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Summary. This paper summarizes recent developments and applications of dynamic
real-time optimization (D-RTO). A decomposition strategy is presented to separate
economical and control objectives by formulating two subproblems in closed-loop. Two
approaches (model-based and model-free at the implementation level) are developed
to provide tight integration of economical optimization and control, and to handle
uncertainty. Simulated industrial applications involving different dynamic operational
scenarios demonstrate significant economical benefits.

1 Introduction

Increasing competition coupled with a highly dynamic economic environment in
the process industry require a more agile plant operation in order to increase
productivity under flexible operating conditions while decreasing the overall pro-
duction cost [1]. The polymer industry is an illustrative example of this develop-
ment. While on the one hand the product specifications for high-value products
become tighter and tighter, on the other hand many of the specialty polymers
are becoming commodities resulting in lower profit margins, thus requiring an ef-
ficient and cost-effective production [6]. Multi-product and multi-purpose plants
have become common. Therefore, transient operational tasks involving sudden
changes in production load, product grade (usually triggered by market condi-
tions) are routinely performed. These scenarios demand integrated economical
optimization of the overall plant operation.

Today’s plant operation requires real-time business decision making (RT-
BDM) tasks at different levels integrating planning, scheduling, optimization
and control tasks. Figure 1 depicts a typical decision making and automation
hierarchy. Due to a wide range of process dynamics, different time-scales are
involved at each level such as fractions of seconds for base layer control, minutes
for advanced control, hours for set-point/trajectory optimization, days for plan-
ning and scheduling, and months or even years for strategic corporate planning.
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Fig. 1. Real-time business decision making and automation hierarchy

Accordingly, RT-BDM involves multiple decision making levels each with a dif-
ferent objective reflecting the natural time scales. Despite the decomposition in
the implementation, there is a single overall objective for the complete structure,
namely maximization of profitability and flexibility of plant operation.

In the last decades, technologies have been developed to solve operational
problems at different levels of the automation hierarchy. However, most of them
are segregated techniques, each one targeting a single problem independently
and exclusively. For example, model predictive control technology using linear,
nonlinear or empirical models [16, 17] is used to reject disturbances and to con-
trol the process at given target set-points (level 2 in Figure 1). The set-points
are often the result of a stationary real-time optimization [15] using steady-state
process models (level 3 in Figure 1). Alternatively, nonlinear model predictive
control (NMPC) with an economical objective (referred to as direct approach
in [9]; Figure 2) has more recently been suggested for transient processes [5] to
solve the tasks on level 2 and 3 in Figure 1. On a moving horizon, NMPC repet-
itively solves a dynamic optimization problem with a combined economical and
control objective. On a given time horizon [tj , tjf ] with a sampling interval ∆t,
the corresponding dynamic optimization problem (denoted by the superscript j)
reads as:

min
uj(t)

Φ(x(tf )) (P1)

s.t. ẋ(t) = f (x(t),y(t),uj(t), d̂
j
(t)) , x(tj) = x̂j , (1)

0 ≥ h(x(t),y(t),uj(t)), t ∈ [tj , tjf ], tjf := tj−1
f + ∆t, (2)

0 ≥ e(x(tjf )) . (3)

x(t) ∈ Rnx are the state variables with the initial conditions x̂j ; y(t) ∈ IRny

are the algebraic output variables. The dynamic process model (1) is formu-
lated in f (·). The time-dependent input variables uj(t) ∈ Rnu and possibly the
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final time are the decision variables for optimization. Furthermore, equations
(2) and (3) denote path constraints h(·) on input and state variables, and end-
point constraints e(·) on state variables, respectively. Uncertainties of different
time-scales dj(t)∈IRnd (e.g. fast changing model parameters, disturbances, and
relatively slow changing external market conditions) are also included in the for-
mulation. In NMPC, measurements (yj) are used to estimate on-line the current
states (x̂j), outputs (ŷj) and uncertainties (d̂

j
). The inputs (û) are updated sub-

sequently by an on-line solution of the dynamic optimization problem P1. For
large-scale industrial applications, the NMPC problem is computationally ex-
pensive to solve though significant progress has been made in recent years (e.g.
[2, 5, 18]). Due to the considerable computational requirements, larger sampling
intervals (∆t) are required, which may not be acceptable due to uncertainty.

Functional integration can, alternatively, be achieved by a cascaded feedback
structure maintaining the automation hierarchy that has been evolved in the
process industry with the base layer control (level 1 in Figure 1) being the most
inner and the corporate planning (level 5 in Figure 1) the most outer loop. The
operational problem formulation (objective, constraints etc.) at each level should
be consistently derived from its upper level. This is in contrast to the existing
technologies used today in the automation hierarchy, where inconsistencies in
objectives, constraints and process models exist at each of the different levels.
Furthermore, uncertainties due to process disturbances, plant-model mismatch
and changes in external market conditions need to be efficiently tackled. Though
NMPC could be tailored to deal with the requirements, it is not a cascaded feed-
back control system which respects the established time-scale decomposition in
the automation hierarchy. Furthermore, NMPC lacks functional transparency
which complicates human interaction and engineering. Due to these concerns,
the acceptance of such a monolith solution in industry is limited. Rather, a cas-
caded feedback optimizing control strategy is preferred, because it is less com-
plex and computationally better tractable in real-time, but provides approxi-
mate control profiles of sufficient quality. In summary, the overall problem of
economical optimization and control of dynamic processes should be decomposed
into consistent and simple subproblems, and subsequently re-integrated using
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efficient techniques to handle uncertainty. This contribution reviews some of
useful concepts to address the above mentioned requirements, and presents their
application to simulated industrial case studies.

The paper is organized as follows: In Section 2, a two-level optimization and
control strategy is presented. To handle uncertainty and tightly integrate the eco-
nomical optimization and control levels, two strategies are presented in Section 3
and 4. In the first approach in Section 3, a strategy for a fast update of reference
tracking trajectories with possible changes in the active constraints set (due to
uncertainty) is presented. When the active constraint set is constant, an NCO
tracking control approach (in Section 4) can be used, which does not require
on-line solution of the dynamic optimization problem and uses only available
measurements or estimates of the process variables. The two-level dynamic op-
timization and control strategy along with fast update and NCO tracking forms
a cascaded optimizing control strategy that implements close-to-optimal plant
operation. In each section, a simulated industrial application involving different
types of transitions is presented.

2 A Two-Level Optimization and Control Strategy

2.1 Concept

For an integration of economical optimization and control, we consider the two-
level strategy introduced in [9] and modified in [12]. Problem P1 is decomposed
into an upper level economical dynamic optimization problem and a lower level
tracking control problem, as shown in Figures 3(a) and 3(b). The dynamic opti-
mization in the approach depicted in Figure 3(a) does not involve measurements
feedback to update the model. Hence no re-optimization has to be performed on-
line, but suboptimal behavior is unavoidable. Therefore, it is referred to as the
two-level approach with open-loop dynamic optimization. In contrast, the ap-
proach shown in Figure 3(b) involves feedback and hence on-line re-optimization
(D-RTO), but can cope with uncertainty. Consequently, it is referred to as the
two-level approach with closed-loop dynamic optimization. Any controller, for
example, a PID controller or a predictive controller using a linear, possibly time-
variant, or even a nonlinear model-based controller may be used at the lower level
to track the reference trajectories of the outputs yref and the controls uref which
results from a solution of the D-RTO problem at the upper level. The concept
of providing reference trajectories for tracking is similar to the calculation of
constant targets of controls and outputs used in MPC [17]. Note that econom-
ical optimization is considered for the nominal model, at the D-RTO level in
the simplest case only, while uncertainty is accounted for on the control level
only. Hence, the process model used for the optimization has to have sufficient
prediction quality and should cover a wide range of process dynamics. Therefore,
a fundamental process model is a natural candidate.

This decomposition has two different time-scales, a slow time-scale denoted
by t̄ on the D-RTO level and a fast time-scale t̃ on the control level, with the
corresponding sampling times ∆t and ∆t̃, respectively. As shown in Figure 3,
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Fig. 3. Two-level dynamic optimization and control strategies

the solution of the upper level dynamic optimization problem determines op-
timal trajectories uref , yref for all relevant process variables to minimize an
economical objective function. The sampling time ∆t̃ (the time interval between
two successive re-optimizations performed in the approach in Figure 3(b)) has to
be sufficiently large to capture the process dynamics, yet small enough to make
flexible economic optimization possible. Depending on whether uncertainty af-
fects the reference trajectories, the two-level approach can be implemented with
open-loop (with ∆t̄ =∞) or closed-loop (with ∆t̄ = ∆t̄0) dynamic optimization
depending on the requirements of the application at hand.

On the lower level, the control problem is solved in a delta mode to track the
optimal reference trajectories (see Figure 3). The tracking controller calculates
only updates ∆u to uref (provided by the upper level as feed-forward part of the
control) at every sampling time t̃j to minimize the deviation from yref . Hence,
the degree of optimality achieved by employing the two-level approach depends
upon the reference trajectories provided by dynamic optimization at the upper
level. The set of tracked variables in yref is selected from the important output
variables available in the plant. The sampling interval ∆t̃ has to be reasonably
small to handle the fast, control relevant process dynamics. The values of the
initial conditions x̂j and disturbances d̂

j
for the control problem are estimated

from measurements by a suitable estimation procedure such as an extended
Kalman filter or a moving horizon estimator.

2.2 Optimal Load Change of an Industrial Polymerization Process

An industrial polymerization process is considered. The problem has been intro-
duced by Bayer AG as a test case during the research project INCOOP [11].

Process description: The flowsheet of this large-scale continuous polymer-
ization process is shown in Figure 8. The exothermic polymerization involving
multiple reactions takes place in a continuously stirred tank reactor (CSTR)
equipped with an evaporative cooling system. The reactor is operated at an
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open-loop unstable operating point corresponding to a medium level of con-
version. It is followed by a separation unit for separating the polymer from
unreacted monomer and solvent. Unreacted monomer and solvent are recycled
back to the reactor via a recycle tank, while the polymer melt is sent to down-
stream processing and blending units. For this process, the following measure-
ments (or estimates) are considered to be available: Flowrates of recycle and
fresh monomers, FM,R and FM,in, flowrate of reactor outlet FR,out, recycle tank
holdup VRT , reactor solvent concentration CS , reactor conversion µ, polymer
molecular weight MW . The reactor holdup VRT is maintained at a desired set-
point using a proportional control that manipulates the reactor outlet flowrate
FR,out. A rigorous dynamic process model consisting of about 2500 differential
and algebraic equations is available from previous studies at Bayer AG [6].

Results: The following scenario is a typical example for an intentionally dy-
namic mode of operation. Due to changed demand from the downstream process-
ing unit, the polymer load needs to be instantaneously changed from 50% load
to 100% load and back to 50% load after a given time interval. It is desired, if
possible at all, to produce on-spec polymer during the transition and thereafter.
Otherwise, the total amount of off-spec polymer produced during the transition
should be minimized. At the end of the transition and thereafter, the process is
required to be at the given steady-state operating point. The polymer quality
variables, reactor conversion and polymer molecular weight, are allowed to vary
in a band of ±2% around their specifications. Three input variables u are avail-
able: Flowrate of fresh monomer FM,in, catalyst feed stream FC,in and flowrate of
recycled monomer FM,R. Path and end-point constraints on five process variables
need to be respected during the load change operation. Various uncertainties and
disturbances in the form of unknown solvent concentration and initial conditions,
measurement errors need to be considered during the transition.

The two-level strategy with open-loop dynamic optimization and control
(∆t̄ = ∞; cf. Figure 3(a)) has been implemented in a software environment
and applied to the simulated polymerization process for the load change sce-
nario. For this transitional scenario, off-line optimization studies have shown
that the prevalent uncertainties and disturbances have an insignificant effect on
the optimal reference trajectories. Only representative results from the closed-
loop control simulation are reported in Figure 4 (see [6] for further details). The
solid lines in the plots show the optimal reference trajectories which are cal-
culated by solving a dynamic optimization problem that employs the nominal
process model. The lower level of the two-level strategy involving estimation
and control was run in a closed-loop simulation in order to verify its capabil-
ities to follow the reference trajectories in the presence of the various process
disturbances. A linear time-variant model derived repetitively on-line along the
reference trajectories is employed in the tracking controller. The optimization of
the load transitions led to significantly improved operation of the plant, when
compared to the conventional strategies used by the operators. The transition
time is drastically reduced, and the production of off-spec material can be com-
pletely avoided, which also could not be ensured in conventional operation.
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Fig. 4. Results using the two-level strategy with open-loop dynamic optimization:
Fresh monomer flowrate FM,in (left) and polymer molecular weight MW (right)

2.3 Tight Integration and Uncertainty Handling

The two-level strategy is essentially a cascaded optimizing feedback control system
which generalizes steady-state RTO and advanced predictive control of inten-
tionally dynamic processes. In this approach, the overall problem is decomposed
into two sub-problems (with consistent objectives) that need to be subsequently
re-integrated in closed-loop. Furthermore, to consider effects of uncertainty, the
tracking reference trajectories can be updated by repetitive re-optimization us-
ing the feedback (state and eventually model update) provided at a constant
time interval ∆t̄. However, a repetitive re-optimization is not always necessary.
Rather, it can be systematically triggered by analyzing the optimal reference
trajectories based on the disturbance dynamics and its predicted effect on the
optimality of P1 if needed. Two strategies are proposed for uncertainty handling
and tighter integration of the two-levels of dynamic optimization and control
subsequently. In the first approach introduced in Section 3, a neighboring ex-
tremal control approach is used for linear updates of the reference trajectories
even in case of active inequality constraints. In the second approach presented
in Section 4, a solution model is derived from a nominal optimal solution of the
dynamic optimization problem. The resulting solution model is used to imple-
ment a decentralized supervisory control system to implement a controller with
close-to-optimal performance even in case of uncertainty.

3 Sensitivity-Based Update of Reference Trajectories

3.1 Concept

Due to uncertainty, the reference trajectories of the inputs and outputs need
to be updated. So far, the update is done via repetitive re-optimization, which
can be computationally expensive. Furthermore this may not be necessary as
the updated solution and the predicted benefits (objective function) may not be
significantly different from the reference solution. Parametric sensitivity analysis
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[7] is a strong tool to analyze an optimal solution for perturbations of parameter
values. Consequently, this analysis has been extensively used in steady-state and
dynamic optimization for calculating updates due to parametric perturbations
or parametric uncertainty (cf. [4]) because it demands only negligible computa-
tional time. The applicability of parametric sensitivity techniques, also referred
to as neighboring extremal control, depends upon the strong assumption that the
active constraint set does not change with perturbations, which is often quite
restrictive. The assumption is only valid for sufficiently small perturbations en-
tering the optimization problem.

A trigger strategy is suggested in the two-level strategy in Figure 3(b) to
initiate a solution of the D-RTO problem only if necessary, otherwise it pro-
vides linear updates to uref ,yref based on the neighboring extremal control
with the handling of possible changes in the active constraints set. A schematic
of the D-RTO trigger and fast update strategy is given in Figure 5. The reader
is referred to [10] for algorithmic details. An optimal solution is available at
the nominal values of uncertainty parameters from the previous optimization
at time t̄i and updates at time t̃j . At each sampling time t̃j, reference trajec-
tories of the controls are updated as uj+1

ref , and the changed active constraint
set is calculated using the neighboring extremal control strategy with inequality
constraints [10]. Simultaneously, sensitivities Sj of the Lagrange Lj of P1 are

evaluated as Sj =
∂Lj(uj+1

ref ,d̂j)
∂u , where Lj is calculated for the updated controls

uj+1
ref and the uncertainty estimate d̂j . A D-RTO trigger criteria (Sj > Sth with

Sth as threshold value) is defined to analyze the updated control for optimality
of P1. If the criteria is met, a linear update is not sufficient and a re-optimization
is performed to calculate new reference trajectories ui+1

ref ,y
i+1
ref .
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3.2 Productivity Maximization of a Semi-batch Reactor

Problem description: A semi-batch reactor is considered here, which is derived
from the continuous Williams-Otto benchmark reactor [8]. The following reac-

tions are taking place in the reactor:A+B
k1−→ C, C+B

k2−→ P+E, P+C
k3

−→ G.
The reactor is fed initially with a fixed amount of reactant A; reactant B is fed
continuously. The first-order reactions produce the desired products P and E.
Product G is a waste. As the heat generated by the exothermic reactions is
removed through the cooling jacket by manipulating the cooling water temper-
ature. During reactor operation, path constraints on the feed rate of reactant B
(FBin), reactor temperature (Tr), hold-up (V ) and cooling water temperature
(Tw) have to be respected. FBin and Tw are the manipulated variables. The
operational objective is to maximize the yield of the main products at the end
of batch. A measurable disturbance ∆Tin affects the feed temperature at t =
250 sec during batch operation. Furthermore, the parameter b1 in the reaction
kinetic equation k1=a1 exp( b1

Tr+273.15 ) is assumed to vary about ±25% from its
nominal value b1 = 6666.7 sec−1.

Results: The economical optimization problem is solved using DyOS [19] to
obtain the optimal solution for nominal values of the uncertain parameters. The
nominal optimal control and constraint profiles are depicted in Figure 6 by solid
lines. These profiles have different arcs corresponding to active and inactive parts
of the path constraints, which are characterized as follows: FBin is initially kept
at its upper bound and then switched to its lower bound when the reactor volume
(V ) reaches its upper bound. The second control variable Tw is manipulated to
move the reactor temperature (Tr) to its lower bound at t=140 sec and keep it
there. At the switching time t=360 sec, Tr is moved away from its lower bound
by manipulating Tw in a bang-bang profile with the switching times computed
implicitly by optimization. Note that Tw is at its lower bound at t=0 sec and
quickly switched to its upper bound.

The profiles shown by a solid line with dots in Figure 6 depict the response
of the neighboring extremal control update and D-RTO trigger strategy in the
presence of uncertainty and disturbances. Only once a re-optimization was trig-
gered in this episode. It can be observed in the figures that the closed-loop
linearly updated solution is almost identical to the synchronously re-optimized
solution (depicted by dashed lines). Note that the structure of the true optimal
solution under uncertainty and disturbances is drastically different from that
of the nominal solution. Most interestingly, FBin is stopped at t=282 sec, and
again switched back to its upper bound at t=656 sec until the reactor hold-up
reaches its upper bound. Furthermore, the reactor temperature is never at ei-
ther of its bounds, while Tw is at its lower bound throughout the operation.
These changed active sets are correctly and timely detected by the sensitivity
based-update strategy, and the batch operation is optimized in real-time. It is
shown that by using the D-RTO trigger and the linear fast update in two-level
integrated dynamic optimization economical and control, large uncertainty and
disturbances can be effectively handled.
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Fig. 6. Nominal and closed-loop optimization profiles of controls and constraints

4 Solution Model-Based NCO Tracking

4.1 Concept

Instead of using uncertainty-variant tracking reference trajectories as presented
in Sections 2 and 3, a combination of uncertainty-variant and uncertainty-
invariant arcs of the optimal solution is deduced for the tracking control problem.
The approach is termed NCO tracking [20] as it adjusts the inputs by means of
a decentralized control scheme in order to track the necessary conditions of opti-
mality (NCO) of problem (P1) (cf. Table 1 [3]) in the presence of uncertainty. As
shown in Figure 7, measurements (y) are employed to directly update the inputs
(u) using a parameterized solution model obtained from off-line numerical so-
lution of problem (P1) [21]. This way, nearly optimal operation is implemented
via feedback control without the need for solving a dynamic optimization prob-
lem in real-time. The real challenge lies in the fact that four different objectives
(Table 1) are involved in achieving optimality. These path and terminal objec-
tives are linked to active constraints (row 1 of Table 1) and sensitivities (row
2 of Table 1). Hence, it becomes important to appropriately parameterize the
inputs using time functions and scalars, and assign them to the different objec-
tives. There results a solution model, i.e. a decentralized self-optimizing control
scheme, that relates the available decision variables (seen as inputs) to the NCO
(seen as measured or estimated outputs).
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Table 1. Separation of the NCO into four distinct parts

Path objectives Terminal objectives
Constraints µT h = 0 νT e = 0
Sensitivities ∂H

∂u
= 0 H(tf) + ∂Φ

∂t

∣∣
tf

= 0

Estimation NCO Tracking

Plant 
(incl. Base Control)

t∆
)(td

j

jy ju

Solution Model

Nominal Model

Numerical 
Optimization

1,ˆ −juy j

jj xd ˆ,ˆ

Fig. 7. D-RTO via numerical optimization of a nominal model and NCO tracking

The generation of a solution model includes two main steps:

• Input dissection: Using the structure of the optimal solution provided by
off-line numerical optimization, this step determines the so-called fixed
(uncertainty-invariant) and free (uncertainty-variant) arcs of the inputs. In
some of the arcs, the inputs are independent of the prevailing uncertainty,
e.g. in arcs where the inputs are at their bounds, and thus can be applied in
an open-loop fashion. Hence, the corresponding input elements can be con-
sidered as fixed in the solution model. In other arcs, the inputs are affected
by uncertainty and need to be adjusted for optimality based on measure-
ments. All the input elements affected by uncertainty constitute the decision
variables of the optimization problem.

Input dissection is based on off-line numerical optimization using a nominal
process model. The resulting optimal solution consists of various arcs or
intervals [3]. The information on the type of arcs can be deduced from the
numerical solution of (P1). Schlegel and Marquardt [18] have proposed a
method that automatically detects the control switching structure even for
large-scale problems with multiple manipulated variables as well as path
and endpoint constraints. The structure detection algorithm also provides
the dissected optimal input profiles that are re-parameterized with a small
number of parameters: u(t) = U(η(t),A, τ ) , where η(t) ∈ RL are the time-
variant arcs, τ ∈ RL the switching times, and L the total number of arcs.
The set of decision variables is comprised of η(t) and τ . The boolean set A
of length L describes the type of each particular arc, which can be of the type
{umin, umax, ustate, usens} depending on whether the corresponding input ui
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is at its lower or upper bound, determined by a state constraint or such that
it is adjusted to minimize the objective function.

• Linking the decision variables to the NCO: The next step is to provide a link
between every decision variable and each element of the NCO as given in Ta-
ble 1. The active path and terminal constraints fix some of the time functions
η(t) and scalar parameters τ , respectively. The remaining degrees of freedom
are used to meet the path and terminal sensitivities. Note that the pairing is
not unique. An important assumption here is that the set of active constraints
is correctly determined and does not vary with uncertainty. Fortunately, this
restrictive assumption can be relaxed by considering a superstructure of the
solution model and process insight, which takes into account foreseen changes
in the nominally active constraints set.

A designed solution model in the form of input-output pairing provides the
basis for adapting the decision variables by employing appropriate controllers
and measurements or estimates of its related NCO element as feedback. On-
line implementation requires reliable on-line measurements of the corresponding
NCO parts. In most applications, measurements of the constrained variables
are available on-line. When on-line measurements of certain NCO parts are not
available (e.g. sensitivities and terminal constraints), a model can be used to
predict them. Otherwise, a run-to-run implementation that uses measurements
at the end of the run becomes necessary.

4.2 Optimal Grade Transition of an Industrial Polymerization
Process

The same polymerization process presented in Section 2.2 is used to produce
different grades of polymer. Therefore, grade changes are routinely performed
in this process. The optimization of grade transition is considered in this study.
The task is to perform a change from polymer grade A of molecular weight
M̄W,A = 0.727 ± 0.014 to grade B of molecular weight M̄W,B = 1.027 ± 0.027
in minimum time. During the transition, operational constraints are enforced
on the state and input variables. Additionally, there are endpoint constraints
on the reactor conversion µ and the polymer molecular weight MW,B that are
more strict than those enforced on these quantities during the transition. For a
detailed discussion on this case study and the complete set of results, the reader
is referred to [13].

The optimal grade change problem is solved numerically using the dynamic
optimizer DyOS [18]. To find an accurate optimal solution with an identifiable
control structure, a wavelet-based adaptive refinement method combined with
an automatic control structure detection algorithm [18, 19] is applied. The nom-
inal optimal solution and its automatically detected structure are characterized,
and a solution model linking inputs to parts of the NCO is derived. As certain
nominally inactive path constraints can become active in the presence of model
and process uncertainties, a superstructure solution model (to consider foreseen
changes in nominally active constraints set) is developed. The input-output links
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Fig. 8. Process schematic with the NCO tracking controllers and triggers

in the solution model are implemented using the controllers K as depicted in
Figure 8. In this study, PI-type controllers are used employing the nominal in-
put profiles as feedforward terms. Advanced controllers could also be used for
improved tracking performance (cf. Section 2.2 and [6]). In the designed control
superstructure, depending upon the state of the process, one controller overrides
the other. In the classic process control terminology, this type of control struc-
ture is referred to as overriding or signal-select controller [14]. Reliable on-line
measurements or estimates of the constrained variables are necessary for imple-
menting the NCO tracking strategy using the superstructure solution model.

A considerable amount of uncertainty due to different than nominal initial
conditions and reactor solvent concentration is present in practice. The pro-
posed NCO tracking superstructure for optimal grade transition is tested for
its performance in the presence of uncertainty using the simulated plant model.
The PI controllers are tuned for the nominal case. The simulated NCO tracking
profiles of fresh monomer flowrate FM,in and polymer molecular weight MW

are depicted by dash-dotted lines in Figure 9. The transition time tf for the
uncertainty case is considerably larger than that for the nominal case, which is
calculated on-line in simulation by using the solution model. The performance
of the NCO tracking solution is compared to a robust solution and optimization
with known uncertainty in Table 2. The robust solution (column 2 of Table 2)
represents a single strategy computed off-line which is feasible for both the nom-
inal and perturbed cases. Such an approach is often used in industrial prac-
tice to avoid real-time optimization. The NCO tracking approach (column 3 of
Table 2) is computed using the decentralized control structure presented in
Figure 9. Finally, the numerical optimal solution (column 4 of Table 2) corre-
sponds to the best possible solution that can be computed using full knowledge
of the uncertainty. Table 2 shows that the robust solution is rather poor. In
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Table 2. Transition times using different optimization strategies; two distinct case
of uncertainty are considered, each with different initial conditions corresponding to
different solvent concentrations

Case Robust solution NCO tracking Num. optimization
(uncertainty known) (uncertainty unknown) (uncertainty known)

nominal ≥ 5 1.008 1.0
uncertainty 1 ≥ 5 2.03 1.81
uncertainty 2 ≥ 5 0.938 0.915

contrast, NCO tracking comes very close to the best possible solution, without
knowledge of the uncertainty but at the expense of on-line measurements and
(possibly) state estimations.

The results have demonstrated that a simple decentralized control strategy
using a solution model and measurements can implement a complex grade tran-
sition. It must be re-emphasized that the generation of the solution model as
well as its superstructure requires the optimal solution for the nominal case and
process insights that help to simplify it. However, the economic benefits in terms
of transition time reduction, and thus the amount of off-spec material, is quite
significant compared to the conventional approach practiced in the plant. For
limited grade transitions, nominal optimal solutions can be calculated off-line
and implemented on-line using NCO tracking controllers. However, reliable on-
line measurements or model-based estimates of certain variables are required.
Furthermore, the solution model has to be tested and validated for different
realization of uncertainty as an online re-optimization is not considered.

5 Conclusions

In this contribution, it is emphasized that the scope of NMPC needs to be
broadened from its classic roles of set-point tracking and disturbance rejection.
In the context of real-time business decision making (RT-BDM) implemented
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in the automation hierarchy, a cascaded optimizing feedback control strategy is
necessary for economical and agile plant operation. A two-level decomposition
strategy of dynamic optimization and control of transient processes is suggested.
The overall objectives of profitability and flexibility with respect to scheduled
or un-scheduled transitions are maintained consistently at two optimization and
control levels. For tighter integration and effective uncertainty handling, two ap-
proaches based 1) on neighboring extremal control with inequality constraints
and 2) on decentralized control for tracking the necessary conditions of optimal-
ity of the economical optimization problem are used. The simulated industrial
applications for different transitions have shown significant economical benefits.
The case studies show the potential of the suggested approaches. Obviously, there
are many opportunities for the further development of an integrated dynamic
optimization and control system implemented in multiple levels that consistently
solves simple level-specific problems as part of the automation hierarchy.
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