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Summary. A novel robust controller, chance constrained nonlinear MPC, is pre-
sented. Time-dependent uncertain variables are considered and described with piece-
wise stochastic variables over the prediction horizon. Restrictions are satisfied with a
user-defined probability level. To compute the probability and its derivatives of satisfy-
ing process restrictions, the inverse mapping approach is extended to dynamic chance
constrained optimization cases. A step of probability maximization is used to address
the feasibility problem. A mixing process with both an uncertain inflow rate and an
uncertain feed concentration is investigated to demonstrate the effectiveness of the
proposed control strategy.

1 Introduction

Model predictive control (MPC) refers to a family of control algorithms which
utilize an explicit model to calculate the manipulated variables that optimize the
future plant behaviour. The inherent advantages of MPC, including its capability
of dealing with multivariate variable problems as well as its capability of handling
constraints, make it widely used in the process industry.

Due to the nature of process uncertainty, a robust MPC is desired to obtain
satisfactory control performances. Including uncertainty in control system de-
sign will enhance the robustness of MPC. Generally speaking, there are three
basic approaches to address uncertainty. The constant approach which assumes
the model mismatch is unchanged during the prediction horizon [1] leads to an
aggressive control strategy. In contrary, the Min-Max approach in which the
boundaries of the uncertain variables are taken into account [2] is too conser-
vative. The third one is the stochastic approach, or chance constrained MPC
[3], [4], in which uncertain variables in the prediction horizon are described as
stochastic variables with known probability distribution functions (PDF). Re-
strictions are to be satisfied with a user-defined probability level. Due to the
fact that using this method a desired compromise between the optimal function
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and the reliability of holding the constraints can be chosen, the derived control
strategy can be neither aggressive nor conservative.

Linear chance constrained MPC have been previously studied in ref [10]. In
the present study, we extend this approach to nonlinear systems. The major
obstacle towards realizing chance constrained nonlinear MPC (CNMPC) lies
in the computation of the probability and its deviations of satisfying process
restrictions. To address this problem, an inverse mapping approach proposed
by Wendt et al. [5] is extended to dynamic chance constrained optimization. In
addition, a step of maximization is proposed to address the feasibility problem
of CNMPC.

The paper is divided into the following sections. Section 2 gives a general for-
mulation of CNMPC considering both parameter and disturbance uncertainties.
Section 3 analyzes some computational aspects of CNMPC. The effectiveness of
CNMPC is illustrated in Section 4 by controlling a mixing process. Finally, some
concluding remarks of this work are given in Section 5.

2 Chance Constrained Nonlinear MPC

It has been recognized that problems in process system engineering (PSE) are
almost all confronted with uncertainties [7], [13]. In the industrial practice,
uncertainties are usually compensated by using conservative design as well as
conservative operating strategies, which may lead to considerably more costs
than necessary. To overcome this drawback, the authors have recently developed
a chance constrained programming (CCP) framework for process optimization
and control [3], [5], [10], [11], [12]. In this framework, the uncertainty proper-
ties, obtained from the statistical analysis of historical data, are included in the
problem formulation explicitly.

Chance constrained nonlinear MPC (CNMPC) employs a nonlinear model to
predict future outputs, based on the current states, past controls as well as un-
certain variables. The optimal control sequence is obtained at every sampling
instant by optimizing some objective functions and ensuring the chance con-
straints for the outputs.

The general CNMPC problem to be solved at sampling time k is formulated
as follows:

Min J = E{f}+ ωD{f}
s.t.

f =
P∑

i=1
‖y(k + i|k)− yref‖Qi

+
M−1∑
i=0
{‖u(k + i|k)− uref‖Ri

+ ‖∆u(k + i|k)‖Si
}

x(k + i + 1|k) = g1(x(k + i|k),u(k + i|k), ξ(k + i))
y(k + i|k) = g2(x(k + i|k), ξ(k + i))

(1)
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∆u(k + i|k) = u(k + i|k)− u(k + i− 1|k)
umin ≤ u(k + i|k) ≤ umax, i = 0, . . . ,M − 1.
∆umin ≤ ∆u(k + i|k) ≤ ∆umax, i = 0, . . . ,M − 1.
P{ymin ≤ y(k + i|k) ≤ ymax} ≥ α, i = 1, . . . , P.

where P and M are the length of prediction and control horizon, ξ represents
the uncertain variables with known PDF, P{·} represents the probability to
satisfy the constraint ymin ≤ y(k + i|k) ≤ ymax and 0 ≤ α ≤ 1 is the predefined
confidence level. States x, outputs y and controls u are all doubly indexed to
indicate values at time k + i given information up to and including time k. Qi,
Ri, and Si are weighting matrices in the objective function. E and D are the
operators of expectation and variation, respectively.

Since the outputs have been confined in the chance constraints, the objective
function f in Eq.(1) may exclude the quadratic terms on outputs for the sake of
simplicity [10]. The simplified CNMPC objective function can be described as
follows:

Min J =
M−1∑
i=1

{‖u(k + i|k)− uref‖Ri
+ ‖∆u(k + i|k)‖Si

} (2)

This problem can be solved by using a nonlinear programming algorithm. The
key obstacle towards solving the CNMPC problem is how to compute P{·} and
its gradient with respect to the controls. In the next section, the computational
aspects of CNMPC to address this problem as well as the feasibility analysis will
be discussed.

3 Computational Aspects of CNMPC

In process engineering practice, uncertain variables are usually assumed to be
normally distributed due to the central limit theory. However, a normal distri-
bution means that the uncertain variable is boundless, which is not true for
some parameters with physical meanings, e.g. the molar concentration in a flow
should be in the range of [0, 1]. In order to describe the physical limits of the
uncertainty parameters, it is preferable to employ truncated normal distribution
which has been used extensively in the fields of economic theory [9]. The basic
definition of truncated normal distribution is given as follows:

Definition 1. Let z be a normally distributed random variable with the following
PDF:

ρ(z) =
1

σ
√

2π
exp{− (z − µ)2

2σ2 } (3)

Then the PDF of ξ, the truncated version of z on [a1, a2] is given by:

ρ(ξ) =

{
1

σ
√

2π(Φ(a2)−Φ(a1))
exp{− (ξ−µ)2

2σ2 }, a1 ≤ ξ ≤ a2

0, ξ ≤ a1 or a2 ≤ ξ
(4)

where Φ(·)is the cumulative distribution function of z.
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Detailed discussion about the properties of the truncated normal distribution can
be found in [9] and it is easy to extend Definition 1 to the multivariate case. In
the following, a truncated normally distributed ξ with mean µ, covariance matrix
Σ and truncated points a1, a2, denoted as ξ ∼ TN(µ,Σ, a1, a2), is considered.

3.1 Inverse Mapping Approach to Compute the Probability and
Gradient

If the joint PDF of the output y(k+i|k) is available, the calculation of P{ymin ≤
y(k + i|k) ≤ ymax} and its gradient to u can be cast as a standard multivariate
integration problem [8]. But unfortunately, depending on the form of g2, the
explicit form of the output PDF is not always avaliable. To avoid directly using
the output PDF, an inverse mapping method has been recently proposed for
situations in which the monotone relation exists between the output and one of
the uncertain variables [5].

Without loss of generality, let y = F (ξS) denotes the monotone relation be-
tween a single output y and one of the uncertain variables ξS in ξ=[ξ1, ξ2,. . . ,
ξS ]T . Due to the monotony, a point between the interval of [ymin, ymax] can be
inversely mapped to a unique ξS through ξS = F−1(y):

P{ymin ≤ y ≤ ymax} ⇔ P{ξmin
S ≤ ξS ≤ ξmax

S } (5)

It should be noted that the bounds ξmin
S , ξmax

S depends on the realization of
the individual uncertain variables ξi, (i = 1, · · · , S − 1) and the value of input
u, i.e.

[ξmin
S , ξmax

S ] = F−1(ξ1, · · · , ξS−1, ymin, ymax, u) (6)

and this leads to the following representation

P{ymin ≤ y ≤ ymax} =

∞∫
−∞

· · ·
∞∫

−∞

ξmax
S∫

ξmin
S

ρ(ξ1, · · · , ξS−1, ξS)dξSdξS−1 · · · dξ1 (7)

From (6) and (7), u has the impact on the integration bound of ξS . Thus the
following equation can be used to compute the gradient of P{ymin ≤ y ≤ ymax}
with respect to the control variable u:

∂P{ymin≤y≤ymax}
∂u =

∞∫
−∞
· · ·

∞∫
−∞
{ρ(ξ1, · · · , ξS−1, ξ

max
S

)
∂ξmax

S

∂u −

ρ(ξ1, · · · , ξS−1, ξ
min
S

)
∂ξmin

S

∂u }dξS−1 · · ·dξ1
(8)

A numerical integration of (7) is required when taking a joint distribution
function of ξ into account. Note that the integration bound of the last variable
in (7) is not fixed. A novel iterative method based on the orthogonal collocation
on finite elements was proposed in ref [5] to accomplish the numerical integration
in the unfixed-bounded region.

Extending inverse mapping to the dynamic case. If a monotone relation
also exists between y(k + i|k) and ξ(k + i) for i = 1, . . . , P in g2 of Eq.(1), the
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inverse mapping method is readily extended to obtain the value and the gradient
of P{ymin ≤ y(k + i|k) ≤ ymax}. For the sake of simplifying notations, a SISO
system is considered in the present study, and it is not difficult to generalize
the following conclusions. With the monotone relation between y(k + i|k) and
ξ(k + i), we have

ymin ≤ y(k + i|k) ≤ ymax ⇔ ξmin
k+i ≤ ξ(k + i) ≤ ξmax

k+i (9)

Due to the propagation of the uncertainty through the dynamic system, y(k+i|k)
is influenced not only by ξ(k + i), u(k + i−1|k), but also by previous ξ(k) to
ξ(k+ i−1) and u(k|k) to u(k+ i−2|k). Therefore, the bounds ξmin

k+i and ξmax
k+i are

determined based on the realization of the uncertain variables and controls from
the time interval k to k + i, namely,

[ξmin
k+i , ξ

max
k+i ] = F−1(ξ(k + i− 1), · · · , ξ(k), u(k + i− 1|k), · · · , u(k|k), ymin, ymax)

(10)
So the joint outputs chance constraint over the prediction horizon can be refor-
mulated as

P{ymin ≤ y(k + i|k) ≤ ymax, i = 1, 2, . . . , P}
= P{ξmin

k+i ≤ ξ(k + i) ≤ ξmax
k+i , i = 1, 2, . . . , P}

=
∞∫

−∞

ξmax
k+1∫

ξmin
k+1

· · ·
ξmax

k+P∫
ξmin

k+P

ρ(ξ(k), ξ(k + 1) · · · , ξ(k + P ))dξ(k + P ) · · ·dξ(k + 1)dξ(k)

(11)
where ρ is the joint PDF of the future uncertain variables.

The gradient computation of P{·} is more complicated due to the complex
relation between the integration bounds and the controls. With the assumption
of a same control and prediction horizon, M=P, the gradient with respect to
u(k + i|k) can be determined as follows

∂P{ymin ≤ y(k + i|k) ≤ ymax, i = 1, 2, . . . , P}/∂u(k + i|k) =

P∑
j=i+1

{
∞∫

−∞

ξmax
k+1∫

ξmin
k+1

· · ·
ξmax

k+j−1∫
ξmin

k+j−1

{ ∂ξmax
k+j

∂u(k+i|k)

ξmax
k+j+1∫

ξmin
k+j+1

· · ·
ξmax

k+P∫
ξmin

k+P

ρ(ξ(k), · · · , ξmax
k+j , · · · ξ(k + P ))dξ(k + P ) · · · dξ(k + j + 1)

− ∂ξmin
k+j

∂u(k+i|k)

ξmax
k+j+1∫

ξmin
k+j+1

· · ·
ξmax

k+P∫
ξmin

k+P

ρ(ξ(k), · · · , ξmin
k+j , · · · ξ(k + P ))dξ(k + P ) · · · dξ(k + j + 1)}

dξ(k + j − 1) · · · dξ(k + 1)dξ(k)}
(12)

Note that if the predictive horizon length P is too large, the integration in (12)
will lead to considerable computing time. Thus a value of P less than 10 is
suggested in practice.
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3.2 Feasibility Analysis

Feasibility analysis concerns the problem of whether the chance constraint
P{ymin ≤ y(k + i|k) ≤ ymax} ≥ α is feasible. This is an important issue for
the chance constrained problems, since it is likely that the predefined level α
is higher than reachable. In this case the optimization routine can not find a
feasible solution. A straightforward way to address this problem is to compute
the maximum reachable probability before doing the optimization. As a result,
the original objective function in (1) will be replaced with

Max P{ymin ≤ y(k + i|k) ≤ ymax, i = 1, 2, . . . , P} (13)

The maximum reachable α can be obtained by solving the corresponding opti-
mization problem.

4 Application to a Mixing Process

The discretized model of the tank mixing process under study with unit sampling
time interval is:

V (k + 1) = V (k) + q(k)− u(k)

C(k + 1) = C(k) + q(k)
V (k+1) [C0(k)− C(k)]

(14)

where V and C are the volume and product mass concentration in the tank,
q, u are the feed and outlet flow rates and C0 is the feed mass concentration,
respectively. The control objective is, under the inlet uncertain flow rate and
composition, to obtain a possibly flat outlet flow rate while holding the outlet
concentration and tank volume in specified intervals. Based on (14), the future
process outputs are predicted as

V (k + i|k) = V (k) +
i−1∑
j=0

(q(k + j)− u(k + j|k)) (15)

C(k + i|k) =
i−1∏
j=0

V (k+j|k)−u(k+j|k)
V (k+j+1|k) C(k)

+
i−1∑
j=0

(
i−1∏

s=j+1

V (k+s|k)−u(k+s|k)
V (k+s+1|k) ) q(k+j)

V (k+j+1|k)C0(k + j)
(16)

With the above prediction model, the nonlinear CNMPC problem at sampling
instant k can be formulated as:

Min ∆uT∆u
s.t.

(15) and (16)
umin ≤ u(k + i|k) ≤ umax, i = 0, . . . ,M − 1.
P{Vmin ≤ V (k + i|k) ≤ Vmax, i = 1, . . . , P} ≥ α1

P{Cmin ≤ C(k + i|k) ≤ Cmax, i = 1, . . . , P} ≥ α2

(17)



Chance Constrained Nonlinear Model Predictive Control 301

Li et al. [3] studied the linear case which only concerns the volume constraints
and the outlet flow rate u only affects the mean value of the output V . In contrast,
for the nonlinear model in (16), u affects both the mean and covariance of the
distribution of the outlet concentration C.

With the assumption that the feed flow rate q(k + i) and feed concentration
C0(k + i) follow a positive truncated normal distribution, namely, the low trun-
cating point a1 in (4) is positive, the following monotone relation can be found

q(k + i) ↑⇒ V (k + i + 1|k) ↑
C0(k + i) ↑⇒ C(k + i + 1|k) ↑

(18)

Thus the chance constraints in (17) can be transformed into

P{Vmin ≤ V (k + i|k) ≤ Vmax, i = 1, . . . , P}
⇒ P{qmin

k+i−1 ≤ q(k + i− 1) ≤ qmax
k+i−1, i = 1, . . . , P}

P{Cmin ≤ C(k + i|k) ≤ Cmax, i = 1, . . . , P}
⇒ P{C0

min
(k+i−1) ≤ C0(k + i− 1) ≤ C0

max
(k+i−1), i = 1, . . . , P}

(19)

Therefore (11) and (12) can be used to compute P{·} and its gradient.
The proposed CNMPC controller is applied to the mixing process. The initial

values of tank volume and product concentration are V (0) = 160 l and C(0) =
50g/l, respectively. The inlet flow q(k) and concentration C0(k) are assumed
to be multivariate truncated normal sequences with the truncating intervals of
[0, 20] and [46, 56]. The mean profiles of q(k) and C0(k) within a period of 20
minutes are shown in Fig.1 and 2. In each time interval, they have the stand
deviation values of 0.70 and 1.0. In addition, both q(k) and C0(k) at different
intervals are assumed to be independent. The dashed lines in Fig.1 and 2 are 10
realizations of the disturbance from random samples and it is shown that the
uncertainty is considerable. The prediction and control horizon of CNMPC is
fixed at P = M = 5 and the lower and upper bounds of the output variables, V
and C, are [130, 170] and [49, 51], respectively. The probability level of α1 and
α2 are both given as 0.9. The control results are illustrated in Fig.3 to Fig.6.
In Fig.3, it can be seen that the control variable u(k) is more flat than the inlet
and thus the disturbance to the downstream unit is thus decreased. As shown in

Fig. 1. Inlet flow disturbance profile



302 L. Xie, P. Li, and G. Wozny

Fig. 2. Inlet concentration disturbance profile

Fig. 3. Inlet q(k) and outlet flow u(k)

Fig. 4. Tank volume V (k)

Fig.4 and Fig.5, the tank volume V (k) and outlet product concentrationC(k) are
strictly restricted in the predefined bounds. In addition, oscillations also occur
in the controlled variables profiles, which means that the controller takes the
advantage of the freedom available to keep the control action as flat as possible.
The feasibility analysis of production concentration chance constraint is also
performed and the maximum reachable possibility of P{Cmin ≤ C(k + i|k) ≤
Cmax} in each interval is depicted in Fig.6. It can be seen that the maximum
reachable probabilities are all greater than the predefined value (α2=0.90), which
implies that the corresponding CNMPC problem is feasible. Note that at the 4th

and 13th minute when the concentration approaches its limits, the maximum
probability reaches its minimum value.



Chance Constrained Nonlinear Model Predictive Control 303

Fig. 5. Inlet and outlet concentration C(k)

Fig. 6. Max reachable probabilities of the C(k) chance constraint

5 Conclusions

In this work, a robust nonlinear model predictive controller, chance constrained
NMPC, is proposed. To compute the probability and derivatives of holding in-
equality constraints inverse mapping approach is extended to dynamic nonlinear
situations. To find a monotone relation between the uncertain variable and the
output which is necessary for the inverse mapping approach, truncated normal
distribution is considered to describe uncertainty variables. CNMPC is illus-
trated to be effective by controlling a mixing process with both uncertain feed
flow rate and feed concentration.
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