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Summary. This paper focuses on the design of a nonlinear model predictive control
(NMPC) scheme for a cement grinding circuit, i.e., a ball mill in closed loop with an air
classifier. The multivariable controller uses two mass fractions as controlled variables,
and the input flow rate and the classifier selectivity as manipulated variables. As the
particle size distribution inside the mill is not directly measurable, a receding-horizon
observer is designed, using measurements at the mill exit only. The performance of
the control scheme in the face of measurement errors and plant-model mismatches is
investigated in simulation.

1 Introduction

In cement manufacturing, the grinding process transforms the input material
(usually clinker) into a very fine powder (the final product). This process consists
of a ball mill in closed loop with an air classifier, where the feed flow rate and
the classifier selectivity are used as manipulated variables. The quality indicator
used in common practice, which is related to the cement fineness, is the powder
specific area or Blaine measurement. Alternative quality indicators can however
be defined in terms of the particle size distribution, as further discussed in this
study.

Cement grinding circuits can be regulated using standard linear or more ad-
vanced nonlinear control schemes [4, 9, 12]. However, most of the control studies
reported in the literature consider mass variables only, i.e., mass hold-up of the
mill and mass flow rates, whereas control of the product quality requires the con-
sideration of the particle size distribution (or at least, of some related variables).
In this connection, a quality control strategy should allow to act on the parti-
cle size distribution, as well as to face rapid modification in customer demand
(i.e. changes in the cement grade or quality). Hence, efficient setpoint changes
have to be achieved despite the process nonlinearities and operating limitations.
Such a control strategy appears as an appealing (but challenging) alternative to
expensive storage policies.
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In this study, a control scheme is proposed that takes these objectives and
constraints into account. The following ingredients are involved in the control
design:

• A nonlinear population model describes the dynamic evolution of the mass
fractions in three size intervals.
• The mass fractions at the mill outlet and at the product outlet (i.e. the air

classifier outlet) can easily be measured in practice using classical sieving
techniques. In addition, they can be used, as an interesting alternative to
Blaine measurements, to assess the cement quality and performance of the
mill.
• A model-based predictive controller is designed in order to achieve qual-

ity control and setpoint changes. This control scheme accounts for actuator
saturation (in magnitude and rate of change) and for operating and safety
constraints, such as mill plugging and temperature increase.
• To reconstruct on-line the particle size distribution (in three size intervals),

a receding-horizon observer is designed, which uses measurements available
at the mill exit only. This software sensor takes the measurement errors into
account and determines the most-likely initial conditions of the prediction
horizon.

In previous works [6, 7], the authors have reported on the design of the multi-
variable controller and of the receding-horizon observer. Here, the main purpose
is to study the performance of the combined scheme (i.e. controller + software
sensor) in the face of measurement noise and parametric uncertainties. In ad-
dition, a DMC-like correction scheme is proposed, which significantly improves
the performance of the control strategy in the case of plant-model mismatches.
A simulation case study, corresponding to a typical setpoint change, is used to
highlight the advantages and limitations of the proposed strategy.

This paper is organized as follows. Section 2 briefly describes the process
and the nonlinear model. In Section 3, the control objectives are discussed, the
NMPC strategy is introduced, and the software sensor is presented. The com-
bined scheme is evaluated in Section 4 and conclusions are drawn in Section 5.

2 Process Description and Modelling

A typical cement grinding circuit is represented in Figure 1, which consists of a
single-compartment ball mill in closed loop with an air classifier. The raw ma-
terial flow qC is fed to the rotating mill where tumbling balls break the material
particles by fracture and attrition. At the other end, the mill flow qM is lifted
by a bucket elevator into the classifier where it is separated into two parts: the
product flow qP (fine particles) and the rejected flow qR (coarse particles). The
selectivity of the classifier, i.e. the separation curve, influences the product qual-
ity. This selectivity can be modified by positioning registers Reg acting on the
upward air flow. The material flow qR is recirculated to the mill inlet and the
sum of qC and qR is the total flow entering the mill, denoted qF .
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Fig. 1. Closed-loop grinding circuit

A simple population model [5, 6, 7] is used to describe the dynamic evolution
of the particle size distribution in three (relatively large) size intervals. This
model describes material transportation and breakage inside the ball mill, as
well as material separation in the air classifier. This model consists of a set of
Partial Differential Equations (PDEs), supplemented by Initial Conditions (ICs)
and Boundary Conditions (BCs):

dX
dt

= fPDE

(
X,

∂X
∂z

,
∂2X
∂z2 ;θθθf , θθθt

)
(1a)

X(t0, z) = X0(z), 0 ≤ z ≤ L (1b)

0 = fBC

(
X,

∂X
∂z

,u;θθθt, θθθcl

)
, z = 0, ∀t (1c)

0 =
∂X
∂z

, z = L,∀t (1d)

where the state vector X(t, z) has 3 components, the kth component being the
mass per unit of length (e.g., in tons per meter) in size interval k, at time t
and at location z along the mill (L is the mill length). X0(z) is the initial-value
spatial profile. The input u has 2 components, qC and Reg. The parameters θθθf ,
θθθt and θθθcl are related to the description of the fragmentation, transportation
and classification mechanisms, respectively.

This PDE system is solved numerically using a method of lines [13] strategy.
The spatial derivatives are replaced by finite difference approximations, and the
resulting system of differential algebraic equations is integrated in time using a
readily available solver.

Partitioning the size continuum into three size intervals allows the problem di-
mension to be reduced as compared to a more detailed description of the particle
size distribution (in classical modelling studies 20-30 intervals are considered).
Moreover, this specific partition can be directly related to the control objectives,
as explained in the next section. In this study, the interval limits (i.e., the upper
bounds of the mid-size and small-size intervals) are chosen as 100 and 30 µm.
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3 Control Strategy

3.1 Control Objectives and NMPC Scheme

The feed flow rate and the classifier selectivity can be used as manipulated vari-
ables. Two mass fractions are used as controlled variables. The first one, denoted
w3

P , corresponds to the fine particles in the product flow. Experimental studies
[10] demonstrate that this variable is highly correlated with the compressive
strength of the cement, if the upper size of interval 3 is chosen around 30 µm.
The second one, denoted w2

M , corresponds to the mid-size particles in the mill
outflow, which can be directly related to the grinding efficiency of the mill (too
fine particles correspond to overgrinding whereas too coarse particles correspond
to undergrinding).

The use of these several variables is illustrated by the steady-state diagram
w2

M = f(qP , w
3
P ) of Figure 2, where the curve ABC represents all the operating

points with w3
P = 0.86. Clearly, point B corresponds to a maximum product flow

rate and, as demonstrated in [3], the arcs AB and BC correspond to stable and
unstable process behaviours, respectively. By setting, for example, w2

M = 0.35
on arc AB, a single operating point (point 1) is defined. This corresponds to
producing cement of a given fineness (w3

P = 0.86) at near maximum product flow
rate in the stable region. A significant advantage of these controlled variables is
that the measurement of mass fractions is simple and inexpensive. A classical
sieving technique is used instead of sophisticated (and costly) laser technology.

The design of the NMPC scheme [1, 8] is based on a nonlinear optimization
problem, which has to be solved at each sampling time tk = kTs (where Ts is
the sampling period). More specifically, a cost function measuring the deviation
of the controlled variables from the setpoint over the prediction horizon has to
be minimized. Denoting y = [w3

P w2
M ]T the controlled variable, the optimization

problem is stated as follows:

min
{ui}Nu−1

0

Np∑
i=1

{ys − ŷ(tk+i)}T Qi {ys − ŷ(tk+i)} (2)

where Nu and Np are the control and prediction horizon lengths, respectively
(number of sampling periods with Nu < Np). {ui}Nu−1

0 is the sequence of
control moves with ui = uNu−1 for i ≥ Nu (ui is the input applied to the
process model from tk+i to tk+i+1). ŷ(tk+i) is the output value at time tk+i,
as predicted by the model. {Qi}Np

1 are matrices of dimension 2, weighting the
coincidence points. ys is the reference trajectory (a piecewise constant setpoint
in our study).

In addition, the optimization problem is subject to the following constraints:

umin ≤ ui ≤ umax (3a)
−∆umax ≤ ∆ui ≤ +∆umax (3b)

qmin
M ≤ qM ≤ qmax

M (3c)
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Fig. 2. Steady-state diagram: w2
M vs qP for constant values of w3

P

On the one hand, equation (3a) represents bound constraints on the manipu-
lated variables, e.g., saturation of the feeding mechanism or in the displacement
of the registers, whereas equation (3b) corresponds to limitations of the rate
of change of these manipulated variables. On the other hand, equation (3c) ex-
presses constraints on an operating variable, e.g., a lower bound on the mill flow
rate to prevent mill emptying and temperature increase, and an upper bound to
avoid mill plugging or a drift into the instability region.

3.2 Software Sensor Design

As the particle size distribution inside the mill is not accessible, a receding-
horizon observer [1, 11] is designed, based on the nonlinear process model and a
few measurements available at the mill exit. The main advantages of this type of
software sensors are that a nonlinear model of arbitrary complexity can be used,
and the measurement errors can be taken into account rigorously. An estimate
of the most-likely initial conditions, noted x̂(0|tk), is obtained by solving the
following optimization problem:

min
x0

k∑
i=k−No

{y(ti)− hobs(x(ti),u(ti)}T ΣΣΣ−1
i {y(ti)− hobs(x(ti),u(ti)} , (4)

where x0 is the initial-condition, No is the prediction horizon length (number
of sampling periods To 	= Ts), hobs(.) is the output trajectory, y(ti) are the
measurements affected by a Gaussian white noise with zero mean and covariance
matrix ΣΣΣi.

However, the finite difference schemes used to solve the model equations lead
to a relatively large number of state variables which should be estimated. To cir-
cumvent this problem, and to keep the optimization problem tractable, the initial
condition profile x0(z) is approximated by a combination of simple polynomial
laws. An approximate representation of the initial spatial profile is sufficient for
state estimation and control purposes, as the effect of the initial conditions on
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Fig. 3. Receding-horizon estimation: evaluating the impact of the initial conditions

the model solution vanishes rapidly as compared to the process time constants.
Figure 3(a) shows the norm percentage deviation between the real and simulated
state during a typical run. For an initial deviation of about 40 %, the deviation
reduces to 5 % in only 10 min.

To build the polynomial approximation, x0(z) is expressed in terms of zr, a
scaled spatial coordinate

( z

L

)
, and in terms of the mill material hold-up H0(zr)

and the mass fractions wi
0(zr)

x0(zr) = H0(zr)
[
w1

0(zr) w2
0(zr) w3

0(zr)
]T (5)

Simple polynomial laws are then used to represent the several factors of this
latter expression. The hold-up is considered uniform H0(zr) = θH , the mass frac-
tion of coarse particles can be represented by a concave quadratic law w1

0(zr) =
0.3 zr(zr − 2) + θw1, the mass fraction of fine particles can be represented by a
convex quadratic laww3

0(zr) = −0.3zr(zr−2)+θw3 andw2
0(zr) is simply deduced

from the two other mass fractions (and is uniform in the present case).
When measurements are available at the mill exit only, it is observed that the rel-

evant information for the determination of θw1 and θw3 vanishes after 10 min. This
is apparent in Figure 3(b), which shows the parametric sensitivity of the material
mass fractions at the mill outlet. For instance, SM ;θH (t) is defined as ∂X

∂θH
(L, t).

These results justify the use of a simple parameterization of the initial con-
dition profile. In optimization problem (4), a horizon of 20 min with 2 min-
sampling intervals is sufficient to ensure convergence and accuracy. On the other
hand, the formulation of the state vector using the factorization (5) results in
the consideration of simple linear constraints.

The computation time required to solve the optimization problems (2) and
(4) would allow the use of shorter sampling intervals, but the measurement
procedure (sieving) could be limitative. Here, we have elected to be on the safe
side concerning this latter limitation (but shorter sampling intervals would of
course improve accuracy and convergence).
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4 Numerical Results

In this section, the combined scheme (software sensor + NMPC) is evaluated in
simulation, using a typical test run corresponding to a setpoint change. Point
1 in Figure 2 (where y = [0.86 0.35]T ) is the initial operating condition, and
point 2 (with y = [0.90 0.31]T ) represents the target (this point corresponds
to a higher product fineness and near maximum product flow rate). The sam-
pling period Ts = 5 min and the prediction horizon is 80 min (Np = 16). Two
manipulated variable moves are used (Nu = 2) and the weighting matrix Qi is
chosen as a constant identity matrix. Amplitude saturations are qmax

C = 60 ton
hour

and Regmax = 100. Limits for the rates of change are ∆qmax
C = 15 ton

hour
and ∆Regmax = 80. Limits on the mill flow rate are qmin

M = 60 ton
hour and

qmax
M = 90 ton

hour . The observer parameters are defined in Section 3.2.
It is first assumed that the process model is accurate and that the measurements

are noise free. Figure 4 shows the controlled and the manipulated variables (solid
lines). The performance is satisfactory, the controlled variables reach the setpoint
after about 20 min and the steady state is obtained after 70 min. Moreover, con-
straints are active in the first 5 min (first sample), as the maximum register dis-
placement and the maximum rate of change of the input flow rate are required.

The performance of the control scheme is then tested when measurements
are subject to a noise with a maximum absolute error of 0.02 ton

m (around a 5%
maximum relative error). The software sensor can efficiently take these stochastic
disturbances into account, and the performance of the control scheme remains
quite satisfactory.

Finally, the influence of parametric uncertainties (plant-model mismatch due
to errors at the identification stage) is investigated. A parametric sensitivity
analysis is performed, and Figure 5 shows step responses corresponding to either
an accurate model or to a −10% error in the fragmentation rate or the transport
velocity. Clearly, fragmentation parameters (which represents material hardness
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Fig. 6. Plant-model mismatch: solid: without compensation, dotted: with a DMC-like
compensation

or grindability) have a larger impact on the model prediction than the material
transportation parameters.

The performance of the control scheme is evaluated when a prediction model
with erroneous fragmentation rates is used (which is the worst case of plant-model
mismatch). Figure 6 shows results corresponding to −5% errors in the fragmenta-
tion rates. Clearly, performance deteriorates and a significant steady-state error
appears. To alleviate this problem, a DMC-like compensation is proposed, which
considers the plant-model mismatch as a constant output disturbance d̂k+i = d̂k

over the prediction horizon. An estimate of the disturbance d̂k is obtained from
the process output yk and the observer output, noted ȳk, as follows:

d̂k = yk − ȳk (6)
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Figure 6 shows that this kind of compensation significantly improves the perfor-
mance of the control scheme under parametric uncertainties.

5 Conclusion

In this paper, a receding-horizon observer and a receding-horizon controller are
designed for a ball mill circuit. The software sensor provides an estimation of the
particle size distribution inside the ball mill, based on a nonlinear process model
and a few measurements available at the mill exit. The control scheme allows effi-
cient quality control and setpoint changes, even in the face of noisy measurements
and significant parametric uncertainties. In addition, a DMC-like compensation
of these latter errors improves the performance of the proposed scheme.
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