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Summary. In this work, two methods based on a nonlinear MPC scheme are proposed
to solve close-loop stochastic dynamic optimization problems assuring both robustness
and feasibility with respect to output constraints. The main concept lies in the consid-
eration of unknown and unexpected disturbances in advance. The first one is a novel
deterministic approach based on the wait-and-see strategy. The key idea is here to
anticipate violation of output hard-constraints, which are strongly affected by instan-
taneous disturbances, by backing off of their bounds along the moving horizon. The
second method is a new stochastic approach to solving nonlinear chance-constrained
dynamic optimization problems under uncertainties. The key aspect is the explicit
consideration of the stochastic properties of both exogenous and endogenous uncer-
tainties in the problem formulation (here-and-now strategy). The approach considers a
nonlinear relation between the uncertain input and the constrained output variables.

1 Introduction

Due to its ability to directly include constraints in the computation of the con-
trol moves, nonlinear model predictive control offers advantages for the optimal
operation of transient chemical plants. Previous works on robust MPC have fo-
cused on output constrained problems under model parameter uncertainty, in
particular, worst-case performance analysis over a specified uncertainty range
[4, 8]. The drawback of this worst-case formulation – min-max approach – is
that the resulting control strategy will be overly conservative. In this work,
we extended our previous work in [3, 5, 7] to a new chance-constrained opti-
mization approach for NMPC. Unlike the linear case, for nonlinear (dynamic)
processes the controls have also an impact on the covariane of the outputs. The
new approach also involves efficient algorithms so as to compute the probabil-
ities and, simultaneously, the gradients through integration by collocation in
finite elements. However, in contrast to all our previous works (see e.g. [7]),
the main novelty here is also that the chance-constrained approach is now also
applicable for those cases where a monotic relationship between constrained
output and uncertain input can not be asurred. In addition, due to the consider-
ation of a first principle model with a several number of uncertain variables, the
problem can conditionally become too computationally intensive for an online
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application. Thus, we propose alternatively a dynamic adaptive back-off strat-
egy for a NMPC scheme embedded in an online re-optimization framework.
The performance of both proposed approaches is assessed via application to a
runaway-safe semi-batch reactor under safety constraints.

2 Problem Formulation

A strongly exothermic series reaction conducted in a non-isothermal fed-batch
reactor is considered. The reaction kinetics are second-order for the first reac-
tion producing B from A, and an undesirable consecutive first-order reaction
converting B to C. The intermediate product B is the desired product.

2A
K1−→ B

K2−→ C (1)

A detailed first-principles model of the process is given by a set of DAEs based
on mass balances:

ṅA = −νak01
n2

A

V
e− EA1

RT + feed ; ṅB = −k02 nB e− EA2
RT + k01

n2
A

V
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ṅC = +k02 nB e− EA2
RT ,

(2)

the energy balance:

˙̄Tcool =
V̇cool · ρcool · cp,cool · (Tcool,in − T̄cool) − Q̇HT

cool

Vcool · ρcool · cp,cool
; Ṫ =

Q̇reac + Q̇feed + Q̇cool

nS

�
i(cpixi)

(3)

and constitutive algebraic equations:

Q̇reac = −
�

(hiṅi) = (h0A + cpA(T − T0))ṅA + (h0B + cpB(T − T0))ṅB

+ (h0C + cpC(T − T0))ṅC

Q̇feed = (h0A + cpA(T − T0)) · feed
Q̇HT

cool = −kHT A(T − T̄cool ) = −kHT (0.25πd2 + 4V d−1)(T − T̄cool)

nS = nA + nB + nC ; nS

�

i

(cpixi) = cpAnA + cpBnB + cpCnC

V =
nAM̃A + nBM̃B + nCM̃C

nA
¯̃ρA + nB

¯̃ρB + nC
¯̃ρC

nS .

(4)

In these equations V denotes the varying volume, ni the molar amount of
component i, T , TF , T̄cool , Tcool , the reactor, dosing, jacket and cooling medium
temperatures, respectively. h0i are the specific standard enthalpies, kHT the
heat transfer coefficient, d the scaled reactor diameter, A the heat exchange
surface, M̃i molecular weights, ρi densities and cpi are heat capacities. Besides,
since the heat removal is limited, the temperature is controlled by the feed
rate of the reactant A(feed), and the flow rate of the cooling liquid V̇cool in
the nominal operation. The reactor is equipped with a jacket cooling system.
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The developed model considers both the reactor and the cooling jacket energy
balance. Thus, the dynamic performance between the cooling medium flow rate
as manipulated variable and the controlled reactor temperature is also included
in the model equations. The open-loop optimal control is solved first for the
successive optimization with moving horizons involved in NMPC. The objective
function is to maximize the production of B at the end of the batch CBf while
minimizing the total batch time tf with β = 1/70:

min
∆t, V̇cool , feed

(−CBf + β · tf ) (5)

subject to the equality constraints (process model equations (2) – (4)) as well
as path and end point constraints. First, a limited available amount of A to be
converted by the final time is fixed to

∫ tf

t0=0 nA(t)dt = 500mol . Furthermore, so as
to consider the shut-down operation, the reactor temperature at the final batch
time must not exceed a limit (T (tf) ≤ 303 K). There are also path constraints
for the maximal reactor temperature and the adiabatic end temperature Tad .
The latter is used to determine the temperature after failure. This is a safety
restriction to ensure that even in the exterme case of a total cooling failure
no runaway will occur (T (t) ≤ 356 K; Tad(t) ≤ 500 K) [1]. Additionally, the
cooling flow rate changes from interval to interval are restricted to an upper
bound:

∥∥∥V̇cool(t+ 1)− V̇cool(t)
∥∥∥ ≤ 0.05. The decision variables are the feed flow

rate into the reactor, the cooling flow rate, and the length of the different time
intervals. A multiple time-scale strategy based on the orthogonal collocation
method on finite elements is applied for both discretization and implementation
of the optimal policies according to the controller’s discrete time intervals (6 –
12 s; 600 – 700 intervals). The resulting trajectories of the reactor temperature
and the adiabatic end temperature (safety constraint) for which constraints have
been formulated are depicted in Fig. 1. It can be observed that during a large
part of the batch time both states variables evolve along their upper limits i.e.
the constraints are active. The safety constraint (adiabatic end temperature),
in particular, is an active constraint over a large time period (Fig. 1 right).
Although operation at this nominal optimum is desired, it typically cannot be
ahieved with simultaneous satisfaction of all contraints due to the influence of
uncertainties and/or external disturbances. However, the safety hard-constraints
should not be violated at any time point.

3 Dynamik Adaptive Back–Off Strategy

Based on the open-loop optimal control trajectories of the critical state vari-
ables, in this section, a deterministic NMPC scheme for the online optimization
of the fed-batch process is proposed. Furthermore, the momentary criteria on the
restricted controller horizon with regard to the entire batch operation is however
insufficient. Thus, the original objective of the nominal open-loop optimization
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Fig. 1. Path constraints: Optimal reactor temperature (left) and adiabatic end tem-
perature (right)

problem is substituted by a tracking function which can then be evaluated on
the local NMPC prediction horizon:

min
V̇cool

J(N1, N2, NU ) =
N2�

j=N1

δ(j) · [ŷ(t + j | t) − w(t + j)]2 +
NU�

j=1

λ(j) · [∆u(t + j − 1)]2

(6)
The first term of the function stands for the task of keeping as close as pos-

sible to the calculated open loop optimal trajectory of the critical variables ŷ
(e.g. the reactor temperature, which can easily be measured online), whereas
the second term corresponds to control activity under the consideration of the
systems restriction’s described above. N1, N2 denote the number of past, and
future time intervals, respectively. NU stands for the number of controls. The
prediction TP and control horizon TC comprises 8 intervals, respectively. Fur-
thermore, λ = 3000 and δ(j) = 0.7(TP−j) are the variation and offset weighting
factor, respectively. In order to guarantee robustness and feasibility with respect
to output constraints despite of uncertainties and unexpected disturbances, an
adaptive dynamic back-off strategy is introduced into the optimization prob-
lem to guarantee that the restrictions are not violated at any time point, in
particular, in case of sudden cooling failure [1]. For this purpose, it is neces-
sary to consider the impact of the uncertainties between the time points for
re-optimization and the resulting control re-setting by setting, in advance, the
constraint bounds much more severe than the physical ones within the moving
horizon. Thus, as shown in Fig. 2 left, the key idea of the approach is based on
backing-off of these bounds with a decreasing degree of severity leading then to
the generation of a trajectory which consist of the modified constraint bounds
along the moving horizon. For the near future time points within the horizon,
these limits (bounds) are more severe than the real physical constraints and will
gradually be eased (e.g. logarithmic) for further time points. The trajectory of
these bounds is dependent on the amount of measurement error and parameter
variation including uncertainty.

As previously illustrated in Fig. 1, the true process optimum lies on the bound-
ary of the feasible region defined by the active constraints. Due to the uncer-
tainty in the parameters and the measurement errors, the process optimum and
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Fig. 2. Back-off strategy within moving horizon; back-off from active constraints

the set-point trajectory would be infeasible. By introducing a back-off from the
active constraints in the optimization, the region of the set-point trajectory is
moved inside the feasible region of the process to ensure, on the one hand, fea-
sible operation, and to operate the process, on the other hand, still as closely
to the true optimum as possible. By this means, the black-marked area in Fig.
2 illustrates the corrected bounds ỹmax of the hard constraints. Here, it should
however be noted that due to the severe bound at the computation of the pre-
vious horizon, the initial value at t0 is rather far away from the constraint limit
in the feasible area. Thus, in the first intervall of the current moving horizon,
the bound is set at the original physical limit to avoid infeasibility. The back-off
adjustment starts from the second interval, i.e. from the time point on, where the
next re-optimization begins. The size of ỹmax strongly depends on parametric
uncertainty, disturbances, and the deviation by measurement errors. Thus, the
constraints in (8) within the moving horizon (8 intervals) are now reformulated
as follows with j = 2, ..., 8, α = 0.5, T̃max = 4K and T̃ad, max = 3 K:

T (j) ≤ 356 K − T̃max · α(j−2); Tad (j) ≤ 500 K − T̃ad, max · α(j−2) (7)

The decision variable is the cooling flow rate. In order to test robustness
characteristics of the controler, the performances of the open-loop nominal solu-
tion, the nominal NMPC, and the NMPC with the proposed adaptive back-off
approach are compared under different disturbances, namely: catalyst activity
mismatch and fluctuations of the reactor jacket cooling fluid temperature. Addi-
tionally, all measurements are corrupted with white noise e.g. component amount
8% and temperature 2%.

3.1 Dynamik Real–Time Optimization

The size of the dynamic operating region around the optimum (see Fig. 2 right)
is affected by fast disturbances. These are, however, efficiently buffered by the
proposed regulatory NMPC-based approach. On the other hand, there are, in
fact, slowly time-varying non-zero mean disturbances or drifting model parame-
ters which change the plant optimum with time. Thus, a online re-optimization
i.e. dynamic real-time optimization (D-RTO) may be indispensable for an op-
timal operation. When on-line measurement gives access to the system state,
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Fig. 3. Integration of NMPC and D-RTO; On-line re-optimization

its promises considerably improvement. Moreover, additional constraints can be
integrated. Simulation results are shown in Fig. 3 right.

In order to compensate slow disturbances, the on-line re-optimization problem
is automatically activated three times along the batch process time according to
a trigger defined as the bounded above difference between the reactor tempera-
ture and the temperature reference trajectory (Fig. 3 right). New recipes resulting
from this are then updated as input to the on-line framework. Due to the differ-
ent trigger time-points, the current D-RTO problem progressively possesses a re-
duced number of variables within a shrinking horizon [6]. As a result, the total
batch time increases. But, despite the large plant mismatch and the absence of re-
liable kinetic knowledge a very good control is accomplished. Thus, the resulting
NMPC scheme embedded in the on-line re-optimization framework is viable for
the optimization of the semi-batch reactor recipe while simultaneously guaran-
teeing the constraints compliance, both for nominal operation as well as for cases
of large disturbances e.g. failure situation. The proposed scheme yields almost the
same profit as the one of the off-line optimization operational profiles (see Tab. 1)
where CBf and CCf are the final total amount of B and C.

Table 1. Simulation results

CBf [mol] CCf [mol] tf [s]

Nominal open-loop optimization 152.5 37.8 4297
NMPC w. uncertainty + dyn. back-off 127.9 12.8 4297
NMPC w. uncertainty + dyn. back-off + D-RTO 148.8 36.8 4892

4 Robust NMPC Under Chance Constraints

Since the prediction of future process outputs within an NMPC moving hori-
zon is based on a process model involving the effects of manipulated inputs and
disturbances on process outputs, the compliance with constraints on process out-
puts is more challenging than these on process inputs. Moreover, as the model
involves uncertainty, process output predictions are also uncertain. This results
in output constraints violation by the close-loop system, even though predicted
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outputs over the moving horizon might have been properly constrained. Con-
sequently, a method of incorporating uncertainty explicit into the output con-
straints of the online optimization is needed. Thus, in this work, a robust NMPC
that uses a close-loop model considering the uncertainty in future process out-
puts due to stationary and non-stationary stochastic disturbances is presented.
The new controller solves a chance-constrained nonlinear dynamic problem at
each execution in order to determine the set of control moves that will optimize
the expected performance of the system while complying with the constraints.
The controller deals with the model uncertainty and disturbances by replacing
deterministic constraints in the NMPC formulation of the form ymin ≤ y ≤ ymax ,
here Eq. (8), with chance constraints of the form:

Pr {ymin ≤ y ≤ ymax} ≥ α (8)

The main challenge lies in the computation of the probability and its gradi-
ents. To address this problem, we propose in [7] an inverse mapping approach
where the monotonic relationship of the constrained output ybound to at least
one uncertain input ξS is employed. Due to the monotony, the constrained bound
value ybound in the output region corresponds to a limit value ξL

S for ξS in the
uncertain input region. The basic idea is to map the probabilistic constrained
output region back to a bounded region of the uncertain inputs. Hence, the out-
put probabilities and, simultaneously, their gradients can be calculated through
multivariate integration of the density function of the uncertain inputs by col-
location on finite elements with an optimal number of collocation points and
intervals.

P
�

y ≤ ybound
�

= P
�

ξS ≤ ξL
S , ξk ⊆ R

K , s 
= k
�

=

∞�
−∞

· · ·
ξL

S�
−∞

· · ·
∞�

−∞

ρ(ξ) dξl · · · dξS · · · dξK l = 1, ..., n

(9)

where the ρ(ξ) is the unified distribution function of ξ. The solution strategy is
however not dependent on the distribution of the uncertain variables. The proba-
bility computation procedure can straightforwardly be extended to multiple single
probabilistic constraints with different confidence levels. To compute the proba-
bility values of (13), a multivariate integration in the region of uncertain inputs is
required. Numerical integration is needed, especially in cases of correlated uncer-
tain variables. We refer to Wendt et al. (2001) for a method based on orthogonal
collocation for correlated uncertain variables with normal distributions. Following
this idea, we extend the approach to dealing with nonlinear dynamic optimization
problems [2, 3]. In this contribution, a new framework is proposed also for such
stochastic dynamic optimization problems where no monotonic relation between
constrained output and any uncertain input variable can be guaranteed. This ap-
proach also involves efficient algorithms for the computation of the required (map-
ping) reverse projection. To decompose the problem, the proposed approach uses
a two-stage computation framework(see Fig. 4 left). The upper stage is a superior
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optimizer following the sequential strategy. Inside the simulation layer, there is a
two-layer structure to compute the probabilistic constraints. One is the superior
layer, where the probabilities and their gradients are finally calculated by multi-
variate integration. The main novelty is contained in the other, the sub-layer, and
is the key to the computation of the chance constraints with non-monotonous re-
lation. The main principal is that for the multivariate integration the bounds of
the constrained output y and those for the selected uncertain variables ξ reflecting
the feasible area concerning y are computed at temporarily given values of both
the decision and the other uncertain variables. Thus, all local minima und maxima
of the function reflecting y are first detected (see Fig. 4 right). The computation
of the required points of [min y(ξ)] and [max y(ξ)] is achieved by an optimization
step in the sub-layer. With the help of those significant points, the entire space of
ξ can be divided into monotonous sections in which the bounds of the subspaces
of feasibility can be computed through a reverse projection by solving the model
equations in the following step of this inferior layer. The bounds of feasibility are
supplied to the superior multivariate integration layer, where the necessary prob-
abilities (Eqs. 14) and the gradients are computed by adding all those feasible
fractions together (Fig. 4 right).
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Pr =
�

Pr(zi); Pr(zi) =

∞�

−∞

∞�

−∞

· · ·
ξ

L,i
S�

−ξ
l,i
S

ϕ (ξi, R)dξS dξS−1 · · · dξ1 (10)

where R denotes the covariance matrix. Arising changes of the integration
limits are verified for every monotone section. In case of variation, a reverse
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projection of the constrained output leads to new integration limits, which are,
then, employed to compute the probability by multivariate integration. The gen-
eral chance constrained NMPC problem which is solved at each sampling time
k can be formulated as follows:

min
Nu�

i=1

[u(k + i) − u(k + i − 1)]2

s.t . x(k + i + 1 | k) = g1[x(k + i | k), u(k + i | k), ξ(k + i)]

y(k + i | k) = g2[x(k + i | k), u(k + i | k), ξ(k + i)]

Pr {ymin ≤ y(k + i | k) ≤ ymax} ≥ α; i = 1, ..., n

umin ≤ u(k + i | k) ≤ umax ; i = 0, ..., m − 1

∆umin ≤ ∆u(k + i | k) = u(k + i | k) − u(k + i − 1 | k) ≤ ∆umax

(11)

Where g1 are the first-principle model equations describing the dynamic changes
of the state variables x, while g2 describe the state of the constrained variables
y depending on the control variables u and the uncertain parameters ξ, and
α = 96.7%. The efficiency of the chance-constrained approach is proved through
application to the same scenario of the fed-batch reactor under safety constraints.
The resulting NMPC scheme is also embedded in the same on-line optimization
framework. Moreover, the relationship between the probability levels and the
corresponding values of the objective function can be used for a suitable trade-
off decision between profitability and robustness. Tuning the value of α is also
an issue of the relation between feasibility and profitability. The solution of a
defined problem (Eq. 15), however, is only able to arrive at a maximum value
αmax which is dependent on the properties of the uncertain inputs and the
restriction of the controls. The value of αmax can be computed through a previous
probability maximization step. The use of this strategy with the consideration of
uncertainties in advance has for those NMPC-Problems a great impact in those
periods, where the reference trajectory is very close to a defined upper bound of
the constraint output. However, a comparison between the stochastic approach
and the deterministic dynamic adaptive back-off strategy is meaningful in order
to find further improvement of operation policies due to the stochastic approach.
Thus, the reference trajectory of the reactor temperature in Equation (10) is set
as a constant which is close to the upper bound of the reactor temperature.
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The resulting trajectories of the reactor temperature concerning both strate-
gies are illustrated in Fig. 5. The figure shows, that the reactor temperature
resulted by the back-off strategy reaches very early a stationary value caused by
fixed bounds of the temperature formulated in the corresponding optimization
problem. The temperature curve of the stochastic approach shows more dras-
tical changes with lower values of temperatures in earlier parts of the diagram
and higher values later. This is caused by the fact, that with the consideration
of uncertainties in advance, also the change of sensitivities of uncertain param-
eters towards the reactor temperature can be taken into consideration by the
stochastic approach. At the beginning in the diagram, the stochastic approach
realizes the matching of a more conservative strategy to higher sensitivities, and
thus the operation achieves more robustness than the one achieved by the back-
off strategy. At the end of the curves, the decrease of sensitivities is used for a
closer approach to the maximum temperature and thus leads to a better objec-
tive value. Therefore, the strategy leads to an improvement of both, robustness
and the objective value.

5 Conclusions

The chance constrained optimization framework has been demonstrated to be
promising to address optimization and control problems under uncertainties.
Feasibility and robustness with respect to input and output constraints have
been achieved by the proposed approach. Thus, the solution of the problem
has the feature of prediction, robustness and being closed-loop. The resulting
NMPC scheme embedded in the on-line re-optimization framework is viable for
the optimization of the reactor recipe while simultaneously guaranteeing the
constraints compliance, both for nominal operation as well as for cases of large
disturbances e.g. failure situation. In fact, the approach is relevant to all cases
when uncertainty can be described by any kind of joint correlated multivariate
distribution function. The authors gratefully acknowledge the financial support
of the Deutsche Forschungsgemeinschaft (DFG).
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