
Numerical Methods for Efficient and Fast
Nonlinear Model Predictive Control

Hans Georg Bock, Moritz Diehl, Peter Kühl, Ekaterina Kostina,
Johannes P. Schlöder, and Leonard Wirsching

Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg,
Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
{bock,m.diehl}@iwr.uni-heidelberg.de

Summary. The paper reports on recent progress in the real-time computation of con-
strained closed-loop optimal control, in particular the special case of nonlinear model
predictive control, of large differential algebraic equations (DAE) systems arising e.g.
from a MoL discretization of instationary PDE. Through a combination of a direct
multiple shooting approach and an initial value embedding, a so-called “real-time it-
eration” approach has been developed in the last few years. One of the basic features
is that in each iteration of the optimization process, new process data are being used.
Through precomputation - as far as possible - of Hessian, gradients and QP factoriza-
tions the response time to perturbations of states and system parameters is minimized.
We present and discuss new real-time algorithms for fast feasibility and optimality
improvement that do not need to evaluate Jacobians online.

1 Introduction

Feedback control based on an online optimization of nonlinear dynamic process
models subject to constraints, and its special case, nonlinear model predictive
control (NMPC) [1], is an emerging optimal control technique, mainly applied
to problems in chemical engineering [17]. Currently, NMPC is also transferred
to new fields of application such as automotive engineering, where the principal
dynamics are much faster. Among the advantages of NMPC are the capability
to directly handle equality and inequality constraints as well as the flexibility
provided in formulating the objective function and the process model. Lately, a
major aim has become to develop algorithms that are able to treat large-scale
nonlinear first principle models without further need of re-modeling or model
reduction.

In this paper we present and investigate several variants of the “real-time iter-
ation” approach to online computation of constrained optimal feedback control
laws. The present realization of this approach is based on the direct multiple
shooting method [5] for DAE models [15]. Some of the ideas in this paper, and
details on the standard variant of the real-time iteration approach can e.g. be
found in [3, 8, 10]. The main contribution of this paper is to bring together three

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 163–179, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

164 H.G. Bock et al.

real-time iteration levels (first introduced in [2]) that lead to cheap feasibility
or optimality refinements with very fast response times for feedback. They are
based on approximating both the Hessian of the optimization problem as well
as the constraint Jacobians. The overall idea behind the presented ideas is to
move away from the paradigm of solving the optimal control problem inherent to
NMPC to convergence during each sampling period. Instead, different levels of
real-time iterations are proposed that always use the most current information
from the evolving process and allow to stay close to the – also evolving – optimal
NMPC solution. It is important to note that the presented refinement strategies
work in the presence of inequality constraints and active set changes.

A dynamic mechanical model is used to demonstrate that NMPC based on
the proposed real-time iteration variants enters new time scales in computation
time in the range of milliseconds.

Overview

In Section 2 we give some background material on the classical “direct” multiple
shooting method for optimization problems subject to instationary differential
equations, and outline in Section 3 the major ideas of the standard “real-time
iteration” scheme. In Section 4 three real-time iteration variants are presented
that largely avoid costly approximations of Jacobians and Hessians as well as
decompositions during the runtime of the online algorithm, and therefore are
particularly suitable for large scale models:

• In the linearized optimal feedback control variant presented in Section 4.2,
only a matrix vector multiplication and a solution of a small scale quadratic
program (QP) are necessary online.

• In the “feasibility improving” suboptimal feedback control variant presented
in Section 4.3, one additional forward simulation of the nonlinear DAE system
is necessary. In the limit, this variant yields feasible, but only approximately
optimal controls.

• In the online approach in Section 4.4 also the gradient of the Lagrangian is
needed. In the limit this method yields both feasible and optimal controls,
at still lower costs than the standard real-time iteration.

In Section 5, the last variant is used to control the motion of a chain of balls
connected by springs. This example demonstrates the real-time character of the
presented schemes. The paper concludes with a summary and final remarks in
Section 6.

2 Direct Multiple Shooting to Solve NMPC Problems

In this section we prepare the ground for the different variants of the real-time
iteration scheme. First, the model class is presented and the open-loop optimal
control problem for NMPC is set up. Then, we briefly review the direct multiple
shooting approach which forms the basis of the real-time iteration variants to
be discussed.

Numerical Methods for Efficient and Fast NMPC 165

2.1 Differential Algebraic Equation Systems

Throughout this paper, we consider DAE models of index one in the following
form

B(x(t), z(t), u(t), p) ẋ(t) = f(x(t), z(t), u(t), p) (1)
0 = g(x(t), z(t), u(t), p) (2)

Here, x and z denote the differential and the algebraic state vectors, respec-
tively, u is the vector valued control function, whereas p is a vector of system
parameters. This equation type covers many problems in practical engineering
applications, from systems of ODE to reactive flow problems, e.g. the Navier-
Stokes equation with chemical reactions. For the sake of simplicity we restrict
ourselves in this paper to DAE of index 1, however, the generalization to higher
index problems by reduction to index 1 problems with invariants can be derived
following well-known techniques [18]. For notational simplicity, we will omit the
parameters p in the following.

2.2 Nonlinear Model Predictive Control

Given a (possibly estimated) system state x0, a Nonlinear Model Predictive
Control (NMPC) scheme obtains a feedback control ū(x0) from the solution of
an open-loop optimal control problem on a prediction and control horizon [0, Tp]
with length Tp:

minu(·),x(·),z(·)
∫ Tp

0 L(x(t), z(t), u(t)) dt + E(x(Tp)) (3a)

subject to x(0) = x0 (3b)
B(·)ẋ(t) = f(x(t), z(t), u(t)), ∀t ∈ [0, Tp], (3c)

0 = g(x(t), z(t), u(t)), ∀t ∈ [0, Tp], (3d)
0 ≤ h(x(t), z(t), u(t)), ∀t ∈ [0, Tp], (3e)
0 ≤ r (x (Tp)) . (3f)

Here, (3b) denotes the initial value constraint and (3c,3d) the DAE system.
Additional state and control inequality constraints are expressed in (3e), and
(3f) are terminal constraints that have to be satisfied.

Solving this problem for a given initial value x0, we obtain an open-loop
optimal control u∗(t;x0) and corresponding state trajectories x∗(t;x0), z∗(t;x0).
Based on this solution, a constrained nonlinear feedback control law is given by

ū(x0) := u∗(0;x0). (4)

Due to its origin from an optimal control formulation, the NMPC feedback
law has several appealing properties: among them are the possibility to base
the feedback on economic criteria, to make use of important process knowledge
in the form of nonlinear first principle models, and to include constraints (3e)

166 H.G. Bock et al.

in a straightforward way. Given suitable choices of the objective function and
the final state constraint (3f), stability of the nominal NMPC dynamics can be
proven [6, 7, 16].

The present article is concerned with efficient ways to calculate the feedback
control ū(x0) or a suitable approximation in real-time while the considered pro-
cess moves on.

2.3 Direct Multiple Shooting for DAE

Our approaches to the online solution of the optimal control problem (3a)–(3f)
– the real-time iteration schemes – are based on the direct multiple shooting
method [5] for DAE models [15], which is briefly reviewed in this section.

Parameterization of the Infinite Optimization Problem

The parameterization of the infinite optimization problem consists of two steps.
For a suitable partition of the time horizon [0, Tp] into N subintervals [ti, ti+1],,
0 = t0 < t1 < . . . < tN = Tp, not necessarily equidistant, we first parameterize
the control function u as u(t) = φi(t, ui) for t ∈ [ti, ti+1].

Note that any parameterization φi with local support can be used without
changing the structure of the problem as analyzed in the next sections.

In a second step, the DAE solutions are parameterized by multiple shooting.
For simplicity of presentation we choose the same grid points here as for the
controls. The DAE solution is decoupled on the N intervals [ti, ti+1] by intro-
ducing the initial values sx

i and sz
i of differential and algebraic states at times ti

as additional optimization variables.
On each subinterval [ti, ti+1] independently, the trajectories xi(t) and zi(t)

can be computed as solutions of an initial value problem:

B(·)ẋi(t) = f(xi(t), zi(t), φi(t, ui)) (5a)
0 = g(xi(t), zi(t), φi(t, ui))− αi(t)g(sx

i , s
z
i , φi(ti, ui)) (5b)

xi(ti) = sx
i , zi(ti) = sz

i (5c)

Here, the subtrahend in (5b) is deliberately introduced to relax the DAE and
allow an efficient solution for initial values and controls sx

i , s
z
i , ui that may violate

temporarily the consistency conditions (3d). This allows to avoid consistency
iterations at the start of the integration. The scalar damping factor αi(t) is
chosen such that αi(ti) = 1, and αi(t) > 0 is non-increasing on t ∈ [ti, ti+1].
Consistency of the algebraic states is ensured by adding consistency conditions
(7c) for each multiple shooting node at ti in the overall NLP defined in the next
section. For more details on the relaxation of the DAE the reader is referred,
e.g. to [4, 15, 18].

Since the trajectories xi(t) and zi(t) on the interval [ti, ti+1] are functions
of the initial values si := (sx

i , s
z
i) and control parameters ui only, they will be

referred to as xi(t; si, ui) and zi(t; si, ui) in the following. The integral part of
the cost function is evaluated on each interval independently:

Numerical Methods for Efficient and Fast NMPC 167

Li(si, ui) :=

ti+1∫
ti

L(xi(t), zi(t), φi(t, ui)) dt. (6)

Note that up to now the multiple shooting parameterization does not involve
any discretization of differential operators f, g, but is exact.

Structured Nonlinear Programming Problem

The parameterization of problem (3a)–(3f) using multiple shooting and a suit-
able control representation leads to the following structured nonlinear program-
ming (NLP) problem :

min
u,s

N−1∑
i=0

Li(si, ui) + E(sx
N) (7a)

subject to sx
0 = x0, (7b)
0 = g(sx

i , s
z
i , φi(ti, ui)), i = 0, 1, . . .N−1, (7c)

sx
i+1 = xi(ti+1; si, ui), i = 0, 1, . . .N−1, (7d)

r(sx
N) ≥ 0, (7e)

with initial condition (7b), consistency conditions (7c), continuity conditions
(7d), and terminal constraint (7e). Additional control and path constraints are
supposed to be imposed pointwise for a suitable discretization (at ni points τij

on each interval, τij ∈ [ti, ti+1), j = 0, . . . , ni − 1)

h(xi(τij ; si, ui), zi(τij ; si, ui), ui) ≥ 0, j = 0, . . . , ni−1, i = 0, . . .N−1. (7f)

The NLP (7a)–(7e) can be summarized as

P (x0) : min
w

a(w) subject to

{
bx0(w)=0
c(w)≥0,

(8)

where w contains all the multiple shooting state variables and controls:

w = (sx
0 , s

z
0, u0, s

x
1 , s

z
1, u1, . . . , uN−1, s

x
N) ∈ R

nw .

The function a(w) is the objective (7a), the vector valued equation bx0(w) = 0
summarizes all equalities from (7b)-(7d), and the vector valued c(w) ≥ 0 contains
the inequality constraints (7f) and (7e).

It is important to note that the initial condition (7b) is a linear constraint
among the equality constraints, with the varying parameter x0 entering linearly
only in this constraint, so that

bx0(w) =

⎡⎢⎢⎢⎢⎣
sx
0 − x0

g(sx
0 , s

z
0, φ0(t0, u0))

sx
1 − x0(t1; sx

0 , s
z
0, u0)

...

⎤⎥⎥⎥⎥⎦ = b0(w) + Lx0 with L :=

⎡⎢⎢⎢⎢⎣
−Inx

0
0
...

⎤⎥⎥⎥⎥⎦ . (9)

168 H.G. Bock et al.

Structure of the NLP

Due to the deliberate choice of state and control parameterizations, in [5] it was
observed that the NLP problem (8) has a particular structure: its Lagrangian
Lx0(w, λ, µ) = a(w) − λT bx0(w) − µT c(w) (with Lagrange multipliers λ and µ)
is partially separable so that its Hessian ∇2

wL(w, λ, µ) is block diagonal , and ob-
viously independent of x0 (such that we drop the index x0 in ∇2

wLx0). Similarly,
the multiple shooting parameterization introduces a characteristic block sparse
structure of the constraint Jacobian that is also independent of x0, e.g.1

∇wb(w)T =

⎛⎜⎜⎜⎜⎜⎝
I

Zx
0 Zz

0 Zu
0

−Xx
0 −Xz

0 −Xu
0 I

.

⎞⎟⎟⎟⎟⎟⎠ . (10)

Furthermore, if the variables w are split into the state trajectory s := (sx
0 , s

z
0,

sx
1 , s

z
1, . . . , s

x
N) and the control trajectory u := (u0, u1, . . . , uN−1), it is easily

seen that ∇sb(w)T is nonsingular, a property to be exploited in the QP linear
algebra.

A Newton-Type Method Solution Framework

Throughout the paper, we will work within a Newton-type method framework
for the solution of the NLP (8). Starting with an initial guess (w0, λ0, µ0), a
standard full step iteration for the NLP is

wk+1 = wk + ∆wk, (11)

λk+1 = λQP
k , µk+1 = µQP

k , (12)

where (∆wk, λ
QP
k , µQP

k) is the solution of a quadratic program (QP). Other than
in the classical Gauss-Newton or SQP approaches, we will rather use the more
convenient form of the QP

min
∆w ∈ R

nw

1
2
∆wT Ak ∆w + aT

k ∆w

subject to

{
bx0(wk) + Bk∆w = 0
c(wk) + Ck∆w ≥ 0

(13)

where Ak ≈ ∇2
wL(wk, λk, µk) is an approximation of the Hessian of the

Lagrangian, ak = ∇wL(wk, λk, µk) + BT
k λk + CT

k µk, and Bk and Ck are ap-
proximations of the constraint Jacobians. Depending on the errors of these ap-
proximations we may expect linear or even super-linear convergence (see [13] for
more information on quasi-Newton Jacobian updates, where superlinear conver-
gence is proved under mild assumptions). These errors however do not influence

1 We use the definition {∇xf}ij := ∂fj

∂xi
throughout the paper.

Numerical Methods for Efficient and Fast NMPC 169

the accuracy of the solution of the NLP which only depends on the (discretiza-
tion) errors made in the evaluation of ∇wL, bx0 and c. In this paper we restrict
ourselves to the mentioned full step iteration. In the case of NMPC where a se-
quence of neighboring problems is solved, this turns out to be sufficiently robust
and offers the advantage of fast convergence.

3 Initial Value Embedding and Real-Time Iterations

In theoretical approaches towards constrained feedback control, including
NMPC, optimal control problems have to be solved online for varying initial
values x0. To emphasize the dependence on a varying x0 we write the prob-
lems (7a)–(7e) resp. (8) as P (x0). An obvious question then is how to determine
an initial guess w0 for the Newton-type iterations in each problem P (x0).

3.1 Initial Value Embedding

From previous optimization steps a solutionw∗(x′0) of a neighboring optimization
problem P (x′0) is known, including multipliers λ∗(x′0) and µ∗(x′0). A conventional
approach hence would be to use the latest information available, namely to use
the old control trajectory, and to compute new state trajectory by integrating
the DAE over the whole horizon using the old control trajectory and the new
initial state x0.

Instead, the principle of the initial value embedding suggests not to make
use of x0, but to use the solution of the previous problem P (x′0) without any
modification. This initialization for the current problem P (x0) results, of course,
in a violation of the initial value constraint (7b) in the NLP (7a)–(7e), because
sx
0 = x′0 	= x0. However, the constraint is already perfectly satisfied after the first

full step Newton-type iteration, due to its linearity. The formulation of the initial
value constraint (7b) in the NLP (7a)–(7e) can be considered a linear embedding
of each optimization problem into the manifold of perturbed problems, therefore
the name “initial value embedding”. It allows for an efficient transition from one
optimization problem to the next.

In practical applications one observes that the first iteration already yields
an excellent approximation of the solution. Indeed, one can show as an obvious
application of the implicit function theorem (assuming the classical regularity
properties) in the case considered (exact Jacobian and Hessian, initialization at
solution of P (x′0)), that the first QP solution delivers a tangential predictor w1
to the solution w∗(x0) of P (x0)

‖w1 − w∗(x0)‖ = O
(
‖x′0 − x0‖2

)
.

It is remarkable that this property even holds if the change from x′0 to x0 requires
a change of the active set, which can be proven under mild conditions [8].

Also note that the solution of the first QP not only gives us directional sen-
sitivity feedback in a small neighborhood of x′0 where the active set does not

170 H.G. Bock et al.

change anymore, but in an even larger neighborhood where the linearization is
still valid, see the illustration in Figure 1. In the case that only approximations
of Jacobian and Hessian are used within the QP, we still obtain

‖w1 − w∗(x0)‖ ≤ κ ‖x′0 − x0‖ ,

with κ being small if the quality of the approximations is good.
It is interesting to note that the good prediction properties are independent

from the class of optimization problems. Therefore, the scheme can be applied
to solve both tracking problems and problems with an economic objective. An
example for the latter can be found in [14].

3.2 Standard Real-Time Iteration Scheme

Let us now consider the full real-time scenario, where we want to solve a sequence
of optimization problems P (x(t)) where x(t) is the system state that changes
continuously with time and which is used as initial value x0 in problem (8).

In the standard real-time iteration scheme [8, 10] we proceed as follows:
Start with an initial guess (w0, λ0, µ0), and perform the following steps for

k = 0, 1, . . .:

1. Preparation: Based on the current solution guess (wk, λk, µk), compute all
functions and their exact Jacobians that are necessary to build the QP (13),
and prepare the QP solution as far as possible without knowledge of x0 (see
Section 4.1 for more details). This corresponds to the initialization needed
for the initial value embedding stated above.

2. Feedback Response: at time tk, obtain the initial value x0 := x(tk) from
the real system state; solve the QP (13) to obtain the step ∆wk =
(∆sx

0k, ∆sz
0k, ∆u0k, . . .), and give the approximation ũ(x(tk)) := u0k +∆u0k

immediately to the real system.
3. Transition: Set the next solution guess as

wk+1 := wk + ∆wk, λk+1 := λQP
k , and µk+1 := µQP

k .

3.3 Nominal Stability of the Real-Time Iteration Scheme

A central question in NMPC is nominal stability of the closed loop. For the
real-time iteration scheme, the state vector of the closed loop consists of the
real system state x(tk) and the content (wk, λk, µk) of the prediction horizon in
the optimizer. Due to the close connection of system and optimizer, stability of
the closed loop system can only be addressed by combining concepts from both,
NMPC stability theory and convergence analysis of Newton-type optimization
methods. For the standard real-time iteration scheme this analysis has been car-
ried out in [11], and for a related scheme with shift in [12]. In these papers, proofs
of nominal stability of the closed loop are given under reasonable assumptions.
The class of feedback controls for shrinking horizon problems is treated in [9].

Numerical Methods for Efficient and Fast NMPC 171

x
0

w solution of P(x
0
’)

first iteration

solution
of P(x

0
)

active−set change

x
0
’

Fig. 1. Solution manifold (solid line) and tangential predictor after initial value em-
bedding (dashed line), when initialized with the solution of P (x′

0). The first iteration
already delivers a good predictor for the exact solution of P (x0).

4 Real-Time Iteration Variants

In the standard version of the real-time iteration scheme the time for each cycle
corresponds to the time of one SQP iteration. In this article, however, we discuss
four different levels of the real-time iteration scheme that differ in their need to
evaluate Jacobians online. The basic idea for all these variants is to replace the
QP (13) in the standard real-time iteration scheme by a generic approximated
QP. This QP leaves the Hessian A as well as the Jacobians B and C constant
and contains only parts of new information; a possible choice for A, B, C is
A := ∇2

wL(w̄, λ̄, µ̄), B := ∇wb(w̄)T , and C := ∇wc(w̄)T at some reference
solution (w̄, λ̄, µ̄). In the following, xk := x(tk) is the current system state at
time tk:

min
∆w ∈ R

nw

1
2
∆wT A∆w + aT

k ∆w (14a)

subject to Lxk + bk + B∆w = 0 (14b)
ck + C∆w ≥ 0 (14c)

The methods, that differ by the choices of ak, bk, ck, proceed by performing
the same three steps as in the standard real-time iteration scheme presented in
Section 3.2, with the only difference that now the approximated version (14) is
prepared and solved in each iteration instead of a QP (13) with exact Jacobians.
As the matrices A, B, C are constant, a large share of the computations for
preparation and solution of the QP can for all variants already be performed
offline, leading to a considerably shorter preparation phase.

We want to point out that for strongly nonlinear processes it might be
necessary to update the matrices A,B,C from time to time to ensure sufficient

172 H.G. Bock et al.

contractivity of the real-time iterates, but that we leave this rare updating un-
considered here for simplicity of presentation. For mildly nonlinear systems, how-
ever, the matrices A,B,C might really be kept constant without any updates,
for example evaluated once for all at a reference solution.

In what follows, three different variants of the real-time iteration scheme will
be shown in detail, differing in the choice of ak, bk, and ck. While variant A is
nothing else than linear MPC, variant B converges to nonlinearly feasible (but
suboptimal) MPC solutions. Variant C will even converge to the true nonlinear
MPC feedback - without the need to evaluate any derivative matrix online. But
before we proceed, a preliminary remark on condensing of a QP is necessary.

4.1 A Prerequisite: Offline Condensing

In all approaches we use fixed approximations of the Jacobians B and C, e.g. by
evaluating offline ∇wb(w̄)T and ∇wc(w̄)T for a reference trajectory w̄ that may
be an exact or approximate solution of an NLP P (x̄) for some state x̄. We also
use a fixed approximation A of the Hessian, that may be based on the reference
solution of P (x̄) and computed as ∇2

wL(w̄, λ̄, µ̄), or be chosen otherwise. Online,
we use these fixed components A,B,C to formulate a QP of the form (14),
where only the vectors ak, bk, ck and the initial value xk are changing online.
It is well known that because ∇sb(w̄) is invertible, the online QP solution can
be prepared by a condensing of the QP [5, 8]: We divide ∆w into its state and
control components ∆s and ∆u, and resolve the equality constraints (14b) to
obtain ∆s as a linear function of ∆u (and xk), such that we can substitute

∆w = m(bk) + L̃xk + M∆u. (15)

Note that the matrices L̃ and M are independent of ak, bk, ck, xk and can in all
variants be precomputed offline, exploiting the structure of B in Eq. (10). In
Eq. (17) below, we show how m(bk) can be computed efficiently online. We use
expression (15) to substitute ∆w wherever it appears in the QP, to yield the
condensed QP:

min
∆u

1
2
∆uT Ac ∆u +

(
ac(ak, bk) + Ãxk

)T

∆u

subject to
(
cc(ck, bk) + C̃xk

)
+ Cc∆u ≥ 0

. (16)

All matrices, Ac := MTAM, Ã := MTAL̃, C̃ := CL̃, Cc := CM of this con-
densed QP are precomputed offline. Online, only the vectors ac(ak, bk) + Ãxk

and cc(ck, bk) + C̃xk need to be computed, as shown in the following.

4.2 Variant A: Linear MPC Based on a Reference Trajectory

In the first approach [3, 8], we compute offline the fixed vectors b := b0(w̄), c :=
c(w̄) and a := ∇wa(w̄), and set ak := a, bk := b, ck := c in all real-time iterations.
We can therefore precompute m := m(b) and also ac := ac(a, b) = MT (Am+ a)
and cc := cc(c, b) = c+ Cm.

Numerical Methods for Efficient and Fast NMPC 173

Online, once xk becomes known, only two sparse matrix-vector products and
two vector additions are needed for computation of ac + Ãxk and cc + C̃xk, and
the condensed QP (16) in variables ∆u ∈ Rnu×N must be solved. The solution
of a QP of this size is standard in linear MPC applications and can usually be
achieved quickly, in particular if an online active set strategy is used. Note that
the dimension of the condensed QP (16) does not depend on the dimensions
nx and nz of the state vectors, and that the cost of the matrix-vector products
grows linearly with nx and is independent of nz.

4.3 Variant B: Online Feasibility Improvement

In the second variant of the real-time iteration scheme (originally proposed
in [3]), we extend the online computational burden by one additional evaluation
of b0(wk) and c(wk), i.e. we set bk := b0(wk) and ck := c(wk) in the QP (14). This
allows to yield a feasibility improvement for nonlinear constraints. Offline, in ad-
dition to A,B,C we also compute a fixed objective gradient, e.g. a = ∇wa(w̄),
and then simply set ak := a + A(wk − w̄) in each iteration.

Recalling the precomputed form of the condensed QP (16), only the vectors
ac(ak, bk) and cc(ck, bk) have to be computed online, during the preparation
phase.

Based on the block sparse structure of B shown in Eq. (10), the vector
m(bk) = (mx

0 ,m
z
0,m

u
0 , . . . ,m

x
N) in (15) is for given bk = (bx

0 , b
z
0, b

x
1 , b

z
1, . . . , b

x
N)

efficiently computed by a recursion. Starting with mx
0 := bx

0 , we compute for
i = 0, . . . , N − 12:

mu
i := 0, mz

i := − (Zz
i)−1 (bz

i +Zx
i m

x
i), mx

i+1 := bx
i+1 +Xx

i m
x
i +Xz

i m
z
i . (17)

Based on m(bk), we can quickly compute ac(ak, bk) = MT (Am(bk) + ak) and
cc(ak, bk) = ck +Cm(bk) (with ak = a+A(wk− w̄)). This computation involves
only structured matrix vector products. This is the end of step 1, the preparation
phase. Once xk is known, the condensed QP (16) is solved in the feedback step
2, as in level A.

However, we do have to perform a transition step 3, i.e., update wk+1 =
wk + ∆wk, to meet nonlinear constraints. This means that the matrix vector
multiplication M∆uk and the additions ∆wk = m(bk) + Lxk + M∆uk need to
be done online.

This online algorithm does not make use of λk and µk and therefore does not
need to update them during online computations.

4.4 Variant C: Online Optimality Improvement

In the third variant of the real-time iteration scheme, we further extend the online
computational burden by one additional evaluation of the gradient of the La-
grangian∇wL(wk, λk, µk). In the online QP (14), we set ak := ∇wL(wk, λk, µk)+
BTλk + CTµk, as well as bk := b0(wk) and ck := c(wk). This approach allows
2 The matrices Zz

i can be pre-factored offline.

174 H.G. Bock et al.

to yield not only an improvement of feasibility, but also of optimality for the
original NLP (8).

The remaining online computations are slightly more expensive than for lev-
els B and C, as we need to recover the multipliers λQP

k , µQP
k of the uncondensed

QP (14) for the transition step 3, as follows:
First, the inequality multipliers µQP

k are directly obtained as the multipliers
µcQP

k of the condensed QP (16): µQP
k := µcQP

k . Second, the equality multipliers
λQP

k can be computed as λQP
k := (BST)−TS(A∆wk + ak − CTµQP

k) where S is
a projection matrix that maps w to its subvector s.

The matrix BST contains only those columns of B that correspond to the
variables s, cf Eq. (10), and is thus invertible. Abbreviating a := S(A∆wk +
ak − CTµQP

k), a = (ax
0 , a

z
0, . . . , a

x
N), we can compute λQP

k = (λx
0 , λ

z
0, . . . , λ

x
N)

recursively backwards: Starting with λx
N := ax

N , we compute, for i = N − 1, N −
2, . . . , 0:

λz
i = (Zz

i)−T
(
az

i + (Xz
i)Tλx

i+1
)
, λx

i = ax
i + (Xx

i)Tλx
i+1 − (Zx

i)Tλz
i .

where we employ the submatrix notation of Eq. (10) for the matrix B, respec-
tively BST . The proof of nominal stability of NMPC based on this variant follows
the lines of the proof for the standard scheme mentioned in section 3.3.

5 A Real-Time NMPC Example

To demonstrate the real-time applicability of the NMPC schemes discussed
above, a simulation experiment has been set up. In this experiment, a chain
of massive balls connected by springs is perturbed at one end, and the control
task is to bring the system back to steady state.

An ODE Model for a Chain of Spring Connected Masses

Consider the following nonlinear system of coupled ODEs

ẍi + β ẋi −
1
m

(Fi+ 1
2
− Fi− 1

2
)− g = 0, i = 1, 2, . . . , N−1 (18a)

Fi+ 1
2

� S

(
1− L

‖xi+1 − xi‖

)
(xi+1 − xi), i = 0, 1, . . . , N−1. (18b)

x0(t) ≡ 0, ẋN (t) = u(t), (18c)

for the ball positions x0(t), . . . , xN (t) ∈ R3 with boundary conditions (18c) and a
prescribed control function u(t) ∈ R3. Equations (18a)–(18c) describe the motion
of a chain that consists of eleven balls (i.e. N = 10), numerated from 0 to 10,
that are connected by springs. At one end, the first ball is fixed in the origin, the
velocity of the other end (the ”free” end) is prescribed by the function u. The
motion of the chain is affected by both laminar friction and gravity (gravitational
acceleration g = 9.81 m/s2) as an external force. The model parameters are: mass
m = 0.03 kg, spring constant S = 1 N/m, rest length of a spring L = 0.033 m,

Numerical Methods for Efficient and Fast NMPC 175

and friction coefficient β = 0.1 s−1. The chain movement can be controlled by
adjusting the velocity of ball no. 10 at the “free” end (for the sake of simplicity
we assume that it is possible to directly adjust this velocity). Figure 2 illustrates
the example.

Fig. 2. A chain of 11 balls connected by springs. The first ball (in the back) is fixed,
the last one can be moved freely; its Cartesian velocities serve as controls.

Optimal Control Problem Formulation

Aim of the controller is to bring the perturbed chain back to steady state. The
open loop control problem is formulated with the following cost function:

L(x(t), u(t)) = γ ‖xN (t)− xend‖22 + δ

N−1∑
j=1

‖ẋj(t)‖22 + ε‖u(t)‖22, (19)

with the weighting factors γ = 25, δ = 1, and ε = 0.01. The chosen cost function
(19) implicitly describes the steady state and allows to omit calculating the
steady state position for each ball. The optimal control problem is

minu(·),x(·)
∫ Tp

0 L(x(t), u(t)) dt (20a)

subject to the system equations (18) and the input constraint

‖u(t)‖∞ ≤ 1, ∀t ∈ [0, Tp] (20b)

The control horizon Tp is set to 8 s, while the sampling time is only 200 ms.
It is clear that the NMPC has to update the controls for every new sampling
instant. If the time needed to solve the optimization problem exceeds 200 ms,
then this delay will deteriorate the control performance and eventually even miss
to bring the chain back to steady state. In the case of delayed control updates,
the obtained velocities act as new disturbances on the process rather than as
controls. This illustrates why waiting for the exact solution of the optimal control
problem is not a good idea for such fast processes. The control problem is solved
with the direct multiple shooting method on 40 multiple shooting intervals.

176 H.G. Bock et al.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Sample

||x
1 −

 x
1,

st
ea

dy
|| 2 [m

]

Trajectory Deviation from Steady State, 2−Norm Distance

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Sample

||x
4 −

 x
4,

st
ea

dy
|| 2 [m

]

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Sample

||x
10

 −
 x

10
,s

te
ad

y || 2 [m
]

Fig. 3. Deviation of balls no. 1,4, and 10
from steady state in the controlled case.
The deviation is expressed in the 2-norm
of all Cartesian components.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample

C
P

U
 T

im
e

[s
]

CPU Time for Adjoint Real−Time Iteration

Fig. 4. CPU time for each sampling period.
Note that the CPU time consists of both
preparation and feedback phase. However,
the feedback phase is in the range of 2 ms
only! The preparation phase is then carried
out while waiting for the new measurement
update. The large CPU time peak in the
beginning is due to the preparatory calcu-
lations that are done off-line.

In the simulation experiment, the chain initially is in steady state. Then, it
is perturbed over five sampling periods by a constant velocity vector upert =
[−1 1 1]T at the free end, before the controller becomes active, using the same
end for disturbance rejection. The controls are calculated with variant C of the
real-time iteration scheme (Section 4.4).

The resulting closed loop response for three different balls and the control
moves can be seen in Figures 3 (2-norm deviation from steady state for three
different balls) and 5 (absolute deviation from steady-state in y-direction). The
corresponding control moves are shown in Figure 6. In all figures, x represents
the vector of Cartesian coordinates of a ball. A superscript denotes the number of
the ball (also see Figure 2), while a subscript picks one of the three coordinates.
The simulation has been run on an Intel Pentium 4 machine with 2.8 GHz, 1024
kB L2 cache, 1 GB main memory, under Linux operating system Suse 9.3.

The computation times are depicted in Figure 4. Here, the entire CPU time of
variant C needed to compute a control update has been measured. It is important
to note that this comprises both the preparation and the feedback phase. The
CPU time for the feedback phase only is in the range of 2 ms, meaning that the
feedback delay between the new measurement update and the control update is
negligible. The preparation phase is carried out after the new controls are given
to the process in order to prepare the next optimization step. The large CPU time
at the beginning of the control action is due to preparation calculations which
are done off-line, before the state disturbance is measured. They correspond to
the cost of a standard real-time iteration.

Numerical Methods for Efficient and Fast NMPC 177

0 10 20 30 40 50 60 70 80 90 100

−0.4

−0.2

0

0.2

0.4

Sample

x1 2−
 x

1,
st

ea
dy

2
 [m

]

Trajectory Deviation from Steady State in x
2
 Direction

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

Sample

x4 2−
 x

4,
st

ea
dy

2
 [m

]

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

Sample

x10 2
−

 x
10

,s
te

ad
y

2
 [m

]

Fig. 5. Absolute deviation from steady
state in y-direction of balls no. 1,4, and
10. The horizontal line at sample no. 5
marks the beginning of control action.
Before, ball no. 10 was perturbed by a
constant velocity.

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

−0.5

0.5

Control Values in x
1
, x

2
 and x

3
 Direction

Sample

u 1

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

−0.5

0.5

Sample

u 2

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

−0.5

0.5

Sample
u 3

Fig. 6. Control moves calculated by the
NMPC to reject the disturbance. The con-
trols are the three Cartesian velocities of
ball no. 10. Note that during the first 5 sam-
ples, these controls serve as disturbances to
the chain.

6 Conclusions

We have discussed a class of methods for online computation of constrained op-
timal feedback controls in NMPC that are based on the direct multiple shooting
method and a “real-time iteration” approach. They use an initial value embed-
ding for efficient initialization of subsequent optimization problems, and treat
in each iteration of the optimization process a different optimization problem,
always with the most current system state xk as initial value.

Three real-time iteration variants have been proposed that do not need to
evaluate Jacobians during the runtime of the online algorithm and are therefore
suitable for large scale DAE models with short timescales. In the presented
variants, online computations with different properties are performed:

• Variant A requires only the online solution of a condensed QP. It can be
interpreted as a linear MPC based on reference trajectories.

• In variant B, one additional DAE simulation is needed to evaluate the con-
straint functions. This variant yields a feasible but sub-optimal solution.

• Variant C requires also the gradient of the Lagrangian and is able to achieve
feasibility as well as optimality for inequality constrained problems, still
without evaluating Jacobians online.

The practical performance of variant C has been demonstrated in a simulation
experiment, controlling the nonlinear mechanical system of a chain of balls
and springs. A natural idea that arises is to combine the standard real-time

178 H.G. Bock et al.

iteration scheme and its variants to a multi level real-time iteration which
employs the variants A, B, C and the standard real-time iteration scheme in
a hierarchical fashion. This algorithm aims at combining good local conver-
gence properties with short sampling times and is subject of future investigation.

Acknowledgments. The authors gratefully acknowledge support by DFG grant
BO864/10-1.

References

[1] F. Allgöwer, T.A. Badgwell, J.S. Qin, J.B. Rawlings, and S.J. Wright. Nonlinear
predictive control and moving horizon estimation – An introductory overview. In
P. M. Frank, editor, Advances in Control, Highlights of ECC’99, pages 391–449.
Springer, 1999.

[2] H.G. Bock, M. Diehl, E.A. Kostina, and J.P. Schlöder. Constrained optimal feed-
back control of systems governed by large differential algebraic equations. In
L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloemen Waan-
ders, editors, Real-Time and Online PDE-Constrained Optimization. SIAM, 2005.
(in print).

[3] H.G. Bock, M. Diehl, D.B. Leineweber, and J.P. Schlöder. A direct multiple shoot-
ing method for real-time optimization of nonlinear DAE processes. In F. Allgöwer
and A. Zheng, editors, Nonlinear Predictive Control, volume 26 of Progress in Sys-
tems Theory, pages 246–267, Basel, 2000. Birkhäuser.

[4] H.G. Bock, E. Eich, and J.P. Schlöder. Numerical solution of constrained
least squares boundary value problems in differential-algebraic equations. In
K. Strehmel, editor, Numerical Treatment of Differential Equations. Teubner,
Leipzig, 1988.

[5] H.G. Bock and K.J. Plitt. A multiple shooting algorithm for direct solution of
optimal control problems. In Proc. 9th IFAC World Congress Budapest, pages
243–247. Pergamon Press, 1984.

[6] H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive
control scheme with guaranteed stability. Automatica, 34(10):1205–1218, 1998.

[7] G. De Nicolao, L. Magni, and R. Scattolini. Stability and robustness of nonlinear
receding horizon control. In F. Allgöwer and A. Zheng, editors, Nonlinear Predic-
tive Control, volume 26 of Progress in Systems Theory, pages 3–23, Basel, 2000.
Birkhäuser.

[8] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes, volume
920 of Fortschr.-Ber. VDI Reihe 8, Mess-, Steuerungs- und Regelungstechnik. VDI
Verlag, Düsseldorf, 2002. http://www.ub.uni-heidelberg.de/archiv/1659/.

[9] M. Diehl, H.G. Bock, and J.P. Schlöder. A real-time iteration scheme for nonlinear
optimization in optimal feedback control. SIAM J. Control Optim., 43(5):1714–
1736, 2005.

[10] M. Diehl, H.G. Bock, J.P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer. Real-
time optimization and nonlinear model predictive control of processes governed
by differential-algebraic equations. J. Proc. Contr., 12(4):577–585, 2002.

[11] M. Diehl, R. Findeisen, and F. Allgöwer. A stabilizing real-time implementation of
nonlinear model predictive control. In L. Biegler, O. Ghattas, M. Heinkenschloss,
D. Keyes, and B. van Bloemen Waanders, editors, Real-Time and Online PDE-
Constrained Optimization. SIAM, 2004. (in print).

Numerical Methods for Efficient and Fast NMPC 179

[12] M. Diehl, R. Findeisen, F. Allgöwer, H.G. Bock, and J.P. Schlöder. Nominal
stability of the real-time iteration scheme for nonlinear model predictive control.
IEE Proc.-Control Theory Appl., 152(3):296–308, May 2005.

[13] M. Diehl, A. Walther, H.G. Bock, and E. Kostina. An adjoint-based SQP algo-
rithm with quasi-Newton Jacobian updates for inequality constrained optimiza-
tion. Technical Report MATH-WR 02-2005, Technical University Dresden, Ger-
many, 2005.

[14] P. Kühl, A. Milewska, M. Diehl, E. Molga, and H.G. Bock. NMPC for runaway-
safe fed-batch reactors. In Proc. Int. Workshop on Assessment and Future Direc-
tions of NMPC, pages 467–474, 2005.

[15] D.B. Leineweber. Efficient reduced SQP methods for the optimization of chemical
processes described by large sparse DAE models, volume 613 of Fortschr.-Ber. VDI
Reihe 3, Verfahrenstechnik. VDI Verlag, Düsseldorf, 1999.

[16] D.Q. Mayne. Nonlinear model predictive control: Challenges and opportunities.
In F. Allgöwer and A. Zheng, editors, Nonlinear Predictive Control, volume 26 of
Progress in Systems Theory, pages 23–44, Basel, 2000. Birkhäuser.

[17] S.J. Qin and T.A. Badgwell. Review of nonlinear model predictive control appli-
cations. In B. Kouvaritakis and M. Cannon, editors, Nonlinear model predictive
control: theory and application, pages 3–32, London, 2001. The Institute of Elec-
trical Engineers.

[18] V.H. Schulz, H.G. Bock, and M.C. Steinbach. Exploiting invariants in the nu-
merical solution of multipoint boundary value problems for DAEs. SIAM J. Sci.
Comp., 19:440–467, 1998.

