
Robust NMPC for a Benchmark Fed-Batch
Reactor with Runaway Conditions
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Summary. A nonlinear model predictive control (NMPC) formulation is used to pre-
vent an exothermic fed-batch chemical reactor from thermal runaways even in the
case of total cooling failure. Detailed modeling of the reaction kinetics and insight
into the process dynamics led to the formulation of a suitable optimization problem
with safety constraints which is then successively solved within the NMPC scheme.
Although NMPC control-loops can exhibit a certain degree of inherent robustness, an
explicit consideration of process uncertainties is preferable not only for safety reasons.
This is approached by reformulating the open-loop optimization problem as a min-max
problem. This corresponds to a worst-case approach and leads to even more cautious
control moves of the NMPC in the presence of uncertain process parameters. All results
are demonstrated in simulations for the esterification process of 2-butyl.

1 Introduction

Known from extreme accidents like in Seveso, Italy (1976), thermal runaways
occur more frequently in smaller fine chemical reactors with high heat release
potential. They lead to annoying production losses and equipment damages [2,
18]. To reduce difficulties, potentially dangerous processes are commonly run in
fed-batch mode, yet with the most simple feeding strategy of constant dosing
rates. The advent of detailed models of batch reactors including complicated
reaction schemes can aid the development of more sophisticated feed strategies.
A suitable framework for this goal is nonlinear model predictive control (NMPC).
NMPC has the appealing attribute that constraints on states and controls are
taken into account explicitly. In the fed-batch reactor case, a dosing rate profile
delivered by NMPC will steer the process closer to the limits. At the same time,
due to the predictive nature of NMPC, the system will be able to avoid runaway
conditions.

Plant-model-mismatch in the form of uncertain parameters and initial val-
ues require NMPC schemes to be robust. Theoretical considerations have shown
that NMPC controllers can inherently possess a certain degree of robustness
[5]. For safety-critical processes, an explicit consideration of uncertainty is
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desirable. Some robust NMPC schemes have been proposed based on
game-theoretic ideas [4], min-max formulations [11], H∞-control [14], and chance
constrained programming [13]. These methods tend to be computationally too
complex for practical applications.

In this paper, the optimization problem is reformulated using a min-max
approach similar to [15], extending the formulation to path constraints. The
resulting semi-infinite control problem is then approximated to obtain a numer-
ically tractable form ([8, 10]). To demonstrate this approach, it is applied to
control the exothermic esterification of 2-butanol. While the main task of the
state-feedback controller is to quickly finish the batch, safety constraints have
to be met at any time of the process.

This paper is organized as follows: In Section 2, the fed-batch process and its
mathematical model are described. The open-loop optimization problem needed
for the NMPC scheme is developed in Section 3. Particular care is taken of the
formulation of a safety constraint that prevents runaways even in the case of a
total cooling failure. This section ends with simulation results for the process
under nominal NMPC. To take parameter uncertainties directly into account,
the approximated min-max formulation is stated in Section 4. It leads to a more
robust version of the NMPC as is demonstrated via simulations at the end of the
section. The paper concludes with further discussions and an outlook on future
research directions.

2 Example: Exothermic Esterification of 2-Butanol

The esterification of 2-butanol (B) with propionic anhydride (A) to 2-butyl pro-
pionate (D) and propionic acid (C) is a mildly exothermic reaction that allows
one to study runaway situations in a lab. The reaction is catalyzed by two forms
of a catalyst, (K1 and K2), while the first degrades into the latter in a side
reaction:

A + B
K1,K2−→ C + D

K1 −→ K2

The reaction is assumed to take place in a fed-batch reactor under isoperibolic
conditions (constant jacket temperature). A similar, strongly simplified reaction
has also been considered in [17]. The reaction system is modeled by a set of
differential equations based on mass and energy balances. Note that the model
is only valid for a total amount of A added which is smaller or equal to B. The
full model reads as follows:

ṅA = u− r V, ṅB = −r V,
ṅC = r V, ṅK1 = −rk V, (1)

(Cp,I + Cp) ṪR = rH V − qdil − U Ω (TR − TJ)
−α(TR − Ta) − u cp,A (TR − Td),
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with ni being the molar amount of component i, V the volume, TR, TJ , Ta and
Td the reactor, jacket, ambient and dosing temperatures, respectively. r and rk

are reaction rates, H is the reaction enthalpy, qdil the dilution heat, U is a heat
transfer coefficient, Ω the heat exchange surface. Cp,I denotes the approximated
heat capacity of solid inserts (stirrer, baffles), Cp the approximated heat capacity
of the entire mixture and cp,A is the specific molar heat capacity of component
A. Equations for D and K2 have been omitted: The number of moles of D equals
the number of moles of C (i.e. nD(t) = nC(t) ∀ t). The amount of (K2) can
be calculated as nK2(t) = nK1(0) − nK1(t). The molarities ci are calculated as
ci = ni/V .

The dosing rate u(t) of A to the batch reactor serves as the control input and
can be assigned between upper and lower bounds.

The defining algebraic equations are:

V = 1000
(
nAMA

ρA
+

nBMB

ρB
+

nCMC

ρC
+

nCMD

ρD

)
(2a)

Ω = Ωmin +
V − Vmin

1000d
(2b)

U =
(
U1 +

U2 − U1

V2 − V1

)
(V − V1) (2c)

xA =
nA(t)

nA(t) + nB(t) + 2nC(t) + nK1(0)
(2d)

qdil =
2232.74201

0.13963
e

−xA
0.13963 ṅA (2e)

r = (k0 + k2 cK1)cAcB + k3cA cK2 (2f)

rk = k410−HRcBcK1 . (2g)

In these equations, Mi, ρi, ci denote the molar weight, density and molar con-
centration of component i respectively. V1, V2, U1, U2 are geometry-dependent
parameters and d is the scaled reactor diameter. The rate of heat loss to the
environment is modeled by a constant α of appropriate dimension derived from
a constant heat transfer coefficient and an average heat transfer surface area.
The constants in equation (2e) have been adjusted properly for the needed di-
mension (Watt). The reaction rate constants ki are calculated following the

Arrhenius approach as ki(t) = Aie
−Ei

RTR(t) , and the acidity term HR is computed
as HR(t) = − (p1cK1(t) + p2cC(t))

(
p3 + p4

TR(t)

)
.

The reactor is initially charged with B and K1. Then, A is dosed to the reactor
until the accumulated number of moles of A is equal to the initial number of
moles of B. The batch is complete when nearly all of B is consumed.

3 NMPC Formulation

The solution of an open-loop optimal control problem is a prerequisite for NMPC.
For batch processes, the formulation of a suitable optimal control problem tends



458 P. Kühl et al.

Table 1. List of process parameters and initial values

Ωmin 0.011 m2 p1 0.200 l/mol d 0.155 m
Vmin 0.124 l p2 0.032 l/mol TR,0 293.15 K
MA 0.130 kg/mol p3 -21.375 α 0.1 W/K
MB 0.074 kg/mol p4 12706.0 K Cp 1523.3 J/K
MC 0.074 kg/mol E0 80.479 kJ/mol V1 0.8 l
MD 0.130 kg/mol E2 79.160 kJ/mol V2 1.6 l
MK1 0.098 kg/mol E3 69.975 kJ/mol mA,0 0.00 g
ρA 979.381 kg/m3 E4 76.617 kJ/mol mB,0 510.98 g
ρB 772.288 kg/m3 R 8.314 J/(mol K) mK1,0 5.01 g
ρC 955.869 kg/m3 cp,A 238.519 J/(mol K) U1 195 W/(m2K)
ρD 830.422 kg/m3 Cp,I 89.859 J/K U2 155 W/(m2K)
A0 5.362e7 l/(mol s) H 59458 J/mol mA 890.00 g
A2 2.807e10 l2/(mol2 s) Hdil 5070 J/mol tf 0.662 l
A3 3.948e10 l/(mol s) TJ 293.65 K Ta 298.85 K
A4 1.403e8 l/(mol s) Td 298.15 K

to be difficult because of typically appearing end constraints. In this case, end
constraints are avoided by observing that simply minimizing the amount of B
over time leads to a meaningful solution. The batch is stopped when the amount
of B is below a desired threshold. The optimal control problem is formulated as:

min
u

tf∫
0

nB(τ)2 dτ (3)

subject to (1), (2)
0 mol/s ≤ u(t) ≤ 0.004 mol/s

tf∫
t0=0

u(τ) dτ = 6.9 mol

TR(t) ≤ 333.15 K
S(t) ≤ 363.15 K.

The safety constraint S (defined in the next section) has to ensure that even in
the extreme case of a total cooling failure no runaway will occur. The prediction
and control horizon of the NMPC controller are specified as 56 times the sample
time of ts = 50 s. With this choice, the horizon is slightly larger than the
minimum batch time for this process. All states are assumed perfectly measured.

3.1 A Suitable Safety Constraint to Avoid Runaways

In the case of a cooling failure, the heat released during the reaction can no
longer be removed from the reactor. This leads to a temperature rise which
further accelerates the reactions. If enough reactant had accumulated before,
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this mechanism results in a thermal runaway with severe safety risks 1. Once a
runaway has started, the best strategy is to immediately stop dosing the reac-
tant. Then, the maximum temperature rise is related to the amount of reactants
present in the reactor and can be calculated assuming adiabatic conditions [9].

Such an approach has been formulated more precisely in [17], where for two
reactants A, B the safety constraint is S(t) = TR(t) + min(nA, nB) HA

ρcpV ≤ Tmax.
Since the consumption rate for both species A and B is equal and all B is initially
present in the reactor, nA is smaller than nB and we can set min(nA, nB) = nA

in order to avoid the nondifferentiable min-operator.
Note, that the calculated adiabatic temperature in S(t) is rather conservative

and will likely be smaller in reality because of heat losses to the jacket and
ambient. Also, the heat capacity of the mixture is assumed to be constant with
a value chosen at the upper limit.

3.2 NMPC Simulation Results

The open-loop control problem (3) is successively solved numerically with the
direct multiple shooting approach by Bock and Plitt [3]. It is based on a pa-
rameterization of the controls and state trajectories. This leads to a large but
favorably structured nonlinear program (NLP). The NLP is solved by a gener-
alized Gauss-Newton sequential quadratic programming (SQP) method imple-
mented in the software package MUSCOD-II [12]. Because SQP methods only
find a local solution, the initial guess is of importance. For the nominal NMPC,
an appropriate constant dosing rate served as an initial guess. For the robust
NMPC introduced next, the nominal solution has been used as the initial guess.
All integration and differentiation is performed with the DAE solver DAESOL
[1], which applies a backward differentiation formula (BDF) method.

The batch is stopped once the remaining amount of 2-butanol falls below
a threshold of nB ≤ 0.01 mol. Following the ideas of the real-time iteration
scheme in [6], the optimization problem (3) is not solved to convergence at each
sampling interval. Instead, the control is updated after each iteration step of
the NLP solver. Due to a careful initialization from one problem to the next
and the favorable contraction properties of the direct multiple shooting method,
this procedure allows for close tracking of the optimal solution of the subsequent
optimization problems. Note that nominal stability of this real-time iteration
NMPC scheme can be shown [7]. Also, the scheme predicts active set changes
and is therefore particularly suited for constrained control problems.

The CPU time for one control sample has been in the range of 0.9 to
1.2 seconds and hence is significantly smaller than the sampling time of 50
seconds.

The NMPC has been tested for the nominal set of parameters. Then, to
test for robustness, the initial amount of catalyst K1 has been increased. This
1 Note, that such a runaway can also occur under normal cooling. However, this is not

the focus of this study and, in the optimization results, is automatically suppressed
by the upper bound on the process temperature.
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process parameter has a rather strong impact on the process behavior. The sim-
ulation results for the nominal NMPC in the nominal case (mK1(0) = 5.01 g)
and two more cases with mK1(0) = 5.10 g and mK1(0) = 5.50 g are shown in
Figure 1. In the nominal case, the dosing rate is at its maximum in the be-
ginning, ensuring a fast ignition of the reaction and quick conversion. During
this phase, A accumulates. This poses a potential threat and eventually the
adiabatic temperature strongly rises. Once the bound on the adiabatic temper-
ature becomes active, the dosing rate slides along a singular sub-arc until the
reactor temperature will reach its upper operation limit. This is when the con-
troller decides to stop the dosing to let the accumulated A be consumed. In
the end, the remaining amount of A can safely be added at a maximum dosing
rate.

The simulations show that the nominal NMPC scheme based on the open loop
problem (3) keeps the batch process within safe operation conditions despite a
moderate uncertainty in the initial amount of catalyst (remember that the model
always assumes the nominal value of 5.01 g to be valid). Because of the higher
temperatures in comparison to the model-based predictions and the feedback
mechanism, the singular arcs become steeper and the dosing has to be stopped
earlier. In the extreme case of 5.50 g of catalyst in the beginning of the batch,
the upper limit of the reactor temperature is slightly violated. The NLP only
remained feasible due to a relaxation procedure implemented in the optimization
code.

In the following section, the NMPC scheme is modified to take the uncertainty
explicitly into account.
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Fig. 1. Simulation results with nominal NMPC controller for the nominal value and two
perturbed values of the initial amount of catalyst K1. Dashed lines denote constraints.
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4 A Min-Max NMPC Formulation

This paper has presented an open-loop optimization problem for NMPC with
safety constraints for a given process model with exact parameters. In reality,
at least some of the parameters will not be known exactly and methods for
optimization under uncertainty become important (see [16] for an overview).

It is clear that a changed parameter can deteriorate the performance of a
supposedly optimal (open-loop) solution. It seems natural to see parameters as
adverse players that try to disturb any control efforts as strongly as possible.
One remedy is to minimize the success of parameters to maximally worse the
optimization results. In the context of robust batch optimization, such a min-
max formulation has been used by Nagy and Braatz [15] who also point out
the possibility to extend these ideas to NMPC. Such min-max formulations lead
to a semi-infinite programming problem, which is numerically intractable in the
real-time context. To overcome this obstacle, Körkel et al. [10] propose an ap-
proximated min-max formulation which is also applied in this paper.

The min-max formulation considered here reads as the semi-infinite program-
ming problem

min
u∈U

max
‖p−p̄‖2,Σ−1≤γ

J(x(u, p)) (4)

s.t. max
‖p−p̄‖2,Σ−1≤γ

ri(x(u, p)) ≤ 0, i = 1, . . . , nr.

The parameters p are assumed to lie within a given confidence region with
the symmetric covariance matrix Σ and an arbitrary confidence level γ. The
state x implicitly depends on the discretized control u and parameters p as a
solution to the system equations (1,2). The cost function J is the same as in the
nominal problem (3), while ri(x(u, p)) summarizes those constraints in (3) that
are considered critical with respect to uncertainty and shall be robustified. All
other constraints are treated as in the nominal problem.

First order Taylor expansion of the inner maximization part yields a convex
optimization problem that has an analytical solution (cf. [10] for this problem
and [8] for a more general problem class). Using this closed form, we finally
obtain a minimization problem that can efficiently be solved numerically:

min
u∈U

J(x(u, p̄)) + γ

∥∥∥∥ d
dp

J(x(u, p̄))
∥∥∥∥

2,Σ

(5)

s.t. ri(x(u, p̄)) + γ

∥∥∥∥ d
dp

ri(x(u, p̄))
∥∥∥∥

2,Σ

≤ 0, i = 1, . . . , nr,

where the bar denotes the nominal value of the parameters as assumed for the
nominal optimization problem.

In an NMPC scheme, the robust version (5) can replace the nominal control
problem (3). In the next section, numerical results for such a robust NMPC are
presented and compared to the nominal NMPC.
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4.1 Min-Max NMPC Simulation Results

For the numerical solution of (5) the direct multiple shooting approach was used.
The NMPC settings are the same as described in Section 3.2. The confidence
factor γ was slowly increased from zero to the desired level. For each optimization
with a respective γ, the previous result has been used to initialize the states and
control. In the case presented here, the initial amount of catalyst K1 is assumed
to be uncertain. The standard deviation of K1 is 0.17 g. The confidence level
has been chosen to be 99.7 %, i.e. we have γ = 3 to obtain the 3σ-interval.
Figure 2 shows the simulation results for the robust version of the NMPC for the
nominal amount of catalyst and an increased amount. The solution is compared
to the solution of the nominal NMPC for the nominal catalyst amount charged
to the reactor. One can see that the robust solution strongly resembles the
nominal solution. Only, the dosing is stopped earlier. This ensures that less
A is accumulating in the reactor and leaves a safety margin to the adiabatic
temperature as can be seen in the lower right graph. When the robust NMPC
controller is confronted with a plant-model mismatch it reacts by dosing A more
carefully. The singular sub-arc becomes flatter than computed with the nominal
NMPC. Eventually, less A is present in the reactor and the temperature peak
gets lower. This also leads to a slower consumption of B which, however, is
accounted for by a higher reactor temperature at the end of the batch so that
the final productivity losses are very small.

The safety margins for the reactor temperature and the adiabatic temperature
are the main feature of the robust NMPC scheme. The fact that they are also
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present in the nominal catalyst case reflects the conservatism inherent to the
min-max approach. For the investigated cases, we have seen that already the
nominal controller is robust against the uncertain parameter. So, any further
robustification in the presence of uncertainty makes the controller more cautious.
Also, the systematic robustness obtained via the min-max formulation is not fully
exploited by the closed-loop dynamics. Instead of relying on the old, robustified
solution, the optimization problem (5) is newly solved at every iteration with the
new, unforeseen temperatures and concentrations. This is why the trajectories
of the robust NMPC differ for the nominal and the perturbed realization of the
initial amount of catalyst.

5 Conclusions

A detailed model of a fed-batch reactor has been used to demonstrate that a
suitable NMPC scheme can avoid runaway situations. This nominal NMPC was
robust against small perturbations of the initial amount of catalyst charged to
the reactor. A robust formulation of the optimization problem based on an ap-
proximated min-max formulation led to additional safety margins with respect
to the adiabatic temperature and the reactor temperature. The approximation
does not guarantee full robustness for the nonlinear model, but it offers a sys-
tematic way to obtain safety margins that explicitly take into account uncertain
parameters and their stochastic properties. The simulation also showed the con-
servatism of the proposed min-max formulation which is due to the open-loop
formulation. The optimization method used to solve the nominal and the robust
open-loop problems was able to deal with the complex state constraints and
delivered control updates fast enough to be applicable to real batch processes.
Future studies will treat larger numbers of uncertain parameters and focus on
methods to efficiently solve the eventually enlarged optimization problems.
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