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1 Introduction

In view of the widespread success of Model Predictive Control (MPC), in recent
years attention has been paid to its robustness characteristics, either by exam-
ining the robustness properties inherent to stabilizing MPC algorithms, or by
developing new MPC methods with enhanced robustness properties.

By restricting attention to nonlinear systems, this paper presents in a unified
framework some of the robustness results available for nonlinear MPC. Specifi-
cally, the first part of the paper is concerned with the introduction of the main
definitions and of the general results used in the sequel as well as with the de-
scription of a “prototype” nominal MPC algorithm with stability. Then, the
considered class of model uncertainties and disturbances are defined.

In the second part of the paper, the inherent robustness properties of MPC
algorithms designed on the nominal model are reviewed under the main assump-
tion that the problem is unconstrained and feasibility is always guaranteed. The
results reported rely on the decreasing property of the optimal cost function
[5], [6], [42], [25]. Further robustness characteristics can be derived by showing
that unconstrained MPC is inversely optimal, and as such has gain and phase
margins [34].

The last part of the paper is devoted to present the approaches followed so
far in the design of MPC algorithms with robustness properties for uncertain
systems. A first method consists in minimizing a nominal performance index
while imposing the fulfillment of constraints for each admissible disturbance, see
[24]. This calls for the inclusion in the problem formulation of tighter state, con-
trol and terminal constraints and leads to very conservative solutions or even to
unfeasible problems. With a significant increase of the computational burden,
an alternative approach consists in solving a min-max optimization problem.
Specifically, in an open-loop formulation the performance index is minimized
with respect to the control sequence and maximized with respect to the distur-
bance sequence over the prediction horizon. However, this solution is still unsat-
isfactory, since the minimization with respect to a single control profile does not
solve the feasibility problem. This drawback can be avoided as in [3], where the
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MPC control law is applied to an already robust stable system. Alternatively,
the intrinsic feedback nature of every Receding Horizon (RH) implementation of
MPC can be exploited by performing optimization with respect to closed-loop
strategies, as discussed in [8], [29], [30], [33] where robust algorithms have been
proposed for systems with perturbations vanishing at the origin.

2 Notations and Basic Definitions

We use Z+ to denote the set of all nonnegative integers. Euclidean norm is de-
noted simply as |·| . For any function φ : Z+ → Rn, ‖φ‖ = sup {|φ(k)| : k ∈ Z+}
≤ ∞. Br is the closed ball of radius r, i.e. Br = {x ∈ Rn| |x| ≤ r} .

A continuous function α(·) : R+ → R+ is a K function if α(0) = 0, α(s) > 0 for
all s > 0 and it is strictly increasing. A continuous function β : R+ × Z+ → R+
is a KL function if β(s, t) is a K function in s for any t ≥ 0 and for each s > 0
β(s, ·) is decreasing and β(s, t)→ 0 as t→∞.MΩ is the set of signals in some
subset Ω.

Definition 1 (Stability). [22], [23] Given the discrete-time dynamic system

x(k + 1) = f(x(k)), k ≥ t, x(t) = x̄ (1)

with f(0) = 0 and a set Ξ ⊆ Rn with the origin as an interior point:

1. the origin is an asymptotically stable equilibrium in Ξ if ∀ε > 0 ∃δ > 0 such
that ∀x̄ ∈ Ξ with |x̄| ≤ δ, |x(k)| < ε, k ≥ t, and limk→∞ |x(k)| → 0;

2. the origin is a locally exponentially stable equilibrium point if there exist pos-
itive constants δ, α and ρ < 1 such that for any x̄ ∈ Bδ, |x(k)| < α |x̄| ρk−t,
k ≥ t;

3. the origin is an exponentially stable equilibrium point in Ξ if there exist
positive constants α and ρ < 1 such that for any x̄ ∈ Ξ, |x(k)| < α |x̄| ρk−t,
k ≥ t.

Definition 2 (Lyapunov function). [23] A function V (·) is called a Lyapunov
function for system (1) if there exist two sets Ξ1 and Ξ2 with Ξ1 ⊆ Ξ2 and K
functions α1, α2, and α3 such that

V (x) ≥ α1(|x|), ∀x ∈ Ξ2

V (x) ≤ α2(|x|), ∀x ∈ Ξ1 (2)
∆V (x) = V (f(x))− V (x) ≤ −α3(|x|), ∀x ∈ Ξ2

Lemma 1. [23]Let Ξ2 be a positive invariant set for system (1) that contains a
neighborhood Ξ1 of the origin and let V (·) be an associated Lyapunov function.
Then:

1. the origin is an asymptotically stable equilibrium in Ξ2;
2. if α1(|x|) = α1 |x|p , α2(|x|) = α2 |x|p , α3 (|x|) = α3 |x|p , for some real posi-

tive α1, α2, α3 and p, the origin is locally exponentially stable. Moreover, if
the inequality (2) holds for Ξ1 = Ξ2, then the origin is exponentially stable
in Ξ2.
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Definition 3 (Output admissible set). Consider the system

x(k + 1) = f(x(k), u(k)), k ≥ t, x(t) = x̄ (3)

where k is the discrete time index, x(k) ∈ Rn, u(k) ∈ Rm, and f(0, 0) = 0. The
state and control variables are required to fulfill the following constraints

x ∈ X,u ∈ U (4)

where X and U are compact subsets of Rn and Rm, respectively, both containing
the origin as an interior point. Consider the control law

u = κ(x). (5)

Then, the term output admissible set [11], referred to the closed-loop system (3),
(5) denotes a positively invariant set X̄ ⊆ X which is a domain of attraction of
the origin and such that x̄ ∈ X̄ implies κ(x(k)) ∈ U , k ≥ t.

3 Nominal Model Predictive Control

Given the system (3) and the state and control constraints (4), we assume that
f(·, ·) is a C1 function with Lipschitz constant Lf , ∀x ∈ X and ∀u ∈ U.

To introduce the MPC algorithm, first let ut1,t2 := [u(t1) u(t1 +1) . . . u(t2)],
t2 ≥ t1, then define the following finite-horizon optimization problem.

Definition 4 (FHOCP). Consider a stabilizing auxiliary control law κf (·) and
an associated output admissible set Xf . Then, given the positive integer N , the
stage cost l(·, ·) and the terminal penalty Vf (·), the Finite Horizon Optimal Con-
trol Problem (FHOCP ) consists in minimizing, with respect to ut,t+N−1, the
performance index

J(x̄, ut,t+N−1, N) =
t+N−1∑

k=t

l(x(k), u(k)) + Vf (x(t + N)) (6)

subject to

(i) the state dynamics (3) with x(t) = x̄;
(ii) the constraints (4), k ∈ [t, t + N − 1];
(iii) the terminal state constraint x(t + N) ∈ Xf .

It is now possible to define a “prototype” Nonlinear Model Predictive Control
(NMPC) algorithm: at every time instant t, define x̄ = x(t) and find the opti-
mal control sequence uo

t,t+N−1 by solving the FHOCP . Then, according to the
Receding Horizon approach, define

κMPC(x̄) = uo
t,t(x̄) (7)

where uo
t,t(x̄) is the first column of uo

t,t+N−1, and apply the control law
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u = κMPC(x) (8)

In order to guarantee the stability of the origin of the closed-loop system (3),
(8), many different choices of the stabilizing control law κf (·), of the terminal set
Xf and of the terminal cost function Vf have been proposed in the literature, see
[37], [40], [2], [6], [28], [32], [7], [16], [14], [20]. Irrespective of the specific algorithm
applied, a general result can be stated under the following assumptions which
will always be considered in the sequel.

Assumption 3.1. l(x, u) is Lipschitz with Lipschitz constant Ll and is such that
αl(|x|) ≤ l(x, u) ≤ βl(|(x, u)|) where αl and βl are K functions.

Assumption 3.2. Let κf (·), Vf (·), Xf be such that

1. Xf ⊆ X, Xf closed, 0 ∈ Xf

2. κf (x) ∈ U, ∀x ∈ Xf

3. κf (x) is Lipschitz in Xf with Lipschitz constant Lκf

4. f(x, κf (x)) ∈ Xf , ∀x ∈ Xf

5. αVf
(|x|) ≤ Vf (x) ≤ βVf

(|x|) , αVf
and βVf

K functions
6. Vf (f(x, κf (x))) − Vf (x) ≤ −l(x, κf (x)), ∀x ∈ Xf

7. Vf is Lipschitz in Xf with Lipschitz constant LV f

Theorem 1. Let XMPC(N) be the set of the states such that a feasible so-
lution for the FHOCP exists. Given an auxiliary control law κf , a termi-
nal set Xf , a terminal penalty Vf and a cost l(·, ·) satisfying Assumptions
3.1, 3.2, the origin is an asymptotically stable equilibrium point for the closed-
loop system formed by (3) and (8) with output admissible set XMPC(N) and
V (x̄, N) := J(x̄, uo

t,t+N−1, N) is an associated Lyapunov function. Moreover if
αl(|x|) = αl |x|p , βVf

(|x|) = βVf
|x|p , p > 0, then the origin is an exponentially

stable equilibrium point in XMPC(N).

Proof of Theorem 1. First note that

V (x,N) := J(x, uo
t,t+N−1, N) ≥ l(x, κMPC(x)) ≥ αl(|x|) (9)

Moreover, letting uo
t,t+N−1 be the solution of the FHOCP with horizon N at

time t, in view of Assumption 3.2

ũt,t+N = [uo
t,t+N−1, κf (x(t + N))]

is an admissible control sequence for the FHOCP with horizon N + 1 with

J(x, ũt,t+N , N + 1) = V (x,N)− Vf (x(t + N)) + Vf (x(t + N + 1))
+l(x(t+ N), κf (x(t + N))) ≤ V (x,N)

so that
V (x,N + 1) ≤ V (x,N), ∀x ∈ XMPC(N) (10)

with V (x, 0) = Vf (x), ∀x ∈ Xf . Then
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V (x,N + 1) ≤ V (x,N) ≤ Vf (x) ≤ βVf
(|x|) , ∀x ∈ Xf (11)

Finally

V (x,N) = l(x, κMPC(x)) + J(f(x, κMPC(x)), uo
t+1,t+N−1, N − 1)

≥ l(x, κMPC(x)) + V (f(x, κMPC(x)), N)
≥ αl(|x|) + V (f(x, κMPC(x)), N), ∀x ∈ XMPC(N) (12)

Then, in view (9), (11) and (12) V (x,N) is a Lyapunov function and in view of
Lemma 1 the asymptotic stability in XMPC(N) and the exponential stability in
Xf are proven. In order to prove exponential stability in XMPC(N), let Bρ be
the largest ball such that Bρ ∈ Xf and V̄ be a constant such that V (x,N) ≤ V̄
for all x ∈ XMPC(N). Now define

ᾱ2 = max
(
V̄

ρp
, βVf

)
,

then it is easy to see [27] that

V (x,N) ≤ ᾱ2 |x|p , ∀x ∈ XMPC(N) (13)

4 Robustness Problem and Uncertainty Description

Let the uncertain system be described by

x(k + 1) = f(x(k), u(k)) + g(x(k), u(k), w(k)), k ≥ t, x(t) = x̄ (14)

or equivalently

x(k + 1) = f̃(x(k), u(k), w(k)), k ≥ t, x(t) = x̄ (15)

In (14), f(x, u) is the nominal part of the system, w ∈ MW for some compact
subset W ⊆ Rp is the disturbance and g(·, ·, ·) is the uncertain term assumed to
be Lipschitz with respect to all its arguments with Lipschitz constant Lg.

The perturbation term g(·, ·, ·) allows one to describe modeling errors, aging,
or uncertainties and disturbances typical of any realistic problem. Usually, only
partial information on g(·, ·, ·) is available, such as an upper bound on its absolute
value |g(·, ·, ·)| .

For the robustness analysis the concept of Input to State Stability (ISS) is a
powerful tool.

Definition 5 (Input-to-state stability). The system

x(k + 1) = f(x(k), w(k)), k ≥ t, x(t) = x̄ (16)

with w ∈ MW is said to be ISS in Ξ if there exists a KL function β, and a K
function γ such that

|x(k)| ≤ β(|x̄| , k) + γ (‖w‖) , ∀k ≥ t, ∀x̄ ∈ Ξ
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Definition 6 (ISS-Lyapunov function). A function V (·) is called an ISS-
Lyapunov function for system (16) if there exist a set Ξ, K functions α1, α2,
α3, and σ such that

V (x) ≥ α1(|x|), ∀x ∈ Ξ

V (x) ≤ α2(|x|), ∀x ∈ Ξ (17)
∆V (x,w) = V (f(x,w)) − V (x) < −α3(|x|) + σ(|w|), ∀x ∈ Ξ, ∀w ∈ MW

Note that if the condition on ∆V is fulfilled with σ(·) = 0, then the origin is
asymptotically stable for any considered disturbance w.

Lemma 2. [21] Let Ξ be a positive invariant set for system (16) that contains
the origin and let V (·) be a ISS-Lyapunov function for system (16), then the
system (16) is ISS in Ξ.

5 Inherent Robustness of Nominal MPC

In this section, the robustness properties of nominal MPC algorithms are re-
viewed under the fundamental assumption that the presence of uncertainties
and disturbances do not cause any loss of feasibility. This holds true when the
problem formulation does not include state and control constraints and when
any terminal constraint used to guarantee nominal stability can be satisfied also
in perturbed conditions.

5.1 Inverse Optimality

It is well known that the control law solving an unconstrained optimal Infinite
Horizon (IH) problem guarantees robustness properties both in the continuous
and in the discrete time cases, see [12], [43], [10], [1]. Hence, the same robustness
characteristics can be proven for MPC regulators provided that they can be
viewed as the solution of a suitable IH problem. For continuous time systems,
this has been proven in [34], while in the discrete time case, from the optimality
principle we have

V (x,N) = l̄(x(k), κMPC(x(k))) + V (f(x, κMPC(x)), N)

with

l̄(x(k), κMPC (x(k))) : = l(x(k), κMPC(x(k))) − V (f(x, κMPC(x)), N)
+V (f(x, κMPC(x)), N − 1)

Then κMPC(x(k)) is the solution of the Hamilton-Jacobi-Bellman equation for
the IH optimal control problem with stage cost l̄(x, u). In view of Assumption
3.2 and (10) it follows that

l̄(x(k), κMPC (x(k))) > l(x(k), κMPC(x(k)))
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so that the stage cost is well defined and robustness of IH is guaranteed. Specif-
ically, under suitable regularity assumptions on V , in [5] it has been shown that
MPC regulators provide robustness with respect to gain perturbations due to
actuator nonlinearities and additive perturbations describing unmodeled dynam-
ics. Further results on gain perturbations can be achieved as shown in [1].

5.2 Robustness Provided by the ISS Property

The robustness analysis provided by ISS, see also [21], can be summarized by
the following result.

Theorem 2. Under Assumptions 3.1 and 3.2, if V (x,N) is Lipschitz with Lip-
schitz constant LV , the closed-loop system (14), (8) is ISS in XMPC(N) for
any perturbation g(x, u, w) such that |g(x, u, 0)| < ρ

LV
αl(|x|) where 0 < ρ < 1 is

an arbitrary real number.

Proof. Note that (9) and (13) still hold. Moreover

V (f̃(x, κMPC(x), w), N) − V (f(x, κMPC(x), N)
≤ LV

∣∣g(x, κMPC(x), w)
∣∣ ≤ LV

∣∣g(x, κMPC(x), 0)
∣∣ + LV Lg |w|

≤ ραl(|x|) + LV Lg |w|

Hence

V (f̃(x, κMPC(x), w), N)
≤ V (x,N) − (1− ρ)αl(|x|) + LV Lg |w|

Remark 1. If w = 0 the result is equivalent to the one on robust stability reported
in [6]. On the contrary if w 	= 0 then ISS guarantees that the system evolves
towards a compact set which size depends on the bound on w. A way to estimate
this size is given in [31]. Further results on the robustness with bounded and
exponentially decaying disturbances are reported in [42], [25].

Remark 2. All the above results assume some regularity of the MPC control
law and of the value function, see also [18], [19], [26]. It is well known that the
MPC control law could be even discontinuous [38]. In [13], some examples of the
loss of robustness have been presented. For a specific discussion on robustness
of discontinuous MPC see [9].

6 Robust MPC Design with Restricted Constraints

The development of MPC algorithms robust with respect to persistent distur-
bances has received a great deal of attention both for linear systems, see e.g. [4],
and in the nonlinear case. An approach to overcome the feasibility and stability
problems consists in minimizing a nominal performance index while imposing
the constraints fulfillment for any admissible disturbance. This implies the use



246 L. Magni and R. Scattolini

of tighter and tighter state, control and terminal constraints, so leading to very
conservative solutions or even to unfeasible problems. Algorithms with these
characteristics have been described in [39] for continuous-time and in [24] for
discrete time systems. The technique presented in [24] is now briefly summa-
rized. To this aim, the following assumption must be introduced to allow for the
analysis of the (worst-case) effects of the disturbance.

Assumption 6.1. The uncertain term in (14) is bounded by γ, that is |g(·, ·, ·)| ≤
γ for any x and u satisfying (4) and w ∈MW .

In order to guarantee that at any future time instant in the prediction horizon
the disturbance does not cause the state constraints violation, first introduce the
following definition.

Definition 7 (Pontryagin difference). Let A,B ⊂ Rn, be two sets, then the
Pontryagin difference set is defined as A ∼ B = {x ∈ Rn|x+ y ∈ A, ∀y ∈ B} .

Consider now the following sets Xj = X ∼ Bj
γ where Bj

γ is defined as

Bj
γ =

{
z ∈ Rn : |z| ≤

Lj
f − 1

Lf − 1
γ

}
.

Definition 8 (NRFHOCP). Consider a stabilizing auxiliary control law κf (·)
and an associated output admissible set Xf . Then, given the positive integer N ,
the stage cost l(·, ·) and the terminal penalty Vf (·), the Nominal Robust Finite
Horizon Optimal Control Problem (NRFHOCP ) consists in minimizing, with
respect to ut,t+N−1,

J(x̄, ut,t+N−1, N) =
t+N−1∑

k=t

l(x(k), u(k)) + Vf (x(t + N))

subject to:

(i) the state dynamics (3) with x(t) = x̄;
(ii) the constraints u(k) ∈ U and x(k) ∈ Xk−t+1, k ∈ [t, t + N − 1], where

Xk−t+1 are given in Definition 7;
(iii) the terminal state constraint x(t + N) ∈ Xf .

From the solution of the NRFHOCP , the Receding Horizon control law

u = κMPC(x) (18)

is again obtained as in (7) and (8). Concerning the stability properties of the
closed-loop system, the following hypothesis substitutes Assumption 3.2.

Assumption 6.2. Let κf (·), Vf (·), Xf such that

1. Φf := {x ∈ Rn : Vf (x) ≤ α} ⊆ X, Φf closed, 0 ∈ Φf , α positive constant
2. κf (x) ∈ U, ∀x ∈ Φf
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3. f(x, κf (x)) ∈ Φf , ∀x ∈ Φf

4. Vf (f(x, κf (x))) − Vf (x) ≤ −l(x, κf (x)), ∀x ∈ Φf

5. αVf
(|x|) ≤ Vf (x) ≤ βVf

(|x|), αVf
, βVf

are K functions
6. Vf (·) is Lipschitz in Φf with a Lipschitz constant LV f

7. Xf := {x ∈ Rn : Vf (x) ≤ αv} is such that for all x ∈ Φf , f(x, κf (x)) ∈ Xf ,
αv positive constant

Then, the final theorem can be stated.

Theorem 3. [24]Let XMPC(N) be the set of states of the system where there
exists a solution of the NRFHOCP . Then the closed loop system (14), (18) is
ISS in XMPC(N) if Assumption 6.1 is satisfied with

γ ≤ α− αv

LV fL
N−1
f

The above robust synthesis method ensures the feasibility of the solution through
a wise choice of the constrains (ii) and (iii) in the NRFHOPC formulation.
However, the solution can be extremely conservative or may not even exist, so
that less stringent approaches are advisable.

7 Robust MPC Design with Min-Max Approaches

The design of MPC algorithms with robust stability has been first placed in an
H∞ setting in [44] for linear unconstrained systems. Since then, many papers
have considered the linear constrained and unconstrained case, see for example
[41]. For nonlinear continuous time systems, H∞-MPC control algorithms have
been proposed in [3], [30], [8], while discrete-time systems have been studied in
[29], [15], [17], [33], [36]. In [29] the basic approach consists in solving a min-
max problem where an H∞-type cost function is maximized with respect to the
admissible disturbance sequence, i.e. the ”nature”, and minimized with respect
to future controls over the prediction horizon. The optimization can be solved
either in open-loop or in closed-loop. The merits and drawbacks of these solutions
are discussed in the sequel.

7.1 Open-Loop Min-Max MPC

Assume again that the perturbed system is given by

x(k + 1) = f̃(x(k), u(k), w(k)), k ≥ t, x(t) = x̄ (19)

where now f̃(·, ·, ·) is a known Lipschitz function with Lipschitz constant Lf̃ and
f̃(0, 0, 0) = 0. The state and control variables must satisfy the constraints (4),
while the disturbance w is assumed to fulfill the following hypothesis.

Assumption 7.1. The disturbance w is contained in a compact set W and there
exists a K function γ(·) such that |w| ≤ γ(|(x, u)|).



248 L. Magni and R. Scattolini

Letting wt1,t2 := [w(t1) w(t1 + 1) . . . w(t2)], t2 ≥ t1, the optimal min-max
problem can now be stated.

Definition 9 (FHODG). Consider a stabilizing auxiliary control law κf(·) and
an associated output admissible set Xf . Then, given the positive integer N , the
stage cost l(·, ·)− lw(·) and the terminal penalty Vf (·), the Finite Horizon Open-
loop Differential Game (FHODG) problem consists in minimizing, with respect
to ut,t+N−1 and maximizing with respect to wt,t+N−1 the cost function

J(x̄, ut,t+N−1, wt,t+N−1) =
t+N−1∑

k=t

{l(x(k), u(k))− lw(w(k))} + Vf (x(t + N))

subject to:

(i) the state dynamics (19) with x(t) = x̄;
(ii) the constraints (4), k ∈ [t, t+ N − 1];
(iii) the terminal state constraint x(t + N) ∈ Xf .

Once the FHODG is solved and the optimal control sequence uo
t,t+N−1 is avail-

able, according to the RH principle the feedback control law is again given
by (7) and (8). To achieve robustness the idea could be to use a terminal set
and a terminal penalty satisfying the following “robust” version of the sufficient
conditions reported in Assumption 3.2.

Assumption 7.2. Let κf (·), Vf (·), Xf such that

1. Xf ⊆ X, Xf closed, 0 ∈ Xf

2. κf (x) ∈ U, ∀x ∈ Xf

3. f̃(x, κf (x), w) ∈ Xf , ∀x ∈ Xf , ∀w ∈ W
4. αVf

(|x|) ≤ Vf (x) ≤ βVf
(|x|) , αVf

and βVf
K functions

5. Vf (f̃(x, κf (x), w)) − Vf (x) ≤ −l(x, u) + lw(w), ∀x ∈ Xf , ∀w ∈ W
6. Vf is Lipschitz in Xf with Lipschitz constant LV f

Along this line, one could argue again that the value function V (x) = J(x̄,
uo

t,t+N−1, w
o
t,t+N−1) is a candidate to prove the stability of the closed-loop sys-

tem. However, the following fundamental feasibility problem arises. Suppose
that at time t an optimal (hence admissible) control sequence uo

t,t+N−1 for the
FHODG is known. In other words, irrespective of the specific realization of w,
this sequence steers the state x to Xf in N steps or less; hence, the abbrevi-
ated control sequence uo

t+1,t+N−1 steers the state x(t + 1) to Xf at most in
N − 1 steps. Now, the major difficulty is to obtain a feasible control sequence
ũt+1,t+N :=

[
uo

t+1,t+N−1, v
]

required to complete the stability proof (see the
proof of Theorem 1). In fact, Assumption 7.2 does not ensure the existence of a
signal v with this property since the auxiliary control law κf (x(t+N)) can only
provide a control value depending on x(t + N), which in turn is a function of
the particular realization of the disturbance w.
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One way to avoid this impasse is given in [3] where the MPC approach is
applied to an already robust stable system, so that Assumption 7.2 is satisfied
with κf (·) ≡ 0. In this case a feasible control sequence is

ũt+1,t+N :=
[
uo

t+1,t+N−1, 0
]

In order to obtain a system with a-priori robustness properties with respect
to the considered class of disturbances, in [3] it has been suggested to pre-
compensate the system under control by means of an inner feedback loop de-
signed for example with the H∞ approach.

7.2 Closed-Loop Min-Max MPC

The limitations of the open-loop min-max approach can be overcome by explic-
itly accounting for the intrinsic feedback nature of any RH implementation of
MPC, see e.g. [41] for the linear case and [29] for nonlinear systems. In this
approach, at any time instant the controller chooses the input u as a function
of the current state x, so as to guarantee that the effect of the disturbance w is
compensated for any choice made by the “nature”. Hence, instead of optimizing
with respect to a control sequence, at any time t the controller has to choose a
sequence of control laws κt,t+N−1 = [κ0(x(t)) κ1(x(t+1) . . . κN−1(x(t+N−1)].
Then, the following optimal min-max problem can be stated.

Definition 10 (FHCDG). Consider a stabilizing auxiliary control law κf (·)
and an associated output admissible set Xf . Then, given the positive integer N ,
the stage cost l(·, ·) − lw(·) and the terminal penalty Vf (·), the Finite Horizon
Closed-loop Differential Game (FHCDG) problem consists in minimizing, with
respect to κt,t+N−1 and maximizing with respect to wt,t+N−1 the cost function

J(x̄, κt,t+N−1, wt,t+N−1, N) =
t+N−1∑

k=t

{l(x(k), u(k))− lw(w(k))} + Vf (x(t + N))

subject to:

(i) the state dynamics (19) with x(t) = x̄;
(ii) the constraints (4), k ∈ [t, t + N − 1];
(iii) the terminal state constraint x(t + N) ∈ Xf .

Finally, letting κo
t,t+N−1, w

o
t,t+N−1 the solution of the FHCDG the feedback

control law u = κMPC(x) is obtained by setting

κMPC(x) = κo
0(x) (20)

where κo
0(x) is the first element of κo

t,t+N−1.
In order to derive the main stability and performance properties associated

to the solution of FHCDG, the following assumption is introduced.

Assumption 7.3. lw(·) is such that αw (|w|) ≤ lw(w) ≤ βw (|w|) where αw and
βw are K functions.



250 L. Magni and R. Scattolini

Then, the following result holds.

Theorem 4. Let XMPC(N) be the set of states of the system where there exists
a solution of the FHCDG and κt,t+N−1 a vector of Lipschitz continuous con-
trol policies. Under Assumptions 7.1-7.3 the closed loop system ΣMPC given by
(19)-(20) is ISS with robust output admissible set XMPC(N), moreover if γ (·)
is such that βw

(
γ
(∣∣x, κMPC(x)

∣∣)) − αl (|x|) < −δ (|x|) , where δ is a K func-
tion, the origin of the closed loop system ΣMPC given by (19)-(20) is robustly
asymptotically stable.

Proof. First note that in view of Assumption 7.2, given w̃t,t+N−1 = 0, for every
admissible κt,t+N−1

J(x̄, κt,t+N−1, 0, N)

=
t+N−1∑

k=t

{l(x(k), u(k))} + Vf (x(t + N)) > 0, ∀x ∈ XMPC(N)/ {0}

so that

V (x,N) : = J(x̄, κo
t,t+N−1, w

o
t,t+N−1, N) ≥ min

κt,t+N−1
J(x̄, κt,t+N−1, 0, N)

> l(x, κMPC(x)) > αl(|x|), ∀x ∈ XMPC(N) (21)

In view of the Lipschitz assumption on κt,t+N−1 and Assumption 7.1, one can
show that there exists a K function α2 (|x|) such that (17) is fulfilled for any
x ∈ XMPC(N). Suppose now that κo

t,t+N−1 is the solution of the FHCDG with
horizon N and consider the following policy vector for the FHCDG with horizon
N + 1

κ̃t,t+N =

{
κo

t,t+N−1 t ≤ k ≤ t + N − 1
κf(x(t + N)) k = t + N

Correspondingly

J(x̄, κ̃t,t+N , wt,t+N , N + 1)
= Vf (x(t + N + 1))− Vf (x(t + N))

+l(x(t+ N), u(t+ N))− lw(w(t + N))

+
t+N−1∑

k=t

{l(x(k), u(k))− lw(w(k))} + Vf (x(t + N))

so that in view of Assumption 7.2

J(x̄, κ̃t,t+N , wt,t+N , N + 1)

≤
t+N−1∑

k=t

{l(x(k), u(k))− lw(w(k))} + Vf (x(t + N))

which implies
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V (x,N + 1) ≤ max
w∈MW

J(x̄, κ̃t,t+N−1, wt,t+N−1, N + 1)

≤ max
w∈MW

t+N−1∑
k=t

{l(x(k), u(k))− lw(w(k))} + Vf (x(t + N))

= V (x,N) (22)

which holds ∀x ∈ XMPC(N), ∀w ∈MW . Moreover

V (x,N) = V (f̃(x, κMPC(x), w), N − 1)
+l(x, κMPC(x)) − lw(w)

≥ V (f̃(x, κMPC(x), w), N) + l(x, κMPC(x))− lw(w)

∀x ∈ XMPC(N), ∀w ∈MW and

V (f̃(x, κMPC(x), w), N) − V (x,N) ≤ −l(x, κMPC(x)) + lw(w)

and the ISS is proven. Note also that in view of (22)

V (x,N) ≤ V (x,N − 1) ≤ V (x, 0) = Vf (x) ≤ βVf
(|x|) , ∀x ∈ Xf (23)

so that if Xf = XMPC(N) the Lipschitz assumption on κt,t+N−1 can be relaxed.
Finally, in view of Assumption 7.1 with γ (·) such that βw

(
γ
(∣∣x, κMPC(x)

∣∣))−
αl (|x|) < −δ (|x|)

V (f̃(x, κMPC (x), w), N) − V (x,N) ≤ −αl (|x|) + βw

(
γ
(∣∣x, κMPC(x)

∣∣))
≤ −δ (|x|) , ∀x ∈ XMPC(N), ∀w ∈MW

and robust asymptotic stability is derived.

Remark 3. The major drawback of the closed-loop min-max approach is due
to the need to perform optimization over an infinite dimensional space. How-
ever two comments are in order. First, one can resort to a finite dimensional
parametrization of the control policies, see e.g. [35], [29], [8]. In this case, it is
necessary that also the auxiliary control law shares the same structural proper-
ties. Second, similar results can be achieved using different prediction (Np) and
control (Nc) horizons, with Nc ' Np, see [29]. In this case, optimization has to
be performed only with respect to Nc policies, while from the end of the control
horizon onwards the auxiliary control law can be applied.

Remark 4. By means of the same kind of reasoning followed in the proof of Theo-
rem 1 to derive an upper bound of V in XMPC(N), one can relax the hypothesis
on Lipschitz continuity of κt,t+N−1 [27]. However, since in practice this sequence
of control laws must be parametrized a priori, the continuity assumption in this
case can be explicitly verified.
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Remark 5. The computation of the auxiliary control law, of the terminal penalty
and of the terminal inequality constraint satisfying Assumption 3.2, is not trivial
at all. In this regard, a solution has been proposed for affine system in [29],
where it is shown how to compute a non linear auxiliary control law based on
the solution of a suitable H∞ problem for the linearized system under control.
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