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Summary. A formulation of continuous-time nonlinear MPC is proposed in which
input trajectories are described by general time-varying parameterizations. The ap-
proach entails a limiting case of suboptimal single-shooting, in which the dynamics
of the associated NLP are allowed to evolve within the same timescale as the process
dynamics, resulting in a unique type of continuous-time dynamic state feedback which
is proven to preserve stability and feasibility.

1 Introduction

In this note we study the continuous-time evolution of nonlinear model pre-
dictive control in cases where the optimization must necessarily evolve in the
same timescale as the process dynamics. This is particularly relevant for appli-
cations involving “fast” dynamics such as those found in aerospace, automotive,
or robotics applications in which the computational lag associated with iterative
optimization algorithms significantly limits the application of predictive control
approaches.

In an attempt to reduce computational lag, interest has been focussed on
the use of suboptimal solutions arrived at by early termination of the nonlinear
program being solved online. Real-time computational algorithms such as [1]
push this concept to evaluating only a single NLP iteration per discrete sampling
interval. A similar concept of incremental improvement underlies realtime works
such as [2, 3], where the input parameters are treated as evolving according
to continuous-time differential equations driven by descent-based vector fields.
In particular, [3] illustrates how this approach is effectively a type of adaptive
feedback.

In this work, we present a form of real-time MPC which, in the spirit of [2] and
[3], treats the evolving optimization as an adaptive control action. However, our
results are more general in that we do not require global asymptotic stability of
the unforced dynamics (unlike [3]), and our approach preserves stability without
requiring “sufficiently many” parameters in the description of the input (unlike
[2]). One important aspect of our approach is that the open-loop parameteriza-
tion of the input is defined relative to a time partition that can potentially be
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adapted online to make optimal use of the finite number of parameters used to
describe the input. While the manner in which the input is parameterized has
similarities to sampled-data approaches such as [4], a key difference is that our
approach involves continuous measurement and control implementation through-
out the intervals of the time partition, and as a result there are no intervals of
open-loop behaviour introduced into the feedback path.

This paper is organized as follows. The basic problem is described in Section 2,
with finite input parameterizations and local stabilizing controllers discussed in
Sections 3 and 4, respectively. Section 5 discusses the realtime design approach,
with an example in Section 6. Proofs are in the Appendix. In the following, we
will use the notation S̊ to denote the open interior of a closed set S, and ∂S for
the boundary S \ S̊. Furthermore, we denote by ‖z‖

S
the orthogonal distance

of a point z to the set S; i.e. ‖z‖
S

= infs∈S ‖z − s‖. A continuous function
γ : [0,∞) → R≥0 is defined as class K if it is strictly increasing from γ(0) = 0,
and class K∞ if it is furthermore radially unbounded. Finally, a function will
be described as Cm+ if it is Cm, with all derivatives of order m yielding locally
Lipschitz functions.

2 Problem Setup

Our control objective is the regulation of the dynamics

ẋ = f(x, u) (1)

to the compact target set ΣX ⊂ Rn, which is assumed to be weakly invariant for
controls in some compact set u ∈ ΣU(x) ⊂ Rm; i.e. there exists a static feedback
rendering the set Σ � {(x, u) ∈ ΣX × Rm|u ∈ ΣU(x)} forward invariant. Set
stabilization allows for more general control problems than simple stabilization
to a point, and in particular encompasses the notion of “practical-stabilization”.
We are interested in continuous-time model predictive control problems of the
form

min
u(·)

⎧⎨⎩
t+T∫
t

L(xp, u) dτ + W (xp(t + T ))

⎫⎬⎭ (2a)

s.t. ẋp = f(xp, u), xp(t) = x (2b)
(xp, u) ∈ X× U, ∀τ ∈ [t, t+ T ] (2c)
xp(t+ T ) ∈ Xf . (2d)

Since the motivating problem of interest is assumed to involve an infinite hori-
zon, the horizon length in (2a) is interpreted as designer-specifiable. The sets
X ⊂ Rn and U ⊂ Rm represent pointwise-in-time constraints, and are assumed
to be compact, connected, of non-zero measure (i.e. X̊, Ů 	= ∅), and to satisfy the
containment Σ ⊂ X̊ × Ů. The compact, connected terminal set Xf is typically
designer-specified, and is assumed to strictly satisfy ΣX ⊂ Xf ⊂ X̊. The mapping



A New Real-Time Method for Nonlinear Model Predictive Control 539

L : X × U → R≥0 is assumed to satisfy γL(‖x, u‖Σ) ≤ L(x, u) ≤ γU (‖x, u‖Σ)
for some γL, γH ∈ K∞, although this could be relaxed to an appropriate de-
tectability condition. The mapping W : Xf → R≥0 is assumed to be positive
semi-definite, and identically zero on the set ΣX ⊂ Xf . For the purposes of
this paper, the functions L(·, ·), W (·) and f(·, ·) are all assumed to be C1+ on
their respective domains of definition, although this could be relaxed to locally
Lipschitz with relative ease.

3 Finite-Dimensional Input Parameterizations

Increasing horizon length has definite benefits in terms of optimality and stability
of the closed loop process. However, while a longer horizon obviously increases
the computation time for model predictions, of significantly greater computa-
tional concern are the additional degrees of freedom introduced into the mini-
mization in (2a). This implies that instead of enforcing a constant horizon length,
it may be more beneficial to instead maintain a constant number of input param-
eters whose distribution across the prediction interval can be varied according
to how “active” or “tame” the dynamics may be in different regions.

Towards this end, it is assumed that the prediction horizon is partitioned
into N intervals of the form [tθi−1, t

θ
i ], i = 1 . . .N , with t ∈ [tθ0, t

θ
1]. The input

trajectory u : [tθ0, tθN ]→ Rm is then defined in the following piecewise manner

u(τ) = uφ(τ, tθ, θ, φ) �
{
φ(τ−tθ0, θ1) τ ∈ [tθ0, t

θ
1]

φ(τ−tθi−1, θi) τ ∈ (tθi−1, t
θ
i ], i ∈ {2 . . .N}

(3)

with individual parameter vectors θi ∈ Θ ⊂ Rnθ , nθ ≥ m, for each interval, and
θ = {θi | i ∈ {1, . . .N}} ∈ ΘN . The function φ : R≥0 × Θ → Rm may consist of
any smoothly parameterized (vector-valued) basis in time, including such choices
as constants, polynomials, exponentials, radial bases, etc. In the remainder, a
(control- or input-) parameterization shall refer to a triple P � (φ, RN+1, ΘN )
with specified N , although this definition may be abused at times to refer to the
family of input trajectories spanned by this triple (i.e. the set-valued range of
φ(RN+1, ΘN )).

Assumption 1. The C1+ mapping φ : R≥0 × Θ → Rm and the set Θ are
such that 1) Θ is compact and convex, and 2) the image of Θ under φ satisfies
U ⊆ φ(0, Θ).

Let (t0, x0) ∈ R× X̊ represent an arbitrary initial condition for system (1), and
let (tθ, θ) be an arbitrary choice of parameters corresponding to some parame-
terization P . We denote the resulting solution to the prediction model in (2b),
defined on some maximal subinterval of [t0, tθN ], by xp(·, t0, x0, t

θ, θ, φ). At times
we will condense this notation, and that of (3), to xp(τ), uφ(τ).

A particular choice of control parameters (tθ, θ) corresponding to some pa-
rameterization P will be called feasible with respect to (t0, x0) if, for every
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τ ∈ [t0, tθN ], the solution xp(τ, t0, x0, t
θ, θ, φ) exists and satisfies xp(τ) ∈ X̊,

uφ(τ) ∈ Ů, and xp(tθN ) ∈ X̊f . We let Φ(t0, x0,P) ⊆ RN+1 × ΘN denote the set
of all such feasible parameter values for a given (t0, x0) and parameterization
P . This leads to the following result, which is a straightforward extension of a
similar result in [5].

Lemma 1. Let X0 ⊆ X̊ denote the set of initial states x0 for which there exists
open-loop pairs (x(·), u(·)) solving (1), defined on some interval t ∈ [t0, tf ] (on
which u(·) has a finite number of discontinuities), and satisfying the constraints
x(tf ) ∈ X̊f , and (x, u)(t) ∈ X̊×Ů, ∀t ∈ [t0, tf ]. Then, for every (t0, x0) ∈ R×X0

and every (φ, Θ) satisfying Assumption 1, there exists N∗ ≡ N∗(x0, φ, Θ) such
that Φ(t0, x0,P) has positive Lebesgue measure in RN+1 ×ΘN for all N ≥ N∗.

4 Requirements for a Local Stabilizing Control Law

Sufficient conditions for stability of NMPC presented in [6] require that Xf be a
control-invariant set, and that the function W (·) be a control Lyapunov function
on the domain Xf . The following assumption represents a slight strengthening of
those conditions - presented in integral rather than differential form - as appli-
cable to the input parameterizations from the preceding section. In particular, a
pair of feedbacks satisfying the assumption are required to be explicitly known,
and the strict decrease in (4) is added to enable the use of interior-point methods
for constraint handling.

Assumption 2. The penalty W : Xf → R≥0, the sets Xf and Σ, the mapping φ,
and a pair of known feedbacks δ : Xf → R>0 and κ : Xf → Θ are all chosen s.t.

1. ΣX ⊂ X̊f , Xf ⊂ X̊, both Xf and Σ compact.
2. there exists a compact set U0 ⊂ Ů s.t. ∀x ∈ Xf , sup

τ∈[0, δ(x)]
‖φ(τ, κ(x))‖

U0 = 0.
3. Σ and Xf are both rendered positive invariant in the following sense:
• there exists a constant εδ > 0 such that δ(x0) ≥ εδ for all x0 ∈ Xf .
• for every x0 ∈ ΣX, the (open-loop) solution to ẋκ = f(xκ, φ(τκ, κ(x0))),

xκ(0) = x0 exists and satisfies (xκ(τκ), φ(τκ, κ(x0))) ∈ Σ for τκ ∈
[0, δ(x0)].

• ∃ε∗ > 0 and a family of sets X ε
f = { x∈Xf : infs∈∂Xf

‖s−x‖ ≥ ε }, ε ∈
[0, ε∗], such that x0 ∈ X ε

f =⇒ xκ(t) ∈ X ε
f , ∀t ∈ [0, δ(x0)], ∀ε ∈ [0, ε∗]

4. there exists γ ∈ K such that for all x0 ∈ Xf , (with xf � xκ(δ(x0))),

W (xf )−W (x0) +

δ(x0)∫
0

L(xκ, φ(τ, κ(x0))) dτ ≤ −
δ(x0)∫
0

γ(‖xκ‖ΣX
)dτ (4)

4.1 Design Considerations

For the purposes of this work, any locally stabilizing pair (κ, δ) satisfying As-
sumption 2 can be used. For the case where φ is a piecewise-constant parame-
terization, several different approaches exist in the literature for the design of
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such feedbacks (see [7, 8] and references therein). Below we present one possible
extension of these approaches for finding κ and δ in the case of more general
parameterizations.

1. Assume that a known feedback u = kf (x) and associated CLF W (x) satisfy

∂W

∂x
f(x, kf (x)) + L(x, kf (x)) ≤ −γk(‖x‖ΣX

) ∀x ∈ Xf (5)

for some γk ∈ K, with Σ̊ 	= ∅ (if necessary, take Σ as a small neighbourhood
of the true target). Let Σε denote a family of nested inner approximations
of Σ. For some ε∗ > 0, the sets X ε

f and Σε are assumed forward-invariant
with respect to ẋ = f(x, kf (x)), and kf (x) ∈ U0 for all x ∈ Xf , ε ∈ [0, ε∗].

2. Without loss of generality, assume a number r ∈ {0, 1, . . . ,floor(nθ/m)−1}
is known such that kf ∈ Cr+, and

spanθi∈Θ

⎡⎢⎢⎣
φ(0, θi)

...
∂rφ
∂τr (0, θi)

⎤⎥⎥⎦ = U⊕ R
rm. (6)

Select any C1+ mapping κ(x) : Xf → { ( ∈ Θ : ( satisfies (7) for x },
whose range is nonempty by (6) and Assumption 1. (i.e. invert the function
φ(0, ·)) ⎡⎢⎢⎢⎢⎢⎣

kf (x)
∂kf

∂x f(x, kf (x))
...

Lr
fkf

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
φ(0, ()
∂φ
∂τ (0, ()

...
∂rφ
∂τr (0, ()

⎤⎥⎥⎥⎥⎥⎦ (7)

3. Specify γ = 1
2γk, and simulate the dynamics forward from xκ(0) = x under

control u = φ(τκ, ω) until one of the conditions in Assumption 2 fails, at a
time τκ = δ∗. Set δ(x) = cδδ

∗, for any cδ ∈ (0, 1).

This approach effectively assigns κ(x) by fitting a series approximation of or-
der r to the input trajectory generated by u = kf (x). By the invariance (and
compactness) of the inner approximations X ε

f and Σε for some ε∗ > 0, a lower
bound εδ ≡ εδ(ε∗) > 0 exists such that δ(x) ≥ cδεδ, ∀x ∈ Xf . In contrast, a
similar problem of initializing input trajectories is solved in [4] by using forward
simulation of the dynamics ẋ = f(x, kf (x)) to generate u(t). Within our frame-
work, however, it could be difficult to ensure that these generated trajectories
lie within the span of P .

5 Real-Time Design Approach

5.1 Constraint Handling

While both active-set and interior-point approaches have been successfully used
to handle constraints in NMPC problems, one limitation of using active sets



542 D. DeHaan and M. Guay

within the context of our realtime framework is that constraint violation can
only be tested at discrete, pre-defined points in time along the prediction in-
terval. In contrast, interior point approaches such as [9] preserve constraint fea-
sibility all points along the prediction trajectory, which is advantageous when
the time support tθ is nonuniform and potentially involves large intervals. A
second benefit of using interior-point methods is that nominal robustness in the
presence of state constraints is guaranteed automatically, whereas it is shown in
[10] that active set approaches must be modified to use interior approximations
of the constraint in order to guarantee nominal robustness. To this end, the
constraints are incorporated defining

La(x, u) = L(x, u) + µ (Bx(x) + Bu(u)) , W a(xf ) = W (xf ) + µBxf
(xf ) (8)

where µ > 0 is a design constant, and Bx, Bu, Bxf
are barrier functions on the

respective domains X, U and Xf . For the purposes of this work, it is assumed
that the barrier functions are selected a-priori to satisfy the following mini-
mum criteria, where the pair (s, S) is understood to represent {(x,X), (u,U),
(xf ,Xf )}.[-1mm]

Criterion 1. The individual barrier functions each satisfy

1. Bs : S→ R≥0 ∪ {∞}, and Bs is C1+ on the open set S̊.
2. s→ ∂S (from within) implies Bs(s)→∞.
3. Bs ≡ 0 on s ∈ ΣS, and Bs ≥ 0 on s ∈ S \ΣS.

The assumed differentiability of Bs is for convenience, and could be relaxed to
locally Lipschitz. We note that additional properties such as convexity of S and
Bs or self-concordance of Bs (see [9, 11]) are not technically required, although in
practice they are highly advantageous. The third criterion implies that the Bs is
“centered” around the target set Σ. For basic regulation problems (Σ = {(0, 0)})
with convex constraints a self concordance-preserving recentering technique is
given in [9], which could be extended to more general Σ, but likely at the expense
of self-concordance. For nonconvex constraints, a barrier function satisfying Cri-
terion 1 must be designed directly. In addition to the above criteria, it must be
ensured that substituting (8) does not compromise the stability condition (4).
Thus we require:

Criterion 2. For a given local stabilizer satisfying Assumption 2, the barrier
functions Bx, Bu, Bxf

and multiplier µ are chosen to satisfy, for all x ∈ Xf ,

sup
(τ, x0)∈I(x)

{
∇Bxf

(x)Tf(x, φ(τ, κ(x0))) + Bx(x) + Bu(φ(τ, κ(x0)))
}
≤ 1

µ
γ(‖x‖ΣX

)

(9)
I(x) � { (τ, x0) ∈ [0, δ(x0)]×Xf : ẋκ =f(xκ, φ(t, x0)), xκ(0)=x0 and xκ(τ)=x }

In general, Criterion 2 can be readily satisfied if 1) level curves of BXf
are

invariant; i.e. they align with level curves of W , 2) µ is chosen sufficiently small,
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and 3) the growth rates of Bx and φ ◦ Bu are less than that of γ in an open
neighbourhood of Σ. When using the design approach for κ and δ in Section 4.1,
one can treat Criterion 2 as a constraint on the interval length δ(x) by designing
the barriers to satisfy

∇Bxf
(x)T f(x, kf (x)) + Bx(x) + Bu(kf (x)) <

1
µ
γ(‖x‖ΣX

) . (10)

5.2 Description of Closed-Loop Behaviour

Before detailing our MPC controller, it will be useful to denote z � [xT , tθ
T
, θT ]T

as the vector of closed-loop states. The cost function is then defined as

J(t, z) =
∫ tθ

N

t La(xp(τ), uφ(τ)) dτ + W a(xp(tθN )) (11a)

s.t. dxp

dτ = f(xp, uφ(τ, z, φ)), xp|τ=t = x . (11b)

Step 1: Initialization of tθ and θ
Let (t0, x0) ∈ R × X0 denote an arbitrary feasible initial condition for (1). The
first step is to initialize the control parameters to any value in the feasible set
Φ(t0, x0,P), which is guaranteed by Lemma 1 to be tractable. In the simple case
where X0 ⊆ Xf , then feasible parameter values can be obtained from forward sim-
ulation of the dynamics under the feedbacks κ(·) and δ(·); otherwise a dual pro-
gramming program could be solved to identify feasible initial parameter values.

Step 2: Continuous flow under dynamic feedback
At any instant t ∈ [t0, tθ1] we assume that the model prediction xp(τ, t, z, φ) is
‘instantaneously’ available. This prediction information is used to update the
control states in real time, so the closed-loop dynamics evolve under dynamic
feedback as:

ż =

⎡⎢⎣ ẋ

ṫθ

θ̇

⎤⎥⎦ =

⎡⎢⎣ f(x, φ(t− tθ0, θ1))
Proj

{
−kt α(t, z)Γt∇tθJT , Ξ(t)

}
Proj

{
−kθΓθ∇θJ

T , ΘN
}

⎤⎥⎦ while t ≤ tθ1 (12a)

α(t, z) �

⎡⎢⎣ 1 0 0

0 sat
(

tθ
1−t
ε , [0, 1]

)
0

0 0 I

⎤⎥⎦
nθ×nθ

(12b)

Ξ(t) =
{
tθ ∈ RN+1

∣∣∣ (πi(t, tθ) ≥ 0, i = 1, . . . N) and
(∑

i=1,...Nπi ≤ T
)}

(12c)

where ε > 0 is a small constant, and π represents the coordinate transformation

πi(t, tθ) =

{
t− tθ0 i = 0

tθi − tθi−1 i = 1, . . . N

}
∈ R

N+1
≥0 (13)
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The function α serves to restrict the adaptation of tθ1 such that the intersection
t = tθ1 is transversal, resulting in deterministic closed-loop behaviour. Although
(12a) appears nonautonomous, all time-dependence disappears under transfor-
mation (13).

The gradient terms ∇θJ and ∇tθJ in (12a) represent sensitivities of (11a),
for which differential sensitivity expressions must be solved. Fortunately, several
efficient algorithms (for example [12]) exist for simultaneous solution of ODE’s
with their parametric sensitivity equations, which can additionally be efficiently
decomposed by the intervals of tθ. The matrices Γtθ > 0 and Γθ > 0 define the
type of descent-based optimization used. While constant matrices generating
(scaled-) steepest-descent trajectories are the simplest choice, higher order defi-
nitions such as Gauss-Newton or full order Newton (appropriately convexified)
could be used.

The operator in (12a) of the form ṡ = Proj(ν, S) denotes a (Lipschitz) param-
eter projection like those defined in [13], where the component of ν orthogonal
to ∂S is removed as s approaches ∂S. This results in the properties 1) s(t0) ∈ S

=⇒ s ∈ S for all t ≥ t0, and 2) ∇sJ · Proj(−kΓ ∇sJ
T , S) ≤ 0. For brevity, the

reader is referred to [13] and reference therein for details on the design of such
an operator. We note that applying this operator to θ serves simply to ensure
that θ(t) ∈ Θ, not to enforce u(t) ∈ U. Enforcing u(t) ∈ U by selection of Θ
(rather than using Bu) is possible in special cases when U is a convex set, and
φ is convex in both arguments.

Lemma 2. Over any interval of existence t ∈ [t0, t1] of the solution to (12a)
starting from (tθ, θ)(t0) ∈ Φ(t0, x(t0),P), the closed-loop flows satisfy 1) dJ

dt =
∇tJ +∇zJ ż < 0 when x 	∈ ΣX, and 2) (tθ, θ)(t) ∈ Φ(t, x(t),P).

Step 3: Parameter re-initialization
When the equality t = tθ1 occurs, the nθ parameters assigned to the first interval
are no longer useful as degrees of freedom for minimizing (11a); instead, it is
more beneficial to reassign these degrees of freedom to a new interval at the tail
of the prediction horizon. This takes the form of the discrete jump mapping

z+ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x+ = x

(tθi )
+ =

{
tθi+1

tθN + δ(xp(tθN ))
i = 0 . . . (N − 1)
i = N

(θi)+ =

{
θi+1

κ(xp(tθN ))
i = 1 . . . (N − 1)
i = N

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
if t ≥ tθ1 (14)

where the feedbacks κ(·) and δ(·) are used to initialize the parameters for the
new interval. Following execution of (14), the algorithm repeats back to Step 2.

Lemma 3. The jump mapping in (14) is such that 1) J(t, z+) − J(t, z) ≤ 0,
and 2) (tθ, θ)+ ∈ Φ(t, x,P)

Remark 1. The manner in which the horizon tθN recedes (i.e. by (14)) differs
from many other realtime approaches, in which the horizons recede continuously.
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While it may seem more natural to enforce a continuous recede ṫθ, this generally
violates the dynamic programming principle, in which case stability can only
be claimed if one assumes either 1) N = 1 and (1) is globally prestabilized
[3], 2) φ contains a very large number of bases, or 3)

∣∣tθi − tθi−1

∣∣ is very small
[2]. In contrast, we require none of these assumptions. (While Lemma 1 implies
“sufficiently large N”, the requirements for feasible initialization are significantly
less conservative than for preservation of stability as in [2]).

5.3 Hybrid Trajectories and Stability

The closed-loop behaviour resulting from the algorithm in Section 5.2 is that
of a dynamic control law whose controller states exhibit discontinuous jumps.
As such, neither classical notions of a “solution” nor those from the sampled-
data literature apply to the closed-loop dynamics. Instead, a notion of solution
developed for hybrid systems in [14] (and other recent work by the same authors)
can be applied, in which trajectories are described as evolving over the “hybrid
time” domain - i.e. a subset of [0, ∞) × N0 given as a union of intervals of the
form [tj , tj+1] × {j}. In this context, the continuous dynamics (12a) have the
form żπ = F (zπ) on the flow domain

SF � { zπ : π0 ≤ π1 and (tθ, θ) ∈ Φ(t, x,P) }, tθ ≡ tθ(t, π), t arbitrary
(15)

where zπ denotes a coordinate change of z with tθ transformed by (13). Likewise,
(14) has the form z+

π = H(zπ) on the jump domain

SH � { zπ : π0 ≥ π1 and (tθ, θ) ∈ Φ(t, x,P) }, tθ ≡ tθ(t, π), t arbitrary
(16)

Lemmas 2 and 3 guarantee the invariance of SF ∪SH , the domain on which either
a flow or jump is always defined. Although SF and SH intersect, uniqueness of
solutions results from the fact that F (zπ) points out of SF on SF ∩SH [15, Thm
III.1]. In the language of [15], the resulting closed-loop system is a nonblocking,
deterministic hybrid automaton which accepts a unique, infinite execution. Using
this notion of solution, the behaviour can be summarized as follows:

Theorem 1. Let an input parameterization P be selected to satisfy Assumption
1, and assume that a corresponding local stabilizer κ(x), δ(x) and penalty func-
tion W (x) are found which satisfy Assumption 2 on the Xf . Furthermore, let the
constraints in (2c) be enforced by barrier functions satisfying Criteria 1 and 2.
Then, using the dynamic feedback algorithm detailed in Section 5.2, the target
set Σ is feasibly, asymptotically stabilized with domain of attraction Xdoa(N)
containing Xf . Furthermore, ∃N∗ ≥ 1 such that Xdoa(N) ≡ X0 for N ≥ N∗.

6 Simulation Example

To illustrate implementation of our approach, we consider regulation of the
stirred tank reactor from [16], with exothermic reaction A −→ B resulting in
dynamics



546 D. DeHaan and M. Guay

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

335

340

345

350

355

360

365

Concentration, C
A
 [mol/l]

R
ea

ct
or

 T
em

pe
ra

tu
re

, T
r [K

]

LQR
PW−Exponential
PW−Quadratic
PW−Linear
PW−Constant

Fig. 1. Closed-loop state profiles from three different x0, using various φ

ĊA =
v

V
(CAin − CA)− k0 exp

(
−E
RTr

)
CA

Ṫr =
v

V
(Tin − Tr)−

∆H

ρ cp
k0 exp

(
−E
RTr

)
CA +

UA

ρ cp V
(Tc − Tr)

Constants are taken from [16]: v=100 �/min, V =100 �, ρ cp=239 J/� K, E/R =
8750 K, k0=7.2×1010 min−1, UA=5×104 J/min·K, ∆H=−5×104 J/mol, CAin=1
mol/�, Tin=350 K. The target is to regulate the unstable equilibrium Ceq

A =0.5
mol/�, T eq

r =350 K, T eq
c =300 K, using the coolant temperature Tc as the input,

subject to the constraints 0 ≤ CA ≤ 1, 280 ≤ Tr ≤ 370 and 280 ≤ Tc ≤ 370.
Using the cost function L(x, u) = x′Qx+u′Qu, with x = [CA−Ceq

A , Tr−T eq
r ]′,

u = (Tc − T eq
c ), Q = diag(2, 1/350), R = 1/300, the linearized local controller

kf (x) = [109.1, 3.3242]x and cost W (x) = x′Px, P = [17.53, 0.3475; 0.3475,
0.0106], were chosen. Four different choices of the basis φ(τ, θi) were tested,

φC = θi1 φL = θi1 + θi2τ φQ = θi1 + θi2τ + θi3τ
2 φE = θi1exp (−θi2τ)

with N chosen (intentionally small) such that the total size of θ remained similar
(NC=8, NL=NE=4, NQ=3). In each case, the gains kθ=0.1 and kt=0.5 were
used in the update laws, with Γt ≡ I and Γθ chosen as a diagonally scaled identity
matrix (i.e. scaled steepest-descent updates). The feedbacks κ(x) were derived
by analytically solving (7), while δ(x) was chosen using forward simulation as
described in Section 4.1. In all cases, initial conditions for tθ and θ were chosen
to approximate the trajectory Tc(t), t ∈ [0, 1.5], resulting under LQR feedback
u = kf (x).

Three different initial conditions were tested, and the closed-loop state pro-
file for each parameterization are shown in Figures 1 and 2, with corresponding
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Fig. 2. Closed-loop trajectories from (CA, T ) = (0.3, 363). Symbols same as Fig. 1.

Table 1. Actual closed-loop cost to practically (at t=10min) stabilize to setpoint

(CA, Tr)0 LQR φC φL φQ φE

(0.3, 363) 0.285 0.310 0.281 0.278 0.279
(0.3, 335) 1.74 1.80 1.55 1.42 1.41
(0.6, 335) 0.596 0.723 0.570 0.567 0.558

closed-loop costs reported in Table 1. Using higher-order parameterizations such
as φE and φQ over coarse time-intervals resulted in lower cost than φC (which
used smaller intervals), thus making better use of approximately the same num-
ber of optimization parameters. Although the equilibrium is open-loop unstable,
large interval-lengths are not problematic since (12a) provides a continuous-time
state-feedback for kθ > 0.

7 Conclusions

In this work, a framework has been proposed for continuous-time NMPC in which
the dynamics associated with the nonlinear program are allowed to evolve in the
same timescale as the process dynamics, without compromising closed-loop sta-
bility. The unique manner in which the prediction horizon recedes accommodates
the use of efficient basis functions capable of parameterizing the input trajectory
over large intervals using relatively few parameters. Adapting the time support of
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the parameterization, if desired, helps to maximize the efficiency of the param-
eterization. By allowing for stabilization to a general target set, a broad class of
control problems can be addressed within the given framework.
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A Proof of Lemma 2

It can be shown from (11a) that ∇tJ = −La(xp, uφ) − 〈∇xJ, f(xp, uφ)〉. From
(12a),

dJ

dt
= ∇tJ +∇zJ ż

=−La(xp, uφ)−
〈
∇tθJ, Proj{kt αΓt∇tθJT, Ξ}

〉
−
〈
∇θJ, Proj{kθΓθ∇θJ

T, ΘN}
〉

≤ −γL(‖xp, uφ‖Σ)

The conditions of the lemma guarantee that J(t0, z0) is bounded (although not
uniformly), and the above ensures that J(t, z) ≤ J(t0, z0), for all t ∈ [t0, t1].
Since all dynamics in (12a) are locally Lipschitz on the set Z = { z : (tθ, θ) ∈
Φ(t, x(t),P) }, continuity of the solution implies that the states can only exit Z
by either 1) reaching the boundary A = cl{Z} \ Z (i.e. the set where x ∈ ∂X,
uφ ∈ ∂U, or xp(tθN ) ∈ ∂Xf ), or 2) passing through the boundary B = Z \ Z̊. The
first case is impossible given the decreasing nature of J and limz→A J(t, z) =∞,
while the second case is prevented by the parameter projection in (12a).

B Proof of Lemma 3

The first claim follows from

J(t, z+)−J(t, z) =

tθ+
N∫

tθ
N

La(xp(τ, t, z+, φ), uφ(τ, z+, φ)) dτ + W a(xp+
f )−W a(xp

f )

=

δ(xp
f )∫

0

L(xκ(τ), φ(τ, κ(xp
f )) + µ

(
Bx(xκ(τ)) + Bu(φ(τ, κ(xp

f )))
)
dτ

+ W (xp+
f )−W (xp

f ) + µ
(
Bxf

(xp+
f )−Bxf

(xp
f )

)
≤ 0 (by (4) and (9))

where xp
f � xp(tθN , t, z, φ), xp+

f � xp(tθ+
N , t, z+, φ), and xκ(·) is the solution to

ẋκ = f(xκ, φ(t, κ(xp
f ))), xκ(0) = xp

f . The second claim follows by the properties
of κ(x) guaranteed by Assumption 2, since the portion of the xp(τ) and uφ(τ)
trajectories defined on τ ∈ (t, tθN ] are unaffected by (14).

C Proof of Theorem 1

Using the cost J(zπ) as an energy function (where J(zπ) ≡ J(s, x, tθ−s, θ) from
(11a), with s arbitrary), the result follows from the Invariance principle in [15,
Thm IV.1]. The conditions of [15, Thm IV.1] are guaranteed by Lemmas 2, 3,
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and the boundedness of the sets X, U, Θ and Ξ (which ensures that trajectories
remain in a compact subset of SF ∪ SH). Thus, zπ asymptotically converge to
M , the largest invariant subset of {zπ | J̇ = 0 under (12a)} ∪ { zπ : J+ − J =
0 under (14) }. Since H maps into the interior of SF (strictly away from SH),
zeno solutions are not possible. This implies M ⊂ {zπ | J̇ = 0}, and thus from
the proof of Lemma 2 it follows that M = { zπ : (x, uφ) ∈ Σ }. Feasibility
holds from Lemmas 2 and 3, while the last claim follows from Lemma 1 and the
compactness of X0.




