. Mz +NC<1}; C=lcg ... cr 4] 9)

Ne—1

In general the MAS/MCAS are polyhedral and hence ellipsoidal invariant sets
9], Sg = {z|zT Px < 1}, are suboptimal in volume [12]. Nevertheless, unlike the
polyhedral case, a maximum volume Sg is relatively straightforward to compute
for the LPV case. However, recent work [11, 3] has demonstrated the tractability
of algorithms to compute MAS for LPV systems. This algorithm requires an
outer estimate, e.g. Sp, constraints at each sample (also Sp) and the model @.

2.3 Background for Interpolation
Define several stabilizing feedbacks K;,i = 1,...,n, with K; the preferred choice.

Definition 3 (Invariant sets). For each K;, define closed-loop transfer ma-

trices @;; and corresponding robust invariant sets S; and also define the convex
hull S :

Spij = Aj — BjKi7 =1 ..,m; S; = {(E T €S = @ij(E S Si,Vj}, (10)

S 2 Co{Sy,..., S} (11)
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Definition 4 (Feasibility). Let @;(k) = A(k) — B(k)K;, then [1] the following
input sequence and the corresponding state predictions are recursively feasible

within S':
u(k) = = i Ki[T320 @ik — 1= )i, )
w(k) = X0, TTSe ik — 1),
if one ensures that
n T = Ny,
2(0) = &, with {30 N=1, A >0, (13)
i=1 z; € S;.

Definition 5 (Cost). With 7 = [¢T ... 2X]T, Lyapunov theory gives an upper
bound T P¥ on the infinite-horizon cost J for predictions (12) using:

P>IIRO,+0r0r Qe + v Pw;, i=1,...,m, (14)
wzth%:dlag(Az—BzKl,,AZ—BlKn), Fm = [I,...,I], Fu: [Kl,...,Kn].

These considerations show that by on-line optimizing over Z, one implicitly op-
timizes over a class of input and state sequences given by (12). Due to recursive
feasibility of these input sequences, this can be implemented in a receding hori-
zon fashion.

3 Interpolation Schemes for LTI Systems

Interpolation is a different form of methodology to the more usual MPC
paradigms in that one assumes knowledge of different feedback strategies with
significantly different properties. For instance one may be tuned for optimal per-
formance and another to maximise feasibility. One then interpolates between
the predictions (12) associated with these strategies to get the best performance
subject to feasibility. The underlying aim is to achieve large feasible regions with
fewer optimisation variables, at some small loss to performance, and hence fa-
cilitate fast sampling. This section gives a brief overview and critique of some
LTT interpolation schemes; the next section considers possible extensions to the
LPV case.

3.1 One Degree of Freedom Interpolations [17]
ONEDOF uses trivial colinear interpolation, hence in (12) use:
=142 T1=1—-)z; Ta=az; 0<a<l. (15)

Such a restriction implies that « is the only d.o.f., hence optimisation is trivial.
Moreover, if K is the optimal feedback, minimising J of (5) over predictions
(15,12) is equivalent to minimising «, « > 0. Feasibility is guaranteed only in

U; Si-
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Algorithm 1. [ONEDOFa] The first move is u = —[(1 — a) K1 + aKs|x where:
a=min « st [Mi(1—a)+ Mz <1, 0<a<l. (16)

M; and My define mutually consistent [17] invariant sets corresponding to K3
and K respectively as S; = {z|M;x < 1}.

Algorithm 2. [ONEDOFb] The first move is u = —[(1 — a) K1 + aKs|x where:

Mi(1—a)z < (1- 91,
a:miél a s.t. Msax < (1, (17)
’ 0<p<1; 0<a<l.

This is solved by o = (u—1)/( — A) where p = max(Mix), X = max(Mszx).

Summary: It can be shown that ONEDOFa will, in general, outperform
ONEDOFD and have a larger feasible region. However, a proof of recursive
feasibility has not been found for ONEDOFa whereas it has for ONEDOFbD.
Convergence proofs only exist for some cases [17], although minor modifications
to ensure this are easy to include, e.g. [16]. However, the efficacy of the method
relies on the existence of a known controller Ko with a sufficiently large feasible
region.

3.2 GIMPC: MPC Using General Interpolation

GIMPC [1] improves on ONEDOF by allowing full flexibility in the decompo-
sition (12) of x and hence ensures (a priori): (i) a guarantee of both recursive
feasibility and convergence is straightforward and (ii) the feasible region is en-
larged to S. But the number of optimisation variables increases to n, + 1.

Algorithm 3 (GIMPC). Take a system (1), constraints (3), cost weighting
matrices @, R, controllers K; and invariant sets S; and compute a suitable P
from (14). Then, at each time instant, solve the following optimization:

min 2T PZ, subject to (13), (18)

Ziy i
and implement the input u = — .| K;%;.

Summary: The increased flexibility in the decomposition of x gives two benefits:
(i) a guarantee of both recursive feasibility and convergence is straightforward
and (ii) the feasible region is enlarged to S. The downside is an increase in the
number of optimisation variables.

3.3 GIMPC2 Interpolations

GIMPC includes the restriction (13) that > ; A\; = 1, A; > 0. However, [15]
showed that such a restriction is unnecessary when the sets S; are polyhedral.
Removing the constraints on A;: (i) the feasible region may become substantially
larger than S; (ii) reduces the number of optimisation variables (computation)
and (iii) facilitates better performance.
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Algorithm 4 (GIMPC2). Using the same notation as algorithm 3, at each
time instant, given the current state x, solve the following optimization problem
on-line

S Mz <1,

T = Z?:l Ty,

and implement the input w = — > -, K;i;, where the M, defines a generalized
MAS 8! with mutually consistent constraints. See Algorithm 6 for details.

min #TPZ, subject to { (19)

Zi

Summary: If the constraints on ); implicit in algorithm 3 (or eqn.(13)) are
removed one gets two benefits: (i) the feasible region may become substantially
larger (illustrated later) than S and moreover (ii) the number of optimisation
variables reduces. One still has guarantees of recursive feasibility and conver-
gence. So GIMPC2 outperforms GIMPC on feasibility, performance and com-
putational load. The main downside is that the associated set descriptions S
maybe more complex. This is discussed later, for instance in Algorithm 6.

3.4 Interpolations to Simplify Parametric Programming (IMPQP)

One area of research within parametric programming [4] solutions to MPC is how
to reduce the number of regions. Interpolation is an under explored and simple
avenue. Interpolation MPQP (IMPQP) [16] takes only the outer boundary of the
MCAS. In any given region, the associated optimal C (9) can be summarised as:
r€R; = C=—K;z+ p; Forother z, for which a scaled version (by 1/p)
would lie in R; on the boundary, then the following control law can be shown to
give recursive feasibility and convergence:

% €R; = C=p(—Kiz+p) (20)

Algorithm 5 (IMPQP). Offline: Compute the MPQP solution and find the
regions contributing to the boundary. Summarise the boundary of the MCAS in
the form Myx < 1 and store the associated regions/laws.

Online: Identify the active facet from p = max; My(j,:)x. With this p, find a
feasible and convergent C from (20) and then perform the ONEDOFa interpola-
tion

Hgna st. Mz+ NaC <1, (21)

and implement v = —Kx + ael C.

Summary: For many MPQP solutions, the IMPQP algorithm [16] can be used
to reduce complexity by requiring storage only of boundary regions and their
associated control laws. Monte-Carlo studies demonstrated that, despite a huge
reduction in set storage requirements, the closed-loop behaviour was nevertheless
often close to optimal.
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3.5 Other Algorithms

For reasons of space we give only a brief statement here. Other avenues currently
being explored include so called Triple mode strategies [8], where the prediction
structure has an extra non-linear mode to enlarge the terminal region. The design
of this extra mode must take account of the LPV case. Another possibility, easily
extended to the LPV case, is based on interpolation between the laws associated
to the vertices of some invariant set. This technique, as with parametric methods,
may suffer from issues of complexity.

4 Extensions to the LPV Case

The previous section dealt with the nominal case. This section shows how the
interpolation methods can be extended to nonlinear systems which can be rep-
resented by an LPV model. In particular, it is noted that recursive feasibility
was established via feasible invariant sets (MAS or MCAS). Hence, the main
conjecture is that all of the interpolation algorithms carry across to the LPV
case, with only small changes, as long as one can compute the corresponding
invariant sets.

4.1 Invariant Sets and Interpolation for GIMPC and ONEDOFbD

The GIMPC and ONEDOFbL algorithms work on terms of the form
max; M(j,:)xz;. For any given MAS, this value is unique and hence one can
use, the set descriptions S; of minimal complexity. Thus extension to the LPV
case is straightforward, as long as polyhedral sets S; exist and one replaces J
with a suitable upper bound [1]. The implied online computational load increases
marginally because the sets S; for the LPV case are likely to be more complex.
An alternative method to perform interpolation in the robust setting is given
n [20]. This method requires the use of nested ellipsoidal invariant sets, which
can significantly restrict the size of the feasible region, but which allow interpo-
lation to be performed without constructing a state decomposition as in (13).

4.2 Invariant Sets and Interpolation for GIMPC2 and ONEDOFa

The algorithm of [11] was defined to find the minimum complexity MAS of an
LPV system for a single control law. Thus redundant constraints are removed
at each iterate. However, for the GIMPC2 algorithm, constraints may need to
be retained [15] even where they are redundant in the individual S;, because the
implied constraints may not be redundant in the combined form of (16,19). Thus,
the MAS must be constructed in parallel to identify and remove redundant con-
straints efficiently. One possibility, forming an augmented system, is introduced
next. (There are alternative ways of forming an augmented system/states [15];
investigations into preferred choices are ongoing.)
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Algorithm 6 (Method to find mutually consistent MAS for the LPV
case).

1. Define an augmented system

X(k+1) = @ (k)X (k); (22)
A(k) - B(k)K; ... 0 i
(k) = : z DX =
0 ... A(k) — B(k)K,, B

Define a set Q with ¥ € 0, describing the allowable variation in ¥ due to
the variations implied by [A(k) B(k)] € (2.
2. Constraints (3) need to be written in terms of augmented state X as follows:

Au[_Kla_KQa]X(k.)Sla k:O7,OO, (233“)
—_——
K
AJLL - 1X(k) <1,  k=0,...,00. (23b)

3. Assume that an outer approximation to the MAS is given by (23). Then
letting u = —KX, this reduces to S, = {X : M,X < 1} where the definition
of M, is obvious.

4. Follow steps 2-5 of Algorithm in [11] to find the robust MAS as S, = {X :
M,X <1}

Remark 1 (Feasible region for robust GIMPC2). Given the constraint
x =Y 1", x;, then one can find a projection of S, to x-space from X -space as
follows:

Sge={x: IX st. M, X <1, a=[[,1,...,1]X}. (24)

Algorithm 7 (GIMPC2 for the LPV case). Given a system (1), con-
straints (3), cost weighting matrices @ = QT > 0,R = RT > 0, asymptot-
ically stabilizing controllers K;, corresponding polyhedral robust invariant sets
S, ={X : M, X <1} and P satisfying (14), solve on-line at each time instant,
the following problem:

min #* P#, subject to

X4

{x:[l,l,...,I]X7 (25)

M, X <1,
and implement input u = —[Ky, Ka, ... , K,]X.

Theorem 1. Algorithm 7 guarantees robust satisfaction of (3) and is recursively
feasible and asymptotically stable for all initial states x(0) € Sga.
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Proof: from the invariance and feasibility of S,, irrespective of the values
A(k), B(k) (or (k)):

x(k) € Sga = xz(k+1)€ Sao. (26)

As one can always choose new state components to match the previous predic-
tions (one step ahead), repeated choice of the same decomposition gives conver-
gence from quadratic stability (4) associated to each K;, and hence system V.
Deviation away from this will only occur where the cost J = T P# can be made
smaller still, so the cost function (25) acts as a Lyapunov function. O

Summary: Extension to the LPV case is not straightforward for GIMPC2 and
ONEDOFa because the form of constraint inequalities implicit in the algorithms
is Myx1+ Msxo+... < 1 and this implies a fixed and mutual consistent structure
in M;; they can no longer be computed independently! This requirement can
make the matrices M; far larger than would be required by say GIMPC. Once
consistent sets S; have been defined, the interpolation algorithms GIMPC2 and
ONEDOFa are identical to the LTI case, so long as the cost J is replaced by a
suitable upper bound.

4.3 Extension of IMPQP to the LPV Case

Extension of IMPQP to the LPV case is immediate given the robust MCAS
(RMCAS) with the addition of a few technical details such as the use of an
upper bound on the cost-to-go. A neat algorithm to find the RMCAS makes use
of an autonomous model [10] (that is model (1) in combination with control law
(8)) to represent d.o.f. during transients, for instance:

x] ®|B0
S ~‘—
C 0

Given (1), ¥ has an LPV representation. Define the equivalent constraint set as
So = {z : A,z < 1}. One can now form the MAS for system (27) with these
constraints using the conventional algorithm. This set, being linear in both x
and C, will clearly take the form of (9) and therefore can be deployed in an
MPQP algorithm. One can either form a tight upper bound on the cost [1] or
a simpler, but suboptimal choice, would be J = CTC. Guaranteed convergence
and recursive feasibility is easy to establish and the main downside is the increase

in the complexity of the RMCAS compared to the MCAS.

)

2pr1 =Wz 2=

_ 0 I(nc—l)nu><(nc—1)nu
0 0

Summary: Application of IMPQP to the LPV case can be done through the use
of an autonomous model to determine the RMCAS. Apart from the increase in
offline complexity and obvious changes to the shape of the parametric solution,
there is little conceptual difference between the LTI and LPV solutions.
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4.4 Summary

We summarize the changes required to extend nominal interpolation algorithms
to the LPV case.

1. The simplest ONEDOF interpolations can make use of a robust MAS, in
minimal form, and apart from this no changes from the nominal algorithm
are needed. The simplest GIMPC algorithm is similar except that the cost
needs to be represented as a minimum upper bound.

2. More involved ONEDOF interpolations require non-minimal representations
of the robust MAS to ensure consistency between respective S;, and hence
require many more inequalities. The need to compute these simultaneously
also adds significantly to the offline computational load.

3. The GIMPC2 algorithm requires both mutual consistency of the MAS and
the cost to be replaced by a minimum upper bound.

4. Interpolation MPQP requires the robust MCAS which can be determined
using an autonomous model representation, although this gives a large in-
crease in the dimension of the invariant set algorithm. It also needs an upper
bound on the predicted cost.

It should be noted that recent results [14] indicate that in the LPV case
the number of additional constraints can often be reduced significantly with a
modest decrease in feasibility.

5 Numerical Example

This section uses a double integrator example with non-linear dynamics, to
demonstrate the various interpolation algorithms, for the LPV case only. The
algorithm of [19] (denoted OMPC) but modified to make use of robust MCAS
[13] is used as a benchmark.

5.1 Model and Constraints

We consider the nonlinear model and constraints:

T1k+1 = T1,k + 0.1(1 + (0.156‘27]@)2)56‘27]@, (28&)
To g1 = To gk + (1 + 0.00Sx%yk)uk,
—0.5 <uy <1, [-10 — 10T <, < [88]%, Vi (28b)

An LPV system bounding the non-linear behaviour is given as:

[1 0.1] [0] [1 0.2] [ 0 ]
A = B, = Y P By = . (29)
01 1 01 15
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The nominal model ([4; Bi]) is used to design two robustly asymptotically
stabilizing feedback controllers: the first is the LQR-optimal controller K; =
[0.4858 0.3407]T for Q = diag(1,0.01), R = 3 and the second K2 = [0.3 0.4]T has
a large feasible region. Both controllers are robustly asymptotically stabilizing
for system (29) and are hence also stabilizing for system (28).

5.2 Feasible Regions and Computational Load

Figure 1(a) presents the feasible regions for the various interpolations and for
completeness also demonstrates the improvement compared to using the largest
volume invariant ellipsoids. It is clear that GIMPC2 gives substantial feasibil-
ity increases compared to GIMPC/ONEDOF and indeed also compared to IM-
PQP (Figure 1(b)) for n. = 6. The only increase in online computation arising
due to the move from LTI to LPV systems is from the number of inequalities
describing the invariant sets (work in progress may reduce this significantly).
For completeness table 1 shows the numbers of d.o.f. and the numbers of in-
equalities for each algorithm. IMPQP is excluded from this table as the online
computation is linked to the number of regions and hence is fundamentally
different.

[ ell. GIMPC
=~ [ pol. GIMPC
= — - GIMPC2

N —— OMPC
S - - GIMPC2

-5 0 5 -5 0 5

(a) Feasible regions of GIMPC using
ellipsoidal and polyhedral invariant
sets and GIMPC2.

(b) Feasible regions of IMPQP for
ne =0,...,6 and GIMPC2.

Fig. 1. Feasible regions for different algorithms for model (29) using feedback laws K3
and Ko

Table 1. Numbers of inequalities and d.o.f. required by GIMPC, GIMPC2 and OMPC
for model (29)

GIMPC |GIMPC2|OMPC
No. inequalities 22 63 506
No. d.o.f. Ng+1=3 ny,=2 {n.=26
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5.3 Control Performance and Robust Closed-Loop Behaviour

It is useful to consider how the closed-loop performance, within the respective
feasible regions, compares to ‘optimal’ (here taken as OMPC). Figure 2 depicts
simulation results for GIMPC, GIMPC2 and OMPC, starting from initial states
on the boundary of the intersection of the respective feasible regions. All three
algorithms are stabilizing and result in nearly identical trajectories. The average
control cost (according to (5)) of algorithms GIMPC and GIMPC?2 is respectively
1.7% and 0.3% higher than OMPC with n. = 6.

Evidence is also provided by way of closed-loop state trajectories in figure 3
that each of these algorithms is robustly feasible and convergent for the entire
feasible region.

GIMPC

GIMPC2

OMPC

1 time k

(a) State trajectories for the 3 dif- (b) Input sequences for the 3 differ-
ferent algorithms. ent algorithms.

Fig. 2. Trajectories for GIMPC, GIMPC2 and OMPC for plant model (28) using
feedback laws K7 and K2 and design model (29), starting from initial states at the
boundary and the inside of the intersection of the feasible regions

(a) State trajectories for  (b) State trajectories for  (c) State trajectories for
OMPC. GIMPC. GIMPC2.

Fig. 3. Trajectories for OMPC, GIMPC and GIMPC2 for plant model (28) using
feedback laws K7 and K2 and design model (29), starting from initial states at the
boundaries of the respective feasible regions

6 Conclusions and Future Directions

This paper has applied interpolation techniques to nonlinear systems which can
be represented, locally, by an LPV model. The interpolation algorithms allow a
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degree of performance optimisation, have guarantees of recursive feasibility and
convergence, while only requiring relatively trivial online computation. In fact
the main requirement is the offline computation of the MAS or MCAS, with
some structural restrictions. Notably, interpolations such as GIMPC2 may give
far larger feasible regions than might be intuitively expected.

Nevertheless some questions are outstanding: (i) There is interest in whether in-
terpolation concepts can be used effectively for more complicated non-linearities.
(ii) This paper tackles only parameter uncertainty whereas disturbance rejec-
tion/noise should also be incorporated - some current submissions tackle that
issue. (iii) It is still unclear what may be a good mechanism for identifying the
underlying feedbacks K; or strategies which give large feasible regions although
Triple mode ideas [8] seem potentially fruitful. (iv) Interpolation has yet to be
tested extensively on high order processes. (v) Finally, there is a need to devise ef-
ficient algorithms for computing low complexity, but large, invariant sets for high
order systems.
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