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1 Introduction

The abundance of batch processes and continuous processes with wide operating
ranges has motivated the development of nonlinear MPC (NMPC) techniques,
which employ nonlinear models for prediction. The prediction model is typically
developed once in the beginning of implementation of an NMPC scheme. How-
ever, as time progresses, slow drifts in unmeasured disturbances and changes in
process parameters can lead to significant mismatch in plant and model behav-
ior. Also, NMPC schemes are typically developed under the assumption that
sensors and actuators are free from faults. However, soft faults, such as biases
in sensors or actuators, are frequently encountered in the process industry. In
addition to this, some actuator(s) may fail during operation, which results in
loss of degrees of freedom for control. Occurrences of such faults and failures can
lead to a significant degradation in the closed loop performance of the NMPC.

The conventional approach to deal with the plant model mismatch in the
NMPC formulations is through the introduction of additional artificial states in
the state observer. The main limitation of this approach is that number of extra
states introduced cannot exceed the number of measurements. This implies that
it is necessary to have a priori knowledge of which subset of faults are most likely
to occur or which parameters are most likely to drift. In such a formulation, the
state estimates can become biased when un-anticipated faults occur. Moreover,
the permanent state augmentation approach cannot systematically deal with the
difficulties arising out of sensor biases or actuator failures.

Attempts to develop fault-tolerant MPC schemes have mainly focused on
dealing sensor or actuator failures [1]. Recently, Prakash et al. [2] have proposed
an active fault tolerant linear MPC (FTMPC) scheme, which can systematically
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deal with soft faults in a unified framework. The main limitation of this approach
arises from the use of linear perturbation model for performing control and
diagnosis tasks. The use of linear models not only restricts its applicability to a
narrow operating range but also limits the diagnostic abilities of fault detection
and identification (FDI) components to only linear additive type faults. As a
consequence, many faults that nonlinearly affect the system dynamics, such as
abrupt changes in model parameters or unmeasured disturbances, have to be
approximated as linear additive faults. Moreover, the FTMPC scheme doesn’t
deal with failures of sensors or actuators.

In the present work, we propose a fault tolerant NMPC (FTNMPC) formula-
tion with an intelligent nonlinear state estimator, Extended Kalman Filter (EKF),
which can diagnose the root cause of model plant mismatch and correct itself. The
whiteness of innovation sequence generated by the state estimator is taken as an
indicator of good health of the model. A significant and sustained departure from
this behavior is assumed to result from model plant mismatch and a nonlinear
version of generalized likelihood ratio (GLR) based FDI scheme is used to analyze
the root cause of model plant mismatch. The proposed FDI method also gener-
ates an estimate of the magnitude of the fault, which is used to compute an on-
line bias correction to the model at the location isolated by the FDI scheme. The
model correction strategy overcomes the limitation on the number of extra states
that can be added to the state space model in NMPC for offset removal and al-
lows bias compensation for more variables than the number of measured outputs.
The proposed FTNMPC eliminates offset between the true values and set points
of controlled variables in presence of variety of faults while conventional NMPC
does not. Also, the true values of state variables, manipulated inputs and mea-
sured variables are maintained within their imposed bounds in FTNMPC while
in conventional NMPC these may be violated when soft faults occur. When an
actuator fails, the proposed FTNMPC formulation is able to make modifications
in the controller objective function and constraint set to account for the loss of
a degree of freedom. These advantages of the proposed scheme are demonstrated
using simulation studies on a benchmark continuous stirred tank reactor (CSTR)
control problem, which exhibits strongly nonlinear dynamics.

2 Fault Diagnosis Using Nonlinear GLR Method

In this section, we first describe the FDI method as applied once when a fault
is detected for the first time. Consider a continuous time nonlinear stochastic
system described by the following set of equations

x(k + 1) = x(k) +

(k+1)T∫
kT

F [x(t),u(k),p,d(k)] dt (1)

y(k) = H [x(k)] + v(k) ; d(k) = d + w(k) (2)

where x ∈Rn,y ∈Rr and u ∈ Rm represent the state variables, measured outputs
and manipulated inputs, respectively. The variables p ∈Rp and d ∈Rd represent
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the vector of parameters and unmeasured disturbance variables, respectively,
which are likely to undergo deterministic changes. The unmeasured disturbances
are also assumed to undergo random fluctuations. For mathematical tractability,
these are simulated as piecewise constant between each sampling period and
changing randomly from their nominal value at each sampling instant. Here, v(k)
and w(k) are zero mean Gaussian white noise sequences with known covariance
matrices. Equations 1 and 2 represent the normal or fault free behavior of the
process and are used to develop the standard linearized EKF [3]. In remainder
of the text, we refer to this EKF as normal EKF.

In order to isolate faults and estimate their magnitudes, it is necessary to
develop a model for each hypothesized fault that describes its effect on the
evolution of the process variables. The models that are used to describe some of
the faults are as follows:

• Bias in jth sensor : Subsequent to occurrence of bias in the sensor at instant
t, the behavior of measured outputs is modeled as

yyj (k) = H [x(k)] + byjeyjσ(k − t) + v(k)

Here, byj represents sensor bias magnitude, eyj represents sensor fault vector
with jth element equal to unity and all other elements equal to zero and
σ(k − t) represents a unit step function defined as

σ(k − t) = 0 if k ≺ t ; σ(k − t) = 1 if k 1 t

• Abrupt change in jth unmeasured disturbance variable:

ddj (k) = d + w(k) + bdjedjσ(k − t)

• Failure of jthActuator / Sensor:

umj (k) = m(k) +
[
bmj − eT

mj
m(k)

]
emjσ(k − t) (3)

ysj (k) = H [x(k)] +
[
bsj − eT

sj
H [x(k)]

]
esjσ(k − t) + v(k) (4)

where bmj/bsj represents constant value at which the jthactuator/sensor is
stuck. Note that we differentiate the controller output m and manipulated
input u entering the process. The controller output equals the manipulated
input under the fault free conditions. Similar fault models can be formulated
for other faults.

To detect occurrence of a fault, it is assumed that the sequence of innovations
γ(k) generated by the normal EKF is a zero mean Gaussian white noise pro-
cess with covariance matrix V(k). A sustained departure from this behavior is
assumed to result from a fault. Simple statistical tests, namely, fault detection
test (FDT) and fault confirmation test (FCT) as given in [4] are modified based
on innovations obtained from EKF and used for estimating time of occurrence of
fault. Taking motivation from nonlinear GLR method proposed for gross error
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detection under steady-state conditions [5], we propose a version of nonlinear
GLR method under dynamic operating conditions. By this approach, once the
FCT confirms the occurrence of a fault at instant t, we formulate a separate
EKF over a time window [t, t+N ] for each hypothesized fault. For example, as-
suming that actuator j has failed at instant t, the process behavior over window
[t, t+ N ] can be described as follows

xmj (i + 1) = xmj (i) +

(i+1)T∫
iT

F
[
xmj (t),umj (i),p,d

]
dt (5)

ymj (i) = H
[
xmj (i)

]
+ v(k) (6)

where umj (i) is given by equation 3. The magnitude estimation problem can
now be formulated as a nonlinear optimization problem as follows

min
bmj

(Ψmj ) =
t+N∑
i=t

γT
mj

(i)Vmj (i)
−1γmj (i) (7)

where γmj (i) and Vmj (i) are the innovations and the innovations covariance ma-
trices, respectively, generated by the EKF constructed using equations 5 and 6
with initial state x̂(t|t). The estimates of fault magnitude can be generated for
each hypothesized fault in this manner. The fault isolation is viewed as a problem
of finding the observer that best explains the output behavior observed over the
window. Thus, the fault that corresponds to minimum value of the objective func-
tion, Ψfj , with respect to fj, where f ∈ (p, d, y, u,m, s) represents the fault type,
is taken as the fault that has occurred at instant t. Since the above method is com-
putationally expensive, we use a simplified version of nonlinear GLR proposed by
Vijaybaskar, [6] for fault isolation. This method makes use of the recurrence rela-
tionships for signature matrices derived under linear GLR framework [4], which
capture the effect of faults on state estimation error and innovation sequence. If
a fault of magnitude bfj occurs at time t, the expected values of the innovations
generated by the normal EKF at any subsequent time are approximated as

E [γ(i)] = bfjGf (i; t)efj + g
fi
∀i 1 t (8)

Here, Gf (i; t) and gfj (i; t) represent fault signature matrix and fault signature
vector, respectively, which depend on type, location and time of occurrence of
a fault. For example, if jth actuator fails, then the corresponding signature ma-
trices and the signature vectors can be computed using the following recurrence
relations for i ∈ [t, t + N ]:

Gm(i; t) = C(i)Γu(i)−C(i)Φ(i)Jm(i− 1; t) (9)

gmj
(i; t) = C(i)Γu(i)

[
eT

mj
m(i)

]
emj −C(i)Φ(i)j

mj
(i− 1; t) (10)

Jm(i; t) = Φ(i)Jm(i− 1; t) + L(i)Gm(i− 1; t)− Γu(i) (11)

jmj (i; t) = Φ(i)jmj (i− 1; t) + L(i)g
mj

(i− 1; t)− Γu(i)
[
eT

mj
m(i)

]
emj (12)
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Here,

Γu(i) =

T∫
0

exp (A(i)q)Bu(i)dq ; Bu(i) =
[
∂F(x,m,p,d)

∂m

]
(x̂(i|i),m(i),p,d)

Φ(i) = exp [A(i)T ] ; A(i) =
[
∂F
∂x

]
(x̂(i|i),m(i),p,d)

; C(i) =
[
∂H(x)
∂x

]
(x̂(i|i)

are the linearized discrete time varying system matrices and L(i) is the Kalman
gain computed using the normal EKF. Similar recurrence relations can be con-
structed for other types of faults. For each hypothesized fault, the log likelihood
ratio, Tfj , is computed as follows

Tfj =
[
d2

fj
/cfj

]
+

t+N∑
i=t

gT
fj

(i; t)V(i)−1 [2γ(i)− gfj (i; t)
]

(13)

dfj = efj

t+N∑
i=t

GT
f (i; t)V(i)−1 [γ(i)− gfj (i; t)

]
(14)

cfj = eT
fj

t+L∑
i=t

GT
f (i; t)V(i)−1Gf (i; t)efj (15)

where γ(i) and V(i) are obtained using normal EKF. The fault location can
be obtained from the maximum value of the test statistic Tfj . An estimate of
the bias magnitude is generated as b(0)fj

= dfj/cfj . Once a fault fj is isolated, a
refined estimate of the fault magnitude is generated by formulating a nonlinear
optimization problem as described above, starting from the initial guess of b(0)fj

.

3 Fault Tolerant NMPC (FTNMPC) Formulation

To begin with, let us consider conventional NMPC formulation. Let us assume
that at any instant k, we are given p future manipulated input moves

{m(k|k),m(k + 1|k)........m(k + p− 1|k)}

The future (predicted) estimates of the state variables and outputs, which have
been compensated for plant model mismatch, are given as follows

x̃(k + j + 1|k) = x̂(k + j|k) +

(k+l+1)T∫
(k+1)T

F
[
x̂(τ),m(k + j|k),p,d

]
dτ (16)

x̂(k + j + 1|k) = x̃(k + j + 1|k) + L(k)γ(k); ε(k) = y(k) − ŷ(k|k) (17)
ŷ(k + j|k) = G [x̂(k + j|k)] + ε(k) ; j ∈ [0, p] (18)

At any sampling instant k, the nonlinear model predictive control problem is
defined as a constrained optimization problem whereby the future manipulated
input moves are determined by minimizing an objective function
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min
m(k|k),m(k + 1|k)........m(k + q − 1|k)

{∑p
j=1 ef (k + j|k)TWEef(k + j|k)+∑q−1

j=0 ∆m(k + j|k)TWu∆m(k + j|k)

}

subject to following constraints

m(k + q|k) = m(k + q + 1|k) = .......m(k + p− 1|k) = m(k + q − 1|k)
mL ≤ m(k + j|k) ≤mU (for j = 0..q − 1)

∆mL ≤ ∆m(k + j|k) ≤ ∆mU (for j = 0..q − 1)
ef (k + j|k) = yr(k + j|k)− ŷ(k + j|k)

∆m(k + j|k) = m(k + j|k)−m(k + j − 1|k)

Here, yr(k + j|k) represents the future setpoint trajectory.
We now present the modifications necessary in the NMPC formulation when

a fault is detected for the first time by FDI component. Consider a situation
where FDT has been rejected at time instant t and subsequently FCT has been
rejected at time t + N for the first time. Further assume that at instant t + N
we have isolated a fault f using modified GLR method and estimated the fault
magnitude using data collected in the interval [t, t + N ]. During the interval
[t, t + N ], the NMPC formulation is based on the prediction model given by
equations 16 to 18. However after the identification of the fault at instant t+N ,
we modify the model for k ≥ t + N as follows:

• Sensor faults: If sensor bias is isolated, the measured output is compensated
as yc(k) = y(k) − b̂yjeyj and used in FDI as well as MPC formulation for
computing innovation sequence. If a sensor failure is diagnosed, the measure-
ments coming from a failed sensor are replaced by corresponding estimates
in the FTNMPC formulation.

• Step jump in unmeasured disturbance: The prediction equation in the
state estimator and future predictions in NMPC are modified as follows

x̂(k + 1|k) = x̂(k|k) +

(k+1)T∫
kT

F
[
x̂(t),m(k),p,d + b̂djedj

]
dt

x̂(k + l + 1|k) = x̂(k + l|k)

+

(k+l+1)T∫
(k+l)T

F
[
x̂(τ),m(k + l|k),p,d+b̂djedj

]
dτ + L(k)γ(k)

• Failed actuator: In state estimation the failed actuator is treated as con-
stant mj(k) = b̂mj , where b̂mj is the estimate of stuck actuator signal for
jth actuator. Also, in the NMPC formulation, we introduce additional con-
straints as mj(k+l|k) = b̂mj for l = 0....q−1. If number of setpoints specified
in the NMPC formulation equals the number of manipulated inputs, then we
modify the NMPC objective function by relaxing setpoint on one of the con-
trolled outputs.
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The main concern with the above approach is that the magnitude and the
position of the fault may not be accurately estimated. Thus, there is a need
to introduce integral action in such a way that the errors in estimation of fault
magnitude or position can be corrected in the course of time. Furthermore, other
faults may occur at subsequent time instants. Thus, in the on-line implementa-
tion of FTNMPC, we resume application of FDI method starting at t + N + 1.
The FDI method may identify a fault in the previously identified location or
a new fault may be identified. In either case, we modify the above equations
with cumulative estimate of the bias as described in Prakash et al. [2]. These are
computed as b̃fj =

∑nfj

l=1 b̂fj (l) with initial value b̂fj (0) = 0, where nfj represents
the number of times a fault of type f was isolated in the jth position. The use
of cumulative bias estimates can be looked upon as a method of introducing
integral action to account for plant model mismatch, in which some of the states
(cumulative bias estimates) are integrated at much slower rate and at regular
sampling intervals.

4 Simulation Case Study

Simulation studies are carried out to evaluate the proposed FTNMPC scheme
on non-isothermal CSTR system. The reactor system has two state variables,
the reactor concentration (CA) and the reactor temperature(T ), both of which
are measured and controlled. The coolant flow rate Fc and feed flow rate F
are the manipulated inputs while the feed concentration(CAO) is treated as a
disturbance variable. Model equations are given in Marlin. ([7]) and nominal pa-
rameters, simulation conditions and tuning parameters used for controller tuning
are described in Prakash et al. [4] and [2] . The bounds imposed on the inputs
are as follows

0 ≤ Fc ≤ 30m3/min
0 ≤ F ≤ 2m3/min

Ten different faults consisting of biases in two measurements, biases in two ac-
tuators, failures of the two actuators, failures of two sensors, step change in
inlet concentration and change in the frequency factor were hypothesized for
this process.

In the conventional NMPC and FTNMPC the control objective is to maintain
the temperature close to 393.95oK, while ensuring that the temperature does
not exceed the set-point by more than 1.5oK, i.e. T ≤ 395.45oK A comparison of
performances of conventional NMPC and FTNMPC, when a bias of magnitude
−5oK occurs in the measured temperature at sampling instant k = 11, is given
in Figure 1(a). In case of NMPC, the true temperature exceeds the constraint
limit when the bias occurs. Thus, the conventional NMPC leads to an offset be-
tween the true temperature and the set-point as well as violation of constraint.
The FTNMPC scheme on the other hand, correctly isolates the fault, compen-
sates for the bias in temperature measurement (estimated magnitude −4.75oK)
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Fig. 2. FTNMPC behavior for Actuator Failure

and thereby maintains the true temperature within the constraint limit. Thus
FTNMPC also eliminates the offset between true temperature and the set-point,
as illustrated in Figure 1(a).

It may be expected that the advantages of FTNMPC will become visible
in case of inferential control where estimated states are used for control. In
order to verify this we simulate failure of sensor for concentration. After the
failure is detected and diagnosed, FTNMPC switches over to inferential control
using concentration estimates generated using temperature measurements. The
comparison of performances of conventional NMPC and FTNMPC, when sensor
1 fails at k =6 and a step jump of 0.5 kmol/m3 is introduced at k =86 in the
inlet concentration (estimated magnitude 0.5233 kmol/m3) are shown in Figure
1(b). It can be seen that the conventional NMPC results in offset between true
concentration and the setpoint. The FTNMPC formulation on the other hand is
able to maintain it at the desired setpoint even after the sensor failure and the
step change in the disturbance. This can be attributed to the fact that unbiased
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state estimates are obtained once the faults are correctly identified by the FDI
component and model is corrected subsequently to accommodate the faults.

Figure 2(a) shows response of FTNMPC when the actuator for coolant flow
is stuck at 1.04 m3/min subsequent to k = 6. The corresponding manipulated
input variation is shown in Figure 2(b). As evident from Figure 2(a), the state
estimation deteriorates subsequent to the failure of the actuator. There is an
offset in the true values and the setpoints during the time window used for fault
isolation. However, the FDI component correctly isolates the actuator failure and
estimates the constant value as 1.037 m3/min. Subsequent to on-line correction
of the model, the state estimate improves and concentration is again controlled
close to the setpoint using the remaining degree of freedom.

5 Conclusions

In this work, a fault tolerant NMPC scheme, equipped with an intelligent state
estimator has been proposed. In FTNMPC formulation, to account for plant
model mismatch, the corrections to the model are made as and when necessary
and at the qualified locations identified by the nonlinear FDI component. The
proposed fault accommodation strategy overcomes the limitation on the number
of extra states that can be augmented to the state space model in NMPC and FDI
formulations and allows bias compensation for more variables than the number
of measured outputs. The proposed FTNMPC has significant advantages over
the conventional NMPC while dealing with soft faults such as actuator and
sensor biases and step jumps in unmeasured disturbances or model parameters.
When sensor or actuator failure is isolated, the proposed FTNMPC formulation
redefines the controller objectives to accommodate the fault.
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