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Summary. A minimum-time optimal recharging control strategy for high pressure gas
storage tank systems is described in this work. The goal of the nonlinear model-based
controller is to refill the tank in minimum time with a two-component gas mixture of
specified composition subject to hard constraints on the component flow rates, tank
temperature, and tank pressure. The nonlinearity in this system arises from the non-
ideal behavior of the gas at high pressure. The singular minimum-time optimal control
law can not be reliably implemented in the target application due to a lack of sensors.
Minimum-time optimal control is therefore approximated by a nonlinear model-based
constraint controller. In order to account for the uncertainty in the unmeasured state
of the storage tank, the state sensitivities to the control and process measurements
are propagated along with the state to obtain a state variance estimate. When the
variance of the state exceeds a maximum threshold, the constraint control algorithm
automatically degrades into a fail-safe operation.

1 Introduction

The gas storage tank recharging system, shown in Figure 1, consists of high
pressure sources for each component that supply the gas to the storage tanks. A
source pressure sensor and mass flow controller are available for each component.
A pressure sensor upstream of the discharge nozzle into the storage tank and
an ambient temperature sensor are the only other process measurements. There
are no sensors in the storage tank itself because of economic and maintenance
reasons. It is less expensive to instrument the supply line from the tank than to
replicate and maintain these instruments in each tank.

The controlled variables for this system are the final mass, or total moles, and
composition of the gas in the storage tank. The manipulated variables are the
setpoints to the component mass flow controllers. The system may be operated
by either maintaining the feed gas at the desired composition during the entire
refilling process or allowing the feed gas composition to vary with the desired
composition being achieved when the tank is refilled. In this work, the first
operating philosophy will be adopted. The advantage of the first approach is
that the gas in the tank is always at the desired composition. If the refilling
process must be terminated for any reason, the storage tank will still have the
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Fig. 1. Gas storage tank recharging system

correct composition. The disadvantage of this approach is that the controller can
not use the extra degree of freedom to take advantage of any differences in the
component gas properties when refilling the tank.

The objective of the control system is to safely fill the gas storage tank in
minimum time with a specified amount of a two-component gas mixture subject
to pressure and temperature constraints. Of particular concern in this process
is the Joule–Thompson behavior of the gas components comprising the mixture.
For systems with a positive Joule–Thompson coefficient, the gas mixture will
cool as it expands from source pressure into the storage tank. In this case, the
maximum pressure constraint must be lowered to account for the future increase
in pressure as the system reaches ambient temperature. For systems with a
negative Joule-Thompson coefficient, the gas mixture temperature will rise as
the storage tank is filled. In this case, the rate of temperature rise must be
controlled to reach the desired final amount without exceeding the maximum
temperature limit of the storage tank and delivery system. Over the pressure
ranges of interest, however, some gas components can exhibit significant changes
in the Joule–Thompson coefficient including sign changes.

2 Thermodynamic Model

The recharging system model is based on the thermodynamic relationships for
the transition between each of the four stages shown in Figure 1. The first two
stage transitions, A → B and B → C, are modeled as isoenthalpic transitions
with no gas accumulation. The result is a series of steady-state algebraic equa-
tions relating the temperature, pressure, and density at each stage. The last
stage transition, C → D, is modeled using an isoentropic transition through the
nozzle and an unsteady-state energy balance over the storage tank. The result
is a differential-algebraic system where the algebraic equations arise from the
isoentropic transition and the equation of state.
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2.1 Equation of State

The following two-coefficient virial equation of state for a binary mixture [1]

Z =
P

RTρ
= 1 + Bmixρ + Cmixρ

2 (1)

Bmix = b1(T )x2
1 + 2b12(T )x1x2 + b2(T )x2

2 (2)
Cmix = c1(T )x3

1 + 3c112(T )x2
1x2 + 3c122(T )x1x

2
2 + c2(T )x3

2 (3)

is used in this work where x1, x2 are the component mole fractions and Bmix and
Cmix are, in general, functions of temperature. Because the composition of the
inlet gas mixture is maintained at the desired target composition, x1 and x2 are
constant at this composition in stages C and D. The equation of state for the
single component streams in stages A1 and B1 is obtained by setting x1 = 1 and
x2 = 0 in Eqs. 2 and 3. The equation of state for stages A2 and B2 is handled
in a similar manner by setting x1 = 0 and x2 = 1.
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Fig. 2. Isoenthalpic stage transition model

2.2 Isoenthalpic Transition

The first two transitions are described by the path shown in Figure 2 for both
the individual pure components and the gas mixture. The resulting equation for
the transition from an initial stage i to the next stage f becomes

∆Hi→f = 0 = −HR
i + ∆H IG + HR

f (4)

where HR
i is the residual enthalpy between the gas at the initial stage and the

gas at ideal conditions at the initial temperature, ∆H IG is the change in enthalpy
of the gas at ideal conditions between the final and initial temperatures, and HR

f

is the residual enthalpy between the gas at the next stage and the gas at ideal
conditions at the final temperature. The residual enthalpy is
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HR = H −H IG = −RT 2

ρg∫
0

∂Z(ρ)
∂T

dρ

ρ
+ RT (Z − 1) (5)

where H IG is the enthalpy of the gas at ideal conditions (the limit as pressure,
or density, goes to zero at the actual temperature), Z is the compressibility, and
ρg is the gas density [1]. The temperature change and component mixing are
done at ideal conditions because the enthalpy of mixing is zero and ideal gas
heat capacities, which are only a function of temperature, can be used.

∆H IG = ∆H IG
mix +

Tf∫
Ti

Cp dT =

Tf∫
Ti

Cp dT (6)

The ideal gas heat capacity is taken as an empirical function of temperature.

Cp =
2∑

j=1

xjCpj = R

2∑
j=1

xj

(
αj + βjT + γjT

2 + εjT
−2) (7)

2.3 Isoentropic Transition

If we assume a perfect nozzle, and therefore isoentropic flow, the transition
from stage C to stage D can be described by the transition ∆SC→D = 0 or by
the relationship for isentropic adiabatic flow through a nozzle. The complexity
arising from a nonideal gas with sonic flow for some fraction of the time suggests
abandoning the flow equation in favor of the entropy relationship

∆SC→D = 0 = −SR
C + ∆SIG + SR

D (8)

SR = S − SIG = R

⎡⎣lnZ − T

ρg∫
0

(
∂Z(ρ)
∂T

− Z(ρ)− 1
T

)
dρ

ρ

⎤⎦ (9)

∆SIG =

TD∫
TC

Cp
dT

T
−

PD∫
PC

R
dP

P
(10)

where SR is the residual entropy and ∆SIG is the change in enthalpy at ideal
conditions [1]. The result is analogous to the enthalpy relationships in Eqs. 4–6
except there is no mixing term because the stage compositions are the same.

2.4 Unsteady-State Energy Balance

The unsteady-state energy balance for the gas mixture in the storage tank is

nD

[
dHD

dt
+

d

dt

(
PD

ρD

)]
− ṅD

[
∆HC→D +

PD

ρD

]
− Q̇D = 0 (11)

where nD is the total moles of gas in the storage tank, ρD = nD/VD is the
density of the gas in the tank, VD is the tank volume, HD is the enthalpy of
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the gas mixture in the storage tank, ∆HC→D is the change in enthalpy between
the gas mixture upstream of the nozzle and the gas in the storage tank, Q̇D is
the heat transfered from the storage tank to the surroundings, and the rate of
change of the moles of gas in the tank is determined by the control ṅD = u.
Because the composition of the inlet gas mixture is maintained at the desired
target composition, the total molar flow rate is the single control.

The rate of change of the enthalpy of the gas inside the storage tank is

dHD

dt
=

∂HD

∂T

dTD

dt
+

∂HD

∂ρ

dρD

dt
=

(
CpD +

∂HR
D

∂T

)
dTD

dt
+

(
ρD

nD

∂HR
D

∂ρ

)
u (12)

where the residual enthalpy HR
D is as defined in Eq. 5. The rate of change of

PD/ρD can be expressed as a function of the temperature change as follows.

d

dt

(
PD

ρD

)
=

d

dt
(RZDTD) = R

(
ZD + TD

∂ZD

∂T

)
dTD

dt
+ R

(
TDρD

nD

∂ZD

∂ρ

)
u

(13)

2.5 Differential-Algebraic System Model

The preceding thermodynamic relationships result in the following differential
algebraic modeling equations for the system where we will assume that Q̇ = 0.

HR
B1

+

TB1∫
TA1

Cp1 dT −HR
A1

= 0 (14)

PB1 −RTB1

(
ρB1 + Bmixρ

2
B1

+ Cmixρ
3
B1

)
= 0 (15)

HR
B2

+

TB2∫
TA2

Cp2 dT −HR
A2

= 0 (16)

PB2 −RTB2

(
ρB2 + Bmixρ

2
B2

+ Cmixρ
3
B2

)
= 0 (17)

HR
C + x1

⎛⎜⎝ TC∫
TB1

Cp1 dT −HR
B1

⎞⎟⎠ + x2

⎛⎜⎝ TC∫
TB2

Cp2 dT −HR
B2

⎞⎟⎠ = 0 (18)

PC −RTC

(
ρC + Bmixρ

2
C + Cmixρ

3
C

)
= 0 (19)

SR
D +

TD∫
TC

CpD

dT

T
−

PD∫
PC

R
dP

P
− SR

C = 0 (20)

nD − ρDVD = 0 (21)
PD −RTD

(
ρD + Bmixρ

2
D + Cmixρ

3
D

)
= 0 (22)
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HR
D +

∫ TD

TC
CpDdT −HR

C + PD

ρD
−

(
∂HR

D

∂ρ + RTD
∂ZD

∂ρ

)
ρD

nD

(
CpD + ∂HR

D

∂T + R
(
ZD + TD

∂ZD

∂T

)) u = ṪD (23)

u = ṅD (24)

There are two differential and nine algebraic equations in Eqs. 14–24 for the
thirteen unknowns: P , T , & ρ for stages B1, B2, C, & D and nD. Making the
assumption that PB1 = PB2 = PC reduces the number of unknowns to eleven.

3 Minimum-Time Optimal Control

The optimization problem for the minimum-time optimal controller is

min
u(t)

tf∫
t=0

1 dt Subject to:

nD(tf ) = n�
D

ẋ = f(x)u
g(x) = 0
hx(x) ≤ 0
hu(u) ≤ 0

(25)

where x is the system state, u is the control, n�
D is the desired final moles of gas

in the storage tank, f(x)u represents the differential equations in Eqs. 23–24,
g(x) represents the algebraic equations in Eqs. 14–22, hx(x) represents the tank
temperature and pressure hard constraints, and hu(u) represents the component
gas flow rate hard constraints. As is common for minimum-time problems, the
result is a singular optimal control problem. The optimal control trajectory is
either at a constraint, from the minimum principle, or along an optimal singular
arc that satisfies the Euler–Lagrange equations [2].

Because the enthalpy of the gas in the tank is a state function, the isoentropic
assumption for the stage C to stage D transition neglects losses in the inlet line,
and the system is assumed adiabatic, the state of the storage tank determined
from the differential-algebraic system model presented in Eqs. 14–24 is path
independent. Therefore, all control profiles result in the same final tank state
for a given final moles of gas n�

D. If a steady-state analysis determines that
a tank constraint is violated at this target, then there is no feasible control
profile u(t) that satisfies both the terminal equality constraint nD(tf ) = n�

D and
the tank state inequality constraints hx(x) ≤ 0 for the minimum-time optimal
control problem in Eq. 25. In this case, an alternative feasible optimal control
approach would be to construct a singular optimal controller that achieves the
most limiting tank constraint in minimum time.

An excellent review of solution methods for singular optimal control problems
arising from batch processes is presented in [3]. The use of process measurements
to improve the robustness of optimal control to model mismatch and unmeasured
disturbances is discussed in [4]. The application of these techniques to the con-
troller in this work, however, is restricted by the lack of process measurements.
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With only a single pressure measurement to estimate eleven states, state feed-
back is either impossible (if the integrating state is not detectable) or highly
unreliable (because of the variance in the state estimates). Open-loop optimal
control approaches, discussed in [5], are inappropriate in this application due
to the consequences of a constraint violation. For these reasons, a model-based
dynamic constraint controller is proposed.

4 Model-Based Dynamic Constraint Control

We develop a model predictive dynamic constraint controller to approximate
the minimum-time optimal recharging controller presented in the previous sec-
tion. The single process measurement, inlet line pressure, is integrated into the
constraint controller by using this measurement to eliminate the isoentropic
relationship ∆SC→D = 0 (Eq. 20) from the model. The advantage of this inte-
gration is that the isoentropic transition assumption is removed from the model
which also removes the path independence of the tank state. The disadvantage
of this approach is that there is no output feedback correction to the tank state.
However, it is unlikely that state estimation based on the single pressure mea-
surement would result in any significant improvement in the model predicted
tank state. The uncertainty in the tank state prediction can be monitored by
estimating the variance as outlined in the sequel.

The model-based dynamic constraint controller attempts to drive the system
to the most limiting constraint in minimum time while relaxing the terminal state
equality constraint nD(tf ) = n�

D if necessary. The dynamic constraint controller
is a model predictive version of the active constraint tracking controller in [6].
This control structure is motivated by the solution to the feasible minimum-time
optimal control problem in the previous section which specifies that the system
should be operated at an active constraint during the entire refilling process. We
note that if the irreversible losses in the system are negligible, then open-loop
optimal control, closed-loop model predictive control, and closed-loop dynamic
constraint control should all result in this same active constraint tracking input
trajectory. If irreversible losses are significant, then constraint control may not be
a good approximation to the optimal input trajectory. Preliminary experimental
evidence suggests the former case [7].

4.1 Constraint Controller

Constraint prediction is performed by solving the DAE system in Eqs. 14–19, 21–
24 from the initial time to the current time using the past control and inlet
pressure measurement trajectories. The initial state of the system is available
from the ambient temperature measurement and the initial inlet line pressure
which is the same as the tank pressure at zero flow. The future state predictions
are then obtained by assuming that the control and inlet line pressure remain
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constant at their current values until the tank is refilled. The target final moles
of gas in the tank is determined at each sample period k by

nF
D(k) = min

[
n�

D, n|TD=Tmax
D

(k), n|TD=Tmin
D

(k), n|PD=Pmax
D

(k)
]

(26)

where nF
D(k) is the current target final moles of gas at sample period k, n�

D is the
desired final moles of gas, n|TD=Tmax

D
is the current predicted moles of gas such

that the tank temperature reaches its maximum constraint limit, n|TD=Tmin
D

is
the current predicted moles of gas such that the tank temperature reaches its
minimum constraint limit, n|PD=Pmax

D
is the current predicted moles of gas such

that the tank pressure reaches its maximum constraint limit, and the min oper-
ator selects the most limiting model-predicted constraint. The current predicted
moles of gas required to reach a tank constraint is determined directly from the
predicted future tank state profile. The length of the prediction horizon is always
the time required to obtain n�

D moles of gas in the tank. If a constraint violation
is not predicted within this horizon, it is not considered by the min operator in
Eq. 26. A first-order approximation to the control move required to achieve the
most limiting constraint in minimum time is then determined from the current
predicted tank state and target by

u(k) = min
[
umax,

nF
D(k)− nD(k)

∆t

]
(27)

where u(k) is the current input, umax is the maximum flow rate constraint, and
nD(k) is the current prediction of the moles of gas in the storage tank.

This dynamic constraint prediction is computed at every sample period after
the initial start-up phase. The start up is carried out at a minimum safe gas flow
rate to ensure that the system is operating properly. The constraint prediction
is updated by the incorporation of the most recent inlet pressure measurement
at the current sample time. We note that on-line optimization is not required to
determine the control input because of the assumption that the optimal opera-
tion is at an active constraint (motivated by the minimum-time optimal control
trajectory). Because the DAE system and the state sensitivities, required for
the uncertainty estimate described in the next section, can be computed very
quickly, the sample period ∆t is not limited by computational issues as is often
the case for nonlinear predictive control implementations.

4.2 Fail-Safe Operation

Because there is no direct measurement of the actual tank state, some mechanism
to monitor the uncertainty in this state estimate is required for the safe imple-
mentation of the proposed controller. Linear approximations to the variance of
the tank state can be obtained from the first-order sensitivities [8] between the
tank state and the control and inlet line pressure as follows

σ2
x,PC

=
(

∂x

∂PC

)2

σ2
PC

, σ2
x,u =

(
∂x

∂u

)2

σ2
u, F =

σ2
x,PC

λ + σ2
x,u

> Fα (28)
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where x is the tank temperature or pressure, the partials are the sensitivities,
σ2

x,PC
is the estimate using the pressure measurement variance σ2

PC
, σ2

x,u is the
estimate using the control variance σ2

u, Fα is the F statistic at a confidence
level α, λ is a tuning parameter to account for measurement noise and normal
variation in the inlet line pressure, and F > Fα implies σ2

x,PC
> σ2

x,u [9]. If
the variance estimated from the inlet line pressure measurement exceeds that
estimated from the control, the constraint control is terminated to a fail-safe
operation. This operation can either shut off the gas flow completely, where the
tank pressure could then be determined by the inlet line pressure sensor, or can
reduce the gas flow to a predetermined minimum safe value.

5 Example

The control strategy is illustrated using a nitrogen–helium gas mixture. We
choose this system because the sign of the Joule-Thompson coefficient is differ-
ent for each component; negative for helium and positive for nitrogen. There
are also significant differences in the intermolecular potentials leading to large
deviations from ideal behavior. The coefficients in Eqs. 2–3 are affine functions
of temperature taken from [10]. We consider a 1/4 He/N2 gas blend in a 100
lit storage tank where the component source pressures are both 175 bar, the
ambient temperature is 300 K, and the initial tank pressure is 10 bar. Figure 3
presents the predicted tank temperature profiles for a series of flow rates which
clearly demonstrate the nonideal behavior and path independence of the tank
state. The predicted pressure profiles behave in a similar manner.
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We consider a desired value of n�
D = 400 mol and a maximum operating

constraint of Pmax
D = 100 bar for the tank pressure. At this pressure constraint,

only 385 moles of gas can be stored in the tank assuming no thermodynamic
losses. Therefore, the maximum tank pressure is the most limiting constraint
in this example. The inlet line pressure is simulated using an ideal gas nozzle
flow equation with energy loss. The maximum gas flow rate is 25 mol/min. The
sample period is one minute. Figure 4 presents the dynamic constraint control
trajectory u(k) determined from Eq. 27 and the actual tank pressure. The first
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ten minutes in this example represents the start-up phase. Figure 5 presents the
target final moles of gas, nF

D(k) in Eq. 26, at each sample time.
The control is initially set to the start-up phase flow rate of 5 mol/min in this

example and then is brought to its maximum value when the constraint controller
is initiated at 10 min. The control is reduced from its maximum constraint at the
end of the recharge when a maximum pressure constraint violation is predicted.
The target final moles of gas is determined at each sample period as the amount
that results in the predicted tank pressure reaching its maximum constraint.
The corrections to this target become larger as the flow rate increases and the
tank is filled because the simulated energy losses in the nozzle become larger.
We note that measurement noise and initial condition error is not present in this
example.

6 Conclusions and Future Work

We have presented a dynamic constraint control approximation to the singu-
lar minimum-time optimal control law for recharging high pressure gas storage
tanks. This development neglected heat transfer to the storage tank and the sur-
roundings. Although the thermal capacity of the storage tank can reasonably be
neglected in the industrial system, heat transfer to the surroundings can become
significant with larger changes in both tank temperature and pressure. Future
work includes the addition of a thermal model to account for the effect of heat
transfer in the thermodynamic model of the system.
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