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Summary. The application of nonlinear model predictive control (NMPC) for the
temperature control of an industrial batch polymerization reactor is illustrated. A real-
time formulation of the NMPC that takes computational delay into account and uses an
efficient multiple shooting algorithm for on-line optimization problem is described. The
control relevant model used in the NMPC is derived from the complex first-principles
model and is fitted to the experimental data using maximum likelihood estimation. A
parameter adaptive extended Kalman filter (PAEKF) is used for state estimation and
on-line model adaptation. The performance of the NMPC implementation is assessed
via simulation and experimental studies.

1 Introduction

Trends in the process industries toward high value added products have increased
the interest in the optimal operation of batch processes, used predominantly
for high-tech products. Batch processes are common in the pharmaceutical,
microelectronics, food, and fine chemical industries. It is widely recognized at
industrial level that advanced control techniques have the potential to improve
process performance [QB03]. Since the advent of dynamic matrix control (DMC),
model predictive control (MPC) has been the most popular advanced control
strategy in chemical industries [ML97]. Linear MPC has been heralded as a
major advance in industrial control. However, due to their nonstationary and
highly nonlinear nature, linear model based control usually cannot provide sat-
isfactory performance in the case of complex batch processes. Nonlinear model
predictive control (NMPC) has been considered as one of the most promising
advanced control approaches for batch processes. NMPC reformulates the MPC
problem based on nonlinear process models. Different nonlinear models can be
used for prediction, from empirical black-box models (e.g. artificial neural net-
works, Volterra series, etc.) to detailed, first-principles based representations of
the system, leading to a wide variety of different NMPC approaches [Hen98],
[FA02]. The advantages of using complex nonlinear models in the NMPC are
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straightforward. First-principles models are transparent to engineers, give the
most insight about the process, and are globally valid, and therefore well suited
for optimization that can require extrapolation beyond the range of data used
to fit the model. Due to recent developments in computational power and opti-
mization algorithms, NMPC techniques are becoming increasingly accepted in
the chemical industries, NMPC being one of the approaches, which inherently
can cope with process constraints, nonlinearities, and different objectives derived
from economical or environmental considerations. In this paper an efficient real-
time NMPC is applied to an industrial pilot batch polymerization reactor. The
approach exploits the advantages of an efficient optimization algorithm based
on multiple shooting technique [FAww], [Die01] to achieve real-time feasibility
of the on-line optimization problem, even in the case of the large control and
prediction horizons. The NMPC is used for tight setpoint tracking of the op-
timal temperature profile. Based on the available measurements the complex
model is not observable hence cannot be used directly in the NMPC strategy.
To overcome the problem of unobservable states, a grey-box modelling approach
is used, where some unobservable parts of the model are described through non-
linear empirical relations, developed from the detailed first-principles model.
The resulting control-relevant model is fine tuned using experimental data and
maximum likelihood estimation. A parameter adaptive extended Kalman filter
(PAEKF) is used for state estimation and on-line parameter adaptation to ac-
count for model/plant mismatch.

2 Nonlinear Model Predictive Control

2.1 Algorithm Formulation

Nonlinear model predictive control is an optimization-based multivariable con-
strained control technique that uses a nonlinear dynamic model for the prediction
of the process outputs. At each sampling time the model is updated on the basis
of new measurements and state variable estimates. Then the open-loop optimal
manipulated variable moves are calculated over a finite prediction horizon with
respect to some cost function, and the manipulated variables for the subsequent
prediction horizon are implemented. Then the prediction horizon is shifted or
shrunk by usually one sampling time into the future and the previous steps are
repeated. The optimal control problem to be solved on-line in every sampling
time in the NMPC algorithm can be formulated as:

oimin, {H(@(t), u(t);0) = M(a(tr); 0) + [ L(2 (), u(t); 6)dt} (1)
st z(t) = f(xz(t), u(t); 0), =(ty) =2(tr), x(to) = 2o (2)
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where H is the performance objective, t is the time, ¢; is the time at sampling
instance k, tp is the final time at the end of prediction, is the n, vector of
states, u(t) € U is the n, set of input vectors, is the n, vector of measured
variables used to compute the estimated states Z(tx), and § € © C R™ is the
ng vector of possible uncertain parameters, where the set © can be either de-
fined by hard bounds or probabilistic, characterized by a multivariate probability
density function. The function f : R™ x U x @ — R" is the twice continu-
ously differentiable vector function of the dynamic equations of the system, and
h:R"™ xU x O — R is the vector of functions that describe all linear and
nonlinear, time-varying or end-time algebraic constraints for the system, where
¢ denotes the number of these constraints.

We assume that H : R™ xU x © — R is twice continuously differentiable,
thus fast optimization algorithms, based on first and second order derivatives
may be exploited in the solution of (1). The form of H is general enough to ex-
press a wide range of objectives encountered in NMPC applications. In NMPC
the optimization problem (1)-(3) is solved iteratively on-line, in a moving (re-
ceding) horizon (tp < ty) or shrinking horizon (tp = t;) approach, where t; is
the batch time.

2.2 Solution Strategy and Software Tool

Considering the discrete nature of the on-line control problem, the continu-
ous time optimization problem involved in the NMPC formulation is solved
by formulating a discrete approximation to it, that can be handled by conven-
tional nonlinear programming (NLP) solvers [BR91], [Bie00]. The time horizon
t € [to, ts] is divided into N equally spaced time intervals At (stages), with
discrete time steps tp = to + kAt, and k = 0,1,..., N. Model equations are
discretized, zp+1 = fi(zk,uk;0), and added to the optimization problem as
constraints. For the solution of the optimization problem a specially tailored
NMPC tool (OptCon) was developed that includes a number of desirable fea-
tures. In particular, the NMPC is based on first-principles or grey box models,
and the problem setup can be done in Matlab. The NMPC approach is based on
a large-scale NLP solver (HQP) [FAww], which offers an efficient optimization
environment, based on multiple shooting algorithm, that devides the optimiza-
tion horizon into a number of subintervals (stages) with local control parame-
terizations. The differential equations and cost on these intervals are integrated
independently during each optimization iteration, based on the current guess of
the control. The continuity/consistency of the final state trajectory at the end of
the optimization is enforced by adding consistency constraints to the nonlinear
programming problem.

2.3 Real-Time Implementation

In NMPC simulation studies usually immediate feedback is considered, i.e. the
optimal feedback control corresponding to the information available up to the mo-
ment g, is computed, u*(tg) = [to|s,, Uijty, - - - » UN|t, ], and the first value (ug)y, )
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is introduced into the process considering no delay. However, the solution of the
NLP problem requires a certain, usually not negligible, amount of computation
time Oy, while the system will evolve to a different state, where the solution w*(¢y)
will no longer be optimal [FA02]. Computational delay ¢ has to be taken into
consideration in real-time applications. In the approach used here, in moment ¢,
first the control input from the second stage of the previous optimization problem
uy)¢,_, is injected into the process, and then the solution of the current optimiza-
tion problem is started, with fixed ug|;, = u1y,_,. After completion, the optimiza-
tion idles for the remaining period of t € (t; + Ok, tx+1), and then at the beginning
of the next stage, at moment tx 1 = tj + At , uy), is introduced into the process,
and the algorithm is repeated. This approach requires real-time feasibility for the
solution of each open-loop optimization problems (6 < At).

2.4 State Estimation

Proper state estimation is crucial for successful practical NMPC applications. Ex-
tended Kalman filter (EKF) is widely used in process control applications, how-
ever its performance strongly depends on the accuracy of the model. To avoid
highly biased model predictions, selected model parameters are estimated to-
gether with the states, leading to a parameter adaptive EKF formulation [VG00].
Define 6’ C 6 as the vector of the estimated parameters from the parameter vec-

tor, and 6" 2 6\0’ the vector of the remaining parameters. The augmented state
vector in this case is given by X = [z, #']7, and the augmented model used for
estimation is, X = [f(z, #,u; 0"), 0] + [w, we]T, with w , and wy: zero-
mean Gaussian white noise variables. The measurement covariance matrix is de-
termined based on the accuracy of the measurements. The appropriate choice
of the state covariance matrix, Q, is however often difficult in practical appli-
cations. An estimate of Q can be obtained by assuming that the process noise
vector mostly represents the effects of parametric uncertainty [VGO00], [NBO03].
Based on this assumption the process noise covariance matrix can be computed
as Q(t) = Sy(t) VST (t), with Vg € R"*"¢ heing the parameter covariance ma-
trix, and Sg(t) = (9.f/90) ;) (1),¢ 15 the sensitivity jacobian computed using the
nominal parameters and estimated states. This approach provides an easily imple-
mentable way to estimate the process noise covariance matrix, since the parameter
covariance matrix Vy is usually available from parameter estimation, and the sen-
sitivity coefficients in Sy can be computed by finite differences or via sensitivity
equations. Note that the above approach leads to a time-varying, full covariance
matrix, which has been shown to provide better estimation performance for batch
processes than the classically used constant, diagonal Q [VGO00], [NB03].

3 Practical Implementation of NMPC to an Industrial
Pilot Batch Reactor

A schematic representation of the experimental pilot plant is shown on Figure 1.
The reactor temperature is controlled using a complex heating-cooling system,
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which is based on a closed oil circuit, which is recycled through the jacket with a
constant flow rate F;. The heating-cooling medium goes through a multi-tubular
heat exchanger where a PI controller is used to keep the temperature difference
constant, by adjusting the cooling water flow rate. Heating is performed using
an electric heater. The power of the heater is adjusted by a PI controller that
regulates the input temperature into the jacket. The setpoint of the PI con-
troller is determined by the higher level NMPC that has the objective to track
a predetermined temperature profile in the reactor.

A detailed first-principles model of the process containing material and energy
balances as well as detailed kinetic and thermodynamic models was used and
identified based on off-line experiments. Since only temperature measurements
are available in the plant, many states of the detailed model are not estimable,
or not even detectable. The complex model however was used to determine
the optimal temperature profile, and for deriving the control-relevant model.
Available measurements are: reactor temperature (7)), and input and output
temperatures into and from the jacket, (T}, Tj). With this set of measurements
the following reduced model was used in the NMPC:

7:LM == _Qr/AHr (4)

T k= Qr + UwAw(Tw,k - Tr,k) - (UA)loss,r(Tr,k - Tamb)

(5)

mMCp, M + mpCp,p + MaaterCp,water

Twr = UjAj(Tjx — Twik) = UwAw(Twr — Trk))/Muw/cpw (6)

_ NFjpicp(Tie—1—Tjk) = UiAj(Tik = Twr) = (UA)ioss i (Tjk — Tamb)

m;Cp,j

Tk

(7)
where k = 1,....N, T, = T, n, T; = Tjn, Tjo = Tjin, nar is the number of
mol of monomer, AH,. is the enthalpy of reaction, T}, is the wall temperature,
U and A are heat transfer coefficients and areas from reactor to wall (-),, or wall
to jacket (-);, Cp, M/ P/water/w/j a0 M1/ P/water /wyj are the heat capacities and
masses of monomer, polymer, water, wall and oil, T}, is the ambient tempera-
ture, p; is the density of the oil, (UA);ss,,/; heat loss coefficients in the reactor
and jacket, respectively.

To estimate the transport delay, the reactor, wall and jacket were divided
in N = 4 elements, leading to a system of 13 differential equations. To achieve
proper prediction and maintain the observability of the model, with only temper-
ature measurements available, different approaches have been proposed. Helbig
et al. used a time series of the estimated heat generation determined from simula-
tion of a batch [HA96]. The industrial batch MPC product developed by IPCOS
determines an empirical nonlinear relation @, = fo(nar,T,), which expresses
the heat generation as a function of the conversion and temperature [IP00]. In
our case study a similar approach was used. The empirical nonlinear relation
was determined from the complex first principle model, simulating the process
for different temperature profiles.
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Maximum likelihood estimation was used to fit the parameters of the model
(4)-(7) to the data obtained from the plant, performing several water batches
(when @, = 0), using 0" = [(UA)ioss,r» (UA)i0ss,j, U;jAj, My, m;| as the pa-
rameter vector. This procedure gives the optimal nominal parameter estimates,
g *, and the corresponding uncertainty description given by the covariance ma-
trix, estimated from the Hessian of the objective used in the maximum likelihood
estimation. The good fit between the experimental data and the model is shown
on Figure 2.

Model (4)-(7) was used in an adaptive output feedback NMPC approach,
where the objective was to provide a tight setpoint tracking, by minimizing
online, in every sampling instance k, the following quadratic objective:

tp
min [ {(Z,() = T3 0)° + Quau(dut) )t ®)
tr
The optimal setpoint profile 7%/ is generally obtained via off-line optimiza-
tion using the detailed model. In our implementation however, a suboptimal
but typical profile consisting of three piece-wise linear segments was used. The
manipulated input of the NMPC, u(t) = T)sp, is the setpoint temperature
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to the lower level PI controller, which controls the jacket input temperature.
The communication between the real plant and NMPC was performed via the
standard OPC interface. The adaptive structure of the implemented NMPC is
shown on Figure 3. During the batch the heat transfer properties in the reactor
change significantly thus the adaptive algorithm is important. The parameters
0 =1Q.,, UyA,] were estimated together with the model states in the PAEKF.
Figure 4 indicates a strong variation of U, A,, during the batch. Figure 5 demon-
strates the very good setpoint tracking performance of the NMPC with adapted
model. The parameter covariance matrix Vy, resulted from the identification was
used to compute the state covariance matrix in the estimator [VG00], [NB03]. A
weighting coefficient of @, = 0.4, and prediction and control horizons of 8000s
were used, in the optimization, with a sampling time of 20s. The control input
was discretized in 400 piecewise constant inputs, leading to a high dimensional
optimization problem. The efficient multiple shooting approach guarantees the
real-time feasibility of the NMPC implementation. Even with the large control
discretization of 400 the computation time was below the sampling time of 20s
(approx. 5s). All simulation times are on a Pentium 3, 800 MHz PC running
Windows 2000.
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Fig. 4. Estimated Heat transfer coef- Fig. 5. Experimental results: NMPC
ficient during the batch of the industrial batch reactor

4 Conclusions

The paper present a computationally efficient NMPC approach that com-
bines output feedback design with efficient optimization technique providing a
framework that can be supported in an industrial environment. Detailed first-
principles model is used to derive the reduced control-relevant model based on
the available measurements, which is tuned using data from the plant, and used
then in the NMPC. A PAEKF is combined with the control algorithm for the
on-line state estimation and model adaptation to achieve offset free control.
Simulation and experimental results demonstrate the efficiency of the NMPC
approach in an industrial application.
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