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Summary. Stochastic uncertainty is present in many control engineering problems,
and is also present in a wider class of applications, such as finance and sustainable
development. We propose a receding horizon strategy for systems with multiplicative
stochastic uncertainty in the dynamic map between plant inputs and outputs. The cost
and constraints are defined using probabilistic bounds. Terminal constraints are defined
in a probabilistic framework, and guarantees of closed-loop convergence and recursive
feasibility of the online optimization problem are obtained. The proposed strategy is
compared with alternative problem formulations in simulation examples.

1 Introduction

The success of a Model Predictive Control (MPC) strategy depends critically on
the choice of model. In most applications the plant model necessarily involves
uncertainty, either endemic (e.g. due to exogenous disturbances) or introduced
into the model to account for imprecisely known dynamics. It is usual in robust
MPC to assume that uncertainty is bounded, or equivalently that it is random
and uniformly distributed, and to adopt a worst case approach (e.g. [1, 2]).
This is often considered to be overly pessimistic, even though it can be made
less conservative through the use of closed-loop optimization [3, 4], albeit at
considerable computational cost.

A more realistic approach, especially when uncertainty is known to be random
but is not uniform, is to identify the distributions of uncertain model parameters
and use these to solve a stochastic MPC problem. In many applications distri-
butions for uncertain parameters can be quantified (e.g. as part of the model
identification process), and some of the constraints are soft and probabilistic
in nature (e.g. in sustainable development applications). Ignoring this informa-
tion (by employing worst case performance indices and invoking constraints over
all possible realizations of uncertainty) results in conservative MPC laws. This
motivates the development of stochastic MPC formulations, which have been
proposed for the case of additive disturbances (e.g. [5, 6, 7]) and for models
incorporating multiplicative disturbances (e.g. [8, 9]).

Information on the distributions of stochastic parameters can be exploited in
an optimal control problem by defining the performance index as the expected
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value of the usual quadratic cost. This approach is the basis of unconstrained
LQG optimal control, and has more recently been proposed for receding horizon
control [7, 10]. Both [10] and [7] consider input constraints, with [10] performing
an open-loop optimization while [7] uses Monte Carlo simulation techniques to
optimize over feedback control policies. This paper also considers constraints,
but an alternative cost is developed based on bounds on predictions that are
invoked with specified probability. The approach allows for a greater degree of
control over the output variance, which is desirable for example in sustainable
development, where parameter variations are large and the objective is to max-
imize the probability that the benefit associated with a decision policy exceeds
a given aspiration level.

Probabilistic formulations of system constraints are also common in practice.
For example an output may occasionally exceed a given threshold provided the
probability of violation is within acceptable levels; this is the case for economic
constraints in process control and fatigue constraints in electro-mechanical sys-
tems. Probabilistic constraints are incorporated in [11] through the use of sta-
tistical confidence ellipsoids, and also in [9], which reduces conservatism by ap-
plying linear probabilistic constraints directly to predictions without the need
for ellipsoidal relaxations. The approach of [9] assumes Moving Average (MA)
models with random coefficients, and achieves the guarantee of closed-loop sta-
bility through the use of an equality stability terminal constraints. The method
is extended in [12] to more general linear models in which the uncertain parame-
ters are contained in the output map of a state-space model, and to incorporate
less restrictive inequality stability constraints.

The current paper considers the case of uncertain time-varying plant pa-
rameters represented as Gaussian random variables. This type of uncertainty
is encountered for example in civil engineering applications (e.g. wind-turbine
blade pitch control) and in financial engineering applications, where Gaussian
disturbance models are common. Earlier work is extended in order to account
for uncertainty in state predictions, considering in particular the definition of
cost and terminal constraints to ensure closed-loop convergence and feasibility
properties. For simplicity the model uncertainty is assumed to be restricted to
Gaussian parameters in the input map, since this allows the distributions of
predictions to be obtained in closed-form, however the design of cost and con-
straints extends to more general model uncertainty. After discussing the model
formulation in section 2 and the stage cost in section 3, sections 4 and 5 propose
a probabilistic form of invariance for the definition of terminal sets and define a
suitable terminal penalty term for the MPC cost. Section 6 describes closed-loop
convergence and feasibility properties, and the advantages over existing robust
and stochastic MPC formulations are illustrated in section 7.

2 Multiplicative Uncertainty Class

In many control applications, stochastic systems with uncertain multiplicative
parameters can be represented by MA models:
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yi(k) =
nu∑

m=1

gT
im(k)ũm(k − 1), ũm(k − 1) = [um(k − n) . . . um(k − 1)]T (1)

where um(k), m = 1, . . . , nu, yi(k), i = 1, . . . , ny, are input and output variables
respectively, and the plant parameters gim(k) are Gaussian random variables.
For convenience we consider the case of two outputs (ny = 2): y1 is taken to be
primary (in that a probabilistic measure of performance on it is to be optimized)
whereas y2 is subject to probabilistic performance constraints and is referred to
as secondary.

As a result of the linear dependence of the model (1) on uncertain plant pa-
rameters, the prediction of yi(k + j) made at time k (denoted yi(k + j|k)) is
normally distributed. Therefore bounds on yi(k + j|k) that are satisfied with a
specified probability p can be formulated as convex (second-order conic) con-
straints on the predicted future input sequence. Bounds of this kind are used
in [9] to derive a probabilistic objective function and constraints for MPC. These
are combined with a terminal constraint that forces predictions to reach a pre-
computed steady-state at the end of an N -step prediction horizon to define a sta-
ble receding horizon control law. Subsequent work has applied this methodology
to a sustainable development problem using linear time-varying MA models [13].

Though often convenient in practice, MA models are non-parsimonious, and
an alternative considered in [12] is given by the state space model:

x(k + 1) = Ax(k) + Bu(k), yi(k) = cT
i (k)x(k), i = 1, 2 (2)

where x(k) ∈ Rn is the state (assumed to be measured at time k), u(k) ∈ Rnu

is the input, and A,B are known constant matrices. The output maps ci(k) ∈
Rn, i = 1, 2 are assumed to be normally distributed: ci(k) ∼ N (c̄i, Θc,i), with
{ci(k), ci(j)} independent for k 	= j. The stability constraints of [9] are relaxed
in [12], which employs less restrictive inequality constraints on the N step-ahead
predicted state.

This paper considers a generalization of the model class in order to handle the
case that the future plant state is a random variable. For simplicity we restrict
attention to the case of uncertainty in the input map:

x(k+1) = Ax(k)+B(k)u(k), B(k) = B̄+
L∑

r=1

qr(k)Br, yi(k) = cT
i x(k), i = 1, 2

(3)
where A, B̄, Bi, ci are known and q(k) = [q1(k) · · · qL(k)]T are Gaussian
parameters. We assume that q(k) ∼ N (0, I) since it is always possible to define
the model realization (A,B,C) so that the elements of q(k) are uncorrelated,
and that {q(k), q(j)} are independent for k 	= j. Correlation between model
parameters at different times could be handled by the paper’s approach, but
the latter assumption simplifies the expressions for the predicted covariances in
section 5 below. The state x(k) is assumed to be measured at time k. The paper
focuses on the design of the MPC cost and terminal constraints so as to ensure
closed-loop stability (for the case of soft constraints) and recursive feasibility
with a pre-specified confidence level.
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3 Performance Index and Constraints

The control objective is to regulate the expected value and variance of the pri-
mary output while respecting constraints on inputs and secondary outputs. We
define the receding horizon cost function to be minimized online at time k as

J =
N−1∑
j=0

l(k + j|k) + L(k + N |k) (4)

where
l(k + j|k) = ȳ2

1(k + j|k) + κ2
1σ

2
1(k + j|k) (5)

with ȳ1(k+ j|k) = Eky1(k+ j|k) and σ2
1(k+ j|k) = Ek

[
y1(k+ j|k)− ȳ1(k+ j|k)

]2
denoting the mean and variance of y1(k + j|k) given the measurement x(k) (we
denote the expectation of a variable z given the measurement x(k) as Ekz).

This form of stage cost is used in preference to the more usual expectation
MPC cost (e.g. [7, 10, 11]) because it enables the relative weighting of mean and
variance to be controlled directly via the parameter κ1, which can be interpreted
in terms of probabilistic bounds on the prediction y1(k+j|k). To see this, let tlower
and tupper be lower and upper bounds on y1(k+ j|k) with a given probability p1:

Pr
(
y1(k + j|k) ≥ tlower(k + j|k)

)
≥ p1

Pr
(
y1(k + j|k) ≤ tupper(k + j|k)

)
≥ p1

(6)

then, since the predictions generated by (3) are normally distributed, it is easy
to show that the stage cost (5) is equivalent to

l(k + j|k) = 1
2 t

2
lower(k + j|k) + 1

2 t
2
upper(k + j|k)

provided κ1 satisfies N(κ1) = p1, where N is the normal distribution function:
Pr(z ≤ Z) = N(Z) for z ∼ N (0, 1).

An important property of the stage cost is that it allows closed-loop stability
under the MPC law to be determined by considering the optimal value of J as
a stochastic Lyapunov function. The analysis (which is summarized in Section 6
below) is based on the following result.

Lemma 1. If κ1 ≥ 1, then for any given input sequence {u(k), u(k+1), . . . , u(k+
j − 1)}, the expectation of l(k + j|k + 1) conditional on time k satisfies:

Ekl(k + j|k + 1) ≤ l(k + j|k). (7)

Proof. Re-writing (5) as l(k + j|k) = Eky
2
1(k + j|k) + (κ2

1 − 1)σ2
1(k + j|k), and

noting that

Ek

(
Ek+1y

2
1(k + j|k + 1)

)
= Eky

2
1(k + j|k)

Ekσ
2
1(k + j|k + 1) = σ2

1(k + j|k + 1)
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we have

Ekl(k + j|k + 1) = l(k + j|k)− (κ2
1 − 1)

(
σ2

1(k + j|k)− σ2
1(k + j|k + 1)

)
.

The required bound therefore holds if κ1 ≥ 1 since σ2
1(k + j|k) ≥ σ2

1(k + j|
k + 1).

Remark 1. In accordance with Lemma 1 it is assumed below that κ1 ≥ 1, or
equivalently that the bounds (6) are invoked with probability p1 ≥ 84.1% (to 3
s.f.). With κ1 = 1, this formulation recovers the conventional expectation cost:
l(k + j|k) = Eky

2
1(k + j|k) for regulation problems.

Consider next the definition of constraints. Since output predictions are Gaussian
random variables, we consider probabilistic (as opposed to hard) constraints:

Pr
(
y2(k + j|k) ≤ Y2

)
≥ p2 (8)

where Y2 is a constraint threshold. Input constraints are assumed to have the
form:

|u(k + j|k)| ≤ U (9)

where u(k + j|k) is the predicted value of u(k + j) at time k.

4 Terminal Constraint Set

Following the conventional dual mode prediction paradigm [14], predicted in-
put trajectories are switched to a linear terminal control law: u(k + j|k) =
Kx(k + j|k), j ≥ N after an initial N -step prediction horizon. For the case
of uncertainty in the output map (2), an ellipsoidal terminal constraint can
be computed by formulating conditions for invariance and satisfaction of con-
straints (8),(9) under the terminal control law as LMIs [12]. However, in the case
of the model (3), the uncertainty in the predicted state trajectory requires that
a probabilistic invariance property is used in place of the usual deterministic
definition of invariance when defining a terminal constraint set. We therefore
impose the terminal constraint that x(k + N |k) lie in a terminal set Ω with
a given probability, where Ω is designed so that the probability of remaining
within Ω under the closed-loop dynamics x(k+1) = Φ(k)x(k) is at least pΩ, i.e.

Pr(Φx ∈ Ω) ≥ pΩ ∀x ∈ Ω. (10)

If constraints on the input and secondary output are satisfied everywhere within
Ω, then this approach can be used to define a receding horizon optimization
which is feasible with a specified probability at time k+1 if it is feasible at time
k. Given that the uncertain parameters of (3) are not assumed bounded, this is
arguably the strongest form of recursive feasibility attainable.

For computational convenience we consider polytopic terminal sets defined by
Ω = {x : vT

i x ≤ 1, i = 1, . . . ,m}. Denote the closed-loop dynamics of (3) under
u = Kx as
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x(k + 1) = Φ(k)x(k), Φ(k) = Φ̄+
L∑

i=1

qi(k)Φi, q(k) ∼ N (0, I) (11)

(where Φ̄ = A + B̄K and Φi = BiK), then confidence ellipsoids for q can be
used to determine conditions on the vertices xj , j = 1, . . . ,M of Ω so that Ω
is invariant with a given probability. Specifically, the condition vT

i Φxj ≤ 1 is
equivalent to xT

j [ΦT
1 vi · · · ΦT

Lvi]q ≤ 1 − xT
j Φ̄

T vi, and, since ‖q‖2 is distributed
as χ2 with L degrees of freedom, it follows that vT

i Φxj ≤ 1 with probability pΩ if

rΩ

∥∥xT
j

[
ΦT

1 vi · · · ΦT
Lvi

] ∥∥
2 ≤ 1− xT

j Φ̄vi (12)

where rΩ satisfies Pr(χ2(L) < r2Ω) = pΩ.

Lemma 2. Ω is invariant under (11) with probability pΩ, i.e.

Pr(vT
i Φx ≤ 1, i = 1, . . . ,m) ≥ pΩ, ∀x ∈ Ω (13)

if (12) is satisfied for i = 1, . . . ,m and j = 1, . . . ,M .

Proof. If (12) holds for given j and i = 1, . . . ,m, then xj necessarily satisfies
Pr(Φxj ∈ Ω) ≥ pΩ (since ‖q‖2 ≤ rΩ with probability pΩ). Furthermore, invoking
this condition for each vertex xj implies (13), since (12) is convex in xj .

The problem of maximizing Ω subject to (10) and the conditions that input
constraints (9) and the secondary output constraint y2 ≤ Y2 are met everywhere
within the terminal set can be summarized as:

maximize vol(Ω) (14)
subject to rΩ

∥∥xT
j

[
ΦT

1 vi · · · ΦT
Lvi

] ∥∥
2 ≤ 1− xT

j Φ̄vi,

|Kxj | ≤ U

c2xj ≤ Y2

in variables {vi, i = 1, . . . ,m} and {xj , j = 1, . . . ,M}. This is a nonconvex prob-
lem, but for fixed {vi} the constraints are convex in {xj}, enabling a sequence
of one-step sets of increasing volume to be computed via convex programming.
Therefore a (locally) optimal point for (14) can be found using a sequential
approach similar to that of [15]. Furthermore, if Ω is defined as a symmetric
low-complexity polytope (i.e. Ω = {x : ‖Wx‖∞ ≤ 1}, for full-rank W ∈ Rn×n),
then the linear feedback gain K can be optimized simultaneously with Ω by in-
cluding the vertex controls, uj , j = 1, . . . , n as additional optimization variables
in (14), where uj = Kxj .

5 Terminal Penalty

To allow a guarantee of closed-loop stability, we define the terminal penalty in (4)
as the cost-to-go over all j ≥ N under the terminal control law u(k + j|k) =
Kx(k+j|k). This section derives the required function L(k+N |k) as a quadratic
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form based on the solution of a pair of Lyapunov equations, and shows that the
Lyapunov-like property:

Ek

[
L(k + N + 1|k + 1) + l(k + N |k + 1)

]
≤ L(k + N |k) (15)

holds whenever predictions at time k + 1 are generated by the sequence

u(k + 1) = {u(k + 1|k), . . . , u(k + N − 1|k),Kx(k + N |k + 1)} (16)

where u(k) = {u(k|k), u(k + 1|k), . . . , u(k + N − 1|k)} is the predicted input
sequence at time k and u(k) = u(k|k).

To simplify notation, let xδ = x − x̄, where x̄(k + j|k) = Ekx(k + j|k), and
define

Z1(k + j|k) = Ek

[
x(k + j|k)xT (k + j|k)

]
,

Z2(k + j|k) = Ek

[
xδ(k + j|k)xT

δ (k + j|k)
]
.

Lemma 3. If the terminal penalty in (4) is defined by

L(k + N |k) = Tr
(
Z1(k + N |k)S1

)
+ (κ2

1 − 1)Tr
(
Z2(k + N |k)S2

)
(17)

where S1 = ST
1 � 0 and S2 = ST

2 � 0 are the solutions of the Lyapunov equations

Φ̄TS2Φ̄ + c1c
T
1 = S2 (18a)

Φ̄TS1Φ̄ +
L∑

i=1

ΦT
i

(
S1 + (κ2

1 − 1)S2
)
Φi + c1c

T
1 = S1 (18b)

then L(k+N |k) is the cost-to-go: L(k+N |k) =
∑∞

j=N l(k+j|k) for the closed-loop
system formed by (3) under the terminal control law u(k + j|k) = Kx(k + j|k).

Proof. With u(k + j|k) = Kx(k + j|k), it is easy to show that, for all j ≥ N :

Z1(k + j + 1|k) = Φ̄Z1(k + j|k)Φ̄T +
L∑

i=1

ΦiZ1(k + j|k)ΦT
i (19a)

Z2(k + j + 1|k) = Φ̄Z2(k + j|k)Φ̄T +
L∑

i=1

ΦiZ2(k + j|k)ΦT
i . (19b)

Using these expressions and (18a,b) to evaluate L(k + j + 1|k), we obtain

L(k + j + 1|k) + l(k + j|k) = L(k + j|k), (20)

which can be summed over all j ≥ N to give

L(k + N |k)− lim
j→∞

L(k + j|k) =
∞∑

j=N

l(k + j|k),

but x(k + 1) = Φx(k) is necessarily mean-square stable [16] in order that there
exist positive definite solutions to (18a,b), and it follows that limj→∞ L(k +
j|k) = 0.
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Remark 2. For any j ≥ 1, Z1 and Z2 can be computed using

Z2(k + j|k) =
j−1∑
i=0

ΨiΨ
T
i , Ψi = Aj−1−i

[
B1u(k + i|k) · · · BLu(k + i|k)

]
(21a)

Z1(k + j|k) = x̄(k + j|k)x̄T (k + j|k) + Z2(k + j|k) (21b)

Therefore L(k + N |k) is a quadratic function of the predicted input sequence:

L(k + N |k) = uT (k)Hu(k) + 2gT u(k) + γ

where u(k) = [uT (k|k) · · · uT (k + N − 1|k)]T and H, g are constants.

Theorem 1. If L(k+N |k) is given by (17) and L(k+N+1|k+1), l(k+N+1|k+1)
correspond to the predictions generated by the input sequence (16), then (15) is
satisfied if κ1 ≥ 1.

Proof. From (19), (18), and u(k + N |k + 1) = Kx(k + N |k + 1) it follows that
L(k+N +1|k+1)+ l(k+N |k+1) = L(k+N |k+1). Furthermore, from (21a,b)
we have

EkZ2(k + N |k + 1) = Z2(k + N |k + 1), EkZ1(k + N |k + 1) = Z1(k + N |k).

Combining these results, the LHS of (15) can be written

Ek L(k+N+1|k+1)+l(k+N |k+1) = Tr Z1(k+N |k)S1 +(κ2
1−1)Tr Z2(k+N |k+1)S2

and therefore (15) holds if κ1 ≥ 1 since (21a) implies Z2(k +N |k + 1) ( Z2(k +
N |k).

6 MPC Strategy and Closed-Loop Properties

The stage cost, terminal cost and terminal constraints are combined in this
section to construct a receding horizon strategy based on the online optimization:

minimize
u(k)

Jk =
N−1∑
j=0

l(k + j|k) + L(k + N |k) (22a)

subject to the following constraints, invoked for j = 1, . . . , N − 1:

|u(k + j|k)| ≤ U (22b)

Pr
(
y2(k + j|k) ≤ Y2

)
≥ p2 (22c)

Pr
(
x(k + N |k) ∈ Ω

)
≥ p2 (22d)

The MPC law is defined as u(k) = u∗(k|k), where u∗(k) = {u∗(k|k), . . . , u∗(k +
N − 1|k)} is optimal at time k, computed on the basis of the measured x(k).
From the plant model and parameter distributions, the constraints (22c) on y2
can be written
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κ2
(
cT
2 Z2(k + j|k)c2

)1/2 ≤ Y2 − cT
2 x̄(k + j|k) (23)

where κ2 satisfies N(κ2) = p2. Similarly, making use of confidence ellipsoids for
q(k), the terminal constraint (22d) can be expressed

r1
(
vT

i Z2(k + j|k)vi

)1/2 ≤ 1− vT
i x̄(k + j|k), i = 1, . . . ,m (24)

where r1 is defined by Pr
(
χ2(NL) ≤ r21

)
= p2. It follows that (22) is convex,

and has the form of a second-order cone program (SOCP), enabling solution via
efficient algorithms [17]. The stability properties of the MPC law can be stated
as follows.

Theorem 2. Assume that (22) is feasible at all times k = 0, 1, . . .. Then y1(k)→
0, and ‖x(k)‖2 converges to a finite limit with probability 1 if (A, c1) is observable.

Proof. From Lemmas 1 and 3, the cost, J̃k+1, for the suboptimal sequence ũ(k+
1) = {u∗(k+1|k), . . . ,Kx∗(k+N |k)} at time k+1 satisfies EkJ̃k+1 ≤ J∗

k−y2
1(k),

where J∗
k is the optimal value of (22a). After optimization at k + 1 we have

EkJ
∗
k+1 ≤ EkJ̃k+1 − y2

1(k) ≤ J∗
k − y2

1(k) (25)

It follows that Jk converges to a lower limit and y1(k) → 0 with probability
1 [18]. Furthermore the definitions of stage cost (5) and terminal penalty (17)
imply that

Jk =
∞∑

j=0

cT
1 x̄(k + j|k)x̄T (k + j|k)c1 + κ2

1c
T
1 Z2(k + j|k)c1

and, since
∑∞

j=0 c
T
1 Z2(k+j|k)c1 is positive definite in u(k) if (A, c1) is observable,

it follows that Jk is positive definite in x(k) if (A, c1) is observable. Under this
condition therefore, ‖x(k)‖2 converges to a finite limit with probability 1.

Note that the derivation of (25) assumes a pre-stabilized prediction model;
the same convergence property can otherwise be ensured by using a variable
horizon N .

The constraints (22b-d) apply only to predicted trajectories at time k, and
do not ensure feasibility of (22) at future times. For example, at time k+1, (23)
requires

κ2
(
cT
2 Z2(k + j|k + 1)c2

)1/2 ≤ Y2 − cT
2 x̄(k + j|k + 1), j = 1, . . . , N

where x̄(k+j|k+1) is a Gaussian random variable at time k, with mean x̄(k+j|k)
and variance cT

2 A
j−1Z2(k+1|k)Aj−1T c2. Therefore (23) is feasible at k+1 with

probability p2 if

κ2
(
cT
2 Z2(k+j|k+1)c2

)1/2+κ2
(
cT
2 A

j−1Z2(k+1|k)Aj−1T
c2
)1/2 ≤ Y2−cT

2 x̄(k+j|k)

holds for j = 1, . . . , N at time k; this condition is necessarily more restrictive
than (23) since Z2(k+ j|k) = Z2(k+ j|k+ 1) +Aj−1Z2(k+ 1|k)Aj−1T . In order
to provide a recursive guarantee of feasibility we therefore include additional
constraints in the online optimization, as summarized in the following result.
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Theorem 3. If (23) and (24) are replaced in the MPC online optimization (22)
by

j−1∑
l=0

κ2
(
cT
2 A

j−1−lZ2(k + l + 1|k + l)Aj−1−lT c2
)1/2 ≤ Y2 − cT

2 x̄(k + j|k) (26a)

j−2∑
l=0

κ2
(
vT

i A
j−1−lZ2(k + l + 1|k + l)Aj−1−lT vi

)1/2

+rj

(
vT

i Z2(k + N |k + j − 1)vi

)1/2 ≤ 1− vT
i x̄(k + N |k) (26b)

for j = 2, . . . , N , where rj is defined by Pr(χ2((N + 1 − j)L) ≤ rj) =
p2/p

j−1
Ω , then feasibility of (22) at time k implies feasibility at time k + 1 with

probability p2.

Proof. Condition (26a) ensures that: (i) Pr(y(k + j|k) ≤ Y2) ≥ p2 for j =
1, . . . , N ; (ii) Pr(y(k + j|k + 1) ≤ Y2) ≥ p2, j = 2, . . . , N , is feasible at k + 1
with probability p2; and (iii) the implied constraints are likewise feasible with
probability p2 when invoked at k+1. Here (iii) is achieved by requiring that the
constraints Pr(y(k + l|k + j) ≤ Y2) ≥ p2 be feasible with probability p2 when
invoked at k + j, j = 2, . . . , N − 1. Condition (26b) ensures recursive feasibility
of (22d) with probability p2 through the constraint that Pr(x(k + N |k + j) ∈
Ω) ≥ p2/p

j
Ω, j = 0, . . . , N − 1 (and hence also Pr(x(k+N + j|k+ j) ∈ Ω) ≥ p2)

should be feasible with probability p2.

Incorporating (26a,b) into the receding horizon optimization leads to a convex
online optimization, which can be formulated as a SOCP. However (26) and the
constraint that Ω should be invariant with probability pΩ > p

1/(N−1)
2 ≥ p2 are

more restrictive than (22c,d), implying a more cautious control law.

Remark 3. The method of computing terminal constraints and penalty terms
described in sections 4 and 5 is unchanged in the case that A contains random
(normally distributed) parameters. However in this case state predictions are not
linear in the uncertain parameters, so that the online optimization (22) could no
longer be formulated as a SOCP. Instead computationally intensive numerical
optimization routines (such as the approach of [7]) would be required.

Remark 4. It is possible to extend the approach of sections 4 and 5 to nonlinear
dynamics, for example using linear difference inclusion (LDI) models. In the
case that uncertainty is restricted to the linear output map, yj(k) = Cj(k)x(k)
predictions then remain normally distributed, so that the online optimization,
though nonconvex in the predicted input sequence, would retain some aspects
of the computational convenience of (22).

7 Numerical Examples

This section uses two simulation examples to compare the stochastic MPC algo-
rithm developed above with a generic robust MPC algorithm and the stochastic
MPC approach of [12].
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Fig. 1. Feasible initial condition sets for stochastic MPC (p2 = 0.85) with varying N .
Dashed line: feasible set of robust MPC based on 85% confidence level for N = 4.

First consider the plant model with

A =
1.04 −0.62

0.62 1.04
B̄ =

0

2
B1 =

−0.12

0.02
B2 =

0.04

−0.06
cT
1 =

0

−4.4
cT
2 =

3

2.3

U = 1, Y2 = 1, and p1 = p2 = 0.85. The offline computation for stochastic MPC
involves maximizing a low-complexity polytopic set Ω subject to Pr(Φx ∈ Ω) ≥
p2 for all x ∈ Ω; for this example the maximal Ω has an area of 0.055.

An alternative approach to MPC is to determine bounds on plant parameters
corresponding to a confidence level of, say, p2 by setting

B(k) = B̄ +
L∑

i=1

qi(k)Bi, |q(k)| ≤ N−1(p2) (27)

in (3), and then to implement a robust MPC law based on this approximate
plant model. For a confidence level of p2 = 0.85, the maximal low-complexity
set Ω′, which is robustly invariant for bounded parameter variations (27), is
similar in size (area = 0.048) to Ω. The similarity is to be expected since the
assumption of bounded uncertainty implies that the probability that Φx ∈ Ω′

under the actual plant dynamics for any x ∈ Ω′ is p2.
A robust (min-max) MPC law employing open-loop predictions based on the

parameter bounds of (27) is, however, significantly more conservative than the
stochastic MPC law of (22) for the same confidence level. This can be seen in
Fig. 1, which compares the feasible sets for the two control laws for p2 = 0.85
(the feasible set for robust MPC decreases with increasing N for N > 4 since the
plant is open-loop unstable). Closed-loop performance is also significantly worse:
the closed-loop cost for robust MPC (based on the parameter bounds (27) with
p2 = 0.85), averaged over 10 initial conditions and 200 uncertainty realizations,
is 63% greater than that for stochastic MPC (with p1 = p2 = 0.85). Figures 2
and 3 compare the closed-loop responses for a single initial condition and 20
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Fig. 2. Stochastic MPC closed-loop responses for p2 = 0.85 and 20 uncertainty
realizations (dark lines show responses for a single uncertainty realization)

Fig. 3. Robust MPC closed-loop responses for 85% confidence levels and the same set
of uncertainty realizations as in Fig. 2

uncertainty realizations. The higher degree of conservativeness and greater vari-
ability in Fig. 3 is a result of the robust min-max strategy, which attempts to
control worst-case predictions based on the confidence bounds of (27), whereas
the stochastic MPC strategy (Fig. 2) has direct control over the statistics of
future predictions at each sampling instant.

Consider next the effects of approximating uncertainty in the input map as
output map uncertainty. Modelling uncertainty in plant parameters as output
map uncertainty simplifies MPC design since state predictions are then deter-
ministic, but can result in a higher degree of suboptimality. Thus for the 3rd
order plant model:
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A =

⎡⎢⎣−0.33 0.31 −0.14
0.31 −0.53 0.07
−0.13 0.07 −0.04

⎤⎥⎦ B̄ =

⎡⎢⎣ 1.61
−0.12
−3.31

⎤⎥⎦ B1 =

⎡⎢⎣ 1.80
1.20
−0.80

⎤⎥⎦ B2 =

⎡⎢⎣1.40
0.20
1.60

⎤⎥⎦
c1 =

[
0.80 3.30 −3.20

]
c2 =

[
2.60 0.80 1.20

]
,

with U = 0.5, Y2 = 2, an approximate model realization involving only output
map uncertainty can be constructed by identifying the means and variances of a
pair of MA models. However, a stochastic MPC law for output map uncertainty
designed using the approach of [12] (using 6th order MA models) gives an average
closed-loop cost (over 100 initial conditions) of 114, whereas the average cost
for (22) for the same set of initial conditions is 36.1.
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