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Summary. This paper is devoted to the stabilization problem of nonlinear conti-
nuous-time systems with piecewise constant control functions. The controller is to be
computed by the receding horizon control method based on discrete-time approximate
models. Multi-rate - multistep control is considered and both measurement and compu-
tational delays are allowed. It is shown that the same family of controllers that stabilizes
the approximate discrete-time model also practically stabilizes the exact discrete-time
model of the plant. The conditions are formulated in terms of the original continuous-
time models and the design parameters so that they should be verifiable in advance.

1 Introduction

One of the most popular methods to design stabilizing controllers for nonlinear
systems is the receding horizon control, also known as model predictive control.
In receding control, a finite horizon optimal control problem is repeatedly solved
and the input applied to the system is based on the obtained optimal open-loop
control. As a result of substantial efforts of many researchers, several theoret-
ically well-established versions of this method have been proposed in the past
one and a half decade both for continuous- and discrete-time models; see e.g.
[24], [4], [6], [21] for surveys and the references therein.

In continuous-time setting a great deal of the investigations is devoted to
the idealized situation, when the optimization procedure is solved at all time
instants, and the initial value of optimal control is applied to the plant (to
mention just a few examples, see [23], [13], [14], [1], [3]). This turns out almost
always to be an intractable task in practice. A more realistic assumption is
that the optimization problem is solved only at disjoint time instants and the
resulting optimal control function is implemented in between, which leads to
a sampled-data nonlinear model predictive control scheme (see e.g. [2], [18],
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[8]). Being the optimal control in general merely measurable, the troubles of the
implementation of such a function are not negligible. The effect of the “sampling
and zero-order hold” is considered in [17] assuming the existence of a global
control Lyapunov function (CLF), and in [22], where the stabilizing property
of a piecewise constant NMPC computed from - and applied to the continuous-
time model is investigated without taking into account any approximation in the
plant model.

In several technical respects the situation is simpler, if the model of the plant
is given in discrete-time. However, such models frequently derived from some
continuous-time models as “good” approximations. For this reason, it is impor-
tant to know conditions which guarantee that the same family of controllers
that stabilizes the approximate discrete-time model of the plant also practically
stabilizes the exact model of the plant. Sufficient conditions for a controller hav-
ing these properties are presented in [26] and [25]. As it is emphasized by the
title of the latter paper, these results provide a framework for controller design
relying on the approximate discrete-time models, but they do not explain how
to find controllers that satisfy the given conditions. Within this framework some
optimization-based methods are studied in [11]: the design is carried out either
via an infinite horizon optimization problem or via an optimization problem
over a finite horizon with varying length. To relax the computational burden
of these approaches, one can apply a suitable version of the receding horizon
control method. Some sets of conditions are formulated and stability results are
proved in [15] and [5] for sampled-data receding horizon control method without
and with delays based on approximate discrete-time models. In this work we
shall investigate the stability property of the equilibrium under a different set of
assumptions that are verifyable in advance.

In receding horizon control method, a Bolza-type optimal control problem is
solved, in which the design parameters are the horizon length 0 ≤ t1 ≤ ∞, the
stage cost l, the terminal cost g (which are usually assumed to be at least non-
negative valued) and the terminal constraint set Xf . It is well-known that, if no
further requirements for these parameters are stated, then one can show even lin-
ear examples, where the resulting closed-loop system is unstable. On the other
hand, if that minimal requirement is satisfied that the origin is a locally asymp-
totically stable equilibrium for the closed-loop system, then one expect to have
the largest domain of attraction possible, the least computational efforts possible
for finding the controller, and certain robustness, as well. The domain of attrac-
tion can probably be increased by increasing the time-horizon, but this involves
the increase of the necessary computational efforts, too. Under the terminal con-
straint one can expect a relatively large domain of attraction with relatively short
time horizon. This is the reason, why this constraint is frequently applied in re-
ceding horizon. However, if a terminal constraint is included in the optimization
problem, then the corresponding value function will not have suitable regularity
in general, which ensures an expected robustness. In [9] several examples are pre-
sented which show the realization of this phenomenon. Therefore, if stabilization
is aimed via an approximate model, the terminal constraint may not be considered
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explicitly. Several results show that an appropriate choice of the terminal cost g
may also enforce stability: in fact, if g is a strict control Lyapunov function within
one of its level sets, then the receding horizon controller makes the origin to be
asymptotically stable with respect to the closed-loop system with a domain of at-
traction containing the above mentioned level set of g (the terminal constraint
set is implicit e.g. in [14], [18]). This domain of attraction can be enlarged up to
an arbitrary compact set, which is asymptotically controllable to the origin, by a
suitable - finite - choice of the horizon length. For a substantial class of systems
well-established methods exist for the construction of a suitable terminal cost (see
e.g. [3], [1], [29]). Sometimes it may be difficult – if not impossible – to derive an
appropriate terminal cost. Lately, it has been proven by [19] and [10] that the re-
quired stability can be enforced merely by a sufficiently large time horizon, having
obvious advantages, but at the cost of a – possibly substantial – enlargement of
the computational burden.

Here we consider in details the case when the terminal cost is a control Lya-
punov function, and we shall make some remarks on the case of general terminal
cost.

2 Stabilization Results with CLF Terminal Cost

2.1 The Models and the Method

Consider the nonlinear control system described by

ẋ(t) = f (x(t), u(t)) , x(0) = x0, (1)

where x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ R
m, X is the state space, U is the control

constraint set, f : Rn ×U → Rn, with f(0, 0) = 0, U is closed and 0 ∈ X , 0 ∈ U .
We shall assume that f is continuous and Lipschitz continuous with respect to
x in any compact set. Let Γ⊂X be a given compact set containing the origin
and consisting of all initial states to be taken into account.

Consider an auxiliary function l : Rn × U → R+ with analogous regularity
properties as f satisfying the condition l(0, 0) = 0, and consider the augmented
system (1) with

χ̇(t) = l(x(t), u(t)), χ(0) = 0. (2)

For convenience we introduce the notation Yρ = Y ∩ Bρ, where Bρ denotes the
ball around the origin with the radius ρ.

The system is to be controlled digitally using piecewise constant control func-
tions u(t) = u(iT ) =: ui, if t ∈ [iT, (i + 1)T ), i ∈ N, where T > 0 is the control
sampling period. We assume that for any x ∈ X∆′ and u ∈ U∆′′ , equation (1)–(2)
with u(t) ≡ u, (t ∈ [0, T ]) and initial condition x(0) = x, χ(0) = 0) has a unique
solution on [0, T ] denoted by (φE(., x, u), ϕE(., x, u)). Then, the augmented exact
discrete-time model of the system (1)–(2) can be defined as

xE
i+1 = FE

T (xE
i , ui), xE

0 = x0, (3)

χE
i+1 = χE

i + lET
(
xE

i , ui

)
, χE

0 = 0, (4)

where FE
T (x, u) := φE(T ;x, u), and lET (x, u) = ϕE(T, x, u).
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We note that, φE and ϕE are not known in most cases, therefore, the controller
design can be carried out by means of an approximate discrete-time model

xA
k+1 = FA

T,h

(
xA

k , uk

)
, xA

0 = x0, (5)

χA
k+1 = χA

k + lAT,h

(
xA

k , uk

)
, χA

0 = 0, (6)

where FA
T,h (x, u) and lAT,h (x, u) are typically derived by multiple application

of some numerical approximation formula with (possibly variable) step sizes
bounded by the parameter h. Given u = {u0, u1, . . .} and initial conditions
xE

0 = x′ and xA
0 = x′′, the trajectories of the discrete-time systems (3) and

(5)–(6) are denoted, by φE
k (x′,u) and φA

k (x′′,u), ϕA
k (x′′,u), respectively.

Concerning the parameters T and h, in principle two cases are possible: T =
h, and T can be adjusted arbitrarily; T 	= h, T is fixed and h can be chosen
arbitrarily small. Having less number of parameters, the first case seems to be
simpler, but in practice there exists a lower bound to the smallest achievable T .
Since the second case has much more practical relevance, here we shall discuss
it in details, and we shall only point out the differences arising in case T = h,
when appropriate. In what follows, we assume that T > 0 is given.

In this paper we address the problem of state feedback stabilization of (3)
under the assumption that state measurements can be performed at the time
instants jTm, j = 0, 1, . . .:

yj := xE(jTm), j = 0, 1, . . . .

The result of the measurement yj becomes available for the computation of
the controller at jTm + τ1, where τ1 ≥ 0, while the computation requires τ2 ≥ 0
length of time i.e. the (re)computed controller is available at T ∗

j := jTm+τ1+τ2,
j = 0, 1, . . .. We assume that τ1 = �1T , τ2 = �2T and Tm = �T for some integers
�1 ≥ 0, �2 ≥ 0 and � ≥ �1 + �2 =: �.

If � = 1, �1 = �2 = 0, then we can speak about a single rate, one-step receding
horizon controller without delays, if � > 1, then we have multi-rate, multistep
controller with or without delays depending on values of �1 and �2. Papers [2] and
[7] consider the problem of computational delay in connection with the receding
horizon control for exact continuous-time models, while [28] develops results
analogous to that of [25] for the case of multi-rate sampling with measurement
delays.

A “new” controller computed according to the measurement yj = xE(jTm)
will only be available from T ∗

j , thus in the time interval [jTm, T ∗
j ) the “old”

controller has to be applied. Since the corresponding exact trajectory is unknown,
an approximation ζA

j to the exact state xE
(
T ∗

j

)
can only be used, which can be

defined as follows. Assume that a control sequence
{
u0

(
ζA
j−1

)
, . . . , u�−1

(
ζA
j−1

)}
has been defined for j ≥ 1. Let vp

(
ζA
j−1

)
=

{
u�−�

(
ζA
j−1

)
, . . . , u�−1

(
ζA
j−1

)}
and

define ζA
j by

ζA
j = FA

�

(
yj ,vp

(
ζA
j−1

))
, ζA

0 = φA
�
(x,uc), (7)
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where FA
�

(
y, {u0, . . . , u�−1}

)
= FA

T,h

(
. . . FA

T,h

(
FA

T,h (y, u0) , u1

)
. . . , u�−1

)
, and

uc is someprecomputed controller (independent of state measurements). Letv(j) ={
u

(j)
0 , . . . , u

(j)
�−1

}
be computed for ζA

j and let the �-step exact discrete-time model
be described by

ξE
j+1 = FE

� (ξE
j ,v

(j)), ξE
0 = φE

�
(x,uc), (8)

where FE
� (ξE

j ,v) = φE
� (ξE

j ,v). In this way the right hand side of (8) depends on
yj = xE(jTm) so that (7-8) represents an unconventional feedback system.

Our aim is to define a measurement based algorithm for solving the following
problem: for given T , Tm, τ1 and τ2 find a control strategy

v�,h: Γ̃ → U × U × . . .× U︸ ︷︷ ︸
� times

v�,h(x) = {u0(x), . . . , u�−1(x)}, using the approximate model (5), (7) which
stabilizes the origin for the exact system (3) in an appropriate sense, where Γ̃ is
a suitable set containing at least Γ .

Remark 1. If T = Tm, � = 1 and �1 = �2 = 0, then the single-rate delay-free case
is recovered, therefore it is sufficient to discuss the general case in details.

In order to find a suitable controller v, we shall apply a multistep version of the
receding horizon method. To do so, we shall consider the following cost function.

Let 0 < N ∈ N be given. Let (5) be subject to the cost function

JT,h(N, x,u) =
N−1∑
k=0

lAT,h(xA
k , uk) + g(xA

N ),

where u = {u0, u1, . . . , uN−1}, xA
k = φA

k (x,u), k = 0, 1, . . . , N denote the solu-
tion of (5), lAT,h is defined as in (6) and g is a given function.

Consider the optimization problem

PA
T,h(N, x): min {JT,h(N, x,u) : uk ∈ U} .

If this optimization problem has a solution denoted by u∗(x) = {u∗
0(x), . . . ,

u∗
N−1(x)

}
, then the first � elements of u∗ are applied at the state x i.e.

v�,h(x) =
{
u∗

0(x), . . . , u∗
�−1(x)

}
.

In what follows we shall use the notation V A
N (x) = JT,h(N, x,u∗(x)).

2.2 Assumptions and Basic Properties

To ensure the existence and the stabilizing property of the proposed controller,
several assumptions are needed.
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We might formulate this assumptions in part with respect to the approximate
discrete-time model as it was done e.g. in [5] and [15]. However, it turns out
that in several cases the verification of some conditions is much more tractable
for the original model than the approximate one. For this reason, we formulate
the assumptions with respect to the exact model (and to the applied numerical
approximation method). For the design parameters l and g, we shall make the
following assumption.

Assumption 1. (i) g : Rn → R is continuous, positive definite, radially un-
bounded and Lipschitz continuos in any compact set.

(ii) l is continuous with respect to x and u and Lipschitz continuous with respect
to x in any compact set.

(iii) There exist such class-K∞ functions ϕ1, ϕ1, ϕ2 and ϕ2 that

ϕ1(‖x‖) + ϕ1(‖u‖) ≤ l(x, u) ≤ ϕ2(‖x‖) + ϕ2(‖u‖), (9)

holds for all x ∈ X andu ∈ U .

Remark 2. The lower bound in (9) can be substituted by different conditions:
e.g. ϕ1 may be omitted, if U is compact. If the stage cost for the discrete-time
optimization problem is directly given, other conditions ensuring the existence
and uniform boundedness of the optimal control sequence can be imposed, as
well (see e.g. [10], [15] and [20] ). However, having a K∞ lower estimation with
respect to ‖x‖ is important in the considerations of the present paper.

The applied numerical approximation scheme has to ensure the closeness of the
exact and the approximate models in the following sense.

Assumption 2. For any given ∆′ > 0 and ∆′′ > 0 there exists a h∗
0 > 0 such

that

(i) FA
T,h (0, 0) = 0, lAT,h (0, 0) = 0, lAT,h (x, u) > 0, x 	= 0, FA

T,h and lAT,h are
continuous in both variables uniformly in h ∈ (0, h∗

0], and they preserve the
Lischitz continuity of the exact models, uniformly in h;

(ii) there exists a γ ∈ K such that

‖FE
T (x, u)− FA

T,h(x, u)‖ ≤ Tγ(h), ‖lET (x, u)− lAT,h(x, u)‖ ≤ Tγ(h),

for all x ∈ B∆′ , all u ∈ U∆′′ , and h ∈ (0, h∗
0].

Remark 3. We note that Assumption A2 depends on the numerical approxima-
tion method, and it can be proven for reasonable discretization formulas.

Definition 1. System (3) is asymptotically controllable from a compact set Ω
to the origin, if there exist a β(., .) ∈ KL and a continuous, positive and non-
decreasing function σ(.) such that for all x ∈ Ω there exists a control sequence
u(x), uk(x) ∈ U , such that ‖uk(x)‖ ≤ σ(‖x‖), and the corresponding solution
φE of (3) satisfies the inequality∥∥φE

k (x,u(x))
∥∥ ≤ β(‖x‖ , kT ), k ∈ N.



Conditions for MPC Based Stabilization of Sampled-Data Nonlinear Systems 41

The next assumption formulates, roughly speaking, a necessary condition for the
existence of a stabilizing feedback.

Assumption 3. (i) The exact discrete-time system (3) is asymptotically con-
trollable from a set Ω containing Γ to the origin.

(ii) There exists a ∆0 > 0, and a control sequence uc =
{
uc

0, . . . , u
c
l−1

}
(uc

i ∈
U) can be given so that Γ ⊂ Ω∆0 , φE

k (x,uc) ∈ Ω∆0 , φA
k (x,uc) ∈ Ω∆0 ,

k = 0, 1, . . . , � for all x ∈ Γ .

In what follows let ∆1 = β(∆0, 0) and ∆2 = σ(∆0), where β and σ are given in
Definition 1.

Finally, the next assumption implies that the final state penalty has to be a
local control Lyapunov function within the sampled data controllers.

Assumption 4. There exist a positive number η and a class-K function αg such
that for all x ∈ Gη = {x ∈ X : g(x) ≤ η} there is a κ(x) ∈ U∆2 such that for
u0 = κ(x)

g
(
FE

T (x, u0)
)
− g(x) + lET (x, u0) ≤ −αg(‖x‖). (10)

Remark 4. Sometimes it may be more convenient to verify the analogue of As-
sumption A4 for the approximate discrete-time system (c.f. [15]). This is the case
e.g. if the model has a controllable linearization (c.f. [2], [22]). In other cases, as
e.g. in [16], the present form is more advantageous.

Let us consider now the auxiliary problem of the minimization of the cost func-
tion

JE
T (N, x,u) =

N−1∑
k=0

lET (xE
k , uk) + g(xE

N ),

subject to the exact system (3), and introduce the notation

V E
N (x) = inf

{
JE

T (N, x,u):u = {u0, . . . , uN−1} , uk ∈ U
}

Lemma 1. If Assumptions A1, A3 and A4 hold true, then there exists a constant
V E

max independent of N , such that V E
N (x) ≤ V E

max, for all x ∈ Ω∆0 and N ∈ N.

Proof. The proof is similar to that of the analogous statement in [15], therefore
it is omitted here. �

Let us introduce the notations V A
max = V E

max + 1, ∆∗
2 = ϕ−1

1

(
V A

max/T
)
, and

Γmax(h0) =
{
x ∈ X :V A

N (x) ≤ V A
max, h ∈ (0, h0]

}
,

Mf(∆′, ∆′′) = max
x∈X∆′

max
u∈U∆′′

‖f(x, u)‖ .
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Theorem 1. Suppose that Assumptions A1–A4 are valid, and inequality s ≥
2TMf(2s,∆∗

2) holds true, if s ≥ ∆0. Then there exist constants N∗, r∗0 , ∆
∗
1 and

functions σ1, σ2 ∈ K∞ so that for any fixed N ≥ N∗, r0 ∈ (0, r∗0 ] and δ > 0 there
exists a h > 0 such that for all h ∈ (0, h]

Γ ⊂ Ω∆0 ⊂ Γmax(h) ⊂ B∆∗
1
, (11)

σ1 (‖x‖) ≤ V A
N (x) ≤ σ2 (‖x‖) , (12)∥∥φA

k (x,u∗(x))
∥∥ ≤ ∆∗

1, ‖u∗
k(x)‖ ≤ ∆∗

2, k = 0, 1, . . . , N − 1, (13)

if x ∈ Γmax(h)\Br0 , and for all k = 1, . . . , �

V A
N

(
φA

k (x,u∗(x))
)
− V A

N (x) ≤ −lAT,h(x, u∗
0(x)) + δ, (14)

where u∗(x) denotes the optimal solution of PA
T,h(N, x). Moreover, V A

N is locally
Lipschitz continuous in Γmax(h) uniformly in h ∈ (0, h].

Proof. The proof is given in the Appendix. �

Remark 5. If the sampling parameter T and the discretization parameter h co-
incide and T can be arbitrary adjusted, then – besides some technical problems
that can easily be handled – the main difficulty originates from the fact that
the lower bound of lAT,h is no longer independent of the adjustable parameter.
Nevertheless, a uniform lower bound for V A

N can be given for this case, as well
(see [15]).

Remark 6. If X is bounded, then the condition s ≥ 2T Mf (2s,∆∗
2), if s ≥ ∆0 in

Theorem 1 is not needed, otherwise the set of possible initial states, the choice
of T and the growth of f have to be fitted together.

2.3 Multistep Receding Horizon Control

In this section we outline an approach to the problem how the occurring mea-
surement and computational delays can be taken into account in the stabilization
of multi-rate sampled-data systems by receding horizon controller.

Suppose that a precomputed control sequence uc satisfying Assumption A3
is given. Then the following Algorithm can be proposed.

Algorithm. Let N ≥ N∗ be given, let j = 0, T ∗
−1 = 0 and let u(0) = u(p,0) =

uc = {uc
0, . . . , u

c
�−1
}. Measure the initial state y(0) = x0.

Step j.

(i) Apply the controlleru(j) to the exact system over the time interval [T ∗
j−1, T

∗
j ].

(ii) Predict the state of the system at time T ∗
j from y(j) by the approximation

let ζA
j = φA

�
(y(j), u(p,j)).



Conditions for MPC Based Stabilization of Sampled-Data Nonlinear Systems 43

l2

m

1

m

ll21l l21l

l

ζ
0

A

Eξ
0

ζ
1

A

ξ
1

E

ζ
2

A

ξ
2

E

2
t

T T

T T

T T

T T T

T T

1 0
= + +**T T

0
=* l T T lT

2 0
= ** 2

u (2)

u (p,2)
u (p,1)

uu (p,0) u (1)=c

x  =y (0)

x (T   ) =y (1)

0

m mE x (T   ) =y (2)E

x

Fig. 1. Sketch to the Algorithm

(iii) Find the solution u∗ = {u∗
0, . . . , u

∗
N−1} to the problem PA

T,h(N, ζA
j ), let

u(j+1) = {u∗
0, . . . , u

∗
�−1} and u(p,j+1) = {u∗

�−�
, . . . , u∗

�−1}.
(iv) j = j + 1.

A schematic illustration of the Algorithm is sketched in Figure 1.

Theorem 2. Suppose that the conditions of Theorem 1 hold true. Then there
exists a β ∈ KL, and for any r > 0 there exists a h∗ > 0 such that for any fixed
N ≥ N∗, h ∈ (0, h∗] and x0 ∈ Γ , the trajectory of the �-step exact discrete-time
system

ξE
k+1 = FE

� (ξE
k ,v�,h(ζA

k )), ξE
0 = φE

�
(x0,uc) (15)

with the �-step receding horizon controller v�,h obtained by the prediction

ζA
k+1 = FA

�

(
yk+1,vp

(
ζA
k

))
, ζA

0 = φA
�
(x0,uc) (16)

satisfies that ξE
k ∈ Γmax(h) and∥∥ξE

k

∥∥ ≤ max
{
β
(∥∥ξE

0

∥∥ , kTm
)
, r
}

for all k ≥ 0. Moreover, ζA
k ∈ Γmax(h), as well, and∥∥ζA

k

∥∥ ≤ max
{
β
(∥∥ζA

0

∥∥ , kTm
)

+ δ1, r
}

where δ1 can be made arbitrarily small by suitable choice of h.

Proof. The proof is given in the Appendix. �
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Remark 7. In the proof of Theorem 2 one also obtains that φE
k (ξE

j−1,u
(j)) con-

verges to the ball Br as j → ∞ for all k. Conclusions about the intersampling
behavior can be made on the basis of [27].

Remark 8. We note that the statement of Theorem 2 is similar to the practical
asymptotic stability of the closed-loop system (15)–(16) about the origin, but
with respect to the initial state ξE

0 , ζA
0 . This is not true for the original initial

state x0, because – due to the initial phase – the ball Br is not invariant over
the time interval [0, �T ). In absence of measurement and computational delays,
the theorem gives the practical asymptotic stability of the closed-loop system
(15)–(16) about the origin in the usual sense.

3 Remarks on Other Choices of the Design Parameters

Recently, stability results have been proven for the case, when the terminal cost
is not a CLF: see [19] for continuous-time and [10] discrete-time considerations.
It is shown in both papers that stability can be achieved under some additional
conditions, with arbitrary nonnegative terminal cost, if the time horizon is cho-
sen to be sufficiently long. In respect of the subject of the present work the
latter one plays crucial role. In fact, Theorem 1 of [10] provides a Lyapunov
function having (almost) the properties which guarantee that the same family of
controllers that stabilizes the approximate discrete-time model also practically
stabilizes the exact discrete-time model of the plant. To this end, one has to
ensure additionally the uniform Lipschitz-continuity of the Lyapunov function,
presuming that assumptions of [10] are valid for the approximate discrete-time
model. This assumptions can partly be transferred to the original continuous-
time data similarly to the way of the previous section.

The main difficulty is connected with assumption SA4 of [10]. This assumption
requires the existence of class-K∞ upper bound of the value function indepen-
dent of the horizon length. It is pointed out in [10] that such a bound exists if
- roughly speaking - for the approximate discrete-time system the stage cost is
exponentially controllable to zero with respect to an appropriate positive definite
function. An appropriate choice of such a function is given in [10], if the discrete-
time system is homogeneous. However, the derivation of the corresponding con-
ditions for the original data of general systems requires further considerations.
(We note that a certain version of the MPC approach for the sampled-data im-
plementation of continuous-time stabilizing feedback laws is investigated in [12]
under an assumption analogous to SA4 of [10].)

4 Conclusion

The stabilization problem of nonlinear continuous-time systems with piecewise
constant control functions was investigated. The controller was computed by the
receding horizon control method based on discrete-time approximate models.
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Multi-rate - multistep control was considered and both measurement and com-
putational delays were allowed. It was shown that the same family of controllers
that stabilizes the approximate discrete-time model also practically stabilizes
the exact discrete-time model of the plant. The conditions were formulated in
terms of the original continuous-time models and the design parameters so that
they could be verifiable in advance.
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Appendix

Proof. (Proof of Theorem 1) To obtain the properties of function V A
N we shall

subsequently introduce several notations. Let ρ1 > 0 be such that Bρ1 ⊂ Gη,

τ(s) =
{

min {T, s/(2Mf(2∆0, ∆
∗
2))} , if 0 ≤ s ≤ ∆0,

T, if ∆0 < s,
(17)

σ1(s) = ϕ1 (s/2) τ (s) /2 , ∆∗
1 = max{σ−1

1 (V A
max), ∆0}, (18)

ν(s) = max
‖x‖≤s

g(x) + αg(s) , r∗0 = min{ν−1(η), 2TMf(2∆0, ∆
∗
2)}, (19)

σ2(s) = max{ν(s) , ν(ρ1/2) + 2/ρ1V
A
max (s− ρ1/2)}, (20)

N∗ = [(V A
max − η) / ϕ1(ρ1)] + 1. (21)

First we observe that, under the conditions of the theorem, functions σ1 and σ2
defined by (17)–(18) and (19)–(20), respectively, as well as function ϕ1 belong
to class-K∞, therefore ∆∗

1 and ∆∗
2 are well-defined. Let h∗

0 > 0 be given by
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Assumption A2 with ∆′ = ∆∗
1 and ∆′′ = ∆∗

2. A straightforward computation
shows that for any x ∈ X∆∗

1
, u ∈ U∆∗

2
we have

∥∥φE(t, x, u)
∥∥ ≤ 2∆∗

1, if t ∈ [0, T ],
and lET (x, u) ≥ τ(x)ϕ1 (‖x‖ /2) + Tϕ1(‖u‖). Let 0 < h∗

1 ≤ h∗
0 be such that

τ(r0)ϕ1 (r0/2) /2 ≥ Tγ(h∗
1), where γ is defined by Assumption A2 (ii). Then for

all h ∈ (0, h∗
1]

lAT,h(x, u) ≥ σ1 (‖x‖) + Tϕ1(‖u‖),
if x ∈ X∆∗

1
\Br0 and u ∈ U∆∗

2
. Therefore for any x ∈ Ω∆0 problem PA

T,h(N, x) has
an optimal solution u∗(x), function V A

N is continuous in its domain, V A
N (0) = 0

and V A
N (x) > 0 if x 	= 0. Being N fixed, from Assumption A2 and Lemma 1 it

follows that there exists a 0 < h∗
2 ≤ h∗

0 such that for all h ∈ (0, h∗
2] estimation

V A
N (x) ≤ V A

max holds, which implies that Ω∆0 ⊂ Γmax(h). Let 0 < h∗
3 ≤ h∗

0 be
so small that (Lg + 1)NTγ(h) ≤ αg(r0), if h ∈ (0, h∗

3]. Making use of Assump-
tions A2 and A4, one can show in a standard way that for any x ∈ Gη

V A
N (x) ≤ g(x), if ‖x‖ ≥ r0, and V A

N (x) ≤ ν(r0) < η, if ‖x‖ < r0.
(22)

Moreover, if x ∈ Ω∆0 and for some 0 ≤ j < N , φA
j (x,u∗(x)) ∈ Gη, then

φA
N (x,u∗(x)) ∈ Gη. As a consequence, we obtain that φA

N (x,u∗(x)) ∈ Gη for
any x ∈ Ω∆0 , if N ≥ N∗ and h ∈ (0, h′], where h′ is chosen as h′ =
min {h∗

1, h
∗
2, h

∗
3}. Consider a h ∈ (0, h′]. Being lAT,h(φA

k (x,u∗(x)), u∗
k) ≤ V A

N (x),
if k = 0, 1, . . . , N − 1, the lower estimation in (12), the inclusions in (11) and in-
equalities (13) follow immediately. Observing that σ2(‖x‖) ≥ V A

max, if ‖x‖ ≥ ρ1,
and σ2(‖x‖) ≥ g(x), the upper estimation in (12) is a consequence of (22). Let
k ∈ {1, . . . , �}. By repeated use of Assumption A4 together with A2 one can
show that for any h ∈ (0, h′] and x ∈ Γmax(h)

V A
N

(
φA

k (x,u∗(x))
)
− V A

N (x) ≤ −lAT,h(x, u∗
0(x)) + (Lg + 1)kTγ(h).

Let 0 < h′′ be so small that (Lg + 1)�Tγ(h′′) ≤ δ, then (14) holds true, if
h ∈ (0,min{h′, h′′}]. Finally, using Assumption A2 it can be shown by standard
arguments that there exist an h′′′ > 0, LV > 0, δV > 0 such that for any h ∈
(0, h′′′],

∣∣V A
N (x) − V A

N (y)
∣∣ ≤ LV ‖x− y‖ holds true for all x, y ∈ Γmax(h) with

‖x− y‖ ≤ δV (see the proof of Lemma 7 of [15]). Choosing h = min{h′, h′′, h′′′},
all statements of the theorem are true. �
Proof. (Proof of Theorem 2)

Let r > 0 be arbitrary, let d = σ1(σ−1
2 (σ1(r))/2), let r0 = σ−1

2 (d)/2 and let
δ = σ1(r0)/2. Let h, δV , LV be defined by Theorem 1 according to this r0 and
δ, and let h′ = h. The proof is based on the following claim:

Claim A. Let k ∈ {1, 2, . . . , �} be arbitrary and let d be defined above. If for
j ≥ 1 ξE

j−1 ∈ Γmax(h′), ζA
j−1 ∈ Γmax(h′), and there exists a ε1 ∈ K such that∥∥ξE

j−1 − ζA
j−1

∥∥ ≤ ε1(h), if 0 < h ≤ h′, then there exist a 0 < h′′ ≤ h′ such that
for any h ∈ (0, h′′] inequality

max
{
V A

N

(
φE

k (ξE
j−1,u

(j))
)
, V A

N (ξE
j−1)

}
≥ d (23)

implies that
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V A
N

(
φE

k (ξE
j−1,u

(j))
)
− V A

N (ξE
j−1) ≤ −σ1(

∥∥ξE
j−1

∥∥ /2)/2,

where u(j) is the optimal solution of problem PA
T,h(N, ζA

j−1).
The proof of this claim can follow the same line as that of Theorem 2 in

[26] by taking into account that with the given values of d and r0, it makes no
trouble that the estimations (12) are only valid outside of the ball Br0 . Thus
we may return to the proof of the theorem. We observe first that the conditions
of the claim for ξE

j−1 and ζA
j−1, are valid if j = 1 and ε1 is chosen as ε1(h) =

Tγ(h)(eLf�T − 1)/(eLfT − 1), where Lf is the Lipschitz constant of f . Assume
that Claim A holds true for some j ≥ 1. Let h′′ be defined by this claim and
consider a h ∈ (0, h′′]. Suppose that V A

N (ξE
j−1) ≥ d. Then

∥∥ξE
j−1

∥∥ ≥ σ−1
2 (d) = 2r0,

and

V A
N

(
φE

k (ξE
j−1,u

(j))
)
− V A

N (ξE
j−1) ≤ −σ1(

∥∥ξE
j−1

∥∥ /2)/2 ≤ −σ1(r0)/2,

hold true. Thus φE
k (ξE

j−1,u
(j)) ∈ Γmax(h), so that ξE

j , yj ∈ Γmax(h), as well, and

V A
N

(
ξE
j

)
− V A

N (ξE
j−1) ≤ −σ1(r0)/2. (24)

Now we show that ζA
j ∈ Γmax(h). Let 0 < h′′′ ≤ min{h′, h′′} be so small that for

any h ∈ (0, h′′′] inequality ε1(h) ≤ min {σ1(r0)/LV , 2δV } /2 is satisfied. Then it
can be shown that ∥∥∥φE

k (yj ,u(p,j))− φA
k (yj ,u(p,j))

∥∥∥ ≤ ε1(h).

and

V A
N (ζA

j )=V A
N (ζA

j )− V A
N (ξE

j )+V A
N (ξE

j ) ≤ V A
N (ξE

j−1)+LV ε1(h)−σ1(r0)/2≤V A
max,

if h ∈ (0, h′′′]. Thus ζA
j ∈ Γmax(h), and the conditions of the claim hold also

for j + 1 as long as V A
N (ξE

j−1) ≥ d holds. Therefore (24) implies that after
finitely many steps V A

N (ξE
j−1) < d will occur. From the claim we get that

V A
N

(
φE

k (ξE
j−1,u

(j))
)
< d must also be valid for k = 1, . . . , �, thus for ξE

j , as
well. Choosing h∗ = h′′′, one can show that the ball Br is positively invari-
ant with respect to the exact and the approximate trajectories obtained during
the application of the proposed Algorithm. The existence of a suitable function
β ∈ KL can be constructed in the standard way. �




