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Summary. The benefits of parametric programming for the design of optimal con-
trollers for constrained systems are widely acknowledged, especially for the case of
linear systems. In this work we attempt to exploit these benefits and further extend
the theoretical contributions to multi-parametric Model Predictive Control (mp-MPC)
for non-linear systems with state and input constraints. The aim is to provide an insight
and understanding of multi-parametric control and its benefits for non-linear systems
and outline key issues for ongoing research work.

1 Introduction

The explicit, multi-parametric MPC (mp-MPC) has been extensively investi-
gated for linear systems. Major results have been presented for the discrete-time
case ([2]) and recently for the linear, continuous-time systems case ([20]). The
key advantage of mp-MPC is that the on-line optimization, typically involved in
MPC, can be performed off-line to produce an explicit mapping of the optimal
control actions and the objective function in the space of the current states. The
on-line implementation of the controller is then reduced to a simple function
evaluation ([17]).

Although mp-MPC has received much attention for the linear systems case,
there is relatively little progress for the non-linear systems case. Most of the
research on MPC has focused in on-line implicit MPC methods that usually
rely, for the case of continuous-time systems, on numerical dynamic optimization
techniques ([5, 6, 13]) or for the case of discrete-time systems, on on-line Non-
linear Optimization ([15, 18]). A first attempt towards the design of approximate,
linear mp-MPC controllers for the non-linear MPC problem, is presented in [11]
and [12]. The first work proposes a method for a local mp-QP approximation
to the continuous-time, mp-NLP control problem. The second work focuses on
the MPC problem for non-linear systems with linear state and input constraints,
and a quadratic cost.

This work aims to provide an insight and understanding of multi-parametric
control and outline the benefits of non-linear mp-MPC. Two approaches are
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presented here. The first approach presents a method for obtaining a Piece-
wise Affine (PWA) approximation to the solution of the non-linear MPC for
discrete-time systems, by exploiting the fact that the non-linear MPC problem
for non-linear systems with non-linear state and input constraints, and non-linear
objective, is a non-linear optimization problem where the input is the optimisa-
tion variable and the initial state is the optimisation parameter. This approach
is based on recent developments on parametric programming techniques ([7]).

The second approach deals with the explicit solution of the non-linear MPC,
for certain classes of non-linear, continuous-time models for which there exists
an analytical solution to the dynamic systems arising from the first order opti-
mality conditions. The optimisation is then solved off-line, based on a recently
developed multi-parametric, dynamic optimisation algorithm ([20]) - the control
law is then derived as an explicit, non-linear function of the states. In both ap-
proaches the implementation of the controller is simply reduced to a sequence
of function evaluations, instead of solving the on-line, non-linear optimal control
problem, which is usually the typical procedure of non-linear MPC. The two pro-
cedures are then applied, in the end of this paper, on the classical, constrained
Brachistochrone problem to illustrate the key features of the new developments.

2 Piecewise Affine Approximation to the Discrete - Time
Non-linear MPC

The main multi-parametric programming problem that is frequently encountered
in various engineering applications, including non-linear MPC, is the following

z(θ) = min
x

f(x) (1a)

s.t. g(x) ≤ b + Fθ (1b)
x ∈ X (1c)
θ ∈ Θ (1d)

where x is a vector of continuous variables, f a scalar, continuously differentiable
function of x, g a vector of continuously differentiable functions of x, b a con-
stant vector, F are constant matrices of appropriate dimensions, θ a vector of
parameters and X and Θ are compact subsets of the x and θ-space respectively.
A representative example of this problem is the discrete-time constrained linear
quadratic regulator problem ([2]), where x is the sequence of control inputs over
a finite time horizon, f(x) is a strictly convex quadratic function of x, g(x) is a
linear function of x, θ is the initial state and X and Θ are convex, polyhedral
sets. Although, solving (1) has been proved to be a difficult task, an algorithm
was presented recently in [7, 8] which can obtain a linear, PWA approximation
to z(θ) with a prescribed accuracy. The value function z(θ) as well as the opti-
mization variable x(θ) are linear, PWA function of θ. Given a value of θ then
z(θ) and x(θ) can be obtained by simple function evaluations.
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The mathematical framework for the discrete-time nonlinear MPC can be
shortly summarised as the following constrained non-linear programming (NLP)
problem ([15, 18])

zo(xt) = min
U

J(U, xt) (2a)

s.t h(U, xt) ≤ b (2b)
UL ≤ U ≤ UU , xL ≤ x ≤ xU (2c)

where xt is the state at the current time instant, U = {ut, ut+1, . . . , ut+N−1}
is the sequence of control inputs over the prediction horizon N , J(U, xt) is a
scalar objective function, h(U, xt) is a vector of non-linear functions, UL, UU

are lower and upper bounds for U and xL and xU are lower and upper bounds
for x. The functions J(U, xt) and h(U, xt) are generally non-linear, although
the analysis that follows can be applied for the linear case as well, and may
include any terminal cost function and terminal constraints respectively to ensure
stability ([15]).

Transforming the NLP (2) to (1) can been done in two steps. First, if J(U, xt)
is only a function of U then simply replace (2a) by simply J(U) and the objective
function of (2) is the same with (1). Otherwise, introduce a new scalar ε ∈ R

and transform (2) into the following NLP

z̄(xt) = min
U

ε (3a)

s.t. J(U, xt) ≤ ε , h(U, xt) ≤ b (3b)
UL ≤ U ≤ UU , xL ≤ x ≤ xU (3c)

or simply to

z̄(xt) = min
U

ε (4a)

s.t. h̄(U, xt) ≤ b̄ , UL ≤ U ≤ UU , xL ≤ x ≤ xU (4b)

where h̄(U, xt) = [J(U, xt) hT (U, xt)]T and b̄ = [ε bT ]T .
A simple but conservative way to solve the above problem is by linearising the

inequalities in (4) and solving off-line the linearized problem. More specifically,
choose an initial x∗t and solve (4) to acquire U∗. Then linearize the inequalities
in (4) over x∗t , U

∗ to obtain the following approximating, mp-LP problem over
xt and U

z̆(xt) = min
U

ε (5)

h̄(U∗, x∗t ) +
∂h̄(U∗, x∗t )

∂U
(U − U∗) ≤ b̄ − ∂h̄(U∗, x∗t )

∂xt
(xt − x∗t ) (6)

UL ≤ U ≤ UU , xL ≤ x ≤ xU (7)

which now of form (1), where x is U and θ is xt. The solution to the mp-LP (5)
is a linear, PWA function of xt, z̆(xt) ([8]). The control sequence U(xt) is also a
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linear PWA function of xt and hence the first control input ut(xt) of the control
sequence, is a linear PWA function of xt. The solutions z̆(xt) and ut(xt) are only
valid in a critical region CR of xt which is defined as the feasible region of xt

associated with an optimal basis ([7, 8]). In the next step choose xt outside the
region of CR and repeat the procedure until the space of interest is covered.

A different procedure for transforming the NLP (4) into (1) is obtained
if one considers that a nonlinear function h̄i(U, xt) consists of the addition,
subtraction, multiplication and division of five simple non-linear functions of
Ui, xt,i ([7, 9, 16, 21]): a) linear fL(Ui, xt,i), b) bilinear fB(Ui, xt,i), c) fractional
fF (Ui, xt,i), d) exponential fexp(Ui, xt,i) and e) univariate concave fuc(Ui, xt,i)
functions of Ui, xt,i. If fL(Ui, xt,i), fB(Ui, xt,i), fF (Ui, xt,i), fexp(Ui, xt,i) and
fuc(Ui, xt,i) are simply functions of Ui then they are simply retained without
further transforming them. If, however, they are functions of both Ui, xt,i then
a new variable is assigned for each of the non-linear functions and a convex ap-
proximating function can be obtained which is linear with respect to xt,i. For
example consider the non-linear inequality

sin(Ui) +
1

Uixt,j + 1
≤ 0 (8)

The term sinUi is preserved without further manipulation as it is a non-linear
function of Ui. Set w = Uixt,j+1. This equality contains a bilinear term of Uixt,j .
A convex approximation can then be obtain for this equality by employing the
McCormick ([7, 9, 16]) over- and underestimators for bilinear functions

−w + xL
t,jUi ≤ UL

i x
L
t,j − UL

i xt,j , −w + xU
t,jUi ≤ UU

i xU
t,j − UU

i xt,j (9a)

w − xU
t,jUi ≤ −UL

i x
U
t,j + UL

i xt,j , w − xL
t,jUi ≤ −UU

i xL
t,j + UU

i xt,j (9b)

Moreover, (8) can be re-written as sinUi + 1/w ≤ 0. It can be easily noticed
that the above inequality and (9) have the same form with the inequalities
in (1). Convex approximations to non-linear functions have been extensively
investigated in [7, 9, 16, 21]. Since it is difficult to fully present the theory of
convex approximations in this paper due to lack of space, the interested reader
can look in the relevant literature and the references within, cited here in [7, 9,
16, 21].

Following the above procedure, one can transform the NLP (4) to the mp-NLP
problem (1) as following

ẑ(xt) = min
U,W

ε (10a)

s.t. ĥ(U,W ) ≤ b̂ + F̂ xt (10b)

where W is the vector of all new variables w which were introduced to re-
place the non-linear terms fL(Ui, xt,i), fB(Ui, xt,i), fF (Ui, xt,i), fexp(Ui, xt,i)
and fuc(Ui, xt,i). The algorithm in [7, 8] can then be used to solve the above
problem and obtain a linear, PWA approximation to the non-linear MPC prob-
lem for ut. The control input ut as well as the value function ẑ(xt) are both
PWA function of xt hence a feedback control policy is obtained.
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The main disadvantage of the above method is that both problems (5) and
(10) only provide an approximation for the optimal solution of (2). This could
result to violation of the constraints of (2), although the constraints in both (5)
and (10) are satisfied, thus resulting into state and input constraints violation
for the system. However, as far as the authors are aware of, there is currently
no alternative multi-parametric MPC method which can guarantee constraint
satisfaction for non-linear, discrete-time systems, since most methods rely on the
approximation of the initial non-linear programming problem (2). An alternative
method, for obtaining the optimal solution and guarantee constraint satisfaction
is to address the problem in continuous-time and not in discrete-time. This will
be shown in the next section.

3 Multi-parametric Non-linear Optimal Control Law for
Continuous - Time Dynamic Systems

It is a common practise to deal with the problem of non-linear MPC in discrete
time by transforming the continuous-time optimal control problem involved into
a discrete-time one. The interest of the relevant research has long being focused
on solving the discrete-time non-linear MPC problem. However, the continuous-
time case remain of great importance since in practise most of the systems of
interest are continuous-time. In this section a novel approach is presented that
derives off-line the optimal control law in a continuous-time optimal control
problem with state and input constraints. More specifically consider the following
continuous-time, optimal control problem

φ̂ = min
x(t),u(t)

φ(xtf ,tf
) (11a)

s.t. ẋ = f(x(t), u(t), t) (11b)
ψg(xtf

) ≤ 0 (11c)
g(x(t), u(t)) ≤ 0 (11d)
x(t0) = x0 (11e)
t0 ≤ t ≤ tf (11f)

where x(t) ∈ X ⊆ Rn are the systems states, u(t) ∈ U ⊆ Rm are the control
variables, g : Rn × Rm → Rq are the path constraints and ψg : Rn → RQg is
the terminal constraint. The objective function φ : Rn ×R→ R is a continuous,
differentiable, non-linear function of x(tf ) at the final time tf .

The objective is to obtain the solution of problem (11) i.e. the optimal value
of the performance index φ̂ and the optimal profiles of the control inputs u(t),
as explicit function of the initial states x0. Hence, by treating x0 as a parame-
ter, the optimal control problem (11) is recast as a multi-parametric Dynamic
Optimization (mp-DO) problem where φ̂ is the value function, u(t) the optimal
control profiles and x0 is the parameter of the problem. Problem (11) has been
thoroughly studied for the case of the continuous-time, linear quadratic optimal
control problem ([20]), however this is the first time this problem is treated for
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non-linear systems. Our purpose here is to extend the results of [20] for the
continuous-time, non-linear optimal control problem described in (11).

Let define the order of a path constraint before we proceed

Definition 1. The constraint gi(x, u) is said to be of order l̂ ≥ 1 with respect to
the dynamics, if

∂gi(x, u)j

∂uk
= 0, j = 1, 2, . . . , l̂ − 1, k = 1, . . . ,m

∂gi(x, u)l̂

∂uk
	= 0, for at least one k, k = 1, . . . ,m

where the index j denotes time derivatives. The constraint gi(x, u) is said to be
of zero-th order if

∂gi(x, u)
∂uk

	= 0, for at least one k, k = 1, . . . ,m

The Karush-Kuhn-Tucker conditions for the optimal control problem (11) de-
rived from the Euler-Lagrange equations and for l̂ ≥ 1 are given as ([1, 4, 14])

ORDINARY DIFFERENTIAL EQUATION (ODE)

ẋ = f(x(t), u(t), t), t0 ≤ t ≤ tf (12)

BOUNDARY CONDITIONS FOR THE ADJOINTS

x(t0) = x0 (13)

λ(tf ) =
(
∂φ(xtf

, tf )
∂x(tf )

)T

+
(
∂ψg(x(tf ))
∂x(tf )

)T

· ν (14)

COMPLEMENTARITY CONDITIONS

0 = νj · ψg
j (x(tf )) (15)

νj ≥ 0, j = 1, . . . , Qg (16)

ADJOINT DIFFERENTIAL SYSTEM

µi(t) ≥ 0, gi(x(t), u(t)) · µi(t) = 0, i = 1, . . . , q (17)

λ̇(t) = −
(
∂f(x(t), u(t), t)

∂x(t)

)T

· λ(t) −
q∑

i=1

(
∂g l̂i

i (x(t), u(t))
∂x(t)

)T

· µi(t) (18)
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0 =
(
∂f(x(t), u(t), t)

∂u(t)

)T

· λ(t) +
q∑

i=1

(
∂g l̂i

i (x(t), u(t))
∂u(t)

)T

· µi(t) (19)

t0 ≤ t ≤ tf (20)

Assume: tnkt+nkx+1 = tf , and Define: (21)

tkt ≡ Entry point if µj(t−kt) = 0, µj(t+kt) ≥ 0, k = 1, 2, . . . , nkt (22)

tkx ≡ Exit point if µj(t+kx) = 0, µj(t−kx) ≥ 0, k = 1, 2, . . . , nkx (23)

For at least one j = 1, 2, . . . , q (24)

JUNCTION CONDITIONS (ENTRY POINT)

0 = gj
i (x(tkt), u(tkt)), j = 0, . . . , l̂i − 1 (25)

0 = g l̂i
i (x(t+kt), u(t+kt)), k = 1, 2, . . . nkt, i = 1, . . . , q (26)

JUMP CONDITIONS (ENTRY POINT - EXIT POINT)

λ(t+kt) = λ(t−kt) +
q∑

i=1

l̂i−1∑
j=0

(
∂gj

i (x(tkt), u(tkt))
∂x(tkt)

)T

· ϕj,i(tkt) (27)

H(t+kt′ ) = H(t−kt′), k = 1, 2, . . . , nkt (28)

λ(t+kx) = λ(t−kx) (29)

H(t+kx′) = H(t−kx′), k = 1, 2, . . . , nkx (30)

H(t) = ẋ(t)λ(t) + g(x(t), u(t))T · µ(t) (31)

tk(t,x) = {min(tk(t,x)′ , tf ) ∨max(tk(t,x)′ , t0)} (32)

where λ(t) ∈ Rn is the vector of adjoint (co-state) variables, µ(t) ∈ Rq is the
vector of Lagrange multipliers associated with the path constraints, ν(t) ∈ RQg

is the vector of Lagrange multipliers of the end-point constraints, ϕi ∈ Rl̂i ,
i = 1, . . . , q are the Lagrange multipliers linked with the jump conditions and
H(t) is the Hamiltonian function of the system. The time points where the jump
conditions apply are called corners or switching points. The time intervals t ∈
[tk, tk+1], k = 1, . . . , (nkt + nkx) between two consecutive corners are termed as
constrained or boundary arcs if at least one constraint is active or unconstrained
arcs otherwise, where nkt is the maximum number of entry points that may exist
in the problem and nkx is the maximum number of exit points.
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Remark 1. For a zeroth order constraint, equations (25),(26) are omitted, (27),
(28) are written as λ(t+kt) = λ(t−kt) and H(t+kt) = H(t−kt) respectively and ϕ = 0.

The following assumption is necessary for the analysis that will follow.

Assumption 3.1. There exist an analytical solution to the differential algebraic
equation (DAE) system arising from (12), (18) and (19) with boundary condi-
tions the equations in (13), (14), (25), (26), (27) and (29).

If the above assumption holds then x(t, tk, x0), λ(t, tk, x0), µ(t, tk, x0), u(t, tk, x0)
and ξ(tk, x0) = [xT

f λT
0 µT (t1) . . . µT (tnkt

) ϕT (t1) . . . ϕT (tnkt
) νT ] are explicit,

non-linear functions of time t, the switching points tk = {t1 t2 . . . tnkt
+ tnkx

}
≡ {t1t t1x t2t . . . tnkx

} and the initial condition x0. This allows the derivation of
the optimal profiles of the control inputs in terms of x0 and the determination of
the compact regions in the space of the initial conditions where these functions
hold.

In order to obtain the optimal control profiles the following algorithm can be
followed:

Algorithm 3.1

1: Define an initial region CRIG in which problem (11) is going to be solved
2: Select a realization in the parameter space of x0 and compute the optimal

number of switching points and (constrained and/or unconstrained) arcs for
these points by solving the DO problem (12)-(32).

3: Given the sequence of switching points and considering x0 as a free parame-
ter, solve analytically the DAE system arising from (12), (18) and (19) with
boundary conditions the equations in (13), (14), (25), (26), (27) and (29).to
obtain, first ξ̂(tk, x0) and then the differential states ˆλ(t, tk, x0), x̂(t, tk, x0),
µ̂(t, tk, x0) and finally the algebraic variables û(t, tk, x0).

4: Substitute the values of ξ̂(tk, x0), ˆλ(t, tk, x0), x̂(t, tk, x0), µ̂(t, tk, x0) and
û(t, tk, x0) in the equations (28), (30) and (32) and solve the new system
of non-linear, algebraic equations to obtain tk as an explicit function of the
free parameter x0 and call it tk(x0).

5: Substitute tk(x0) into the expression of u(t, tk(x0), x0) to obtain the optimal
parametric control profile.

6: Compute the critical region CR where the optimal parametric control profile
is valid.

7: If CR is not empty then select a new initial condition x0 outside CR and go
to Step 2 else stop

The algorithm starts with the definition of the space CRIR of initial conditions
x0, in which the mp-DO problem is going to be solved. In step 2 the switching
points and the corresponding arcs and active constraints are obtained by solving
the DO (12)-(32) for a fixed value of x0. In step 3 the DAE system that consists of
the system’s dynamic model and the optimality conditions corresponding to the
switching points and active constraints, derived in step 2, is solved symbolically
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to obtain the optimal profiles of ξ̂(tk, x0), ˆλ(t, tk, x0), x̂(t, tk, x0), µ̂(t, tk, x0) and
û(t, tk, x0). The vector tk(x0) is calculated in the step 4 by solving symbolically
the non-linear, algebraic equalities of the Jump conditions (28), (30) and (32). In
step 5 the optimal parametric control profile is obtained by substituting tk(x0)
into û(t, tk, x0). Finally the critical region in which the optimal control profile is
valid, is calculated in step 6, following the procedure which will be described in
the following. The algorithm then repeats the procedure until the whole initial
region CRIR is covered.

A critical region CR in which the optimal control profiles are valid, is the
region of initial conditions x0 where the active and inactive constraints, obtained
in step 2 of algorithm 3.1, remain unaltered ([20]). Define the set of inactive
constraints ğ , the active constraints g̃ and ˜̂µ > 0 the Lagrange multipliers
associated with the active constraints g̃; obviously the Lagrange multipliers µ
associated with the inactive constraints are 0. The critical region CR is then
identified by the following set of inequalities

CR � {x0 ∈ R
n | ğ(x̂(t, tk(x0), x0), û(t, tk(x0), x0)) < 0 , ˜̂µ(t, tk(x0), x0) > 0

ν̃(t, tk(x0), x0) > 0} (33)

In order to characterize CR one has to obtain the boundaries of the set described
by inequalities (33). These boundaries obviously are obtained when each of the
linear inequalities in (33) is critically satisfied. This can be achieved by solving
the following parametric programming problems, where time t is the variable
and x0 is the parameter.

• Take first the inactive constraints through the complete time horizon and
derive the following parametric expressions:

Ği(x0) = max
t
{ği(x̂(t, tk(x0), x0), û(t, tk(x0), x0))|t ∈ [t0, tf ]}, i = 1, . . . , q̆

(34)
where q̆ is the number of inactive constraints.

• Take the path constraints that have at least one constrained arc [ti,k̃t, ti,k̃x]
and obtain the following parametric expression

G̃i(x0)=max
t
{g̃i(x̂(t, tk(x0), x0),û(t, tk(x0), x0))|t∈ [t0, tf ]}∧{t 	∈ [ti,k̃t, ti,k̃x]]}

(35)

k = 1, 2, . . . , ni,k̃t, i = 1, 2, . . . , q̃

where ni,k̃t is the total number of entry points associated with the ith active
constraint and q̃ is the number of active constraints.

• Finally, take the multipliers of the active constraints and obtain the following
parametric expressions

µ̆(x0)=min
t
{ ˜̂µ(t, tk(x0), x0)|t = ti,kt = ti,kx, k = 1, 2, . . . , ni,kt}, i = 1, 2, . . . , q̃

(36)
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One should notice that the multipliers assume their minimum value when
the corresponding constraint is critically satisfied, hence, the path constraint
reduces to a point constraint. This property is captured in the equality con-
straint t = ti,kt = ti,kx.

In each of the above problems the critical time, where each of the inequalities
(ği(x̂(t, tk(x0), x0), û(t, tk(x0), x0)), g̃i(x̂(t, tk(x0), x0), û(t, tk(x0), x0)), ˜̂µ(t, tk

(x0), x0)) is critically satisfied, is obtained as an explicit function of x0 and
then is replaced in the inequality to obtain a new inequality (Ği(x0), G̃i(x0),
µ̆(x0)) in terms of x0. The critical region in which û(t, tk(x0), x0) is valid, is
given as follows

CR = {Ğ(x0) > 0 , G̃(x0) > 0 , µ̃(x0) > 0 , ν̃(x0) > 0} ∩ CRIG (37)

It is obvious the critical region CR is defined by a set of compact, non-linear
inequalities. The boundaries of CR are represented by parametric non-linear
expressions in terms of x0. Moreover, (34), (35) and (36) imply that in every
region calculated in Step 6 of the proposed algorithm, a different number and
sequence of switching points and arcs holds.

Although, the optimal control profile û(t, tk(x0), x0) constitutes an open-loop
control policy, its implementation can be performed in a MPC fashion, thus
resulting to a closed loop optimal control policy. More specifically, this is achieved
by treating the current state x(t∗) ≡ x0 as an initial state, where t∗ is the time
when the state value becomes available. The control action û(t, tk(x(t∗)), x(t∗))
is then applied for the time interval [t∗, t∗ + ∆t], where ∆t denotes the plants
sampling time, and in the next time instant t∗ + ∆t the state is updated and
the procedure is repeated. Hence, this implementation results to the control law
u(x(t∗)) = {û(t, tk(x(t∗)), x(t∗))|t∗ ≤ t ≤ t∗ + ∆t}.

4 Example

We are going to illustrate the methods discussed above for the constrained
Brachistochrone problem in which a beam slides on a frictionless wire between a
point and a vertical plane 1m on the right of this point ([3]). The coordinates of
the beam on every point on the wire satisfy the following system of differential
equations

ẋ = (2gy)1/2 cos γ (38)

ẏ = (2gy)1/2 sinγ (39)

where x is the horizontal distance, y is the vertical distance (positive downwards),
g is the acceleration due to gravity and γ is the angle the wire forms with
the horizontal direction. The goal is to find the shape of the wire that will
produce a minimum-time path between the two positions, while satisfying the
inequality y − 0.5x − 1 ≤ 0. The above problem is of the form (11) where
φ(x(tf ), tf ) = tf , (11b) is replaced by (38) and (39), g(x(t), u(t)) = y− 0.5x− 1
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and ψg(x(tf )) = −x(tf ) + 1. The last expression represents that at final time
the beam should be positioned at a point where x(tf ) ≥ 1. We also assume that
t0 = 0. Although, the problem has already been solved for a fixed initial point
x0 = [0 0]T (as for example in [3]), here the optimal solution is derived for the
first time as a function of the initial point coordinates.

The problem is first dealt in discrete-time as described in Section 2. The
continuous-time system is turn into a discrete-time system assuming a sampling
time ∆t such that [t0, tf ] is divided in three equally spaced time intervals of ∆t
i.e. [t0, tf ] = 3∆t. The discrete-time problem

min
γk

∆t

xk+1 = xk + (2gyk)−1/2 cosγk ∆t , k = 0, 1, 2

yk+1 = yk + (2gyk)−1/2 sinγk ∆t , k = 0, 1, 2
yk − 0.5xk − 1 ≤ 0 , k = 0, 1, 2, 3
x3 ≥ 1

is then solved by transforming the above problem in (5) and solving the mp-
LP problem to acquire the PWA solution. The continuous-time is solved next
following Algorithm 3.1. The results for both the discrete-time case and the
continuous-time case together with a simulation for x0 = [0 0]T are shown
in Figure 1 and 2. The straight line in both diagrams represents the boundary
of the linear constraint y − 0.5 − 1 ≤ 0. There are three control laws for the
continuous-time case, depending in which region the initial state is. The control
law in the unconstrained region (Figure 2.) is obtained by solving the following
system of algebraic equalities with respect to c1 and γ

0 = c21 − arccos(c1
√
y)− xc21 + c1

√
y sin arccos c1

√
y

γ = −1/2(2g)1/2c1t+ arccos c1
√
y

In the constrained region the control law is obtained as following. First, the
following system of equalities is solved

x(τ ′′)− (2g)
1
2

2c1
τ ′′ +

1
2c21

sin (2g)
1
2 c1(tf − τ ′′) = 1− (2g)

1
2

2c1
tf

tf =
arccos c1

√
y + 0.5(2g)

1
2 c1τ

′′

0.5(2g)
1
2 c1

, x(τ ′′) = 0.1989gτ ′′2 + (2g
1
2 )0.896

√
y0τ

′′ + x0

y(τ ′′) =
(
0.222(2g)

1
2 τ ′′ +

√
y0

)2
, 0.46 = 0.5(2g)

1
2 c1 (tf − τ ′′)

which is a system of five equations with five unknowns tf , τ
′′, c1, x(τ ′′), y(τ ′′).

Then, the control to be applied is given as
If t ≤ τ ′′ then γ = 0.46 = arctan(0.5) Else If t ≥ τ ′′ then γ = 0.5(2g)

1
2 c1(tf − t)

As it can be observed from Fig. 1 the approximating, discrete-time, PWA
solution is not the optimal one comparing to the optimal solution as it is given
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Fig. 1. Discrete-time Brachistochrone Problem
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Fig. 2. Continuous-time Brachistochrone Problem

in [3], due to approximation error. On the other hand, the multi-parametric
optimal control law illustrated in Fig. 2, is the optimal solution for each initial
condition contained in the constrained and unconstrained regions.

5 Conclusions

In this paper the discrete-time MPC problem as well as the continuous-time
optimal control problem were examined. A method was presented for obtain-
ing a linear, PWA approximation to the discrete-time MPC problem where the
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objective and control are obtained as linear, PWA functions of the initial condi-
tion. Then, an algorithm was presented that solves the mp-DO problem arising
from the non-linear, continuous-time, optimal control problem with state and
input constraints, where the objective is a non-linear function of the state at the
final time. It was shown that the optimal control profile is a non-linear function
of the time and the state variables.
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