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Summary. This paper presents a Nonlinear Model Predictive Control (NMPC) al-
gorithm that uses hard variable constraints to allow for control objective prioritiza-
tion. Traditional prioritized objective approaches can require the solution of a complex
mixed-integer program. The formulation presented in this work relies on the feasibil-
ity and solution of a relatively small logical sequence of purely continuous nonlinear
programs (NLP). The proposed solution method for accomodation of discrete control
objectives is equivalent to solution of the overall mixed-integer nonlinear programming
problem. The performance of the algorithm is demonstrated on a simulated multivari-
able network of air pressure tanks.

1 Introduction

Model Predictive Control (MPC) technology is most notable for its ability to con-
trol complex multivariable industrial systems. The model-based control scheme
relies on the online solution of an optimization problem for the optimal con-
trol sequence that minimizes a cost function which evaluates the system over
some prediction horizon. The typical cost function accounts for numerous con-
trol objectives spanning different levels of relative importance including those
stemming from equipment limits and safety concerns, product quality specifica-
tions, as well as economic goals. Traditional formulations penalize violations of
soft constraints to achieve the desired performance. However, they often rely on
ad hoc tuning to determine the appropriate trade-off between the various control
objectives. Moreover, the tuning becomes less intuitive for systems of increasing
complexity.

Recent studies have focused on ensuring that control objective prioritization
is handled effectively [3, 4, 7, 8, 13, 14, 18, 19]. Mixed integer methods utilize
propositional logic [17] and binary variables to define whether discrete control
objectives have been met and whether they are met in order of priority. Terms
are included in the cost function to penalize failure to meet the prioritized ob-
jectives and the resulting mixed integer program is solved to determine the
appropriate input move(s). Nevertheless, the mixed-integer programs are inher-
ently combinatorial in nature and can prove to be computationally demanding,
making real-time application difficult. This is of particular concern in nonlinear
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formulations with logic constraints that require the solution of the nonconvex
Mixed-Integer Nonlinear Program (MINLP).

Here, a nonlinear MPC formulation is presented that utilizes hard constraints
to allow for control objective prioiritization. This avoids the need to solve the
complex mixed-integer programming problem. By imposing hard variable con-
straints corresponding to process control objectives such as variable upper and
lower bounds, the feasibility of the resulting nonlinear program (NLP) can be
evaluated to determine whether a solution exists that will satisfy the control
objective. Beginning with the highest priority objective, the hard constraints
can be appended to the traditional MPC formulation and the feasibility can be
tested in an orderly fashion to determine the optimal control sequence while
addressing objective prioritization. This framework is equivalent to the mixed-
integer formulation with geometrically weighted control objectives, in which a
given control objective is infinitely more important that subsequent objectives.
Instead of solving the combinatorial MINLP, the hard constraint approach pro-
vides an efficient and logical progression through the binary tree structure. This
requires solution of a minimal number of NLP’s.

The nonconvex nature of each NLP poses interesting problems in this NMPC
formulation with regard to the determination of both global feasibility and global
optimality. Use of local solution techniques lacks the ability to provide any in-
dication of problem feasibility and leaves one susceptible to suboptimal solu-
tions. A globally convergence stochastic approach is used to provide indication of
global infeasibility and to pursue the global optimum. Deterministic approaches
to guarantee global optimality are also considered, as they have been used pre-
viously in NMPC formulations[10].

2 Mixed Integer Control Formulation

In traditional Model Predictive Control approaches, control objectives are man-
aged through penalizing violations of soft constraints. The typical objective func-
tion to be minimized at each time step is of the form:

Φ =
p∑

i=1

e(i)TΓee(i) +
m∑

i=1

∆u(i)TΓ∆u∆u(i) (1)

Here m and p are the move and prediction horizon. The error vector, e, represents
the difference in the model predicted value and the desired reference for each
of the controlled variables, while ∆u is a vector describing the level of actuator
movement. A vector of weights, or penalties (Γe), consists of constant scalar
elements that represent the cost of violating each control objective. It is here
that control objectives are assigned a relative importance or priority. Likewise,
the elements of Γ∆u are utilized to suppress unnecessary control moves. The
downfall of this approach is that it relies on ad hoc tuning to determine the
appropriate trade-off between meeting various control objectives. For example,
it is often difficult to infer how a controller will choose between violating a
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given constraint by a large amount for a short period of time, or violating a
given constraint by a small amount for a more substantial period of time. This
becomes particularly troublesome as the complexity of the system increases.

Mixed integer formulations have been used in the MPC framework in an at-
tempt to make controller tuning more intuitive and to insure that higher priority
control objectives are accommodated before the less important objectives [8, 9].
This is accomplished by adding additional terms to the traditional objective
function and by introducing binary variables into the optimization problem. The
premise of this approach is that errors associated with each control objective are
explicitly defined and the traditional control objectives can be discretized using
propositional logic and a “big M” constraint of the form:

e(i) ≤M(1−Oj) ∀j = 1..p (2)

Here the Oj is a binary flag defining whether a given control objective can be
met absolutely and M is a large value. Thus, if the error associated with a
given control objective is zero, implying the control objective can be met at
each point across the prediction horizon, the binary flag can take on a value of
1. Otherwise, Oj is forced to a value of zero in order to relax the constraint.
Additional constraints can then be used to indicate whether a control objective
is met in order of its priority. A binary flag, Pj is used to indicate if this is
indeed the case. Constraints of the form Pj ≤ Oj are required to insure that the
objectives are met before being flagged as met in order according to their relative
priority. A set of constraints of the form Pj+1 ≤ Pj are used to force higher
priority objectives to be met first. The objective function in such a formulation
is of the form:

Φ = ΓOO + ΓPP +
p∑

i=1

e(i)TΓee(i) +
m∑

i=1

∆u(i)TΓ∆u∆u(i) (3)

Here O is a vector of the binary flags defining if the discrete objectives have
been met and P is a vector of binary flags defining whether or not the control
objectives have been met in order of priority. ΓO and ΓP are vectors of weights
that reward meeting the discretized objectives in order or priority. Typically the
values of ΓP are chosen to be much larger than the elements of ΓO, which are
orders of magnitude larger than the traditional MPC penalties. This approach
has been demonstrated in a number of cases, including in the inferential control
of unmeasured states in which a state space model is employed to explicitly
define the unmeasured states to be constrained [8].

One drawback of the mixed integer MPC approaches is the combinatorial na-
ture of the resulting mixed integer optimization problem. The resulting mixed-
integer linear programming (MILP) problem can require the solution of up to 2N

LPs where N is the number of binary variables incorporated into the problem.
Fortunately, the computational demand is often mitigated by the relatively few
number of true decision variables associated with the MPC problem. The con-
troller need only specify the m moves for each of the nu process inputs, and the
remaining variables (modeled process states, errors, etc) are then subsequently
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defined based on their relationship to the chosen input sequences, the model,
and process data. From a practical standpoint, the approach can also be limited
by problem dimensionality as penalties spanning numerous orders of magnitudes
raise issues with solver tolerances.

To date, these mixed integer approaches for prioritized objective control have
focused on linear formulations. With the availability of efficient MILP solvers [6],
the methods prove to be viable for real-time control. This is particularly true for
control of chemical processes, which typically have time constants on the order
of minutes. However, many industrial processes are sufficiently nonlinear to mo-
tivate the consideration of nonlinear formulations. The use of a nonlinear model
provides improved closed-loop performance but at the expense of increased com-
putational demand as the nonlinear formulation inherently relies on the solution
of a more difficult nonconvex nonlinear problem (NLP). As the prioritization of
control objectives requires the solution of an MILP in the linear case instead of
an LP, the nonlinear mixed integer formulation requires the solution of a difficult
mixed integer nonlinear program (MINLP) instead of a single NLP.

3 Hard Constraints Formulation for Objective
Prioritization

Assume that for a particular control problem n control objectives are to be
handled appropriately based on their perceived relative priority. In the mixed
integer formulation, this would require in the worst case the solution of 22n+1−1
LP relaxation nodes in a traditional branch-and-bound search. This stems from
the 2n binary variables. Efficient MILP solvers exist [6] and have been shown to
be viable for real-time implementation in linear MPC formulations. However, for
nonlinear dynamic formulations that consider solution of nonconvex MINLP’s,
the optimization problem can prove to be too computationally demanding. The
motivation of the hard constraint formulation is a reduction in the computational
demand to make prioritized objective NMPC possible for real-time control.

This algorithm uses hard variable constraints as a means to avoid the need
to solve the complex MINLP for control objective prioritization in nonlinear
MPC formulations. Consider the nonlinear control problem with n prioritized
control objectives. Provided that each control objective is infinitely more im-
portant than subsequent objectives, these constraints can be handled using a
logical progression through a reduced binary tree structure. Initially, a purely
continuous constrained NLP is formulated. A traditional objective function (as
in Equation 1) is used with explicitly defined errors for violations associated
with each control objective constraint at each point in the prediction horizon.
Soft constraint penalty weights are defined as in typical MPC methods. These
dictate the controller performance in cases in which a control objective cannot
be met for all points in p. Note that as with all soft constraint formulations, this
NLP is inherently feasible.

Starting with the highest priority objective, the ability to meet each indi-
vidual control objective is considered. First, hard constraints forcing the errors
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associated with the highest priority objective to zero are incorporated into the
optimization problem. The constraints are of the form: ei(k) = 0 ∀k = 1..p where
i corresponds to the objective. The feasibility of the modified problem is then
examined, but the actual global solution is not required . If feasible, it is the
known that the control objective can be met and the constraints are left in the
problem. However, if infeasible, the corresponding hard constraints are removed
(relaxed). Note that at this point, violations of this unachievable control objec-
tive will be ultimately minimized based on their appearance in the traditional
objective function as soft penalties. The next highest priority objective is then
considered. Appropriate hard constraints are again added to the problem and
the feasibility is again tested, with two possible results: The second problem con-
sidered will involve hard constraints corresponding to the two highest priority
control objectives if the initial problem was feasible. However, if the initial prob-
lem was not feasible, the second problem will only consider the hard constraints
associated with the second control objective. All subsequent control objectives
are considered one at a time according to this procedure. This will define a single
NLP that represents the final node from the binary tree that would have yielded
the optimal solution. Again, the traditional weights associated with each error
variable are still necessary. These values will define how the controller will handle
cases in which the hard constraints associated with particular prioritized control
objectives cannot be met absolutely over the whole prediction horizon. When it
has been determined that a hard constraint cannot be met without sacrificing
higher priority objectives the control algorithm will fall back to the traditional
weights as it minimizes soft constraint violation. This NLP is then solved for
the optimal input sequence which can then be implemented. Pseudo-code of this
algorithm is presented in Algorithm 1.

Ultimately, this approach requires only that the feasibility of a maximum of
n problems be assessed and then only the solution of a single NLP. Effectively,
each individual feasibility check represents the binary flag from the mixed in-
teger formulation that defines whether or not the discretized control objective
can be met. Checking the numerous control objectives individually in the order
of priority replaces the need for the binary variables and additional proposi-
tional logic constraints associated with meeting the objectives in order. Note
that this framework is exactly equivalent to the mixed-integer implementation
with geometrically weighted control objectives in which a given control objective
is infinitely more important than subsequent objectives.

As presented, this NMPC formulation judiciously handles n prioritized control
objectives through the consideration of a maximum of n NLPs. The feasibility
of up to n problems must be determined and the appropriate NLP is then solved
to global optimality. This maximum number of problems is encountered in the
instance where the feasibility of the problem associated with each control ob-
jective is considered individually beginning with the highest priority objective.
However, a number of heuristics can be utilized to further reduce the computa-
tional demands. For example, under relatively normal operating conditions, it
is to be expected that a large number of the control objectives associated with
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Formulate traditional soft constraint MPC problem with explicit errors for each control objective.
(Eq.1)
Rank control objectives in order from highest to lowest priority.
FOR i from 1 to # of Prioritized Objectives

Impose hard constraints with highest priority control objective i not yet considered:
(ei(k) = 0 ∀k = 1..p)

Check problem feasibility (Solve deterministically until infeasible or feasible)
IF Problem is feasible

Retain corresponding hard constraints.
ELSE

Remove corresponding hard constraints.
END

END For all objectives
Solve resulting NLP with hard constraints corresponding to achievable objectives to global optimal-
ity.
Implement optimal control sequence.

Algorithm 1. Pseudo-Code for the Hard Constraint Formulation for Prioritized Ob-
jective Control

a given process can be met, particularly those of high priority. Under this as-
sumption, it could be beneficial in the optimal case where all objective can be
met. If feasible, the remaining problems (feasibility checks) can be ignored. If all
control objectives are indeed feasible, the algorithm needs only to consider and
solve a single NLP.

4 Nonconvex Optimization

An integral piece of any MPC algorithm is the optimization problem solution
method. For nonlinear formulations this is of particular importance. Local solu-
tion methods can be used. This can leave the strategy susceptible to suboptimal
solutions. Gradient-based methods can become trapped in local minima, thus the
optimality of the solution may be dependent on the initial value. In an attempt
to address the nonconvex problem, globally convergent stochastic methods can
be employed. In this work, the feasible solution space is randomly searched and
probabilistic arguments support the convergence of the algorithm to solution.

NLP solution serves two purposes in this NMPC formulation. The first func-
tion of this tool is to check the feasibility of a given NLP to determine whether
a control objective can be met in order of priority. In this instance, an optimal
solution is not needed. Here, the search need only provide any feasible solution
(upper bound) or sufficiently search the solution space and exhaust the possi-
bility that a feasible solution exists. For the stochastic search, as the number of
points considered approaches infinity, the global feasibility can be guaranteed.
This semblance of global optimality provided by the random search is important,
as local methods can only be relied upon to indicate that a problem is feasible.
Indication of local infeasibility fails to provide information of global feasibility.

The last step in the algorithm is to determine the global optimum of the final
NLP that best accounts for the control objective prioritization. In this case, the
stochastic approach is used to solve this single problem to “global optimality”.
For this particular NLP, the solution space is again randomly searched. The
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best solution found in the random search is used as the starting point for a
local gradient based solution. This effectively determines the global solution,
provided that the solution space is adequately sampled. However, no guarantee
can be made for samples of finite size. In this context, the solution provides an
optimal control sequence that assures that all control objectives are logically
handled in order of their priority and those that cannot be met absolutely have
their violations minimized based on their appearance in the traditional objective
function.

Alternatively, established deterministic methods that provide a rigorous guar-
antee on global optimality can be considered. Deterministic methods for global
optimization typically rely on the generation of convex relaxations of the orig-
inal nonconvex problem. These convex relaxations are constructed in a num-
ber of ways. One such approach, the αBB method [2], handles general twice-
differentiable nonconvex functions. This method relies on the determination of
the minimum eigenvalue for the Hessian of the nonconvex function over the re-
gion of interest, however does not require additional variables or constraints in
the formulation. An alternative approach [11, 16] generates convex functions
using the known convex envelopes of simple nonlinear functions. The original
nonconvex problem is reformulated to a standard form with constraints involv-
ing simple nonlinear functions by the introduction of new variables and new
constraints. This analysis is achieved by recursively simplifying terms in the
function tree expression by introduction of new simple nonlinear expressions.
The new simple nonlinear functions explicitly define new variables in terms of
other variables. A resulting nonconvex equality constraint can then be replaced
by convex inequality constraints. A detailed explanation of these methods and
some comparison of the methods is given in [5].

Upon creation of the linear relaxation for the nonconvex nonlinear problem,
the branch-and-reduce method [15] can be implemented. This is an extension
of the traditional branch-and-bound method with bound tightening techniques
for accelerating the convergence of the algorithm. Within this branch-and-reduce
algorithm, infeasible or suboptimal parts of the feasible region can be eliminated
using range reduction techniques such as optimality-based and feasibility-based
range reduction tests [1, 15, 16] or interval analysis techniques [12]. These tech-
niques help to derive tighter variable bounds for a given partition in the search
tree. The algorithm terminates when the lower bounds for all partitions either
exceed or are sufficiently close (within specified tolerances) to the best upper
bound. At this point, a global optimum has been found. This approach was
applied in a NMPC framework [10].

5 Case Study

The proposed prioritized objective nonlinear model predictive control algorithm
is demonstrated on a simulated multivariable network of air pressure tanks. A
complete description of the system and closed-loop results are presented below.
Consider a simulated multivariable network of air pressure tanks.
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Fig. 1. Schematic of the Network of Pressure Tanks

Supply air is fed to the system at 60 psig through two control valves which
act as the manipulated variables (u1 and u2) in the control problem. Pressure
gradients drive the flow of air through the system. The air flows through the
four tanks that are interconnected, while the numerous valves throughout the
system dictate the direction of the flow. After traveling through the system,
the air ultimately exits the downstream tanks to the atmosphere. It is assumed
that the pressure in each of the four tanks can be measured. These will act as
the process outputs to be controlled. The non-square nature of this configuration
(2×4) lends itself well to demonstrating the ability of this specific controller as all
four measurements cannot be maintained at setpoint using only two manipulated
variables, thus forcing the controller to decide the appropriate trade-off based
on the prioritized objectives.

For this work, it is assumed that the flow of air across a given valve (vi) can
be defined as:

fi(k) = ci

√
∆Pi(k) (4)

where fi is a molar flow, k is the sample time, ci is a proportionality constant
related to the valve coefficient, and ∆Pi is the pressure drop across the valve.
For this study, it is assumed that there is no reverse flow across a valve, forcing
∆Pi non-negative. Under ideal conditions, the discrete time governing equations
defining the pressures in each tank are taken as:

P1(k + 1) = hP1(k)
V1

(u1fCV 1 − γ1f12 − (1− γ1)f14) + P1(k)

P2(k + 1) = hP2(k)
V2

(γ1f12 + (1 − γ2)f32 − f22) + P2(k)

P3(k + 1) = hP3(k)
V3

(u2fCV 2 − γ2f34 − (1− γ2)f32) + P3(k)

P4(k + 1) = hP4(k)
V4

(γ2f34 + (1 − γ1)f14 − f44) + P4(k)

(5)

where γ1 and γ2 define the fractional split of air leaving the upstream tanks.
Here, this set of equations represents both the nonlinear process and the model
used for control purposes. The sampling period (h) used was 3 minutes. This is
important as it defines the time limit in which each optimization problem must
be solved for real-time operation. The parameter values used in this study are
summarized in Table 1.



Hard Constraints for Prioritized Objective Nonlinear MPC 225

Table 1. Model Parameters for the Simulated Network of Pressure Tanks

V1 = 8 V3 = 8 cCV 1 = 0.25 c12 = 0.02 c22 = 0.06 c44 = 0.06 γ1 = 0.5
V2 = 5 V4 = 5 cCV 2 = 0.25 c14 = 0.05 c34 = 0.02 c32 = 0.05 γ2 = 0.3

6 Closed-Loop Results

The performance of the proposed control algorithm is tested on the simulated
pressure tank network. Its ability to appropriately handle control objective pri-
oritization through a number of reference transitions and in the presence of
disturbance loads is demonstrated. A number of control objectives are defined
and assigned a relative priority. These are summarized in Table 2. Assume that
for safety concerns, it is important that the pressure in the upstream tanks are
kept below a pressure of 60 psig. These constraints are given highest priority.
A secondary goal is the regulation of the pressure in second tank (P2). It is
desirable for this tank pressure to closely track setpoint, and thus a setpoint
constraint as well as tight upper and lower bounds (±2 psig from setpoint) are
imposed. Note that the lower and upper bounds are assigned to be priority 3
and 4 respectively, while the setpoint constraint is not considered for objective
prioritization and use of hard constraints. Subsequent control objectives include
a lower bound on the pressure in tank 1 and bounds on the pressure in tank 4.
The pressure in tank 3 is left unconstrained. All constraints include a 15 minute
delay for enforcement.

Table 2. Summary of Prioritized Control Objectives (* Note that a hard constraint
corresponding to the setpoint control objective is not used.)

Relative Variable Constraint Constraint Relative Variable Constraint Constraint
Priority Constrained Type Value Priority Constrained Type Value

1 P1 UB 60 6 P4 UB 30
2 P3 UB 60 7 P4 LB 20
3 P2 LB 25/20/25 8 P4 LB 23
4 P2 UB 29/24/29 9∗ P2 SP 27/22/27
5 P1 LB 55

The controller is tuned to with m = 2 and p = 20. Each control objective is as-
signed a weight of Γe = 100 and the input movements are not penalized, Γu = 0.
These weights are used to determine the tradeoffs between soft constraint vio-
lations of the various control objectives for which the hard constrained problem
cannot be solved. For this example, at each time step, the appropriate NLP is
solved using a stochastic approach followed by a local gradient based search.
Specifically, 1000 points in the solution space are considered, the best of which
is used as the starting point for the gradient-based solution. This stochastic and
gradient-based solution process is repeated 3 times and the best solution is taken
as the optimal control sequence to be implemented.

At t = 150 minutes, a setpoint change for the pressure in tank 2 steps from
its initial value of 27 psig to 22 psig. The controller recognizes the change and
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Fig. 2. Closed-loop Results of the Simulated Network of Pressure Tanks being Con-
trolled by the Hard Constraint formulation for Prioritized Objective NMPC, Objective
Function Values, and Unachievable Control Objectives

begins moving the system to accommodate it (Figure 2). Note that the bounds
associated with P2 are of high priority (priority 3 and 4). The move to satisfy
these constraints requires the controller to violate the lower bounds on the pres-
sure in tank 4 (priority 7 and 8). This means that imposing hard constraints
corresponding to these control objectives renders the associated NLP infeasible.
The control objectives that lead to NLP infeasibility and the objective function
of the solution at each time step is seen in Figure 2. During this transition, the
controller is also unable to move the system fast enough to avoid briefly violat-
ing the upper bound on the pressure in tank 2 (priority 4). The controller does
however, track the new setpoint.

At t = 300 minutes, a disturbance is imposed on the system by simulating
a leak in the first tank. The controller cannot respond to the disturbance fast
enough to avoid the lower bound on the pressure in this tank (priority 5). How-
ever the controller is able to quickly return the pressure within the limiting
values. This action saturates one of the inputs. Again, P2 is maintained within
its limits but is unable to track the setpoint in an offset free position. At t = 450
minutes, while still operating under a disturbance, P2 is returned to its original
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setpoint value of 27 psig. The controller recovers the ability to meet the all con-
trol objectives associated with P4. However, the controller does ride the lower
bound constraint associated with P1.

Note that the indication of feasibility in this formulation is based on the ability
for the controller to find control moves that can maintain the model predicted
outputs within their constraint limits by driving the error to zero. However, the
model predicted values are not always necessarily equivalent to the true process
values (measurements). This plant-model mismatch is inherent in the accuracy
of models developed through the identification process and is often exaggerated
in the presence of an unmeasured disturbance. For this reason, more conservative
bounds should be used to insure that the desired limits are enforced.

7 Conclusions

A Nonlinear Model Predictive Control (NMPC) algorithm that utilizes hard
variable constraints for control objective prioritization has been proposed. The
formulation requires the solution of only a minimal number of NLP’s as opposed
to a complex MINLP. A stochastic approach is utilized to check problem feasibil-
ity and to find the optimum of the resulting nonconvex NLP’s. This alleviates the
shortcomings of purely local gradient based methods as it better searches the so-
lution space for the global optimum. However, optimality can only be rigorously
guaranteed using existing deterministic methods. The controller was shown to
be effective in appropriately handling control objectives of varying importance
in a simulated multivariable network of pressure tanks.
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