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Summary. We present an overview of our results on stabilizing scheduled output feed-
back Model Predictive Control (MPC) algorithm for constrained nonlinear systems
based on our previous publications [19, 20]. Scheduled MPC provides an important
alternative to conventional nonlinear MPC formulations and this paper addresses the
issues involved in its implementation and analysis, within the context of the NMPC05
workshop. The basic formulation involves the design of a set of local output feedback
predictive controllers with their estimated regions of stability covering the desired op-
erating region, and implement them as a single scheduled output feedback MPC which
on-line switches between the set of local controllers and achieves nonlinear transitions
with guaranteed stability. This algorithm provides a general framework for scheduled
output feedback MPC design.

1 Introduction

Most practical control systems with large operating regions must deal with non-
linearity and constraints under output feedback control. Nonlinear Model Predic-
tive Control (NMPC) is a powerful design technique that can stabilize processes
in the presence of nonlinearities and constraints. Comprehensive reviews of state
feedback NMPC algorithms can be found in [15]. In state feedback NMPC, full
state information can be measured and is available as initial condition for pre-
dicting the future system behavior. In many applications, however, the system
state can not be fully measured, and only output information is directly avail-
able for feedback. An output feedback NMPC algorithm can be formulated by
combining the state feedback NMPC with a suitable state observer, e.g., mov-
ing horizon observer (MHE)[6] [14], extended Kalman filter [16], etc. A good
overview of the observer based output feedback NMPC algorithms is provided
in [4]

Besides developing efficient techniques such as multiple shooting for solving
NLP [6] and parallel programming for control of nonlinear PDE systems [10],
researchers have proposed various methods to simplify NMPC on-line compu-
tation. In [18], it was proposed that instead of the global optimal solution, an
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improved feasible solution obtained at each sampling time is enough to ensure
stability. In [11], a stabilizing NMPC algorithm was developed with a few control
moves and an auxiliary controller implemented over the finite control horizon. In
[7], stability is guaranteed through the use of an a priori control Lyapunov func-
tion (CLF) as a terminal cost without imposing terminal state constraints. In [1],
nonlinear systems were approximated by linear time varying (LTV) models, and
the optimal control problem was formulated as a min-max convex optimization.
In [9], nonlinear systems were approximated as linear parameter varying (LPV)
models, and a scheduling quasi-min-max MPC was developed with the current
linear model known exactly and updated at each sampling time. A hybrid con-
trol scheme was proposed in [3] for nonlinear systems under state feedback. This
control scheme embeds the implementation of MPC within the stability regions
of the bounded controllers and employs these controllers as fall-back in the event
that MPC is unable to achieve closed-loop stability [2, 3, 13].

For a control system with a large operating region, it is desirable for the
controller to achieve satisfactory performance of the closed-loop system around
all setpoints while allowing smooth transfer between them. Pseudolinearization
was used in the quasi-infinite horizon NMPC formulation to obtain a closed form
expression for the controller parameters as a function of the setpoint [5]. A novel
gain scheduling approach was introduced in [12], in which a set of off-line local
controllers are designed with their regions of stability overlapping each other,
and supervisory scheduling of the local controllers can move the state through
the intersections of the regions of stability of different controllers to the desired
operating point with guaranteed stability.

In [20], we developed a scheduled output feedback MPC for nonlinear con-
strained systems, based on the scheduling ideas of [19] and [12]. The basic ideas
are (1) locally represent the nonlinear system around an equilibrium point as a
linear time varying (LTV) model and develop a local predictive controller with
an estimate of its region of stability; (2) expand the region of stability about
the desired operating point by piecing together the estimated regions of sta-
bility of a set of local predictive controllers; (3) schedule the local predictive
controllers based on the local region of stability that contains the system state.
The key to estalishing stability of local predictive controllers and stability of
scheduling of local predictive controllers is to design an exponentially stable
state feedback controller and require the state observer to deliver bounded ob-
server error to ensure asymptotic stability of the output feedback controller. In
order to faciliate a finite dimensional formulation for enforcement of exponen-
tial stability, we can either represent the local nonlinearity as a LTV model and
parameterize the infinite control horizon in terms of a linear feedback law, or
we can use the nonlinear model and only enforce the constraint over a finite
control horizon with a terminal constraint and a terminal cost. While [20] only
used the former formulation, the current paper generalizes a framework for de-
sign of scheduled output feedback MPC, which covers both finite dimensional
formulations.
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2 Local Output Feedback MPC for Constrained
Nonlinear Systems

2.1 State Feedback and No Disturbances

Consider a discrete-time nonlinear dynamical system described by

x(k + 1) = f(x(k), u(k)) (1)

where x (k) ∈ X ⊆ Rn, u (k) ∈ U ⊆ Rm are the system state and control input,
respectively,X and U are compact sets. Assume f(x, u)=

[
f1(x, u) · · · fn(x, u)

]T

are continuous differentiable in x and u.

Definition 1. Given a set U , a point x0 ∈ X is an equilibrium point of the
system ( 1) if a control u0 ∈ int(U) exists such that x0 = f(x0, u0). We call a
connected set of equilibrium points an equilibrium surface.

Suppose (xeq , ueq) is a point on the equilibrium surface. Within a neighborhood
around (xeq, ueq), i.e., Πx = {x ∈ Rn| |xr − xeq

r | ≤ δxr, r = 1, ..., n} ⊆ X,
and Πu = {u ∈ Rm| |ur − ueq

r | ≤ δur, r = 1, ...,m} ⊆ U, let x̄ = x − xeq and
ū = u−ueq. The objective is to minimize the infinite horizon quadratic objective
function

min
ū(k+i|k)

J∞(k)

subject to

|ūr(k + i|k)| ≤ δur,max, i ≥ 0, r = 1, 2, ...,m (2)
|x̄r(k + i|k)| ≤ δxr,max, i ≥ 0, r = 1, 2, ..., n (3)

where J∞(k) =
∑∞

i=0[x̄(k + i|k)TQx̄(k + i|k) + ū(k + i|k)TR ū(k + i|k)] with
Q > 0, R > 0. To derive an upper bound on J∞(k), define a quadratic function
V (x̄) = x̄TQ(k)−1x̄, Q(k) > 0. Suppose V (x) satisfies the following exponential
stability constraint

V (x̄(k + i + 1|k) ≤ α2V (x̄(k + i|k)), V (x̄(k|k)) ≤ 1, α < 1 (4)

There exists a γ(k) > 0 such that

V (x̄(k + i + 1|k))− V (x̄(k + i|k)) ≤ − 1
γ(k)

[
x̄(k + i|k)TQx̄(k + i|k)

+ū(k + i|k)TR ū(k + i|k)
] (5)

Summing (5) from i = 0 to i =∞ and requiring x̄(∞|k) = 0 or V (x̄(∞|k)) = 0,
it follows that J∞(k) ≤ γ(k)V (x̄(k|k)) ≤ γ(k). Therefore, the optimization is
formulated as

min
γ(k),Q(k),ū(k+i|k),i≥0

γ(k) (6)

subject to (2)-(5).
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Algorithm 1 (Exponentially stable MPC). Given the controller design pa-
rameter 0 < α < 1. At each sampling time k, apply u(k) = ū(k) + ueq where
ū(k) is obtained from min

γ(k),Q(k),ū(k+i|k),i≥0
γ(k) subject to (2), (4), (5) and (8),

where R is obtained offline from the maximization (7) subject to (2)-(5).

Assume that at each sampling time k, a state feedback law ū(k) = F (x̄(k)) is
used. Then an ellipsoidal feasible region of the optimization (6) can be defined as
S =

{
x̄ ∈ Rn

∣∣ x̄R−1x̄ ≤ 1
}
, where R is the optimal solution Q of the following

maximization
max

γ,Q,F (•)
log detQ (7)

subject to (2)-(5). Then J∞(k) is bounded by γRx̄(k)R−1x̄(k), where γR is the
solution of γ in (7).

Replacing the state constraint (3) by x̄(k + i|k) ∈ S, i ≥ 0, or, equivalently

R−Q > 0 (8)

which confines the current state and all future predicted states inside S, we
develop an exponentially stable MPC algorithm with an estimated region of
stability.

Remark 1. Enforcement of the exponential stability constraint (4) involves an
infinite control horizon. In order to faciliate a finite dimensional formulation, we
can either represent the local nonlinearity as a LTV model and parameterize the
infinite control horizon in terms of a linear feedback law (see [20]), or we can use
the nonlinear model and only enforce the constraint over a finite control horizon
with a terminal constraint and a terminal cost. In fact, the estimated region of
stability S =

{
x̄ ∈ Rn

∣∣ x̄R−1x̄ ≤ 1
}

and the cost upper bound γRx̄
TR−1x̄ can

serve as the terminal constraint and the terminal cost, respectively. A significant
difference between this paper and [20] is that this paper provides a generalized
framework, which covers both of the above two finite dimensional formulations.

Theorem 1. Consider the nonlinear system (1). Suppose (x eq, ueq) is locally
stabilizable, then there exist a neighborhood (Πx, Πu) around (xeq, ueq) and
a controller design parameter 0 < α < 1 such that Algorithm 1 exponen-
tially stabilizes the closed-loop system with an estimated region of stability
S =

{
x̄ ∈ Rn

∣∣ x̄TR−1x̄ ≤ 1
}
.

Proof. The proof can be found in the Appendix.

2.2 State Feedback and Asymptotically Decaying Disturbances

Consider the nonlinear system (1) subject to the unknown additive asymptot-
ically decaying disturbance d(k), xp(k + 1) = f(xp(k), u(k)) + d(k), where we
have made a distinction between the state of the perturbed system, xp(k), and
the state of the unperturbed system, x(k). In order for xp(k + 1) to remain in
the region of stability S , we develop a sufficient condition between the norm
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bound of d(k) and the controller design parameter α. Let x̄p(k) = xp(k) − xeq,

x̄(k + 1) = f(xp(k), u(k)) − xeq. Suppose x̄p(k) ∈ S, (i.e., ‖x̄p(k)‖2R−1 ≤ 1),
‖x̄p(k + 1)‖2R−1 = ‖x̄(k + 1) + d(k)‖2R−1 = ‖x̄(k + 1)‖2R−1 +2x̄(k+1)TR−1d(k)+
‖d(k)‖2R−1 , where u(k) is computed by Algorithm 1. From ( 8) and (4), we know
that ‖x̄(k + 1)‖2R−1 ≤ ‖x̄(k + 1)‖2Q(k)−1 ≤ α2 ‖x̄p(k)‖2Q(k)−1 ≤ α2. Therefore, in-

variance is guaranteed if ‖x̄p(k + 1)‖2R−1 ≤ α2 + 2α ‖d(k)‖R−1 + ‖d(k)‖2R−1 =
(α + ‖d(k)‖R−1)2 ≤ 1. A sufficient condition for xp(k + 1) to remain in the re-
gion of stability S is ‖d(k)‖R−1 ≤ 1 − α, which means that the disturbance
should be bounded in a region Sd � {d ∈ Rn | dTR−1d ≤ (1− α)2}. As d(k) is
asymptotically decaying, the closed-loop trajectory asymptotically converges to
the equilibrium (xeq, ueq).

2.3 Output Feedback

Consider the nonlinear system (1) with a nonlinear output map

y(k) = h(x(k)) ∈ R
q (9)

where h(x) =
[
h1(x) · · · hq(x)

]T are continuous differentiable. For all x, x̂ ∈ Πx

and u ∈ Πu, consider a full order nonlinear observer with a constant observer
gain Lp,

x̂(k + 1) = f(x̂(k), u(k)) + Lp(h(x(k)) − h(x̂(k))) (10)

The error dynamic system is e(k+1)=f(x(k), u(k))−f(x̂(k), u(k))−Lp(h(x(k))−
h(x̂(k))). Define a quadratic function Ve(x) = eTPe, P > 0. Suppose for all
time k ≥ 0, x(k), x̂(k) ∈ Πx and u(k) ∈ Πu, and Ve(e) satisfies the following
exponential convergent constraint

Ve(e(k + i + 1|k)) ≤ ρ2Ve(e(k + i|k)) (11)

In order to facilitate the establishment of the relation between ‖d‖R−1 and ‖e‖P
in §2.4, we want to find a P as close to R−1 as possible. Therefore, we minimize
γ such that

γR−1 ≥ P ≥ R−1 (12)

Algorithm 2. Consider the nonlinear system (1) and (9) within (Πx, Πu)
around (xeq, ueq). Given the observer design parameter 0 < ρ < 1, the con-
stant observer gain Lp of the full order observer (10 ) is obtained from min

γ,P,Lp

γ

subject to ( 11) and (12).

Theorem 2. Consider the nonlinear system (1) and (9 ). Suppose (xeq, ueq) is
locally observable, then there exist a neighborhood (Πx, Πu) around (x eq , u eq)
and an observer design parameter 0 < ρ < 1 such that the minimization in
Algorithm 2 is feasible. Furthermore, if for all time k ≥ 0, x(k), x̂(k) ∈ Πx

and u(k) ∈ Πu, then the observer in Algorithm 2 is exponentially convergent.
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Algorithm 3 (Local output feedback MPC for constrained nonlinear
systems). Consider the nonlinear system (1) and the output map ( 9) within
the neighborhood (Πx, Πu) around (xeq, ueq). Given the controller and observer
design parameters 0 < α < 1 and 0 < ρ < 1. At sampling time k > 0, apply
u(k) = F (k; (x̂(k)− xeq)) + ueq, where x̂(k) is solved by the observer in Algo-
rithm 2 with the output measurement y(k−1) and F (k; •) is solved by the state
feedback MPC in Algorithm 1 based on x̄(k) = x̂(k)− xeq.

Proof. The proof can be found in the Appendix.

Now we combine the state feedback MPC in Algorithm 1 with the observer in
Algorithm 2 to form a local output feedback MPC for the constrained nonlinear
system.

2.4 Stability Analysis of Output Feedback MPC

For the output feedback MPC in Algorithm 3 to be feasible and asymptotically
stable, it is required that for all time k ≥ 0, x(k), x̂(k) ∈ Πx. In this subsection,
we study conditions on x(0) and x̂(0) such that x(k), x̂(k) ∈ S is satisfied for all
times k ≥ 0. Consider the closed-loop system with the output feedback MPC in
Algorithm 3,

x(k + 1) = f(x̂(k), u(k)) + d1(k)
x̂(k + 1) = f(x̂(k), u(k)) + d2(k)

with d1(k) = f(x(k), u(k)) − f(x̂(k), u(k)) and d2(k) = Lp(h(x(k)) − h(x̂(k))).
At time k, u(k) is obtained by using the state feedback MPC in Algorithm 1
based on x̄(k|k) = x̂(k)− xeq.

Since f is continuous differentiable, within (Πx, Πu) there exist β1, β2 > 0 such
that ‖d1(k)‖R−1 ≤ β1 ‖e(k)‖P and ‖d2(k)‖R−1 ≤ β2 ‖e(k)‖P . Suppose initially
x(0), x̂(0) ∈ S and ‖e(0)‖P ≤ η := 1−α

max{β1,β2} , then ‖d1(0)‖R−1 ≤ 1 − α and
‖d2(0)‖R−1 ≤ 1−α, which in turn lead to x(1), x̂(1) ∈ S (see §2.2)and ‖e(1)‖P ≤
η (see §2.3). And so on. Since for all time k ≥ 0, x(k), x̂(k) ∈ S, the state feedback
MPC in Algorithm 1 is exponentially stable, the observer in Algorithm 2 is
exponentially convergent, and the combination of both asymptotically stabilizes
the closed-loop system.

Theorem 3. Consider the nonlinear system (1) and (9 ). Suppose (xeq, ueq)
is locally stabilizable and observable, then there exist a neighborhood (Πx, Πu)
around (xeq, ueq) and controller and observer design parameters 0 < α < 1 and
0 < ρ < 1 such that the output feedback MPC in Algorithm 3 asymptotically
stabilizes the closed-loop system for any x(0), x̂(0) ∈ S ={
x ∈ Rn

∣∣∣(x− xeq)T R−1 (x− xeq) ≤ 1
}

satisfying ‖x(0)− x̂(0)‖P ≤ η.

Remark 2. In fact, ‖d1(k)‖R−1 ≤ β1 ‖e(k)‖P ≤ 1 − α defines two ellipsoidal re-
gions, i.e., Sd � {d1 ∈ Rn | dT

1 R
−1d1 ≤ (1− α)2} and Se � {e ∈ Rn |β2

1e
TPe ≤

(1− α)2} ⊂ Sd. The effect of the optimization in (12) on the observer perfor-
mance is to find the maximum Se within Sd.
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2.5 Observability Analysis of Output Feedback MPC

For the output feedback MPC in Algorithm 3, the state is not measured, but
from the output of the system and the estimated state, we can observe the
exponential decay of the norm bound of the state estimation error, and thus
observe the real state incrementally.

Consider the output feedback MPC in Algorithm 3 which can stabilize any
x(0), x̂(0) ∈ S satisfying ‖x(0)− x̂(0)‖P ≤ η. Let T > 0. At time k− T ≥ 0, let
x(k− T ), x̂(k− T ) ∈ S satisfying ‖x(k − T )− x̂(k − T )‖P ≤ η. During T steps,
an input sequence {u(k − T ), ..., u(k − 1)} ⊂ Πu is obtained by the controller
based on {x̂(k−T ), ..., x̂(k−1)} ⊂ S . We know that the state evolution starting
from x(k−T ) driven by {u(k−T ), ..., u(k− 1)} is inside S ⊂ Πx. Suppose that
the state evolution x̃(k + 1) = f(x̃(k), u(k)) starting from x̃(k − T ) = x̂(k − T )
driven by {u(k − T ), ..., u(k − 1)} is also inside Πx, then we can get

x(k + 1)− x̃(k + 1) = f(x(k), u(k))− f(x̃(k), u(k))
y(k)− ỹ(k) = h(x(k)) − h(x̃(k))

Let VT :=
∑k−1

j=k−T ‖y(j)− ỹ(j)‖2. Suppose (xeq, ueq) is locally observable, then
there exist a neighborhood (Πx, Πu) around (xeq, ueq) and T, µ > 0 such that
VT ≥ µ ‖x(k − T )− x̂(k − T )‖2P , or equivalently, ‖x(k) − x̂(k)‖2P ≤

ρT VT
µ .

Theorem 4. Consider the nonlinear system (1) and (9). Suppose (xeq, ueq) is lo-
cally stabilizable and observable, then there exist a neighborhood (Πx, Πu) around
(xeq, ueq) and controller and observer design parameters 0 < α < 1 and 0 < ρ <
1, and T, µ > 0 such that the output feedback MPC in Algorithm 3 is asymptot-
ically stable for any x(0), x̂(0) ∈ S =

{
x ∈ Rn

∣∣∣(x− xeq)T
R−1 (x− xeq) ≤ 1

}
satisfying ‖x(0)− x̂(0)‖P ≤ η. On-line, let x(0), x̂(0) ∈ S and ‖x(0)− x̂(0)‖P ≤
η. Apply the output feedback controller. At time k ≥ T , if the state evolution
starting from x̂(k−T ) driven by the input sequence {u(k − T ), ..., u(k − 1)} from
the controller is inside Πx, then ‖x(k)− x̂(k)‖2P ≤

ρT VT
µ .

Proof. The proof can be found in the Appendix.

3 Scheduled Output Feedback MPC for Constrained
Nonlinear Systems

Algorithm 4 (Design of scheduled output feedback MPC). For the non-
linear system (1) and the output map (9), given an equilibrium surface and a
desired equilibrium point (x(0), u(0)). Let i := 0.

1. Specify a neighborhood
(
Π

(i)
x , Π

(i)
u

)
around (x(i), u(i)) satisfying Π

(i)
x ⊆ X

and Π
(i)
u ⊆ U.
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2. Given 0 < α(i) < 1 and 0 < ρ(i) < 1, design Controller #i (Algorithm 3)
with its explicit region of stability

S(i) =
{
x ∈ R

n

∣∣∣∣(x− x(i)
)T (

R(i)
)−1 (

x− x(i)
)
≤ 1

}
Store x(i), u(i),

(
R(i)

)−1
, P (i), η(i), T (i) and µ(i) in a lookup table;

3. Select (x(i+1), u(i+1)) satisfying x(i+1) ∈ int
(
S(i)

θ

)
with

S(i)
θ =

{
x ∈ R

n

∣∣∣∣(x− x(i)
)T (

R(i)
)−1 (

x− x(i)
)
≤ (θ(i))2 < 1

}
Let i := i + 1 and go to step 1, until the region ∪M

i=0S(i) with M = max i
covers a desired portion of the equilibrium surface.

Remark 3. In general, the scheduled MPC in Algorithm 4 requires a specified
path on the equilibrium surface so as to extend the region of stability. An op-
timal path can be defined by the steady state optimization, which provides a
set of operating conditions with optimal economic costs. For the same path on
the equilibrium surface, the larger the number of controllers designed, the more
overlap between the estimated regions of stability of two adjacent controllers,
and the better the transition performance, because control switches can hap-
pen without moving the state trajectory close to the intermediate equilibrium
points. Yet a larger number of controllers leads to a larger storage space for the
lookup table and a longer time to do the search. So there is a trade-off between
achievement of good transition performance and computational efficiency.

On-line, we implement the resulting family of local output feedback predictive
controllers as a single controller whose parameters are changed if
certain switching criteria are satisfied. We call such a controller scheme a
scheduled output feedback MPC. For the case that x(0), x̂(0) ∈ S(0) satisfying
‖x(0)− x̂(0)‖P (0) ≤ η(0), according to Theorem 3, Controller #0 asymptotically
converges the closed-loop system to the desired equilibrium

(
x(0), u(0)

)
. Simi-

larly, for the case that x(0), x̂(0) ∈ S(i), i 	= 0 satisfying ‖x(0)− x̂(0)‖P (i) ≤ η(i),
Controller #i asymptotically converges the closed-loop system to the equilibrium(
x(i), u(i)

)
. Because x(i) ∈ int

(
S(i−1)

θ

)
, both x(k) and x̂(k) will enter S(i−1)

θ in
finite time. At time k, in order to switch from Controller #i to #(i−1), we need
to make sure that the initial conditions for stability of Controller #(i − 1) are
satisfied, i.e., x(k), x̂(k) ∈ S(i−1) and ‖x(k) − x̂(k)‖P (i−1) ≤ η(i−1).

Suppose x̂(k) ∈ S(i−1)
θ . We know that∥∥∥x(k)− x(i−1)

∥∥∥
(R(i−1))−1

≤ ‖x(k)− x̂(k)‖(R(i−1))−1 +
∥∥∥x̂(k)− x(i−1)

∥∥∥
(R(i−1))−1

≤ ‖x(k)− x̂(k)‖P (i−1) +
∥∥∥x̂(k)− x(i−1)

∥∥∥
(R(i−1))−1
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and ‖x(k)− x̂(k)‖2P (i−1) ≤ ζi→(i−1) ‖x(k)− x̂(k)‖2P (i) with ζi→(i−1) solved by
the following minimization

min
ζi→(i−1)

ζi→(i−1) (13)

subject to ζi→(i−1) > 0 and ζi→(i−1)P (i) − P (i−1) ≥ 0. Hence x(k) ∈ S(i−1) and
‖x(k) − x̂(k)‖P (i−1) ≤ η(i−1) are satisfied, if

‖x(k)− x̂(k)‖2P (i) ≤
1

ζi→(i−1) min
((

1− θ(i−1)
)2

,
(
η(i−1)

)2
)

(14)

From Theorem 4, we know that if Controller # i has been implemented for at
least T (i) time steps, and if the state evolution starting from x̂(k − T (i)) driven
by the input from the Controller #i is inside Π

(i)
x , then ‖x(k)− x̂(k)‖2P (i) ≤

(ρ(i))T (i)
V

(i)
T

µ(i) . By imposing an upper bound δi→(i−1) on V
(i)
T , we can upper bound

the state estimation error at current time k. Let

δi→(i−1) =
µ(i)

ζi→(i−1)
(
ρ(i)

)T (i) min
((

1− θ(i−1)
)2

,
(
η(i−1)

)2
)

(15)

the satisfaction of (14) is guaranteed. Furthermore, because the observer is expo-
nentially converging, for any finite δi→(i−1), there exists a finite time such that
V

(i)
T ≤ δi→(i−1) is satisfied.

Algorithm 5. Off-line, constructM+1 local predictive controllers by Algorithm
4. On-line, given x(0), x̂(0) ∈ S(i) satisfying ‖x(0)− x̂(0)‖P (i) ≤ η(i) for some i.
Apply Controller #i. Let T (i) be the time period during which Controller #i

is implemented. If for Controller #i > 0, (1) T (i) ≥ T (i), (2) x̂(k) ∈ S(i−1)
θ ,

and (3) the state evolution starting from x̂(k − T (i)) driven by the input from
Controller #i is inside Π

(i)
x , and V

(i)
T ≤ δi→(i−1), then, at the next sampling

time, switch from Controller #i to Controller #(i − 1); Otherwise, continue to
apply Controller #i.

Theorem 5. Consider the nonlinear system (1) and the output map (9). Sup-
pose x(0), x̂(0) ∈ S(i) satisfying ‖x(0)− x̂(0)‖P (i) ≤ η(i) for some i, the sched-
uled output feedback MPC in Algorithm 5 asymptotically stabilizes the closed-loop
system to the desired equilibrium (x(0), u(0)).

4 Example

Consider a two-tank system

ρS1ḣ1 = −ρA1
√

2gh1 + u (16)

ρS2ḣ2 = ρA1
√

2gh1 − ρA2
√

2gh2

y = h2
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Fig. 1. Phase plots of the regulations from x(0) = (7.5, 15)T to the equilibrium(
(19.753, 100)T , 1.7710

)
. First formulation: solid line - state; dotted line - estimated

state. Second formulation: dashed line - state; dashed dotted line - estimated state.

where ρ = 0.001kg/cm3, g = 980cm/s2, S1 = 2500cm2, A1 = 9cm2, S2 =
1600cm2, A2 = 4cm2, 1cm≤ h1 ≤ 50cm, 10 cm≤ h2 ≤ 120cm, and 0 ≤ u ≤
2.5kg/s. The sampling time is 0.5 sec. Let Q = diag(0, 1), R = 0.01 and α =
0.998 for all the controller designs, and ρ = 0.99 for all the observer designs. Let
θ = 0.9, T = 10 and δ = 10−5 for all switches.

Consider the regulation from an initial state h(0) =

[
7.5
15

]
to the equilib-

rium (h(0), u(0)) =

([
19.753
100

]
, 1.7710

)
. Initial estimated state is ĥ(0) = h(3).

Figure 1 shows four regions of stability defined by the optimization (7) for four
equilibrium points. There are two controller formulations implemented within
each stability region. The first formulation is to represent the local nonlinear-
ity as a LTV model and parameterize the infinite control horizon in terms of

a linear feedback law. Consider an equilibrium point

([
heq

1

heq
2

]
, ueq

)
. The lo-

cal nonlinearity within a neighborhood (Πh, Πu) is expressed as a polytopic
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Fig. 2. Time responses of the regulations from x(0) = (7.5, 15)T to the equilibrium(
(19.753, 100)T , 1.7710

)
. First formulation: solid line - state and input; dotted line -

estimated state. Second formulation: dashed line - state and input; dashed dotted line
- estimated state.

uncertainty Ω with four vertices {J(heq
1 +δh1, h

eq
2 +δh2), J(heq

1 +δh1, h
eq
2 −δh2),

J(heq
1 − δh1, h

eq
2 + δh2), J(heq

1 − δh1, h
eq
2 − δh2)}, where J(h1, h2) is the Jacobian

matrix at (heq
1 , heq

2 )T . The second formulation is to use the nonlinear model
within a neighborhood (Πh, Πu) and only enforce the constraint over a finite
control horizon of N = 3 with a terminal constraint and a terminal cost as
specified in Remark 1. Figure 1 shows the transitions by using the two controller
formulations. Figure 2 shows the time responses. Close-up views of the responses
of the state and the estimated state are provided to show convergence of the
observers.

The first formulation performs better than the second one, because
control switches of the second formulation happen close to the intermediate
equilibrium points. (For performance improvement see Remark 3 ). On a Gate-
way PC with Pentium III processor (1000MHz, Cache RAM 256KB and to-
tal memory 256MB) and using Matlab LMI toolbox for the first formulation
and optimization toolbox for the second approach, the numerical complexity
of the two controller formulations are 0.5 second and 0.15 second per step,
respectively.

5 Conclusions

In this paper, we have proposed a stabilizing scheduled output feedback MPC
formulation for constrained nonlinear systems with large operating regions. Since
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we were able to characterize explicitly an estimated region of stability of the
designed local output feedback predictive controller, we could expand it by de-
signing multiple predictive controllers, and on-line switch between the local con-
trollers and achieve nonlinear transitions with guaranteed stability. This algo-
rithm provides a general framework for the scheduled output feedback MPC
design. Furthermore, we have shown that this scheduled MPC is easily imple-
mentable by applying it to a two tank process.
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Appendix

Proof. Proof of Theorem 1: Within a neighborhood (Πx, Πu) around (xeq, ueq),
we locally represent the nonlinear system (1) by a LTV model x̄(k + 1) =
A(k)x̄(k) + B(k) ū(k) with

[
A(k) B(k)

]
∈ Ω. For all x ∈ Πx and u ∈ Πu,

the Jacobian matrix
[

∂f
∂ x ,

∂f
∂ u

]
∈ Ω with ∂ f

∂ x =

⎡⎢⎢⎣
∂ f1
∂ x1
· · · ∂ f1

∂ xn

...
. . .

...
∂ fn

∂ x1
· · · ∂ fn

∂ xn

⎤⎥⎥⎦ and ∂ f
∂ u =

⎡⎢⎢⎣
∂ f1
∂ u1
· · · ∂ f1

∂ um

...
. . .

...
∂ fn

∂ u1
· · · ∂ fn

∂ um

⎤⎥⎥⎦ . It is straight forward to establish the closed-loop exponential

stability within S based on the LTV model. Since the LTV model is a represen-
tation of a class of nonlinear systems including the given nonlinear system (1)
within the neighborhood (Πx, Πu), the closed-loop nonlinear system is exponen-
tially stable within S.

Proof. Proof of Theorem 2 and 4: Following the same procedure as in the proof
for Theorem 1, we locally represent the nonlinear error dynamics as a LTV
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model e(k + 1) = (A(k)− LpC(k)) e(k) with
[
A(k)T C(k)T

]T ∈ Ψ . For all

x, x̂ ∈ Πx and u ∈ Πu, the Jacobian matrix
[(

∂f
∂ x

)T (
∂h
∂ x

)T

]T

∈ Ψ with

∂f
∂ x =

⎡⎢⎢⎣
∂ f1
∂ x1
· · · ∂ f1

∂ xn

...
. . .

...
∂ fn

∂ x1
· · · ∂ fn

∂ xn

⎤⎥⎥⎦ and ∂h
∂ x =

⎡⎢⎢⎣
∂ h1
∂ x1
· · · ∂ h1

∂ xn

...
. . .

...
∂ hq

∂ x1
· · · ∂ hq

∂ xn

⎤⎥⎥⎦ . It is straight forward to

establish the exponential convergence of the observer and the norm bound of
the state estimation error within S based on the LTV model and the nonlinear
model.




