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Summary. In this paper, a new contractive receding horizon scheme is proposed for
the stabilization of constrained nonlinear systems. The proposed formulation uses a
free finite prediction horizon without explicit use of a contraction stability constraint.
Another appealing feature is the fact that the resulting receding horizon control is in
pure feedback form unlike existing contractive schemes where open-loop phases or a
memorized threshold are used to ensure the contraction property in closed loop. The
control scheme is validating on the swing-up and stabilization problem of a simple and
a double inverted pendulums.

1 Introduction

Since the first rigorous proof of the stability of nonlinear receding horizon con-
trol schemes [2], it appeared clearly that the closed loop stability is related to
some terminal conditions. The early versions of this terminal constraint took
the form of an infinite prediction horizon [2] or an equality constraint on the
state [2, 3, 4]. These two forms show evident drawbacks since infinite horizon
formulations are impossible to compute for general nonlinear systems while the
equality constraints on the state makes the underlying optimization problem
hardly tractable numerically. These drawbacks gave rise to formulations where
the final state is forced to belong to some terminal region of appropriate
properties. By doing so, the final equality constrained is replaced by an inequal-
ity constraint [5, 6, 9]. It goes without saying that an exhaustive survey of all
existing formulations that lead to closed loop stability is beyond the scope of
the present paper. An excellent survey can be found in [7].

In this paper, interest is focused on contractive receding horizon schemes [8].
These schemes are based on the assumption according to which there exists a
contraction factor γ ∈ [0, 1[ such that for any initial state x0 there is a con-
trol profile u(·) such that the solution xu(·) satisfies the contraction constraint
‖xu(T (x0))‖S ≤ γ‖x0‖S for some time T (x0) and some weighting positive def-
inite matrix S. Therefore, given the present state x, the associated open loop
optimal control problem is given by [7, 8] :
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min
u(·),T

V (xu(·, x), T ) under u(·) ∈ U and ‖xu(T, x)‖S ≤ γ‖x‖S. (1)

Once optimal solutions û(·, x) and T̂ (x) are obtained, two possible implementa-
tions are classically proposed [8]:

X Either the optimal control û(·, x(t)) is applied in an open-loop way during
the interval [t, t + T̂ (x(t))]. This means that no feedback is applied during
T̂ (x(t)) time units that may be too long.

X Or the state x(t) is memorized together with the duration T̂ (x(t)) and during
the interval [t, T̂ (x(t))], a sampling period τ > 0 is used such that Nτ =
T̂ (x(t)) and a fixed final time receding horizon scheme is used on [t, t +
T̂ (x(t))] based on the following optimization problem

min
u(·)

V (xu(·, x(t + jτ))) under u(·) ∈ U

and ‖xu(t + T̂ (x(t)), x(t + jτ))‖S ≤ γ‖x(t)‖S , (2)

which makes the behavior heavily dependent on the past information x(t) and
T̂ (x(t)) that might become irrelevant due to external disturbances that may even
make (2) unfeasible. The aim of the present paper is to propose a contractive
scheme that leads to a pure state feedback form without memory effect. This is
done using the supremum norm and without an explicit contractive constraint
in the problem formulation. Furthermore, the open loop control parametrization
is explicitly handled by introducing the notion of translatable parametrization.
The paper is organized as follows : Section 2 states the problem and gives some
notations and definitions. The proposed contractive formulation is presented in
section 3 with the related stability results. Finally section 4 shows some illustra-
tive examples.

2 Definitions, Notations and Problem Statement

Consider the class of nonlinear systems given by

ẋ = f(x, u) ; x ∈ R
n ; u ∈ R

m, (3)

where x and u stand for the state and the control vectors respectively. F (t, x0,u)
denotes the solution of (3) with initial state x0 under the control profile u defined
on [0, t]. The aim of this paper is to define a sampled state feedback of the form :

u(t) = K(x(kτs)) ; ∀t ∈ [kτs (k + 1)τs[, (4)

that asymptotically stabilizes the equilibrium state x = 0. The following as-
sumption is needed to establish the main result of this paper:
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Assumption 2.1. For all finite horizon T > 0, the following asymptotic prop-
erty holds :

lim
‖x0‖→∞

[
min

u∈W[0,T ]
min

t∈[0,T ]
‖F (t, x0,u)‖

]
=∞ (5)

for all compact subset W ⊂ Rm. (In other words, infinitely fast state excursions
need infinite control) '

Note that assumption 2.1 is rather technical since it only excludes systems with
finite inverse escape time.

2.1 Piece-Wise Constant Control Parametrization

Let some sampling period τs > 0 be given. One way to define a low dimensional
parametrization of piece-wise constant control profiles over the time interval
[0, Nτs] that belongs to a closed subset U ⊂ Rm is to follow the following two
step procedure :

1. First, define a map

C : P→ R
m × · · · × R

m p � C(p) =
(
u1(p), . . . , uN (p)

)
; ui(p) ∈ R

m.

2. Project C(p) on the admissible subset UN using the projection map PU,
namely :

PUN ◦ C : P→ U× · · · × U p � PUN ◦ C(p)=
(
PU(u1(p)), . . . , PU(uN (p))

)
/

3. For all t ∈ [(k − 1)τs, kτs], the control is given by u(t) = PU(uk(p)) =:
Upwc(t, p).

Definition 1. The map C defined above is called the parametrization map
while for given C and U, the family

{
Upwc(·, p)

}
p∈P

is called a P-admissible
parametrization of control profiles. '

Definition 2. A P-admissible parametrization is said to be translatable if and
only if for each p ∈ P, there exists some p+ ∈ P such that ui(p+) = ui+1(p) for
all i ∈ {1, . . . , N − 1} '

Definition 3. A P-admissible parametrization {Upwc(·, p)}p∈P is called proper if
and only if for all t1 < t2, one has limp→∞

∫ t2
t1
‖Upwc(τ, p)‖2 dτ = ∞ whenever

P is radially unbounded. '

In what follows, the short notation F (·, x, p) is used instead of F (·, x,Upwc(·, p)).

2.2 The Contraction Property

Let some sampling period τs > 0 be given together with an associated P-
admissible control parametrization {Upwc(·, p)}p∈P.
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Definition 4. The system (3) and the control parametrization {Upwc(·, p)}p∈P

satisfy the contraction property if and only if there exists γ ∈]0, 1[ s.t. for all x,
there exists pc(x) ∈ P such that :

min
q∈{1,...,N}

‖F (qτs, x, p
c(x))‖2 ≤ γ‖x‖2, (6)

where pc(·) is bounded over bounded sets of initial conditions. If moreover, there
exists a continuous function ϕ : Rn → R+ s.t. for all x :

‖FN (·, x, pc(x))‖2∞ ≤ ϕ(x) · ‖x‖2 where ‖Fq(·, x, p)‖2∞= max
i∈{1,...,q}

‖F (iτs, x, p)‖2,

then the contraction property is said to be strong. '

2.3 Further Notations

For any bounded subset S of an euclidian space, ρ(S) denotes the radius of S.
For all integer k ∈ N, the notation k+ := k+ 1 is used. B(0, r) denotes the open
ball centered at 0 and of radius r in some euclidian space that is identified from
the context. Finally, the projection step is systematically implicitly assumed by
writing ui(p) to denote PU(ui(p)).

3 A Contractive Receding-Horizon Scheme

In all meaningful and realistic applications, there always exists a set of admissible
initial conditions, say X ⊂ Rn that corresponds to realistic initial configurations
of the controlled system. Therefore, let such subset X ⊂ Rn be fixed once and for
all. Assume that a P-admissible control parametrization is defined and that the
strong contraction assumption holds (see definition 4). Associated to the set X of
initial conditions, a subset of admissible control parameters, denoted hereafter
by PX is defined as follows :

PX := P ∩B
(
0, sup

x∈B̄(0,ρ(X))
‖pc(x)‖ + ε

)
⊆ P ⊆ R

np . (7)

Namely, a subset of the ball in Rnp that contains, among others, all the vectors
of parameters : {

pc(x)
}

x∈B̄(0,ρ(X))

invoked in the strong contraction assumption. It goes without saying that since
pc(·) is assumed to exist but is not explicitly known, the exact computation
of the radius of the ball defining PX cannot be easily done. Therefore, in the
forthcoming developments, when PX is referred to, it is an superset of it that
is to be understood. This superset is obtained by taking a sufficiently high radius
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for a ball in Rnp centered at the origin. Consider the following open-loop optimal
control problem defined for some α > 0 and ε > 0:

P ε,∗
α (x) : min

(q,p)∈{1,...,N}×PX

J∗(x, q, p) =

‖F (qτs, x, p)‖2 + α
q

N
·min

{
ε2, ‖Fq(·, x, p)‖2∞

}
. (8)

Note that if all the functions involved in the definition of the problem (the
system’s map f and the control parametrization) are continuous then the cost
function is continuous in p. This together with the compactness of the set PX

guarantee that the problem P ε,∗
α (x) admits a solution for all x ∈ X and hence

is well posed. Therefore, let us denote the solution of (8) for some x ∈ X by
q̂(x) ∈ {1, . . . , N} and p̂(x) ∈ PX. These solutions are then used to define the
receding horizon state feedback given by :

u(kτs + τ) = u1(p̂(x(kτs))) ∀τ ∈ [0, τs[. (9)

The stability result associated to the resulting feedback strategy is stated in the
following proposition :

Proposition 1. If the following conditions hold :

1. The function f in (3) and the parametrization map are continuous and sat-
isfy the strong contraction property (see definition 4). Moreover, the system
(3) satisfies assumption 2.1.

2. For all x ∈ X and all admissible u = Upwc(·, p), the solution of (3) is defined
for all t ∈ [0, Nτs] and all p ∈ PX. (No explosion in finite time shorter than
Nτs).

3. The control parametrization is translatable on PX in the sense of definition 2.

Then, there exist sufficiently small ε > 0 and α > 0 such that the receding
horizon state feedback (9) associated to the open-loop optimal control problem
(8) is well defined and makes the origin x = 0 asymptotically stable for the
resulting closed loop dynamics with a region of attraction that contains X. '

Proof. The fact that the feedback law is well defined directly results from
the continuity of the functions being involved together with the compactness of
PX. Let us denote by xcl(·) the closed loop trajectory under the receding horizon
state feedback law. Let us denote by V (x) the optimal value of the cost function,
namely : V (x) = J∗(x, q̂(x), p̂(x)).

' V is continuous V (x) can clearly be written as follows

V (x) = inf
{
V1(x), . . . , VN (x)

}
; Vq(x) := min

p∈PX

J∗(x, q, p). (10)

But for given q, J∗(x, q, p) is continuous in (x, p), therefore Vq(·) is a continu-
ous function of x. Since V is the sum of N continuous functions (Vj)j=1,...,N ,
it is continuous itself.



528 M. Alamir

' V is radially unbounded
Since the control parametrization is supposed to be continuous, the set of
controls given by :

U :=
{
Upwc(t, p)

}
(t,p)∈[0,Nτs]×PX

,

is necessarily bounded. using assumption 2.1 with W = U gives the results.
' Finally it is clear that V (0) = 0 since zero is an autonomous equilibrium

state.

Decreasing properties of V
Two situations have to be distinguished :

Case where q̂(k) > 1. In this case, let us investigate candidate solutions for
the optimization problem P ε,∗

α (xcl(k+)) where xcl(k+) is the next state on the
closed loop trajectory, namely :

xcl(k+) = F
(
τs, xcl(k), u1(p̂(xcl(k)))

)
.

A natural candidate solution to the optimal control problem P ε,∗
α (xcl(k+)) is

the one associated to the translatable character of the control parametrization,
namely

pcand(k+) := p̂+(xcl(k)) ; qcand(k+) := q̂(xcl(k))− 1 ≥ 1. (11)

In the following sequel, the following short notations are used

p̂(k) = p̂(xcl(kτs)) ; q̂(k) = q̂(xcl(kτs)) ; V (k) = V (xcl(k)).

By the very definition of p+, it comes that :

‖F (qcand(k+)τs, xcl(k+), pcand(k+))‖2 = ‖F (q̂(k)τs, xcl(k), p̂(k))‖2

= V (xcl(k))− α
q̂(k)
N

min{ε, ‖Fq̂(k)(·, xcl(k), p̂(k))‖2∞}, (12)

and since V (xcl(k+)) satisfies by definition, one has :

V (xcl(k+)) ≤ ‖F (qcand(k+)τs, xcl(k+), pcand(k+))‖2 +

+ α
q̂(k)− 1

N
min{ε, ‖Fq̂(k)−1(·, xcl(k+), pcand(k+))‖2∞},

This with (12) gives :

V (xcl(k+)) ≤ V (xcl(k))− α
q̂(k)
N

min{ε, ‖Fq̂(k)(·, xcl(k), p̂(k))‖2∞}+

+ α
q̂(k)− 1

N
min{ε, ‖Fq̂(k)−1(·, xcl(k+), pcand(k+))‖2∞}. (13)
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But one clearly has by definition of pcand(k+) :

‖Fq̂(k)−1(·, xcl(k+), pcand(k+))‖2∞ ≤ ‖Fq̂(k)(·, xcl(k), p̂(k))‖2∞.

Using the last equation in (13) gives

V (xcl(k+)) ≤ V (xcl(k))− α

N
min{ε, ‖Fq̂(k)(·, xcl(k), p̂(k))‖2∞}. (14)

Case where q̂(k) = 1
We shall first prove that each time this situation occurs, one necessarily has :

xcl(k+) ∈ B̄(0, ρ(X)). (15)

Proof of (15) Consider a sequence of instant 0 = t0 < t1 < · · · < tN < . . . where
for all i ≥ 1, ti = kiτs such that q̂(ki) = 1 for all i ≥ 1 we shall prove the two
following facts :

1. xcl(k+
1 ) ∈ B̄(0, ρ(X))

2. If xcl(k+
i ) ∈ B̄(0, ρ(X)) then xcl(k+

i+1) ∈ B̄(0, ρ(X))

If these two facts are proved then by induction, it comes that :

{q̂(k) = 1} ⇒ {xcl(k+) ∈ B̄(0, ρ(X))}. (16)

To prove 1., note that at k = 0, xcl(0) ∈ X and therefore, the contraction
property can be applied to consider pc(xcl(0)) as a candidate value for the initial
optimal control problem P ε,∗

α (xcl(0)). Therefore,

V (xcl(0)) ≤ γ‖xcl(0)‖2 + α · ε. (17)

Now during the next steps until k1 occurs, the result (14) can be used to infer
that the function V decreases on the closed loop trajectory. Therefore, one has
at instant k1τs :

V (xcl(k1)) ≤ γ‖xcl(0)‖2 + α · ε ; q̂(k1) = 1. (18)

But when q̂(k1) = 1, one has also :

‖xcl(k+
1 )‖2 ≤ V (xcl(k1)) ≤ γ‖xcl(0)‖2 + α · ε, (19)

and for sufficiently small α and ε > 0, this leads to xcl(k+
1 ) ∈ B̄(0, ρ(X)) which

ends the proof of point 1.
The proof of point 2. follows exactly the same argumentation than the one

used above starting from the fact that since xcl(k+
i ) is in B̄(0, ρ(X)), one can

rewrite the above demonstration with xcl(k+
i ) playing the role of xcl(0) and

xcl(ki+1) playing that of xcl(k1). This clearly gives (16). Consequently, by defi-
nition of PX, there exists some pc(xcl(k+)) such that

V (xcl(k+)) ≤ γ‖xcl(k+)‖2 +
α

N
min{ε, ‖FN(·, xcl(k+), pc(xcl(k+)))‖2∞)}. (20)
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But according to the strong contraction assumption, one has :

‖FN (·, xcl(k+), pc(xcl(k+)))‖2∞ ≤ ϕ(xcl(k+)) · ‖xcl(k+)‖2.

therefore (20) becomes (λ := supξ∈B̄(0,ρ(X))

[
ϕ(ξ)

]
) :

V (xcl(k+)) ≤ γ‖xcl(k+)‖2 +
α

N
min{ε, ϕ(xcl(k+)) · ‖xcl(k+)‖2},

≤ γ‖xcl(k+)‖2 +
α

N
min{ε, λ · ‖xcl(k+)‖2}. (21)

On the other hand, since q̂(k) = 1 by assumption, one clearly has :

‖xcl(k+)‖2 ≤ V (xcl(k))− α

N
min{ε, ‖xcl(k+)‖2} ≤ V (xcl(k)). (22)

Therefore, using (22) in (21) gives V (xcl(k+)) ≤ γV (xcl(k)) + αmin{ε, λ ·
V (xcl(k))} and one can write V (xcl(k+)) ≤ (γ + αλ)V (xcl(k)) which, for suffi-
ciently small α gives V (xcl(k+)) ≤ θ · V (xcl(k)) for θ < 1. To summarize, it has
been shown that the optimal cost function V (x) satisfies the following decreasing
properties :

V (xcl(k+))≤
{
V (xcl(k)) − α

N min{ε,‖Fq̂(k)(·, xcl(k), p̂(k))‖2∞} if q̂(xcl(k))>1
θ · V (xcl(k)) ; θ < 1 if q̂(xcl(k))=1

(23)

This clearly shows that the closed loop trajectory converges to the largest in-
variant set contained in{

x ∈ R
n | ‖Fq̂(x)(·, x, p̂(x))‖∞ = 0

}
,

which clearly shows that limk→∞ xcl(k) = 0 by the very definition of Fq(·, x, p). ♦

Note that proposition 1 shows that the contractive receding horizon feedback
may be used alone to asymptotically stabilizes the system. However, in many
situations, improved behavior around the desired position may be obtained by
using the proposed feedback as a steering controller to bring the state to a
neighborhood of the desired target and then to switch to some locally stabilizing
controller based (for instance) on linearized model. This is commonly referred
to as a dual mode control scheme. In the following section, both ways of using
the proposed receding horizon feedback are illustrated on two different systems.

Finally, it is worth noting that all the above discussion remains valid if ‖x‖2
[resp. ‖F (t, x, p)‖2] are replaced by h(x) [resp. h(F (t, x, p))] where h(·) is some
positive definite function of the state. In this case, the optimization problem (8)
writes :

P ε
α(x) : min

(q,p)∈{1,...,N}×PX

J(x, q, p) = h(qτs, x, p) + α
q

N
·min

{
ε2, h∞

q (·, x, p)
}
,

(24)

where h(qτs, x, p) = h(F (qτs, x, p)) and h∞
q (·, x, p) := maxi∈{1,...,N} h(iτs, x, p).
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Fig. 1. Description of the simple and the double inverted pendulums

4 Illustrative Examples

4.1 Swing-Up and Stabilization of a Simple Inverted Pendulum on
a Cart: A Stand-Alone RHC Scheme

The inverted pendulum on a cart is probably the most famous system in the non-
linear control literature (see figure 1). The dynamics of the inverted pendulum
can be described by the following equations :(

mL2 + I mL cos θ
mL cos θ m + M

)(
θ̈
r̈

)
=

(
mLg sin θ − kθ θ̇

F + mLθ̇2 sin θ − kxṙ

)
. (25)

Choosing the state vector x :=
(
θ r θ̇ ṙ

)T ∈ R4 and applying the following
pre-compensation (change in the control variable) :

F = −Kpre

(
r
ṙ

)
+ u, (26)

where Kpre is chosen such that the dynamics r̈ = −Kpre

(
r
ṙ

)
is asymptotically

stable leads to a system of the form (3). Consider the scalar exponential control
parametrization (that is clearly translatable with p+ = p · e−τs/tr) :

P = [pmin, pmax] ⊂ R ; ui(p) = p · eti/tr ; ti =
(i− 1)τs

N
, (27)

where τs > 0 is the control sampling period, N · τs the prediction horizon length
while tr is the characteristic time of the exponential control parametrization.
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Fig. 2. Stabilization of the inverted pendulum for two different saturation levels:
Fmax = 1.0 N (dotted thin line) / Fmax = 2.0 N (continuous thick line). Initial
condition: Downward equilibrium x = (π, 0, 0, 0)T .

Define the weighting function h(x) by :

h(x)=
1
2

[
θ̇2+βr2 + ṙ2

]
+ [1− cos(θ)]2 =

1
2

[
x2

3 + βx2
2 + x2

4

]
+ [1− cos(x1)]2 (28)

In order to explicitly handle the saturation constraint on the force, the constraint
has to be expressed in term of the new control variable u, namely :

| −Kpre

(
x2
x4

)
+ u| ≤ Fmax. (29)

Using the expression of the control parametrization (27) this yields the following
state dependent definition of the parameter bounds pmin and pmax :

pmin(x) = −Fmax + Kpre1x2 + Kpre2x4 (30)
pmax(x) = +Fmax + Kpre1x2 + Kpre2x4 (31)

These bounds are used in the definition of the optimization problem P ε
α(x) :

P ε
α(x) : min

(q,p)∈{1,...,N}×[pmin(x) , pmax(x)]
J(x, q, p) =

h(qτs, x, p) +
α

N
·min{ε, h∞

q (·, x, p)}. (32)

Let p̂(x) and q̂(x) be optimal solutions of P ε
α(x). This defines the feedback

KRH(x) = u1(p̂(x)) according to the receding horizon principle. The values
of the system’s parameters used in the forthcoming simulations are given by :

(m,M,L, kx, kθ, I) = (0.3, 5.0, 0.3, 0.001, 0.001, 0.009)
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while the values of the parameters used in the controller definition are the
following :

(τs, N, tr, α, β) = (0.4, 8, 0.2, 0.01, 10) ; Kpre = (2.5, 10) ; Fmax ∈ {1, 2}

The behavior of the closed loop systems under the contractive receding horizon
control is depicted on figure 2. Two scenarios are presented for different values
of the input saturation levels Fmax = 1 and Fmax = 2. The computation times
are also given vs the sampling period (the computations have been performed on
a 1.3 GHz PC-Pentium III). Note that these computation times never exceeded
0.1 s. This has to be compared to the sampling period τs = 0.4 s. This suggests
that the proposed receding horizon feedback can be implementable in real time
context.

4.2 Swing Up and Stabilization of a Double Inverted Pendulum on
Cart: A Hybrid Scheme

The system is depicted on figure 1 together with the definition of some auxiliary
variables. The numerical values are given by :

(m1,m2,m, l1, l2, J1, J2) = (0.3, 0.2, 5.0, 0.3, 0.2, 1.3× 10−2, 4× 10−3).

The system equations are given by [1] :

h1r̈ + h2θ̈1 cos θ1 + h3θ̈2 cos θ2 = h2θ̇
2
1 sin θ1 + h3θ̇

2
2 sin θ2 + F

h2r̈ cos θ1 + h4θ̈1 + h5θ̈2 cos(θ1 − θ2) = h7 sin θ1 − h5θ̇
2
2 sin(θ1 − θ2)

h3r̈ cos θ2 + h5θ̈1 cos(θ1 − θ2) + h6θ̈2 = h5θ̇
2
1 sin(θ1 − θ2) + h8 sin θ2

Again, a pre-compensation is done using the change in control variable given
by :

F = −Kpre ·
(
r
ṙ

)
+ u, (33)

while a two-dimensional control parametrization is needed this time :

P = [pmin, pmax]2 ⊂ R
2 ; ui(p) = p1 · eλ1ti + p2e

−λ2ti ; ti =
(i− 1)τs

N
(34)

The weighting function h(·) invoked in the general formulation (24) is here taken
as follows

h(x) =
h4

2
θ̇2
1 +

h6

2
θ̇2
2 + h5θ̇1θ̇2 cos(θ1 − θ2) + h7

[
1− cos(θ1)

]
+ h8

[
1− cos(θ2)

]
+

+ h1
[
r2 + ṙ2

]
.

This is inspired by the expression of the total energy given in [1]. The constrained
open-loop optimal control problem is then given by (24) in which the admissible
domain of the parameter vector is [pmin(x), pmax(x)]2 where :
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Fig. 3. Closed loop behavior of the double inverted pendulum system un-
der the hybrid controller given by (35) with the design parameters values
given by (τs, N, R,λ1, λ2, η) = (0.3, 10, 100, 100, 20, 1), L = (360, 30), and Q =
diag(1, 1, 104, 1, 1, 1) for two different force saturation levels: Fmax = 20 N (contin-
uous thick line) / Fmax = 10 N (dotted thin line). The maximum number of function
evaluations parameter in the optimization code has been set to 20 in order to make the
solution real-time implementable. This may explain the behavior of the optimal cost
for the lower values that is not monotonically decreasing. Initial condition: downward
equilibrium.

pmin(x) :=
1
2

[
−Fmax + Kpre

(
r
ṙ

)]
; pmax(x) :=

1
2

[
+Fmax + Kpre

(
r
ṙ

)]
.

that clearly enables to meet the requirement |F (t)| ≤ Fmax given the
parametrization (34) being used. Again, denoting by (q̂(x), p̂(x)) the optimal
solutions, the nonlinear receding-horizon control is given by :

u(kτs + t) = KRH(x(kτs)) := u1(p̂(x(kτs))) ; t ∈ [0, τs[.

Since a hybrid scheme is used here, the local controller has to be defined. This is

done by using an LQR-based method that enables a feedback gain L to be com-
puted. Hence, the local controller is given by KL(x) = −L ·

(
xm

1 xm
2 x3 . . . x6

)T

where xm
1 and xm

2 are the minimum norm angles that are equal (modulo 2π)
to θ1 and θ2 respectively while the gain matrix L ∈ R1×6 satisfies the following
Riccati equation for some positive definite matrices S and Q :

AT
d SAd − S − (AT

d SBd)(R + BT
d SB

T
d )(BT

d SAd) + Q = 0.
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where (Ad, Bd) are the matrices of the discrete linearized system around the
upward position. To summarize, the hybrid controller is given by

u(kτs + τ) =

{
KRH(x(kτs)) if ‖x(kτs)‖2S > η

KL(x(kτs)) otherwise
(35)

The positive real η > 0 is a threshold that must be sufficiently small for the ball

Bη :=
{
x ∈ R

6 s.t ‖x‖2S ≤ η
}

to be both entirely included in the region of attraction and invariant under the
linear control law KL(·). Such η > 0 clearly exists.

The behavior of the closed loop system under the hybrid controller is shown
on figure 3 for two different saturation levels Fmax = 10 N and Fmax = 20 N .
Note that the maximum number of function evaluations during the on-line opti-
mization has been set to 20. This led to computation times that never exceeded
the sampling period τs = 0.3 s.
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