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Summary. In dynamical processes states are only partly accessible by measurements.
Most quantities must be determined via model based state estimation. Since in gen-
eral only noisy data are given, this yields an ill-posed inverse problem. Observability
guarantees a unique least squares solution. Well-posedness and observability are qual-
itative behaviours. The quantitative behaviour can be described using the concept of
condition numbers. which we use to introduce an observability measure. For the lin-
ear case we show the connection to the well known observability Gramian. For state
estimation regularization techniques concerning the initial data are commonly applied
in addition. However, we show that the least squares formulation is well-posed, avoids
otherwise possibly occuring bias and that the introduced observability measure gives
a lower bound on the conditioning of this problem formulation.

Introducing possible model error functions we leave the finite dimensional setting.
To analyse in detail the influence of the regularization parameters and of the coefficients
of the model, we study, as a start, linear state equations as constraints, which appear
nearly always as a subproblem of the nonlinear case. We show that state estimation
formulated as optimization problem omitting regularization of the initial data leads
to a well-posed problem with respect to L2- and L∞- disturbances. If the introduced
measure of observability is low, the arising condition numbers with respect to the L2-
norm can be arbitrarily large. Nevertheless, for the probably in praxis more relevant
L∞-norm perturbations yield errors in the initial data bounded independently of the
system matrix.

1 Introduction

In application the state of a process has to be estimated given noisy data over a
past time horizon. These data correspond only to a few state functions, so called
output functions. The coupling with all remaining states is given by model equa-
tions. This inverse problem is in general ill-posed, since the measurements are
noisy and the corresponding continuous signals do not fulfill the model equations.
Hence, the existence requirement for well-posedness in the sense of Hadamard is
violated. Considering the least squares solution the uniqueness is guaranteed by
the observability of the system given by the model equation. The third require-
ment of well-posedness, namely stability, depends crucially on the norms, which
are chosen to measure the disturbances. For state estimation stability may be
present in some cases. However, as soon as model error functions are introduced
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this is not any longer true. Additional regularization is required. Assuming now
well-posedness, there arises the next question: how ’well’ does the solution behave
in case of disturbances? The corresponding question for the system itself is, how
’well’ is the system observable?Both questions ask for the relation of the output
error to the input error. Condition numbers is a general formulated mathemat-
ical concept for operators answering this question. Hence, we use this concept
to derive a definition of observability measure. Alltogether, this paper discusses
for state estimation the well-posedness of the regularized least squares problem
formulation, the conditioning, i.e. error propagation, and the influencing observ-
ability measure. For all three issues the chosen norms play an important role.

The structure of the paper is the following. First we resume the definitions
of well-posedness, the possibilities to overcome ill-posedness and the concept of
condition numbers. We discuss for the system observability and introduce an ob-
servability measure based on condition numbers. For linear model equations and
the L2-norm this observability measure depends on the observability Gramian.
Then the well-posedness of the least squares formulation for linear estimation is
shown requiring only observability.Additional regularization of the initial value
yields unnecessary bias. In the following section we extend the model equations
linearly by possible model error functions. The least squares problem formula-
tion, now necessarily regularized with respect to the error functions, gives an
optimization problem, for which we state the first order necessary condition.
Then we restrict the analysis to linear state equations omitting inequality con-
straints. They appear usually as subproblems solving the nonlinear problem and
their analysis enhances already some of the main features we face also for the
nonlinear case. In particular, we study the influence of the measure of observ-
ability and of the regularization parameter. Omitting regularization of the initial
data we derive well-posedness for the optimization formulation with respect to
the L2-norm and with respect to the L∞-norm. However, while for one state only
we see that the problem is well-conditioned with respect to the L∞-norm, a low
observability measure may result into an ill-conditioned problem with respect
to the L2-norm independent of the regularization parameter. In the last section
we draw conclusions and emphasize the issue of the appropriate choice of norms
concerning data errors and state errors.

2 Well-Posedness, Condition Number and Observability
Measure

Typically the noisy measurements z(ti) ∈ IRny at discrete times are prepro-
cessed. Most algorithms are based on the assumption to have an underlying
function corresponding to the discrete data, e.g. for many filtering techniques
the Fourier transformation is used at some stage. Hence, it is appropriate to as-
sume a preprocessing of the data on a horizon [t0, t0 +H ] to a still noisy function
z ∈ L2([t0, t0 + H ], IRny). These data z correspond to a few states, called output
functions which we denote with y. The output functions y are coupled with all
states x and their initial values x0 = x(t0) ∈ IRnx by model equations. Usually
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the number of output functions ny is far less than the number of state functions
nx. Given the model equations one can determine from the initial values the
states and therefore the outputs. Hence they define an operator K : x0 → y. In
general we have z /∈ R(K) (the range of K). This violates the first condition of
well-posedness in the sense of Hadamard [8]:

2.1 Ill-Posed Problems, Regularization and Condition Numbers

Definition 1. Given an operator K : X → Y where X and Y are normed spaces,
then the equation Kx = y is well-posed in the sense of Hadamard iff
1. Existence: there exists for all y ∈ Y a solution x ∈ X; (K surjective).
2. Uniqueness: there is at most one solution x ∈ X; (K injective).
3. Stability: x depends continuously on y, i.e.

‖Kxn −Kx‖Y → 0⇒ ‖xn − x‖X → 0; (K−1 continuous).
The equation is ill-posed if one of these properties does not hold.

It is important to specify the spaces as well as the topologies of the spaces, i.e.
the norms ‖ · ‖X and ‖ · ‖Y . The problem can be well-posed using one set of
norms and ill-posed in another set of norms. If the problem is ill-posed there are
several remedies, of which we recall only some relevant in our context. Assume
that X and Y are Hilbert-spaces (i.e. there exists a scalar product; e.g. the space
L2) and K : X → Y is linear and compact then x is called least-squares solution
(best fit) if x is the solution of minx∈X ‖Kx− z‖Y . Moreover, it holds: x is the
least squares solution if and only if the normal equation K∗Kx = K∗z holds,
where K∗ denotes the adjoint operator. In case of a finite-dimensional space X
this ansatz overcomes the failure of existence. Uniqueness is not necessarily an
issue in our context since we require observability of the system given by the
model equations (see later). However, otherwise one can use the Moore-Penrose
inverse, also called generalized inverse, which is the least squares solution of min-
imal norm [8], if there exists a least squares solution. For finite-dimensional X
the generalized inverse is given by K† := (K∗K)−1K∗. However, the generalized
inverse does not overcome the lack of continuity in general. Regularization tech-
niques have to be applied. Here, we can distinguish roughly speaking three kinds
of approaches, namely the Tikhonov regularization, which we consider here, it-
erative regularization methods and regularization by discretization (projection).
An application of the latter in state estimation can be found i.e. in [3]. Tikhonov
regularization shifts the spectrum of K∗K and leads to the regularized general-
ized inverse Rd := (dI + K∗K)−1K∗, which is bounded, with a regularization
parameter d > 0. Solving Rdx = z is equivalent to the minimization problem

minx∈X ‖Kx− z‖2Y + d‖x‖2X .

The operator RdK should converge pointwise to the identity for d → 0. More-
over, the choice of the regularization parameter d should give the best compro-
mise between data and regularization error, i.e. let ‖z−zδ‖ ≤ δ and xd,δ = Rdz

δ

then ‖xd,δ − x‖ ≤ ‖Rd(zδ − z)‖ + ‖Rdz − x‖ ≤ ‖Rd‖δ + ‖Rdz − x‖, should be
minimal. The first term is called data error and the second regularization error.
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This is a non trivial task but will not be discussed in this paper, instead we refer
to the literature, e.g. [8].

Now let us assume that Kx = y is a well-posed problem. Then K−1 exists
and is bounded with respect to the chosen norms. That means, the equation is
stable, which is a qualitative statement. The mathematical concept of condition
number is quantitative. It measures the possible error propagation with respect
to the absolute or relative error [7].

Definition 2. Considering the problem given y determining the solution x of
Kx = y and let ‖ỹ − y‖Y → 0:
1. the absolute condition number is the smallest number κabs(y) > 0 with

‖x̃− x‖X = ‖K−1ỹ −K−1y‖X ≤ κabs(y)‖ỹ − y‖Y + o (‖ỹ − y‖Y ) ,
2. the relative condition number is the smallest number κrel(y) > 0 with

‖x̃− x‖X/‖x‖X ≤ κrel(y)‖ỹ − y‖Y /‖y‖Y + o (‖ỹ − y‖Y /‖y‖Y ) .

The problem is called well-conditioned if κ is small and ill-conditioned for large
κ. For linear K we have

κabs(y) ≤ ‖K−1‖Y →X and κrel(y) ≤ ‖K‖X→Y ‖K−1‖Y →X .
If K is a matrix, the condition number is defined as the latter namely cond(K) :=
‖K‖‖K−1‖, where commonly the l2-norms are used.

2.2 Observability Measure

For state estimation on the horizon [t0, t0 + H ] the operator K : x0 �−→ y is
given by the model equations:

State equations: Gẋ− f(x, u, p) = 0, x(t0) = x0 (1)
Output equations: y − Cx = 0 (2)

The system (1)-(2) is called observable, if for any given u and p the initial state
x0 can be uniquely determined from the output y [11]. Hence, K : x0 �−→ y
is injective for fixed u, p and K−1 exists on R(K). The space X is the finite-
dimensional space IRnx . Observability is the qualitative behaviour that a differ-
ence in the states shall be seen in the outputs. The observability measure shall
quantify this statement, hence we consider

‖y − ỹ‖ ≥ c‖x0 − x̃0‖
or a relative measurement independent of the scaling

‖y − ỹ‖/‖y‖ ≥ c‖x0 − x̃0‖/‖x0‖.
As larger c as better the observability measure. This suggest the use of the
condition number κ = 1/c of the problem given y determining the solution of
Kx0 = y. The evaluation of the conditioning is mentioned also in [1] in preference
to the yes/no answer of observability.

Definition 3. The absolute and the relative measure of observability of x0 are
defined as 1/κabs and 1/κrel.The system is called well observable for x0, if κ =
1/c is small, and has a low observability measure for large κ.
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For linear model equations the corresponding operator K is affine. Let us first
consider linear K, i.e. the model equations are linear and p and u = 0. Without
loss of generality we consider in the rest of the paper only the case t0 = 0. Thus
we have with

ẋ− Ax = 0, x(0) = x0, y − Cx = 0 (3)
⇒ Kx0 = CeAtx0 (4)

Choosing now as norm on Y the L2([0, H ])ny -norm we obtain

‖Kx0‖2L2
= xT

0
∫ H

0 (eAt)TCTCeAt dt x0 = xT
0 G(H)x0

where the matrix G(H) ∈ IRnx×nx is the known finite time observability Gramian
(e.g. [6, 11, 12]).

Lemma 1. Let the system be observable, then:
a.) The observability Gramian G(H) =

∫ H

0 (eAt)TCTCeAt dt ∈ IRnx×nx is sym-
metric positive definite, and therefore invertible.
b.) Let v be a normed real eigenvalue of A to an eigenvalue α ∈ IR. Then ‖G(H)‖2
is large for large α and for a long horizon [0, H ], while ‖G(H)−1‖2 is large if −α
is large or ‖Cv‖l2 is small or if the horizon is short.

Proof: a.) Symmetry is obvious. Given v 	= 0 then y(t) = CeAtv 	≡ 0 since the
system is observable. Hence, vTGv =

∫ H

0 yT (t)y(t) dt = ‖y‖2L2
> 0.

b.) Let v and α fulfill the assumption, then

vTGv = ‖eαt‖2L2(0,H)‖Cv‖2l2 =
e2αH − 1

2α
‖Cv‖2l2 . (5)

With ||G||2 = maxv∈IRnx (vTGv)/(vT v), ‖G−1‖2 = maxv∈IRnx (vT v)/(vTGv) fol-
lows the assertion. �
Using the l2-norm for X = IRnx it follows for K:

‖K‖2l2→L2
= sup

x0∈IRnx

‖Kx0‖2L2

‖x0‖2l2
= sup

x0∈IRnx

xT
0 Gx0

xT
0 x0

= ||G||2 (6)

‖(K
∣∣R(K) )−1‖2L2→l2 = sup

x0∈IRnx

‖x0‖2l2
‖Kx0‖2L2

= ||G−1||2 (7)

For linear systems with not necessarily p and u = 0 we need to consider for
the condition numbers ‖Kx̃0 −Kx0‖2L2

= (x̃0 − x0)TG(x̃0 − x0). Hence, having√
‖G−1‖2‖y − ỹ‖L2 ≥ ‖x0 − x̃0‖l2 for all x0, we can define for linear systems

-like condition numbers for matrices- a observability measure independent of the
state x0:

Definition 4. The absolute, respectively the relative observability measure with
respect to the l2 and L2-norms for linear systems is given by

1/
√
||G−1||2 respectively 1/

√
cond(G).
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This definition is in agreement with the Gramian based measure in [13], where
one considers a infinite horizon. There, several measures are proposed and com-
pared, which are all rather based on the various tests for observability than
motivated by error propagation.

Lemma 1 immediately shows that long horizons are better for observability
reasons. It also reassures that the eigenvectors of system matrix A should not
be close to the null-space of the output matrix C. For rapidly decaying systems
it is confirmed that it is difficult to determine the initial value exactly, while for
the forward problem K the value at the end point is sensitive to α 0.

2.3 State Estimation as a Least Squares Problem

Going back to the inverse problem of state estimation we obtain

Theorem 1. For a observable system the problem formulation on [0, H ]

min ‖y − z‖2L2
+ d‖x0 − xref

0 ‖
2
l2

s.t. ẋ−Ax = u, x(0) = x0, y − Cx = 0 (8)

is well-posed for all d ≥ 0, and the solution is given by

x0 = (G(H) + dI)−1[

H∫
0

eAT tCT {z(t)− CeAt

t∫
0

e−Asu(s) ds} dt + dxref
0 ]. (9)

Regularization of the initial data (d 	= 0) is not necessary, and leads to bias if
inexact reference values are used.

Proof: Setting ẑ = z − C
∫ t

0 e
A(t−s)u(s) ds we have

min ‖y − z‖L2
+ d‖x0 − xref

0 ‖
2
l2

= min ‖ŷ − ẑ‖L2
+ d‖x0 − xref

0 ‖
2
l2

where ŷ fulfills the model equations with û = 0. Then, dropping for convenience
the ˆ we have the equivalence of (8) to the normal equation:
(K∗K+dI)x0 = K∗z+dxref

0 with K∗z =
∫ H

0 eAT tCT z(t)dt since (ξ0,K∗y)l2 =
(Kξ0, y)L2 = ξT

0
∫ H

0 (eAt)TCT y(t) dt. Hence G = K∗K which is invertible for
observable systems, and we obtain (9). Moreover, since G is finite-dimensional it
has a bounded inverse. Therefore, (8) is a well-posed problem even for d = 0, i.e.
without regularizing the initial value. Given a noise free signal z, there exists a
unique xexact

0 s.t. Kxexact
0 = z. We obtain

x0 = xexact
0 + (G + dI)−1

d(xref
0 − xexact

0 ) (10)

which answers the question of bias. �
(Remark: the result concerning the bias is not in contrast to the probabilistic
ansatz leading to the Kalman filter, since there one would choose also d = 0 for
noise free signals [10]. If one may wish to include a priori knowledge about a
linear process appropriate priors and consequently possible choices for d with a
small influence on the solution can be found e.g. in [5]. For d = 0 see also [6] for
extension to time varying systems and the connection to the Kalman filter. )

While the least squares formulation is well-posed, it is not necessarily well-
conditioned.
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Corollary 1. The condition number of (8) with d = 0, i.e. of the least squares
problem K† = G−1K∗ with respect to the l2 and L2-norms obeys

κabs ≥ ‖(K
∣∣R(K) )−1‖2L2→l2

=
√
‖G−1‖2 and κrel ≥

√
cond(G).

Proof: Let v be the normed eigenvector to the smallest eigenvalue of G, then
‖G−1‖2 = ‖G−1v‖2. For z(t) = kCeAtG−1v and u = 0 we have x0 = kG−1v.
Furthermore, ‖z‖2L2

= k2‖G−1‖2 and therefore ‖x0‖ = ‖z‖L2

√
‖G−1‖2. With

(6) and (7) the assertion holds. �
Consequently, a low observability measure leads to an ill-conditioned least
squares formulation, even though observability provides well-posedness. E.g. we
may face large error propagation if the assumptions of Lemma 1b.) hold.

3 Inclusion of Model Error Functions

3.1 Optimality Conditions

In the following we include linearly possible model error functions w in the
model equations. With this step we leave the finite dimensional setting. Consid-
ering only the least squares solution does not guarantee stability any longer, as
the example of the signal z(t) = δ sin n

δ t with the model equations ẋ = ax + w
and y = x shows for n → ∞. Regularization with respect to w is necessary. As
regularization parameters we employ now matrices instead of scalars. For the
mathematical consideration it is at this point no issue to distinguish the given
parameters p and the controls u. We summarize them to u. Equation (1) for
the initial condition can be omitted, since it does not contain any information.
Additional inequality constraints reflect safety constraints as well as model veri-
fication. Summarized we consider in the following the Tikhonov-type regularized
least squares solution of:

min

H∫
0

(y − z)TQ(y − z) + wTRww dt+ ‖D1/2(x(0)− xref
0 )‖2l2 (11)

s.t. Gẋ− f(x, u)−Ww = 0, y − Cx = 0, c(x, u) ≥ 0. (12)

Obviously, we can substitute y by Cx and reduce the system by y, the output
equations and avoid Lagrange multipliers for these. In addition, setting up the
necessary first order equations we see w can be eliminated by the Lagrange
multiplier with resp. to the DAE’s, namely w = R−1

w WTλ. This is a major
reduction in size since w(t) may be in IRnx . Defining R := WR−1

w WT we obtain
the following necessary conditions (for details see [4], for the linear case without
inequality constraints see [10], where also the connection to the Kalman filter is
given):

Gẋ− f(x, u)−Rλ = 0 (13)

− d

dt
(GTλ)− (

∂

∂x
f(x, u))Tλ + CTQCx + (

∂

∂x
c(x, u))T ν = CTQz (14)
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(GTλ)(0) = D(x(0)− xref
0 ) and (GTλ)(H) = 0 (15)

νT c(x, u) = 0 c(x, u) ≤ 0 ν ≥ 0. (16)

In case of ODE’s as state constraints with no regularization of the initial state,
this yields w ∈ H1, where H1 denotes the Sobolev-space of weakly differentiable
functions in L2, and w = 0 at the end points. If model error functions are
present in all state equations, the Lagrange parameter λ can be eliminated too
with λ = R−1 (Gẋ− f(x, u)) . Then, the necessary conditions reduce to a second
order DAE system with mixed boundary constraints for the state x only and the
equations (16) for the inequality constraints.

3.2 Analysis for Linear ODE’s

In the solution process for a nonlinear problem with inequality constraints nearly
always optimization problems with linear model equations and without inequal-
ity constraints (or an equivalent linear equation system) appear as subproblems.
Although for the linear case, in particular with regularization of the initial data,
efficient methods as the Kalman filter are well established [10, 11], these meth-
ods and its extensions cannot be applied or do not perform sufficiently in the
presence of nonlinearity and inequality constraints [9]. However, the study of
linear model equations without inequality constraints enhances already some of
the main features we face for the treatment of the optimization formulation of
the nonlinear state estimation. The goal of the study here is to iluminate the
influence of the eigenvalues of the system matrix, the influence of the observ-
ability measure and the influence of the regularization parameters. As a start
we assume possible model error functions in all state equations. We consider the
following problem:

min

H∫
0

(Cx− z)TQ(Cx− z) + wTRww dt+ ‖D1/2(x(0) − xref
0 )‖2l2 (17)

s.t. ẋ−Ax− w = u.

A detailed analysis of this problem and its results can be found in [4], where
they are presented for H = 1 and D = 0. With a few modifications they can be
extended to any H > 0. In this paper we summarize some of the main results. To
study the properties we choose one of the following three equivalent formulation,
which derive from elimination of the error function w using the state equation
or from the necessary conditions eliminating the Lagrange parameter λ. The
boundary value problem and its weak formulation are not only necessary but
also sufficient condition, which is shown later (Theorem 4):
Optimization problem:

min
x∈H1

{
‖Q 1

2 (Cx − z) ‖2L2
+ ‖R− 1

2 (ẋ−Ax− u) ‖2L2
+ ‖D 1

2 (x(0) − xref
0 )‖2l2

}
.

(18)



State Estimation Analysed as Inverse Problem 343

Second order BVP:

−R−1ẍ +
(
R−1A−ATR−1) ẋ +

(
ATR−1A+ R−1Ȧ + CTQC

)
x

= CTQz −R−1u̇−ATR−1u (19)

with boundary conditions ẋ(0)− (A + RD)x(0) = u(0)−RDxref
0 and

ẋ(H)−Ax(H) = u(H).
Weak Formulation:

〈ζ̇ −Aζ,R−1 (ẋ−Ax)〉+ 〈Cζ,QCx〉 + ζT (0)D(x(0)− xref
0 ) (20)

= 〈Cζ,Qz〉+ 〈ζ̇ −Aζ,R−1u〉 for all ζ ∈ H1.

In the following we concentrate only on the case D = 0, i.e. on the least squares
formulation without regularization of the initial data. Among other things we
show its well-posedness. With regularization of the initial data this can be studied
in the framework of Tikhonov regularization.

For one state function only (A = α,C = δ,Q = q,R−1 = r) one can use the
BVP to derive an explicit formula for the solution. Analysing this solution we
obtain the following theorem.

Theorem 2

1. The regularized problem formulation (17) (with D = 0), i.e. given z deter-
mining x0 and w, is well-posed.

2. Small perturbation of z in the L2-norm may lead to large error propagation
in the initial data x0 independently of r and q if −α is large.

3. For perturbations of z in the L∞-norm we have bounds for the errors in
x0 and w independently of α.

For several state functions we use the weak formulation to show well-posedness.
As a first step we again study first the case of one state function where observ-
ability is not an issue and extend then the result to several state functions. Let
us define the symmetric bilinear form a : H1(0, H)×H1(0, H)→ IR

a(ζ, x) = 〈ζ̇ −Aζ,R−1 (ẋ−Ax)〉+ 〈Cζ,QCx〉 (21)

If A,C ∈ IR then a is positive definite if R−1, Q > 0. Hence it defines an operator
S : H1(0, H) −→ (H1(0, H))′ with (ζ,Sx) := a(ζ, x) and the weak formulation
(20) is equivalent to (ζ,Sx) = 〈Cζ,Qz〉 + 〈ζ̇ − Aζ,R−1u〉 for all ζ ∈ H1.We
would like to remark that, not only for the well-posedness it is of interest to
study the properties of S but also for the numerical solution approaches. If we
use a Galerkin discretization of (17) then the properties of S govern to a large
extend also the numerical method. For example the condition number of the
discretization matrix is influenced by the condition number of S. Using methods
of functional analysis one can show the following result in the case of one state
function:
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Theorem 3. S is a linear isomorphism and with the real values A = α,C = δ,
Q = q,R−1 = r we have

min(4r, qδ2) ≤ ‖S‖H1→(H1)′ ≤ 2rmax(1, α2) + qδ2, (22)

c(α)
qδ2 ≤ ‖S−1‖(H1)′→H1 ≤ max

{
2
r
,
2α2 + 1
qδ2

}
, (23)

with c(α) ≈ |α|3/2
√

e2H −1
2(e2H+1) for large |α|. Hence for fixed regularization pa-

rameters r and q cond(S) = ‖S‖H1→(H1)′‖S−1‖(H1)′→H1 is bounded but tends
to infinity with |α| → ∞.

The exact value of c(α) := ‖ exp(α·)‖H1/‖ exp(α·)‖(H1)′ is

c2(α) = (1+α2)(α+1)2(α−1)2(eH−e−H)(e2αH−1)
(2α+1)(α−1)2(eH−e−H)(e2αH−1)+4α3e−H (eαH−eH )2 .

Considering several state functions one has to take into account observability to
show positive definiteness and herewith continuity and coercivity of a. We shortly
sketch this step while refering for the other arguments to [4]. Given a(x, x) = 0
then x is the solution of the system ẋ − Ax ≡ 0, x(0) = x0 and (y ≡)Cx ≡ 0.
Since the system is observable y ≡ 0 yields x0 = 0 and consequently x ≡ 0.
Hence, a(x, x) > 0 for x 	≡ 0. Then continuity and coercivity of a yield

Theorem 4. For any z, u ∈ L2 the solution x of the weak formulation (20)
determines the unique solution of the minimization problem (18).

Hence for well-posedness only the question of stability has still to be answered.
Using the Riesz representation theorem [2] and considering like for one state
only and Lemma 1b.) the exponential function we obtain

Theorem 5. S : H1 →
(
H1

)′ is bounded, has a bounded inverse and

0 < 2/‖R‖ ≤ ‖S‖H1→(H1)′ ≤ 2‖R‖−1 max(1, ‖A‖2) + ‖CTQC‖, (24)

max{c(α)/‖CTQCv‖l2} ≤ ‖S−1‖(H1)′→H1 . (25)

for all normed v ∈ IRnxeigenvectors of A with real eigenvalue α. In (24) the
lower bound is valid if there exists an α2 > 1. Observability guarantees Cv 	= 0.

As a consequence of Theorem 5 and Lemma 1b.) we have:

Corollary 2. For any fixed regularization cond(S) is large, if there exists an in
modulo large real eigenvalue of A or if there exists a real eigenvector v of A
which is close to the null space of C. If this is the case then the observability
measure is low too.

Nevertheless, the boundedness of the inverse S−1 and the compact inbedding
H1 ↪→ C0 yields

Corollary 3. Linear state estimation formulated as least squares problem
min 1

2

∫ H

0 (y − z)TQ(y − z) + wTRww dt
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s.t. ẋ−Ax− w = u y − Cx = 0
is well-posed, i.e. ‖x−xδ‖H1 ≤ c‖z− zδ‖(H1)′ and, consequently, with a generic
constant c, max{|x0 − xδ

0|, ‖w − wδ‖L2} ≤ c‖z − zδ‖L2 and
‖x− xδ‖C0 ≤ c‖z − zδ‖L2 ≤ c‖z − zδ‖L∞.

4 Conclusions and Questions Concerning the Appropriate
Norms

Observability is like well-posedness a qualitative property. Condition numbers
quantify the error propagation. We used this concept to define an observability
measure. For linear systems we derived the use of the inverse of observability
Gramian G. With G−1 one can estimate the minimal difference in the outputs
which can be seen for given different initial data. Also we showed that regular-
ization of initial data is not necessary for stability, hence the least squares for-
mulation for state estimation is well-posed. Regularization of initial data would
lead to bias. However, a low observability measure leads to an ill-conditioned
least squares problem.

Introducing linearly model error functions we leave the finite dimensional set-
ting. For this case we stated the first order necessary condition and reduced them
by several variables and equations. Analysing them for linear systems we showed
that the least squares problem formulation without regularizing the initial data
is well-posed not only with respect to the L2-norm but also for the L∞-norm.
However, the error propagation with respect to L2-errors may be large for low ob-
servability measures independent of the regularization parameter for the model
errors. Considering L∞-errors the behaviour is different. Then, in case of one
state only, we have bounds independent of the stiffness of state equations.

As seen it is fundamental to discuss in which norms the data errors are
bounded and what output is of interest. In my opinion one has not only the
L2-norm of the data error bounded, but one can assume ‖zδ‖L2(t0,t0+H) ≤ δ

√
H

and ‖zδ‖∞ ≤ c. Hence, one has additional information about the error which
should be taken into account, and the error would depend on the length of the
horizon. The question concerning the outputs depends on the application of state
estimation. Which output is of interest should be stated together with the prob-
lem formulation. For example, employing state estimation to obtain the current
state required for the main issue of controling a process should have the focus on
x(t0 +H), the filtered state. Then the L2-norm of the state on [t0, t0 +H ] is less
adequate than measuring the error of x(t0 +H). If one is interested on the state
over the whole horizon, also called smoothed state, one may consider a weighted
L2-norm putting more weight on the current state than on the past state. Or, is
the L∞- norm over the whole horizon more adequate than the L2-norm? The an-
swers of these question do not only influence the theoretical analysis but should
also affect the numerical studies. In particular, as soon as adaptivity concerning
the underlying discretization grid is introduced it is of greatest importance to
know which error shall be finally small to obtain greatest efficency.
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