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Preface

The past three decades have seen rapid development in the area of model predic-
tive control with respect to both theoretical and application aspects. Over these
30 years, model predictive control for linear systems has been widely applied,
especially in the area of process control. However, today’s applications often
require driving the process over a wide region and close to the boundaries of op-
erability, while satisfying constraints and achieving near-optimal performance.
Consequently, the application of linear control methods does not always lead to
satisfactory performance, and here nonlinear methods must be employed. This
is one of the reasons why nonlinear model predictive control (NMPC) has en-
joyed significant attention over the past years, with a number of recent advances
on both the theoretical and application frontier. Additionally, the widespread
availability and steadily increasing power of today’s computers, as well as the
development of specially tailored numerical solution methods for NMPC, bring
the practical applicability of NMPC within reach even for very fast systems. This
has led to a series of new, exciting developments, along with new challenges in
the area of NMPC.

In order to summarize these recent developments, and to consider these new
challenges, we organized an international workshop entitled “Assesment and Fu-
ture Directions of Nonlinear Model Predictive Control” (NMPC05), which was
held at the Waldhotel Zollernblick, in Freudenstadt-Lauterbad, Germany on Au-
gust 26-30, 2005. The objective of this workshop was to bring together a diverse
group of internationally recognized researchers and industrial practitioners in
the area of NMPC, in order to critically assess and discuss the current status,
future directions and open questions of NMPC. The number of participants was
intentionally kept small in order to promote discussions and the fruitful exchange
of ideas. In the spirit of the very successful predecessor workshop held in 1998
in Ascona, Switzerland, all the keynotes, as well as the main talks were given
by invited speakers. There were also a limited number of contributed oral and
poster presentations. Overall the workshop turned out to be very stimulating
and allowed close interactions and discussions among the participants.



VI Preface

This volume contains a selection of papers from this workshop that summarize
the key results and challenges of NMPC. We hope that it provides a useful
reference, as well as inspiration for future research in this area.

We would like to thank all of the authors for their participation and their
interesting contributions to the workshop. Likewise, we are grateful to all of the
reviewers involved in the pre- and post-reviews of the contributions. They pro-
vided invaluable comments, which ensured the high quality of this book volume.
Moreover, the workshop itself, as well as the production of this volume, would
not have been possible without the financial support of the Network of Compe-
tence: Pro3-Process Technology. We would also like to thank all members of the
Institute for Systems Theory and Automatic Control for their help in organizing
and running the workshop. Finally, we are especially thankful to Dr. Thomas
Ditzinger of the Springer Verlag for his support of this volume.

Stuttgart, Pittsburgh Rolf Findeisen
December 2006 Frank Allgöwer

Lorenz T. Biegler
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V. Sakizlis, K.I. Kouramas, N.P. Fáısca, E.N. Pistikopoulos . . . . . . . . . . . . 193

Interior-Point Algorithms for Nonlinear Model Predictive
Control
Adrian G. Wills, William P. Heath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Hard Constraints for Prioritized Objective Nonlinear MPC
Christopher E. Long, Edward P. Gatzke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A Nonlinear Model Predictive Control Framework as Free
Software: Outlook and Progress Report
Andrey Romanenko, Lino O. Santos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229



Contents IX

Robustness, Robust Design, and Uncertainty

Robustness and Robust Design of MPC for Nonlinear
Discrete-Time Systems
Lalo Magni, Riccardo Scattolini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

MPC for Stochastic Systems
Mark Cannon, Paul Couchman, Basil Kouvaritakis . . . . . . . . . . . . . . . . . . . . 255

NMPC for Complex Stochastic Systems Using a Markov
Chain Monte Carlo Approach
Jan M. Maciejowski, Andrea Lecchini Visintini, John Lygeros . . . . . . . . . . 269

On Disturbance Attenuation of Nonlinear Moving Horizon
Control
Hong Chen, Xingquan Gao, Hu Wang, Rolf Findeisen . . . . . . . . . . . . . . . . . 283

Chance Constrained Nonlinear Model Predictive Control
Lei Xie, Pu Li, Günter Wozny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Close-Loop Stochastic Dynamic Optimization Under
Probabilistic Output-Constraints
Harvey Arellano-Garcia, Moritz Wendt, Tilman Barz, Guenter Wozny . . . 305

Interval Arithmetic in Robust Nonlinear MPC
D. Limon, T. Alamo, J.M. Bravo, E.F. Camacho, D.R. Ramirez,
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Peter Kühl, Moritz Diehl, Aleksandra Milewska, Eugeniusz Molga,
Hans Georg Bock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

Real-Time Implementation of Nonlinear Model Predictive
Control of Batch Processes in an Industrial Framework
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Saša V. Raković, David Q. Mayne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

Trajectory Control of Multiple Aircraft: An NMPC Approach
Juan J. Arrieta–Camacho, Lorenz T. Biegler,
Dharmashankar Subramanian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641



Nonlinear Model Predictive Control: An
Introductory Review

Eduardo F. Camacho and Carlos Bordons

Dept. de Ingenieria de Sistemas y Automatica. University of Seville, Spain
{eduardo, bordons}@esi.us.es

1 Linear and Nonlinear Model Predictive Control

Model Predictive Control (mpc) originated in the late seventies and has de-
veloped considerably since then. The term Model Predictive Control does not
designate a specific control strategy but rather an ample range of control meth-
ods which make explicit use of a model of the process to obtain the control
signal by minimizing an objective function. The ideas, appearing in greater or
lesser degree in the predictive control family, are basically the explicit use of a
model to predict the process output at future time instants (horizon), the cal-
culation of a control sequence minimizing an objective function and the use of
a receding strategy, so that at each instant the horizon is displaced towards the
future, which involves the application of the first control signal of the sequence
calculated at each step.

The success of mpc is due to the fact that it is perhaps the most general
way of posing the control problem in the time domain. The use a finite-horizon
strategy allows the explicit handling of process and operational constraints by
the mpc.

From the end of the 1970s various articles appeared showing an incipient in-
terest in mpc in industry, principally the Richalet et al. publications [39][40]
presenting Model Predictive Heuristic Control (mphc) (later known as Model
Algorithmic Control (mac)) and those of Cutler and Ramakter [10] with Dy-
namic Matrix Control (dmc). A dynamic process model is explicitly used in
both algorithms (impulse response in the first and step response in the second)
to predict the effect of the future control actions at the output; these are deter-
mined by minimizing the predicted error subject to operational restrictions. The
optimization is repeated at each sampling period with up-to-date information
about the process. These formulations were heuristic and algorithmic and took
advantage of the increasing potential of digital computers at the time.

mpc quickly became popular, particularly in chemical process industries, due
to the simplicity of the algorithm and to the use of the impulse or step response
model which, although possessing many more parameters than the formulations

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 1–16, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



2 E.F. Camacho and C. Bordons

in the state space or input-output domain, is usually preferred as being more
intuitive and requiring less a priori information for its identification.

Another line of work arose independently around adaptive control ideas, de-
veloping strategies essentially for monovariable processes formulated with input-
output models. Some examples of these strategies are Extended Prediction Self
Adaptive Control (epsac) by De Keyser and Van Cuawenberghe [20] or Gener-
alized Predictive Control (gpc) developed by Clarke et al. in 1987 [9].

mpc is considered to be a mature technique for linear and rather slow sys-
tems like the ones usually encountered in the process industry. More complex
systems, such as nonlinear, hybrid, or very fast processes, were considered be-
yond the realm of mpc. During the last few years some impressive results have
been produced in these fields. Applications of mpc to nonlinear and to hybrid
processes have also appeared in the literature. The majority of applications (see
surveys by Qin and Badgwell [35] [36]) are in the area of refining, one of the orig-
inal application fields of mpc, where it has a solid background. An important
number of applications can be found in petrochemicals and chemicals. Although
mpc technology has not yet penetrated deeply into areas where process non-
linearities are strong and frequent changes in operation conditions occur, the
number of nonlinear mpc applications is clearly increasing.

In general, industrial processes are nonlinear, but many mpc applications are
based on the use of linear models. There are two main reasons for this: on one
hand, the identification of a linear model based on process data is relatively easy
and, on the other hand, linear models provide good results when the plant is
operating in the neighbourhood of the operating point. Besides, the use of a
linear model together with a quadratic objective function gives rise to a convex
problem whose solution is well studied with many commercial products avail-
able. Notice that mpc of a linear plant with linear constraints gives rise to a
nonlinear controller, and that this combination of linear dynamics and linear
constraints has influenced on the commercial success of mpc. However, the term
Nonlinear mpc is used for Predictive Controllers that make use of a nonlinear
dynamic model (and therefore nonlinear constraints) and gives rise to the extra
complexity.

In many situations the operation of the process requires frequent changes
from one operation point to another and, therefore, a nonlinear model must be
employed. The use of Nonlinear Model Predictive Control (nmpc) is justified in
those areas where process nonlinearities are strong and market demands require
frequent changes in operation regimes. Although the number of applications of
nmpc is still limited (see [3], [36]), its potential is really great and mpc using
nonlinear models is likely to become more common as users demand higher per-
formance and new software tools make nonlinear models more readily available.

From a theoretical point of view using a nonlinear model changes the control
problem from a convex qp to a non-convex Non-Linear Program (nlp), the
solution of which is much more difficult. There is no guarantee, for example,
that the global optimum can be found.
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2 Nonlinear Models

Nonlinear dynamics are present in nearly all engineering applications. Developing
adequate nonlinear models may be very difficult and there is no model form that
is clearly suitable to represent general nonlinear processes. Nonlinear models are
difficult to construct, either from input/output data correlation or by the use of
first principles from well-known mass and energy conservation laws.

The three main types of models that are used in this area are: empirical, funda-
mental (that come directly from balance equations, usually called first principle
models), and grey box (developed by combining the empirical and fundamental
approaches, exploiting the advantages of each type of model). Empirical models
are discussed below.

A fundamental difficulty associated with the empirical modelling approach
is the selection of a suitable model form. The available nonlinear models used
for nmpc are described below, divided into two main classes: input-output and
state-space.

2.1 Input-Output Models

The nonlinear discrete-time models used for control can be viewed as mappings
between those variables that are available for predicting system behaviour up to
the current time and those to be predicted at or after that instant. This kind of
model can be represented as a nonlinear autoregressive moving average model
with exogenous input (narmax), which, for single-input single-output processes,
is given by the general equation

y(t) = Φ[y(t−1), . . . , y(t−ny), u(t−1), . . . , u(t−nu), e(t), . . . , e(t−ne +1)] (1)

where Φ is a nonlinear mapping, y is the output, u is the input, and e is the
noise input. The suitability of this model depends on the choice of the function
Φ and the order parameters. Notice that this equation covers a wide range of
descriptions, depending mainly on function Φ. Volterra and related models, local
model networks and neural networks are detailed in this subsection.

Volterra Models

If only Finite Impulse Response (fir) models are considered and Φ is restricted
to analytic functions, it follows that this function exhibits a Taylor series expan-
sion which defines the class of discrete-time Volterra models. Although Volterra
models have their limitations, they represent a simple logical extension of the
convolution models that have been so successful in linear mpc. These models
are generically well-behaved and their structure can be exploited in the design
of the controller. In this particular and useful case, and when the infinite terms
are truncated to finite values, the process model is given by

y(t) = y0 +
N∑

i=0

h1(i)u(k − i) +
M∑
i=0

M∑
j=0

h2(i, j)u(t− i)u(t− j) (2)
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which corresponds to the widely used linear convolution model with the nonlin-
earity appearing as an extra term, that is, the nonlinearity is additive.

Two special subclasses of the basic model are employed which reduce the
complexity of the basic Volterra approach and have a reduced number of pa-
rameters. These are the Hammerstein and Wiener models. Hammerstein models
belong to the family of block-oriented nonlinear models, built from the combina-
tion of linear dynamic models and static nonlinearities. They consist of a single
static nonlinearity g(.) connected in cascade to a single linear dynamic model
defined by a transfer function H(z−1). Because of this, Hammerstein models
can be considered diagonal Volterra models, since the off-diagonal coefficients
are all zero. Notice that this means that the behaviour that can be represented
by this type of model is restricted. The Wiener model can be considered as the
dual of the Hammerstein model, since it is composed of the same components
connected in reverse order. The input sequence is first transformed by the linear
part H(z−1) to obtain Ψ(t), which is transformed by the static nonlinearity g(.)
to get the overall model output. The properties of Volterra and related models
are extensively discussed in [11].

Closely related to Volterra models are bilinear models. The main difference
between this kind of model and the Volterra approach is that crossed products
between inputs and outputs appear in the model. Bilinear models have been
successfully used to model and control heat exchangers, distillation columns,
chemical reactors, waste treatment plants, and pH neutralisation reactors [16]. It
has been demonstrated that this type of model can be represented by a Volterra
series [23].

Local Model Networks

Another way of using input-output models to represent nonlinear behaviour is to
use a local model network representation. The idea is to use a set of local models
to accommodate local operating regimes [17], [44]. A global plant representation
is formed using multiple models over the whole operating space of the nonlinear
process. The plant model used for control provides an explicit, transparent plant
representation which can be considered an advantage over black-box approaches
such as neural networks (that will be described below).

The basics of this operating regime approach are to decompose the space
into zones where linear models are adequate approximations to the dynamical
behaviour within that regime, with a trade-off between the number of regimes
and the complexity of the local model. The output of each submodel is passed
through a local processing function that generates a window of validity of that
particular submodel. The complete model output is then given by

y(t+ 1) = F (Ψ(t), Φ(t)) =
M∑
i=1

fi(Ψ(t))ρi(Φ(t))

where the M local models fi(Ψ(t)) are linear arx functions of the measurement
vector Ψ (inputs and outputs) and are multiplied by basis functions ρi(Φ(t)) of
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the current operating vector. These basis functions are chosen to give a value
close to 1 in regimes where fi is a good approximation to the unknown F and a
value close to 0 in other cases.

Notice that this technique allows the use of a linear predictive controller,
avoiding the problems associated to computation time and optimality of the
nonlinear solution. These strategies have been successfully tested on a pH neu-
tralizsation plant (see [45] for details).

Neural Networks

The nonlinear dynamics of the process can also be captured by an artificial Neu-
ral Network (nn). Neural networks are attractive tools to construct the model
of nonlinear processes since they have an inherent ability to approximate any
nonlinear function to an arbitrary degree of accuracy [14]. This, together with
the availability of training techniques, has made them very successful in many
predictive control applications and commercial products. More details of the use
of nn for control can be found in [32].

Neural Networks are usually combined with linear models in practical appli-
cations, since they are not able to extrapolate beyond the range of their training
data set. Based on a model confidence index, the nn is gradually turned off when
its prediction looks unreliable, the predictions relying on the linear part.

2.2 State Space Models

The linear state space model can naturally be extended to include nonlinear
dynamics. The following state space model can be used to describe a nonlinear
plant

x(t + 1) = f(x(t), u(t)) y(t) = g(x(t)) (3)

where x(t) is the state vector and f and g are generic nonlinear functions. Notice
that the same equation can be used for monovariable and multivariable processes.
Notice also that this model can easily be derived from the differential equations
that describe the model (if they are known) by converting them into a set of
first-order equations. Model attainment in this case is straightforward but the
procedure is very difficult to obtain from experimental data when no differential
equations are available.

This kind of model is the most widely extended for nonlinear plants since
it has given rise to a lot of theoretical results: the majority of results about
stability and robustness have been developed inside this framework. It is also
used in commercial tools such as nova nlc or nonlinear pfc.

An important class of nonlinear state-space models are Piece Wise Affine
(pwa) models, which can be used to approximate smooth nonlinear processes
and are defined by:

xk+1 = Aixk + Biuk + fi for: xk ∈ Xi

where {Xi}si=1 is a polyhedral partition of the state space.
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2.3 State Estimation

When a state space model is being used, the system state is necessary for pre-
diction and therefore has to be known. In some cases it is accessible through
measurements, but in general this is not the case and a state observer must be
implicitly or explicitly included in the control loop. The choice of an appropriate
observer may have influence on the closed-loop performance and stability.

The most extended approach for output-feedback nmpc is based on the Cer-
tainty Equivalence Principle. The estimate state x̂ is computed via a state ob-
server and used in the model predictive controller. Even assuming that the ob-
server error is exponentially stable, often only local stability of the closed-loop
is achieved [24], i.e. the observer error must be small to guarantee stability of
the closed-loop and in general nothing can be said about the necessary degree
of smallness. This is a consequence of the fact that no general valid separation
principle for nonlinear systems exists. Nevertheless this approach is applied suc-
cessfully in many applications. A straightforward extension of the optimal linear
filter (Kalman filter) is the Extended Kalman filter ekf. The basic idea of ekf
is to perform linearization at each time step to approximate the nonlinear sys-
tem as a time-varying system affine in the variables to be estimated, and to
apply the linear filtering theory to it [26]. Although its theoretical properties
remain largely unproven the ekf is popular in industry and usually performs
well. Neither the Kalman Filter nor the extended Kalman Filter rely on on-line
optimization, and neither handle constraints.

There exists a dual of the nmpc approach for control for the state estimation
problem. It is formulated as an on-line optimization similar to nmpc and is
named moving horizon estimation (mhe), see for example [1],[29],[41],[47]. It
is dual in the sense that a moving window of old measurement data is used
to obtain an optimization based estimate of the system state. Moving horizon
estimation was first presented for unconstrained linear systems by Kwon et al.
[22]. The first use of mhe for nonlinear systems was published by Jang et al.
[15]. In their work, however, the model does not account for disturbances or
constraints. The stability of constrained linear mhe was developed by Muske
and Rawlings [30] and Rao et al. [37]. The groundwork for constrained nonlinear
mhe was developed by Rao et al. [38]. Some applications in the chemical industry
have been reported [42].

3 Solution of the NMPC Problem

In spite of the difficulties associated with nonlinear modelling, the choice of ap-
propriate model is not the only important issue. Using a nonlinear model changes
the control problem from a convex quadratic program to a nonconvex nonlinear
problem, which is much more difficult to solve and provides no guarantee that
the global optimum can be found. Since in real-time control the optimum has to
be obtained in a prescribed interval, the time needed to find the optimum (or
an acceptable approximation) is an important issue.
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The problem to be solved at every sampling time is the computation of the
control sequence u that takes the process to the desired regime. This desired
operating point (ys, xs, us) may be determined by a steady-state optimisation
which is usually based on economic objectives. The cost function to be minimised
may take the general form

J =
N∑

j=1

‖y(t + j)− ys‖R +
M−1∑
j=1

‖ � u(t+ j)‖P +
M−1∑
j=1

‖u(t+ j)− us‖Q (4)

where P, Q, and R are weighting matrices (notice that 1-norm or ∞− norm
could also be used). The minimisation is subject to model constraint (model
equation) and to the rest of the inequality constraints that can be considered on
inputs and outputs.

The solution of this problem requires the consideration (and at least a partial
solution) of a nonconvex, nonlinear problem (nlp) which gives rise to a lot of
computational difficulties related to the expense and reliability of solving the nlp
online. The problem is often solved using Sequential Quadratic Programming
(sqp) techniques. These are extensions of Newton-type methods for converging
to the solution of the Karush-Kuhn-Tucker (kkt) conditions of the optimisation
problem. The method must guarantee fast convergence and must be able to deal
with ill conditioning and extreme nonlinearities.

Many problems may appear when applying the method, such as the avail-
ability of the second derivatives or the feasibility of the intermediate solution.
This last condition is very important in real-time optimisation since, if time is
insufficient, the last iteration uk, which satisfies the local linear approximation
to the constraints, is sent to the plant, although it may violate the original con-
straints. Several variations of the original method exist that try to overcome the
main problems. Convergence properties and variants of the method that enhance
efficiency are thoroughly discussed by Biegler [5].

It should be noticed that an iterative algorithm consisting of solving a qp
problem (which is itself iterative) is used at each sampling instant. Therefore
the computational cost is very high, and this justifies the development of special
formulations to solve particular problems or approximate solutions in spite of
losing optimality.

4 Techniques for Nonlinear Predictive Control

As has been shown in the previous section, the exact solution of the optimisation
problem at every sampling instant is a difficult task. Therefore, a set of efficient
formulations that try to avoid the problems associated to nonconvex optimisation
has appeared in recent years. They are briefly depicted here.

Suboptimal NMPC: This approach avoids the need to find the minimum of
a nonconvex cost function by considering the satisfaction of constraints to be
the primary objective. If an optimisation strategy that delivers feasible solutions
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at every sub-iteration (inside a sampling period) is used and a decrease in the
cost function is achieved, optimisation can be stopped when the time is over and
stability can still be guaranteed. It can be demonstrated that it is sufficient to
achieve a continuous decrease in the cost function to guarantee stability.

The main technique that uses this concept was proposed by Scokaert et al. [43],
and consists of a dual-mode strategy which steers the state towards a terminal
set Ω and, once the state has entered the set, a local controller drives the state
to the origin. Now, the first controller does not try to minimise the cost function
J , but to find a predicted control trajectory which gives a sufficient reduction of
the cost.

Simultaneous Approach: In this approach [12] (also known as multiple shoot-
ing [6]) the system dynamics at the sampling points enter as nonlinear constraints
to the optimization problems, i.e. at every sampling point the following equality
constraint must be satisfied:

s̄i+1 = x̄(ti+1, s̄i, ūi)

Here s̄i is introduced as additional degree in the optimization problem and de-
scribes the initial condition for the sampling interval i. This constraint requires,
once the optimization has converged, that the state trajectory pieces fit together.
Thus additionally to the input vector [ū1, . . . , ūN ] also the vector of the s̄i ap-
pears as optimization variables. For both approaches the resulting optimization
problem is often solved using sqp techniques. This approach has different ad-
vantages and disadvantages. For example the introduction of the initial states s̄i

as optimization variables does lead to a special banded-sparse structure of the
underlying qp problem. This structure can be taken into account to lead to a
fast solution strategy. A drawback of the simultaneous approach is, that only at
the end of the iteration a valid state trajectory for the system is available. Thus
if the optimization cannot be finished on time, nothing can be said about the
feasibility of the trajectory at all.

Use of Short Horizons: It is clear that short horizons are desirable from
a computational point of view, since the number of decision variables of the
optimisation problem is reduced. However, long horizons are required to achieve
the desired closed-loop performance and stability (as will be shown in the next
section). Some approaches have been proposed that try to overcome this problem.

In [46] an algorithm which combines the best features of exact optimisation
and a low computational demand is presented. The key idea is to calculate
exactly the first control move which is actually implemented, and to approximate
the rest of the control sequence which is not implemented. Therefore the number
of decision variables is one, regardless of the control horizon. The idea is that
if there is not enough time to calculate the complete control sequence, then
compute only the first one and approximate the rest as well as possible.

An algorithm that uses only a single degree of freedom is proposed in [21] for
nonlinear, control affine plants. A univariate online optimisation is derived by
interpolating between a control law which is optimal in the absence of constraints
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(although it may violate constraints and may not be stabilising) and a sub-
optimal control law with a large associated stabilisable set. The interpolation
law inherits the desirable optimality and feasibility from these control laws. The
stabilising control law uses an optimisation based on only a single degree of
freedom and can be performed by including a suitable penalty in the cost or an
artificial convergence constraint.

Decomposition of the Control Sequence: One of the key ideas in linear
mpc is the use of free and forced response concepts. Although this is no longer
valid for nonlinear processes, since the superposition principle does not hold in
this case, variation of the idea can be used to obtain implementable formulations
of nmpc.

In [7], the prediction of process output is made by adding the free response
obtained from a nonlinear model of the plant and the forced response obtained
from an incremental linear model of the plant. The predictions obtained this way
are only an approximation because the superposition principle, which permits the
mentioned division in free and forced responses, only applies to linear systems.
However, the approximation obtained in this way is shown to be better than
those obtained using a linearised process model to compute both responses.

A way to overcome this problem has been suggested in [19] for epsac. The
key idea is that the manipulated variable sequence can be considered to be
the addition of a base control sequence plus a sequence of increments of the
manipulated variables. The process output j step ahead prediction is computed
as the sum of the response of the process (yb(t+j)) due to the base input sequence
plus the response of the process (yi(t+ j)) due to the future control increments
on the base input sequence. As a nonlinear model is used to compute yb(t + j)
while yi(t + j)) is computed from a linear model of the plant, the cost function
is quadratic in the decision variables and it can be solved by a qp algorithm as
in linear mpc. The superposition principle does not hold for nonlinear processes
and the process output generated this way and the process output generated
by the nonlinear controller will only coincide in the case when the sequence of
future control moves is zero. If this is not the case, the base is made equal to
the last base control sequence plus the optimal control increments found by the
qp algorithm. The procedure is repeated until the sequence of future controls is
driven close enough to zero.

Feedback Linearisation: In some cases, the nonlinear model can be trans-
formed into a linear model by appropriate transformations. Consider, for exam-
ple, the process described by the following state space model:

x(t + 1) = f(x(t), u(t)) y(t) = g(x(t))

The method consists of finding state and input transformation functions
z(t) = h(x(t)) and u(t) = p(x(t), v(t)) such that:

z(t+ 1) = Az(t) + Bv(t) y(t) = Cz(t)

The method has two important drawbacks: the first one is that the transfor-
mation functions z(t) = h(x(t)) and u(t) = p(x(t), v(t)) can be obtained for few
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cases and the second is that constraints, which are usually linear, are transformed
into a nonlinear set of constraints.

MPC Based on Volterra Models: In some cases, the nlp shows a special
structure that can be exploited to achieve an online feasible solution to the
general optimisation problem. If the process is described by a Volterra model,
efficient solutions can be found, especially for second-order models. A control
strategy can be devised that can solve the nonlinear problem by iteration of the
linear solution, based on the particular structure of Volterra models. This iter-
ative procedure proposed by Doyle et al. [11] gives rise to an analytical solution
in the unconstrained case or a qp solution if constraints exist and allows an easy
solution to the nonlinear problem. If a second-order model is used, the prediction
can be written as an extension of the linear process y = Gu + f + c(u), where f
includes the terms that depends on past and known values and the new term c
takes into account new terms that depend on crossed products between past and
future control actions. The prediction depends on the unknowns (u) both in a
linear form (G u) and a quadratic form (c(u)) and cannot be solved analytically
as in the linear unconstrained case. However, the iterative procedure proposed in
[11] starts with an initial value of c and solves the problem. The new solution is
used to recalculate c and the problem is solved again until the iterated solution is
close enough to the previous one. In the constrained case, u is computed solving
a qp. Due to the feasibility of its being implemented in real time, this method
has been successfully applied to real plants, such as polymerisation processes
[25] or biochemical reactors [11].

In the simplified case that the process can be modelled by a Hammerstein
model, the problem can be easily transformed into a linear one by inverting the
nonlinear static part, g(.). The same idea can be applied to Wiener models, where
the static nonlinearity goes after the linear dynamics. In [33] a pH neutralization
process is controlled in this way.

Neural Networks: Artificial Neural Networks, apart from providing a mod-
elling tool that enables accurate nonlinear model attainment from input-output
data, can also be used for control. Since nns are universal approximators, they
can learn the behaviour of a nonlinear controller and calculate the control signal
online with few calculations, since the time-consuming part of the nn (training)
is done beforehand. This has been applied to several processes in the process
industry [2], [4] and to systems with short sampling intervals (in the range of
milliseconds) such as internal combustion engines [31]. An application of an nn
controller to a mobile robot is detailed at the end of the paper.

Piecewise Affine Systems: In case the process cand be described by a
pwa state-space model the nmpc becomes a Mixed Integer Quadratic Prob-
lem (miqp), which can be solved as a series of qp problems. There are several
algorithms to do that and one interesting approach is the one proposed in [34],
that belongs to the class of Branch and Bound (B & B) methods. The procedure
uses the concepts of reachable set combined to the specific B & B methods, in
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order to reduce the number of Quadratic Problems needed to be solved by the
optimization algorithm.

5 Stability and Nonlinear Model Predictive Control

The efficient solution of the optimal control problem is important for any ap-
plication of nmpc to real processes, but stability of the closed loop is also of
crucial importance. Even in the case that the optimization algorithm finds a so-
lution, this fact does not guarantee closed-loop stability (even with perfect model
match). The use of terminal penalties and/or constraints, Lyapunov functions
or invariant sets has given rise to a wide family of techniques that guarantee
the stability of the controlled system. This problem has been tackled from dif-
ferent points of view, and several contributions have appeared in recent years,
always analyzing the regulator problem (drive the state to zero) in a state space
framework. The main proposals are the following:

• infinite horizon. This solution was proposed by Keerthi and Gilbert [18] and
consists of increasing the control and prediction horizons to infinity, P,M →
∞. In this case, the objective function can be considered a Lyapunov function,
providing nominal stability. This is an important concept, but it cannot be
directly implemented since an infinite set of decision variables should be
computed at each sampling time.

• terminal constraint. The same authors proposed another solution considering
a finite horizon and ensuring stability by adding a state terminal constraint
of the form x(k+P ) = xs. With this constraint, the state is zero at the end of
the finite horizon and therefore the control action is also zero; consequently
(if there are no disturbances) the system stays at the origin. Notice that this
adds extra computational cost and gives rise to a restrictive operating region,
which makes it very difficult to implement in practice.

• dual control. This last difficulty made Michalska and Mayne [28] look for a
less restrictive constraint. The idea was to define a region around the final
state inside which the system could be driven to the final state by means of
a linear state feedback controller. Now the constraint is:

x(t + P ) ∈ Ω

The nonlinear mpc algorithm is used outside the region in such a way that
the prediction horizon is considered as a decision variable and is decreased
at each sampling time. Once the state enters Ω, the controller switches to a
previously computed linear strategy.

• quasi-infinite horizon. Chen and Allgöwer [8] extended this concept, using the
idea of terminal region and stabilizing control, but only for the computation of
the terminal cost. The control action is determined by solving a finite horizon
problem without switching to the linear controller even inside the terminal
region. The method adds the term ‖x(t + Tp)‖2P to the cost function. This
term is an upper bound of the cost needed to drive the nonlinear system to
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the origin starting from a state in the terminal region and therefore this finite
horizon cost function approximates the infinite-horizon one.

These formulations and others with guaranteed stability were summarized in
the survey paper by Mayne et al. [27]. In this reference, the authors present
general sufficient conditions to design a stabilizing constrained mpc and demon-
strate that all the aforementioned formulations are particular cases of them.

The key ingredients of the stabilizing mpc are a terminal set and a terminal
cost. The terminal state denotes the state of the system predicted at the end of
the prediction horizon. This terminal state is forced to reach a terminal set that
contains the steady state. This state has an associated cost denoted as terminal
cost, which is added to the cost function.

It is assumed that the system is locally stabilizable by a control law u = h(x).
This control law must satisfy the following conditions:

• There is a region Ω such that for all x(t) ∈ Ω, then h(x(t)) ∈ U (set of
admissible control actions) and the state of the closed loop system at the
next sample time x(t + 1) ∈ Ω.

• For all x(t) ∈ Ω, there exists a Lyapunov function V (x) such that

V (x(t)) − V (x(t + 1)) ≥ x(t)TRx(t) + h(x(t))TSh(x(t))

If these conditions are verified, then considering Ω as terminal set and V (x)
as terminal cost, the mpc controller (with equal values of prediction and control
horizons) asymptotically stabilizes all initial states which are feasible. Therefore,
if the initial state is such that the optimization problem has a solution, then the
system is steered to the steady state asymptotically and satisfies the constraints
along its evolution.

The condition imposed on Ω ensures constraint fulfillment. Effectively, con-
sider that x(t) is a feasible state and u∗(t) the optimal solution; then a feasible
solution can be obtained for x(t+1). This is the composition of the remaining tail
of u∗(t) finished with the control action derived from the local control law h(x).
Therefore, since no uncertainty is assumed, x(t+j|t+1) = x(t+j|t) for all j ≥ 1.
Then the predicted evolution satisfies the constraints and x(t + P |t + 1) ∈ Ω,
being P the prediction horizon. Thus, applying h(x(t + P |t + 1)), the system
remains in the terminal set Ω. Consequently, if x(t) is feasible, then x(t + 1)
is feasible too. Since all feasible states are in X , then the system fulfills the
constraints.

The second condition ensures that the optimal cost is a Lyapunov function.
Hence, it is necessary for the asymptotic convergence of the system to the steady
state. Furthermore, the terminal cost is an upper bound of the optimal cost of
the terminal state, in a similar way to the quasi-infinite horizon formulation of
mpc.

The conditions previously presented are based on a state space representation
of the system and full state information available at each sample time. However,
most of the time the only available information is the measurement of the sys-
tem output. In this case the controller can be reformulated using the outputs
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and under certain observability and controllability conditions [18], closed-loop
stability can be proved. However, the most common way of applying mpc in the
input-output formulation is by estimating the state by means of an observer. It
is well known that even when the state space mpc and the observer are both sta-
ble, there is no guarantee that the cascaded closed-loop system is stable. Thus,
additional stabilizing conditions must be considered [13].

If stability analysis in nmpc is a complex task, robustness analysis (that is,
stability when modelling errors appear) is logically worse. The previously shown
stability results are valid only in the case of a perfect model, which is not the
case in practice. This can be considered as an open field with only preliminary
results. Formulations in the form of a min-max problem or an H∞-nmpc have
been proposed, although the computational requirements are prohibitive.

6 Conclusions

mpc is considered to be a mature technique for linear and rather slow systems like
the ones usually encountered in the process industry. More complex systems, such
as nonlinear, hybrid, or very fast processes, were considered beyond the realm of
mpc. During the last few years some impressive results have been produced in the
field. In spite of these results, there are many open problems in practically every
aspect of nmpc: modelling, identification, state estimation, stability, robustness
and real-time implementation.
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Summary. The robustness of asymptotic stability with respect to measurement noise
for discrete-time feedback control systems is discussed. It is observed that, when at-
tempting to achieve obstacle avoidance or regulation to a disconnected set of points for
a continuous-time system using sample and hold state feedback, the noise robustness
margin necessarily vanishes with the sampling period. With this in mind, we propose
two modifications to standard model predictive control (MPC) to enhance robustness
to measurement noise. The modifications involve the addition of dynamical states that
make large jumps. Thus, they have a hybrid flavor. The proposed algorithms are well
suited for the situation where one wants to use a control algorithm that responds quickly
to large changes in operating conditions and is not easily confused by moderately large
measurement noise and similar disturbances.

1 Introduction

1.1 Objectives

The first objective of this paper is to discuss the robustness of asymptotic stabil-
ity to measurement noise for discrete-time feedback control systems. We focus on
control systems that perform tasks such as obstacle avoidance and regulation to a
disconnected set of points. We will compare the robustness induced by pure state
feedback algorithms to the robustness induced by dynamic state feedback algo-
rithms that have a “hybrid” flavor. Nonlinear model predictive control (MPC),
in its standard manifestation, will fall under our purview since 1) it is a method
for generating a pure state feedback control (see [14] for an excellent survey), 2)
it can be used for obstacle avoidance (see [11, 12, 18]) and regulation to a dis-
connected set of points (this level of generality is addressed in [9] for example),
and 3) dynamic “hybrid” aspects can be incorporated to enhance robustness to
measurement noise. The second objective of this paper is to demonstrate such
hybrid modifications to MPC. The proposed feedback algorithms are able to
respond rapidly to significant changes in operating conditions without getting
confused by moderately large measurement noise and related disturbances. The
findings in this paper are preliminary: we present two different hybrid modifica-
tions of MPC, but we have not investigated sufficiently the differences between
these modifications, nor have we characterized their drawbacks.

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 17–34, 2007.
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1.2 What Do We Mean by “Hybrid MPC”?

First we discuss the term “hybrid” and consider how it has appeared before in
the context of MPC.

“Hybrid” Dynamical Systems

In the context of dynamical systems, “hybrid” usually indicates systems that
combine continuous and discrete aspects. Often “continuous” and “discrete” refer
to the time domains on which solutions are defined. See, for example, [5, 13, 22].
In this situation, a hybrid dynamical system is one in which solutions are de-
fined on time domains that combine continuous evolution and discrete evolution.
(The time domain thus may be a subset of the product of the nonnegative reals
and the nonnegative integers. See, for example, [3] and [5, 6, 7, 20]). The state
flows continuously, typically via a differential equation, as hybrid time advances
continuously; the state jumps, according to a update map or “difference” equa-
tion, as the hybrid time advances discretely. Whether flowing or jumping occurs
depends on the state. The state may or may not contain logic variables that take
values in a discrete set. If such variables exist, they do not change during the
continuous evolution. Similarly, state variables that must evolve continuously do
not change during jumps. We note here that a continuous-time control system
implemented with a sample and hold device is a hybrid dynamical system of this
type. Thus, when MPC based on a discrete-time model of a continuous-time pro-
cess is used to synthesize a state feedback that is implemented with sample and
hold, this can be thought of as hybrid control, although perhaps not as “hybrid
MPC”.

Other times, “continuous” and “discrete” refer to the domains in which the
state components take values, while the time domain is fixed to be discrete. In
other words, a hybrid system sometimes means a discrete-time system in which
some of the variables can take on any of a continuum of values while other states
can take on any values in a discrete set. This appears to be the most common
meaning of “hybrid dynamical system” as used in the MPC literature, and we
will mention specific work below.

“Hybrid” MPC

We believe that the development of MPC for hybrid systems that involve both
flowing and jumping will be a very stimulating area of research. Nevertheless,
throughout this paper, we will only consider discrete-time systems (although
they can be thought of as coming from sampled continuous-time systems). Thus,
our meaning of “hybrid MPC” must be related to the second one given above.
The main feature of the MPC that we propose is that it is dynamic, sometimes
introducing variables that take discrete values, with the aim of enhancing ro-
bustness to measurement noise. We focus on discrete-time control problems that
can be solved robustly using pure state feedback but that can be solved more ro-
bustly by adding dynamics, perhaps with variables that take on discrete values.
The idea of adding dynamics to improve robustness is not new, especially as it
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pertains to the control of continuous-time systems. See [19], [21], [2], [16]. Our
purpose is to emphasize this observation in discrete time and to present general
dynamic or “hybrid” algorithms that have potential for wide applicability, are
simple conceptually, and that improve robustness to measurement noise.

Regarding results on hybrid MPC that have appeared in the literature pre-
viously, it is tempting to try to make distinctions between hybrid MPC for
nonhybrid systems and (nonhybrid) MPC for hybrid systems. However, the dis-
tinction can be blurred easily by treating logic variables from the controller as
part of the state of the plant to be controlled. The class of discrete-time hybrid
systems to which MPC is most often applied is the class of so-called piecewise
affine (PWA) control systems. The equivalence of this type of hybrid model to
several other classes of hybrid models has been established in [10]. Model predic-
tive control for PWA systems has been discussed in [1], where the optimization
problems to generate the MPC feedback law are shown to be mixed integer mul-
tiparameter programs. In other work, the authors of [16] propose a hybrid MPC
strategy for switching between a predetermined robust stabilizing state feedback
controller and an MPC controller aimed at performance. An early result in [17]
used a “dual-mode” approach that involved switching between MPC and a local
controller.

2 Control Systems and Measurement Noise

2.1 Introduction

We consider the analysis and design of control algorithms for discrete-time sys-
tems of the form

x+ = f(x, u) , (1)

where x ∈ Rn denotes the state, x+ the next value of the state, and u ∈ U
the control input. The function f is assumed to be continuous. At times we will
re-write the system (1) as x+ = x + f̃(x, u), where f̃(x, u) := f(x, u) − x, to
emphasize that the discrete-time control system may represent the sampling of
a continuous-time control system and that the next state value is not too far
from the current state value, i.e., f̃ is not very large.

In this paper we consider two types of feedback control algorithms: 1) pure
state feedback, i.e., u = κPSF(x), where κPSF : Rn → U is not necessarily
continuous, and 2) dynamic state feedback, i.e., u = κDSF(x, ξ), ξ+ = gDSF(x, ξ),
where ξ ∈ N and κDSF : Rn×N→ U and gDSF : Rn×N→ N are not necessarily
continuous, where N := {0, 1, . . .}. We are especially interested in the effect of
measurement noise. In the case of pure state feedback, this means that u = κ1(x+
e), where e represents measurement noise. In the case of dynamic state feedback,
this means u = κ2(x + e, ξ), ξ+ = g(x + e, ξ). We focus on control problems
where pure state feedback will have small measurement noise robustness margins,
regardless of the control algorithm used. We will show below that problems
of this type include controlling continuous-time systems using small sampling
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periods while attempting to achieve obstacle avoidance and/or regulation to a
disconnected set of points.

We frame the discussion around three prototypical control tasks for the
continuous-time control system ẋ = v, where x ∈ R2 and v ∈ B ⊂ R2 (B denotes
the closed unit ball and δB denotes the closed ball of radius δ). The problems
are to use sample and hold control with a relatively small sampling period to
achieve 1) global regulation to a point, 2) global regulation to a set consisting
of two (distinct) points, and 3) global regulation to a target while avoiding an
obstacle. In each case, the discrete-time control system is x+ = x + u, where
u ∈ δB and δ > 0 represents the sampling period.
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(b) Regulation to a target with obsta-
cle avoidance.

Fig. 1. Global regulation to attractors

2.2 Global Regulation to a Point

Suppose we have designed a (family of) continuous feedback(s) κδ : R2 → δB to
achieve stability of and global asymptotic convergence to a point x∗ which we
take to be the origin without loss of generality. For example, suppose δ ∈ (0, 1]
and we take

κδ(x) =
−δx

max {1, |x|} . (2)

To analyze the behavior of the system with measurement noise, define, for each
(s, δ) ∈ R≥0 × (0, 1],

γ(s, δ) =
max {1, s} − δ

max {1, s} . (3)

Note that γ(s, δ) < 1 for all (s, δ) ∈ R≥0 × (0, 1] and γ(·, δ) is nondecreasing.
Then note that

|x + κδ(x + e)| ≤ |x| (max {1, |x+ e|} − δ) + δ|e|
max {1, |x+ e|} (4)

so that when |e| ≤ 0.5|x| we have |x + κδ(x + e)| ≤ |x|γ(1.5|x|, 0.5δ). It follows
that the state trajectory will converge to a neighborhood of the origin that is
proportional to the worst case size of the measurement noise, regardless of how
small δ is. In other words, fast sampling does not make the system more and
more sensitive to measurement noise.
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2.3 Global Regulation to a Set Consisting of Two Distinct Points

Suppose we have designed a pure state feedback control algorithm κ : R2 → δB to
achieve stability of and global asymptotic convergence to the set A := {xa, xb},
where xa 	= xb. Stability implies that if the system starts close to one of the
points it will stay close to that point forever. Let Ha, respectively Hb, denote
the set of points that produce trajectories converging to xa, respectively xb. An
illustration is given in Figure 1(a). By uniqueness of solutions, these sets are well
defined and disjoint. By global asymptotic stability they cover R2, and because
of the stability property each set is nonempty. We define H to be the intersection
of the closures of Ha and Hb, i.e., H = Ha ∩Hb. Note that for each point x ∈ H
there exists a neighborhood of x intersecting both Ha and Hb. Again, using
stability, it follows that H does not include neighborhoods of A. Now, due to
the nature of dynamical systems, the sets Ha and Hb are forward invariant. In
particular

za ∈ Ha , zb ∈ Hb =⇒ za + κ(za) ∈ Ha , zb + κ(zb) ∈ Hb . (5)

It can be shown that this fact has the following consequence (in the statement
below, H + δB denotes the set of points having distance less than δ from H):

If x ∈ H+ δB then there exists e with |e| < δ such that x+κ(x+ e) ∈ H+ δB.

In turn it follows that, for each initial condition x ∈ H+δB there exists a noise
sequence e := {ek}∞k=0 such that |ek| < δ for all k and such that φ(k, x, e) ∈
H + δB for all k, where φ(k, x, e) denotes the trajectory starting from x at the
kth step under the influence of the measurement noise sequence e. This (small
when δ is small) noise sequence does not allow the trajectory to approach the
attractor A.

The above statement has the following explanation: Without loss of generality,
suppose x ∈ Ha. Since x ∈ H + δB, there exists z such that |x − z| < δ and
z ∈ Hb. In particular, z+κ(z) ∈ Hb. Pick e = z−x and consider x+κ(x+ e). If
x+κ(x+ e) ∈ Hb then x+κ(x+ e) ∈ H+ δB since there must be a point on the
line connecting x to x+κ(x+e) that belongs toH and since the length of this line
is less than δ since |κ(x+e)| < δ. If x+κ(x+e) ∈ Ha then x+κ(x+e) ∈ H+δB
since there must be a point on the line connecting x+κ(x+e) and x+e+κ(x+e)
that belongs to H and the length of this line must be less than δ since |e| < δ.

To summarize, no matter how we build our pure state feedback algorithm,
when δ is small there will be small noise sequences that can keep the system
from converging toward the attractor.

2.4 Global Regulation to a Target with Obstacle Avoidance

Suppose we have designed a pure state feedback control algorithm κ : R2\N →
δB to achieve stability of and “global” convergence to a point x∗ while avoiding
an obstacle covering the set N . The situation is depicted in Figure 1(b). For
simplicity, we assume that the set A is made stable and attractive. Basically,
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this says that if the control finds that the vehicle is nearly past the obstacle it
moves in the direction of the target. Let Ha, respectively Hb, denote the set of
points that produce trajectories converging to A by crossing into the set A above
the obstacle, respectively below the obstacle. By uniqueness of solutions, these
sets are well defined and disjoint. By “global” asymptotic convergence they cover
R2\(N ∪A), and because of stability and attractivity of A each set is nonempty.
We define H to be the intersection of the closures of Ha and Hb. Again using
stability of A it follows that H does not include neighborhoods of A. Because
of this (5) holds, at least when δ is small enough. Using the same reasoning as
in the previous subsection, we conclude that measurement noise of size δ can
be used to keep the trajectories close to H, which is on the “wrong” side of the
obstacle, or else make the vehicle crash into the obstacle.

2.5 A General Principle

We point out here that the ideas put forth above in the discussion about sta-
bilization of an attractor consisting of two distinct points and the discussion
about obstacle avoidance generalize. Indeed, let O ⊂ Rn be open and consider
the discrete-time system

x+ = x + f̃(x) . (6)

Let h̄ ∈ N≥2 and let the sets Hi, for i ∈ {1, . . . , h̄}, satisfy
⋃

iHi = O. Define
H =

⋃
i,j,i�=j Hi ∩Hj .

Lemma 1. Suppose that for each z ∈ H there exist i, j ∈
{
1, . . . , h̄

}
with i 	= j

and for each ρ > 0 there exist points zi, zj ∈ {z}+ρB so that zi + f̃(zi) ∈ Hi and
zj + f̃(zj) ∈ Hj. Let ε > 0. If x ∈ H + εB, {x} + 2εB ⊂ O, and |f̃(x + e)| < ε

for all |e| < ε then there exists e such that |e| < ε and x + f̃(x + e) ∈ H + εB.

In turn, we have the following result.

Corollary 1. Let ε > 0. Let C ⊂ O be such that, for each ξ ∈ C, ξ + 2εB ⊂ O
and |f̃(ξ + e)| < ε for all |e| < ε. Then, for each x0 ∈ C ∩ (H+ εB) there
exists a sequence {ek} with |ek| < ε such that the sequence generated by xk+1 =
xk + f̃(xk + ek) satisfies xk ∈ H + εB for all k such that xi ∈ C for all i ∈
{0, . . . , k − 1}.

A similar result applies to systems of the form x+ = x+ f̃(x, κ(x+ e)) and long
as f̃(·, u) is locally Lipschitz uniformly over all u in the range of κ. The ideas
used to establish a result for such systems parallels the main idea in the proof
of [4, Proposition 1.4]. We omit this result because of space limitations.

3 Standard MPC

In this section we review “standard MPC”. In standard MPC a pure state feed-
back function is generated as the mapping from the state x to the solution to
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an optimization problem, parametrized by x, that uses continuous functions and
does not use hard constraints. It has been shown in [15] that standard MPC
yields a closed loop with some robustness to measurement noise. (This is in con-
trast to the situation where the MPC optimization involves hard constraints.
Examples have been given in [8] to show that hard constraints can lead to zero
robustness margins.) However, as suggested by the discussion in the previous sec-
tion, the robustness margins may be quite small, especially if the discrete-time
plant is coming from a discrete-time model of a continuous-time system using
a relatively small sampling period and the control task is obstacle avoidance or
regulation to a disconnected set of points.

The control objective is to keep the state in the open state space X ⊂ Rn and
stabilize the closed attractor A ⊂ X. MPC can be used to achieve this objective.
The MPC algorithm is described as follows:

We denote an input sequence {u0, u1, . . .} by u where ui ∈ U for all i ∈ N.
Let E≥0 denote [0, ∞]. Let σ : Rn → E≥0 be a state measure with the following
properties: (i) σ(x) = 0 for x ∈ A, σ(x) ∈ (0, ∞) for x ∈ X\A, and σ(x) =∞ for
x ∈ Rn \X, (ii) continuous on X, (iii) σ(x) blows up as either x gets unbounded
or approaches to the border of X. We let � : Rn × U → E≥0 be the stage
cost satisfying �(x, u) ≥ σ(x) and g : Rn → E≥0 the terminal cost satisfying
g(x) ≥ σ(x). Given a horizon N ∈ N, let us define the cost function and the
value function, respectively, as

JN (x, u) :=
N−1∑
k=0

�(ψ(k, x, u), uk) + g(ψ(N, x, u)), VN (x) := infu JN (x, u) (7)

where ψ(k, x, u) is the solution to system (1) at time k, starting from the initial
condition x, evolved under the influence of the input sequence u. The above
optimization is over the set of admissible input sequences, i.e. input sequences
with each element residing in U . In order to keep the discussion simple, we make
the following assumption. (A less restrictive set of assumptions for a more general
setting can be found in [9].)

Assumption 3.1 For all N ∈ N and x ∈ X a minimizing input sequence u
satisfying VN (x) = JN (x, u) exists. VN is continuous on X and there exists
L > 0 such that VN (x) ≤ Lσ(x) for all x ∈ X and N ∈ N.

Given a horizon N , for x ∈ X we let the MPC-generated feedback κN (x) := u0
where u0 is the first element of an input sequence satisfying VN (x) = JN (x, u).
In this setting the following result ensues (see [9] for details).

Theorem 1. Under Assumption 3.1 there exists L > 0 such that, for all horizon
N , the value function VN is continuous and satisfies

σ(x) ≤ VN (x) ≤ Lσ(x) ∀x ∈ X .

Moreover, for each ρ ∈ (0, 1) there exists n◦ ∈ N such that

VN (f(x, κN (x))) − VN (x) ≤ −ρσ(x) ∀x ∈ X , N ≥ n◦ .
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In particular, for N sufficiently large, the set A is asymptotically stable with
basin of attraction X .

4 Modified MPC to Decrease Sensitivity to Measurement
Noise

4.1 MPC with Memory

Introduction

When using MPC for stabilization, one simple remedy to the robustness problem
discussed in Section 2 seems to be to increase the so called execution horizon.
That is, instead of applying the first element of an optimal input sequence and
then measuring the state after one step to compute a new optimal input se-
quence for the new initial condition, one could apply the first Ne ≥ 2 elements
of an optimal input sequence (in an open-loop fashion) before taking a new
measurement and optimization. By doing so, if the state is close to where it is
most vulnerable to measurement noise, before the next measurement it can be
carried sufficiently far away (by choosing a large enough Ne) from that location.
However, this method may be deleterious for certain applications where the con-
ditions change quickly. This presents a trade-off between wanting to be robust
to measurement noise and wanting to react quickly when conditions actually
change. A compromise can be attained if one augments the state of the system
with a memory variable that keeps record of previous decisions (calculations).
With memory, the algorithm can be made to have preference over its previous
decisions and the state can still be monitored at each step in order to take action
against that preference if necessary or profitable.

Algorithm Description

To be more precise, choose the buffer gain µ > 1 and a memory horizon
M ∈ N. Define Ω := {ω1, . . . , ωM}, ωi ∈ U . Given x ∈ X , let (admissi-
ble) input sequences v = {v0, v1, . . .} and w = {w0, w1, . . .} be defined as
v := argmin

u
JN (x, u) and

w := argmin
u

JN (x, u) subject to ui−1 = ωi ∀i ∈ {1, . . . , M} .

Define

WN (x, Ω) := inf
u
JN (x, u) subject to ui−1 = ωi ∀i ∈ {1, . . . , M}

and

κ̄N(x, Ω) :=

{
v0 if WN (x, Ω) > µVN (x)
w0 if WN (x, Ω) ≤ µVN (x)

,

πN (x, Ω) :=

{
{v1, . . . , vM} if WN (x, Ω) > µVN (x)
{w1, . . . , wM} if WN (x, Ω) ≤ µVN (x)
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Note that when WN (x, Ω) ≤ µVN (x), we have κ̄N (x, Ω) = ω1 and πN (x, Ω) =
{ω2, ω3, . . . , ωM , wM}. The closed loop generated by this algorithm is

x+ = f(x, κ̄N (x, Ω)) (8)
Ω+ = πN (x, Ω) . (9)

We use ψ(k, x, Ω, κ̄N ) to denote the solution to (8).

Theorem 2. Let Assumption 3.1 hold. For each ρ ∈ (0, 1) there exist n◦ ∈ N

and positive real numbers K and α such that for all x ∈ X and Ω

WN (f(x, κ̄N (x, Ω)), πN (x, Ω))−WN (x, Ω) ≤ −ρσ(x) (10)
σ(ψ(k, x, Ω, κ̄N )) ≤ Kσ(x) exp(−αk) ∀k ∈ N (11)

for all horizon N and memory horizon M satisfying N ≥M + n◦.

Robustness with Respect to Measurement Noise

Let us now comment on the possible extra robustness that the MPC with mem-
ory algorithm may bring to the stability of a closed loop. Suppose the stability of
the closed loop obtained by standard MPC has some robustness with respect to
(bounded) measurement noise characterized as (perhaps for x in some compact
set)

VN (f(x, κN (x + e)))− VN (x) ≤ −σ(x)/2 + αv|e|

where N is large enough and αv > 0. Let us choose some µ > 1. Let us be given
some Ω = {ω1, . . . , ωM}. Then it is reasonable to expect for M and N −M
sufficiently large, at least for systems such as that with a disjoint attractor, that

WN (f(x, ω1), πN (x + e, Ω))−WN (x, Ω) ≤ −σ(x)/2 + αw|e|

with αw > 0 (much) smaller than αv as long as WN (x, Ω) is not way far off from
VN (x), say WN (x, Ω) ≤ 2µVN (x). Now consider the closed loop (8)-(9) under
measurement noise. Suppose WN (x+ e, Ω) ≤ µVN (x+ e). Then κ̄N (x+ e, Ω) =
ω1. For µ sufficiently large it is safe to assume WN (x, Ω) ≤ 2µVN (x). Therefore
we have

WN (f(x, κ̄N (x + e, Ω)), πN (x + e, Ω)) −WN (x, Ω) ≤ −σ(x)/2 + αw|e| .

Now consider the other case where WN (x + e, Ω) > µVN (x + e). Then define
Ω̃ := {v0, . . . , vM−1} where {v0, v1, . . .} =: v and VN (x + e) = JN (x + e, v).
Note then that WN (x+ e, Ω̃) = VN (x+ e) and it is safe to assume WN (x, Ω̃) ≤
2µVN (x) as well as WN (x, Ω̃) ≤WN (x, Ω) for µ large enough. Note finally that
κ̄N (x + e, Ω) = κ̄N (x + e, Ω̃) = v0 and πN (x + e, Ω) = πN (x + e, Ω̃) in this
case. Hence
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WN (f(x, κ̄N (x + e, Ω)), πN (x + e, Ω))−WN (x, Ω)

= WN (f(x, κ̄N (x + e, Ω̃)), πN (x + e, Ω̃))−WN (x, Ω)

≤WN (f(x, κ̄N (x + e, Ω̃)), πN (x + e, Ω̃))−WN (x, Ω̃)
≤ −σ(x)/2 + αw|e| .

The robustness of the closed loop is therefore enhanced.

4.2 MPC with Logic

Algorithm Description

The modification of the algorithm explained in the previous section aims to make
the control law more decisive. In this section we take a different path that will
have a similar effect. We augment the state with a logic (or index) variable q
in order for the closed loop to adopt a hysteresis-type behavior. We begin by
formally stating the procedure.

For each q ∈ {1, 2, . . . , q̄} =: Q let σq : Rn → E≥0 be a state measure with
the following properties: (i) σq(x) ∈ (0, ∞) for x ∈ Xq \ A, and σq(x) = ∞
for x ∈ Rn \ Xq, (ii) is continuous on Xq, (iii) σq(x) blows up either as x gets
unbounded or approaches to the border of Xq, and finally (iv) σq(x) ≥ σ(x). We
then let �q : Rn × U → E≥0 be our q-stage cost satisfying �q(x, u) ≥ σq(x) and
gq : Rn → E≥0 q-terminal cost satisfying gq(x) ≥ σq(x). We let

⋃
q∈QXq = X .

Given a horizon N ∈ N, we define, respectively, the q-cost function and the
q-value function

Jq
N (x, u) :=

N−1∑
k=0

�q(ψ(k, x, u), uk) + gq(ψ(N, x, u)), V q
N (x) := inf

u
Jq

N (x, u) .

We make the following assumption on V q
N which is a slightly modified version of

Assumption 3.1.

Assumption 4.1 For all N ∈ N, q ∈ Q, and x ∈ Xq a minimizing input
sequence u satisfying V q

N (x) = Jq
N (x, u) exists. V q

N is continuous on Xq. For
each q ∈ Q there exist Lq > 0 such that V q

N (x) ≤ Lqσq(x) for all x ∈ Xq and
N ∈ N. There exists L > 0 such that for each x ∈ X there exists q ∈ Q such
that V q

N (x) ≤ Lσ(x) for all N ∈ N.

Let µ > 1. Given x ∈ X, let the input sequence vq := {vq
0 , v

q
1 , . . .} be

vq := argmin
u

Jq
N (x, u) .

Let q∗ := argmin
�∈Q

V �
N (x). Then we define

κ̃N (x, q) :=

{
vq∗

0 if V q
N (x) > µV q∗

N (x)

vq
0 if V q

N (x) ≤ µV q∗

N (x)
, θN (x, q) :=

{
q∗ if V q

N (x) > µV q∗

N (x)

q if V q
N (x) ≤ µV q∗

N (x)
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Let the closed loop generated by the algorithm be

x+ = f(x, κ̃N (x, q)) (12)
q+ = θN (x, q) . (13)

We use ψ(k, x, q, κ̃N ) to denote the solution to (12).

Theorem 3. Let Assumption 4.1 hold. For each ρ ∈ (0, 1) there exist n◦ ∈ N

and positive real numbers K and α such that for all x ∈ X and q ∈ Q

V
θN (x, q)
N (f(x, κ̃N (x, q)))− V q

N (x) ≤ −ρσ(x) (14)
σ(ψ(k, x, q, κ̃N )) ≤ Kσ(x) exp(−αk) ∀k ∈ N (15)

for all horizon N ≥ n◦.

Robustness with Respect to Measurement Noise

We now discuss the robustness of stability of closed loops generated by MPC with
logic. By Assumption 4.1, for some large enough fixed horizonN and for all q ∈ Q
and x ∈ Xq it can be shown that V q

N (f(x, κ̃N (x, q))) − V q
N (x) ≤ −σq(x)/2. For

the analysis it makes no difference whether V q
N is coming from an optimization

problem or not. Therefore we might just as well consider the case where we have
a number of control Lyapunov functions V q active on sets Xq with associated
feedbacks κq satisfying

V q(f(x, κq(x))) − V q(x) ≤ −σq(x)/2

for each x ∈ Xq. Suppose each of the closed loops x+ = f(x, κq(x)) has some
degree of robustness characterized by (maybe for x in some compact set)

V q(f(x, κq(x + e)))− V q(x) ≤ −σq(x)/2 + αq|e|

where αq > 0. Now let us compound all these individual systems into a single
one by picking µ > 1 and with a switching strategy q+ = θ(x, q) where θ is
defined parallel to θN above. In the presence of measurement noise, the closed
loop will be

x+ = f(x, κθ(x+e, q)(x))

q+ = θ(x + e, q) .

Suppose at some point x we have θ(x + e, q) = p 	= q. That means V q(x +
e) > µV p(x + e). When µ > 1 is large enough it is safe to assume, thanks to
the continuity of the Lyapunov functions, that V q(x) ≥ V p(x) since e will be
relatively small. Therefore

V p(f(x, κp(x + e)))− V q(x) ≤ V p(f(x, κp(x + e)))− V p(x)
≤ −σp(x)/2 + αp|e|
≤ −σ(x)/2 + ᾱ|e|
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where ᾱ := maxq{αq}. Therefore if we adopt V (x, q) := V q(x) as the Lyapunov
function for our closed loop generated by the logic algorithm we can write

V (f(x, κθ(x+e, q)(x + e)), θ(x + e, q))− V (x, q) ≤ −σ(x)/2 + ᾱ|e|

for all x and q. Roughly speaking, the strength of robustness of the compound
closed loop will be no less than that of the “weakest” individual system, provided
that the buffer gain µ is high enough.

Figure 2 depicts the level sets of two Lyapunov functions with minima at two
distinct target points. The sets {x : V 1

N (x)/V 2
N (x) = µ} and {x : V 2

N (x)/V 1
N (x) =

µ} are indicated by dotted curves. The robustness margin with respect to mea-
surement noise is related to the separation between these curves. A possible
closed-loop trajectory in the absence of measurement noise is indicated by the
dashed curve. Note that there is more than one switch before the trajectory gets
close to one of the two target points.
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Level sets of V
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Level sets of V

N
2

Fig. 2. Level sets of V q
N for q ∈ {1, 2}. The dotted curves are the sets {x :

V 1
N(x)/V 2

N(x) = µ} and {x : V 2
N(x)/V 1

N (x) = µ}. The triangles represent the state
at the instants when a switching occurs. The dashed line represents a piece of the
solution starting at x = (4.5, 2.1), the rightmost triangle.

4.3 Discussion

The two schemes offered have different advantages and disadvantages. Preference
would depend on the particular application. However, MPC with memory is
easier to employ in the sense that it is a minor modification to the standard
algorithm. The difficulty is the determination of the design parameters M and
µ; this determination is not obvious. For example, it is not true in general that
the larger µ or M are, the more robustness the system has. It may be best to
choose them from a range and that range possibly depends on the system and
the other MPC related design parameters such as �, g, and N . In the logic case,
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it is in general not trivial to obtain functions V q, but it is true that a larger µ
will yield more robustness to measurement error, or at least it will not degrade
robustness. However, the larger µ, the longer it may take for the closed loop to
converge to the desired attractor. Also, a very large µ could make the system
incapable of adapting to large changes in conditions.

5 Illustrations of Modified MPC Algorithms

5.1 Pendulum Swing Up

Here we consider the problem of swinging up a pendulum and stabilizing its
inverted equilibrium. The continuous-time model of the system after an input
feedback transformation (ẋ = F (x, v) where x ∈ R2, v ∈ R) and normalization
is ẋ1 = x2; ẋ2 = sin(x1)− cos(x1)v, where x1 is the angle of the pendulum (0
at the upright position) and x2 is the angular velocity. Following [20, Ex. 8.3],
we design three different feedback laws v1(·), v2(·), v3(·) for the system. In [20],
each of these control laws are activated in a different prespecified region of the
state space to perform the swing-up (the design purpose of v1(·), v2(·), v3(·) is
to kick the system from the resting condition, to pump energy into the system,
and to stabilize the inverted pendulum to the upright position, respectively).
Given a sampling period T > 0, for each u ∈ {1, 2, 3} let x+ = f(x, u) be the
discrete-time model of the closed loop ẋ = F (x, vu(x)) obtained via integration
over an interval of length T , i.e. f(x, u) = φ(T ) where φ(·) is the solution of
ẋ = F (x, vu(x)) starting at φ(0) = x. We can now use MPC to decide the
swing-up strategy.

We construct the stage cost for standard MPC by adding the kinetic and
potential energy of the pendulum. We also include a term in the stage cost
that penalizes the control law during the continuous-time horizon to avoid large
control efforts. The cost function is periodic in x1 with period 2π and therefore,
there exists a surface on the state space x1−x2 where on one side the algorithm
tries to reach the upright position rotating the pendulum clockwise and on the
other side rotating the pendulum counterclockwise. For one such particular cost,
the surface and two different trajectories in opposite directions starting close to
the surface are given in Fig. 3(a). As discussed in Section 2, the closed-loop
system is vulnerable to small measurement noise in the vicinity of that surface
when T is small.

The vulnerability to measurement noise mentioned above can be resolved
via the approach discussed in Section 4.2. Despite the fact that x1 = 2πk,
k ∈ {0, ±1, ±2, . . .}, correspond to the same physical location, one can construct
two stage costs, namely �q for q ∈ {1, 2}, that are not periodic in x1 such
that �1 vanishes at x = (0, 0, 0, 0) and positive elsewhere and �2 vanishes at
x = (2π, 0, 0, 0) and positive elsewhere. By doing so we can attain a robustness
margin that does not depend on the size of sampling period T but on µ only,
which can be increased to enhance robustness. Fig. 3(b) shows the switching lines
for several values of µ for both possible switches (q = 1→ 2, q = 2→ 1). For a
particular value of µ, the robustness margin is related to the separation of the
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Fig. 3. Swing-up with standard MPC and MPC with memory

lines. The margin is independent of the sampling time T as long as NT remains
constant, N being the horizon for MPC with logic. The design of an MPC with
memory controller and the extension to the case of swinging up the pendulum
on a cart follows directly, but due to space limitations we do not include them
here.

5.2 Obstacle Avoidance with Constant Horizontal Velocity

Consider a vehicle moving on the plane x+ = x + δ, y+ = y + uδ where δ > 0
and u ∈ {−1, 1} (note that this system can be thought of as sampling the
system ẋ = 1, ẏ = u). Suppose that the goal for the vehicle is to avoid hit-
ting an obstacle defined by a block of unit height centered about the hori-
zontal axis at x = 0 (i.e. the vehicle must leave the region y ∈ [−0.5, 0.5]
before x = 0). We design a controller using MPC with logic. Let q ∈ {1, 2},
�1([x, y]T , u) = �2([x,−y]T , u) = exp(y), and g(·) = 0. Since the costs are in-
variant on x and symmetric about the x axis, the decision lines defined by µ
turn out to be horizontal lines. Let the spacing between these lines be s(µ). In
this case, s(µ) = ln(µ), since V 1

N ([x, y]T ) = µV 2
N ([x, y]T ) when y = ln(µ)

2 and
V 2

N ([x, y]T ) = µV 1
N ([x, y]T ) when y = − ln(µ)

2 for any N .
Note that when µ = 1 (or s(µ) = 0) MPC with logic is equivalent to

the standard MPC algorithm implemented using the stage cost �([x, y]T , u) =
min{�1([x, y]T , u), �2([x, y]T , u)}. As µ is increased, the spacing s(µ) increases.
Table 1 shows the average number of switches and the total number of crashes for
50, 000 runs of the system. The initial conditions are set to be x(0) = −1.5 and
y(0) normally distributed (though kept within (−1, 1)) around y = 0. The noise
is uniformly distributed in [−0.8, 0.8]. The key variables of comparison are the
spacing of the decision lines s(µ) and the sampling time δ. With the increased
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Table 1. Simulations of system with differing decision line spacing and sampling time
for uniformly distributed measurement noise e ∈ [−0.8, 0.8]. Each datum is generated
by 50,000 runs starting at x(0) = −1.5 and y(0) normally distributed constrained to
(−1, 1). “TC” is total number of crashes and “AS” is average number of switches.

δ 0.1 0.06 0.03 0.01 0.006 0.003 0.001
s(µ) TC AS TC AS TC AS TC AS TC AS TC AS TC AS

0.00 5110 2.61 5444 4.36 5791 8.73 5927 26.1 5922 43.8 6107 88.3 6125 263
0.25 3248 1.75 3716 2.88 3862 5.72 4197 17.2 4334 28.9 4375 57.3 4144 169
0.50 1575 1.13 1875 1.76 2253 3.38 2549 10.0 2529 16.7 2625 33.2 2638 101
0.75 428 0.70 609 1.01 863 1.80 1102 5.00 1140 8.26 1155 16.4 1189 48.6
1.00 47 0.46 51 0.57 110 0.86 241 2.05 274 3.21 276 6.14 298 17.7
1.25 1 0.34 2 0.39 1 0.48 6 0.73 9 0.94 8 1.55 17 3.92
1.50 0 0.25 0 0.29 0 0.35 0 0.42 0 0.45 0 0.48 0 0.54

spacing for a given sampling time, there are fewer crashes, as expected, and the
trajectories contain fewer switches. The number of switches can be thought of as
a measure of the sensitivity to measurement noise. As the sampling time is de-
creased, the system also becomes more sensitive to measurement noise due to the
smaller movements of the system making it difficult to escape the neighborhood
of the horizontal axis.

For this system, a crash-free bound on the measurement noise (that solely
depends on µ) can be calculated as follows.

Claim. Suppose the MPC with logic controller is implemented with the cost
functions �1, �2. If the buffer gain µ > 1, the measurement noise is bounded by
s(µ)

2 , and the horizontal component of the state x < −
(

1+s(µ)
2

)
then the system

will not crash due to measurement noise.

Note that the bound in Claim 5.2 does not depend on the sampling time δ.
Hence, the given controller yields a robustness margin independent of δ. For this
system, increasing the buffer gain will always increase the robustness margin.
However, this may not work on other systems. Increasing the buffer gain too
much can cause a system to become obstinate rather than decisive. Choosing the
buffer gain then will be very dependent on the task that the system is required to
perform. A balance must be made between ignoring (usually small) measurement
error and responding to (relatively large) changes in task conditions.

5.3 Avoiding Moving Obstacles

Let the dynamics of a vehicle and obstacle be x+ = x + u and z+ = z + v,
respectively, where x ∈ R2, u ∈ {−1, 0, 1}× {−1, 0, 1}, and v ∈ {−1, 0, 1}. We
fix the vertical displacement of the obstacle h > 0, and constrain the horizontal
displacement to z ∈ [−1, 1]. The goal of the vehicle is to reach some target while
avoiding the obstacle whose goal is to reach the vehicle. Both of the agents are
considered as single points in R2 and run MPC to achieve their goals as follows.
The stage cost of the vehicle puts a high penalty on the current location of the
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obstacle and gradually vanishes at the target. The stage cost of the obstacle
vanishes whenever x1 = z and is positive elsewhere.

Applying standard MPC with the vehicle and the obstacle initially aligned
vertically at zero horizontal position, the obstacle is able to prevent the vehicle
from converging to its target. Suppose the vehicle decides to move in the increas-
ing x1 direction to avoid the obstacle from the right. The obstacle will follow
the vehicle with one step of delay. At some point, it will become necessary for
the vehicle to change its course since the optimal path, now that the obstacle
has moved, is now to the the left of the obstacle. Hence the vehicle can get stuck
possibly as shown in Fig. 4(a).

Using the MPC with memory approach described in Section 4.1, the problem
can be resolved. Using the same stage cost, M = 5, and µ = 1.4, the vehicle
avoids the obstacle. The sequence in memory is effectively used when the obstacle
is at (2, 3): the vehicle stays within his initial course of passing the obstacle from
the right as shown in Fig. 4(b). Similar results were obtained with MPC with
logic using two symmetric respect to x1 stage cost functions that allow the vehicle
avoid the obstacle from the left and from the right, respectively, but the results
are omitted because of space limitations.

Note that the moving obstacle can be thought of as noise for the measure-
ment of the vehicle’s distance to a static obstacle. Since the displacement of the
obstacle has magnitude equal to one, the “measurement noise” for the vehicle is
rather large.
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Summary. This paper is devoted to the stabilization problem of nonlinear conti-
nuous-time systems with piecewise constant control functions. The controller is to be
computed by the receding horizon control method based on discrete-time approximate
models. Multi-rate - multistep control is considered and both measurement and compu-
tational delays are allowed. It is shown that the same family of controllers that stabilizes
the approximate discrete-time model also practically stabilizes the exact discrete-time
model of the plant. The conditions are formulated in terms of the original continuous-
time models and the design parameters so that they should be verifiable in advance.

1 Introduction

One of the most popular methods to design stabilizing controllers for nonlinear
systems is the receding horizon control, also known as model predictive control.
In receding control, a finite horizon optimal control problem is repeatedly solved
and the input applied to the system is based on the obtained optimal open-loop
control. As a result of substantial efforts of many researchers, several theoret-
ically well-established versions of this method have been proposed in the past
one and a half decade both for continuous- and discrete-time models; see e.g.
[24], [4], [6], [21] for surveys and the references therein.

In continuous-time setting a great deal of the investigations is devoted to
the idealized situation, when the optimization procedure is solved at all time
instants, and the initial value of optimal control is applied to the plant (to
mention just a few examples, see [23], [13], [14], [1], [3]). This turns out almost
always to be an intractable task in practice. A more realistic assumption is
that the optimization problem is solved only at disjoint time instants and the
resulting optimal control function is implemented in between, which leads to
a sampled-data nonlinear model predictive control scheme (see e.g. [2], [18],
� The financial support from the Hungarian National Science Foundation for Scientific
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[8]). Being the optimal control in general merely measurable, the troubles of the
implementation of such a function are not negligible. The effect of the “sampling
and zero-order hold” is considered in [17] assuming the existence of a global
control Lyapunov function (CLF), and in [22], where the stabilizing property
of a piecewise constant NMPC computed from - and applied to the continuous-
time model is investigated without taking into account any approximation in the
plant model.

In several technical respects the situation is simpler, if the model of the plant
is given in discrete-time. However, such models frequently derived from some
continuous-time models as “good” approximations. For this reason, it is impor-
tant to know conditions which guarantee that the same family of controllers
that stabilizes the approximate discrete-time model of the plant also practically
stabilizes the exact model of the plant. Sufficient conditions for a controller hav-
ing these properties are presented in [26] and [25]. As it is emphasized by the
title of the latter paper, these results provide a framework for controller design
relying on the approximate discrete-time models, but they do not explain how
to find controllers that satisfy the given conditions. Within this framework some
optimization-based methods are studied in [11]: the design is carried out either
via an infinite horizon optimization problem or via an optimization problem
over a finite horizon with varying length. To relax the computational burden
of these approaches, one can apply a suitable version of the receding horizon
control method. Some sets of conditions are formulated and stability results are
proved in [15] and [5] for sampled-data receding horizon control method without
and with delays based on approximate discrete-time models. In this work we
shall investigate the stability property of the equilibrium under a different set of
assumptions that are verifyable in advance.

In receding horizon control method, a Bolza-type optimal control problem is
solved, in which the design parameters are the horizon length 0 ≤ t1 ≤ ∞, the
stage cost l, the terminal cost g (which are usually assumed to be at least non-
negative valued) and the terminal constraint set Xf . It is well-known that, if no
further requirements for these parameters are stated, then one can show even lin-
ear examples, where the resulting closed-loop system is unstable. On the other
hand, if that minimal requirement is satisfied that the origin is a locally asymp-
totically stable equilibrium for the closed-loop system, then one expect to have
the largest domain of attraction possible, the least computational efforts possible
for finding the controller, and certain robustness, as well. The domain of attrac-
tion can probably be increased by increasing the time-horizon, but this involves
the increase of the necessary computational efforts, too. Under the terminal con-
straint one can expect a relatively large domain of attraction with relatively short
time horizon. This is the reason, why this constraint is frequently applied in re-
ceding horizon. However, if a terminal constraint is included in the optimization
problem, then the corresponding value function will not have suitable regularity
in general, which ensures an expected robustness. In [9] several examples are pre-
sented which show the realization of this phenomenon. Therefore, if stabilization
is aimed via an approximate model, the terminal constraint may not be considered
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explicitly. Several results show that an appropriate choice of the terminal cost g
may also enforce stability: in fact, if g is a strict control Lyapunov function within
one of its level sets, then the receding horizon controller makes the origin to be
asymptotically stable with respect to the closed-loop system with a domain of at-
traction containing the above mentioned level set of g (the terminal constraint
set is implicit e.g. in [14], [18]). This domain of attraction can be enlarged up to
an arbitrary compact set, which is asymptotically controllable to the origin, by a
suitable - finite - choice of the horizon length. For a substantial class of systems
well-established methods exist for the construction of a suitable terminal cost (see
e.g. [3], [1], [29]). Sometimes it may be difficult – if not impossible – to derive an
appropriate terminal cost. Lately, it has been proven by [19] and [10] that the re-
quired stability can be enforced merely by a sufficiently large time horizon, having
obvious advantages, but at the cost of a – possibly substantial – enlargement of
the computational burden.

Here we consider in details the case when the terminal cost is a control Lya-
punov function, and we shall make some remarks on the case of general terminal
cost.

2 Stabilization Results with CLF Terminal Cost

2.1 The Models and the Method

Consider the nonlinear control system described by

ẋ(t) = f (x(t), u(t)) , x(0) = x0, (1)

where x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ R
m, X is the state space, U is the control

constraint set, f : Rn ×U → Rn, with f(0, 0) = 0, U is closed and 0 ∈ X , 0 ∈ U .
We shall assume that f is continuous and Lipschitz continuous with respect to
x in any compact set. Let Γ⊂X be a given compact set containing the origin
and consisting of all initial states to be taken into account.

Consider an auxiliary function l : Rn × U → R+ with analogous regularity
properties as f satisfying the condition l(0, 0) = 0, and consider the augmented
system (1) with

χ̇(t) = l(x(t), u(t)), χ(0) = 0. (2)

For convenience we introduce the notation Yρ = Y ∩ Bρ, where Bρ denotes the
ball around the origin with the radius ρ.

The system is to be controlled digitally using piecewise constant control func-
tions u(t) = u(iT ) =: ui, if t ∈ [iT, (i + 1)T ), i ∈ N, where T > 0 is the control
sampling period. We assume that for any x ∈ X∆′ and u ∈ U∆′′ , equation (1)–(2)
with u(t) ≡ u, (t ∈ [0, T ]) and initial condition x(0) = x, χ(0) = 0) has a unique
solution on [0, T ] denoted by (φE(., x, u), ϕE(., x, u)). Then, the augmented exact
discrete-time model of the system (1)–(2) can be defined as

xE
i+1 = FE

T (xE
i , ui), xE

0 = x0, (3)

χE
i+1 = χE

i + lET
(
xE

i , ui

)
, χE

0 = 0, (4)

where FE
T (x, u) := φE(T ;x, u), and lET (x, u) = ϕE(T, x, u).
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We note that, φE and ϕE are not known in most cases, therefore, the controller
design can be carried out by means of an approximate discrete-time model

xA
k+1 = FA

T,h

(
xA

k , uk

)
, xA

0 = x0, (5)

χA
k+1 = χA

k + lAT,h

(
xA

k , uk

)
, χA

0 = 0, (6)

where FA
T,h (x, u) and lAT,h (x, u) are typically derived by multiple application

of some numerical approximation formula with (possibly variable) step sizes
bounded by the parameter h. Given u = {u0, u1, . . .} and initial conditions
xE

0 = x′ and xA
0 = x′′, the trajectories of the discrete-time systems (3) and

(5)–(6) are denoted, by φE
k (x′,u) and φA

k (x′′,u), ϕA
k (x′′,u), respectively.

Concerning the parameters T and h, in principle two cases are possible: T =
h, and T can be adjusted arbitrarily; T 	= h, T is fixed and h can be chosen
arbitrarily small. Having less number of parameters, the first case seems to be
simpler, but in practice there exists a lower bound to the smallest achievable T .
Since the second case has much more practical relevance, here we shall discuss
it in details, and we shall only point out the differences arising in case T = h,
when appropriate. In what follows, we assume that T > 0 is given.

In this paper we address the problem of state feedback stabilization of (3)
under the assumption that state measurements can be performed at the time
instants jTm, j = 0, 1, . . .:

yj := xE(jTm), j = 0, 1, . . . .

The result of the measurement yj becomes available for the computation of
the controller at jTm + τ1, where τ1 ≥ 0, while the computation requires τ2 ≥ 0
length of time i.e. the (re)computed controller is available at T ∗

j := jTm+τ1+τ2,
j = 0, 1, . . .. We assume that τ1 = �1T , τ2 = �2T and Tm = �T for some integers
�1 ≥ 0, �2 ≥ 0 and � ≥ �1 + �2 =: �.

If � = 1, �1 = �2 = 0, then we can speak about a single rate, one-step receding
horizon controller without delays, if � > 1, then we have multi-rate, multistep
controller with or without delays depending on values of �1 and �2. Papers [2] and
[7] consider the problem of computational delay in connection with the receding
horizon control for exact continuous-time models, while [28] develops results
analogous to that of [25] for the case of multi-rate sampling with measurement
delays.

A “new” controller computed according to the measurement yj = xE(jTm)
will only be available from T ∗

j , thus in the time interval [jTm, T ∗
j ) the “old”

controller has to be applied. Since the corresponding exact trajectory is unknown,
an approximation ζA

j to the exact state xE
(
T ∗

j

)
can only be used, which can be

defined as follows. Assume that a control sequence
{
u0

(
ζA
j−1

)
, . . . , u�−1

(
ζA
j−1

)}
has been defined for j ≥ 1. Let vp

(
ζA
j−1

)
=

{
u�−�

(
ζA
j−1

)
, . . . , u�−1

(
ζA
j−1

)}
and

define ζA
j by

ζA
j = FA

�

(
yj ,vp

(
ζA
j−1

))
, ζA

0 = φA
�
(x,uc), (7)
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where FA
�

(
y, {u0, . . . , u�−1}

)
= FA

T,h

(
. . . FA

T,h

(
FA

T,h (y, u0) , u1

)
. . . , u�−1

)
, and

uc is someprecomputed controller (independent of state measurements). Letv(j) ={
u

(j)
0 , . . . , u

(j)
�−1

}
be computed for ζA

j and let the �-step exact discrete-time model
be described by

ξE
j+1 = FE

� (ξE
j ,v

(j)), ξE
0 = φE

�
(x,uc), (8)

where FE
� (ξE

j ,v) = φE
� (ξE

j ,v). In this way the right hand side of (8) depends on
yj = xE(jTm) so that (7-8) represents an unconventional feedback system.

Our aim is to define a measurement based algorithm for solving the following
problem: for given T , Tm, τ1 and τ2 find a control strategy

v�,h: Γ̃ → U × U × . . .× U︸ ︷︷ ︸
� times

v�,h(x) = {u0(x), . . . , u�−1(x)}, using the approximate model (5), (7) which
stabilizes the origin for the exact system (3) in an appropriate sense, where Γ̃ is
a suitable set containing at least Γ .

Remark 1. If T = Tm, � = 1 and �1 = �2 = 0, then the single-rate delay-free case
is recovered, therefore it is sufficient to discuss the general case in details.

In order to find a suitable controller v, we shall apply a multistep version of the
receding horizon method. To do so, we shall consider the following cost function.

Let 0 < N ∈ N be given. Let (5) be subject to the cost function

JT,h(N, x,u) =
N−1∑
k=0

lAT,h(xA
k , uk) + g(xA

N ),

where u = {u0, u1, . . . , uN−1}, xA
k = φA

k (x,u), k = 0, 1, . . . , N denote the solu-
tion of (5), lAT,h is defined as in (6) and g is a given function.

Consider the optimization problem

PA
T,h(N, x): min {JT,h(N, x,u) : uk ∈ U} .

If this optimization problem has a solution denoted by u∗(x) = {u∗
0(x), . . . ,

u∗
N−1(x)

}
, then the first � elements of u∗ are applied at the state x i.e.

v�,h(x) =
{
u∗

0(x), . . . , u∗
�−1(x)

}
.

In what follows we shall use the notation V A
N (x) = JT,h(N, x,u∗(x)).

2.2 Assumptions and Basic Properties

To ensure the existence and the stabilizing property of the proposed controller,
several assumptions are needed.
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We might formulate this assumptions in part with respect to the approximate
discrete-time model as it was done e.g. in [5] and [15]. However, it turns out
that in several cases the verification of some conditions is much more tractable
for the original model than the approximate one. For this reason, we formulate
the assumptions with respect to the exact model (and to the applied numerical
approximation method). For the design parameters l and g, we shall make the
following assumption.

Assumption 1. (i) g : Rn → R is continuous, positive definite, radially un-
bounded and Lipschitz continuos in any compact set.

(ii) l is continuous with respect to x and u and Lipschitz continuous with respect
to x in any compact set.

(iii) There exist such class-K∞ functions ϕ1, ϕ1, ϕ2 and ϕ2 that

ϕ1(‖x‖) + ϕ1(‖u‖) ≤ l(x, u) ≤ ϕ2(‖x‖) + ϕ2(‖u‖), (9)

holds for all x ∈ X andu ∈ U .

Remark 2. The lower bound in (9) can be substituted by different conditions:
e.g. ϕ1 may be omitted, if U is compact. If the stage cost for the discrete-time
optimization problem is directly given, other conditions ensuring the existence
and uniform boundedness of the optimal control sequence can be imposed, as
well (see e.g. [10], [15] and [20] ). However, having a K∞ lower estimation with
respect to ‖x‖ is important in the considerations of the present paper.

The applied numerical approximation scheme has to ensure the closeness of the
exact and the approximate models in the following sense.

Assumption 2. For any given ∆′ > 0 and ∆′′ > 0 there exists a h∗
0 > 0 such

that

(i) FA
T,h (0, 0) = 0, lAT,h (0, 0) = 0, lAT,h (x, u) > 0, x 	= 0, FA

T,h and lAT,h are
continuous in both variables uniformly in h ∈ (0, h∗

0], and they preserve the
Lischitz continuity of the exact models, uniformly in h;

(ii) there exists a γ ∈ K such that

‖FE
T (x, u)− FA

T,h(x, u)‖ ≤ Tγ(h), ‖lET (x, u)− lAT,h(x, u)‖ ≤ Tγ(h),

for all x ∈ B∆′ , all u ∈ U∆′′ , and h ∈ (0, h∗
0].

Remark 3. We note that Assumption A2 depends on the numerical approxima-
tion method, and it can be proven for reasonable discretization formulas.

Definition 1. System (3) is asymptotically controllable from a compact set Ω
to the origin, if there exist a β(., .) ∈ KL and a continuous, positive and non-
decreasing function σ(.) such that for all x ∈ Ω there exists a control sequence
u(x), uk(x) ∈ U , such that ‖uk(x)‖ ≤ σ(‖x‖), and the corresponding solution
φE of (3) satisfies the inequality∥∥φE

k (x,u(x))
∥∥ ≤ β(‖x‖ , kT ), k ∈ N.
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The next assumption formulates, roughly speaking, a necessary condition for the
existence of a stabilizing feedback.

Assumption 3. (i) The exact discrete-time system (3) is asymptotically con-
trollable from a set Ω containing Γ to the origin.

(ii) There exists a ∆0 > 0, and a control sequence uc =
{
uc

0, . . . , u
c
l−1

}
(uc

i ∈
U) can be given so that Γ ⊂ Ω∆0 , φE

k (x,uc) ∈ Ω∆0 , φA
k (x,uc) ∈ Ω∆0 ,

k = 0, 1, . . . , � for all x ∈ Γ .

In what follows let ∆1 = β(∆0, 0) and ∆2 = σ(∆0), where β and σ are given in
Definition 1.

Finally, the next assumption implies that the final state penalty has to be a
local control Lyapunov function within the sampled data controllers.

Assumption 4. There exist a positive number η and a class-K function αg such
that for all x ∈ Gη = {x ∈ X : g(x) ≤ η} there is a κ(x) ∈ U∆2 such that for
u0 = κ(x)

g
(
FE

T (x, u0)
)
− g(x) + lET (x, u0) ≤ −αg(‖x‖). (10)

Remark 4. Sometimes it may be more convenient to verify the analogue of As-
sumption A4 for the approximate discrete-time system (c.f. [15]). This is the case
e.g. if the model has a controllable linearization (c.f. [2], [22]). In other cases, as
e.g. in [16], the present form is more advantageous.

Let us consider now the auxiliary problem of the minimization of the cost func-
tion

JE
T (N, x,u) =

N−1∑
k=0

lET (xE
k , uk) + g(xE

N ),

subject to the exact system (3), and introduce the notation

V E
N (x) = inf

{
JE

T (N, x,u):u = {u0, . . . , uN−1} , uk ∈ U
}

Lemma 1. If Assumptions A1, A3 and A4 hold true, then there exists a constant
V E

max independent of N , such that V E
N (x) ≤ V E

max, for all x ∈ Ω∆0 and N ∈ N.

Proof. The proof is similar to that of the analogous statement in [15], therefore
it is omitted here. �

Let us introduce the notations V A
max = V E

max + 1, ∆∗
2 = ϕ−1

1

(
V A

max/T
)
, and

Γmax(h0) =
{
x ∈ X :V A

N (x) ≤ V A
max, h ∈ (0, h0]

}
,

Mf(∆′, ∆′′) = max
x∈X∆′

max
u∈U∆′′

‖f(x, u)‖ .
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Theorem 1. Suppose that Assumptions A1–A4 are valid, and inequality s ≥
2TMf(2s,∆∗

2) holds true, if s ≥ ∆0. Then there exist constants N∗, r∗0 , ∆
∗
1 and

functions σ1, σ2 ∈ K∞ so that for any fixed N ≥ N∗, r0 ∈ (0, r∗0 ] and δ > 0 there
exists a h > 0 such that for all h ∈ (0, h]

Γ ⊂ Ω∆0 ⊂ Γmax(h) ⊂ B∆∗
1
, (11)

σ1 (‖x‖) ≤ V A
N (x) ≤ σ2 (‖x‖) , (12)∥∥φA

k (x,u∗(x))
∥∥ ≤ ∆∗

1, ‖u∗
k(x)‖ ≤ ∆∗

2, k = 0, 1, . . . , N − 1, (13)

if x ∈ Γmax(h)\Br0 , and for all k = 1, . . . , �

V A
N

(
φA

k (x,u∗(x))
)
− V A

N (x) ≤ −lAT,h(x, u∗
0(x)) + δ, (14)

where u∗(x) denotes the optimal solution of PA
T,h(N, x). Moreover, V A

N is locally
Lipschitz continuous in Γmax(h) uniformly in h ∈ (0, h].

Proof. The proof is given in the Appendix. �

Remark 5. If the sampling parameter T and the discretization parameter h co-
incide and T can be arbitrary adjusted, then – besides some technical problems
that can easily be handled – the main difficulty originates from the fact that
the lower bound of lAT,h is no longer independent of the adjustable parameter.
Nevertheless, a uniform lower bound for V A

N can be given for this case, as well
(see [15]).

Remark 6. If X is bounded, then the condition s ≥ 2T Mf (2s,∆∗
2), if s ≥ ∆0 in

Theorem 1 is not needed, otherwise the set of possible initial states, the choice
of T and the growth of f have to be fitted together.

2.3 Multistep Receding Horizon Control

In this section we outline an approach to the problem how the occurring mea-
surement and computational delays can be taken into account in the stabilization
of multi-rate sampled-data systems by receding horizon controller.

Suppose that a precomputed control sequence uc satisfying Assumption A3
is given. Then the following Algorithm can be proposed.

Algorithm. Let N ≥ N∗ be given, let j = 0, T ∗
−1 = 0 and let u(0) = u(p,0) =

uc = {uc
0, . . . , u

c
�−1
}. Measure the initial state y(0) = x0.

Step j.

(i) Apply the controlleru(j) to the exact system over the time interval [T ∗
j−1, T

∗
j ].

(ii) Predict the state of the system at time T ∗
j from y(j) by the approximation

let ζA
j = φA

�
(y(j), u(p,j)).
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Fig. 1. Sketch to the Algorithm

(iii) Find the solution u∗ = {u∗
0, . . . , u

∗
N−1} to the problem PA

T,h(N, ζA
j ), let

u(j+1) = {u∗
0, . . . , u

∗
�−1} and u(p,j+1) = {u∗

�−�
, . . . , u∗

�−1}.
(iv) j = j + 1.

A schematic illustration of the Algorithm is sketched in Figure 1.

Theorem 2. Suppose that the conditions of Theorem 1 hold true. Then there
exists a β ∈ KL, and for any r > 0 there exists a h∗ > 0 such that for any fixed
N ≥ N∗, h ∈ (0, h∗] and x0 ∈ Γ , the trajectory of the �-step exact discrete-time
system

ξE
k+1 = FE

� (ξE
k ,v�,h(ζA

k )), ξE
0 = φE

�
(x0,uc) (15)

with the �-step receding horizon controller v�,h obtained by the prediction

ζA
k+1 = FA

�

(
yk+1,vp

(
ζA
k

))
, ζA

0 = φA
�
(x0,uc) (16)

satisfies that ξE
k ∈ Γmax(h) and∥∥ξE

k

∥∥ ≤ max
{
β
(∥∥ξE

0

∥∥ , kTm
)
, r
}

for all k ≥ 0. Moreover, ζA
k ∈ Γmax(h), as well, and∥∥ζA

k

∥∥ ≤ max
{
β
(∥∥ζA

0

∥∥ , kTm
)

+ δ1, r
}

where δ1 can be made arbitrarily small by suitable choice of h.

Proof. The proof is given in the Appendix. �
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Remark 7. In the proof of Theorem 2 one also obtains that φE
k (ξE

j−1,u
(j)) con-

verges to the ball Br as j → ∞ for all k. Conclusions about the intersampling
behavior can be made on the basis of [27].

Remark 8. We note that the statement of Theorem 2 is similar to the practical
asymptotic stability of the closed-loop system (15)–(16) about the origin, but
with respect to the initial state ξE

0 , ζA
0 . This is not true for the original initial

state x0, because – due to the initial phase – the ball Br is not invariant over
the time interval [0, �T ). In absence of measurement and computational delays,
the theorem gives the practical asymptotic stability of the closed-loop system
(15)–(16) about the origin in the usual sense.

3 Remarks on Other Choices of the Design Parameters

Recently, stability results have been proven for the case, when the terminal cost
is not a CLF: see [19] for continuous-time and [10] discrete-time considerations.
It is shown in both papers that stability can be achieved under some additional
conditions, with arbitrary nonnegative terminal cost, if the time horizon is cho-
sen to be sufficiently long. In respect of the subject of the present work the
latter one plays crucial role. In fact, Theorem 1 of [10] provides a Lyapunov
function having (almost) the properties which guarantee that the same family of
controllers that stabilizes the approximate discrete-time model also practically
stabilizes the exact discrete-time model of the plant. To this end, one has to
ensure additionally the uniform Lipschitz-continuity of the Lyapunov function,
presuming that assumptions of [10] are valid for the approximate discrete-time
model. This assumptions can partly be transferred to the original continuous-
time data similarly to the way of the previous section.

The main difficulty is connected with assumption SA4 of [10]. This assumption
requires the existence of class-K∞ upper bound of the value function indepen-
dent of the horizon length. It is pointed out in [10] that such a bound exists if
- roughly speaking - for the approximate discrete-time system the stage cost is
exponentially controllable to zero with respect to an appropriate positive definite
function. An appropriate choice of such a function is given in [10], if the discrete-
time system is homogeneous. However, the derivation of the corresponding con-
ditions for the original data of general systems requires further considerations.
(We note that a certain version of the MPC approach for the sampled-data im-
plementation of continuous-time stabilizing feedback laws is investigated in [12]
under an assumption analogous to SA4 of [10].)

4 Conclusion

The stabilization problem of nonlinear continuous-time systems with piecewise
constant control functions was investigated. The controller was computed by the
receding horizon control method based on discrete-time approximate models.
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Multi-rate - multistep control was considered and both measurement and com-
putational delays were allowed. It was shown that the same family of controllers
that stabilizes the approximate discrete-time model also practically stabilizes
the exact discrete-time model of the plant. The conditions were formulated in
terms of the original continuous-time models and the design parameters so that
they could be verifiable in advance.
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Appendix

Proof. (Proof of Theorem 1) To obtain the properties of function V A
N we shall

subsequently introduce several notations. Let ρ1 > 0 be such that Bρ1 ⊂ Gη,

τ(s) =
{

min {T, s/(2Mf(2∆0, ∆
∗
2))} , if 0 ≤ s ≤ ∆0,

T, if ∆0 < s,
(17)

σ1(s) = ϕ1 (s/2) τ (s) /2 , ∆∗
1 = max{σ−1

1 (V A
max), ∆0}, (18)

ν(s) = max
‖x‖≤s

g(x) + αg(s) , r∗0 = min{ν−1(η), 2TMf(2∆0, ∆
∗
2)}, (19)

σ2(s) = max{ν(s) , ν(ρ1/2) + 2/ρ1V
A
max (s− ρ1/2)}, (20)

N∗ = [(V A
max − η) / ϕ1(ρ1)] + 1. (21)

First we observe that, under the conditions of the theorem, functions σ1 and σ2
defined by (17)–(18) and (19)–(20), respectively, as well as function ϕ1 belong
to class-K∞, therefore ∆∗

1 and ∆∗
2 are well-defined. Let h∗

0 > 0 be given by
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Assumption A2 with ∆′ = ∆∗
1 and ∆′′ = ∆∗

2. A straightforward computation
shows that for any x ∈ X∆∗

1
, u ∈ U∆∗

2
we have

∥∥φE(t, x, u)
∥∥ ≤ 2∆∗

1, if t ∈ [0, T ],
and lET (x, u) ≥ τ(x)ϕ1 (‖x‖ /2) + Tϕ1(‖u‖). Let 0 < h∗

1 ≤ h∗
0 be such that

τ(r0)ϕ1 (r0/2) /2 ≥ Tγ(h∗
1), where γ is defined by Assumption A2 (ii). Then for

all h ∈ (0, h∗
1]

lAT,h(x, u) ≥ σ1 (‖x‖) + Tϕ1(‖u‖),
if x ∈ X∆∗

1
\Br0 and u ∈ U∆∗

2
. Therefore for any x ∈ Ω∆0 problem PA

T,h(N, x) has
an optimal solution u∗(x), function V A

N is continuous in its domain, V A
N (0) = 0

and V A
N (x) > 0 if x 	= 0. Being N fixed, from Assumption A2 and Lemma 1 it

follows that there exists a 0 < h∗
2 ≤ h∗

0 such that for all h ∈ (0, h∗
2] estimation

V A
N (x) ≤ V A

max holds, which implies that Ω∆0 ⊂ Γmax(h). Let 0 < h∗
3 ≤ h∗

0 be
so small that (Lg + 1)NTγ(h) ≤ αg(r0), if h ∈ (0, h∗

3]. Making use of Assump-
tions A2 and A4, one can show in a standard way that for any x ∈ Gη

V A
N (x) ≤ g(x), if ‖x‖ ≥ r0, and V A

N (x) ≤ ν(r0) < η, if ‖x‖ < r0.
(22)

Moreover, if x ∈ Ω∆0 and for some 0 ≤ j < N , φA
j (x,u∗(x)) ∈ Gη, then

φA
N (x,u∗(x)) ∈ Gη. As a consequence, we obtain that φA

N (x,u∗(x)) ∈ Gη for
any x ∈ Ω∆0 , if N ≥ N∗ and h ∈ (0, h′], where h′ is chosen as h′ =
min {h∗

1, h
∗
2, h

∗
3}. Consider a h ∈ (0, h′]. Being lAT,h(φA

k (x,u∗(x)), u∗
k) ≤ V A

N (x),
if k = 0, 1, . . . , N − 1, the lower estimation in (12), the inclusions in (11) and in-
equalities (13) follow immediately. Observing that σ2(‖x‖) ≥ V A

max, if ‖x‖ ≥ ρ1,
and σ2(‖x‖) ≥ g(x), the upper estimation in (12) is a consequence of (22). Let
k ∈ {1, . . . , �}. By repeated use of Assumption A4 together with A2 one can
show that for any h ∈ (0, h′] and x ∈ Γmax(h)

V A
N

(
φA

k (x,u∗(x))
)
− V A

N (x) ≤ −lAT,h(x, u∗
0(x)) + (Lg + 1)kTγ(h).

Let 0 < h′′ be so small that (Lg + 1)�Tγ(h′′) ≤ δ, then (14) holds true, if
h ∈ (0,min{h′, h′′}]. Finally, using Assumption A2 it can be shown by standard
arguments that there exist an h′′′ > 0, LV > 0, δV > 0 such that for any h ∈
(0, h′′′],

∣∣V A
N (x) − V A

N (y)
∣∣ ≤ LV ‖x− y‖ holds true for all x, y ∈ Γmax(h) with

‖x− y‖ ≤ δV (see the proof of Lemma 7 of [15]). Choosing h = min{h′, h′′, h′′′},
all statements of the theorem are true. �
Proof. (Proof of Theorem 2)

Let r > 0 be arbitrary, let d = σ1(σ−1
2 (σ1(r))/2), let r0 = σ−1

2 (d)/2 and let
δ = σ1(r0)/2. Let h, δV , LV be defined by Theorem 1 according to this r0 and
δ, and let h′ = h. The proof is based on the following claim:

Claim A. Let k ∈ {1, 2, . . . , �} be arbitrary and let d be defined above. If for
j ≥ 1 ξE

j−1 ∈ Γmax(h′), ζA
j−1 ∈ Γmax(h′), and there exists a ε1 ∈ K such that∥∥ξE

j−1 − ζA
j−1

∥∥ ≤ ε1(h), if 0 < h ≤ h′, then there exist a 0 < h′′ ≤ h′ such that
for any h ∈ (0, h′′] inequality

max
{
V A

N

(
φE

k (ξE
j−1,u

(j))
)
, V A

N (ξE
j−1)

}
≥ d (23)

implies that
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V A
N

(
φE

k (ξE
j−1,u

(j))
)
− V A

N (ξE
j−1) ≤ −σ1(

∥∥ξE
j−1

∥∥ /2)/2,

where u(j) is the optimal solution of problem PA
T,h(N, ζA

j−1).
The proof of this claim can follow the same line as that of Theorem 2 in

[26] by taking into account that with the given values of d and r0, it makes no
trouble that the estimations (12) are only valid outside of the ball Br0 . Thus
we may return to the proof of the theorem. We observe first that the conditions
of the claim for ξE

j−1 and ζA
j−1, are valid if j = 1 and ε1 is chosen as ε1(h) =

Tγ(h)(eLf�T − 1)/(eLfT − 1), where Lf is the Lipschitz constant of f . Assume
that Claim A holds true for some j ≥ 1. Let h′′ be defined by this claim and
consider a h ∈ (0, h′′]. Suppose that V A

N (ξE
j−1) ≥ d. Then

∥∥ξE
j−1

∥∥ ≥ σ−1
2 (d) = 2r0,

and

V A
N

(
φE

k (ξE
j−1,u

(j))
)
− V A

N (ξE
j−1) ≤ −σ1(

∥∥ξE
j−1

∥∥ /2)/2 ≤ −σ1(r0)/2,

hold true. Thus φE
k (ξE

j−1,u
(j)) ∈ Γmax(h), so that ξE

j , yj ∈ Γmax(h), as well, and

V A
N

(
ξE
j

)
− V A

N (ξE
j−1) ≤ −σ1(r0)/2. (24)

Now we show that ζA
j ∈ Γmax(h). Let 0 < h′′′ ≤ min{h′, h′′} be so small that for

any h ∈ (0, h′′′] inequality ε1(h) ≤ min {σ1(r0)/LV , 2δV } /2 is satisfied. Then it
can be shown that ∥∥∥φE

k (yj ,u(p,j))− φA
k (yj ,u(p,j))

∥∥∥ ≤ ε1(h).

and

V A
N (ζA

j )=V A
N (ζA

j )− V A
N (ξE

j )+V A
N (ξE

j ) ≤ V A
N (ξE

j−1)+LV ε1(h)−σ1(r0)/2≤V A
max,

if h ∈ (0, h′′′]. Thus ζA
j ∈ Γmax(h), and the conditions of the claim hold also

for j + 1 as long as V A
N (ξE

j−1) ≥ d holds. Therefore (24) implies that after
finitely many steps V A

N (ξE
j−1) < d will occur. From the claim we get that

V A
N

(
φE

k (ξE
j−1,u

(j))
)
< d must also be valid for k = 1, . . . , �, thus for ξE

j , as
well. Choosing h∗ = h′′′, one can show that the ball Br is positively invari-
ant with respect to the exact and the approximate trajectories obtained during
the application of the proposed Algorithm. The existence of a suitable function
β ∈ KL can be constructed in the standard way. �
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Summary. We present an overview of our results on stabilizing scheduled output feed-
back Model Predictive Control (MPC) algorithm for constrained nonlinear systems
based on our previous publications [19, 20]. Scheduled MPC provides an important
alternative to conventional nonlinear MPC formulations and this paper addresses the
issues involved in its implementation and analysis, within the context of the NMPC05
workshop. The basic formulation involves the design of a set of local output feedback
predictive controllers with their estimated regions of stability covering the desired op-
erating region, and implement them as a single scheduled output feedback MPC which
on-line switches between the set of local controllers and achieves nonlinear transitions
with guaranteed stability. This algorithm provides a general framework for scheduled
output feedback MPC design.

1 Introduction

Most practical control systems with large operating regions must deal with non-
linearity and constraints under output feedback control. Nonlinear Model Predic-
tive Control (NMPC) is a powerful design technique that can stabilize processes
in the presence of nonlinearities and constraints. Comprehensive reviews of state
feedback NMPC algorithms can be found in [15]. In state feedback NMPC, full
state information can be measured and is available as initial condition for pre-
dicting the future system behavior. In many applications, however, the system
state can not be fully measured, and only output information is directly avail-
able for feedback. An output feedback NMPC algorithm can be formulated by
combining the state feedback NMPC with a suitable state observer, e.g., mov-
ing horizon observer (MHE)[6] [14], extended Kalman filter [16], etc. A good
overview of the observer based output feedback NMPC algorithms is provided
in [4]

Besides developing efficient techniques such as multiple shooting for solving
NLP [6] and parallel programming for control of nonlinear PDE systems [10],
researchers have proposed various methods to simplify NMPC on-line compu-
tation. In [18], it was proposed that instead of the global optimal solution, an
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improved feasible solution obtained at each sampling time is enough to ensure
stability. In [11], a stabilizing NMPC algorithm was developed with a few control
moves and an auxiliary controller implemented over the finite control horizon. In
[7], stability is guaranteed through the use of an a priori control Lyapunov func-
tion (CLF) as a terminal cost without imposing terminal state constraints. In [1],
nonlinear systems were approximated by linear time varying (LTV) models, and
the optimal control problem was formulated as a min-max convex optimization.
In [9], nonlinear systems were approximated as linear parameter varying (LPV)
models, and a scheduling quasi-min-max MPC was developed with the current
linear model known exactly and updated at each sampling time. A hybrid con-
trol scheme was proposed in [3] for nonlinear systems under state feedback. This
control scheme embeds the implementation of MPC within the stability regions
of the bounded controllers and employs these controllers as fall-back in the event
that MPC is unable to achieve closed-loop stability [2, 3, 13].

For a control system with a large operating region, it is desirable for the
controller to achieve satisfactory performance of the closed-loop system around
all setpoints while allowing smooth transfer between them. Pseudolinearization
was used in the quasi-infinite horizon NMPC formulation to obtain a closed form
expression for the controller parameters as a function of the setpoint [5]. A novel
gain scheduling approach was introduced in [12], in which a set of off-line local
controllers are designed with their regions of stability overlapping each other,
and supervisory scheduling of the local controllers can move the state through
the intersections of the regions of stability of different controllers to the desired
operating point with guaranteed stability.

In [20], we developed a scheduled output feedback MPC for nonlinear con-
strained systems, based on the scheduling ideas of [19] and [12]. The basic ideas
are (1) locally represent the nonlinear system around an equilibrium point as a
linear time varying (LTV) model and develop a local predictive controller with
an estimate of its region of stability; (2) expand the region of stability about
the desired operating point by piecing together the estimated regions of sta-
bility of a set of local predictive controllers; (3) schedule the local predictive
controllers based on the local region of stability that contains the system state.
The key to estalishing stability of local predictive controllers and stability of
scheduling of local predictive controllers is to design an exponentially stable
state feedback controller and require the state observer to deliver bounded ob-
server error to ensure asymptotic stability of the output feedback controller. In
order to faciliate a finite dimensional formulation for enforcement of exponen-
tial stability, we can either represent the local nonlinearity as a LTV model and
parameterize the infinite control horizon in terms of a linear feedback law, or
we can use the nonlinear model and only enforce the constraint over a finite
control horizon with a terminal constraint and a terminal cost. While [20] only
used the former formulation, the current paper generalizes a framework for de-
sign of scheduled output feedback MPC, which covers both finite dimensional
formulations.
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2 Local Output Feedback MPC for Constrained
Nonlinear Systems

2.1 State Feedback and No Disturbances

Consider a discrete-time nonlinear dynamical system described by

x(k + 1) = f(x(k), u(k)) (1)

where x (k) ∈ X ⊆ Rn, u (k) ∈ U ⊆ Rm are the system state and control input,
respectively,X and U are compact sets. Assume f(x, u)=

[
f1(x, u) · · · fn(x, u)

]T

are continuous differentiable in x and u.

Definition 1. Given a set U , a point x0 ∈ X is an equilibrium point of the
system ( 1) if a control u0 ∈ int(U) exists such that x0 = f(x0, u0). We call a
connected set of equilibrium points an equilibrium surface.

Suppose (xeq , ueq) is a point on the equilibrium surface. Within a neighborhood
around (xeq, ueq), i.e., Πx = {x ∈ Rn| |xr − xeq

r | ≤ δxr, r = 1, ..., n} ⊆ X,
and Πu = {u ∈ Rm| |ur − ueq

r | ≤ δur, r = 1, ...,m} ⊆ U, let x̄ = x − xeq and
ū = u−ueq. The objective is to minimize the infinite horizon quadratic objective
function

min
ū(k+i|k)

J∞(k)

subject to

|ūr(k + i|k)| ≤ δur,max, i ≥ 0, r = 1, 2, ...,m (2)
|x̄r(k + i|k)| ≤ δxr,max, i ≥ 0, r = 1, 2, ..., n (3)

where J∞(k) =
∑∞

i=0[x̄(k + i|k)TQx̄(k + i|k) + ū(k + i|k)TR ū(k + i|k)] with
Q > 0, R > 0. To derive an upper bound on J∞(k), define a quadratic function
V (x̄) = x̄TQ(k)−1x̄, Q(k) > 0. Suppose V (x) satisfies the following exponential
stability constraint

V (x̄(k + i + 1|k) ≤ α2V (x̄(k + i|k)), V (x̄(k|k)) ≤ 1, α < 1 (4)

There exists a γ(k) > 0 such that

V (x̄(k + i + 1|k))− V (x̄(k + i|k)) ≤ − 1
γ(k)

[
x̄(k + i|k)TQx̄(k + i|k)

+ū(k + i|k)TR ū(k + i|k)
] (5)

Summing (5) from i = 0 to i =∞ and requiring x̄(∞|k) = 0 or V (x̄(∞|k)) = 0,
it follows that J∞(k) ≤ γ(k)V (x̄(k|k)) ≤ γ(k). Therefore, the optimization is
formulated as

min
γ(k),Q(k),ū(k+i|k),i≥0

γ(k) (6)

subject to (2)-(5).
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Algorithm 1 (Exponentially stable MPC). Given the controller design pa-
rameter 0 < α < 1. At each sampling time k, apply u(k) = ū(k) + ueq where
ū(k) is obtained from min

γ(k),Q(k),ū(k+i|k),i≥0
γ(k) subject to (2), (4), (5) and (8),

where R is obtained offline from the maximization (7) subject to (2)-(5).

Assume that at each sampling time k, a state feedback law ū(k) = F (x̄(k)) is
used. Then an ellipsoidal feasible region of the optimization (6) can be defined as
S =

{
x̄ ∈ Rn

∣∣ x̄R−1x̄ ≤ 1
}
, where R is the optimal solution Q of the following

maximization
max

γ,Q,F (•)
log detQ (7)

subject to (2)-(5). Then J∞(k) is bounded by γRx̄(k)R−1x̄(k), where γR is the
solution of γ in (7).

Replacing the state constraint (3) by x̄(k + i|k) ∈ S, i ≥ 0, or, equivalently

R−Q > 0 (8)

which confines the current state and all future predicted states inside S, we
develop an exponentially stable MPC algorithm with an estimated region of
stability.

Remark 1. Enforcement of the exponential stability constraint (4) involves an
infinite control horizon. In order to faciliate a finite dimensional formulation, we
can either represent the local nonlinearity as a LTV model and parameterize the
infinite control horizon in terms of a linear feedback law (see [20]), or we can use
the nonlinear model and only enforce the constraint over a finite control horizon
with a terminal constraint and a terminal cost. In fact, the estimated region of
stability S =

{
x̄ ∈ Rn

∣∣ x̄R−1x̄ ≤ 1
}

and the cost upper bound γRx̄
TR−1x̄ can

serve as the terminal constraint and the terminal cost, respectively. A significant
difference between this paper and [20] is that this paper provides a generalized
framework, which covers both of the above two finite dimensional formulations.

Theorem 1. Consider the nonlinear system (1). Suppose (x eq, ueq) is locally
stabilizable, then there exist a neighborhood (Πx, Πu) around (xeq, ueq) and
a controller design parameter 0 < α < 1 such that Algorithm 1 exponen-
tially stabilizes the closed-loop system with an estimated region of stability
S =

{
x̄ ∈ Rn

∣∣ x̄TR−1x̄ ≤ 1
}
.

Proof. The proof can be found in the Appendix.

2.2 State Feedback and Asymptotically Decaying Disturbances

Consider the nonlinear system (1) subject to the unknown additive asymptot-
ically decaying disturbance d(k), xp(k + 1) = f(xp(k), u(k)) + d(k), where we
have made a distinction between the state of the perturbed system, xp(k), and
the state of the unperturbed system, x(k). In order for xp(k + 1) to remain in
the region of stability S , we develop a sufficient condition between the norm
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bound of d(k) and the controller design parameter α. Let x̄p(k) = xp(k) − xeq,

x̄(k + 1) = f(xp(k), u(k)) − xeq. Suppose x̄p(k) ∈ S, (i.e., ‖x̄p(k)‖2R−1 ≤ 1),
‖x̄p(k + 1)‖2R−1 = ‖x̄(k + 1) + d(k)‖2R−1 = ‖x̄(k + 1)‖2R−1 +2x̄(k+1)TR−1d(k)+
‖d(k)‖2R−1 , where u(k) is computed by Algorithm 1. From ( 8) and (4), we know
that ‖x̄(k + 1)‖2R−1 ≤ ‖x̄(k + 1)‖2Q(k)−1 ≤ α2 ‖x̄p(k)‖2Q(k)−1 ≤ α2. Therefore, in-

variance is guaranteed if ‖x̄p(k + 1)‖2R−1 ≤ α2 + 2α ‖d(k)‖R−1 + ‖d(k)‖2R−1 =
(α + ‖d(k)‖R−1)2 ≤ 1. A sufficient condition for xp(k + 1) to remain in the re-
gion of stability S is ‖d(k)‖R−1 ≤ 1 − α, which means that the disturbance
should be bounded in a region Sd � {d ∈ Rn | dTR−1d ≤ (1− α)2}. As d(k) is
asymptotically decaying, the closed-loop trajectory asymptotically converges to
the equilibrium (xeq, ueq).

2.3 Output Feedback

Consider the nonlinear system (1) with a nonlinear output map

y(k) = h(x(k)) ∈ R
q (9)

where h(x) =
[
h1(x) · · · hq(x)

]T are continuous differentiable. For all x, x̂ ∈ Πx

and u ∈ Πu, consider a full order nonlinear observer with a constant observer
gain Lp,

x̂(k + 1) = f(x̂(k), u(k)) + Lp(h(x(k)) − h(x̂(k))) (10)

The error dynamic system is e(k+1)=f(x(k), u(k))−f(x̂(k), u(k))−Lp(h(x(k))−
h(x̂(k))). Define a quadratic function Ve(x) = eTPe, P > 0. Suppose for all
time k ≥ 0, x(k), x̂(k) ∈ Πx and u(k) ∈ Πu, and Ve(e) satisfies the following
exponential convergent constraint

Ve(e(k + i + 1|k)) ≤ ρ2Ve(e(k + i|k)) (11)

In order to facilitate the establishment of the relation between ‖d‖R−1 and ‖e‖P
in §2.4, we want to find a P as close to R−1 as possible. Therefore, we minimize
γ such that

γR−1 ≥ P ≥ R−1 (12)

Algorithm 2. Consider the nonlinear system (1) and (9) within (Πx, Πu)
around (xeq, ueq). Given the observer design parameter 0 < ρ < 1, the con-
stant observer gain Lp of the full order observer (10 ) is obtained from min

γ,P,Lp

γ

subject to ( 11) and (12).

Theorem 2. Consider the nonlinear system (1) and (9 ). Suppose (xeq, ueq) is
locally observable, then there exist a neighborhood (Πx, Πu) around (x eq , u eq)
and an observer design parameter 0 < ρ < 1 such that the minimization in
Algorithm 2 is feasible. Furthermore, if for all time k ≥ 0, x(k), x̂(k) ∈ Πx

and u(k) ∈ Πu, then the observer in Algorithm 2 is exponentially convergent.
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Algorithm 3 (Local output feedback MPC for constrained nonlinear
systems). Consider the nonlinear system (1) and the output map ( 9) within
the neighborhood (Πx, Πu) around (xeq, ueq). Given the controller and observer
design parameters 0 < α < 1 and 0 < ρ < 1. At sampling time k > 0, apply
u(k) = F (k; (x̂(k)− xeq)) + ueq, where x̂(k) is solved by the observer in Algo-
rithm 2 with the output measurement y(k−1) and F (k; •) is solved by the state
feedback MPC in Algorithm 1 based on x̄(k) = x̂(k)− xeq.

Proof. The proof can be found in the Appendix.

Now we combine the state feedback MPC in Algorithm 1 with the observer in
Algorithm 2 to form a local output feedback MPC for the constrained nonlinear
system.

2.4 Stability Analysis of Output Feedback MPC

For the output feedback MPC in Algorithm 3 to be feasible and asymptotically
stable, it is required that for all time k ≥ 0, x(k), x̂(k) ∈ Πx. In this subsection,
we study conditions on x(0) and x̂(0) such that x(k), x̂(k) ∈ S is satisfied for all
times k ≥ 0. Consider the closed-loop system with the output feedback MPC in
Algorithm 3,

x(k + 1) = f(x̂(k), u(k)) + d1(k)
x̂(k + 1) = f(x̂(k), u(k)) + d2(k)

with d1(k) = f(x(k), u(k)) − f(x̂(k), u(k)) and d2(k) = Lp(h(x(k)) − h(x̂(k))).
At time k, u(k) is obtained by using the state feedback MPC in Algorithm 1
based on x̄(k|k) = x̂(k)− xeq.

Since f is continuous differentiable, within (Πx, Πu) there exist β1, β2 > 0 such
that ‖d1(k)‖R−1 ≤ β1 ‖e(k)‖P and ‖d2(k)‖R−1 ≤ β2 ‖e(k)‖P . Suppose initially
x(0), x̂(0) ∈ S and ‖e(0)‖P ≤ η := 1−α

max{β1,β2} , then ‖d1(0)‖R−1 ≤ 1 − α and
‖d2(0)‖R−1 ≤ 1−α, which in turn lead to x(1), x̂(1) ∈ S (see §2.2)and ‖e(1)‖P ≤
η (see §2.3). And so on. Since for all time k ≥ 0, x(k), x̂(k) ∈ S, the state feedback
MPC in Algorithm 1 is exponentially stable, the observer in Algorithm 2 is
exponentially convergent, and the combination of both asymptotically stabilizes
the closed-loop system.

Theorem 3. Consider the nonlinear system (1) and (9 ). Suppose (xeq, ueq)
is locally stabilizable and observable, then there exist a neighborhood (Πx, Πu)
around (xeq, ueq) and controller and observer design parameters 0 < α < 1 and
0 < ρ < 1 such that the output feedback MPC in Algorithm 3 asymptotically
stabilizes the closed-loop system for any x(0), x̂(0) ∈ S ={
x ∈ Rn

∣∣∣(x− xeq)T R−1 (x− xeq) ≤ 1
}

satisfying ‖x(0)− x̂(0)‖P ≤ η.

Remark 2. In fact, ‖d1(k)‖R−1 ≤ β1 ‖e(k)‖P ≤ 1 − α defines two ellipsoidal re-
gions, i.e., Sd � {d1 ∈ Rn | dT

1 R
−1d1 ≤ (1− α)2} and Se � {e ∈ Rn |β2

1e
TPe ≤

(1− α)2} ⊂ Sd. The effect of the optimization in (12) on the observer perfor-
mance is to find the maximum Se within Sd.
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2.5 Observability Analysis of Output Feedback MPC

For the output feedback MPC in Algorithm 3, the state is not measured, but
from the output of the system and the estimated state, we can observe the
exponential decay of the norm bound of the state estimation error, and thus
observe the real state incrementally.

Consider the output feedback MPC in Algorithm 3 which can stabilize any
x(0), x̂(0) ∈ S satisfying ‖x(0)− x̂(0)‖P ≤ η. Let T > 0. At time k− T ≥ 0, let
x(k− T ), x̂(k− T ) ∈ S satisfying ‖x(k − T )− x̂(k − T )‖P ≤ η. During T steps,
an input sequence {u(k − T ), ..., u(k − 1)} ⊂ Πu is obtained by the controller
based on {x̂(k−T ), ..., x̂(k−1)} ⊂ S . We know that the state evolution starting
from x(k−T ) driven by {u(k−T ), ..., u(k− 1)} is inside S ⊂ Πx. Suppose that
the state evolution x̃(k + 1) = f(x̃(k), u(k)) starting from x̃(k − T ) = x̂(k − T )
driven by {u(k − T ), ..., u(k − 1)} is also inside Πx, then we can get

x(k + 1)− x̃(k + 1) = f(x(k), u(k))− f(x̃(k), u(k))
y(k)− ỹ(k) = h(x(k)) − h(x̃(k))

Let VT :=
∑k−1

j=k−T ‖y(j)− ỹ(j)‖2. Suppose (xeq, ueq) is locally observable, then
there exist a neighborhood (Πx, Πu) around (xeq, ueq) and T, µ > 0 such that
VT ≥ µ ‖x(k − T )− x̂(k − T )‖2P , or equivalently, ‖x(k) − x̂(k)‖2P ≤

ρT VT
µ .

Theorem 4. Consider the nonlinear system (1) and (9). Suppose (xeq, ueq) is lo-
cally stabilizable and observable, then there exist a neighborhood (Πx, Πu) around
(xeq, ueq) and controller and observer design parameters 0 < α < 1 and 0 < ρ <
1, and T, µ > 0 such that the output feedback MPC in Algorithm 3 is asymptot-
ically stable for any x(0), x̂(0) ∈ S =

{
x ∈ Rn

∣∣∣(x− xeq)T
R−1 (x− xeq) ≤ 1

}
satisfying ‖x(0)− x̂(0)‖P ≤ η. On-line, let x(0), x̂(0) ∈ S and ‖x(0)− x̂(0)‖P ≤
η. Apply the output feedback controller. At time k ≥ T , if the state evolution
starting from x̂(k−T ) driven by the input sequence {u(k − T ), ..., u(k − 1)} from
the controller is inside Πx, then ‖x(k)− x̂(k)‖2P ≤

ρT VT
µ .

Proof. The proof can be found in the Appendix.

3 Scheduled Output Feedback MPC for Constrained
Nonlinear Systems

Algorithm 4 (Design of scheduled output feedback MPC). For the non-
linear system (1) and the output map (9), given an equilibrium surface and a
desired equilibrium point (x(0), u(0)). Let i := 0.

1. Specify a neighborhood
(
Π

(i)
x , Π

(i)
u

)
around (x(i), u(i)) satisfying Π

(i)
x ⊆ X

and Π
(i)
u ⊆ U.
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2. Given 0 < α(i) < 1 and 0 < ρ(i) < 1, design Controller #i (Algorithm 3)
with its explicit region of stability

S(i) =
{
x ∈ R

n

∣∣∣∣(x− x(i)
)T (

R(i)
)−1 (

x− x(i)
)
≤ 1

}
Store x(i), u(i),

(
R(i)

)−1
, P (i), η(i), T (i) and µ(i) in a lookup table;

3. Select (x(i+1), u(i+1)) satisfying x(i+1) ∈ int
(
S(i)

θ

)
with

S(i)
θ =

{
x ∈ R

n

∣∣∣∣(x− x(i)
)T (

R(i)
)−1 (

x− x(i)
)
≤ (θ(i))2 < 1

}
Let i := i + 1 and go to step 1, until the region ∪M

i=0S(i) with M = max i
covers a desired portion of the equilibrium surface.

Remark 3. In general, the scheduled MPC in Algorithm 4 requires a specified
path on the equilibrium surface so as to extend the region of stability. An op-
timal path can be defined by the steady state optimization, which provides a
set of operating conditions with optimal economic costs. For the same path on
the equilibrium surface, the larger the number of controllers designed, the more
overlap between the estimated regions of stability of two adjacent controllers,
and the better the transition performance, because control switches can hap-
pen without moving the state trajectory close to the intermediate equilibrium
points. Yet a larger number of controllers leads to a larger storage space for the
lookup table and a longer time to do the search. So there is a trade-off between
achievement of good transition performance and computational efficiency.

On-line, we implement the resulting family of local output feedback predictive
controllers as a single controller whose parameters are changed if
certain switching criteria are satisfied. We call such a controller scheme a
scheduled output feedback MPC. For the case that x(0), x̂(0) ∈ S(0) satisfying
‖x(0)− x̂(0)‖P (0) ≤ η(0), according to Theorem 3, Controller #0 asymptotically
converges the closed-loop system to the desired equilibrium

(
x(0), u(0)

)
. Simi-

larly, for the case that x(0), x̂(0) ∈ S(i), i 	= 0 satisfying ‖x(0)− x̂(0)‖P (i) ≤ η(i),
Controller #i asymptotically converges the closed-loop system to the equilibrium(
x(i), u(i)

)
. Because x(i) ∈ int

(
S(i−1)

θ

)
, both x(k) and x̂(k) will enter S(i−1)

θ in
finite time. At time k, in order to switch from Controller #i to #(i−1), we need
to make sure that the initial conditions for stability of Controller #(i − 1) are
satisfied, i.e., x(k), x̂(k) ∈ S(i−1) and ‖x(k) − x̂(k)‖P (i−1) ≤ η(i−1).

Suppose x̂(k) ∈ S(i−1)
θ . We know that∥∥∥x(k)− x(i−1)

∥∥∥
(R(i−1))−1

≤ ‖x(k)− x̂(k)‖(R(i−1))−1 +
∥∥∥x̂(k)− x(i−1)

∥∥∥
(R(i−1))−1

≤ ‖x(k)− x̂(k)‖P (i−1) +
∥∥∥x̂(k)− x(i−1)

∥∥∥
(R(i−1))−1
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and ‖x(k)− x̂(k)‖2P (i−1) ≤ ζi→(i−1) ‖x(k)− x̂(k)‖2P (i) with ζi→(i−1) solved by
the following minimization

min
ζi→(i−1)

ζi→(i−1) (13)

subject to ζi→(i−1) > 0 and ζi→(i−1)P (i) − P (i−1) ≥ 0. Hence x(k) ∈ S(i−1) and
‖x(k) − x̂(k)‖P (i−1) ≤ η(i−1) are satisfied, if

‖x(k)− x̂(k)‖2P (i) ≤
1

ζi→(i−1) min
((

1− θ(i−1)
)2

,
(
η(i−1)

)2
)

(14)

From Theorem 4, we know that if Controller # i has been implemented for at
least T (i) time steps, and if the state evolution starting from x̂(k − T (i)) driven
by the input from the Controller #i is inside Π

(i)
x , then ‖x(k)− x̂(k)‖2P (i) ≤

(ρ(i))T (i)
V

(i)
T

µ(i) . By imposing an upper bound δi→(i−1) on V
(i)
T , we can upper bound

the state estimation error at current time k. Let

δi→(i−1) =
µ(i)

ζi→(i−1)
(
ρ(i)

)T (i) min
((

1− θ(i−1)
)2

,
(
η(i−1)

)2
)

(15)

the satisfaction of (14) is guaranteed. Furthermore, because the observer is expo-
nentially converging, for any finite δi→(i−1), there exists a finite time such that
V

(i)
T ≤ δi→(i−1) is satisfied.

Algorithm 5. Off-line, constructM+1 local predictive controllers by Algorithm
4. On-line, given x(0), x̂(0) ∈ S(i) satisfying ‖x(0)− x̂(0)‖P (i) ≤ η(i) for some i.
Apply Controller #i. Let T (i) be the time period during which Controller #i

is implemented. If for Controller #i > 0, (1) T (i) ≥ T (i), (2) x̂(k) ∈ S(i−1)
θ ,

and (3) the state evolution starting from x̂(k − T (i)) driven by the input from
Controller #i is inside Π

(i)
x , and V

(i)
T ≤ δi→(i−1), then, at the next sampling

time, switch from Controller #i to Controller #(i − 1); Otherwise, continue to
apply Controller #i.

Theorem 5. Consider the nonlinear system (1) and the output map (9). Sup-
pose x(0), x̂(0) ∈ S(i) satisfying ‖x(0)− x̂(0)‖P (i) ≤ η(i) for some i, the sched-
uled output feedback MPC in Algorithm 5 asymptotically stabilizes the closed-loop
system to the desired equilibrium (x(0), u(0)).

4 Example

Consider a two-tank system

ρS1ḣ1 = −ρA1
√

2gh1 + u (16)

ρS2ḣ2 = ρA1
√

2gh1 − ρA2
√

2gh2

y = h2
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Fig. 1. Phase plots of the regulations from x(0) = (7.5, 15)T to the equilibrium(
(19.753, 100)T , 1.7710

)
. First formulation: solid line - state; dotted line - estimated

state. Second formulation: dashed line - state; dashed dotted line - estimated state.

where ρ = 0.001kg/cm3, g = 980cm/s2, S1 = 2500cm2, A1 = 9cm2, S2 =
1600cm2, A2 = 4cm2, 1cm≤ h1 ≤ 50cm, 10 cm≤ h2 ≤ 120cm, and 0 ≤ u ≤
2.5kg/s. The sampling time is 0.5 sec. Let Q = diag(0, 1), R = 0.01 and α =
0.998 for all the controller designs, and ρ = 0.99 for all the observer designs. Let
θ = 0.9, T = 10 and δ = 10−5 for all switches.

Consider the regulation from an initial state h(0) =

[
7.5
15

]
to the equilib-

rium (h(0), u(0)) =

([
19.753
100

]
, 1.7710

)
. Initial estimated state is ĥ(0) = h(3).

Figure 1 shows four regions of stability defined by the optimization (7) for four
equilibrium points. There are two controller formulations implemented within
each stability region. The first formulation is to represent the local nonlinear-
ity as a LTV model and parameterize the infinite control horizon in terms of

a linear feedback law. Consider an equilibrium point

([
heq

1

heq
2

]
, ueq

)
. The lo-

cal nonlinearity within a neighborhood (Πh, Πu) is expressed as a polytopic
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Fig. 2. Time responses of the regulations from x(0) = (7.5, 15)T to the equilibrium(
(19.753, 100)T , 1.7710

)
. First formulation: solid line - state and input; dotted line -

estimated state. Second formulation: dashed line - state and input; dashed dotted line
- estimated state.

uncertainty Ω with four vertices {J(heq
1 +δh1, h

eq
2 +δh2), J(heq

1 +δh1, h
eq
2 −δh2),

J(heq
1 − δh1, h

eq
2 + δh2), J(heq

1 − δh1, h
eq
2 − δh2)}, where J(h1, h2) is the Jacobian

matrix at (heq
1 , heq

2 )T . The second formulation is to use the nonlinear model
within a neighborhood (Πh, Πu) and only enforce the constraint over a finite
control horizon of N = 3 with a terminal constraint and a terminal cost as
specified in Remark 1. Figure 1 shows the transitions by using the two controller
formulations. Figure 2 shows the time responses. Close-up views of the responses
of the state and the estimated state are provided to show convergence of the
observers.

The first formulation performs better than the second one, because
control switches of the second formulation happen close to the intermediate
equilibrium points. (For performance improvement see Remark 3 ). On a Gate-
way PC with Pentium III processor (1000MHz, Cache RAM 256KB and to-
tal memory 256MB) and using Matlab LMI toolbox for the first formulation
and optimization toolbox for the second approach, the numerical complexity
of the two controller formulations are 0.5 second and 0.15 second per step,
respectively.

5 Conclusions

In this paper, we have proposed a stabilizing scheduled output feedback MPC
formulation for constrained nonlinear systems with large operating regions. Since
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we were able to characterize explicitly an estimated region of stability of the
designed local output feedback predictive controller, we could expand it by de-
signing multiple predictive controllers, and on-line switch between the local con-
trollers and achieve nonlinear transitions with guaranteed stability. This algo-
rithm provides a general framework for the scheduled output feedback MPC
design. Furthermore, we have shown that this scheduled MPC is easily imple-
mentable by applying it to a two tank process.
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Appendix

Proof. Proof of Theorem 1: Within a neighborhood (Πx, Πu) around (xeq, ueq),
we locally represent the nonlinear system (1) by a LTV model x̄(k + 1) =
A(k)x̄(k) + B(k) ū(k) with

[
A(k) B(k)

]
∈ Ω. For all x ∈ Πx and u ∈ Πu,

the Jacobian matrix
[

∂f
∂ x ,

∂f
∂ u

]
∈ Ω with ∂ f

∂ x =

⎡⎢⎢⎣
∂ f1
∂ x1
· · · ∂ f1

∂ xn

...
. . .

...
∂ fn

∂ x1
· · · ∂ fn

∂ xn

⎤⎥⎥⎦ and ∂ f
∂ u =

⎡⎢⎢⎣
∂ f1
∂ u1
· · · ∂ f1

∂ um

...
. . .

...
∂ fn

∂ u1
· · · ∂ fn

∂ um

⎤⎥⎥⎦ . It is straight forward to establish the closed-loop exponential

stability within S based on the LTV model. Since the LTV model is a represen-
tation of a class of nonlinear systems including the given nonlinear system (1)
within the neighborhood (Πx, Πu), the closed-loop nonlinear system is exponen-
tially stable within S.

Proof. Proof of Theorem 2 and 4: Following the same procedure as in the proof
for Theorem 1, we locally represent the nonlinear error dynamics as a LTV
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model e(k + 1) = (A(k)− LpC(k)) e(k) with
[
A(k)T C(k)T

]T ∈ Ψ . For all

x, x̂ ∈ Πx and u ∈ Πu, the Jacobian matrix
[(

∂f
∂ x

)T (
∂h
∂ x

)T

]T

∈ Ψ with

∂f
∂ x =

⎡⎢⎢⎣
∂ f1
∂ x1
· · · ∂ f1

∂ xn

...
. . .

...
∂ fn

∂ x1
· · · ∂ fn

∂ xn

⎤⎥⎥⎦ and ∂h
∂ x =

⎡⎢⎢⎣
∂ h1
∂ x1
· · · ∂ h1

∂ xn

...
. . .

...
∂ hq

∂ x1
· · · ∂ hq

∂ xn

⎤⎥⎥⎦ . It is straight forward to

establish the exponential convergence of the observer and the norm bound of
the state estimation error within S based on the LTV model and the nonlinear
model.



The Potential of Interpolation for Simplifying
Predictive Control and Application to LPV
Systems

John Anthony Rossiter1, Bert Pluymers2, and Bart De Moor2

1 Department Automatic Control and Systems Engineering, Mappin Street,
University of Sheffield, S1 3JD, UK
j.a.rossiter@sheffield.ac.uk

2 Department of Electrical Engineering, ESAT-SCD-SISTA, Kasteelpark Arenberg
10, Katholieke Universiteit Leuven, B-3001 Heverlee (Leuven), Belgium
{bert.pluymers,bart.demoor}@esat.kuleuven.be

Summary. This paper first introduces several interpolation schemes, which have been
derived for the linear time invariant case, but with an underlying objective of trading
off performance for online computational simplicity. It is then shown how these can
be extended to linear parameter varying systems, with a relatively small increase in
the online computational requirements. Some illustrations are followed with a brief
discussion on areas of potential development.

1 Introduction

One of the key challenges in predictive control is formulating an optimisation
which can be solved fast enough while giving properties such as guaranteed
closed-loop stability and recursive feasibility. Furthermore one would really like
good expectations on performance. A typical compromise is between algorithm
or computational complexity and performance/feasibility. This paper looks at
how reparameterising the input sequence using interpolation gives one possi-
ble balance, that is, it focuses on maximising feasible regions for a given al-
gorithm/computational complexity without sacrificing asymptotic performance.
The paper also considers some of the barriers to progress and hence suggests pos-
sible avenues for further research and in particular the potential for application
to nonlinear systems. Several types of interpolation will be discussed, including
interpolation between control laws [17, 1], where complexity is linked to the state
dimension and interpolations based on parametric programming solutions [4].

Section 2 gives background information and Section 3 introduces the concep-
tual thinking in how interpolation techniques can widen feasibility while restrict-
ing complexity; to aid clarity, this is introduced using linear time invariant (LTI)
models. Section 4 then extends these concepts to allow application to LPV and
some classes of nonlinear systems. Section 5 gives numerical illustrations and the
paper finishes with a discussion.
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2 Background

This section introduces notation, the LPV model used in this paper, basic con-
cepts of invariance, feasibility and performance, and some prediction equations.

2.1 Model and Objective

Define the LPV model (uncertain or nonlinear case) to take the form:

x(k + 1) = A(k)x(k) + B(k)u(k), k = 0, . . . ,∞, (1a)

[A(k) B(k)] ∈ Ω � Co{[A1 B1], . . . , [Am Bm]}, (1b)

The specific values of [A(k) B(k)] are assumed to be unknown at time k. Other
methods [5, 6] can take knowledge of the current values of the system matrices
or bounded rates of change of these matrices into account but these cases are
not considered in this paper. However, it is conceivable to extend the algorithms
presented in this paper to these settings as well.

When dealing with LTI models (m = 1), we will talk about the nominal case.
The following feedback law is implicitly assumed :

u(k) = −Kx(k); ∀k. (2)

For a given feedback, the constraints at each sample are summarised as:

x(k) ∈ X = {x : Axx ≤ 1}, ∀k
u(k) ∈ U = {u : Auu ≤ 1}, ∀k

⇒ x(k) ∈ S0 = {x : Ayx ≤ 1}, ∀k.

(3)
where 1 is a column vector of appropriate dimensions containing only 1’s and
Ay = [Ax;−AuK]. We note that the results of this paper have been proven only
for feedback gains giving quadratic stabilisability, that is, for feedback K, there
must exist a matrix P = PT > 0 ∈ Rnx×nx such that

ΦT
j PΦj ≤ P, ∀j, Φj = Aj −BjK. (4)

Problem 1 (Cost Objective). For each of the algorithms discussed, the un-
derlying aims are: to achieve robust stability, to optimise performance and to
guarantee robust satisfaction of constraints. This paper uses a single objective
throughout. Hence the algorithms will seek to minimise, subject to robust satis-
faction of (3), an upper bound on:

J =
∞∑

k=0

(x(k)TQx(k) + u(k)TRu(k)). (5)

2.2 Invariant Sets

Invariant sets [2] are key to this paper and hence are introduced next.
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Definition 1 (Feasibility and robust positive invariance). Given a system,
stabilizing feedback and constraints (1,2,3), a set S ⊂ Rnx is feasible iff S ⊆ S0.
Moreover, the set is robust positive invariant iff

x ∈ S ⇒ (A−BK)x ∈ S, ∀[A B] ∈ Ω. (6)

Definition 2 (MAS). The largest feasible invariant set (no other feasible in-
variant set can contain states outside this set) is uniquely defined and is called
the Maximal Admissible Set (MAS, [7]).

Define the closed-loop predictions for a given feedback K as x(k) = Φkx(0);
u(k) = −KΦk−1x(0); Φ = A − BK, then, under mild conditions [7] the MAS
for a controlled LTI system is given by

S =
n⋂

k=0

{x : Φkx ∈ S0} = {x : Mx ≤ 1}, (7)

with n a finite number. In future sections, we will for the sake of brevity use
the shorthand notation λS ≡ {x : Mx ≤ λ1}. The MCAS (maximum control
admissible set) is defined as the set of states stabilisable with robust constraint
satisfaction by the specific control sequence:

ui = −Kxi + ci, i = 0, ..., nc − 1,
ui = −Kxi, i ≥ nc.

(8)

By computing the predictions given a model/constraints (1,3) and control law
(8), it is easy to show that, for suitable M,N , the MCAS is given as ([18, 19]):

SMCAS = {x : ∃C s.t. Mx+ NC ≤ 1}; C = [cT0 ... cTnc−1]
T. (9)

In general the MAS/MCAS are polyhedral and hence ellipsoidal invariant sets
[9], SE = {x|xTPx ≤ 1}, are suboptimal in volume [12]. Nevertheless, unlike the
polyhedral case, a maximum volume SE is relatively straightforward to compute
for the LPV case. However, recent work [11, 3] has demonstrated the tractability
of algorithms to compute MAS for LPV systems. This algorithm requires an
outer estimate, e.g. S0, constraints at each sample (also S0) and the model Φ.

2.3 Background for Interpolation

Define several stabilizing feedbacks Ki, i = 1, . . . , n, with K1 the preferred choice.

Definition 3 (Invariant sets). For each Ki, define closed-loop transfer ma-
trices Φij and corresponding robust invariant sets Si and also define the convex
hull S :

Φij = Aj −BjKi, j = 1, ...,m; Si = {x : x ∈ Si ⇒ Φijx ∈ Si, ∀j}, (10)

S � Co{S1, . . . ,Sn}. (11)
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Definition 4 (Feasibility). Let Φi(k) = A(k)−B(k)Ki, then [1] the following
input sequence and the corresponding state predictions are recursively feasible
within S:

u(k) = −
∑n

i=1 Ki

∏k−1
j=0 Φi(k − 1− j)x̂i,

x(k) =
∑n

i=1
∏k−1

j=0 Φi(k − 1− j)x̂i,
(12)

if one ensures that

x(0) =
n∑

i=1

x̂i, with

⎧⎪⎨⎪⎩
x̂i = λixi,∑n

i=1 λi = 1, λi ≥ 0,
xi ∈ Si.

(13)

Definition 5 (Cost). With x̃ = [x̂T
1 . . . x̂T

n ]T, Lyapunov theory gives an upper
bound x̃TP x̃ on the infinite-horizon cost J for predictions (12) using:

P ≥ ΓT
u RΓu + ΨT

i Γ
T
x QΓxΨi + ΨT

i PΨi, i = 1, . . . ,m, (14)

with Ψi = diag(Ai −BiK1, . . . , Ai −BiKn), Γx = [I, . . . , I], Γu = [K1, . . . ,Kn].

These considerations show that by on-line optimizing over x̃, one implicitly op-
timizes over a class of input and state sequences given by (12). Due to recursive
feasibility of these input sequences, this can be implemented in a receding hori-
zon fashion.

3 Interpolation Schemes for LTI Systems

Interpolation is a different form of methodology to the more usual MPC
paradigms in that one assumes knowledge of different feedback strategies with
significantly different properties. For instance one may be tuned for optimal per-
formance and another to maximise feasibility. One then interpolates between
the predictions (12) associated with these strategies to get the best performance
subject to feasibility. The underlying aim is to achieve large feasible regions with
fewer optimisation variables, at some small loss to performance, and hence fa-
cilitate fast sampling. This section gives a brief overview and critique of some
LTI interpolation schemes; the next section considers possible extensions to the
LPV case.

3.1 One Degree of Freedom Interpolations [17]

ONEDOF uses trivial colinear interpolation, hence in (12) use:

x = x̂1 + x̂2; x̂1 = (1− α)x; x̂2 = αx; 0 ≤ α ≤ 1. (15)

Such a restriction implies that α is the only d.o.f., hence optimisation is trivial.
Moreover, if K1 is the optimal feedback, minimising J of (5) over predictions
(15,12) is equivalent to minimising α, α ≥ 0. Feasibility is guaranteed only in⋃

i Si.
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Algorithm 1. [ONEDOFa] The first move is u = −[(1− α)K1 + αK2]x where:

α = min
α

α s.t. [M1(1− α) + M2α]x ≤ 1; 0 ≤ α ≤ 1. (16)

M1 and M2 define mutually consistent [17] invariant sets corresponding to K1
and K2 respectively as Si = {x|Mix ≤ 1}.
Algorithm 2. [ONEDOFb] The first move is u = −[(1− α)K1 +αK2]x where:

α = min
α,β

α s.t.

⎧⎪⎨⎪⎩
M1(1− α)x ≤ (1− β)1,
M2αx ≤ β1,
0 ≤ β ≤ 1; 0 ≤ α ≤ 1.

(17)

This is solved by α = (µ− 1)/(µ− λ) where µ = max(M1x), λ = max(M2x).

Summary: It can be shown that ONEDOFa will, in general, outperform
ONEDOFb and have a larger feasible region. However, a proof of recursive
feasibility has not been found for ONEDOFa whereas it has for ONEDOFb.
Convergence proofs only exist for some cases [17], although minor modifications
to ensure this are easy to include, e.g. [16]. However, the efficacy of the method
relies on the existence of a known controller K2 with a sufficiently large feasible
region.

3.2 GIMPC: MPC Using General Interpolation

GIMPC [1] improves on ONEDOF by allowing full flexibility in the decompo-
sition (12) of x and hence ensures (a priori): (i) a guarantee of both recursive
feasibility and convergence is straightforward and (ii) the feasible region is en-
larged to S. But the number of optimisation variables increases to nx + 1.

Algorithm 3 (GIMPC). Take a system (1), constraints (3), cost weighting
matrices Q,R, controllers Ki and invariant sets Si and compute a suitable P
from (14). Then, at each time instant, solve the following optimization:

min
x̂i,λi

x̃TP x̃, subject to (13), (18)

and implement the input u = −
∑n

i=1 Kix̂i.

Summary: The increased flexibility in the decomposition of x gives two benefits:
(i) a guarantee of both recursive feasibility and convergence is straightforward
and (ii) the feasible region is enlarged to S. The downside is an increase in the
number of optimisation variables.

3.3 GIMPC2 Interpolations

GIMPC includes the restriction (13) that
∑n

i=1 λi = 1, λi ≥ 0. However, [15]
showed that such a restriction is unnecessary when the sets Si are polyhedral.
Removing the constraints on λi: (i) the feasible region may become substantially
larger than S; (ii) reduces the number of optimisation variables (computation)
and (iii) facilitates better performance.
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Algorithm 4 (GIMPC2). Using the same notation as algorithm 3, at each
time instant, given the current state x, solve the following optimization problem
on-line

min
x̂i

x̃TP x̃, subject to

{∑n
i=1 Mix̂i ≤ 1,

x =
∑n

i=1 x̂i,
(19)

and implement the input u = −
∑n

i=1 Kix̂i, where the Mi defines a generalized
MAS S′i with mutually consistent constraints. See Algorithm 6 for details.

Summary: If the constraints on λi implicit in algorithm 3 (or eqn.(13)) are
removed one gets two benefits: (i) the feasible region may become substantially
larger (illustrated later) than S and moreover (ii) the number of optimisation
variables reduces. One still has guarantees of recursive feasibility and conver-
gence. So GIMPC2 outperforms GIMPC on feasibility, performance and com-
putational load. The main downside is that the associated set descriptions S′i
maybe more complex. This is discussed later, for instance in Algorithm 6.

3.4 Interpolations to Simplify Parametric Programming (IMPQP)

One area of research within parametric programming [4] solutions to MPC is how
to reduce the number of regions. Interpolation is an under explored and simple
avenue. Interpolation MPQP (IMPQP) [16] takes only the outer boundary of the
MCAS. In any given region, the associated optimal C (9) can be summarised as:
x ∈ Ri ⇒ C = −Kix + pi. For other x, for which a scaled version (by 1/ρ)
would lie in Ri on the boundary, then the following control law can be shown to
give recursive feasibility and convergence:

x

ρ
∈ Ri ⇒ C = ρ(−Kix + pi). (20)

Algorithm 5 (IMPQP). Offline: Compute the MPQP solution and find the
regions contributing to the boundary. Summarise the boundary of the MCAS in
the form Mbx ≤ 1 and store the associated regions/laws.

Online: Identify the active facet from ρ = maxj Mb(j, :)x. With this ρ, find a
feasible and convergent C from (20) and then perform the ONEDOFa interpola-
tion

min
α

α s.t. Mx + NαC ≤ 1, (21)

and implement u = −Kx+ αeT
1 C.

Summary: For many MPQP solutions, the IMPQP algorithm [16] can be used
to reduce complexity by requiring storage only of boundary regions and their
associated control laws. Monte-Carlo studies demonstrated that, despite a huge
reduction in set storage requirements, the closed-loop behaviour was nevertheless
often close to optimal.



The Potential of Interpolation 69

3.5 Other Algorithms

For reasons of space we give only a brief statement here. Other avenues currently
being explored include so called Triple mode strategies [8], where the prediction
structure has an extra non-linear mode to enlarge the terminal region. The design
of this extra mode must take account of the LPV case. Another possibility, easily
extended to the LPV case, is based on interpolation between the laws associated
to the vertices of some invariant set. This technique, as with parametric methods,
may suffer from issues of complexity.

4 Extensions to the LPV Case

The previous section dealt with the nominal case. This section shows how the
interpolation methods can be extended to nonlinear systems which can be rep-
resented by an LPV model. In particular, it is noted that recursive feasibility
was established via feasible invariant sets (MAS or MCAS). Hence, the main
conjecture is that all of the interpolation algorithms carry across to the LPV
case, with only small changes, as long as one can compute the corresponding
invariant sets.

4.1 Invariant Sets and Interpolation for GIMPC and ONEDOFb

The GIMPC and ONEDOFb algorithms work on terms of the form
maxj M(j, :)xi. For any given MAS, this value is unique and hence one can
use, the set descriptions Si of minimal complexity. Thus extension to the LPV
case is straightforward, as long as polyhedral sets Si exist and one replaces J
with a suitable upper bound [1]. The implied online computational load increases
marginally because the sets Si for the LPV case are likely to be more complex.

An alternative method to perform interpolation in the robust setting is given
in [20]. This method requires the use of nested ellipsoidal invariant sets, which
can significantly restrict the size of the feasible region, but which allow interpo-
lation to be performed without constructing a state decomposition as in (13).

4.2 Invariant Sets and Interpolation for GIMPC2 and ONEDOFa

The algorithm of [11] was defined to find the minimum complexity MAS of an
LPV system for a single control law. Thus redundant constraints are removed
at each iterate. However, for the GIMPC2 algorithm, constraints may need to
be retained [15] even where they are redundant in the individual Si, because the
implied constraints may not be redundant in the combined form of (16,19). Thus,
the MAS must be constructed in parallel to identify and remove redundant con-
straints efficiently. One possibility, forming an augmented system, is introduced
next. (There are alternative ways of forming an augmented system/states [15];
investigations into preferred choices are ongoing.)
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Algorithm 6 (Method to find mutually consistent MAS for the LPV
case).

1. Define an augmented system

X(k + 1) = Ψ(k)X(k); (22)

Ψ(k) =

⎡⎢⎢⎣
A(k)−B(k)K1 . . . 0

...
. . .

...
0 . . . A(k)−B(k)Kn

⎤⎥⎥⎦ ; X =

⎡⎢⎢⎣
x̂1

...
x̂n

⎤⎥⎥⎦ .

Define a set Ω̂ with Ψ ∈ Ω̂, describing the allowable variation in Ψ due to
the variations implied by [A(k) B(k)] ∈ Ω.

2. Constraints (3) need to be written in terms of augmented state X as follows:

Au [−K1,−K2, · · · ]︸ ︷︷ ︸
K̂

X(k) ≤ 1, k = 0, . . . ,∞, (23a)

Ax[I, I, · · · ]X(k) ≤ 1, k = 0, . . . ,∞. (23b)

3. Assume that an outer approximation to the MAS is given by (23). Then
letting u = −K̂X, this reduces to So = {X : MoX ≤ 1} where the definition
of Mo is obvious.

4. Follow steps 2-5 of Algorithm in [11] to find the robust MAS as Sa = {X :
MaX ≤ 1}.

Remark 1 (Feasible region for robust GIMPC2). Given the constraint
x =

∑n
i=1 xi, then one can find a projection of Sa to x-space from X-space as

follows:
SG2 = {x : ∃X s.t. MaX ≤ 1, x = [I, I, . . . , I]X}. (24)

Algorithm 7 (GIMPC2 for the LPV case). Given a system (1), con-
straints (3), cost weighting matrices Q = QT > 0, R = RT > 0, asymptot-
ically stabilizing controllers Ki, corresponding polyhedral robust invariant sets
Sa = {X : MaX ≤ 1} and P satisfying (14), solve on-line at each time instant,
the following problem:

min
x̂i

x̃TP x̃, subject to

{
x = [I, I, . . . , I]X,

MaX ≤ 1,
(25)

and implement input u = −[K1, K2, . . . , Kn]X.

Theorem 1. Algorithm 7 guarantees robust satisfaction of (3) and is recursively
feasible and asymptotically stable for all initial states x(0) ∈ SG2.
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Proof: from the invariance and feasibility of Sa, irrespective of the values
A(k), B(k) (or Ψ(k)):

x(k) ∈ SG2 ⇒ x(k + 1) ∈ SG2. (26)

As one can always choose new state components to match the previous predic-
tions (one step ahead), repeated choice of the same decomposition gives conver-
gence from quadratic stability (4) associated to each Ki, and hence system Ψ .
Deviation away from this will only occur where the cost J = x̃TP x̃ can be made
smaller still, so the cost function (25) acts as a Lyapunov function. ��

Summary: Extension to the LPV case is not straightforward for GIMPC2 and
ONEDOFa because the form of constraint inequalities implicit in the algorithms
is M1x1+M2x2+ ... ≤ 1 and this implies a fixed and mutual consistent structure
in Mi; they can no longer be computed independently! This requirement can
make the matrices Mi far larger than would be required by say GIMPC. Once
consistent sets Si have been defined, the interpolation algorithms GIMPC2 and
ONEDOFa are identical to the LTI case, so long as the cost J is replaced by a
suitable upper bound.

4.3 Extension of IMPQP to the LPV Case

Extension of IMPQP to the LPV case is immediate given the robust MCAS
(RMCAS) with the addition of a few technical details such as the use of an
upper bound on the cost-to-go. A neat algorithm to find the RMCAS makes use
of an autonomous model [10] (that is model (1) in combination with control law
(8)) to represent d.o.f. during transients, for instance:

zk+1 = Ψzk; z =

[
x

C

]
; Ψ =

[
Φ B 0

0 U

]
; U =

[
0 I(nc−1)nu×(nc−1)nu

0 0

]
.

(27)
Given (1), Ψ has an LPV representation. Define the equivalent constraint set as
S0 = {x : Ãyz ≤ 1}. One can now form the MAS for system (27) with these
constraints using the conventional algorithm. This set, being linear in both x
and C, will clearly take the form of (9) and therefore can be deployed in an
MPQP algorithm. One can either form a tight upper bound on the cost [1] or
a simpler, but suboptimal choice, would be J = CTC. Guaranteed convergence
and recursive feasibility is easy to establish and the main downside is the increase
in the complexity of the RMCAS compared to the MCAS.

Summary: Application of IMPQP to the LPV case can be done through the use
of an autonomous model to determine the RMCAS. Apart from the increase in
offline complexity and obvious changes to the shape of the parametric solution,
there is little conceptual difference between the LTI and LPV solutions.
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4.4 Summary

We summarize the changes required to extend nominal interpolation algorithms
to the LPV case.

1. The simplest ONEDOF interpolations can make use of a robust MAS, in
minimal form, and apart from this no changes from the nominal algorithm
are needed. The simplest GIMPC algorithm is similar except that the cost
needs to be represented as a minimum upper bound.

2. More involved ONEDOF interpolations require non-minimal representations
of the robust MAS to ensure consistency between respective Si, and hence
require many more inequalities. The need to compute these simultaneously
also adds significantly to the offline computational load.

3. The GIMPC2 algorithm requires both mutual consistency of the MAS and
the cost to be replaced by a minimum upper bound.

4. Interpolation MPQP requires the robust MCAS which can be determined
using an autonomous model representation, although this gives a large in-
crease in the dimension of the invariant set algorithm. It also needs an upper
bound on the predicted cost.

It should be noted that recent results [14] indicate that in the LPV case
the number of additional constraints can often be reduced significantly with a
modest decrease in feasibility.

5 Numerical Example

This section uses a double integrator example with non-linear dynamics, to
demonstrate the various interpolation algorithms, for the LPV case only. The
algorithm of [19] (denoted OMPC) but modified to make use of robust MCAS
[13] is used as a benchmark.

5.1 Model and Constraints

We consider the nonlinear model and constraints:

x1,k+1 = x1,k + 0.1(1 + (0.1x2,k)2)x2,k,

x2,k+1 = x2,k + (1 + 0.005x2
2,k)uk,

(28a)

−0.5 ≤ uk ≤ 1, [−10 − 10]T ≤ xk ≤ [8 8]T, ∀k. (28b)

An LPV system bounding the non-linear behaviour is given as:

A1 =

[
1 0.1
0 1

]
, B1 =

[
0
1

]
, A2 =

[
1 0.2
0 1

]
, B2 =

[
0

1.5

]
. (29)
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The nominal model ([A1 B1]) is used to design two robustly asymptotically
stabilizing feedback controllers: the first is the LQR-optimal controller K1 =
[0.4858 0.3407]T for Q = diag(1, 0.01), R = 3 and the second K2 = [0.3 0.4]T has
a large feasible region. Both controllers are robustly asymptotically stabilizing
for system (29) and are hence also stabilizing for system (28).

5.2 Feasible Regions and Computational Load

Figure 1(a) presents the feasible regions for the various interpolations and for
completeness also demonstrates the improvement compared to using the largest
volume invariant ellipsoids. It is clear that GIMPC2 gives substantial feasibil-
ity increases compared to GIMPC/ONEDOF and indeed also compared to IM-
PQP (Figure 1(b)) for nc = 6. The only increase in online computation arising
due to the move from LTI to LPV systems is from the number of inequalities
describing the invariant sets (work in progress may reduce this significantly).
For completeness table 1 shows the numbers of d.o.f. and the numbers of in-
equalities for each algorithm. IMPQP is excluded from this table as the online
computation is linked to the number of regions and hence is fundamentally
different.
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Fig. 1. Feasible regions for different algorithms for model (29) using feedback laws K1

and K2

Table 1. Numbers of inequalities and d.o.f. required by GIMPC, GIMPC2 and OMPC
for model (29)

GIMPC GIMPC2 OMPC
No. inequalities 22 63 506

No. d.o.f. nx + 1 = 3 nx = 2 nc = 6
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5.3 Control Performance and Robust Closed-Loop Behaviour

It is useful to consider how the closed-loop performance, within the respective
feasible regions, compares to ‘optimal’ (here taken as OMPC). Figure 2 depicts
simulation results for GIMPC, GIMPC2 and OMPC, starting from initial states
on the boundary of the intersection of the respective feasible regions. All three
algorithms are stabilizing and result in nearly identical trajectories. The average
control cost (according to (5)) of algorithms GIMPC and GIMPC2 is respectively
1.7% and 0.3% higher than OMPC with nc = 6.

Evidence is also provided by way of closed-loop state trajectories in figure 3
that each of these algorithms is robustly feasible and convergent for the entire
feasible region.
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Fig. 2. Trajectories for GIMPC, GIMPC2 and OMPC for plant model (28) using
feedback laws K1 and K2 and design model (29), starting from initial states at the
boundary and the inside of the intersection of the feasible regions
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Fig. 3. Trajectories for OMPC, GIMPC and GIMPC2 for plant model (28) using
feedback laws K1 and K2 and design model (29), starting from initial states at the
boundaries of the respective feasible regions

6 Conclusions and Future Directions

This paper has applied interpolation techniques to nonlinear systems which can
be represented, locally, by an LPV model. The interpolation algorithms allow a
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degree of performance optimisation, have guarantees of recursive feasibility and
convergence, while only requiring relatively trivial online computation. In fact
the main requirement is the offline computation of the MAS or MCAS, with
some structural restrictions. Notably, interpolations such as GIMPC2 may give
far larger feasible regions than might be intuitively expected.

Nevertheless some questions are outstanding: (i) There is interest in whether in-
terpolation concepts can be used effectively for more complicated non-linearities.
(ii) This paper tackles only parameter uncertainty whereas disturbance rejec-
tion/noise should also be incorporated - some current submissions tackle that
issue. (iii) It is still unclear what may be a good mechanism for identifying the
underlying feedbacks Ki or strategies which give large feasible regions although
Triple mode ideas [8] seem potentially fruitful. (iv) Interpolation has yet to be
tested extensively on high order processes. (v) Finally, there is a need to devise ef-
ficient algorithms for computing low complexity, but large, invariant sets for high
order systems.
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Summary. This paper presents a review of recent contributions that unite predic-
tive control approaches with Lyapunov-based control approaches at the implementa-
tion level (Hybrid predictive control) and at the design level (Lyapunov-based predic-
tive control) in a way that allows for an explicit characterization of the set of initial
conditions starting from where closed–loop stability is guaranteed in the presence of
constraints.

1 Introduction

Virtually all operation of chemical processes is subject to constraints on their
manipulated inputs and state variables. Input constraints arise as a manifes-
tation of the physical limitations inherent in the capacity of control actuators
(e.g., bounds on the magnitude of valve opening), and are enforced at all times
(hard constraints). State constraints, on the other hand, arise either due to the
necessity to keep the state variables within acceptable ranges to avoid, for exam-
ple, runaway reactions (in which case they need to be enforced at all times, and
treated as hard constraints) or due to the desire to maintain them within de-
sirable bounds dictated by performance considerations (in which case they may
be relaxed, and treated as soft constraints). Constraints automatically impose
limitations on our ability to steer the dynamics of the closed-loop system at will,
and can cause severe deterioration in the nominal closed-loop performance and
may even lead to closed-loop instability if not explicitly taken into account at
the stage of controller design.

Currently, model predictive control (MPC), also known as receding horizon
control (RHC), is one of the few control methods for handling state and input
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constraints within an optimal control setting and has been the subject of numer-
ous research studies that have investigated the stability properties of MPC. In
the literature, several nonlinear model predictive control (NMPC) schemes have
been developed (e.g., see [2, 4, 17, 19, 20, 27, 30]) that focus on the issues of
stability, constraint satisfaction, uncertainty and performance optimization for
nonlinear systems. One of the key challenges that impact on the practical im-
plementation of NMPC is the inherent difficulty of characterizing, a priori (i.e.,
before controller implementation or testing for feasibility), the set of initial con-
ditions starting from where a given NMPC controller is guaranteed to stabilize
the closed–loop system. Specifically, the stability guarantee in various MPC for-
mulations (with or without stability conditions, and with or without robustness
considerations) is contingent upon the assumption of initial feasibility, and the
set of initial conditions starting from where feasibility and stability is guaranteed
is not explicitly characterized. For finite–horizon MPC, an adequate characteri-
zation of the stability region requires an explicit characterization of the complex
interplay between several factors, such as the initial condition, the size of the
constraints and uncertainty, the horizon length, the penalty weights, etc. Use of
conservatively large horizon lengths to address stability only increases the size
and complexity of the optimization problem and could make it intractable.

The desire to implement control approaches that allow for an explicit char-
acterization of their stability properties has motivated significant work on
the design of stabilizing control laws using Lyapunov techniques that provide
explicitly–defined regions of attraction for the closed–loop system; the reader
may refer to [15] for a survey of results in this area, for a more recent re-
view, see [5]. In [6, 7, 8], a class of Lyapunov–based bounded robust non-
linear controllers, inspired by the results on bounded control originally pre-
sented in [18], was developed. While these Lyapunov–based controllers have
well–characterized stability and constraint–handling properties, they cannot, in
general, be designed to be optimal with respect to a pre–specified, arbitrary cost
function.

From the above discussion, it is clear that both MPC and Lyapunov–based
analytic control approaches possess, by design, their own, distinct stability and
optimality properties. Motivated by these considerations, this paper presents a
review of recent contributions [9, 10, 22, 23, 24, 25] that unite predictive control
approaches with Lyapunov-based control approaches at the implementation level
(Hybrid predictive control) and at the design level (Lyapunov-based predictive
control) in a way that allows for an explicit characterization of the set of initial
conditions starting from where closed–loop stability is guaranteed in the presence
of constraints.

2 Preliminaries

We focus on the problem of nonlinear systems with input constraints of the form:

ẋ(t) = f(x(t)) + g(x(t))u(t) (1)
‖u‖ ≤ umax (2)
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where x = [x1 · · ·xn]′ ∈ IRn denotes the vector of state variables, u = [u1 · · ·um]′

is the vector of manipulated inputs, umax ≥ 0 denotes the bound on the manip-
ulated inputs, f(·) is a sufficiently smooth n× 1 nonlinear vector function, and
g(·) is a sufficiently smooth n ×m nonlinear matrix functions. Without loss of
generality, it is assumed that the origin is the equilibrium point of the unforced
system (i.e. f(0) = 0). Throughout the paper, the notation ‖ · ‖ will be used to
denote the standard Euclidean norm of a vector, while the notation ‖ · ‖Q refers
to the weighted norm, defined by ‖x‖2Q = x′Qx for all x ∈ IRn, where Q is a
positive–definite symmetric matrix and x′ denotes the transpose of x. In order
to provide the necessary background for our results in sections 3 and 4, we will
briefly review in the remainder of this section the design procedure for, and the
stability properties of, both the bounded and model predictive controllers, which
constitute the basic components of our controllers. We focus on the state feed-
back control problem where measurements of x(t) are assumed to be available
for all t.

2.1 Model Predictive Control

We describe here a symbolic MPC formulation that incorporates most existing
MPC formulations as special cases. This is not a new formulation of MPC;
the general description is only intended for the purpose of highlighting the fact
that the hybrid predictive control structure can incorporate any available MPC
formulation. In MPC, the control action at time t is conventionally obtained by
solving, on–line, a finite horizon optimal control problem. The generic form of
the optimization problem can be described as:

u(·) = argmin{Js(x, t, u(·))||u(·) ∈ S}

s.t. ẋ(t) = f(x(t)) + g(x)u

x(0) = x0, x(t + T ) ∈ ΩMPC(x, t)

(3)

Js(x, t, u(·)) =

t+T∫
t

(x′(s)Qx(s) + u′(s)Ru(s))ds + F (x(t + T )) (4)

and S = S(t, T ) is the family of piecewise continuous functions, with period
∆, mapping [t, t + T ] into the set of admissible controls and T is the horizon
length. A control u(·) in S is characterized by the sequence {u[k]} where u[k] :=
u(k∆) with u(t) = u[k] for all t ∈ [k∆, (k + 1)∆). Js is the performance index,
R and Q are strictly positive definite, symmetric matrices and the function
F (x(t + T )) represents a penalty on the states at the end of the horizon. The
set ΩMPC(x, t) could be a fixed set, or may represent inequality constraints
(as in the case of MPC formulations that require some norm of the state, or a
Lyapunov function value, to decrease at the end of the horizon). The stability
guarantees in MPC formulations depend on the assumption of initial feasibility
and obtaining an explicit characterization of the closed–loop stability region of
the predictive controller remains a difficult task.
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2.2 Bounded Lyapunov-Based Control

Consider the system of Eqs.1-2, for which a family of control Lyapunov functions
(CLFs), Vk(x), k ∈ K ≡ {1, · · · , p} has been found. Using each control Lyapunov
function, we construct, using the results in [18] (see also [6, 7]), the following
continuous bounded control law

uk(x) = −kk(x)(LgVk)′(x) ≡ bk(x) (5)

kk(x) =
LfVk(x) +

√
(LfVk(x))2 + (umax‖(LgVk)′(x)‖)4

‖(LgVk)′(x)‖2
[
1 +

√
1 + (umax‖(LgVk)′(x)‖)2

] (6)

LfVk(x) =
∂Vk(x)
∂x

f(x), LgVk(x) = [Lg1Vk(x) · · ·LgmVk(x)]′ and gi(x) is the

i-th column of the matrix g(x). For the above controller, it can be shown, using
standard Lyapunov arguments, that for all initial conditions within the state–
space region described by the set

Ωk(umax) = {x ∈ IRn : Vk(x) ≤ cmax
k } (7)

where cmax
k > 0 is the largest number for which Φk(umax) ⊃ Ωk(umax)\{0}

where
Φk(umax) = {x ∈ IRn : LfVk(x) < umax‖(LgVk)′(x)‖} (8)

then the controller continues to satisfy the constraints, and the time-derivative
of the Lyapunov function is negative–definite for all times. The union of the
invariant regions described by the set

Ω(umax) =
p⋃

k=1

Ωk(umax) (9)

then provides an estimate of the stability region, starting from where the origin
of the constrained closed–loop system, under the appropriate control law from
the family of Eqs.5-6, is guaranteed to be asymptotically stable. Note that CLF-
based stabilization of nonlinear systems has been studied extensively in the non-
linear control literature (e.g., see [1, 11, 18, 29]). The construction of constrained
CLFs (i.e. CLFs that take the constraints into account) remains a difficult prob-
lem (especially for nonlinear systems) that is the subject of ongoing research.
For several classes of nonlinear systems that arise commonly in the modeling of
practical systems, systematic and computationally feasible methods are avail-
able for constructing unconstrained CLFs (CLFs for the unconstrained system)
by exploiting the system structure. Examples include the use of quadratic func-
tions for feedback linearizable systems and the use of back-stepping techniques
to construct CLFs for systems in strict feedback form. Furthermore, we note
here that the bounded control law of Eqs.5-6 will be used in the remainder of
the paper only to illustrate the basic idea of the proposed techniques for uniting
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Lyapunov-based and predictive controllers. Our choice of using this particular
design is motivated by its explicit structure and well-defined region of stability.
However, our results are not restricted to this particular design and any other
analytical bounded control law, with an explicit structure and well-defined region
of stability, can be used.

3 Hybrid Predictive Control

By comparing the bounded controller and MPC designs presented in the previous
section, some tradeoffs with respect to their stability and optimality properties
are evident. The bounded controller, for example, possesses a well-defined region
of admissible initial conditions that guarantee constrained closed–loop stability.
However, its performance may not be optimal with respect to an arbitrary per-
formance criterion. MPC, on the other hand, provides the desired optimality
requirement, but poses implementation difficulties and lacks an explicit charac-
terization of the stability region. In this section, we reconcile the two approaches
by means of a switching scheme that provides a safety net for the implementation
of MPC to nonlinear systems.

3.1 Formulation of the Switching Problem

Consider the constrained nonlinear system of Eqs.1-2, for which the bounded
controllers of Eqs.5-6 and predictive controller of Eqs.3-4 have been designed.
The control problem is formulated as the one of designing a set of switching laws
that orchestrate the transition between MPC and the bounded controllers in a
way that guarantees asymptotic stability of the origin of the closed–loop system
starting from any initial condition in the set Ω(umax) defined in Eq.9, respects
input constraints, and accommodates the optimality requirements whenever pos-
sible. For a precise statement of the problem, the system of Eq.1 is first cast as
a switched system of the form

ẋ = f(x) + g(x)ui(t); ‖ui‖ ≤ umax; i(t) ∈ {1, 2} (10)

where i : [0,∞)→ {1, 2} is the switching signal, which is assumed to be a piece-
wise continuous (from the right) function of time, implying that only a finite
number of switches, between the predictive and bounded controllers, is allowed
on any finite interval of time. The index, i(t), which takes values in the set {1, 2},
represents a discrete state that indexes the control input u(·), with the under-
standing that i(t) = 1 if and only if ui(x(t)) = M(x(t)) and i(t) = 2 if and only
if ui(x(t)) = bk(x(t)) for some k ∈ K. Our goal is to construct a switching law
i(t) = ψ(x(t), t) that provides the set of switching times that ensure stabilizing
transitions between the predictive and bounded controllers, in the event that
the predictive controller is unable to enforce closed–loop stability. This in turn
determines the time-course of the discrete state i(t). While various switching
schemes that focus on closed–loop stability and performance considerations to
various degrees are possible [9, 10, 22, 24], we next present one example of a
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switching scheme (formalized in Theorem 1 below; for the proof, see [9]) that
addresses the above problem while focusing on achieving closed–loop stability.

3.2 Controller Switching Logic

Theorem 1. Consider the constrained nonlinear system of Eq.10, with any ini-
tial condition x(0) ≡ x0 ∈ Ωk(umax), for some k ∈ K ≡ {1, · · · , p}, where Ωk

was defined in Eq.7, under the model predictive controller of Eqs.3-4. Also let
T̄ ≥ 0 be the earliest time for which either the closed–loop state, under MPC,
satisfies

LfVk(x(T̄ )) + LgVk(x(T̄ ))M(x(T̄ )) ≥ 0 (11)

or the MPC algorithm fails to prescribe any control move. Then, the switching
rule given by

i(t) =

{
1, 0 ≤ t < T̄

2, t ≥ T̄

}
(12)

where i(t) = 1 ⇔ ui(x(t)) = M(x(t)) and i(t) = 2 ⇔ ui(x(t)) = bk(x(t)),
guarantees that the origin of the switched closed–loop system is asymptotically
stable.

Remark 1. Theorem 1 describes a stability-based switching strategy for control
of nonlinear systems with input constraints. The main components of this strat-
egy include the predictive controller, a family of bounded nonlinear controllers,
with their estimated regions of constrained stability, and a high–level supervisor
that orchestrates the switching between the controllers. A schematic represen-
tation of the hybrid control structure is shown in Figure 1. The implementation
procedure of this hybrid control strategy is outlined below:

• Given the system model of Eq.1, the constraints on the input and the family
of CLFs, design the bounded controllers using Eqs.5-6. Given the perfor-
mance objective, set up the MPC optimization problem.

• Compute the stability region estimate for each of the bounded controllers,

Ωk(umax), using Eqs.7-8, for k = 1, . . . , p, and Ω(umax) =
p⋃

k=1

Ωk(umax).

• Initialize the closed–loop system under MPC, at any initial condition, x0
within Ω, and identify a CLF, Vk(x), for which the initial condition is within
the corresponding stability region estimate, Ωk.

• Monitor the temporal evolution of the closed–loop trajectory (by checking
Eq.11 at each time) until the earliest time that either Eq.11 holds or the
MPC algorithm prescribes no solution, T̄ .

• If such a T̄ exists, discontinue MPC implementation, switch to the k-th
bounded controller (whose stability region contains x0) and implement it
for all future times.

Remark 2. The main idea behind Theorem 1, and behind the hybrid pre-
dictive controller (including the designs that address issues of unavailability of
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Fig. 1. Schematic representation of the hybrid control structure merging MPC and a
family of fall–back bounded controllers with their stability regions

measurements and uncertainty) is as follows: first design a Lyapunov-based con-
troller that allows for an explicit characterization of the set of initial conditions
starting from where closed–loop stability is guaranteed in the presence of con-
straints. For an initial condition within the stability region of the Lyapunov-based
controller, the predictive controller is implemented in the closed–loop system,
while the supervisor monitors the evolution of the states of the closed–loop sys-
tem. The supervisor checks switching rules designed to detect instability like be-
havior under the predictive controller and to guard against the possibility that
the closed–loop trajectory under the predictive controller escapes out of the re-
gion where the Lyapunov-based controller provides the stability guarantees. In
the theorem above, increase in the value of the Lyapunov-function (that is used
in the design of the Lyapunov-based controller and in characterizing the stability
region) is considered both as instability like behavior and to safeguard against the
closed–loop state trajectory escaping the stability region (since the stability region
is defined by a level set of the Lyapunov-function). The switching rule therefore
dictates switching to the fall-back Lyapunov-based controller in the event of an
increase in the value of the Lyapunov function.

Remark 3. The presence of constraints limits the set of initial conditions
starting from where closed–loop stability can be achieved (the so called null-
controllable region, or Xmax). While a given controller design typically provides
stability from subsets of the null-controllable region, it is important to be able
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to estimate the set of initial conditions starting from where the controller can
guarantee closed–loop stability. The difficulty in characterizing the set of ini-
tial conditions starting from where a given predictive controller is guaranteed
to be stabilizing motivates the use of backup controllers within the hybrid pre-
dictive control structure that provide sufficiently non-conservative estimates of
their stability region. The Lyapunov-based controller of Eqs.5-7 provides such
an estimate of its stability region that compares well with the null controllable
region (how well, is something that can only be determined on a case by case
basis; see [21] for a comparison in the case of a linear system with constraints).
Note also that estimating the stability region under the controller of Eqs.5-7
requires only algebraic computations and scales well with an increase in number
of system states; see [12] for applications to a polyethylene reactor and [26] for
an application in the context of fault-tolerant control.

Remark 4. In addition to constraints, other important factors that influence
the stabilization problem are the lack of complete measurements of the process
state variables and the presence of uncertainty. The problem of lack of avail-
ability of measurements is considered in [22] where the hybrid predictive output
feedback controller design comprises of the state estimator, the Lyapunov-based
and predictive controllers, together with the supervisor. In addition to the set of
switching rules being different from the one under state feedback, an important
characteristic of the hybrid predictive control strategy under output feedback
is the inherent coupling, brought about by the lack of full state measurements,
between the tasks of controller design, characterization of the stability region
and supervisory switching logic design, on one hand, and the task of observer
design, on the other. In [24] we consider the presence of uncertainty in the design
of the individual controllers as well as the switching logic in a way that enhances
the chances of the use of the predictive control algorithms while not sacrificing
guaranteed closed–loop stability.

4 Lyapunov-Based Predictive Control

In this section, we review our recent results on the design of a Lyapunov-based
predictive controller, where the design of the (Lyapunov-based) predictive con-
troller uses a bounded controller, with its associated region of stability, only as an
auxiliary controller. The Lyapunov-based MPC is shown to possess an explicitly
characterized set of initial conditions, starting from where it is guaranteed to be
feasible, and hence stabilizing, while enforcing both state and input constraints
at all times.

4.1 System Description

Consider the problem of stabilization of continuous-time nonlinear systems with
state and input constraints, with the following state-space description:

ẋ(t) = f(x(t)) + g(x(t))u(t); u ∈ U ; x ∈ X (13)



Techniques for Uniting Lyapunov-Based and Model Predictive Control 85

where x = [x1 · · ·xn]′ ∈ IRn denotes the vector of state variables, u = [u1 · · ·um]′

∈ IRm denotes the vector of manipulated inputs, U ⊆ IRm, X ⊆ IRn denote the
constraints on the manipulated inputs and the state variables, respectively, f(·)
is a sufficiently smooth n× 1 nonlinear vector function, and g(·) is a sufficiently
smooth n×m nonlinear matrix function. Without loss of generality, it is assumed
that the origin is the equilibrium point of the unforced system (i.e., f(0) = 0).

4.2 Lyapunov-Based Predictive Control Design

Preparatory to the characterization of the stability properties of the Lyapunov-
based predictive controller, we first state the stability properties of the bounded
controller of Eqs.5–6 in the presence of both state and input constraints. For
the controller of Eqs.5–6, one can show, using a standard Lyapunov argument,
that whenever the closed–loop state, x, evolves within the region described by
the set:

Φx,u = {x ∈ X : L∗
fV (x) ≤ umax‖(LgV )′(x)‖} (14)

then the controller satisfies both the state and input constraints, and the time-
derivative of the Lyapunov function is negative-definite. To compute an estimate
of the stability region we construct a subset of Φx,u using a level set of V , i.e.,

Ωx,u = {x ∈ IRn : V (x) ≤ cmax
x,u } (15)

where cmax
x,u > 0 is the largest number for which Ωx,u ⊆ Φx,u. Furthermore, the

bounded controller of Eqs.5-6 possesses a robustness property (with respect to
measurement errors) that preserves closed–loop stability when the control action
is implemented in a discrete (sample and hold) fashion with a sufficiently small
hold time (∆). Specifically, the control law ensures that, for all initial conditions
in Ωx,u, the closed–loop state remains in Ωx,u and eventually converges to some
neighborhood of the origin (we will refer to this neighborhood as Ωb) whose
size depends on ∆. This property is exploited in the Lyapunov-based predictive
controller design of Section 4.2 and is stated in Proposition 1 below (the proof
can be found in [25]). For further results on the analysis and control of sampled-
data nonlinear systems, the reader may refer to [13, 14, 28, 31].

Proposition 1. Consider the constrained system of Eq.1, under the bounded
control law of Eqs.5–6 with ρ > 0 and let Ωx,u be the stability region estimate
under continuous implementation of the bounded controller. Let u(t) = u(j∆)
for all j∆ ≤ t < (j + 1)∆ and u(j∆) = b(x(j∆)), j = 0, · · · ,∞. Then, given
any positive real number d, there exist positive real numbers ∆∗, δ

′
and ε∗

such that if ∆ ∈ (0, ∆∗] and x(0) := x0 ∈ Ωx,u, then x(t) ∈ Ωx,u ⊆ X and
lim sup

t→∞
‖x(t)‖ ≤ d. Also, if V (x0) ≤ δ

′
then V (x(τ)) ≤ δ

′ ∀ τ ∈ [0, ∆) and if

δ
′
< V (x0) ≤ cmax

x,u , then V̇ (x(τ)) ≤ −ε∗ ∀ τ ∈ [0, ∆).

We present now a Lyapunov–based MPC formulation that guarantees feasibility
of the optimization problem subject to hard constraints on the state and input,
and hence constrained stabilization of the closed–loop system from an explicitly
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characterized set of initial conditions. For this MPC design, the control action
at state x and time t is obtained by solving, on-line, a finite horizon optimal
control problem of the form:

P (x, t) : min{J(x, t, u(·))|u(·) ∈ S, x ∈ X} (16)

s.t. ẋ = f(x) + g(x)u (17)

V̇ (x(τ)) ≤ −ε∗ ∀ τ ∈ [t, t+ ∆) if V (x(t)) > δ
′

(18)

V (x(τ)) ≤ δ
′ ∀ τ ∈ [t, t+ ∆) if V (x(t)) ≤ δ

′
(19)

where S = S(t, T ) is the family of piecewise continuous functions (functions
continuous from the right), with period ∆, mapping [t, t+T ] into U and T is the
horizon. Eq.17 is the nonlinear model describing the time evolution of the state
x, V is the Lyapunov function used in the bounded controller design and δ

′
, ε∗

are defined in Proposition 1. A control u(·) in S is characterized by the sequence
{u[j]} where u[j] := u(j∆) and satisfies u(t) = u[j] for all t ∈ [j∆, (j + 1)∆).
The performance index is given by

J(x, t, u(·)) =

t+T∫
t

[
‖xu(s;x, t)‖2Q + ‖u(s)‖2R

]
ds (20)

where Q is a positive semi-definite symmetric matrix and R is a strictly positive
definite symmetric matrix. xu(s;x, t) denotes the solution of Eq.1, due to control
u, with initial state x at time t. The minimizing control u0(·) ∈ S is then applied
to the plant over the interval [j∆, (j+1)∆) and the procedure is repeated indefi-
nitely. Closed–loop stability and state and input constraint feasibility properties
of the closed–loop system under the Lyapunov–based predictive controller are
inherited from the bounded controller under discrete implementation and are
formalized in Proposition 2 below (for a proof, please see [25]).

Proposition 2. Consider the constrained system of Eq.1 under the MPC law of
Eqs.16–20 with ∆ ≤ ∆∗ where ∆∗ was defined in Proposition 1. Then, given any
x0 ∈ Ωx,u, where Ωx,u was defined in Eq.15, the optimization problem of Eq.16-
20 is feasible for all times, x(t) ∈ Ωx,u ⊆ X for all t ≥ 0 and lim sup

t→∞
‖x(t)‖ ≤ d.

Remark 5. Note that the predictive controller formulation of Eqs.16–20 re-
quires that the value of the Lyapunov function decrease during the first step
only. Practical stability of the closed–loop system is achieved since, due to the
receding nature of controller implementation, only the first move of the set of
calculated moves is implemented and the problem is re-solved at the next time
step. If the optimization problem is initially feasible and continues to be feasi-
ble, then every control move that is implemented enforces a decay in the value
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of the Lyapunov function, leading to stability. Lyapunov-based predictive con-
trol approaches (see, for example, [16]) typically incorporate a similar Lyapunov
function decay constraint, albeit requiring the constraint of Eq.18 to hold at
the end of the prediction horizon as opposed to only the first time step. An
input trajectory that only requires the value of the Lyapunov function value to
decrease at the end of the horizon may involve the state trajectory leaving the
level set (and, therefore, possibly out of the state constraint satisfaction region,
violating the state constraints), and motivates using a constraint that requires
the Lyapunov function to decrease during the first time step (this also facilitates
the explicit characterization of the feasibility region).

Remark 6. For 0 < ∆ ≤ ∆∗, the constraint of Eq.18, is guaranteed to be
satisfied (the control action computed by the bounded controller design provides
a feasible initial guess to the optimization problem). Note that the constraint
requires the Lyapunov function value to decay, not at the end of the prediction
horizon (as is customarily done in Lyapunov–based MPC approaches), but only
during the first time step. Furthermore, since the state is initialized in Ωx,u,
which is a level set of V , the closed–loop system evolves so as to stay within
Ωx,u, thereby guaranteeing feasibility at future times. Since the level set Ωx,u

is completely contained in the set defining the state constraints, and the state
trajectory under the predictive controller continues to evolve within this set, the
state constraints are satisfied at all times.

Remark 7. In the event that measurements are not continuously available, but
are available only at sampling times ∆s > ∆∗, i.e., greater than what a given
bounded control design can tolerate (and, therefore, greater than the maximum
allowable discretization for the Lyapunov-based predictive controller), it is nec-
essary to redesign the bounded controller to increase the robustness margin, and
generate a revised estimate of the feasibility (and stability) region under the pre-
dictive controller. A larger value of ∆∗ may be achieved by increasing the value
of the parameter ρ in the design of the bounded controller. If the value of the
sampling time is reasonable, an increase in the value of the parameter ρ, while
leading to a shrinkage in the stability region estimate, can increase ∆∗ to a value
greater than ∆s and preserve the desired feasibility and stability guarantees of
the Lyapunov-based predictive controller.

4.3 Switched Systems with Scheduled Mode Transitions

In many chemical processes, the system is required to follow a prescribed switch-
ing schedule, where the switching times are prescribed via an operating schedule.
This practical problem motivated the development of a predictive control frame-
work for the constrained stabilization of switched nonlinear processes that transit
between their modes of operation at prescribed switching times [23]. We consider
the class of switched nonlinear systems represented by the following state-space
description

ẋ(t) = fσ(t)(x(t)) + gσ(t)(x(t))uσ(t)(t)
uσ(t) ∈ Uσ; σ(t) ∈ K := {1, · · · , p}

(21)
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where x(t) ∈ IRn denotes the vector of continuous-time state variables, uσ(t) =
[u1

σ(t) · · ·um
σ (t)]T ∈ Uσ ⊂ IRm denotes the vector of constrained manipulated

inputs taking values in a nonempty compact convex set Uσ := {uσ ∈ IRm :
‖uσ‖ ≤ umax

σ }, where ‖ · ‖ is the Euclidian norm, umax
σ > 0 is the magnitude of

the constraints, σ : [0,∞) → K is the switching signal which is assumed to be
a piecewise continuous (from the right) function of time, i.e., σ(tk) = lim

t→t+k

σ(t)

for all k, implying that only a finite number of switches is allowed on any finite
interval of time. p is the number of modes of the switched system, σ(t), which
takes different values in the finite index set K, represents a discrete state that
indexes the vector field f(·), the matrix g(·), and the control input u(·), which
altogether determine ẋ.

Consider the nonlinear switched system of Eq.21, with a prescribed switching
sequence (including the switching times) defined by Tk,in= {tkin

1
, tkin

2
, . . . } and

Tk,out = {tkout
1

, tkout
2

, . . . }. Also, assume that for each mode of the switched
system, a Lyapunov–based predictive controller of the form of Eqs.16-20 has been
designed and an estimate of the stability region generated. The control problem
is formulated as the one of designing a Lyapunov-based predictive controller that
guides the closed–loop system trajectory in a way that the schedule described by
the switching times is followed and stability of the closed–loop system is achieved.
The main idea (formalized in Theorem 2 below) is to design a Lyapunov–based
predictive controller for each constituent mode in which the switched system
operates, and incorporate constraints in the predictive controller design which
upon satisfaction ensure that the prescribed transitions between the modes occur
in a way that guarantees stability of the switched closed–loop system.

Theorem 2. Consider the constrained nonlinear system of Eq.10, the control
Lyapunov functions Vk, k = 1, · · · , p, and the stability region estimates Ωk, k =
1, · · · , p under continuous implementation of the bounded controller of Eqs.5-6
with fixed ρk > 0, k = 1, · · · , p. Let 0 < Tdesign <∞ be a design parameter. Let
t be such that tkin

r
≤ t < tkout

r
and tmin

j
= tkout

r
for some m, k. Consider the

following optimization problem

P (x, t) : min{J(x, t, uk(·))|uk(·) ∈ Sk} (22)

J(x, t, uk(·)) =

t+T∫
t

[
‖xu(s;x, t)‖2Q + ‖uk(s)‖2R

]
ds (23)

where T is the prediction horizon given by T = tkout
r
− t, if tkout

r
< ∞ and

T = Tdesign if tkout
r

=∞, subject to the following constraints

ẋ = fk(x) + gk(x)uk (24)

V̇k(x(τ)) ≤ −εk if Vk(x(t)) > δ
′

k, τ ∈ [t, t+ ∆kr ) (25)
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Vk(x(τ)) ≤ δ
′

k if Vk(x(t)) ≤ δ
′

k, τ ∈ [t, t+ ∆kr ) (26)

and if tkout
r

= tmin
j

<∞

Vm(x(tmin
j

)) ≤

⎧⎪⎨⎪⎩
Vm(x(tmin

j−1
))− ε∗ , j > 1, Vm(x(tmin

j−1
)) > δ

′

m

δ
′

m , j > 1, Vm(x(tmin
j−1

)) ≤ δ
′

m

cmax
m , j = 1

⎫⎪⎬⎪⎭ (27)

where ε∗ is a positive real number. Then, given a positive real number dmax, there
exist positive real numbers ∆∗ and δ

′

k, k = 1, · · · ,m such that if the optimization
problem of Eqs.22–27 is feasible at all times, the minimizing control is applied
to the system over the interval [t, t + ∆kr ], where ∆kr ∈ (0, ∆∗] and tkout

r
−

tkin
r

= lkr∆kr for some integer lkr > 0 and the procedure is repeated, then,
lim sup

t→∞
‖x(t)‖ ≤ dmax.

Remark 8. Note that the constraint of Eq.25 is guaranteed to be feasible be-
tween mode transitions, provided that the system is initialized within the sta-
bility region, and does not require the assumption of feasibility. This stability
constraint ensures that the value of the Lyapunov function of the currently active
mode keeps decreasing (recall that one of the criteria in the multiple Lyapunov-
function stability analysis is that the individual modes of the switched system
be stable). The constraint of Eq.25 expresses two transition requirements simul-
taneously: (1) the MLF constraints that requires that the value of the Lyapunov
function be less than what it was the last time the system switched into that
mode (required when the switching sequence is infinite, see [3] for details), and
(2) the stability region constraint that requires that the state of the process re-
side within the stability region of the target mode at the time of the switch; since
the stability regions of the modes are expressed as level sets of the Lyapunov
functions, the MLF-constraint also expresses the stability region constraint. The
understanding that it is a reasonably chosen switching schedule (that is, one that
does not result in closed–loop instability), motivates assuming the feasibility of
the transition constraints for all times. Note that the feasibility of the transi-
tion constraints can also be used to validate the switching schedule, and can be
used to abort the switching schedule (i.e., to decide that the remaining switches
should not be carried out) in the interest of preserving closed–loop stability.
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Summary. This paper considers discrete-time nonlinear, possibly discontinuous, sys-
tems in closed-loop with model predictive controllers (MPC). The aim of the paper is
to provide a priori sufficient conditions for asymptotic stability in the Lyapunov sense
and input-to-state stability (ISS), while allowing for both the system dynamics and
the value function of the MPC cost to be discontinuous functions of the state. The
motivation for this work lies in the recent development of MPC for hybrid systems,
which are inherently discontinuous and nonlinear. For a particular class of discontinu-
ous piecewise affine systems, a new MPC set-up based on infinity norms is proposed,
which is proven to be ISS to bounded additive disturbances. This ISS result does not
require continuity of the system dynamics nor of the MPC value function.

1 An Introductory Survey

One of the problems in model predictive control (MPC) that has received an
increased attention over the years consists in guaranteeing closed-loop stability
for the controlled system. The usual approach to ensure stability in MPC is to
consider the value function of the MPC cost as a candidate Lyapunov function.
Then, if the system dynamics is continuous, the classical Lyapunov stability
theory [1] can be used to prove that the MPC control law is stabilizing [2]. The
requirement that the system dynamics must be continuous is (partially) removed
in [3, 4], where terminal equality constraint MPC is considered. In [3], continuity
of the system dynamics on a neighborhood of the origin is still used to prove
Lyapunov stability, but not for proving attractivity. Although continuity of the
system is still assumed in [4], the Lyapunov stability proof (Theorem 2 in [4])
does not use the continuity property. Later on, an exponential stability result
is given in [5] and an asymptotic stability theorem is presented in [6], where
sub-optimal MPC is considered. The theorems of [5, 6] explicitly point out that
both the system dynamics and the candidate Lyapunov function only need to
be continuous at the equilibrium.

Next to closed-loop stability, one of the most studied properties of MPC con-
trollers is robustness. Previous results developed for smooth nonlinear MPC,
such as the ones in [5, 7], prove that robust asymptotic stability is achieved,
if the system dynamics, the MPC value function and the MPC control law are
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Lipschitz continuous. Sufficient conditions for input-to-state stability (ISS) [8] of
smooth nonlinear MPC were presented in [9, 10] based on Lipschitz continuity of
the system dynamics. A similar result was obtained in [11], where the Lipschitz
continuity assumption was relaxed to basic continuity. An important warning
regarding robustness of smooth nonlinear MPC was issued in [12], where it is
pointed out that the absence of a continuous Lyapunov function may result in
a closed-loop system that has no robustness.

This paper is motivated by the recent development of MPC for hybrid sys-
tems, which are inherently discontinuous and nonlinear systems. Attractivity was
proven for the equilibrium of the closed-loop system in [13, 14]. However, proofs
of Lyapunov stability only appeared in the hybrid MPC literature recently, e.g.
[15, 16, 17, 18]. In [17], the authors provide a priori sufficient conditions for
asymptotic stability in the Lyapunov sense for discontinuous piecewise affine
(PWA) systems in closed-loop with MPC controllers based on ∞-norm cost
functions. Results on robust hybrid MPC were presented in [15] and [19], where
dynamic programming and tube based approaches were considered for solving
feedback min-max MPC optimization problems for continuous PWA systems.

In this paper we consider discrete-time nonlinear, possibly discontinuous, sys-
tems in closed-loop with MPC controllers and we aim at providing a general
theorem on asymptotic stability in the Lyapunov sense that unifies most of the
previously-mentioned results. Besides closed-loop stability, the issue of robust-
ness is particularly relevant for hybrid systems and MPC because, in this case,
the system dynamics, the MPC value function and the MPC control law are typ-
ically discontinuous. We present an input-to-state stability theorem that can be
applied to discrete-time non-smooth nonlinear MPC. For a class of discontinuous
PWA systems, a new MPC set-up based on ∞-norm cost functions is proposed,
which is proven to be ISS with respect to bounded additive disturbances.

2 Preliminaries

Let IR, IR+, Z and Z+ denote the field of real numbers, the set of non-negative
reals, the set of integers and the set of non-negative integers, respectively. We
use the notation Z≥c1 and Z(c1,c2] to denote the sets {k ∈ Z+ | k ≥ c1} and
{k ∈ Z+ | c1 < k ≤ c2}, respectively, for some c1, c2 ∈ Z+. We define with
ZN the N -dimensional Cartesian product Z × . . . × Z, for some N ∈ Z≥1. For
a sequence {zj}j∈Z+ with zj ∈ IRl let ‖{zj}j∈Z+‖ := sup{‖zj‖ | j ∈ Z+}. For
a sequence {zj}j∈Z+ with zj ∈ IRl, z[k] denotes the truncation of {zj}j∈Z+ at
time k ∈ Z+, i.e. z[k] = {zj}j∈Z[0,k] . For a set P ⊆ IRn, we denote by ∂P the
boundary of P , by int(P) its interior and by cl(P) its closure. Let P1 ∼ P2 �
{x ∈ IRn | x + P2 ⊆ P1} denote the Pontryagin difference of two arbitrary sets
P1 and P2. A polyhedron is a convex set obtained as the intersection of a finite
number of open and/or closed half-spaces.
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Consider now the following discrete-time autonomous nonlinear systems:

xk+1 = G(xk), k ∈ Z+, (1a)

x̃k+1 = G̃(x̃k, wk), k ∈ Z+, (1b)

where xk, x̃k ∈ IRn are the state, wk ∈ IRl is an unknown disturbance input
and, G : IRn → IRn, G̃ : IRn × IRl → IRn are nonlinear, possibly discontinuous,
functions. For simplicity of notation, we assume that the origin is an equilibrium
in (1), meaning that G(0) = 0 and G̃(0, 0) = 0. Due to space limitations, we
refer to [20] for definitions regarding Lyapunov stability, attractivity, asymptotic
stability in the Lyapunov sense and exponential stability of the origin for the
nominal system (1a).

Definition 1. A real-valued scalar function ϕ : IR+ → IR+ belongs to class K if
it is continuous, strictly increasing and ϕ(0) = 0. A function β : IR+×IR+ → IR+
belongs to class KL if for each fixed k ∈ IR+, β(·, k) ∈ K and for each fixed
s ∈ IR+, β(s, ·) is non-increasing and limk→∞ β(s, k) = 0.

Definition 2. (ISS) Let X with 0 ∈ int(X) and W be subsets of IRn and IRl,
respectively. The perturbed system (1b) is called ISS for initial conditions in X

and disturbance inputs in W if there exist a KL-function β and a K-function
γ such that, for each x0 ∈ X and all {wp}p∈Z+ with wp ∈ W for all p ∈ Z+, it
holds that the state trajectory satisfies ‖xk‖ ≤ β(‖x0‖, k) + γ(‖w[k−1]‖) for all
k ∈ Z≥1.

Note that the regional ISS property introduced in Definition 2 can be regarded
as a local version of the global ISS property defined in [8] and it is similar to the
robust asymptotic stability property employed in [11].

3 The MPC Optimization Problem

Consider the following nominal and perturbed discrete-time nonlinear systems:

xk+1 = g(xk, uk), k ∈ Z+, (2a)
x̃k+1 = g̃(x̃k, uk, wk), k ∈ Z+, (2b)

where xk, x̃k ∈ IRn and uk ∈ IRm are the state and the control input, respectively,
and g : IRn × IRm → IRn, g̃ : IRn × IRm × IRl → IRn are nonlinear, possibly
discontinuous, functions with g(0, 0) = 0 and g̃(0, 0, 0) = 0. In the sequel we will
consider the case when MPC is used to generate the control input in (2). We
assume that the state and the input vectors are constrained for both systems
(2a) and (2b), in a compact subset X of IRn and a compact subset U of IRm,
respectively, which contain the origin in their interior. For a fixed N ∈ Z≥1,
let xk(xk,uk) � (x1|k, . . . , xN |k) denote the state sequence generated by the
nominal system (2a) from initial state x0|k � xk and by applying the input
sequence uk � (u0|k, . . . , uN−1|k) ∈ UN , where UN � U× . . .× U. Furthermore,
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let XT ⊆ X denote a desired target set that contains the origin. The class of
admissible input sequences defined with respect to XT and state xk ∈ X is
UN (xk) � {uk ∈ UN | xk(xk,uk) ∈ XN , xN |k ∈ XT }.
Problem 1. Let the target set XT ⊆ X and N ≥ 1 be given and let F : IRn →
IR+ with F (0) = 0 and L : IRn × IRm → IR+ with L(0, 0) = 0 be mappings,
possibly discontinuous. At time k ∈ Z+ let xk ∈ X be given and minimize the
cost function J(xk,uk) � F (xN |k) +

∑N−1
i=0 L(xi|k, ui|k), with prediction model

(2a), over all input sequences uk ∈ UN (xk).

In the MPC literature, F (·), L(·, ·) and N are called the terminal cost, the stage
cost and the prediction horizon, respectively. We call an initial state x ∈ X

feasible if UN (x) 	= ∅. Similarly, Problem 1 is said to be feasible for x ∈ X if
UN (x) 	= ∅. Let Xf (N) ⊆ X denote the set of feasible initial states with respect
to Problem 1 and let

VMPC : Xf (N)→ IR+, VMPC(xk) � inf
uk∈UN (xk)

J(xk,uk) (3)

denote the MPC value function corresponding to Problem 1. We assume that
there exists an optimal sequence of controls u∗

k � (u∗
0|k, u

∗
1|k, . . . , u

∗
N−1|k) for

Problem 1 and any state xk ∈ Xf (N). Hence, the infimum in (3) is a minimum
and VMPC(xk) = J(xk,u∗

k). Then, the MPC control law is defined as

uMPC(xk) � u∗
0|k; k ∈ Z+. (4)

The following stability analysis also holds when the optimum is not unique in
Problem 1, i.e. all results apply irrespective of which optimal sequence is selected.

4 General Results on Stability and ISS

Let h : IRn → IRm denote an arbitrary, possibly discontinuous, nonlinear func-
tion with h(0) = 0 and let XU � {x ∈ X | h(x) ∈ U}.

The following theorem was obtained as a kind of general and unifying result
by putting together the previous results on stability of discrete-time nonlinear
MPC that were mentioned in the introductory survey.
Assumption 1. Terminal cost and constraint set : There exist α1, α2 ∈ K, a
neighborhood of the origin N ⊆ Xf (N) and a feedback control law h(·) such
that XT ⊆ XU, with 0 ∈ int(XT ), is a positively invariant set [20] for system
(2a) in closed-loop with u = h(x), L(x, u) ≥ α1(‖x‖) for all x ∈ Xf (N) and all
u ∈ U, F (x) ≤ α2(‖x‖) for all x ∈ N and

F (g(x, h(x))) − F (x) + L(x, h(x)) ≤ 0 for all x ∈ XT . (5)

Assumption 2. Terminal equality constraint : XT = {0}, F (x) = 0 for all x ∈ X

and there exist α1, α2 ∈ K and a neighborhood of the origin N ⊆ Xf (N) such
that L(x, u) ≥ α1(‖x‖) for all x ∈ Xf (N) and all u ∈ U and L(x∗i|k, u

∗
i|k) ≤

α2(‖xk‖), for any optimal u∗
k ∈ UN (xk), initial state xk =: x∗0|k ∈ N and

i = 0, . . . , N − 1, where (x∗1|k, . . . , x
∗
N |k) =: xk(xk,u∗

k).
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Theorem 1. (Stability of Non-smooth Nonlinear MPC) Fix N ≥ 1 and
suppose that either Assumption 1 holds or Assumption 2 holds. Then:

(i) If Problem 1 is feasible at time k ∈ Z+ for state xk ∈ X, Problem 1 is
feasible at time k+1 for state xk+1 = g(xk, u

MPC(xk)). Moreover, XT ⊆ Xf (N);
(ii) The origin of the MPC closed-loop system (2a)-(4) is asymptotically stable

in the Lyapunov sense for initial conditions in Xf (N);
(iii) If Assumption 1 or Assumption 2 holds with α1(s) � asλ, α2(s) � bsλ

for some constants a, b, λ > 0, the origin of the MPC closed-loop system (2a)-(4)
is exponentially stable in Xf (N).

The interested reader can find the proof of Theorem 1 in [20]. Next, we state
sufficient conditions for ISS (in the sense of Definition 2) of discrete-time non-
smooth nonlinear MPC.

Theorem 2. (ISS of Non-smooth Nonlinear MPC) Let W be a compact
subset of IRl that contains the origin and let X be a robustly positively invariant
(RPI) set [20] for the MPC closed-loop system (2b)-(4) and disturbances in W,
with 0 ∈ int(X). Let α1(s) � asλ, α2(s) � bsλ, α3(s) � csλ for some positive
constants a, b, c, λ and let σ ∈ K. Suppose L(x, u) ≥ α1(‖x‖) for all x ∈ X and
all u ∈ U, VMPC(x) ≤ α2(‖x‖) for all x ∈ X and that:

VMPC(g̃(x, uMPC(x), w)) − VMPC(x) ≤ −α3(‖x‖) + σ(‖w‖), ∀x ∈ X, ∀w ∈W.
(6)

Then, the perturbed system (2b) in closed-loop with the MPC control (4) obtained
by solving Problem 1 at each sampling-instant is ISS for initial conditions in X

and disturbance inputs in W. Moreover, the ISS property of Definition 2 holds
for β(s, k) � α−1

1 (2ρkα2(s)) and γ(s) � α−1
1

(
2σ(s)
1−ρ

)
, where ρ � 1− c

b ∈ [0, 1).

For a proof of Theorem 2 we refer the reader to [20]. Note that the hypotheses of
Theorem 1 and Theorem 2 allow g(·, ·), g̃(·, ·, ·) and VMPC(·) to be discontinuous
when x 	= 0. They only imply continuity at the point x = 0, and not necessarily
on a neighborhood of x = 0.

5 A Robust MPC Scheme for Discontinuous PWA
Systems

In this section we consider the class of discrete-time piecewise affine systems, i.e.

xk+1 = g(xk, uk) � Ajxk + Bjuk + fj if xk ∈ Ωj , (7a)

x̃k+1 = g̃(x̃k, uk, wk) � Aj x̃k + Bjuk + fj + wk if x̃k ∈ Ωj , (7b)

where wk ∈ W ⊂ IRn, k ∈ Z+, Aj ∈ IRn×n, Bj ∈ IRn×m, fj ∈ IRn, j ∈ S
with S � {1, 2, . . . , s} a finite set of indices. The collection {Ωj | j ∈ S} defines
a partition of X, meaning that ∪j∈SΩj = X and int(Ωi) ∩ int(Ωj) = ∅ for
i 	= j. Each Ωj is assumed to be a polyhedron (not necessarily closed). Let
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S0 � {j ∈ S | 0 ∈ cl(Ωj)} and let S1 � {j ∈ S | 0 	∈ cl(Ωj)}, so that S = S0∪S1.
We assume that the origin is an equilibrium state for (7a) with u = 0. Therefore,
we require that fj = 0 for all j ∈ S0. Note that this does not exclude PWA
systems which are discontinuous over the boundaries. Next, let ‖ · ‖ denote the
∞-norm and consider the case when the ∞-norm is used to define the MPC
cost function, i.e. F (x) � ‖Px‖ and L(x, u) � ‖Qx‖ + ‖Ru‖. Here P ∈ IRp×n,
Q ∈ IRq×n and R ∈ IRr×m are assumed to be known matrices that have full-
column rank. In the PWA setting we take the auxiliary controller h(x) � Kjx
when x ∈ Ωj , where Kj ∈ IRm×n, j ∈ S.

In [17] the authors developed ways to compute (off-line) the terminal weight
P and the feedbacks {Kj | j ∈ S} such that inequality (5) holds and XT is a
positively invariant set for the PWA system (7a) in closed-loop with the piecewise
linear (PWL) state-feedback h(·). Then, it can be shown that PWA systems
in closed-loop with MPC controllers calculated as in (4) and using an ∞-norm
based cost in Problem 1 satisfy the hypothesis of Theorem 1, thereby establishing
Lyapunov stability for the origin of the closed-loop system. A similar result for
quadratic cost based MPC and PWA prediction models can be found in [20].
However, since both the system (7) and the hybrid MPC value function will be
discontinuous in general, it follows, as pointed out in [12], that the closed-loop
system may not be robust (ISS) to arbitrarily small disturbances, despite the
fact that nominal asymptotic stability is guaranteed.

In this section we present a new design method based on tightened constraints
for setting up ISS MPC schemes for a class of discontinuous PWA systems. One
of the advantages of the proposed approach is that the resulting MPC opti-
mization problem can still be formulated as a mixed integer linear programming
(MILP) problem, which is a standard problem in hybrid MPC. Note that in
this case the assumption of Section 3 on the existence of an optimal sequence of
controls is satisfied, see, for example, [14, 20].

Let η � maxj∈S ‖Aj‖, ξ � ‖P‖ and define, for any µ > 0 and i ∈ Z≥1,

Li
µ �

{
x ∈ IRn | ‖x‖ ≤ µ

i−1∑
p=0

ηp

}
.

Consider now the following (tightened) set of admissible input sequences:

ŨN (xk) �
{
uk ∈ U

N | xi|k ∈ Xi, i = 1, . . . , N − 1, xN |k ∈ XT

}
, k ∈ Z+, (8)

where Xi � ∪j∈S{Ωj ∼ Li
µ} ⊆ X for all i = 1, . . . , N − 1 and (x1|k, . . . , xN |k)

is the state sequence generated from initial state x0|k � xk and by applying the
input sequence uk to the PWA model (7a). Let X̃f (N) denote the set of feasible
states for Problem 1 with ŨN (xk) instead of UN (xk), and let ṼMPC(·) denote
the corresponding MPC value function. For any µ > 0, define Bµ � {w ∈ IRn |
‖w‖ ≤ µ} and recall that XU = {x ∈ X | h(x) ∈ U}.

Theorem 3. Assume that 0 ∈ int(Ωj∗) for some j∗ ∈ S. Take N ∈ Z≥1, θ >
θ1 > 0 and µ > 0 such that µ ≤ θ−θ1

ξηN−1 ,
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Fθ � {x ∈ IRn | F (x) ≤ θ} ⊆ (Ωj∗ ∼ LN−1
µ ) ∩ XU

and g(x, h(x)) ∈ Fθ1 for all x ∈ Fθ. Set XT = Fθ1 . Furthermore, suppose that
Assumption 1 holds and inequality (5) is satisfied for all x ∈ Fθ. Then:

(i) If x̃k ∈ X̃f (N), then x̃k+1 ∈ X̃f (N) for all wk ∈ Bµ, where x̃k+1 =
Aj x̃k + Bju

MPC(x̃k) + fj + wk. Moreover, XT ⊆ X̃f (N).
(ii) The perturbed PWA system (7b) in closed-loop with the MPC control

(4) obtained by solving Problem 1 (with ŨN (xk) instead of UN (xk) and (7a) as
prediction model) at each sampling instant is ISS for initial conditions in X̃f (N)
and disturbance inputs in Bµ.

The proof of Theorem 3 is given in the appendix. The tightened set of admissi-
ble input sequences (8) may become very conservative as the prediction horizon
increases, since it requires that the state trajectory must be kept farther and
farther away from the boundaries. The conservativeness can be reduced by in-
troducing a pre-compensating state-feedback, which is a common solution in
robust MPC.

6 Illustrative Example

To illustrate the application of Theorem 3 and how to construct the parameters
θ, θ1 and µ for a given N ∈ Z≥1, we present an example. Consider the following
discontinuous PWA system:

xk+1 = g̃(xk, uk, wk) � g(xk, uk) + wk � Ajxk + Bjuk + wk if xk ∈ Ωj , j ∈ S,
(9)

where S = {1, . . . , 5}, A1 =
[−0.0400 −0.4610
−0.1390 0.3410

]
, A2 =

[
0.6552 0.2261
0.5516 −0.0343

]
, A3 =[−0.7713 0.7335

0.4419 0.5580

]
, A4 =

[−0.0176 0.5152
0.6064 0.2168

]
, A5 =

[−0.0400 −0.4610
−0.0990 0.6910

]
, B1 = B2 = B3 =

B4 = [ 1 0 ]� and B5 = [ 0 1 ]�. The state and the input of system (9) are con-
strained at all times in the sets X = [−3, 3]× [−3, 3] and U = [−0.2, 0.2], respec-
tively. The state-space partition is plotted in Figure 1. The method presented in
[17] was employed to compute the terminal weight matrix P =

[
2.3200 0.3500
−0.2100 2.4400

]
and the feedback K = [−0.04 −0.35 ] such that inequality (5) of Assumption 1
holds for all x ∈ IR2, the ∞-norm MPC cost with Q = [ 1 0

0 1 ], R = 0.01 and
h(x) = Kx. Based on inequality (5), it can be shown that the sublevel sets of
the terminal cost F (·), i.e. also Fθ, are λ-contractive sets [20] for the dynamics
g(x, h(x)), with λ = 0.6292. Then, for any θ1 with θ > θ1 ≥ λθ it holds that
g(x, h(x)) ∈ Fθ1 for all x ∈ Fθ. This yields µ ≤ (1−λ)θ

ξηN−1 . However, µ and θ must
also be such that Fθ ⊆ (Ω5 ∼ LN−1

µ ) ∩ XU. Hence, a trade-off must be made in
choosing θ and µ. A large θ implies a large µ, which is desirable since µ is an up-
per bound on ‖w‖, but θ must also be small enough to ensure the above inclusion.
We chose θ = 0.96 and θ1 = λθ = 0.6040. Then, with η = 1.5048, ξ = 2.67 and a
prediction horizon N = 2 one obtains that any µ with 0 ≤ µ ≤ 0.0886 is an ad-
missible upper bound on ‖w‖. For µ = 0.0886 it holds that Fθ ⊆ (Ω5 ∼ L1

µ)∩XU

(see Figure 2 for an illustrative plot). Hence, the hypothesis of Theorem 3 is
satisfied for any w ∈ Bµ = {w ∈ IR2 | ‖w‖ ≤ 0.0886}.



100 M. Lazar et al.

Fig. 1. State-space partition for system (9)

Fig. 2. State trajectories for the MPC closed-loop system (9)-(4) with x0 =
[0.003 1.7]� - dashed line and x0 = [−2.8 0.7]� - solid line

Then, we used the multi parametric toolbox (MPT) [21] to calculate the MPC
control law (4) as an explicit PWA state-feedback, and to simulate the resulting
MPC closed-loop system (9)-(4) for randomly generated disturbances in Bµ. The
explicit MPC controller is defined over 132 state-space regions. The set of feasible
states X̃f (2) is plotted in Figure 2 together with the partition corresponding to
the explicit MPC control law.

Note that, by Theorem 3, ISS is ensured for the closed-loop system for initial
conditions in X̃f (2) and disturbances in Bµ, without employing a continuous
MPC value function. Indeed, for example, ṼMPC(·) and the closed-loop PWA
dynamics (9)-(4) are discontinuous at x = [0 1]� ∈ int(X̃f (2)).
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7 Conclusion

In this paper we have presented an overview of stability and robustness theory for
discrete-time nonlinear MPC while focusing on the application and the extension
of the classical results to discontinuous nonlinear systems. A stability theorem
has been developed, which unifies many of the previous results. An ISS result
for discrete-time discontinuous nonlinear MPC has also been presented. A new
MPC scheme with an ISS guarantee has been developed for a particular class of
discontinuous PWA systems.
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A Proof of Theorem 3

Let (x∗1|k, . . . , x
∗
N |k) denote the state sequence obtained from initial state x0|k �

x̃k and by applying the input sequence u∗
k to (7a). Let (x1|k+1, . . . , xN |k+1)

denote the state sequence obtained from the initial state x0|k+1 � x̃k+1 = xk+1+
wk = x∗1|k + wk and by applying the input sequence uk+1 � (u∗

1|k, . . . , u
∗
N−1|k,

h(xN−1|k+1)) to (7a).
(i) The constraints in (8) are such that: (P1) (xi|k+1, x

∗
i+1|k) ∈ Ωji+1 ×Ωji+1 ,

ji+1 ∈ S, for all i = 0, . . . , N−2 and, ‖xi|k+1−x∗i+1|k‖ ≤ ηiµ for i = 0, . . . , N−1.

This is due to the fact that x0|k+1 = x∗1|k +wk, xi|k+1 = x∗i+1|k +
∏i

p=1 Ajpwk for

i = 1, . . . , N − 1 and ‖
∏i

p=1 Ajpwk‖ ≤ ηiµ, which yields
∏i

p=1 Ajpwk ∈ Li+1
µ .

Pick the indices ji+1 ∈ S such that x∗i+1|k ∈ Ωji+1 for all i = 1, . . . , N −2. Then,
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due to x∗i+1|k ∈ Ωji+1 ∼ Li+1
µ , it follows by Lemma 2 of [9] that xi|k+1 ∈ Ωji+1 ∼

Li
µ ⊂ Xi for i = 1, . . . , N − 2. From xN−1|k+1 = x∗N |k +

∏N−1
p=1 Ajpwk it follows

that F (xN−1|k+1) − F (x∗N |k) ≤ ξηN−1µ, which implies that F (xN−1|k+1) ≤
θ1 + ξηN−1µ ≤ θ due to x∗N |k ∈ XT = Fθ1 and µ ≤ θ−θ1

ξηN−1 . Hence, xN−1|k+1 ∈
Fθ ⊂ XU ∩ (Ωj∗ ∼ LN−1

µ ) ⊂ XU ∩ XN−1 so that h(xN−1|k+1) ∈ U and xN |k+1 ∈
Fθ1 = XT . Thus, the sequence of inputs uk+1 is feasible at time k + 1 and
Problem 1 with ŨN (xk) instead of UN (xk) remains feasible. Moreover, from
g(x, h(x)) ∈ Fθ1 for all x ∈ Fθ and Fθ1 ⊂ Fθ it follows that Fθ1 is a positively
invariant set for system (7a) in closed-loop with uk = h(xk), k ∈ Z+. Then, since

Fθ1 ⊂ Fθ ⊆ (Ωj∗ ∼ LN−1
µ ) ∩ XU ⊂ Xi ∩ XU for all i = 1, . . . , N − 1

and XT = Fθ1 , the sequence of control inputs (h(x0|k), . . . , h(xN−1|k)) is feasible
with respect to Problem 1 (with ŨN (xk) instead of UN (xk)) for all x0|k � x̃k ∈
Fθ1 . Therefore, XT = Fθ1 ⊆ X̃f (N).

(ii) The result of part (i) implies that X̃f (N) is a RPI set for system (7b) in
closed-loop with the MPC control (4) and disturbances in Bµ. Moreover, since
0 ∈ int(XT ), we have that 0 ∈ int(X̃f (N)). The choice of the terminal cost and
of the stage cost ensures that there exist a, b > 0, α1(s) � as and α2(s) � bs

such that α1(‖x‖) ≤ ṼMPC(x) ≤ α2(‖x‖) for all x ∈ X̃f (N). Let x̃k+1 denote the
solution of (7b) in closed-loop with uMPC(·) obtained as indicated in part (i) of
the proof and let x∗0|k � x̃k. Due to full-column rank of Q there exists γ > 0 such
that ‖Qx‖ ≥ γ‖x‖ for all x. Then, by optimality, property (P1), xN−1|k+1 ∈ Fθ

and from inequality (5) it follows that:

Ṽ (x̃k+1)− Ṽ (x̃k) ≤ J(x̃k+1,uk+1)− J(x̃k,u∗
k) = −L(x∗0|k, u

∗
0|k) + F (xN |k+1)

+ [−F (xN−1|k+1) + F (xN−1|k+1)]− F (x∗N |k) + L(xN−1|k+1, h(xN−1|k+1))

+
N−2∑
i=0

[
L(xi|k+1,uk+1(i + 1))− L(x∗i+1|k, u

∗
i+1|k)

]
≤ −L(x∗0|k, u

∗
0|k) + F (xN |k+1)− F (xN−1|k+1) + L(xN−1|k+1, h(xN−1|k+1))

+

(
ξηN−1 + ‖Q‖

N−2∑
p=0

ηp

)
‖wk‖

(5)
≤ −‖Qx∗0|k‖+ σ(‖wk‖) ≤ −α3(‖x̃k‖) + σ(‖wk‖),

with σ(s) � (ξηN−1 + ‖Q‖
∑N−2

p=0 ηp)s and α3(s) � γs. Thus, it follows that
ṼMPC(·) satisfies the hypothesis of Theorem 3. Hence, the closed-loop system
(7b)-(4) is ISS for initial conditions in X̃f (N) and disturbance inputs in Bµ. �
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Summary. The topic of this paper is a new model predictive control (MPC) approach
for the sampled–data implementation of continuous–time stabilizing feedback laws. The
given continuous–time feedback controller is used to generate a reference trajectory
which we track numerically using a sampled-data controller via an MPC strategy. Here
our goal is to minimize the mismatch between the reference solution and the trajectory
under control. We summarize the necessary theoretical results, discuss several aspects
of the numerical implemenation and illustrate the algorithm by an example.

1 Introduction

Instead of designing a static state feedback with sampling and zero order hold by
designing a continuous–time controller which is stabilizing an equilibrium and
discretizing this controller ignoring sampling errors which leads to drawbacks in
stability, see [5, 8], our approach is to use a continuous–time feedback and to
anticipate and minimize the sampling errors by model predictive control (MPC)
with the goal of allowing for large sampling periods without loosing performance
and stability of the sampled–data closed loop. Therefore we consider two sys-
tems, the first to be controlled by the given continuous–time feedback which will
give us a reference trajectory, and a second one which we are going to control
using piecewise constant functions to construct an optimal control problem by
introducing a cost functional to measure and minimize the mismatch between
both solutions within a time interval.

In order to calculate a feedback instead of a time dependent control function
and to avoid the difficulties of solving a Hamilton-Jacobi-Bellman equation for
an infinite horizon problem we reduce the infinite time interval to a finite one by
introducing a positive semidefinite function as cost–to–go. To re–gain the infinite
control sequence we make use of a receding horizon technique. For this approach
we will show stability and (sub-)optimality of the solution under certain standard
assumptions.

We will also show how to implement an algorithm to solve this process of iter-
atively generating and solving optimal control problems. The latter one is done
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using a direct approach and full discretization that will give us one optimization
problem per optimal control problem which can be solved using an SQP method.

Therefore in Section 2 the problem, the necessary assumptions and our control
scheme will be presented. In Section 3 we review the theoretical background
results about stability and inverse optimality from [14]. Having done this the
numerical implementation will be presented and discussed in Section 4 and its
performance will be demonstrated by solving an example in Section 5. Finally
conclusions will be given in Section 6.

2 Problem Formulation

The set of real numbers is denoted as R. A function γ : R≥0 → R≥0 is called
class G if it is continuous, zero at zero and non-decreasing. It is of class K if it
is continuous, zero at zero and strictly increasing. It is of class K∞ if it is also
unbounded. It is of class L if it is strictly positive and it is decreasing to zero as
its argument tends to infinity. A function β : R≥0×R≥0 → R≥0 is of class KL if
for every fixed t ≥ 0 the function β(·, t) is of class K and for each fixed s > 0 the
function β(s, ·) is of class L. Given vectors ξ, x ∈ Rn we often use the notation
(ξ, x) := (ξT , xT )T and denote the norm by | · |.

We consider a nonlinear feedback controlled plant model

ẋ(t) = f(x(t), u(x(t))) (1)

with vector field f : Rn×U→ Rn and state x(t) ∈ Rn, where u : Rn → U ⊂ Rm

denotes a known continuous–time static state feedback which (globally) asymp-
totically stabilizes the system. We want to implement the closed loop system
using a digital computer with sampling and zero order hold at the sampling
time instants tk = k · T , k ∈ N, T ∈ R>0. Then for a feedback law uT (x) the
sampled-data closed loop system becomes

ẋ(t) = f(x(t), uT (x(tk))), t ∈ [tk, tk+1). (2)

Our goal is now to design uT (x) such that the corresponding sampled–data
solution of (2) reproduces the continuous–time solution x(t) of (1) as close as
possible. The solution of the system (1) at time t emanating from the initial
state x(0) = x0 will be denoted by x(t, x0). Also we will assume f(x, u(x)) to
be locally Lipschitz in x, hence a unique solution of the continuous–time closed
loop system to exist for any x(0) = x0 in a given compact set Γ ⊂ Rn containing
the origin.

Remark 1. The simplest approach to this problem is the emulation design in
which one simply sets uT (x) := u(x). This method can be used for this purpose
but one can only prove practical stability of the sampled–data closed loop system
if the sampling time T is sufficiently small, see [8].

In order to determine the desired sampled–data feedback uT we first search for a
piecewise constant control function v whose corresponding solution approximates
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the solution of the continuous–time closed loop system. Therefore the mismatch
between the solutions of

ẋ(t) = f(x(t), u(x(t))), x(t0) = x0 (3)
ξ̇(t) = f(ξ(t), v[0,∞]), ξ(t0) = ξ0 (4)

can be measured. Here ξ(t, ξ0) denotes the solution of the system under control
and v[0,∞] is a piecewise constant function with discontinuities only at the sam-
pling instants tk := k ·T , k ∈ N. In order to measure and minimize the difference
between both trajectories a cost functional of the form

J(ξ(t), x(t), v[0,∞)) :=
∞∑

j=0

T∫
0

l(ξ(t)− x(t), vj)dt (5)

is needed where l : Rn × U → R≥0. This results in an optimal control problem
with infinite horizon which involves solving a Hamilton-Jacobi-Bellman type
equation. In the linear case solutions to different H2 and H∞ control designs are
known but the nonlinear case is typically too hard to be solved.

In order to avoid this computational burden we consider a reduced problem
in a first step by limiting the horizon to a finite length. This will give us a
suboptimal MPC controller whose numerical computation is manageable. Since
T is fixed due to the problem formulation the length of the horizon H can be
given by M ∈ N via H = M · T . Hence the cost functional can be written as

JM (ξ(t), x(t), v[0,M−1]) :=
M−1∑
j=0

T∫
0

l(ξ(t)− x(t), vj)dt + F (ξ(tM ), x(tM )) (6)

using the function F to measure the cost-to-go
∞∑

j=M

T∫
0
l(ξ(t)− x(t), vj)dt.

Remark 2. It is not necessary for F to be a control-Lyapunov-function of (3),
(4) to prove semiglobal practical stability of the closed loop system. Moreover
terminal costs of the form F (ξ(tM ), x(tM )) instead of F (ξ(tM )−x(tM )) are con-
sidered since the infinite horizon value function V∞(ξ, x) := inf

v[0,∞)
J(ξ, x, v[0,∞))

does not have in general the form V∞(ξ − x).

Using this approach an optimal control problem with finite horizon has to be
solved which will return a finite control sequence û[0,M−1]. In order to determine
the sampled–data feedback law uT an infinite sequence of optimal control prob-
lems can be generated and solved using a receding horizon approach. To this
end in a second step only the first control

u = uM (ξ, x) := û0(ξ, x) (7)

is implemented and the horizon is shifted forward in time by T . Hence a new
optimal control problem is given and the process can be iterated. According
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to this procedure the receding horizon control law uT = uM is a static state
feedback for the coupled system that is implemented in a sampled-data fashion.
Then the overall closed loop system is given by

ξ̇(t) = f(ξ(t), uM (ξ(tk), x(tk))), ξ(0) = ξ0, t ∈ [tk, tk+1), (8)
ẋ(t) = f(x(t), u(x(t))), x(0) = x0. (9)

Remark 3. We like to emphasize that it is not only our goal to obtain asymp-
totical stability of (8), (9) which implies tracking since we have that

|(ξ(t), x(t))| ≤ β(|(ξ0, x0)|, t) ∀t ≥ 0, (10)

but also that we achieve this in an appropriate sub–optimal manner.

3 Stability and Inverse Optimality

Since most of the time one can only work with approximated discrete-time mod-
els consistency with the exact discrete-time model as described in [11, 12] is
needed. Under the consistency condition given by Definition 1 in [10] and suit-
able mild additional assumptions one can conclude that asymptotic stability of
the approximate model carries over to semiglobal practical asymptotic stability
for the exact model, see [11, 12] for a general framework and [3] for corresponding
results for MPC algorithms. This justifies the use of numerical approximations,
cf. also Remark 6, below. To conclude semiglobal asymptotical stability of the
closed loop system using the proposed MPC controller we present the following
theorem, which relies on Theorem 1 in [1].

Theorem 1 (Stability)
Suppose the following conditions hold:

1. l and F are continuous;
2. U is bounded;
3a. The continuous–time system (1) is globally asymptotically stable;
3b. There exists a constant r0 > 0 and a function γ ∈ K∞ with

l(y, u) ≥ max
{

max
|x|≤2|y|

|f(x, u)|, γ(|y|)
}
, ∀|y| ≥ r0;

3c. f(·, ·) and u(·) are locally Lipschitz in their arguments;
4. The value function is such that for some ᾱ ∈ K∞ we have that Vi(ξ, x) ≤

ᾱ(|(ξ, x)|) for all i ≥ 0 and all (ξ, x) ∈ R2n.

Then there exists a function β ∈ KL such that for each pair of strictly positive
real numbers (∆, δ) there exists a constant M∗

1 ∈ Z≥1 such that for all (ξ, x) ∈
B∆ and M ≥M∗

1 the solutions of the continuous–time system (8), (9) satisfy

|(ξ(t), x(t))| ≤ max{β(|(ξ0, x0)|, t), δ} ∀t ≥ 0. (11)
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Proof. Make use of the underlying discrete-time system via Theorem 1 in [1] and
Theorem 1 in [10], see [14] for details.

Therefore one can apply the calculated MPC control coming out of an approxi-
mated model in reality without loss of stability.

Remark 4. If F is a control Lyapunov function for the exact discrete-time model
of the uncontrolled sampled-data system

ξ+ = G(ξ, u) := ξ(T, ξ, u), ξ(0) = ξ0, (12)
x+ = H(x) := x(T, x), x(0) = x0 (13)

then it follows from [1] that the theoretical bound M∗
1 for the necessary prediction

horizon decreases which was confirmed in our numerical simulations.

Remark 5. Explicit bounds to guarantee the stability properties of the underly-
ing discrete-time system can be found in [1].

In order to show inverse optimality of our approach we suppose that F is such
that there exists a closed set Xf ⊂ R2n and a control law u = uf(ξ, x) with

1. uf (ξ, x) ∈ U ∀(ξ, x) ∈ Xf

2. If (ξ, x) is ∈ Xf then also (G(ξ, uf (ξ, x)), H(X)) is ∈ Xf .
3. For all (ξ, x) ∈ Xf we have that

F (G(ξ, uf (ξ, x)), H(x)) − F (ξ, x) ≤ −
T∫

0

l(ξ(s, ξ, uf)− x(s, x), uf )ds.

Theorem 2 (Inverse (Sub-)Optimality)
Consider the discrete-time model (12), (13) and suppose that the previous
assumptions are valid. Then there exists a set XM ⊂ R2n and a function
Q : Rn × Rn × U→ R with

Q(ξ, x, uM ) ≥ Q(ξ, x, uM ) :=

T∫
0

l(ξ(s, ξ, uf)− x(s, x), uf )ds (14)

∀(ξ, x) ∈ XM , u ∈ U such that for all (ξ, x) ∈ XM we have that the controller
(7) minimizes the cost functional

J (ξ, x, u[0,∞)) :=
∞∑

i=0

Q(ξi, xi, ui). (15)

Proof. The principle of optimality and the stated assumptions are utilised to
show Q(ξ, x, uM ) ≥ Q(ξ, x, uM ), see [14] for details.
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4 Numerical Solution

For the solution of the optimal control problem we use a direct approach and
therefore replace the problem to minimize (6) with dynamics (3), (4) by numeri-
cal approximations ξ̃(t, ξ0, u) of ξ(t, ξ0, u) and x̃(t, x0, u) of x(t, x0), respectively.
For this approach convergence has been investigated in [7] and under suitable
conditions one can guarantee that the order of convergence is O(T ).

From this formulation one obtains an optimization problem by introducing
the variable z = (ξ0, . . . , ξM , x0, . . . , xM , u0, . . . , uM ) and rewriting the approx-
imated optimal control problem as

Minimize F (z) :=
M−1∑
j=0

T∫
0

l(ξ̃(s, ξj , vj)− x̃(s, xj), vj)ds + F (ξM , xM )

s.t. G(z) :=

⎛⎜⎝[−ξj+1 + ξ̃(h, ξj , vj)]j=0,...,M−1

[−xj+1 + x̃(h, xj)]j=0,...,M−1

(ξ0, x0)− (ξ0, x0)

⎞⎟⎠ = 0

with the constraints coming along with the approximation. This is a well known
problem that can be solved using the KKT conditions by SQP methods if the cost
functional and the constraints are sufficiently often differentiable in a sufficiently
large neighborhood N(z∗) of the local minima z∗. These methods are known to
be stable and efficient even for large scale systems.

The used algorithm computes a sequence (z[k]) via z[k+1] = z[k] + α[k]p[k].
Within this iteration the search direction p[k] is calculated by generating and
solving quadratic subproblems of the form

min
p∈RNz

∇zF (z[k])p +
1
2
pTB[k]p

s.t. G(z[k]) +∇zG(z[k])p = 0.

The algorithm computes the derivatives by forward difference schemes if they are
not given by the user and the matrix B[k] is an approximation of the Hesse matrix
where a BFGS-Rank 2 update is implemented so that the Hesse matrix has to be
calculated only once. Therefore the usual quadratic order of convergence of the
Newton method is reduced but superlinear convergence can still be shown. The
step size α[k] is obtained by minimizing a merit function L̃(z, η, ρ) = L(z, η) +
1
2

Nz∑
j=1

ρjG
2
j (z) such that the natural step size α[k] = 1 of the Newton method is

reduced but one can expect it to be close to 1 in a small neighborhood of z∗.

Remark 6. Since our aim is to allow for large sampling periods T an adaptive
step size control algorithm such as DoPri5, see [4], is necessary within each
interval [kT, (k + 1)T ), k ∈ N, in order to avoid errors in the state trajectories
and the cost functional which therefore has to be transformed. Note that the local
accuracy guaranteed by the step size control here plays the role of the accuracy
parameter δ in the consistency Definition 1 in [10].
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Remark 7. The case of an integration step size h that is different from the
sampling period T has been analysed theoretically for MPC schemes in [3]. An
important aspect of this analysis is that h, or — more generally — the numerical
accuracy parameter, can be assigned arbitrarily and independently of T (where
of course one has to ensure that the sampling instants are included in the set of
gridpoints used for integration in order to match the discontinuities of the control
function). It should be noted that our algorithm fulfils this requirement. In fact,
when we remove the x–subsystem (3) from our scheme and use a local Lyapunov
function as a terminal cost we obtain exactly the direct MPC algorithm discussed
theoretically in [3].

Compared to this standard MPC approach the main difference of our scheme
lies in the fact that we can directly enforce a desired transient behavior induced by
the continuous–time feedback, while in standard MPC schemes the transient be-
havior can only be influenced indirectly through the choice of the cost functional.
Clearly, the design of a suitable continuous–time controller requires a consider-
able amount of a priori work, but this may be rewarded by a better performance
of the resulting sampled–data closed loop.

Remark 8. An important problem is the choice of a good initial guess v[0,M−1]
for the optimization, keeping in mind that we deal with a nonlinear optimization
problem. Even though suboptimal solutions to this problem may be sufficient to
ensure stability, see [6], here we also aim at good performance. Convergence to
the global optimum, however, can only be expected when the initial solution is
already close to it. When passing from tk to tk+1 the shifted optimal control
sequence from the previous step typically yields such a good initial guess, which
is confirmed by our numerical experience that the computational costs for the
optimization are decreasing monotonically during the iteration process.

A more severe problem is the choice of the initial guess at t0 when no previous
optimal control is known. In this case, in our approach the known continuous–
time feedback can be exploited for this purpose when the emulated feedback from
Remark 1 yields solutions which do not deviate too far from the continuous–
time reference. However, this method fails when the emulated feedback leads to
unstable solutions and the time horizon H = M ·T is rather large. Such situations
can sometimes be handled by reducing the length of the horizon H = M · T but
proceeding this way one has to keep in mind that there exists a lower bound for
H from the stability proof. Also, simulations have shown that while on one hand
computational costs grow with the length of the horizon, on the other hand better
performance can be achieved using longer horizons. Therefore, at the moment it
is up to simulations to find a good set of parameters and a good initial guess of
v[0,M−1].

A promising alternative approach and topic of future research is whether some
of the methods developed in [9, 13] can be used in order to construct the initial
guess, an approach that would lead to a predictor–corrector type algorithm in
which the MPC strategy plays the role of the corrector.
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5 Example

Here we present a model of a synchronous generator taken from [2]

ẋ1 = x2, ẋ2 = −b1x3 sinx1 − b2x2 + P, ẋ3 = b3 cosx1 − b4x3 +E + u. (16)

We use the parameter b1 = 34.29, b2 = 0.0, b3 = 0.149, b4 = 0.3341, P = 28.22
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Fig. 1. Improvement by MPC control over emulation for a1 = 0.45, T = 0.1 (left),
T = 0.5 (middle) and reference solution using continuous–time feedback (right)

and E = 0.2405, as well as the continuous–time feedback law u(x) = a1((x1 −
x∗1)b4 + x2) with feedback gain a1 > 0, whose purpose is to enlarge the domain
of attraction of the locally stable equilibrium x∗ ≈ (1.12, 0.0, 0.914) (note that
this equilibrium is locally asymptotically stable also for u ≡ 0). As initial value
we used the vector x0 = (0.5, 0.0, 2.0) and generated results for T = 0.1, T = 0.5
and a1 = 0.45.

One can see that the fast dynamics of the problem require small sampling
periods to maintain stability using the emulated feedback law. The MPC control
on the other hand not only stabilizes the equilibrium even for rather large T but
also keeps the sampled–data solution close to the reference.

6 Conclusion

We proposed an unconstrained model predictive algorithm for the sampled–
data implementation of continuous–time stabilizing feedback laws. Stability and
inverse optimality results were briefly revisited and numerical issues were dis-
cussed. Compared to direct MPC approaches without using continuous–time
feedbacks, advantages of our method are that the sampled–data solutions in-
herit the performance properties of the continuous–time controller and that the
knowledge of the continuous–time controller helps to reduce the computational
cost of the numerical optimization. Future research will include a systematic
study about how this knowledge can be used in a numerically efficient way and
an extension of our approach to dynamic continuous–time controllers.
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Summary. We describe here a sampled-data Model Predictive Control framework
that uses continuous-time models but the sampling of the actual state of the plant as
well as the computation of the control laws, are carried out at discrete instants of time.
This framework can address a very large class of systems, nonlinear, time-varying, and
nonholonomic.

As in many others sampled-data Model Predictive Control schemes, Barbalat’s
lemma has an important role in the proof of nominal stability results. It is argued
that the generalization of Barbalat’s lemma, described here, can have also a similar
role in the proof of robust stability results, allowing also to address a very general
class of nonlinear, time-varying, nonholonomic systems, subject to disturbances. The
possibility of the framework to accommodate discontinuous feedbacks is essential to
achieve both nominal stability and robust stability for such general classes of systems.

1 Introduction

Many Model Predictive Control (MPC) schemes described in the literature use
continuous-time models and sample the state of the plant at discrete instants of
time. See e.g. [3, 7, 9, 13] and also [6]. There are many advantages in considering
a continuous-time model for the plant. Nevertheless, any implementable MPC
scheme can only measure the state and solve an optimization problem at discrete
instants of time.

In all the references cited above, Barbalat’s lemma, or a modification of it, is
used as an important step to prove stability of the MPC schemes. (Barbalat’s
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lemma is a well-known and powerful tool to deduce asymptotic stability of non-
linear systems, especially time-varying systems, using Lyapunov-like approaches;
see e.g. [17] for a discussion and applications). To show that an MPC strategy
is stabilizing (in the nominal case), it is shown that if certain design parameters
(objective function, terminal set, etc.) are conveniently selected, then the value
function is monotone decreasing. Then, applying Barbalat’s lemma, attractive-
ness of the trajectory of the nominal model can be established (i.e. x(t) → 0
as t → ∞). This stability property can be deduced for a very general class of
nonlinear systems: including time-varying systems, nonholonomic systems, sys-
tems allowing discontinuous feedbacks, etc. If, in addition, the value function
possesses some continuity properties, then Lyapunov stability (i.e. the trajec-
tory stays arbitrarily close to the origin provided it starts close enough to the
origin) can also be guaranteed (see e.g. [11]). However, this last property might
not be possible to achieve for certain classes of systems, for example a car-like
vehicle (see [8] for a discussion of this problem and this example).

A similar approach can be used to deduce robust stability of MPC for sys-
tems allowing uncertainty. After establishing monotone decrease of the value
function, we would want to guarantee that the state trajectory asymptotically
approaches some set containing the origin. But, a difficulty encountered is that
the predicted trajectory only coincides with the resulting trajectory at specific
sampling instants. The robust stability properties can be obtained, as we show,
using a generalized version of Barbalat’s lemma. These robust stability results
are also valid for a very general class of nonlinear time-varying systems allowing
discontinuous feedbacks.

The optimal control problems to be solved within the MPC strategy are here
formulated with very general admissible sets of controls (say, measurable control
functions) making it easier to guarantee, in theoretical terms, the existence of
solution. However, some form of finite parameterization of the control functions
is required/desirable to solve on-line the optimization problems. It can be shown
that the stability or robustness results here described remain valid when the
optimization is carried out over a finite parameterization of the controls, such as
piecewise constant controls (as in [13]) or as bang-bang discontinuous feedbacks
(as in [9]).

2 A Sampled-Data MPC Framework

We shall consider a nonlinear plant with input and state constraints, where the
evolution of the state after time t0 is predicted by the following model.

ẋ(s) = f(s, x(s), u(s)) a.e. s ≥ t0, (1a)
x(t0) = xt0 ∈ X0, (1b)
x(s) ∈ X ⊂ IRn for all s ≥ t0, (1c)
u(s) ∈ U a.e. s ≥ t0. (1d)

The data of this model comprise a set X0 ⊂ IRn containing all possible initial
states at the initial time t0, a vector xt0 that is the state of the plant measured
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at time t0, a given function f : IR × IRn × IRm → IRn, and a set U ⊂ IRm of
possible control values.

We assume this system to be asymptotically controllable on X0 and that for
all t ≥ 0 f(t, 0, 0) = 0. We further assume that the function f is continuous and
locally Lipschitz with respect to the second argument.

The construction of the feedback law is accomplished by using a sampled-
data MPC strategy. Consider a sequence of sampling instants π := {ti}i≥0 with
a constant inter-sampling time δ > 0 such that ti+1 = ti+δ for all i ≥ 0. Consider
also the control horizon and predictive horizon, Tc and Tp, with Tp ≥ Tc > δ, and
an auxiliary control law kaux : IR× IRn → IRm. The feedback control is obtained
by repeatedly solving online open-loop optimal control problems P(ti, xti , Tc, Tp)
at each sampling instant ti ∈ π, every time using the current measure of the state
of the plant xti .

P(t, xt, Tc, Tp): Minimize

t+Tp∫
t

L(s, x(s), u(s))ds + W (t + Tp, x(t + Tp)), (2)

subject to:

ẋ(s) = f(s, x(s), u(s)) a.e. s ∈ [t, t + Tp], (3)
x(t) = xt,

x(s) ∈ X for all s ∈ [t, t + Tp],
u(s) ∈ U a.e. s ∈ [t, t + Tc],
u(s) = kaux(s, x(s)) a.e. s ∈ [t + Tc, t+ Tp],
x(t + Tp) ∈ S. (4)

Note that in the interval [t+ Tc, t+ Tp] the control value is selected from a sin-
gleton and therefore the optimization decisions are all carried out in the interval
[t, t+ Tc] with the expected benefits in the computational time.

The notation adopted here is as follows. The variable t represents real time
while we reserve s to denote the time variable used in the prediction model. The
vector xt denotes the actual state of the plant measured at time t. The process
(x, u) is a pair trajectory/control obtained from the model of the system. The
trajectory is sometimes denoted as s �→ x(s; t, xt, u) when we want to make
explicit the dependence on the initial time, initial state, and control function.
The pair (x̄, ū) denotes our optimal solution to an open-loop optimal control
problem. The process (x∗, u∗) is the closed-loop trajectory and control resulting
from the MPC strategy. We call design parameters the variables present in the
open-loop optimal control problem that are not from the system model (i.e.
variables we are able to choose); these comprise the control horizon Tc, the
prediction horizon Tp, the running cost and terminal costs functions L and W ,
the auxiliary control law kaux, and the terminal constraint set S ⊂ IRn.
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The MPC algorithm performs according to a receding horizon strategy, as
follows.

1. Measure the current state of the plant x∗(ti).
2. Compute the open-loop optimal control ū : [ti, ti + Tc] → IRn solution to

problem P(ti, x∗(ti), Tc, Tp).
3. Apply to the plant the control u∗(t) := ū(t; ti, x∗(ti)) in the interval [ti, ti+δ)

(the remaining control ū(t), t ≥ ti + δ is discarded).
4. Repeat the procedure from (1.) for the next sampling instant ti+1 (the index

i is incremented by one unit).

The resultant control law u∗ is a “sampling-feedback” control since during
each sampling interval, the control u∗ is dependent on the state x∗(ti). More
precisely the resulting trajectory is given by

x∗(t0) = xt0 , ẋ∗(t) = f(t, x∗(t), u∗(t)) t ≥ t0,

where
u∗(t) = k(t, x∗(�t�π)) := ū(t; �t�π, x∗(�t�π)) t ≥ t0.

and the function t �→ �t�π gives the last sampling instant before t, that is

�t�π := max
i
{ti ∈ π : ti ≤ t}.

Similar sampled-data frameworks using continuous-time models and sampling
the state of the plant at discrete instants of time were adopted in [2, 6, 7, 8, 13]
and are becoming the accepted framework for continuous-time MPC. It can
be shown that with this framework it is possible to address —and guarantee
stability, and robustness, of the resultant closed-loop system — for a very large
class of systems, possibly nonlinear, time-varying and nonholonomic.

3 Nonholonomic Systems and Discontinuous Feedback

There are many physical systems with interest in practice which can only be mod-
elled appropriately as nonholonomic systems. Some examples are the wheeled
vehicles, robot manipulators, and many other mechanical systems.

A difficulty encountered in controlling this kind of systems is that any lin-
earization around the origin is uncontrollable and therefore any linear control
methods are useless to tackle them. But, perhaps the main challenging charac-
teristic of the nonholonomic systems is that it is not possible to stabilize it if just
time-invariant continuous feedbacks are allowed [1]. However, if we allow discon-
tinuous feedbacks, it might not be clear what is the solution of the dynamic
differential equation. (See [4, 8] for a further discussion of this issue).

A solution concept that has been proved successful in dealing with stabi-
lization by discontinuous feedbacks for a general class of controllable systems
is the concept of “sampling-feedback” solution proposed in [5]. It can be seen
that sampled-data MPC framework described can be combined naturally with
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a “sampling-feedback” law and thus define a trajectory in a way which is very
similar to the concept introduced in [5]. Those trajectories are, under mild con-
ditions, well-defined even when the feedback law is discontinuous.

There are in the literature a few works allowing discontinuous feedback laws in
the context of MPC. (See [8] for a survey of such works.) The essential feature of
those frameworks to allow discontinuities is simply the sampled-data feature —
appropriate use of a positive inter-sampling time, combined with an appropriate
interpretation of a solution to a discontinuous differential equation.

4 Barbalat’s Lemma and Variants

Barbalat’s lemma is a well-known and powerful tool to deduce asymptotic sta-
bility of nonlinear systems, especially time-varying systems, using Lyapunov-like
approaches (see e.g. [17] for a discussion and applications).

Simple variants of this lemma have been used successfully to prove stability re-
sults for Model Predictive Control (MPC) of nonlinear and time-varying systems
[7, 15]. In fact, in all the sampled-data MPC frameworks cited above, Barbalat’s
lemma, or a modification of it, is used as an important step to prove stability
of the MPC schemes. It is shown that if certain design parameters (objective
function, terminal set, etc.) are conveniently selected, then the value function
is monotone decreasing. Then, applying Barbalat’s lemma, attractiveness of the
trajectory of the nominal model can be established (i.e. x(t) → 0 as t → ∞).
This stability property can be deduced for a very general class of nonlinear sys-
tems: including time-varying systems, nonholonomic systems, systems allowing
discontinuous feedbacks, etc.

A recent work on robust MPC of nonlinear systems [9] used a generalization
of Barbalat’s lemma as an important step to prove stability of the algorithm.
However, it is our believe that such generalization of the lemma might provide a
useful tool to analyse stability in other robust continuous-time MPC approaches,
such as the one described here for time-varying systems.

A standard result in Calculus states that if a function is lower bounded and
decreasing, then it converges to a limit. However, we cannot conclude whether
its derivative will decrease or not unless we impose some smoothness property
on ḟ(t). We have in this way a well-known form of the Barbalat’s lemma (see
e.g. [17]).

Lemma 1 (Barbalat’s lemma 1). Let t �→ F (t) be a differentiable function
with a finite limit as t → ∞. If Ḟ is uniformly continuous, then Ḟ (t) → 0 as
t→∞.

A simple modification that has been useful in some MPC (nominal) stability
results [7, 15] is the following.

Lemma 2 (Barbalat’s lemma 2). Let M be a continuous, positive definite
function and x be an absolutely continuous function on IR. If ‖x(·)‖L∞ < ∞,
‖ẋ(·)‖L∞ <∞, and limT→∞

∫ T

0 M(x(t)) dt <∞, then x(t)→ 0 as t→∞.
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Now, suppose that due to disturbances we have no means of guaranteeing that
all the hypothesis of the lemma are satisfied for the trajectory x∗ we want to
analyse. Instead some hypothesis are satisfied on a neighbouring trajectory x̂
that coincides with the former at a sequence of instants of time. 1 Furthermore,
suppose that instead of approaching the origin we would like to approach some
set containing the origin. These are the conditions of the following lemma.

Definition 1. Let A be a nonempty, closed subset of IRn. The function x �→
dA(x), from IRn to IR, denotes the distance from a point x to the set A (i.e.,
dA(x) := miny∈A ‖x− y‖).

We say that a function M is positive definite with respect to the set A if
M(x) > 0 for all x 	∈ A and M(x) = 0 for some x ∈ A.

Lemma 3 (A generalization of Barbalat’s lemma). Let A be subset of IRn

containing the origin, and M : IRn → IR be a continuous function which is
positive definite with respect to A.

Let ∆ > 0 be given and for any δ ∈ (0, ∆) consider the functions x∗δ and x̂δ

from IR+ to IRn satisfying the following properties:

• The function x∗δ is absolutely continuous, the function x̂δ is absolutely con-
tinuous on each interval [iδ, (i+1)δ), for all i ∈ IN0, and x̂δ(iδ) = x∗δ(iδ) for
all i ∈ IN0.

• There exist positive constants K1, K2 and K3 such that for all δ ∈ (0, ∆)

‖ẋ∗δ(·)‖L∞(0,∞) < K1, ‖x̂δ(·)‖L∞(0,∞) < K2, ‖ ˙̂xδ(·)‖L∞(0,∞)) < K3.

Moreover,

lim
τ→∞

τ∫
0

M(x̂δ(t)) dt <∞, (5)

Then for any ε > 0 there is a δ(ε) and for any δ ∈ (0, δ(ε)) there is a T =
T (ε, δ) > 0 such that

dA(x̂δ(t)) ≤ ε, dA(x∗δ(t)) ≤ ε for all t ≥ T. (6)

Proof of Lemma 3

First we shall show that the statement is true for the parameterized family x̂δ(.).
Suppose the contrary: there exists an ε0 such that for any δ ∈ (0, ∆] – thus for
δ = min{∆, ε0/(2K3)}, as well – one can show a δ̃ ∈ (0, δ] and a sequence {tk}∞k=0
with tk →∞ as k→∞ so that dA(x̂δ(tk)) > ε0 for all k ∈ N.

Without loss of generality, we may assume that tk+1 − tk ≥ δ̃, k ∈ IN. Let
R ≥ K2 be such that the set B = {x ∈ Rn : dA(x)) ≥ ε0/2 and ‖x‖ ≤ R} is
nonempty. Since B is compact, M is continuous and M(x) > 0 , if x ∈ B, there

1 In an NMPC context, x̂ would represent the concatenation of predicted trajectories;
see equation (12).
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exists an m > 0 such that m ≤ M(x) for all x ∈ B. Since tk → ∞ as k → ∞,
for any k ∈ N one can show a jk so that tk ∈ [jk δ̃, (jk + 1)δ̃). Note that for any
t ∈ [jk δ̃, (jk + 1)δ̃) we have

∥∥x̂δ̃(t)− x̂δ̃(tk)
∥∥ ≤ t∫

tk

∥∥∥ ˙̂xδ̃(s)
∥∥∥ ds ≤ K3δ̃ ≤ ε0/2.

Then, by the triangle inequality

dA(x̂δ̃(t)) ≥ dA(x̂δ̃(tk)) −
∥∥x̂δ̃(t)− x̂δ̃(tk)

∥∥ ≥ ε0/2.

Therefore x̂δ̃(t) ∈ B, if t ∈ [jk δ̃, (jk + 1)δ̃) , thus

(jk+1)δ̃∫
jk δ̃

M(x̂δ̃(s))ds ≥ mδ̃.

This would imply that limτ→∞
∫ τ

0 M(x̂δ (s))ds→∞ contradicting (5).
Now let ε > 0 be arbitrarily given, let δ1 := ε/(2K1), and let ε1 := ε/2. From

the preceding part of the proof we already know that there is a δ2 = δ̂(ε1), and
for any 0 < δ < min{δ1, δ2} there is a T̂ (ε1, δ) such that

dA(x̂δ(t)) ≤ ε1 for all t ≥ T̂ (ε1, δ).

On the other hand, if t ≥ T̂ (ε1, δ) is arbitrary but fixed, then t ∈ [iδ, (i + 1)δ)
for some i, thus by the triangle inequality and by the assumptions of the lemma
we have

dA(x∗δ(t)) ≤ dA(x∗δ(iδ)) + ‖x∗δ(t)− x∗δ(iδ)‖ ≤ ε1 + K1δ ≤ ε.

Therefore δ(ε) = min{δ1, δ2} and T (ε, δ) = T̂ (ε1, δ) are suitable. �

5 Nominal Stability

A stability analysis can be carried out to show that if the design parameters
are conveniently selected (i.e. selected to satisfy a certain sufficient stability
condition, see e.g. [7]), then a certain MPC value function V is shown to be
monotone decreasing. More precisely, for some δ > 0 small enough and for any
t′′ > t′ > 0

V (t′′, x∗(t′′))− V (t′, x∗(t′)) ≤ −
t′′∫

t′

M(x̂(s))ds. (7)

where M is a continuous, radially unbounded, positive definite function. The
MPC value function V is defined as
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V (t, x) := Vt�π
(t, x)

where Vti(t, xt) is the value function for the optimal control problem P(t, xt, Tc−
(t− ti), Tc − (t− ti)) (the optimal control problem defined where the horizon is
shrank in its initial part by t− ti).

From (7) we can then write that for any t ≥ t0

0 ≤ V (t, x∗(t)) ≤ V (t0, x∗(t0))−
t∫

t0

M(x∗(s))ds.

Since V (t0, x∗(t0)) is finite, we conclude that the function t �→ V (t, x∗(t)) is
bounded and then that t �→

∫ t

t0
M(x∗(s))ds is also bounded. Therefore t �→ x∗(t)

is bounded and, since f is continuous and takes values on bounded sets of (x, u),
t �→ ẋ∗(t) is also bounded. All the conditions to apply Barbalat’s lemma 2 are
met, yielding that the trajectory asymptotically converges to the origin. Note
that this notion of stability does not necessarily include the Lyapunov stability
property as is usual in other notions of stability; see [8] for a discussion.

6 Robust Stability

In the last years the synthesis of robust MPC laws is considered in different
works [14].

The framework described below is based on the one in [9], extended to time-
varying systems.

Our objective is to drive to a given target set Θ (⊂ IRn) the state of the
nonlinear system subject to bounded disturbances

ẋ(t) = f(t, x(t), u(t), d(t)) a.e. t ≥ t0, (8a)
x(t0) = x0 ∈ X0, (8b)
x(t) ∈ X for all t ≥ t0, (8c)
u(t) ∈ U a.e. t ≥ t0, (8d)
d(t) ∈ D a.e. t ≥ t0, (8e)

where X0 ⊂ IRn is the set of possible initial states, X ⊂ IRn is the set of possible
states of the trajectory, U ⊂ IRm is a bounded set of possible control values,
D ⊂ IRp is a bounded set of possible disturbance values, and f : IR × IRn ×
IRm × IRp → IRn is a given function. The state at time t from the trajectory x,
starting from x0 at t0, and solving (8a) is denoted x(t; t0, x0, u, d) when we want
to make explicit the dependence on the initial state, control and disturbance. It
is also convenient to define, for t1, t2 ≥ t0, the function spaces

U([t1, t2]) := {u : [t1, t2]→ IRm : u(s) ∈ U, s ∈ [t1, t2]},

D([t1, t2]) := {d : [t1, t2]→ IRp : d(s) ∈ D, s ∈ [t1, t2]}.
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The target set Θ is a closed set, contains the origin and is robustly invariant
under no control. That is, x(t; t0, x0, u, d) ∈ Θ for all t ≥ t0, all x0 ∈ Θ, and all
d ∈ D([t0, t)) when u ≡ 0. We further assume that f is a continuous function
and locally Lipschitz continuous with respect to x.

Consider a sequence of sampling instants π := {ti}i≥0 with constant inter-
sampling times δ > 0 such that ti+1 = ti + δ for all i ≥ 0. Let the control
horizon Tc and prediction horizon Tp, with Tc ≤ Tp, be multiples of δ (Tc = Ncδ
and Tp = Npδ with Nc, Np ∈ IN). Consider also a terminal set S (⊂ IRn), a
terminal cost function W : IRn → IR and a running cost function L : IRn ×
IRm → IR. The optimization problem is a finite horizon differential game where
the disturbance d acts as the maximizing player and the control u acts as the
minimizing player. We shall assume that the minimizing player uses a sampled-
data information structure. The space of the corresponding strategies over [t1, t2]
we denote by K([t1, t2]). For any t ∈ π, let kaux

t ∈ K([t + Tc, t + Tp]) be an a
priori given auxiliary sampled-data strategy. The quantities time horizons Tc and
Tp, objective functions L and W , terminal constraint set S, the inter-sampling
time δ, and auxiliary strategy kaux

t are the quantities we are able to tune —
the so-called design parameters — and should be chosen to satisfy the robust
stability condition described below.

At a certain instant t ∈ π, we select for the prediction model the control
strategy for the intervals [t, t + Tc) and [t + Tc, t + Tp) in the following way. In
the interval [t, t+Tc), we should select, by solving an optimization problem, the
strategy kt in the interval [t, t + Tc]. The strategy kaux

t , known a priori, is used
in the interval [t+ Tc, t+ Tp].

The robust feedback MPC strategy is obtained by repeatedly solving on-line,
at each sampling instant ti, a min-max optimization problem P , to select the
feedback kti , every time using the current measure of the state of the plant xti .

P(t, xt, Tc, Tp): Mink∈K([t,t+Tc])Maxd∈D([t,Tp])

t+Tp∫
t

L(x(s), u(s))ds + W (x(t + Tp)) (9)

subject to:

x(t) = xt

ẋ(s) = f(s, x(s), u(s), d(s)) a.e. s ∈ [t, t+ Tp] (10)
x(s) ∈ X for all s ∈ [t, t+ Tp]
u(s) ∈ U a.e. s ∈ [t, t+ Tp]
x(t + Tp) ∈ S, (11)

where
u(s) = kt(s, x(�s�π)) for s ∈ [t, t + Tc)

u(s) = kaux
t (s, x(�s�π)) for s ∈ [t + Tc, t+ Tp).
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In this optimization problem we use the convention that if some of the con-
straint is not satisfied, then the value of the game is +∞. This ensures that
when the value of the game is finite, the optimal control strategy guarantees the
satisfaction of the constraints for all possible disturbance scenarios.

The MPC algorithm performs according to a Receding Horizon strategy, as
follows:

1. Measure the current state of the plant x∗(ti).
2. Compute the feedback kti , solution to problem P(ti, x∗(ti), Tc, Tp).
3. Apply to the plant the control given by the feedback law kti in the interval

[ti, ti + δ), (discard all the remaining data for t ≥ ti + δ).
4. Repeat the procedure from (1.) for the next sampling instant ti+1.

The main stability result states that if the design parameters are chosen to
satisfy the robust stability conditions RSC, then the MPC strategy ensures
steering to a certain target set Θ. The following definitions will be used.

Definition 2. The sampling-feedback k is said to robustly stabilize the system
to the target set Θ if for any ε > 0 there exists a sufficiently small inter-sample
time δ such that we can find a scalar T > 0 satisfying dΘ(x(t)) ≤ ε for all t ≥ T .

Definition 3. The playable set Ω(t, Tc, Tp, S) is the set of all initial states xt

for which using the inter-sampling time δ ∈ (0, ∆] and the auxiliary strategy kaux
t

there exists some control strategy kt ∈ K for [t, t + Tp] with kt(s, .) = kaux
t (s, .)

for s ∈ [t+Tc, t+Tp] such that x(t+Tp; t, xt, kt, d) ∈ S for all d ∈ D([t, t+Tp]).

Consider the following robust stability condition
RSC: The design parameters: time horizons Tc and Tp, objective functions L

and W , terminal constraint set S, inter-sampling time δ, and auxiliary feedback
strategy kaux

t satisfy

RSC1 The set S is closed, contains the origin, and is contained in X . Also
kaux

t (s, x) ∈ U for all x ∈ X , s ∈ [t + Tc, t + Tp] and t ∈ π.
RSC2 The function L is continuous, L(0, 0) = 0, and for all u ∈ U we have

that L(x, u) ≥M(x) for some function M : IRn → IR+ which is continuous,
radially unbounded and positive definite with respect to the set Θ.

RSC3 The function W is Lipschitz continuous and W (x) ≥ 0 for all x ∈ IRn\{0}.
RSC4 The set of initial states X0 is contained in the playable set Ω(t0, Tc, Tp, S).
RSC5 For each sampling instant t ∈ π and each xt ∈ S \Θ, and for all possible

disturbances d ∈ D([t, t + δ)]), using the notation x(s) = x(s; t, xt, k
aux
t , d),

we have

W (x(t + δ))−W (xt) ≤ −
t+δ∫
t

L(x(s), kaux
t (s, xt)) ds (RSC5a)

x(t + δ) ∈ S. (RSC5b)

We are in the conditions to state the following stability result.
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Theorem 1. Assume condition RSC is satisfied and that the differential games
P(t, xt, Tc, Tp) have a value for all xt ∈ X and t ≥ t0. Then, the robust MPC
strategy robustly stabilizes the system to the target set Θ.

Proof

The proof starts by establishing a monotone decreasing property of the MPC
Value function. Then the application of the generalized Barbalat’s Lemma yields
the robust stability result.

Let V (t, x) be the value function of P(t, x, Tc − (t − ti), Tp − (t − ti)) with
ti = �t�π. Let also x̂ be the concatenation of predicted trajectories x̄ for each
optimization problem. That is for i ≥ 0

x̂(t) = x̄i(t) for all t ∈ [ti, ti + δ) (12)

where x̄i is the trajectory of a solution to problem P(ti, x∗(ti), Tc, Tp). Note that
x̂ coincides with x∗ at all sampling instants ti ∈ π, but they are typically not
identical on [ti, ti + δ), since they correspond to different disturbances.

The following lemma establishes a monotone decreasing property of V .

Lemma 4. ([9], Lemma 4.4) There exists an inter-sample time δ > 0 small
enough such that for any t′ < t′′, if x∗(t′′), x∗(t′) 	∈ Θ then

V (t′′, x∗(t′′))− V (t′, x∗(t′)) ≤ −
t′′∫

t′

M(x̂(s))ds.

We can then write that for any t ≥ t0

0 ≤ V (t, x∗(t)) ≤ V (t0, x∗(t0))−
t∫

t0

M(x̂(s))ds.

Since V (t0, x∗(t0)) is finite, we conclude that the function t �→ V (t, x∗(t)) is
bounded and then that t �→

∫ t

t0
M(x̂(s))ds is also bounded. Therefore t �→ x̂(t) is

bounded and, since f is continuous and takes values on bounded sets of (x, u, d),
t �→ ˙̂x(t) is also bounded. Using the fact that x∗ is absolutely continuous and coin-
cides with x̂ at all sampling instants, we may deduce that t �→ ẋ∗(t) and t �→ x∗(t)
are also bounded. We are in the conditions to apply the previously established
Generalization of Barbalat’s Lemma 3, yielding the assertion of the theorem. �

7 Finite Parameterizations of the Control Functions

The results on stability and robust stability were proved using an optimal con-
trol problem where the controls are functions selected from a very general set
(the set of measurable functions taking values on a set U, subset of Rm). This
is adequate to prove theoretical stability results and it even permits to use the
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results on existence of a minimizing solution to optimal control problems (e.g. [7,
Proposition 2]). However, for implementation, using any optimization algorithm,
the control functions need to be described by a finite number of parameters (the
so called finite parameterizations of the control functions). The control can be
parameterized as piecewise constant controls (e.g. [13]), polynomials or splines
described by a finite number of coeficients, bang-bang controls (e.g. [9, 10]), etc.
Note that we are not considering discretization of the model or the dynamic
equation. The problems of discrete approximations are discussed in detail e.g.
in [16] and [12].

But, in the proof of stability, we just have to show at some point that the
optimal cost (the value function) is lower than the cost of using another admis-
sible control. So, as long as the set of admissible control values U is constant for
all time, an easy, but nevertheless important, corollary of the previous stability
results follows

If we consider the set of admissible control functions (including the aux-
iliary control law) to be a finitely parameterizable set such that the set of
admissible control values is constant for all time, then both the nominal
stability and robust stability results here described remain valid.

An example, is the use of discontinuous feedback control strategies of bang-bang
type, which can be described by a small number of parameters and so make
the problem computationally tractable. In bang-bang feedback strategies, the
controls values of the strategy are only allowed to be at one of the extremes
of its range. Many control problems of interest admit a bang-bang stabilizing
control. Fontes and Magni [9] describe the application of this parameterization
to a unicycle mobile robot subject to bounded disturbances.
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Appendix

Proof of Lemma 4

At a certain sampling instant ti, we measure the current state of the plant xti

and we solve problem P(xti , Tc, Tp) obtaining as solution the feedback strategy
k̄ to which corresponds, in the worst disturbance scenario, the trajectory x̄ and
control ū. The value of differential game P(xti , Tc, Tp) is given by

Vti(ti, xti) =

ti+Tp∫
ti

L(x̄(s), ū(s))ds + W (x̄(ti + Tp)). (13)

Consider now the family of problems P(xt, Tc − (t − ti), Tp − (t − ti)) for t ∈
[ti, ti + δ). These problems start at different instants t, but all terminate at the
same instant ti + Tp. Therefore in the worst disturbance scenario, by Bellman’s
principle of optimality we have that
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Vti(t, x̄(t)) =

ti+Tp∫
t

L(x̄(s), ū(s))ds + W (x̄(ti + Tp)). (14)

Suppose that the worst disturbance scenario did not occur and so, at time t, we
are at state x∗(t) which is, in general, distinct from x̄(t). Because such scenario is
more favorable, and by the assumption on the existence of value to the differential
game we have that

Vti(t, x
∗(t)) ≤ Vti(t, x̄(t)) for all t ∈ [ti, ti + δ). (15)

We may remove the subscript ti from the value function if we always choose the
subscript ti to be the sampling instant immediately before t, that is (recall that
�t�π = maxi{ti ∈ π : ti ≤ t})

V (t, x) := Vt�π
(t, x).

For simplicity define the function

V ∗(t) = V (t, x∗(t)).

We show that t �→ V ∗(t) is decreasing in two situations:

(i) on each interval [ti, ti + δ)

V ∗(t) ≤ V ∗(ti)−
t∫

ti

M(x̄(s)) ds for all t ∈ [ti, ti + δ), and all i ≥ 0;

(ii) from one interval to the other

V ∗(ti + δ+) ≤ V ∗(ti + δ−) for all i ≥ 0;

therefore yielding the result.

(i) The first assertion is almost immediate from (15), (14) and (13).

V ∗(t) ≤ Vti(t, x̄(t))

= Vti(ti, x̄(ti)) −
t∫

ti

L(x̄(s), ū(s)) ds

= Vti(ti, x
∗(ti))−

t∫
ti

L(x̄(s), ū(s)) ds

≤ V ∗(ti)−
t∫

ti

M(x̄(s)) ds

for all t ∈ [ti, ti + δ), and all i ≥ 0;
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(ii) Let the pair (x̄, ū)|[ti+δ−,ti+Tp] be an optimal solution to P(x(ti + δ−), Tc −
δ, Tp − δ). Then

V ∗(ti + δ−) = Vti(ti + δ−, x̄(ti + δ−))

=

ti+Tp∫
ti+δ

L(x̄(s), ū(s)) ds + W (x̄(ti + Tp)).

Now, extend the process (x̄, ū) to the interval [ti + δ−, ti + Tp + δ−] using in
the last δ seconds the auxiliary control law kaux. This is an admissible (the
set S is invariant under kaux and is contained in X), suboptimal solution to
P(x(ti + δ+), Tc − δ, Tp − δ). Therefore

V ∗(ti + δ+) = Vti+1(ti + δ+, x̄(ti + δ+))

≤
ti+Tp+δ∫
ti+δ

L(x̄(s), ū(s)) ds + W (x̄(ti + Tp + δ))

= V ∗(ti + δ−) + W (x̄(ti + Tp + δ))−W (x̄(ti + Tp))

+

ti+Tp+δ∫
ti+Tp

L(x̄(s), ū(s)) ds.

Using RSC5a in the interval [ti + Tp, ti + Tp + δ] we obtain

V ∗(ti + δ+) ≤ V ∗(ti + δ−) for all i ≥ 0

as required. �
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Sevilla, Spain
{alamo, mirko, cepeda, limon, eduardo} @cartuja.us.es
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Summary. In this paper, an alternative approach to the computation of control in-
variant sets for piecewise affine systems is presented. Based on two approximation
operators, two algorithms that provide outer and inner approximations of the maximal
robust control invariant set are presented. These algorithms can be used to obtain a
robust control invariant set for the system. An illustrative example is presented.

1 Introduction

In the context of nonlinear MPC, the stable and admissible closed-loop behavior
is typically based on the addition of a terminal constraint and cost [1]. The
terminal constraint is chosen to be an admissible robust control invariant set of
the system. The size of this control invariant set determines, in many cases, the
feasibility region of the nonlinear MPC controller [2]. It is shown in [2] that the
domain of attraction of MPC controllers can be enlarged by means of a sequence
of controllable (not necessarily invariant) sets.

The stability analysis of piecewise affine systems (PWA systems) plays an
important role in the context of hybrid systems control. This is mainly due to
the fact that piecewise affine systems can model a broad class of hybrid systems
(see [3]). Therefore, it is of paramount relevance in the context of hybrid MPC
the computation of controllable sets for this class of nonlinear systems [4].

The estimation of the domain of attraction of piecewise affine systems has
been addressed by a number of authors. Quadratic (and piecewise quadratic)
Lyapunov functions for hybrid systems have been proposed in [5, 6, 7]. A poly-
hedral approach is presented in [8]. Piecewise affine Lyapunov functions are
considered in [9]. In [10] an algorithm to compute the maximal robust control
invariant set for a PWA system is presented. Moreover, sufficient conditions to
guarantee that the algorithm is finitely determined are also given.

It is well-known (see, for example, [8]) that the computation of the maxi-
mal robust control invariant set for a piecewise affine system requires such a
computational burden that it is difficult to obtain it in an exact manner.
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In this paper we propose an algorithm that circumvents the huge computa-
tional complexity associated to the obtainment of the maximal robust control
invariant set. Two new algorithms are proposed. The first one provides a convex
polyhedral outer bound of the maximal control invariant set for the piecewise
affine system. This outer estimation is used, by the second proposed algorithm,
to obtain a robust control invariant set for the system (not necessarily the max-
imal one). The algorithms are based on inner and outer approximations of a
given non-convex set.

The paper is organized as follows: Section 2 presents the problem statement.
Section 3 presents an algorithm that computes an outer bound of the maximal
robust control invariant set of the piecewise affine system. A procedure to obtain
a robust control invariant set is proposed in section 4. An illustrative example
is given in section 5. The paper draws to a close with a section of conclusions.

2 Problem Statement

Let us suppose that X is a bounded convex polyhedron. Suppose also that the
convex polyhedra Xi, i = 1, . . . , r, with disjoint interiors, form a partition of X .

That is, X =
r⋃

i=1
Xi.

We consider the following piecewise affine system:

x+ = f(x, u, w) = Aix + Biu + Eiw + qi if x ∈ Xi (1)

where x ∈ Rnx is the state vector; x+ denotes the successor state; u ∈ U =
{ u ∈ Rnu : ‖u‖∞ ≤ umax } is the control input; w denotes a bounded additive
uncertainty: w ∈ W = { w ∈ Rnw : ‖w‖∞ ≤ ε }.

In order to present the results of this paper it is important to refer to the
notion of the one step set [8].

Definition 1 (one step set). Given a region Ω, and system (1), the following
sets are defined:

Q(Ω) = { x ∈ X : there is u ∈ U such that f(x, u, w) ∈ Ω, ∀w ∈ W }

Qi(Ω)={ x ∈ Xi : there is u ∈ U such that Aix+Biu+Eiw+qi ∈ Ω, ∀w ∈W}

The following well-known properties allow us to compute Q(Ω) for a piecewise
affine system [8]:

Property 1. Given a convex polyhedron Ω: Q(Ω) =
r⋃

i=1
Qi(Ω), where Qi(Ω),

i = 1, . . . , r are polyhedra.

Property 2. If Ω =
s⋃

j=1
Pj and P1, P2, . . . , Ps are convex polyhedra, then Q(Ω) =

r⋃
i=1

s⋃
j=1

Qi(Pj), where Qi(Pj), i = 1, . . . , r, j = 1, . . . , s are convex polyhedra.
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Based on these definitions and properties, the maximal robust control invariant
set can be obtained by means of the following algorithm [8]:

Algorithm 1

(i) Set the initial region C0 equal to X .
(ii) Ck+1 = Q(Ck).
(iii) If Ck+1 = Ck then Ck = C∞. Stop. Else, set k = k + 1 and return to step

(ii).

Note that the evolution of any initial condition belonging to set Ck can be ro-
bustly maintained in X at least k sample times. Therefore, C∞ = lim

k→∞
Ck con-

stitutes the set of initial condition for which the system is robustly controllable in
an admissible way. That is, C∞ is the maximal robust control invariant set.

Suppose that algorithm 1 converges to C∞ in kd steps. Then, applying prop-
erty 2 in a recursive way it is possible to state that Ckd

= C∞ can be represented
by means of the union of rkd convex polyhedra. This worst-case estimation of
the number of convex polyhedra required to represent C∞ clearly shows that the
exact computation of C∞ for a piecewise-affine system might not be possible in
the general case: the number of sets required to represent the maximal robust
control invariant set grows in an exponential way with the number of iterations
of algorithm 1. Even in the case that algorithm 1 obtains (theoretically) the
maximal robust control invariant set in a finite number of steps, the complexity
of the representation might make it impossible to run the algorithm beyond a
reduced number of steps (normally insufficient to attain the greatest domain of
attraction). Therefore, it is compulsory to consider approximated approaches to
the computation of C∞.

In this paper we propose an algorithm (based on convex outer (and inner)
approximations of the one step set) that can be used to compute a convex robust
control invariant set for the piecewise affine system.

3 Outer Bound of the Maximal Robust Control Invariant
Set

One of the objectives of this paper consists in providing a procedure to obtain
a convex outer approximation of C∞ for a piecewise affine system. This outer
bound has a number of practical and relevant applications:

(i) It captures the geometry of C∞ and makes the computation of a robust
control invariant set for the system easier (this use is explored in section
4). Moreover, it can be used as the initial set in algorithm 1. If the outer
bound is a good approximation, then algorithm 1 might require an (imple-
mentable) reduced number of iterations.

(ii) The constraints that define the outer bound can be included as hard con-
straints in a hybrid MPC scheme. Moreover, the inclusion of the aforemen-
tioned constraints can be used to improve the convex relaxations of the
nonlinear optimization problems that appear in the context of hybrid MPC.
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(iii) The outer bound can be used as a measure of the controllable region of a
hybrid system. This can be used in the design of the hybrid system itself.

(iv) The obtained convex region can be also used to induce a control Lyapunov
function.

The following algorithm provides a convex polyhedron that serves as an outer
bound of the maximal robust control invariant set of a piecewise affine system:

Algorithm 2

(i) k = 0, Ĉ0 = X .

(ii) Ĉk+1 = Co {
r⋃

i=1
Qi(Ĉk)}

⋂
Ĉk

(iii) If Ĉk+1 = Ĉk, then Stop. Else, k=k+1, Go to step (ii).

Remark 1. Note that the convex hull operator (Co) required to implement the
algorithm can be substituted by any outer approximation of the convex hull. For
example, the envelope operator of [11], or the outer approximation provided in
[12]. The algorithm can be stopped when there is no significant improvement of
the outer bound. That is, when Ĉk is almost identical to Ĉk−1. For example,
the algorithm could be stopped when (1 − εs)Ĉk ⊆ Ĉk+1, where εs > 0 is a
arbitrarily small tuning parameter.

Property 3. Each one of the polyhedrons Ĉk obtained by means of algorithm 2
constitutes an outer bound of the maximal robust control invariant set of the
piecewise affine system. That is, C∞ ⊆ Ĉk, for all k ≥ 0.

Proof
It is clear that C∞ ⊆ X = Ĉ0. To prove the property it suffices to show that
C∞ ⊆ Ĉk implies C∞ ⊆ Ĉk+1, for every k ≥ 0. Suppose that C∞ ⊆ Ĉk:

C∞ = C∞
⋂

Ĉk = Q(C∞)
⋂

Ĉk ⊆ Q(Ĉk)
⋂

Ĉk =

(
r⋃

i=1

Qi(Ĉk)

)⋂
Ĉk ⊆ Ĉk+1

4 Inner Approximation of the Maximal Robust Control
Invariant Set

In this section, an algorithm that computes an inner approximation of C∞ is
presented. Such an algorithm is based on the complementary set of the one step
operator and on the notion of inner supporting constraint.

4.1 Complementary Set of Q(Ω)

The inner approximations of C∞ presented in this paper for Q(Ω) rely on the
computation of the complementary set of Q(Ω):
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Definition 2. Given set Ω, Qc(Ω) denotes the complementary set of Q(Ω) in
X. That is, Qc(Ω) = { x ∈ X : x 	∈ Q(Ω) }. Given set Ω, Qc

i(Ω) denotes the
complementary set of Qi(Ω) in Xi. That is, Qc

i (Ω) = { x ∈ Xi : x 	∈ Qi(Ω) }.

It is inferred from the previous definition that given set Ω: Qc(Ω) =
r⋃

i=1
Qc

i (Ω).

Therefore, in order to compute Qc(Ω), it suffices to compute Qc
i(Ω), i = 1, . . . , r.

The following property (see [13] for a proof) shows how to compute Qc
i (Ω).

Property 4. Suppose that Qi(Ω) = { x ∈ Xi : Gix ≤ gi }, where Gi ∈ RLi×nx

and gi ∈ RLi . Then,

Qc
i(Ω) =

Li⋃
j=1

Si,j(Gi, gi)

where Si,j(Gi, gi) = { x ∈ Xi : Gi(j)x > gi(j), Gi(l)x ≤ gi(l) for l = 1, . . . ,
j − 1 }.

4.2 Inner Supporting Constraint

The construction of the proposed inner approximation of C∞ is based on the
notion of inner supporting constraint:

Definition 3. Suppose that S is a compact convex set that does not contain
the origin and that R is a bounded set. We say that { x : c�x ≤ 1 } is
an inner supporting constraint of S over R if c is the solution of the following
minimization problem

min
c,ρ

ρ

s.t. c�x > 1, ∀x ∈ S

c�x ≤ 1, ∀x ∈ 1
ρ
R

The following property allows us to compute an inner supporting constraint of

a polyhedron S over Q(Ω) =
r⋃

i=1
Ti ( where Ti = Qi(Ω), i = 1, . . . , r) by means

of the solution of a linear optimization problem. The proof of the property is
similar to the proof of an analogous property in [12] and it is omitted because
of space limitations.

Property 5. Consider polyhedron S = { x : Fx ≤ f } and the polyhedrons
Tl = { x : Mlx ≤ ml }, l = 1, . . . , r. Suppose that the scalar ρ and the vectors
c, λ, and βl, l = 1, . . . , r satisfy the following constraints:

ρ > 0 (2)
λ ≥ 0 (3)
βl ≥ 0, l = 1, . . . , r (4)
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1 + f�λ < 0 (5)
−ρ + m�

l βl ≤ 0, l = 1, . . . , r (6)
c + F�λ = 0 (7)

c−M�
l βl = 0, l = 1, . . . , r (8)

then

c�x > 1, ∀x ∈ S (9)

c�x ≤ 1, ∀x ∈
r⋃

l=1

1
ρ
Tl (10)

4.3 Robust Control Invariant Set: Proposed Algorithm

The following algorithm serves to compute a robust control invariant set for a
piecewise affine system:

Algorithm 3

(i) Set k = 0 and choose a contracting factor λ̃ ∈ (0, 1).
(ii) Make C̃0 equal to the outer approximation of C∞ obtained by means of

algorithm 2.
(iii) Given C̃k = { x : Hx ≤ h }, obtain Ti = Qi(λ̃C̃k), i = 1, . . . , r.

(iv) Obtain Qc(λ̃C̃k) =
r⋃

i=1
Qc

i(λ̃C̃k) =
nc⋃

j=1
Sj by means of property 4.

(v) For every j = 1, . . . , nc obtain { x : c�j x ≤ 1 }, the inner supporting

constraint of Sj over Q(λ̃C̃k) =
r⋃

i=1
Ti. This can be achieved by means of

property 5.

(vi) Make C̃k+1 =
nc⋂

j=1
{ x : c�j x ≤ 1 }.

(vii) If C̃k+1 ⊆ Q(C̃k+1) then C̃k+1 is a robust control invariant set. Stop. Else,
set k = k + 1 and go to step (iii).

Bearing in mind the λ contractive procedure of [14], a contracting factor
λ̃ ∈ (0, 1) has been included in the algorithm. Note that algorithm 3 finishes only
if C̃k+1 ⊆ Q(C̃k+1). In virtue of the geometrical condition of robust invariance
[14], it is inferred that C̃k is a robust control invariant set. That is, if algorithm 3
finishes then a robust control invariant set is obtained. This set serves as an inner
approximation of C∞. Due to the approximate nature of the algorithm, it is not
guaranteed that algorithm 3 converges to a robust control invariant set. Note,
however, that it can be shown that each one of the obtained sets C̃k constitutes
an inner approximation of Ck. The proof of this statement is based on the fact
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that, by definition of inner supporting constraint, Sj

⋂
{ x : c�j x ≤ 1 } equals

the empty set. Thus,

Qc(λ̃C̃k)
⋂

C̃k+1 = Qc(λ̃C̃k)
⋂

(
nc⋂

m=1

{ x : c�mx ≤ 1 })

= (
nc⋃

j=1

Sj)
⋂

(
nc⋂

m=1

{ x : c�mx ≤ 1 }) =
nc⋃

j=1

(
Sj

⋂
(

nc⋂
m=1

{ x : c�mx ≤ 1 })
)

⊆
nc⋃

j=1

(Sj

⋂
{ x : c�j x ≤ 1 }) = ∅.

That is, Qc(λ̃C̃k)
⋂
C̃k+1 = ∅. This implies that C̃k+1 ⊆ Q(λ̃C̃k).

5 Numerical Example

In this example, regionX = { x : ‖x‖∞ ≤ 15 } is subdivided into the subregions
X1, X2 and X3. These subregions are defined as follows:

X1 = { x ∈ X : x1 − x2 ≤ 0 }
X2 = { x ∈ X : x1 − x2 > 0 and x1 + x2 ≥ 0 }
X3 = { x ∈ X : x1 − x2 > 0 and x1 + x2 < 0 }

Consider the following piecewise affine system:

x+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 1
0 1

]
x +

[
0
1

]
u +

[
1
0

]
w if x ∈ X1

[
1 1

0.5 1.5

]
x +

[
0
1

]
u +

[
1
0

]
w if x ∈ X2

[
1 −0.5
0 1.5

]
x +

[
1

1.5

]
u+

[
1
0

]
w if x ∈ X3

In this example it is assumed that U = { u ∈ R : ‖u‖∞ ≤ 2 } and
W = { w ∈ R : ‖w‖∞ ≤ 0.1 }. The contracting factor for algorithm 3 has been
set equal to 0.95. In figure 1 the sequence of outer bounds Ĉk is displayed (the
outer approximation of the convex hull operator presented in [12] has been used).
The most inner polyhedron is used in algorithm 3 as initial guess to obtain a
robust control invariant set. In figure 2 a sequence of sets C̃k leading to a robust
control invariant set is displayed. The most inner polyhedron is a robust control
invariant set for the piecewise affine system.
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Fig. 1. Sequence of outer bounds Ĉk lead-
ing to an outer approximation of C∞
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Fig. 2. Sequence of sets C̃k leading to a
robust control invariant set

6 Conclusions

In this paper, an algorithm that provides an outer approximation of C∞ is
presented. This outer approximation has a number of practical and relevant ap-
plications. Based on the outer approximation of C∞, an algorithm that provides
an inner approximation of C∞ is given. This algorithm can be used to obtain a
robust control invariant set for a piecewise affine system. An illustrative example
is presented.
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1 Introduction

In many practical situations in process industry, the measurements of process
quality variables, such as product concentrations, are available at different sam-
pling rates and than other measured variables and also at irregular sampling
intervals. Thus, from the process control viewpoint, multi-rate systems in which
measurements are available at slow and/or differing rates and in which the ma-
nipulations are updated at relatively fast rate are of particular interest.

In recent years, there has been considerable amount of interest in developing
control schemes for multi-rate sampled data systems. A key component of these
control schemes is a fast rate model, which is seldom available in practice. As
a consequence, the research focus has shifted to the development of fast rate
models from the multi-rate sampled data in the recent years [1]. However, the
research efforts in this area have been limited to the development of linear models
and multi-rate nonlinear system identification has received very little attention.

Many key unit operations in chemical plants exhibit strongly nonlinear be-
havior when operated over a wide range. Bequette et al [2] proposed a multi-rate
nonlinear MPC (NMPC) formulation based on multi-rate extended Kalman fil-
ter. Their approach, however, uses a nonlinear model derived from first princi-
ples. The development of models from first principles can be a difficult and time
consuming process particularly in a multi-rate scenario. Moreover, in the mech-
anistic model based approach, the noise model parameters are typically used as
tuning knobs and this can result in sub-optimal state estimation and poor reg-
ulatory control. It is to be noted that, in the presence of significant unmeasured
disturbances, reasonably accurate stochastic models are necessary for developing
an effective inter-sample estimation strategy. Thus, to achieve good servo and
regulatory control of nonlinear multi-rate sampled data systems, it is important
to identify nonlinear models directly from multi-rate input-output data.

This work aims at the identification of a nonlinear fast rate model and a non-
linear multi-rate time varying state observer from irregularly sampled (multi-
rate) data, which is corrupted with unmeasured disturbances and measurement
noise. The deterministic and stochastic components of the proposed model have
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Weiner structure. The linear dynamic component of these models is parameter-
ized using generalized orthonormal basis filters (GOBF) [3, 4]. We then proceed
to show how the identified models can be used for inter-sample inferential esti-
mation of the slowly sampled variable and also for model predictive control of
such irregularly sampled, multi-rate systems. The efficacy of the proposed mod-
eling and control scheme is demonstrated by conducting simulation studies on
a benchmark CSTR system [5] which exhibits input multiplicity and change in
the sign of steady state gain in the operating region.

2 Development of Multi-rate NOE+NARMA Model

In this work, we make following assumptions: (a) Sampling rates for all measure-
ments are integer multiples of some time period called ‘shortest time unit’ (T ).(b)
All actuators are to be manipulated at a frequency corresponding to the ‘short-
est time unit’ (T ).and (c) The effect of unmeasured disturbances on the outputs
can be adequately captured by an additive nonlinear noise model. Thus, the ma-
nipulated inputs are changed at {tk = kT : k = 0, 1, 2, ...} while the ith output
measurements are assumed to be available only at sampling instants given by
the sub-sequence {ki0, ki1, ki2,...} such that the difference kil − kil−1 = qil (> 1)
where qil is an integer.

We propose to use nonlinear output error (NOE) structure to model the de-
terministic component in the data. This choice is motivated by the fact that
the internal model in an NMPC formulation is required to have good prediction
ability with respect to the manipulated inputs. It can be argued that the NOE
models, which are driven only by the manipulated inputs, have good long range
prediction ability. The choice of NOE structure implies that the deterministic
component of a r ×m MIMO system can be modeled as r MISO NOE models.
The irregularly sampled model residuals generated while identifying the deter-
ministic component are further modeled as r SISO nonlinear stochastic models.
Thus, in order to simplify the notation, without loss of generality, we carry out
the model development for a MISO system. Therefore in the sequel we drop
the subscript ’i’ that we used above to indicate variables associated with i’th

output . Given input sequence {u(k) : k = 0, 1, 2, .....N} and the corresponding
irregularly sampled output data {y(kl) : kl = k0, k1, k2, ...} collected from a plant
where kl represents sampling instants. We propose a two step approach to the
development of deterministic and stochastic models for a general multivariate,
nonlinear system with fading memory. In the first step, we develop a MISO fast
rate Weiner type NOE model of the form,

Xu(k +1) = ΦuXu(k) + Γuu(k) (1)
ŷu(k) = Ωu [Xu(k)] (2)
for kl ≤ k < kl+1 (3)

using the fast sampled inputs and the slowly sampled outputs. Here, Ωu( .) :
Rnu → R represents a nonlinear state-output map and ŷu(k) represents the
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estimated output at instant k based on input information alone. At the sampling
instant (kl), we have

y(kl) = ŷu(kl) + v(kl) (4)

In the second step, the residual sequence {v(kl)} generated at the slow rate, un-
der the assumption that it is uncorrelated with the input sequence, can be used
to develop a SISO disturbance model. Figure (1) shows a schematic represen-
tation of the total model. We propose to develop a Nonlinear Auto-Regressive
(NAR) model of the form:

xv(kl+1) = Φv (kl+1, kl) xv(kl) + Γv (kl+1, kl) v(kl) (5)
v(kl) = Ωv [xv(kl)] + e(kl) (6)

where e(kl) represents a white noise sequence. The NAR model can be rearranged
into a NARMA form by simple rearrangement as follows

xv(kl+1) = � [kl+1, kl,xv(kl)] + Γv (kl+1, kl) e(kl) (7)
� [kl+1, kl,xv(kl)] = [Φv (kl+1, kl) xv(kl) + Γv (kl+1, kl) Ωv (xv(kl))] (8)

The combined output of NOE+NARMA model in this case becomes

y(kl) = Ωu [Xu(kl)] + Ωv [xv(kl)] + e(kl) (9)

The linear dynamic component and the static nonlinear maps in the proposed
general form proposed above can be selected in variety of ways . In this work,

- Irregular
Residual vi(kli)

Input
u(k) NOE Model

Irregular
Measurement yi(kli)

+

Time Varying
Nonlinear AR Model 

(NAR)

Irregular
Residual vi(kli)

Irregular White 
Innovations

ei(kli)

Fig. 1. Multi-rate Model: Schematic Representation

we choose to parameterize the linear dynamic component (5) using Generalized
Orthonormal Basis Filters. While working with multi-rate systems, it is conve-
nient to parameterize GOBF pole vector (ξ) through equivalent continuous time
pole locations. In case of irregularly sampled system, a continuous time pole pj

maps to a time varying discrete time pole ξj as follows

ξj(kl+1, kl) = exp [pjT (kl+1 − kl)] (10)
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where T (kl+1 − kl) represents the irregular sampling interval. A time varying
discrete state realization of the form

x(kl+1) = Φ (p,kl+1, kl) x(kl) + Γ (p,kl+1, kl) υ(kl) (11)

can be generated using ξj(kl+1, kl) and by following the procedure given by
Patwardhan and Shah [3] for state realization. Note that the requirement |ξj | < 1
translates to Re [pj ] < 0, where Re [.] represents real part of continuous time
pole pj.

The nonlinear state output maps Ωu[.] : Rnu → R is parameterized as a
quadratic polynomial function. Given GOBF pole vector p, the parameter of
the state output map can be estimated using linear regression. Thus, the GOBF
poles and parameters of state output map are estimated using a two tier nested
optimization procedure (see[3, 6] for details). The parameter estimation proce-
dure for NOE component yields the residual sequence {v̂(kl) : kl = k1, k2, ...kN} .
The parameters of the NAR model can be estimated by applying similar nested
optimization procedure. The main advantage of using NAR structure is that
the state sequence can be generated without requiring knowledge of innovation
sequence.

3 Nonlinear Predictive Control Formulation

The model identification exercise described above yields r multi-rate NOE
+NARMA type MISO state space observers. These observers can be used for
the current state estimation whenever the measurement becomes available for
the i’th output as follows

X(i)
u (kil+1) = Φ(i)

u X(i)
u (kil+1 − 1) + Γ(i)

u u(kil+1 − 1) (12)

xv(kil+1) = �
(i)

[
kil+1, kil,x(i)

v (kil)
]

+ Γ (i)
v (kil+1, kil) ei(kil) (13)

yi(kil) = Ω(i)
u

[
X(i)

u (kil)
]

+ Ω(i)
v

[
x(i)

v (kil)
]

+ ei(kil) (14)

where y ∈Rr and e ∈Rr represents measurement and innovation vectors, re-
spectively. The superscript (i) in the above set of equations represents the i’th
MISO observer corresponding to the i’th output. An important consideration
from control view-point in any multi-rate scenario is the ability of the model to
carry out fast rate inter-sample prediction of the irregularly sampled variable.
The inter-sample predictions can be generated as follows

X̂(i)
u (k|k − 1) = ΦuX̂(i)

u (k − 1|k − 2) + Γuu(k − 1) (15)

x̂(i)
v (k|kil) = �

[
k, kl, x̂(i)

v (k|kil)
]

+ Γv (k, kl) ei(kl) (16)

�

[
k, kl, x̂(i)

v (k|kil)
]

=
[
Φv (k, kl) x̂(i)

v (kil) + Γv (k, kl) Ωv

(
x̂(i)

v (kil)
)]

ŷi(k|kl) = Ω(i)
u

[
X̂(i)

u (k|k − 1)
]

+ Ω(i)
v

[
x̂(i)

v (k|kil)
]

(17)
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for kl ≤ k < kl+1.Here matricesΦ(i)
v (k, kl) andΓ (i)

v (k, kl) are recomputed at each
minor sampling instant k. In the multi-rate system under consideration, the con-
trol action is taken at every minor sampling instant k. At the k’th instant, given a
set of future manipulated input sequence {u(k|k),u(k + 1|k), ....u(k + p− 1|k)} ,
future predictions for the i’th output over a prediction horizon of p can be gener-
ated as follows

X̂(i)
u (k + j + 1|k) = ΦuX̂(i)

u (k + j|k) + Γuu(k + j|k) (18)

x̂(i)
v (k + j|kil) = �

(i)
[
k + j, kil, x̂(i)

v (kil)
]

+Γv (k + j, kil)di(k + j|k) (19)

ŷi(k + j|k) = Ωu

[
X̂(i)

u (k + j|k)
]

+Ωv [ x̂v(k + j|kil)] + di(k + j|k) (20)
di(k + j + 1|k) = di(k + j|k); di(k|k) = ei(kil); j = 1, 2, .....p (21)

Here, kil represents the last major sampling instant at which the measurement
was available for the i’th output. Note that the perdition of deterministic and
stochastic components is carried out by different approaches.

Given a future set-point trajectory {r(k + j|k) : j = 1, 2, ....p} , we define the
future prediction error vector ef (k + i|k) as

ef (k + i|k) = r(k + i|k)− ŷ(k + i|k) (22)

The nonlinear model predictive control problem at the sampling instant k is
defined as follows

min
u(k|k),...u(k+mq−1|k)

p∑
i=1

ef (k + i|k)T WEef (k + i|k)

+
q−1∑
i=1

{
∆u(k + i|k)T WU ∆u(k + i|k)

}
(23)

subject to the following constraints

uL ≤ u(k + i|k) ≤ uH for i = 0, 1, .., q − 1 (24)
∆uL ≤ ∆u(k + i|k) ≤ ∆uH for i = 0, 1, .., q − 1 (25)

The resulting constrained optimization problem can be solved using any nonlin-
ear programming technique. The controller is implemented in a moving horizon
framework.

4 Simulation Studies

In this section, simulation studies are presented to demonstrate the ability of
proposed modeling scheme to capture the dynamics of a system exhibiting in-
put multiplicities. We then proceed to demonstrate that the identified models
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can be used to achieve satisfactory servo and regulatory control at the opti-
mum operating point of the system. The performance of the identified models is
evaluated using the following statistical criterion a)Percentage Prediction Error
( PPE) and b)Percentage Estimation Error (PEE) (Srinivasarao et al. ([6])). The
PPE values are computed with using multi-rate measurements while the PEE
values are computed using noise free fast rate outputs of the process (at minor
sampling instants) obtained from simulations. The PEE values are indicative of
inter-sample prediction ability of the models while the PPE quantify long range
prediction capability of the models.

The system under consideration consists of a CSTR in which a reversible
exothermic reaction A � B is carried out. The model equations and the nomi-
nal parameters used in the simulation can be found in Li and Biegler ([5]). This
system exhibits input multiplicity and change in the sign of steady state gain in
the operating region. The controlled variables are reactor level (L) and reactor
concentration (Cb) while inlet flow rate (F ) and feed inlet temperature (Ti) are
used as manipulated variables. In the present work, reactor level was assumed to
be regularly sampled measurement at the base sampling interval (T = 0.1 min.)
where as the output concentration (Cb) in the CSTR was assumed to be sam-
pled at irregular sampling intervals varying between 5 to 15 times that of base
sampling interval. Also, the manipulated input moves were computed at the fast
rate after every 0.1 min. interval. The inlet feed stream contains only A and its
concentration Cai was assumed to fluctuate according to a stochastic process.
The concentration fluctuations were generated by subjecting a discrete unity
gain first order filter (with pole at 0.95) to a zero mean white noise sequence of
standard deviation 0.02. Note that Cai(k) was assumed to be a piecewise con-
stant function during simulations. In addition, it was assumed that manipulated
inputs are subject to unknown fluctuations. These fluctuations in the inlet flow
rate and the feed inlet temperature were generated by subjecting discrete unity
gain filters (with poles at 0.85) to zero mean white noise sequences with covari-
ance 2.5X10−3and 10.24, respectively. It was further assumed that concentration
and temperature measurements are corrupted with measurement noise, which is
a zero mean Gaussian white noise signal with standard deviations equal to 0.007
and 0.4, respectively. Multi-level Pseudo Random Signals (MPRS), with stan-
dard deviations of 0.275 m3/s and 19.766 K and switching times of 0.3 and 0.5
min, were generated by modifying the PRBS generated using ”idinput” function
in system identification tool box of MATLAB. These MPRS signals were used
to introduce simultaneous perturbations in the inlet flow rate (Fin) and inlet
temperature ( Ti ), respectively. The inputs used to generate the validation data
set and the unmeasured disturbance introduced in input concentration are given
in figure (2(a)).

Model identification was carried out using data generated for 800 minutes.
The number of filters nij is chosen as nij = 2 with respect to all the input
arguments to the state dynamics in NOE as well as NAR components of the
model. The resulting state vector has 6 states in the combined NOE + NARMA
model. The comparison of predictions generated by NOE+NARMA and NOE
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Fig. 2. Model Validation Results

Table 1. Model validation statistics

Prediction PPE PEE
NOE+NARMA 18.5160 12.0682

NOE 32.7957 28.7206

models with the validation data is presented in Figure(2(b)) and Figure(2(c)),
respectively. The results of model validation are also summarized in Table(1). If
we compare the PEE values for NOE+NARMA model with that of NOE model
and model predictions presented in Figures (2(b)) and (2(c)), it is clear that
the NARMA component significantly contributes towards improving the inter-
sample predictions. Figure (2(c)) demonstrates that the NOE component of the
model has very good long range prediction capability. Figure (2(d)) represents
comparison of the steady state behavior of the plant with identified models for
reactor concentration with respect to manipulated variables. As can be observed
form this figure, the NOE +NAR models capture the steady state behavior of
the system over a wide operating range around extremum operating point. In
particular, the predictions capture the change in the sign of steady state gain
reasonably well.
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The identified NOE+NARMA was further used to formulate an multi-rate
NMPC scheme. The NMPC controls reactor level (h) and reactor concentration
(Cb) by manipulating inlet flow rate (Fi) and inlet feed temperature (Ti). Our
main focus here was to asses the regulatory and servo performances of the pro-
posed NMPC scheme. The operating point was chosen as the peak point, which
is a singular point where steady state gain reduces to zero and changes it sign
across the peak point. The simulations studies are carried out with prediction
horizon of p = 40,control horizon of q = 1, Wu = I and We = diag

[
1 100

]
. To

assess the regulatory performance, we introduce a step jump in the input con-
centration at 50th sampling instant of magnitude 0.15. From Figure 3, it can be
observed that the controller quickly rejects the step jump in (Cai) and maintain
the concentration at the desired setpoint. The servo performance of the NMPC,
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when simultaneous step changes are introduced in both the set-points, is pre-
sented in Figure 4. It can be observed that the controller tracks the set-point
smoothly with out any offset and controls the process at the singular operat-
ing point even when the concentration measurements are available at irregular
intervals.

5 Conclusions

The proposed NOE+NAR type nonlinear observers identified from irregularly
sampled output data generate excellent inter sample predictions and can be
used for formulating inferential control schemes. These models also generate very
good long range predictions and are suitable for developing multi-rate NMPC
formulation. The proposed inferential NMPC formulation based on these models
generates satisfactory regulatory as well as servo performance in the irregularly
sampled multi-rate scenario.
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Summary. This paper presents a novel approach for nonlinear model predictive con-
trol based on the concept of passivity. The proposed nonlinear model predictive control
scheme is inspired by the relationship between optimal control and passivity as well as
by the relationship between optimal control and model predictive control. In particular,
a passivity-based state constraint is used to obtain a nonlinear model predictive control
scheme with guaranteed closed loop stability. Since passivity and stability are closely
related, the proposed approach can be seen as an alternative to control Lyapunov func-
tion based approaches. To demonstrate its applicability, the passivity-based nonlinear
model predictive control scheme is applied to control a quadruple tank system.

1 Introduction

In this paper, nonlinear model predictive control is used to control unconstrained
nonlinear systems. Due to the fact that this control strategy does not naturally
guarantee closed loop stability [1], many different approaches have been devel-
oped to circumvent this problem [11]. Most of these nonlinear model predictive
control schemes achieve closed loop stability by using the concept of Lyapunov
stability, e.g., in the model predictive control setup a control Lyapunov function
is included as a state constraint [16], or as a terminal cost [6], or as a terminal
cost in conjunction with a terminal region [3] to achieve stability.

A nonlinear model predictive control scheme based on the relationships be-
tween optimal control, nonlinear model predictive control, and control Lyapunov
function was developed in [16]. In this paper, a nonlinear model predictive con-
trol scheme is developed based on the concept of passivity in this spirit, i.e., the
proposed nonlinear model predictive control scheme is inspired by the relation-
ship between optimal control and passivity [8, 12] as well as by the relationship
between optimal control and nonlinear model predictive control [16]. The rela-
tionship between optimal control and passivity is that an input affine nonlinear
system can be optimal if and only if it satisfies a passivity property with respect
to the optimal feedback [8, 12]. Optimal control and nonlinear model predictive
control are linked by the fact that model predictive control is a computational
tractable approximation of the optimal control problem by repeatedly solving
on-line a finite horizon optimal control problem. Based on these relationships it
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is shown that passivity-based concepts and nonlinear model predictive control
can be merged into a nonlinear model predictive control scheme which main-
tains the advantages of the individual concepts, i.e., closed loop stability due
passivity and good performance due to one-line optimization in nonlinear model
predictive control.

The remainder of the paper is organized as follows: In Section 2, the necessary
background of passivity is given. Furthermore, the connection between passivity
and optimal control is briefly reviewed which is the underlying motivation of
the passivity-based nonlinear model predictive control scheme. In Section 3,
nonlinear model predictive control is introduced and a short overview of different
model predictive control schemes with guaranteed stability is given. In Section 4,
the main result is presented and discussed, namely, a passivity-based nonlinear
model predictive control scheme. To demonstrate its applicability, the proposed
nonlinear model predictive control scheme is applied to control a quadruple tank
system in Section 5. Finally, conclusions are drawn in Section 6.

2 Passivity

The concept of passivity is often used in the analysis and synthesis of nonlinear
systems [10, 17]. In the following, the necessary background, adjusted for the
paper, is given. Consider the nonlinear system given by

ẋ = f(x) + g(x)u
y = h(x),

(1)

where x ∈ Rn is the state, u ∈ Rm is the input and y ∈ Rm the output. It is
assumed that all data is locally Lipschitz and that x = 0, u = 0 is an equilibrium
point. The system (1) is said to be passive if there exists a positive semidefinite
storage function S such that the inequality

S(x(t1))− S(x(t0)) ≤
t1∫

t0

uT (t)y(t)dt (2)

is satisfied for all t0 ≤ t1 when (u(t), x(t), y(t)) satisfy the system dynamics (1).
The definition of passivity is motivated by the following consideration. In the
context of electrical network theory S can be considered as the energy stored in
the network, u as the port voltage, and y as the port current. Passivity of such
a network means that it cannot supply more energy to its environment than
energy was supplied to the network. If S is differentiable as a function of time
then inequality (2) can be written as

Ṡ(x(t)) ≤ uT (t)y(t), (3)

which is often a more useful notion for analyzing passive systems than inequality
(2). A further characterization of passive systems is also possible in terms of
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relative degree and minimum phase property. In case the system (1) has a well-
defined normal form, it must be weakly minimum phase and must have a vector
relative degree of one. Of importance in the concept of passivity is also the
relationship between passivity and stabilization, which is summarized next.

2.1 Passivity and Stabilization

The relationship between passivity and stabilization can be established by us-
ing the storage function S as a control Lyapunov function. However, the concept
of passivity requires only a positive semidefinite storage function S [17, 18]. To
achieve stability, one has to assume in addition that the system (1) is zero-state
detectable [10, 17], i.e., the solution of ẋ = f(x) satisfies limt→∞ x(t) = 0 for
y(t) = 0 for t ≥ 0. Under these assumptions, the system (1) can be stabilized
with the simple feedback u = −y [17] due to

Ṡ(x(t)) ≤ uT (t)y(t) ≤ −yT (t)y(t) ≤ 0. (4)

Furthermore, if S is radially unbounded, and all solutions of (1) are bounded,
then the system (1) is globally stabilized by the feedback u = −y. At first glance,
it seems that the concept of passivity is restrictive for stabilization purposes.
However, in case of optimal control, the concept of passivity appears in a natural
way.

2.2 Passivity and Optimality

The infinite horizon optimal control problem is defined by

V �(x0) = min
u(·)

∞∫
0

(
q(x(τ)) + uT (τ)u(τ)

)
dτ

s.t. ẋ = f(x) + g(x)u, x(0) = x0,

(5)

where q is a positive semidefinite function and V � is the value function, i.e., the
minimal cost of (5). The optimal feedback u� which stabilizes the system (1)
and minimizes the performance index (5) is given by

u� = −k�(x) = −1
2
gT (x)

∂V �

∂x

T

, (6)

under the assumption that V � is the positive semidefinite and continuously dif-
ferentiable solution of the Hamilton-Jacobi-Bellman equation

∂V �

∂x
f(x)− 1

4
∂V �

∂x
g(x)gT (x)

∂V �

∂x

T

+ q(x) = 0. (7)

Note, that it is in general very difficult to solve the equation (7) and therefore the
infinite horizon optimal control problem (5). The relationship between optimal
control and passivity can be established [8, 12, 17] by using the value function
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as a storage function and the optimal feedback as an output of the system (1).
Then the feedback (6) stabilizes the system (1) and minimizes the performance
index (5) if and only if the system

ẋ = f(x) + g(x)u (8)
y = k�(x)

is zero-state detectable and output feedback passive, i.e., Ṡ(x(t)) ≤ uT (t)y(t) +
1
2y

T (t)y(t) with S = 1
2V

� [17]. This equivalence becomes clear considering that
the system (8) is stabilized by the feedback u = −y.

3 Nonlinear Model Predictive Control

Since stabilization of nonlinear systems (1) subject to the infinite horizon optimal
problem (5) is difficult due to solving equation (7), computationally tractable
approximations of (5) have been developed. One approximation approach is non-
linear model predictive control. The basic idea of nonlinear model predictive
control is to determine the control input by repeatedly solving on-line the finite
horizon optimal control problem

min
u(·)

t+T∫
t

(
q(x(τ)) + uT (τ)u(τ)

)
dτ

s.t. ẋ = f(x) + g(x)u.

(9)

However, this control strategy does not naturally guarantee closed loop stability
[1]. To overcome this problem, several nonlinear model predictive control schemes
have been developed which achieve closed loop stability [3, 6, 11, 14, 15, 16]. In
the following, some approaches are summarized with respect to their stability
conditions. For a detailed and more rigorous treatment of nonlinear model pre-
dictive control, see for example [11] and the references quoted therein. In [11] it
was shown that most nonlinear model predictive control schemes with guaran-
teed stability can be summarized in the setup

min
u(·)

ϕ(x(t + T )) +

t+T∫
t

(
q(x(τ)) + uT (τ)u(τ)

)
dτ

s.t. ẋ = f(x) + g(x)u,
x(t + T ) ∈W,

(10)

where ϕ is a terminal cost and W a terminal region. In [6, 14] it was shown that
with the setup W = Rn and ϕ(x(t + T )) =

∫∞
t+T

(q(x(τ)) + kT (x(τ))k(x(τ)))dτ
closed loop stability can be achieved, where u = −k(x) is a locally stabilizing
feedback of the system (1) and x is the closed loop state trajectory with the
feedback u = −k(x). In this approach, ϕ is the cost of stabilizing the system (1)
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with the feedback u = −k(x) over the time interval [t,∞). Another possibility
is to choose W = Rn and ϕ(x(t+ T )) = V (x(t+ T )), where V is a control Lya-
punov function of the nonlinear system (1) [6]. In this approach, the cost-to-go
is approximated by the control Lyapunov function V . It is further possible to
achieve stability by using a terminal region W and no terminal cost, i.e., ϕ = 0.
Using this idea, it is possible to achieve stability by imposing the terminal state
constraint x(t + T ) = 0, i.e., W = {0} [9]. Since this approach is computation-
ally demanding, a relaxed setup was developed in [15]. In [15] it was shown that
closed loop stability is achieved by steering the final system state x(t + T ) in
the terminal region W and by stabilizing the system with a locally stabilizing
feedback u = −k(x) inside the terminal region W . Other approaches with guar-
anteed stability use both a terminal cost ϕ and a terminal region W [3]. For
example, the approach developed in [3] uses W as a level set of the terminal cost
ϕ(x(t + T )) = 1

2x
T (t + T )Px(t + T ), where 1

2x
TPx is a local control Lyapunov

function of the linearized system of (1). Finally, another approach, using a form
different from (10) but which is in the same line as the approach presented in
Section 4, is given by

min
u(·)

t+T∫
t

(
q(x(τ)) + uT (τ)u(τ)

)
dτ

s.t. ẋ = f(x) + g(x)u,
∂V

∂x
[f(x) + g(x)u] < 0

x(t + T ) ∈W,

(11)

where V is a control Lyapunov function for the system (1) [16]. In this approach,
closed loop stability is achieved by requiring that the derivate of the control
Lyapunov function V is negative along the state trajectory of the closed loop
system. Furthermore, the terminal region W is used a performance constraint to
recover the optimal controller in case the level curves of the control Lyapunov
function V correspond to the level curves of the optimal value function V �.

In summary, all nonlinear model predictive schemes summarized above share
one common property, namely, the stability is achieved by using a control Lya-
punov function in their setups. Of course, as shown in [16], there is a strong
relationship between optimal control, nonlinear model predictive control, and
control Lyapunov functions. However, as reviewed in Section 2, there is also a
strong relationship between optimal control and passivity. Based on this second
relationship, a nonlinear model predictive control scheme is developed in the
next section.

4 Passivity-Based Nonlinear Model Predictive Control

In this section, the passivity-based nonlinear model predictive control scheme is
introduced. Inspired by the idea of combining control Lyapunov functions and
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nonlinear model predictive control based on their relationship to optimal control
[16], passivity is merged with nonlinear model predictive control in the same
spirit. Suppose that the system (1) is passive with a continuously differentiable
storage function S and zero-state detectable. Then the passivity-based nonlinear
model predictive control scheme for the system (1) is given by

min
u(·)

t+T∫
t

(
q(x(τ)) + uT (τ)u(τ)

)
dτ

s.t. ẋ = f(x) + g(x)u
y = h(x)

uT (t)y(t) ≤ −yT (t)y(t).

(12)

The passivity-based state constraint in the last line in the setup (12) is moti-
vated by the fact that in case the system (1) is passive and zero-state detectable,
it can be stabilized with the feedback u = −y. Hence, the passivity-based state
constraint is a stability constraint which guarantees closed loop stability. Fur-
thermore, if the storage function S is radially unbounded, and all solutions of
the system are bounded, then the closed loop system is globally asymptotically
stable. In contrast to many other nonlinear model predictive control schemes [11]
which achieve stability by enforcing a decrease of the value function along the
solution trajectory, the stability of the proposed nonlinear model predictive con-
trol scheme is achieved by using directly a state constraint. Hence, one obtains
the following stability theorem of the passivity-based nonlinear model predictive
control scheme (12):

Theorem 1. The passivity-based nonlinear model predictive control scheme (12)
locally asymptotically stabilizes the system (1) if it is passive with a continously
differentiable storage function S and zero-state detectable.

Proof. The proof of Theorem 1 is divided into two parts. In the first part it is
shown that the nonlinear model predictive control scheme (12) is always feasible.
In the second part it is then shown that the scheme (12) asymptotically stabilizes
the system (1).

Feasibility: Feasibility is guaranteed due to the known stabilizing feeback u =
−y. Stability: Let S be the storage function of the passive system (1). With the
differentiable storage function S and the state constraint in the model predictive
control scheme (12), one obtains

Ṡ(x(t)) ≤ uT (t)y(t) ≤ −yT (t)y(t).

Using the fact that the system (1) is zero-state detectable, the same arguments
presented in Theorem 2.28 of [17] can be used in order to show asymptotic sta-
bility of the origin x = 0. Hence, the passivity-based nonlinear model predictive
control scheme (12) asymptotically stabilizes system (1) if it is passive and zero-
state detectable.
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At the first glance, it seems that the nonlinear model predictive scheme (12)
is very restrictive since it is only applicable for passive systems. However, for
stabilization purposes, no real physical output y is needed. Instead it is enough
to know one fictitious output η = σ(x) in order to stabilize the system. Once
such a fictitious output η is known, the fictitious passive system

ẋ = f(x) + g(x)u
η = σ(x)

(13)

can be stabilized with the passivity-based scheme (12). Note that a fictitious
output η always exists, as long as a control Lyapunov function exists. Since then,
by definition, LgV (x) is a fictitious output. Unfortunately, there is no efficient
way to construct a passive output. However, it is often possible to find a fictitious
passive output since passivity is physically motivated concept. Furthermore, if
the linearized system ẋ = Ax+Bu of (13) is stabilizable, a passive output for the
linearized system is given by σ(x) = BTPx, where P is the solution of the Riccati
equation ATP+PA+Q−PBBTP = 0. This may help to find a fictitious passive
output for local stabilization purposes. In the following, another property of the
nonlinear model predictive control scheme (12) is discussed. Namely, the scheme
(12) recovers the passivity-based feeback u = −y as the prediction horizon T
goes to zero. This property is summarized in the next theorem.

Theorem 2. The passivity-based nonlinear model predictive control scheme re-
covers the passivity-based feedback u = −y for T → 0.

Proof. To show this property, the same arguments are used as in [16]. By rewrit-
ing the the performance index to 1

T

∫ t+T

t

(
q(x(τ)) + uT (τ)u(τ)

)
dτ the optimiza-

tion problem is not changed. For T → 0 one obtains q(x(t)) + uT (t)u(t). Since
the system state x(t) at time instant t is fixed, one finally obtains

min
u(t)

uT (t)u(t)

s.t. ẋ = f(x) + g(x)u
y = h(x)

uT (t)y(t) ≤ −yT (t)y(t).

(14)

Based on the concept of the pointwise min-norm controller [5], the state con-
straint will be always active in order to minimize the control input u and the
resulting feedback is therefore the passivity-based feedback u = −y.

If the value function V � of the infinite horizon optimal control problem (5) is
known and the output y is set to be equal to y = k�(x), then the optimal
performance is recovered for T → 0, which is summarized below:

Corollary 1. The optimal performance of the infinite horizon optimal control
problem (5) is recovered by the passivity-based model predictive control scheme
(12), if y = 1

2g
T (x)∂V �

∂x

T
and T → 0, where V � is the value function of the

infinite horizon optimal control problem (5).
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Proof. Proof follows from Theorem 2.

Hence, for T → 0 the passivity-based feedback u = −y is obtained and for any
horizon T > 0 one can expect a better closed loop performance with the approach
(12) than with the passivity-based feedback u = −y due to on-line optimization
in nonlinear model predictive control. Summarizing, the passivity-based nonlin-
ear model predictive control combines passivity with model predictive control
while maintaining the advantages of the individual concepts, i.e., stability due
to passivity and good performance due to one-line optimization in nonlinear
model predictive control. Furthermore, the passivity-based state constraint was
incorporated in the model predictive control setup (12) in such a way that the-
oretically interesting properties are obtained, e.g., stability due to passivity and
recovery of the passivity-based feedback u = −y for T → 0. Finally, the underly-
ing idea of of the approach (12) are the relationships of passivity and nonlinear
model predictive control to optimal control.

4.1 Extension of the Passivity-Based Nonlinear Model Predictive
Control Scheme

In Corollary 1 it was shown that the passivity-based nonlinear model predictive
control scheme (12) can recover the optimal feedback u = −k�(x) for T → 0 in
case the optimal feeback is available. However, nothing can be said about the
performance for a prediction horizon T > 0. The reason for this fact is that
the proposed approach (12) does not take into account the cost-to-go. Many
nonlinear model predictive control schemes [6, 11, 14, 16] approximate the cost-
to-go in order to improve the performance. As seen in Section 3, there exists
many approaches which incorporate an approximation of the cost-to-go in the
nonlinear model predictive control setup. These approaches can be also used
in order to improve the performance of the passivity-based nonlinear model
predictive controller for any prediction horizon T > 0. One possibility is to
introduce a terminal cost ϕ. By introducing a terminal cost in (12), the passivity-
based nonlinear model predictive control scheme becomes

min
u(·)

ϕ(x(t + T )) +

t+T∫
t

(
q(x(τ)) + uT (τ)u(τ)

)
dτ

s.t. ẋ = f(x) + g(x)u
y = h(x)

uT (t)y(t) ≤ −yT (t)y(t).

(15)

One possibility is to choose the terminal cost as the storage function of the system
(1), i.e., ϕ(x(t+T )) = S(x(t+T )). In case the optimal value function V � is known
and used as a storage function of the system (1), the optimal performance can be
recovered for any prediction horizon T > 0. Note, in case the value function V �

is not available, stability is achieved due to the passivity-based state constraint,
since the storage function of the system (1) is in general not positive definite and
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can therefore not be used as a control Lyapunov function. Another possibility
based on [6, 14] is to choose ϕ(x(t + T )) =

∫∞
t+T

(q(x(τ)) + hT (x(τ))h(x(τ)))dτ ,
where u = −h(x) is the stabilizing feedback of the system (1) and x is the
corresponding closed loop system trajectory.

5 Example

In this section, the passivity-based nonlinear model predictive scheme is applied
to control a quadruple tank system. The dynamical model of the quadruple tank
systems [7] is given by

ẋ = f(x) + g(x)u,

with

f(x) =

⎡⎢⎢⎢⎣
− a1

A1

√
2gx1 + a3

A1

√
2gx3

− a2
A2

√
2gx2 + a4

A2

√
2gx4

− a3
A3

√
2gx3

− a4
A4

√
2gx4

⎤⎥⎥⎥⎦ ,

g(x) =

⎡⎢⎢⎢⎢⎣
γ1
A1

0
0 γ2

A2

0 (1−γ2)
A3

(1−γ1)
A1

0

⎤⎥⎥⎥⎥⎦ ,

and x = [x1, x2, x3, x4]T , u = [u1, u2]T . The variables xi, i = 1, ..., 4 represent
the water levels of the tanks, ui, i = 1, 2 the control inputs, Ai, i = 1, ..., 4 the
cross-sections of the tanks, ai, i = 1, ..., 4 the cross-sections of the outlet holes,
γi = 0.4, i = 1, 2 positive constants, and g = 981 cm

s2 the gravitational constant.
The parameter values of Ai and ai are taken from the laboratory experiment
[4] and are given in Table 1. In order to control the quadruple tank system via
the passivity-based nonlinear model predictive control, one has to search for a
fictitious passive output. By using the storage function S(x) = 1

2x
2
3 + 1

2x
2
4, one

obtains for x3, x4 ≥ 0 [the levels of the tanks cannot be negative].

Table 1. Parameter values of the system

Ai ai

i = 1 50.3 cm2 0.2 cm2

i = 2 50.3 cm2 0.2 cm2

i = 3 28.3 cm2 0.1 cm2

i = 4 28.3 cm2 0.1 cm2
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Fig. 1. Closed loop trajectory x1:
Passivity-based MPC (gray) and MPC
without guaranteed stability (black)
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Fig. 2. Closed loop trajectory x2:
Passivity-based MPC (gray) and MPC
without guaranteed stability (black)
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Fig. 3. Closed loop trajectory x3:
Passivity-based MPC (gray) and MPC
without guaranteed stability (black)
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Fig. 4. Closed loop trajectory x4:
Passivity-based MPC (gray) and MPC
without guaranteed stability (black)
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Fig. 5. Control input u1: Passivity-based
MPC (gray) and and MPC without guar-
anteed stability (black)
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Fig. 6. Control input u2: Passivity-based
MPC (gray) and and MPC without guar-
anteed stability (black)
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Ṡ(x) ≤
[
− a3

A3

√
2gx3 +

(1− γ2)
A3

u2

]
x3 +

[
− a4

A4

√
2gx4 +

(1 − γ1)
A1

u1

]
x4,

≤ x3u2 + x4u1.

Consequentely, y = [x3, x4]T is a passive output for the quadruple tank system
with the storage function S(x) = 1

2x
2
3 + 1

2x
2
4. Since the quadruple tank system is

zero state detectable with respect to the output y = [x3, x4]T , the passivity-based
nonlinear model predictive control (12) can be used to asymptotically stabilize
the quadruple tank system. In the following, the control task is to stabilize the the
quadruple tank system at the equilibrium point xs = [14 cm 14 cm 15.3 cm
20.3 cm]T . The steady state control input us at the equilibrium point xs is us =
[43.2 ml

s 38.2 ml
s ]T . The performance index (5) was chosen as 1000([x1−x1s]2 +

[x2 − x2s]2) + (u1 − u1s)2 + (u2 − u2s)2. Furthermore, the nonlinear model pre-
dictive control schemes were implemented with a prediction horizon T = 60 s
and a sampling time δ = 1 s in the nonlinear model predictive control toolbox
[13]. Figure 1 to Figure 6 show the dynamic behavior with the initial condition
x0 = [5 cm 5.6 cm 4 cm 4.5 cm]T of the passivity-based nonlinear model pre-
dictive controller (12) and the model predictive controller (9), i.e., a model pre-
dictive controller without guaranteed closed loop stability. As it can be seen from
the figures, the closed loop system is unstable with the nonlinear model predictive
controller (9). This instability is not a new fact in model predictive control [1] and
has motivated the development of model predictive control schemes with guaran-
teed closed loop stability. In contrast to the model predictive controller (9), the
passivity-based nonlinear model predictive controller (12) asymptotically stabi-
lizes the quadruple system. Hence, this examples illustrates nicely that the pro-
posed approach achieves closed loop stability while improving the performance.

6 Conclusions

In this paper a nonlinear model predictive control scheme based on the concept
of passivity was developed. It was shown that by using a specific passivity-
based state constraint closed loop stability is guaranteed. The basic idea of
the passivity-based nonlinear model predictive control scheme is to unify op-
timal control, passivity and nonlinear model predictive control based on their
relationships. Since passivity and stability are closely related, the proposed ap-
proach can be seen as an alternative to the control Lyapunov function based
nonlinear model predictive control scheme [16]. Finally, the passivity-based non-
linear model predictive control scheme was applied to control a quadruple tank
system in order to demonstrate its applicability.
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[2] C.I. Byrnes and A. Isidori and J.C. Willems, “Passivity, Feedback Equivalence,
and the Global Stabilization of Minimum Phase Nonlinear Systems”, IEEE Trans-
actions on Automatic Control, pages 1228-1240, (1991).
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Summary. The paper reports on recent progress in the real-time computation of con-
strained closed-loop optimal control, in particular the special case of nonlinear model
predictive control, of large differential algebraic equations (DAE) systems arising e.g.
from a MoL discretization of instationary PDE. Through a combination of a direct
multiple shooting approach and an initial value embedding, a so-called “real-time it-
eration” approach has been developed in the last few years. One of the basic features
is that in each iteration of the optimization process, new process data are being used.
Through precomputation - as far as possible - of Hessian, gradients and QP factoriza-
tions the response time to perturbations of states and system parameters is minimized.
We present and discuss new real-time algorithms for fast feasibility and optimality
improvement that do not need to evaluate Jacobians online.

1 Introduction

Feedback control based on an online optimization of nonlinear dynamic process
models subject to constraints, and its special case, nonlinear model predictive
control (NMPC) [1], is an emerging optimal control technique, mainly applied
to problems in chemical engineering [17]. Currently, NMPC is also transferred
to new fields of application such as automotive engineering, where the principal
dynamics are much faster. Among the advantages of NMPC are the capability
to directly handle equality and inequality constraints as well as the flexibility
provided in formulating the objective function and the process model. Lately, a
major aim has become to develop algorithms that are able to treat large-scale
nonlinear first principle models without further need of re-modeling or model
reduction.

In this paper we present and investigate several variants of the “real-time iter-
ation” approach to online computation of constrained optimal feedback control
laws. The present realization of this approach is based on the direct multiple
shooting method [5] for DAE models [15]. Some of the ideas in this paper, and
details on the standard variant of the real-time iteration approach can e.g. be
found in [3, 8, 10]. The main contribution of this paper is to bring together three
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real-time iteration levels (first introduced in [2]) that lead to cheap feasibility
or optimality refinements with very fast response times for feedback. They are
based on approximating both the Hessian of the optimization problem as well
as the constraint Jacobians. The overall idea behind the presented ideas is to
move away from the paradigm of solving the optimal control problem inherent to
NMPC to convergence during each sampling period. Instead, different levels of
real-time iterations are proposed that always use the most current information
from the evolving process and allow to stay close to the – also evolving – optimal
NMPC solution. It is important to note that the presented refinement strategies
work in the presence of inequality constraints and active set changes.

A dynamic mechanical model is used to demonstrate that NMPC based on
the proposed real-time iteration variants enters new time scales in computation
time in the range of milliseconds.

Overview

In Section 2 we give some background material on the classical “direct” multiple
shooting method for optimization problems subject to instationary differential
equations, and outline in Section 3 the major ideas of the standard “real-time
iteration” scheme. In Section 4 three real-time iteration variants are presented
that largely avoid costly approximations of Jacobians and Hessians as well as
decompositions during the runtime of the online algorithm, and therefore are
particularly suitable for large scale models:

• In the linearized optimal feedback control variant presented in Section 4.2,
only a matrix vector multiplication and a solution of a small scale quadratic
program (QP) are necessary online.

• In the “feasibility improving” suboptimal feedback control variant presented
in Section 4.3, one additional forward simulation of the nonlinear DAE system
is necessary. In the limit, this variant yields feasible, but only approximately
optimal controls.

• In the online approach in Section 4.4 also the gradient of the Lagrangian is
needed. In the limit this method yields both feasible and optimal controls,
at still lower costs than the standard real-time iteration.

In Section 5, the last variant is used to control the motion of a chain of balls
connected by springs. This example demonstrates the real-time character of the
presented schemes. The paper concludes with a summary and final remarks in
Section 6.

2 Direct Multiple Shooting to Solve NMPC Problems

In this section we prepare the ground for the different variants of the real-time
iteration scheme. First, the model class is presented and the open-loop optimal
control problem for NMPC is set up. Then, we briefly review the direct multiple
shooting approach which forms the basis of the real-time iteration variants to
be discussed.
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2.1 Differential Algebraic Equation Systems

Throughout this paper, we consider DAE models of index one in the following
form

B(x(t), z(t), u(t), p) ẋ(t) = f(x(t), z(t), u(t), p) (1)
0 = g(x(t), z(t), u(t), p) (2)

Here, x and z denote the differential and the algebraic state vectors, respec-
tively, u is the vector valued control function, whereas p is a vector of system
parameters. This equation type covers many problems in practical engineering
applications, from systems of ODE to reactive flow problems, e.g. the Navier-
Stokes equation with chemical reactions. For the sake of simplicity we restrict
ourselves in this paper to DAE of index 1, however, the generalization to higher
index problems by reduction to index 1 problems with invariants can be derived
following well-known techniques [18]. For notational simplicity, we will omit the
parameters p in the following.

2.2 Nonlinear Model Predictive Control

Given a (possibly estimated) system state x0, a Nonlinear Model Predictive
Control (NMPC) scheme obtains a feedback control ū(x0) from the solution of
an open-loop optimal control problem on a prediction and control horizon [0, Tp]
with length Tp:

minu(·),x(·),z(·)
∫ Tp

0 L(x(t), z(t), u(t)) dt + E(x(Tp)) (3a)

subject to x(0) = x0 (3b)
B(·)ẋ(t) = f(x(t), z(t), u(t)), ∀t ∈ [0, Tp], (3c)

0 = g(x(t), z(t), u(t)), ∀t ∈ [0, Tp], (3d)
0 ≤ h(x(t), z(t), u(t)), ∀t ∈ [0, Tp], (3e)
0 ≤ r (x (Tp)) . (3f)

Here, (3b) denotes the initial value constraint and (3c,3d) the DAE system.
Additional state and control inequality constraints are expressed in (3e), and
(3f) are terminal constraints that have to be satisfied.

Solving this problem for a given initial value x0, we obtain an open-loop
optimal control u∗(t;x0) and corresponding state trajectories x∗(t;x0), z∗(t;x0).
Based on this solution, a constrained nonlinear feedback control law is given by

ū(x0) := u∗(0;x0). (4)

Due to its origin from an optimal control formulation, the NMPC feedback
law has several appealing properties: among them are the possibility to base
the feedback on economic criteria, to make use of important process knowledge
in the form of nonlinear first principle models, and to include constraints (3e)
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in a straightforward way. Given suitable choices of the objective function and
the final state constraint (3f), stability of the nominal NMPC dynamics can be
proven [6, 7, 16].

The present article is concerned with efficient ways to calculate the feedback
control ū(x0) or a suitable approximation in real-time while the considered pro-
cess moves on.

2.3 Direct Multiple Shooting for DAE

Our approaches to the online solution of the optimal control problem (3a)–(3f)
– the real-time iteration schemes – are based on the direct multiple shooting
method [5] for DAE models [15], which is briefly reviewed in this section.

Parameterization of the Infinite Optimization Problem

The parameterization of the infinite optimization problem consists of two steps.
For a suitable partition of the time horizon [0, Tp] into N subintervals [ti, ti+1],,
0 = t0 < t1 < . . . < tN = Tp, not necessarily equidistant, we first parameterize
the control function u as u(t) = φi(t, ui) for t ∈ [ti, ti+1].

Note that any parameterization φi with local support can be used without
changing the structure of the problem as analyzed in the next sections.

In a second step, the DAE solutions are parameterized by multiple shooting.
For simplicity of presentation we choose the same grid points here as for the
controls. The DAE solution is decoupled on the N intervals [ti, ti+1] by intro-
ducing the initial values sx

i and sz
i of differential and algebraic states at times ti

as additional optimization variables.
On each subinterval [ti, ti+1] independently, the trajectories xi(t) and zi(t)

can be computed as solutions of an initial value problem:

B(·)ẋi(t) = f(xi(t), zi(t), φi(t, ui)) (5a)
0 = g(xi(t), zi(t), φi(t, ui))− αi(t)g(sx

i , s
z
i , φi(ti, ui)) (5b)

xi(ti) = sx
i , zi(ti) = sz

i (5c)

Here, the subtrahend in (5b) is deliberately introduced to relax the DAE and
allow an efficient solution for initial values and controls sx

i , s
z
i , ui that may violate

temporarily the consistency conditions (3d). This allows to avoid consistency
iterations at the start of the integration. The scalar damping factor αi(t) is
chosen such that αi(ti) = 1, and αi(t) > 0 is non-increasing on t ∈ [ti, ti+1].
Consistency of the algebraic states is ensured by adding consistency conditions
(7c) for each multiple shooting node at ti in the overall NLP defined in the next
section. For more details on the relaxation of the DAE the reader is referred,
e.g. to [4, 15, 18].

Since the trajectories xi(t) and zi(t) on the interval [ti, ti+1] are functions
of the initial values si := (sx

i , s
z
i ) and control parameters ui only, they will be

referred to as xi(t; si, ui) and zi(t; si, ui) in the following. The integral part of
the cost function is evaluated on each interval independently:
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Li(si, ui) :=

ti+1∫
ti

L(xi(t), zi(t), φi(t, ui)) dt. (6)

Note that up to now the multiple shooting parameterization does not involve
any discretization of differential operators f, g, but is exact.

Structured Nonlinear Programming Problem

The parameterization of problem (3a)–(3f) using multiple shooting and a suit-
able control representation leads to the following structured nonlinear program-
ming (NLP) problem :

min
u,s

N−1∑
i=0

Li(si, ui) + E(sx
N ) (7a)

subject to sx
0 = x0, (7b)
0 = g(sx

i , s
z
i , φi(ti, ui)), i = 0, 1, . . .N−1, (7c)

sx
i+1 = xi(ti+1; si, ui), i = 0, 1, . . .N−1, (7d)

r(sx
N ) ≥ 0, (7e)

with initial condition (7b), consistency conditions (7c), continuity conditions
(7d), and terminal constraint (7e). Additional control and path constraints are
supposed to be imposed pointwise for a suitable discretization (at ni points τij

on each interval, τij ∈ [ti, ti+1), j = 0, . . . , ni − 1)

h(xi(τij ; si, ui), zi(τij ; si, ui), ui) ≥ 0, j = 0, . . . , ni−1, i = 0, . . .N−1. (7f)

The NLP (7a)–(7e) can be summarized as

P (x0) : min
w

a(w) subject to

{
bx0(w)=0
c(w)≥0,

(8)

where w contains all the multiple shooting state variables and controls:

w = (sx
0 , s

z
0, u0, s

x
1 , s

z
1, u1, . . . , uN−1, s

x
N ) ∈ R

nw .

The function a(w) is the objective (7a), the vector valued equation bx0(w) = 0
summarizes all equalities from (7b)-(7d), and the vector valued c(w) ≥ 0 contains
the inequality constraints (7f) and (7e).

It is important to note that the initial condition (7b) is a linear constraint
among the equality constraints, with the varying parameter x0 entering linearly
only in this constraint, so that

bx0(w) =

⎡⎢⎢⎢⎢⎣
sx
0 − x0

g(sx
0 , s

z
0, φ0(t0, u0))

sx
1 − x0(t1; sx

0 , s
z
0, u0)

...

⎤⎥⎥⎥⎥⎦ = b0(w) + Lx0 with L :=

⎡⎢⎢⎢⎢⎣
−Inx

0
0
...

⎤⎥⎥⎥⎥⎦ . (9)
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Structure of the NLP

Due to the deliberate choice of state and control parameterizations, in [5] it was
observed that the NLP problem (8) has a particular structure: its Lagrangian
Lx0(w, λ, µ) = a(w) − λT bx0(w) − µT c(w) (with Lagrange multipliers λ and µ)
is partially separable so that its Hessian ∇2

wL(w, λ, µ) is block diagonal , and ob-
viously independent of x0 (such that we drop the index x0 in ∇2

wLx0). Similarly,
the multiple shooting parameterization introduces a characteristic block sparse
structure of the constraint Jacobian that is also independent of x0, e.g.1

∇wb(w)T =

⎛⎜⎜⎜⎜⎜⎝
I

Zx
0 Zz

0 Zu
0

−Xx
0 −Xz

0 −Xu
0 I

. . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ . (10)

Furthermore, if the variables w are split into the state trajectory s := (sx
0 , s

z
0,

sx
1 , s

z
1, . . . , s

x
N ) and the control trajectory u := (u0, u1, . . . , uN−1), it is easily

seen that ∇sb(w)T is nonsingular, a property to be exploited in the QP linear
algebra.

A Newton-Type Method Solution Framework

Throughout the paper, we will work within a Newton-type method framework
for the solution of the NLP (8). Starting with an initial guess (w0, λ0, µ0), a
standard full step iteration for the NLP is

wk+1 = wk + ∆wk, (11)

λk+1 = λQP
k , µk+1 = µQP

k , (12)

where (∆wk, λ
QP
k , µQP

k ) is the solution of a quadratic program (QP). Other than
in the classical Gauss-Newton or SQP approaches, we will rather use the more
convenient form of the QP

min
∆w ∈ R

nw

1
2
∆wT Ak ∆w + aT

k ∆w

subject to

{
bx0(wk) + Bk∆w = 0
c(wk) + Ck∆w ≥ 0

(13)

where Ak ≈ ∇2
wL(wk, λk, µk) is an approximation of the Hessian of the

Lagrangian, ak = ∇wL(wk, λk, µk) + BT
k λk + CT

k µk, and Bk and Ck are ap-
proximations of the constraint Jacobians. Depending on the errors of these ap-
proximations we may expect linear or even super-linear convergence (see [13] for
more information on quasi-Newton Jacobian updates, where superlinear conver-
gence is proved under mild assumptions). These errors however do not influence

1 We use the definition {∇xf}ij := ∂fj

∂xi
throughout the paper.
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the accuracy of the solution of the NLP which only depends on the (discretiza-
tion) errors made in the evaluation of ∇wL, bx0 and c. In this paper we restrict
ourselves to the mentioned full step iteration. In the case of NMPC where a se-
quence of neighboring problems is solved, this turns out to be sufficiently robust
and offers the advantage of fast convergence.

3 Initial Value Embedding and Real-Time Iterations

In theoretical approaches towards constrained feedback control, including
NMPC, optimal control problems have to be solved online for varying initial
values x0. To emphasize the dependence on a varying x0 we write the prob-
lems (7a)–(7e) resp. (8) as P (x0). An obvious question then is how to determine
an initial guess w0 for the Newton-type iterations in each problem P (x0).

3.1 Initial Value Embedding

From previous optimization steps a solutionw∗(x′0) of a neighboring optimization
problem P (x′0) is known, including multipliers λ∗(x′0) and µ∗(x′0). A conventional
approach hence would be to use the latest information available, namely to use
the old control trajectory, and to compute new state trajectory by integrating
the DAE over the whole horizon using the old control trajectory and the new
initial state x0.

Instead, the principle of the initial value embedding suggests not to make
use of x0, but to use the solution of the previous problem P (x′0) without any
modification. This initialization for the current problem P (x0) results, of course,
in a violation of the initial value constraint (7b) in the NLP (7a)–(7e), because
sx
0 = x′0 	= x0. However, the constraint is already perfectly satisfied after the first

full step Newton-type iteration, due to its linearity. The formulation of the initial
value constraint (7b) in the NLP (7a)–(7e) can be considered a linear embedding
of each optimization problem into the manifold of perturbed problems, therefore
the name “initial value embedding”. It allows for an efficient transition from one
optimization problem to the next.

In practical applications one observes that the first iteration already yields
an excellent approximation of the solution. Indeed, one can show as an obvious
application of the implicit function theorem (assuming the classical regularity
properties) in the case considered (exact Jacobian and Hessian, initialization at
solution of P (x′0)), that the first QP solution delivers a tangential predictor w1
to the solution w∗(x0) of P (x0)

‖w1 − w∗(x0)‖ = O
(
‖x′0 − x0‖2

)
.

It is remarkable that this property even holds if the change from x′0 to x0 requires
a change of the active set, which can be proven under mild conditions [8].

Also note that the solution of the first QP not only gives us directional sen-
sitivity feedback in a small neighborhood of x′0 where the active set does not
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change anymore, but in an even larger neighborhood where the linearization is
still valid, see the illustration in Figure 1. In the case that only approximations
of Jacobian and Hessian are used within the QP, we still obtain

‖w1 − w∗(x0)‖ ≤ κ ‖x′0 − x0‖ ,

with κ being small if the quality of the approximations is good.
It is interesting to note that the good prediction properties are independent

from the class of optimization problems. Therefore, the scheme can be applied
to solve both tracking problems and problems with an economic objective. An
example for the latter can be found in [14].

3.2 Standard Real-Time Iteration Scheme

Let us now consider the full real-time scenario, where we want to solve a sequence
of optimization problems P (x(t)) where x(t) is the system state that changes
continuously with time and which is used as initial value x0 in problem (8).

In the standard real-time iteration scheme [8, 10] we proceed as follows:
Start with an initial guess (w0, λ0, µ0), and perform the following steps for

k = 0, 1, . . .:

1. Preparation: Based on the current solution guess (wk, λk, µk), compute all
functions and their exact Jacobians that are necessary to build the QP (13),
and prepare the QP solution as far as possible without knowledge of x0 (see
Section 4.1 for more details). This corresponds to the initialization needed
for the initial value embedding stated above.

2. Feedback Response: at time tk, obtain the initial value x0 := x(tk) from
the real system state; solve the QP (13) to obtain the step ∆wk =
(∆sx

0k, ∆sz
0k, ∆u0k, . . .), and give the approximation ũ(x(tk)) := u0k +∆u0k

immediately to the real system.
3. Transition: Set the next solution guess as

wk+1 := wk + ∆wk, λk+1 := λQP
k , and µk+1 := µQP

k .

3.3 Nominal Stability of the Real-Time Iteration Scheme

A central question in NMPC is nominal stability of the closed loop. For the
real-time iteration scheme, the state vector of the closed loop consists of the
real system state x(tk) and the content (wk, λk, µk) of the prediction horizon in
the optimizer. Due to the close connection of system and optimizer, stability of
the closed loop system can only be addressed by combining concepts from both,
NMPC stability theory and convergence analysis of Newton-type optimization
methods. For the standard real-time iteration scheme this analysis has been car-
ried out in [11], and for a related scheme with shift in [12]. In these papers, proofs
of nominal stability of the closed loop are given under reasonable assumptions.
The class of feedback controls for shrinking horizon problems is treated in [9].
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0
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first iteration
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0
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’

Fig. 1. Solution manifold (solid line) and tangential predictor after initial value em-
bedding (dashed line), when initialized with the solution of P (x′

0). The first iteration
already delivers a good predictor for the exact solution of P (x0).

4 Real-Time Iteration Variants

In the standard version of the real-time iteration scheme the time for each cycle
corresponds to the time of one SQP iteration. In this article, however, we discuss
four different levels of the real-time iteration scheme that differ in their need to
evaluate Jacobians online. The basic idea for all these variants is to replace the
QP (13) in the standard real-time iteration scheme by a generic approximated
QP. This QP leaves the Hessian A as well as the Jacobians B and C constant
and contains only parts of new information; a possible choice for A, B, C is
A := ∇2

wL(w̄, λ̄, µ̄), B := ∇wb(w̄)T , and C := ∇wc(w̄)T at some reference
solution (w̄, λ̄, µ̄). In the following, xk := x(tk) is the current system state at
time tk:

min
∆w ∈ R

nw

1
2
∆wT A∆w + aT

k ∆w (14a)

subject to Lxk + bk + B∆w = 0 (14b)
ck + C∆w ≥ 0 (14c)

The methods, that differ by the choices of ak, bk, ck, proceed by performing
the same three steps as in the standard real-time iteration scheme presented in
Section 3.2, with the only difference that now the approximated version (14) is
prepared and solved in each iteration instead of a QP (13) with exact Jacobians.
As the matrices A, B, C are constant, a large share of the computations for
preparation and solution of the QP can for all variants already be performed
offline, leading to a considerably shorter preparation phase.

We want to point out that for strongly nonlinear processes it might be
necessary to update the matrices A,B,C from time to time to ensure sufficient
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contractivity of the real-time iterates, but that we leave this rare updating un-
considered here for simplicity of presentation. For mildly nonlinear systems, how-
ever, the matrices A,B,C might really be kept constant without any updates,
for example evaluated once for all at a reference solution.

In what follows, three different variants of the real-time iteration scheme will
be shown in detail, differing in the choice of ak, bk, and ck. While variant A is
nothing else than linear MPC, variant B converges to nonlinearly feasible (but
suboptimal) MPC solutions. Variant C will even converge to the true nonlinear
MPC feedback - without the need to evaluate any derivative matrix online. But
before we proceed, a preliminary remark on condensing of a QP is necessary.

4.1 A Prerequisite: Offline Condensing

In all approaches we use fixed approximations of the Jacobians B and C, e.g. by
evaluating offline ∇wb(w̄)T and ∇wc(w̄)T for a reference trajectory w̄ that may
be an exact or approximate solution of an NLP P (x̄) for some state x̄. We also
use a fixed approximation A of the Hessian, that may be based on the reference
solution of P (x̄) and computed as ∇2

wL(w̄, λ̄, µ̄), or be chosen otherwise. Online,
we use these fixed components A,B,C to formulate a QP of the form (14),
where only the vectors ak, bk, ck and the initial value xk are changing online.
It is well known that because ∇sb(w̄) is invertible, the online QP solution can
be prepared by a condensing of the QP [5, 8]: We divide ∆w into its state and
control components ∆s and ∆u, and resolve the equality constraints (14b) to
obtain ∆s as a linear function of ∆u (and xk), such that we can substitute

∆w = m(bk) + L̃xk + M∆u. (15)

Note that the matrices L̃ and M are independent of ak, bk, ck, xk and can in all
variants be precomputed offline, exploiting the structure of B in Eq. (10). In
Eq. (17) below, we show how m(bk) can be computed efficiently online. We use
expression (15) to substitute ∆w wherever it appears in the QP, to yield the
condensed QP:

min
∆u

1
2
∆uT Ac ∆u +

(
ac(ak, bk) + Ãxk

)T

∆u

subject to
(
cc(ck, bk) + C̃xk

)
+ Cc∆u ≥ 0

. (16)

All matrices, Ac := MTAM, Ã := MTAL̃, C̃ := CL̃, Cc := CM of this con-
densed QP are precomputed offline. Online, only the vectors ac(ak, bk) + Ãxk

and cc(ck, bk) + C̃xk need to be computed, as shown in the following.

4.2 Variant A: Linear MPC Based on a Reference Trajectory

In the first approach [3, 8], we compute offline the fixed vectors b := b0(w̄), c :=
c(w̄) and a := ∇wa(w̄), and set ak := a, bk := b, ck := c in all real-time iterations.
We can therefore precompute m := m(b) and also ac := ac(a, b) = MT (Am+ a)
and cc := cc(c, b) = c+ Cm.
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Online, once xk becomes known, only two sparse matrix-vector products and
two vector additions are needed for computation of ac + Ãxk and cc + C̃xk, and
the condensed QP (16) in variables ∆u ∈ Rnu×N must be solved. The solution
of a QP of this size is standard in linear MPC applications and can usually be
achieved quickly, in particular if an online active set strategy is used. Note that
the dimension of the condensed QP (16) does not depend on the dimensions
nx and nz of the state vectors, and that the cost of the matrix-vector products
grows linearly with nx and is independent of nz.

4.3 Variant B: Online Feasibility Improvement

In the second variant of the real-time iteration scheme (originally proposed
in [3]), we extend the online computational burden by one additional evaluation
of b0(wk) and c(wk), i.e. we set bk := b0(wk) and ck := c(wk) in the QP (14). This
allows to yield a feasibility improvement for nonlinear constraints. Offline, in ad-
dition to A,B,C we also compute a fixed objective gradient, e.g. a = ∇wa(w̄),
and then simply set ak := a + A(wk − w̄) in each iteration.

Recalling the precomputed form of the condensed QP (16), only the vectors
ac(ak, bk) and cc(ck, bk) have to be computed online, during the preparation
phase.

Based on the block sparse structure of B shown in Eq. (10), the vector
m(bk) = (mx

0 ,m
z
0,m

u
0 , . . . ,m

x
N) in (15) is for given bk = (bx

0 , b
z
0, b

x
1 , b

z
1, . . . , b

x
N)

efficiently computed by a recursion. Starting with mx
0 := bx

0 , we compute for
i = 0, . . . , N − 12:

mu
i := 0, mz

i := − (Zz
i )−1 (bz

i +Zx
i m

x
i ), mx

i+1 := bx
i+1 +Xx

i m
x
i +Xz

i m
z
i . (17)

Based on m(bk), we can quickly compute ac(ak, bk) = MT (Am(bk) + ak) and
cc(ak, bk) = ck +Cm(bk) (with ak = a+A(wk− w̄)). This computation involves
only structured matrix vector products. This is the end of step 1, the preparation
phase. Once xk is known, the condensed QP (16) is solved in the feedback step
2, as in level A.

However, we do have to perform a transition step 3, i.e., update wk+1 =
wk + ∆wk, to meet nonlinear constraints. This means that the matrix vector
multiplication M∆uk and the additions ∆wk = m(bk) + Lxk + M∆uk need to
be done online.

This online algorithm does not make use of λk and µk and therefore does not
need to update them during online computations.

4.4 Variant C: Online Optimality Improvement

In the third variant of the real-time iteration scheme, we further extend the online
computational burden by one additional evaluation of the gradient of the La-
grangian∇wL(wk, λk, µk). In the online QP (14), we set ak := ∇wL(wk, λk, µk)+
BTλk + CTµk, as well as bk := b0(wk) and ck := c(wk). This approach allows
2 The matrices Zz

i can be pre-factored offline.



174 H.G. Bock et al.

to yield not only an improvement of feasibility, but also of optimality for the
original NLP (8).

The remaining online computations are slightly more expensive than for lev-
els B and C, as we need to recover the multipliers λQP

k , µQP
k of the uncondensed

QP (14) for the transition step 3, as follows:
First, the inequality multipliers µQP

k are directly obtained as the multipliers
µcQP

k of the condensed QP (16): µQP
k := µcQP

k . Second, the equality multipliers
λQP

k can be computed as λQP
k := (BST )−TS(A∆wk + ak − CTµQP

k ) where S is
a projection matrix that maps w to its subvector s.

The matrix BST contains only those columns of B that correspond to the
variables s, cf Eq. (10), and is thus invertible. Abbreviating a := S(A∆wk +
ak − CTµQP

k ), a = (ax
0 , a

z
0, . . . , a

x
N ), we can compute λQP

k = (λx
0 , λ

z
0, . . . , λ

x
N )

recursively backwards: Starting with λx
N := ax

N , we compute, for i = N − 1, N −
2, . . . , 0:

λz
i = (Zz

i )−T
(
az

i + (Xz
i )Tλx

i+1
)
, λx

i = ax
i + (Xx

i )Tλx
i+1 − (Zx

i )Tλz
i .

where we employ the submatrix notation of Eq. (10) for the matrix B, respec-
tively BST . The proof of nominal stability of NMPC based on this variant follows
the lines of the proof for the standard scheme mentioned in section 3.3.

5 A Real-Time NMPC Example

To demonstrate the real-time applicability of the NMPC schemes discussed
above, a simulation experiment has been set up. In this experiment, a chain
of massive balls connected by springs is perturbed at one end, and the control
task is to bring the system back to steady state.

An ODE Model for a Chain of Spring Connected Masses

Consider the following nonlinear system of coupled ODEs

ẍi + β ẋi −
1
m

(Fi+ 1
2
− Fi− 1

2
)− g = 0, i = 1, 2, . . . , N−1 (18a)

Fi+ 1
2

� S

(
1− L

‖xi+1 − xi‖

)
(xi+1 − xi), i = 0, 1, . . . , N−1. (18b)

x0(t) ≡ 0, ẋN (t) = u(t), (18c)

for the ball positions x0(t), . . . , xN (t) ∈ R3 with boundary conditions (18c) and a
prescribed control function u(t) ∈ R3. Equations (18a)–(18c) describe the motion
of a chain that consists of eleven balls (i.e. N = 10), numerated from 0 to 10,
that are connected by springs. At one end, the first ball is fixed in the origin, the
velocity of the other end (the ”free” end) is prescribed by the function u. The
motion of the chain is affected by both laminar friction and gravity (gravitational
acceleration g = 9.81 m/s2) as an external force. The model parameters are: mass
m = 0.03 kg, spring constant S = 1 N/m, rest length of a spring L = 0.033 m,
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and friction coefficient β = 0.1 s−1. The chain movement can be controlled by
adjusting the velocity of ball no. 10 at the “free” end (for the sake of simplicity
we assume that it is possible to directly adjust this velocity). Figure 2 illustrates
the example.

Fig. 2. A chain of 11 balls connected by springs. The first ball (in the back) is fixed,
the last one can be moved freely; its Cartesian velocities serve as controls.

Optimal Control Problem Formulation

Aim of the controller is to bring the perturbed chain back to steady state. The
open loop control problem is formulated with the following cost function:

L(x(t), u(t)) = γ ‖xN (t)− xend‖22 + δ

N−1∑
j=1

‖ẋj(t)‖22 + ε‖u(t)‖22, (19)

with the weighting factors γ = 25, δ = 1, and ε = 0.01. The chosen cost function
(19) implicitly describes the steady state and allows to omit calculating the
steady state position for each ball. The optimal control problem is

minu(·),x(·)
∫ Tp

0 L(x(t), u(t)) dt (20a)

subject to the system equations (18) and the input constraint

‖u(t)‖∞ ≤ 1, ∀t ∈ [0, Tp] (20b)

The control horizon Tp is set to 8 s, while the sampling time is only 200 ms.
It is clear that the NMPC has to update the controls for every new sampling
instant. If the time needed to solve the optimization problem exceeds 200 ms,
then this delay will deteriorate the control performance and eventually even miss
to bring the chain back to steady state. In the case of delayed control updates,
the obtained velocities act as new disturbances on the process rather than as
controls. This illustrates why waiting for the exact solution of the optimal control
problem is not a good idea for such fast processes. The control problem is solved
with the direct multiple shooting method on 40 multiple shooting intervals.
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Fig. 3. Deviation of balls no. 1,4, and 10
from steady state in the controlled case.
The deviation is expressed in the 2-norm
of all Cartesian components.
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Fig. 4. CPU time for each sampling period.
Note that the CPU time consists of both
preparation and feedback phase. However,
the feedback phase is in the range of 2 ms
only! The preparation phase is then carried
out while waiting for the new measurement
update. The large CPU time peak in the
beginning is due to the preparatory calcu-
lations that are done off-line.

In the simulation experiment, the chain initially is in steady state. Then, it
is perturbed over five sampling periods by a constant velocity vector upert =
[−1 1 1]T at the free end, before the controller becomes active, using the same
end for disturbance rejection. The controls are calculated with variant C of the
real-time iteration scheme (Section 4.4).

The resulting closed loop response for three different balls and the control
moves can be seen in Figures 3 (2-norm deviation from steady state for three
different balls) and 5 (absolute deviation from steady-state in y-direction). The
corresponding control moves are shown in Figure 6. In all figures, x represents
the vector of Cartesian coordinates of a ball. A superscript denotes the number of
the ball (also see Figure 2), while a subscript picks one of the three coordinates.
The simulation has been run on an Intel Pentium 4 machine with 2.8 GHz, 1024
kB L2 cache, 1 GB main memory, under Linux operating system Suse 9.3.

The computation times are depicted in Figure 4. Here, the entire CPU time of
variant C needed to compute a control update has been measured. It is important
to note that this comprises both the preparation and the feedback phase. The
CPU time for the feedback phase only is in the range of 2 ms, meaning that the
feedback delay between the new measurement update and the control update is
negligible. The preparation phase is carried out after the new controls are given
to the process in order to prepare the next optimization step. The large CPU time
at the beginning of the control action is due to preparation calculations which
are done off-line, before the state disturbance is measured. They correspond to
the cost of a standard real-time iteration.
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Fig. 5. Absolute deviation from steady
state in y-direction of balls no. 1,4, and
10. The horizontal line at sample no. 5
marks the beginning of control action.
Before, ball no. 10 was perturbed by a
constant velocity.
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ples, these controls serve as disturbances to
the chain.

6 Conclusions

We have discussed a class of methods for online computation of constrained op-
timal feedback controls in NMPC that are based on the direct multiple shooting
method and a “real-time iteration” approach. They use an initial value embed-
ding for efficient initialization of subsequent optimization problems, and treat
in each iteration of the optimization process a different optimization problem,
always with the most current system state xk as initial value.

Three real-time iteration variants have been proposed that do not need to
evaluate Jacobians during the runtime of the online algorithm and are therefore
suitable for large scale DAE models with short timescales. In the presented
variants, online computations with different properties are performed:

• Variant A requires only the online solution of a condensed QP. It can be
interpreted as a linear MPC based on reference trajectories.

• In variant B, one additional DAE simulation is needed to evaluate the con-
straint functions. This variant yields a feasible but sub-optimal solution.

• Variant C requires also the gradient of the Lagrangian and is able to achieve
feasibility as well as optimality for inequality constrained problems, still
without evaluating Jacobians online.

The practical performance of variant C has been demonstrated in a simulation
experiment, controlling the nonlinear mechanical system of a chain of balls
and springs. A natural idea that arises is to combine the standard real-time
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iteration scheme and its variants to a multi level real-time iteration which
employs the variants A, B, C and the standard real-time iteration scheme in
a hierarchical fashion. This algorithm aims at combining good local conver-
gence properties with short sampling times and is subject of future investigation.
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and A. Zheng, editors, Nonlinear Predictive Control, volume 26 of Progress in Sys-
tems Theory, pages 246–267, Basel, 2000. Birkhäuser.
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Summary. It has recently been shown that the feedback solution to linear and
quadratic constrained Model Predictive Control (MPC) problems has an explicit repre-
sentation as a piecewise linear (PWL) state feedback. For nonlinear MPC the prospects
of explicit solutions are even higher than for linear MPC, since the benefits of com-
putational efficiency and verifiability are even more important. Preliminary studies
on approximate explicit PWL solutions of convex nonlinear MPC problems, based
on multi-parametric Nonlinear Programming (mp-NLP) ideas show that sub-optimal
PWL controllers of practical complexity can indeed be computed off-line. However, for
non-convex problems there is a need to investigate practical computational methods
that not necessarily lead to guaranteed properties, but when combined with verification
and analysis methods will give a practical tool for development and implementation of
explicit NMPC. The present paper focuses on the development of such methods. As a
case study, the application of the developed approaches to compressor surge control is
considered.

1 Introduction

Nonlinear Model Predictive Control (MPC) involves the solution at each sam-
pling instant of a finite horizon optimal control problem subject to nonlinear
system dynamics and state and input constraints [1]–[5]. A recent survey of the
main on-line optimization strategies of Nonlinear MPC (NMPC) is given in [6].

It has recently been shown that the feedback solution to linear and quadratic
constrained MPC problems has an explicit representation as a piecewise linear
(PWL) state feedback defined on a polyhedral partition of the state space [7].
The benefits of an explicit solution, in addition to the efficient on-line computa-
tions, include also verifiability of the implementation, which is an essential issue
in safety-critical applications. For nonlinear MPC the prospects of explicit solu-
tions are even higher than for linear MPC, since the benefits of computational
efficiency and verifiability are even more important. In [8], it has been shown that
the nonlinear predictive control law for the class of unconstrained input-affine
nonlinear systems can be derived in an analytical form that involves the current
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states of the system and the stability of the closed-loop system is guaranteed.
An approach for NMPC design for constrained input-affine nonlinear systems
has been suggested in [9], which deploys state space partitioning and graph the-
ory to retain the on-line computational efficiency. In [10], [11], [12], approaches
for off-line computation of explicit sub-optimal PWL predictive controllers for
general nonlinear systems with state and input constraints have been developed,
based on the multi-parametric Nonlinear Programming (mp-NLP) ideas [13]. It
has been shown that for convex mp-NLP problems, it is straightforward to im-
pose tolerances on the level of approximation such that theoretical properties
like asymptotic stability of the sub-optimal feedback controller can be ensured
[11], [14]. However, for non-convex problem there is a need to investigate prac-
tical computational methods that not necessarily lead to guaranteed properties,
but when combined with verification and analysis methods will give a practical
tool for development and implementation of explicit NMPC.

The present paper focuses on computational and implementation aspects of
explicit NMPC for general nonlinear systems with state and input constraints
and is structured as follows. In section 2, the formulation of the NMPC problem
is given. In section 3, computational methods for approximate explicit NMPC
are suggested. The application of the developed approaches to compressor surge
control is considered in section 4.

2 Formulation of Nonlinear Model Predictive Control
Problem

Consider the discrete-time nonlinear system:

x(t + 1) = f(x(t), u(t)) (1)
y(t) = Cx(t) (2)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp are the state, input and output vari-
able. It is also assumed that the function f is sufficiently smooth. It is supposed
that a full measurement of the state x(t) is available at the current time t. For
the current x(t), MPC solves the following optimization problem:

V ∗(x(t)) = min
U

J(U, x(t)) (3)

subject to xt|t = x(t) and:

ymin ≤ yt+k|t ≤ ymax, k = 1, ..., N (4)
umin ≤ ut+k ≤ umax, k = 0, 1, ..., N − 1 (5)
xT

t+N |txt+N |t ≤ δ (6)
xt+k+1|t = f(xt+k|t, ut+k), k ≥ 0 (7)
yt+k|t = Cxt+k|t, k ≥ 0 (8)

with U = {ut, ut+1, ..., ut+N−1} and the cost function given by:
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J(U, x(t)) =
N−1∑
k=0

[
xT

t+k|tQxt+k|t + uT
t+kRut+k

]
+ xT

t+N |tPxt+N |t (9)

Here, N is a finite horizon. From a stability point of view it is desirable to choose
δ in (6) as small as possible [15]. If the system is asymptotically stable (or pre-
stabilized) and N is large, then it is more likely that the choice of a small δ will
be possible. The following assumptions are made:

A1. P,Q,R � 0.
A2. ymin < 0 < ymax.
A3. There exists ust ∈ Rm satisfying umin ≤ ust ≤ umax, and such that

f(0, ust) = 0.

Assumption A3 means that the point x = 0, u = ust, is a steady state point for
system (1). The optimization problem can be formulated in a compact form as
follows:

V ∗(x(t)) = min
U

J(U, x(t)) (10)

subject to:
G(U, x(t)) ≤ 0 (11)

This MPC problem defines an mp-NLP, since it is NLP in U parameterized by
x(t). An optimal solution to this problem is denoted U∗ =

{
u∗

t , u
∗
t+1, ..., u

∗
t+N−1

}
and the control input is chosen according to the receding horizon policy u(t) =
u∗

t . Define the set of N -step feasible initial states as follows:

Xf = {x ∈ R
n | G(U, x) ≤ 0 for some U ∈ R

Nm} (12)

If assumption A3 is satisfied and δ in (6) is chosen such that the problem (3)–(9)
is feasible, then Xf is a non-empty set. Then, due to assumption A2, the origin
is an interior point in Xf . In parametric programming problems one seeks the
solution U∗(x) as an explicit function of the parameters x in some set X ⊆
Xf ⊆ Rn [13]. The explicit solution allows us to replace the computationally
expensive real-time optimization with a simple function evaluation. However,
for general nonlinear functions J and G an exact explicit solution can not be
found. In this paper we suggest practical computational methods for constructing
an explicit approximate PWL solution of general non-convex nonlinear MPC
problems. They can be considered as a further extension of the method proposed
in [11] where the NMPC problem was assumed to be convex.

3 Computational Aspects of Approximate Explicit
Nonlinear Model Predictive Control

3.1 Close-to-Global Solution of Mp-NLPs

In general, the cost function J can be non-convex with multiple local minima.
Therefore, it would be necessary to apply an efficient initialization of the mp-
NLP problem (10)–(11) so to find a close-to-global solution. One possible way to



184 A. Grancharova, T.A. Johansen, and P. Tøndel

obtain this is to find a close-to-global solution at a point w0 ∈ X by comparing
the local minima corresponding to several initial guesses and then to use this
solution as an initial guess at the neighbouring points wi ∈ X , i = 1, 2, ..., l, i.e.
to propagate the solution. This is described in the following procedure:

Procedure 1. (close-to-global solution of mp-NLP)
Consider any hyper-rectangle X0 ⊆ Xf with vertices Θ0 =

{
θ0
1 , θ

0
2, ..., θ

0
M

}
and

center point w0. Consider also the hyper-rectangles Xj
0 ⊂ X0, j = 1, 2, ..., Nj

with vertices respectively Θj =
{
θj
1, θ

j
2, ..., θ

j
M

}
, j = 1, 2, ..., Nj. Suppose X1

0 ⊂
X2

0 ⊂ ... ⊂ X
Nj

0 . For each of the hyper-rectangles X0 and Xj
0 ⊂ X0, j =

1, 2, ..., Nj determine a set of points that belongs to its facets and denote this

set Ψ j =
{
ψj

1, ψ
j
2, ..., ψ

j
NΨ

}
, j = 0, 1, 2, ..., Nj. Define the set of all points

W = {w0, w1, w2, ..., wN1}, where wi ∈
{

Nj⋃
j=0

Θj

}
∪
{

Nj⋃
j=0

Ψ j

}
, i = 1, 2, ..., N1.

Then:

a). Determine a close-to-global solution of the NLP (10)–(11) at the center point
w0 through the following minimization:

U∗(w0) = arg min
Ulocal

i ∈
�

Ulocal
1 ,Ulocal

2 ,...,Ulocal
NU

�J(U local
i , w0) (13)

where U local
i , i = 1, 2, ..., NNU correspond to local minima of the cost function

J(U,w0) obtained for a number of initial guesses U0
i , i = 1, 2, ..., NNU .

b). Determine a close-to-global solution of the NLP (10)–(11) at the points wi ∈
W , i = 1, 2, ..., N1 in the following way:
1. Determine a close-to-global solution of the NLP (10)–(11) at the center

point w0 by solving problem (13). Let i = 1.
2. Let W s = {w0, w1, w2, ..., wN2} ⊂ W be the subset of points at which a

feasible solution of the NLP (10)–(11) has been already determined.
3. Find the point w̃ ∈ W s that is most close to the point wi, i.e. w̃ =

arg min
w∈W s

‖w − wi‖. Let the solution at w̃ be U∗(w̃).

4. Solve the NLP (10)–(11) at the point wi with initial guess for the opti-
mization variables set to U∗(w̃).

5. If a solution of the NLP (10)–(11) at the point wi has been found, mark
wi as feasible and add it to the set W s. Otherwise, mark wi as infeasible.

6. Let i = i + 1. If i ≤ N1, go to step 2. Otherwise, terminate. �

3.2 Computation of Feasible Approximate Solution

Definition 1. Let X = {w1, w2, ..., wL} ⊂ Rn be a discrete set. A function U(x)
is feasible on X if G(U(wi), wi) ≤ 0, i ∈ {1, 2, ..., L}.

We restrict our attention to a hyper-rectangle X ⊂ Rn where we seek to ap-
proximate the optimal solution U∗(x) to the mp-NLP (10)–(11). We require
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that the state space partition is orthogonal and can be represented as a k − d
tree [16], [17]. The main idea of the approximate mp-NLP approach is to con-
struct a feasible piecewise linear (PWL) approximation Û(x) to U∗(x) on X ,
where the constituent affine functions are defined on hyper-rectangles covering
X . In case of convexity, it suffices to compute the solution of problem (10)–(11)
at the 2n vertices of a considered hyper-rectangle X0 by solving up to 2n NLPs.
In case of non-convexity, it would not be sufficient to impose the constraints only
at the vertices of the hyper-rectangle X0. One approach to resolve this problem
is to include some interior points in addition to the set of vertices of X0 [11].
These additional points can represent the vertices and the facets centers of one
or more hyper-rectangles contained in the interior of X0. Based on the solutions
at all points, a feasible local linear approximation Û0(x) = K0x + g0 to the op-
timal solution U∗(x), valid in the whole hyper-rectangle X0, is determined by
applying the following procedure:

Procedure 2. (computation of approximate solution)
Suppose A1–A3 hold, and consider any hyper-rectangle X0 ⊆ Xf with vertices
Θ0 =

{
θ0
1, θ

0
2 , ..., θ

0
M

}
and center point w0. Consider also the hyper-rectangles

Xj
0 ⊂ X0, j = 1, 2, ..., Nj with vertices respectively Θj =

{
θj
1, θ

j
2, ..., θ

j
M

}
,

j = 1, 2, ..., Nj. Suppose X1
0 ⊂ X2

0 ⊂ ... ⊂ X
Nj

0 . For each of the hyper-rectangles
X0 and Xj

0 ⊂ X0, j = 1, 2, ..., Nj, determine a set of points that belongs to its

facets and denote this set Ψ j =
{
ψj

1, ψ
j
2, ..., ψ

j
NΨ

}
, j = 0, 1, 2, ..., Nj. Define the

set of all points W = {w0, w1, w2, ..., wN1}, where wi ∈
{

Nj⋃
j=0

Θj

}
∪
{

Nj⋃
j=0

Ψ j

}
,

i = 1, 2, ..., N1. Compute K0 and g0 by solving the following NLP:

min
K0,g0

N1∑
i=0

(J(K0wi + g0, wi)− V ∗(wi) + µ ‖K0wi + g0 − U∗(wi)‖22) (14)

subject to:
G(K0wi + g0, wi) ≤ 0, i ∈ {0, 1, 2, ..., N1} (15)

where N1 is the total number of points. �
In order to give an appropriate initialization of the NLP problem (14)–(15) for
the region X0, the already computed solutions of this problem in some of the
neighbouring regions can be used as initial guesses.

3.3 Estimation of Error Bounds

Suppose that a state feedback Û0(x) that is feasible in X0 has been determined
by applying Procedure 2. Then it follows that the sub-optimal cost V̂ (x) =
J(Û0(x), x) is an upper bound on V ∗(x) in X0, such that for all x ∈ X0 we have:

0 ≤ V̂ (x)− V ∗(x) ≤ ε0 (16)
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As already mentioned, the cost function J can be non-convex with multiple
local minima. Therefore, in (16) V ∗(x) denotes a close-to-global solution. The
following procedure can be used to obtain an estimate ε̂0 of the maximal ap-
proximation error ε0 in X0.

Procedure 3. (computation of the error bound)
Consider any hyper-rectangle X0 ⊆ Xf with vertices Θ0 =

{
θ0
1 , θ

0
2, ..., θ

0
M

}
and

center point w0. Consider also the hyper-rectangles Xj
0 ⊂ X0, j = 1, 2, ..., Nj

with vertices respectively Θj =
{
θj
1, θ

j
2, ..., θ

j
M

}
, j = 1, 2, ..., Nj. Suppose X1

0 ⊂
X2

0 ⊂ ... ⊂ X
Nj

0 . For each of the hyper-rectangles X0 and Xj
0 ⊂ X0, j =

1, 2, ..., Nj, determine a set of points that belongs to its facets and denote this

set Ψ j =
{
ψj

1, ψ
j
2, ..., ψ

j
NΨ

}
, j = 0, 1, 2, ..., Nj. Define the set of all points

W = {w0, w1, w2, ..., wN1}, where wi ∈
{

Nj⋃
j=0

Θj

}
∪
{

Nj⋃
j=0

Ψ j

}
, i = 1, 2, ..., N1.

Compute an estimate ε̂0 of the error bound ε0 through the following maximiza-
tion:

ε̂0 = max
i∈{0,1,2,...,N1}

(V̂ (wi)− V ∗(wi)) (17)

where N1 is the total number of points. �

3.4 Procedure and Heuristic Rules for Splitting a Region

The following procedure is applied to determine the best split of a region X0 for
which a feasible local state feedback Û0(x) is found, but the required accuracy
is not achieved.

Procedure 4. (determination of the best split of a region)
Consider a hyper-rectangle X0 and suppose that a feasible local state feedback
Û0(x) was found by applying Procedure 2. Suppose also that the required accu-
racy is not achieved. Then, determine the best split of X0 in the following way:

1. Let j = 1.
2. Split X0 by a hyperplane through its center and orthogonal to the axis xj .

Denote the new hyper-rectangles with Xj
1 and Xj

2 .
3. Compute feasible local state feedbacks Û j

1 (x) and Û j
2 (x), valid respectively in

Xj
1 and Xj

2 , by applying Procedure 2.
4. Compute estimates ε̂j

1 and ε̂j
2, respectively of the error bounds εj

1 in Xj
1 and

εj
2 in Xj

2 , by applying Procedure 3. Let ε̂j = ε̂j
1 + ε̂j

2.
5. Let j = j + 1. If j ≤ n, go to step 2.
6. Split X0 by a hyperplane through its center and orthogonal to the axis xj

where ε̂j is minimal. �
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The following rule is applied when no feasible solution to the NLP problem
(10)–(11) was found at some of the points wi ∈ W , wi 	= w0, where the set
W = {w0, w1, w2, ..., wN1} is defined in Procedure 1.

Heuristic splitting rule 1. (handling infeasibility)
Consider the following two cases:

1. The set of the feasible points in X0 includes the center point w0 and some
of the points wi ∈ W , wi 	= w0 (the set W = {w0, w1, w2, ..., wN1} is de-
fined in Procedure 1). Then, split X0 into two types of hyper-rectangles by
hyperplanes containing some of the feasible points wi ∈ W :
i. Hyper-rectangles Xf

1 , X
f
2 , ..., X

f
Nf

containing only feasible points.

ii. Hyper-rectangles Xnf
1 , Xnf

2 , ..., Xnf
Nnf

containing some infeasible points.
Denote the number of the new hyper-rectangles Ns = Nf +Nnf . The optimal
choice of dividing hyperplanes is the one which minimizes the number Ns of
the new hyper-rectangles.

2. The center point w0 of X0 is the only feasible point. Then, split X0 on all
state space axes by hyperplanes through w0. �

The following rule is applied when there is no feasible solution to the NLP
problem (10)–(11) at the center point w0 of the hyper-rectangle X0.

Heuristic splitting rule 2. (handling infeasibility)
If there is no feasible solution of the NLP (10)–(11) at the center point w0 of
X0, split the hyper-rectangle X0 by a hyperplane through w0 and orthogonal to
an arbitrary axis. �

The following rule is used when the NLP problem (14)–(15) in Procedure 2
has no feasible solution.

Heuristic splitting rule 3. (handling infeasibility)
If the NLP problem (14)–(15) in Procedure 2 is infeasible, split the hyper-
rectangle X0 by a hyperplane through its center and orthogonal to an arbitrary
axis. �

3.5 Approximate Algorithm for Explicit Solution of Mp-NLPs

Assume the tolerance ε > 0 of the cost function approximation error is given.
The following algorithm is proposed to design explicit NMPC controller for con-
strained nonlinear systems:

Algorithm 1. (approximate explicit mp-NLP)

1. Initialize the partition to the whole hyper-rectangle, i.e. P = {X}. Mark the
hyper-rectangle X as unexplored.

2. Select any unexplored hyper-rectangle X0 ∈ P . If no such hyper-rectangle
exists, the algorithm terminates successfully.
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3. Compute a solution to the NLP (10)–(11) at the center point w0 of X0
by applying Procedure 1. If the NLP has a feasible solution, go to step 4.
Otherwise, split the hyper-rectangle X0 into two hyper-rectangles X1 and
X2 by applying the heuristic splitting rule 2. Mark X1 and X2 unexplored,
remove X0 from P , add X1 and X2 to P , and go to step 2.

4. Define a set of hyper-rectangles Xj
0 ⊂ X0, j = 1, 2, ..., Nj contained in the

interior of X0. For each of the hyper-rectangles X0 and Xj
0 ⊂ X0, j =

1, 2, ..., Nj, in addition to its vertices, determine a set of points that belongs
to its facets. Denote the set of all points (including the center point w0) with
W = {w0, w1, w2, ..., wN1}.

5. Compute a solution to the NLP (10)–(11) for x fixed to each of the points
wi, i = 1, 2, ..., N1 of the set W by applying Procedure 1. If all NLPs have a
feasible solution, go to step 7. Otherwise, go to step 6.

6. Compute the size of X0 using some metric. If it is smaller than some given
tolerance, mark X0 infeasible and explored and go to step 2. Otherwise, split
the hyper-rectangle X0 into hyper-rectangles X1, X2,..., XNs by applying the
heuristic splitting rule 1. Mark X1, X2,..., XNs unexplored, remove X0 from
P , add X1, X2,..., XNs to P , and go to step 2.

7. Compute an affine state feedback Û0(x) using Procedure 2, as an approxi-
mation to be used in X0. If no feasible solution was found, split the hyper-
rectangle X0 into two hyper-rectangles X1 and X2 by applying the heuristic
splitting rule 3. Mark X1 and X2 unexplored, remove X0 from P , add X1
and X2 to P , and go to step 2.

8. Compute an estimate ε̂0 of the error bound ε0 in X0 by applying Procedure 3.
If ε̂0 ≤ ε, mark X0 as explored and feasible and go to step 2. Otherwise, split
the hyper-rectangle X0 into two hyper-rectangles X1 and X2 by applying
Procedure 4. Mark X1 and X2 unexplored, remove X0 from P , add X1 and
X2 to P , and go to step 2. �

In contrast to the conventional MPC based on real-time optimization, the ex-
plicit MPC makes the rigorous verification and validation of the controller perfor-
mance much easier [11]. Hence, problems due to lack of convexity and numerical
difficulties can be addressed during the design and implementation.

4 Application of the Approximate Explicit NMPC
Approach to Compressor Surge Control

Consider the following 2-nd order compressor model [10], [18] with x1 being nor-
malized mass flow, x2 normalized pressure and u normalized mass flow through
a close-coupled valve in series with the compressor:

ẋ1 = B(Ψe(x1)− x2 − u) (18)

ẋ2 =
1
B

(x1 − Φ(x2)) (19)
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The following compressor and valve characteristics are used:

Ψe(x1) = ψc0 + H

(
1 + 1.5

(x1

W
− 1

)
− 0.5

(x1

W
− 1

)3
)

(20)

Φ(x2) = γsign(x2)
√
|x2| (21)

with γ = 0.5, B = 1, H = 0.18, ψc0 = 0.3 and W = 0.25. Like in [10], the control
objective is to avoid surge. This is formulated as [10]:

J(U, x(t)) =
N−1∑
k=0

[
α(xt+k|t − x∗)T (xt+k|t − x∗) + ku2

t+k

]
+ Rv2

+β(xt+N |t − x∗)T (xt+N |t − x∗) (22)

with α, β, k,R ≥ 0 and the set-point x∗1 = 0.4, x∗2 = 0.6 corresponds to an
unstable equilibrium point. We have chosen α = 1, β = 0 and k = 0.08. The
horizon is chosen as T = 12, which is split into N = 15 equal-sized intervals,
leading to a piecewise constant control input parameterization. Valve capacity
requires the following constraint to hold:

0 ≤ u(t) ≤ 0.3 (23)

The pressure constraint:
x2(t) ≥ 0.4− v (24)

avoids operation too far left of the operating point. The variable v ≥ 0 is a slack
variable introduced in order to avoid infeasibility and R = 8 is a large weight.
Numerical analysis of the cost function shows that it is non-convex [10]. It can
be seen that this NMPC problem formulation differs from that in section 2 in
the absence of a terminal constraint and in the use of a slack variable.

The NLP (10)–(11) has 16 free variables and 46 constraints, while the NLP
(14)–(15) has 46 free variables and 811 constraints. One internal region X1

0 ⊂ X0
is used in Procedures 1, 2 and 3. In (14), it is chosen µ = 10 and the control input
only at the first sample is considered. The approximation tolerance is chosen to
depend on X0 such that:

ε(X0) = max(εa, εrV
∗
min) (25)

where εa = 0.0001 and εr = 0.02 can be interpreted as absolute and relative
tolerances, respectively, and V ∗

min = min
x∈X0

V ∗(x). Here, V ∗(x) denotes a close-to-

global solution.
The partition of the approximate explicit NMPC controller is shown in Fig.1.

It has 595 regions and 12 levels of search. With one scalar comparison required at
each level of the k−d tree, 12 arithmetic operations are required in the worst case
to determine which region the state belongs to. Totally, 16 arithmetic operations
are needed in real-time to compute the control input and 1368 numbers needs
to be stored in real-time computer memory. The off-line computation of the
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Fig. 1. State space partition of the approximate explicit NMPC (left) and the control
input for x(0) = [0.1 0.05]T (right). The solid curves are with the approximate explicit
NMPC and the dotted curves are with the exact NMPC.
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Fig. 2. State variables x1 and x2: the solid curve is with the approximate explicit
NMPC and the dotted curve is with the exact NMPC

partition is performed on a 1.8 GHz AMD Athlon(tm)XP 2200+, where the
CPU time needed for solving the NLP (10)–(11) at a single point in the state
space is about 3 sec and the CPU time necessary to solve the NLP (14)–(15) for
a single region is about 210 sec.

The performance of the closed-loop system is simulated for initial condition
x(0) = [0.1 0.05]T and with sampling time Ts = 0.02. Euler integration with
step size Ts is applied to solve the ordinary differential equations (18)–(19).
The resulting closed-loop response is depicted in the state space (Fig.1 (left)),
as well as trajectories in time (Fig.1 (right) and Fig.2). In Fig.1 and Fig.2 the
exact NMPC solution is also shown, which at each time step is determined by
comparing the local minima of the cost function (22) corresponding to several
initial guesses for the optimization variables.
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5 Conclusions

In this paper, practical computational methods for constructing approximate
explicit PWL solutions of NMPC problems are developed. They represent an
extension of the approximate approach in [11] since they provide some additional
mechanisms to practically handle also the case of non-convexity of the resulting
mp-NLP problem. As a case study, the design of an approximate explicit NMPC
for compressor surge control is considered.
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Summary. The benefits of parametric programming for the design of optimal con-
trollers for constrained systems are widely acknowledged, especially for the case of
linear systems. In this work we attempt to exploit these benefits and further extend
the theoretical contributions to multi-parametric Model Predictive Control (mp-MPC)
for non-linear systems with state and input constraints. The aim is to provide an insight
and understanding of multi-parametric control and its benefits for non-linear systems
and outline key issues for ongoing research work.

1 Introduction

The explicit, multi-parametric MPC (mp-MPC) has been extensively investi-
gated for linear systems. Major results have been presented for the discrete-time
case ([2]) and recently for the linear, continuous-time systems case ([20]). The
key advantage of mp-MPC is that the on-line optimization, typically involved in
MPC, can be performed off-line to produce an explicit mapping of the optimal
control actions and the objective function in the space of the current states. The
on-line implementation of the controller is then reduced to a simple function
evaluation ([17]).

Although mp-MPC has received much attention for the linear systems case,
there is relatively little progress for the non-linear systems case. Most of the
research on MPC has focused in on-line implicit MPC methods that usually
rely, for the case of continuous-time systems, on numerical dynamic optimization
techniques ([5, 6, 13]) or for the case of discrete-time systems, on on-line Non-
linear Optimization ([15, 18]). A first attempt towards the design of approximate,
linear mp-MPC controllers for the non-linear MPC problem, is presented in [11]
and [12]. The first work proposes a method for a local mp-QP approximation
to the continuous-time, mp-NLP control problem. The second work focuses on
the MPC problem for non-linear systems with linear state and input constraints,
and a quadratic cost.

This work aims to provide an insight and understanding of multi-parametric
control and outline the benefits of non-linear mp-MPC. Two approaches are

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 193–205, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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presented here. The first approach presents a method for obtaining a Piece-
wise Affine (PWA) approximation to the solution of the non-linear MPC for
discrete-time systems, by exploiting the fact that the non-linear MPC problem
for non-linear systems with non-linear state and input constraints, and non-linear
objective, is a non-linear optimization problem where the input is the optimisa-
tion variable and the initial state is the optimisation parameter. This approach
is based on recent developments on parametric programming techniques ([7]).

The second approach deals with the explicit solution of the non-linear MPC,
for certain classes of non-linear, continuous-time models for which there exists
an analytical solution to the dynamic systems arising from the first order opti-
mality conditions. The optimisation is then solved off-line, based on a recently
developed multi-parametric, dynamic optimisation algorithm ([20]) - the control
law is then derived as an explicit, non-linear function of the states. In both ap-
proaches the implementation of the controller is simply reduced to a sequence
of function evaluations, instead of solving the on-line, non-linear optimal control
problem, which is usually the typical procedure of non-linear MPC. The two pro-
cedures are then applied, in the end of this paper, on the classical, constrained
Brachistochrone problem to illustrate the key features of the new developments.

2 Piecewise Affine Approximation to the Discrete - Time
Non-linear MPC

The main multi-parametric programming problem that is frequently encountered
in various engineering applications, including non-linear MPC, is the following

z(θ) = min
x

f(x) (1a)

s.t. g(x) ≤ b + Fθ (1b)
x ∈ X (1c)
θ ∈ Θ (1d)

where x is a vector of continuous variables, f a scalar, continuously differentiable
function of x, g a vector of continuously differentiable functions of x, b a con-
stant vector, F are constant matrices of appropriate dimensions, θ a vector of
parameters and X and Θ are compact subsets of the x and θ-space respectively.
A representative example of this problem is the discrete-time constrained linear
quadratic regulator problem ([2]), where x is the sequence of control inputs over
a finite time horizon, f(x) is a strictly convex quadratic function of x, g(x) is a
linear function of x, θ is the initial state and X and Θ are convex, polyhedral
sets. Although, solving (1) has been proved to be a difficult task, an algorithm
was presented recently in [7, 8] which can obtain a linear, PWA approximation
to z(θ) with a prescribed accuracy. The value function z(θ) as well as the opti-
mization variable x(θ) are linear, PWA function of θ. Given a value of θ then
z(θ) and x(θ) can be obtained by simple function evaluations.
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The mathematical framework for the discrete-time nonlinear MPC can be
shortly summarised as the following constrained non-linear programming (NLP)
problem ([15, 18])

zo(xt) = min
U

J(U, xt) (2a)

s.t h(U, xt) ≤ b (2b)
UL ≤ U ≤ UU , xL ≤ x ≤ xU (2c)

where xt is the state at the current time instant, U = {ut, ut+1, . . . , ut+N−1}
is the sequence of control inputs over the prediction horizon N , J(U, xt) is a
scalar objective function, h(U, xt) is a vector of non-linear functions, UL, UU

are lower and upper bounds for U and xL and xU are lower and upper bounds
for x. The functions J(U, xt) and h(U, xt) are generally non-linear, although
the analysis that follows can be applied for the linear case as well, and may
include any terminal cost function and terminal constraints respectively to ensure
stability ([15]).

Transforming the NLP (2) to (1) can been done in two steps. First, if J(U, xt)
is only a function of U then simply replace (2a) by simply J(U) and the objective
function of (2) is the same with (1). Otherwise, introduce a new scalar ε ∈ R

and transform (2) into the following NLP

z̄(xt) = min
U

ε (3a)

s.t. J(U, xt) ≤ ε , h(U, xt) ≤ b (3b)
UL ≤ U ≤ UU , xL ≤ x ≤ xU (3c)

or simply to

z̄(xt) = min
U

ε (4a)

s.t. h̄(U, xt) ≤ b̄ , UL ≤ U ≤ UU , xL ≤ x ≤ xU (4b)

where h̄(U, xt) = [J(U, xt) hT (U, xt)]T and b̄ = [ε bT ]T .
A simple but conservative way to solve the above problem is by linearising the

inequalities in (4) and solving off-line the linearized problem. More specifically,
choose an initial x∗t and solve (4) to acquire U∗. Then linearize the inequalities
in (4) over x∗t , U

∗ to obtain the following approximating, mp-LP problem over
xt and U

z̆(xt) = min
U

ε (5)

h̄(U∗, x∗t ) +
∂h̄(U∗, x∗t )

∂U
(U − U∗) ≤ b̄ − ∂h̄(U∗, x∗t )

∂xt
(xt − x∗t ) (6)

UL ≤ U ≤ UU , xL ≤ x ≤ xU (7)

which now of form (1), where x is U and θ is xt. The solution to the mp-LP (5)
is a linear, PWA function of xt, z̆(xt) ([8]). The control sequence U(xt) is also a
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linear PWA function of xt and hence the first control input ut(xt) of the control
sequence, is a linear PWA function of xt. The solutions z̆(xt) and ut(xt) are only
valid in a critical region CR of xt which is defined as the feasible region of xt

associated with an optimal basis ([7, 8]). In the next step choose xt outside the
region of CR and repeat the procedure until the space of interest is covered.

A different procedure for transforming the NLP (4) into (1) is obtained
if one considers that a nonlinear function h̄i(U, xt) consists of the addition,
subtraction, multiplication and division of five simple non-linear functions of
Ui, xt,i ([7, 9, 16, 21]): a) linear fL(Ui, xt,i), b) bilinear fB(Ui, xt,i), c) fractional
fF (Ui, xt,i), d) exponential fexp(Ui, xt,i) and e) univariate concave fuc(Ui, xt,i)
functions of Ui, xt,i. If fL(Ui, xt,i), fB(Ui, xt,i), fF (Ui, xt,i), fexp(Ui, xt,i) and
fuc(Ui, xt,i) are simply functions of Ui then they are simply retained without
further transforming them. If, however, they are functions of both Ui, xt,i then
a new variable is assigned for each of the non-linear functions and a convex ap-
proximating function can be obtained which is linear with respect to xt,i. For
example consider the non-linear inequality

sin(Ui) +
1

Uixt,j + 1
≤ 0 (8)

The term sinUi is preserved without further manipulation as it is a non-linear
function of Ui. Set w = Uixt,j+1. This equality contains a bilinear term of Uixt,j .
A convex approximation can then be obtain for this equality by employing the
McCormick ([7, 9, 16]) over- and underestimators for bilinear functions

−w + xL
t,jUi ≤ UL

i x
L
t,j − UL

i xt,j , −w + xU
t,jUi ≤ UU

i xU
t,j − UU

i xt,j (9a)

w − xU
t,jUi ≤ −UL

i x
U
t,j + UL

i xt,j , w − xL
t,jUi ≤ −UU

i xL
t,j + UU

i xt,j (9b)

Moreover, (8) can be re-written as sinUi + 1/w ≤ 0. It can be easily noticed
that the above inequality and (9) have the same form with the inequalities
in (1). Convex approximations to non-linear functions have been extensively
investigated in [7, 9, 16, 21]. Since it is difficult to fully present the theory of
convex approximations in this paper due to lack of space, the interested reader
can look in the relevant literature and the references within, cited here in [7, 9,
16, 21].

Following the above procedure, one can transform the NLP (4) to the mp-NLP
problem (1) as following

ẑ(xt) = min
U,W

ε (10a)

s.t. ĥ(U,W ) ≤ b̂ + F̂ xt (10b)

where W is the vector of all new variables w which were introduced to re-
place the non-linear terms fL(Ui, xt,i), fB(Ui, xt,i), fF (Ui, xt,i), fexp(Ui, xt,i)
and fuc(Ui, xt,i). The algorithm in [7, 8] can then be used to solve the above
problem and obtain a linear, PWA approximation to the non-linear MPC prob-
lem for ut. The control input ut as well as the value function ẑ(xt) are both
PWA function of xt hence a feedback control policy is obtained.
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The main disadvantage of the above method is that both problems (5) and
(10) only provide an approximation for the optimal solution of (2). This could
result to violation of the constraints of (2), although the constraints in both (5)
and (10) are satisfied, thus resulting into state and input constraints violation
for the system. However, as far as the authors are aware of, there is currently
no alternative multi-parametric MPC method which can guarantee constraint
satisfaction for non-linear, discrete-time systems, since most methods rely on the
approximation of the initial non-linear programming problem (2). An alternative
method, for obtaining the optimal solution and guarantee constraint satisfaction
is to address the problem in continuous-time and not in discrete-time. This will
be shown in the next section.

3 Multi-parametric Non-linear Optimal Control Law for
Continuous - Time Dynamic Systems

It is a common practise to deal with the problem of non-linear MPC in discrete
time by transforming the continuous-time optimal control problem involved into
a discrete-time one. The interest of the relevant research has long being focused
on solving the discrete-time non-linear MPC problem. However, the continuous-
time case remain of great importance since in practise most of the systems of
interest are continuous-time. In this section a novel approach is presented that
derives off-line the optimal control law in a continuous-time optimal control
problem with state and input constraints. More specifically consider the following
continuous-time, optimal control problem

φ̂ = min
x(t),u(t)

φ(xtf ,tf
) (11a)

s.t. ẋ = f(x(t), u(t), t) (11b)
ψg(xtf

) ≤ 0 (11c)
g(x(t), u(t)) ≤ 0 (11d)
x(t0) = x0 (11e)
t0 ≤ t ≤ tf (11f)

where x(t) ∈ X ⊆ Rn are the systems states, u(t) ∈ U ⊆ Rm are the control
variables, g : Rn × Rm → Rq are the path constraints and ψg : Rn → RQg is
the terminal constraint. The objective function φ : Rn ×R→ R is a continuous,
differentiable, non-linear function of x(tf ) at the final time tf .

The objective is to obtain the solution of problem (11) i.e. the optimal value
of the performance index φ̂ and the optimal profiles of the control inputs u(t),
as explicit function of the initial states x0. Hence, by treating x0 as a parame-
ter, the optimal control problem (11) is recast as a multi-parametric Dynamic
Optimization (mp-DO) problem where φ̂ is the value function, u(t) the optimal
control profiles and x0 is the parameter of the problem. Problem (11) has been
thoroughly studied for the case of the continuous-time, linear quadratic optimal
control problem ([20]), however this is the first time this problem is treated for
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non-linear systems. Our purpose here is to extend the results of [20] for the
continuous-time, non-linear optimal control problem described in (11).

Let define the order of a path constraint before we proceed

Definition 1. The constraint gi(x, u) is said to be of order l̂ ≥ 1 with respect to
the dynamics, if

∂gi(x, u)j

∂uk
= 0, j = 1, 2, . . . , l̂ − 1, k = 1, . . . ,m

∂gi(x, u)l̂

∂uk
	= 0, for at least one k, k = 1, . . . ,m

where the index j denotes time derivatives. The constraint gi(x, u) is said to be
of zero-th order if

∂gi(x, u)
∂uk

	= 0, for at least one k, k = 1, . . . ,m

The Karush-Kuhn-Tucker conditions for the optimal control problem (11) de-
rived from the Euler-Lagrange equations and for l̂ ≥ 1 are given as ([1, 4, 14])

ORDINARY DIFFERENTIAL EQUATION (ODE)

ẋ = f(x(t), u(t), t), t0 ≤ t ≤ tf (12)

BOUNDARY CONDITIONS FOR THE ADJOINTS

x(t0) = x0 (13)

λ(tf ) =
(
∂φ(xtf

, tf )
∂x(tf )

)T

+
(
∂ψg(x(tf ))
∂x(tf )

)T

· ν (14)

COMPLEMENTARITY CONDITIONS

0 = νj · ψg
j (x(tf )) (15)

νj ≥ 0, j = 1, . . . , Qg (16)

ADJOINT DIFFERENTIAL SYSTEM

µi(t) ≥ 0, gi(x(t), u(t)) · µi(t) = 0, i = 1, . . . , q (17)

λ̇(t) = −
(
∂f(x(t), u(t), t)

∂x(t)

)T

· λ(t) −
q∑

i=1

(
∂g l̂i

i (x(t), u(t))
∂x(t)

)T

· µi(t) (18)
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0 =
(
∂f(x(t), u(t), t)

∂u(t)

)T

· λ(t) +
q∑

i=1

(
∂g l̂i

i (x(t), u(t))
∂u(t)

)T

· µi(t) (19)

t0 ≤ t ≤ tf (20)

Assume: tnkt+nkx+1 = tf , and Define: (21)

tkt ≡ Entry point if µj(t−kt) = 0, µj(t+kt) ≥ 0, k = 1, 2, . . . , nkt (22)

tkx ≡ Exit point if µj(t+kx) = 0, µj(t−kx) ≥ 0, k = 1, 2, . . . , nkx (23)

For at least one j = 1, 2, . . . , q (24)

JUNCTION CONDITIONS (ENTRY POINT)

0 = gj
i (x(tkt), u(tkt)), j = 0, . . . , l̂i − 1 (25)

0 = g l̂i
i (x(t+kt), u(t+kt)), k = 1, 2, . . . nkt, i = 1, . . . , q (26)

JUMP CONDITIONS (ENTRY POINT - EXIT POINT)

λ(t+kt) = λ(t−kt) +
q∑

i=1

l̂i−1∑
j=0

(
∂gj

i (x(tkt), u(tkt))
∂x(tkt)

)T

· ϕj,i(tkt) (27)

H(t+kt′ ) = H(t−kt′), k = 1, 2, . . . , nkt (28)

λ(t+kx) = λ(t−kx) (29)

H(t+kx′) = H(t−kx′), k = 1, 2, . . . , nkx (30)

H(t) = ẋ(t)λ(t) + g(x(t), u(t))T · µ(t) (31)

tk(t,x) = {min(tk(t,x)′ , tf ) ∨max(tk(t,x)′ , t0)} (32)

where λ(t) ∈ Rn is the vector of adjoint (co-state) variables, µ(t) ∈ Rq is the
vector of Lagrange multipliers associated with the path constraints, ν(t) ∈ RQg

is the vector of Lagrange multipliers of the end-point constraints, ϕi ∈ Rl̂i ,
i = 1, . . . , q are the Lagrange multipliers linked with the jump conditions and
H(t) is the Hamiltonian function of the system. The time points where the jump
conditions apply are called corners or switching points. The time intervals t ∈
[tk, tk+1], k = 1, . . . , (nkt + nkx) between two consecutive corners are termed as
constrained or boundary arcs if at least one constraint is active or unconstrained
arcs otherwise, where nkt is the maximum number of entry points that may exist
in the problem and nkx is the maximum number of exit points.
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Remark 1. For a zeroth order constraint, equations (25),(26) are omitted, (27),
(28) are written as λ(t+kt) = λ(t−kt) and H(t+kt) = H(t−kt) respectively and ϕ = 0.

The following assumption is necessary for the analysis that will follow.

Assumption 3.1. There exist an analytical solution to the differential algebraic
equation (DAE) system arising from (12), (18) and (19) with boundary condi-
tions the equations in (13), (14), (25), (26), (27) and (29).

If the above assumption holds then x(t, tk, x0), λ(t, tk, x0), µ(t, tk, x0), u(t, tk, x0)
and ξ(tk, x0) = [xT

f λT
0 µT (t1) . . . µT (tnkt

) ϕT (t1) . . . ϕT (tnkt
) νT ] are explicit,

non-linear functions of time t, the switching points tk = {t1 t2 . . . tnkt
+ tnkx

}
≡ {t1t t1x t2t . . . tnkx

} and the initial condition x0. This allows the derivation of
the optimal profiles of the control inputs in terms of x0 and the determination of
the compact regions in the space of the initial conditions where these functions
hold.

In order to obtain the optimal control profiles the following algorithm can be
followed:

Algorithm 3.1

1: Define an initial region CRIG in which problem (11) is going to be solved
2: Select a realization in the parameter space of x0 and compute the optimal

number of switching points and (constrained and/or unconstrained) arcs for
these points by solving the DO problem (12)-(32).

3: Given the sequence of switching points and considering x0 as a free parame-
ter, solve analytically the DAE system arising from (12), (18) and (19) with
boundary conditions the equations in (13), (14), (25), (26), (27) and (29).to
obtain, first ξ̂(tk, x0) and then the differential states ˆλ(t, tk, x0), x̂(t, tk, x0),
µ̂(t, tk, x0) and finally the algebraic variables û(t, tk, x0).

4: Substitute the values of ξ̂(tk, x0), ˆλ(t, tk, x0), x̂(t, tk, x0), µ̂(t, tk, x0) and
û(t, tk, x0) in the equations (28), (30) and (32) and solve the new system
of non-linear, algebraic equations to obtain tk as an explicit function of the
free parameter x0 and call it tk(x0).

5: Substitute tk(x0) into the expression of u(t, tk(x0), x0) to obtain the optimal
parametric control profile.

6: Compute the critical region CR where the optimal parametric control profile
is valid.

7: If CR is not empty then select a new initial condition x0 outside CR and go
to Step 2 else stop

The algorithm starts with the definition of the space CRIR of initial conditions
x0, in which the mp-DO problem is going to be solved. In step 2 the switching
points and the corresponding arcs and active constraints are obtained by solving
the DO (12)-(32) for a fixed value of x0. In step 3 the DAE system that consists of
the system’s dynamic model and the optimality conditions corresponding to the
switching points and active constraints, derived in step 2, is solved symbolically
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to obtain the optimal profiles of ξ̂(tk, x0), ˆλ(t, tk, x0), x̂(t, tk, x0), µ̂(t, tk, x0) and
û(t, tk, x0). The vector tk(x0) is calculated in the step 4 by solving symbolically
the non-linear, algebraic equalities of the Jump conditions (28), (30) and (32). In
step 5 the optimal parametric control profile is obtained by substituting tk(x0)
into û(t, tk, x0). Finally the critical region in which the optimal control profile is
valid, is calculated in step 6, following the procedure which will be described in
the following. The algorithm then repeats the procedure until the whole initial
region CRIR is covered.

A critical region CR in which the optimal control profiles are valid, is the
region of initial conditions x0 where the active and inactive constraints, obtained
in step 2 of algorithm 3.1, remain unaltered ([20]). Define the set of inactive
constraints ğ , the active constraints g̃ and ˜̂µ > 0 the Lagrange multipliers
associated with the active constraints g̃; obviously the Lagrange multipliers µ
associated with the inactive constraints are 0. The critical region CR is then
identified by the following set of inequalities

CR � {x0 ∈ R
n | ğ(x̂(t, tk(x0), x0), û(t, tk(x0), x0)) < 0 , ˜̂µ(t, tk(x0), x0) > 0

ν̃(t, tk(x0), x0) > 0} (33)

In order to characterize CR one has to obtain the boundaries of the set described
by inequalities (33). These boundaries obviously are obtained when each of the
linear inequalities in (33) is critically satisfied. This can be achieved by solving
the following parametric programming problems, where time t is the variable
and x0 is the parameter.

• Take first the inactive constraints through the complete time horizon and
derive the following parametric expressions:

Ği(x0) = max
t
{ği(x̂(t, tk(x0), x0), û(t, tk(x0), x0))|t ∈ [t0, tf ]}, i = 1, . . . , q̆

(34)
where q̆ is the number of inactive constraints.

• Take the path constraints that have at least one constrained arc [ti,k̃t, ti,k̃x]
and obtain the following parametric expression

G̃i(x0)=max
t
{g̃i(x̂(t, tk(x0), x0),û(t, tk(x0), x0))|t∈ [t0, tf ]}∧{t 	∈ [ti,k̃t, ti,k̃x]]}

(35)

k = 1, 2, . . . , ni,k̃t, i = 1, 2, . . . , q̃

where ni,k̃t is the total number of entry points associated with the ith active
constraint and q̃ is the number of active constraints.

• Finally, take the multipliers of the active constraints and obtain the following
parametric expressions

µ̆(x0)=min
t
{ ˜̂µ(t, tk(x0), x0)|t = ti,kt = ti,kx, k = 1, 2, . . . , ni,kt}, i = 1, 2, . . . , q̃

(36)
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One should notice that the multipliers assume their minimum value when
the corresponding constraint is critically satisfied, hence, the path constraint
reduces to a point constraint. This property is captured in the equality con-
straint t = ti,kt = ti,kx.

In each of the above problems the critical time, where each of the inequalities
(ği(x̂(t, tk(x0), x0), û(t, tk(x0), x0)), g̃i(x̂(t, tk(x0), x0), û(t, tk(x0), x0)), ˜̂µ(t, tk

(x0), x0)) is critically satisfied, is obtained as an explicit function of x0 and
then is replaced in the inequality to obtain a new inequality (Ği(x0), G̃i(x0),
µ̆(x0)) in terms of x0. The critical region in which û(t, tk(x0), x0) is valid, is
given as follows

CR = {Ğ(x0) > 0 , G̃(x0) > 0 , µ̃(x0) > 0 , ν̃(x0) > 0} ∩ CRIG (37)

It is obvious the critical region CR is defined by a set of compact, non-linear
inequalities. The boundaries of CR are represented by parametric non-linear
expressions in terms of x0. Moreover, (34), (35) and (36) imply that in every
region calculated in Step 6 of the proposed algorithm, a different number and
sequence of switching points and arcs holds.

Although, the optimal control profile û(t, tk(x0), x0) constitutes an open-loop
control policy, its implementation can be performed in a MPC fashion, thus
resulting to a closed loop optimal control policy. More specifically, this is achieved
by treating the current state x(t∗) ≡ x0 as an initial state, where t∗ is the time
when the state value becomes available. The control action û(t, tk(x(t∗)), x(t∗))
is then applied for the time interval [t∗, t∗ + ∆t], where ∆t denotes the plants
sampling time, and in the next time instant t∗ + ∆t the state is updated and
the procedure is repeated. Hence, this implementation results to the control law
u(x(t∗)) = {û(t, tk(x(t∗)), x(t∗))|t∗ ≤ t ≤ t∗ + ∆t}.

4 Example

We are going to illustrate the methods discussed above for the constrained
Brachistochrone problem in which a beam slides on a frictionless wire between a
point and a vertical plane 1m on the right of this point ([3]). The coordinates of
the beam on every point on the wire satisfy the following system of differential
equations

ẋ = (2gy)1/2 cos γ (38)

ẏ = (2gy)1/2 sinγ (39)

where x is the horizontal distance, y is the vertical distance (positive downwards),
g is the acceleration due to gravity and γ is the angle the wire forms with
the horizontal direction. The goal is to find the shape of the wire that will
produce a minimum-time path between the two positions, while satisfying the
inequality y − 0.5x − 1 ≤ 0. The above problem is of the form (11) where
φ(x(tf ), tf ) = tf , (11b) is replaced by (38) and (39), g(x(t), u(t)) = y− 0.5x− 1
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and ψg(x(tf )) = −x(tf ) + 1. The last expression represents that at final time
the beam should be positioned at a point where x(tf ) ≥ 1. We also assume that
t0 = 0. Although, the problem has already been solved for a fixed initial point
x0 = [0 0]T (as for example in [3]), here the optimal solution is derived for the
first time as a function of the initial point coordinates.

The problem is first dealt in discrete-time as described in Section 2. The
continuous-time system is turn into a discrete-time system assuming a sampling
time ∆t such that [t0, tf ] is divided in three equally spaced time intervals of ∆t
i.e. [t0, tf ] = 3∆t. The discrete-time problem

min
γk

∆t

xk+1 = xk + (2gyk)−1/2 cosγk ∆t , k = 0, 1, 2

yk+1 = yk + (2gyk)−1/2 sinγk ∆t , k = 0, 1, 2
yk − 0.5xk − 1 ≤ 0 , k = 0, 1, 2, 3
x3 ≥ 1

is then solved by transforming the above problem in (5) and solving the mp-
LP problem to acquire the PWA solution. The continuous-time is solved next
following Algorithm 3.1. The results for both the discrete-time case and the
continuous-time case together with a simulation for x0 = [0 0]T are shown
in Figure 1 and 2. The straight line in both diagrams represents the boundary
of the linear constraint y − 0.5 − 1 ≤ 0. There are three control laws for the
continuous-time case, depending in which region the initial state is. The control
law in the unconstrained region (Figure 2.) is obtained by solving the following
system of algebraic equalities with respect to c1 and γ

0 = c21 − arccos(c1
√
y)− xc21 + c1

√
y sin arccos c1

√
y

γ = −1/2(2g)1/2c1t+ arccos c1
√
y

In the constrained region the control law is obtained as following. First, the
following system of equalities is solved

x(τ ′′)− (2g)
1
2

2c1
τ ′′ +

1
2c21

sin (2g)
1
2 c1(tf − τ ′′) = 1− (2g)

1
2

2c1
tf

tf =
arccos c1

√
y + 0.5(2g)

1
2 c1τ

′′

0.5(2g)
1
2 c1

, x(τ ′′) = 0.1989gτ ′′2 + (2g
1
2 )0.896

√
y0τ

′′ + x0

y(τ ′′) =
(
0.222(2g)

1
2 τ ′′ +

√
y0

)2
, 0.46 = 0.5(2g)

1
2 c1 (tf − τ ′′)

which is a system of five equations with five unknowns tf , τ
′′, c1, x(τ ′′), y(τ ′′).

Then, the control to be applied is given as
If t ≤ τ ′′ then γ = 0.46 = arctan(0.5) Else If t ≥ τ ′′ then γ = 0.5(2g)

1
2 c1(tf − t)

As it can be observed from Fig. 1 the approximating, discrete-time, PWA
solution is not the optimal one comparing to the optimal solution as it is given
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Fig. 1. Discrete-time Brachistochrone Problem
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Fig. 2. Continuous-time Brachistochrone Problem

in [3], due to approximation error. On the other hand, the multi-parametric
optimal control law illustrated in Fig. 2, is the optimal solution for each initial
condition contained in the constrained and unconstrained regions.

5 Conclusions

In this paper the discrete-time MPC problem as well as the continuous-time
optimal control problem were examined. A method was presented for obtain-
ing a linear, PWA approximation to the discrete-time MPC problem where the
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objective and control are obtained as linear, PWA functions of the initial condi-
tion. Then, an algorithm was presented that solves the mp-DO problem arising
from the non-linear, continuous-time, optimal control problem with state and
input constraints, where the objective is a non-linear function of the state at the
final time. It was shown that the optimal control profile is a non-linear function
of the time and the state variables.
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Summary. In this contribution we present two interior-point path-following algo-
rithms that solve the convex optimisation problem that arises in recentred barrier
function model predictive control (MPC), which includes standard MPC as a limiting
case. However the optimisation problem that arises in nonlinear MPC may not be con-
vex. In this case we propose sequential convex programming (SCP) as an alternative
to sequential quadratic programming. The algorithms are appropriate for the convex
program that arises at each iteration of such an SCP.

1 Introduction

It is often the case in nonlinear model predictive control (NMPC) that the system
dynamics are nonlinear in the states and inputs while the constraint sets for both
state and input sequences are assumed to be convex [6]. The nonlinear dynamics
can, and often do, make the associated control optimisation problem non-convex,
and hence more difficult to solve.

One popular strategy for solving non-convex problems is sequential quadratic
programming (SQP) where an iterative search procedure is used and the search
directions are computed via a quadratic program [11]. Specific adaptations of
this SQP approach have been developed for nonlinear model predictive con-
trol (NMPC) which take advantage of the sparse structure typical to these
problems [4].

An emergent alternative approach for solving non-convex optimisation prob-
lems, particularly favoured in topology optimisation, is sequential convex pro-
gramming (SCP) [16]. SCP is similar in concept to SQP but the search direction
is obtained by solving a more general convex programme (CP) in place of the
less general quaratic programme (QP). While it has been recognised that this
generalisation pays dividends for some mechanical engineering problems [16], the
benefits of using SCP for NMPC are as yet undetermined. A thorough evaluation
of the relative merits of SQP and SCP for nonlinear MPC is beyond the scope
of this contribution.

Rather, in this contribution we consider two interior-point algorithms useful for
solving quite general convex programming problems, for example, of the type that

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 207–216, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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arise at each iteration of an SCP approach. These algorithms are almost standard
except that they are geared towards solving convex optimisation problems with a
weighted barrier function appearing in the cost. This slight generalisation allows
a parsimonious treatment of both barrier function based model predictive control
[14] and “standard” model predictive control, which can be identified as a special
limiting case. The benefit of including a weighted barrier function is that iterations
stay strictly inside the boundary and fewer iterations are needed to converge. This
barrier approach is called r-MPCand has been successfully applied to an industrial
edible oil refining process as discussed in [15].

Note that due to page limitations all proofs have been omitted and can be
found in [13].

2 Nonlinear Model Predictive Control

In what follows we describe NMPC and formulate an optimisation problem which
is convex except for the nonlinear equality constraints that represent the system
dynamics. This motivates a very brief discussion of SCP which leads to the
main theme of this contribution being the two algorithms in Sections 3 and 4.
The problem may be formulated as follows. Consider the following discrete-time
system with integer k representing the current discrete time event,

x(k + 1) = f(x(k), u(k)). (1)

In the above, u(k) ∈ Rm is the system input and x(k) ∈ Rn is the system
state. The mapping f is assumed to be differentiable and to satisfy f(0, 0) = 0.
Given some positive integer N let u denote a sequence of control moves given
by u = {u(0), u(1), . . . , u(N − 1)} and let x denote a state sequence given by
x = {x(0), x(1), . . . , x(N)}.

For the purposes of this contribution we require that the input sequence u
should lie within a compact and convex set U while the state sequence x should
lie in the closed and convex set X. Let VN (x,u) denote the objective function
associated with prediction horizon N . We assume that VN is a convex function.
The control strategy for NMPC may be described as follows: at each time interval
k, given the state x(k), compute the following and apply the first control move
to the system.

(MPC) : min
x,u

VN (x,u), s.t. x0 = x(k), xi+1 = f(xi, ui), x ∈ X, u ∈ U.

We can associate with the sets X and U, respectively, gradient recentred self-
concordant barrier functions Bx and Bu [14]. This allows (MPC) to be ex-
pressed as the limiting case when µ → 0 of the following class of optimisation
problems [3].

(MPCµ) : min
x,u

VN (x,u) + µBx(x) + µBu(u) s.t. x0 = x(k), xi+1 = f(xi, ui).

The above class of optimisation problems (MPCµ) have, by construction, a con-
vex cost function and nonlinear equality constraints. If these equality constraints



Interior-Point Algorithms for Nonlinear Model Predictive Control 209

are modelled locally by a linear approximation, then the resulting problem is con-
vex and more readily soluble. This is the impetus for using SCP; at each iteration
of the method a local linear approximation to the nonlinear equality constraints
is formed and the corresponding CP is solved and the solution provides a search
direction, which is then used in a simple line-search method to reduce a merit
function. It is beyond the scope of this contribution to provide a detailed SCP
algorithm, but standard texts on SQP offer the main themes (see e.g. Chapter
18 from [11]).

We turn our attention to solving (MPCµ) where the nonlinear equalities have
been linearised, thus resulting in a convex optimisation problem. To this end we
present two algorithms in Sections 3 and 4, based on path-following interior-point
methods. The first algorithm is a two stage long-step path-following algorithm
for the case where the convex constraint set is closed and bounded with non-
empty interior. The second algorithm is based on a primal-dual path-following
method which is less general but more efficient since it is suitable for the case
where the convex constraint set is a self-scaled cone with non-empty interior.

3 Barrier Generated Path-Following Algorithm

Disregarding previous notation, consider the following convex optimisation prob-
lem (P) and its closely related class of barrier generated problems (Pµ).

(P) : min
x

f(x) s.t. x ∈ G, (Pµ) : min
x

1
µf(x) + F (x).

In the above, f : Rn → R is assumed to be a twice continuously differentiable
convex function, G is a closed and bounded convex subset in Rn with non-empty
relative interior denoted Go, and F is a ν-self-concordant barrier function for
G [7].

Restricting the feasible domain G to be closed and bounded means that the
barrier function F is strictly convex and attains its unique minimum over the
interior of G (see Proposition 2.3.2 in [7]). Hence (Pµ) has a unique minimiser
for all µ > 0, which we denote by x(µ), and the set C � {x(µ) : µ > 0} of
solutions to (Pµ) is known as the central-path of (P). In fact, the solution x(µ)
coincides with the solution to (P) in the limit as µ→ 0.

However, we are interested in solving (Pµ) for the case where µ may be chosen
as a fixed and relatively large positive number (e.g. for µ = 0.1). This means
that standard interior-point algorithms are not directly applicable since they are
geared towards solving (Pµ) for µ → 0. Nevertheless, as demonstrated in this
section, straightforward generalisations of standard algorithms allow for the case
of solving (Pµ) with µ 0.

In terms of the algorithm structure itself, the intuition is as follows. At the
k’th iteration, given a point xk and value µk > 0 such that xk is close to x(µk)
the algorithm selects µk+1 < µk and generates a new point xk+1 that is close
to x(µk+1). This process is repeated until the barrier weighting µk converges to
some prescribed constant value µc > 0 with the corresponding xk’s converging
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to the point x(µc). A damped Newton method is used to generate the new point
xk+1, and, we employ a long-step approach, so that aggressive reductions in
µk are allowed. This has the consequence of increasing theoretical complexity
bounds but tends to be favoured for practical algorithms since these bounds are
usually conservative.

With this in mind, it remains to find an initial point x0 and value µ0 such
that x0 is close to x(µ0). This is the subject of Section 3.1 which discusses an
initialisation algorithm.

Further to this, however, is a minor technical issue. The algorithm presented
in this section requires that the objective function f is linear, but we are in-
terested in a more general choice of f (typically quadratic). Nevertheless, it is
straightforward to embed problem (P) into a slightly larger formulation which
does have a linear objective. In fact, we do this now using the epigraphic form [2].

(A) : min
(t,x)

t s.t. f(x) ≤ t, x ∈ G, (Aµ) : min
(t,x)

1
µ t−ln(t−f(x))+F (x),

where t ∈ R and −ln(t − f(x)) is assumed to be a νf -self-concordant barrier
function for f(x) ≤ t (e.g. in the case where f is quadratic then this assumption
is satisfied with νf = 2). Note that (Aµ) has a unique minimiser, denoted by
(t(µ), x(µ)). The following lemma shows that if (t(µ), x(µ)) minimises (Aµ) then
x(µ) minimises (Pµ) and it therefore appears reasonable to solve problem (Aµ)
and obtain the minimiser for problem (Pµ) directly.

Lemma 1. Let (t(µ), x(µ)) denote the unique minimiser of problem (Aµ) for
some µ > 0, then x(µ) also minimises problem (Pµ) for the same value of µ.

3.1 Initialisation Stage

The purpose of an initialisation stage is to generate a point (t0, x0) and a value
µ0 such that (t0, x0) is close to (t(µ0), x(µ0)) (the minimiser of (Aµ)), which
enables the main stage algorithm to progress as described above. The usual
approach is to minimise the barrier function FA(t, x) � −ln(t − f(x)) + F (x),
which in turn provides a point at the “centre” of the constraint set and close to
the central-path of (A) for µ large enough.

However, by construction FA(t, x) is unbounded below as t→∞. Thiss prob-
lem is overcome, in the literature, by including a further barrier on the maximum
value of t resulting in the combined barrier function

FB(t, x) � − ln(R− t) + FA(x), FA(t, x) � −ln(t− f(x)) + F (x). (2)

The unique minimiser of the barrier function FB and the central path of
problem (A) are related in the following important way.

Lemma 2. Let (t∗, x∗) denote the unique minimiser of FB(t, x). Then (t∗, x∗)
coincides with a point on the central path of problem (A) identified by µ = R−t∗.
Therefore, minimising the barrier function FB actually provides a point on
the central path of (A), which is precisely the goal of the initialisation stage.
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Given x ∈ Go and f(x) < t < R, let z0 = (t, x) and choose κ ∈ (0, 1), γ ∈ (0, 1)
and β ∈ (2 − 31/2, 1). Define the function φη(z) � η〈−∇FB(z0), z〉+ FB(z). Let
η = 1 and iterate the following steps.

1. If λ(FB, z) ≤ β then let z∗ = z and stop.
2. If λ(φη , z) ≤ γ then update η via η ← κη.
3. Update z according to damped Newton step z ← z −

1
1+λ(φη ,z) [∇2φη(z)]−1∇φη(z).

Given (t0, x0) and µ0 such that λ(fµ0 , (t0, x0)) ≤ β (where β is chosen in Al-
gorithm 3.1), then choose ε ∈ (0, 2 − 31/2) and κ ∈ (0, 1) and let µ = µ0 and
z = (t0, x0) and iterate the following steps.

1. If µ = µc and λ(fµ, z) ≤ ε then stop.
2. If µc ≤ µ then let µ← max{µc, κµ}, otherwise let µ← min{µc, µ/κ}.
3. If µ = µc then let β = ε.
4. Iterate z ← z − 1

1+λ(fµ,z) [∇2fµ(z)]−1∇fµ(z) until λ(fµ, z) ≤ β.

Furthermore, Nesterov and Nemirovskii’s initialisation algorithm (with associ-
ated complexity bounds – see Section 3.2.3 in [7]) is directly applicable in this
case. Their approach may be described as follows.

Let λ(h, z) denote the Newton decrement for a 1-strongly self-concordant non-
degenerate function h at the point z defined as (see Section 2.2.1 in [7]),

λ(h, z) =
(
∇Th(z)

[
∇2h(z)

]−1∇h(z)
)1/2

.

The following proposition shows that (t∗, x∗) combined with a careful choice
of initial weighting parameter provide suitable initial conditions for the main
stage algorithm.

Proposition 1. Let (t0, x0) = (t∗, x∗) and µ0 = −(eTPe)/(eTPg) where g �
∇FA(z∗) and P �

[
∇2fA

τ (z∗)
]−1 and e � [1, 0, . . . , 0]T ∈ Rn+1. Then (t0, x0)

and µ0 are suitable initial conditions for the main stage algorithm.

3.2 Main Stage

Consider the point on the central path of (A) corresponding to some µ0 > 0, de-
noted as usual by (t(µ0), x(µ0)). Given some pair (t0, x0) close to (t(µ0), x(µ0)),
the main stage algorithm follows (t(µ), x(µ)) towards the point (t(µc), x(µc)),
where the constant µc > 0 is pre-specified by the user.

We are interested in the total number of Newton iterations taken in Step 4 in
the above algorithm. In the following proposition we bound this number using
results from [7].

Proposition 2. The total number of Newton iterations required in Algorithm
3.2 is bounded from above by

NT = �logκ(µc/µ0)�N (β) +N (λ∗) + $log2((2 − 31/2)/ε)%.
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where N (β) � $O(1)(1 + |κ− 1|ν1/2
A + νA(κ− 1 − lnκ))% and νA � ν + νf and

O(1) depends on β only.

4 Self-scaled Cones

The conic form optimisation problem introduced by [7] involves minimisation
of a linear objective function over the intersection of an affine subspace and a
closed and pointed convex cone. [8] define a class of cones and associated barrier
functions which are called self-scaled. This class has special properties which
allow for efficient interior-point algorithms to be developed [9, 10, 12]. In this
section, three types of self-scaled cones are treated, namely the standard non-
negative orthant, the second-order cone, and the cone of positive semi-definite
symmetric matrices.

The primal-dual path-following algorithm presented below in Section 4.3 is
based on [8, 9]. The algorithm finds the point on the primal-dual central path cor-
responding to the positive real number µc. The sections preceding this (namely
Sections 4.1 and 4.2) give background material and definitions used in associa-
tion with the algorithm and notation is as follows. Euclidean space with inner
product 〈·, ·〉 and let K denote a self-scaled cone in E. The standard primal
and dual conic form optimisation problems considered in the remainder of this
section are given by

(PC) : min
x
〈c, x〉, s.t. Ax=b, x ∈ K, (DC): max

y,s
〈b, y〉, s.t. A∗y+s=c, s ∈ K∗.

In the above, c ∈ E, b ∈ Rm and A : E → Rm is a surjective linear operator and
K∗ denotes the cone dual to K (which is K itself). Let Ko denote the interior
of K.

We are interested in finding the point on the central path of (PC) correspond-
ing to the positive scalar µc. This may be achieved by solving the following
primal-dual central path minimisation problem for µ = µc.

(PDµ) : min
x,y,s

1
µ〈s, x〉 + F (x) + F∗(s), s.t. Ax = b, A∗y + s = c

In the above, F is a ν-self-scaled barrier function for the cone K and F∗ is a
sign modified Fenchel conjugate of F for the cone K∗ – see [8]. Denote the set
of minimisers of (PDµ) for µ ∈ (0,∞) by CPD; this set is typically called the
primal-dual central path. Let So(PD) denote the set of strictly feasible primal-
dual points for (PD) given by

So(PD) = {(x, s, y) ∈ E × E × R
m : Ax = b, A∗y + s = c, x ∈ Ko, s ∈ Ko} .

The algorithm presented in section 4.3 uses a predictor-corrector path-following
strategy. Such strategies typically start from a point close to the primal-dual
central path and take a predictor step which aims for µ = 0. This direction
is followed until the new points violate some proximity measure of the central
path, at which time a series of centring steps are taken. These steps aim for
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Given a strictly feasible initial point (x0, s0, y0) ∈ So(PD), let (x, s, y) =
(x0, s0, y0) and define the Newton iterates as follows.

1. If termination conditions are satisfied then stop.
2. Form (dx, dy, ds) by solving (3) with (x, y, s).
3. Update (x, y, s) according to x ← x + αdx, s ← s + αds, y ← y + αdy ,

where α is given at each iteration by α = (µ(x, s)σs(∇F (x)) + σ̄)−1 and
σ̄ � max{σx(dx), σs(ds)}.

the “closest” point on the central path and cease when suitable proximity is
restored. There exist many proximity measures for the central path, but [9] use
a so-called functional proximity measure which is a global measure in the sense
that it has meaning everywhere on So(PD), and is defined as

γ(x, s) = F (x) + F∗(s) + νln(µ(x, s)) + ν, µ(x, s) = 1
ν 〈s, x〉.

A region of the central path, denoted F(β), that uses this measure is defined by

F(β) = {(x, y, s) ∈ So(PD) : γ(x, s) ≤ β}.

4.1 Centring Direction

Given a strictly feasible point (x, s, y) ∈ So(PD) and ω ∈ Ko such that
∇2F (ω)x = s, the centring direction (dx, ds, dy) is defined as the solution to
the following.

∇2F (ω)dx + ds = − 1
µ(s, x)

s−∇F (x), Adx = 0, A∗dy + ds = 0. (3)

Let u ∈ E and v ∈ Ko. Define σv(u) = 1
α , where α > 0 is the maximum possible

value such that v + αu ∈ K. It is convenient to define a centring algorithm [9].

4.2 Affine Scaling Direction

Given a strictly feasible point (x, s, y) ∈ So(PD) and ω ∈ Ko such that
∇2F (ω)x = s, the affine scaling direction (px, ps, py) is defined as the solution
to the following.

∇2F (ω)px + ps = −s, Apx = 0, A∗py + ps = 0. (4)

Note that 〈ps, px〉 = 0 from the last two equations of (4). Furthermore, 〈s, px〉+
〈ps, x〉 = 〈s, x〉 since from the first equation in (4),

−〈s, x〉 = 〈∇2F (ω)px + ps, x〉 = 〈s, px〉+ 〈ps, x〉.

Thus,

〈s+ αps , x + αpx〉 = 〈s, x〉 + α(〈s, px〉+ 〈ps, x〉) + α2〈ps, px〉,= (1− α)〈s, x〉.

Therefore, α can be chosen such that 〈s + αps, x + αpx〉 = νµc, i.e. α =
1 − µc/µ(s, x). In general, it is not always possible to take a step in direction
(px, ps, py) with step size α calculated here, since this may result in an infeasible
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Choose ε, β and ∆ such that ε > 0, 0 < β < 1 − ln(2), β < ∆ < ∞.
Given a problem in the form of (PD), an initial point (x0, s0, y0) ∈ F(β) and a
value µc > 0, let (x, s, y) = (x0, s0, y0) and iterate the following steps.

1. While µ(s, x) 	= µc and γ(s, x) > β iterate the following steps.
a) Compute the affine scaling direction (px, ps, py) by solving (4).
b) Update λ with λ ← 1 − µc/µ(x, s). If λ > 0 then find η > 0 such that

γ(x + ηpx, s+ ηps) = ∆ and update α with α← min{η, λ}.
Otherwise find η < 0 such that γ(x + ηpx, s + ηps) = ∆ and α ←
max{η, λ}.

c) Update the predictor point (x+, s+, y+) using x+ ← x + αpx, s+ ←
s + αps, y+ ← y + αpy.

d) Update the iterate (x, s, y) using the Newton process 4.1 starting from
(x+, s+, y+) and stopping as soon as a point in F(β) is found.

2. Update the iterate (x, s, y) using Algorithm 4.1 starting from (x, s, y) and
stopping as soon as a point in F(ε) is found.

point. However, if it is possible to take the full step of size α then the duality
gap is equal to νµc.

4.3 Path-Following Algorithm

The structure of the algorithm is described as follows: starting from a strictly
feasible initial point (x0, s0, y0) ∈ So(PD), then firstly a predictor step is com-
puted which aims at reducing the distance between µ(x, s) and µc. The step size
is computed in order to maintain iterates within a certain region of the central
path If it is possible to take a step that reduces the gap |µ(x, s) − µc| to zero,
whilst remaining inside the allowed region of the central path, then this step will
be taken. After computing the intermediate predictor point, the algorithm pro-
ceeds to correct the iterates towards the central path until they are sufficiently
close. This process sets the scene for a new predictor step in which further re-
duction of the gap |µ(x, s)− µc| may be achieved. From Theorem 7.1 in [9], the
number of corrector steps nc in each iteration is bounded by

nc ≤ ∆ (τ − ln(1 + τ)), τ = 0.5 (3β/(1 + β))1/2
. (5)

The number of final corrector steps nfc is given by the same relation but with
β = ε.

Also from Theorem 7.1 in [9], if µ0 ≥ µc, then the number of predictor steps
np,1 is bounded from above by

np,1 ≤
⌈

ln(µ0/µc)
ln(1/(1− δ1))

⌉
, δ1 =− 1

2ν
c(∆,β)+ 1

2

((
1
ν
c(∆,β)

)2

+ 4
1
ν
c(∆,β)

)1/2

,

(6)
where c(∆,β) is a positive constant that depends on ∆ and β only. Furthermore,
in [10] it is noted that Theorem 7.1 from [9] holds for negative values of α. Hence,
if µ0 ≤ µc, then the number of predictor steps np,2 is bounded from above by
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np,2 ≤
⌈

ln(µc/µ0)
ln(1− δ2)

⌉
, δ2 = − 1

2ν
c(∆,β)− 1

2

((
1
ν
c(∆,β)

)2

+ 4
1
ν
c(∆,β)

)1/2

.

(7)

Proposition 3. The total number of predictor and corrector steps npc in the
above algorithm is bounded from above by

npc ≤
{
np,1nc + nfc if µ0 ≥ µc,

np,2nc + nfc if µ0 ≤ µc.
(8)

5 Conclusion

The two algorithms presented in this contribution are useful for solving convex
programming problems where the solution is generalised to be a specific point
on the central-path. This finds immediate application to r-MPC which employs
a gradient recentred self-concordant barrier function directly into the cost. More
generally however, it would appear that these algorithms are useful within a
sequential convex programming approach for solving nonlinear model predictive
control problems. This latter point is the subject of further research activity.
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Summary. This paper presents a Nonlinear Model Predictive Control (NMPC) al-
gorithm that uses hard variable constraints to allow for control objective prioritiza-
tion. Traditional prioritized objective approaches can require the solution of a complex
mixed-integer program. The formulation presented in this work relies on the feasibil-
ity and solution of a relatively small logical sequence of purely continuous nonlinear
programs (NLP). The proposed solution method for accomodation of discrete control
objectives is equivalent to solution of the overall mixed-integer nonlinear programming
problem. The performance of the algorithm is demonstrated on a simulated multivari-
able network of air pressure tanks.

1 Introduction

Model Predictive Control (MPC) technology is most notable for its ability to con-
trol complex multivariable industrial systems. The model-based control scheme
relies on the online solution of an optimization problem for the optimal con-
trol sequence that minimizes a cost function which evaluates the system over
some prediction horizon. The typical cost function accounts for numerous con-
trol objectives spanning different levels of relative importance including those
stemming from equipment limits and safety concerns, product quality specifica-
tions, as well as economic goals. Traditional formulations penalize violations of
soft constraints to achieve the desired performance. However, they often rely on
ad hoc tuning to determine the appropriate trade-off between the various control
objectives. Moreover, the tuning becomes less intuitive for systems of increasing
complexity.

Recent studies have focused on ensuring that control objective prioritization
is handled effectively [3, 4, 7, 8, 13, 14, 18, 19]. Mixed integer methods utilize
propositional logic [17] and binary variables to define whether discrete control
objectives have been met and whether they are met in order of priority. Terms
are included in the cost function to penalize failure to meet the prioritized ob-
jectives and the resulting mixed integer program is solved to determine the
appropriate input move(s). Nevertheless, the mixed-integer programs are inher-
ently combinatorial in nature and can prove to be computationally demanding,
making real-time application difficult. This is of particular concern in nonlinear
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formulations with logic constraints that require the solution of the nonconvex
Mixed-Integer Nonlinear Program (MINLP).

Here, a nonlinear MPC formulation is presented that utilizes hard constraints
to allow for control objective prioiritization. This avoids the need to solve the
complex mixed-integer programming problem. By imposing hard variable con-
straints corresponding to process control objectives such as variable upper and
lower bounds, the feasibility of the resulting nonlinear program (NLP) can be
evaluated to determine whether a solution exists that will satisfy the control
objective. Beginning with the highest priority objective, the hard constraints
can be appended to the traditional MPC formulation and the feasibility can be
tested in an orderly fashion to determine the optimal control sequence while
addressing objective prioritization. This framework is equivalent to the mixed-
integer formulation with geometrically weighted control objectives, in which a
given control objective is infinitely more important that subsequent objectives.
Instead of solving the combinatorial MINLP, the hard constraint approach pro-
vides an efficient and logical progression through the binary tree structure. This
requires solution of a minimal number of NLP’s.

The nonconvex nature of each NLP poses interesting problems in this NMPC
formulation with regard to the determination of both global feasibility and global
optimality. Use of local solution techniques lacks the ability to provide any in-
dication of problem feasibility and leaves one susceptible to suboptimal solu-
tions. A globally convergence stochastic approach is used to provide indication of
global infeasibility and to pursue the global optimum. Deterministic approaches
to guarantee global optimality are also considered, as they have been used pre-
viously in NMPC formulations[10].

2 Mixed Integer Control Formulation

In traditional Model Predictive Control approaches, control objectives are man-
aged through penalizing violations of soft constraints. The typical objective func-
tion to be minimized at each time step is of the form:

Φ =
p∑

i=1

e(i)TΓee(i) +
m∑

i=1

∆u(i)TΓ∆u∆u(i) (1)

Here m and p are the move and prediction horizon. The error vector, e, represents
the difference in the model predicted value and the desired reference for each
of the controlled variables, while ∆u is a vector describing the level of actuator
movement. A vector of weights, or penalties (Γe), consists of constant scalar
elements that represent the cost of violating each control objective. It is here
that control objectives are assigned a relative importance or priority. Likewise,
the elements of Γ∆u are utilized to suppress unnecessary control moves. The
downfall of this approach is that it relies on ad hoc tuning to determine the
appropriate trade-off between meeting various control objectives. For example,
it is often difficult to infer how a controller will choose between violating a
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given constraint by a large amount for a short period of time, or violating a
given constraint by a small amount for a more substantial period of time. This
becomes particularly troublesome as the complexity of the system increases.

Mixed integer formulations have been used in the MPC framework in an at-
tempt to make controller tuning more intuitive and to insure that higher priority
control objectives are accommodated before the less important objectives [8, 9].
This is accomplished by adding additional terms to the traditional objective
function and by introducing binary variables into the optimization problem. The
premise of this approach is that errors associated with each control objective are
explicitly defined and the traditional control objectives can be discretized using
propositional logic and a “big M” constraint of the form:

e(i) ≤M(1−Oj) ∀j = 1..p (2)

Here the Oj is a binary flag defining whether a given control objective can be
met absolutely and M is a large value. Thus, if the error associated with a
given control objective is zero, implying the control objective can be met at
each point across the prediction horizon, the binary flag can take on a value of
1. Otherwise, Oj is forced to a value of zero in order to relax the constraint.
Additional constraints can then be used to indicate whether a control objective
is met in order of its priority. A binary flag, Pj is used to indicate if this is
indeed the case. Constraints of the form Pj ≤ Oj are required to insure that the
objectives are met before being flagged as met in order according to their relative
priority. A set of constraints of the form Pj+1 ≤ Pj are used to force higher
priority objectives to be met first. The objective function in such a formulation
is of the form:

Φ = ΓOO + ΓPP +
p∑

i=1

e(i)TΓee(i) +
m∑

i=1

∆u(i)TΓ∆u∆u(i) (3)

Here O is a vector of the binary flags defining if the discrete objectives have
been met and P is a vector of binary flags defining whether or not the control
objectives have been met in order of priority. ΓO and ΓP are vectors of weights
that reward meeting the discretized objectives in order or priority. Typically the
values of ΓP are chosen to be much larger than the elements of ΓO, which are
orders of magnitude larger than the traditional MPC penalties. This approach
has been demonstrated in a number of cases, including in the inferential control
of unmeasured states in which a state space model is employed to explicitly
define the unmeasured states to be constrained [8].

One drawback of the mixed integer MPC approaches is the combinatorial na-
ture of the resulting mixed integer optimization problem. The resulting mixed-
integer linear programming (MILP) problem can require the solution of up to 2N

LPs where N is the number of binary variables incorporated into the problem.
Fortunately, the computational demand is often mitigated by the relatively few
number of true decision variables associated with the MPC problem. The con-
troller need only specify the m moves for each of the nu process inputs, and the
remaining variables (modeled process states, errors, etc) are then subsequently
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defined based on their relationship to the chosen input sequences, the model,
and process data. From a practical standpoint, the approach can also be limited
by problem dimensionality as penalties spanning numerous orders of magnitudes
raise issues with solver tolerances.

To date, these mixed integer approaches for prioritized objective control have
focused on linear formulations. With the availability of efficient MILP solvers [6],
the methods prove to be viable for real-time control. This is particularly true for
control of chemical processes, which typically have time constants on the order
of minutes. However, many industrial processes are sufficiently nonlinear to mo-
tivate the consideration of nonlinear formulations. The use of a nonlinear model
provides improved closed-loop performance but at the expense of increased com-
putational demand as the nonlinear formulation inherently relies on the solution
of a more difficult nonconvex nonlinear problem (NLP). As the prioritization of
control objectives requires the solution of an MILP in the linear case instead of
an LP, the nonlinear mixed integer formulation requires the solution of a difficult
mixed integer nonlinear program (MINLP) instead of a single NLP.

3 Hard Constraints Formulation for Objective
Prioritization

Assume that for a particular control problem n control objectives are to be
handled appropriately based on their perceived relative priority. In the mixed
integer formulation, this would require in the worst case the solution of 22n+1−1
LP relaxation nodes in a traditional branch-and-bound search. This stems from
the 2n binary variables. Efficient MILP solvers exist [6] and have been shown to
be viable for real-time implementation in linear MPC formulations. However, for
nonlinear dynamic formulations that consider solution of nonconvex MINLP’s,
the optimization problem can prove to be too computationally demanding. The
motivation of the hard constraint formulation is a reduction in the computational
demand to make prioritized objective NMPC possible for real-time control.

This algorithm uses hard variable constraints as a means to avoid the need
to solve the complex MINLP for control objective prioritization in nonlinear
MPC formulations. Consider the nonlinear control problem with n prioritized
control objectives. Provided that each control objective is infinitely more im-
portant than subsequent objectives, these constraints can be handled using a
logical progression through a reduced binary tree structure. Initially, a purely
continuous constrained NLP is formulated. A traditional objective function (as
in Equation 1) is used with explicitly defined errors for violations associated
with each control objective constraint at each point in the prediction horizon.
Soft constraint penalty weights are defined as in typical MPC methods. These
dictate the controller performance in cases in which a control objective cannot
be met for all points in p. Note that as with all soft constraint formulations, this
NLP is inherently feasible.

Starting with the highest priority objective, the ability to meet each indi-
vidual control objective is considered. First, hard constraints forcing the errors
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associated with the highest priority objective to zero are incorporated into the
optimization problem. The constraints are of the form: ei(k) = 0 ∀k = 1..p where
i corresponds to the objective. The feasibility of the modified problem is then
examined, but the actual global solution is not required . If feasible, it is the
known that the control objective can be met and the constraints are left in the
problem. However, if infeasible, the corresponding hard constraints are removed
(relaxed). Note that at this point, violations of this unachievable control objec-
tive will be ultimately minimized based on their appearance in the traditional
objective function as soft penalties. The next highest priority objective is then
considered. Appropriate hard constraints are again added to the problem and
the feasibility is again tested, with two possible results: The second problem con-
sidered will involve hard constraints corresponding to the two highest priority
control objectives if the initial problem was feasible. However, if the initial prob-
lem was not feasible, the second problem will only consider the hard constraints
associated with the second control objective. All subsequent control objectives
are considered one at a time according to this procedure. This will define a single
NLP that represents the final node from the binary tree that would have yielded
the optimal solution. Again, the traditional weights associated with each error
variable are still necessary. These values will define how the controller will handle
cases in which the hard constraints associated with particular prioritized control
objectives cannot be met absolutely over the whole prediction horizon. When it
has been determined that a hard constraint cannot be met without sacrificing
higher priority objectives the control algorithm will fall back to the traditional
weights as it minimizes soft constraint violation. This NLP is then solved for
the optimal input sequence which can then be implemented. Pseudo-code of this
algorithm is presented in Algorithm 1.

Ultimately, this approach requires only that the feasibility of a maximum of
n problems be assessed and then only the solution of a single NLP. Effectively,
each individual feasibility check represents the binary flag from the mixed in-
teger formulation that defines whether or not the discretized control objective
can be met. Checking the numerous control objectives individually in the order
of priority replaces the need for the binary variables and additional proposi-
tional logic constraints associated with meeting the objectives in order. Note
that this framework is exactly equivalent to the mixed-integer implementation
with geometrically weighted control objectives in which a given control objective
is infinitely more important than subsequent objectives.

As presented, this NMPC formulation judiciously handles n prioritized control
objectives through the consideration of a maximum of n NLPs. The feasibility
of up to n problems must be determined and the appropriate NLP is then solved
to global optimality. This maximum number of problems is encountered in the
instance where the feasibility of the problem associated with each control ob-
jective is considered individually beginning with the highest priority objective.
However, a number of heuristics can be utilized to further reduce the computa-
tional demands. For example, under relatively normal operating conditions, it
is to be expected that a large number of the control objectives associated with
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Formulate traditional soft constraint MPC problem with explicit errors for each control objective.
(Eq.1)
Rank control objectives in order from highest to lowest priority.
FOR i from 1 to # of Prioritized Objectives

Impose hard constraints with highest priority control objective i not yet considered:
(ei(k) = 0 ∀k = 1..p)

Check problem feasibility (Solve deterministically until infeasible or feasible)
IF Problem is feasible

Retain corresponding hard constraints.
ELSE

Remove corresponding hard constraints.
END

END For all objectives
Solve resulting NLP with hard constraints corresponding to achievable objectives to global optimal-
ity.
Implement optimal control sequence.

Algorithm 1. Pseudo-Code for the Hard Constraint Formulation for Prioritized Ob-
jective Control

a given process can be met, particularly those of high priority. Under this as-
sumption, it could be beneficial in the optimal case where all objective can be
met. If feasible, the remaining problems (feasibility checks) can be ignored. If all
control objectives are indeed feasible, the algorithm needs only to consider and
solve a single NLP.

4 Nonconvex Optimization

An integral piece of any MPC algorithm is the optimization problem solution
method. For nonlinear formulations this is of particular importance. Local solu-
tion methods can be used. This can leave the strategy susceptible to suboptimal
solutions. Gradient-based methods can become trapped in local minima, thus the
optimality of the solution may be dependent on the initial value. In an attempt
to address the nonconvex problem, globally convergent stochastic methods can
be employed. In this work, the feasible solution space is randomly searched and
probabilistic arguments support the convergence of the algorithm to solution.

NLP solution serves two purposes in this NMPC formulation. The first func-
tion of this tool is to check the feasibility of a given NLP to determine whether
a control objective can be met in order of priority. In this instance, an optimal
solution is not needed. Here, the search need only provide any feasible solution
(upper bound) or sufficiently search the solution space and exhaust the possi-
bility that a feasible solution exists. For the stochastic search, as the number of
points considered approaches infinity, the global feasibility can be guaranteed.
This semblance of global optimality provided by the random search is important,
as local methods can only be relied upon to indicate that a problem is feasible.
Indication of local infeasibility fails to provide information of global feasibility.

The last step in the algorithm is to determine the global optimum of the final
NLP that best accounts for the control objective prioritization. In this case, the
stochastic approach is used to solve this single problem to “global optimality”.
For this particular NLP, the solution space is again randomly searched. The
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best solution found in the random search is used as the starting point for a
local gradient based solution. This effectively determines the global solution,
provided that the solution space is adequately sampled. However, no guarantee
can be made for samples of finite size. In this context, the solution provides an
optimal control sequence that assures that all control objectives are logically
handled in order of their priority and those that cannot be met absolutely have
their violations minimized based on their appearance in the traditional objective
function.

Alternatively, established deterministic methods that provide a rigorous guar-
antee on global optimality can be considered. Deterministic methods for global
optimization typically rely on the generation of convex relaxations of the orig-
inal nonconvex problem. These convex relaxations are constructed in a num-
ber of ways. One such approach, the αBB method [2], handles general twice-
differentiable nonconvex functions. This method relies on the determination of
the minimum eigenvalue for the Hessian of the nonconvex function over the re-
gion of interest, however does not require additional variables or constraints in
the formulation. An alternative approach [11, 16] generates convex functions
using the known convex envelopes of simple nonlinear functions. The original
nonconvex problem is reformulated to a standard form with constraints involv-
ing simple nonlinear functions by the introduction of new variables and new
constraints. This analysis is achieved by recursively simplifying terms in the
function tree expression by introduction of new simple nonlinear expressions.
The new simple nonlinear functions explicitly define new variables in terms of
other variables. A resulting nonconvex equality constraint can then be replaced
by convex inequality constraints. A detailed explanation of these methods and
some comparison of the methods is given in [5].

Upon creation of the linear relaxation for the nonconvex nonlinear problem,
the branch-and-reduce method [15] can be implemented. This is an extension
of the traditional branch-and-bound method with bound tightening techniques
for accelerating the convergence of the algorithm. Within this branch-and-reduce
algorithm, infeasible or suboptimal parts of the feasible region can be eliminated
using range reduction techniques such as optimality-based and feasibility-based
range reduction tests [1, 15, 16] or interval analysis techniques [12]. These tech-
niques help to derive tighter variable bounds for a given partition in the search
tree. The algorithm terminates when the lower bounds for all partitions either
exceed or are sufficiently close (within specified tolerances) to the best upper
bound. At this point, a global optimum has been found. This approach was
applied in a NMPC framework [10].

5 Case Study

The proposed prioritized objective nonlinear model predictive control algorithm
is demonstrated on a simulated multivariable network of air pressure tanks. A
complete description of the system and closed-loop results are presented below.
Consider a simulated multivariable network of air pressure tanks.
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Fig. 1. Schematic of the Network of Pressure Tanks

Supply air is fed to the system at 60 psig through two control valves which
act as the manipulated variables (u1 and u2) in the control problem. Pressure
gradients drive the flow of air through the system. The air flows through the
four tanks that are interconnected, while the numerous valves throughout the
system dictate the direction of the flow. After traveling through the system,
the air ultimately exits the downstream tanks to the atmosphere. It is assumed
that the pressure in each of the four tanks can be measured. These will act as
the process outputs to be controlled. The non-square nature of this configuration
(2×4) lends itself well to demonstrating the ability of this specific controller as all
four measurements cannot be maintained at setpoint using only two manipulated
variables, thus forcing the controller to decide the appropriate trade-off based
on the prioritized objectives.

For this work, it is assumed that the flow of air across a given valve (vi) can
be defined as:

fi(k) = ci

√
∆Pi(k) (4)

where fi is a molar flow, k is the sample time, ci is a proportionality constant
related to the valve coefficient, and ∆Pi is the pressure drop across the valve.
For this study, it is assumed that there is no reverse flow across a valve, forcing
∆Pi non-negative. Under ideal conditions, the discrete time governing equations
defining the pressures in each tank are taken as:

P1(k + 1) = hP1(k)
V1

(u1fCV 1 − γ1f12 − (1− γ1)f14) + P1(k)

P2(k + 1) = hP2(k)
V2

(γ1f12 + (1 − γ2)f32 − f22) + P2(k)

P3(k + 1) = hP3(k)
V3

(u2fCV 2 − γ2f34 − (1− γ2)f32) + P3(k)

P4(k + 1) = hP4(k)
V4

(γ2f34 + (1 − γ1)f14 − f44) + P4(k)

(5)

where γ1 and γ2 define the fractional split of air leaving the upstream tanks.
Here, this set of equations represents both the nonlinear process and the model
used for control purposes. The sampling period (h) used was 3 minutes. This is
important as it defines the time limit in which each optimization problem must
be solved for real-time operation. The parameter values used in this study are
summarized in Table 1.
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Table 1. Model Parameters for the Simulated Network of Pressure Tanks

V1 = 8 V3 = 8 cCV 1 = 0.25 c12 = 0.02 c22 = 0.06 c44 = 0.06 γ1 = 0.5
V2 = 5 V4 = 5 cCV 2 = 0.25 c14 = 0.05 c34 = 0.02 c32 = 0.05 γ2 = 0.3

6 Closed-Loop Results

The performance of the proposed control algorithm is tested on the simulated
pressure tank network. Its ability to appropriately handle control objective pri-
oritization through a number of reference transitions and in the presence of
disturbance loads is demonstrated. A number of control objectives are defined
and assigned a relative priority. These are summarized in Table 2. Assume that
for safety concerns, it is important that the pressure in the upstream tanks are
kept below a pressure of 60 psig. These constraints are given highest priority.
A secondary goal is the regulation of the pressure in second tank (P2). It is
desirable for this tank pressure to closely track setpoint, and thus a setpoint
constraint as well as tight upper and lower bounds (±2 psig from setpoint) are
imposed. Note that the lower and upper bounds are assigned to be priority 3
and 4 respectively, while the setpoint constraint is not considered for objective
prioritization and use of hard constraints. Subsequent control objectives include
a lower bound on the pressure in tank 1 and bounds on the pressure in tank 4.
The pressure in tank 3 is left unconstrained. All constraints include a 15 minute
delay for enforcement.

Table 2. Summary of Prioritized Control Objectives (* Note that a hard constraint
corresponding to the setpoint control objective is not used.)

Relative Variable Constraint Constraint Relative Variable Constraint Constraint
Priority Constrained Type Value Priority Constrained Type Value

1 P1 UB 60 6 P4 UB 30
2 P3 UB 60 7 P4 LB 20
3 P2 LB 25/20/25 8 P4 LB 23
4 P2 UB 29/24/29 9∗ P2 SP 27/22/27
5 P1 LB 55

The controller is tuned to with m = 2 and p = 20. Each control objective is as-
signed a weight of Γe = 100 and the input movements are not penalized, Γu = 0.
These weights are used to determine the tradeoffs between soft constraint vio-
lations of the various control objectives for which the hard constrained problem
cannot be solved. For this example, at each time step, the appropriate NLP is
solved using a stochastic approach followed by a local gradient based search.
Specifically, 1000 points in the solution space are considered, the best of which
is used as the starting point for the gradient-based solution. This stochastic and
gradient-based solution process is repeated 3 times and the best solution is taken
as the optimal control sequence to be implemented.

At t = 150 minutes, a setpoint change for the pressure in tank 2 steps from
its initial value of 27 psig to 22 psig. The controller recognizes the change and
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Fig. 2. Closed-loop Results of the Simulated Network of Pressure Tanks being Con-
trolled by the Hard Constraint formulation for Prioritized Objective NMPC, Objective
Function Values, and Unachievable Control Objectives

begins moving the system to accommodate it (Figure 2). Note that the bounds
associated with P2 are of high priority (priority 3 and 4). The move to satisfy
these constraints requires the controller to violate the lower bounds on the pres-
sure in tank 4 (priority 7 and 8). This means that imposing hard constraints
corresponding to these control objectives renders the associated NLP infeasible.
The control objectives that lead to NLP infeasibility and the objective function
of the solution at each time step is seen in Figure 2. During this transition, the
controller is also unable to move the system fast enough to avoid briefly violat-
ing the upper bound on the pressure in tank 2 (priority 4). The controller does
however, track the new setpoint.

At t = 300 minutes, a disturbance is imposed on the system by simulating
a leak in the first tank. The controller cannot respond to the disturbance fast
enough to avoid the lower bound on the pressure in this tank (priority 5). How-
ever the controller is able to quickly return the pressure within the limiting
values. This action saturates one of the inputs. Again, P2 is maintained within
its limits but is unable to track the setpoint in an offset free position. At t = 450
minutes, while still operating under a disturbance, P2 is returned to its original
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setpoint value of 27 psig. The controller recovers the ability to meet the all con-
trol objectives associated with P4. However, the controller does ride the lower
bound constraint associated with P1.

Note that the indication of feasibility in this formulation is based on the ability
for the controller to find control moves that can maintain the model predicted
outputs within their constraint limits by driving the error to zero. However, the
model predicted values are not always necessarily equivalent to the true process
values (measurements). This plant-model mismatch is inherent in the accuracy
of models developed through the identification process and is often exaggerated
in the presence of an unmeasured disturbance. For this reason, more conservative
bounds should be used to insure that the desired limits are enforced.

7 Conclusions

A Nonlinear Model Predictive Control (NMPC) algorithm that utilizes hard
variable constraints for control objective prioritization has been proposed. The
formulation requires the solution of only a minimal number of NLP’s as opposed
to a complex MINLP. A stochastic approach is utilized to check problem feasibil-
ity and to find the optimum of the resulting nonconvex NLP’s. This alleviates the
shortcomings of purely local gradient based methods as it better searches the so-
lution space for the global optimum. However, optimality can only be rigorously
guaranteed using existing deterministic methods. The controller was shown to
be effective in appropriately handling control objectives of varying importance
in a simulated multivariable network of pressure tanks.
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Summary. Model predictive control (MPC) has been a field with considerable re-
search efforts and significant improvements in the algorithms. This has led to a fairly
large number of successful industrial applications. However, many small and medium
enterprises have not embraced MPC, even though their processes may potentially bene-
fit from this control technology. We tackle one aspect of this issue with the development
of a nonlinear model predictive control package newcon that will be released as free
software. The work details the conceptual design, the control problem formulation and
the implementation aspects of the code. A possible application is illustrated with an
example of the level and reactor temperature control of a simulated CSTR. Finally,
the article outlines future development directions of the newcon package.

1 Introduction

Model predictive control has been a field with considerable research efforts and
significant improvements in the algorithms [3]. Also, the number of commercial
MPC offerings on the market has increased in the last years. Clearly, there are
a number of industrial areas where MPC use is prominent because of the great
economical benefit of this advanced control technology: refineries, petrochemical,
and chemical [20].

It should be noted, however, that the scope of companies that use MPC solu-
tions is rather limited. In order to implement a successful solution, not only is it
necessary to be able to make a very significant investment in expensive propri-
etary products on the market, but also it is important to have in-house technical
and engineering staff able to apply and maintain them and the management to
realize the benefits [7]. Because of these two factors, small and medium enter-
prises (SME), that play a very important role in some economies, may not know
about the existence of MPC or may not realize the potential or, finally, may not
afford it.

Lately, the free and open-source software (OSS) development paradigm has
been gaining wide acceptance. It is mainly characterized by the rights to use,
make modifications, and redistribute software subject to certain limitations.
Some free software packages enjoy a big user community resulting in a fast
development pace.

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 229–238, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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The advantages of such development model for academia and research are
evident, especially for computing intensive fields [25]. Octave [6], R [12], and
ASCEND [19] are examples of successful free software projects.

Besides, new “open source” business models for commercial companies have
been outlined [10, 14]: distribution and technical support, in which a set of
OSS packages are customized and tuned to a specific platform; education, with
OSS used as pedagogical material; hardware sale, in which OSS adds value to
the hardware being marketed; custom development, in which OSS is tailored
for the needs of a particular user; proprietary-open source mixture, in which a
proprietary enhancement to an open source program is available for a fee.

This type of software has a great potential in the field of process control,
especially if some of its disadvantages are overcome [21].

As an alternative to proprietary software for nonlinear model predictive con-
trol (NMPC) and as a way to enable SMEs to use NMPC, we have been devel-
oping newcon, a solution based on open-source and free software. The details
of the underlying technology may be found elsewhere [23]. For the core elements
of the NMPC framework, the ODE solver with sensitivity analysis capabilities
and an optimizer, we use highly efficient third party libraries developed as open-
source and free software [9, 11]. Once ready for an initial release, this NMPC
framework will be available for educational institutions for teaching and research
entities for testing and further improvement. There is a technological spin-off in
the process of creation whose role is to promote the development of the package
and to deploy MPC application in the free software paradigm. Besides, the code
will be available for download for anybody, subject to a free software license.

Other related software packages in the field of NMPC include the Octave
NMPC package [26], Omuses [8], a robust NMPC package [15], the optimal
control package MUSCOD-II [4], and the automatic code generation system for
nonlinear receding horizon control AutoGenU [16].

A description of the implemented control formulation along with a design
overview of newcon is given in Section 2. Also, information on the ODE and
optimizer solvers is provided in Section 2.2. The application of newcon is illus-
trated with a nonlinear example in Section 3. Finally, some remarks and future
directions are pointed out in Section 4.

2 Nonlinear MPC Framework

The nonlinear MPC framework newcon proposed here is based on the Fortran
package developed by [23]. It implements a control formulation with a multiple
shooting strategy to perform the NMPC predictions as described in [22], and is
based on the Newton-type control formulation approach established by [17, 18].

One of the main concerns in the design and the implementation phases of
newcon is to make it modular so that existing components and software, such as
a regulatory control and automation layers, could be integrated in the resulting
advanced control system. The whole point of deploying newcon in small and
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Fig. 1. newcon Component diagram

medium companies is not to replace existing systems and components, but rather
to build upon them.

The conceptual design of newcon (Figure 1) incorporates several modules
with distinct features.

The Controller block contains code necessary for the control problem formu-
lation (as described in Section 2.1) and interface routines to an ODE and a QP
solvers. Besides, in order to reduce the communication overhead, the system
model also makes part of this module. Moreover, an Estimator component may
be used to update the model states and parameters, hence reducing model-plant
mismatch.

The purpose of the Data exchange and synchronization component is to pro-
vide the means for consistent dataflows and to ensure correct timing in the
overall system. This is achieved by the use of POSIX shared memory and syn-
chronization mechanisms. Alternatively, when the timing requirements are not
strict, this module may be based on a database engine.

The function of the Communications block is to interface newcon to the
existing regulatory control system of the plant using open industrial communi-
cation protocols. Because of the widespread use and low cost of the hardware,
open TCP/IP based protocols running over Ethernet hardware will be favored.
This module may implement capabilities/protocols necessary in a particular ap-
plication, adding to the flexibility of the overall system and reducing its size.

The measurements of the plant, the controller states, setpoints, outputs, per-
formance indices, as well as other relevant information is recorded by the logger
module. This module currently supports data saving in plain format in several
text datafiles. Its functionality will be expanded to include database support.

The graphical user interface (GUI) module provides a user friendly way to
control the system, to monitor graphically important variable trends and per-
formance indicators. In order to distribute computing resources evenly, and to
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prevent information “flooding”, two GUI modules are considered, one for the
plant (be it real or simulated) and the other for the controller itself.

newcon is being developed as a package in the Linux operating system using
its powerful development tools, such as the Gnu Compiler Collection (GCC) and
Autotools.

2.1 Control Problem Formulation

The newcon framework requires a mechanistic model of the process to control
of the form:

ẋ = f(x, u, d; θ) (1)
y = g(x; θ) (2)

with f and g twice continuously differentiable, where x ∈ Rns is the state vector,
u ∈ Rnm is the control vector, d ∈ Rnd is the disturbance vector, θ ∈ Rnθ is the
parameter vector and y ∈ Rno is the vector of output variables. A multiple
shooting formulation with different output and input predictive horizon lengths
(denoted by p and m respectively, with p � m) is used to solve the model (1-2)
over the predictive horizon p, where the state equations are integrated inside
each sampling interval [22]. This method is also referred to as direct multiple
shooting [2].

The predictive control formulation features state, output and control con-
straints. Moreover, it can handle output terminal constraints, control move rate
constraints, and state, output, input and control move rate constraint relaxation.
This leads to the following control problem formulation to solve at every time
index i [23]:

min
X,U,ε

Υi

(
Y, U, ε

)
= Ψi

(
Y, U

)
+ Pi(ε) (3)

s.t. ui+k = ui+m−1, k = m, · · · , p− 1 (4)
x̄i+k − φ(x̄i+k−1 , ūi+k−1) = 0, k = 1, . . . , p (5)

ysp,i+p − yi+p = 0 (6)

XL − εx � X � XU + εx (7)
YL − εy � Y � YU + εy (8)
UL − εu � U � UU + εu (9)

∆Umin − ε∆u � ∆U � ∆Umax + ε∆u (10)
ε � 0 (11)

where the subscripts sp, L and U stand for setpoint, lower and upper bound, re-
spectively. The objective function (3) is defined with two terms: a quadratic cost
term, Ψi

(
Y, U

)
, and a penalty (exact or quadratic) term, Pi(ε). The quadratic

cost is given by
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Ψi

(
Y, U

)
=

p∑
k=1

eTi+kQykei+k +
m∑

k=1

(
ui+k−1 − ur,i+k−1

)T
Quk

(
ui+k−1 − ur,i+k−1

)
where the subscript r stands for reference [17, 18], Quk and Qyk are weighting
diagonal matrices, and ei+k = ysp,i+k−yi+k. The penalty term is used only when
constraint relaxation is requested, and ε is a measure of the original constraint
violations on the states, outputs, inputs and control move rates, defined by

ε =
[
εTx εTy εTu εT∆u

]T
.

The problem formulation is coded such that it can handle either an exact or
a quadratic penalty formulation. For instance, if the penalty term is defined
according to the exact penalty formulation, it follows that Pi(ε) = rTε, where r is
the vector of penalty parameters of appropriate size defined by: r = [ρ · · · ρ]T, ρ ∈
R+. The augmented vectors X , Y , U and ∆U are defined by

X =

⎡⎢⎢⎣
xi+1

...
xi+p

⎤⎥⎥⎦ , Y =

⎡⎢⎢⎣
yi+1

...
yi+p

⎤⎥⎥⎦ , U =

⎡⎢⎢⎣
ui

...
ui+m−1

⎤⎥⎥⎦ and ∆U =

⎡⎢⎢⎢⎢⎣
∆ui

∆ui+1

...
∆ui+m−1

⎤⎥⎥⎥⎥⎦ ,

where ∆ui+k = ui+k − ui+k−1, k = 2, . . . ,m − 1. Vectors ∆Umin and ∆Umax
in (10) are defined as follows:

∆Umin =
[
∆uT

min · · · ∆uT
min

]T
, ∆Umax =

[
∆uT

max · · · ∆uT
max

]T
,

with ∆umin, ∆umax ∈ Rnm . Although in this representation it is assumed that
vectors ∆Umin and ∆Umax are constant over the entire input predictive hori-
zon, the implementation of a variable profile is straightforward. Equality con-
straints (5) result from the multiple shooting formulation and are incorporated
into the optimization problem such that after convergence the state and output
profiles are continuous over the predictive horizon. Note that φ(x̄i+k−1 , ūi+k−1),
that is, xi+k, is obtained through the integration of (1) inside the sampling in-
terval t ∈ [ti+k−1, ti+k] only, using as initial conditions the initial nominal states
and controls, x̄i+k−1 and ūi+k−1 respectively. Equation (6) is the the output
terminal equality constraint.

Finally, the actual implementation of the control formulation includes integral
action to eliminate the steady-state offset in the process outputs resulting from
step disturbances and to compensate to some extent the effect due to the model-
plant mismatch. This is achieved by adding in the discrete linearized model the
state equations [17, 18]

zi+k = zi+k−1 + KI

(
yi+k − ysp,i+k

)
, k = 1, . . . , p (12)

with zi = z0, where zi ∈ Rno , KI ∈ Rno×no , and z0 is the accumulated value
of steady state offset over all the past and present time instants. The constant
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diagonal matrix KI determines the speed of the response of the integrator ele-
ment. This feature requires an appropriate extension of the formulation (3-11).
A detailed description of the derivation of the multiple shooting approach using
integral action is presented in [23].

The control problem formulation is presently implemented in a computational
framework (newcon) coded into Fortran and C++. The newcon code features
setup flags to be defined by the user such that the following features are op-
tional: output terminal constraints, integral action, constraint relaxation (exact
or quadratic penalty), and control move rate constraints.

2.2 ODE and QP Solvers

For the core elements of the newcon framework, the ODE solver with sensi-
tivity analysis capabilities and the optimizer, we use highly efficient third party
libraries developed as open-source and free software.

The integration of (1) to perform the predictions and to obtain sensitivity
information is done using the code cvodes [11]. The code cvodes is a solver
for stiff and nonstiff initial value problems for systems of ordinary differential
equations. It has forward and adjoint sensitivity analysis capabilities. cvodes
is part of a software family called sundials: SUite of Nonlinear and DIfferen-
tial/ALgebraic equation Solvers. It is noteworthy, that sundials is built upon
generic vectors. The suite provides a serial vector implementation as well as a
parallel one based on Message Passing Interface (MPI) communication protocol.
A more detailed description of this code can be found in [11].

The resulting nonlinear programming problem (3–11) is solved using a succes-
sive quadratic programming (SQP) method with a line search algorithm based
upon a procedure by [1]. Here the Quadratic Programming (QP) problem is
solved at every iteration using a quadratic programming solver code taken from
the SQP-type solver HQP for large-scale optimization problems. A more detailed
description of this optimizer can be found in [9].

3 Illustrative Nonlinear Example

To illustrate the application of newcon we consider the simulation of a contin-
uous pilot reactor where an exothermic zero-order reaction, A→ B, occurs. This
nonlinear example is taken from [23, 24], and a brief summary of the mathemat-
ical model is provided here. The total reactor mass balance gives

dV
dt

= F0 − F , (13)

where V is the reactor liquid volume, F0 is the inlet flow and F is the outlet
flow. The mass balance to the reactant A is given by

dCA

dt
=

F0

V
(CA0 − CA)− k0 e−Ea/(R Tr) . (14)
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Table 1. Model data

CA0 10. mol/l
Cp , Cpj 4184. J kg−1 K−1

F0 , F 4.0 l/min
Ea/R 10080. K
k0 6.20 × 1014 molm−3 s−1

T0 21.0 ◦C

Tj0 26.0 ◦C
U 900. W m−2 K−1

Vj 0.014 m3

αj 7.0 × 105 J/K
(−∆Hr) 33488. J/mol
ρ , ρj 1000. kg/m3

Table 2. Typical steady states

Steady states lower upper
h 0.30 0.30 m

CA 7.82 4.60 mol/l
Tr 31.5 40.1 ◦C
Tj 28.0 28.0 ◦C
Fj 14.0 48.8 l/min

The reactor temperature dynamics is described by

dTr

dt
=

F0

V
(T0 − Tr)−

U A

ρCp V
(Tr − Tj) +

(−∆Hr)
ρCp

k0 e−Ea/(R Tr) , (15)

and the jacket temperature dynamics is described by

dTj

dt
=

1
ρj Cpj Vj + αj

[
ρj Cpj Fj (Tj0 − Tj) + U A (Tr − Tj)

]
, (16)

where Cpj is the specific heat capacity of the coolant, and Fj is the coolant
flow rate. The heat transfer area is calculated from A = π(r2 + 2 r h) with
r = 0.237 m. Finally, the coefficient αj in (16) stands for the contribution of
the wall and spiral baffle jacket thermal capacitances. A summary of the data
model is given in Table 1. Two typical steady states of this system, one stable
at a lower temperature and one unstable at an upper temperature, are given in
Table 2. Further details on this model are provided in [23, 24].

3.1 Simulation Results

The output variables are the reactor level and the temperature, yT = [h Tr ],
and the controls are the coolant flow rate and the outlet flow rate, uT = [Fj F ].
The following operating limits on the outputs and the controls are considered:
0.08 � h � 0.41 m; Tr � 0; 0 � Fj � 76 l/min; and 0 � F � 12 l/min.

The results presented in Figure 2 were obtained assuming that the model
is perfect and that all the state variables are measured. The output termi-
nal constraints, integral action, control move rate constraints and constraint
relaxation were turned off. These results were obtained using predictive hori-
zons (p,m) = (20, 5), a sampling time of 30 s, and diagonal weighting matrices
Qyk = diag(5× 102, 105) and Quk = diag(10−1, 10−3), k = 1, · · · , p.
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Fig. 2. Reactor closed loop response to a sequence of step changes in the reactor
temperature set-point

Figure 2 shows the reactor closed loop response to a sequence of reactor tem-
perature setpoint step changes. Note that the predictive setpoint profiles are up-
dated in accordance to the operator scheduled setpoint changes. The reactor is
driven to the operating conditions around the unstable steady-state (Figure 2C),
to get a higher rate of conversion of reactant A (Figure 2B). One observes that
the coolant flow rate reaches its upper operating constraint, 76 l/min, around
t & 150 min (Figure 2D). At this point there is no more cooling capacity avail-
able to sustain in a stable way any reactor temperature rise. To compensate for
this the NMPC controller stabilizes the reactor by reducing the residence time,
manipulating the outlet flow rate to drive the level to a value below the level
setpoint (Figure 2A).
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4 Final Remarks and Future Work

In this article we have outlined the conceptual design and the current imple-
mentation of the nonlinear model predictive control framework newcon as an
open-source software package. An illustrative example by simulation is provided.

However, the package may benefit substantially from the following improve-
ments that are of high priority in its development. Although the QP solver from
the HQP package utilizes sparse linear algebra, the original newcon formula-
tion used dense matrices. The conversion from dense to sparse matrices implies
a sizable overhead. This overhead should be eliminated by formulating the opti-
mization problem using sparse linear algebra.

Currently, the controller, together with the simulated plant, run as a single
Linux process. However, following the multitasking paradigm of Linux, it is possi-
ble to use the available computing power more efficiently if the package is broken
up into several independent processes, especially on multiprocessor systems.

The future work directions should include performance tests of newcon on
real large-scale problems such as those presented in [5, 27] and the development
of a state and parameter estimator, e.g., the unscented Kalman filter [13].
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1 Introduction

In view of the widespread success of Model Predictive Control (MPC), in recent
years attention has been paid to its robustness characteristics, either by exam-
ining the robustness properties inherent to stabilizing MPC algorithms, or by
developing new MPC methods with enhanced robustness properties.

By restricting attention to nonlinear systems, this paper presents in a unified
framework some of the robustness results available for nonlinear MPC. Specifi-
cally, the first part of the paper is concerned with the introduction of the main
definitions and of the general results used in the sequel as well as with the de-
scription of a “prototype” nominal MPC algorithm with stability. Then, the
considered class of model uncertainties and disturbances are defined.

In the second part of the paper, the inherent robustness properties of MPC
algorithms designed on the nominal model are reviewed under the main assump-
tion that the problem is unconstrained and feasibility is always guaranteed. The
results reported rely on the decreasing property of the optimal cost function
[5], [6], [42], [25]. Further robustness characteristics can be derived by showing
that unconstrained MPC is inversely optimal, and as such has gain and phase
margins [34].

The last part of the paper is devoted to present the approaches followed so
far in the design of MPC algorithms with robustness properties for uncertain
systems. A first method consists in minimizing a nominal performance index
while imposing the fulfillment of constraints for each admissible disturbance, see
[24]. This calls for the inclusion in the problem formulation of tighter state, con-
trol and terminal constraints and leads to very conservative solutions or even to
unfeasible problems. With a significant increase of the computational burden,
an alternative approach consists in solving a min-max optimization problem.
Specifically, in an open-loop formulation the performance index is minimized
with respect to the control sequence and maximized with respect to the distur-
bance sequence over the prediction horizon. However, this solution is still unsat-
isfactory, since the minimization with respect to a single control profile does not
solve the feasibility problem. This drawback can be avoided as in [3], where the
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MPC control law is applied to an already robust stable system. Alternatively,
the intrinsic feedback nature of every Receding Horizon (RH) implementation of
MPC can be exploited by performing optimization with respect to closed-loop
strategies, as discussed in [8], [29], [30], [33] where robust algorithms have been
proposed for systems with perturbations vanishing at the origin.

2 Notations and Basic Definitions

We use Z+ to denote the set of all nonnegative integers. Euclidean norm is de-
noted simply as |·| . For any function φ : Z+ → Rn, ‖φ‖ = sup {|φ(k)| : k ∈ Z+}
≤ ∞. Br is the closed ball of radius r, i.e. Br = {x ∈ Rn| |x| ≤ r} .

A continuous function α(·) : R+ → R+ is a K function if α(0) = 0, α(s) > 0 for
all s > 0 and it is strictly increasing. A continuous function β : R+ × Z+ → R+
is a KL function if β(s, t) is a K function in s for any t ≥ 0 and for each s > 0
β(s, ·) is decreasing and β(s, t)→ 0 as t→∞.MΩ is the set of signals in some
subset Ω.

Definition 1 (Stability). [22], [23] Given the discrete-time dynamic system

x(k + 1) = f(x(k)), k ≥ t, x(t) = x̄ (1)

with f(0) = 0 and a set Ξ ⊆ Rn with the origin as an interior point:

1. the origin is an asymptotically stable equilibrium in Ξ if ∀ε > 0 ∃δ > 0 such
that ∀x̄ ∈ Ξ with |x̄| ≤ δ, |x(k)| < ε, k ≥ t, and limk→∞ |x(k)| → 0;

2. the origin is a locally exponentially stable equilibrium point if there exist pos-
itive constants δ, α and ρ < 1 such that for any x̄ ∈ Bδ, |x(k)| < α |x̄| ρk−t,
k ≥ t;

3. the origin is an exponentially stable equilibrium point in Ξ if there exist
positive constants α and ρ < 1 such that for any x̄ ∈ Ξ, |x(k)| < α |x̄| ρk−t,
k ≥ t.

Definition 2 (Lyapunov function). [23] A function V (·) is called a Lyapunov
function for system (1) if there exist two sets Ξ1 and Ξ2 with Ξ1 ⊆ Ξ2 and K
functions α1, α2, and α3 such that

V (x) ≥ α1(|x|), ∀x ∈ Ξ2

V (x) ≤ α2(|x|), ∀x ∈ Ξ1 (2)
∆V (x) = V (f(x))− V (x) ≤ −α3(|x|), ∀x ∈ Ξ2

Lemma 1. [23]Let Ξ2 be a positive invariant set for system (1) that contains a
neighborhood Ξ1 of the origin and let V (·) be an associated Lyapunov function.
Then:

1. the origin is an asymptotically stable equilibrium in Ξ2;
2. if α1(|x|) = α1 |x|p , α2(|x|) = α2 |x|p , α3 (|x|) = α3 |x|p , for some real posi-

tive α1, α2, α3 and p, the origin is locally exponentially stable. Moreover, if
the inequality (2) holds for Ξ1 = Ξ2, then the origin is exponentially stable
in Ξ2.
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Definition 3 (Output admissible set). Consider the system

x(k + 1) = f(x(k), u(k)), k ≥ t, x(t) = x̄ (3)

where k is the discrete time index, x(k) ∈ Rn, u(k) ∈ Rm, and f(0, 0) = 0. The
state and control variables are required to fulfill the following constraints

x ∈ X,u ∈ U (4)

where X and U are compact subsets of Rn and Rm, respectively, both containing
the origin as an interior point. Consider the control law

u = κ(x). (5)

Then, the term output admissible set [11], referred to the closed-loop system (3),
(5) denotes a positively invariant set X̄ ⊆ X which is a domain of attraction of
the origin and such that x̄ ∈ X̄ implies κ(x(k)) ∈ U , k ≥ t.

3 Nominal Model Predictive Control

Given the system (3) and the state and control constraints (4), we assume that
f(·, ·) is a C1 function with Lipschitz constant Lf , ∀x ∈ X and ∀u ∈ U.

To introduce the MPC algorithm, first let ut1,t2 := [u(t1) u(t1 +1) . . . u(t2)],
t2 ≥ t1, then define the following finite-horizon optimization problem.

Definition 4 (FHOCP). Consider a stabilizing auxiliary control law κf (·) and
an associated output admissible set Xf . Then, given the positive integer N , the
stage cost l(·, ·) and the terminal penalty Vf (·), the Finite Horizon Optimal Con-
trol Problem (FHOCP ) consists in minimizing, with respect to ut,t+N−1, the
performance index

J(x̄, ut,t+N−1, N) =
t+N−1∑

k=t

l(x(k), u(k)) + Vf (x(t + N)) (6)

subject to

(i) the state dynamics (3) with x(t) = x̄;
(ii) the constraints (4), k ∈ [t, t + N − 1];
(iii) the terminal state constraint x(t + N) ∈ Xf .

It is now possible to define a “prototype” Nonlinear Model Predictive Control
(NMPC) algorithm: at every time instant t, define x̄ = x(t) and find the opti-
mal control sequence uo

t,t+N−1 by solving the FHOCP . Then, according to the
Receding Horizon approach, define

κMPC(x̄) = uo
t,t(x̄) (7)

where uo
t,t(x̄) is the first column of uo

t,t+N−1, and apply the control law
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u = κMPC(x) (8)

In order to guarantee the stability of the origin of the closed-loop system (3),
(8), many different choices of the stabilizing control law κf (·), of the terminal set
Xf and of the terminal cost function Vf have been proposed in the literature, see
[37], [40], [2], [6], [28], [32], [7], [16], [14], [20]. Irrespective of the specific algorithm
applied, a general result can be stated under the following assumptions which
will always be considered in the sequel.

Assumption 3.1. l(x, u) is Lipschitz with Lipschitz constant Ll and is such that
αl(|x|) ≤ l(x, u) ≤ βl(|(x, u)|) where αl and βl are K functions.

Assumption 3.2. Let κf (·), Vf (·), Xf be such that

1. Xf ⊆ X, Xf closed, 0 ∈ Xf

2. κf (x) ∈ U, ∀x ∈ Xf

3. κf (x) is Lipschitz in Xf with Lipschitz constant Lκf

4. f(x, κf (x)) ∈ Xf , ∀x ∈ Xf

5. αVf
(|x|) ≤ Vf (x) ≤ βVf

(|x|) , αVf
and βVf

K functions
6. Vf (f(x, κf (x))) − Vf (x) ≤ −l(x, κf (x)), ∀x ∈ Xf

7. Vf is Lipschitz in Xf with Lipschitz constant LV f

Theorem 1. Let XMPC(N) be the set of the states such that a feasible so-
lution for the FHOCP exists. Given an auxiliary control law κf , a termi-
nal set Xf , a terminal penalty Vf and a cost l(·, ·) satisfying Assumptions
3.1, 3.2, the origin is an asymptotically stable equilibrium point for the closed-
loop system formed by (3) and (8) with output admissible set XMPC(N) and
V (x̄, N) := J(x̄, uo

t,t+N−1, N) is an associated Lyapunov function. Moreover if
αl(|x|) = αl |x|p , βVf

(|x|) = βVf
|x|p , p > 0, then the origin is an exponentially

stable equilibrium point in XMPC(N).

Proof of Theorem 1. First note that

V (x,N) := J(x, uo
t,t+N−1, N) ≥ l(x, κMPC(x)) ≥ αl(|x|) (9)

Moreover, letting uo
t,t+N−1 be the solution of the FHOCP with horizon N at

time t, in view of Assumption 3.2

ũt,t+N = [uo
t,t+N−1, κf (x(t + N))]

is an admissible control sequence for the FHOCP with horizon N + 1 with

J(x, ũt,t+N , N + 1) = V (x,N)− Vf (x(t + N)) + Vf (x(t + N + 1))
+l(x(t+ N), κf (x(t + N))) ≤ V (x,N)

so that
V (x,N + 1) ≤ V (x,N), ∀x ∈ XMPC(N) (10)

with V (x, 0) = Vf (x), ∀x ∈ Xf . Then
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V (x,N + 1) ≤ V (x,N) ≤ Vf (x) ≤ βVf
(|x|) , ∀x ∈ Xf (11)

Finally

V (x,N) = l(x, κMPC(x)) + J(f(x, κMPC(x)), uo
t+1,t+N−1, N − 1)

≥ l(x, κMPC(x)) + V (f(x, κMPC(x)), N)
≥ αl(|x|) + V (f(x, κMPC(x)), N), ∀x ∈ XMPC(N) (12)

Then, in view (9), (11) and (12) V (x,N) is a Lyapunov function and in view of
Lemma 1 the asymptotic stability in XMPC(N) and the exponential stability in
Xf are proven. In order to prove exponential stability in XMPC(N), let Bρ be
the largest ball such that Bρ ∈ Xf and V̄ be a constant such that V (x,N) ≤ V̄
for all x ∈ XMPC(N). Now define

ᾱ2 = max
(
V̄

ρp
, βVf

)
,

then it is easy to see [27] that

V (x,N) ≤ ᾱ2 |x|p , ∀x ∈ XMPC(N) (13)

4 Robustness Problem and Uncertainty Description

Let the uncertain system be described by

x(k + 1) = f(x(k), u(k)) + g(x(k), u(k), w(k)), k ≥ t, x(t) = x̄ (14)

or equivalently

x(k + 1) = f̃(x(k), u(k), w(k)), k ≥ t, x(t) = x̄ (15)

In (14), f(x, u) is the nominal part of the system, w ∈ MW for some compact
subset W ⊆ Rp is the disturbance and g(·, ·, ·) is the uncertain term assumed to
be Lipschitz with respect to all its arguments with Lipschitz constant Lg.

The perturbation term g(·, ·, ·) allows one to describe modeling errors, aging,
or uncertainties and disturbances typical of any realistic problem. Usually, only
partial information on g(·, ·, ·) is available, such as an upper bound on its absolute
value |g(·, ·, ·)| .

For the robustness analysis the concept of Input to State Stability (ISS) is a
powerful tool.

Definition 5 (Input-to-state stability). The system

x(k + 1) = f(x(k), w(k)), k ≥ t, x(t) = x̄ (16)

with w ∈ MW is said to be ISS in Ξ if there exists a KL function β, and a K
function γ such that

|x(k)| ≤ β(|x̄| , k) + γ (‖w‖) , ∀k ≥ t, ∀x̄ ∈ Ξ
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Definition 6 (ISS-Lyapunov function). A function V (·) is called an ISS-
Lyapunov function for system (16) if there exist a set Ξ, K functions α1, α2,
α3, and σ such that

V (x) ≥ α1(|x|), ∀x ∈ Ξ

V (x) ≤ α2(|x|), ∀x ∈ Ξ (17)
∆V (x,w) = V (f(x,w)) − V (x) < −α3(|x|) + σ(|w|), ∀x ∈ Ξ, ∀w ∈ MW

Note that if the condition on ∆V is fulfilled with σ(·) = 0, then the origin is
asymptotically stable for any considered disturbance w.

Lemma 2. [21] Let Ξ be a positive invariant set for system (16) that contains
the origin and let V (·) be a ISS-Lyapunov function for system (16), then the
system (16) is ISS in Ξ.

5 Inherent Robustness of Nominal MPC

In this section, the robustness properties of nominal MPC algorithms are re-
viewed under the fundamental assumption that the presence of uncertainties
and disturbances do not cause any loss of feasibility. This holds true when the
problem formulation does not include state and control constraints and when
any terminal constraint used to guarantee nominal stability can be satisfied also
in perturbed conditions.

5.1 Inverse Optimality

It is well known that the control law solving an unconstrained optimal Infinite
Horizon (IH) problem guarantees robustness properties both in the continuous
and in the discrete time cases, see [12], [43], [10], [1]. Hence, the same robustness
characteristics can be proven for MPC regulators provided that they can be
viewed as the solution of a suitable IH problem. For continuous time systems,
this has been proven in [34], while in the discrete time case, from the optimality
principle we have

V (x,N) = l̄(x(k), κMPC(x(k))) + V (f(x, κMPC(x)), N)

with

l̄(x(k), κMPC (x(k))) : = l(x(k), κMPC(x(k))) − V (f(x, κMPC(x)), N)
+V (f(x, κMPC(x)), N − 1)

Then κMPC(x(k)) is the solution of the Hamilton-Jacobi-Bellman equation for
the IH optimal control problem with stage cost l̄(x, u). In view of Assumption
3.2 and (10) it follows that

l̄(x(k), κMPC (x(k))) > l(x(k), κMPC(x(k)))
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so that the stage cost is well defined and robustness of IH is guaranteed. Specif-
ically, under suitable regularity assumptions on V , in [5] it has been shown that
MPC regulators provide robustness with respect to gain perturbations due to
actuator nonlinearities and additive perturbations describing unmodeled dynam-
ics. Further results on gain perturbations can be achieved as shown in [1].

5.2 Robustness Provided by the ISS Property

The robustness analysis provided by ISS, see also [21], can be summarized by
the following result.

Theorem 2. Under Assumptions 3.1 and 3.2, if V (x,N) is Lipschitz with Lip-
schitz constant LV , the closed-loop system (14), (8) is ISS in XMPC(N) for
any perturbation g(x, u, w) such that |g(x, u, 0)| < ρ

LV
αl(|x|) where 0 < ρ < 1 is

an arbitrary real number.

Proof. Note that (9) and (13) still hold. Moreover

V (f̃(x, κMPC(x), w), N) − V (f(x, κMPC(x), N)
≤ LV

∣∣g(x, κMPC(x), w)
∣∣ ≤ LV

∣∣g(x, κMPC(x), 0)
∣∣ + LV Lg |w|

≤ ραl(|x|) + LV Lg |w|

Hence

V (f̃(x, κMPC(x), w), N)
≤ V (x,N) − (1− ρ)αl(|x|) + LV Lg |w|

Remark 1. If w = 0 the result is equivalent to the one on robust stability reported
in [6]. On the contrary if w 	= 0 then ISS guarantees that the system evolves
towards a compact set which size depends on the bound on w. A way to estimate
this size is given in [31]. Further results on the robustness with bounded and
exponentially decaying disturbances are reported in [42], [25].

Remark 2. All the above results assume some regularity of the MPC control
law and of the value function, see also [18], [19], [26]. It is well known that the
MPC control law could be even discontinuous [38]. In [13], some examples of the
loss of robustness have been presented. For a specific discussion on robustness
of discontinuous MPC see [9].

6 Robust MPC Design with Restricted Constraints

The development of MPC algorithms robust with respect to persistent distur-
bances has received a great deal of attention both for linear systems, see e.g. [4],
and in the nonlinear case. An approach to overcome the feasibility and stability
problems consists in minimizing a nominal performance index while imposing
the constraints fulfillment for any admissible disturbance. This implies the use
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of tighter and tighter state, control and terminal constraints, so leading to very
conservative solutions or even to unfeasible problems. Algorithms with these
characteristics have been described in [39] for continuous-time and in [24] for
discrete time systems. The technique presented in [24] is now briefly summa-
rized. To this aim, the following assumption must be introduced to allow for the
analysis of the (worst-case) effects of the disturbance.

Assumption 6.1. The uncertain term in (14) is bounded by γ, that is |g(·, ·, ·)| ≤
γ for any x and u satisfying (4) and w ∈MW .

In order to guarantee that at any future time instant in the prediction horizon
the disturbance does not cause the state constraints violation, first introduce the
following definition.

Definition 7 (Pontryagin difference). Let A,B ⊂ Rn, be two sets, then the
Pontryagin difference set is defined as A ∼ B = {x ∈ Rn|x+ y ∈ A, ∀y ∈ B} .

Consider now the following sets Xj = X ∼ Bj
γ where Bj

γ is defined as

Bj
γ =

{
z ∈ Rn : |z| ≤

Lj
f − 1

Lf − 1
γ

}
.

Definition 8 (NRFHOCP). Consider a stabilizing auxiliary control law κf (·)
and an associated output admissible set Xf . Then, given the positive integer N ,
the stage cost l(·, ·) and the terminal penalty Vf (·), the Nominal Robust Finite
Horizon Optimal Control Problem (NRFHOCP ) consists in minimizing, with
respect to ut,t+N−1,

J(x̄, ut,t+N−1, N) =
t+N−1∑

k=t

l(x(k), u(k)) + Vf (x(t + N))

subject to:

(i) the state dynamics (3) with x(t) = x̄;
(ii) the constraints u(k) ∈ U and x(k) ∈ Xk−t+1, k ∈ [t, t + N − 1], where

Xk−t+1 are given in Definition 7;
(iii) the terminal state constraint x(t + N) ∈ Xf .

From the solution of the NRFHOCP , the Receding Horizon control law

u = κMPC(x) (18)

is again obtained as in (7) and (8). Concerning the stability properties of the
closed-loop system, the following hypothesis substitutes Assumption 3.2.

Assumption 6.2. Let κf (·), Vf (·), Xf such that

1. Φf := {x ∈ Rn : Vf (x) ≤ α} ⊆ X, Φf closed, 0 ∈ Φf , α positive constant
2. κf (x) ∈ U, ∀x ∈ Φf
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3. f(x, κf (x)) ∈ Φf , ∀x ∈ Φf

4. Vf (f(x, κf (x))) − Vf (x) ≤ −l(x, κf (x)), ∀x ∈ Φf

5. αVf
(|x|) ≤ Vf (x) ≤ βVf

(|x|), αVf
, βVf

are K functions
6. Vf (·) is Lipschitz in Φf with a Lipschitz constant LV f

7. Xf := {x ∈ Rn : Vf (x) ≤ αv} is such that for all x ∈ Φf , f(x, κf (x)) ∈ Xf ,
αv positive constant

Then, the final theorem can be stated.

Theorem 3. [24]Let XMPC(N) be the set of states of the system where there
exists a solution of the NRFHOCP . Then the closed loop system (14), (18) is
ISS in XMPC(N) if Assumption 6.1 is satisfied with

γ ≤ α− αv

LV fL
N−1
f

The above robust synthesis method ensures the feasibility of the solution through
a wise choice of the constrains (ii) and (iii) in the NRFHOPC formulation.
However, the solution can be extremely conservative or may not even exist, so
that less stringent approaches are advisable.

7 Robust MPC Design with Min-Max Approaches

The design of MPC algorithms with robust stability has been first placed in an
H∞ setting in [44] for linear unconstrained systems. Since then, many papers
have considered the linear constrained and unconstrained case, see for example
[41]. For nonlinear continuous time systems, H∞-MPC control algorithms have
been proposed in [3], [30], [8], while discrete-time systems have been studied in
[29], [15], [17], [33], [36]. In [29] the basic approach consists in solving a min-
max problem where an H∞-type cost function is maximized with respect to the
admissible disturbance sequence, i.e. the ”nature”, and minimized with respect
to future controls over the prediction horizon. The optimization can be solved
either in open-loop or in closed-loop. The merits and drawbacks of these solutions
are discussed in the sequel.

7.1 Open-Loop Min-Max MPC

Assume again that the perturbed system is given by

x(k + 1) = f̃(x(k), u(k), w(k)), k ≥ t, x(t) = x̄ (19)

where now f̃(·, ·, ·) is a known Lipschitz function with Lipschitz constant Lf̃ and
f̃(0, 0, 0) = 0. The state and control variables must satisfy the constraints (4),
while the disturbance w is assumed to fulfill the following hypothesis.

Assumption 7.1. The disturbance w is contained in a compact set W and there
exists a K function γ(·) such that |w| ≤ γ(|(x, u)|).
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Letting wt1,t2 := [w(t1) w(t1 + 1) . . . w(t2)], t2 ≥ t1, the optimal min-max
problem can now be stated.

Definition 9 (FHODG). Consider a stabilizing auxiliary control law κf(·) and
an associated output admissible set Xf . Then, given the positive integer N , the
stage cost l(·, ·)− lw(·) and the terminal penalty Vf (·), the Finite Horizon Open-
loop Differential Game (FHODG) problem consists in minimizing, with respect
to ut,t+N−1 and maximizing with respect to wt,t+N−1 the cost function

J(x̄, ut,t+N−1, wt,t+N−1) =
t+N−1∑

k=t

{l(x(k), u(k))− lw(w(k))} + Vf (x(t + N))

subject to:

(i) the state dynamics (19) with x(t) = x̄;
(ii) the constraints (4), k ∈ [t, t+ N − 1];
(iii) the terminal state constraint x(t + N) ∈ Xf .

Once the FHODG is solved and the optimal control sequence uo
t,t+N−1 is avail-

able, according to the RH principle the feedback control law is again given
by (7) and (8). To achieve robustness the idea could be to use a terminal set
and a terminal penalty satisfying the following “robust” version of the sufficient
conditions reported in Assumption 3.2.

Assumption 7.2. Let κf (·), Vf (·), Xf such that

1. Xf ⊆ X, Xf closed, 0 ∈ Xf

2. κf (x) ∈ U, ∀x ∈ Xf

3. f̃(x, κf (x), w) ∈ Xf , ∀x ∈ Xf , ∀w ∈ W
4. αVf

(|x|) ≤ Vf (x) ≤ βVf
(|x|) , αVf

and βVf
K functions

5. Vf (f̃(x, κf (x), w)) − Vf (x) ≤ −l(x, u) + lw(w), ∀x ∈ Xf , ∀w ∈ W
6. Vf is Lipschitz in Xf with Lipschitz constant LV f

Along this line, one could argue again that the value function V (x) = J(x̄,
uo

t,t+N−1, w
o
t,t+N−1) is a candidate to prove the stability of the closed-loop sys-

tem. However, the following fundamental feasibility problem arises. Suppose
that at time t an optimal (hence admissible) control sequence uo

t,t+N−1 for the
FHODG is known. In other words, irrespective of the specific realization of w,
this sequence steers the state x to Xf in N steps or less; hence, the abbrevi-
ated control sequence uo

t+1,t+N−1 steers the state x(t + 1) to Xf at most in
N − 1 steps. Now, the major difficulty is to obtain a feasible control sequence
ũt+1,t+N :=

[
uo

t+1,t+N−1, v
]

required to complete the stability proof (see the
proof of Theorem 1). In fact, Assumption 7.2 does not ensure the existence of a
signal v with this property since the auxiliary control law κf (x(t+N)) can only
provide a control value depending on x(t + N), which in turn is a function of
the particular realization of the disturbance w.
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One way to avoid this impasse is given in [3] where the MPC approach is
applied to an already robust stable system, so that Assumption 7.2 is satisfied
with κf (·) ≡ 0. In this case a feasible control sequence is

ũt+1,t+N :=
[
uo

t+1,t+N−1, 0
]

In order to obtain a system with a-priori robustness properties with respect
to the considered class of disturbances, in [3] it has been suggested to pre-
compensate the system under control by means of an inner feedback loop de-
signed for example with the H∞ approach.

7.2 Closed-Loop Min-Max MPC

The limitations of the open-loop min-max approach can be overcome by explic-
itly accounting for the intrinsic feedback nature of any RH implementation of
MPC, see e.g. [41] for the linear case and [29] for nonlinear systems. In this
approach, at any time instant the controller chooses the input u as a function
of the current state x, so as to guarantee that the effect of the disturbance w is
compensated for any choice made by the “nature”. Hence, instead of optimizing
with respect to a control sequence, at any time t the controller has to choose a
sequence of control laws κt,t+N−1 = [κ0(x(t)) κ1(x(t+1) . . . κN−1(x(t+N−1)].
Then, the following optimal min-max problem can be stated.

Definition 10 (FHCDG). Consider a stabilizing auxiliary control law κf (·)
and an associated output admissible set Xf . Then, given the positive integer N ,
the stage cost l(·, ·) − lw(·) and the terminal penalty Vf (·), the Finite Horizon
Closed-loop Differential Game (FHCDG) problem consists in minimizing, with
respect to κt,t+N−1 and maximizing with respect to wt,t+N−1 the cost function

J(x̄, κt,t+N−1, wt,t+N−1, N) =
t+N−1∑

k=t

{l(x(k), u(k))− lw(w(k))} + Vf (x(t + N))

subject to:

(i) the state dynamics (19) with x(t) = x̄;
(ii) the constraints (4), k ∈ [t, t + N − 1];
(iii) the terminal state constraint x(t + N) ∈ Xf .

Finally, letting κo
t,t+N−1, w

o
t,t+N−1 the solution of the FHCDG the feedback

control law u = κMPC(x) is obtained by setting

κMPC(x) = κo
0(x) (20)

where κo
0(x) is the first element of κo

t,t+N−1.
In order to derive the main stability and performance properties associated

to the solution of FHCDG, the following assumption is introduced.

Assumption 7.3. lw(·) is such that αw (|w|) ≤ lw(w) ≤ βw (|w|) where αw and
βw are K functions.
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Then, the following result holds.

Theorem 4. Let XMPC(N) be the set of states of the system where there exists
a solution of the FHCDG and κt,t+N−1 a vector of Lipschitz continuous con-
trol policies. Under Assumptions 7.1-7.3 the closed loop system ΣMPC given by
(19)-(20) is ISS with robust output admissible set XMPC(N), moreover if γ (·)
is such that βw

(
γ
(∣∣x, κMPC(x)

∣∣)) − αl (|x|) < −δ (|x|) , where δ is a K func-
tion, the origin of the closed loop system ΣMPC given by (19)-(20) is robustly
asymptotically stable.

Proof. First note that in view of Assumption 7.2, given w̃t,t+N−1 = 0, for every
admissible κt,t+N−1

J(x̄, κt,t+N−1, 0, N)

=
t+N−1∑

k=t

{l(x(k), u(k))} + Vf (x(t + N)) > 0, ∀x ∈ XMPC(N)/ {0}

so that

V (x,N) : = J(x̄, κo
t,t+N−1, w

o
t,t+N−1, N) ≥ min

κt,t+N−1
J(x̄, κt,t+N−1, 0, N)

> l(x, κMPC(x)) > αl(|x|), ∀x ∈ XMPC(N) (21)

In view of the Lipschitz assumption on κt,t+N−1 and Assumption 7.1, one can
show that there exists a K function α2 (|x|) such that (17) is fulfilled for any
x ∈ XMPC(N). Suppose now that κo

t,t+N−1 is the solution of the FHCDG with
horizon N and consider the following policy vector for the FHCDG with horizon
N + 1

κ̃t,t+N =

{
κo

t,t+N−1 t ≤ k ≤ t + N − 1
κf(x(t + N)) k = t + N

Correspondingly

J(x̄, κ̃t,t+N , wt,t+N , N + 1)
= Vf (x(t + N + 1))− Vf (x(t + N))

+l(x(t+ N), u(t+ N))− lw(w(t + N))

+
t+N−1∑

k=t

{l(x(k), u(k))− lw(w(k))} + Vf (x(t + N))

so that in view of Assumption 7.2

J(x̄, κ̃t,t+N , wt,t+N , N + 1)

≤
t+N−1∑

k=t

{l(x(k), u(k))− lw(w(k))} + Vf (x(t + N))

which implies
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V (x,N + 1) ≤ max
w∈MW

J(x̄, κ̃t,t+N−1, wt,t+N−1, N + 1)

≤ max
w∈MW

t+N−1∑
k=t

{l(x(k), u(k))− lw(w(k))} + Vf (x(t + N))

= V (x,N) (22)

which holds ∀x ∈ XMPC(N), ∀w ∈MW . Moreover

V (x,N) = V (f̃(x, κMPC(x), w), N − 1)
+l(x, κMPC(x)) − lw(w)

≥ V (f̃(x, κMPC(x), w), N) + l(x, κMPC(x))− lw(w)

∀x ∈ XMPC(N), ∀w ∈MW and

V (f̃(x, κMPC(x), w), N) − V (x,N) ≤ −l(x, κMPC(x)) + lw(w)

and the ISS is proven. Note also that in view of (22)

V (x,N) ≤ V (x,N − 1) ≤ V (x, 0) = Vf (x) ≤ βVf
(|x|) , ∀x ∈ Xf (23)

so that if Xf = XMPC(N) the Lipschitz assumption on κt,t+N−1 can be relaxed.
Finally, in view of Assumption 7.1 with γ (·) such that βw

(
γ
(∣∣x, κMPC(x)

∣∣))−
αl (|x|) < −δ (|x|)

V (f̃(x, κMPC (x), w), N) − V (x,N) ≤ −αl (|x|) + βw

(
γ
(∣∣x, κMPC(x)

∣∣))
≤ −δ (|x|) , ∀x ∈ XMPC(N), ∀w ∈MW

and robust asymptotic stability is derived.

Remark 3. The major drawback of the closed-loop min-max approach is due
to the need to perform optimization over an infinite dimensional space. How-
ever two comments are in order. First, one can resort to a finite dimensional
parametrization of the control policies, see e.g. [35], [29], [8]. In this case, it is
necessary that also the auxiliary control law shares the same structural proper-
ties. Second, similar results can be achieved using different prediction (Np) and
control (Nc) horizons, with Nc ' Np, see [29]. In this case, optimization has to
be performed only with respect to Nc policies, while from the end of the control
horizon onwards the auxiliary control law can be applied.

Remark 4. By means of the same kind of reasoning followed in the proof of Theo-
rem 1 to derive an upper bound of V in XMPC(N), one can relax the hypothesis
on Lipschitz continuity of κt,t+N−1 [27]. However, since in practice this sequence
of control laws must be parametrized a priori, the continuity assumption in this
case can be explicitly verified.
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Remark 5. The computation of the auxiliary control law, of the terminal penalty
and of the terminal inequality constraint satisfying Assumption 3.2, is not trivial
at all. In this regard, a solution has been proposed for affine system in [29],
where it is shown how to compute a non linear auxiliary control law based on
the solution of a suitable H∞ problem for the linearized system under control.
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[2] H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive
control scheme with guaranteed stability. Automatica, 34:1205–1217, 1998.
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Summary. Stochastic uncertainty is present in many control engineering problems,
and is also present in a wider class of applications, such as finance and sustainable
development. We propose a receding horizon strategy for systems with multiplicative
stochastic uncertainty in the dynamic map between plant inputs and outputs. The cost
and constraints are defined using probabilistic bounds. Terminal constraints are defined
in a probabilistic framework, and guarantees of closed-loop convergence and recursive
feasibility of the online optimization problem are obtained. The proposed strategy is
compared with alternative problem formulations in simulation examples.

1 Introduction

The success of a Model Predictive Control (MPC) strategy depends critically on
the choice of model. In most applications the plant model necessarily involves
uncertainty, either endemic (e.g. due to exogenous disturbances) or introduced
into the model to account for imprecisely known dynamics. It is usual in robust
MPC to assume that uncertainty is bounded, or equivalently that it is random
and uniformly distributed, and to adopt a worst case approach (e.g. [1, 2]).
This is often considered to be overly pessimistic, even though it can be made
less conservative through the use of closed-loop optimization [3, 4], albeit at
considerable computational cost.

A more realistic approach, especially when uncertainty is known to be random
but is not uniform, is to identify the distributions of uncertain model parameters
and use these to solve a stochastic MPC problem. In many applications distri-
butions for uncertain parameters can be quantified (e.g. as part of the model
identification process), and some of the constraints are soft and probabilistic
in nature (e.g. in sustainable development applications). Ignoring this informa-
tion (by employing worst case performance indices and invoking constraints over
all possible realizations of uncertainty) results in conservative MPC laws. This
motivates the development of stochastic MPC formulations, which have been
proposed for the case of additive disturbances (e.g. [5, 6, 7]) and for models
incorporating multiplicative disturbances (e.g. [8, 9]).

Information on the distributions of stochastic parameters can be exploited in
an optimal control problem by defining the performance index as the expected
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value of the usual quadratic cost. This approach is the basis of unconstrained
LQG optimal control, and has more recently been proposed for receding horizon
control [7, 10]. Both [10] and [7] consider input constraints, with [10] performing
an open-loop optimization while [7] uses Monte Carlo simulation techniques to
optimize over feedback control policies. This paper also considers constraints,
but an alternative cost is developed based on bounds on predictions that are
invoked with specified probability. The approach allows for a greater degree of
control over the output variance, which is desirable for example in sustainable
development, where parameter variations are large and the objective is to max-
imize the probability that the benefit associated with a decision policy exceeds
a given aspiration level.

Probabilistic formulations of system constraints are also common in practice.
For example an output may occasionally exceed a given threshold provided the
probability of violation is within acceptable levels; this is the case for economic
constraints in process control and fatigue constraints in electro-mechanical sys-
tems. Probabilistic constraints are incorporated in [11] through the use of sta-
tistical confidence ellipsoids, and also in [9], which reduces conservatism by ap-
plying linear probabilistic constraints directly to predictions without the need
for ellipsoidal relaxations. The approach of [9] assumes Moving Average (MA)
models with random coefficients, and achieves the guarantee of closed-loop sta-
bility through the use of an equality stability terminal constraints. The method
is extended in [12] to more general linear models in which the uncertain parame-
ters are contained in the output map of a state-space model, and to incorporate
less restrictive inequality stability constraints.

The current paper considers the case of uncertain time-varying plant pa-
rameters represented as Gaussian random variables. This type of uncertainty
is encountered for example in civil engineering applications (e.g. wind-turbine
blade pitch control) and in financial engineering applications, where Gaussian
disturbance models are common. Earlier work is extended in order to account
for uncertainty in state predictions, considering in particular the definition of
cost and terminal constraints to ensure closed-loop convergence and feasibility
properties. For simplicity the model uncertainty is assumed to be restricted to
Gaussian parameters in the input map, since this allows the distributions of
predictions to be obtained in closed-form, however the design of cost and con-
straints extends to more general model uncertainty. After discussing the model
formulation in section 2 and the stage cost in section 3, sections 4 and 5 propose
a probabilistic form of invariance for the definition of terminal sets and define a
suitable terminal penalty term for the MPC cost. Section 6 describes closed-loop
convergence and feasibility properties, and the advantages over existing robust
and stochastic MPC formulations are illustrated in section 7.

2 Multiplicative Uncertainty Class

In many control applications, stochastic systems with uncertain multiplicative
parameters can be represented by MA models:
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yi(k) =
nu∑

m=1

gT
im(k)ũm(k − 1), ũm(k − 1) = [um(k − n) . . . um(k − 1)]T (1)

where um(k), m = 1, . . . , nu, yi(k), i = 1, . . . , ny, are input and output variables
respectively, and the plant parameters gim(k) are Gaussian random variables.
For convenience we consider the case of two outputs (ny = 2): y1 is taken to be
primary (in that a probabilistic measure of performance on it is to be optimized)
whereas y2 is subject to probabilistic performance constraints and is referred to
as secondary.

As a result of the linear dependence of the model (1) on uncertain plant pa-
rameters, the prediction of yi(k + j) made at time k (denoted yi(k + j|k)) is
normally distributed. Therefore bounds on yi(k + j|k) that are satisfied with a
specified probability p can be formulated as convex (second-order conic) con-
straints on the predicted future input sequence. Bounds of this kind are used
in [9] to derive a probabilistic objective function and constraints for MPC. These
are combined with a terminal constraint that forces predictions to reach a pre-
computed steady-state at the end of an N -step prediction horizon to define a sta-
ble receding horizon control law. Subsequent work has applied this methodology
to a sustainable development problem using linear time-varying MA models [13].

Though often convenient in practice, MA models are non-parsimonious, and
an alternative considered in [12] is given by the state space model:

x(k + 1) = Ax(k) + Bu(k), yi(k) = cT
i (k)x(k), i = 1, 2 (2)

where x(k) ∈ Rn is the state (assumed to be measured at time k), u(k) ∈ Rnu

is the input, and A,B are known constant matrices. The output maps ci(k) ∈
Rn, i = 1, 2 are assumed to be normally distributed: ci(k) ∼ N (c̄i, Θc,i), with
{ci(k), ci(j)} independent for k 	= j. The stability constraints of [9] are relaxed
in [12], which employs less restrictive inequality constraints on the N step-ahead
predicted state.

This paper considers a generalization of the model class in order to handle the
case that the future plant state is a random variable. For simplicity we restrict
attention to the case of uncertainty in the input map:

x(k+1) = Ax(k)+B(k)u(k), B(k) = B̄+
L∑

r=1

qr(k)Br, yi(k) = cT
i x(k), i = 1, 2

(3)
where A, B̄, Bi, ci are known and q(k) = [q1(k) · · · qL(k)]T are Gaussian
parameters. We assume that q(k) ∼ N (0, I) since it is always possible to define
the model realization (A,B,C) so that the elements of q(k) are uncorrelated,
and that {q(k), q(j)} are independent for k 	= j. Correlation between model
parameters at different times could be handled by the paper’s approach, but
the latter assumption simplifies the expressions for the predicted covariances in
section 5 below. The state x(k) is assumed to be measured at time k. The paper
focuses on the design of the MPC cost and terminal constraints so as to ensure
closed-loop stability (for the case of soft constraints) and recursive feasibility
with a pre-specified confidence level.
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3 Performance Index and Constraints

The control objective is to regulate the expected value and variance of the pri-
mary output while respecting constraints on inputs and secondary outputs. We
define the receding horizon cost function to be minimized online at time k as

J =
N−1∑
j=0

l(k + j|k) + L(k + N |k) (4)

where
l(k + j|k) = ȳ2

1(k + j|k) + κ2
1σ

2
1(k + j|k) (5)

with ȳ1(k+ j|k) = Eky1(k+ j|k) and σ2
1(k+ j|k) = Ek

[
y1(k+ j|k)− ȳ1(k+ j|k)

]2
denoting the mean and variance of y1(k + j|k) given the measurement x(k) (we
denote the expectation of a variable z given the measurement x(k) as Ekz).

This form of stage cost is used in preference to the more usual expectation
MPC cost (e.g. [7, 10, 11]) because it enables the relative weighting of mean and
variance to be controlled directly via the parameter κ1, which can be interpreted
in terms of probabilistic bounds on the prediction y1(k+j|k). To see this, let tlower
and tupper be lower and upper bounds on y1(k+ j|k) with a given probability p1:

Pr
(
y1(k + j|k) ≥ tlower(k + j|k)

)
≥ p1

Pr
(
y1(k + j|k) ≤ tupper(k + j|k)

)
≥ p1

(6)

then, since the predictions generated by (3) are normally distributed, it is easy
to show that the stage cost (5) is equivalent to

l(k + j|k) = 1
2 t

2
lower(k + j|k) + 1

2 t
2
upper(k + j|k)

provided κ1 satisfies N(κ1) = p1, where N is the normal distribution function:
Pr(z ≤ Z) = N(Z) for z ∼ N (0, 1).

An important property of the stage cost is that it allows closed-loop stability
under the MPC law to be determined by considering the optimal value of J as
a stochastic Lyapunov function. The analysis (which is summarized in Section 6
below) is based on the following result.

Lemma 1. If κ1 ≥ 1, then for any given input sequence {u(k), u(k+1), . . . , u(k+
j − 1)}, the expectation of l(k + j|k + 1) conditional on time k satisfies:

Ekl(k + j|k + 1) ≤ l(k + j|k). (7)

Proof. Re-writing (5) as l(k + j|k) = Eky
2
1(k + j|k) + (κ2

1 − 1)σ2
1(k + j|k), and

noting that

Ek

(
Ek+1y

2
1(k + j|k + 1)

)
= Eky

2
1(k + j|k)

Ekσ
2
1(k + j|k + 1) = σ2

1(k + j|k + 1)
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we have

Ekl(k + j|k + 1) = l(k + j|k)− (κ2
1 − 1)

(
σ2

1(k + j|k)− σ2
1(k + j|k + 1)

)
.

The required bound therefore holds if κ1 ≥ 1 since σ2
1(k + j|k) ≥ σ2

1(k + j|
k + 1).

Remark 1. In accordance with Lemma 1 it is assumed below that κ1 ≥ 1, or
equivalently that the bounds (6) are invoked with probability p1 ≥ 84.1% (to 3
s.f.). With κ1 = 1, this formulation recovers the conventional expectation cost:
l(k + j|k) = Eky

2
1(k + j|k) for regulation problems.

Consider next the definition of constraints. Since output predictions are Gaussian
random variables, we consider probabilistic (as opposed to hard) constraints:

Pr
(
y2(k + j|k) ≤ Y2

)
≥ p2 (8)

where Y2 is a constraint threshold. Input constraints are assumed to have the
form:

|u(k + j|k)| ≤ U (9)

where u(k + j|k) is the predicted value of u(k + j) at time k.

4 Terminal Constraint Set

Following the conventional dual mode prediction paradigm [14], predicted in-
put trajectories are switched to a linear terminal control law: u(k + j|k) =
Kx(k + j|k), j ≥ N after an initial N -step prediction horizon. For the case
of uncertainty in the output map (2), an ellipsoidal terminal constraint can
be computed by formulating conditions for invariance and satisfaction of con-
straints (8),(9) under the terminal control law as LMIs [12]. However, in the case
of the model (3), the uncertainty in the predicted state trajectory requires that
a probabilistic invariance property is used in place of the usual deterministic
definition of invariance when defining a terminal constraint set. We therefore
impose the terminal constraint that x(k + N |k) lie in a terminal set Ω with
a given probability, where Ω is designed so that the probability of remaining
within Ω under the closed-loop dynamics x(k+1) = Φ(k)x(k) is at least pΩ, i.e.

Pr(Φx ∈ Ω) ≥ pΩ ∀x ∈ Ω. (10)

If constraints on the input and secondary output are satisfied everywhere within
Ω, then this approach can be used to define a receding horizon optimization
which is feasible with a specified probability at time k+1 if it is feasible at time
k. Given that the uncertain parameters of (3) are not assumed bounded, this is
arguably the strongest form of recursive feasibility attainable.

For computational convenience we consider polytopic terminal sets defined by
Ω = {x : vT

i x ≤ 1, i = 1, . . . ,m}. Denote the closed-loop dynamics of (3) under
u = Kx as
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x(k + 1) = Φ(k)x(k), Φ(k) = Φ̄+
L∑

i=1

qi(k)Φi, q(k) ∼ N (0, I) (11)

(where Φ̄ = A + B̄K and Φi = BiK), then confidence ellipsoids for q can be
used to determine conditions on the vertices xj , j = 1, . . . ,M of Ω so that Ω
is invariant with a given probability. Specifically, the condition vT

i Φxj ≤ 1 is
equivalent to xT

j [ΦT
1 vi · · · ΦT

Lvi]q ≤ 1 − xT
j Φ̄

T vi, and, since ‖q‖2 is distributed
as χ2 with L degrees of freedom, it follows that vT

i Φxj ≤ 1 with probability pΩ if

rΩ

∥∥xT
j

[
ΦT

1 vi · · · ΦT
Lvi

] ∥∥
2 ≤ 1− xT

j Φ̄vi (12)

where rΩ satisfies Pr(χ2(L) < r2Ω) = pΩ.

Lemma 2. Ω is invariant under (11) with probability pΩ, i.e.

Pr(vT
i Φx ≤ 1, i = 1, . . . ,m) ≥ pΩ, ∀x ∈ Ω (13)

if (12) is satisfied for i = 1, . . . ,m and j = 1, . . . ,M .

Proof. If (12) holds for given j and i = 1, . . . ,m, then xj necessarily satisfies
Pr(Φxj ∈ Ω) ≥ pΩ (since ‖q‖2 ≤ rΩ with probability pΩ). Furthermore, invoking
this condition for each vertex xj implies (13), since (12) is convex in xj .

The problem of maximizing Ω subject to (10) and the conditions that input
constraints (9) and the secondary output constraint y2 ≤ Y2 are met everywhere
within the terminal set can be summarized as:

maximize vol(Ω) (14)
subject to rΩ

∥∥xT
j

[
ΦT

1 vi · · · ΦT
Lvi

] ∥∥
2 ≤ 1− xT

j Φ̄vi,

|Kxj | ≤ U

c2xj ≤ Y2

in variables {vi, i = 1, . . . ,m} and {xj , j = 1, . . . ,M}. This is a nonconvex prob-
lem, but for fixed {vi} the constraints are convex in {xj}, enabling a sequence
of one-step sets of increasing volume to be computed via convex programming.
Therefore a (locally) optimal point for (14) can be found using a sequential
approach similar to that of [15]. Furthermore, if Ω is defined as a symmetric
low-complexity polytope (i.e. Ω = {x : ‖Wx‖∞ ≤ 1}, for full-rank W ∈ Rn×n),
then the linear feedback gain K can be optimized simultaneously with Ω by in-
cluding the vertex controls, uj , j = 1, . . . , n as additional optimization variables
in (14), where uj = Kxj .

5 Terminal Penalty

To allow a guarantee of closed-loop stability, we define the terminal penalty in (4)
as the cost-to-go over all j ≥ N under the terminal control law u(k + j|k) =
Kx(k+j|k). This section derives the required function L(k+N |k) as a quadratic



MPC for Stochastic Systems 261

form based on the solution of a pair of Lyapunov equations, and shows that the
Lyapunov-like property:

Ek

[
L(k + N + 1|k + 1) + l(k + N |k + 1)

]
≤ L(k + N |k) (15)

holds whenever predictions at time k + 1 are generated by the sequence

u(k + 1) = {u(k + 1|k), . . . , u(k + N − 1|k),Kx(k + N |k + 1)} (16)

where u(k) = {u(k|k), u(k + 1|k), . . . , u(k + N − 1|k)} is the predicted input
sequence at time k and u(k) = u(k|k).

To simplify notation, let xδ = x − x̄, where x̄(k + j|k) = Ekx(k + j|k), and
define

Z1(k + j|k) = Ek

[
x(k + j|k)xT (k + j|k)

]
,

Z2(k + j|k) = Ek

[
xδ(k + j|k)xT

δ (k + j|k)
]
.

Lemma 3. If the terminal penalty in (4) is defined by

L(k + N |k) = Tr
(
Z1(k + N |k)S1

)
+ (κ2

1 − 1)Tr
(
Z2(k + N |k)S2

)
(17)

where S1 = ST
1 � 0 and S2 = ST

2 � 0 are the solutions of the Lyapunov equations

Φ̄TS2Φ̄ + c1c
T
1 = S2 (18a)

Φ̄TS1Φ̄ +
L∑

i=1

ΦT
i

(
S1 + (κ2

1 − 1)S2
)
Φi + c1c

T
1 = S1 (18b)

then L(k+N |k) is the cost-to-go: L(k+N |k) =
∑∞

j=N l(k+j|k) for the closed-loop
system formed by (3) under the terminal control law u(k + j|k) = Kx(k + j|k).

Proof. With u(k + j|k) = Kx(k + j|k), it is easy to show that, for all j ≥ N :

Z1(k + j + 1|k) = Φ̄Z1(k + j|k)Φ̄T +
L∑

i=1

ΦiZ1(k + j|k)ΦT
i (19a)

Z2(k + j + 1|k) = Φ̄Z2(k + j|k)Φ̄T +
L∑

i=1

ΦiZ2(k + j|k)ΦT
i . (19b)

Using these expressions and (18a,b) to evaluate L(k + j + 1|k), we obtain

L(k + j + 1|k) + l(k + j|k) = L(k + j|k), (20)

which can be summed over all j ≥ N to give

L(k + N |k)− lim
j→∞

L(k + j|k) =
∞∑

j=N

l(k + j|k),

but x(k + 1) = Φx(k) is necessarily mean-square stable [16] in order that there
exist positive definite solutions to (18a,b), and it follows that limj→∞ L(k +
j|k) = 0.
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Remark 2. For any j ≥ 1, Z1 and Z2 can be computed using

Z2(k + j|k) =
j−1∑
i=0

ΨiΨ
T
i , Ψi = Aj−1−i

[
B1u(k + i|k) · · · BLu(k + i|k)

]
(21a)

Z1(k + j|k) = x̄(k + j|k)x̄T (k + j|k) + Z2(k + j|k) (21b)

Therefore L(k + N |k) is a quadratic function of the predicted input sequence:

L(k + N |k) = uT (k)Hu(k) + 2gT u(k) + γ

where u(k) = [uT (k|k) · · · uT (k + N − 1|k)]T and H, g are constants.

Theorem 1. If L(k+N |k) is given by (17) and L(k+N+1|k+1), l(k+N+1|k+1)
correspond to the predictions generated by the input sequence (16), then (15) is
satisfied if κ1 ≥ 1.

Proof. From (19), (18), and u(k + N |k + 1) = Kx(k + N |k + 1) it follows that
L(k+N +1|k+1)+ l(k+N |k+1) = L(k+N |k+1). Furthermore, from (21a,b)
we have

EkZ2(k + N |k + 1) = Z2(k + N |k + 1), EkZ1(k + N |k + 1) = Z1(k + N |k).

Combining these results, the LHS of (15) can be written

Ek L(k+N+1|k+1)+l(k+N |k+1) = Tr Z1(k+N |k)S1 +(κ2
1−1)Tr Z2(k+N |k+1)S2

and therefore (15) holds if κ1 ≥ 1 since (21a) implies Z2(k +N |k + 1) ( Z2(k +
N |k).

6 MPC Strategy and Closed-Loop Properties

The stage cost, terminal cost and terminal constraints are combined in this
section to construct a receding horizon strategy based on the online optimization:

minimize
u(k)

Jk =
N−1∑
j=0

l(k + j|k) + L(k + N |k) (22a)

subject to the following constraints, invoked for j = 1, . . . , N − 1:

|u(k + j|k)| ≤ U (22b)

Pr
(
y2(k + j|k) ≤ Y2

)
≥ p2 (22c)

Pr
(
x(k + N |k) ∈ Ω

)
≥ p2 (22d)

The MPC law is defined as u(k) = u∗(k|k), where u∗(k) = {u∗(k|k), . . . , u∗(k +
N − 1|k)} is optimal at time k, computed on the basis of the measured x(k).
From the plant model and parameter distributions, the constraints (22c) on y2
can be written
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κ2
(
cT
2 Z2(k + j|k)c2

)1/2 ≤ Y2 − cT
2 x̄(k + j|k) (23)

where κ2 satisfies N(κ2) = p2. Similarly, making use of confidence ellipsoids for
q(k), the terminal constraint (22d) can be expressed

r1
(
vT

i Z2(k + j|k)vi

)1/2 ≤ 1− vT
i x̄(k + j|k), i = 1, . . . ,m (24)

where r1 is defined by Pr
(
χ2(NL) ≤ r21

)
= p2. It follows that (22) is convex,

and has the form of a second-order cone program (SOCP), enabling solution via
efficient algorithms [17]. The stability properties of the MPC law can be stated
as follows.

Theorem 2. Assume that (22) is feasible at all times k = 0, 1, . . .. Then y1(k)→
0, and ‖x(k)‖2 converges to a finite limit with probability 1 if (A, c1) is observable.

Proof. From Lemmas 1 and 3, the cost, J̃k+1, for the suboptimal sequence ũ(k+
1) = {u∗(k+1|k), . . . ,Kx∗(k+N |k)} at time k+1 satisfies EkJ̃k+1 ≤ J∗

k−y2
1(k),

where J∗
k is the optimal value of (22a). After optimization at k + 1 we have

EkJ
∗
k+1 ≤ EkJ̃k+1 − y2

1(k) ≤ J∗
k − y2

1(k) (25)

It follows that Jk converges to a lower limit and y1(k) → 0 with probability
1 [18]. Furthermore the definitions of stage cost (5) and terminal penalty (17)
imply that

Jk =
∞∑

j=0

cT
1 x̄(k + j|k)x̄T (k + j|k)c1 + κ2

1c
T
1 Z2(k + j|k)c1

and, since
∑∞

j=0 c
T
1 Z2(k+j|k)c1 is positive definite in u(k) if (A, c1) is observable,

it follows that Jk is positive definite in x(k) if (A, c1) is observable. Under this
condition therefore, ‖x(k)‖2 converges to a finite limit with probability 1.

Note that the derivation of (25) assumes a pre-stabilized prediction model;
the same convergence property can otherwise be ensured by using a variable
horizon N .

The constraints (22b-d) apply only to predicted trajectories at time k, and
do not ensure feasibility of (22) at future times. For example, at time k+1, (23)
requires

κ2
(
cT
2 Z2(k + j|k + 1)c2

)1/2 ≤ Y2 − cT
2 x̄(k + j|k + 1), j = 1, . . . , N

where x̄(k+j|k+1) is a Gaussian random variable at time k, with mean x̄(k+j|k)
and variance cT

2 A
j−1Z2(k+1|k)Aj−1T c2. Therefore (23) is feasible at k+1 with

probability p2 if

κ2
(
cT
2 Z2(k+j|k+1)c2

)1/2+κ2
(
cT
2 A

j−1Z2(k+1|k)Aj−1T
c2
)1/2 ≤ Y2−cT

2 x̄(k+j|k)

holds for j = 1, . . . , N at time k; this condition is necessarily more restrictive
than (23) since Z2(k+ j|k) = Z2(k+ j|k+ 1) +Aj−1Z2(k+ 1|k)Aj−1T . In order
to provide a recursive guarantee of feasibility we therefore include additional
constraints in the online optimization, as summarized in the following result.
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Theorem 3. If (23) and (24) are replaced in the MPC online optimization (22)
by

j−1∑
l=0

κ2
(
cT
2 A

j−1−lZ2(k + l + 1|k + l)Aj−1−lT c2
)1/2 ≤ Y2 − cT

2 x̄(k + j|k) (26a)

j−2∑
l=0

κ2
(
vT

i A
j−1−lZ2(k + l + 1|k + l)Aj−1−lT vi

)1/2

+rj

(
vT

i Z2(k + N |k + j − 1)vi

)1/2 ≤ 1− vT
i x̄(k + N |k) (26b)

for j = 2, . . . , N , where rj is defined by Pr(χ2((N + 1 − j)L) ≤ rj) =
p2/p

j−1
Ω , then feasibility of (22) at time k implies feasibility at time k + 1 with

probability p2.

Proof. Condition (26a) ensures that: (i) Pr(y(k + j|k) ≤ Y2) ≥ p2 for j =
1, . . . , N ; (ii) Pr(y(k + j|k + 1) ≤ Y2) ≥ p2, j = 2, . . . , N , is feasible at k + 1
with probability p2; and (iii) the implied constraints are likewise feasible with
probability p2 when invoked at k+1. Here (iii) is achieved by requiring that the
constraints Pr(y(k + l|k + j) ≤ Y2) ≥ p2 be feasible with probability p2 when
invoked at k + j, j = 2, . . . , N − 1. Condition (26b) ensures recursive feasibility
of (22d) with probability p2 through the constraint that Pr(x(k + N |k + j) ∈
Ω) ≥ p2/p

j
Ω, j = 0, . . . , N − 1 (and hence also Pr(x(k+N + j|k+ j) ∈ Ω) ≥ p2)

should be feasible with probability p2.

Incorporating (26a,b) into the receding horizon optimization leads to a convex
online optimization, which can be formulated as a SOCP. However (26) and the
constraint that Ω should be invariant with probability pΩ > p

1/(N−1)
2 ≥ p2 are

more restrictive than (22c,d), implying a more cautious control law.

Remark 3. The method of computing terminal constraints and penalty terms
described in sections 4 and 5 is unchanged in the case that A contains random
(normally distributed) parameters. However in this case state predictions are not
linear in the uncertain parameters, so that the online optimization (22) could no
longer be formulated as a SOCP. Instead computationally intensive numerical
optimization routines (such as the approach of [7]) would be required.

Remark 4. It is possible to extend the approach of sections 4 and 5 to nonlinear
dynamics, for example using linear difference inclusion (LDI) models. In the
case that uncertainty is restricted to the linear output map, yj(k) = Cj(k)x(k)
predictions then remain normally distributed, so that the online optimization,
though nonconvex in the predicted input sequence, would retain some aspects
of the computational convenience of (22).

7 Numerical Examples

This section uses two simulation examples to compare the stochastic MPC algo-
rithm developed above with a generic robust MPC algorithm and the stochastic
MPC approach of [12].
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Fig. 1. Feasible initial condition sets for stochastic MPC (p2 = 0.85) with varying N .
Dashed line: feasible set of robust MPC based on 85% confidence level for N = 4.

First consider the plant model with

A =
1.04 −0.62

0.62 1.04
B̄ =

0

2
B1 =

−0.12

0.02
B2 =

0.04

−0.06
cT
1 =

0

−4.4
cT
2 =

3

2.3

U = 1, Y2 = 1, and p1 = p2 = 0.85. The offline computation for stochastic MPC
involves maximizing a low-complexity polytopic set Ω subject to Pr(Φx ∈ Ω) ≥
p2 for all x ∈ Ω; for this example the maximal Ω has an area of 0.055.

An alternative approach to MPC is to determine bounds on plant parameters
corresponding to a confidence level of, say, p2 by setting

B(k) = B̄ +
L∑

i=1

qi(k)Bi, |q(k)| ≤ N−1(p2) (27)

in (3), and then to implement a robust MPC law based on this approximate
plant model. For a confidence level of p2 = 0.85, the maximal low-complexity
set Ω′, which is robustly invariant for bounded parameter variations (27), is
similar in size (area = 0.048) to Ω. The similarity is to be expected since the
assumption of bounded uncertainty implies that the probability that Φx ∈ Ω′

under the actual plant dynamics for any x ∈ Ω′ is p2.
A robust (min-max) MPC law employing open-loop predictions based on the

parameter bounds of (27) is, however, significantly more conservative than the
stochastic MPC law of (22) for the same confidence level. This can be seen in
Fig. 1, which compares the feasible sets for the two control laws for p2 = 0.85
(the feasible set for robust MPC decreases with increasing N for N > 4 since the
plant is open-loop unstable). Closed-loop performance is also significantly worse:
the closed-loop cost for robust MPC (based on the parameter bounds (27) with
p2 = 0.85), averaged over 10 initial conditions and 200 uncertainty realizations,
is 63% greater than that for stochastic MPC (with p1 = p2 = 0.85). Figures 2
and 3 compare the closed-loop responses for a single initial condition and 20
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Fig. 2. Stochastic MPC closed-loop responses for p2 = 0.85 and 20 uncertainty
realizations (dark lines show responses for a single uncertainty realization)

Fig. 3. Robust MPC closed-loop responses for 85% confidence levels and the same set
of uncertainty realizations as in Fig. 2

uncertainty realizations. The higher degree of conservativeness and greater vari-
ability in Fig. 3 is a result of the robust min-max strategy, which attempts to
control worst-case predictions based on the confidence bounds of (27), whereas
the stochastic MPC strategy (Fig. 2) has direct control over the statistics of
future predictions at each sampling instant.

Consider next the effects of approximating uncertainty in the input map as
output map uncertainty. Modelling uncertainty in plant parameters as output
map uncertainty simplifies MPC design since state predictions are then deter-
ministic, but can result in a higher degree of suboptimality. Thus for the 3rd
order plant model:
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A =

⎡⎢⎣−0.33 0.31 −0.14
0.31 −0.53 0.07
−0.13 0.07 −0.04

⎤⎥⎦ B̄ =

⎡⎢⎣ 1.61
−0.12
−3.31

⎤⎥⎦ B1 =

⎡⎢⎣ 1.80
1.20
−0.80

⎤⎥⎦ B2 =

⎡⎢⎣1.40
0.20
1.60

⎤⎥⎦
c1 =

[
0.80 3.30 −3.20

]
c2 =

[
2.60 0.80 1.20

]
,

with U = 0.5, Y2 = 2, an approximate model realization involving only output
map uncertainty can be constructed by identifying the means and variances of a
pair of MA models. However, a stochastic MPC law for output map uncertainty
designed using the approach of [12] (using 6th order MA models) gives an average
closed-loop cost (over 100 initial conditions) of 114, whereas the average cost
for (22) for the same set of initial conditions is 36.1.
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Summary. Markov chain Monte Carlo methods can be used to make optimal decisions
in very complex situations in which stochastic effects are prominent. We argue that
these methods can be viewed as providing a class of nonlinear MPC methods. We
discuss decision taking by maximising expected utility, and give an extension which
allows constraints to be respected. We give a brief account of an application to air traffic
control, and point out some other problem areas which appear to be very amenable to
solution by the same approach.

1 Introduction

Model Predictive Control (MPC) is characterised by the following features [14]:

1. An explicit internal model used to generate predictions,
2. Online, real-time optimisation to determine the control signals (manipulated

variables),
3. Use of repeated measurements and re-optimisation to obtain feedback,
4. Use of a receding horizon (optional),
5. Explicit consideration of constraints (optional).

In this chapter we will introduce a control method which appears very different
from MPC, as it is usually understood. But it has all the features listed here, so
we claim that it should be considered to be an MPC method. Furthermore, it
can be used with nonlinear models of arbitrary ‘nastiness’, the only requirement
being that predictions can be generated by simulating the model behaviour. Our
method is definitely a nonlinear MPC method. It is even a robust nonlinear MPC
method, because it can cope with uncertainty in the model.

On the other hand, there are some restrictions:

1. The uncertainty has to be probabilistic in nature for the method to make
sense.

2. The criterion of optimality must be the expectation of some utility or per-
formance function. We shall argue in section 2 that this is a very mild re-
striction.

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 269–281, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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3. Constraints are respected in the sense that the probability of constraint
violations is kept below some user-defined threshold. This threshold can be
arbitrarily small (at the expense of computational complexity) but hard
constraints are not enforced, strictly speaking.

4. Computational complexity is very high, so that the time required to find
a solution at each step may be of the order of several hours. In section 6
we shall identify some applications for which this is not a problem. These
applications arise in diverse areas such as batch process control, financial
investment policy, and environment management.

Our method relies on stochastic optimisation. It makes use of a Monte Carlo
Markov Chain technique for optimal decision-taking which was pioneered by
Müller [16] and rediscovered independently by Doucet et al [8]. Our contribution
to the method is a way of incorporating constraints into the problem formulation,
which is presented in section 3. There is no requirement for convexity of the
objective function, convergence (in probability) resulting from the very mild
conditions that are required for the convergence of a homogeneous Markov chain.
The technical details of the method are given in section 4.

Kouvaritakis et al. have previously proposed a stochastic MPC formulation
for solving a problem in the area of sustainable development policy [12]. Their
method involves the solution of a convex optimisation problem, with constraints
in the form of thresholds for the probabilities of obtaining certain outcomes — as
in our approach. The convexity requirement imposes limitations on the model,
objective function, and constraints. Our approach is free of these limitations,
but at the expense of greater computational complexity.

2 Maximising Expected Utility or Performance

The notion of rational decision-making under uncertainty as the maximisation
of the statistical expectation of a utility function has a long history, dating back
to Bernoulli [4] and Bentham [3]. Although it has gone into and out of fashion
as a foundational axiom for economics, its place has been firmly established
since its use (and formalisation) by von Neumann and Morgenstern in Game
Theory [21], and extended to other applications of decision theory by various
authors [1, 11, 18, 20].

Suppose that a set of possible decisions Ω is given, from which one decision
ω ∈ Ω must be chosen. For each such ω, let the outcome be a random variable
X , and let its probability distribution be Pω(x). Suppose that to each decision-
outcome pair (ω, x) we can attach a real-valued utility function u(ω, x), such
that the pair (ω1, x1) is preferred to the pair (ω2, x2) if u(ω1, x1) > u(ω2, x2).
Then the principle of maximising expected utility states that one should choose
the decision optimally as follows:

ω∗ = arg max
ω

EXu(ω, x) = arg max
ω

∫
u(ω, x)dPω(x) (1)

In familiar finite-horizon LQG control theory, the utility is the negative cost
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u(ω, x) = −
N∑

k=0

(
ξT
k+1Qξk+1 + ηT

k Rηk

)
(2)

with x = (ξ1, . . . , ξN+1) being the state sequence and ω = (η0, . . . , ηN ) being
the control sequence.1 Since we will abandon the luxury of linear models and
Gaussian distributions, there will be no analytical advantage in retaining the
quadratic structure, and we will use more general forms of utility function. In
most applications the distribution Pω(x) will be very complicated, and the only
way to elicit it will be to draw samples from a simulator based on the model.
The only way to estimate the integral in (1) will be by Monte Carlo methods.
Thus the only requirement on the form of u(ω, x) will be sufficient regularity for
such estimation to be possible.

This allows many possibilities. For example, if a single outcome x0 is desired,
then setting u(ω, x) = δ(x− x0) (the Dirac impulse) gives EXu(ω, x) = Pω(x0),
and hence ω∗ is a decision which maximises the likelihood of outcome x0.

In the sequel, and in our related publication [13], we use the term performance
instead of utility.

3 Satisfying Constraints

An important consideration for us is that we wish to satisfy constraints, with a
higher priority than maximising the expected performance. That is, we wish to
solve problems of the form

ω∗ = argmax
ω

EXperf(ω, x) subject to Pr{x∗ ∈ Xf} > 1− ε, (0 < ε < 1)

(3)
where x∗ is the outcome resulting from decision ω∗ and Xf is a set of allowed
(feasible) outcomes. The approach we take is of the penalty-function type, ap-
proximating this constrained problem by an alternative unconstrained problem.
First we scale or otherwise transform the performance function perf(ω, x) so
that2

0 ≤ perf(ω, x) ≤ 1 for all ω, x (4)

Then we define

u(ω, x) =

⎧⎪⎨⎪⎩
perf(ω, x) + Λ if x ∈ Xf

1 if x 	∈ Xf ,

(5)

where Λ > 1 is a parameter which represents a reward for constraint satisfaction.
We then solve problem (3) approximately by solving problem (1).

1 The algorithm which we will present in section 4 requires u to be positive, so (2)
could not be used with this algorithm without modification.

2 This is a mild restriction on perf(., .), that such a transformation exists. Usually the
initial definition of perf(., .) is such that (4) holds.
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The quality of the approximation is characterised by the following results,
where

Perfmax|ε = sup
ω

EXperf(ω, x) subject to Pr{x 	∈ Xf} < ε (6)

Theorem 1

Pr{x∗ 	∈ Xf} ≤
(

1− 1
Λ

)
inf
ω

[Pr{x 	∈ Xf}] +
1
Λ

(7)

EXperf(ω∗, x) ≥ Perfmax|ε − (Λ− 1)
(
ε− inf

ω
Pr{x 	∈ Xf}

)
(8)

The bound (7) suggests that if a decision ω exists such that the probability
of violating the constraints is very small, then Λ ≈ 1/ε is appropriate. More
precisely we have:

Corollary 1. If infω Pr{x 	∈ Xf} ≤ ε/2 and Λ = 2/ε then

Pr{x∗ 	∈ Xf} ≤ ε− ε2

4
< ε (9)

However, (8) shows that a large Λ may result in an unnecessary loss of perfor-
mance. Compromise choices of Λ are discussed in [13].

4 Optimisation Using an MCMC Approach

The Markov Chain Monte Carlo (MCMC) optimisation procedure works as fol-
lows. Although the decision to be found is not a random variable, we consider
it to be a random variable Ω. Suppose for the moment that we know its distri-
bution, and that we can extract random samples ω from this distribution. For
each such sample, we can run a model-based simulation J times, and obtain J
realisations of the (random variable) outcome: (x1, x2, . . . , xJ ). We thus have a
realisation (ω, x1, x2, . . . , xJ ) of the joint random variable (Ω,X1, X2, . . . , XJ),
in which the Xi’s all have the same marginal distribution. Now suppose that we
do this repeatedly according to some procedure, and let (Ω,X1, X2, . . . , XJ)n

denote the random variable at the n’th step. (If the procedure were to always
make independent extractions from the same joint distribution then this random
variable would not depend on n.) We can evaluate the performance of each of
the J outcomes at each step by computing the values u(ω, xi), i = 1, . . . , J , and
then score the decision ω by the value ũJ =

∏J
i=1 u(ω, xi). This value ũJ is

the realisation of a random variable, which we denote by ŨJ . We then decide
randomly whether to ‘accept’ the pair (ω, ũJ) or to keep the value we obtained
at the (n−1)’th step, and we update the distribution of Ω. Let (Ω,UJ )n denote
the joint random variable obtained at the n’th step in this way. The clever part
is to make this random decision, and the update of the distribution, such as to
obtain the following properties:
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1. The sequence of random variables (Ω,UJ )n should be a Markov chain. That
is, for each n its probability distribution should depend only on the distri-
bution of (Ω,UJ )n−1.

2. Furthermore, it should be a homogeneous Markov chain, namely it should
have an equilibrium distribution, independent of n. This is so that the chain
converges to its equilibrium distribution as n→∞. (In [17] this requirement
is relaxed.)

3. When the Markov chain is at its equilibrium distribution, the marginal dis-
tribution of Ω should be (proportional to) [EXu(ω, x)]J . If J is large enough,
this distribution will be concentrated close to the optimal value(s) of ω, and
most random samples generated from it will be close to the optimal solution.

This is achieved by the following algorithm. We start with a distribution g(ω),
which is known as the instrumental (or proposal) distribution and is (almost)
freely chosen by the user.

Algorithm 2 (MCMC Algorithm)

initialization:
Extract a sample ω(0) of the random variable Ω(0) from

the distribution g(ω).
Extract J independent samples xj(0) of the random variable Xj(0) from

the (unknown) distribution pΩ(0)(x), by running the simulator J
times.

Compute UJ(0) =
∏J

j=1 u(ω(0), xj(0)).
Set k = 0.
repeat
Extract a sample ω̃ of the random variable Ω̃ ∼ g(ω).
Extract J independent samples x̃j of the random variable X̃j ∼ pΩ̃(x),

j = 1, . . . , J , by running the simulator J times.
Compute ŨJ =

∏J
j=1 u(ω̃, x̃j)

Set ρ = min
{

1, ŨJ

uJ (k)
g(ω(k))

g(ω̃)

}
Set [Ω(k + 1), UJ(k + 1)] =

⎧⎪⎨⎪⎩
[ω̃, ŨJ ] with probability ρ

[ω(k), UJ(k)] with probability 1− ρ
Set k = k + 1.
until True

In the initialization step the state [ω(0), UJ(0)] is always accepted. In subse-
quent steps the new extraction [ω̃, ŨJ ] is accepted with probability ρ otherwise
it is rejected and the previous state of the Markov chain [ω(k), uJ(k)] is main-
tained. In practice, the algorithm is executed until a certain number of extrac-
tions (say 1000) have been accepted. Because we are interested in the equilibrium
distribution of the Markov chain, the first few (say 10%) of the accepted states
are discarded to allow the chain to reach its equilibrium distribution (“burn in
period”).
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Leth(ω, x1, x2, . . . , xJ ) denote the joint distribution of (Ω,X1 , X2, X3, . . . , XJ).
If

h(ω, x1, x2, . . . , xJ ) ∝
J∏

j=1

u(ω, xj)pΩ(xj) (10)

then the marginal distribution of Ω, also denoted by h(ω) for simplicity, satisfies

h(ω) ∝
[∫

u(ω, x)pΩ(x)dx
]J

= [EXu(ω, x)]J (11)

which is the property we specified as property 3 above.
The random accept/reject mechanism, governed by the probability ρ, is a

particular formulation of the Metropolis-Hastings algorithm, which is a general
algorithm for generating a homogeneous Markov chain [19] . For a desired (tar-
get) distribution given by h(ω, x1, x2, . . . , xJ ) and proposal distribution given
by

g(ω)
∏
j

pΩ(xj)

the acceptance probability for the standard Metropolis-Hastings algorithm is

min

{
1,

h(ω̃, x̃1, x̃2, . . . , x̃J )
h(ω, x1, x2, . . . , xJ )

g(ω)
∏

j pΩ(xj)
g(ω̃)

∏
j pΩ̃(x̃j)

}

By inserting (10) in this expression one obtains the probability ρ as defined
in the algorithm. Under minimal assumptions, the Markov Chain generated by
the Ω(k) is uniformly ergodic with equilibrium distribution h(ω) given by (11).
Therefore, after a burn in period, the extractions Ω(k) accepted by the algorithm
will concentrate around the modes of h(ω), which, by (11) coincide with the
optimal points of U(ω). Results that characterize the convergence rate to the
equilibrium distribution can be found, for example, in [19].

5 Using MCMC for NMPC

The original successful idea of MPC was to use general-purpose optimisation
algorithms to solve a sequence of open-loop problems, with feedback being in-
troduced by resetting the initial conditions for each problem on the basis of
updated measurements. Since the algorithm which we have described is an op-
timisation algorithm, we can use it in exactly this way to implement nonlinear
MPC. But it is desirable to modify it in some ways, so as to make it more suitable
for solving MPC problems. Increased suitability has at least two aspects:

1. Addressing the theoretical concerns that have been raised for MPC, in par-
ticular stability, feasibility, and robust versions of these.

2. Reducing the computational complexity, to allow a wider range of problems
to be tackled by the MCMC approach.
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In many of the application areas that we envisage being suitable for the ap-
plication of the MCMC algorithm, performance is often associated with achieve-
ments at the end of a prediction horizon — quality of a batch at the end of
processing, value of an asset portfolio at a maturity date, total emissions of
pollutants by 2020, etc. There is no fundamental problem with this, but as is
pointed out in [12], it could be dangerous to have an objective at the end of the
horizon only, and then implement a receding-horizon strategy, since very unsat-
isfactory trajectories could result which were never ‘seen’ by the performance
criterion. As in conventional MPC, one can expect that such problems can be
avoided by having sufficiently many points in the horizon at which the perfor-
mance is assessed.3 An alternative might be to avoid such problems by imposing
suitable constraints on trajectories during the horizon. Much of MPC stability
theory relies on using the ‘cost-to-go’ as a Lyapunov function. A stochastic ver-
sion of this approach may be applicable to the MCMC approach, although this
would impose a restriction on the performance criterion (which would need to
be increasing with time under certain conditions).

Since our interest is in causal dynamic models and time trajectories of vari-
ables, we expect that the computational complexity of the MCMC approach for
MPC can be reduced by exploiting sequential Monte Carlo techniques [7]. These
techniques are roughly analogous to recursive filtering methods, but for nonlin-
ear systems and non-Gaussian processes. Apart from exploiting the temporal
structure, it should be noted that there is considerable scope for speed-up by
parallelisation, since each of the J simulations that are required at each step of
the MCMC algorithm can be executed in parallel.

Our current and planned research is addressing these issues. But it is impor-
tant to emphasise that applications of the MCMC approach to NMPC problems
do not need to wait for the outcome of this and similar research by others. As in
the early days of MPC (and as still practiced more often than not) it is possible
to take a ‘just do it’ approach in the face of a dearth of theoretical results,4 and
to respond to computational complexity by reducing the degrees of freedom.5

6 Applications

It should be stated at the outset that this section will not provide a list of
successful applications of the proposed MCMC-based approach to NMPC. So
far we have applied the approach to only one application, which will be outlined
in section 6.1, and the development of the approach even to this application is
still far from complete. Our main purpose here is to draw attention to the fact
that there are many other applications, particularly outside the areas normally
3 ‘Coincidence points’ in conventional MPC jargon.
4 Although the situation is a little worse than with early MPC, which did at least have

the possibility of checking nominal closed-loop stability post-hoc for unconstrained
linear models.

5 Early MPC implementations typically used control horizons of only 1 or 2 steps.
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considered by control engineers, which appear to be amenable to solution by our
approach.

6.1 Air Traffic Control

Our original motivation for developing the MCMC method for MPC came from
a problem in civilian air traffic control (ATC) [13]. The current workload of
air traffic controllers is such that they must be provided with some kind of
automated assistance, if projected increases in air traffic are to be safely ac-
commodated [5, 10]. We have examined two types of scenarios. In the first, a
potential conflict between two aircraft during a prediction horizon (of typical
length 20 minutes) is detected, and instructions must be given to the two air-
craft for maneouvres which will resolve the conflict. In the second, a number of
aircraft have entered a terminal manoeuvering area (TMA), which is the region
in which aircraft descend from cruising altitude to the beginning of their final
approach to the runway. Instructions must be given to each of them, to main-
tain safe separation between them, and to achieve desirable objectives such as
minimising fuel use or landing as quickly as possible.

The aircraft are modelled realistically, both as regards their dynamics, and
as regards their standard flight profiles [9] — for example, the aircraft speed
is scheduled on its altitude in normal operation, the schedule being dependent
on both the aircraft type and the airline. A major source of uncertainty is the
effect of wind; realistic spatial and temporal correlation has been included in the
model. Further uncertainty is in the parameters of individual aircraft, precise
values of masses and moments of inertia being unknown to air traffic control.
There is also some uncertainty in the response time between an instruction being
issued by a controller and the aircraft’s response. All of these uncertainties are
modelled stochastically in our simulator. Their combined effect is surprisingly
large — an aircraft descending from a given point at 35000 feet to 10000 feet may
arrive at the lower altitude anywhere in an interval of some tens of kilometres —
see Figure 1.
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Fig. 1. A typical set of trajectories for an aircraft descending from 35000 feet to 10000
feet
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A difference from usual control engineering is that the decision variables (con-
trol inputs) do not follow arbitrary trajectories in time. Particularly in the termi-
nal manoeuvering area, there is a finite number of possible standard maneouvres,
such as ‘descend’, ‘circle while descending’, ‘turn right through 90 degrees’, etc,
and an expected sequence of these maneouvres. The available decisions are (real-
valued) parameters of these manoeuvres, such as the initiation time, diameter
of the circle, rate of descent, etc.

In both the scenarios defined above, there are safety-related constraints (min-
imum horizontal and vertical separation between aircraft), legislative constraints
(eg not entering certain urban zones at night), and desirable objectives (mini-
mum disruption of scheduled flight-plan, landing aircraft X as soon as possible,
etc). The objectives are liable to change with time — for example, an aircraft
might enter the TMA which has already been delayed en route, and should there-
fore be given priority over aircraft which are already in the area. It is therefore
important to have a solution methodology that can accept a wide range of per-
formance functions to be maximised. This is not to suggest that formulations
of such performance functions should be done in real time; a set of performance
functions should be devised for a set of scenarios, and their suitability evaluated
carefully before being put into use. Then the choice of a suitable function from
the set could be made in real time.

The time available for making a decision in the ATC context is of the order of
a few minutes. (Emergency manoeuvres required for avoiding imminent collision
require much faster decisions of course, but these are handled locally by the
affected aircraft, without involving ATC.) Our current implementation of the
MCMC approach is much slower than this, even when only two decision variables
are involved. A speed-up of about one order of magnitude should result from
more efficient coding at an elementary level (much of the time is currently lost
by very inefficient hand-overs between the Java-based simulator and the Matlab-
based MCMC algorithm), but more sophisticated algorithm development will be
required to obtain some further speed-up.

A typical scenario involves two aircraft, one of which is following a fixed set
of instructions, while the other will fly a straight course to a waypoint which
needs to be selected, after which it will fly to a fixed waypoint. The perfor-
mance objective is that they should arrive at a final waypoint (glide-slope cap-
ture) separated in time by 300 sec; this is represented by the objective function
exp{−a|(|T1 − T2|) − 300|}, where T1 and T2 are the arrival times of the two
aircraft at the final waypoint, and a > 0. The constraint is that their mini-
mum separation should be 5 nautical miles horizontally and 1000 feet vertically
at all times, and the probability of violating this constraint should be smaller
than ε = 0.1. As formulated, this simple scenario is a finite-time problem, which
may be re-solved as time proceeds, but it is a ‘shrinking-horizon’ rather than
a receding-horizon scenario. This problem was solved by initially choosing the
instrumental distribution g(ω) uniform over the possible parameter space (a
rectangle in R2), and J = 10. This gave two rather large ‘clouds’ of possible
solutions, but all of them safe ones. Another instrumental distribution g(ω) was



278 J.M. Maciejowski, A. Lecchini Visintini, and J. Lygeros

obtained as a sum-of-Gaussians, fitted to the solutions obtained from the first
run, and the MCMC algorithm was run with J = 50. Finally this procedure
was repeated with J = 100. After the Markov chain has reached equilibrium
(approximately), 1000 accepted states still form a ‘cloud’ which is not very con-
centrated — see Figure 2. However, this is not necessarily a problem: air traffic
controllers have told us that being presented with such a choice of solutions,
with the assurance that each one is safe, is for them a very acceptable outcome,
because it leaves them some freedom in making the final decision. The number
of simulations required for J = (10, 50, 100) was 40740, 161764, and 366666, re-
spectively. Note that the number of simulations required with the larger values
of J would have been much larger if good instrumental distributions had not
been available from previous runs.
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Fig. 2. The ‘cloud’ of 1000 accepted solutions with J = 100

6.2 Batch Process Control

Batch process control is often characterised by very nonlinear models, which are
often quite simple and with very uncertain parameters (which may be described
by probability distributions). The performance criterion often depends on prod-
uct quality at the end of the process, although time-integral criteria (such as
total energy used) also appear. The number of degrees of freedom is often quite
small (a temperature at which to run one step of the process, the duration of a
process stage, etc), and the update interval between decisions can be very large
(hours, days). All these characteristics indicate that the MCMC approach should
be very suitable for many batch processes.
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6.3 Environment Management

In [12] a version of stochastic MPC is developed for a problem of investment
decisions into R&D on alternative sustainable technologies. A stochastic model
is available which describes the effects of R&D expenditure into alternative tech-
nologies, on various indicators of sustainability, such as CO2 emissions and en-
ergy use, over a horizon of 30 years. The objective is to decide on the allocation
over time of expenditure into the competing technologies, subject to a budgetary
constraint. The performance criterion is the probability that a particular indica-
tor exceeds some threshold value, and the constraints are minimum probabilities
of other indicators exceeding their threshold values. Here is an application in
which ‘real-time’ means updating the solution once a year, so that the compu-
tational complexity of the MCMC approach is not an issue.

There are many other environmental problems, such as water resources man-
agement, fishery harvesting policy, atmospheric ozone regulation, river quality
management, etc, that require decision-making over time on the basis of dynamic
models, under conditions of considerable uncertainty [2]. All of these appear to
be suitable applications of the MCMC approach.

6.4 Financial Management

The problem of optimal portfolio allocation is often posed as a problem of
stochastic control, and has attracted very sophisticated solutions [6]. This is
the problem of distributing (and re-distributing from time to time) a fixed in-
vestment budget into various asset classes, so as to maximise the value of the
portfolio, or the income, etc [15]. Very approximate, inherently stochastic mod-
els, are available for the future trajectory of value appreciation and/or income
from each asset class, and constraints may be present, such as a limit on the
probability of losses exceeding some specified value. Update intervals may range
from hours to months, depending on the kinds of assets considered. Once again,
these problems appear to be amenable to the MCMC approach.

7 Conclusions

We have presented a very powerful and general approach to solving optimisation
problems in the form of maximisation of the expected value of a performance
criterion, subject to satisfying a set of constraints with a prescribed probability.
The only essential requirement for implementation of the approach is a model-
based stochastic simulator. We have argued that the form of the criterion is not
restrictive, and that this approach is applicable to a wide variety of stochastic
control problems. Since the approach depends on the availability of a model, and
can be applied repeatedly in real-time, updated by the latest measurements, we
believe that it qualifies to be considered as an MPC method.

The two approaches can be contrasted as follows:

1. Conventional NMPC typically assumes that disturbances and other sources
of uncertainty are bounded but otherwise unknown. MCMC requires a
stochastic description of uncertainty.
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2. Conventional NMPC does not guarantee convergence to the global optimum.
MCMC guarantees convergence to a near-optimal solution.

3. Conventional NMPC interprets constraints as hard bounds. MCMC gives a
pre-defined probability of not violating constraints.

4. Conventional NMPC uses hill-climbing optimization. MCMC uses stochastic
optimization, which requires much more computational effort and time.

5. Satisfactory behaviour of conventional NMPC over time can be achieved
using known techniques. The behaviour of MCMC when used repeatedly in
a receding-horizon context has not yet been investigated.

The application of the MCMC approach to air traffic control problems has
been described. Some speculations on other possible applications have also been
given. It is expected that many such applications will be found outside traditional
engineering areas, where nonlinear uncertain models are available, and enough
time is available to complete the required computations ‘on-line’.

Research is currently under way to make the MCMC algorithm more suit-
able for MPC applications. But some applications can be tackled now, without
waiting for the results of further research.
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Summary. This paper addresses the disturbance attenuation problem in nonlinear
moving horizon control. Conceptually a minimax formulation with a general dissi-
pation constraint is suggested and theoretical results on closed-loop dissipation, L2

disturbance attenuation and stability are discussed. The implementation issue is at-
tacked with respect to tracking a reference trajectory in the presence of external distur-
bances and control constraints, and a computationally tractable algorithm is given in
the framework of LMI optimization. Simulation and comparisons of setpoint tracking
control of a CSTR are presented.

1 Introduction

The academic research of moving horizon control, mostly referred to as model
predictive control (MPC), has achieved significant progresses with respect to the
stability and robustness issues [ABQ99, BM99, MRR00]. It is however rarely
addressed how to guarantee disturbance attenuation in MPC, some schemes
with additive bounded disturbances see for example [SM98, BBM01]. Possibili-
ties to take uncertainties or disturbances are either game theoretic approaches
to moving horizon control [LK94, CSA97, MNS03] with the purpose of in-
corporating well-known robustness guarantees through H∞ constraints into
MPC schemes, or moving horizon approaches to the time-varying or nonlin-
ear H∞ control problems (e.g. [BB99, MNS01]). Previous works can be for
example found in [Tad92, LK94] for linear time-varying systems and recently
in [BB99, MNS01, MNS02, Gyu02] for nonlinear systems, where time-domain
constraints are not taken into account except for [Gyu02]. These formulations
perform implicitly an infinite (or quasi-infinite) horizon feedback prediction. As
a benefit of neglecting time-domain constraints, a prescribed constant distur-
bance attenuation level can be strived. In the presence of time-domain con-
straints, [CSA97] uses a feedback controller as precompensator to guarantee that
the terminal region is rendered robust invariant, and an open-loop optimization
problem is then solved for the feedback pre-compensated system to obtain the
MPC action. When taking disturbances into account, the dissipation inequality
� Currently with Jilin Institute of Chemical Technology, Jilin, PR China.
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of the moving horizon system seems to play an important role. For the finite-
horizon moving horizon formulations, this is achieved by choosing the terminal
penalty function to satisfy the Hamilton-Jacobi-Isaacs inequality locally in a
positive invariant terminal region defined as a value set of the terminal function.
In [CSA97, MNS01], the positive invariance of the terminal region is sufficiently
guaranteed by restricting the amplitude of the disturbance to ‖w(t)‖ ≤ δ‖z(t)‖
(or the discrete form in [MNS03]), whereas in [Gyu02] it is included in primal
assumptions. Removing the rather restrictive hypotheses on the size of distur-
bances, it is shown in [CS03] that closed-loop dissipation might fail, even if
dissipation inequalities are satisfied at each optimization step. This is first ob-
served in [SCA02] with respect to switching between H∞ controllers, where a
condition is derived to recover dissipation. This condition is called dissipation
condition in [CS03, CS04] and introduced into the on-line optimization problem
to enforce dissipation for the moving horizon system.

This paper extends the results in [CS03, CS04] to address the disturbance
attenuation issue of nonlinear moving horizon control. Section 2 presents a con-
ceptual minimax moving horizon control formulation for nonlinear constrained
systems and the theoretical results on closed-loop dissipation, L2 disturbance at-
tenuation and stability. In Section 3, the implementation issue of the suggested
formulation is addressed with respect to tracking in the presence of disturbances
and control constraints. Simulation and comparison results of setpoint tracking
control of a CSTR are given in Section 4.

2 Moving Horizon Control with Disturbance Attenuation

Consider a nonlinear system described by

ẋ(t) = f (x(t), w(t), u(t)) , x(t0) = x0,

z1(t) = h1 (x(t), w(t), u(t)) , z2(t) = h2 (x(t), u(t)) ,
(1)

with time-domain constraints

|z2j(t)| ≤ z2j, max, j = 1, 2, · · · , p2, t ≥ t0, (2)

where x ∈ Rn is the state, w ∈ Rm1 is the external disturbance, u ∈ Rm2

is the control input, z1 ∈ Rp1 is the performance output and z2 ∈ Rp2 is the
constrained output. It is assumed that the vector fields f : Rn×Rm1×Rm2 → Rn,
h1 : Rn × Rm1 × Rm2 → Rp1 and h2 : Rn × Rm2 → Rp2 are sufficiently smooth
and satisfy f(0, 0, 0) = 0, h1(0, 0, 0) = 0 and h2(0, 0) = 0.

With respect to disturbance attenuation, we strive to solve the following min-
imax optimization problem for the system (1) with the initial state x(t0) in
moving horizon fashion:

min
u∈U

max
w∈W

∞∫
t0

‖z1(t)‖2 − γ2‖w(t)‖2dt. (3)



On Disturbance Attenuation of Nonlinear Moving Horizon Control 285

Here U denotes the set of all admissible controls such that time-domain con-
straints are respected; W represents the set of all admissible disturbances. In
the following we assume that there exists an admissible (optimal) control for the
minimization part of (3) with the initial condition x(t0) = x, i.e.,, u∗

0 ∈ U for
which

V (x) := max
w∈W

∞∫
t0

‖z1(t)‖2 − γ2‖w(t)‖2dt (4)

with a given (or minimized) γ. We assume that V is locally continuous in x,
0 < V (x) < ∞ for x 	= 0 and V (0) = 0. By dynamic programming, we obtain
from (4) the integral dissipation inequality

V (x(t1))− V (x(t0)) ≤ −
t1∫

t0

‖z1(t)‖2 − γ2‖w(t)‖2dt (5)

for the system (1) with u∗
0 and any w ∈ W.

Remark 1. Note that u∗
0 can be for example given by u∗

0 := {κ0(x), κ1(x), · · · },
if an open-loop u∗

0 is too conservative due to the existence of external distur-
bances. In the following, we discuss conceptually how to achieve L2 disturbance
attenuation of NMPC, i.e. we do not care how u∗

0 is obtained, although this is in
general difficult and important for the implementation. We will propose in the
next section how to find suitable feedbacks and inputs.

Considering the principle of MPC, the optimization problem (3) will be solved
repeatedly at each time tk ≥ t0, updated by the actual state x(tk). The obtained
control action is injected into the system until the next sampling time, i.e.,,

u(t) := u∗
k(t), t ∈ [tk, tk+1), tk ≥ t0. (6)

By the existence and boundedness assumption for each time instant, we obtain
a sequence of pairs (Vk, γk), k = 0, 1, 2, · · · satisfying (5). As shown in [SCA02],
however, it might not be possible to guarantee dissipation for the closed-loop
system after k ≥ 1. A quadratic switching condition is there derived to recover
the closed-loop dissipation and hence L2 disturbance attenuation. In the con-
text of MPC, this condition (called as dissipation constraint) is introduced into
the on-line solved optimization problem to enforce the dissipation property of
the moving horizon system [CS03, CS04]. We propose to extend the dissipation
constraint, that will be added to (3) as a constraint for all k ≥ 1, in a general
non-quadratic form by

p0 − pk−1 + Vk−1 (x(tk))− Vk (x(tk)) ≥ 0, (7)

where p0 = V0(x0) and pk is recursively computed by

pk := pk−1 − [Vk−1(x(tk))− Vk(x(tk))] . (8)
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Hence, at each sampling time tk ≥ t1 with the actual state x(tk), the moving
horizon control defined in (6) is obtained via (existence assumed)

u∗
k := argmin

u∈U
max
w∈W

∞∫
tk

‖z1(t)‖2 − γ2‖w(t)‖2dt subject to (7). (9)

For the closed-loop system with (6), if we define the piecewise continuous func-
tion V (x(t), t) as

V (x(t), t) := Vk(x(t)), t ∈ [tk, tk+1), tk ≥ t0 (10)

we can state the following result:

Proposition 1. For any τ > t0, the moving horizon closed-loop system given
by (1) and (6) is dissipative in the sense of

V (x0, t0) +

τ∫
t0

γ(t)2‖w(t)‖2 − ‖z1(t)‖2dt ≥ V (x(τ), τ) (11)

where γ(t) is piecewise constant and defined as

γ(t) := γi, ∀t ∈ [ti, ti+1), ti ≥ t0. (12)

Proof: We denote the sequence of the sampling times as t0, t1, t2, · · · and consider
that tk < τ coincides with the sampling time closest to τ . By a simple addition
of the sequent inequalities (5) that are satisfied by the pairs (Vk, γk) for k =
0, 1, 2, · · · , we arrive at

V (x(τ), τ) − V (x0, t0) ≤
k∑

i=1

Vi(x(ti))− Vi−1(x(ti))

−
τ∫

t0

‖z1(t)‖2 − γ(t)2‖w(t)‖2dt, (13)

where (10) and (12) are used. Substituting (8) into (7) recursively, we conclude
that the dissipation constraint enforces

∑k
i=1 Vi(x(ti)) − Vi−1(x(ti)) ≤ 0. Com-

bining it with (13) leads then to (11), as required. �

The following result is a direct consequence of Proposition 1.

Teorema 2.1. The moving horizon closed-loop system admits an L2 -gain from
the disturbance w to the performance output z1 less than γ̄ given by

γ̄ := max
t≥t0

γ(t). (14)
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Teorema 2.2. If the system (1) with the output z1 is zero-state detectable and
the disturbance has finite energy, then, the moving horizon closed-loop system
is asymptotically stable; furthermore, if the disturbance amplitude is bounded in
the form of

ti+1∫
ti

‖w(t)‖2dt ≤
ti+1∫
ti

‖z1(t)‖2
γ2

i

dt, ∀ti ≥ t0 (15)

then, the moving horizon closed-loop system is stable in the sense of Lyapunov.

Proof: For finite energy disturbances, due to V (x, t) ≥ 0, it follows from (11)
that

∫∞
t0
‖z1(t)‖2dt ≤ x(t0)TP0x(t0) +

∫∞
t0

γ(t)2‖w(t)‖2dt < ∞, which implies
x(t)→ 0 as t→∞ by the zero-state detectability. If the disturbances satisfy (15),
we obtain from (11) that V (x(τ), τ) ≤ V (x0, t0), ∀τ ≥ t0. This implies that the
closed-loop system is Lyapunov stable (e.g. [Kha92]). �

3 Implementation with Respect to the Tracking Problem

While the approach outlined in the previous section is theoretically appealing,
the question arises whether it can be implemented at all, due to the com-
putational complexity. This section addresses the implementation issue. For
constrained linear system, [CS04, CS05] presents a computationally tractable
formulation in the framework of LMI optimization. In order to reduce con-
servatism involving in the ellipsoid evaluation of time-domain constraints and
avoid infeasibility, [CGW06] suggests an improved LMI optimization problem
in terms of Lagrange duality. We now provide a tractable implementation for
the suggested minimax formulation with respect to the tracking problem in the
presence of external disturbances and time-domain constraints, considering the
time-varying linearized error system.

3.1 Proposed Algorithm

For simplicity, we consider only control constraints of the form

|uj(t)| ≤ uj,max, j = 1, 2, · · · ,m2, t ≥ t0. (16)

Given a (time-varying, pre-known) reference trajectory (zd, xd, ud) consistent
with the unperturbed nonlinear system, let us define the errors xe := x − xd,
ue := u − ud, ze := z1 − zd and linearize (1) about the reference trajectory at
each sampling time tk. The error dynamics system can be approximated as

ẋe(t) = Akxe(t) + B1kw(t) + B2kue(t), t ≥ tk ≥ t0

ze(t) = C1kxe(t) + D1kw(t) + D2kue(t),
(17)

with Ωk :=

(
Ak B1k B2k

C1k D1k D2k

)
=

( ∂f
∂x

∂f
∂w

∂f
∂u

∂h1
∂x

∂h1
∂w

∂h1
∂u

)∣∣∣∣∣
(xd(tk),ud(tk),0)

. Note that the
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control inputs in the error system (17) are constrained by |ue,j(t)| ≤ uj,max −
|ud,j(t)|, ∀t ≥ tk, j = 1, 2, · · · ,m2. We observe that at each fixed sampling
time tk, (17) is an LTI system. This simplifies significantly finding a solution to
the optimization problem (9). For this purpose, consider V (x) := xTPx with a
symmetric P > 0. It is then easy to show the equivalence of (5) to the following
LMI with Q = P−1 and Y = KQ:⎛⎜⎝AkQ + QAT

k + B2kY + Y TBT
2k ∗ ∗

BT
1k −γ2I ∗

C1kQ + D2kY D1k −I

⎞⎟⎠ < 0. (18)

The feasibility of (5) implies that xe(tk)TPxe(tk) ≥ maxw∈W
∫∞

tk
‖ze(t)‖2 −

γ2‖w(t)‖2dt. Thus, the defined quadratic V provides an upper bound for (4).
Hence, we suggest to solve the following LMI optimization problem instead of
the minimax problem (9) with the smallest possible γ:

min
r,γ2,Q=QT >0,Y

q1r + q2γ
2 subject to (18) and (19a)(

r xe(tk)T

xe(tk) Q

)
≥ 0, r ≤ rc(1 + ε), (19b)⎛⎝u2

jk,max
rc

eT
j Y

∗ Q

⎞⎠ ≥ 0, j = 1, 2, . . . ,m2, (19c)

(
p0 − pk−1 + xe(tk)TPk−1xe(tk) xe(tk)T

xe(tk) Q

)
≥ 0 (19d)

for a given rc > 0, where ujk,max := mint∈[tk,tk+1) (uj,max − |ud,j(t)|) and (q1, q2)
are weights. The LMI (19c) is introduced to guarantee the satisfaction of the
control constraints and (19d) is the LMI formulation of the dissipation con-
straint (7) for the quadratic V considered. We omit the detailed derivation and
refer to [CGW06]. Feasibility of the optimization problem (19) at each sampling
time is crucial for the implementation. Hence, we provide a condition that suffi-
ciently renders (19) feasible, if the linearized models about the reference belong
to a polytope with finite vertices of the form

Ωk ∈ Co

{(
Ai B1,i B2,i

C1,i D1,i D2,i

)
, i = 1, 2, · · · , L

}
, ∀k = 0, 1, 2, · · · . (20)

Lemma 3.1. Suppose that

• there exists a triple (γo, Qo, Yo) satisfying (18) for all vertices in (20);
• the initial error state xe(t0) is bounded in the sense of ‖xe(t0)‖ <∞;
• the amplitude of the disturbance is bounded for all t ≥ tk ≥ t0.

Then, the optimization problem (19) is feasible at each tk ≥ t0 for some rc > 0
and ε ≥ 0.
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Proof: By the first assumption, the triple (γo, Qo, Yo) renders (18) feasible for
all k ≥ 0 and (19d) feasible for all k ≥ 1. Moreover, at each tk ≥ t0, we can
always find rc > 0 satisfying (19c). At time t0, if xe(t0) is bounded, we can define
r0 := xe(t0)TQ−1

o xe(t0) satisfying (19b) for some ε ≥ 0. The feasibility of (18)
leads to (5) with the pair (xT

e Q
−1
o xe, γo), which implies that x(1) is bounded

if the disturbance is bounded in the amplitude. By induction, we can conclude
that there exist rc > 0 and ε ≥ 0 such that (rk, γo, Qo, Yo) construct a feasible
solution to (19) at each tk ≥ t0, where rk := xe(tk)TQ−1

o xe(tk) �

We now give the following moving horizon algorithm for the tracking problem
considered, which is computationally tractable:

Step 1. Initialization. Choose rc and (q1, q2).
Step 2. At time t0. Get xe(t0), uj0,max and Ω0. Take ε = 0 and solve (19) with-

out (19d) to obtain (r0, γ0, Q0, Y0). If the problem is not feasible, increase
ε > 0. Set K0 = Y0Q

−1
0 , P0 = Q−1

0 , p0 = V0(xe(t0)) and go to Step 4.
Step 3. At time tk > t0. Get xe(tk), ujk,max and Ωk. Take ε = 0 and solve (19) to

obtain (rk, γk, Qk, Yk). If the problem is not feasible, increase ε > 0. Set
Kk = YkQ

−1
k , Pk = Q−1

k and prepare for the next time instant according
to (8).

Step 4. Compute the closed-loop control as

ue(t) = Kkxe(t), ∀t ∈ [tk, tk+1). (21)

Replace tk by tk+1 and continue with Step 3.

3.2 Closed-Loop Properties

The above algorithm provides an (almost) optimal solution to the optimization
problem (19) at each sampling time tk ≥ t0, denoted by (rk, γk, Qk, Yk). The
closed-loop control is then given by (21) with Kk = YkQ

−1
k . We first discuss the

satisfaction of the control constraints (16). The result is obvious: if the following
inequality∣∣eT

j (Kkxe(t) + ud(t))
∣∣ ≤ uj,max, ∀t ∈ [tk, tk+1), j = 1, 2, · · · ,m2 (22)

is satisfied, then, the control constraints are respected. According to the algo-
rithm, the on-line optimization procedure shapes first the state ellipsoid to meet
the control constraints. If it fails, the ellipsoid will be enlarged by some ε > 0.
After the successful optimization, the satisfaction of the control constraints can
be checked by (22). The conservatism involved in the ellipsoid evaluation of the
control constraints is to some extent reduced, since the control constraints are
in general given in a polytopic form [CGW06]. Hence, we can state the following
results according to the discussion in Section 2.
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Corollary 1. The system (17) with the moving horizon control (21) achieves
the following properties:

1. the disturbance is attenuated in the sense of the L2 -gain from w to ze less
than γ̄, where γ̄ is defined by (14);

2. the closed loop is asymptotically stable, if the system (17) is uniformly zero-
state detectable and the disturbance has finite energy;

3. the closed loop is stable in the Lyapunov sense, if the disturbance is bounded
in the amplitude by (15).

Proof: The proof is an immediate consequence of Theorem 2.1 and Theorem 2.2,
considering V (x) = xTPx. �

Note that the above results are for the linearized error system. The complete
feedback control law for system (1) is given by u = κ(x) := Kk (x− xd) + ud,
where κ(xd) = ud. The dynamics of the tracking error is then given by

ẋe(t) = fe (xe(t), w(t)) , t ≥ t0

ze(t) = he (xe(t), w(t)) (23)

with fe(xe, w) := f(xe + xd, κ(xe + xd), w) − ẋd, and he(xe, w) := h1(xe +
xd, κ(xe + xd), w) − zd. Since (zd, xd, ud) satisfies the unperturbed nonlinear
system, i.e.,, ẋd(t) = f (xd(t), ud(t), 0), zd(t) = h1 (xd(t), ud(t), 0), the point
(0, 0) is then an equilibrium of the nonlinear error system (23). Therefore, we
can state the following local L2 disturbance attenuation property.

Teorema 3.1. If the system (1) with the performance output z1 is zero-state
detectable, then, the nonlinear moving horizon tracking system (23) achieves
disturbance attenuation in the sense of the local L2 -gain from w to ze less than
γ̄, where γ̄ is defined by (14).

Proof: Due to the zero-state detectability, it follows from the result (2) of Theo-
rem 1 that the linearized system of (23) at the equilibrium (0, 0) is asymptotically
stable. Hence, we can apply Corollary 8.3.4 in [Sch00] to conclude that there ex-
ists a neighborhood of the equilibrium such that the error system (23) admits
an L2 -gain less than γ̄. �

4 Example: Reference Tracking of a CSTR

To demonstrate the suggested moving horizon tracking algorithm, we con-
sider a continuous stirred tank reactor, in which the following reactions take
place: A k1−→ B

k2−→ C, 2A k3−→ D. A more detailed description can be found
in [KEK94]. The control objective is to asymptotically track a given reference
trajectory despite disturbances: the inflow concentration and inflow tempera-
ture. As state variables, we consider the concentrations of the initial reactant A
and the product B in the reactor, denoted as cA and cB, the temperatures in
the reactor and in the cooling jacket, represented by ϑ and ϑK . The normalized
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flow rate q to the reactor and the heat removal power jQ from the cooling jacket
are considered as control inputs, that are assumed to be saturated as

3
1
h
≤ q ≤ 35

1
h
, −9000

kJ
h
≤ jQ ≤ 0

kJ
h

. (24)

Since the main product of the CSTR is the substance B, we choose ze =
(Hxe Eue)T with H = diag(0.1, 1, 0.5, 0.1) and E = diag(0.35, 0.35) as per-
formance output. The proposed moving horizon tracking scheme is implemented
with a sampling time of T = 20s, and the tuning parameters in (19) are chosen
as rc = 11, q1 = 0.1 and q2 = 1.
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Fig. 1. Reference trajectory (left) and disturbances (right,top): normalized inflow con-
centration ( ) and temperature (−·−); profiles of γ(t) and xe(t)T Pxe(t)

rc
(right,middle

and bottom)

The left plot of Fig. 1 shows a reference trajectory generated by flatness
technique [RRZ96], that is consistent with the unperturbed CSTR model and
feasible for control constraints to drive the CSTR from the setpoint of ϑ =
110oC and cB = 0.975mol

l to the maximal yield point of ϑ = 114.07oC and
cB = 1.09mol

l . In the presence of disturbances shown in the top right of Fig. 1,
the tracking errors are plotted in Fig. 2. As a comparison, we design two fixed
H∞ controllers by solving the following LMI optimization problem

min
γ2,Q=QT >0,Y

γ2 subject to (18) and (19c) (25)

with rc = 11 (denoted as A) and rc = 40 (denoted as B), where the subscript k
in (18) is replaced by i with i = 1, 2 corresponding to the linearized models of
the CSTR at the two setpoints. We stress that the control actions injected into
the CSTR will be clipped if the values exceed the bounds given in (24). This
happens for the fixed controller A during the both disturbances (see the dashed
lines in Fig. 3), and for the B during the second disturbance (see the dash-dotted
lines in Fig. 3). A clear performance degeneration duo to clipping can be seen in
Fig. 2. For the suggested moving horizon tracking controller, we summarize the
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Fig. 2. Tracking errors for moving horizon controller with rc = 11 ( ) and fixed
controllers with rc = 11 (−−) and rc = 40 (− · −)
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Fig. 3. Control inputs for moving horizon controller with rc = 11 ( ) and fixed
controllers with rc = 11 (−−) and rc = 40 (− · −)

following points: Control constraints are satisfied; it achieves better performance
by avoiding saturation and making the best of the allowable controls; it avoids
actuator saturation by relaxing the performance level and recovers a higher
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performance level when large disturbances inclusive of reference changes van-
ish. Moreover, we observe the clear and large violation of xe(t)TPkxe(t) ≤ rc in
the bottom right of Fig. 1. This confirms the advantages of the suggested moving
horizon tracking algorithm in avoiding infeasibility and reducing conservatism
in handling time-domain constraints.

5 Conclusions

In this paper, the disturbance attenuation issue of nonlinear moving horizon
control has been addressed. By extending the dissipation constraint in a gen-
eral non-quadratic form, a conceptual minimax moving horizon formulation is
suggested and theoretical results on closed-loop dissipation, L2 disturbance at-
tenuation and stability are discussed. The implementation issue is attacked with
respect to tracking a reference trajectory in the presence of external disturbances
and control constraints. A computationally tractable algorithm is given in the
framework of LMI optimization and applied to the reference tracking control of
the CSTR. As revealed in the title, the results of this paper might be prelimi-
nary. Further works are required either to build a rigorous theoretical basis or
to achieve non-conservative and computationally tractable algorithms.
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Summary. A novel robust controller, chance constrained nonlinear MPC, is pre-
sented. Time-dependent uncertain variables are considered and described with piece-
wise stochastic variables over the prediction horizon. Restrictions are satisfied with a
user-defined probability level. To compute the probability and its derivatives of satisfy-
ing process restrictions, the inverse mapping approach is extended to dynamic chance
constrained optimization cases. A step of probability maximization is used to address
the feasibility problem. A mixing process with both an uncertain inflow rate and an
uncertain feed concentration is investigated to demonstrate the effectiveness of the
proposed control strategy.

1 Introduction

Model predictive control (MPC) refers to a family of control algorithms which
utilize an explicit model to calculate the manipulated variables that optimize the
future plant behaviour. The inherent advantages of MPC, including its capability
of dealing with multivariate variable problems as well as its capability of handling
constraints, make it widely used in the process industry.

Due to the nature of process uncertainty, a robust MPC is desired to obtain
satisfactory control performances. Including uncertainty in control system de-
sign will enhance the robustness of MPC. Generally speaking, there are three
basic approaches to address uncertainty. The constant approach which assumes
the model mismatch is unchanged during the prediction horizon [1] leads to an
aggressive control strategy. In contrary, the Min-Max approach in which the
boundaries of the uncertain variables are taken into account [2] is too conser-
vative. The third one is the stochastic approach, or chance constrained MPC
[3], [4], in which uncertain variables in the prediction horizon are described as
stochastic variables with known probability distribution functions (PDF). Re-
strictions are to be satisfied with a user-defined probability level. Due to the
fact that using this method a desired compromise between the optimal function

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 295–304, 2007.
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and the reliability of holding the constraints can be chosen, the derived control
strategy can be neither aggressive nor conservative.

Linear chance constrained MPC have been previously studied in ref [10]. In
the present study, we extend this approach to nonlinear systems. The major
obstacle towards realizing chance constrained nonlinear MPC (CNMPC) lies
in the computation of the probability and its deviations of satisfying process
restrictions. To address this problem, an inverse mapping approach proposed
by Wendt et al. [5] is extended to dynamic chance constrained optimization. In
addition, a step of maximization is proposed to address the feasibility problem
of CNMPC.

The paper is divided into the following sections. Section 2 gives a general for-
mulation of CNMPC considering both parameter and disturbance uncertainties.
Section 3 analyzes some computational aspects of CNMPC. The effectiveness of
CNMPC is illustrated in Section 4 by controlling a mixing process. Finally, some
concluding remarks of this work are given in Section 5.

2 Chance Constrained Nonlinear MPC

It has been recognized that problems in process system engineering (PSE) are
almost all confronted with uncertainties [7], [13]. In the industrial practice,
uncertainties are usually compensated by using conservative design as well as
conservative operating strategies, which may lead to considerably more costs
than necessary. To overcome this drawback, the authors have recently developed
a chance constrained programming (CCP) framework for process optimization
and control [3], [5], [10], [11], [12]. In this framework, the uncertainty proper-
ties, obtained from the statistical analysis of historical data, are included in the
problem formulation explicitly.

Chance constrained nonlinear MPC (CNMPC) employs a nonlinear model to
predict future outputs, based on the current states, past controls as well as un-
certain variables. The optimal control sequence is obtained at every sampling
instant by optimizing some objective functions and ensuring the chance con-
straints for the outputs.

The general CNMPC problem to be solved at sampling time k is formulated
as follows:

Min J = E{f}+ ωD{f}
s.t.

f =
P∑

i=1
‖y(k + i|k)− yref‖Qi

+
M−1∑
i=0
{‖u(k + i|k)− uref‖Ri

+ ‖∆u(k + i|k)‖Si
}

x(k + i + 1|k) = g1(x(k + i|k),u(k + i|k), ξ(k + i))
y(k + i|k) = g2(x(k + i|k), ξ(k + i))

(1)
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∆u(k + i|k) = u(k + i|k)− u(k + i− 1|k)
umin ≤ u(k + i|k) ≤ umax, i = 0, . . . ,M − 1.
∆umin ≤ ∆u(k + i|k) ≤ ∆umax, i = 0, . . . ,M − 1.
P{ymin ≤ y(k + i|k) ≤ ymax} ≥ α, i = 1, . . . , P.

where P and M are the length of prediction and control horizon, ξ represents
the uncertain variables with known PDF, P{·} represents the probability to
satisfy the constraint ymin ≤ y(k + i|k) ≤ ymax and 0 ≤ α ≤ 1 is the predefined
confidence level. States x, outputs y and controls u are all doubly indexed to
indicate values at time k + i given information up to and including time k. Qi,
Ri, and Si are weighting matrices in the objective function. E and D are the
operators of expectation and variation, respectively.

Since the outputs have been confined in the chance constraints, the objective
function f in Eq.(1) may exclude the quadratic terms on outputs for the sake of
simplicity [10]. The simplified CNMPC objective function can be described as
follows:

Min J =
M−1∑
i=1

{‖u(k + i|k)− uref‖Ri
+ ‖∆u(k + i|k)‖Si

} (2)

This problem can be solved by using a nonlinear programming algorithm. The
key obstacle towards solving the CNMPC problem is how to compute P{·} and
its gradient with respect to the controls. In the next section, the computational
aspects of CNMPC to address this problem as well as the feasibility analysis will
be discussed.

3 Computational Aspects of CNMPC

In process engineering practice, uncertain variables are usually assumed to be
normally distributed due to the central limit theory. However, a normal distri-
bution means that the uncertain variable is boundless, which is not true for
some parameters with physical meanings, e.g. the molar concentration in a flow
should be in the range of [0, 1]. In order to describe the physical limits of the
uncertainty parameters, it is preferable to employ truncated normal distribution
which has been used extensively in the fields of economic theory [9]. The basic
definition of truncated normal distribution is given as follows:

Definition 1. Let z be a normally distributed random variable with the following
PDF:

ρ(z) =
1

σ
√

2π
exp{− (z − µ)2

2σ2 } (3)

Then the PDF of ξ, the truncated version of z on [a1, a2] is given by:

ρ(ξ) =

{
1

σ
√

2π(Φ(a2)−Φ(a1))
exp{− (ξ−µ)2

2σ2 }, a1 ≤ ξ ≤ a2

0, ξ ≤ a1 or a2 ≤ ξ
(4)

where Φ(·)is the cumulative distribution function of z.
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Detailed discussion about the properties of the truncated normal distribution can
be found in [9] and it is easy to extend Definition 1 to the multivariate case. In
the following, a truncated normally distributed ξ with mean µ, covariance matrix
Σ and truncated points a1, a2, denoted as ξ ∼ TN(µ,Σ, a1, a2), is considered.

3.1 Inverse Mapping Approach to Compute the Probability and
Gradient

If the joint PDF of the output y(k+i|k) is available, the calculation of P{ymin ≤
y(k + i|k) ≤ ymax} and its gradient to u can be cast as a standard multivariate
integration problem [8]. But unfortunately, depending on the form of g2, the
explicit form of the output PDF is not always avaliable. To avoid directly using
the output PDF, an inverse mapping method has been recently proposed for
situations in which the monotone relation exists between the output and one of
the uncertain variables [5].

Without loss of generality, let y = F (ξS) denotes the monotone relation be-
tween a single output y and one of the uncertain variables ξS in ξ=[ξ1, ξ2,. . . ,
ξS ]T . Due to the monotony, a point between the interval of [ymin, ymax] can be
inversely mapped to a unique ξS through ξS = F−1(y):

P{ymin ≤ y ≤ ymax} ⇔ P{ξmin
S ≤ ξS ≤ ξmax

S } (5)

It should be noted that the bounds ξmin
S , ξmax

S depends on the realization of
the individual uncertain variables ξi, (i = 1, · · · , S − 1) and the value of input
u, i.e.

[ξmin
S , ξmax

S ] = F−1(ξ1, · · · , ξS−1, ymin, ymax, u) (6)

and this leads to the following representation

P{ymin ≤ y ≤ ymax} =

∞∫
−∞

· · ·
∞∫

−∞

ξmax
S∫

ξmin
S

ρ(ξ1, · · · , ξS−1, ξS)dξSdξS−1 · · · dξ1 (7)

From (6) and (7), u has the impact on the integration bound of ξS . Thus the
following equation can be used to compute the gradient of P{ymin ≤ y ≤ ymax}
with respect to the control variable u:

∂P{ymin≤y≤ymax}
∂u =

∞∫
−∞
· · ·

∞∫
−∞
{ρ(ξ1, · · · , ξS−1, ξ

max
S

)
∂ξmax

S

∂u −

ρ(ξ1, · · · , ξS−1, ξ
min
S

)
∂ξmin

S

∂u }dξS−1 · · ·dξ1
(8)

A numerical integration of (7) is required when taking a joint distribution
function of ξ into account. Note that the integration bound of the last variable
in (7) is not fixed. A novel iterative method based on the orthogonal collocation
on finite elements was proposed in ref [5] to accomplish the numerical integration
in the unfixed-bounded region.

Extending inverse mapping to the dynamic case. If a monotone relation
also exists between y(k + i|k) and ξ(k + i) for i = 1, . . . , P in g2 of Eq.(1), the
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inverse mapping method is readily extended to obtain the value and the gradient
of P{ymin ≤ y(k + i|k) ≤ ymax}. For the sake of simplifying notations, a SISO
system is considered in the present study, and it is not difficult to generalize
the following conclusions. With the monotone relation between y(k + i|k) and
ξ(k + i), we have

ymin ≤ y(k + i|k) ≤ ymax ⇔ ξmin
k+i ≤ ξ(k + i) ≤ ξmax

k+i (9)

Due to the propagation of the uncertainty through the dynamic system, y(k+i|k)
is influenced not only by ξ(k + i), u(k + i−1|k), but also by previous ξ(k) to
ξ(k+ i−1) and u(k|k) to u(k+ i−2|k). Therefore, the bounds ξmin

k+i and ξmax
k+i are

determined based on the realization of the uncertain variables and controls from
the time interval k to k + i, namely,

[ξmin
k+i , ξ

max
k+i ] = F−1(ξ(k + i− 1), · · · , ξ(k), u(k + i− 1|k), · · · , u(k|k), ymin, ymax)

(10)
So the joint outputs chance constraint over the prediction horizon can be refor-
mulated as

P{ymin ≤ y(k + i|k) ≤ ymax, i = 1, 2, . . . , P}
= P{ξmin

k+i ≤ ξ(k + i) ≤ ξmax
k+i , i = 1, 2, . . . , P}

=
∞∫

−∞

ξmax
k+1∫

ξmin
k+1

· · ·
ξmax

k+P∫
ξmin

k+P

ρ(ξ(k), ξ(k + 1) · · · , ξ(k + P ))dξ(k + P ) · · ·dξ(k + 1)dξ(k)

(11)
where ρ is the joint PDF of the future uncertain variables.

The gradient computation of P{·} is more complicated due to the complex
relation between the integration bounds and the controls. With the assumption
of a same control and prediction horizon, M=P, the gradient with respect to
u(k + i|k) can be determined as follows

∂P{ymin ≤ y(k + i|k) ≤ ymax, i = 1, 2, . . . , P}/∂u(k + i|k) =

P∑
j=i+1

{
∞∫

−∞

ξmax
k+1∫

ξmin
k+1

· · ·
ξmax

k+j−1∫
ξmin

k+j−1

{ ∂ξmax
k+j

∂u(k+i|k)

ξmax
k+j+1∫

ξmin
k+j+1

· · ·
ξmax

k+P∫
ξmin

k+P

ρ(ξ(k), · · · , ξmax
k+j , · · · ξ(k + P ))dξ(k + P ) · · · dξ(k + j + 1)

− ∂ξmin
k+j

∂u(k+i|k)

ξmax
k+j+1∫

ξmin
k+j+1

· · ·
ξmax

k+P∫
ξmin

k+P

ρ(ξ(k), · · · , ξmin
k+j , · · · ξ(k + P ))dξ(k + P ) · · · dξ(k + j + 1)}

dξ(k + j − 1) · · · dξ(k + 1)dξ(k)}
(12)

Note that if the predictive horizon length P is too large, the integration in (12)
will lead to considerable computing time. Thus a value of P less than 10 is
suggested in practice.
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3.2 Feasibility Analysis

Feasibility analysis concerns the problem of whether the chance constraint
P{ymin ≤ y(k + i|k) ≤ ymax} ≥ α is feasible. This is an important issue for
the chance constrained problems, since it is likely that the predefined level α
is higher than reachable. In this case the optimization routine can not find a
feasible solution. A straightforward way to address this problem is to compute
the maximum reachable probability before doing the optimization. As a result,
the original objective function in (1) will be replaced with

Max P{ymin ≤ y(k + i|k) ≤ ymax, i = 1, 2, . . . , P} (13)

The maximum reachable α can be obtained by solving the corresponding opti-
mization problem.

4 Application to a Mixing Process

The discretized model of the tank mixing process under study with unit sampling
time interval is:

V (k + 1) = V (k) + q(k)− u(k)

C(k + 1) = C(k) + q(k)
V (k+1) [C0(k)− C(k)]

(14)

where V and C are the volume and product mass concentration in the tank,
q, u are the feed and outlet flow rates and C0 is the feed mass concentration,
respectively. The control objective is, under the inlet uncertain flow rate and
composition, to obtain a possibly flat outlet flow rate while holding the outlet
concentration and tank volume in specified intervals. Based on (14), the future
process outputs are predicted as

V (k + i|k) = V (k) +
i−1∑
j=0

(q(k + j)− u(k + j|k)) (15)

C(k + i|k) =
i−1∏
j=0

V (k+j|k)−u(k+j|k)
V (k+j+1|k) C(k)

+
i−1∑
j=0

(
i−1∏

s=j+1

V (k+s|k)−u(k+s|k)
V (k+s+1|k) ) q(k+j)

V (k+j+1|k)C0(k + j)
(16)

With the above prediction model, the nonlinear CNMPC problem at sampling
instant k can be formulated as:

Min ∆uT∆u
s.t.

(15) and (16)
umin ≤ u(k + i|k) ≤ umax, i = 0, . . . ,M − 1.
P{Vmin ≤ V (k + i|k) ≤ Vmax, i = 1, . . . , P} ≥ α1

P{Cmin ≤ C(k + i|k) ≤ Cmax, i = 1, . . . , P} ≥ α2

(17)
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Li et al. [3] studied the linear case which only concerns the volume constraints
and the outlet flow rate u only affects the mean value of the output V . In contrast,
for the nonlinear model in (16), u affects both the mean and covariance of the
distribution of the outlet concentration C.

With the assumption that the feed flow rate q(k + i) and feed concentration
C0(k + i) follow a positive truncated normal distribution, namely, the low trun-
cating point a1 in (4) is positive, the following monotone relation can be found

q(k + i) ↑⇒ V (k + i + 1|k) ↑
C0(k + i) ↑⇒ C(k + i + 1|k) ↑

(18)

Thus the chance constraints in (17) can be transformed into

P{Vmin ≤ V (k + i|k) ≤ Vmax, i = 1, . . . , P}
⇒ P{qmin

k+i−1 ≤ q(k + i− 1) ≤ qmax
k+i−1, i = 1, . . . , P}

P{Cmin ≤ C(k + i|k) ≤ Cmax, i = 1, . . . , P}
⇒ P{C0

min
(k+i−1) ≤ C0(k + i− 1) ≤ C0

max
(k+i−1), i = 1, . . . , P}

(19)

Therefore (11) and (12) can be used to compute P{·} and its gradient.
The proposed CNMPC controller is applied to the mixing process. The initial

values of tank volume and product concentration are V (0) = 160 l and C(0) =
50g/l, respectively. The inlet flow q(k) and concentration C0(k) are assumed
to be multivariate truncated normal sequences with the truncating intervals of
[0, 20] and [46, 56]. The mean profiles of q(k) and C0(k) within a period of 20
minutes are shown in Fig.1 and 2. In each time interval, they have the stand
deviation values of 0.70 and 1.0. In addition, both q(k) and C0(k) at different
intervals are assumed to be independent. The dashed lines in Fig.1 and 2 are 10
realizations of the disturbance from random samples and it is shown that the
uncertainty is considerable. The prediction and control horizon of CNMPC is
fixed at P = M = 5 and the lower and upper bounds of the output variables, V
and C, are [130, 170] and [49, 51], respectively. The probability level of α1 and
α2 are both given as 0.9. The control results are illustrated in Fig.3 to Fig.6.
In Fig.3, it can be seen that the control variable u(k) is more flat than the inlet
and thus the disturbance to the downstream unit is thus decreased. As shown in

Fig. 1. Inlet flow disturbance profile
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Fig. 2. Inlet concentration disturbance profile

Fig. 3. Inlet q(k) and outlet flow u(k)

Fig. 4. Tank volume V (k)

Fig.4 and Fig.5, the tank volume V (k) and outlet product concentrationC(k) are
strictly restricted in the predefined bounds. In addition, oscillations also occur
in the controlled variables profiles, which means that the controller takes the
advantage of the freedom available to keep the control action as flat as possible.
The feasibility analysis of production concentration chance constraint is also
performed and the maximum reachable possibility of P{Cmin ≤ C(k + i|k) ≤
Cmax} in each interval is depicted in Fig.6. It can be seen that the maximum
reachable probabilities are all greater than the predefined value (α2=0.90), which
implies that the corresponding CNMPC problem is feasible. Note that at the 4th

and 13th minute when the concentration approaches its limits, the maximum
probability reaches its minimum value.
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Fig. 5. Inlet and outlet concentration C(k)

Fig. 6. Max reachable probabilities of the C(k) chance constraint

5 Conclusions

In this work, a robust nonlinear model predictive controller, chance constrained
NMPC, is proposed. To compute the probability and derivatives of holding in-
equality constraints inverse mapping approach is extended to dynamic nonlinear
situations. To find a monotone relation between the uncertain variable and the
output which is necessary for the inverse mapping approach, truncated normal
distribution is considered to describe uncertainty variables. CNMPC is illus-
trated to be effective by controlling a mixing process with both uncertain feed
flow rate and feed concentration.
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Summary. In this work, two methods based on a nonlinear MPC scheme are proposed
to solve close-loop stochastic dynamic optimization problems assuring both robustness
and feasibility with respect to output constraints. The main concept lies in the consid-
eration of unknown and unexpected disturbances in advance. The first one is a novel
deterministic approach based on the wait-and-see strategy. The key idea is here to
anticipate violation of output hard-constraints, which are strongly affected by instan-
taneous disturbances, by backing off of their bounds along the moving horizon. The
second method is a new stochastic approach to solving nonlinear chance-constrained
dynamic optimization problems under uncertainties. The key aspect is the explicit
consideration of the stochastic properties of both exogenous and endogenous uncer-
tainties in the problem formulation (here-and-now strategy). The approach considers a
nonlinear relation between the uncertain input and the constrained output variables.

1 Introduction

Due to its ability to directly include constraints in the computation of the con-
trol moves, nonlinear model predictive control offers advantages for the optimal
operation of transient chemical plants. Previous works on robust MPC have fo-
cused on output constrained problems under model parameter uncertainty, in
particular, worst-case performance analysis over a specified uncertainty range
[4, 8]. The drawback of this worst-case formulation – min-max approach – is
that the resulting control strategy will be overly conservative. In this work,
we extended our previous work in [3, 5, 7] to a new chance-constrained opti-
mization approach for NMPC. Unlike the linear case, for nonlinear (dynamic)
processes the controls have also an impact on the covariane of the outputs. The
new approach also involves efficient algorithms so as to compute the probabil-
ities and, simultaneously, the gradients through integration by collocation in
finite elements. However, in contrast to all our previous works (see e.g. [7]),
the main novelty here is also that the chance-constrained approach is now also
applicable for those cases where a monotic relationship between constrained
output and uncertain input can not be asurred. In addition, due to the consider-
ation of a first principle model with a several number of uncertain variables, the
problem can conditionally become too computationally intensive for an online
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application. Thus, we propose alternatively a dynamic adaptive back-off strat-
egy for a NMPC scheme embedded in an online re-optimization framework.
The performance of both proposed approaches is assessed via application to a
runaway-safe semi-batch reactor under safety constraints.

2 Problem Formulation

A strongly exothermic series reaction conducted in a non-isothermal fed-batch
reactor is considered. The reaction kinetics are second-order for the first reac-
tion producing B from A, and an undesirable consecutive first-order reaction
converting B to C. The intermediate product B is the desired product.

2A
K1−→ B

K2−→ C (1)

A detailed first-principles model of the process is given by a set of DAEs based
on mass balances:

ṅA = −νak01
n2

A

V
e− EA1

RT + feed ; ṅB = −k02 nB e− EA2
RT + k01

n2
A

V
e− EA1

RT ;

ṅC = +k02 nB e− EA2
RT ,

(2)

the energy balance:

˙̄Tcool =
V̇cool · ρcool · cp,cool · (Tcool,in − T̄cool) − Q̇HT

cool

Vcool · ρcool · cp,cool
; Ṫ =

Q̇reac + Q̇feed + Q̇cool

nS

�
i(cpixi)

(3)

and constitutive algebraic equations:

Q̇reac = −
�

(hiṅi) = (h0A + cpA(T − T0))ṅA + (h0B + cpB(T − T0))ṅB

+ (h0C + cpC(T − T0))ṅC

Q̇feed = (h0A + cpA(T − T0)) · feed
Q̇HT

cool = −kHT A(T − T̄cool ) = −kHT (0.25πd2 + 4V d−1)(T − T̄cool)

nS = nA + nB + nC ; nS

�

i

(cpixi) = cpAnA + cpBnB + cpCnC

V =
nAM̃A + nBM̃B + nCM̃C

nA
¯̃ρA + nB

¯̃ρB + nC
¯̃ρC

nS .

(4)

In these equations V denotes the varying volume, ni the molar amount of
component i, T , TF , T̄cool , Tcool , the reactor, dosing, jacket and cooling medium
temperatures, respectively. h0i are the specific standard enthalpies, kHT the
heat transfer coefficient, d the scaled reactor diameter, A the heat exchange
surface, M̃i molecular weights, ρi densities and cpi are heat capacities. Besides,
since the heat removal is limited, the temperature is controlled by the feed
rate of the reactant A(feed), and the flow rate of the cooling liquid V̇cool in
the nominal operation. The reactor is equipped with a jacket cooling system.
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The developed model considers both the reactor and the cooling jacket energy
balance. Thus, the dynamic performance between the cooling medium flow rate
as manipulated variable and the controlled reactor temperature is also included
in the model equations. The open-loop optimal control is solved first for the
successive optimization with moving horizons involved in NMPC. The objective
function is to maximize the production of B at the end of the batch CBf while
minimizing the total batch time tf with β = 1/70:

min
∆t, V̇cool , feed

(−CBf + β · tf ) (5)

subject to the equality constraints (process model equations (2) – (4)) as well
as path and end point constraints. First, a limited available amount of A to be
converted by the final time is fixed to

∫ tf

t0=0 nA(t)dt = 500mol . Furthermore, so as
to consider the shut-down operation, the reactor temperature at the final batch
time must not exceed a limit (T (tf) ≤ 303 K). There are also path constraints
for the maximal reactor temperature and the adiabatic end temperature Tad .
The latter is used to determine the temperature after failure. This is a safety
restriction to ensure that even in the exterme case of a total cooling failure
no runaway will occur (T (t) ≤ 356 K; Tad(t) ≤ 500 K) [1]. Additionally, the
cooling flow rate changes from interval to interval are restricted to an upper
bound:

∥∥∥V̇cool(t+ 1)− V̇cool(t)
∥∥∥ ≤ 0.05. The decision variables are the feed flow

rate into the reactor, the cooling flow rate, and the length of the different time
intervals. A multiple time-scale strategy based on the orthogonal collocation
method on finite elements is applied for both discretization and implementation
of the optimal policies according to the controller’s discrete time intervals (6 –
12 s; 600 – 700 intervals). The resulting trajectories of the reactor temperature
and the adiabatic end temperature (safety constraint) for which constraints have
been formulated are depicted in Fig. 1. It can be observed that during a large
part of the batch time both states variables evolve along their upper limits i.e.
the constraints are active. The safety constraint (adiabatic end temperature),
in particular, is an active constraint over a large time period (Fig. 1 right).
Although operation at this nominal optimum is desired, it typically cannot be
ahieved with simultaneous satisfaction of all contraints due to the influence of
uncertainties and/or external disturbances. However, the safety hard-constraints
should not be violated at any time point.

3 Dynamik Adaptive Back–Off Strategy

Based on the open-loop optimal control trajectories of the critical state vari-
ables, in this section, a deterministic NMPC scheme for the online optimization
of the fed-batch process is proposed. Furthermore, the momentary criteria on the
restricted controller horizon with regard to the entire batch operation is however
insufficient. Thus, the original objective of the nominal open-loop optimization
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Fig. 1. Path constraints: Optimal reactor temperature (left) and adiabatic end tem-
perature (right)

problem is substituted by a tracking function which can then be evaluated on
the local NMPC prediction horizon:

min
V̇cool

J(N1, N2, NU ) =
N2�

j=N1

δ(j) · [ŷ(t + j | t) − w(t + j)]2 +
NU�

j=1

λ(j) · [∆u(t + j − 1)]2

(6)
The first term of the function stands for the task of keeping as close as pos-

sible to the calculated open loop optimal trajectory of the critical variables ŷ
(e.g. the reactor temperature, which can easily be measured online), whereas
the second term corresponds to control activity under the consideration of the
systems restriction’s described above. N1, N2 denote the number of past, and
future time intervals, respectively. NU stands for the number of controls. The
prediction TP and control horizon TC comprises 8 intervals, respectively. Fur-
thermore, λ = 3000 and δ(j) = 0.7(TP−j) are the variation and offset weighting
factor, respectively. In order to guarantee robustness and feasibility with respect
to output constraints despite of uncertainties and unexpected disturbances, an
adaptive dynamic back-off strategy is introduced into the optimization prob-
lem to guarantee that the restrictions are not violated at any time point, in
particular, in case of sudden cooling failure [1]. For this purpose, it is neces-
sary to consider the impact of the uncertainties between the time points for
re-optimization and the resulting control re-setting by setting, in advance, the
constraint bounds much more severe than the physical ones within the moving
horizon. Thus, as shown in Fig. 2 left, the key idea of the approach is based on
backing-off of these bounds with a decreasing degree of severity leading then to
the generation of a trajectory which consist of the modified constraint bounds
along the moving horizon. For the near future time points within the horizon,
these limits (bounds) are more severe than the real physical constraints and will
gradually be eased (e.g. logarithmic) for further time points. The trajectory of
these bounds is dependent on the amount of measurement error and parameter
variation including uncertainty.

As previously illustrated in Fig. 1, the true process optimum lies on the bound-
ary of the feasible region defined by the active constraints. Due to the uncer-
tainty in the parameters and the measurement errors, the process optimum and
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Fig. 2. Back-off strategy within moving horizon; back-off from active constraints

the set-point trajectory would be infeasible. By introducing a back-off from the
active constraints in the optimization, the region of the set-point trajectory is
moved inside the feasible region of the process to ensure, on the one hand, fea-
sible operation, and to operate the process, on the other hand, still as closely
to the true optimum as possible. By this means, the black-marked area in Fig.
2 illustrates the corrected bounds ỹmax of the hard constraints. Here, it should
however be noted that due to the severe bound at the computation of the pre-
vious horizon, the initial value at t0 is rather far away from the constraint limit
in the feasible area. Thus, in the first intervall of the current moving horizon,
the bound is set at the original physical limit to avoid infeasibility. The back-off
adjustment starts from the second interval, i.e. from the time point on, where the
next re-optimization begins. The size of ỹmax strongly depends on parametric
uncertainty, disturbances, and the deviation by measurement errors. Thus, the
constraints in (8) within the moving horizon (8 intervals) are now reformulated
as follows with j = 2, ..., 8, α = 0.5, T̃max = 4K and T̃ad, max = 3 K:

T (j) ≤ 356 K − T̃max · α(j−2); Tad (j) ≤ 500 K − T̃ad, max · α(j−2) (7)

The decision variable is the cooling flow rate. In order to test robustness
characteristics of the controler, the performances of the open-loop nominal solu-
tion, the nominal NMPC, and the NMPC with the proposed adaptive back-off
approach are compared under different disturbances, namely: catalyst activity
mismatch and fluctuations of the reactor jacket cooling fluid temperature. Addi-
tionally, all measurements are corrupted with white noise e.g. component amount
8% and temperature 2%.

3.1 Dynamik Real–Time Optimization

The size of the dynamic operating region around the optimum (see Fig. 2 right)
is affected by fast disturbances. These are, however, efficiently buffered by the
proposed regulatory NMPC-based approach. On the other hand, there are, in
fact, slowly time-varying non-zero mean disturbances or drifting model parame-
ters which change the plant optimum with time. Thus, a online re-optimization
i.e. dynamic real-time optimization (D-RTO) may be indispensable for an op-
timal operation. When on-line measurement gives access to the system state,
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its promises considerably improvement. Moreover, additional constraints can be
integrated. Simulation results are shown in Fig. 3 right.

In order to compensate slow disturbances, the on-line re-optimization problem
is automatically activated three times along the batch process time according to
a trigger defined as the bounded above difference between the reactor tempera-
ture and the temperature reference trajectory (Fig. 3 right). New recipes resulting
from this are then updated as input to the on-line framework. Due to the differ-
ent trigger time-points, the current D-RTO problem progressively possesses a re-
duced number of variables within a shrinking horizon [6]. As a result, the total
batch time increases. But, despite the large plant mismatch and the absence of re-
liable kinetic knowledge a very good control is accomplished. Thus, the resulting
NMPC scheme embedded in the on-line re-optimization framework is viable for
the optimization of the semi-batch reactor recipe while simultaneously guaran-
teeing the constraints compliance, both for nominal operation as well as for cases
of large disturbances e.g. failure situation. The proposed scheme yields almost the
same profit as the one of the off-line optimization operational profiles (see Tab. 1)
where CBf and CCf are the final total amount of B and C.

Table 1. Simulation results

CBf [mol] CCf [mol] tf [s]

Nominal open-loop optimization 152.5 37.8 4297
NMPC w. uncertainty + dyn. back-off 127.9 12.8 4297
NMPC w. uncertainty + dyn. back-off + D-RTO 148.8 36.8 4892

4 Robust NMPC Under Chance Constraints

Since the prediction of future process outputs within an NMPC moving hori-
zon is based on a process model involving the effects of manipulated inputs and
disturbances on process outputs, the compliance with constraints on process out-
puts is more challenging than these on process inputs. Moreover, as the model
involves uncertainty, process output predictions are also uncertain. This results
in output constraints violation by the close-loop system, even though predicted
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outputs over the moving horizon might have been properly constrained. Con-
sequently, a method of incorporating uncertainty explicit into the output con-
straints of the online optimization is needed. Thus, in this work, a robust NMPC
that uses a close-loop model considering the uncertainty in future process out-
puts due to stationary and non-stationary stochastic disturbances is presented.
The new controller solves a chance-constrained nonlinear dynamic problem at
each execution in order to determine the set of control moves that will optimize
the expected performance of the system while complying with the constraints.
The controller deals with the model uncertainty and disturbances by replacing
deterministic constraints in the NMPC formulation of the form ymin ≤ y ≤ ymax ,
here Eq. (8), with chance constraints of the form:

Pr {ymin ≤ y ≤ ymax} ≥ α (8)

The main challenge lies in the computation of the probability and its gradi-
ents. To address this problem, we propose in [7] an inverse mapping approach
where the monotonic relationship of the constrained output ybound to at least
one uncertain input ξS is employed. Due to the monotony, the constrained bound
value ybound in the output region corresponds to a limit value ξL

S for ξS in the
uncertain input region. The basic idea is to map the probabilistic constrained
output region back to a bounded region of the uncertain inputs. Hence, the out-
put probabilities and, simultaneously, their gradients can be calculated through
multivariate integration of the density function of the uncertain inputs by col-
location on finite elements with an optimal number of collocation points and
intervals.

P
�

y ≤ ybound
�

= P
�

ξS ≤ ξL
S , ξk ⊆ R

K , s 
= k
�

=

∞�
−∞

· · ·
ξL

S�
−∞

· · ·
∞�

−∞

ρ(ξ) dξl · · · dξS · · · dξK l = 1, ..., n

(9)

where the ρ(ξ) is the unified distribution function of ξ. The solution strategy is
however not dependent on the distribution of the uncertain variables. The proba-
bility computation procedure can straightforwardly be extended to multiple single
probabilistic constraints with different confidence levels. To compute the proba-
bility values of (13), a multivariate integration in the region of uncertain inputs is
required. Numerical integration is needed, especially in cases of correlated uncer-
tain variables. We refer to Wendt et al. (2001) for a method based on orthogonal
collocation for correlated uncertain variables with normal distributions. Following
this idea, we extend the approach to dealing with nonlinear dynamic optimization
problems [2, 3]. In this contribution, a new framework is proposed also for such
stochastic dynamic optimization problems where no monotonic relation between
constrained output and any uncertain input variable can be guaranteed. This ap-
proach also involves efficient algorithms for the computation of the required (map-
ping) reverse projection. To decompose the problem, the proposed approach uses
a two-stage computation framework(see Fig. 4 left). The upper stage is a superior
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optimizer following the sequential strategy. Inside the simulation layer, there is a
two-layer structure to compute the probabilistic constraints. One is the superior
layer, where the probabilities and their gradients are finally calculated by multi-
variate integration. The main novelty is contained in the other, the sub-layer, and
is the key to the computation of the chance constraints with non-monotonous re-
lation. The main principal is that for the multivariate integration the bounds of
the constrained output y and those for the selected uncertain variables ξ reflecting
the feasible area concerning y are computed at temporarily given values of both
the decision and the other uncertain variables. Thus, all local minima und maxima
of the function reflecting y are first detected (see Fig. 4 right). The computation
of the required points of [min y(ξ)] and [max y(ξ)] is achieved by an optimization
step in the sub-layer. With the help of those significant points, the entire space of
ξ can be divided into monotonous sections in which the bounds of the subspaces
of feasibility can be computed through a reverse projection by solving the model
equations in the following step of this inferior layer. The bounds of feasibility are
supplied to the superior multivariate integration layer, where the necessary prob-
abilities (Eqs. 14) and the gradients are computed by adding all those feasible
fractions together (Fig. 4 right).
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Pr =
�

Pr(zi); Pr(zi) =

∞�

−∞

∞�

−∞

· · ·
ξ

L,i
S�

−ξ
l,i
S

ϕ (ξi, R)dξS dξS−1 · · · dξ1 (10)

where R denotes the covariance matrix. Arising changes of the integration
limits are verified for every monotone section. In case of variation, a reverse
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projection of the constrained output leads to new integration limits, which are,
then, employed to compute the probability by multivariate integration. The gen-
eral chance constrained NMPC problem which is solved at each sampling time
k can be formulated as follows:

min
Nu�

i=1

[u(k + i) − u(k + i − 1)]2

s.t . x(k + i + 1 | k) = g1[x(k + i | k), u(k + i | k), ξ(k + i)]

y(k + i | k) = g2[x(k + i | k), u(k + i | k), ξ(k + i)]

Pr {ymin ≤ y(k + i | k) ≤ ymax} ≥ α; i = 1, ..., n

umin ≤ u(k + i | k) ≤ umax ; i = 0, ..., m − 1

∆umin ≤ ∆u(k + i | k) = u(k + i | k) − u(k + i − 1 | k) ≤ ∆umax

(11)

Where g1 are the first-principle model equations describing the dynamic changes
of the state variables x, while g2 describe the state of the constrained variables
y depending on the control variables u and the uncertain parameters ξ, and
α = 96.7%. The efficiency of the chance-constrained approach is proved through
application to the same scenario of the fed-batch reactor under safety constraints.
The resulting NMPC scheme is also embedded in the same on-line optimization
framework. Moreover, the relationship between the probability levels and the
corresponding values of the objective function can be used for a suitable trade-
off decision between profitability and robustness. Tuning the value of α is also
an issue of the relation between feasibility and profitability. The solution of a
defined problem (Eq. 15), however, is only able to arrive at a maximum value
αmax which is dependent on the properties of the uncertain inputs and the
restriction of the controls. The value of αmax can be computed through a previous
probability maximization step. The use of this strategy with the consideration of
uncertainties in advance has for those NMPC-Problems a great impact in those
periods, where the reference trajectory is very close to a defined upper bound of
the constraint output. However, a comparison between the stochastic approach
and the deterministic dynamic adaptive back-off strategy is meaningful in order
to find further improvement of operation policies due to the stochastic approach.
Thus, the reference trajectory of the reactor temperature in Equation (10) is set
as a constant which is close to the upper bound of the reactor temperature.
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The resulting trajectories of the reactor temperature concerning both strate-
gies are illustrated in Fig. 5. The figure shows, that the reactor temperature
resulted by the back-off strategy reaches very early a stationary value caused by
fixed bounds of the temperature formulated in the corresponding optimization
problem. The temperature curve of the stochastic approach shows more dras-
tical changes with lower values of temperatures in earlier parts of the diagram
and higher values later. This is caused by the fact, that with the consideration
of uncertainties in advance, also the change of sensitivities of uncertain param-
eters towards the reactor temperature can be taken into consideration by the
stochastic approach. At the beginning in the diagram, the stochastic approach
realizes the matching of a more conservative strategy to higher sensitivities, and
thus the operation achieves more robustness than the one achieved by the back-
off strategy. At the end of the curves, the decrease of sensitivities is used for a
closer approach to the maximum temperature and thus leads to a better objec-
tive value. Therefore, the strategy leads to an improvement of both, robustness
and the objective value.

5 Conclusions

The chance constrained optimization framework has been demonstrated to be
promising to address optimization and control problems under uncertainties.
Feasibility and robustness with respect to input and output constraints have
been achieved by the proposed approach. Thus, the solution of the problem
has the feature of prediction, robustness and being closed-loop. The resulting
NMPC scheme embedded in the on-line re-optimization framework is viable for
the optimization of the reactor recipe while simultaneously guaranteeing the
constraints compliance, both for nominal operation as well as for cases of large
disturbances e.g. failure situation. In fact, the approach is relevant to all cases
when uncertainty can be described by any kind of joint correlated multivariate
distribution function. The authors gratefully acknowledge the financial support
of the Deutsche Forschungsgemeinschaft (DFG).
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Universidad de Huelva, Huelva, Spain
caro@uhu.es

Summary. This paper shows how interval arithmetic can be used to design stabilizing
robust MPC controllers. Interval arithmetic provides a suitable framework to obtain
a tractable procedure to calculate an outer bound of the range of a given nonlinear
function. This can be used to calculate a guaranteed outer bound on the predicted
sequence of reachable sets. This allows us to consider the effect of the uncertainties
in the prediction and to formulate robust dual-mode MPC controllers with ensured
admissibility and convergence. Interval arithmetic can also be used to estimate the
state when only outputs are measurable. This method provides a guaranteed outer
bound on the set of states consistent with the output measurements. Generalizing the
controllers based on reachable sets, a novel robust output feedback MPC controller is
also proposed.

1 Introduction

Consider a process described by an uncertain nonlinear time-invariant discrete
time model

x+ = f(x, u, w) (1)
y = g(x, u, v) (2)

where x ∈ Rn is the system state, u ∈ Rm is the current control vector, y ∈ Rp

is the measured output, w ∈ Rnw is the disturbance input which models the
uncertainty, v ∈ Rpv is the measurement noise and x+ is the successor state. xk,
uk, yk, wk and vk denote the state, input, output, uncertainty and noise of the
plant at sampling time k, respectively.

It is assumed that the uncertainty is bounded and contained in a compact
set,

w ∈W (3)

which contains the origin and the noise is bounded in the compact set

v ∈ V. (4)
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The system is subject to constraints on both the state and the control input.
These constraints are given by

u ∈ U, x ∈ X (5)

where X is a closed set and U a compact set, both of them containing the origin.
The objective of this paper is to present some robust MPC controllers which

are able to robustly stabilize this system. These controllers deal with the un-
certainty by means of interval arithmetic with an affordable increment of the
computational burden with respect to the nominal problem. In the following
section, a brief introduction to interval arithmetic is presented.

2 A Brief Introduction to Interval Arithmetic

An interval X = [a, b] is the set { x : a ≤ x ≤ b }. The unitary interval is
B = [−1, 1]. The set of real compact intervals [a, b], where a, b ∈ R and a ≤ b,
is denoted as I. A box is an interval vector. A unitary box, denoted as Bm, is a
box composed by m unitary intervals. Given a box Q = ([a1, b1], . . . , [an, bn])�:
mid(Q) denotes its center and diam (Q) = (b1−a1, . . . , bn−an)�. The Minkowski
sum of two sets X and Y is defined by X ⊕ Y = { x + y : x ∈ X, y ∈ Y }.
Given a vector p ∈ Rn and a matrix H ∈ Rn×m, the set:

p⊕HBm = { p + Hz : z ∈ Bm }

is called a zonotope of order m. Given a continuous function f(·, ·) and sets
X ⊂ Rn and W ⊂ Rnw , f(X,W ) denotes the set { f(x,w) : x ∈ X, w ∈ W }.
Interval arithmetic and Kühn’s method provides two approaches to obtain outer
bounds of set f(X,W ).

The interval arithmetic is based on operations applied to intervals. An opera-
tion op can be extended from real numbers to intervals as: for a given A,B ∈ I,
A op B = { a op b : a ∈ A, b ∈ B }. The four basic interval operations
are defined in [1], where the sum is [a, b] + [c, d] = [a + c, b + d], and the prod-
uct is [a, b] ∗ [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)], for instance. The
interval extension of standard functions {sin, cos, tan, arctan, exp, ln, abs, sqr,
sqrt} is possible too. A guaranteed bound of the range of a non-linear function
f : Rn → R can be obtained by means of the natural interval extension, that is,
replacing each occurrence of each variable by the corresponding interval variable,
by executing all operations according to interval operations and by computing
ranges of the standard functions.

Theorem 4. [1] A natural interval extension �(f) of a continuous function
f : Rn → R over a box X ⊆ Rn satisfies that f(X) ⊆ �(f(X)).

The natural interval extension is a particular and efficient way to compute an
interval enclosure. However, natural interval extension may lead to unneces-
sary overestimation when a variable appears several times in the same expres-
sion (multi-occurrence). To reduce this overestimation, Kühn’s method can be
used [2].
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Kühn’s method is a procedure to bound the orbits of discrete dynamical sys-
tems. In Kühn’s method, the evolution of the system is approximated by a
zonotope and sub-exponential overestimation is proven [2]. First the zonotope
inclusion operator is introduced in the following theorem:

Theorem 1 (Zonotope inclusion). Consider a family of zonotopes repre-
sented by Z = p ⊕MBm where p ∈ Rn is a real vector and M ∈ In×m is
an interval matrix. A zonotope inclusion, denoted by -(Z), is defined by:

-(Z) = p⊕ [mid(M) G]

[
Bm

Bn

]
= p⊕ JBm+n

where G ∈ Rn×n is a diagonal matrix that satisfies:

Gii =
m∑

j=1

diam (Mij)
2

, i = 1, . . . , n.

Under these definitions it results that: Z ⊆ -(Z).

The following theorem is a generalization of Kühn’s method for a function which
depends on an unknown but bounded vector of parameters [3].

Theorem 5. Given a function f(x,w) : Rn × Rnw → Rn, a zonotope X =
p ⊕ HBm and a zonotope W = cw ⊕ CwBsw , consider the following interval
extensions:

• A zonotope q ⊕ SBd such that f(p,W ) ⊆ q ⊕ SBd.
• An interval matrix M = �(∇xf(X,W ))H.
• A zonotope Ψ(X,W ) = q ⊕ SBd ⊕ -(MBm) = q ⊕HqBl with l = d+ n + m

Under the previous assumptions it results that f(X,W ) ⊆ Ψ(X,W )

Note that the zonotope q ⊕ SBd of theorem 5 can be obtained by means of a
natural interval extension of f(p,W ). It is worth remarking that this method
increases the dimension of the obtained zonotope, and hence its complexity. In
order to reduce this effect, a lower order zonotope which bounds the obtained
zonotope can be used instead. This bound can be obtained by means of the
procedure proposed in [3].

In the following section it is shown how an outer estimation of the reachable
set can be obtained by means of the presented interval arithmetic methods.

3 Guaranteed Approximation of the Reachable Set

For a system in absence of uncertainties and for a given sequence of control in-
puts, the prediction of the evolution of the system is a trajectory. However, when
uncertainties or noises are present, there exists a trajectory for each realization
of the uncertainties and noise. The set of these trajectories forms a tube that will
be denoted as the sequence of reachable sets. a precise definition is the following:
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Definition 1 (Sequence of reachable sets). Consider a system given by (1),
consider also that the set of states at sample time k is Xk and that a sequence
of control inputs {u(k + i|k)} is given, then the reachable sets {X(k|k),X(k +
1|k), . . . ,X(k+N |k)} are obtained from the recursion: X(k+ j|k) = f(X(k+ j−
1|k), u(k + j − 1|k),W ) where X(k|k) = Xk.

The set of states Xk might be either a singleton xk, in the case that the state is
certainly known, or a set, in the case that this is unknown but bounded (this is
what happen when the state is not fully measurable).

It is clear that the computation of this sequence of sets is not possible
in general; fortunately, a guaranteed estimation of this sequence can be ob-
tained if for a given control input u, a guaranteed estimator of f(X,u,W ),
ψ(X,u,W ) is used for the computation. The guaranteed estimation must satisfy
that ψ(X,u,W ) ⊇ f(X,u,W ), for all X , u, W . Thus the sequence of guaranteed
estimation of the reachable set is given by the following recursion:

X̂(k + j|k) = ψ(X̂(k + j − 1|k), u(k + j − 1|k),W )

with X̂(k|k) = Xk. In order to emphasize the parameters of X̂(k+ j|k), this will
be denoted as X(k + j|k) = Ψ(j; Xk,u,W ).

In the previous section, two methods to obtain a guaranteed estimator of a
function were introduced: the interval extension of the function f(X,u,W ) and
the one based on Kühn’s method. Both procedures can be used to approximate
the sequence of reachable sets.

The interval extension method provides a guaranteed box considering that
X and W are boxes. Its main advantages are that this procedure is easy to
implement and its computational burden is similar to the one corresponding to
evaluate the model. Moreover, the bounding operator based on interval exten-
sion is monotonic, that is, if A ⊆ B, then ψ(A, u,W ) ⊆ ψ(B, u,W ). Its main
drawback is that it may be very conservative.
The procedure based on Kühn’s method calculates zonotopic approximations,
assuming that X and W are zonotopes. This method provides more accurate
approximation than the one obtained by the interval extension at expense of
a more involved procedure with a bigger computational burden. Moreover this
procedure may not be a monotonic procedure.

The monotonicity property of the estimation procedure ψ(·, ·, ·) provides an
interesting property to the estimated reachable set: consider the sequence of
estimated reachable sets X̂(k + j|k) = Ψ(j;Xk,u,W ). Consider a set Xk+1 ⊆
X̂(k + 1|k), then for all j ≥ 1, Ψ(j − 1;Xk+1,u,W ) ⊆ Ψ(j;Xk,u,W ). This
property will be exploited in the following sections.

Based on this estimation of the sequence of reachable sets, a robust MPC
controller is presented in the following section.

4 Robust MPC Based on Guaranteed Reachable Sets

While in a nominal framework of MPC, the future trajectories are obtained
by means of the nominal model of the system, when uncertainties are present,
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the predictions depends on the future realization of the uncertainties. This ef-
fect of the uncertainties can be considered in the controlled design by replacing
the sequence of predicted states by the sequence of reachable sets. As it was
commented before, the exact computation of this sequence is very difficult and
tractable methods to compute a guaranteed estimation of this sequence can be
used instead.

In order to enhance the accuracy of the estimation of the reachable sets, a
pre-compensation of the system can be used. This consists in parametrizing the
input as uk = K·xk + vk where vk is the new (artificial) control input. By doing
this, system (1) can be rewritten as f(x,K·x + v, w) = fK(x, v, w). This is a
practical way to provide some amount of feedback to the predictions as well as
a technique to enhance the structure of the system to obtain better interval or
zonotopic approximations.

The proposed MPC is based on the solution of an optimization problem such
that a performance cost of the predicted nominal trajectory is minimized (al-
though other cost functions depending on the uncertainties might be considered,
such as the cost of the worst case in the min-max framework). This cost function
for a given sequence of N control inputs v(k) = {v(k|k), · · · , v(k +N − 1|k)}, is
given by

JN (xk, v) =
N−1∑
j=0

L(x̂(k + j|k), v(k + j|k)) + V (x̂(k + N |k)) (6)

where x̂(k+ j+1|k) = fK(x̂(k+ j|k), v(k+ j|k), 0), with x̂(k|k) = xk. The stage
cost function L(·, ·) is a positive definite function of the state and input and the
terminal cost function F (·) is typically chosen as a Lyapunov function of system
x+ = fK(x, 0, 0). Thus, the optimization problem PN (xk) to solve is

min
v

JN (xk, v)

s.t. X̂(k + j|k) = ΨK(j;xk, v,W ) j = 1, · · · , N
v(k + j|k)⊕KX̂(k + j|k) ⊆ U, j = 0, · · · , N − 1

X̂(k + j|k) ⊆ X j = 0, · · · , N
X̂(k + N |k) ⊆ Ω

where Ω is an admissible robust invariant set for the system x+ = fK(x, 0, w),
and ψK(·, ·, ·) denotes a guaranteed estimator of fK(·, ·, ·).

The stabilizing design of the controller arises two questions: the admissibility
of the obtained trajectories and the convergence to a neighborhood of the origin.

Admissibility: this is ensured if the initial state is feasible. In effect, if the es-
timation operator ψK(·, ·, ·) is monotonic (as for instance, the one based on
interval extension of the model), then the optimization problem is feasible
all the time [6] and hence the closed loop system is admissible.

If the monotonicity is not ensured (as may occur, for instance, when
Kühn’s method approach is used), then feasibility of the optimization
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problem may be lost. In this case, admissibility can be ensured applying
the tail of the last computed optimal sequence. [5].

Convergence: this is achieved by means of a dual mode strategy ensuring that
the MPC steers the system to the terminal set Ω and then switching to the
local robust control law uk = K·xk. The convergence to the terminal set can
be guaranteed by using two different techniques: the first one, used in [6],
consists in reducing the prediction horizon at each sampling time. Hence,
the system reaches Ω in N steps or less.

A drawback of this approach is that the reduction of the prediction horizon
may provide a worse closed loop behavior than when the prediction horizon is
constant. In order to mitigate this and to provide convergence for a constant
prediction horizon, an stabilizing constraint can be added to the problem.
This stabilizing constraint is based on function

JE(k) =
N−1∑
i=0

‖X̂(k + i|k)‖βΩ

where β is a parameter contained in (0, 1) and ‖A‖B denotes a measure of
the maximum distance between sets A and B. Clearly, if A ⊆ B, then this
measure is zero. The proposed stabilizing constraint is [5]

N−1∑
i=0

‖X̂(k + i|k)‖Ω − JE(k − 1) < −1− β

β
(7)

which does not reduce the feasibility region and ensures that JE(k) tends to
zero, or equivalently, xk tends to Ω.

This controller requires that the state is fully measurable to be implemented.
If this is not possible, then an output feedback approach could be used. In the
following section an output feedback MPC is presented.

5 Robust Output Feedback MPC Based on Guaranteed
Estimation

In this section we present a robust MPC controller based on the measurement of
the outputs. This controller computes the control input considering an estimation
of the set of states calculated at each sampling time by an interval arithmetic
based algorithm. This procedure is presented in what follows.

5.1 Guaranteed State Estimation

Consider an uncertain non-linear discrete-time system (1) such that the applied
control inputs are known and only the outputs are measurable. The impossibility
to calculate accurately the states from the outputs together with the uncertainties
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and noises present in the system makes that only a region where the actual state
is confined is estimated. Thus, based on the measured outputs, an estimation of
the set of possible states at each sample time is obtained assuming that the initial
state is confined in a known compact sets xo ∈ X0.

For a measured output yk and input uk, the consistent state set at time k is
defined as Xyk

= { x ∈ Rn : yk ∈ g(x, uk, V ) }. Thus, the set of possible states
at sample time k, Xk, is given by the recursion Xk = f(Xk−1, uk−1,W )

⋂
Xyk

for a given bounding set of initial states X0 and for a given sequence of inputs u
and outputs y. It is clear that the exact computation of these sets is a difficult
task for a general nonlinear system. Fortunately, these sets can be estimated by
using a guaranteed estimator ψ(·, ·, ·) of the model f(·, ·, ·) [3]. The estimation
is not obtained by merely using ψ(·, ·, ·) instead of f(·, ·, ·) in the recursion, and
some problems must be solved.

The first issue stems from the fact that consistent state set Xyk
is typically

difficult to compute. Therefore, this can be replaced by a tractable outer ap-
proximation X̄yk

. In [3] an ad-hoc procedure is proposed to obtain an outer
approximation set X̄yk

as the intersection of the p strip-type sets. This proce-
dure requires the measured output yk and a region X̄k where Xyk

is contained;
thus this will be denoted as X̄yk

= Υ (yk, X̄k).
The second problem to solve is derived from the fact that the procedure

ψ(A, u,W ) requires that A has an appropriate shape. For instance, if the natural
interval extension of f(·, ·, ·) is being used, then A must be a box, while if it is
based on Kühn’s method, then A must be a zonotope. Assume that Xk has the
appropriate shape, a zonotope for instance, then the set ψ(Xk, uk,W ) is also
a zonotope, but the intersection ψ(Xk, uk,W ) ∩ X̄yk+1 may be not a zonotope.
Then, it is compulsory to obtain a procedure to calculate a zonotope which
contains this intersection. This procedure is such that for a given zonotope (box)
A, and a given set B, defined as the intersection of strips, calculates a zonotope
(box) C = Θ(A,B) such that C ⊇ A∩B. An optimized procedure for zonotopes
is proposed in [3]. In case of boxes, a simple algorithm can also be obtained
based on this.

Considering these points, the following algorithm to obtain a sequence of
guaranteed state estimation sets Xk is proposed:

1. For k = 0 and for a given zonotope X0, take X̂0 = X0.
2. For k ≥ 1, make

a) X̄k = ψ(X̂k−1, uk−1,W ).
b) X̄yk

= Υ (yk, X̄k).
c) Xk = X̄k ∩ X̄yk

d) X̂k = Θ(X̄k, X̄yk
).

From this algorithm it is clear that both Xk and X̂k are guaranteed state
estimation sets. Based on this algorithm, a robust output feedback MPC is
proposed in the following section.
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5.2 Robust Output Feedback MPC

In the previous section, some robust MPC controllers based on a guaranteed esti-
mation of the reachable sets were presented. This estimation is achieved by using
a guaranteed estimator ψ(·, ·, ·) of the model function f(·, ·, ·). These controllers
are able to robustly steer the system to a target set under assumption that the
full state variables are measurable. In the case that only the output signals are
measurable, then a set of estimated states can be calculated by means of the
proposed guaranteed state estimator estimator. Then the state feedback MPC
controller can be modified to deal with the output feedback case by considering
that the predicted sequence of reachable sets starts from a given set instead of
a single state initial state.

Consider that the control law u = h(x) is an admissible robustly stabilizing
control law for system (1) in a neighborhood of the origin. Assume that system
(1) is locally detectable for the corresponding dynamic output feedback controller

x̂k+1 = κ(x̂k, uk, yk) (8)
uk = h(x̂k)

in such a way that the closed loop system

xk+1 = f(xk, h(x̂k), wk) (9)
x̂k+1 = κ(x̂k, h(x̂k), g(xk, h(x̂k), vk)) (10)

is robustly stable in (x, x̂) ∈ Γ , where Γ is a polyhedral robust invariant set
for system (9), i.e. ∀(xk, x̂k) ∈ Γ , xk ∈ X , h(x̂k) ∈ U , and (xk+1, x̂k+1) ∈ Γ ,
∀w ∈W, v ∈ V . It is clear that Γ contains the origin in its interior.

Assume that there is available a procedure to implement the proposed esti-
mation algorithm that provides X̂k at each sampling time from the measurement
yk. Then the robust output feedback MPC controller first estimates the set of
states X̂k and then calculates the control input based on this set by minimizing
an optimization problem P o

N (X̂k).
The cost to minimize JN (X̂k, u) must be calculated from the set of initial states

X̂k. This can be done for instance based on the nominal prediction considering
as the initial state the center of the zonotope X̂k or calculating the sequence
of reachable sets and computing the worst case cost, in a similar way to the
min-max paradigm. Thus, the optimization problem P o

N (X̂k) is given by

min
u,x̂

JN (X̂k, u)

s.t. X̂(k + j|k) = Ψ(j; X̂k, u,W ) j = 1, · · · , N
u(k + j|k) ∈ U, j = 0, · · · , N − 1

X̂(k + j|k) ⊆ X j = 0, · · · , N
(x, x̂) ∈ Γ, ∀x ∈ X̂(k + N |k)

The extra decision variable x̂ has been added to force that for any state
contained in X̂(k + N |k), the dynamic controller (8) stabilizes the system
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considering x̂ as initial dynamic state. This constraint can be easily implemented
thanks to the polyhedral nature of Γ . Assume that X̂(k + N |k) = p ⊕ HBN

and Γ = {(x, x̂) : T1x + T2x̂ ≤ t} then the terminal constraint can be posed as
T2x̂ ≤ t−T1p−‖T1H‖1, where ‖T1H‖1 denotes the vector which i−th component
is the 1-norm of the i−th row of the matrix T1H .

The admissibility of the controller can be ensured by means of the methods
used for the case of full-state measurement presented in the previous section.
However, the addition of the state estimator may introduce feasibility loss of
the optimization problem due to the fact that the set X̂k+1 may be not con-
tained in the set ψ(X̂k, uk,W ) because of the outer approximation used in the
computation of X̂k+1. The probability that this happens is low but if so, the ad-
missibility of the problem can be ensured by solving the problem PN (X̂(k+1|k))
instead or by merely applying u∗(k + 1|k). Convergence of the real state to the
set Ω = Projx(Γ ) can be ensured by the previously proposed method: shrink-
ing the prediction horizon or considering an stabilizing constraint. Once that
X̂k ⊂ Ω, then the controller switches to the local dynamic controller considering
as the initial dynamic state x̂∗.

6 Conclusions

This paper summarizes some results on interval arithmetic applied to the design
of robust MPC controllers. First it is shown how the keystone is the procedure
to bound the range of a function and how this can be used to approximate the
sequence of reachable sets. This sequence can be used to design the robust MPC
controller in a natural way replacing the predicted trajectory by the sequence of
reachable sets. Admissibility and convergence of this controller can be guaranteed
by several methods.

The bounding procedure allows us to present an algorithm to estimate the
set of states based on the measure of the outputs. Based on this, a robust MPC
controller based on output feedback is presented. This controller ensures the
admissible evolution of the system to a neighborhood of the origin under the
existence of a local detector.
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Summary. A problem of synthesis of optimal measurement feedbacks for dynamical
systems under uncertainty is under consideration. An online control scheme providing
a guaranteed result under the worst-case conditions is described.

1 Introduction

An up-to-date methodology for control of constrained systems is model predictive
control (MPC) [1]. MPC feedback strategies are constructed as a result of open-
loop optimization of a nominal model for a given state. However, closed-loop
performance can be poor due to uncertainties present in the system such as
disturbances or modeling inaccuracies, and moreover, the exact measurement
of the state can be unavailable. For these reasons, in recent research attention
has been given to output feedback [2] and robust MPC techniques design [3].
In the latter two approaches can be distinguished. One method is to optimize
a nominal system subject to tightened constraints [4], while a game approach
leads to min-max formulations of MPC [5, 6].

This paper deals with the optimal synthesis problem for dynamical systems
under uncertainty of set-membership type which output is available with a lim-
ited accuracy. In this case the feedback constructed is rather a measurement
feedback [7] than an output feedback [2], and a problem of set-membership es-
timation arises. According to classical formulation, feedbacks have to be con-
structed in advance for all possible future positions of the system. Due to enor-
mous computational burden such closed-loop strategies are rarely calculated
even for linear determined problems. In this paper we implement receding hori-
zon control principle and construct an optimal feedback as a result of repeated
online optimization under the worst-case uncertainty realization. For linear sys-
tems two types of problems are solved in the course of the control process: a)
optimal observation problem and b) optimal control problem for a determined
control system. Numerical methods for problems a) and b) elaborated by the
authors are briefly discussed.

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 327–334, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



328 R. Gabasov, F.M. Kirillova, and N.M. Dmitruk

2 Optimal Closed-Loop Control Under Uncertainty

On the time interval T = [t∗, t∗] consider the dynamical system

ẋ(t) = f(x(t), u(t), w(t), t), (1)

where x(t) ∈ Rn is a state of system (1) at an instant t; u(t) ∈ Rr is a control;
w(t) ∈ Rp is a disturbance; f : Rn×Rr×Rp×T → Rn is a given function such
that equation (1) has a unique solution for any control and disturbance.

The control u(t), t ∈ T , is a discrete function with a sampling period h =
(t∗ − t∗)/N : u(t) ≡ u(τ), t ∈ [τ, τ + h[, τ ∈ Th = {t∗, t∗ + h, . . . , t∗ − h}, taking
values in a bounded set U ⊂ Rr.

The uncertainties are the disturbance w and the initial state x(t∗). Both are
assumed to be bounded: w(t) ∈W ⊂ Rp, t ∈ T ; x(t∗) ∈ X0 ⊂ Rn.

Online information on the behaviour of system (1) arrives at discrete instants
t ∈ Th through measurements of the sensor

y(t) = g(x(t), t) + ξ(t), (2)

with continuous function g : Rn × T → Rq, and bounded measurement errors
ξ(t): ξ(t) ∈ Ξ ⊂ Rq, t ∈ Th.

Let Yτ be a totality of all signals yτ (·) that can be obtained in system (1), (2)
by the instant τ .

A vector functional

u = u(τ, yτ (·)), yτ (·) ∈ Yτ (u), τ ∈ Th, (3)

depending on positions (τ, yτ (·)) is called a feedback for problem (1), (2).
Let X(t, u, y), t ∈ T , be a totality of all trajectories of system (1), closed by

feedback (3), such that they are consistent with a signal y(·) = (y(t), t ∈ Th).
Let X(τ, u) =

⋃
X(τ, u, y), y(·) ∈ Yτ (u), τ ∈ Th.

Feedback (3) is called admissible if u(τ, yτ (·)) ∈ U , X(τ, u) 	= ∅, τ ∈ Th, and
X(t∗, u) ⊂ X∗, where X∗ ⊂ Rn is a given terminal set. Thus, the admissible
feedback guarantees that system (1) reaches the set X∗ at the moment t∗ despite
uncertainties in (1), (2).

Let the cost of the admissible feedback (3) be evaluated as J(u) = min c′x,
x ∈ X(t∗, u). The admissible feedback u0(τ, yτ (·)), yτ (·) ∈ Yτ , τ ∈ Th, is called
optimal if J(u0) = maxJ(u), where maximum is calculated over all admissible
feedbacks.

Control u0 is the optimal closed-loop control strategy. It gives the best result
under the worst conditions (optimal guaranteed result). Synthesis problem in
classical formulation implies the construction of optimal feedback u0(τ, yτ (·))
for all possible positions (τ, yτ (·)). This problem is computationally intractable
even for linear optimal control problems for determined systems. One approach
to overcome this difficulty [8] is to apply receding horizon (or, more precisely,
decreasing horizon) technique. Repeated online solution of optimal control prob-
lems formulated for a current position (τ, y∗τ (·)) of (1), (2) allows to construct a
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feedback along a realized path (τ, y∗τ (·)), τ ∈ Th. Effort on treating admissible
but not realized positions (τ, yτ (·)) is not spent.

In the sequel we concentrate on a linear optimal control problem with para-
metric uncertainty. The feedback will be constructed on the base of optimal
open-loop control strategies. Note that closed-loop formulation as in [5, 6] for
the problem under consideration (on finite-time interval T ) results again in con-
struction of the functional u0(τ, yτ (·)) for all yτ (·) ∈ Yτ , τ ∈ Th.

3 Optimal Online Control with Open-Loop Strategies

Consider a linear time-varying control system and a linear sensor:

ẋ(t) = A(t)x(t) + B(t)u(t) + w(t), y(t) = C(t)x(t) + ξ(t) (4)

with piecewise continuous matrix functions A(t) ∈ Rn×n, B(t) ∈ Rn×r, C(t) ∈
Rq×n, t ∈ T .

Let the disturbance w(t), t ∈ T , and the initial state x(t∗) have the form

w(t) = M(t)v, t ∈ T ; x(t∗) = x0 + Gz,

where M(t) ∈ Rp×l, t ∈ T , is a piecewise continuous matrix function, x0 ∈ Rn,
G ∈ Rn×k; v ∈ Rl and z ∈ Rk are unknown bounded parameters:

v ∈ V = {v ∈ Rl : w∗ ≤ v ≤ w∗}; z ∈ Z = {z ∈ Rk : d∗ ≤ z ≤ d∗}.

Drawing analogy with stochastic uncertainty, we call the sets Z, V a priori
distributions of the initial state and the disturbance parameters. A set Γ = Z×V
is called the a priori distribution of the parameters γ = (z, v).

Let U = {u ∈ Rr : u∗ ≤ u ≤ u∗}, Ξ = {ξ ∈ Rq : ξ∗ ≤ ξ ≤ ξ∗}, X∗ = {x ∈
Rn : g∗i ≤ h′

ix ≤ g∗i , i = 1,m}, where hi ∈ Rn, g∗i < g∗i .
Now we describe an optimal online control procedure for a particular control

process where a signal y∗(·) realizes.
Consider an arbitrary (current) instant τ ∈ Th. Suppose that by the instant

τ ∈ Th the control function u∗(t), t ∈ [t∗, τ [, has been fed into the input of (4)
and the signal y∗τ−h(·) has been recorded. At the instant τ the measurement y∗(τ)
is obtained, therefore the signal y∗τ (·) is known. This signal contains additional
information about the parameter vector γ∗ = (z∗, v∗) realized in the process.
This information is described by an a posteriori distribution Γ̂ (τ) = Γ̂ (τ ; y∗τ (·))
that is a set of all vectors γ consistent with y∗τ (·).

In a more rigorous formulation the a posteriori distribution Γ̂ (τ) consists of
all γ ∈ Γ for which there exist an initial state x(t∗) = x0 + Gz, a disturbance
w(t) = M(t)v, t ∈ [t∗, τ [, and measurement errors ξ(t) ∈ Ξ, t ∈ Th

⋂
[t∗, τ ], such

that (4) with the control u∗(t), t ∈ [t∗, τ [, produces the signal y∗τ (·).
Let us construct the (current) optimal open-loop control u0(t|τ, y∗τ (·)), t ∈

[τ, t∗], such that: 1) it transfers system (4) on the terminal set X∗ at the instant
t∗ for every γ ∈ Γ̂ (τ); 2) it delivers maximum to the objective functional J(u).
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The first condition gives admissibility of the control strategy while the second
one ensures its optimality.

It can be shown that a control u(t|τ, y∗τ (·)), t ∈ [τ, t∗], is admissible if together
with u∗(t), t ∈ [t∗, τ [, it steers the nominal system

ẋ0(t) = A(t)x0(t) + B(t)u(t), x0(t∗) = x0

at the instant t∗ on the terminal set

X∗
0 (τ) = {x ∈ Rn : g∗i − β̂i(τ) ≤ h′

ix ≤ g∗i − α̂i(τ), i = 1,m}.

Here the tightened terminal constraints are determined by the estimates

α̂i(τ) = maxh′
ix, x ∈ X̂∗(τ); β̂i(τ) = minh′

ix, x ∈ X̂∗(τ); i = 1,m, (5)

of the a posteriori distribution X̂∗(τ) = X̂∗(τ, y∗τ (·)) of terminal states x∗(t∗) of
the uncertain system

ẋ∗(t) = A(t)x∗(t) + w(t), x∗(t∗) = Gz, (z, v) ∈ Γ̂ (τ).

The (current) optimal open-loop control u0(t|τ, y∗τ (·)), t ∈ [τ, t∗], therefore, is
a solution to the determined optimal control problem

c′x(t∗)→ max, ẋ(t) = A(t)x(t) + B(t)u(t), x(τ) = x0(τ), (6)
x(t∗) ∈ X∗

0 (τ), u(t) ∈ U, t ∈ [τ, t∗].

Extremal problems (5) are called the optimal observation problems accompa-
nying the optimal control problem under uncertainty. Problem (6) is called the
accompanying optimal control problem.

The optimal open-loop control is fed into the system until the next measure-
ment is processed: u∗(t) = u0(t|τ, y∗τ (·)), t ∈ [τ + s(τ), τ + h + s(τ + h)[. Here
s(τ) < h is a delay caused by computational needs. It represents time required to
solve 2m accompanying optimal observation problems (5) and one accompanying
optimal control problem (6).

Remark. On the interval [t∗, t∗+s(t∗)[ system (4) is controlled with the (a priori)
optimal open-loop control u0(t), t ∈ T , constructed as above on the base of the
a priori distribution Γ .

If the delay s(τ) is neglected then u∗(t), t ∈ T , is an optimal control among
all feedbacks constructed on the base of open-loop strategies.

Optimal control problem (6) in the class of discrete controls is equivalent
to a linear program that can be solved by any standard method. However, for
satisfactory performance of the online control procedure the delay s(τ) must be
as small as possible. The reduction of the optimal control problem (6) to linear
program and the use of standard methods in this case are not effective. Specially
designed algorithms that take into account the repeated optimization performed
for every τ ∈ Th are desirable. The authors designed fast numerical methods for
optimization of linear and nonlinear control systems [9, 10]. These methods are
based on a special parametrization of the solutions of (5), (6).
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One can notice that problems (6) solved at the previous instant τ − h and
at the current instant τ are close in the sense that switching points of their
optimal open-loop controls u0(t|τ − h, y∗τ−h(·)), t ∈ [τ − h, t∗], and u0(t|τ, y∗τ (·)),
t ∈ [τ, t∗], are close. This property resulted in parametrization of the optimal
open-loop controls by their switching points. Indirect methods for optimal con-
trol problems require solution of boundary value problems, therefore primal and
adjoint equations are integrated on the whole control interval and on each itera-
tion. Parametrization proposed in [9] allows integration of adjoint systems only
on short intervals where the switching points move. As a result the method per-
forms fast corrections of the switching points of the optimal open-loop control
u0(t|τ − h, y∗τ−h(·)), t ∈ [τ − h, t∗], to switching points of u0(t|τ, y∗τ (·)), t ∈ [τ, t∗]
(see [9] for the details and a numerical example in section 5 for complexity es-
timate). Similarly, a special parametrization of solutions of optimal observation
problems with a small number of parameters and fast algorithms for their solu-
tion were proposed in [11].

4 Two-Mode Algorithm for Problems with Large
Uncertainty

It is well known that feedbacks based on optimal open-loop strategies may fail
to provide a feasible solution for positions where optimal closed-loop controls
exist. Here we discuss one approach to overcome the feasibility problem when
using the procedure described in section 3.

We take into account that uncertainty reduces in the course of the control pro-
cess, i.e. that α̂i(τ)− β̂i(τ), τ ∈ Th, is a decreasing function. This fact obviously
follows from observation that X̂∗(τ) = X̂∗(τ−h)∩{x ∈ Rn : x = x(t∗) consistent
with y∗(τ)}. Thus, X̂∗(τ) ⊆ X̂∗(τ −h) and α̂i(τ −h) ≥ α̂i(τ), β̂i(τ −h) ≤ β̂i(τ),
i = 1,m. Consequently X∗

0 (τ) ⊇ X∗
0 (τ − h).

Let τ∗ ∈ Th be such that α̂i(τ) − β̂i(τ) > g∗i − g∗i for all τ < τ∗ and α̂i(τ∗)−
β̂i(τ∗) ≤ g∗i − g∗i. If accompanying optimal control problem (6) for τ = τ∗ has a
solution, then as follows from the discussion above, problem (6) has admissible
(and optimal) controls for any τ > τ∗. Thus, starting from the moment τ∗ the
control process can be performed as described in section 3.

The following two-mode algorithm is proposed to design a control strategy
for the whole control interval T . At the first mode (τ < τ∗) find a minimal
neighborhood of the set X∗

0 (τ) that can be reached by the instant t∗ despite the
uncertainty. To this end the following extremal problem is solved

ρ→ min, ẋ(t) = A(t)x(t) + B(t)u(t), x(τ) = x0(τ), (7)
x(t∗) ∈ X∗

ρ(τ), u(t) ∈ U, t ∈ [τ, t∗].

Here X∗
ρ (τ) = {x ∈ Rn : gi∗ − β̂i(τ) − ρ ≤ h′

ix ≤ g∗i − α̂i(τ) + ρ, i = 1,m} is a
terminal set with boundaries adjusted by a parameter ρ.

Problem (7) always has a solution ρ0(τ), u0
ρ(t|τ, y∗τ (·)), t ∈ [τ, t∗], resulting

in existence of admissible controls in an auxiliary optimal control problem with
relaxed terminal constraints
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c′x(t∗)→ max, ẋ(t) = A(t)x(t) + B(t)u(t), x(τ) = x0(τ), (8)
x(t∗) ∈ X∗

ρ+ε(τ), u(t) ∈ U, t ∈ [τ, t∗].

Here ρ = ρ0(τ) and ε > 0 is a small parameter.
The optimal open-loop control u0

ρ+ε(t|τ, y∗τ (·)), t ∈ [τ, t∗], of problem (8) is
fed to the input of system (4) on the interval [τ + s(τ), τ + h + s(τ + h)[.

If ρ0(τ) ≤ 0, then τ = τ∗ and accompanying optimal control problem (6) has
a solution. The controller switches to the second mode and the process follows
the procedure described in section 3.

Remark. Another approach to avoid feasibility problems and incorporate closed-
loop strategies can be proposed as a generalization of a closable feedback intro-
duced in [12] for uncertain linear control problems with exact measurements of
the states. The closable feedback is a combination of open-loop and closed-loop
predictions; it takes into account the fact that in the future more measurements
will be available, but considers only a small number of them to avoid enormous
computational burden. The closable measurement feedback for problem under
consideration will be developed elsewhere.

5 Example

On the time interval T = [0, 15] consider the following system (half-car model):

ẍ = −2.1x+ 0.31ϕ− u1 + u2 + w1, (9)
ϕ̈ = 0.93x+ 6.423ϕ+ 1.1u1 + 0.9u2 + w2.

with known states x(0) = 0.1, ϕ(0) = 0; unknown velocities ẋ(0) = z1, ϕ̇(0) = z2;
and disturbances w1(t) = v1 sin(4t), w2(t) = v2 sin(3t), t ∈ T ; where |z1| ≤ 0.1,
|z2| ≤ 0.33, |vi| ≤ 0.01, i = 1, 2.

Let the sensor at t ∈ Th = {0, h, . . . , 15− h}, h = 0.02, measure values

y1 = −x + 1.1ϕ+ ξ1, y2 = x + 0.9ϕ+ ξ2,

where ξi = ξi(t), |ξi(t)| ≤ 0.01, t ∈ Th, i = 1, 2, are bounded errors.
The aim of the control process is to steer system (9) on the sets X∗ = {x ∈

R2 : |x1| ≤ 0.05, |x2| ≤ 0.1}; Φ∗ = {ϕ ∈ R2 : |ϕ1| ≤ 0.05, |ϕ2| ≤ 0.2}; using
bounded controls 0 ≤ ui(t) ≤ 0.02, t ∈ T , i = 1, 2, while minimizing

J(u) =

15∫
0

(u1(t) + u2(t))dt.

Let a particular control process be generated by the following parameters and
errors: z∗1 = −0.1, z∗2 = 0.33; v∗1 = −0.005, v∗2 = 0.01; ξ∗1(t) = 0.01 cos(2t),
ξ∗2(t) = −0.01 cos(4t), t ∈ Th.
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In the control process under consideration the optimal value of the objective
function was equal to 0.1046290478. Figure 1 presents the estimates α̂i(τ), β̂i(τ),
i = 1, 4; t ∈ [0, 2]. Figure 2 shows the optimal control function u∗(t), t ∈ T ,
and the projections on the phase planes xẋ and ϕϕ̇ of the corresponding optimal
trajectories.

Fig. 1. Linear estimates α̂i(τ ), β̂i(τ ), τ ∈ Th, i = 1, 4

Fig. 2. Optimal control and projections of the optimal trajectories

Fig. 3. Two-mode algorithm: estimate ρ(t), t ∈ Th, and optimal trajectories

To estimate the delay s(τ) assume that σ is maximal time required to integrate
primal or adjoint equations on the whole interval T . We used methods from [9, 11]
to perform online corrections of solutions of optimal control and observation
problems. The maximal length of the intervals, where differential equations were
integrated, was lmax = 0.043t∗ (4.3% of the control interval). If σ is such that
σlmax < h, then system (9) can be controlled in real time.

To demonstrate the two-mode method new (substantially smaller) terminal
sets X∗ = {x ∈ R2 : |xi| ≤ 10−3, i = 1, 2}, Φ∗ = {ϕ ∈ R2 : |ϕi| ≤ 10−3, i = 1, 2}
were chosen as well as new bounds on controls: 0 ≤ ui(t) ≤ 0.05, t ∈ T, i =
1, 2. Under these conditions accompanying optimal control problem (6) on the
interval [0,1.52] had no solution and the first mode was performed. The results
are presented in Figure 3.
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6 Conclusion

In this paper we have considered a problem of synthesis of optimal feedbacks
for dynamical systems under uncertainty. For a linear time-varying system with
parametric uncertainty and inexact measurements of output an online control
algorithm based on open-loop strategies has been presented. It has been shown
that in the course of a control process problems of two types are solved: a) opti-
mal observation problem that consists in set-membership estimation of terminal
states of an uncertain dynamical system without control and b) optimal control
problem for a nominal control system. Numerical methods of their solution has
been discussed. One approach to tackle a feasibility problem arising as a result
of open-loop controls has been presented.
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Summary. In dynamical processes states are only partly accessible by measurements.
Most quantities must be determined via model based state estimation. Since in gen-
eral only noisy data are given, this yields an ill-posed inverse problem. Observability
guarantees a unique least squares solution. Well-posedness and observability are qual-
itative behaviours. The quantitative behaviour can be described using the concept of
condition numbers. which we use to introduce an observability measure. For the lin-
ear case we show the connection to the well known observability Gramian. For state
estimation regularization techniques concerning the initial data are commonly applied
in addition. However, we show that the least squares formulation is well-posed, avoids
otherwise possibly occuring bias and that the introduced observability measure gives
a lower bound on the conditioning of this problem formulation.

Introducing possible model error functions we leave the finite dimensional setting.
To analyse in detail the influence of the regularization parameters and of the coefficients
of the model, we study, as a start, linear state equations as constraints, which appear
nearly always as a subproblem of the nonlinear case. We show that state estimation
formulated as optimization problem omitting regularization of the initial data leads
to a well-posed problem with respect to L2- and L∞- disturbances. If the introduced
measure of observability is low, the arising condition numbers with respect to the L2-
norm can be arbitrarily large. Nevertheless, for the probably in praxis more relevant
L∞-norm perturbations yield errors in the initial data bounded independently of the
system matrix.

1 Introduction

In application the state of a process has to be estimated given noisy data over a
past time horizon. These data correspond only to a few state functions, so called
output functions. The coupling with all remaining states is given by model equa-
tions. This inverse problem is in general ill-posed, since the measurements are
noisy and the corresponding continuous signals do not fulfill the model equations.
Hence, the existence requirement for well-posedness in the sense of Hadamard is
violated. Considering the least squares solution the uniqueness is guaranteed by
the observability of the system given by the model equation. The third require-
ment of well-posedness, namely stability, depends crucially on the norms, which
are chosen to measure the disturbances. For state estimation stability may be
present in some cases. However, as soon as model error functions are introduced
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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this is not any longer true. Additional regularization is required. Assuming now
well-posedness, there arises the next question: how ’well’ does the solution behave
in case of disturbances? The corresponding question for the system itself is, how
’well’ is the system observable?Both questions ask for the relation of the output
error to the input error. Condition numbers is a general formulated mathemat-
ical concept for operators answering this question. Hence, we use this concept
to derive a definition of observability measure. Alltogether, this paper discusses
for state estimation the well-posedness of the regularized least squares problem
formulation, the conditioning, i.e. error propagation, and the influencing observ-
ability measure. For all three issues the chosen norms play an important role.

The structure of the paper is the following. First we resume the definitions
of well-posedness, the possibilities to overcome ill-posedness and the concept of
condition numbers. We discuss for the system observability and introduce an ob-
servability measure based on condition numbers. For linear model equations and
the L2-norm this observability measure depends on the observability Gramian.
Then the well-posedness of the least squares formulation for linear estimation is
shown requiring only observability.Additional regularization of the initial value
yields unnecessary bias. In the following section we extend the model equations
linearly by possible model error functions. The least squares problem formula-
tion, now necessarily regularized with respect to the error functions, gives an
optimization problem, for which we state the first order necessary condition.
Then we restrict the analysis to linear state equations omitting inequality con-
straints. They appear usually as subproblems solving the nonlinear problem and
their analysis enhances already some of the main features we face also for the
nonlinear case. In particular, we study the influence of the measure of observ-
ability and of the regularization parameter. Omitting regularization of the initial
data we derive well-posedness for the optimization formulation with respect to
the L2-norm and with respect to the L∞-norm. However, while for one state only
we see that the problem is well-conditioned with respect to the L∞-norm, a low
observability measure may result into an ill-conditioned problem with respect
to the L2-norm independent of the regularization parameter. In the last section
we draw conclusions and emphasize the issue of the appropriate choice of norms
concerning data errors and state errors.

2 Well-Posedness, Condition Number and Observability
Measure

Typically the noisy measurements z(ti) ∈ IRny at discrete times are prepro-
cessed. Most algorithms are based on the assumption to have an underlying
function corresponding to the discrete data, e.g. for many filtering techniques
the Fourier transformation is used at some stage. Hence, it is appropriate to as-
sume a preprocessing of the data on a horizon [t0, t0 +H ] to a still noisy function
z ∈ L2([t0, t0 + H ], IRny). These data z correspond to a few states, called output
functions which we denote with y. The output functions y are coupled with all
states x and their initial values x0 = x(t0) ∈ IRnx by model equations. Usually
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the number of output functions ny is far less than the number of state functions
nx. Given the model equations one can determine from the initial values the
states and therefore the outputs. Hence they define an operator K : x0 → y. In
general we have z /∈ R(K) (the range of K). This violates the first condition of
well-posedness in the sense of Hadamard [8]:

2.1 Ill-Posed Problems, Regularization and Condition Numbers

Definition 1. Given an operator K : X → Y where X and Y are normed spaces,
then the equation Kx = y is well-posed in the sense of Hadamard iff
1. Existence: there exists for all y ∈ Y a solution x ∈ X; (K surjective).
2. Uniqueness: there is at most one solution x ∈ X; (K injective).
3. Stability: x depends continuously on y, i.e.

‖Kxn −Kx‖Y → 0⇒ ‖xn − x‖X → 0; (K−1 continuous).
The equation is ill-posed if one of these properties does not hold.

It is important to specify the spaces as well as the topologies of the spaces, i.e.
the norms ‖ · ‖X and ‖ · ‖Y . The problem can be well-posed using one set of
norms and ill-posed in another set of norms. If the problem is ill-posed there are
several remedies, of which we recall only some relevant in our context. Assume
that X and Y are Hilbert-spaces (i.e. there exists a scalar product; e.g. the space
L2) and K : X → Y is linear and compact then x is called least-squares solution
(best fit) if x is the solution of minx∈X ‖Kx− z‖Y . Moreover, it holds: x is the
least squares solution if and only if the normal equation K∗Kx = K∗z holds,
where K∗ denotes the adjoint operator. In case of a finite-dimensional space X
this ansatz overcomes the failure of existence. Uniqueness is not necessarily an
issue in our context since we require observability of the system given by the
model equations (see later). However, otherwise one can use the Moore-Penrose
inverse, also called generalized inverse, which is the least squares solution of min-
imal norm [8], if there exists a least squares solution. For finite-dimensional X
the generalized inverse is given by K† := (K∗K)−1K∗. However, the generalized
inverse does not overcome the lack of continuity in general. Regularization tech-
niques have to be applied. Here, we can distinguish roughly speaking three kinds
of approaches, namely the Tikhonov regularization, which we consider here, it-
erative regularization methods and regularization by discretization (projection).
An application of the latter in state estimation can be found i.e. in [3]. Tikhonov
regularization shifts the spectrum of K∗K and leads to the regularized general-
ized inverse Rd := (dI + K∗K)−1K∗, which is bounded, with a regularization
parameter d > 0. Solving Rdx = z is equivalent to the minimization problem

minx∈X ‖Kx− z‖2Y + d‖x‖2X .

The operator RdK should converge pointwise to the identity for d → 0. More-
over, the choice of the regularization parameter d should give the best compro-
mise between data and regularization error, i.e. let ‖z−zδ‖ ≤ δ and xd,δ = Rdz

δ

then ‖xd,δ − x‖ ≤ ‖Rd(zδ − z)‖ + ‖Rdz − x‖ ≤ ‖Rd‖δ + ‖Rdz − x‖, should be
minimal. The first term is called data error and the second regularization error.
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This is a non trivial task but will not be discussed in this paper, instead we refer
to the literature, e.g. [8].

Now let us assume that Kx = y is a well-posed problem. Then K−1 exists
and is bounded with respect to the chosen norms. That means, the equation is
stable, which is a qualitative statement. The mathematical concept of condition
number is quantitative. It measures the possible error propagation with respect
to the absolute or relative error [7].

Definition 2. Considering the problem given y determining the solution x of
Kx = y and let ‖ỹ − y‖Y → 0:
1. the absolute condition number is the smallest number κabs(y) > 0 with

‖x̃− x‖X = ‖K−1ỹ −K−1y‖X ≤ κabs(y)‖ỹ − y‖Y + o (‖ỹ − y‖Y ) ,
2. the relative condition number is the smallest number κrel(y) > 0 with

‖x̃− x‖X/‖x‖X ≤ κrel(y)‖ỹ − y‖Y /‖y‖Y + o (‖ỹ − y‖Y /‖y‖Y ) .

The problem is called well-conditioned if κ is small and ill-conditioned for large
κ. For linear K we have

κabs(y) ≤ ‖K−1‖Y →X and κrel(y) ≤ ‖K‖X→Y ‖K−1‖Y →X .
If K is a matrix, the condition number is defined as the latter namely cond(K) :=
‖K‖‖K−1‖, where commonly the l2-norms are used.

2.2 Observability Measure

For state estimation on the horizon [t0, t0 + H ] the operator K : x0 �−→ y is
given by the model equations:

State equations: Gẋ− f(x, u, p) = 0, x(t0) = x0 (1)
Output equations: y − Cx = 0 (2)

The system (1)-(2) is called observable, if for any given u and p the initial state
x0 can be uniquely determined from the output y [11]. Hence, K : x0 �−→ y
is injective for fixed u, p and K−1 exists on R(K). The space X is the finite-
dimensional space IRnx . Observability is the qualitative behaviour that a differ-
ence in the states shall be seen in the outputs. The observability measure shall
quantify this statement, hence we consider

‖y − ỹ‖ ≥ c‖x0 − x̃0‖
or a relative measurement independent of the scaling

‖y − ỹ‖/‖y‖ ≥ c‖x0 − x̃0‖/‖x0‖.
As larger c as better the observability measure. This suggest the use of the
condition number κ = 1/c of the problem given y determining the solution of
Kx0 = y. The evaluation of the conditioning is mentioned also in [1] in preference
to the yes/no answer of observability.

Definition 3. The absolute and the relative measure of observability of x0 are
defined as 1/κabs and 1/κrel.The system is called well observable for x0, if κ =
1/c is small, and has a low observability measure for large κ.
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For linear model equations the corresponding operator K is affine. Let us first
consider linear K, i.e. the model equations are linear and p and u = 0. Without
loss of generality we consider in the rest of the paper only the case t0 = 0. Thus
we have with

ẋ− Ax = 0, x(0) = x0, y − Cx = 0 (3)
⇒ Kx0 = CeAtx0 (4)

Choosing now as norm on Y the L2([0, H ])ny -norm we obtain

‖Kx0‖2L2
= xT

0
∫ H

0 (eAt)TCTCeAt dt x0 = xT
0 G(H)x0

where the matrix G(H) ∈ IRnx×nx is the known finite time observability Gramian
(e.g. [6, 11, 12]).

Lemma 1. Let the system be observable, then:
a.) The observability Gramian G(H) =

∫ H

0 (eAt)TCTCeAt dt ∈ IRnx×nx is sym-
metric positive definite, and therefore invertible.
b.) Let v be a normed real eigenvalue of A to an eigenvalue α ∈ IR. Then ‖G(H)‖2
is large for large α and for a long horizon [0, H ], while ‖G(H)−1‖2 is large if −α
is large or ‖Cv‖l2 is small or if the horizon is short.

Proof: a.) Symmetry is obvious. Given v 	= 0 then y(t) = CeAtv 	≡ 0 since the
system is observable. Hence, vTGv =

∫ H

0 yT (t)y(t) dt = ‖y‖2L2
> 0.

b.) Let v and α fulfill the assumption, then

vTGv = ‖eαt‖2L2(0,H)‖Cv‖2l2 =
e2αH − 1

2α
‖Cv‖2l2 . (5)

With ||G||2 = maxv∈IRnx (vTGv)/(vT v), ‖G−1‖2 = maxv∈IRnx (vT v)/(vTGv) fol-
lows the assertion. �
Using the l2-norm for X = IRnx it follows for K:

‖K‖2l2→L2
= sup

x0∈IRnx

‖Kx0‖2L2

‖x0‖2l2
= sup

x0∈IRnx

xT
0 Gx0

xT
0 x0

= ||G||2 (6)

‖(K
∣∣R(K) )−1‖2L2→l2 = sup

x0∈IRnx

‖x0‖2l2
‖Kx0‖2L2

= ||G−1||2 (7)

For linear systems with not necessarily p and u = 0 we need to consider for
the condition numbers ‖Kx̃0 −Kx0‖2L2

= (x̃0 − x0)TG(x̃0 − x0). Hence, having√
‖G−1‖2‖y − ỹ‖L2 ≥ ‖x0 − x̃0‖l2 for all x0, we can define for linear systems

-like condition numbers for matrices- a observability measure independent of the
state x0:

Definition 4. The absolute, respectively the relative observability measure with
respect to the l2 and L2-norms for linear systems is given by

1/
√
||G−1||2 respectively 1/

√
cond(G).
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This definition is in agreement with the Gramian based measure in [13], where
one considers a infinite horizon. There, several measures are proposed and com-
pared, which are all rather based on the various tests for observability than
motivated by error propagation.

Lemma 1 immediately shows that long horizons are better for observability
reasons. It also reassures that the eigenvectors of system matrix A should not
be close to the null-space of the output matrix C. For rapidly decaying systems
it is confirmed that it is difficult to determine the initial value exactly, while for
the forward problem K the value at the end point is sensitive to α 0.

2.3 State Estimation as a Least Squares Problem

Going back to the inverse problem of state estimation we obtain

Theorem 1. For a observable system the problem formulation on [0, H ]

min ‖y − z‖2L2
+ d‖x0 − xref

0 ‖
2
l2

s.t. ẋ−Ax = u, x(0) = x0, y − Cx = 0 (8)

is well-posed for all d ≥ 0, and the solution is given by

x0 = (G(H) + dI)−1[

H∫
0

eAT tCT {z(t)− CeAt

t∫
0

e−Asu(s) ds} dt + dxref
0 ]. (9)

Regularization of the initial data (d 	= 0) is not necessary, and leads to bias if
inexact reference values are used.

Proof: Setting ẑ = z − C
∫ t

0 e
A(t−s)u(s) ds we have

min ‖y − z‖L2
+ d‖x0 − xref

0 ‖
2
l2

= min ‖ŷ − ẑ‖L2
+ d‖x0 − xref

0 ‖
2
l2

where ŷ fulfills the model equations with û = 0. Then, dropping for convenience
the ˆ we have the equivalence of (8) to the normal equation:
(K∗K+dI)x0 = K∗z+dxref

0 with K∗z =
∫ H

0 eAT tCT z(t)dt since (ξ0,K∗y)l2 =
(Kξ0, y)L2 = ξT

0
∫ H

0 (eAt)TCT y(t) dt. Hence G = K∗K which is invertible for
observable systems, and we obtain (9). Moreover, since G is finite-dimensional it
has a bounded inverse. Therefore, (8) is a well-posed problem even for d = 0, i.e.
without regularizing the initial value. Given a noise free signal z, there exists a
unique xexact

0 s.t. Kxexact
0 = z. We obtain

x0 = xexact
0 + (G + dI)−1

d(xref
0 − xexact

0 ) (10)

which answers the question of bias. �
(Remark: the result concerning the bias is not in contrast to the probabilistic
ansatz leading to the Kalman filter, since there one would choose also d = 0 for
noise free signals [10]. If one may wish to include a priori knowledge about a
linear process appropriate priors and consequently possible choices for d with a
small influence on the solution can be found e.g. in [5]. For d = 0 see also [6] for
extension to time varying systems and the connection to the Kalman filter. )

While the least squares formulation is well-posed, it is not necessarily well-
conditioned.
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Corollary 1. The condition number of (8) with d = 0, i.e. of the least squares
problem K† = G−1K∗ with respect to the l2 and L2-norms obeys

κabs ≥ ‖(K
∣∣R(K) )−1‖2L2→l2

=
√
‖G−1‖2 and κrel ≥

√
cond(G).

Proof: Let v be the normed eigenvector to the smallest eigenvalue of G, then
‖G−1‖2 = ‖G−1v‖2. For z(t) = kCeAtG−1v and u = 0 we have x0 = kG−1v.
Furthermore, ‖z‖2L2

= k2‖G−1‖2 and therefore ‖x0‖ = ‖z‖L2

√
‖G−1‖2. With

(6) and (7) the assertion holds. �
Consequently, a low observability measure leads to an ill-conditioned least
squares formulation, even though observability provides well-posedness. E.g. we
may face large error propagation if the assumptions of Lemma 1b.) hold.

3 Inclusion of Model Error Functions

3.1 Optimality Conditions

In the following we include linearly possible model error functions w in the
model equations. With this step we leave the finite dimensional setting. Consid-
ering only the least squares solution does not guarantee stability any longer, as
the example of the signal z(t) = δ sin n

δ t with the model equations ẋ = ax + w
and y = x shows for n → ∞. Regularization with respect to w is necessary. As
regularization parameters we employ now matrices instead of scalars. For the
mathematical consideration it is at this point no issue to distinguish the given
parameters p and the controls u. We summarize them to u. Equation (1) for
the initial condition can be omitted, since it does not contain any information.
Additional inequality constraints reflect safety constraints as well as model veri-
fication. Summarized we consider in the following the Tikhonov-type regularized
least squares solution of:

min

H∫
0

(y − z)TQ(y − z) + wTRww dt+ ‖D1/2(x(0)− xref
0 )‖2l2 (11)

s.t. Gẋ− f(x, u)−Ww = 0, y − Cx = 0, c(x, u) ≥ 0. (12)

Obviously, we can substitute y by Cx and reduce the system by y, the output
equations and avoid Lagrange multipliers for these. In addition, setting up the
necessary first order equations we see w can be eliminated by the Lagrange
multiplier with resp. to the DAE’s, namely w = R−1

w WTλ. This is a major
reduction in size since w(t) may be in IRnx . Defining R := WR−1

w WT we obtain
the following necessary conditions (for details see [4], for the linear case without
inequality constraints see [10], where also the connection to the Kalman filter is
given):

Gẋ− f(x, u)−Rλ = 0 (13)

− d

dt
(GTλ)− (

∂

∂x
f(x, u))Tλ + CTQCx + (

∂

∂x
c(x, u))T ν = CTQz (14)
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(GTλ)(0) = D(x(0)− xref
0 ) and (GTλ)(H) = 0 (15)

νT c(x, u) = 0 c(x, u) ≤ 0 ν ≥ 0. (16)

In case of ODE’s as state constraints with no regularization of the initial state,
this yields w ∈ H1, where H1 denotes the Sobolev-space of weakly differentiable
functions in L2, and w = 0 at the end points. If model error functions are
present in all state equations, the Lagrange parameter λ can be eliminated too
with λ = R−1 (Gẋ− f(x, u)) . Then, the necessary conditions reduce to a second
order DAE system with mixed boundary constraints for the state x only and the
equations (16) for the inequality constraints.

3.2 Analysis for Linear ODE’s

In the solution process for a nonlinear problem with inequality constraints nearly
always optimization problems with linear model equations and without inequal-
ity constraints (or an equivalent linear equation system) appear as subproblems.
Although for the linear case, in particular with regularization of the initial data,
efficient methods as the Kalman filter are well established [10, 11], these meth-
ods and its extensions cannot be applied or do not perform sufficiently in the
presence of nonlinearity and inequality constraints [9]. However, the study of
linear model equations without inequality constraints enhances already some of
the main features we face for the treatment of the optimization formulation of
the nonlinear state estimation. The goal of the study here is to iluminate the
influence of the eigenvalues of the system matrix, the influence of the observ-
ability measure and the influence of the regularization parameters. As a start
we assume possible model error functions in all state equations. We consider the
following problem:

min

H∫
0

(Cx− z)TQ(Cx− z) + wTRww dt+ ‖D1/2(x(0) − xref
0 )‖2l2 (17)

s.t. ẋ−Ax− w = u.

A detailed analysis of this problem and its results can be found in [4], where
they are presented for H = 1 and D = 0. With a few modifications they can be
extended to any H > 0. In this paper we summarize some of the main results. To
study the properties we choose one of the following three equivalent formulation,
which derive from elimination of the error function w using the state equation
or from the necessary conditions eliminating the Lagrange parameter λ. The
boundary value problem and its weak formulation are not only necessary but
also sufficient condition, which is shown later (Theorem 4):
Optimization problem:

min
x∈H1

{
‖Q 1

2 (Cx − z) ‖2L2
+ ‖R− 1

2 (ẋ−Ax− u) ‖2L2
+ ‖D 1

2 (x(0) − xref
0 )‖2l2

}
.

(18)
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Second order BVP:

−R−1ẍ +
(
R−1A−ATR−1) ẋ +

(
ATR−1A+ R−1Ȧ + CTQC

)
x

= CTQz −R−1u̇−ATR−1u (19)

with boundary conditions ẋ(0)− (A + RD)x(0) = u(0)−RDxref
0 and

ẋ(H)−Ax(H) = u(H).
Weak Formulation:

〈ζ̇ −Aζ,R−1 (ẋ−Ax)〉+ 〈Cζ,QCx〉 + ζT (0)D(x(0)− xref
0 ) (20)

= 〈Cζ,Qz〉+ 〈ζ̇ −Aζ,R−1u〉 for all ζ ∈ H1.

In the following we concentrate only on the case D = 0, i.e. on the least squares
formulation without regularization of the initial data. Among other things we
show its well-posedness. With regularization of the initial data this can be studied
in the framework of Tikhonov regularization.

For one state function only (A = α,C = δ,Q = q,R−1 = r) one can use the
BVP to derive an explicit formula for the solution. Analysing this solution we
obtain the following theorem.

Theorem 2

1. The regularized problem formulation (17) (with D = 0), i.e. given z deter-
mining x0 and w, is well-posed.

2. Small perturbation of z in the L2-norm may lead to large error propagation
in the initial data x0 independently of r and q if −α is large.

3. For perturbations of z in the L∞-norm we have bounds for the errors in
x0 and w independently of α.

For several state functions we use the weak formulation to show well-posedness.
As a first step we again study first the case of one state function where observ-
ability is not an issue and extend then the result to several state functions. Let
us define the symmetric bilinear form a : H1(0, H)×H1(0, H)→ IR

a(ζ, x) = 〈ζ̇ −Aζ,R−1 (ẋ−Ax)〉+ 〈Cζ,QCx〉 (21)

If A,C ∈ IR then a is positive definite if R−1, Q > 0. Hence it defines an operator
S : H1(0, H) −→ (H1(0, H))′ with (ζ,Sx) := a(ζ, x) and the weak formulation
(20) is equivalent to (ζ,Sx) = 〈Cζ,Qz〉 + 〈ζ̇ − Aζ,R−1u〉 for all ζ ∈ H1.We
would like to remark that, not only for the well-posedness it is of interest to
study the properties of S but also for the numerical solution approaches. If we
use a Galerkin discretization of (17) then the properties of S govern to a large
extend also the numerical method. For example the condition number of the
discretization matrix is influenced by the condition number of S. Using methods
of functional analysis one can show the following result in the case of one state
function:
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Theorem 3. S is a linear isomorphism and with the real values A = α,C = δ,
Q = q,R−1 = r we have

min(4r, qδ2) ≤ ‖S‖H1→(H1)′ ≤ 2rmax(1, α2) + qδ2, (22)

c(α)
qδ2 ≤ ‖S−1‖(H1)′→H1 ≤ max

{
2
r
,
2α2 + 1
qδ2

}
, (23)

with c(α) ≈ |α|3/2
√

e2H −1
2(e2H+1) for large |α|. Hence for fixed regularization pa-

rameters r and q cond(S) = ‖S‖H1→(H1)′‖S−1‖(H1)′→H1 is bounded but tends
to infinity with |α| → ∞.

The exact value of c(α) := ‖ exp(α·)‖H1/‖ exp(α·)‖(H1)′ is

c2(α) = (1+α2)(α+1)2(α−1)2(eH−e−H)(e2αH−1)
(2α+1)(α−1)2(eH−e−H)(e2αH−1)+4α3e−H (eαH−eH )2 .

Considering several state functions one has to take into account observability to
show positive definiteness and herewith continuity and coercivity of a. We shortly
sketch this step while refering for the other arguments to [4]. Given a(x, x) = 0
then x is the solution of the system ẋ − Ax ≡ 0, x(0) = x0 and (y ≡)Cx ≡ 0.
Since the system is observable y ≡ 0 yields x0 = 0 and consequently x ≡ 0.
Hence, a(x, x) > 0 for x 	≡ 0. Then continuity and coercivity of a yield

Theorem 4. For any z, u ∈ L2 the solution x of the weak formulation (20)
determines the unique solution of the minimization problem (18).

Hence for well-posedness only the question of stability has still to be answered.
Using the Riesz representation theorem [2] and considering like for one state
only and Lemma 1b.) the exponential function we obtain

Theorem 5. S : H1 →
(
H1

)′ is bounded, has a bounded inverse and

0 < 2/‖R‖ ≤ ‖S‖H1→(H1)′ ≤ 2‖R‖−1 max(1, ‖A‖2) + ‖CTQC‖, (24)

max{c(α)/‖CTQCv‖l2} ≤ ‖S−1‖(H1)′→H1 . (25)

for all normed v ∈ IRnxeigenvectors of A with real eigenvalue α. In (24) the
lower bound is valid if there exists an α2 > 1. Observability guarantees Cv 	= 0.

As a consequence of Theorem 5 and Lemma 1b.) we have:

Corollary 2. For any fixed regularization cond(S) is large, if there exists an in
modulo large real eigenvalue of A or if there exists a real eigenvector v of A
which is close to the null space of C. If this is the case then the observability
measure is low too.

Nevertheless, the boundedness of the inverse S−1 and the compact inbedding
H1 ↪→ C0 yields

Corollary 3. Linear state estimation formulated as least squares problem
min 1

2

∫ H

0 (y − z)TQ(y − z) + wTRww dt
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s.t. ẋ−Ax− w = u y − Cx = 0
is well-posed, i.e. ‖x−xδ‖H1 ≤ c‖z− zδ‖(H1)′ and, consequently, with a generic
constant c, max{|x0 − xδ

0|, ‖w − wδ‖L2} ≤ c‖z − zδ‖L2 and
‖x− xδ‖C0 ≤ c‖z − zδ‖L2 ≤ c‖z − zδ‖L∞.

4 Conclusions and Questions Concerning the Appropriate
Norms

Observability is like well-posedness a qualitative property. Condition numbers
quantify the error propagation. We used this concept to define an observability
measure. For linear systems we derived the use of the inverse of observability
Gramian G. With G−1 one can estimate the minimal difference in the outputs
which can be seen for given different initial data. Also we showed that regular-
ization of initial data is not necessary for stability, hence the least squares for-
mulation for state estimation is well-posed. Regularization of initial data would
lead to bias. However, a low observability measure leads to an ill-conditioned
least squares problem.

Introducing linearly model error functions we leave the finite dimensional set-
ting. For this case we stated the first order necessary condition and reduced them
by several variables and equations. Analysing them for linear systems we showed
that the least squares problem formulation without regularizing the initial data
is well-posed not only with respect to the L2-norm but also for the L∞-norm.
However, the error propagation with respect to L2-errors may be large for low ob-
servability measures independent of the regularization parameter for the model
errors. Considering L∞-errors the behaviour is different. Then, in case of one
state only, we have bounds independent of the stiffness of state equations.

As seen it is fundamental to discuss in which norms the data errors are
bounded and what output is of interest. In my opinion one has not only the
L2-norm of the data error bounded, but one can assume ‖zδ‖L2(t0,t0+H) ≤ δ

√
H

and ‖zδ‖∞ ≤ c. Hence, one has additional information about the error which
should be taken into account, and the error would depend on the length of the
horizon. The question concerning the outputs depends on the application of state
estimation. Which output is of interest should be stated together with the prob-
lem formulation. For example, employing state estimation to obtain the current
state required for the main issue of controling a process should have the focus on
x(t0 +H), the filtered state. Then the L2-norm of the state on [t0, t0 +H ] is less
adequate than measuring the error of x(t0 +H). If one is interested on the state
over the whole horizon, also called smoothed state, one may consider a weighted
L2-norm putting more weight on the current state than on the past state. Or, is
the L∞- norm over the whole horizon more adequate than the L2-norm? The an-
swers of these question do not only influence the theoretical analysis but should
also affect the numerical studies. In particular, as soon as adaptivity concerning
the underlying discretization grid is introduced it is of greatest importance to
know which error shall be finally small to obtain greatest efficency.
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Summary. State estimation is addressed for a class of discrete-time systems that may
switch among different modes taken from a finite set. The system and measurement
equations of each mode are assumed to be linear and perfectly known, but the current
mode of the system is unknown and is regarded as a discrete state to be estimated at
each time instant together with the continuous state vector. A new computationally ef-
ficient method for the estimation of the system mode according to a minimum-distance
criterion is proposed. The estimate of the continuous state is obtained according to a
receding-horizon approach by minimizing a quadratic least-squares cost function. In
the presence of bounded noises and under suitable observability conditions, an explicit
exponentially converging sequence provides an upper bound on the estimation error.
Simulation results confirm the effectiveness of the proposed approach.

1 Introduction

The literature on state estimation for systems that may undergo switching among
various modes includes, among others, methods based on the use of banks of
filters and hidden finite-state Markov chains [5]. In this contribution, a different
approach is presented that is based on the idea of using only a limited amount
of the most recent information and is usually referred to as receding-horizon or
moving-horizon.

Recently, after the success of model predictive control [8], many researches on
receding-horizon state estimation appeared [1, 3, 6, 9]. The first investigations on
such techniques date back to the late sixties (see, e.g., [7]), when it was proposed
to reduce the effects of the uncertainties by determining estimates that depend
only on a batch of the most recent measurements.

In this contribution, we focus on a receding-horizon state estimator with a
lower computation effort with respect to that required by the method described

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 347–358, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



348 A. Alessandri, M. Baglietto, and G. Battistelli

in [2] for the same class of hybrid systems. More specifically, following the lines
of [2], we use a generalized least-squares approach that consists in minimizing
a quadratic estimation cost function defined on a moving window including the
most recent measurements. To account for the occurrences of switches, the pro-
posed approach relies on the estimation of both the discrete state and the contin-
uous one. At every time step, first an estimate of the discrete state is determined
on the basis of the observations vector over the most recent time instants, then
such an estimate is used to determine the quadratic loss function that has to be
minimized in order to estimate the continuous state. The main novelties with
respect to the approach presented in [2] concern: i) the development of a new
method for the estimation of the system mode, based on a minimum-distance
criterion, which turns out to be more computationally efficient; ii) the choice of a
simpler quadratic loss function that allows one to derive a closed-form expression
for the optimal estimate of the continuous state variables, thus avoiding the ne-
cessity of resorting to heavy on-line computations. Furthermore, it is important
to remark that the proposed estimation scheme can be always applied regardless
of the form of the sets to which the system and measurement noises belong.

Likewise in [2], an explicit relationship is established between the observability
and the convergence properties of the estimation error. More specifically, in
the presence of bounded noises and under suitable observability conditions, an
exponentially converging sequence can be obtained that provides an upper bound
on the estimation error for the continuous state vector (even when the system
dynamics is unstable). Simulation results show the effectiveness of the proposed
approach in comparison with the one proposed in [2]. As expected, the new
estimation method leads to a great reduction in computation time at the price
of a small decay in performance. The proofs are omitted for the sake of brevity
(the interested reader can contact the authors).

Let us introduce some definitions that will be useful in the following. Given a
vector v , ‖v‖ denotes its Euclidean norm. For a generic time-varying vector vt,

let us define vt
t−N

�
= col (vt−N , vt−N+1, . . . , vt). Given a matrix M , we denote

by σ(M) and σ̄(M) its minimum and maximum singular values, respectively.
Furthermore, M� is the matrix transpose of M and ‖M‖ = σ̄(M) is its norm.

Given n square matrices M1,M2, . . . ,Mn ,
n∏

i=1

Mi
�
= M1M2 · · ·Mn is the ordered

product of such matrices.

2 A Minimum-Distance Criterion for the Estimation of
the Discrete State

Let us consider a class of switching discrete-time linear systems described by

xt+1 = A(λt)xt + wt

yt = C(λt)xt + vt
(1)
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where t = 0, 1, . . . is the time instant, xt ∈ R
n is the continuous state vector (the

initial continuous state x0 is unknown), λt ∈ L
�
= {1, 2, . . . , L} is the system

mode or discrete state, wt ∈ W ⊂ R
n is the system noise vector, yt ∈ R

m is
the vector of the measures, and vt ∈ V ⊂ R

m is the measurement noise vector.
A(λ) and C(λ), λ ∈ L, are n×n and m×n matrices, respectively. We assume
the statistics of x0, wt, and vt to be unknown as well as the law governing the
evolution of the discrete state.

In this section, a minimum-distance criterion is proposed for the estimation of
the discrete state of system (1). More specifically, given the noisy observations
vector yt

t−N over a given time interval [t−N, t], such a criterion allows one to

estimate the switching pattern πt
�
= λt

t−N (or at least a portion of it [2]). Since
system (1) is time-invariant with respect to the extended state (xt, λt), in the
following of this section, for the sake of simplicity and without loss of generality,
we shall always consider the interval [0, N ].

If the evolution of the discrete state is completely unpredictable, the switching
pattern πN

�
= λN

0 can assume any value in the set LN+1 . However, in many
practical cases, the a-priori knowledge of the system may allow one to consider a
restricted set of “admissible” switching patterns [4]. Think, for example, of the
case in which the discrete state is slowly varying, i.e., there exists a minimum
number τ of steps between one switch and the following one. Of course, such
a-priori knowledge may make the task of estimating the discrete state from the
measures yN

0 considerably simpler. As a consequence, instead of considering all
the possible switching patterns belonging to LN+1, we shall consider a restricted
set PN ⊆ LN+1 of all the admissible switching patterns, i.e., of all the switching
patterns consistent with the a-priori knowledge of the evolution of the discrete
state.

Let us consider a generic switching pattern π
�
= col

(
λ(0), . . . , λ(N)

)
and define

the matrices F (π) and H(π) as

F (π)
�
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(λ(0))

C(λ(1))A(λ(0))
...

C(λ(N))
N∏

i=1

A(λ(N−i))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

H(π)
�
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

C(λ(1)) 0 · · · 0

C(λ(2))A(λ(1)) C(λ(2)) · · · 0
...

...
. . .

...

C(λ(N))
N−1∏
i=1

A(λ(N−i)) C(λ(N))
N−2∏
i=1

A(λ(N−i)) · · · C(λ(N))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.



350 A. Alessandri, M. Baglietto, and G. Battistelli

Then the observations vector yN
0 can be written as

yN
0 = F (πN )x0 + H(πN )wN−1

0 + vN
0 . (2)

For the sake of clarity, let us first recall some results on the observability of
the discrete state in the absence of noises. Towards this end, let us consider the
noise-free system

xt+1 = A(λt)xt

yt = C(λt)xt .
(3)

In this case, since the observations vector can be expressed as yN
0 = F (πN )x0 ,

the set S̄(π) of all the possible vectors of observations in the interval [0, N ]
associated with a switching pattern π corresponds to the linear subspace

S̄(π)
�
=

{
ȳ ∈ R

m(N+1) : ȳ = F (π)x , x ∈ R
n
}
, π ∈ PN .

The following notion of distinguishability between two switching patterns in the
noise-free case can be introduced.

Definition 1. For system (3), two switching patterns π, π′ ∈ PN with π 	= π′

are said to be distinguishable if F (π)x 	= F (π′)x′ for all x, x′ ∈ R
n with x 	= 0

or x′ 	= 0.

As shown in [10], the joint observability matrix
[
F (π) F (π′)

]
plays a key role

in determining the distinguishability of two switching patterns π and π′ . More
specifically, the following lemma holds.

Lemma 1. Let us consider two generic switching patterns π 	= π′ ∈ PN . Then
π is distinguishable from π′ if and only if π and π′ are jointly observable, i.e.,
rank

([
F (π) F (π′)

])
= 2n .

In the light of Lemma 1, if the joint-observability condition were satisfied for
every couple of switching patterns π 	= π′ ∈ PN , then it would be possible to
uniquely determine the switching pattern πN on the basis of the observations
vector yN

0 , provided that the initial continuous state x0 is not null. Unfortu-
nately, as shown in [2], unless the number of measures available at each time
step is at least equal to the number of continuous state variables (i.e., m ≥ n ),
in general it is not possible to satisfy the joint observability condition for all
π 	= π′ ∈ PN (this happens because it is not possible to detect switches that
occur in the last or in the first instants of an observations window). As a con-
sequence, even in the absence of noises, in general it is not possible to uniquely
determine the whole switching pattern πN .

In order to overcome such a drawback, following the lines of [2], we shall look
for two integers, α and ω, with α, ω ≥ 0 and α+ω ≤ N , such that it is possible
to uniquely determine the discrete state λt in the restricted interval [α,N −ω]
on the basis of the observations vector yN

0 . Towards this end, given a switching
pattern π in the interval [0, N ] , let us denote as rα,ω(π) the restriction of π
to the interval [α,N − ω] . Thus, the following notion of mode observability in
the restricted interval [α,N − ω] can be introduced.
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Definition 2. System (3) is said to be (α, ω)-mode observable in N+1 steps if,
for every couple π, π′ ∈ PN such that rα,ω(π) 	= rα,ω(π′) , π is distinguishable
from π′ (or, equivalently, π and π′ are jointly observable).

According to Definition 2, if system (3) is (α, ω)-mode observable, then different
switching patterns in the interval [α,N − ω] generate different observations
vector in the interval [0, N ] , provided that the initial continuous state is not null.
As a consequence, the switching pattern rα,ω(πN ) can be determined uniquely
from the observations vector yN

0 . In fact, there could be more than one switching
pattern π such that yN

0 ∈ S̄(π) ; however, they all correspond to the same
switching pattern in the restricted interval [α,N − ω] .

With these observability results in mind, let us now focus on the noisy system
(1). Clearly, if the noise vectors are not identically null, in general the noisy
observations vector yN

0 does not belong to the linear subspace S̄(πN ) . However,
if the noise vectors are “small,” it is reasonable to think that yN

0 is “close” (in
some sense) to such a set. This simple intuition leads us to adopt a minimum-
distance criterion for the estimation of the switching pattern. Towards this end,
given a generic switching pattern π ∈ PN , let us denote as d(yN

0 , π) the distance
between the observations vector yN

0 and the linear subspace S̄(π) . Clearly,
d(yN

0 , π) can be obtained as

d(yN
0 , π) =

∥∥ [I − P (π)] yN
0

∥∥
where P (π) is the matrix of the orthogonal projection on S̄(π) , Then we shall
consider as an estimate of πN the switching pattern π̂N such that

π̂N = arg min
π∈PN

d(yN
0 , π) . (4)

It is important to note that such a criterion can be always applied regardless of
the form of the sets W and V to which the system and measurement noises
belong. Moreover, an exact knowledge of the form of such sets is not required.

Of course, it would be interesting to know whether, under suitable assump-
tions, the estimate π̂N coincides with the true switching pattern πN at least in
the restricted interval [α,N − ω] . With this respect, by defining the quantities

δmax(π, π′)
�
= sup

w̄∈WN ; v̄∈VN+1
‖ [I − P (π)] [H(π′)w̄ + v̄] ‖ , π, π′ ∈ PN ,

the following lemma can be stated.

Lemma 2. Suppose that the sets W and V are bounded and consider a switch-
ing pattern π ∈ PN (with π 	= πN ) such that π and πN are jointly observable.
If the initial continuous state x0 satisfies the condition

‖x0‖ >
δmax(πN , πN ) + δmax(π, πN )

σ {[I − P (π)]F (πN )} , (5)

then we have
d(yN

0 , π) > d(yN
0 , πN ) .
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In the light of Lemma 2, provided that the initial continuous state x0 is “far
enough” from the origin, if one applies the minimum-distance criterion (4), the
actual switching pattern πN cannot be confused with another switching pat-
tern π that is distinguishable from πN according to Definition 1. Note that
the boundedness of the sets W and V ensures the finiteness of all the scalars
δmax(π, π′) . Furthermore, the satisfaction of the joint observability condition en-
sures that the minimum singular value σ {[I − P (π)]F (πN )} is strictly greater
than 0. It is important to note that such a value represents a measure of the
separation between the linear subspaces S̄(π) and S̄(πN ) , i.e., the greater is the
angle between such subspaces the greater is the value of σ {[I − P (π)]F (πN )} .

Recalling the notion of observability given in Definition 2, Lemma 2 leads in
a straightforward way to the following theorem.

Theorem 1. Suppose that the sets W and V are bounded and that the noise-
free system (3) is (α, ω)-mode observable in N+1 steps. If the initial continuous
state x0 satisfies the condition

‖x0‖ > ρx
�
= max

π, π′ ∈ PN

rα,ω(π) 	= rα,ω(π′)

δmax(π, π) + δmax(π′, π)
σ {[I − P (π′)]F (π)} ,

then rα,ω(π̂N ) = rα,ω(πN ) .

Thus, provided that the initial continuous state x0 is “far enough” from the
origin, the minimum-distance criterion (4) leads to the exact identification of
the discrete state in the interval [α,N − ω] .

3 A Receding-Horizon State Estimation Scheme

In this section, the previous results are applied to the development of a receding-
horizon scheme for the estimation of both the discrete and the continuous state.

In Section 2, it has been shown that under suitable assumptions, given the
observations vector yt

t−N , it is possible to obtain a “reliable” estimate of the
discrete state in the restricted interval [t−N+α, t−ω] . As a consequence, at any
time instant t = N,N + 1, . . . , the following estimation scheme can be adopted:
i) estimate the switching pattern in the restricted interval [t − N + α, t − ω]
on the basis of the observations vector in the extended interval [t − N, t] ; ii)
estimate the continuous state in the restricted interval [t − N + α, t − ω] by
minimizing a certain quadratic cost involving the estimated discrete state.

Let us first consider step i). Towards this end, let us denote as γt
�
= rα,ω(πt)

the switching pattern in the restricted interval [t−N + α, t− ω] . Furthermore,
let us denote by λ̂t−N,t, . . . , λ̂t,t , π̂t,t , and γ̂t,t the estimates (made at time
t) of λt−N , . . . , λt , πt , and γt , respectively. In order to take into account the
possibility of a time-varying a-priori knowledge on the discrete state, let us con-
sider the set Pt of all the admissible switching patterns at time t , i.e., the set of
all the switching patterns in the observations window [t−N, t] consistent with



Minimum-Distance Receding-Horizon State Estimation 353

the a-priori knowledge of the evolution of the discrete state. Furthermore, let us
denote by Gt the set of admissible switching patterns in the restricted interval
[t − N + α, t − ω] . For the sake of simplicity, let us suppose that such a-priori
knowledge does not diminish with time, i.e., Pt+1 ⊆ Pt for t = N,N+1, . . . , or,
less restrictively, Pt ⊆ PN . In accordance with the minimum-distance criterion
proposed in Section 2, at every time instant t = N,N + 1, . . . , we shall address
the minimization of the loss function

d(yt
t−N , π̂t,t) =

∥∥ [I − P (π̂t,t)] yt
t−N

∥∥ . (6)

Let us now consider step ii). At any time t = N,N + 1, . . ., the objective is to
find estimates of the continuous state vectors xt−N+α, . . . , xt−ω on the basis of
the measures collected in an observations window [t−N +α, t−ω] , of a “predic-
tion” x̄t−N+α , and of the estimate γ̂t,t of the switching pattern γt obtained in
step i). Let us denote by x̂t−N+α,t, . . . , x̂t−ω,t the estimates (to be made at time
t) of xt−N+α, . . . , xt−ω , respectively. We assume that the prediction x̄t−N+α is
determined via the noise-free state equation by the estimates x̂t−N+α−1,t−1 and
λ̂t−N+α−1,t−1 , that is,

x̄t−N+α = A(λ̂t−N+α−1,t−1) x̂t−N+α−1,t−1, t = N + 1, N + 2, . . . . (7)

The vector x̄α denotes an a-priori prediction of xα.
A notable simplification of the estimation scheme can be obtained by deter-

mining the estimates x̂t−N+α+1,t, . . . , x̂t−ω,t from the first estimate x̂t−N+α,t

via the noise-free state equation, that is,

x̂i+1,t = A(λ̂i,t) x̂i,t , i = t−N + α, . . . , t− ω − 1. (8)

By applying (8), it follows that, at time t, only the estimate x̂t−N+α,t has to be de-
termined, whereas the estimates x̂t−N+α+1,t, . . . , x̂t−ω,t can be computed via (8).

As we have assumed the statistics of the disturbances and of the initial con-
tinuous state to be unknown, a natural criterion to derive the estimator consists
in resorting to a least-squares approach. Towards this end, following the lines of
[1, 3], at any time instant t = N,N + 1, . . . we shall address the minimization
of the following quadratic cost function:

J
(
x̂t−N+α,t , x̄t−N+α , yt−ω

t−N+α , γ̂t,t

)
= µ ‖ x̂t−N+α,t − x̄t−N+α ‖2

+
t−ω∑

i=t−N+α

∥∥∥ yi − C(λ̂i,t) x̂i,t

∥∥∥2
(9)

where µ is a non-negative scalar by which we express our belief in the prediction
x̄t−N+α as compared with the observation model. It is worth noting that µ
could be replaced with suitable weight matrices, without involving additional
conceptual difficulties in the reasoning reported later on. Note that, by applying
(8), cost (9) can be written in the equivalent form

J
(
x̂t−N+α,t , x̄t−N+α , yt−ω

t−N+α , γ̂t,t

)
= µ ‖ x̂t−N+α,t − x̄t−N+α ‖2

+
∥∥ yt−ω

t−N+α − F (γ̂t,t) x̂t−N+α,t

∥∥2
. (10)
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Summing up, the following receding-horizon estimation procedure has to be
applied at any time instant t = N,N + 1, . . . .

Procedure 1

1. Given the observations vector yt
t−N , compute the optimal estimate π̂◦

t,t that
minimizes the distance measure (6), i.e.,

π̂◦
t,t = arg min

π̂t,t∈Pt

d(yt
t−N , π̂t,t) .

2. Set γ̂◦
t,t = rα,ω(π̂◦

t,t) .
3. Given the optimal estimate γ̂◦

t,t , the observations vector yt−ω
t−N+α , and the

prediction x̄t−N+α , compute the optimal estimate

x̂◦t−N+α,t = arg min
x̂t−N+α,t

J
(
x̂t−N+α,t , x̄t−N+α , y

t−ω
t−N+α , γ̂

◦
t,t

)
that minimizes cost (9) under the constraints (8).

4. Given the optimal estimates x̂◦
t−N+α,t and λ̂◦

t−N+α,t , compute the predic-
tion x̄t−N+α+1 as

x̄t−N+α+1 = A(λ̂◦
t−N+α,t) x̂

◦
t−N+α,t .

The procedure is initialized at time t = N with an a-priori prediction x̄α .
It is important to note that the form of the set Pt plays a central role in

the possibility of computing the minimum in step 1 in a reasonable time. In
fact, if the cardinality of the set Pt grows very rapidly with the size N of
the observations window or with the number L of possible discrete states, such
a computation may become too time-demanding (this happens, for example,
when the system can switch arbitrarily at every time step). Such issues can be
avoided if the a-priori knowledge on the evolution of the discrete state leads to
a considerable reduction of the number of admissible switching patterns. This
is the case, for example, when the size N + 1 of the observations window is
smaller than the minimum admissible number of steps between one switch and
the following one. In fact, under such an assumption, the cardinality of the set
Pt is L[(L− 1)N + 1] (see [2]).

As to step 3, since cost (9) depends quadratically on the estimate x̂t−N+α,t ,
by applying the first order optimality condition a closed-form expression can be
derived for the optimal estimate x̂◦t−N+α,t . More specifically, along the lines of
[1], where non-switching linear systems were considered, the following proposi-
tion can be easily proved.

Proposition 1. Suppose that µ > 0 or that rank
{
F (γ̂◦

t,t)
}

= n . Then cost (9)
has a unique minimum point given by

x̂◦
t−N+α,t =

[
µI + F (γ̂◦t,t)

�F (γ̂◦t,t)
]−1 [

µ x̄t−N+α + F (γ̂◦
t,t)

�yt−ω
t−N+α

]
.
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Let us now define the following quantities

fmin
�
= min

γ∈GN

σ [F (γ)] , f
�
= max

γ∈GN

‖F (γ)‖ , h
�
= max

γ∈GN

‖H(γ)‖ ,

f̄
�
= max

γ,γ′∈GN

‖F (γ)− F (γ′)‖ , ρw
�
= sup

w∈W
‖w‖, ρv

�
= sup

v∈V
‖v‖ ,

a
�
= max

λ∈L
‖A(λ)‖ , ā

�
= max

λ,λ′∈L
‖A(λ)−A(λ′)‖ .

Note that, for the sake of compactness, the dependence of fmin , h , f , and f̄
on the size N of the observations window and on the scalars α and ω has been
omitted.

In order to show the convergence properties of the proposed estimator, the
following assumptions are needed.

A1. W and V are bounded sets.
A2. System (3) is (α, ω)-mode observable in N + 1 steps.
A3. For any γ ∈ GN , we have rank{F (γ)} = n .

Clearly, Assumption A1 ensures that ρw < +∞ and ρv < +∞ . As to Assump-
tion A3, it ensures that the considered system is observable in the restricted
window [t−N +α, t−ω] with respect to the continuous state for any switching
pattern γt and hence that fmin > 0 .

We are now ready to state the following theorem.

Theorem 2. Suppose that Assumptions A1, A2, and A3 are satisfied. Then the
norm of the estimation error et−N+α

�
= xt−N+α − x̂◦t−N+α,t is bounded above

as
‖et−N+α‖ ≤ ζt−N+α , t = N,N + 1, . . . .

The sequence {ζt} is defined recursively as

ζα = dα ,

ζt = c ζt−1 + d , t = α+ 1, α + 2, . . . . (11)

where

c =
µa

µ+ f2
min

,

d =
1

µ+ f2
min

{(
µ ā + f f̄

) (
aα ρx +

aα − 1
a− 1

ρw

)
+ µ ρw

+f
(
h
√
N − α− ω ρw +

√
N − α− ω + 1 ρv

)}
,

dα =
1

µ+ f2
min

{
µ ‖xα − x̄α‖+ f f̄

(
aα ρx +

aα − 1
a− 1

ρw

)

+f
(
h
√
N − α− ω ρw +

√
N − α− ω + 1 ρv

]}
.
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Moreover, if the scalar weight µ has been selected such that c < 1 , then the
sequence {ζt} converges exponentially to the asymptotic value e∞(µ)

�
= d/(1−c).

Note that, since fmin > 0 , condition c < 1 can be easily verified for any value
of a through a suitable choice of µ.

4 Simulation Results

Let us consider the switching system, also investigated in [2], described by means
of equations (1) with

A(1) =

[
0 1.2
−0.6 0

]
, A(2) =

[
0 0.5
−1.5 0

]
, C(1) =

[
1 1

]
, C(2) =

[
1 1

]
.

We assumed that such system has a minimum dwell time (i.e., the minimum
number τ of steps between one switch and the next) equal to 7 . Moreover, we
assumed wt and vt to belong to the polytopic compact sets W = [−0.01, 0.01]2

and V = [−0.1, 0.1], respectively. Note that with such choices the trajectories of
the continuous state turn out to be bounded. It is immediate to verify that, in
this case, by choosing α = 1 , ω = 2, and N = 6 , Assumptions A2 and A3 are
satisfied, hence one can use the receding-horizon estimation scheme proposed in
Section 3.

In the following, for the sake of brevity, we shall refer to the estimator obtained
by iteratively applying Procedure 1 as the Minimum-Distance Receding-Horizon
Filter (MDRHF). In order to evaluate the ability of the proposed estimation
scheme to deal with unknown switches in the discrete state, we compared the
proposed filter with the receding-horizon filter obtained by an exact knowledge of
the discrete state, i.e., by minimizing cost (10) with γ̂t,t = γt . Such an estimator
will be called the Receding-Horizon Filter with Perfect Information (RHFPI).
Furthermore, the proposed filter will be also compared with the Constrained
Receding-Horizon Filter (CRHF) of [2]. For the sake of comparison, we supposed
x0 to be a Gaussian-distributed zero-mean random variable with covariance
diag(1, 1) , and wt and vt , t = 0, 1, . . ., to be independent random variables
uniformly distributed in the sets W and V , respectively. As to the cost, we
chose µ = 10.

Fig. 1 shows the plots of the Root Mean Square Error (RMSEs), computed over
104 randomly chosen simulations, for the considered filters. As expected, the best
asymptotic behavior is provided by the RHFPI, thanks to its exact knowledge of
the discrete state. The MDRHF shows a small decay in performance if compared
with the CRHF. However, each iteration of the proposed estimation scheme
required on average just 0.3 ms, while the mean time required by an iteration of
the CRHF turned out to be 37.0 ms (simulations were performed on an AMD
Athlon XP 1700+ PC and each minimization problem for the CRHF was solved
on line by means of the standard Matlab routine for quadratic programming).
As a consequence, one may conclude that in this case the MDRHF provides
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Fig. 1. Plots of the RMSEs for the considered filters

a reasonable tradeoff between the performance and the computational burden.
It is important to point out that the simulation framework considered in this
example represents a best-case scenario for the CRHF, as the sets W and V
are known and polytopic, thus ensuring the applicability of such an approach, as
well as its numerical tractability. On the contrary, the MDRHF could be applied
regardless of the form of the sets W and V and no exact knowledge of such sets
is required.
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Summary. We introduce stochastic differential algebraic equations for physical mod-
elling of equilibrium based process systems and present a continuous-discrete paradigm
for filtering and prediction in such systems. This paradigm is ideally suited for state
estimation in nonlinear predictive control as it allows systematic decomposition of the
model into predictable and non-predictable dynamics. Rigorous filtering and predic-
tion of the continuous-discrete stochastic differential algebraic system requires solution
of Kolmogorov’s forward equation. For non-trivial models, this is mathematically in-
tractable. Instead, a suboptimal approximation for the filtering and prediction problem
is presented. This approximation is a modified extended Kalman filter for continuous-
discrete systems. The modified extended Kalman filter for continuous-discrete differen-
tial algebraic systems is implemented numerically efficient by application of an ESDIRK
algorithm for simultaneous integration of the mean-covariance pair in the extended
Kalman filter [1, 2]. The proposed method requires approximately two orders of mag-
nitude less floating point operations than implementations using standard software.
Numerical robustness maintaining symmetry and positive semi-definiteness of the in-
volved covariance matrices is assured by propagation of the matrix square root of these
covariances rather than the covariance matrices themselves.

1 Introduction

The objective of state estimation in nonlinear model predictive control is to
reconstruct the current state from past and current measurements. This state
estimate is called the filtered state and is used as initial condition for predic-
tion of the mean evolution in the dynamic optimization part of nonlinear model
predictive control. While there is little or no difference in the way the predic-
tions are accomplished, extended Kalman filtering (EKF) and moving horizon
estimation (MHE) approaches have been suggested to compute the filtered state
estimate for systems described by index-1 differential algebraic equations. How-
ever, mainly discrete-time stochastic systems or deterministic continuous-time
systems with stochastics appended in an ad hoc manner have been applied to
index-1 differential algebraic systems.
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In this contribution, we propose an extended Kalman filter (EKF) for stochas-
tic continuous-time systems sampled at discrete time. The system evolution is
described by stochastic index-1 differential algebraic equations and the output
measurements at discrete times are static mappings contaminated by additive
noise. In the implementation, the special structure of the resulting EKF equa-
tions are utilized such that the resulting algorithm is computationally efficient
and numerically robust. By these features, the proposed EKF algorithm can be
applied for state estimation in NMPC of large-scale systems as well as in algo-
rithms for grey-box identification of stochastic differential-algebraic systems [3].

2 Extended Kalman Filters

The extended Kalman filter has been accepted as an ad hoc filter and predictor
for nonlinear stochastic systems. It is ad hoc in the sense that it does not satisfy
any optimality conditions but adopts the equations for the Kalman filter of linear
systems, which is an optimal filter. In this section, we present the extended
Kalman filter for a stochastic difference-algebraic system (discrete time) and
show how this method is adapted to a stochastic differential-algebraic system
(continuous-discrete time).

2.1 Discrete-Time System

Consider the stochastic difference-algebraic system

xk+1 = f(xk, zk,wk) (1a)
0 = g(xk, zk) (1b)

yk = h(xk, zk) + vk (1c)

in which wk ∼ N(0, Qk), vk ∼ N(0, Rk) and x0 ∼ N(0, P0|−1). (1a) and (1b)
represent the system dynamics while (1c) is a measurement equation. Assume
further that ∂g

∂z is non-singular. Then according to the implicit function theorem,
the algebraic variables, zk, are an implicit function of the state variables, xk, i.e.
zk = χ(xk). Consequently, the stochastic difference-algebraic system (1) may be
represented as a stochastic difference system with a measurement equation

xk+1 = F (xk,wk) = f(xk, χ(xk),wk) (2a)
yk = H(xk) + vk = h(xk, χ(xk)) + vk (2b)

This is the stochastic difference system to which the discrete-time extended
Kalman filter applies. The extended Kalman filter for (2) consists of the equa-
tions described in the following [4]. The filter part of the extended Kalman filter
consists of the innovation-computation

ek = yk − ŷk|k−1, (3a)

the feedback gain, Kfx,k, computation
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Ck =
∂H

∂x
(x̂k|k−1) (3b)

Rk|k−1 = Rk + CkPk|k−1C
′
k (3c)

Kfx,k = Pk|k−1C
′
kR

−1
k|k−1 (3d)

and the filtered mean estimate and covariance

x̂k|k = x̂k|k−1 + Kfx,kek (3e)

Pk|k = Pk|k−1 −Kfx,kR
−1
k|k−1K

′
fx,k (3f)

As wk⊥vk by assumption, ŵk|k = 0 and Qk|k = Qk. The one-step ahead predic-
tion equations of the extended Kalman filter are the mean-covariance evolution
equations

x̂k+1|k = F (x̂k|k, ŵk|k) (4a)
Pk+1|k = AkPk|kA

′
k + BkQk|kB

′
k (4b)

in which Ak = ∂F
∂x (x̂k|k, ŵk|k) and Bk = ∂F

∂w (x̂k|k, ŵk|k). The one-step ahead
prediction of the measurements is

ŷk+1|k = H(x̂k+1|k) (4c)

2.2 Continuous-Discrete Time SDE System

Most physical systems are modelled in continuous-time using conservation equa-
tion. For deterministic systems this gives rise to a system of ordinary dif-
ferential equations, while it for stochastic systems gives rise to a system of
stochastic differential equations [5, 6].When measurements at the discrete-times
{tk : k = 0, 1, . . .} are added to that system we have a continuous-discrete time
stochastic system

dx(t) = F (x(t))dt + σ(t)dω(t) (5a)
y(tk) = H(x(tk)) + v(tk) (5b)

In this notation {ω(t)} is a standard Wiener process, i.e. a Wiener pro-
cess with incremental covariance Idt, the additive measurement noise is dis-
tributed as v(tk) ∼ N(0, Rk), and the initial states are distributed as x(t0) ∼
N(x̂0|−1, P0|−1).

The filter equations in the extended Kalman filter for the continuous-discrete
time system (5) are equivalent to the filter equations for the discrete-time system
(2), i.e. (3) constitutes the filter equations. The mean and covariance of the one-
step ahead prediction, x̂k+1|k = x̂k(tk+1) and Pk+1|k = Pk(tk+1), are obtained
by solution of the mean-covariance system of differential equations

dx̂k(t)
dt

= F (x̂k(t)) (6a)

dPk(t)
dt

=
(
∂F

∂x
(x̂k(t))

)
Pk(t) + Pk(t)

(
∂F

∂x
(x̂k(t))

)′
+ σ(t)σ(t)′ (6b)
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with initial conditions x̂k(tk) = x̂k|k and Pk(tk) = Pk|k. The one-step ahead
prediction of the measurements is

ŷk+1|k = ŷk(tk+1) = H(x̂k(tk+1)) = H(x̂k+1|k) (7)

The mean-covariance pair may be solved by standard ODE solvers in which
the lower triangular part of the covariance matrix differential equation (6b)
is appended to the mean differential equation (6a). For stiff systems in which
implicit ODE solvers are needed, assuming that a dense linear algebra solver is
used, the computational costs of solving this system has complexity O(m3) in
which m = n+ n(n+ 1)/2 and n is the state dimension. For large scale systems
this corresponds to computational complexity O(n6). Even if sparse solvers for
the linear algebra are applied, the mean-covariance pair cannot be solved in
reasonable time by standard ODE solvers [2]. As a consequence, the extended
Kalman filter for continuous-discrete time systems is not applicable to large-scale
systems using a standard implicit ODE solver for solution of (6). It can easily
be demonstrated [2] that solution of (6) is equivalent to solution of the system
of differential equations

dx̂k(t)
dt

= F (x̂k(t)) x̂k(tk) = x̂k|k (8a)

dΦ(t, s)
dt

=
(
∂F

∂x
(x̂k(t))

)
Φ(t, s) Φ(s, s) = I (8b)

along with the integral equation

Pk(t) = Φ(t, tk)Pk|kΦ(t, tk)′ +

t∫
tk

Φ(t, s)σ(s)σ(s)′Φ(t, s)′ds (8c)

The advantage of the formulation (8) is that very efficient solvers exist [1, 7, 8]for
integration of the states (8a) along with the state sensitivities (8b). Subsequent
computation of the covariance (8c) by quadrature is relatively cheap compu-
tation. Extended Kalman filters for continuous-discrete time systems based on
solution of (8) rather than (6) are more than two orders of magnitude faster for
a system with 50 states [2].

2.3 Continuous-Discrete Time SDAE System

Many systems in the process industries are modelled by systems of index-1 differ-
ential algebraic equations rather than systems of ordinary differential equations.
Index-1 differential algebraic equations arise when some physical phenomena are
described as equilibrium processes. This is the case for phase-equilibrium models
of separation processes, e.g. distillation columns. The extension of filtering and
prediction in continuous-discrete time stochastic differential equation (SDE) sys-
tems (5) to filtering and prediction in continuous-discrete time stochastic index-1
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differential algebraic (SDAE) systems is the main contribution of this paper. A
continuous-discrete time SDAE system can be written as

dx(t) = f(x(t), z(t))dt + σ(t)dω(t) (9a)
0 = g(x(t), z(t)) (9b)

y(tk) = h(x(tk), z(tk)) + v(tk) (9c)

in which the evolution of the systems is modelled by a stochastic differential
equation (9a) and an algebraic equation (9b). The system is observed at dis-
crete times {tk : k = 0, 1, . . .} through the measurement equation (9c) which is
corrupted by additive measurement noise, v(tk) ∼ N(0, Rk). The initial state
is distributed as x(t0) ∼ N(x̂0|−1, P0|−1) and the algebraic states are assumed
to be consistent with the states and (9b). Furthermore, ∂g

∂z is assumed to be
non-singular, i.e. the system is assumed to be of index-1.

By the implicit function theorem, the algebraic states, z(t), may formally be
expressed as a function of the states, x(t), i.e. z(t) = χ(x(t)). This implies that
we may formally regard (9) as a continuous-discrete time SDE system (5) with
F (x(t)) = f(x(t), χ(x(t))) and H(x(tk)) = h(x(tk), χ(x(tk))). Consequently,
if the algebraic states are eliminated using the implicit function theorem, the
extended Kalman filter equations for the continuous-discrete time SDE system
(5) apply to the continuous-discrete time SDAE system (9) as well. While the
transformation of index-1 DAE systems to ODE systems is technically correct,
it is not computationally efficient to solve index-1 DAE systems by this proce-
dure. Instead of computing the mean evolution by (8a) we solve the following
differential algebraic system for the mean evolution

dx̂k(t)
dt

= f(x̂k(t), ẑk(t)) x̂k(tk) = x̂k|k (10a)

0 = g(x̂k(t), ẑk(t)) (10b)

Similarly, the state sensitivities, Φxx(t, s) = ∂x̂k(t)
∂x̂k(s) and Φzx(t, s) = ∂ẑk(t)

∂x̂k(s) , are
computed as the corresponding sensitivities for index-1 DAE systems [8]

dΦxx(t, s)
dt

=
(
∂f

∂x
(x̂k(t), ẑk(t))

)
Φxx(t, s) +

(
∂f

∂z
(x̂k(t), ẑk(t))

)
Φzx(t, s)

Φxx(s, s) = I (10c)

0 =
(
∂g

∂x
(x̂k(t), ẑk(t))

)
Φxx(t, s) +

(
∂g

∂z
(x̂k(t), ẑk(t))

)
Φzx(t, s) (10d)

rather than by solution of (8b). Finally, the state covariance, Pk(t), is computed
by quadrature

Pk(t) = Φxx(t, tk)Pk|kΦxx(t, tk)′ +

t∫
tk

Φxx(t, s)σ(s)σ(s)′Φxx(t, s)′ds (10e)
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using the state sensitivities, Φxx(t, s). In conclusion, the one-step ahead pre-
dicted state mean, x̂k+1|k = x̂k(tk+1), and covariance, Pk+1|k = Pk(tk+1), in
continuous-discrete time SDAE systems (9) is accomplished by solution of solu-
tion of (10). The one-step ahead prediction of the measurement is

ŷk+1|k = ŷk(tk+1) = h(x̂k(tk+1), ẑk(tk+1)) = h(x̂k+1|k, ẑk+1|k) (11)

in which ẑk+1|k = ẑk(tk+1). The filter equations of the extended Kalman filter
for (9) are identical to the filter equations (3) for the discrete-time system (1).
In particular, it should be noted that Ck is computed using the implicit function
theorem, i.e.

Ck =
∂H

∂x
(x̂k|k−1) =

[(
∂h

∂x

)
−

(
∂h

∂z

)(
∂g

∂z

)−1 (
∂g

∂x

)]
(x̂k|k−1,ẑk|k−1)

(12)

3 Numerical Implementation

The efficiency of the numerical implementation of the extended Kalman filter for
stochastic continuous-discrete time differential algebraic equations stems from
efficient integration of the mean-covariance pair describing the evolution of the
mean and covariance of the system.

3.1 ESDIRK Based Mean-Covariance Integration

The system (10) is integrated using an ESDIRK method with sensitivity com-
putation capabilities [1, 8]. The ESDIRK method for integration of (10a)-(10b)
consists of solution of the equations

X1 = xn Z1 = zn g(X1, Z1) = 0 (13a)

R(Xi, Zi)=

([
Xi

0

]
− τnγ

[
f(Xi, Zi)
g(Xi, Zi)

])
−

⎛⎝[
xn

0

]
+

i−1∑
j=1

τnaij

[
f(Xj , Zj)

0

]⎞⎠ = 0

(13b)

with Xi = x(Ti), Zi = z(Ti), Ti = tn + τnci, and i = 2, 3, 4. It is assumed
that (x0, z0) is consistent, i.e. g(x0, z0) = 0. Note that in the applied ESDIRK
method: tn = T1, tn+1 = T4 and xn+1 = xn + τn

∑4
j=1 bjf(Xj , Zj) with bj = a4j

for j = 1, 2, 3, 4. The method is stiffly accurate implying that xn+1 = X4 and
zn+1 = Z4. By construction, the pair (xn+1, zn+1) is consistent with the algebraic
relation, i.e. g(xn+1, zn+1) = 0. The integration error estimate, en+1, used by
the step-length controller in the ESDIRK integration method is

en+1 =
4∑

j=1

τndjf(Xj, Zj) (13c)
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Assuming that the initial pair (x0, z0) is consistent with the algebraic relation,
i.e. g(x0, z0) = 0, the differential-algebraic equations (10a)-(10b) are integrated
by solution of (13b) using a modified Newton method:

M

[
∆X

∆Z

]
= R(Xi, Zi), M =

[
I 0
0 0

]
− τnγ

[
∂f
∂x (xn, zn) ∂f

∂z (xn, zn)
∂g
∂x(xn, zn) ∂g

∂z (xn, zn)

]
(14a)[

Xi

Zi

]
←

[
Xi

Zi

]
−

[
∆X

∆Z

]
, (14b)

Each step, (∆X,∆Z), in the modified Newton method is generated by solution
of a linear system using an approximate iteration matrix, M . Assuming, that the
step-length controller selects the steps, τn, such that the Jacobian of (13b) and
thus M are constant in each accepted step, the state sensitivities (10c)-(10d)
with s = tn may be computed using a staggered direct approach [1, 8]

[
Φxx(T1, tn)
Φzx(T1, tn)

]
=

⎡⎣ I

−
(

∂g
∂z (xn, zn)

)−1 (
∂g
∂x(xn, zn)

)⎤⎦ (15a)

M

[
Φxx(Ti, tn)
Φzx(Ti, tn)

]
=

[
I

0

]
+

[
∂f
∂x(xn, zn) ∂f

∂z (xn, zn)
∂g
∂x (xn, zn) ∂g

∂z (xn, zn)

]
i−1∑
j=1

τnaij

[
Φxx(Tj , tn)
Φzx(Tj , tn)

]
(15b)

with i = 2, 3, 4. The linear equations (15b) are solved reusing the LU-factorization
of the iteration matrix, M , from the Newton steps in the integration of the index-
1 DAE system itself. The assumption of a constant Jacobian in each accepted
step implies that the state covariance (10e) may be computed as [2]

Pk(tn+1) = Φxx(T4, tn)Pk(tn)Φxx(T4, tn)′

+
4∑

j=1

τnbjΦxx(Tj, tn)σ(tn+1 − cjτn)σ(tn+1 − cjτn)′Φxx(Tj , tn)′
(16)

in which the quadrature formula of the ESDIRK method is used for derivation
of the equation. This procedure for the state covariance evolution is initialized
with Pk(t0) = Pk|k.

4 Discussion and Conclusion

The proposed continuous-discrete time extended Kalman filter algorithm has
direct applications in nonlinear model predictive control for state estimation.
Given the stochastic model (9) and arrival of a new measurement, yk, the fil-
tered states, x̂k|k, and algebraic variables, ẑk|k, are computed using the extended
Kalman filter. The regulator part of the nonlinear model predictive controller
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applies (10a)-(10b) as predictor with x̂k|k and ẑk|k as consistent initial conditions
[7, 8]. For such an NMPC application numerical robustness and efficiency of the
extended Kalman filter is of course important. However, numerical robustness
and efficiency of the extended Kalman filter is even more significant when it is
applied in systematic grey-box modelling of stochastic systems[3]. In such appli-
cations, numerical computation of e.g. the one-step ahead maximum-likelihood
parameter estimate requires repeated evaluation of the negative log-likelihood
function for parameters, θ, set by a numerical optimization algorithm during the
course of an optimization. Compared to currently practiced grey-box identifica-
tion in stochastic models, the algorithm proposed in this paper is significantly
(more than two orders of magnitude for a system with 50 states) faster and has
been extended to continuous-discrete time stochastic differential-algebraic sys-
tems (9). The proposed systematic estimation of the deterministic and stochastic
part of the EKF-predictor represents an alternative to output-error estimation
of the drift terms and covariance matching for the process and measurement
noise covariance.
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Summary. Nonlinear model predictive controllers (NLMPC) using fundamental dy-
namic models and online nonlinear optimization have been in service in ExxonMobil
Chemical since 1994. The NLMPC algorithm used in this work employs a state space
formulation, a finite prediction horizon, a performance specification in terms of desired
closed loop response characteristics for the outputs, and costs on incremental manip-
ulated variable action. The controller can utilize fundamental or empirical models.
The simulation and optimization problems are solved simultaneously using sequential
quadratic programming (SQP). In the paper, we present results illustrating regulatory
and grade transition (servo) control by NLMPC on several industrial polymerization
processes. The paper outlines the NLMPC technology employed, describes the current
status in industry for extending linear model predictive control to nonlinear processes
or applying NLMPC directly, and identifies several needs for improvements to compo-
nents of NLMPC.

1 Introduction

The motivation for ExxonMobil Chemical’s work in nonlinear model predictive
control (NLMPC) was to control a first-of-a-kind polymerization process that
was started up in 1990. A 2-year research program was established that in-
cluded collaborations with the University of Maryland for polymerization mod-
eling [1] and with Georgia Tech for a controller [2]. The model developed during
the collaboration was eventually used for closed loop control after additional
modifications by ExxonMobil Chemical. The controller – a quasilinearized MPC
approach – was not used in practice for reasons explained in Section 2.

Internal development of a nonlinear controller continued guided by the expe-
rience and exceptional skills of my colleague Robert W. Fontaine, reference sys-
tem synthesis ideas [3], and numerical approaches to address constraints [4]. The
objective was to develop a general-purpose nonlinear controller with the specific
motivation of regulatory and grade transition control of polymerization systems.
The end result of the internal development was an NLMPC controller that used
the NOVA software (Plant Automation Solutions, Inc.) to solve the optimization
problem. The first on-process application of the controller was commissioned in
mid-1994. ExxonMobil Chemical patented the technology [5], and then licensed
it to Dynamic Optimization Technology Products, Inc. (now Plant Automation
Services).

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 367–381, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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During the past decade, ExxonMobil Chemical has concentrated its efforts in
NLMPC on implementing applications. During this period, the general state of
the art has progressed from a sense that NLMPC was computationally infeasible
[6], through demonstrations of practicality by the research community [7], to the
point where several process control vendors now offer nonlinear control products
[8] [9].

In this paper, Section 2 outlines the control algorithm as licensed. Section
3 discusses modeling and parameter estimation. Section 4 provides closed loop
results from several industrial processes. Section 5 discusses the current state of
industrial practice and highlights needs for improvement of the technology.

2 Control Algorithm

The moving horizon controller that was developed solves the following nonlinear
optimization problem online. In the objective function (Eqn. 1), J1 is a cost
on deviations of the controlled variables from their reference trajectories, J2 is
an economic cost associated with input, output, or state variables, J3 is a cost
on incremental moves of the manipulated variables, and µi are weights. The
objective function is detailed below in Eqns. 10, 11, and 12.

min
u

(µ1J1 + µ2J2 + µ3J3) (1)

subject to

0 = f(ẋ, x, u, v, p)
0 = g(x, u, v, p)
0 = y − h(x, u, v, p)

(2)

x(0) = x0 and y(0) = y0 (3)

ẏ = (SPh − (y + b))/τc + Ph − Sh (4)

ẏ = (SPl − (y + b))/τc + Sl − Pl (5)

Ph, Sh, Pl, Sl ≥ 0 (6)

b = ymeas − y (7)

uLB ≤ u ≤ uUB (8)

|uk − uk−1| ≤ ∆uB (9)
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Equations 2 and 3 define the process model in differential algebraic equation
(DAE) form. x are the states, u are the manipulated inputs, v are the measured
disturbances or disturbance model variables, p are parameters, and y are the
outputs. In this problem statement x, u, v, and y are in absolute, not deviation,
terms.

Equations 4 and 5 are examples of specifications for the reference trajectories
for the desired closed loop behavior of the outputs. In this example, a first-order
response is requested with a time constant of τc. SPh and SPl are the high
and low setpoint (target) values for the outputs that defines the allowed settling
zone. Ph and Pl are 1-norm penalty variables on deviations of the output from
the reference trajectory. Sh and Sl are the corresponding slack variables (i.e. not
costed in the objective function).

Output feedback is incorporated in additive form in Eqn. 7. For scaling rea-
sons, we sometimes incorporate output feedback in multiplicative form.

Equations 8 and 9 impose absolute and incremental bounds on the manip-
ulated variables. The subscripts k and k − 1 refer to adjacent zero-order hold
values of the manipulated variables across the entire control horizon.

Objective Function

In the objective function, the J1 term is a weighted 1-norm of errors from the
desired closed loop output trajectory over the prediction horizon.

J1 =
1
np

ny∑
i=1

np∑
k=1

(whiPhi,k
+ wliPli,k

) (10)

Conceptually, this can be depicted as a conic section of unpenalized trajecto-
ries with linear penalties assigned to trajectories outside of the section. np is the
length of the prediction horizon. ny is the number of outputs. The significance
of the 1-norm is a distinct relaxation of soft constraints from lowest ranked to
highest ranked. This one-at-a-time relaxation is more aligned with industrial ex-
pectations as opposed to 2-norm behavior which spreads error across multiple
outputs when constraints become active [10].

The J2 term is an economic cost whose mean value over the prediction horizon
is minimized to specify where within the allowed zone the system will settle. A
useful alternative explanation is that −J2 is a net income (product value - cost
of feed and control) to be maximized.

J2 =
1
np

(
ny∑
i=1

np∑
k=1

cyiyi,k +
nu∑

m=1

np∑
k=1

cumum,k +
nv∑
j=1

np∑
k=1

cvivj,k) (11)

nu is the number of manipulated inputs. nv is the number of measured distur-
bance variables.

The J3 term is the cost of incremental moves of the manipulated variables.

J3 =
nu∑

m=1

nc∑
l=1

c∆um |∆um,l| (12)
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Solution Method, Initialization, and State Estimation

The optimization problem is solved using a sequential quadratic program (SQP).
The DAE system is discretized by the optimization code using orthogonal col-
location. Piecewise linear moves are calculated across a finite control horizon.
By a simple configuration, the prediction horizon can be extended beyond the
control horizon.

The prediction, control, and optimization problems are solved simultaneously.
The discretized DAE system and resultant nonlinear program (NLP) are solved
using an SQP algorithm. The previous solution of the controller is used as the
initial condition array.

During development of this NLMPC algorithm, we found that the simulta-
neous solution approach was computationally faster than a shooting method
approach [12] in which the prediction and control move calculations are sepa-
rated and solved recursively.

The prediction, control, and optimization problems are solved simultaneously
using an initial condition array from the previous solution. A shooting method
is not used.

Regarding state estimation and initialization, the controller has an embedded
full-order observer. The system can be initialized internally by the solution of
the steady state DAE system (Eqn. 13). Alternatively, the initial condition can
be supplied externally.

0 = f(0, x0, u, v, p)
0 = g(x0, u, v, p)
0 = y0 − h(x0, u, v, p)

(13)

State feedback and input disturbance models can be incorporated in the DAE
system during model development. The state estimation schemes used to date
capture some of the benefit of incorporating feedback as input disturbances
[13] [14], but are less comprehensive than an extended Kalman filter or moving
horizon state estimator [15].

The controller used to date does not incorporate a terminal state condition
[16].

Characteristics of Closed Loop Performance

The objective function (Eqn. 1) differs from that of the linear quadratic regulator
(LQR). J1 in Eqn. 1 in effect incorporates a reference trajectory yref (t) instead
of a fixed target in the calculation of the output error. This is a reference system
synthesis or pole placement design method that results in closed loop output
dynamics that are invariant throughout the nonlinear operating space when
constraints are not active.

A pole placement performance specification is not sufficient when there is an
excess of manipulated inputs compared to outputs. Analogous to LQR, the cost
on the manipulated variable action provided by J3 serves to uniquely determine
the control law, at least for the linear case.
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Avoiding operating point-specific tuning – alternatively stated, achieving in-
variance of the closed loop output dynamics – was an important design basis for
our nonlinear controller development project. The move suppression based tun-
ing specification of LQR and traditional MPC results in output dynamics that
are a function of the operating point for the nonlinear case. This is illustrated
in Figure 1 from a simulation study detailed in [17]. Invariance of the output
dynamics was a primary reason why the quasilinearized MPC formulation was
not pursued during the development project.

Fig. 1. Operating point dependent output dynamics with quasilinearized MPC formu-
lation. (left) Invariant output dynamics with the NLMPC formulation using Eqn. (1)
objective function. (right)

3 Models and Parameter Estimation

The majority of the models used to date in ExxonMobil Chemical’s NLMPC
applications consists primarily of first-principles elements with some empirical
elements. For example, a polymerization model that uses fundamentals to predict
the statistical moments of molecular weight distribution may use regressions for
polymer end use properties as a function of the moments, the comonomer com-
position, etc. A minority of the NLMPC models consists primarily of empirical
elements.

The process model will have various parameters that must be specified, such as
equipment volumes, physical property constants, kinetic constants, coefficients
in empirical models, and tuning parameters in embedded models of regulatory
controls. Most of the fitting work is directed at kinetic constants and coeffi-
cients in empirical models. The tuning parameters in the embedded models of
regulatory controls can be calculated directly, or estimated from step tests.

The primary means of estimating parameters, p, is weighted least squares
minimization with steady state data collected from process history.

min
p

(
NOBS∑
j=1

NY∑
i=1

wY
i (

yi,j − yMEAS
i,j

ySCALE
i,j

)2) (14)
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y are the model predicted values of the outputs, yMEAS are the measured val-
ues, ySCALE are scaling factors. wy are weighting factors. Ny is the number of
outputs. NOBS is the number of observations in the dataset being processed. p
are the parameters to be estimated.

It is important to know what parameters are identifiable given the structure
of the model and the available data. It is important to have a balanced dataset
that spans the operating space.

Our experience has been that more art than most engineers expect is required
to estimate and validate parameter estimates. Process knowledge has been re-
quired to improve initial conditions and to shape the estimation process (e.g.
define relationships among parameters, fit subsets of parameters at a time) to
yield good results. There are opportunities to improve the determination of iden-
tifiable parameters, data mining, and global optimization applied to this task.

4 Results from Industrial Processes

ExxonMobil Chemical has concentrated on polymerization reactor control for
the early use of this technology. To date, NLMPC applications have been imple-
mented on five different classes of polyolefin polymerization processes summa-
rized in Table 1. There are multiple commissioned applications for each of the
processes in Table 1, except for ”A”.

Table 1. Characteristics of NLMPC applications on five different polyolefin processes
in ExxonMobil Chemicals. (DAE is number of differential algebraic equations (Eqns.
2), CV is controlled variables, MV is manipulated variables, and FF is feedforward
(measured disturbance) variables.)

Process DAE CV MV FF

A 21 2 2 3
B 42 8 5 7
C 128 4 4 22
D 21 2 2 16
E 2300 6 3 31

These applications are deployed on a variety of HP Alpha servers running
OpenVMS, or Dell servers running Windows. The controller scan times are in
the range of 3 to 6 minutes. Note this statement of controller scan times includes
Process E with 2300 DAE equations before discretization. Typical control hori-
zon lengths are in the range of 5 to 10 scan periods.

Nonlinearity

For the first set of results from industrial processes, let’s isolate on one in-
put/output relationship that clearly illustrates the process nonlinearity. The
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Table 2. Steady state gains at two operating points in a grade transition scenario

∂CV1
∂MV1

∂CV1
∂MV2

∂CV2
∂MV1

∂CV2
∂MV2

CV1 = 125 2.68 6.09 0.033 1.08
CV1 = 1.2 0.0238 0.0696 0.012 0.556
Fractional change of gain 113 87.5 2.75 1.94

case is a polymer grade transition where the steady state gain changes by two
orders of magnitude.

Figure 2 illustrates the CV1 and MV1 transients for a transition in CV1 from
125 to 1.2. The lower curve in the CV1 plot is the one being controlled. It is easy
to see the increasing amount of manipulated variable action required to achieve
the controlled variable trajectory requested.

Fig. 2. Closed loop grade transition illustrating effect of process nonlinearity

Constraint Handling

Handling the nonlinearity alone is not sufficient justification for MPC. The sec-
ond set of results, presented in Figure 3, illustrates the importance of constraint
handling and the MPC formulation. The case is a grade transition with a 5 MV
by 8 CV application. In the transition, we want to change CV1 and keep CV3
constant.

Figure 3 shows that two of the manipulated variables are saturated during
most of the transition. This application also has a constraint-controlled variable
(CV2) – one that must be kept within a range, such as a temperature limit
or a fouling condition – which also becomes active during the transition. With
all of these constraints active, the controller holds the higher priority CV3 at
its setpoint, gives up on matching the requested CV1 trajectory, and does the
best it can by making moves when it can, for example in MV1, whenever CV2
becomes unconstrained.
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Fig. 3. Closed loop grade transition illustrating handling of process constraints

Dynamic Decoupling

The third set of results illustrates decoupling and the value of the dynamic
nonlinear model. Three grade transitions occur during the time series presented
in Figure 4.

In the first transition, only one of the CV’s is transitioned. The other CV’s
are regulated within their target range.

In the second and third transitions, setpoints for both of the CV’s depicted
are changed. The controller makes moves in the MV’s such that each CV follows
its requested trajectory with negligible interactions.

Grade Transitions: Variance Reduction

The final set of results illustrates grade transition data before- and after installing
the controller.

Note that it is easy to speed up transition times with a controller when the man-
ual transitions were done without pushing the unit to constraints, such as mini-
mum or maximum flows of reactants or utilities streams. It’s a more challenging
problem to justify the investment in a controller for a unit that already has aggres-
sive, constraint-pushing manual procedures that have been refined during years of
operation. This is the situation addressed in the next set of results.

Figure 5 depicts half-a-dozen each of manual and NLMPC grade transitions.
Because the manual transitions were already pushing to limiting constraints, you
would have to modify the facilities to significantly speed up the best transition.
What we’ve seen in practice, however, is depicted in the charts on the right.
Closed loop control can significantly improve grade transition performance by
reducing product quality variance in even the best-run units.
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Fig. 4. Dynamic decoupling during multivariable grade transitions

Fig. 5. Grade transition reproducibility before (left) and after (right) closed loop
control

Other Benefits

The NLMPC technology and fundamental models have provided several addi-
tional benefits, as follows:

• Ability to transition to and operate reactors on grades that were never man-
ufactured before or included in the parameter estimation dataset.
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• Can transfer applications from one unit to another, or modify applications
after facilities expansion projects without much effort. It is a straightfor-
ward matter to revise equipment-related parameters. Also, we’ve been able
to transfer kinetic parameter values, although clearly caution is advised and
one must always plan to refit data.

• Deliver the NLMPC applications close to start-up of new facilities.
• Precise and rapid detection of instrument faults via insights gained from large

residual errors in individual model equations.

5 Concluding Remarks

This section provides a brief outlook on industrial practice for extending ex-
isting model predictive control technology to nonlinear systems, a summary of
the NLMPC work described in the paper, and outlook remarks regarding the
evolution of NLMPC.

5.1 Extensions of Existing MPC and Real-Time Optimization
Technologies

Various techniques have been used or are emerging in industrial practice to
extend the applicability of LMPC technologies to nonlinear systems.

For more than a decade, small-scale nonlinearities such as flow rate to valve
position effects or composition dependencies in distillation towers have been
effectively handled with mathematical transforms.

Within the past 5 to 10 years, LMPC’s applicability in the face of nonlinear-
ities has been extended via gain updating or gain scheduling approaches. Infre-
quent, event-driven gain update approaches are more common than continual gain
scheduling. Gain updating is typically used for feed-flexible plants where there are
relatively few permutations of feed types that affect the process response.

Current continuous improvement efforts on the model identification task, e.g.,
automated plant test tools [11] [18], may increase the applicability of LMPC fur-
ther, at least for regulatory control. The state of the art is moving in the direction
of human-supervised adaptation. However, it is unlikely that adaptation – su-
pervised or not – will further enable LMPC technology to solve the servo (grade
transition) problem for nonlinear systems.

What industry calls real time optimization (RTO) represents another means
of implementing nonlinear compensation in constrained multivariable control.
Specifically, RTO implies the use of a steady state model and a nonlinear opti-
mization program to set output (and possibly input) targets for an underlying
layer of LMPC’s or other regulators. Introducing RTO into this discussion is
relevant because of its architectural similarity to current ideas for implementing
NLMPC that involve separating the target setting function from the regulator
function [19] [20].

RTO is an old idea – arguably the driving force for computer process control
almost 50 years ago [21]. The abiding motivation is to achieve market price driven
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economic optimization of the process on a large scale, e.g. an entire olefins plant.
Original motivations as a multivariable regulator have been made obsolete by
LMPC. While it may be an old idea, RTO’s impact has increased during the past
decade as a result of enormous improvements in the software used, and by the
accumulation of practical engineering experience. As described in [22], enterprise-
wide optimization, including RTO, continues to be an important goal for industry.

In general, RTO is used for continuous or infrequently changed semi-
continuous processes – not for the polymerization processes discussed in Sec-
tion 4. Where RTO is used, it is most common that it only supplies targets to
LMPC’s or other linear regulators that are not compensated for process nonlin-
earities. Less common is the case where gain updating is used to compensate the
LMPC’s, as discussed in the preceding section. Possible with the current state
of the art, but even more rare, is the case where the nonlinear RTO model is
used to continually update the gains in the LMPC’s.

It is beyond the scope of this paper to comment further on RTO. However, it
is important to acknowledge the following three contributions from RTO work
that were significant in enabling ExxonMobil Chemical’s reduction of nonlinear
model predictive control theory to industrial practice: (1) developments of online
nonlinear programming technology, (2) hardware and software tools, and (3) the
practical experience we gained doing RTO applications [23].

5.2 NLMPC Summary and Outlook

NLMPC using fundamental models and online solution of the nonlinear op-
timization problem across the prediction horizon is practical in industrial ser-
vice. The technology is being used to automate state (product grade) transitions
(servo control) and to achieve operating point-independent regulatory control of
processes highly nonlinear for LMPC.

The size of the applications implemented so far is small by input/output count
compared to current practices for LMPC applications. The scope and size of the
NLMPC applications is increasing as the technology matures and the experience
base grows.

Algorithm

The objective function used in this work combines the minimization of a net op-
erating cost, output errors against reference trajectories, and cost of incremental
manipulated variable movement. This objective function is different from LQR
particularly regarding the use of the 1-norm for the output error and the use of a
reference trajectory over the prediction horizon as a primary means of specifying
closed loop performance.

The solution method used in this work is to simultaneously solve the simula-
tion and optimization problem using an SQP code.

On the general question of the NLMPC algorithm, one key technical question
is whether it is necessary to retain the nonlinear relationships across the predic-
tion horizon, or is linearization at one or more points satisfactory. Even for the
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finite horizon NLMPC presented in this paper, Figure 1 illustrates a case where
significant process gain changes occur within the span of the prediction horizon.
There is a trade-off to be made among accuracy of the control moves calculated
on each scan, computational effort, and the number of ”moving parts” in the
controller software (more for quasilinearization).

A second technical question pertains to the value of invariance of the closed loop
speed of response. Operating point independent tuning was an essential require-
ment that led to the algorithm used in this work. In practice, it has been easy to
choose the tuning values for the desired closed loop response using a basic knowl-
edge of the process dynamics.When required, specifying the costs on the incremen-
tal MV moves has involved guesswork and required more time for simulations.

Models

Regarding models, either fundamental or empirical or a combination can be used
with the NLMPC method described in this paper. For ExxonMobil Chemical’s
the initial set of applications, fundamental models were preferred and developed
– justified by their capability to be extrapolated and ported to multiple facilities.

On the general question about models for NLMPC, Lee provides an excellent
breakdown of the issues and research requirements for fundamental and empiri-
cal models, order reduction, etc [24]. Industry’s likely path forward is as follows.
Where possible and profitable, libraries of fit-for-purpose process models will be
developed and continuously improved. Where library models are not possible or
profitable, empirical modeling tools will be used. Hybrid modeling approaches
will likely be used in any given application – with empirical elements used to
simplify where possible or to provide the ”lubrication” for required effects that
are too costly to model precisely. There is no substitute for experience for de-
ciding how to simplify. As computationally more-efficient models are developed,
the scope of applications attempted will increase.

A common approach for empirical nonlinear dynamic models used in industry
is to combine a static nonlinear part with a linear dynamic part (Hammerstein
model). For the purposes of this discussion, it does not matter whether the
nonlinearity is represented by equations, neural nets, etc. Such a modeling basis
in NLMPC will indeed work for many practical problems, but may be vulnerable
to nonlinear dynamics induced by changes in plant throughput or even when
trying to control startups and shutdowns.

An additional motivation for using fundamental models in MPC is the promise
of lower lifecycle costs of applications versus empirical models in the face of ”clon-
able” units and on-going facilities changes. An example of the clonable unit chal-
lenge is distillation tower control. At least for nonexotic towers, the notion is that
configurable controllers could be developed via a preloaded simulation model to-
gether with order reduction and state estimation schemes. If dynamic simulation
to closed loop controllers is starting to happen in practice [25], why not config-
urable MPC’s? For an example of low cost revision after a facility change, we have
already successfully revised an NLMPC application after a debottleneck project
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simply by changing the parameters for volumes of vessels and piping, the location
of feed injection locations, etc. without any refitting to plant data.

Parameter Estimation

One of the advantages of fundamental models over empirical dynamic ones is that
fewer data are required to fit the adjustable parameters. Indeed, this has been
our experience. Relatively few steady-state datasets have been sufficient to esti-
mate parameter values that yielded satisfactory closed loop control performance.
Nevertheless, after fundamental modeling itself, the NLMPC development task
that has been characterized by the most art was estimation of parameters in the
fundamental models.

To the casual reader of global optimization literature, it seems that estimation
of parameters in nonlinear models for NLMPC is a tractable problem. We’ll
leave this statement here without further elaboration. The needs for fundamental
technology improvements and new computer tools should be obvious.

State Estimation

State estimation is an essential part of the NLMPC described in this paper. The
initial applications used the state estimator only to propagate unmeasured state
values forward. In time, we started to incorporate input disturbance models into
NLMPC applications with generally favorable but not ”game breaking” results.

The incorporation of state estimators with postulated disturbance models to
improve the disturbance rejection properties of commercial LMPC products is
still a recent, and not ubiquitous, development. It’s interesting to note Eastman
Chemical’s incorporation of state space and infinite horizon features in its in-
house MPC well in advance of commercial LMPC products [26].

The outlook is that optimal state estimators and input disturbance models
will be incorporated into the NLMPC toolset. Contrasting the extended Kalman
filter (EKF) and the moving horizon estimator (MHE) approaches [27], we note
a preference for EKF based on the lesser computational requirement. MHE is
likely to be particularly good for the problem of infrequent, uncertain lab mea-
surements, but it should be a second option based on our experience to date.

Implementation and Sustainment

The predictability and efficiency of controller implementation projects and the
service factors of the commissioned applications are functions of the quality and
usability of the software tools used. This is worth noting, but this paper is not the
proper forum to detail the requirements for software features, user interfaces, etc.

The NLMPC engineer must be skilled at properly diagnosing and correcting
convergence or singularity problems in nonlinear programs, particularly when
the model is presented with the potentially inconsistent real-time process data.
There is little evidence that these skills are acquired in the university, and little
hope of dramatic breakthroughs for software tools for precise diagnostics. On-
the-job training has been the best bet.
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Operators and process engineers must have sufficient understanding and trust
in the NLMPC application for it to be sustained at full effectiveness. This need is
particularly acute when the NLMPC is controlling a unit where only SISO con-
trols existed before. Pre-commissioning training; timely, process-relevant expla-
nations of controller behavior; and what-if simulation studies are some measures
that can increase understanding and trust.

Closing Remarks

NLMPC is practical in industrial service. We have no doubt that the process
control community – academics, vendors, and operating companies – will con-
tinuously improve on the technology described or surveyed in this paper. Dogma
on the choice between fundamental and empirical models used across-the-board
for NLMPC is doomed to be erroneous. NLMPC is set to be the platform for op-
timal control of feed- or product flexible manufacturing processes characterized
by significant nonlinearities.
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Summary. This paper discusses the implementation of nonlinear model predictive
control on continuous industrial polymer manufacturing processes. Two examples of
such processes serve to highlight many of the practical issues faced and the technological
solutions that have been adopted. An outline is given of the various phases of deploying
such a solution, and this serves as a framework for describing the relevant modeling
choices, controller structures, controller tuning, and other practical issues

1 Introduction

Starting with a pilot implementation in 2001, Aspen Technology has gained a
large amount of experience in the field in implementing fully non-linear MPC
on several different types of continuous polymer manufacturing processes. There
are many benefits obtained by putting MPC on these industrial units, but one
of the main goals is to minimize production of off-spec material both in steady
state operation and when transitioning from one product grade to another. Prior
to 2001, implementations using empirical models were typically done with some
form of gain adaptation or gain scheduling, which, though suitable for steady
state operation, is sub-optimal for transitions. This is due to the fact that pro-
cess gains often change by an order of magnitude or more over a relatively short
period of time, and the non-linearities involved interact in a multivariate manner
and cannot be removed by univariate transforms. Even if the gains are scheduled
in a non-linear manner across the transition horizon [5], this does not take into
account these interactions, and no optimized path can be calculated. A break-
through came with the development of Bounded Derivative Network technology
[6], which allowed the building of empirical, fast-executing, control-relevant mod-
els that could be embedded directly in a nonlinear control law, removing the need
for gain scheduling completely.

There are many practical matters that impact the success of a control project
including technology, process understanding, best-practice methodology, the use
of reliable software with suitable functionality, and developing a deep under-
standing of practical operational requirements. The purpose of this paper is to
touch on many of these issues and share best practice concepts around how

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 383–398, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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polymer control projects should be executed, what practical issues have to be
faced, and to describe the solutions that have been adopted.

This paper starts with a brief description of some example industrial pro-
cesses that will be referred to later in the paper. The remaining sections in the
paper outline, in chronological order, the various phases of deploying one of
these solutions. At each stage, technological and practical points of interest are
discussed.

2 Process Descriptions

In this section we will briefly describe some typical polymer processes, which
will serve to illuminate some of the later discussion. In the interests of space,
we will limit the discussion to two specific polymer processes, but much of the
discussion is common to a wide range of continuous polymer manufacturing tech-
nologies on which Aspen Technology has implemented nonlinear MPC, includ-
ing Dow UNIPOL Polyethylene (PE) and Polypropylene (PP), Basell Spheripol
Polypropylene (PP), Polystyrene, BP Innovene PE and PP, and High Pressure
Tube Low Density Polyethylene (LDPE).

2.1 Dow UNIPOL PolyPropylene

The Dow UNIPOL PP process is a gas phase, dual series reactor process capable
of making impact and random copolymer and homopolymer grades. The process
consists of several sections including Raw Material Purification, Reactors, Resin
degassing, Vent Recovery, Pelletizer, Blending and Bagging, Compounding, etc.
MPC is usually applied to the reaction and related systems, but can be extended
to the vent recovery unit. Figure 1 shows a schematic of the first reactor section.

On the reactors, there are both quality and composition variables requiring
control. Quality variables relate to the powder properties, while composition

Fig. 1. First Reactor Section of Dow’s UNIPOL PP Process
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variables refer to the feed components in the reactor and to general reactor
condition variables like temperature and pressure.

Perhaps the most critical controlled variable is the reactor temperature. This
is too fast for conventional MPC and usually has to be a non-linear PID loop.
If the temperature is unstable or poorly controlled, all other variables on the
reactor, both quality and compositions will be difficult, if not impossible to
maintain.

For MPC purposes, the controller design has to focus on those compositions
and reactor conditions that have an impact on the various product quality at-
tributes. To do this, the MPC will manipulate the feed and additive flow rates.
To control the product quality, the controller has to determine the correct com-
positions and reactor conditions and control to these set-points.

Typically these processes are constrained by cooling capacity, powder dis-
charge system limits or downstream extrusion constraints. The physical con-
straint set will differ from plant to plant. It is up to the MPC system to ensure
that the process is always riding these constraints in order to maximize produc-
tion or maintain powder qualities.

2.2 Polyethylene High Pressure Tube Reactor

One method of manufacturing low-density polyethylene is via a high-pressure
tube reaction system. Figure 2 presents a schematic of a typical LDPE high-
pressure tube process.

Ethylene is pressurised to over 2000 bar in two stages. A chain transfer agent
is then injected which promotes longer chain molecules. A cocktail of initiator
is injected at various points along the tube producing an exothermic reaction
that peaks in temperature and then decays again until the polymer reaches the
next initiator injection point. Increasing the injection of initiator increases the
reaction resulting in a higher peak temperature and increased conversion. There

Fig. 2. High Pressure Tube LDPE Process
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are two key quality parameters that are controlled. Melt Flow Index is a mea-
sure of polymer viscosity and increases as the molecular chain length increases.
Another key parameter is gloss. The chain transfer agent and the temperatures
are typical manipulated variables for product qualities.

At the end of the reaction the polymer is extruded and cut into fine pel-
lets. These plants are capable of producing many different grades of polymer.
The production schedule is determined by a Planning and Scheduling system to
ensure that the entire supply chain operation is optimized. As a result, many
polymer production lines have an intensive grade transition schedule requiring
several transitions per week. MPC that is reliable across all product grades and
a wide range of transitions is essential for providing the necessary degrees of
freedom to the supply chain solution

3 Instrumentation Review and Pre-test

At the start of each project, a visit is made to the plant to assess the instru-
mentation, analyzers, valves, PID loops, and DCS issues, so as to establish a
set of preliminary remedial actions. Ensuring that all the control valves, critical
instruments and analyzers work properly, and tuning the PID loops properly is
a pre-requisite for implementing the solution.

4 Controller Functional Design

The Controller Functional Design Specification (FDS) provides the preliminary
controller design, which specifies:

1. Control objectives
2. Process constraints
3. Controller structure
4. Transition and recipe scope
5. System architecture

Every plant is different even within the same technology. The following issues
have to be accounted for in the FDS to ensure that the controller design is
suitable for the particular polymer line:

1. Different operation methodologies
2. Different process constraints
3. Different levels of operating expertise
4. Different feedstock qualities and different specifications
5. Different maintenance standards

It is essential to understand the specific process technology, as well as the process
constraints that may be unique for a particular process unit, and to understand
the unique operations requirements for the site.
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4.1 General Solution Architecture

A typical architecture of a polymer APC solution is shown in Figure 3. Typically
the controller system will use a cascaded structure with a master Quality Con-
troller providing set-points for the slave Composition Controller. The advantages
of a cascaded structure are highlighted in the next section.

The purpose of the upper tier controller is to control various quality measures.
Feedback for these comes in the form of lab analysis - typically every 4 hours or
so, with a significant delay. This lab information is managed by the Lab Update
system, which compares the lab result with the continuous inferred quality value
from the time that the lab sample was taken. Both the inferred quality value
calculations and the controller use the same non-linear quality models, though
one uses process values as input and the other uses set-points, as described in
the next section. The Lab Update system calculates a bias, which is then applied
to the controller quality model.

During transitions, lab feedback is typically not made available, so the quality
models need to be very accurate to be able to drive the transitions.

The lower tier controller receives concentration ratio set-points from the upper
tier controller and adjusts flow set-points, pressure and temperature set-points in
the DCS. The feedback for the lower-tier model typically comes from fast online
analyzers, though in some cases equation based calculations may be available
for some process quantities.

Recipe data such as quality and process constraints are provided by the Tran-
sition Management module which is configured for the full set of products and
product transitions for the particular production line.

Fig. 3. Typical Solution Architecture

4.2 Cascaded Structure

The cascaded structure is an important strategy in implementing polymer MPC
systems. There are several practical benefits that a cascaded structure provides:
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1. It greatly simplifies model maintenance. If a new product grade, or a new CV
needs to be added, or the process changes in some way, it is not necessary
to overhaul the composition controller.

2. It allows the top tier controller to be taken off-line while still running the
lower-tier controller.

3. It facilitates a gas composition overshoot strategy, which significantly reduces
the grade transition time.

4. It improves disturbance handling. If any of the feed composition variables
experience a major process disturbance, the gas composition controller will
immediately take action to reject it before the polymer product quality met-
rics are affected. If this were not done, the controller would only respond
after the quality has moved, and usually this would only become apparent
after a laboratory result is available. The cascaded structure, similar to cas-
caded PID loops, effectively gives the control solution an extra degree of
freedom for disturbance rejection.

One potential problem with a cascaded strategy is that there is no guarantee
that the lower tier slave controller will meet the targets required by the master
controller. This is similar to a cascaded PID control scheme where the slave loop
will saturate when the control valve goes fully open. The implication for the
polymer APC system is that the master quality controller will continue to ramp
(causing so-called wind-up), unless proper anti-windup detection is provided.

The solution for the cascaded MPC system is to configure two sets of product
quality predictions at the upper tier. The first set of quality predictions are based
on the concentration ratio targets (the gas concentration set-points), while the
second set of predictions are based on the actual gas concentration process values
- using the same models in each case. The latter are used to estimate any bias (or
offset) between the upper tier property models, and the actual product quality
feedback provided by the laboratory analysis. This bias is added to both sets of
property predictions. The bias-updated target- based predictions (based on the
gas composition set-point) are then used as feedback for the property controller.
The controller will see any such bias as an unmeasured disturbance and will
respond accordingly. In addition to this, anti-windup flags are used. If the steady
state value of the lower tier controller’s CV (the gas concentration ratio) is not
equal (within tolerance limits) to the steady state target value provided by the
property controller, a wind-up flag is set to the corresponding MV in the upper
tier controller. If there are other handles available, the controller will then use
those until the wind-up condition has passed.

4.3 Overshoot Strategy

The cascaded control structure facilitates a safe method for implementing an
overshoot strategy on the plant. Polymers qualities, especially in the case of a
UNIPOL gas phase reactor (this is effectively a continuously stirred tank reactor
with a large inventory), have very slow process dynamics. During product quality
transitions, it is essential that the closed loop responses be faster than these
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slow open loop process dynamics - otherwise, there will be several dozen tons
of product of intermediate quality that is effectively off-spec. Furthermore, the
longer the reactor spends making transition quality products, the less time there
is for in-grade saleable products. As a result, the net annual production rate will
be lower. In order to ensure more profitable process operation, the controller has
to provide for the fastest possible grade transitions, which require an overshoot
strategy to be employed where the flow targets (setpoints) need to dynamically
overshoot their final steady state value by a large amount.

One of the limitations of replicating this strategy in a single controller is that
the controller will complete all of its moves in a very small space of time and
leave no room for inaccuracy in the models. The risk of this is that the actual
product quality may overshoot its target and exceed upper/lower limits of the
new grade, which extends the grade transition time rather than shortening it.
An even riskier scheme is for a quality controller to overshoot the concentration
targets in order to force a lower level PID flow controller to overshoot.

The ideal solution is for the lower tier concentration MPC controller to be
tuned aggressively in order to cause the flow set-point to overshoot its final
value by a large amount, but still ensuring that the gas concentration does not
overshoot. Cascaded to this is the top tier quality controller. It is tuned for
an over-damped response to ensure that the concentration set-points will not
overshoot the final value. This provides the desired overshoot strategy (which
is required in order to minimize the grade transitions) but guarantees that the
gas concentration will not overshoot its final value, and thus reduces the risk
of overshooting the product quality targets (which could extend the transition
time by a large margin and create a lot of off-specification product).

With older linear technologies that utilised gain scheduling on the quality
models, the overshoot strategy was implemented by utilizing two CVs per qual-
ity. The first being the real quality predictions with the real process dynamics
(known as the bed average qualities) and the second being a quality prediction
without dynamics or dead times - this is a steady state prediction (known as the
instantaneous quality prediction). This approach was sometimes referred to as
the analyzer-predictor method.

In this older approach, the bed average prediction is given the final quality
target and the instantaneous prediction is given a target much higher or lower
(depending on whether the quality is increasing or decreasing) than the final
target. This forces the controller to move the concentration ratios more aggres-
sively than it would normally since it is trying to meet the instantaneous quality
target as well as the bed average. Once a minimum time has passed or the bed
average prediction has reached a key point (this time or value is determined from
simulation), the instantaneous CV is turned off and the controller then aims only
for the bed average quality. If the instantaneous quality is not turned off, the
controller will try to trade off the bed average and the instantaneous CVs since
both CVs are using the same MVs. This means that the bed average will have
moved further than anticipated and the instantaneous less than needed.
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However, with the advances in non-linear control, the need for the instanta-
neous quality has been removed. The fact that the non-linear dynamic model is
directly embedded in the control law means that the move plan is consistent from
cycle to cycle. The speed of the transition and the overshoot in the manipulated
variables can be controlled purely by how aggressive we make the move plan.
By using low move suppression on the MVs and high penalization of deviation
from a CV trajectory, we can induce the MVs to overshoot significantly. Before a
transition, the tuning of the controller is changed by the transition management
software to implement this and once the transition is over, the tuning is set back
to more conservative values for in-grade control.

4.4 Controller Structure for High Pressure Tube Process

The controller structure for a high pressure tube process will typically incor-
porate a lower tier chain transfer agent (CTA) concentration controller and an
upper tier quality controller that cascades both to the concentration controller
and to the peak temperature control loops on the tube. Since the height of the
peaks has an impact on the product quality the valley temperatures are utilized
as disturbances to the quality controller. The controlled variables in the quality
controller would typically be MFI and Gloss.

4.5 Transition Management

Although a detailed description is beyond the scope of this paper, transition
management is an important part of the total solution. The transition from one
product grade to another may range from simple (for example changing the
set-point on a single quality variable) to complex (for example changing from
production of homopolymer to copolymer). Transition management consists of
managing the Recipe data that defines a particular product grade, managing the
sequence of steps that need to be taken before and after a transition occur, and
managing any open loop processing that is required during the transition. The
non-linear controller implements the actual transition. In order to implement an
overshoot strategy, the transition manager may be configured to download more
aggressive tuning during the transition stage.

5 Model Building and Simulation

Model building for polymer MPC projects is significantly different from tradi-
tional MPC projects. In addition, requirements for control models are different
than those for process design or simulation, for example. It is important to build
an understandable model - as simple as possible to make future maintenance as
easy as possible - yet with accurate and reliable gains. Some of the requirements
for a model to be suitable for control are:

1. A flexible modelling strategy that takes into account process specific knowl-
edge. Model replication from one site to another is rarely successful. One
size does not fit all!
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2. Safe, intelligent and maintainable extrapolation and interpolation - i.e. guar-
anteed gain behaviour at all operating points. Specifically, gain sign inversion
has to be prevented unless it is genuinely present.

3. Support non-linear dynamics, e.g. different up and down responses, or rate
of change dependent dynamics.

4. Minimal data requirements - it is difficult to step test a polymer plant when
the unit is not allowed to produce off-specification product.

5. Support multivariate non-linearities (e.g. multiple catalysts / donors), i.e.,
model structures where the true process characteristic is represented by a
curved surface in N-dimensional space. This implies that the current gain
value depends on more than one input variable. Models with these charac-
teristics cannot be linearized by using simple input or output linearization
curves.

6. Fast reliable execution.
7. Ability to fine-tune the model while commissioning the controller.

Some of the details of the modelling now follow

1. Quality models for polymer reactors are characterized by low order dynam-
ics, but strong non-linearities. Extensive experience shows that these can
be very accurately modelled with a low order linear dynamic model feeding
an empirically identified gain-constrained BDN (Bounded Derivative Net-
work) model. These steady state non-linear BDN models can be calibrated
on normal historical operating data, or sometimes, even recipe data, thus
precluding the need for a plant test in most cases. Figure 4 shows the struc-
ture of a BDN and the types of surface that it synthesizes. These surfaces
are shown as curves, but more generally they can be thought of as multi-
dimensional sheets with a single bend. The superscripts in the equations
represent layer indexing in a network-like structure. The natural interpo-
lation and extrapolation achieved by synthesizing these surfaces precludes
the need for large amounts of data. This contrasts with a traditional neural
network (for example a Multi-layer Perceptron) where the natural tendency
is for gain information to interpolate and extrapolate to 0 - an ill-suited
and unsafe characteristic for models embedded in a control law. In addition,
analytic constraints can be put on the calibration of these models so that
global gain guarantees are satisfied, thus allowing process knowledge (poten-
tially derived from rigorous chemical engineering models) to be imposed on
these empirical structures. Figure 5 shows this calibration procedure. Cali-
brating a BDN model utilizes a back propagation algorithm (a general form
of chain rule) to efficiently calculate analytic derivatives. This was originally
developed for the field of neural networks in order to provide the analytic
derivatives for simple delta-rule iterative learning algorithms in Multi-Layer
Perceptron structures. For BDNs, it provides the analytic derivatives for the
general constrained non-linear solver.

2. Concentration ratio models map flows to concentration ratios of the primary
flows into the reactor. Feedback for these variables typically is available
from fast online analyzers. These models are non-linear (due to the ratio
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Fig. 4. Bounded Derivative Network

Fig. 5. Calibrating a BDN

calculation) but also may have very different dynamic behaviour depending
on the vent valve position. The software provides a way of utilizing non-linear
difference equations to provide these models, which also only need minimal
data for calibration.

3. Quality models have different behaviours for different catalysts, but from the
non-linear controller’s perspective, they should be pieced together into one
model in a way that allows continuous transition control from one catalyst
to another.

4. Integrating models (also called ’Ramp’ models) are needed for modelling
pressure, partial pressure, and level variables. These are typically very sim-
ple, well-understood linear models with a single integrating state and pos-
sibly additional stable dynamics. Model-plant mismatch is modelled by
assuming a stochastic disturbance on the integrating state.



Experiences with Nonlinear MPC in Polymer Manufacturing 393

The control engineer will put together an integrated simulation for validating
controller structure and models, and for setting up much of the controller tuning.
This simulation will also incorporate any transition management.

Fine-tuning of the models and recalibration goes on during a commissioning
phase.

Example: Quality Models for High Pressure Tube Process
The high-pressure tube process provides an interesting aspect to the empir-

ical modelling challenge. The dynamics of the process response to temperature
changes are typically second order plus dead time at a given operating point.
In addition to this the temperature peaks are highly correlated with each other
which requires that the modelling architecture enforces this correlation at all
times. This is achieved by feeding the temperature peaks into the same two
states representing a second order dynamic system, where process data is used
to calibrate the contributions of each temperature peak to these states. These
two states then get combined into a single state (i.e. representing the output of
second-order dynamic system), which is fed along with other states (representing
the dynamic states of other inputs) into a Wiener structure utilizing a Bounded
Derivative Network. The advantages of this approach are that (a) the temper-
atures are guaranteed to have a correlated effect within the model, and (b) the
nonlinear model is forced to accept the second order dynamic rather than having
to deal with the two individual states that make up the second order response.
This guarantees a reliable second order response at all operating points.

6 Controller Tuning

6.1 Estimation

Plant-model mismatch is handled by assuming a stochastic disturbance entering
each of the non-linear MISO models that make up the total controller model.
This augments each model with an additional disturbance state.

For stable CVs this disturbance state acts as a bias on the output of the
model. For ramp CVs this disturbance state partly enters the core integrating
states and partly acts as a bias on the output as apportioned by a ’rotation
factor’. A Kalman Filter is used to estimate the stochastic states online.

The rotation factor determines how quickly the model adapts to error in
ramp rate. One practical issue is that changing the rotation factor online (which
is essential during commissioning) changes the augmented model, and without
additional logic, will cause an artificial disturbance. It is important that logic is
in place to effect a bumpless change of this tuning parameter.

6.2 Optimization

Business requirements drive the controller objectives and therefore the controller
design. Such requirements may rank some objectives as much more important
than others. For example:
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1. Maintain process safety ...
2. ... while satisfying the product quality objectives ...
3. ... at the required production rate ...
4. ... and minimizing energy consumption.

The controller uses two different schemes for this multi-objective optimization:
lexicographic ordering of constraints, and weighting of constraints. Lexicographic
ordering implies that one constraint can be made infinitely more important than
a lower ”ranked” constraint. Several constraints can also be assigned to the same
rank, and weighting is then used for constraints at the same priority (rank).

Lexicographic ordering is achieved by solving a series of nonlinear optimization
(or feasibility) problems. This can be written in general form as:

min rT
k Wrk

s.t. g(x)− rk ≤ d

h(x) ≤ e

where W is a weighting matrix, g(x) are the constraints at rank k (soft con-
straints) k is the current rank, and h(x) are the constraints at ranks higher than
k (hard constraints). Let rk(opt) be the solution to rank k. Then the next rank
(k+1) can be written as:

min rT
k+1Wrk+1

s.t. gk(x) ≤ d + rk(opt)
gk+1(x)− rk+1 ≤ dk

h(x) ≤ e

Note that the soft constraints from rank k have been promoted to hard con-
straints.

This resulting scheme has been used for a number of years in the industrial
community and has recently been attracting academic interest [1].

A full optimization problem must be solved at each rank. A sequential
quadratic programming approach is used. Trust regions are placed on the inputs.
A primal-dual interior point algorithm is used to solve the QP sub-problems [8].
Artificial variables are added to the QP sub-problems to ensure feasibility.

Usually 3 to 5 QP sub-problem iterations are sufficient. Although there is no
proof of convergence to a local optimum, the cyclical nature of the controller
ensures that a local optimum will eventually be reached. Options are available
within the controller to activate other algorithms with formal convergence proofs,
but these algorithms do not appear to be as consistent.

The limits, rankings, and economic values are the main tuning values for the
steady state optimization.

6.3 Ranking for High Pressure Tube example

In the high-pressure tube example the highest priority objective is to maintain
the melt index and gloss within their limits. However a secondary objective is
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to maximize conversion. It is extremely important that this secondary objec-
tive is not weighted against the melt index and gloss targets as the conversion
optimization is only important when the gloss and melt index are within their
limits. Explicit ranking guarantees this. Without ranking it would be possible
that under certain circumstances that the controller may calculate that slightly
violating limits was less costly than maximizing peak temperatures and this
would be unacceptable.

6.4 Move Plan

There are severe requirements for the MV move plan. It needs to be executing re-
liably at least once a minute, for some applications less than a minute. Typical
controller sizes vary between 5× 5 and 30× 30 for each tier of the cascaded struc-
ture, with a control horizon that may be several hours, particularly on gas phase
processes. Typically all the controllers in a cascaded architecture will run on the
same box. A feasible path algorithm is necessary so that sub-optimal solutions can
be used in the (very unlikely) event that cycle time is insufficient to converge. In
practice we typically see times of a few seconds for solving these types of problem
during transitions, much less for in-grade operation. The practical means to solve
these problems include intelligent blocking of moves and coincident points along
the CV horizons. The general form of the move plan objective is:

Φ = ΦCV TrajectoryPenalty + ΦMV TrajectoryPenalty + ΦCV ConstraintHandling

+ΦMV MoveSuppresion

The first two terms penalize deviation from the CV and MV trajectories, respec-
tively, that join the current point to the calculated steady state target. These
trajectories can be tuned online and provide a handle for controlling the aggres-
siveness of the controller on a per-CV and per-MV basis.

One of the important practical requirements for doing polymer transitions,
especially in the case of a UNIPOL gas phase process for which the qualities
have very slow dynamics, is for the control law to support overshoot strategies as
described earlier in this paper. This type of strategy is implemented by aggressive
CV trajectories, high CV trajectory penalties, low MV trajectory penalties, and
low MV move suppression.

CV constraints are handled by means of L1 penalty treatment as described in [3]
and [7]. In L1 penalty treatment, as opposed to L2 penalty treatment, constraints
are exactly satisfied if there is a feasible solution, and the constrained system has
stability characteristics identical to the corresponding unconstrained case.

The objective is optimized using a Multi-step Newton-type algorithm as de-
scribed in [2] and [4].

Another practical issue occurs when the calculated steady state solution lies
outside the operating limits - particularly in the presence of large disturbances.
In these situations it is undesirable for the controller to aggressively pursue this
infeasible steady state solution and the control law must be aware of these types
of situation and act appropriately.
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7 Commissioning

Commissioning is usually phased over several visits to a site. The aim of the first
visit is to put the inferential quality models online so they can be observed over
several operating conditions to ensure accuracy and models can be improved if
necessary.

Follow up visits will involve commissioning of the controllers. Some practical
issues:

1. Slave (gas composition) controllers are commissioned prior to master (qual-
ity) controllers.

2. Controllers are commissioned incrementally adding one or two handles at a
time - the software must support this incremental workflow.

3. Controllers are initially commissioned for in-grade control. Only when this
is satisfactory are transitions commissioned.

4. Windows of opportunity for a given grade may be very short - sometimes
a window of only a day or two within a period of several weeks. This has
several implications:
• Commissioning must be well planned and well prepared to make the most

of these opportunities.
• Models must allow for fine tuning online so as to make the most of the

short time window
5. Valve properties may require some practical approaches
• Accumulate several moves before implementing them
• When writing valve outputs directly, it is better to explicitly separate

out valve non-linearities from the model structure
6. Identify disturbances at the source and address them early - robust control

is still necessary, but not sufficient
• Examples of disturbances in a UNIPOL PP process:

– Cooling water inlet temperature variance.
– Catalyst batch changes
– Day/night feed quality changes
– Bed instability (monitor bed levels, bed weight)
– Powder discharge system problems

• For example, one might check on the feasibility of including cooling water
inlet temperature control to minimize ambient effects.

8 Operating the Solution

Both operators and plant engineers have their own interface to the online solu-
tion. The operator interacts with the system through a simplified interface which
allows monitoring of key quality and composition variables, allows changing of
operating limits, in-grade set-point changes, validation of lab results, triggering
of transition sequences, and the ability to turn the controller off and change to
manual control.
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The engineering interface is much richer, allowing all the operator interactions,
as well as allowing changes to controller tuning. Both operator and engineering
interfaces are required to have role-based security to avoid unauthorized person-
nel making changes that affect the plant.

9 Benefits

Demonstrated project results show:

1. Capacity Increase: 2− 10%
2. Off-spec reduction during transition: 25− 50%
3. Off-spec reduction during steady state operation: 50− 100%

The direct quantitative benefits are significant and are typically in the region of
$400, 000 to $1, 000, 000 per line per year. Qualitative benefits include:

1. Minimizing product transition times
2. Minimizing variability in quality
3. Maximizing production capacity
4. Reducing raw material consumptions
5. Reducing downtime and maintenance cost
6. Reducing safety stocks and slow-moving inventory

10 Conclusions

This paper has examined some of the technological and practical issues faced in
implementing nonlinear control on industrial continuous polymer manufacturing
processes. Descriptions of modelling technology and controller technology have
been given with emphasis on practical solutions. The importance of suitable
models has been emphasized, and it is surely a fruitful area of research for the
academic community to find more and better ways to impose process and fun-
damental knowledge onto simple control-suitable models structures – to bridge
the gap between complex continuous-time rigorous models and simple discrete-
time models with well-understood gain characteristics. In addition, it would be
very useful to develop control theoretic results on stability, observability, con-
trollability, problem convexity, etc. within the context of these reduced scope
models.
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Summary. Advanced model based control is a promising technology that can improve
the productivity of industrial processes. In order to find its way into regular applica-
tions, advanced control must be integrated with the industrial control systems. Modern
control systems, on the other hand, need to extend the reach of traditional automa-
tion systems – beyond control of the process – to also cover the increasing amount of
information technology (IT) required to successfully operate industrial processes in to-
day’s business markets. The Industrial IT System 800xA from ABB provides a scalable
solution that spans and integrates loop, unit, area, plant, and interplant controls.

This paper introduces the 800xA and the underlying Aspect Object technology.
It is shown how model knowledge and optimization solver technology are integrated
into the 800xA framework. This way, advanced model based control solutions can
be set up in an open and modularly structured way. New model and solver aspects
can be combined with available aspects covering standard functionality like process
connectivity, management of process data, trend&history data and application data,
as well as operator graphics.

A Nonlinear Model-based Predictive Controller (NMPC) for power plant start-up is
treated as example. This paper discusses how NMPC can be integrated with a modern
control system so that standard concepts are re-used for this advanced model based
control concept.

1 Introduction

During the last decades, several advanced control technologies have been devel-
oped, including adaptive control, fuzzy control and neuro control. While each
of these technologies offers advantages over classical control methods, PID con-
trollers still dominate the vast majority of industrial applications.

One reason for the lack of mainstream use of advanced control technologies is
seen in the fact that they require specialized engineering knowledge and tools.
Normally, specialized experts are required to apply advanced control methods. A
better integration of advanced control technologies with regular control systems
is seen as a key factor for improved acceptance.

Nonlinear model based control (NMPC) has received much attention dur-
ing the last years. The technology has several advantages from a control point of
view: it accommodates nonlinear, multi-variable problems with state constraints.

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 399–406, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Important achievements have been made to treat the computationally challeng-
ing task of formulating and solving large-scale nonlinear optimization problems
on-line [2, 4, 6]. Moreover, NMPC has the advantage that the technology is more
open, compared to other advanced control methods. Models do represent the be-
havior of a plant and standard optimization algorithms are used to apply the
models to control. This openness improves the acceptance of NMPC on the one
hand side.

On the other side, still special purpose tools are required to implement model
based control. This implies that concepts which are readily available in a stan-
dard control system need to be specifically interfaced or even redeveloped for
applications of model based control, including e.g. signal exchange with sensors,
actuators and low level controls, operator graphics, trend&history display, sig-
naling of alarms and events, as well as system maintenance. This is seen as an
important burden for both: acceptance and cost of NMPC.

2 The Industrial IT System 800xA

2.1 System Overview

The Industrial IT System 800xA seamlessly integrates traditionally isolated
plant devices and systems, extending the reach of the automation system to
all plant areas. The result is a simplified, software representation of the plant,
from simple on/off-type switches and valves to smart field devices, dedicated
control subsystems, and PC-based supervisory systems [1].

The framework for the 800xA system architecture is built upon ABB’s Aspect
Object technology. Aspect Objects relate plant data and functions – the aspects,
to specific plant assets – the objects. Aspect objects represent real objects, such
as process units, devices and controllers. Aspects are informational items, such
as I/O definitions, engineering drawings, process graphics, reports and trends
that are assigned to the objects in the system.

Aspect Objects are organized in hierarchical structures that represent differ-
ent views of the plant. One object may be placed multiple times in different
structures. Examples for different types of structures are:

Functional Structure: Shows the plant from the process point of view.
Location Structure: Shows the physical layout of what equipment is located

where in the plant.
Control Structure: Shows the control network in terms of networks, nodes,

fieldbuses, and stations.

The idea of placing the same object in multiple structures is based on the IEC
standard 1346 [3, 9].

The Plant Explorer is the main tool used to create, delete, and organize Aspect
Objects and aspects. It is based on a structural hierarchy, similar to Windows
Explorer, as demonstrated in Figure 1. The object hierarchy is visible on the left
hand side of the window. The upper right pane shows the aspects of an object
and the lower right pane views a selected aspect.
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2.2 Integration of Model Based Control

A new Model aspect has been developed so that mathematical model informa-
tion can be added to an Aspect Object. The model has the form of a hybrid
differential algebraic equation system (hybrid DAE)

0 = F[x(t), ẋ(t),m(t),u(t), z(t),y(t),p, t], (1)
F : R

nx × R
nx × R

nm × R
nu × R

nz × R
ny × R

np × R
1 �→ R

nx

m(t) := G[x(t),m(t),u(t), z(t),y(t),p, t], (2)
G : R

nx × R
nm × R

nu × R
nz × R

ny × R
np × R

1 �→ R
nm .

Here x denote continuous-time states, m are discrete modes, u and z are con-
trolled and not-controlled inputs, respectively, y are outputs and p are model
parameters. Discrete modes are variables that change their values only at dis-
crete time instants, so called event instants te. See [10] for more information on
the treated hybrid DAE.

The Model aspect holds information related to the model, including

• Declaration of model variables in categories (Parameter, Input, Output,
State, Generic),

• Values for model variables, e.g. for parameters,
• References to process signals, e.g. for inputs and outputs,
• Structural information for hierarchical sub-model structure,
• Reference to the implementation of the model.

The Model aspect does not provide any functionality nor does it deal with im-
plementation details. Instead it references an external implementation. In this
way available modeling tools can be applied and expensive re-implementation is
avoided.

A model can be used to perform one or more model-based activities. A second
aspect, the Dynamic Optimization aspect has been developed to interface a
numerical solver, hold the solver configuration, and to exchange data between
the solver and the control system. The exchanged data includes: configuration
data, current process values (like sensor values and controller set-points), and
history logs. Predictions are written back to the control system as history logs
with future time stamps.

The integrated solver HQP is primarily intended for structured, large-scale
nonlinear optimization [7]. It implements a Sequential Quadratic Programming
algorithm that treats nonlinear optimization problems with a sequence of linear-
quadratic sub-problems. The sub-problems are formed internally by simulating
the model and by analyzing sensitivities. They are solved with an interior point
method that is especially suited for a high number of inequality constraints, e.g.
resulting from the discretization of path constraints. See [6], [8], and [7] for more
details about the solver.
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Fig. 1. Plant Explorer showing the Functional Structure of NMPC for boiler start-up
(BoilerMax)

The treated model based activities include

• Initial value simulation for specified initial states x(t0) and model inputs,
• Estimation of model parameters and initial states,
• Nonlinear optimal control with constraints on model inputs and outputs,
• Steady-state simulation, estimation and optimization at one time instant.

An initial-value simulation covers hybrid DAEs (1),(2). However, optimization
and estimation problems can currently only be solved for a simplified hybrid DAE
F, G′ of the form:

m(t) := G′[m(t), z(t), t], (3)
G′ : R

nm × R
nz × R

1 �→ R
nm ,

where discrete modes do not depend on states or optimized variables.
Figure 1 shows how the functional structure is set up for an NMPC using As-

pect Object technology. Different Aspect Objects represent the major processing
activities of the NMPC algorithm.

• The Preprocessor reads current measurements from the underlying control
system, validates the data and generates a guess for the model state. Fur-
thermore a short term history is assembled.

• The State Estimator estimates the initial states based on the short-term
history collected by the Preprocessor.

• The Optimizer predicts the optimal control into the future, starting from the
estimated initial state
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• The Postprocessor checks optimization results and communicates set points
to the underlying control system.

• The Scheduler periodically triggers the other activities and supervises their
successful completion.

The object-oriented, physical modeling technology Modelica is used to build
the models [10]. A physical plant model is built on available model libraries [5]. It
is used by both: state estimator and optimizer. Moreover, specific preprocessor
and the postprocessor models are formulated as computational algorithms in
Modelica. The scheduler model is formulated as state graph [12].

Based on the models, the activities are formulated as estimation (State Esti-
mator), optimization (Optimizer) or initial-value simulation (Preprocessor, Post-
processor, Scheduler).

3 Application Example

A Nonlinear Model-based Predictive Controller (NMPC) for power plant start-
up serves as example. The start-up problem is challenging as it is highly non-
linear in the covered large range of operation. Thermal stress occurring in thick
walled components needs to be kept in given limits. Multiple manipulated vari-
ables must be coordinated. A long prediction horizon is required to fulfill the
constraints during a start-up.

Figure 2 shows a process diagram of a power plant. Feed water goes through
pre-heaters and the economizer into the evaporator, as seen in the lower left

Fig. 2. Simplified process diagram of a power plant
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Fig. 3. Operator display showing the optimal start-up predicted by the NMPC, in
addition to current process values and history logs

section of the diagram. Saturated steam leaving the evaporator is super-heated
in several super-heater stages. The example uses five super-heater stages and four
parallel streams, as seen in the upper left section of the diagram. The live steam
leaving the boiler goes to the turbine. The example uses two turbine sections.
In the turbine, thermal energy is transformed to mechanical energy, driving the
generator. Afterwards the steam is condensed and water flows back to the feed
water tank, as seen in the lower right section of the diagram.

A boiler model was built using the Modelica technology [5]. The model needs
to be carefully designed so that it expresses the relationship between optimized
control actions (fuel flow rate and valve positions) and constrained process values
(pressures, temperatures and thermal stresses). In the example described here,
a system of differential-algebraic equations (DAE) with 940 variables was built,
using measurements of about 150 process values. The Dynamic Optimization
aspect system was used off-line to identify model parameters based on data logs
available for historical start-ups.

During a run of the NMPC, an optimization problem is solved on-line every
minute. The model is adapted to the process based on 36 on-line signals. 18 val-
ues are communicated back to the process, including three controller set points
and additional signals for switch conditions and operator displays. The time
horizon for prediction and control is 90 minutes in the example. It gets divided
into 90 sample periods. The optimized manipulated variables are parameterized
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piecewise linear. All other model variables are evaluated at the sample time
points. This means that overall 85540 variables are present in the on-line opti-
mization problem. The solution time is about five minutes for a cold start of the
solver and about 40 seconds for a subsequent solver run. Please see [8] for details
about the numerical formulation and solution of the optimization problem.

Figure 3 shows an operator display for boiler start-up optimization. The trend
plot displays the manipulated variables in the upper pane, the main process
variables (live steam parameters) in the middle pane and constrained thermal
stresses in the lower pane. As a result of the optimization, the process is driven
along the allowed limits for thermal stresses.

Traditionally an operator display shows current process values and history
logs. As a by-product of model predictive control, the operator can addition-
ally see the prediction of the future behavior of the plant. As the NMPC runs
integrated with the control system, this display can easily be configured.

Using the NMPC, the start-up time could be reduced by about 20 minutes
and the start-up costs by 10% as compared to a well tuned classical control.

4 Conclusions

Nonlinear Model-based Predictive Control (NMPC) is a promising control tech-
nology. Due to advances in computational algorithms during recent years, it is
now possible formulate and solve the underlying large-scale nonlinear optimiza-
tion problems on-line under real-time conditions. The example discussed here
was developed in detail in [8].

For a successful application of NMPC it is equally important to appropriately
integrate the method with the control system. This paper discusses how this
is done with the Industrial IT System 800xA by ABB. Based on international
standards for control systems engineering and software, the System 800xA archi-
tecture and the Aspect Object technology allow a flexible integration of model
knowledge and model based applications. Two new aspects have been developed
in the Dynamic Optimization system extension. The new aspects can be com-
bined with other available aspects, e.g. for controller connectivity, history logs
and process graphics.

The NMPC runs on an application server that is integrated as additional node
with the system. Installation and maintenance are identical to other nodes, like
data servers and display clients.

This paper uses the start-up of a power plant as example. Batch processes are
another promising application area, as described in [11].
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Summary. We will in this paper highlight our experience with NMPC. In our context
NMPC shall mean the use of a nonlinear mechanistic model, state estimation, and the
solution of an online constrained nonlinear optimisation problem. Our reference base
is a number of applications of NMPC in a variety of processes.

We discuss the use of mechanistic models in NMPC applications and in particular
the merits and drawbacks of applying such models in online applications. Further, we
focus on state estimation, and the use of Kalman filters and moving horizon estimation.
Finally, we consider the design of the optimization problem itself and implementation
issues.

1 Introduction

Nonlinear model predictive control (NMPC) opens for the use of MPC in more
demanding applications than has normally been the case for linear MPC. In par-
ticular NMPC lends itself to nonlinear systems which exhibit large variations in
operating conditions and which are critically dependent on the use of a dynamic
nonlinear model to gain sufficient performance. A nice overview of NMPC can
be found in [9].

NMPC is not a well defined term in the sense that NMPC may be used for
controllers ranging from a slight variation of linear MPC to the online solution
of a constrained nonlinear optimisation problem. One example of a slight modi-
fication to account for nonlinearities is the use of multiple linear models in such
a way that the current working point defines which model should be active at
a given time instant. Hence, the QP-problem frequently encountered in linear
MPC will change as the active model changes. In our context NMPC shall mean
the use of a nonlinear mechanistic model, state estimation, and the solution of
an online constrained nonlinear optimisation problem.

The scope of this paper is to pinpoint critical issues when applying NMPC by
drawing on our experience within the process industries since 2000. To ensure a
sound level of credibility we first present our most important application areas
and accompanying control challenges in some detail. Thereafter we address four
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critical areas: modelling, state estimation, formulation of the control problem
itself and implementation issues. The paper ends with some conclusions.

2 Reference Base

The reference base contains a number of industrial applications of NMPC in a
variety of processes. Some examples are:

• A system for optimization of suspension PVC polymerization processes has
been implemented on two large (140 m3) autoclaves located at Hydro Poly-
mers’ plant in Porsgrunn, Norway. The system is characterized as follows: It
contains a rather detailed nonlinear model of the polymerization reactor. The
reactor model includes reaction kinetics, thermodynamic calculations for the
four-phase suspension process, quality parameters and energy balances for
the suspension and cooling systems. The application optimizes the tempera-
ture reference trajectory and the amount of initiators charged to the reactor
in order to initiate the polymerization process. The optimization is based on
an economic criterion which includes the batch time as well as cost of initia-
tors. The process is highly exothermic, and the purpose of the optimization
is to minimize the batch time without exceeding available cooling capacity
and without using an inhibitor to slow down the polymerization process.
The optimization is performed once for each batch cycle, and the tempera-
ture profile, which consists of approximately 80 ”straight line segments”, is
optimised for the entire batch under a number of constraints imposed by the
quality specifications of the various PVC products. Based on logged data a
few model parameters are estimated as functions of conversion. The system
is implemented using Cybernetica’s NMPC and batch optimisation platform.

• Three NMPC applications for stabilization and quality control of the Borealis
polypropolyne plant in Schwechat, Austria have been developed and imple-
mented in cooperation with Borealis’ personnel. The implementations are
based on nonlinear first-principles models of the polyolefine plant (including
three different polymerization reactors), and on Borealis in-house system for
model predictive control (BorAPC). The system is characterized as follows:
The three MPC applications comprise a multivariable control system with all
together 11 control inputs and 19 controlled outputs. The nonlinear model
consists of 77 states which are estimated on-line together with a few model
parameters.

• NMPC of a base-catalyzed phenol-formaldehyde batch polymerization pro-
cess has been implemented. The system is based on a rigorous model of
the polymerization reactor. The system is implemented at Dynea’s plant in
Springfield, Oregon, USA. The model for this condensation polymerization
process includes reaction kinetics, thermodynamics, population balances for
functional groups and energy balance for the reactor and cooling system.
Safety is an important issue and one driving force for implementing NMPC.
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ladle1

Fig. 1. A sketch of the metal refining process

Another important consideration is reduced batch time. A second application
on a twin reactor is presently being developed. The system is implemented
using Cybernetica’s NMPC platform.

Two additional applications will be presented in some more detail.

2.1 Manganese Metal Refining

This case is a metal refining process for removing carbon from manganese metal.
The process is sketched in Figure 1. It consists of a ladle which is filled with
liquid-phase high-carbon manganese metal. This implies that about 7% of the
metal bath consists of carbon. In addition there is some iron and MnO in the
metal bath. Carbon is removed by blowing O2 into the ladle. The main overall
reaction is

C + O2 → CO2

The refining process produces different products with a carbon content in the
range 0.5%−1.5%. Downstream the refining process the metal is casted, crushed
and screened before it is packed and shipped to customers.

In addition to the main reaction there are intermediate reactions as well as
side reactions. One important side reaction is evaporation of manganese metal.

Mn(l) →Mn(g)

Fumes generated during the batch are collectected in an off-gas system and
routed to a filter-system for removing dust.
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Fig. 2. Sketch of an aluminum electrolysis cell

The metal refining process is operated as a fed-batch process. The length
of a batch sequence is in the order of 1 − 2 hours. The same ladle is used
from one batch to the next. It is replaced when the inner lining becomes too
thin. The economic insentive for improved control is minimizing metal loss due
to evaporation, while satisfying an upper limit on the concentration of carbon
at the end of the batch. The control problem is challenging since this batch
process is highly nonlinear and operational constraints are critical. An NMPC
application was implemented in 2003 using Cybernetica’s NMPC platform. More
information on Mn decarburation can be found in [3].

2.2 Aluminum Electrolysis Cell

The Hall-Heroult process - a continuous process - is dominating worldwide in
the production of aluminum [5]. The fundamentals of the process are to dissolve
Al2O3 in molten cryolite, and electrically reduce complex aluminum containing
ions to pure aluminum. The overall electro-chemical reaction in the electrolyte is

2Al2O3 + 3C −→ 4Al + 3CO2

where carbon is fed to the reaction as consumable anodes. By the use of various
additives, in particular AlF3, the operating temperature of the electrolyte can
be lowered from 1010C to approximately 960C. Both decreased temperature and
increased excess AlF3 is believed to be beneficial for the current efficiency and
the energy consumption. As molten cryolite is very corrosive, the only component
of an acceptable cost presently capable of coexisting with it over time is frozen
cryolite. It is therefore necessary to maintain a layer of frozen cryolite (side ledge)
to prevent the carbon walls from eroding. In order to maintain the side ledge
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there has to be a substantial heat loss through the side ledge and the carbon
walls of the cell.

The cell voltage applied is typically 4.5V , and the electric current through
the cell is typically 150− 200kA. A sketch of a cell is shown in Figure 2. In real
life 100-200 cells are placed and connected in series.

There are three control inputs to the process, anode beam adjustments (con-
trolling energy input), addition of AlF3 and addition of Al2O3, and three con-
trolled variables, bath temperature, concentration of AlF3 and concentration of
Al2O3. A cell is regularly perturbed since liquid aluminium is tapped and one of
the anode blocks is changed on a daily basis. This induces severe disturbances
in the energy balance, and it implies that the operating conditions will vary
significantly and hence provoke nonlinear cell effects. The process has strong
internal couplings, for instance between the mass and energy balance through
the side ledge. Control of an aluminum electrolysis cell is a challenging problem
[2], particularly as cell capacity increases beyond 200kA. An NMPC application
is presently under development.

3 Modeling

A common denominator for the applications referenced above is the use of a non-
linear first principles model. Empirical models have traditionally dominated the
arena of MPC applications. A meaningful question would therefore be: “Why
use mechanistic models?” The answer can be divided into two parts, and the
first part can be found outside the model itself. In some of the applications a
mechanistic model existed prior to the NMPC project initiation, and substan-
tial resources had been used to develop and validate such a model. The fact
that a model existed and considerable resources had been spent on development
and validation are important reasons for extending the use of a model. Further,
added use increases the odds for long-term survival of a model within a com-
pany. In the aluminum electrolysis case a model which had been developed over
several years existed. This model had to be adjusted, only slightly however, to fit
the NMPC application. No dynamic model existed prior to the NMPC project
for the Mn metal refining reactor. The company, however, viewed the develop-
ment of a mechanistic model in itself as important since such a model acts as a
knowledge repository. One consequence of this was that the model development
and validation phase was run as a joint activity between Cybernetica and the
customer.

Second, in our experience a major advantage of first principles models is the
reduced need for plant experimentation. As a matter of fact in the bulk of the
above cases models have been developed purely on the basis of data from reg-
ular operation, ie. no dedicated measurement campaigns have been necessary.
This implies that model structures have been selected, parameters have been
estimated and models have been validated without resorting to often costly
plant experiments. To further substantiate this, personnel from Borealis state
“The model can be identified without doing plant experiments at all” [1] when
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discussing their proprietary NMPC technology and its application to polyole-
fine reactors. The need for reduced plant experimentation becomes particularly
apparent when applying NMPC to several similar reactors as was the case for
the suspension PVC polymerization reactors and the phenol-formaldehyde batch
polymerization reactors referenced earlier.

Despite the above, the modeling process is a complex task and may be a bot-
tleneck in the development of advanced computer-based applications, see eg. [4].
Without delving into this issue it should be noted that the process data used for
offline tuning of parameters must, in some cases, include supplementary informa-
tion to apply them in an appropriate manner. The reason for this is the fact that
the process data does not necessarily contain sufficient information to uniquely
define the process conditions applicable to the model. Examples of this may
be changes in low level instrumentation and control loops due to maintenance,
or merely the fact that different shifts use different operational strategies. One
shift may for instance prefer to run a low level feeder control loop in manual as
opposed the others running the same loop in automatic mode. The implication
of the need for added information is that close ties between developers and key
process personnel is important for efficient model development, in particular to
swiftly provide the additional information if and when necessary.

In addition to prediction accuracy a model used for optimization-based con-
trol should be smooth to facilitate the search algorithm for solving the online
constrained nonlinear optimization problem. Hence, it is not necessarily to de-
velop a model with good prediction accuracy. The model should also be smooth
with respect to the control inputs eligible for optimization. Our experience is
that this has been a key issue to obtain robust and computationally efficient
performance of the optimization algorithm both in the reference cases on metal
refining and in the suspension PVC-application.

To elaborate on the metal refining case the basic kinetics models and thermo-
dynamics are non-smooth. The non-smooth function were changed by applying
sigmoid-functions. To illustrate assume the following kinetic model for the reac-
tion rate r for the reaction B → A.

r =

{
a(pB − pequil) if pB > pequil

0 if pB ≤ pequil

a > 0 is some constant, pB is the partial pressure of (gas) component B, and
pequil is the equilibrium partial pressure. A smooth approximate model for the
reaction rate, which, however, does allow negative reaction rates, is

r = h(pB, pequil) · [a(pB − pequil)]

where h(pB, pequil) =
1

1 + e−α(pB−pequil)
, α > 0
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4 State Estimation

The aim of the state estimator is to provide a robust and reliable estimate of
the current state at all times. This is a challenging problem since the process
data vector in our experience often is dynamic in the sense that data points
routinely are biased, delayed or even missing. Examples of this are delayed or
missing measurements at the startup of the metal refining batch, and delayed
temparature and composition measurements in the aluminum electrolysis cell.
The former typically happens on a sporadic basis while as the latter occurs
regularly. The time delays in the process data from the aluminum electrolysis
cell, however, may vary significantly from one sample to another.

The dynamic process data vector constitutes a challenge since an application
requires a robust and reliable estimate of the current state at all times. We have
applied two methods for state estimation, an extended and augmented Kalman
filter (EAKF) with some modifications and recently a moving horizon estimator
(MHE), see eg. [10]. The estimation software includes handling of asynchronous
measurements with arbitrary sampling intervals and varying measurement delays.

It is our experience the Kalman filter has proved to work very well in sev-
eral demanding applications, even if this simple estimation algorithm provides
a crude approximative solution to the underlying nonlinear stochastic estima-
tion problem. The performance of the EAKF for a specific application depends,
however, crucially on the modelling of the stochastic process disturbances and
on the choice of which model parameters to estimate recursively in addition to
the model states. In Kalman filtering the process disturbances are modelled as
filtered white noise, and this disturbance model should reflect how the true pro-
cess disturbances and uncertainties are anticipated to influence the real process.
Special attention should be directed towards fulfilling basic mass and energy
balance requirements. It is, however, a shortcoming of the Kalman filter that
these balances will generally not be exactly fulfilled even if the process distur-
bances are properly modelled. This is due to the linearization approximations
involved in the calculation of model state updates from measurement prediction
deviations.

The choice of which parameters to estimate in the EAKF should be guided
by an identifiability analysis. Usually we cannot assume that the process exci-
tations fulfil certain persistency requirements in order to ensure convergence of
parameter estimates. Hence, we normally choose a set of parameters which is
identifiable from stationary data, and which do not require any particular exci-
tations in order to obtain convergence. By carefully selecting the set of model
parameters to estimate, we can usually obtain zero steady-state deviations in
measurement predictions.

The MHE has several advantages compared to the Kalman filter. Evident
advantages are the ability to handle varying measurement delays as well as con-
straints in a consistent manner. As mentioned above varying delays occur in some
of our applications. The ability to include constraints is also important since a
nonlinear mechanistic model by definition includes physically related states and
parameters, variables which often can be limited by a lower and upper bound.
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Other advantages of the MHE are related to the increased accuracy in solving the
underlying stochastic estimation problem. The stochastic estimation problem is
solved exactly over the length of the horizon. Hence, as the estimation horizon
increases towards infinity, the MHE estimate approaches the true solution of the
underlying nonlinear estimation problem.

The main disadvantage with the MHE as compared to the Kalman filter is the
increased computational requirements for the MHE. The estimation of stochas-
tic process disturbances over a long estimation horizon, when compared to the
length of the sampling interval, may lead to a nonlinear programming problem
of untractable size. Hence, in practical applications it might be necessary to re-
strict the length of the horizon or to parameterize the process disturbances with
a limited number of parameters over the estimation horizon. These modifications
will generally reduce the accuracy of the MHE.

The bulk of our experimence is based on the use of the EAKF. Because of the
advantages of the MHE scheme, despite its drawback from a computational point
of view, we foresee a shift towards this estimation scheme in future applications.

The state estimator in itself often provides interesting information about the
process conditions. Hence, commissioning the state estimator, assuming that it
provides reliable estimates, before the actual NMPC application is in our ex-
perience a favourable option. This provides at least three positive effects. First,
the state estimator, a critical component of the NMPC application, is tested in
its real environment. Such an environment will always provide some challenges
not present in a testing environment. Second, the state estimates may provide
important information to plant personnel. This is for instance the case for the
aluminum electrolysis cell where estimates of internal cell states are highly in-
teresting. Finally, the estimator builds trust and interest in the future NMPC
application.

5 Control Formulation and Online Optimization

Formulating the control problem, ie. the online optimization problem, tends to
be simpler than the modeling and estimation tasks described above. The online
problem for an NMPC application does not in principle differ from the linear
MPC case. The objective function will in some sense be related to economic
conditions. For a batch reactor, in which batch capacity limits production, min-
imizing the batch time is in most cases equivalent to optimizing an economic
criterion. This was the case both for the metal refining case, the PVC poly-
merization reactors and the phenol-formaldehyde batch polymerization process.
The constraints will limit variables linked to safety and quality. A typical safety
constraint is the net cooling capacity in the (exothermic) PVC polymerization
reactors while the end point carbon content is an important quality constraint
in the metal refining reactor. The choice of control inputs and controlled outputs
is again a problem where the issues in linear MPC and NMPC are similar and
will hence not be discussed further herein.
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Online optimization in NMPC applications is a very different issue than the
convex QP-problem normally encountered in linear MPC. A robust and reliable
algorithm is critical. In our experience such an algorithm can only be developed
by merging insight into nonlinear programming techniques with extensive tri-
als. The NMPC algorithm is based on the Newton-type algorithm developed by
Biegler and co-workers [8]. Their approach is to linearize a nonlinear state space
model around a nominal trajectory determined by the input sequence computed
at the previous sampling time. A new input sequence is computed by solving a
quadratic program, once over the time horizon, followed by a line search where
the quadratic optimization criterion is computed based on the nonlinear model.
Through the line search, global convergence of the method is enforced as long as
the objective function exhibits descent directions. Sufficient conditions for global
convergence and stability are developed by Li and Biegler [6]. Their development
assumes that the states are available, hence state estimation is not considered in
the referenced paper. The algorithm we use extends and modifies the Newton-
type algorithm proposed by Biegler in several ways. The algorithm is based on
a linearization of the nonlinear model around nominal input and output tra-
jectories, which are computed at each time step. The linearization is usually
performed once at each time step. The optimization criterion is quadratic and
the constraints are linear in the process outputs and inputs. The outputs are,
however, arbitrary nonlinear functions of the states and the inputs. Another ex-
tension of Biegler’s algorithm includes more flexible parameterizations of inputs
and outputs; each input and output variable is parameterized independently.

Input constraints are hard constraints in the optimization. Output constraints
are handled as soft exact penalty type constraints as outlined by Oliveira and
Biegler [7].

6 Implementation

Putting NMPC into industrial use requires competence and systems beyond
NMPC theory and the algorithms themselves. This includes a project develop-
ment plan which does not differ from a typical project plan for implementing
other advanced controllers. A project will include a functional design specifica-
tion task which describes the functionality and details the specifications for the
delivery. Thereafter the application is developed, integrated into the existing
control system, and finally formally accepted by the customer through a Site
Acceptance Test.

A difference in the development of applications based on first principles models
compared to data driven models is that the time spent at the plant, performing
process experiments and application commissioning and testing, is shortened by
the use of mechanistic models. The reason is that less experiments are required
for the model and state estimation development and tuning. Usually, we have on-
line secure internet connection to the application computer. Then the estimator
can be tested on-line and also the NMPC application can be tested in open loop
before closed loop testing.
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In the Cybernetica system an NMPC application will consist of one compo-
nent, a model component, which is developed specifically for the type of process
unit or process section to be controlled. The other parts of the system, such
as the EAKF, MHE and NMPC algorithms as well as configuration interface
and communication interface to the basic control system, consist of generic com-
ponents. Usually, the operator interface is integrated into the same operator
interface system as used by the basic control system. Hence, from the operators
point of view, the introduction of an NMPC application is seen as an extension
of the existing control system.

A close dialogue with key personnel at the plant has been critical in many
of our reference projects. There are several reasons for this. First, as remarked
earlier, personnel have access to information and they possess knowledge which
is vital in specifying an application and in the model development stage. Second,
the operating personnel may have the privilege to choose between an existing
operating strategy as an alternative to a (new) NMPC application. In such a
situation it is important that the operators understand the application so as to
gain confidence in the new application. Further, insight and motivation definitely
helps in a situation where an application needs to be modified due to some
unforeseen problems.

In most of the reference cases the NMPC application replaces an existing
application. Usually it is necessary to upgrade other parts of the system in con-
junction with an NMPC project simply because the NMPC application normally
requires more accurate information than what was the case prior to its instal-
lation. Improvements typically include upgrading of instrumentation and data
collection routines, and retuning of low-level control loops.

7 Conclusions

This paper discusses issues that arise when implementing NMPC in the sense
of a nonlinear mechanistic model, state estimation, and the solution of an on-
line constrained nonlinear optimisation problem. Even though this technology
presently is in the development stage several demanding applications have been
developed with good industrial acceptance.
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Summary. This paper summarizes recent developments and applications of dynamic
real-time optimization (D-RTO). A decomposition strategy is presented to separate
economical and control objectives by formulating two subproblems in closed-loop. Two
approaches (model-based and model-free at the implementation level) are developed
to provide tight integration of economical optimization and control, and to handle
uncertainty. Simulated industrial applications involving different dynamic operational
scenarios demonstrate significant economical benefits.

1 Introduction

Increasing competition coupled with a highly dynamic economic environment in
the process industry require a more agile plant operation in order to increase
productivity under flexible operating conditions while decreasing the overall pro-
duction cost [1]. The polymer industry is an illustrative example of this develop-
ment. While on the one hand the product specifications for high-value products
become tighter and tighter, on the other hand many of the specialty polymers
are becoming commodities resulting in lower profit margins, thus requiring an ef-
ficient and cost-effective production [6]. Multi-product and multi-purpose plants
have become common. Therefore, transient operational tasks involving sudden
changes in production load, product grade (usually triggered by market condi-
tions) are routinely performed. These scenarios demand integrated economical
optimization of the overall plant operation.

Today’s plant operation requires real-time business decision making (RT-
BDM) tasks at different levels integrating planning, scheduling, optimization
and control tasks. Figure 1 depicts a typical decision making and automation
hierarchy. Due to a wide range of process dynamics, different time-scales are
involved at each level such as fractions of seconds for base layer control, minutes
for advanced control, hours for set-point/trajectory optimization, days for plan-
ning and scheduling, and months or even years for strategic corporate planning.
� Current address.
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Fig. 1. Real-time business decision making and automation hierarchy

Accordingly, RT-BDM involves multiple decision making levels each with a dif-
ferent objective reflecting the natural time scales. Despite the decomposition in
the implementation, there is a single overall objective for the complete structure,
namely maximization of profitability and flexibility of plant operation.

In the last decades, technologies have been developed to solve operational
problems at different levels of the automation hierarchy. However, most of them
are segregated techniques, each one targeting a single problem independently
and exclusively. For example, model predictive control technology using linear,
nonlinear or empirical models [16, 17] is used to reject disturbances and to con-
trol the process at given target set-points (level 2 in Figure 1). The set-points
are often the result of a stationary real-time optimization [15] using steady-state
process models (level 3 in Figure 1). Alternatively, nonlinear model predictive
control (NMPC) with an economical objective (referred to as direct approach
in [9]; Figure 2) has more recently been suggested for transient processes [5] to
solve the tasks on level 2 and 3 in Figure 1. On a moving horizon, NMPC repet-
itively solves a dynamic optimization problem with a combined economical and
control objective. On a given time horizon [tj , tjf ] with a sampling interval ∆t,
the corresponding dynamic optimization problem (denoted by the superscript j)
reads as:

min
uj(t)

Φ(x(tf )) (P1)

s.t. ẋ(t) = f (x(t),y(t),uj(t), d̂
j
(t)) , x(tj) = x̂j , (1)

0 ≥ h(x(t),y(t),uj(t)), t ∈ [tj , tjf ], tjf := tj−1
f + ∆t, (2)

0 ≥ e(x(tjf )) . (3)

x(t) ∈ Rnx are the state variables with the initial conditions x̂j ; y(t) ∈ IRny

are the algebraic output variables. The dynamic process model (1) is formu-
lated in f (·). The time-dependent input variables uj(t) ∈ Rnu and possibly the
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final time are the decision variables for optimization. Furthermore, equations
(2) and (3) denote path constraints h(·) on input and state variables, and end-
point constraints e(·) on state variables, respectively. Uncertainties of different
time-scales dj(t)∈IRnd (e.g. fast changing model parameters, disturbances, and
relatively slow changing external market conditions) are also included in the for-
mulation. In NMPC, measurements (yj) are used to estimate on-line the current
states (x̂j), outputs (ŷj) and uncertainties (d̂

j
). The inputs (û) are updated sub-

sequently by an on-line solution of the dynamic optimization problem P1. For
large-scale industrial applications, the NMPC problem is computationally ex-
pensive to solve though significant progress has been made in recent years (e.g.
[2, 5, 18]). Due to the considerable computational requirements, larger sampling
intervals (∆t) are required, which may not be acceptable due to uncertainty.

Functional integration can, alternatively, be achieved by a cascaded feedback
structure maintaining the automation hierarchy that has been evolved in the
process industry with the base layer control (level 1 in Figure 1) being the most
inner and the corporate planning (level 5 in Figure 1) the most outer loop. The
operational problem formulation (objective, constraints etc.) at each level should
be consistently derived from its upper level. This is in contrast to the existing
technologies used today in the automation hierarchy, where inconsistencies in
objectives, constraints and process models exist at each of the different levels.
Furthermore, uncertainties due to process disturbances, plant-model mismatch
and changes in external market conditions need to be efficiently tackled. Though
NMPC could be tailored to deal with the requirements, it is not a cascaded feed-
back control system which respects the established time-scale decomposition in
the automation hierarchy. Furthermore, NMPC lacks functional transparency
which complicates human interaction and engineering. Due to these concerns,
the acceptance of such a monolith solution in industry is limited. Rather, a cas-
caded feedback optimizing control strategy is preferred, because it is less com-
plex and computationally better tractable in real-time, but provides approxi-
mate control profiles of sufficient quality. In summary, the overall problem of
economical optimization and control of dynamic processes should be decomposed
into consistent and simple subproblems, and subsequently re-integrated using
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efficient techniques to handle uncertainty. This contribution reviews some of
useful concepts to address the above mentioned requirements, and presents their
application to simulated industrial case studies.

The paper is organized as follows: In Section 2, a two-level optimization and
control strategy is presented. To handle uncertainty and tightly integrate the eco-
nomical optimization and control levels, two strategies are presented in Section 3
and 4. In the first approach in Section 3, a strategy for a fast update of reference
tracking trajectories with possible changes in the active constraints set (due to
uncertainty) is presented. When the active constraint set is constant, an NCO
tracking control approach (in Section 4) can be used, which does not require
on-line solution of the dynamic optimization problem and uses only available
measurements or estimates of the process variables. The two-level dynamic op-
timization and control strategy along with fast update and NCO tracking forms
a cascaded optimizing control strategy that implements close-to-optimal plant
operation. In each section, a simulated industrial application involving different
types of transitions is presented.

2 A Two-Level Optimization and Control Strategy

2.1 Concept

For an integration of economical optimization and control, we consider the two-
level strategy introduced in [9] and modified in [12]. Problem P1 is decomposed
into an upper level economical dynamic optimization problem and a lower level
tracking control problem, as shown in Figures 3(a) and 3(b). The dynamic opti-
mization in the approach depicted in Figure 3(a) does not involve measurements
feedback to update the model. Hence no re-optimization has to be performed on-
line, but suboptimal behavior is unavoidable. Therefore, it is referred to as the
two-level approach with open-loop dynamic optimization. In contrast, the ap-
proach shown in Figure 3(b) involves feedback and hence on-line re-optimization
(D-RTO), but can cope with uncertainty. Consequently, it is referred to as the
two-level approach with closed-loop dynamic optimization. Any controller, for
example, a PID controller or a predictive controller using a linear, possibly time-
variant, or even a nonlinear model-based controller may be used at the lower level
to track the reference trajectories of the outputs yref and the controls uref which
results from a solution of the D-RTO problem at the upper level. The concept
of providing reference trajectories for tracking is similar to the calculation of
constant targets of controls and outputs used in MPC [17]. Note that econom-
ical optimization is considered for the nominal model, at the D-RTO level in
the simplest case only, while uncertainty is accounted for on the control level
only. Hence, the process model used for the optimization has to have sufficient
prediction quality and should cover a wide range of process dynamics. Therefore,
a fundamental process model is a natural candidate.

This decomposition has two different time-scales, a slow time-scale denoted
by t̄ on the D-RTO level and a fast time-scale t̃ on the control level, with the
corresponding sampling times ∆t and ∆t̃, respectively. As shown in Figure 3,
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Fig. 3. Two-level dynamic optimization and control strategies

the solution of the upper level dynamic optimization problem determines op-
timal trajectories uref , yref for all relevant process variables to minimize an
economical objective function. The sampling time ∆t̃ (the time interval between
two successive re-optimizations performed in the approach in Figure 3(b)) has to
be sufficiently large to capture the process dynamics, yet small enough to make
flexible economic optimization possible. Depending on whether uncertainty af-
fects the reference trajectories, the two-level approach can be implemented with
open-loop (with ∆t̄ =∞) or closed-loop (with ∆t̄ = ∆t̄0) dynamic optimization
depending on the requirements of the application at hand.

On the lower level, the control problem is solved in a delta mode to track the
optimal reference trajectories (see Figure 3). The tracking controller calculates
only updates ∆u to uref (provided by the upper level as feed-forward part of the
control) at every sampling time t̃j to minimize the deviation from yref . Hence,
the degree of optimality achieved by employing the two-level approach depends
upon the reference trajectories provided by dynamic optimization at the upper
level. The set of tracked variables in yref is selected from the important output
variables available in the plant. The sampling interval ∆t̃ has to be reasonably
small to handle the fast, control relevant process dynamics. The values of the
initial conditions x̂j and disturbances d̂

j
for the control problem are estimated

from measurements by a suitable estimation procedure such as an extended
Kalman filter or a moving horizon estimator.

2.2 Optimal Load Change of an Industrial Polymerization Process

An industrial polymerization process is considered. The problem has been intro-
duced by Bayer AG as a test case during the research project INCOOP [11].

Process description: The flowsheet of this large-scale continuous polymer-
ization process is shown in Figure 8. The exothermic polymerization involving
multiple reactions takes place in a continuously stirred tank reactor (CSTR)
equipped with an evaporative cooling system. The reactor is operated at an
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open-loop unstable operating point corresponding to a medium level of con-
version. It is followed by a separation unit for separating the polymer from
unreacted monomer and solvent. Unreacted monomer and solvent are recycled
back to the reactor via a recycle tank, while the polymer melt is sent to down-
stream processing and blending units. For this process, the following measure-
ments (or estimates) are considered to be available: Flowrates of recycle and
fresh monomers, FM,R and FM,in, flowrate of reactor outlet FR,out, recycle tank
holdup VRT , reactor solvent concentration CS , reactor conversion µ, polymer
molecular weight MW . The reactor holdup VRT is maintained at a desired set-
point using a proportional control that manipulates the reactor outlet flowrate
FR,out. A rigorous dynamic process model consisting of about 2500 differential
and algebraic equations is available from previous studies at Bayer AG [6].

Results: The following scenario is a typical example for an intentionally dy-
namic mode of operation. Due to changed demand from the downstream process-
ing unit, the polymer load needs to be instantaneously changed from 50% load
to 100% load and back to 50% load after a given time interval. It is desired, if
possible at all, to produce on-spec polymer during the transition and thereafter.
Otherwise, the total amount of off-spec polymer produced during the transition
should be minimized. At the end of the transition and thereafter, the process is
required to be at the given steady-state operating point. The polymer quality
variables, reactor conversion and polymer molecular weight, are allowed to vary
in a band of ±2% around their specifications. Three input variables u are avail-
able: Flowrate of fresh monomer FM,in, catalyst feed stream FC,in and flowrate of
recycled monomer FM,R. Path and end-point constraints on five process variables
need to be respected during the load change operation. Various uncertainties and
disturbances in the form of unknown solvent concentration and initial conditions,
measurement errors need to be considered during the transition.

The two-level strategy with open-loop dynamic optimization and control
(∆t̄ = ∞; cf. Figure 3(a)) has been implemented in a software environment
and applied to the simulated polymerization process for the load change sce-
nario. For this transitional scenario, off-line optimization studies have shown
that the prevalent uncertainties and disturbances have an insignificant effect on
the optimal reference trajectories. Only representative results from the closed-
loop control simulation are reported in Figure 4 (see [6] for further details). The
solid lines in the plots show the optimal reference trajectories which are cal-
culated by solving a dynamic optimization problem that employs the nominal
process model. The lower level of the two-level strategy involving estimation
and control was run in a closed-loop simulation in order to verify its capabil-
ities to follow the reference trajectories in the presence of the various process
disturbances. A linear time-variant model derived repetitively on-line along the
reference trajectories is employed in the tracking controller. The optimization of
the load transitions led to significantly improved operation of the plant, when
compared to the conventional strategies used by the operators. The transition
time is drastically reduced, and the production of off-spec material can be com-
pletely avoided, which also could not be ensured in conventional operation.
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Fig. 4. Results using the two-level strategy with open-loop dynamic optimization:
Fresh monomer flowrate FM,in (left) and polymer molecular weight MW (right)

2.3 Tight Integration and Uncertainty Handling

The two-level strategy is essentially a cascaded optimizing feedback control system
which generalizes steady-state RTO and advanced predictive control of inten-
tionally dynamic processes. In this approach, the overall problem is decomposed
into two sub-problems (with consistent objectives) that need to be subsequently
re-integrated in closed-loop. Furthermore, to consider effects of uncertainty, the
tracking reference trajectories can be updated by repetitive re-optimization us-
ing the feedback (state and eventually model update) provided at a constant
time interval ∆t̄. However, a repetitive re-optimization is not always necessary.
Rather, it can be systematically triggered by analyzing the optimal reference
trajectories based on the disturbance dynamics and its predicted effect on the
optimality of P1 if needed. Two strategies are proposed for uncertainty handling
and tighter integration of the two-levels of dynamic optimization and control
subsequently. In the first approach introduced in Section 3, a neighboring ex-
tremal control approach is used for linear updates of the reference trajectories
even in case of active inequality constraints. In the second approach presented
in Section 4, a solution model is derived from a nominal optimal solution of the
dynamic optimization problem. The resulting solution model is used to imple-
ment a decentralized supervisory control system to implement a controller with
close-to-optimal performance even in case of uncertainty.

3 Sensitivity-Based Update of Reference Trajectories

3.1 Concept

Due to uncertainty, the reference trajectories of the inputs and outputs need
to be updated. So far, the update is done via repetitive re-optimization, which
can be computationally expensive. Furthermore this may not be necessary as
the updated solution and the predicted benefits (objective function) may not be
significantly different from the reference solution. Parametric sensitivity analysis
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[7] is a strong tool to analyze an optimal solution for perturbations of parameter
values. Consequently, this analysis has been extensively used in steady-state and
dynamic optimization for calculating updates due to parametric perturbations
or parametric uncertainty (cf. [4]) because it demands only negligible computa-
tional time. The applicability of parametric sensitivity techniques, also referred
to as neighboring extremal control, depends upon the strong assumption that the
active constraint set does not change with perturbations, which is often quite
restrictive. The assumption is only valid for sufficiently small perturbations en-
tering the optimization problem.

A trigger strategy is suggested in the two-level strategy in Figure 3(b) to
initiate a solution of the D-RTO problem only if necessary, otherwise it pro-
vides linear updates to uref ,yref based on the neighboring extremal control
with the handling of possible changes in the active constraints set. A schematic
of the D-RTO trigger and fast update strategy is given in Figure 5. The reader
is referred to [10] for algorithmic details. An optimal solution is available at
the nominal values of uncertainty parameters from the previous optimization
at time t̄i and updates at time t̃j . At each sampling time t̃j, reference trajec-
tories of the controls are updated as uj+1

ref , and the changed active constraint
set is calculated using the neighboring extremal control strategy with inequality
constraints [10]. Simultaneously, sensitivities Sj of the Lagrange Lj of P1 are

evaluated as Sj =
∂Lj(uj+1

ref ,d̂j)
∂u , where Lj is calculated for the updated controls

uj+1
ref and the uncertainty estimate d̂j . A D-RTO trigger criteria (Sj > Sth with

Sth as threshold value) is defined to analyze the updated control for optimality
of P1. If the criteria is met, a linear update is not sufficient and a re-optimization
is performed to calculate new reference trajectories ui+1

ref ,y
i+1
ref .
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3.2 Productivity Maximization of a Semi-batch Reactor

Problem description: A semi-batch reactor is considered here, which is derived
from the continuous Williams-Otto benchmark reactor [8]. The following reac-

tions are taking place in the reactor:A+B
k1−→ C, C+B

k2−→ P+E, P+C
k3

−→ G.
The reactor is fed initially with a fixed amount of reactant A; reactant B is fed
continuously. The first-order reactions produce the desired products P and E.
Product G is a waste. As the heat generated by the exothermic reactions is
removed through the cooling jacket by manipulating the cooling water temper-
ature. During reactor operation, path constraints on the feed rate of reactant B
(FBin), reactor temperature (Tr), hold-up (V ) and cooling water temperature
(Tw) have to be respected. FBin and Tw are the manipulated variables. The
operational objective is to maximize the yield of the main products at the end
of batch. A measurable disturbance ∆Tin affects the feed temperature at t =
250 sec during batch operation. Furthermore, the parameter b1 in the reaction
kinetic equation k1=a1 exp( b1

Tr+273.15 ) is assumed to vary about ±25% from its
nominal value b1 = 6666.7 sec−1.

Results: The economical optimization problem is solved using DyOS [19] to
obtain the optimal solution for nominal values of the uncertain parameters. The
nominal optimal control and constraint profiles are depicted in Figure 6 by solid
lines. These profiles have different arcs corresponding to active and inactive parts
of the path constraints, which are characterized as follows: FBin is initially kept
at its upper bound and then switched to its lower bound when the reactor volume
(V ) reaches its upper bound. The second control variable Tw is manipulated to
move the reactor temperature (Tr) to its lower bound at t=140 sec and keep it
there. At the switching time t=360 sec, Tr is moved away from its lower bound
by manipulating Tw in a bang-bang profile with the switching times computed
implicitly by optimization. Note that Tw is at its lower bound at t=0 sec and
quickly switched to its upper bound.

The profiles shown by a solid line with dots in Figure 6 depict the response
of the neighboring extremal control update and D-RTO trigger strategy in the
presence of uncertainty and disturbances. Only once a re-optimization was trig-
gered in this episode. It can be observed in the figures that the closed-loop
linearly updated solution is almost identical to the synchronously re-optimized
solution (depicted by dashed lines). Note that the structure of the true optimal
solution under uncertainty and disturbances is drastically different from that
of the nominal solution. Most interestingly, FBin is stopped at t=282 sec, and
again switched back to its upper bound at t=656 sec until the reactor hold-up
reaches its upper bound. Furthermore, the reactor temperature is never at ei-
ther of its bounds, while Tw is at its lower bound throughout the operation.
These changed active sets are correctly and timely detected by the sensitivity
based-update strategy, and the batch operation is optimized in real-time. It is
shown that by using the D-RTO trigger and the linear fast update in two-level
integrated dynamic optimization economical and control, large uncertainty and
disturbances can be effectively handled.
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Fig. 6. Nominal and closed-loop optimization profiles of controls and constraints

4 Solution Model-Based NCO Tracking

4.1 Concept

Instead of using uncertainty-variant tracking reference trajectories as presented
in Sections 2 and 3, a combination of uncertainty-variant and uncertainty-
invariant arcs of the optimal solution is deduced for the tracking control problem.
The approach is termed NCO tracking [20] as it adjusts the inputs by means of
a decentralized control scheme in order to track the necessary conditions of opti-
mality (NCO) of problem (P1) (cf. Table 1 [3]) in the presence of uncertainty. As
shown in Figure 7, measurements (y) are employed to directly update the inputs
(u) using a parameterized solution model obtained from off-line numerical so-
lution of problem (P1) [21]. This way, nearly optimal operation is implemented
via feedback control without the need for solving a dynamic optimization prob-
lem in real-time. The real challenge lies in the fact that four different objectives
(Table 1) are involved in achieving optimality. These path and terminal objec-
tives are linked to active constraints (row 1 of Table 1) and sensitivities (row
2 of Table 1). Hence, it becomes important to appropriately parameterize the
inputs using time functions and scalars, and assign them to the different objec-
tives. There results a solution model, i.e. a decentralized self-optimizing control
scheme, that relates the available decision variables (seen as inputs) to the NCO
(seen as measured or estimated outputs).
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Table 1. Separation of the NCO into four distinct parts

Path objectives Terminal objectives
Constraints µT h = 0 νT e = 0
Sensitivities ∂H
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Fig. 7. D-RTO via numerical optimization of a nominal model and NCO tracking

The generation of a solution model includes two main steps:

• Input dissection: Using the structure of the optimal solution provided by
off-line numerical optimization, this step determines the so-called fixed
(uncertainty-invariant) and free (uncertainty-variant) arcs of the inputs. In
some of the arcs, the inputs are independent of the prevailing uncertainty,
e.g. in arcs where the inputs are at their bounds, and thus can be applied in
an open-loop fashion. Hence, the corresponding input elements can be con-
sidered as fixed in the solution model. In other arcs, the inputs are affected
by uncertainty and need to be adjusted for optimality based on measure-
ments. All the input elements affected by uncertainty constitute the decision
variables of the optimization problem.

Input dissection is based on off-line numerical optimization using a nominal
process model. The resulting optimal solution consists of various arcs or
intervals [3]. The information on the type of arcs can be deduced from the
numerical solution of (P1). Schlegel and Marquardt [18] have proposed a
method that automatically detects the control switching structure even for
large-scale problems with multiple manipulated variables as well as path
and endpoint constraints. The structure detection algorithm also provides
the dissected optimal input profiles that are re-parameterized with a small
number of parameters: u(t) = U(η(t),A, τ ) , where η(t) ∈ RL are the time-
variant arcs, τ ∈ RL the switching times, and L the total number of arcs.
The set of decision variables is comprised of η(t) and τ . The boolean set A
of length L describes the type of each particular arc, which can be of the type
{umin, umax, ustate, usens} depending on whether the corresponding input ui
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is at its lower or upper bound, determined by a state constraint or such that
it is adjusted to minimize the objective function.

• Linking the decision variables to the NCO: The next step is to provide a link
between every decision variable and each element of the NCO as given in Ta-
ble 1. The active path and terminal constraints fix some of the time functions
η(t) and scalar parameters τ , respectively. The remaining degrees of freedom
are used to meet the path and terminal sensitivities. Note that the pairing is
not unique. An important assumption here is that the set of active constraints
is correctly determined and does not vary with uncertainty. Fortunately, this
restrictive assumption can be relaxed by considering a superstructure of the
solution model and process insight, which takes into account foreseen changes
in the nominally active constraints set.

A designed solution model in the form of input-output pairing provides the
basis for adapting the decision variables by employing appropriate controllers
and measurements or estimates of its related NCO element as feedback. On-
line implementation requires reliable on-line measurements of the corresponding
NCO parts. In most applications, measurements of the constrained variables
are available on-line. When on-line measurements of certain NCO parts are not
available (e.g. sensitivities and terminal constraints), a model can be used to
predict them. Otherwise, a run-to-run implementation that uses measurements
at the end of the run becomes necessary.

4.2 Optimal Grade Transition of an Industrial Polymerization
Process

The same polymerization process presented in Section 2.2 is used to produce
different grades of polymer. Therefore, grade changes are routinely performed
in this process. The optimization of grade transition is considered in this study.
The task is to perform a change from polymer grade A of molecular weight
M̄W,A = 0.727 ± 0.014 to grade B of molecular weight M̄W,B = 1.027 ± 0.027
in minimum time. During the transition, operational constraints are enforced
on the state and input variables. Additionally, there are endpoint constraints
on the reactor conversion µ and the polymer molecular weight MW,B that are
more strict than those enforced on these quantities during the transition. For a
detailed discussion on this case study and the complete set of results, the reader
is referred to [13].

The optimal grade change problem is solved numerically using the dynamic
optimizer DyOS [18]. To find an accurate optimal solution with an identifiable
control structure, a wavelet-based adaptive refinement method combined with
an automatic control structure detection algorithm [18, 19] is applied. The nom-
inal optimal solution and its automatically detected structure are characterized,
and a solution model linking inputs to parts of the NCO is derived. As certain
nominally inactive path constraints can become active in the presence of model
and process uncertainties, a superstructure solution model (to consider foreseen
changes in nominally active constraints set) is developed. The input-output links
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Fig. 8. Process schematic with the NCO tracking controllers and triggers

in the solution model are implemented using the controllers K as depicted in
Figure 8. In this study, PI-type controllers are used employing the nominal in-
put profiles as feedforward terms. Advanced controllers could also be used for
improved tracking performance (cf. Section 2.2 and [6]). In the designed control
superstructure, depending upon the state of the process, one controller overrides
the other. In the classic process control terminology, this type of control struc-
ture is referred to as overriding or signal-select controller [14]. Reliable on-line
measurements or estimates of the constrained variables are necessary for imple-
menting the NCO tracking strategy using the superstructure solution model.

A considerable amount of uncertainty due to different than nominal initial
conditions and reactor solvent concentration is present in practice. The pro-
posed NCO tracking superstructure for optimal grade transition is tested for
its performance in the presence of uncertainty using the simulated plant model.
The PI controllers are tuned for the nominal case. The simulated NCO tracking
profiles of fresh monomer flowrate FM,in and polymer molecular weight MW

are depicted by dash-dotted lines in Figure 9. The transition time tf for the
uncertainty case is considerably larger than that for the nominal case, which is
calculated on-line in simulation by using the solution model. The performance
of the NCO tracking solution is compared to a robust solution and optimization
with known uncertainty in Table 2. The robust solution (column 2 of Table 2)
represents a single strategy computed off-line which is feasible for both the nom-
inal and perturbed cases. Such an approach is often used in industrial prac-
tice to avoid real-time optimization. The NCO tracking approach (column 3 of
Table 2) is computed using the decentralized control structure presented in
Figure 9. Finally, the numerical optimal solution (column 4 of Table 2) corre-
sponds to the best possible solution that can be computed using full knowledge
of the uncertainty. Table 2 shows that the robust solution is rather poor. In
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Table 2. Transition times using different optimization strategies; two distinct case
of uncertainty are considered, each with different initial conditions corresponding to
different solvent concentrations

Case Robust solution NCO tracking Num. optimization
(uncertainty known) (uncertainty unknown) (uncertainty known)

nominal ≥ 5 1.008 1.0
uncertainty 1 ≥ 5 2.03 1.81
uncertainty 2 ≥ 5 0.938 0.915

contrast, NCO tracking comes very close to the best possible solution, without
knowledge of the uncertainty but at the expense of on-line measurements and
(possibly) state estimations.

The results have demonstrated that a simple decentralized control strategy
using a solution model and measurements can implement a complex grade tran-
sition. It must be re-emphasized that the generation of the solution model as
well as its superstructure requires the optimal solution for the nominal case and
process insights that help to simplify it. However, the economic benefits in terms
of transition time reduction, and thus the amount of off-spec material, is quite
significant compared to the conventional approach practiced in the plant. For
limited grade transitions, nominal optimal solutions can be calculated off-line
and implemented on-line using NCO tracking controllers. However, reliable on-
line measurements or model-based estimates of certain variables are required.
Furthermore, the solution model has to be tested and validated for different
realization of uncertainty as an online re-optimization is not considered.

5 Conclusions

In this contribution, it is emphasized that the scope of NMPC needs to be
broadened from its classic roles of set-point tracking and disturbance rejection.
In the context of real-time business decision making (RT-BDM) implemented
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in the automation hierarchy, a cascaded optimizing feedback control strategy is
necessary for economical and agile plant operation. A two-level decomposition
strategy of dynamic optimization and control of transient processes is suggested.
The overall objectives of profitability and flexibility with respect to scheduled
or un-scheduled transitions are maintained consistently at two optimization and
control levels. For tighter integration and effective uncertainty handling, two ap-
proaches based 1) on neighboring extremal control with inequality constraints
and 2) on decentralized control for tracking the necessary conditions of optimal-
ity of the economical optimization problem are used. The simulated industrial
applications for different transitions have shown significant economical benefits.
The case studies show the potential of the suggested approaches. Obviously, there
are many opportunities for the further development of an integrated dynamic
optimization and control system implemented in multiple levels that consistently
solves simple level-specific problems as part of the automation hierarchy.
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1 Introduction

A number of plants of technological interest include transport phenomena in
which mass, or energy, or both, flow along one space dimension, with or without
reactions taking place, but with neglected dispersion. This type of processes
are described by hyperbolic partial differential equations [4] and is receiving an
increasing attention in what concerns the application of Predictive Control [6].
Two examples considered are distributed collector solar fields [3, 10] and tubular
bioreactors [5]. In both cases the manipulated variable is assumed to be the flow.
For lack of space, only the first example is considered hereafter.

1.1 Distributed Collector Solar Fields

In simple terms, a distributed collector solar field [3, 10] consists of a pipe located
at the focus of parabolical concentrating mirrors. Inside the pipe flows an oil
which is to be heated. The manipulated variable is the oil speed (proportional
to oil flow) and the aim consists in regulating the outlet oil temperature. The
main disturbances are the solar radiation intensity and the inlet oil temperature.
For the purposes of control design the field may be modelled by the following
hyperbolic PDE resulting from an energy balance:

∂T (z, t)
∂t

+
u(t)
L

∂T (z, t)
∂z

= α R(t) (1)

Here, T(z,t) is the oil temperature at normalized position z measured along the
field and at time t, u is the oil velocity and R is the intensity of solar radiation,
assumed to depend only on time t. The parameter L is the pipe length. The
actual space coordinate (measured in [meters]) is given by zL. The parameter α
is unknown and it will be called ”efficiency” since it is related to mirror efficiency,
although it also depends on other factors, such as the oil specific heat, that is a
nonlinear function of temperature.

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 435–441, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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1.2 Paper Contributions

The class of plants considered presents significant levels of uncertainty, thereby
motivating the use of adaptive control techniques. The contribution of this pa-
per consists in showing how the approach of [1] can be used to yield adaptive
nonlinear model predictive control algorithms for distributed hyperbolic plants
using the solar collector field (eq. 1) to illustrate this fact.

2 Orthogonal Collocation

In order to design the controller, the distributed parameter model (1) is first ap-
proximated by a lumped parameter model by using the Orthogonal Collocation
Method (OCM) [5]. For this sake, it is assumed that the temperature along the
pipe T (z, t) is represented by the weighted sum

T (z, t) =
N+1∑
i=0

ϕi(z) Ti(t) (2)

where the functions ϕi(z ) are Lagrange interpolation polynomials, orthogonal
at the so called interior collocation points z i for i=1,..., N and at the boundary
collocation points z0 and zN +1.

Inserting (2) into (1) results in an ordinary differential equation verified by
the time weights Ti(t). By making j = 1, . . . , N + 1, i. e. by considering all the
collocation points apart from the first, the PDE (1) is therefore approximated
by n=N +1 ordinary differential equations (ODE), reading in matrix form

ẋ = − u

L
(Ax + BT0) + C α R(t) (3)

where x =
[
T1 T2 · · · TN+1

]T

with Ti(t) ≡ T (zi, t), the matrices A, B and C

depend on ϕ
′

j(zi) ≡ dϕj(z)
dz |z=zi and T0 = T (0, t) is the boundary condition.

The use of a lumped parameter approximation relying on the finite fifference
method (FDM) also leads to a model with the same structure as (3). However,
experience shows that the same degree of approximation attained by the FDM
with a grid having 100 points (corresponding to 100 states) is yielded by the
OCM with just 5 points (corresponding to 5 states).

3 The Control Algorithm

The control algorithm comprises three parts: A receding horizon controller, a
state observer and a parameter estimator (adaptation law).

3.1 The Receding Horizon Controller

The receding horizon controller (RHC) is now established such as to regulate
the state around an equilibrium point, together with a condition which ensures
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stability in closed loop. For that sake, and inspired by [2], define the control law
given by

u∗ =
α R∗ L

r∗ − T0
(4)

where r∗ is the set-point of the outlet oil temperature x∗n. Let x∗ be the equilib-
rium state corresponding to u∗ and consider the dynamics of the error e = x−x∗,
given by

ė =
−A
L

u∗ e +
−A e−A x∗ −B x0

L
ũ + C α R̃ (5)

where ũ = u−u∗ and R̃ = R−R∗. As shown by applying the Gronwall-Bellman
inequality, for ũ = 0 and R̃ = 0 the error dynamics is stable whenever the matrix
Ā = −A

L is stable. It is not easy to prove a general result concerning the stability
of the matrix A generated by the OCM and hence its stability must be checked
for each application.

Define the RHC for the error dynamics by

min
u

J =

t+H∫
t

(
eT (τ)Pe(τ) + ρ ũ2(τ)

)
dτ (6)

where ρ ≥ 0, H > 0, and subject to

ė =
−A
L

u∗ e +
−A e−A x∗ −B T0

L
ũ (7)

V0(t+ H) ≥ Vrhc(t + H) (8)
in which r∗ is given by (4), V0(H) = eT (H) |ũ=0 Pe(H) |ũ=0 and Vrhc(H) =
eT (H)Pe(H) where P is an arbitrary symmetric positive definite matrix.

The constraint (8) is equivalent to impose to the RHC that, at each iteration,
the norm of the error at the end of the optimal sequence is bounded by the
same norm resulting from the error when u = u∗. The existence of a control law,
defined for u = u∗, which stabilizes the closed loop, allows to interpret V0 as a
Control Lyapunov Function [11] and, assuming complete plant knowledge, is a
sufficient condition to ensure Global Asymptotic Stability of the loop closed by
the RHC, when the controller is applied to (3) [8]. The constraint (3) is therefore
a sufficient condition for stability. It has been observed in the simulations per-
formed that this condition is active in the initial period, depending on the initial
conditions. The rationale for minimizing (7) under the constraint (8) consists in
increasing the performance while ensuring stability (by imposing the constraint).

3.2 State Observer

To (3) associate the state estimator with output error re-injection:

˙̂x = − u

L
(Ax̂ + Bx0)+Cα̂R(t)+K(t)D(x− x̂) ŷ = Dx̂ =

[
0 0 · · · 1

]
x̂ (9)
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The error dynamics e1 := x− x̂ is given by:

ė1(t) = Aee1 + Cα̃R(t) (10)

where Ae := − u
LA−K(t)D with K(t) the observer gain.

3.3 Lyapunov Adaptation Law

Consider the candidate Lyapunov function

V1 = eT
1 Qe1 +

1
γ
α̃2 (11)

where γ > 0 is a parameter, Q is a positive definite matrix and the parameter
estimation error α̃ is defined as α̃(t) := α − α̂(t) where α̂ is the estimate of α.
Its derivative is given by:

V̇1 = eT
1 (AT

e Q + QAe)e1 + 2α̃R(t)CTQe1 +
2
γ
α̃ ˙̃α (12)

Stability holds if

−M(t) = (AT
e Q + QAe) < 0 and ˙̃α = −γ(CR(t))TQe1

from which the following adaptation law follows:

˙̂α = γ(CR(t))TQe1 (13)

It is possible to prove that M(t) > 0 is ensured by the following choice of the
observer gain:

K(t) =
u

L
K0 (14)

with the matrix M0 given by

M0 = −[(−A−K0D)TQ + Q(−A−K0D)] (15)

that exists if the pair (A, D) is observable and choosing K0 such that −A−K0D
is stable. With this choice, and remarking that u > 0:

V̇1 = −eT
1 M(t)e1 = − u

L
eT
1 Me1 ≤ −

umax

L
eT
1 Me1 ≤ 0 (16)

and, by La Salle’s Invariance Principle, it follows that limt→0 e1(t) = 0. The
parameter estimation error α̃(t) will tend to zero if u satisfies a persistency of
excitation condition.

3.4 RHC Computational Algorithm

A computational efficient version of the the adaptive RHC is obtained by con-
straining u in (6) to be a staircase function with Nu steps u = seq{u1, . . . , uNu}
and using x and α replaced by their estimates. The estimate of u∗ is given by:
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û∗ =
α̂(t) R(t) L
r(t) − T0(t)

(17)

Here, x̂ and α̂ are obtained using the state estimator (9), the adaptation law (13),
u(t̄) is a sequence of step functions with amplitude ui (i = 1, . . . , Nu) and duration
T

Nu
. The variable t̄ represents time during the minimization horizon t̄ ∈ [0, H [. The

initial condition α̂(0) for the estimate of α is provided by the designer.
Once the minimization result u(t̄) is obtained, according to a receding horizon

scheme u1 is applied to the plant at t + δ and the whole process is restarted,
δ being an interval of time which is at least the time needed to compute the
solution. It is assumed that δ is much smaller than the sampling period. There
are classes of plants, such as switched nonlinear systems [7], for which the choice
of δ has a bearing on the stability properties of the predictive controller. In the
case at hand, no such problems were found.

The minimization is always feasible since ũ = 0 (corresponding to u = u∗) pre-
serves the closed loop stability while satisfying the constraint (8) with V0 = Vrhc.

4 Simulation Results

Simulation results of the proposed RHC have been performed in a detailed model
of the solar field obtained from first physical principles, according to [3], and
calibrated with plant data. Experimental sequences for R(t) and T0(t) are used.
The reduced model (3) uses 3 interior collocation points z = [0.113 0.500 0.887]
and leads to a matrix −A/L whose eigenvalues have all strictly negative part.

In order to configure the controller, the following parameter choices have been
made: γ = 1× 105, K0 = [15 15 15 15], ρ = 1.5× 10−10, H = 180 s and Nu = 26.
Figures (1) through (3) show the results. Fig. (1) shows the time evolution of the
reference (easily recognizable by being a sequence of steps) and of the temperature
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Fig. 1. Solar field with RHC. Outlet oil temperature and reference and temperature
estimates at the collocation points [oC] .
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Fig. 2. Solar field with RHC. Radiation (disturbance – above) (×10−2) [W/m2] and
oil flow (manipulated variable – below) [l/s].
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Fig. 3. Solar field with RHC. Mirror efficiency estimate, α̂.

at the collocation points. The highest temperature at the collocation points corre-
sponds to the oil outlet temperature (variable to be controlled). As it is seen, after
an initial transient corresponding to the start-up of the field in which the temper-
ature raises progressively (lasting for about 1 hour), the plant output tracks the
reference with without static error , with a small overshoot, and with a raise time
of about 10 minutes. When the oil temperature is to be raised to track a positive
reference step, the oil flow suddenly decreases. Otherwise, it changes to compen-
sate for the daily evolution of solar radiation (lower curve in fig. 2). As seen in fig.
2), at about 4h30, a strong disturbance caused by a sudden drop of radiation acted
on the system. The controller reduced the oil flow so that the energy accumulated
by unit volume of the oil leaving the pipe remains constant, an action that resulted
in an almost perfect rejection of the disturbance.
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Fig. 3 shows the mirror efficiency estimate, α̂(t) as a function of time. This
variable starts from the initial estimate provided by the designer and converges
to an almost constant value after 2 hours. There are only minor changes of α̂(t)
induced by the steps in the reference.

5 Discussion and Conclusions

Adaptive nonlinear receding horizon control of plants described by hyperbolic
PDEs has been addressed using a novel approach which combines the Orthogonal
Collocation Method, Receding Horizon Control and parameter estimation. The
approach has been tested in a detailed model of a distributed collector solar field.

The interest of the work reported is twofold: First, it provides an approach
which can be used in a class of plants of technological interest. Furthermore, it
presents a case study on adaptive nonlinear receding horizon control, illustrating
how recent algorithms may be applied to distributed parameter plants with
transport phenomena.
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Summary. A minimum-time optimal recharging control strategy for high pressure gas
storage tank systems is described in this work. The goal of the nonlinear model-based
controller is to refill the tank in minimum time with a two-component gas mixture of
specified composition subject to hard constraints on the component flow rates, tank
temperature, and tank pressure. The nonlinearity in this system arises from the non-
ideal behavior of the gas at high pressure. The singular minimum-time optimal control
law can not be reliably implemented in the target application due to a lack of sensors.
Minimum-time optimal control is therefore approximated by a nonlinear model-based
constraint controller. In order to account for the uncertainty in the unmeasured state
of the storage tank, the state sensitivities to the control and process measurements
are propagated along with the state to obtain a state variance estimate. When the
variance of the state exceeds a maximum threshold, the constraint control algorithm
automatically degrades into a fail-safe operation.

1 Introduction

The gas storage tank recharging system, shown in Figure 1, consists of high
pressure sources for each component that supply the gas to the storage tanks. A
source pressure sensor and mass flow controller are available for each component.
A pressure sensor upstream of the discharge nozzle into the storage tank and
an ambient temperature sensor are the only other process measurements. There
are no sensors in the storage tank itself because of economic and maintenance
reasons. It is less expensive to instrument the supply line from the tank than to
replicate and maintain these instruments in each tank.

The controlled variables for this system are the final mass, or total moles, and
composition of the gas in the storage tank. The manipulated variables are the
setpoints to the component mass flow controllers. The system may be operated
by either maintaining the feed gas at the desired composition during the entire
refilling process or allowing the feed gas composition to vary with the desired
composition being achieved when the tank is refilled. In this work, the first
operating philosophy will be adopted. The advantage of the first approach is
that the gas in the tank is always at the desired composition. If the refilling
process must be terminated for any reason, the storage tank will still have the

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 443–453, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Gas storage tank recharging system

correct composition. The disadvantage of this approach is that the controller can
not use the extra degree of freedom to take advantage of any differences in the
component gas properties when refilling the tank.

The objective of the control system is to safely fill the gas storage tank in
minimum time with a specified amount of a two-component gas mixture subject
to pressure and temperature constraints. Of particular concern in this process
is the Joule–Thompson behavior of the gas components comprising the mixture.
For systems with a positive Joule–Thompson coefficient, the gas mixture will
cool as it expands from source pressure into the storage tank. In this case, the
maximum pressure constraint must be lowered to account for the future increase
in pressure as the system reaches ambient temperature. For systems with a
negative Joule-Thompson coefficient, the gas mixture temperature will rise as
the storage tank is filled. In this case, the rate of temperature rise must be
controlled to reach the desired final amount without exceeding the maximum
temperature limit of the storage tank and delivery system. Over the pressure
ranges of interest, however, some gas components can exhibit significant changes
in the Joule–Thompson coefficient including sign changes.

2 Thermodynamic Model

The recharging system model is based on the thermodynamic relationships for
the transition between each of the four stages shown in Figure 1. The first two
stage transitions, A → B and B → C, are modeled as isoenthalpic transitions
with no gas accumulation. The result is a series of steady-state algebraic equa-
tions relating the temperature, pressure, and density at each stage. The last
stage transition, C → D, is modeled using an isoentropic transition through the
nozzle and an unsteady-state energy balance over the storage tank. The result
is a differential-algebraic system where the algebraic equations arise from the
isoentropic transition and the equation of state.
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2.1 Equation of State

The following two-coefficient virial equation of state for a binary mixture [1]

Z =
P

RTρ
= 1 + Bmixρ + Cmixρ

2 (1)

Bmix = b1(T )x2
1 + 2b12(T )x1x2 + b2(T )x2

2 (2)
Cmix = c1(T )x3

1 + 3c112(T )x2
1x2 + 3c122(T )x1x

2
2 + c2(T )x3

2 (3)

is used in this work where x1, x2 are the component mole fractions and Bmix and
Cmix are, in general, functions of temperature. Because the composition of the
inlet gas mixture is maintained at the desired target composition, x1 and x2 are
constant at this composition in stages C and D. The equation of state for the
single component streams in stages A1 and B1 is obtained by setting x1 = 1 and
x2 = 0 in Eqs. 2 and 3. The equation of state for stages A2 and B2 is handled
in a similar manner by setting x1 = 0 and x2 = 1.

H∆
IG

P (ideal gas)

P (final)

 P (initial)

T (initial)

Pressure

T (final)
Temperature

R
H

H
R

initial stage

final stage

i

f

Fig. 2. Isoenthalpic stage transition model

2.2 Isoenthalpic Transition

The first two transitions are described by the path shown in Figure 2 for both
the individual pure components and the gas mixture. The resulting equation for
the transition from an initial stage i to the next stage f becomes

∆Hi→f = 0 = −HR
i + ∆H IG + HR

f (4)

where HR
i is the residual enthalpy between the gas at the initial stage and the

gas at ideal conditions at the initial temperature, ∆H IG is the change in enthalpy
of the gas at ideal conditions between the final and initial temperatures, and HR

f

is the residual enthalpy between the gas at the next stage and the gas at ideal
conditions at the final temperature. The residual enthalpy is
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HR = H −H IG = −RT 2

ρg∫
0

∂Z(ρ)
∂T

dρ

ρ
+ RT (Z − 1) (5)

where H IG is the enthalpy of the gas at ideal conditions (the limit as pressure,
or density, goes to zero at the actual temperature), Z is the compressibility, and
ρg is the gas density [1]. The temperature change and component mixing are
done at ideal conditions because the enthalpy of mixing is zero and ideal gas
heat capacities, which are only a function of temperature, can be used.

∆H IG = ∆H IG
mix +

Tf∫
Ti

Cp dT =

Tf∫
Ti

Cp dT (6)

The ideal gas heat capacity is taken as an empirical function of temperature.

Cp =
2∑

j=1

xjCpj = R

2∑
j=1

xj

(
αj + βjT + γjT

2 + εjT
−2) (7)

2.3 Isoentropic Transition

If we assume a perfect nozzle, and therefore isoentropic flow, the transition
from stage C to stage D can be described by the transition ∆SC→D = 0 or by
the relationship for isentropic adiabatic flow through a nozzle. The complexity
arising from a nonideal gas with sonic flow for some fraction of the time suggests
abandoning the flow equation in favor of the entropy relationship

∆SC→D = 0 = −SR
C + ∆SIG + SR

D (8)

SR = S − SIG = R

⎡⎣lnZ − T

ρg∫
0

(
∂Z(ρ)
∂T

− Z(ρ)− 1
T

)
dρ

ρ

⎤⎦ (9)

∆SIG =

TD∫
TC

Cp
dT

T
−

PD∫
PC

R
dP

P
(10)

where SR is the residual entropy and ∆SIG is the change in enthalpy at ideal
conditions [1]. The result is analogous to the enthalpy relationships in Eqs. 4–6
except there is no mixing term because the stage compositions are the same.

2.4 Unsteady-State Energy Balance

The unsteady-state energy balance for the gas mixture in the storage tank is

nD

[
dHD

dt
+

d

dt

(
PD

ρD

)]
− ṅD

[
∆HC→D +

PD

ρD

]
− Q̇D = 0 (11)

where nD is the total moles of gas in the storage tank, ρD = nD/VD is the
density of the gas in the tank, VD is the tank volume, HD is the enthalpy of
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the gas mixture in the storage tank, ∆HC→D is the change in enthalpy between
the gas mixture upstream of the nozzle and the gas in the storage tank, Q̇D is
the heat transfered from the storage tank to the surroundings, and the rate of
change of the moles of gas in the tank is determined by the control ṅD = u.
Because the composition of the inlet gas mixture is maintained at the desired
target composition, the total molar flow rate is the single control.

The rate of change of the enthalpy of the gas inside the storage tank is

dHD

dt
=

∂HD

∂T

dTD

dt
+

∂HD

∂ρ

dρD

dt
=

(
CpD +

∂HR
D

∂T

)
dTD

dt
+

(
ρD

nD

∂HR
D

∂ρ

)
u (12)

where the residual enthalpy HR
D is as defined in Eq. 5. The rate of change of

PD/ρD can be expressed as a function of the temperature change as follows.

d

dt

(
PD

ρD

)
=

d

dt
(RZDTD) = R

(
ZD + TD

∂ZD

∂T

)
dTD

dt
+ R

(
TDρD

nD

∂ZD

∂ρ

)
u

(13)

2.5 Differential-Algebraic System Model

The preceding thermodynamic relationships result in the following differential
algebraic modeling equations for the system where we will assume that Q̇ = 0.

HR
B1

+

TB1∫
TA1

Cp1 dT −HR
A1

= 0 (14)

PB1 −RTB1

(
ρB1 + Bmixρ

2
B1

+ Cmixρ
3
B1

)
= 0 (15)

HR
B2

+

TB2∫
TA2

Cp2 dT −HR
A2

= 0 (16)

PB2 −RTB2

(
ρB2 + Bmixρ

2
B2

+ Cmixρ
3
B2

)
= 0 (17)

HR
C + x1

⎛⎜⎝ TC∫
TB1

Cp1 dT −HR
B1

⎞⎟⎠ + x2

⎛⎜⎝ TC∫
TB2

Cp2 dT −HR
B2

⎞⎟⎠ = 0 (18)

PC −RTC

(
ρC + Bmixρ

2
C + Cmixρ

3
C

)
= 0 (19)

SR
D +

TD∫
TC

CpD

dT

T
−

PD∫
PC

R
dP

P
− SR

C = 0 (20)

nD − ρDVD = 0 (21)
PD −RTD

(
ρD + Bmixρ

2
D + Cmixρ

3
D

)
= 0 (22)
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HR
D +

∫ TD

TC
CpDdT −HR

C + PD

ρD
−

(
∂HR

D

∂ρ + RTD
∂ZD

∂ρ

)
ρD

nD

(
CpD + ∂HR

D

∂T + R
(
ZD + TD

∂ZD

∂T

)) u = ṪD (23)

u = ṅD (24)

There are two differential and nine algebraic equations in Eqs. 14–24 for the
thirteen unknowns: P , T , & ρ for stages B1, B2, C, & D and nD. Making the
assumption that PB1 = PB2 = PC reduces the number of unknowns to eleven.

3 Minimum-Time Optimal Control

The optimization problem for the minimum-time optimal controller is

min
u(t)

tf∫
t=0

1 dt Subject to:

nD(tf ) = n�
D

ẋ = f(x)u
g(x) = 0
hx(x) ≤ 0
hu(u) ≤ 0

(25)

where x is the system state, u is the control, n�
D is the desired final moles of gas

in the storage tank, f(x)u represents the differential equations in Eqs. 23–24,
g(x) represents the algebraic equations in Eqs. 14–22, hx(x) represents the tank
temperature and pressure hard constraints, and hu(u) represents the component
gas flow rate hard constraints. As is common for minimum-time problems, the
result is a singular optimal control problem. The optimal control trajectory is
either at a constraint, from the minimum principle, or along an optimal singular
arc that satisfies the Euler–Lagrange equations [2].

Because the enthalpy of the gas in the tank is a state function, the isoentropic
assumption for the stage C to stage D transition neglects losses in the inlet line,
and the system is assumed adiabatic, the state of the storage tank determined
from the differential-algebraic system model presented in Eqs. 14–24 is path
independent. Therefore, all control profiles result in the same final tank state
for a given final moles of gas n�

D. If a steady-state analysis determines that
a tank constraint is violated at this target, then there is no feasible control
profile u(t) that satisfies both the terminal equality constraint nD(tf ) = n�

D and
the tank state inequality constraints hx(x) ≤ 0 for the minimum-time optimal
control problem in Eq. 25. In this case, an alternative feasible optimal control
approach would be to construct a singular optimal controller that achieves the
most limiting tank constraint in minimum time.

An excellent review of solution methods for singular optimal control problems
arising from batch processes is presented in [3]. The use of process measurements
to improve the robustness of optimal control to model mismatch and unmeasured
disturbances is discussed in [4]. The application of these techniques to the con-
troller in this work, however, is restricted by the lack of process measurements.
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With only a single pressure measurement to estimate eleven states, state feed-
back is either impossible (if the integrating state is not detectable) or highly
unreliable (because of the variance in the state estimates). Open-loop optimal
control approaches, discussed in [5], are inappropriate in this application due
to the consequences of a constraint violation. For these reasons, a model-based
dynamic constraint controller is proposed.

4 Model-Based Dynamic Constraint Control

We develop a model predictive dynamic constraint controller to approximate
the minimum-time optimal recharging controller presented in the previous sec-
tion. The single process measurement, inlet line pressure, is integrated into the
constraint controller by using this measurement to eliminate the isoentropic
relationship ∆SC→D = 0 (Eq. 20) from the model. The advantage of this inte-
gration is that the isoentropic transition assumption is removed from the model
which also removes the path independence of the tank state. The disadvantage
of this approach is that there is no output feedback correction to the tank state.
However, it is unlikely that state estimation based on the single pressure mea-
surement would result in any significant improvement in the model predicted
tank state. The uncertainty in the tank state prediction can be monitored by
estimating the variance as outlined in the sequel.

The model-based dynamic constraint controller attempts to drive the system
to the most limiting constraint in minimum time while relaxing the terminal state
equality constraint nD(tf ) = n�

D if necessary. The dynamic constraint controller
is a model predictive version of the active constraint tracking controller in [6].
This control structure is motivated by the solution to the feasible minimum-time
optimal control problem in the previous section which specifies that the system
should be operated at an active constraint during the entire refilling process. We
note that if the irreversible losses in the system are negligible, then open-loop
optimal control, closed-loop model predictive control, and closed-loop dynamic
constraint control should all result in this same active constraint tracking input
trajectory. If irreversible losses are significant, then constraint control may not be
a good approximation to the optimal input trajectory. Preliminary experimental
evidence suggests the former case [7].

4.1 Constraint Controller

Constraint prediction is performed by solving the DAE system in Eqs. 14–19, 21–
24 from the initial time to the current time using the past control and inlet
pressure measurement trajectories. The initial state of the system is available
from the ambient temperature measurement and the initial inlet line pressure
which is the same as the tank pressure at zero flow. The future state predictions
are then obtained by assuming that the control and inlet line pressure remain



450 K.R. Muske, A.E. Witmer, and R.D. Weinstein

constant at their current values until the tank is refilled. The target final moles
of gas in the tank is determined at each sample period k by

nF
D(k) = min

[
n�

D, n|TD=Tmax
D

(k), n|TD=Tmin
D

(k), n|PD=Pmax
D

(k)
]

(26)

where nF
D(k) is the current target final moles of gas at sample period k, n�

D is the
desired final moles of gas, n|TD=Tmax

D
is the current predicted moles of gas such

that the tank temperature reaches its maximum constraint limit, n|TD=Tmin
D

is
the current predicted moles of gas such that the tank temperature reaches its
minimum constraint limit, n|PD=Pmax

D
is the current predicted moles of gas such

that the tank pressure reaches its maximum constraint limit, and the min oper-
ator selects the most limiting model-predicted constraint. The current predicted
moles of gas required to reach a tank constraint is determined directly from the
predicted future tank state profile. The length of the prediction horizon is always
the time required to obtain n�

D moles of gas in the tank. If a constraint violation
is not predicted within this horizon, it is not considered by the min operator in
Eq. 26. A first-order approximation to the control move required to achieve the
most limiting constraint in minimum time is then determined from the current
predicted tank state and target by

u(k) = min
[
umax,

nF
D(k)− nD(k)

∆t

]
(27)

where u(k) is the current input, umax is the maximum flow rate constraint, and
nD(k) is the current prediction of the moles of gas in the storage tank.

This dynamic constraint prediction is computed at every sample period after
the initial start-up phase. The start up is carried out at a minimum safe gas flow
rate to ensure that the system is operating properly. The constraint prediction
is updated by the incorporation of the most recent inlet pressure measurement
at the current sample time. We note that on-line optimization is not required to
determine the control input because of the assumption that the optimal opera-
tion is at an active constraint (motivated by the minimum-time optimal control
trajectory). Because the DAE system and the state sensitivities, required for
the uncertainty estimate described in the next section, can be computed very
quickly, the sample period ∆t is not limited by computational issues as is often
the case for nonlinear predictive control implementations.

4.2 Fail-Safe Operation

Because there is no direct measurement of the actual tank state, some mechanism
to monitor the uncertainty in this state estimate is required for the safe imple-
mentation of the proposed controller. Linear approximations to the variance of
the tank state can be obtained from the first-order sensitivities [8] between the
tank state and the control and inlet line pressure as follows

σ2
x,PC

=
(

∂x

∂PC

)2

σ2
PC

, σ2
x,u =

(
∂x

∂u

)2

σ2
u, F =

σ2
x,PC

λ + σ2
x,u

> Fα (28)
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where x is the tank temperature or pressure, the partials are the sensitivities,
σ2

x,PC
is the estimate using the pressure measurement variance σ2

PC
, σ2

x,u is the
estimate using the control variance σ2

u, Fα is the F statistic at a confidence
level α, λ is a tuning parameter to account for measurement noise and normal
variation in the inlet line pressure, and F > Fα implies σ2

x,PC
> σ2

x,u [9]. If
the variance estimated from the inlet line pressure measurement exceeds that
estimated from the control, the constraint control is terminated to a fail-safe
operation. This operation can either shut off the gas flow completely, where the
tank pressure could then be determined by the inlet line pressure sensor, or can
reduce the gas flow to a predetermined minimum safe value.

5 Example

The control strategy is illustrated using a nitrogen–helium gas mixture. We
choose this system because the sign of the Joule-Thompson coefficient is differ-
ent for each component; negative for helium and positive for nitrogen. There
are also significant differences in the intermolecular potentials leading to large
deviations from ideal behavior. The coefficients in Eqs. 2–3 are affine functions
of temperature taken from [10]. We consider a 1/4 He/N2 gas blend in a 100
lit storage tank where the component source pressures are both 175 bar, the
ambient temperature is 300 K, and the initial tank pressure is 10 bar. Figure 3
presents the predicted tank temperature profiles for a series of flow rates which
clearly demonstrate the nonideal behavior and path independence of the tank
state. The predicted pressure profiles behave in a similar manner.

27

28

29

30

31

32

33

34

35

36

0 10 20 30 40 50 60 70 80 90 100 110

T
an

k 
T

em
pe

ra
tu

re
  (

C
)

Time  (min)

5 mol/min
10 mol/min
20 mol/min
50 mol/min

Fig. 3. Predicted tank temperature profiles



452 K.R. Muske, A.E. Witmer, and R.D. Weinstein

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

F
lo

w
 R

at
e 

(m
ol

/m
in

) 
 -

  P
re

ss
ur

e 
(b

ar
/4

)

Time  (min)

control trajectory (mol/min)
pressure profile (bar/4)

Fig. 4. Control trajectory and simulated tank pressure profile

385

386

387

388

389

390

391

392

393

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
ar

ge
t F

in
al

 M
ol

es
 T

er
m

in
al

 C
on

st
ra

in
t  

(m
ol

)

Time  (min)

Fig. 5. Target final moles of gas in the tank

We consider a desired value of n�
D = 400 mol and a maximum operating

constraint of Pmax
D = 100 bar for the tank pressure. At this pressure constraint,

only 385 moles of gas can be stored in the tank assuming no thermodynamic
losses. Therefore, the maximum tank pressure is the most limiting constraint
in this example. The inlet line pressure is simulated using an ideal gas nozzle
flow equation with energy loss. The maximum gas flow rate is 25 mol/min. The
sample period is one minute. Figure 4 presents the dynamic constraint control
trajectory u(k) determined from Eq. 27 and the actual tank pressure. The first
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ten minutes in this example represents the start-up phase. Figure 5 presents the
target final moles of gas, nF

D(k) in Eq. 26, at each sample time.
The control is initially set to the start-up phase flow rate of 5 mol/min in this

example and then is brought to its maximum value when the constraint controller
is initiated at 10 min. The control is reduced from its maximum constraint at the
end of the recharge when a maximum pressure constraint violation is predicted.
The target final moles of gas is determined at each sample period as the amount
that results in the predicted tank pressure reaching its maximum constraint.
The corrections to this target become larger as the flow rate increases and the
tank is filled because the simulated energy losses in the nozzle become larger.
We note that measurement noise and initial condition error is not present in this
example.

6 Conclusions and Future Work

We have presented a dynamic constraint control approximation to the singu-
lar minimum-time optimal control law for recharging high pressure gas storage
tanks. This development neglected heat transfer to the storage tank and the sur-
roundings. Although the thermal capacity of the storage tank can reasonably be
neglected in the industrial system, heat transfer to the surroundings can become
significant with larger changes in both tank temperature and pressure. Future
work includes the addition of a thermal model to account for the effect of heat
transfer in the thermodynamic model of the system.
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Summary. A nonlinear model predictive control (NMPC) formulation is used to pre-
vent an exothermic fed-batch chemical reactor from thermal runaways even in the
case of total cooling failure. Detailed modeling of the reaction kinetics and insight
into the process dynamics led to the formulation of a suitable optimization problem
with safety constraints which is then successively solved within the NMPC scheme.
Although NMPC control-loops can exhibit a certain degree of inherent robustness, an
explicit consideration of process uncertainties is preferable not only for safety reasons.
This is approached by reformulating the open-loop optimization problem as a min-max
problem. This corresponds to a worst-case approach and leads to even more cautious
control moves of the NMPC in the presence of uncertain process parameters. All results
are demonstrated in simulations for the esterification process of 2-butyl.

1 Introduction

Known from extreme accidents like in Seveso, Italy (1976), thermal runaways
occur more frequently in smaller fine chemical reactors with high heat release
potential. They lead to annoying production losses and equipment damages [2,
18]. To reduce difficulties, potentially dangerous processes are commonly run in
fed-batch mode, yet with the most simple feeding strategy of constant dosing
rates. The advent of detailed models of batch reactors including complicated
reaction schemes can aid the development of more sophisticated feed strategies.
A suitable framework for this goal is nonlinear model predictive control (NMPC).
NMPC has the appealing attribute that constraints on states and controls are
taken into account explicitly. In the fed-batch reactor case, a dosing rate profile
delivered by NMPC will steer the process closer to the limits. At the same time,
due to the predictive nature of NMPC, the system will be able to avoid runaway
conditions.

Plant-model-mismatch in the form of uncertain parameters and initial val-
ues require NMPC schemes to be robust. Theoretical considerations have shown
that NMPC controllers can inherently possess a certain degree of robustness
[5]. For safety-critical processes, an explicit consideration of uncertainty is
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desirable. Some robust NMPC schemes have been proposed based on
game-theoretic ideas [4], min-max formulations [11], H∞-control [14], and chance
constrained programming [13]. These methods tend to be computationally too
complex for practical applications.

In this paper, the optimization problem is reformulated using a min-max
approach similar to [15], extending the formulation to path constraints. The
resulting semi-infinite control problem is then approximated to obtain a numer-
ically tractable form ([8, 10]). To demonstrate this approach, it is applied to
control the exothermic esterification of 2-butanol. While the main task of the
state-feedback controller is to quickly finish the batch, safety constraints have
to be met at any time of the process.

This paper is organized as follows: In Section 2, the fed-batch process and its
mathematical model are described. The open-loop optimization problem needed
for the NMPC scheme is developed in Section 3. Particular care is taken of the
formulation of a safety constraint that prevents runaways even in the case of a
total cooling failure. This section ends with simulation results for the process
under nominal NMPC. To take parameter uncertainties directly into account,
the approximated min-max formulation is stated in Section 4. It leads to a more
robust version of the NMPC as is demonstrated via simulations at the end of the
section. The paper concludes with further discussions and an outlook on future
research directions.

2 Example: Exothermic Esterification of 2-Butanol

The esterification of 2-butanol (B) with propionic anhydride (A) to 2-butyl pro-
pionate (D) and propionic acid (C) is a mildly exothermic reaction that allows
one to study runaway situations in a lab. The reaction is catalyzed by two forms
of a catalyst, (K1 and K2), while the first degrades into the latter in a side
reaction:

A + B
K1,K2−→ C + D

K1 −→ K2

The reaction is assumed to take place in a fed-batch reactor under isoperibolic
conditions (constant jacket temperature). A similar, strongly simplified reaction
has also been considered in [17]. The reaction system is modeled by a set of
differential equations based on mass and energy balances. Note that the model
is only valid for a total amount of A added which is smaller or equal to B. The
full model reads as follows:

ṅA = u− r V, ṅB = −r V,
ṅC = r V, ṅK1 = −rk V, (1)

(Cp,I + Cp) ṪR = rH V − qdil − U Ω (TR − TJ)
−α(TR − Ta) − u cp,A (TR − Td),
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with ni being the molar amount of component i, V the volume, TR, TJ , Ta and
Td the reactor, jacket, ambient and dosing temperatures, respectively. r and rk

are reaction rates, H is the reaction enthalpy, qdil the dilution heat, U is a heat
transfer coefficient, Ω the heat exchange surface. Cp,I denotes the approximated
heat capacity of solid inserts (stirrer, baffles), Cp the approximated heat capacity
of the entire mixture and cp,A is the specific molar heat capacity of component
A. Equations for D and K2 have been omitted: The number of moles of D equals
the number of moles of C (i.e. nD(t) = nC(t) ∀ t). The amount of (K2) can
be calculated as nK2(t) = nK1(0) − nK1(t). The molarities ci are calculated as
ci = ni/V .

The dosing rate u(t) of A to the batch reactor serves as the control input and
can be assigned between upper and lower bounds.

The defining algebraic equations are:

V = 1000
(
nAMA

ρA
+

nBMB

ρB
+

nCMC

ρC
+

nCMD

ρD

)
(2a)

Ω = Ωmin +
V − Vmin

1000d
(2b)

U =
(
U1 +

U2 − U1

V2 − V1

)
(V − V1) (2c)

xA =
nA(t)

nA(t) + nB(t) + 2nC(t) + nK1(0)
(2d)

qdil =
2232.74201

0.13963
e

−xA
0.13963 ṅA (2e)

r = (k0 + k2 cK1)cAcB + k3cA cK2 (2f)

rk = k410−HRcBcK1 . (2g)

In these equations, Mi, ρi, ci denote the molar weight, density and molar con-
centration of component i respectively. V1, V2, U1, U2 are geometry-dependent
parameters and d is the scaled reactor diameter. The rate of heat loss to the
environment is modeled by a constant α of appropriate dimension derived from
a constant heat transfer coefficient and an average heat transfer surface area.
The constants in equation (2e) have been adjusted properly for the needed di-
mension (Watt). The reaction rate constants ki are calculated following the

Arrhenius approach as ki(t) = Aie
−Ei

RTR(t) , and the acidity term HR is computed
as HR(t) = − (p1cK1(t) + p2cC(t))

(
p3 + p4

TR(t)

)
.

The reactor is initially charged with B and K1. Then, A is dosed to the reactor
until the accumulated number of moles of A is equal to the initial number of
moles of B. The batch is complete when nearly all of B is consumed.

3 NMPC Formulation

The solution of an open-loop optimal control problem is a prerequisite for NMPC.
For batch processes, the formulation of a suitable optimal control problem tends
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Table 1. List of process parameters and initial values

Ωmin 0.011 m2 p1 0.200 l/mol d 0.155 m
Vmin 0.124 l p2 0.032 l/mol TR,0 293.15 K
MA 0.130 kg/mol p3 -21.375 α 0.1 W/K
MB 0.074 kg/mol p4 12706.0 K Cp 1523.3 J/K
MC 0.074 kg/mol E0 80.479 kJ/mol V1 0.8 l
MD 0.130 kg/mol E2 79.160 kJ/mol V2 1.6 l
MK1 0.098 kg/mol E3 69.975 kJ/mol mA,0 0.00 g
ρA 979.381 kg/m3 E4 76.617 kJ/mol mB,0 510.98 g
ρB 772.288 kg/m3 R 8.314 J/(mol K) mK1,0 5.01 g
ρC 955.869 kg/m3 cp,A 238.519 J/(mol K) U1 195 W/(m2K)
ρD 830.422 kg/m3 Cp,I 89.859 J/K U2 155 W/(m2K)
A0 5.362e7 l/(mol s) H 59458 J/mol mA 890.00 g
A2 2.807e10 l2/(mol2 s) Hdil 5070 J/mol tf 0.662 l
A3 3.948e10 l/(mol s) TJ 293.65 K Ta 298.85 K
A4 1.403e8 l/(mol s) Td 298.15 K

to be difficult because of typically appearing end constraints. In this case, end
constraints are avoided by observing that simply minimizing the amount of B
over time leads to a meaningful solution. The batch is stopped when the amount
of B is below a desired threshold. The optimal control problem is formulated as:

min
u

tf∫
0

nB(τ)2 dτ (3)

subject to (1), (2)
0 mol/s ≤ u(t) ≤ 0.004 mol/s

tf∫
t0=0

u(τ) dτ = 6.9 mol

TR(t) ≤ 333.15 K
S(t) ≤ 363.15 K.

The safety constraint S (defined in the next section) has to ensure that even in
the extreme case of a total cooling failure no runaway will occur. The prediction
and control horizon of the NMPC controller are specified as 56 times the sample
time of ts = 50 s. With this choice, the horizon is slightly larger than the
minimum batch time for this process. All states are assumed perfectly measured.

3.1 A Suitable Safety Constraint to Avoid Runaways

In the case of a cooling failure, the heat released during the reaction can no
longer be removed from the reactor. This leads to a temperature rise which
further accelerates the reactions. If enough reactant had accumulated before,
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this mechanism results in a thermal runaway with severe safety risks 1. Once a
runaway has started, the best strategy is to immediately stop dosing the reac-
tant. Then, the maximum temperature rise is related to the amount of reactants
present in the reactor and can be calculated assuming adiabatic conditions [9].

Such an approach has been formulated more precisely in [17], where for two
reactants A, B the safety constraint is S(t) = TR(t) + min(nA, nB) HA

ρcpV ≤ Tmax.
Since the consumption rate for both species A and B is equal and all B is initially
present in the reactor, nA is smaller than nB and we can set min(nA, nB) = nA

in order to avoid the nondifferentiable min-operator.
Note, that the calculated adiabatic temperature in S(t) is rather conservative

and will likely be smaller in reality because of heat losses to the jacket and
ambient. Also, the heat capacity of the mixture is assumed to be constant with
a value chosen at the upper limit.

3.2 NMPC Simulation Results

The open-loop control problem (3) is successively solved numerically with the
direct multiple shooting approach by Bock and Plitt [3]. It is based on a pa-
rameterization of the controls and state trajectories. This leads to a large but
favorably structured nonlinear program (NLP). The NLP is solved by a gener-
alized Gauss-Newton sequential quadratic programming (SQP) method imple-
mented in the software package MUSCOD-II [12]. Because SQP methods only
find a local solution, the initial guess is of importance. For the nominal NMPC,
an appropriate constant dosing rate served as an initial guess. For the robust
NMPC introduced next, the nominal solution has been used as the initial guess.
All integration and differentiation is performed with the DAE solver DAESOL
[1], which applies a backward differentiation formula (BDF) method.

The batch is stopped once the remaining amount of 2-butanol falls below
a threshold of nB ≤ 0.01 mol. Following the ideas of the real-time iteration
scheme in [6], the optimization problem (3) is not solved to convergence at each
sampling interval. Instead, the control is updated after each iteration step of
the NLP solver. Due to a careful initialization from one problem to the next
and the favorable contraction properties of the direct multiple shooting method,
this procedure allows for close tracking of the optimal solution of the subsequent
optimization problems. Note that nominal stability of this real-time iteration
NMPC scheme can be shown [7]. Also, the scheme predicts active set changes
and is therefore particularly suited for constrained control problems.

The CPU time for one control sample has been in the range of 0.9 to
1.2 seconds and hence is significantly smaller than the sampling time of 50
seconds.

The NMPC has been tested for the nominal set of parameters. Then, to
test for robustness, the initial amount of catalyst K1 has been increased. This
1 Note, that such a runaway can also occur under normal cooling. However, this is not

the focus of this study and, in the optimization results, is automatically suppressed
by the upper bound on the process temperature.
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process parameter has a rather strong impact on the process behavior. The sim-
ulation results for the nominal NMPC in the nominal case (mK1(0) = 5.01 g)
and two more cases with mK1(0) = 5.10 g and mK1(0) = 5.50 g are shown in
Figure 1. In the nominal case, the dosing rate is at its maximum in the be-
ginning, ensuring a fast ignition of the reaction and quick conversion. During
this phase, A accumulates. This poses a potential threat and eventually the
adiabatic temperature strongly rises. Once the bound on the adiabatic temper-
ature becomes active, the dosing rate slides along a singular sub-arc until the
reactor temperature will reach its upper operation limit. This is when the con-
troller decides to stop the dosing to let the accumulated A be consumed. In
the end, the remaining amount of A can safely be added at a maximum dosing
rate.

The simulations show that the nominal NMPC scheme based on the open loop
problem (3) keeps the batch process within safe operation conditions despite a
moderate uncertainty in the initial amount of catalyst (remember that the model
always assumes the nominal value of 5.01 g to be valid). Because of the higher
temperatures in comparison to the model-based predictions and the feedback
mechanism, the singular arcs become steeper and the dosing has to be stopped
earlier. In the extreme case of 5.50 g of catalyst in the beginning of the batch,
the upper limit of the reactor temperature is slightly violated. The NLP only
remained feasible due to a relaxation procedure implemented in the optimization
code.

In the following section, the NMPC scheme is modified to take the uncertainty
explicitly into account.
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Fig. 1. Simulation results with nominal NMPC controller for the nominal value and two
perturbed values of the initial amount of catalyst K1. Dashed lines denote constraints.
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4 A Min-Max NMPC Formulation

This paper has presented an open-loop optimization problem for NMPC with
safety constraints for a given process model with exact parameters. In reality,
at least some of the parameters will not be known exactly and methods for
optimization under uncertainty become important (see [16] for an overview).

It is clear that a changed parameter can deteriorate the performance of a
supposedly optimal (open-loop) solution. It seems natural to see parameters as
adverse players that try to disturb any control efforts as strongly as possible.
One remedy is to minimize the success of parameters to maximally worse the
optimization results. In the context of robust batch optimization, such a min-
max formulation has been used by Nagy and Braatz [15] who also point out
the possibility to extend these ideas to NMPC. Such min-max formulations lead
to a semi-infinite programming problem, which is numerically intractable in the
real-time context. To overcome this obstacle, Körkel et al. [10] propose an ap-
proximated min-max formulation which is also applied in this paper.

The min-max formulation considered here reads as the semi-infinite program-
ming problem

min
u∈U

max
‖p−p̄‖2,Σ−1≤γ

J(x(u, p)) (4)

s.t. max
‖p−p̄‖2,Σ−1≤γ

ri(x(u, p)) ≤ 0, i = 1, . . . , nr.

The parameters p are assumed to lie within a given confidence region with
the symmetric covariance matrix Σ and an arbitrary confidence level γ. The
state x implicitly depends on the discretized control u and parameters p as a
solution to the system equations (1,2). The cost function J is the same as in the
nominal problem (3), while ri(x(u, p)) summarizes those constraints in (3) that
are considered critical with respect to uncertainty and shall be robustified. All
other constraints are treated as in the nominal problem.

First order Taylor expansion of the inner maximization part yields a convex
optimization problem that has an analytical solution (cf. [10] for this problem
and [8] for a more general problem class). Using this closed form, we finally
obtain a minimization problem that can efficiently be solved numerically:

min
u∈U

J(x(u, p̄)) + γ

∥∥∥∥ d
dp

J(x(u, p̄))
∥∥∥∥

2,Σ

(5)

s.t. ri(x(u, p̄)) + γ

∥∥∥∥ d
dp

ri(x(u, p̄))
∥∥∥∥

2,Σ

≤ 0, i = 1, . . . , nr,

where the bar denotes the nominal value of the parameters as assumed for the
nominal optimization problem.

In an NMPC scheme, the robust version (5) can replace the nominal control
problem (3). In the next section, numerical results for such a robust NMPC are
presented and compared to the nominal NMPC.
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4.1 Min-Max NMPC Simulation Results

For the numerical solution of (5) the direct multiple shooting approach was used.
The NMPC settings are the same as described in Section 3.2. The confidence
factor γ was slowly increased from zero to the desired level. For each optimization
with a respective γ, the previous result has been used to initialize the states and
control. In the case presented here, the initial amount of catalyst K1 is assumed
to be uncertain. The standard deviation of K1 is 0.17 g. The confidence level
has been chosen to be 99.7 %, i.e. we have γ = 3 to obtain the 3σ-interval.
Figure 2 shows the simulation results for the robust version of the NMPC for the
nominal amount of catalyst and an increased amount. The solution is compared
to the solution of the nominal NMPC for the nominal catalyst amount charged
to the reactor. One can see that the robust solution strongly resembles the
nominal solution. Only, the dosing is stopped earlier. This ensures that less
A is accumulating in the reactor and leaves a safety margin to the adiabatic
temperature as can be seen in the lower right graph. When the robust NMPC
controller is confronted with a plant-model mismatch it reacts by dosing A more
carefully. The singular sub-arc becomes flatter than computed with the nominal
NMPC. Eventually, less A is present in the reactor and the temperature peak
gets lower. This also leads to a slower consumption of B which, however, is
accounted for by a higher reactor temperature at the end of the batch so that
the final productivity losses are very small.

The safety margins for the reactor temperature and the adiabatic temperature
are the main feature of the robust NMPC scheme. The fact that they are also
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present in the nominal catalyst case reflects the conservatism inherent to the
min-max approach. For the investigated cases, we have seen that already the
nominal controller is robust against the uncertain parameter. So, any further
robustification in the presence of uncertainty makes the controller more cautious.
Also, the systematic robustness obtained via the min-max formulation is not fully
exploited by the closed-loop dynamics. Instead of relying on the old, robustified
solution, the optimization problem (5) is newly solved at every iteration with the
new, unforeseen temperatures and concentrations. This is why the trajectories
of the robust NMPC differ for the nominal and the perturbed realization of the
initial amount of catalyst.

5 Conclusions

A detailed model of a fed-batch reactor has been used to demonstrate that a
suitable NMPC scheme can avoid runaway situations. This nominal NMPC was
robust against small perturbations of the initial amount of catalyst charged to
the reactor. A robust formulation of the optimization problem based on an ap-
proximated min-max formulation led to additional safety margins with respect
to the adiabatic temperature and the reactor temperature. The approximation
does not guarantee full robustness for the nonlinear model, but it offers a sys-
tematic way to obtain safety margins that explicitly take into account uncertain
parameters and their stochastic properties. The simulation also showed the con-
servatism of the proposed min-max formulation which is due to the open-loop
formulation. The optimization method used to solve the nominal and the robust
open-loop problems was able to deal with the complex state constraints and
delivered control updates fast enough to be applicable to real batch processes.
Future studies will treat larger numbers of uncertain parameters and focus on
methods to efficiently solve the eventually enlarged optimization problems.
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[10] Körkel S, Kostina E, Bock HG, Schlöder JP (2004) “Numerical methods for op-
timal control problems in design of robust optimal experiments for nonlinear dy-
namic processes”, Optimization Methods & Software 19:327–338

[11] Lee JH, Yu Z (1997) “Worst-case formulations of model predictive control for
systems with bounded parameters”, Automatica 33(5):763–781

[12] Leineweber DB, Bauer I, Bock HG, Schlöder JP (2003) “An efficient multiple
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Summary. The application of nonlinear model predictive control (NMPC) for the
temperature control of an industrial batch polymerization reactor is illustrated. A real-
time formulation of the NMPC that takes computational delay into account and uses an
efficient multiple shooting algorithm for on-line optimization problem is described. The
control relevant model used in the NMPC is derived from the complex first-principles
model and is fitted to the experimental data using maximum likelihood estimation. A
parameter adaptive extended Kalman filter (PAEKF) is used for state estimation and
on-line model adaptation. The performance of the NMPC implementation is assessed
via simulation and experimental studies.

1 Introduction

Trends in the process industries toward high value added products have increased
the interest in the optimal operation of batch processes, used predominantly
for high-tech products. Batch processes are common in the pharmaceutical,
microelectronics, food, and fine chemical industries. It is widely recognized at
industrial level that advanced control techniques have the potential to improve
process performance [QB03]. Since the advent of dynamic matrix control (DMC),
model predictive control (MPC) has been the most popular advanced control
strategy in chemical industries [ML97]. Linear MPC has been heralded as a
major advance in industrial control. However, due to their nonstationary and
highly nonlinear nature, linear model based control usually cannot provide sat-
isfactory performance in the case of complex batch processes. Nonlinear model
predictive control (NMPC) has been considered as one of the most promising
advanced control approaches for batch processes. NMPC reformulates the MPC
problem based on nonlinear process models. Different nonlinear models can be
used for prediction, from empirical black-box models (e.g. artificial neural net-
works, Volterra series, etc.) to detailed, first-principles based representations of
the system, leading to a wide variety of different NMPC approaches [Hen98],
[FA02]. The advantages of using complex nonlinear models in the NMPC are

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 465–472, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



466 Z.K. Nagy et al.

straightforward. First-principles models are transparent to engineers, give the
most insight about the process, and are globally valid, and therefore well suited
for optimization that can require extrapolation beyond the range of data used
to fit the model. Due to recent developments in computational power and opti-
mization algorithms, NMPC techniques are becoming increasingly accepted in
the chemical industries, NMPC being one of the approaches, which inherently
can cope with process constraints, nonlinearities, and different objectives derived
from economical or environmental considerations. In this paper an efficient real-
time NMPC is applied to an industrial pilot batch polymerization reactor. The
approach exploits the advantages of an efficient optimization algorithm based
on multiple shooting technique [FAww], [Die01] to achieve real-time feasibility
of the on-line optimization problem, even in the case of the large control and
prediction horizons. The NMPC is used for tight setpoint tracking of the op-
timal temperature profile. Based on the available measurements the complex
model is not observable hence cannot be used directly in the NMPC strategy.
To overcome the problem of unobservable states, a grey-box modelling approach
is used, where some unobservable parts of the model are described through non-
linear empirical relations, developed from the detailed first-principles model.
The resulting control-relevant model is fine tuned using experimental data and
maximum likelihood estimation. A parameter adaptive extended Kalman filter
(PAEKF) is used for state estimation and on-line parameter adaptation to ac-
count for model/plant mismatch.

2 Nonlinear Model Predictive Control

2.1 Algorithm Formulation

Nonlinear model predictive control is an optimization-based multivariable con-
strained control technique that uses a nonlinear dynamic model for the prediction
of the process outputs. At each sampling time the model is updated on the basis
of new measurements and state variable estimates. Then the open-loop optimal
manipulated variable moves are calculated over a finite prediction horizon with
respect to some cost function, and the manipulated variables for the subsequent
prediction horizon are implemented. Then the prediction horizon is shifted or
shrunk by usually one sampling time into the future and the previous steps are
repeated. The optimal control problem to be solved on-line in every sampling
time in the NMPC algorithm can be formulated as:

min
u(t)∈U

{H(x(t), u(t); θ) =M(x(tF ); θ) +

tF∫
tk

L(x(t), u(t); θ)dt} (1)

s.t. ẋ(t) = f(x(t), u(t); θ), x(tk) = x̂(tk), x(t0) = x̂0 (2)

h(x(t), u(t); θ) ≤ 0, t ∈ [tk, tF ] (3)
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where H is the performance objective, t is the time, tk is the time at sampling
instance k, tF is the final time at the end of prediction, is the nx vector of
states, u(t) ∈ U is the nu set of input vectors, is the ny vector of measured
variables used to compute the estimated states x̂(tk), and θ ∈ Θ ⊂ Rnθ is the
nθ vector of possible uncertain parameters, where the set Θ can be either de-
fined by hard bounds or probabilistic, characterized by a multivariate probability
density function. The function f : Rnx × U × Θ → Rnx is the twice continu-
ously differentiable vector function of the dynamic equations of the system, and
h : Rnx × U × Θ → Rc is the vector of functions that describe all linear and
nonlinear, time-varying or end-time algebraic constraints for the system, where
c denotes the number of these constraints.

We assume that H : Rnx × U ×Θ →R is twice continuously differentiable,
thus fast optimization algorithms, based on first and second order derivatives
may be exploited in the solution of (1). The form of H is general enough to ex-
press a wide range of objectives encountered in NMPC applications. In NMPC
the optimization problem (1)-(3) is solved iteratively on-line, in a moving (re-
ceding) horizon (tF < tf ) or shrinking horizon (tF = tf ) approach, where tf is
the batch time.

2.2 Solution Strategy and Software Tool

Considering the discrete nature of the on-line control problem, the continu-
ous time optimization problem involved in the NMPC formulation is solved
by formulating a discrete approximation to it, that can be handled by conven-
tional nonlinear programming (NLP) solvers [BR91], [Bie00]. The time horizon
t ∈ [t0, tf ] is divided into N equally spaced time intervals ∆t (stages), with
discrete time steps tk = t0 + k∆t, and k = 0, 1, ..., N . Model equations are
discretized, xk+1 = fk(xk, uk; θ), and added to the optimization problem as
constraints. For the solution of the optimization problem a specially tailored
NMPC tool (OptCon) was developed that includes a number of desirable fea-
tures. In particular, the NMPC is based on first-principles or grey box models,
and the problem setup can be done in Matlab. The NMPC approach is based on
a large-scale NLP solver (HQP) [FAww], which offers an efficient optimization
environment, based on multiple shooting algorithm, that devides the optimiza-
tion horizon into a number of subintervals (stages) with local control parame-
terizations. The differential equations and cost on these intervals are integrated
independently during each optimization iteration, based on the current guess of
the control. The continuity/consistency of the final state trajectory at the end of
the optimization is enforced by adding consistency constraints to the nonlinear
programming problem.

2.3 Real-Time Implementation

In NMPC simulation studies usually immediate feedback is considered, i.e. the
optimal feedback control corresponding to the information available up to the mo-
ment tk, is computed, u�(tk) = [u0|tk

, u1|tk
, . . . , uN |tk

], and the first value (u0|tk
)
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is introduced into the process considering no delay. However, the solution of the
NLP problem requires a certain, usually not negligible, amount of computation
time δk, while the system will evolve to a different state, where the solution u�(tk)
will no longer be optimal [FA02]. Computational delay δk has to be taken into
consideration in real-time applications. In the approach used here, in moment tk,
first the control input from the second stage of the previous optimization problem
u1|tk−1 is injected into the process, and then the solution of the current optimiza-
tion problem is started, with fixed u0|tk

= u1|tk−1 . After completion, the optimiza-
tion idles for the remaining period of t ∈ (tk +δk, tk+1), and then at the beginning
of the next stage, at moment tk+1 = tk +∆t , u1|tk

is introduced into the process,
and the algorithm is repeated. This approach requires real-time feasibility for the
solution of each open-loop optimization problems (δk ≤ ∆t).

2.4 State Estimation

Proper state estimation is crucial for successful practical NMPC applications. Ex-
tended Kalman filter (EKF) is widely used in process control applications, how-
ever its performance strongly depends on the accuracy of the model. To avoid
highly biased model predictions, selected model parameters are estimated to-
gether with the states, leading to a parameter adaptive EKF formulation [VG00].
Define θ′ ⊆ θ as the vector of the estimated parameters from the parameter vec-
tor, and θ′′

∆= θ\θ′ the vector of the remaining parameters. The augmented state
vector in this case is given by X = [x, θ′]T , and the augmented model used for
estimation is, Ẋ = [f(x, θ′, u; θ′′), 0]T + [w, wθ′ ]T , with w , and wθ′ zero-
mean Gaussian white noise variables. The measurement covariance matrix is de-
termined based on the accuracy of the measurements. The appropriate choice
of the state covariance matrix, Q, is however often difficult in practical appli-
cations. An estimate of Q can be obtained by assuming that the process noise
vector mostly represents the effects of parametric uncertainty [VG00], [NB03].
Based on this assumption the process noise covariance matrix can be computed
as Q(t) = Sθ(t)VθST

θ (t), with Vθ ∈ Rnθ×nθ being the parameter covariance ma-
trix, and Sθ(t) = (∂f/∂θ)x̂(t),u(t),θ̂ is the sensitivity jacobian computed using the
nominal parameters and estimated states. This approach provides an easily imple-
mentable way to estimate the process noise covariance matrix, since the parameter
covariance matrix Vθ is usually available from parameter estimation, and the sen-
sitivity coefficients in Sθ can be computed by finite differences or via sensitivity
equations. Note that the above approach leads to a time-varying, full covariance
matrix, which has been shown to provide better estimation performance for batch
processes than the classically used constant, diagonal Q [VG00], [NB03].

3 Practical Implementation of NMPC to an Industrial
Pilot Batch Reactor

A schematic representation of the experimental pilot plant is shown on Figure 1.
The reactor temperature is controlled using a complex heating-cooling system,
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which is based on a closed oil circuit, which is recycled through the jacket with a
constant flow rate Fj . The heating-cooling medium goes through a multi-tubular
heat exchanger where a PI controller is used to keep the temperature difference
constant, by adjusting the cooling water flow rate. Heating is performed using
an electric heater. The power of the heater is adjusted by a PI controller that
regulates the input temperature into the jacket. The setpoint of the PI con-
troller is determined by the higher level NMPC that has the objective to track
a predetermined temperature profile in the reactor.

A detailed first-principles model of the process containing material and energy
balances as well as detailed kinetic and thermodynamic models was used and
identified based on off-line experiments. Since only temperature measurements
are available in the plant, many states of the detailed model are not estimable,
or not even detectable. The complex model however was used to determine
the optimal temperature profile, and for deriving the control-relevant model.
Available measurements are: reactor temperature (Tr), and input and output
temperatures into and from the jacket, (Tjin, Tj). With this set of measurements
the following reduced model was used in the NMPC:

ṅM = −Qr/∆Hr (4)

Ṫr,k =
Qr + UwAw(Tw,k − Tr,k)− (UA)loss,r(Tr,k − Tamb)

mMcp,M + mP cp,P + mwatercp,water
(5)

Ṫw,k = (UjAj(Tj,k − Tw,k)− UwAw(Tw,k − Tr,k))/mw/cpw (6)

Ṫj,k =
NFjρjcp,j(Tj,k−1 − Tj,k)− UjAj(Tj,k − Tw,k)− (UA)loss,j(Tj,k − Tamb)

mjcp,j

(7)
where k = 1, . . . ,N , Tr = Tr,N , Tj = Tj,N , Tj,0 = Tjin, nM is the number of
mol of monomer, ∆Hr is the enthalpy of reaction, Tw is the wall temperature,
U and A are heat transfer coefficients and areas from reactor to wall (·)w or wall
to jacket (·)j , cp,M/P/water/w/j and mM/P/water/w/j are the heat capacities and
masses of monomer, polymer, water, wall and oil, Tamb is the ambient tempera-
ture, ρj is the density of the oil, (UA)loss,r/j heat loss coefficients in the reactor
and jacket, respectively.

To estimate the transport delay, the reactor, wall and jacket were divided
in N = 4 elements, leading to a system of 13 differential equations. To achieve
proper prediction and maintain the observability of the model, with only temper-
ature measurements available, different approaches have been proposed. Helbig
et al. used a time series of the estimated heat generation determined from simula-
tion of a batch [HA96]. The industrial batch MPC product developed by IPCOS
determines an empirical nonlinear relation Qr = fQ(nM , Tr), which expresses
the heat generation as a function of the conversion and temperature [IP00]. In
our case study a similar approach was used. The empirical nonlinear relation
was determined from the complex first principle model, simulating the process
for different temperature profiles.
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Maximum likelihood estimation was used to fit the parameters of the model
(4)-(7) to the data obtained from the plant, performing several water batches
(when Qr = 0), using θ′′ = [(UA)loss,r , (UA)loss,j , UjAj , mw, mj ] as the pa-
rameter vector. This procedure gives the optimal nominal parameter estimates,
θ̂′′

�
, and the corresponding uncertainty description given by the covariance ma-

trix, estimated from the Hessian of the objective used in the maximum likelihood
estimation. The good fit between the experimental data and the model is shown
on Figure 2.

Model (4)-(7) was used in an adaptive output feedback NMPC approach,
where the objective was to provide a tight setpoint tracking, by minimizing
online, in every sampling instance k, the following quadratic objective:

min
u(t)

tF∫
tk

{(Tr(t)− T ref
r (t))2 + Q∆u(du(t))2}dt (8)

The optimal setpoint profile T ref
r is generally obtained via off-line optimiza-

tion using the detailed model. In our implementation however, a suboptimal
but typical profile consisting of three piece-wise linear segments was used. The
manipulated input of the NMPC, u(t) = TjSP , is the setpoint temperature

Fig. 1. Schematic representation of
the batch reactor system
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Fig. 3. Implementation structure of the PAEKF and NMPC
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to the lower level PI controller, which controls the jacket input temperature.
The communication between the real plant and NMPC was performed via the
standard OPC interface. The adaptive structure of the implemented NMPC is
shown on Figure 3. During the batch the heat transfer properties in the reactor
change significantly thus the adaptive algorithm is important. The parameters
θ′ = [Qr, UwAw] were estimated together with the model states in the PAEKF.
Figure 4 indicates a strong variation of UwAw during the batch. Figure 5 demon-
strates the very good setpoint tracking performance of the NMPC with adapted
model. The parameter covariance matrix Vθ, resulted from the identification was
used to compute the state covariance matrix in the estimator [VG00], [NB03]. A
weighting coefficient of Q∆u = 0.4, and prediction and control horizons of 8000s
were used, in the optimization, with a sampling time of 20s. The control input
was discretized in 400 piecewise constant inputs, leading to a high dimensional
optimization problem. The efficient multiple shooting approach guarantees the
real-time feasibility of the NMPC implementation. Even with the large control
discretization of 400 the computation time was below the sampling time of 20s
(approx. 5s). All simulation times are on a Pentium 3, 800 MHz PC running
Windows 2000.
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of the industrial batch reactor

4 Conclusions

The paper present a computationally efficient NMPC approach that com-
bines output feedback design with efficient optimization technique providing a
framework that can be supported in an industrial environment. Detailed first-
principles model is used to derive the reduced control-relevant model based on
the available measurements, which is tuned using data from the plant, and used
then in the NMPC. A PAEKF is combined with the control algorithm for the
on-line state estimation and model adaptation to achieve offset free control.
Simulation and experimental results demonstrate the efficiency of the NMPC
approach in an industrial application.
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Summary. In recent years, continuous chromatographic processes have been estab-
lished as an efficient separation technology in industry, especially when temperature
sensitive components or species with similar thermodynamic properties are involved.
In SMB processes, a counter-current movement of the liquid and the solid phases is
achieved by periodically switching the inlet and the outlet ports in a closed loop of
chromatographic columns. The integration of reaction and separation in one single
plant is a promising approach to overcome chemical or thermodynamic equilibria and
to increase process efficiency. Reactive chromatographic SMB processes in which the
columns are packed with catalyst and adsorbent have been proposed and demonstrated
successfully. However, a full integration often is not efficient because in the columns in
the separating zones, the catalyst is not used or even counterproductive. By placing
reactors between the separation columns at specific positions around the feed port, a
more efficient process, the Hashimoto SMB process, is established. In this contribution,
a non-linear predictive control concept for the Hashimoto SMB process is presented.
The controller computes optimal control variables (flow rates and the switching time) to
optimize an economic objective over a moving horizon. The purity requirements of the
product streams are implemented as constraints and not as controlled variables. The
optimization-based controller is combined with a scheme to estimate selected model
parameters in order to reduce the influence of the inevitable model errors. Simulative
results are presented for the example of the racemization of Tröger’s base.

Keywords: Simulated moving bed chromatography (SMB), Hashimoto process, online
optimization, parameter estimation.

1 Introduction

Chromatographic separation processes are based on different affinities of the
involved components to a solid adsorbent packed in a chromatographic column.
Most industrial applications are performed discontinuously involving one single
chromatographic column which is charged with pulses of feed solutions. The
feed injections are carried through the column by pure eluent. The more retained
component travels through the column slower, and hence leaves the column after
the less adsorptive component. The separated peaks can be withdrawn with the
desired purity at the end of the column. However, batch operation leads to low
productivity and high solvent consumption.

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 473–483, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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In recent years, continuous Simulated Moving Bed SMB processes are in-
creasingly applied due to their advantages with respect to the utilization of the
adsorbent and the consumption of the solvent. The SMB process consists of sev-
eral chromatographic columns which are interconnected in series to constitute a
closed loop. A counter-current movement of the liquid phase and the solid phase
is simulated by periodical and simultaneous switching of the inlet and outlet
ports by one column in the direction of the liquid flow.

The Hashimoto SMB [1] is an extension of the Simulated Moving Bed pro-
cess which integrates reaction into chromatographic separation and is therefore
suitable to overcome the limitations of equilibrium reactions. The reactors are
fixed in those separation zones of the Hashimoto SMB process where the forward
reaction is favourable thus increasing the conversion of the feed.

Since SMB processes are characterized by mixed discrete and continuous dy-
namics, spatially distributed state variables with steep slopes, and slow and
strongly nonlinear responses of the concentrations profiles to changes of the op-
erating parameters, they are difficult to control. An overview of recent achieve-
ments in the optimization and control of chromatographic separations can be
found in [3]. In [7] and [8], a nonlinear optimizing control scheme was proposed
and successfully applied to a three-zone reactive SMB process for glucose iso-
merization. In each switching period, the operating parameters are optimized
to minimize a cost function. The product purities appear as constraints in the
optimization problem. In the optimization, a rigorous model of the general rate
type is used. Plant/model mismatch is taken into account by error feedback of
the predicted and the measured purities. In addition, the model parameters are
regularly updated. In [4], the control concept was extended to the more com-
plex processes Varicol and Powerfeed that offer a larger number of degrees of
freedom that can be used for the optimization of the process economics while
satisfying the required product purities. A slightly different approach to the con-
trol of SMB processes was reported by [5] and [6]. Here, the online optimization
is based upon a linearized reduced model which is corrected by a Kalman filter
that uses the concentration measurements in the product streams. In this work,
the switching period is considered as fixed, while in the previously mentioned
work it is a parameter in the optimization. In [7] and [8], the prediction is based
on the assumption that the columns are uniform (i.e. they all show the same
behavior) and that the modelling errors are small. However, the properties of
each individual column differ since they have different effective lengths, different
packings with adsorbent and catalyst (for the case of reactive chromatography)
and the column temperatures can exhibit some variation. In [10], a combined
parameter and state estimation scheme for a nonlinear SMB process with indi-
vidual column properties based on measurements of the concentrations in both
product streams and one internal measurement is proposed.

In this paper, a control concept for the Hashimoto SMB process is presented.
A non-linear predictive controller for the Hashimoto SMB process is established
that computes optimal control variables (flow rates and the switching time) to op-
timize an economic objective over a moving horizon while the purity requirements
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of the product streams are considered as constraints. In the optimization, a rig-
orous model of the general rate type is used. Plant/model mismatch is taken into
account by error feedback of the predicted and the measured purities. In addition,
the model parameters are regularly updated by a parameter estimation scheme.

The remainder of this paper is structured as follows: in the next section, the
model of the Hashimoto SMB process is introduced. Section 3 is devoted to
the predictive control concept based upon an online optimization and parame-
ter estimation scheme. Simulation results are presented in section 4. Finally, a
summary and an outlook for future research are given.

2 Process Model

In this paper, the racemization of Tröger’s base (TB) is considered. Tröger’s
base consists of the enantiomers TB- and TB+ with TB- as the desired prod-
uct which is used for the treatment of cardiovascular diseases. Both Tröger’s
base components form an equimolar equilibrium. Since the product TB- has a
higher affinity to the chosen adsorbent, it is withdrawn at the extract port of
the Hashimoto process. The TB+ part is withdrawn with the raffinate stream in
order to improve the purification of the solvent in zone IV before it is passed on
to zone I. Theoretically, this raffinate flow can be converted to the equilibrium
by an additional external reactor and added to the feed stream. Alternatively, no
raffinate flow can be taken out, thus the whole feed is converted to TB- making
the additional unit to convert TB+ redundant. However, in this case a drastic
increase of eluent would be required and the process would be less efficient. For
the application in this paper, the first case is examined with the Hashimoto
configuration depicted in Figure 1. The reactors are placed in zone III where a
high concentration of TB+ is present. When the ports of the process are shifted
by one column after the period τ has passed, the physical separation columns
are switched by one column in the opposite direction to the liquid flow moving
through the separation zones. The reactors, however, remain at their positions
relative to the ports. The practical realization of the column switching via a pro-
cess control system is sophisticated and indicated by Figure 2 which shows the

QDe ExQ

switching of
separators

liquid flow

IIIenozIIenoz VIenozIenoz

QRaQFe

recycle

Fig. 1. Hashimoto configuration (reactors: black, separators: white)
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Fig. 2. Flowchart of the Hashimoto process

flow chart of the SMB plant operated at the Universität Dortmund. The ports
for the external feed and eluent inlets as well as the extract and raffinate outlets
can be connected to each single chromatographic column (1-8). Each reactor
(9-12) can be placed in front of each chromatographic column.

Accurate dynamic models of multi-column continuous chromatographic pro-
cesses consist of dynamic models of the single chromatographic columns and of
the tubular reactors and the node balances which describe the connections of
the columns and of the switching of the ports. The chromatographic columns
are described accurately by the general rate model which accounts for all im-
portant effects of the column, i.e. mass transfer between the liquid and solid
phase, pore diffusion, and axial dispersion. It is assumed that the particles of
the solid phase are uniform, spherical, porous (with a constant void fraction εp),
and that the mass transfer between the particle and the surrounding layer of
the bulk is in a local equilibrium. The concentration of component i is given by
ci in the liquid phase and by qi in the solid phase. Dax is the axial dispersion
coefficient, u the interstitial velocity, εb the void fraction of the bulk phase, ceq

i

the equilibrium concentration, kl,i the film mass transfer resistance, and Dp,i

the diffusion coefficient within the particle pores. The concentration within the
pores is denoted by cp,i. Furthermore, it is assumed that u and ci are uniformly
distributed over the radius. The following set of partial differential equations for
the separators and the tubular reactors can be obtained from a mass balance
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around an infinitely small cross-section of the column (TB- is referred to as A,
while TB+ is denoted as B):

Separator

∂cb,i

∂t
+

(1− εb)3kl,i

εbRp
(cb,i − cp,i|r=Rp) = Dax

∂2cb,i

∂z2 − u
∂cb,i

∂z
(1)

(1− εp)
∂qi

∂t
+ εp

∂cp,i

∂t
− εpDp,i

[
1
r2

∂

∂r

(
r2
∂cp,i

∂r

)]
= 0 , (2)

Reactor

∂cb,i

∂t
+ rliqkin,i = Dax

∂2cb,i

∂z2 − u
∂cb,i

∂z
(3)

with appropriate initial and boundary conditions

cb,i|t=0 = cb,i(t = 0, z), cp,i|t=0 = cp,i(t = 0, z, r), (4)

∂cb,i

∂z

∣∣∣∣
z=0

=
u

Dax
(cb,i − cin

i ),
∂cb,i

∂z

∣∣∣∣
z=L

= 0, (5)

∂cp,i

∂r

∣∣∣∣
r=0

= 0,
∂cp,i

∂r

∣∣∣∣
r=Rp

=
kl,i

εpDp,i
(cb,i − cp,i|r=Rp

) . (6)

The adsorption equilibrium and the reaction kinetics have been determined ex-
perimentally in [11]. The adsorptive behaviour can be modelled best by an asym-
metric multi-component Langmuir isotherm

qi =
Hici

1 +
∑
j

bi,jcj
i = A,B, (7)

where Hi denotes the Henry coefficient which dominates the adsorption. The
racemization of Tröger’s base is regarded as homogeneous reaction described by
first order kinetics:

rliq
kin,i = νikm(cb,i − cb,j) i, j = A,B i 	= j. (8)

From mass and concentration balances, the relations at the inlet and the outlet
nodes result as

Desorbent node QIV + QDe = QI (9)

cout
i,IV QIV = cin

i,IQI i = A,B (10)

Extract node QI −QEx = QII (11)
Feed node QII + QFe = QIII (12)

cout
i,IIQII + ci,FeQFe = cin

i,IIIQIII i = A,B (13)

Raffinate node QIII −QRa = QIV , (14)
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where QI,II,III,IV denote the internal flow rates through the corresponding zones
I, II, III, IV , QDe, QEx, QFe, and QRa are the external flow rates of the in-
let/outlet ports, respectively, and cout

i,j and cin
i,j denote the concentrations of the

component i in the stream leaving or entering the respective zone j.
As eluent, an equimolar mixture of acetic acid and 2-Propanol is utilized.

Acetic acid is the catalyst with a high activity at a temperature of 80 ◦C,
but negligible activity at room temperature. Thus, the reactors are operated at
80 ◦C while the separators are operated at room temperature. The separators are
packed with the adsorbent Chiaralcel. An efficient numerical solution approach
is used as proposed in [9] where a finite element discretization of the bulk phase
is combined with orthogonal collocation of the solid phase.

3 Predictive Control

3.1 Online Optimization

The basic idea of the control algorithm is to perform an optimization of the op-
erational degrees of freedom at future switching periods based upon a rigorous
model of the plant with respect to an economic cost function (rather than e.
g. a cost function involving a tracking error) in which the specifications of the
SMB process (purity requirements, limitations of the pumps) as well as the pro-
cess dynamics are handled as constraints. The inputs located within the control
horizon HC are considered as degrees of freedom of the optimization while the
remaining inputs within the larger prediction horizon HP are set equal to the
values in the final control interval. The computed inputs in the first sampling
interval are applied to the plant, and the optimization is then repeated for the
next time interval with the control and prediction horizon shifted forward by
one time interval, using new measurement data and eventually new estimated
model parameters. In the application of optimizing control to SMB processes,
the sampling time is chosen equal to the length of a cycle (length of a switching
period times the number of chromatographic columns) and hence varies during
the operation of the process. Due to the slow dynamic response of the concentra-
tion profiles of SMB processes to changes in the operating parameters, a modern
PC is sufficient to solve the online optimization problems within a process cycle.
We here consider a four-zone Hashimoto SMB process with raffinate flow that
is described by the nonlinear discrete dynamics (16), (17). The objective of the
optimizing controller is to minimize the eluent consumption QDe for a constant
feed flow and a given purity requirement of 99% in the presence of a plant/model
mismatch. The inevitable mismatch between the model and the behavior of the
real plant is taken into account by feedback of the difference of the predicted and
the measured product purities. A regularization term is added to the objective
function (15) to obtain smooth trajectories of the input variables. The controller
has to respect the purity requirement for the extract flow (18) which is averaged
over the prediction horizon, the dynamics of the Hashimoto SMB model (16),
(17) and the maximal flow rate in zone I (20) due to limited pump capacities
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(21). In order to guarantee that at least 70% of the mass of the components fed
to the plant averaged over the prediction horizon leaves the plant in the extract
product stream, an additional productivity requirement (19) is added. The devi-
ation between the prediction of the model and the plant behavior is considered
by the error feedback term (23). The resulting mathematical formulation of the
optimization problem is:

min
βI ,βII ,βIII ,βIV

HP∑
i=1

QDe,i + ∆βR∆β (15)

s.t. xi
smb = xi

smb,0 +

τ∫
t=0

fsmb(xsmb(t), u(t), p)dt (16)

xi+1
smb,0 = Mxi

smb,τ (17)
HP∑
i=1

PurEx,i

HP

∗

≥
(
Pur∗Ex,min −∆PurEx

)
(18)

HP∑
i=1

mEx,i

HP
≥ 0.7mFe −∆mEx (19)

QI ≤ Qmax (20)
QDe, QEx, QFe, QRe ≥ 0, (21)

where M is the shifting matrix, τ the period length. The extract purity, the
purity error, the mass output, and the mass error are evaluated according to:

PurEx =

τ∫
t=0

cEx,Adt

τ∫
t=0

(cEx,A + cEx,B)dt
(22)

∆PurEx = Pur∗Ex,plant,i−1 − Pur∗Ex,model,i−1 (23)

mi =

τ∫
0
(ci,A + ci,B)Qidt

τ
(24)

∆mEx = mEx,plant,i−1 −mEx,model,i−1. (25)

Since the plant is operated close to 100% extract purity, the purities are scaled
(∗) according to

purity∗ =
1

1− purity
, (26)

that provides a large slope in the scaled purity for very high purities. The nu-
merical tractability is improved by translating the degrees of freedom (period
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length τ , desorbent flow QDe, extract flow QEx, and recycle flow QRe) into the
so-called beta factors [2] that relate the liquid flow rates Qi in each separation
zone to the simulated solid flow rate Qs.

Qs =
(1− ε)Vcol

τ

1
βIII

=
1
HA

(
QIII

Qs
− 1− ε

ε

)
(27)

βI =
1
HA

(
QI

Qs
− 1− ε

ε

)
1

βIV
=

1
HB

(
QIV

Qs
− 1− ε

ε

)
. (28)

βII =
1
HB

(
QII

Qs
− 1− ε

ε

)
(29)

A feasible path SQP solver is applied to solve the optimization problem. The
solver generates a feasible point before it minimizes the objective function. Since
the SQP algorithm is a gradient based method, an additional constraint

8∑
i=1

PurEx,i

8
≤ 99.9% (30)

is added that enforces the purity to be below 99.9% averaged over a cycle and
prevents the purity from reaching 100 % at which the gradient information for
the constraint (18) is lost.

3.2 Parameter Estimation

The parameter estimation scheme is based on a measurement device that is fixed
behind the physical separation column positioned in front of the recycle line. The
recycle measurements are collected over one cycle and simulated by the model
to estimate the reaction rate constant km and the Henry coefficients HA and
HB via a least-squares minimization according to:

min
p

B∑
i=A

(

N∫
0

(ci,meas(t)− ci,Re)2dt), (31)

where N is the number of measurement points.

4 Results

For the simulative run presented here, a column distribution as shown in Figure
1 is assumed (1400 states). The sampling time is set to one cycle (8 periods).
The prediction horizon HP and the control horizon HC have a length of 6 in-
tervals and 1 interval, respectively. The regularization terms Ri are set to 0.3
for each control variable. Both, controller and estimator, are started at the 72nd

period. In the control scenario, an exponential decrease of the catalyst activity
is assumed that occurs in the case of a malfunction of the reactor heating. A
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separator:
separator length Ls = 10cm particle diameter dp = 10µm
separator diameter Ds = 1cm axial diffusion coefficient Dax acc. to [12]

adsorption coefficients HA = 10.997 reactor:
b1,1 = 0.132 l

g
reactor length Lr = 100cm

b1,2 = 0.543 l
g

reactor diameter Dr = 0.53cm

HB = 3.028 reaction rate coef. km = 0.001645 1
s

b2,1 = 3.413 l
g

stoichiometry ν = [−1; +1]
b2,2 = 0.0 l

g
eluent:

film transfer resistance kl,A = 0.000302 cm
s

density ρ = 0.81867 g
ml

kl,B = 0.000302 cm
s

viscosity η = 0.0271 g
cms

column void fraction εb = 0.387 feed: QF e = 0.61 ml
min

particle void fraction εp = 0.4 cA,F e = 2.5 g
l

overall void fraction ε = 0.632 cB,F e = 2.5 g
l

particle diffusion coefficient Dp = 0.001 cm2

s

further plant/model mismatch is introduced by disturbing the initial Henry co-
efficients HA and HB of the model by +10% and -10%. Figure 3 shows that the
parameter estimation scheme estimates the parameters of the plant well. The
performance of the controller is illustrated by Figure 4. The controller manages
to keep the purity and the productivity above their lower limits, while it improves
the economic operation of the plant by reducing the solvent consumption. The
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process converges to a stationary operating point. The optimizer converges to
the optimum within one sampling time, and hence, can be applied in real-time.

5 Conclusion

An online model-based optimization and parameter estimation scheme for the
Hashimoto Simulated Moving Bed process has been presented. The approach
has the advantage that the process is automatically operated at its economic
optimum while the purity and productivity requirements and plant limitations
are fulfilled. In future research, the application to a pilot-plant is planned.
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Summary. This paper focuses on the design of a nonlinear model predictive control
(NMPC) scheme for a cement grinding circuit, i.e., a ball mill in closed loop with an air
classifier. The multivariable controller uses two mass fractions as controlled variables,
and the input flow rate and the classifier selectivity as manipulated variables. As the
particle size distribution inside the mill is not directly measurable, a receding-horizon
observer is designed, using measurements at the mill exit only. The performance of
the control scheme in the face of measurement errors and plant-model mismatches is
investigated in simulation.

1 Introduction

In cement manufacturing, the grinding process transforms the input material
(usually clinker) into a very fine powder (the final product). This process consists
of a ball mill in closed loop with an air classifier, where the feed flow rate and
the classifier selectivity are used as manipulated variables. The quality indicator
used in common practice, which is related to the cement fineness, is the powder
specific area or Blaine measurement. Alternative quality indicators can however
be defined in terms of the particle size distribution, as further discussed in this
study.

Cement grinding circuits can be regulated using standard linear or more ad-
vanced nonlinear control schemes [4, 9, 12]. However, most of the control studies
reported in the literature consider mass variables only, i.e., mass hold-up of the
mill and mass flow rates, whereas control of the product quality requires the con-
sideration of the particle size distribution (or at least, of some related variables).
In this connection, a quality control strategy should allow to act on the parti-
cle size distribution, as well as to face rapid modification in customer demand
(i.e. changes in the cement grade or quality). Hence, efficient setpoint changes
have to be achieved despite the process nonlinearities and operating limitations.
Such a control strategy appears as an appealing (but challenging) alternative to
expensive storage policies.

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 485–493, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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In this study, a control scheme is proposed that takes these objectives and
constraints into account. The following ingredients are involved in the control
design:

• A nonlinear population model describes the dynamic evolution of the mass
fractions in three size intervals.
• The mass fractions at the mill outlet and at the product outlet (i.e. the air

classifier outlet) can easily be measured in practice using classical sieving
techniques. In addition, they can be used, as an interesting alternative to
Blaine measurements, to assess the cement quality and performance of the
mill.
• A model-based predictive controller is designed in order to achieve qual-

ity control and setpoint changes. This control scheme accounts for actuator
saturation (in magnitude and rate of change) and for operating and safety
constraints, such as mill plugging and temperature increase.
• To reconstruct on-line the particle size distribution (in three size intervals),

a receding-horizon observer is designed, which uses measurements available
at the mill exit only. This software sensor takes the measurement errors into
account and determines the most-likely initial conditions of the prediction
horizon.

In previous works [6, 7], the authors have reported on the design of the multi-
variable controller and of the receding-horizon observer. Here, the main purpose
is to study the performance of the combined scheme (i.e. controller + software
sensor) in the face of measurement noise and parametric uncertainties. In ad-
dition, a DMC-like correction scheme is proposed, which significantly improves
the performance of the control strategy in the case of plant-model mismatches.
A simulation case study, corresponding to a typical setpoint change, is used to
highlight the advantages and limitations of the proposed strategy.

This paper is organized as follows. Section 2 briefly describes the process
and the nonlinear model. In Section 3, the control objectives are discussed, the
NMPC strategy is introduced, and the software sensor is presented. The com-
bined scheme is evaluated in Section 4 and conclusions are drawn in Section 5.

2 Process Description and Modelling

A typical cement grinding circuit is represented in Figure 1, which consists of a
single-compartment ball mill in closed loop with an air classifier. The raw ma-
terial flow qC is fed to the rotating mill where tumbling balls break the material
particles by fracture and attrition. At the other end, the mill flow qM is lifted
by a bucket elevator into the classifier where it is separated into two parts: the
product flow qP (fine particles) and the rejected flow qR (coarse particles). The
selectivity of the classifier, i.e. the separation curve, influences the product qual-
ity. This selectivity can be modified by positioning registers Reg acting on the
upward air flow. The material flow qR is recirculated to the mill inlet and the
sum of qC and qR is the total flow entering the mill, denoted qF .
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Ball mill

Classifier

qC qF

qR

Reg

qP

qM

qM

Fig. 1. Closed-loop grinding circuit

A simple population model [5, 6, 7] is used to describe the dynamic evolution
of the particle size distribution in three (relatively large) size intervals. This
model describes material transportation and breakage inside the ball mill, as
well as material separation in the air classifier. This model consists of a set of
Partial Differential Equations (PDEs), supplemented by Initial Conditions (ICs)
and Boundary Conditions (BCs):

dX
dt

= fPDE

(
X,

∂X
∂z

,
∂2X
∂z2 ;θθθf , θθθt

)
(1a)

X(t0, z) = X0(z), 0 ≤ z ≤ L (1b)

0 = fBC

(
X,

∂X
∂z

,u;θθθt, θθθcl

)
, z = 0, ∀t (1c)

0 =
∂X
∂z

, z = L,∀t (1d)

where the state vector X(t, z) has 3 components, the kth component being the
mass per unit of length (e.g., in tons per meter) in size interval k, at time t
and at location z along the mill (L is the mill length). X0(z) is the initial-value
spatial profile. The input u has 2 components, qC and Reg. The parameters θθθf ,
θθθt and θθθcl are related to the description of the fragmentation, transportation
and classification mechanisms, respectively.

This PDE system is solved numerically using a method of lines [13] strategy.
The spatial derivatives are replaced by finite difference approximations, and the
resulting system of differential algebraic equations is integrated in time using a
readily available solver.

Partitioning the size continuum into three size intervals allows the problem di-
mension to be reduced as compared to a more detailed description of the particle
size distribution (in classical modelling studies 20-30 intervals are considered).
Moreover, this specific partition can be directly related to the control objectives,
as explained in the next section. In this study, the interval limits (i.e., the upper
bounds of the mid-size and small-size intervals) are chosen as 100 and 30 µm.
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3 Control Strategy

3.1 Control Objectives and NMPC Scheme

The feed flow rate and the classifier selectivity can be used as manipulated vari-
ables. Two mass fractions are used as controlled variables. The first one, denoted
w3

P , corresponds to the fine particles in the product flow. Experimental studies
[10] demonstrate that this variable is highly correlated with the compressive
strength of the cement, if the upper size of interval 3 is chosen around 30 µm.
The second one, denoted w2

M , corresponds to the mid-size particles in the mill
outflow, which can be directly related to the grinding efficiency of the mill (too
fine particles correspond to overgrinding whereas too coarse particles correspond
to undergrinding).

The use of these several variables is illustrated by the steady-state diagram
w2

M = f(qP , w
3
P ) of Figure 2, where the curve ABC represents all the operating

points with w3
P = 0.86. Clearly, point B corresponds to a maximum product flow

rate and, as demonstrated in [3], the arcs AB and BC correspond to stable and
unstable process behaviours, respectively. By setting, for example, w2

M = 0.35
on arc AB, a single operating point (point 1) is defined. This corresponds to
producing cement of a given fineness (w3

P = 0.86) at near maximum product flow
rate in the stable region. A significant advantage of these controlled variables is
that the measurement of mass fractions is simple and inexpensive. A classical
sieving technique is used instead of sophisticated (and costly) laser technology.

The design of the NMPC scheme [1, 8] is based on a nonlinear optimization
problem, which has to be solved at each sampling time tk = kTs (where Ts is
the sampling period). More specifically, a cost function measuring the deviation
of the controlled variables from the setpoint over the prediction horizon has to
be minimized. Denoting y = [w3

P w2
M ]T the controlled variable, the optimization

problem is stated as follows:

min
{ui}Nu−1

0

Np∑
i=1

{ys − ŷ(tk+i)}T Qi {ys − ŷ(tk+i)} (2)

where Nu and Np are the control and prediction horizon lengths, respectively
(number of sampling periods with Nu < Np). {ui}Nu−1

0 is the sequence of
control moves with ui = uNu−1 for i ≥ Nu (ui is the input applied to the
process model from tk+i to tk+i+1). ŷ(tk+i) is the output value at time tk+i,
as predicted by the model. {Qi}Np

1 are matrices of dimension 2, weighting the
coincidence points. ys is the reference trajectory (a piecewise constant setpoint
in our study).

In addition, the optimization problem is subject to the following constraints:

umin ≤ ui ≤ umax (3a)
−∆umax ≤ ∆ui ≤ +∆umax (3b)

qmin
M ≤ qM ≤ qmax

M (3c)
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On the one hand, equation (3a) represents bound constraints on the manipu-
lated variables, e.g., saturation of the feeding mechanism or in the displacement
of the registers, whereas equation (3b) corresponds to limitations of the rate
of change of these manipulated variables. On the other hand, equation (3c) ex-
presses constraints on an operating variable, e.g., a lower bound on the mill flow
rate to prevent mill emptying and temperature increase, and an upper bound to
avoid mill plugging or a drift into the instability region.

3.2 Software Sensor Design

As the particle size distribution inside the mill is not accessible, a receding-
horizon observer [1, 11] is designed, based on the nonlinear process model and a
few measurements available at the mill exit. The main advantages of this type of
software sensors are that a nonlinear model of arbitrary complexity can be used,
and the measurement errors can be taken into account rigorously. An estimate
of the most-likely initial conditions, noted x̂(0|tk), is obtained by solving the
following optimization problem:

min
x0

k∑
i=k−No

{y(ti)− hobs(x(ti),u(ti)}T ΣΣΣ−1
i {y(ti)− hobs(x(ti),u(ti)} , (4)

where x0 is the initial-condition, No is the prediction horizon length (number
of sampling periods To 	= Ts), hobs(.) is the output trajectory, y(ti) are the
measurements affected by a Gaussian white noise with zero mean and covariance
matrix ΣΣΣi.

However, the finite difference schemes used to solve the model equations lead
to a relatively large number of state variables which should be estimated. To cir-
cumvent this problem, and to keep the optimization problem tractable, the initial
condition profile x0(z) is approximated by a combination of simple polynomial
laws. An approximate representation of the initial spatial profile is sufficient for
state estimation and control purposes, as the effect of the initial conditions on
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Fig. 3. Receding-horizon estimation: evaluating the impact of the initial conditions

the model solution vanishes rapidly as compared to the process time constants.
Figure 3(a) shows the norm percentage deviation between the real and simulated
state during a typical run. For an initial deviation of about 40 %, the deviation
reduces to 5 % in only 10 min.

To build the polynomial approximation, x0(z) is expressed in terms of zr, a
scaled spatial coordinate

( z

L

)
, and in terms of the mill material hold-up H0(zr)

and the mass fractions wi
0(zr)

x0(zr) = H0(zr)
[
w1

0(zr) w2
0(zr) w3

0(zr)
]T (5)

Simple polynomial laws are then used to represent the several factors of this
latter expression. The hold-up is considered uniform H0(zr) = θH , the mass frac-
tion of coarse particles can be represented by a concave quadratic law w1

0(zr) =
0.3 zr(zr − 2) + θw1, the mass fraction of fine particles can be represented by a
convex quadratic laww3

0(zr) = −0.3zr(zr−2)+θw3 andw2
0(zr) is simply deduced

from the two other mass fractions (and is uniform in the present case).
When measurements are available at the mill exit only, it is observed that the rel-

evant information for the determination of θw1 and θw3 vanishes after 10 min. This
is apparent in Figure 3(b), which shows the parametric sensitivity of the material
mass fractions at the mill outlet. For instance, SM ;θH (t) is defined as ∂X

∂θH
(L, t).

These results justify the use of a simple parameterization of the initial con-
dition profile. In optimization problem (4), a horizon of 20 min with 2 min-
sampling intervals is sufficient to ensure convergence and accuracy. On the other
hand, the formulation of the state vector using the factorization (5) results in
the consideration of simple linear constraints.

The computation time required to solve the optimization problems (2) and
(4) would allow the use of shorter sampling intervals, but the measurement
procedure (sieving) could be limitative. Here, we have elected to be on the safe
side concerning this latter limitation (but shorter sampling intervals would of
course improve accuracy and convergence).
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4 Numerical Results

In this section, the combined scheme (software sensor + NMPC) is evaluated in
simulation, using a typical test run corresponding to a setpoint change. Point
1 in Figure 2 (where y = [0.86 0.35]T ) is the initial operating condition, and
point 2 (with y = [0.90 0.31]T ) represents the target (this point corresponds
to a higher product fineness and near maximum product flow rate). The sam-
pling period Ts = 5 min and the prediction horizon is 80 min (Np = 16). Two
manipulated variable moves are used (Nu = 2) and the weighting matrix Qi is
chosen as a constant identity matrix. Amplitude saturations are qmax

C = 60 ton
hour

and Regmax = 100. Limits for the rates of change are ∆qmax
C = 15 ton

hour
and ∆Regmax = 80. Limits on the mill flow rate are qmin

M = 60 ton
hour and

qmax
M = 90 ton

hour . The observer parameters are defined in Section 3.2.
It is first assumed that the process model is accurate and that the measurements

are noise free. Figure 4 shows the controlled and the manipulated variables (solid
lines). The performance is satisfactory, the controlled variables reach the setpoint
after about 20 min and the steady state is obtained after 70 min. Moreover, con-
straints are active in the first 5 min (first sample), as the maximum register dis-
placement and the maximum rate of change of the input flow rate are required.

The performance of the control scheme is then tested when measurements
are subject to a noise with a maximum absolute error of 0.02 ton

m (around a 5%
maximum relative error). The software sensor can efficiently take these stochastic
disturbances into account, and the performance of the control scheme remains
quite satisfactory.

Finally, the influence of parametric uncertainties (plant-model mismatch due
to errors at the identification stage) is investigated. A parametric sensitivity
analysis is performed, and Figure 5 shows step responses corresponding to either
an accurate model or to a −10% error in the fragmentation rate or the transport
velocity. Clearly, fragmentation parameters (which represents material hardness
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or grindability) have a larger impact on the model prediction than the material
transportation parameters.

The performance of the control scheme is evaluated when a prediction model
with erroneous fragmentation rates is used (which is the worst case of plant-model
mismatch). Figure 6 shows results corresponding to −5% errors in the fragmenta-
tion rates. Clearly, performance deteriorates and a significant steady-state error
appears. To alleviate this problem, a DMC-like compensation is proposed, which
considers the plant-model mismatch as a constant output disturbance d̂k+i = d̂k

over the prediction horizon. An estimate of the disturbance d̂k is obtained from
the process output yk and the observer output, noted ȳk, as follows:

d̂k = yk − ȳk (6)
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Figure 6 shows that this kind of compensation significantly improves the perfor-
mance of the control scheme under parametric uncertainties.

5 Conclusion

In this paper, a receding-horizon observer and a receding-horizon controller are
designed for a ball mill circuit. The software sensor provides an estimation of the
particle size distribution inside the ball mill, based on a nonlinear process model
and a few measurements available at the mill exit. The control scheme allows effi-
cient quality control and setpoint changes, even in the face of noisy measurements
and significant parametric uncertainties. In addition, a DMC-like compensation
of these latter errors improves the performance of the proposed scheme.
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2 Universidad Simón Boĺıvar, Dpt. Procesos y Sistemas, Apartado 89000, Caracas
1080, Venezuela
williamc@usb.ve

1 Introduction

Plant-wide control is attracting considerable interest, both as a challenging re-
search field and because of its practical importance. It is a topic [1] characterized
by complexity in terms of the number and type of equipments involved, diver-
sity of aims, and lack of adequate models and control policies. In this paper, the
MPC control of the final part of a beet sugar factory, the so-called sugar house
or sugar end, where sugar crystals are made, is presented. Perhaps the most
characteristic aspect of its operation is that batch and continuous units operate
jointly, which introduce the need for combining on-line scheduling with continu-
ous control. As such, it is a hybrid process that requires non-conventional control
techniques. The paper presents a methodology and a predictive controller that
takes into account both, the continuous objectives and manipulated variables,
as well as the ones related to the discrete operation and logic of the batch units,
and, at the end, simulation results of the controller operation are provided.

Many approaches have appeared in the literature in recent years for hybrid
predictive control. A natural approach integrates in a single mathematical for-
mulation the different elements of a hybrid process by using integer variables
for representing on/off decisions and integer equations for the logic relations be-
tween variables [2] besides the continuous equations. The fact that the internal
model of the MPC controller includes continuous and integer variables leads to
a mix-integer optimization problem [3], which in many cases is difficult and time
consuming to solve.A natural way of approaching complex systems is using a hi-
erarchical point of view, separating the problems that can be solved locally at a
lower level from the ones that require a global consideration. This paper focuses
on these overall decisions, and describes a controller that takes into account both
continuous control of key process variables as well as the scheduling involved in
the operation of the crystallizers, which operate in batch mode. The controller
follows the MPC paradigm, solving a non-linear model-based optimization prob-
lem on-line every sampling time. Moreover, the problem is re-formulated in terms
of prescribed patterns of the batch units variables and time of occurrence of the
events (real variables), instead of using integer variables, which allows to solve
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the optimization problem as a NLP one, saving computation time. The interest
of this contribution comes not only from the fact that it is a challenging control
problem, but because problems with a similar structure are present in many
industrial process factories.

2 The Sugar End and Control Architecture

Sugar factories produce commercial sugar in a set of vacuum pans or “tachas”
from an intermediate solution called feed syrup. Each tacha operates in a semi
batch mode following a predefined sequence, which main stages are: loading of
syrup; heating it with steam; concentration until supersaturation is reached;
seeding and growing of the crystals until they reach the desired size and the
vacuum pan is full, this stage being known as cooking, and finally unloading
the massecuite or cooked mass, which is the mix of crystals and non crystallized
syrup (mother liquor). The main source of variability in the operation of each
vacuum pan comes from the quality of the feed syrup. The processing time
increase if the percentage solid content of the syrup, which is known as brix,
decrease, and crystal growth increases with the purity of the syrup, that is, the
percentage of pure sacharose in the dissolved solids.

A scheme of the sugar house of the particular case that has been considered can
be seen in fig. 1. From the three vacuum pans A, the cooked mass, is unloaded into
an agitated heated vessel named “malaxador”. From this one, the mix of mother
liquor and crystals is separated by means of a set of seven centrifugals. Cooked
mass from tachas type A, gives way to commercial white sugar and two kinds of
syrup: the so-called lower purity syrup and the higher purity syrup. The later has
a small percentage of dissolved crystals and, so, a higher purity, and its is recycled
to the feeding tank (melter) of tachas A. On the contrary, the lower purity syrup is
sent to another storage vessel (tank B) and processed again in one tacha named B.
The proportion between both kinds of syrup can be adjusted using a timer in the
local centrifugals control. In tacha B the whole process is repeated, this time with
longer operation times due to the lower purity of the syrup, but with an important
difference: the sugar produced in the three centrifugal separators B, sugar B, is
not commercialised but recycled to a melter due to its color and impurities, while
the lower purity syrup is discharged as a by-product called molasses. The overall
control objectives of the sugar end section are summarised next:

1. Processing the flow of syrup coming from the previous continuous sections of
the factory avoiding bottlenecks in production. This objective implies an ade-
quate scheduling of the vacuum pans operation and a proper use of the shared
resources, such as, avoiding the feeding tanks (melter and tank B) and malax-
adors A and B from being either empty or overflow. This implies to maintain
levels in the previous units between certain lower and upper limits.

2. Maintaining the quality of the crystals in terms of size and size distribution.
This is an important objective, but it is solved locally in every vacuum pan,
where the operation of the crystallization is managed in order to obtain
proper conditions for sugar crystal growth.
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Fig. 1. A simplified scheme of the sugar end section

3. Maintaining brix and purity in melter and in tank B as close as possible
to given set points, in order to maximize the amount of sugar A produced,
because the processing time and capacity of the tachas depend on both
variables. This has also an influence in the first objective.

From control architecture point of view, a common strategy in complex systems,
is to decompose the problem in several levels or time scales, so that what can be
solved locally, involving a limited set of resources or decision variables is sepa-
rated from those decisions that involve variables having an effect on the dynamics
of the whole system. In our case, this hierarchical decomposition recognisees at
least three layers or types of control problems:

Local SISO controllers: Such as the temperature control in the malaxadors,
flow controls, etc. These are managed by the Distributed Control Systems (DCS)
of the plant and have fast dynamics compared with the ones of the sugar end.
They are supposed to operate well using standard controllers.

Sequence control of each batch unit: Such as tachas and centrifugal sep-
arators. For every vacuum pan, this control executes the cyclical sequence of
stages described at the beginning of this section, necessaries to obtain the final
product: sugar (objective number 2 in the previous list). It is implemented also
in the DCS as a GRAFCET chart with additional local control of pressure, level,
concentration, etc, and operate according to predefined parameters and external
orders, such as load and unload each tacha. These local controllers are assumed
to do its best in order to complete its tasks each cycle, for instance rejecting
disturbances on steam pressure or vacuum. For centrifugal separators, another
GRAFCET chart executes the consecutive operations of loaded cooked mass,
unloaded low purity syrup, unloaded high purity syrup and unloaded sugar. In
this case, the external orders are the frequency of operation of every centrifugal
separator and the percentage of lower and higher purity syrup obtained.

Plant wide-control: This layer is responsible for objectives 1 and 3 of the
previous list, in spite of changes in the flow and quality of the feed syrup, and
it is the objective of this paper. For this purpose, besides the scheduling of the
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tachas, the controller can manipulate the proportion between lower and higher
purity syrup in the centrifugals and its operating frequency, which is equivalent
to establishing its total processing flow. These tasks are performed very often
manually by the person in charge of the section. From the point of view of this
layer, the SISO controllers and sequence control can be considered as included
in the process, operating in cascade over them.

3 Hybrid Control

A natural approach to many decision problems is the one of Model Predictive
Control (MPC): A model of the process is used to predict its future behavior as a
function of the present and future control actions, which are selected in order to
minimize some performance index. The optimal control signals corresponding to
the present time are applied to the process and the whole procedure is repeated
in the next sampling period.

In MPC of complex systems, it is very important that the internal model that
relates controlled and manipulated variables being as simple as possible while
still being a good representation of the process. On the other hand, it must cor-
respond to the view and purpose of the plant-wide control. A full first principles
model implementing mass and energy balances, as well as crystal growth and lo-
cal control functions can perform this task, but this approach will lead to a huge
model, useless for MPC. Consequently, the model includes only those variables
and phenomena relevant to the above mentioned plant-wide control objectives.
It combines dynamic mass balances of total mass, solid content and sacharose
in the continuous units (feeding tanks and malaxadors) with abstractions and
simplifications of the other parts of the process, tachas and centrifugals, because,
what is important, is the relationship between these units and the continuous
ones are given through the input and output flows and its principal characteris-
tics like purity, brix and percentage of sugar.

A key point is then, the abstract model of the tacha. Notice that, when a tacha
is started, the inflow of syrup, the flow and characteristics of the cooked mass
unloaded and the time consumed in the operation depends only on the properties
of the feed (purity and brix), so, the approach followed has been to use tables
like the one in fig. 2 relating these main variables of the vacuum pan with the
properties of its feed, purity (P) and brix (B). These tables have been obtained
off-line, and for a range of reasonable operating conditions, integrating a full first
principles model of the vacuum pan starting from a syrup with different values of
purity and brix. For example, fig. 2 a) and b) shows the time duration and inflow
of syrup of cooking stage. Also additional tables are needed, see fig. 2 c), such as
the ones relating brix and purity in the feeding tank with the total cooked mass
obtained, the percentage of crystals in it and brix and purity of mother liquor,
and the duration of the rest of stages of the sequence.

This abstract view, makes possible includes the explicit use of the special
patterns that input and output flows must follow. Fig. 3 a) and b) show the
shape approximation of qin(P,B) and qout(P,B) used in the simplified model of
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Fig. 2. Typical table obtained off-line from the first principles dynamic of a tacha

Fig. 3. a) and b) Temporal patterns of input and output flows (qin and qout) of the
simplified model of a tacha

the vacuum pan, where two batches are predicted. For simplicity in the graphic,
we have named only three stages: loading, cooking and unloading. In fig. 3 a),
flow qin is different from zero in several situations: for example, when a loading
order arrives at time tload1, and for cooking stage. Tload1 and Tcook1 are the
duration of the loading stage and cooking stage respectively. The other signal in
fig. 3 b) corresponds to the outflow qout which is zero except for the unloading
period Tunload1. The logic of operation implies that the unloading time tunload1
must be placed after the operation has finished, which can be translated into a
constraint such as tunload1 > tload1 + Tload1 + Toperation1, the latest being the
intermediate operation period for the current feeding conditions and it is formed
by the sum of the duration of several stages, included Tcook1. These periods can
be computed as before from interpolation in a table Ti(P,B) (i=every stage)
that has also been obtained off-line. In order to complete the vacuum pan model,
other constraints must be added reflecting its logic of operation, such as tload2 >
tload1 + Tload1 + Toperation1 + tunload1 + Tunload1 that indicates that the next
batch 2 must start after the previous batch 1 has been unloaded. These two
constraints are necessary for each batch predicted and for each tacha.

In relation with the subjacent time model and the scheduling policy, the
classical approach considers the time axis divided in sampling periods, where
each sampling time j has an associated integer variable indicating if unit i starts
or not its operation in period j. The scheduler solves a MIP problem to determine
the optimal start and ending times of the batch units. In this paper we have
applied an alternative approach that is coherent with the use of the temporal
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patterns shown in fig. 3 a) and b). It assumes as unknowns the time of occurrence
of the events, tload1 and tunload1, which are real variables, instead of using integer
variables in every sampling period [4]. In this way, all the decision variables
of the internal model are continuous. Notice that this approach means that
the scheduling problem is not computed separately but it is integrated into
the overall predictive control and the need for solving mix integer optimization
problem is avoided, being substituted by an NLP one.

3.1 NMPC Controller

Before the non-linear model predictive control problem can be solved, it is nec-
essary to adapt some concepts used in standard continuous MPC to the context
of mix continuous-batch processes. The first one is the prediction horizon (N2)
that will be translated into Np minimum number of full bathes performed for
all batch unit. The concept of control horizon (Nu) is split into batch control
horizon (Nbi) and continuous control horizon (Nc). The first refers to the num-
ber of batches performed of each batch unit i (i = A1, A2, A3, B1) in which the
decision variables tload and tunload will be computed. From Nbi until the end
of the prediction horizon (Np), these values will be equal to the ones of the
last batch. Notice that this implies the assumption that a stable cyclic pattern
will be reached at the end of the prediction horizon, in a similar way to how
the future control signal is treated in continuous MPC. Each Nbi will fix the
number of unknown time instants tload and tunload, two per batch performed
and per unit. Finally the Nc horizon has the classical meaning for the classical
continuous manipulated variables. The control decisions are computed solving
an NLP optimization problem where the aim is to minimize a quadratic cost
function J, subject to the decision variables uj :

J =

T stop�

0

�
i

αi

�
yi(t) − yref

i

�2
dt (1)

with the usual constraints ymin
i � yi(t) � ymax

i and umin
j � uj(t) � umax

j , where
the yi’s extend to purities and brixes in the feeding tanks (PA, BA, PB, BB) and
the levels in these tanks (LA, LB) and in the two malaxadors (LMA, LMB). Tstop
is the total time of prediction fixed by Np, prediction ends when at least Np full
cycles are performed for all tachas. Respect to the future manipulated variables,
uj are times of load and unload every vacuum pan plus total flow and proportion
of higher and lower purity syrup in the centrifugal separators of section A and B.
In total the decision variables are 2×NbA1 +2×NbA2 +2×NbA3 +2×NbA3 +
4 × Nc. αi and βj are given values of weights. The optimization is subjected
to the internal model of the process and additional constraints imposed by the
range and operation of the vacuum pans and other units.

4 Simulation Results and Conclusions

The control strategy described in the previous sections was tested in simulation
using the state-of-the-art EcosimPro environment. The process was represented
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Fig. 4. a), b) and c) Controlled variables for section A. d), e) and f) Same variables
but for section B. g) Sequencing of each tacha.

by a detailed simulation built using validated models of the Sugar Processes
Library [5] including sequential and local controls of all units. This model in-
volves 14719 variables and 5652 differential-algebraical equations (DAES). The
controller was programmed in C++ and contains the SQP algorithm which is
able to call another EcosimPro simulation with the MPC internal model (only
1823 variables and 130 DAES) for computing the cost function J each time it
was needed. The sample time was chosen as 15 min. We present an experiment
of 69.4 hours (250000 sec.), with an inflow of feed syrup of 6 kg/sec. with 94.4 of
purity and 72 of brix. All batch control horizons (Nbi, i = A1, A2, A3, B1) were
fixed in 2, and continuous control horizon (Nc) was fixed in 4, so, the number
of decision variables is 32. On the other hand prediction horizon (Np) was fixed
in 3, that is to say, 25 hours of predictions. Control objectives (references and
maximum/minimum values permitted for controlled variables) and weights in
cost function (1) are:

LA(%) PA(%) BA(%) LMA(%) LB(%) PB(%) BB(%) LMB(%)
maximum 80 - - 80 80 - - 80
minimum 20 - - 20 20 - - 20
reference 50 94 70.5 50 50 84 68 50
weight 0.1 1 1 0.1 0.1 1 1 1

Fig. 4 a) and b) shows the levels of melter and malaxador A, and its minimum
and maximum values allowed, fig. 4 c) shows purity and brix in the melter.
Fig. 4 d) e) and f) shows the same variables but for section B. The sequence
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of stages of vacuum pans A1, A2, A3 and B can be seen in fig. 4 g). Time of
stage 1 is the manipulated variable to load syrup and time of stage 9 is the
manipulated variable to unload cooked mass. Cooking, load and unload stages
correspond with numbers 8, 3 and 11. The hybrid controller is able to operate
well the process: performing an adequate scheduling of tachas and maintaining
purities and brixes close of its set points and levels within permitted range.

In this paper a plant-wide control strategy for the crystallization section of a
beet sugar factory has been presented. It is based in a hierarchical view of the
problem and, in the use of MPC with a simplified model that combines material
balances of the continuous units and an abstract model of the batch ones. This
is described in terms of tables computed off-line and prescribed patterns of the
batch units variables and time of occurrence of the events, instead of using
integer variables, allowing to use NLP algorithms instead of MIP ones. The
strategy has proved to perform well in a simulated environment and opens the
door to practical implementations at industrial scale.
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1 Introduction

Increased requirements of flexible production have led to the development of
single-wafer processing equipment for integrated circuit fabrication. For com-
mercially feasible throughput, it is substantial to minimize the process cycle
time by heating only the wafer surface, in an extremely short time period. This
is only possible using radiation heating, leading to RTP systems - Rapid Ther-
mal Processing. Under such circumstances the system is no longer isothermal
and temperature uniformity control becomes an issue of considerable concern
and technical difficulty. Commercial RTCVD reactors (Rapid Thermal Chemical
Vapor Deposition) have been in use for more than a decade, but the technology
still suffers from some limitations [6]. One of these is the inability to achieve with
commercial control equipment an adequate temperature uniformity across the
wafer surface during the rapid heating phases (e.g. from room temperature up
to 1100oC in the order of 1 minute). Deposition of silicon should be performed in
a manner which minimizes crystalline growth defects, such as lattice slip. Such
defects are induced by thermal gradients in the wafer during high temperature
processing. For example, while gradients of about 100oC across a wafer may be
tolerable at a process temperature of 800oC, respective gradients of only 2−3oC
are allowable at process temperatures of 1100oC. Due to the radiant type of
heating, these semiconductor reactors represent a highly nonlinear interactive
multi-input multi-output system.

The problem of RTP-control has been extensively dealt with in many research
projects during the 1990’s [6]. The current paper presents (partial) results of
an extensive research project. This project ran during the 2nd half of the 90’s
between ASM America Inc. (manufacturer of RTP equipment) and Ghent Uni-
versity (developer of EPSAC Model based Predictive Control technology). The
EPSAC (Extended Prediction Self-Adaptive Control) strategy is further referred
in [2, 3, 4, 5]. The paper is organized as follows: section 2 introduces the under-
lying control problem; section 3 reviews briefly the EPSAC/NEPSAC strategy;
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section 4 is the main outcome of this paper as it presents some of the interesting
experimental results on a real-life semiconductor reactor.

2 The RTCVD Reactor

A schematic representation of the RTCVD reactor is given in Fig. 1. The low
profile, horizontal quartz chamber (3) provides the process environment. At the
beginning of a process cycle, a manipulator (2) places the substrate (wafer) into
the reaction chamber onto a susceptor. A reactant gas flows through the reaction
chamber to deposit materials on the substrate. This is a temperature-controlled
process: during a process cycle, a specified sequence of thermal process steps
proceeds in concert with the reactive gas processing (see further Sect. 4). The
system operates at temperatures ranging up to 1200oC. Uniform heating of the
wafer is of paramount importance. The radiant heating system used for rapid
wafer heating consists of halogen lamps, which are grouped into 4 independently-
controllable heating zones: C(enter), F(ront), S(ide), R(ear). The configuration,
shown in Fig. 1, consists of 17 high-power (6 KW/lamp) halogen lamps located
above and below the quartz-glass reaction chamber. The temperature measure-
ment is done at 4 positions, indicated as C, F, S, R in Fig. 1. The considerations
given above render temperature control essentially a multi-input multi-output
(MIMO) problem with strong interaction between zones C-F-S-R. Moreover,
the dynamic relationship between process inputs (manipulated variables = lamp
powers u) and process outputs (controlled variables = wafer surface tempera-
tures y) is nonlinear. This is clear from a well-known law of physics, stating that
the radiant heat exchange depends on the 4th power of the involved tempera-
tures T. During a typical recipe the reactor response can thus be quite different
during a transition from 800oC to 1200oC.

Side

Side

Center

Rear Center Front

FR C

S

S

Wafer

Fig. 1. Left: schematic overview of a single-wafer polysilicon deposition reactor
(3=reaction chamber with wafer). Right: wafer and lamp-bank configuration (top view
of reactor chamber); notice the symmetry of the system taking into account the direc-
tion of the gas flow.
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3 EPSAC Model Based Predictive Control Strategy

Among the diversity of control engineering principles available today, MPC has
clearly some useful characteristics to tackle above mentioned challenges: the lat-
est MPC-versions can deal with nonlinear models, it is a multivariable control
strategy and it takes into account the system constraints a priori by using con-
strained optimization methods. In this application we used our in-house EPSAC
predictive control method, which has been originally described in [2, 3] and has
been continuously improved over time [5]. The latest version, NEPSAC, is a
nonlinear predictive controller which is essentially characterized by its simplic-
ity since it consists of repetitive application of the basic linear EPSAC algorithm
during the controller sampling interval. It leads in an iterative way, after con-
vergence, to the optimal solution for the underlying nonlinear problem.

Many powerful NMPC (Nonlinear Model based Predictive Control) strate-
gies exists today; they have been widely published in the control literature, e.g.
[1]. The advantages of NEPSAC compared to other NMPC methods are mainly
from a practical point-of-view: the approach provides a NMPC algorithm which
is quite suitable for real-life applications as it does not require significant mod-
ification of the basic EPSAC software and as it is computationally simple and
fast compared to other NMPC strategies [7]. The shortcomings are mainly from
a theoretical point-of-view: convergence of the iterative strategy and closed-loop
stability could not (yet) be proven in a formal theoretical way, although nu-
merous simulation studies and several real-life applications have resulted in very
satisfying performance.

3.1 Process Model

The basic control structure is illustrated in Fig. 2. For use in the MPC strategy,
the process is modelled as

y(t) = x(t) + n(t) (1)

with y(t) = process output (TC temperature measurement); u(t) = process in-
put (voltage to SCR power pack); x(t) = model output; n(t) = process/model
disturbance. The model (1) is presented for a SISO-process (Single Input Single
Output), i.e. only 1 TC sensor and 1 SCR control input. This is done for clar-
ity only. The (straightforward) extension to MIMO-systems, in this case a 4x4
system, is presented in detail in [5].

The process disturbance n(t) includes all effects in the measured output
y(t) which do not come from the model output x(t). This is a fictitious (non-
measurable) signal. It includes effects of deposition, gas flow, measurement noise,
model errors, ... These disturbances have a stochastic nature with non-zero av-
erage value. They can be modelled by a colored noise process:

n(t) = C(q−1)/D(q−1) e(t) (2)
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e(t) =white noise (uncorrelated noise with zero mean value)
C(q−1) = 1 + c1q

−1 + . . . + cncq
−nc

D(q−1) = 1 + d1q
−1 + . . . + dnd

q−nd

The filter C(q−1)/D(q−1) is the disturbance model. It is specified as a design
filter, mainly affecting the robustness of the control loop against non-measurable
disturbances and against modelling errors [4].

REACTORNEPSAC

LampsRecipe

4 TC
4 SCR

Wafer

REACTORNEPSAC

LampsRecipe

4 TC
4 SCR

Wafer

Fig. 2. Basic control structure

The model output x(t) represents the effect (as described by a process model)
of the process input u(t) on the process output y(t) and is also a non-measurable
signal. The relationship between u(t) and x(t) is given by the generic dynamic
model:

x(t) = f [x(t− 1), x(t− 2), ...;u(t− 1), u(t− 2)...] (3)

where f [.] represents a known function (process model), which can be a linear
or a nonlinear function of x(.), u(.).

The nonlinear multivariable model used in the RTCVD predictive controller
consisted of 4 sub-models (one for each output i = 1..4):

xi(t) = cixi(t− 1)4 + ai
1xi(t− 1) . . .+ ai

3xi(t− 3) + bi1
1 u1(t− 1) + . . .

+bi1
3 u1(t− 3) + . . .+ bi4

1 u4(t− 1) + . . . + bi4
3 u4(t− 3) + di

(4)

From a theoretical standpoint, the model (4) should include other nonlinear
terms; indeed, the radiative heat flux is based on the temperature difference
between heat source and wafer surface raised to the 4th power. However, from
an engineering standpoint, a simplified yet accurate model was obtained during
the identification phase. This simplified model (4) still contains 68 parameters.
The parameters have been identified successfully from a multiple of real-life
experiments on a pilot-plant RTCVD-reactor. Some model responses can be
observed in Fig. 3, clearly illustrating the interactive multivariable and nonlinear
character of the process.

3.2 EPSAC

The fundamental step in MPC methodology consists in prediction of the process
output y(t + k) at time instant t, indicated by y(t + k|t), k = 1..N2 over the
prediction horizon N2 and based on:
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⇒ all measurements at time t: {y(t), y(t− 1), ..., u(t− 1), u(t− 2), ...}
⇒ future values of the input: {u(t|t), u(t+ 1|t), ...} (postulated at time t)
Using the generic model (1), the predicted values of the output are:

y(t+ k|t) = x(t + k|t) + n(t + k|t) (5)

Prediction of x(t+k|t) and of n(t+k|t) can be done respectively by a) recursion
of the process model (3) and by b) using filtering techniques on the noise model
(2). A detailed description is available in [5].

Fig. 3. Matrix of unit step responses at 860oC (solid) and at 1080oC (dotted) (columns
correspond to SCR-inputs, rows correspond to TC-outputs)

In EPSAC, the future response is then considered as being the cumulative
result of two effects:

y(t + k|t) = ybase(t + k|t) + yoptimize(t + k|t) (6)

The two contributions have the following origins:

ybase(t + k|t) :

• effect of past control u(t− 1), u(t− 2), ... (initial conditions at time t);
• effect of a base future control scenario, called ubase(t + k|t), k ≥ 0, which is

defined a priori; ref. Sect. 3.3 for some ideas on how to choose it;
• effect of future (predicted) disturbances n(t+ k|t).

The component ybase(t+k|t) can be easily and correctly obtained using (2)(3)(5)
− for linear as well as for nonlinear process models f [.] − by taking ubase(t+k|t)
as the model input in (3): u(t+ k|t) = ubase(t + k|t).

yoptimize(t + k|t) :
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u(t+k|t)
u

Nu =4

ubase(t+k|t)
δu(t+k|t)

time
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u

Nu =4

ubase(t+k|t)
δu(t+k|t)δu(t+k|t)

time
current time tpast future

Fig. 4. The EPSAC concept of base/optimizing controls

• effect of the optimizing future control actions
{δu(t|t), δu(t+ 1|t), . . . δu(t+ Nu − 1|t)} with δu(t + k|t) = u(t + k|t) −
ubase(t+ k|t).

Figure 4 illustrates the concept. The design parameter Nu is called the control
horizon, a standard concept from the MPC literature. From Fig. 4 it is obvious
that the component yoptimize(t+k|t) is the cumulative effect of a series of impulse
inputs and a step input:

yoptimize(t + k|t) = hkδu(t|t) + hk−1δu(t+ 1|t) + ...

+gk−Nu+1δu(t+ Nu − 1|t)
(7)

The parameters g1, g2, ...gk, ... are the coefficients of the unit step response of
the system, i.e. the response of the system output for a stepwise change of the
system input (scaled to amplitude 1). The parameters h1, h2, ...hk, ... are the
coefficients of the unit impulse response of the system (hk = gk − gk−1). For a
linear system, the unit step response does not depend on the operating point, and
its coefficients can be calculated once off-line, using the process model. Notice
that this will not be the case in the NEPSAC strategy (ref. Sect. 3.3). Indeed, in
the case of a nonlinear system, the step response is different for each operating
point. The coefficients have to be obtained at each sampling instant by explicitly
entering a step of suitable size in the process model (4), which is initialized at
the current process state. The value of the step-size should have the order of
magnitude of the normal process input variations. However, its exact value is
not critical, since the effect of the parameters gk, hk will gradually disappear in
NEPSAC (ref. Sect. 3.3).

Using (6) and (7), the key EPSAC-MPC equation:

Y = Ȳ + GU (8)

is obtained, after introducing the following matrix notation:

Y = [y(t+ N1|t) · · · y(t+ N2|t)]T

Ȳ = [ybase(t + N1|t) · · · ybase(t + N2|t)]T

U = [δu(t|t) · · · δu(t + Nu − 1|t)]T
G =

⎡⎢⎢⎢⎢⎣
hN1 ... gN1−Nu+1

hN1+1 ... ...

...
. . .

...
hN2 ... gN2−Nu+1

⎤⎥⎥⎥⎥⎦ (9)
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The controller output is then the result of minimizing the cost function:

V (U) =
N2∑

k=N1

[r(t + k|t)− y(t+ k|t)]2 (10)

with r(t + k|t) the desired reference trajectory (called recipe in semiconduc-
tor terminology) and the horizons N1, N2 being design parameters. It is now
straightforward to derive the (unconstrained) EPSAC solution:

U∗ = [GTG]−1[GT(R−Y)] (11)

Only the first element δu∗(t|t) in U∗ is required in order to compute the actual
control action applied to the process. At the next sampling instant t+1, the whole
procedure is repeated, taking into account the new measurement information
y(t + 1); this is called the principle of receding horizon control. As well-known
in current MPC-practice, the cost index (10) can be extended with constraints,
leading to a quadratic programming problem. This has been the approach to
tackle input saturation constraints in the RTCVD application.

3.3 NEPSAC

The calculation of the predicted output with (6) involves the superposition prin-
ciple. When a nonlinear system model f [.] is used in (3), above strategy is only
valid - from a practical point of view - if the term yoptimize(t+k|t) in (6) is small
enough compared to the term ybase(t+ k|t). When this term would be zero, the
superposition principle would no longer be involved. The term yoptimize(t+ k|t)
will be small if δu(t + k|t) is small, see (7). Referring to Fig. 4, δu(t + k|t) will
be small if ubase(t + k|t) is close to the optimal u∗(t + k|t) .

This can be realized iteratively, by executing the following steps at each con-
troller sampling instant:

1. Initialize ubase(t + k|t) as: u1
base(t + k|t) = u∗(t + k|t− 1) , i.e. the optimal

control sequence as computed during the previous sampling instant; in other
words: u∗(t + k|t− 1) is used as a 1st estimate for u∗(t + k|t)

2. Calculate δu1(t + k|t) using the linear EPSAC algorithm
3. Calculate the corresponding y1

optimize(t + k|t) with (7) and compare it to
y1

base(t + k|t) , which is the result of u1
base(t + k|t)

4. • In case y1
optimize(t+k|t) is NOT small enough compared to y1

base(t+k|t):
re-define ubase(t+ k|t) as u2

base(t+ k|t) = u1
base(t+ k|t)+ δu1(t+ k|t) and

go to 2. The underlying idea is that u1
base(t + k|t) + δu1(t + k|t) - which

is the optimal u∗(t + k|t) for a linear system - can act as a 2nd estimate
for the optimal u∗(t+ k|t) in case of a nonlinear system

• In case yi
optimize(t + k|t) is small enough compared to yi

base(t + k|t): use
u(t) = ui

base(t|t) + δui(t|t) as the resulting control action of the current
sampling instant (notice that i = 1, 2, . . ., according to the number of
iterations).
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This algorithm results after convergence to the optimal solution for the under-
lying nonlinear predictive control problem. A convergence proof is not available;
however, simulation results and practical experience both look very promising.
The number of required iterations depends on how far the optimal u∗(t + k|t)
is away from the optimal u∗(t + k|t − 1). In quasi-steady-state situations, the
number of iterations is low (1 . . . 2). On the other hand, during transients the
number of iterations might raise to 10. As the NEPSAC algorithm consists of a
repetitive use of the basic linear EPSAC algorithm and as EPSAC requires a low
computational effort, this is acceptable in practice. In the RTCVD application,
10 iterations require about 100 ms, which is a small fraction of the controller
sampling period (2 s).

4 Experimental Results

Hundreds of test runs on different types of real-life RTCVD-reactors have shown
the excellent performance of the MPC strategy compared to the traditional
(commercial) PID approach. During the comparison, the PID controllers were
configured and tuned by experienced staff of the company, according to their
expert skill of many years. Figure 5 presents typical PID results during a recipe
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Fig. 5. PID with ramp rate 6oC/s (center/front/side/rear wafer surface temperatures)
(left) and NEPSAC with ramp rate 15oC/s (center/front/side/rear wafer surface tem-
peratures) (right)

with ramp rates of about 6oC/s. This is the maximum ramp rate that is fea-
sible on this kind of equipment under PID control (note that there is a trend
towards higher ramp rates in order to reduce the process cycle time; however the
higher the ramp rate, the more difficult it is to keep control of the temperature-
uniformity over the wafer surface). Figure 5 presents also typical NEPSAC-MPC
results during a recipe with ramp rates of about 15oC/s. Although the ramp
rate is much higher, it is clear that tight control of the temperature uniformity
is still possible.
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Fig. 6. Controller performance

To indicate the practically useful improvement that can be obtained with the
multivariable NEPSAC controller, its performance versus 4 independent com-
mercial PID controllers (=current practice) was compared for a blanket epitaxial
deposition process. Figure 6 indicates the desired temperature profile during this
process. The upper part represents a typical recipe; temperature offsets are in-
tentional and required due to the position of the thermocouples. The lower part
represents the un-intentional gradient in the wafer. In Table 1 are presented the
key controller performance parameters during and after ramping-up. The supe-
rior performance of the MPC directly translates in a process time reduction. The
achievable ramp rate with the 4 PID controllers is limited due to the thermal
gradients, which introduce crystallographic dislocations into the wafer. With a
twofold increased ramp rate and a reduced settling time, the nonlinear multi-
variable MPC results in a robust process without introducing dislocations into
the wafer.

Table 1. Controller Performance

4 PID NEPSAC

Overshoot (oC) 7 0
Stabilization time (seconds) 25 7
Average Unintentional Gradient (oC) 4.1 1.3

5 Conclusions

The objective of this paper was to describe a real-life application of NMPC in the
field of semiconductor processing. The process configuration and operation of a
RTCVD-reactor (Rapid Thermal Chemical Vapor Deposition) has served as an
example to illustrate the possibilities of advanced control. This application is a
real challenge for control engineering, in that it is a highly interactive multi-input
multi-output nonlinear process with very stringent performance specifications for
the control system. An extensive series of experiments has been done, comparing
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the performance of the commercial PID-type control system to that of the NEP-
SAC predictive control strategy. The results indicate that the performance of the
predictive control strategy surpasses by far the performance of the controllers
which have traditionally been used in this kind of application.
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1 Introduction

The abundance of batch processes and continuous processes with wide operating
ranges has motivated the development of nonlinear MPC (NMPC) techniques,
which employ nonlinear models for prediction. The prediction model is typically
developed once in the beginning of implementation of an NMPC scheme. How-
ever, as time progresses, slow drifts in unmeasured disturbances and changes in
process parameters can lead to significant mismatch in plant and model behav-
ior. Also, NMPC schemes are typically developed under the assumption that
sensors and actuators are free from faults. However, soft faults, such as biases
in sensors or actuators, are frequently encountered in the process industry. In
addition to this, some actuator(s) may fail during operation, which results in
loss of degrees of freedom for control. Occurrences of such faults and failures can
lead to a significant degradation in the closed loop performance of the NMPC.

The conventional approach to deal with the plant model mismatch in the
NMPC formulations is through the introduction of additional artificial states in
the state observer. The main limitation of this approach is that number of extra
states introduced cannot exceed the number of measurements. This implies that
it is necessary to have a priori knowledge of which subset of faults are most likely
to occur or which parameters are most likely to drift. In such a formulation, the
state estimates can become biased when un-anticipated faults occur. Moreover,
the permanent state augmentation approach cannot systematically deal with the
difficulties arising out of sensor biases or actuator failures.

Attempts to develop fault-tolerant MPC schemes have mainly focused on
dealing sensor or actuator failures [1]. Recently, Prakash et al. [2] have proposed
an active fault tolerant linear MPC (FTMPC) scheme, which can systematically
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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deal with soft faults in a unified framework. The main limitation of this approach
arises from the use of linear perturbation model for performing control and
diagnosis tasks. The use of linear models not only restricts its applicability to a
narrow operating range but also limits the diagnostic abilities of fault detection
and identification (FDI) components to only linear additive type faults. As a
consequence, many faults that nonlinearly affect the system dynamics, such as
abrupt changes in model parameters or unmeasured disturbances, have to be
approximated as linear additive faults. Moreover, the FTMPC scheme doesn’t
deal with failures of sensors or actuators.

In the present work, we propose a fault tolerant NMPC (FTNMPC) formula-
tion with an intelligent nonlinear state estimator, Extended Kalman Filter (EKF),
which can diagnose the root cause of model plant mismatch and correct itself. The
whiteness of innovation sequence generated by the state estimator is taken as an
indicator of good health of the model. A significant and sustained departure from
this behavior is assumed to result from model plant mismatch and a nonlinear
version of generalized likelihood ratio (GLR) based FDI scheme is used to analyze
the root cause of model plant mismatch. The proposed FDI method also gener-
ates an estimate of the magnitude of the fault, which is used to compute an on-
line bias correction to the model at the location isolated by the FDI scheme. The
model correction strategy overcomes the limitation on the number of extra states
that can be added to the state space model in NMPC for offset removal and al-
lows bias compensation for more variables than the number of measured outputs.
The proposed FTNMPC eliminates offset between the true values and set points
of controlled variables in presence of variety of faults while conventional NMPC
does not. Also, the true values of state variables, manipulated inputs and mea-
sured variables are maintained within their imposed bounds in FTNMPC while
in conventional NMPC these may be violated when soft faults occur. When an
actuator fails, the proposed FTNMPC formulation is able to make modifications
in the controller objective function and constraint set to account for the loss of
a degree of freedom. These advantages of the proposed scheme are demonstrated
using simulation studies on a benchmark continuous stirred tank reactor (CSTR)
control problem, which exhibits strongly nonlinear dynamics.

2 Fault Diagnosis Using Nonlinear GLR Method

In this section, we first describe the FDI method as applied once when a fault
is detected for the first time. Consider a continuous time nonlinear stochastic
system described by the following set of equations

x(k + 1) = x(k) +

(k+1)T∫
kT

F [x(t),u(k),p,d(k)] dt (1)

y(k) = H [x(k)] + v(k) ; d(k) = d + w(k) (2)

where x ∈Rn,y ∈Rr and u ∈ Rm represent the state variables, measured outputs
and manipulated inputs, respectively. The variables p ∈Rp and d ∈Rd represent
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the vector of parameters and unmeasured disturbance variables, respectively,
which are likely to undergo deterministic changes. The unmeasured disturbances
are also assumed to undergo random fluctuations. For mathematical tractability,
these are simulated as piecewise constant between each sampling period and
changing randomly from their nominal value at each sampling instant. Here, v(k)
and w(k) are zero mean Gaussian white noise sequences with known covariance
matrices. Equations 1 and 2 represent the normal or fault free behavior of the
process and are used to develop the standard linearized EKF [3]. In remainder
of the text, we refer to this EKF as normal EKF.

In order to isolate faults and estimate their magnitudes, it is necessary to
develop a model for each hypothesized fault that describes its effect on the
evolution of the process variables. The models that are used to describe some of
the faults are as follows:

• Bias in jth sensor : Subsequent to occurrence of bias in the sensor at instant
t, the behavior of measured outputs is modeled as

yyj (k) = H [x(k)] + byjeyjσ(k − t) + v(k)

Here, byj represents sensor bias magnitude, eyj represents sensor fault vector
with jth element equal to unity and all other elements equal to zero and
σ(k − t) represents a unit step function defined as

σ(k − t) = 0 if k ≺ t ; σ(k − t) = 1 if k 1 t

• Abrupt change in jth unmeasured disturbance variable:

ddj (k) = d + w(k) + bdjedjσ(k − t)

• Failure of jthActuator / Sensor:

umj (k) = m(k) +
[
bmj − eT

mj
m(k)

]
emjσ(k − t) (3)

ysj (k) = H [x(k)] +
[
bsj − eT

sj
H [x(k)]

]
esjσ(k − t) + v(k) (4)

where bmj/bsj represents constant value at which the jthactuator/sensor is
stuck. Note that we differentiate the controller output m and manipulated
input u entering the process. The controller output equals the manipulated
input under the fault free conditions. Similar fault models can be formulated
for other faults.

To detect occurrence of a fault, it is assumed that the sequence of innovations
γ(k) generated by the normal EKF is a zero mean Gaussian white noise pro-
cess with covariance matrix V(k). A sustained departure from this behavior is
assumed to result from a fault. Simple statistical tests, namely, fault detection
test (FDT) and fault confirmation test (FCT) as given in [4] are modified based
on innovations obtained from EKF and used for estimating time of occurrence of
fault. Taking motivation from nonlinear GLR method proposed for gross error
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detection under steady-state conditions [5], we propose a version of nonlinear
GLR method under dynamic operating conditions. By this approach, once the
FCT confirms the occurrence of a fault at instant t, we formulate a separate
EKF over a time window [t, t+N ] for each hypothesized fault. For example, as-
suming that actuator j has failed at instant t, the process behavior over window
[t, t+ N ] can be described as follows

xmj (i + 1) = xmj (i) +

(i+1)T∫
iT

F
[
xmj (t),umj (i),p,d

]
dt (5)

ymj (i) = H
[
xmj (i)

]
+ v(k) (6)

where umj (i) is given by equation 3. The magnitude estimation problem can
now be formulated as a nonlinear optimization problem as follows

min
bmj

(Ψmj ) =
t+N∑
i=t

γT
mj

(i)Vmj (i)
−1γmj (i) (7)

where γmj (i) and Vmj (i) are the innovations and the innovations covariance ma-
trices, respectively, generated by the EKF constructed using equations 5 and 6
with initial state x̂(t|t). The estimates of fault magnitude can be generated for
each hypothesized fault in this manner. The fault isolation is viewed as a problem
of finding the observer that best explains the output behavior observed over the
window. Thus, the fault that corresponds to minimum value of the objective func-
tion, Ψfj , with respect to fj, where f ∈ (p, d, y, u,m, s) represents the fault type,
is taken as the fault that has occurred at instant t. Since the above method is com-
putationally expensive, we use a simplified version of nonlinear GLR proposed by
Vijaybaskar, [6] for fault isolation. This method makes use of the recurrence rela-
tionships for signature matrices derived under linear GLR framework [4], which
capture the effect of faults on state estimation error and innovation sequence. If
a fault of magnitude bfj occurs at time t, the expected values of the innovations
generated by the normal EKF at any subsequent time are approximated as

E [γ(i)] = bfjGf (i; t)efj + g
fi
∀i 1 t (8)

Here, Gf (i; t) and gfj (i; t) represent fault signature matrix and fault signature
vector, respectively, which depend on type, location and time of occurrence of
a fault. For example, if jth actuator fails, then the corresponding signature ma-
trices and the signature vectors can be computed using the following recurrence
relations for i ∈ [t, t + N ]:

Gm(i; t) = C(i)Γu(i)−C(i)Φ(i)Jm(i− 1; t) (9)

gmj
(i; t) = C(i)Γu(i)

[
eT

mj
m(i)

]
emj −C(i)Φ(i)j

mj
(i− 1; t) (10)

Jm(i; t) = Φ(i)Jm(i− 1; t) + L(i)Gm(i− 1; t)− Γu(i) (11)

jmj (i; t) = Φ(i)jmj (i− 1; t) + L(i)g
mj

(i− 1; t)− Γu(i)
[
eT

mj
m(i)

]
emj (12)



Integrating Fault Diagnosis with Nonlinear Model Predictive Control 517

Here,

Γu(i) =

T∫
0

exp (A(i)q)Bu(i)dq ; Bu(i) =
[
∂F(x,m,p,d)

∂m

]
(x̂(i|i),m(i),p,d)

Φ(i) = exp [A(i)T ] ; A(i) =
[
∂F
∂x

]
(x̂(i|i),m(i),p,d)

; C(i) =
[
∂H(x)
∂x

]
(x̂(i|i)

are the linearized discrete time varying system matrices and L(i) is the Kalman
gain computed using the normal EKF. Similar recurrence relations can be con-
structed for other types of faults. For each hypothesized fault, the log likelihood
ratio, Tfj , is computed as follows

Tfj =
[
d2

fj
/cfj

]
+

t+N∑
i=t

gT
fj

(i; t)V(i)−1 [2γ(i)− gfj (i; t)
]

(13)

dfj = efj

t+N∑
i=t

GT
f (i; t)V(i)−1 [γ(i)− gfj (i; t)

]
(14)

cfj = eT
fj

t+L∑
i=t

GT
f (i; t)V(i)−1Gf (i; t)efj (15)

where γ(i) and V(i) are obtained using normal EKF. The fault location can
be obtained from the maximum value of the test statistic Tfj . An estimate of
the bias magnitude is generated as b(0)fj

= dfj/cfj . Once a fault fj is isolated, a
refined estimate of the fault magnitude is generated by formulating a nonlinear
optimization problem as described above, starting from the initial guess of b(0)fj

.

3 Fault Tolerant NMPC (FTNMPC) Formulation

To begin with, let us consider conventional NMPC formulation. Let us assume
that at any instant k, we are given p future manipulated input moves

{m(k|k),m(k + 1|k)........m(k + p− 1|k)}

The future (predicted) estimates of the state variables and outputs, which have
been compensated for plant model mismatch, are given as follows

x̃(k + j + 1|k) = x̂(k + j|k) +

(k+l+1)T∫
(k+1)T

F
[
x̂(τ),m(k + j|k),p,d

]
dτ (16)

x̂(k + j + 1|k) = x̃(k + j + 1|k) + L(k)γ(k); ε(k) = y(k) − ŷ(k|k) (17)
ŷ(k + j|k) = G [x̂(k + j|k)] + ε(k) ; j ∈ [0, p] (18)

At any sampling instant k, the nonlinear model predictive control problem is
defined as a constrained optimization problem whereby the future manipulated
input moves are determined by minimizing an objective function
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min
m(k|k),m(k + 1|k)........m(k + q − 1|k)

{∑p
j=1 ef (k + j|k)TWEef(k + j|k)+∑q−1

j=0 ∆m(k + j|k)TWu∆m(k + j|k)

}

subject to following constraints

m(k + q|k) = m(k + q + 1|k) = .......m(k + p− 1|k) = m(k + q − 1|k)
mL ≤ m(k + j|k) ≤mU (for j = 0..q − 1)

∆mL ≤ ∆m(k + j|k) ≤ ∆mU (for j = 0..q − 1)
ef (k + j|k) = yr(k + j|k)− ŷ(k + j|k)

∆m(k + j|k) = m(k + j|k)−m(k + j − 1|k)

Here, yr(k + j|k) represents the future setpoint trajectory.
We now present the modifications necessary in the NMPC formulation when

a fault is detected for the first time by FDI component. Consider a situation
where FDT has been rejected at time instant t and subsequently FCT has been
rejected at time t + N for the first time. Further assume that at instant t + N
we have isolated a fault f using modified GLR method and estimated the fault
magnitude using data collected in the interval [t, t + N ]. During the interval
[t, t + N ], the NMPC formulation is based on the prediction model given by
equations 16 to 18. However after the identification of the fault at instant t+N ,
we modify the model for k ≥ t + N as follows:

• Sensor faults: If sensor bias is isolated, the measured output is compensated
as yc(k) = y(k) − b̂yjeyj and used in FDI as well as MPC formulation for
computing innovation sequence. If a sensor failure is diagnosed, the measure-
ments coming from a failed sensor are replaced by corresponding estimates
in the FTNMPC formulation.

• Step jump in unmeasured disturbance: The prediction equation in the
state estimator and future predictions in NMPC are modified as follows

x̂(k + 1|k) = x̂(k|k) +

(k+1)T∫
kT

F
[
x̂(t),m(k),p,d + b̂djedj

]
dt

x̂(k + l + 1|k) = x̂(k + l|k)

+

(k+l+1)T∫
(k+l)T

F
[
x̂(τ),m(k + l|k),p,d+b̂djedj

]
dτ + L(k)γ(k)

• Failed actuator: In state estimation the failed actuator is treated as con-
stant mj(k) = b̂mj , where b̂mj is the estimate of stuck actuator signal for
jth actuator. Also, in the NMPC formulation, we introduce additional con-
straints as mj(k+l|k) = b̂mj for l = 0....q−1. If number of setpoints specified
in the NMPC formulation equals the number of manipulated inputs, then we
modify the NMPC objective function by relaxing setpoint on one of the con-
trolled outputs.
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The main concern with the above approach is that the magnitude and the
position of the fault may not be accurately estimated. Thus, there is a need
to introduce integral action in such a way that the errors in estimation of fault
magnitude or position can be corrected in the course of time. Furthermore, other
faults may occur at subsequent time instants. Thus, in the on-line implementa-
tion of FTNMPC, we resume application of FDI method starting at t + N + 1.
The FDI method may identify a fault in the previously identified location or
a new fault may be identified. In either case, we modify the above equations
with cumulative estimate of the bias as described in Prakash et al. [2]. These are
computed as b̃fj =

∑nfj

l=1 b̂fj (l) with initial value b̂fj (0) = 0, where nfj represents
the number of times a fault of type f was isolated in the jth position. The use
of cumulative bias estimates can be looked upon as a method of introducing
integral action to account for plant model mismatch, in which some of the states
(cumulative bias estimates) are integrated at much slower rate and at regular
sampling intervals.

4 Simulation Case Study

Simulation studies are carried out to evaluate the proposed FTNMPC scheme
on non-isothermal CSTR system. The reactor system has two state variables,
the reactor concentration (CA) and the reactor temperature(T ), both of which
are measured and controlled. The coolant flow rate Fc and feed flow rate F
are the manipulated inputs while the feed concentration(CAO) is treated as a
disturbance variable. Model equations are given in Marlin. ([7]) and nominal pa-
rameters, simulation conditions and tuning parameters used for controller tuning
are described in Prakash et al. [4] and [2] . The bounds imposed on the inputs
are as follows

0 ≤ Fc ≤ 30m3/min
0 ≤ F ≤ 2m3/min

Ten different faults consisting of biases in two measurements, biases in two ac-
tuators, failures of the two actuators, failures of two sensors, step change in
inlet concentration and change in the frequency factor were hypothesized for
this process.

In the conventional NMPC and FTNMPC the control objective is to maintain
the temperature close to 393.95oK, while ensuring that the temperature does
not exceed the set-point by more than 1.5oK, i.e. T ≤ 395.45oK A comparison of
performances of conventional NMPC and FTNMPC, when a bias of magnitude
−5oK occurs in the measured temperature at sampling instant k = 11, is given
in Figure 1(a). In case of NMPC, the true temperature exceeds the constraint
limit when the bias occurs. Thus, the conventional NMPC leads to an offset be-
tween the true temperature and the set-point as well as violation of constraint.
The FTNMPC scheme on the other hand, correctly isolates the fault, compen-
sates for the bias in temperature measurement (estimated magnitude −4.75oK)
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Fig. 2. FTNMPC behavior for Actuator Failure

and thereby maintains the true temperature within the constraint limit. Thus
FTNMPC also eliminates the offset between true temperature and the set-point,
as illustrated in Figure 1(a).

It may be expected that the advantages of FTNMPC will become visible
in case of inferential control where estimated states are used for control. In
order to verify this we simulate failure of sensor for concentration. After the
failure is detected and diagnosed, FTNMPC switches over to inferential control
using concentration estimates generated using temperature measurements. The
comparison of performances of conventional NMPC and FTNMPC, when sensor
1 fails at k =6 and a step jump of 0.5 kmol/m3 is introduced at k =86 in the
inlet concentration (estimated magnitude 0.5233 kmol/m3) are shown in Figure
1(b). It can be seen that the conventional NMPC results in offset between true
concentration and the setpoint. The FTNMPC formulation on the other hand is
able to maintain it at the desired setpoint even after the sensor failure and the
step change in the disturbance. This can be attributed to the fact that unbiased
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state estimates are obtained once the faults are correctly identified by the FDI
component and model is corrected subsequently to accommodate the faults.

Figure 2(a) shows response of FTNMPC when the actuator for coolant flow
is stuck at 1.04 m3/min subsequent to k = 6. The corresponding manipulated
input variation is shown in Figure 2(b). As evident from Figure 2(a), the state
estimation deteriorates subsequent to the failure of the actuator. There is an
offset in the true values and the setpoints during the time window used for fault
isolation. However, the FDI component correctly isolates the actuator failure and
estimates the constant value as 1.037 m3/min. Subsequent to on-line correction
of the model, the state estimate improves and concentration is again controlled
close to the setpoint using the remaining degree of freedom.

5 Conclusions

In this work, a fault tolerant NMPC scheme, equipped with an intelligent state
estimator has been proposed. In FTNMPC formulation, to account for plant
model mismatch, the corrections to the model are made as and when necessary
and at the qualified locations identified by the nonlinear FDI component. The
proposed fault accommodation strategy overcomes the limitation on the number
of extra states that can be augmented to the state space model in NMPC and FDI
formulations and allows bias compensation for more variables than the number
of measured outputs. The proposed FTNMPC has significant advantages over
the conventional NMPC while dealing with soft faults such as actuator and
sensor biases and step jumps in unmeasured disturbances or model parameters.
When sensor or actuator failure is isolated, the proposed FTNMPC formulation
redefines the controller objectives to accommodate the fault.
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Summary. In this paper, a new contractive receding horizon scheme is proposed for
the stabilization of constrained nonlinear systems. The proposed formulation uses a
free finite prediction horizon without explicit use of a contraction stability constraint.
Another appealing feature is the fact that the resulting receding horizon control is in
pure feedback form unlike existing contractive schemes where open-loop phases or a
memorized threshold are used to ensure the contraction property in closed loop. The
control scheme is validating on the swing-up and stabilization problem of a simple and
a double inverted pendulums.

1 Introduction

Since the first rigorous proof of the stability of nonlinear receding horizon con-
trol schemes [2], it appeared clearly that the closed loop stability is related to
some terminal conditions. The early versions of this terminal constraint took
the form of an infinite prediction horizon [2] or an equality constraint on the
state [2, 3, 4]. These two forms show evident drawbacks since infinite horizon
formulations are impossible to compute for general nonlinear systems while the
equality constraints on the state makes the underlying optimization problem
hardly tractable numerically. These drawbacks gave rise to formulations where
the final state is forced to belong to some terminal region of appropriate
properties. By doing so, the final equality constrained is replaced by an inequal-
ity constraint [5, 6, 9]. It goes without saying that an exhaustive survey of all
existing formulations that lead to closed loop stability is beyond the scope of
the present paper. An excellent survey can be found in [7].

In this paper, interest is focused on contractive receding horizon schemes [8].
These schemes are based on the assumption according to which there exists a
contraction factor γ ∈ [0, 1[ such that for any initial state x0 there is a con-
trol profile u(·) such that the solution xu(·) satisfies the contraction constraint
‖xu(T (x0))‖S ≤ γ‖x0‖S for some time T (x0) and some weighting positive def-
inite matrix S. Therefore, given the present state x, the associated open loop
optimal control problem is given by [7, 8] :
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min
u(·),T

V (xu(·, x), T ) under u(·) ∈ U and ‖xu(T, x)‖S ≤ γ‖x‖S. (1)

Once optimal solutions û(·, x) and T̂ (x) are obtained, two possible implementa-
tions are classically proposed [8]:

X Either the optimal control û(·, x(t)) is applied in an open-loop way during
the interval [t, t + T̂ (x(t))]. This means that no feedback is applied during
T̂ (x(t)) time units that may be too long.

X Or the state x(t) is memorized together with the duration T̂ (x(t)) and during
the interval [t, T̂ (x(t))], a sampling period τ > 0 is used such that Nτ =
T̂ (x(t)) and a fixed final time receding horizon scheme is used on [t, t +
T̂ (x(t))] based on the following optimization problem

min
u(·)

V (xu(·, x(t + jτ))) under u(·) ∈ U

and ‖xu(t + T̂ (x(t)), x(t + jτ))‖S ≤ γ‖x(t)‖S , (2)

which makes the behavior heavily dependent on the past information x(t) and
T̂ (x(t)) that might become irrelevant due to external disturbances that may even
make (2) unfeasible. The aim of the present paper is to propose a contractive
scheme that leads to a pure state feedback form without memory effect. This is
done using the supremum norm and without an explicit contractive constraint
in the problem formulation. Furthermore, the open loop control parametrization
is explicitly handled by introducing the notion of translatable parametrization.
The paper is organized as follows : Section 2 states the problem and gives some
notations and definitions. The proposed contractive formulation is presented in
section 3 with the related stability results. Finally section 4 shows some illustra-
tive examples.

2 Definitions, Notations and Problem Statement

Consider the class of nonlinear systems given by

ẋ = f(x, u) ; x ∈ R
n ; u ∈ R

m, (3)

where x and u stand for the state and the control vectors respectively. F (t, x0,u)
denotes the solution of (3) with initial state x0 under the control profile u defined
on [0, t]. The aim of this paper is to define a sampled state feedback of the form :

u(t) = K(x(kτs)) ; ∀t ∈ [kτs (k + 1)τs[, (4)

that asymptotically stabilizes the equilibrium state x = 0. The following as-
sumption is needed to establish the main result of this paper:
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Assumption 2.1. For all finite horizon T > 0, the following asymptotic prop-
erty holds :

lim
‖x0‖→∞

[
min

u∈W[0,T ]
min

t∈[0,T ]
‖F (t, x0,u)‖

]
=∞ (5)

for all compact subset W ⊂ Rm. (In other words, infinitely fast state excursions
need infinite control) '

Note that assumption 2.1 is rather technical since it only excludes systems with
finite inverse escape time.

2.1 Piece-Wise Constant Control Parametrization

Let some sampling period τs > 0 be given. One way to define a low dimensional
parametrization of piece-wise constant control profiles over the time interval
[0, Nτs] that belongs to a closed subset U ⊂ Rm is to follow the following two
step procedure :

1. First, define a map

C : P→ R
m × · · · × R

m p � C(p) =
(
u1(p), . . . , uN (p)

)
; ui(p) ∈ R

m.

2. Project C(p) on the admissible subset UN using the projection map PU,
namely :

PUN ◦ C : P→ U× · · · × U p � PUN ◦ C(p)=
(
PU(u1(p)), . . . , PU(uN (p))

)
/

3. For all t ∈ [(k − 1)τs, kτs], the control is given by u(t) = PU(uk(p)) =:
Upwc(t, p).

Definition 1. The map C defined above is called the parametrization map
while for given C and U, the family

{
Upwc(·, p)

}
p∈P

is called a P-admissible
parametrization of control profiles. '

Definition 2. A P-admissible parametrization is said to be translatable if and
only if for each p ∈ P, there exists some p+ ∈ P such that ui(p+) = ui+1(p) for
all i ∈ {1, . . . , N − 1} '

Definition 3. A P-admissible parametrization {Upwc(·, p)}p∈P is called proper if
and only if for all t1 < t2, one has limp→∞

∫ t2
t1
‖Upwc(τ, p)‖2 dτ = ∞ whenever

P is radially unbounded. '

In what follows, the short notation F (·, x, p) is used instead of F (·, x,Upwc(·, p)).

2.2 The Contraction Property

Let some sampling period τs > 0 be given together with an associated P-
admissible control parametrization {Upwc(·, p)}p∈P.
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Definition 4. The system (3) and the control parametrization {Upwc(·, p)}p∈P

satisfy the contraction property if and only if there exists γ ∈]0, 1[ s.t. for all x,
there exists pc(x) ∈ P such that :

min
q∈{1,...,N}

‖F (qτs, x, p
c(x))‖2 ≤ γ‖x‖2, (6)

where pc(·) is bounded over bounded sets of initial conditions. If moreover, there
exists a continuous function ϕ : Rn → R+ s.t. for all x :

‖FN (·, x, pc(x))‖2∞ ≤ ϕ(x) · ‖x‖2 where ‖Fq(·, x, p)‖2∞= max
i∈{1,...,q}

‖F (iτs, x, p)‖2,

then the contraction property is said to be strong. '

2.3 Further Notations

For any bounded subset S of an euclidian space, ρ(S) denotes the radius of S.
For all integer k ∈ N, the notation k+ := k+ 1 is used. B(0, r) denotes the open
ball centered at 0 and of radius r in some euclidian space that is identified from
the context. Finally, the projection step is systematically implicitly assumed by
writing ui(p) to denote PU(ui(p)).

3 A Contractive Receding-Horizon Scheme

In all meaningful and realistic applications, there always exists a set of admissible
initial conditions, say X ⊂ Rn that corresponds to realistic initial configurations
of the controlled system. Therefore, let such subset X ⊂ Rn be fixed once and for
all. Assume that a P-admissible control parametrization is defined and that the
strong contraction assumption holds (see definition 4). Associated to the set X of
initial conditions, a subset of admissible control parameters, denoted hereafter
by PX is defined as follows :

PX := P ∩B
(
0, sup

x∈B̄(0,ρ(X))
‖pc(x)‖ + ε

)
⊆ P ⊆ R

np . (7)

Namely, a subset of the ball in Rnp that contains, among others, all the vectors
of parameters : {

pc(x)
}

x∈B̄(0,ρ(X))

invoked in the strong contraction assumption. It goes without saying that since
pc(·) is assumed to exist but is not explicitly known, the exact computation
of the radius of the ball defining PX cannot be easily done. Therefore, in the
forthcoming developments, when PX is referred to, it is an superset of it that
is to be understood. This superset is obtained by taking a sufficiently high radius



A Low Dimensional Contractive NMPC Scheme 527

for a ball in Rnp centered at the origin. Consider the following open-loop optimal
control problem defined for some α > 0 and ε > 0:

P ε,∗
α (x) : min

(q,p)∈{1,...,N}×PX

J∗(x, q, p) =

‖F (qτs, x, p)‖2 + α
q

N
·min

{
ε2, ‖Fq(·, x, p)‖2∞

}
. (8)

Note that if all the functions involved in the definition of the problem (the
system’s map f and the control parametrization) are continuous then the cost
function is continuous in p. This together with the compactness of the set PX

guarantee that the problem P ε,∗
α (x) admits a solution for all x ∈ X and hence

is well posed. Therefore, let us denote the solution of (8) for some x ∈ X by
q̂(x) ∈ {1, . . . , N} and p̂(x) ∈ PX. These solutions are then used to define the
receding horizon state feedback given by :

u(kτs + τ) = u1(p̂(x(kτs))) ∀τ ∈ [0, τs[. (9)

The stability result associated to the resulting feedback strategy is stated in the
following proposition :

Proposition 1. If the following conditions hold :

1. The function f in (3) and the parametrization map are continuous and sat-
isfy the strong contraction property (see definition 4). Moreover, the system
(3) satisfies assumption 2.1.

2. For all x ∈ X and all admissible u = Upwc(·, p), the solution of (3) is defined
for all t ∈ [0, Nτs] and all p ∈ PX. (No explosion in finite time shorter than
Nτs).

3. The control parametrization is translatable on PX in the sense of definition 2.

Then, there exist sufficiently small ε > 0 and α > 0 such that the receding
horizon state feedback (9) associated to the open-loop optimal control problem
(8) is well defined and makes the origin x = 0 asymptotically stable for the
resulting closed loop dynamics with a region of attraction that contains X. '

Proof. The fact that the feedback law is well defined directly results from
the continuity of the functions being involved together with the compactness of
PX. Let us denote by xcl(·) the closed loop trajectory under the receding horizon
state feedback law. Let us denote by V (x) the optimal value of the cost function,
namely : V (x) = J∗(x, q̂(x), p̂(x)).

' V is continuous V (x) can clearly be written as follows

V (x) = inf
{
V1(x), . . . , VN (x)

}
; Vq(x) := min

p∈PX

J∗(x, q, p). (10)

But for given q, J∗(x, q, p) is continuous in (x, p), therefore Vq(·) is a continu-
ous function of x. Since V is the sum of N continuous functions (Vj)j=1,...,N ,
it is continuous itself.
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' V is radially unbounded
Since the control parametrization is supposed to be continuous, the set of
controls given by :

U :=
{
Upwc(t, p)

}
(t,p)∈[0,Nτs]×PX

,

is necessarily bounded. using assumption 2.1 with W = U gives the results.
' Finally it is clear that V (0) = 0 since zero is an autonomous equilibrium

state.

Decreasing properties of V
Two situations have to be distinguished :

Case where q̂(k) > 1. In this case, let us investigate candidate solutions for
the optimization problem P ε,∗

α (xcl(k+)) where xcl(k+) is the next state on the
closed loop trajectory, namely :

xcl(k+) = F
(
τs, xcl(k), u1(p̂(xcl(k)))

)
.

A natural candidate solution to the optimal control problem P ε,∗
α (xcl(k+)) is

the one associated to the translatable character of the control parametrization,
namely

pcand(k+) := p̂+(xcl(k)) ; qcand(k+) := q̂(xcl(k))− 1 ≥ 1. (11)

In the following sequel, the following short notations are used

p̂(k) = p̂(xcl(kτs)) ; q̂(k) = q̂(xcl(kτs)) ; V (k) = V (xcl(k)).

By the very definition of p+, it comes that :

‖F (qcand(k+)τs, xcl(k+), pcand(k+))‖2 = ‖F (q̂(k)τs, xcl(k), p̂(k))‖2

= V (xcl(k))− α
q̂(k)
N

min{ε, ‖Fq̂(k)(·, xcl(k), p̂(k))‖2∞}, (12)

and since V (xcl(k+)) satisfies by definition, one has :

V (xcl(k+)) ≤ ‖F (qcand(k+)τs, xcl(k+), pcand(k+))‖2 +

+ α
q̂(k)− 1

N
min{ε, ‖Fq̂(k)−1(·, xcl(k+), pcand(k+))‖2∞},

This with (12) gives :

V (xcl(k+)) ≤ V (xcl(k))− α
q̂(k)
N

min{ε, ‖Fq̂(k)(·, xcl(k), p̂(k))‖2∞}+

+ α
q̂(k)− 1

N
min{ε, ‖Fq̂(k)−1(·, xcl(k+), pcand(k+))‖2∞}. (13)
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But one clearly has by definition of pcand(k+) :

‖Fq̂(k)−1(·, xcl(k+), pcand(k+))‖2∞ ≤ ‖Fq̂(k)(·, xcl(k), p̂(k))‖2∞.

Using the last equation in (13) gives

V (xcl(k+)) ≤ V (xcl(k))− α

N
min{ε, ‖Fq̂(k)(·, xcl(k), p̂(k))‖2∞}. (14)

Case where q̂(k) = 1
We shall first prove that each time this situation occurs, one necessarily has :

xcl(k+) ∈ B̄(0, ρ(X)). (15)

Proof of (15) Consider a sequence of instant 0 = t0 < t1 < · · · < tN < . . . where
for all i ≥ 1, ti = kiτs such that q̂(ki) = 1 for all i ≥ 1 we shall prove the two
following facts :

1. xcl(k+
1 ) ∈ B̄(0, ρ(X))

2. If xcl(k+
i ) ∈ B̄(0, ρ(X)) then xcl(k+

i+1) ∈ B̄(0, ρ(X))

If these two facts are proved then by induction, it comes that :

{q̂(k) = 1} ⇒ {xcl(k+) ∈ B̄(0, ρ(X))}. (16)

To prove 1., note that at k = 0, xcl(0) ∈ X and therefore, the contraction
property can be applied to consider pc(xcl(0)) as a candidate value for the initial
optimal control problem P ε,∗

α (xcl(0)). Therefore,

V (xcl(0)) ≤ γ‖xcl(0)‖2 + α · ε. (17)

Now during the next steps until k1 occurs, the result (14) can be used to infer
that the function V decreases on the closed loop trajectory. Therefore, one has
at instant k1τs :

V (xcl(k1)) ≤ γ‖xcl(0)‖2 + α · ε ; q̂(k1) = 1. (18)

But when q̂(k1) = 1, one has also :

‖xcl(k+
1 )‖2 ≤ V (xcl(k1)) ≤ γ‖xcl(0)‖2 + α · ε, (19)

and for sufficiently small α and ε > 0, this leads to xcl(k+
1 ) ∈ B̄(0, ρ(X)) which

ends the proof of point 1.
The proof of point 2. follows exactly the same argumentation than the one

used above starting from the fact that since xcl(k+
i ) is in B̄(0, ρ(X)), one can

rewrite the above demonstration with xcl(k+
i ) playing the role of xcl(0) and

xcl(ki+1) playing that of xcl(k1). This clearly gives (16). Consequently, by defi-
nition of PX, there exists some pc(xcl(k+)) such that

V (xcl(k+)) ≤ γ‖xcl(k+)‖2 +
α

N
min{ε, ‖FN(·, xcl(k+), pc(xcl(k+)))‖2∞)}. (20)
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But according to the strong contraction assumption, one has :

‖FN (·, xcl(k+), pc(xcl(k+)))‖2∞ ≤ ϕ(xcl(k+)) · ‖xcl(k+)‖2.

therefore (20) becomes (λ := supξ∈B̄(0,ρ(X))

[
ϕ(ξ)

]
) :

V (xcl(k+)) ≤ γ‖xcl(k+)‖2 +
α

N
min{ε, ϕ(xcl(k+)) · ‖xcl(k+)‖2},

≤ γ‖xcl(k+)‖2 +
α

N
min{ε, λ · ‖xcl(k+)‖2}. (21)

On the other hand, since q̂(k) = 1 by assumption, one clearly has :

‖xcl(k+)‖2 ≤ V (xcl(k))− α

N
min{ε, ‖xcl(k+)‖2} ≤ V (xcl(k)). (22)

Therefore, using (22) in (21) gives V (xcl(k+)) ≤ γV (xcl(k)) + αmin{ε, λ ·
V (xcl(k))} and one can write V (xcl(k+)) ≤ (γ + αλ)V (xcl(k)) which, for suffi-
ciently small α gives V (xcl(k+)) ≤ θ · V (xcl(k)) for θ < 1. To summarize, it has
been shown that the optimal cost function V (x) satisfies the following decreasing
properties :

V (xcl(k+))≤
{
V (xcl(k)) − α

N min{ε,‖Fq̂(k)(·, xcl(k), p̂(k))‖2∞} if q̂(xcl(k))>1
θ · V (xcl(k)) ; θ < 1 if q̂(xcl(k))=1

(23)

This clearly shows that the closed loop trajectory converges to the largest in-
variant set contained in{

x ∈ R
n | ‖Fq̂(x)(·, x, p̂(x))‖∞ = 0

}
,

which clearly shows that limk→∞ xcl(k) = 0 by the very definition of Fq(·, x, p). ♦

Note that proposition 1 shows that the contractive receding horizon feedback
may be used alone to asymptotically stabilizes the system. However, in many
situations, improved behavior around the desired position may be obtained by
using the proposed feedback as a steering controller to bring the state to a
neighborhood of the desired target and then to switch to some locally stabilizing
controller based (for instance) on linearized model. This is commonly referred
to as a dual mode control scheme. In the following section, both ways of using
the proposed receding horizon feedback are illustrated on two different systems.

Finally, it is worth noting that all the above discussion remains valid if ‖x‖2
[resp. ‖F (t, x, p)‖2] are replaced by h(x) [resp. h(F (t, x, p))] where h(·) is some
positive definite function of the state. In this case, the optimization problem (8)
writes :

P ε
α(x) : min

(q,p)∈{1,...,N}×PX

J(x, q, p) = h(qτs, x, p) + α
q

N
·min

{
ε2, h∞

q (·, x, p)
}
,

(24)

where h(qτs, x, p) = h(F (qτs, x, p)) and h∞
q (·, x, p) := maxi∈{1,...,N} h(iτs, x, p).
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Fig. 1. Description of the simple and the double inverted pendulums

4 Illustrative Examples

4.1 Swing-Up and Stabilization of a Simple Inverted Pendulum on
a Cart: A Stand-Alone RHC Scheme

The inverted pendulum on a cart is probably the most famous system in the non-
linear control literature (see figure 1). The dynamics of the inverted pendulum
can be described by the following equations :(

mL2 + I mL cos θ
mL cos θ m + M

)(
θ̈
r̈

)
=

(
mLg sin θ − kθ θ̇

F + mLθ̇2 sin θ − kxṙ

)
. (25)

Choosing the state vector x :=
(
θ r θ̇ ṙ

)T ∈ R4 and applying the following
pre-compensation (change in the control variable) :

F = −Kpre

(
r
ṙ

)
+ u, (26)

where Kpre is chosen such that the dynamics r̈ = −Kpre

(
r
ṙ

)
is asymptotically

stable leads to a system of the form (3). Consider the scalar exponential control
parametrization (that is clearly translatable with p+ = p · e−τs/tr) :

P = [pmin, pmax] ⊂ R ; ui(p) = p · eti/tr ; ti =
(i− 1)τs

N
, (27)

where τs > 0 is the control sampling period, N · τs the prediction horizon length
while tr is the characteristic time of the exponential control parametrization.
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Fig. 2. Stabilization of the inverted pendulum for two different saturation levels:
Fmax = 1.0 N (dotted thin line) / Fmax = 2.0 N (continuous thick line). Initial
condition: Downward equilibrium x = (π, 0, 0, 0)T .

Define the weighting function h(x) by :

h(x)=
1
2

[
θ̇2+βr2 + ṙ2

]
+ [1− cos(θ)]2 =

1
2

[
x2

3 + βx2
2 + x2

4

]
+ [1− cos(x1)]2 (28)

In order to explicitly handle the saturation constraint on the force, the constraint
has to be expressed in term of the new control variable u, namely :

| −Kpre

(
x2
x4

)
+ u| ≤ Fmax. (29)

Using the expression of the control parametrization (27) this yields the following
state dependent definition of the parameter bounds pmin and pmax :

pmin(x) = −Fmax + Kpre1x2 + Kpre2x4 (30)
pmax(x) = +Fmax + Kpre1x2 + Kpre2x4 (31)

These bounds are used in the definition of the optimization problem P ε
α(x) :

P ε
α(x) : min

(q,p)∈{1,...,N}×[pmin(x) , pmax(x)]
J(x, q, p) =

h(qτs, x, p) +
α

N
·min{ε, h∞

q (·, x, p)}. (32)

Let p̂(x) and q̂(x) be optimal solutions of P ε
α(x). This defines the feedback

KRH(x) = u1(p̂(x)) according to the receding horizon principle. The values
of the system’s parameters used in the forthcoming simulations are given by :

(m,M,L, kx, kθ, I) = (0.3, 5.0, 0.3, 0.001, 0.001, 0.009)
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while the values of the parameters used in the controller definition are the
following :

(τs, N, tr, α, β) = (0.4, 8, 0.2, 0.01, 10) ; Kpre = (2.5, 10) ; Fmax ∈ {1, 2}

The behavior of the closed loop systems under the contractive receding horizon
control is depicted on figure 2. Two scenarios are presented for different values
of the input saturation levels Fmax = 1 and Fmax = 2. The computation times
are also given vs the sampling period (the computations have been performed on
a 1.3 GHz PC-Pentium III). Note that these computation times never exceeded
0.1 s. This has to be compared to the sampling period τs = 0.4 s. This suggests
that the proposed receding horizon feedback can be implementable in real time
context.

4.2 Swing Up and Stabilization of a Double Inverted Pendulum on
Cart: A Hybrid Scheme

The system is depicted on figure 1 together with the definition of some auxiliary
variables. The numerical values are given by :

(m1,m2,m, l1, l2, J1, J2) = (0.3, 0.2, 5.0, 0.3, 0.2, 1.3× 10−2, 4× 10−3).

The system equations are given by [1] :

h1r̈ + h2θ̈1 cos θ1 + h3θ̈2 cos θ2 = h2θ̇
2
1 sin θ1 + h3θ̇

2
2 sin θ2 + F

h2r̈ cos θ1 + h4θ̈1 + h5θ̈2 cos(θ1 − θ2) = h7 sin θ1 − h5θ̇
2
2 sin(θ1 − θ2)

h3r̈ cos θ2 + h5θ̈1 cos(θ1 − θ2) + h6θ̈2 = h5θ̇
2
1 sin(θ1 − θ2) + h8 sin θ2

Again, a pre-compensation is done using the change in control variable given
by :

F = −Kpre ·
(
r
ṙ

)
+ u, (33)

while a two-dimensional control parametrization is needed this time :

P = [pmin, pmax]2 ⊂ R
2 ; ui(p) = p1 · eλ1ti + p2e

−λ2ti ; ti =
(i− 1)τs

N
(34)

The weighting function h(·) invoked in the general formulation (24) is here taken
as follows

h(x) =
h4

2
θ̇2
1 +

h6

2
θ̇2
2 + h5θ̇1θ̇2 cos(θ1 − θ2) + h7

[
1− cos(θ1)

]
+ h8

[
1− cos(θ2)

]
+

+ h1
[
r2 + ṙ2

]
.

This is inspired by the expression of the total energy given in [1]. The constrained
open-loop optimal control problem is then given by (24) in which the admissible
domain of the parameter vector is [pmin(x), pmax(x)]2 where :
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Fig. 3. Closed loop behavior of the double inverted pendulum system un-
der the hybrid controller given by (35) with the design parameters values
given by (τs, N, R,λ1, λ2, η) = (0.3, 10, 100, 100, 20, 1), L = (360, 30), and Q =
diag(1, 1, 104, 1, 1, 1) for two different force saturation levels: Fmax = 20 N (contin-
uous thick line) / Fmax = 10 N (dotted thin line). The maximum number of function
evaluations parameter in the optimization code has been set to 20 in order to make the
solution real-time implementable. This may explain the behavior of the optimal cost
for the lower values that is not monotonically decreasing. Initial condition: downward
equilibrium.

pmin(x) :=
1
2

[
−Fmax + Kpre

(
r
ṙ

)]
; pmax(x) :=

1
2

[
+Fmax + Kpre

(
r
ṙ

)]
.

that clearly enables to meet the requirement |F (t)| ≤ Fmax given the
parametrization (34) being used. Again, denoting by (q̂(x), p̂(x)) the optimal
solutions, the nonlinear receding-horizon control is given by :

u(kτs + t) = KRH(x(kτs)) := u1(p̂(x(kτs))) ; t ∈ [0, τs[.

Since a hybrid scheme is used here, the local controller has to be defined. This is

done by using an LQR-based method that enables a feedback gain L to be com-
puted. Hence, the local controller is given by KL(x) = −L ·

(
xm

1 xm
2 x3 . . . x6

)T

where xm
1 and xm

2 are the minimum norm angles that are equal (modulo 2π)
to θ1 and θ2 respectively while the gain matrix L ∈ R1×6 satisfies the following
Riccati equation for some positive definite matrices S and Q :

AT
d SAd − S − (AT

d SBd)(R + BT
d SB

T
d )(BT

d SAd) + Q = 0.
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where (Ad, Bd) are the matrices of the discrete linearized system around the
upward position. To summarize, the hybrid controller is given by

u(kτs + τ) =

{
KRH(x(kτs)) if ‖x(kτs)‖2S > η

KL(x(kτs)) otherwise
(35)

The positive real η > 0 is a threshold that must be sufficiently small for the ball

Bη :=
{
x ∈ R

6 s.t ‖x‖2S ≤ η
}

to be both entirely included in the region of attraction and invariant under the
linear control law KL(·). Such η > 0 clearly exists.

The behavior of the closed loop system under the hybrid controller is shown
on figure 3 for two different saturation levels Fmax = 10 N and Fmax = 20 N .
Note that the maximum number of function evaluations during the on-line opti-
mization has been set to 20. This led to computation times that never exceeded
the sampling period τs = 0.3 s.
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Summary. A formulation of continuous-time nonlinear MPC is proposed in which
input trajectories are described by general time-varying parameterizations. The ap-
proach entails a limiting case of suboptimal single-shooting, in which the dynamics
of the associated NLP are allowed to evolve within the same timescale as the process
dynamics, resulting in a unique type of continuous-time dynamic state feedback which
is proven to preserve stability and feasibility.

1 Introduction

In this note we study the continuous-time evolution of nonlinear model pre-
dictive control in cases where the optimization must necessarily evolve in the
same timescale as the process dynamics. This is particularly relevant for appli-
cations involving “fast” dynamics such as those found in aerospace, automotive,
or robotics applications in which the computational lag associated with iterative
optimization algorithms significantly limits the application of predictive control
approaches.

In an attempt to reduce computational lag, interest has been focussed on
the use of suboptimal solutions arrived at by early termination of the nonlinear
program being solved online. Real-time computational algorithms such as [1]
push this concept to evaluating only a single NLP iteration per discrete sampling
interval. A similar concept of incremental improvement underlies realtime works
such as [2, 3], where the input parameters are treated as evolving according
to continuous-time differential equations driven by descent-based vector fields.
In particular, [3] illustrates how this approach is effectively a type of adaptive
feedback.

In this work, we present a form of real-time MPC which, in the spirit of [2] and
[3], treats the evolving optimization as an adaptive control action. However, our
results are more general in that we do not require global asymptotic stability of
the unforced dynamics (unlike [3]), and our approach preserves stability without
requiring “sufficiently many” parameters in the description of the input (unlike
[2]). One important aspect of our approach is that the open-loop parameteriza-
tion of the input is defined relative to a time partition that can potentially be
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adapted online to make optimal use of the finite number of parameters used to
describe the input. While the manner in which the input is parameterized has
similarities to sampled-data approaches such as [4], a key difference is that our
approach involves continuous measurement and control implementation through-
out the intervals of the time partition, and as a result there are no intervals of
open-loop behaviour introduced into the feedback path.

This paper is organized as follows. The basic problem is described in Section 2,
with finite input parameterizations and local stabilizing controllers discussed in
Sections 3 and 4, respectively. Section 5 discusses the realtime design approach,
with an example in Section 6. Proofs are in the Appendix. In the following, we
will use the notation S̊ to denote the open interior of a closed set S, and ∂S for
the boundary S \ S̊. Furthermore, we denote by ‖z‖

S
the orthogonal distance

of a point z to the set S; i.e. ‖z‖
S

= infs∈S ‖z − s‖. A continuous function
γ : [0,∞) → R≥0 is defined as class K if it is strictly increasing from γ(0) = 0,
and class K∞ if it is furthermore radially unbounded. Finally, a function will
be described as Cm+ if it is Cm, with all derivatives of order m yielding locally
Lipschitz functions.

2 Problem Setup

Our control objective is the regulation of the dynamics

ẋ = f(x, u) (1)

to the compact target set ΣX ⊂ Rn, which is assumed to be weakly invariant for
controls in some compact set u ∈ ΣU(x) ⊂ Rm; i.e. there exists a static feedback
rendering the set Σ � {(x, u) ∈ ΣX × Rm|u ∈ ΣU(x)} forward invariant. Set
stabilization allows for more general control problems than simple stabilization
to a point, and in particular encompasses the notion of “practical-stabilization”.
We are interested in continuous-time model predictive control problems of the
form

min
u(·)

⎧⎨⎩
t+T∫
t

L(xp, u) dτ + W (xp(t + T ))

⎫⎬⎭ (2a)

s.t. ẋp = f(xp, u), xp(t) = x (2b)
(xp, u) ∈ X× U, ∀τ ∈ [t, t+ T ] (2c)
xp(t+ T ) ∈ Xf . (2d)

Since the motivating problem of interest is assumed to involve an infinite hori-
zon, the horizon length in (2a) is interpreted as designer-specifiable. The sets
X ⊂ Rn and U ⊂ Rm represent pointwise-in-time constraints, and are assumed
to be compact, connected, of non-zero measure (i.e. X̊, Ů 	= ∅), and to satisfy the
containment Σ ⊂ X̊ × Ů. The compact, connected terminal set Xf is typically
designer-specified, and is assumed to strictly satisfy ΣX ⊂ Xf ⊂ X̊. The mapping
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L : X × U → R≥0 is assumed to satisfy γL(‖x, u‖Σ) ≤ L(x, u) ≤ γU (‖x, u‖Σ)
for some γL, γH ∈ K∞, although this could be relaxed to an appropriate de-
tectability condition. The mapping W : Xf → R≥0 is assumed to be positive
semi-definite, and identically zero on the set ΣX ⊂ Xf . For the purposes of
this paper, the functions L(·, ·), W (·) and f(·, ·) are all assumed to be C1+ on
their respective domains of definition, although this could be relaxed to locally
Lipschitz with relative ease.

3 Finite-Dimensional Input Parameterizations

Increasing horizon length has definite benefits in terms of optimality and stability
of the closed loop process. However, while a longer horizon obviously increases
the computation time for model predictions, of significantly greater computa-
tional concern are the additional degrees of freedom introduced into the mini-
mization in (2a). This implies that instead of enforcing a constant horizon length,
it may be more beneficial to instead maintain a constant number of input param-
eters whose distribution across the prediction interval can be varied according
to how “active” or “tame” the dynamics may be in different regions.

Towards this end, it is assumed that the prediction horizon is partitioned
into N intervals of the form [tθi−1, t

θ
i ], i = 1 . . .N , with t ∈ [tθ0, t

θ
1]. The input

trajectory u : [tθ0, tθN ]→ Rm is then defined in the following piecewise manner

u(τ) = uφ(τ, tθ, θ, φ) �
{
φ(τ−tθ0, θ1) τ ∈ [tθ0, t

θ
1]

φ(τ−tθi−1, θi) τ ∈ (tθi−1, t
θ
i ], i ∈ {2 . . .N}

(3)

with individual parameter vectors θi ∈ Θ ⊂ Rnθ , nθ ≥ m, for each interval, and
θ = {θi | i ∈ {1, . . .N}} ∈ ΘN . The function φ : R≥0 × Θ → Rm may consist of
any smoothly parameterized (vector-valued) basis in time, including such choices
as constants, polynomials, exponentials, radial bases, etc. In the remainder, a
(control- or input-) parameterization shall refer to a triple P � (φ, RN+1, ΘN )
with specified N , although this definition may be abused at times to refer to the
family of input trajectories spanned by this triple (i.e. the set-valued range of
φ(RN+1, ΘN )).

Assumption 1. The C1+ mapping φ : R≥0 × Θ → Rm and the set Θ are
such that 1) Θ is compact and convex, and 2) the image of Θ under φ satisfies
U ⊆ φ(0, Θ).

Let (t0, x0) ∈ R× X̊ represent an arbitrary initial condition for system (1), and
let (tθ, θ) be an arbitrary choice of parameters corresponding to some parame-
terization P . We denote the resulting solution to the prediction model in (2b),
defined on some maximal subinterval of [t0, tθN ], by xp(·, t0, x0, t

θ, θ, φ). At times
we will condense this notation, and that of (3), to xp(τ), uφ(τ).

A particular choice of control parameters (tθ, θ) corresponding to some pa-
rameterization P will be called feasible with respect to (t0, x0) if, for every
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τ ∈ [t0, tθN ], the solution xp(τ, t0, x0, t
θ, θ, φ) exists and satisfies xp(τ) ∈ X̊,

uφ(τ) ∈ Ů, and xp(tθN ) ∈ X̊f . We let Φ(t0, x0,P) ⊆ RN+1 × ΘN denote the set
of all such feasible parameter values for a given (t0, x0) and parameterization
P . This leads to the following result, which is a straightforward extension of a
similar result in [5].

Lemma 1. Let X0 ⊆ X̊ denote the set of initial states x0 for which there exists
open-loop pairs (x(·), u(·)) solving (1), defined on some interval t ∈ [t0, tf ] (on
which u(·) has a finite number of discontinuities), and satisfying the constraints
x(tf ) ∈ X̊f , and (x, u)(t) ∈ X̊×Ů, ∀t ∈ [t0, tf ]. Then, for every (t0, x0) ∈ R×X0

and every (φ, Θ) satisfying Assumption 1, there exists N∗ ≡ N∗(x0, φ, Θ) such
that Φ(t0, x0,P) has positive Lebesgue measure in RN+1 ×ΘN for all N ≥ N∗.

4 Requirements for a Local Stabilizing Control Law

Sufficient conditions for stability of NMPC presented in [6] require that Xf be a
control-invariant set, and that the function W (·) be a control Lyapunov function
on the domain Xf . The following assumption represents a slight strengthening of
those conditions - presented in integral rather than differential form - as appli-
cable to the input parameterizations from the preceding section. In particular, a
pair of feedbacks satisfying the assumption are required to be explicitly known,
and the strict decrease in (4) is added to enable the use of interior-point methods
for constraint handling.

Assumption 2. The penalty W : Xf → R≥0, the sets Xf and Σ, the mapping φ,
and a pair of known feedbacks δ : Xf → R>0 and κ : Xf → Θ are all chosen s.t.

1. ΣX ⊂ X̊f , Xf ⊂ X̊, both Xf and Σ compact.
2. there exists a compact set U0 ⊂ Ů s.t. ∀x ∈ Xf , sup

τ∈[0, δ(x)]
‖φ(τ, κ(x))‖

U0 = 0.
3. Σ and Xf are both rendered positive invariant in the following sense:
• there exists a constant εδ > 0 such that δ(x0) ≥ εδ for all x0 ∈ Xf .
• for every x0 ∈ ΣX, the (open-loop) solution to ẋκ = f(xκ, φ(τκ, κ(x0))),

xκ(0) = x0 exists and satisfies (xκ(τκ), φ(τκ, κ(x0))) ∈ Σ for τκ ∈
[0, δ(x0)].

• ∃ε∗ > 0 and a family of sets X ε
f = { x∈Xf : infs∈∂Xf

‖s−x‖ ≥ ε }, ε ∈
[0, ε∗], such that x0 ∈ X ε

f =⇒ xκ(t) ∈ X ε
f , ∀t ∈ [0, δ(x0)], ∀ε ∈ [0, ε∗]

4. there exists γ ∈ K such that for all x0 ∈ Xf , (with xf � xκ(δ(x0))),

W (xf )−W (x0) +

δ(x0)∫
0

L(xκ, φ(τ, κ(x0))) dτ ≤ −
δ(x0)∫
0

γ(‖xκ‖ΣX
)dτ (4)

4.1 Design Considerations

For the purposes of this work, any locally stabilizing pair (κ, δ) satisfying As-
sumption 2 can be used. For the case where φ is a piecewise-constant parame-
terization, several different approaches exist in the literature for the design of
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such feedbacks (see [7, 8] and references therein). Below we present one possible
extension of these approaches for finding κ and δ in the case of more general
parameterizations.

1. Assume that a known feedback u = kf (x) and associated CLF W (x) satisfy

∂W

∂x
f(x, kf (x)) + L(x, kf (x)) ≤ −γk(‖x‖ΣX

) ∀x ∈ Xf (5)

for some γk ∈ K, with Σ̊ 	= ∅ (if necessary, take Σ as a small neighbourhood
of the true target). Let Σε denote a family of nested inner approximations
of Σ. For some ε∗ > 0, the sets X ε

f and Σε are assumed forward-invariant
with respect to ẋ = f(x, kf (x)), and kf (x) ∈ U0 for all x ∈ Xf , ε ∈ [0, ε∗].

2. Without loss of generality, assume a number r ∈ {0, 1, . . . ,floor(nθ/m)−1}
is known such that kf ∈ Cr+, and

spanθi∈Θ

⎡⎢⎢⎣
φ(0, θi)

...
∂rφ
∂τr (0, θi)

⎤⎥⎥⎦ = U⊕ R
rm. (6)

Select any C1+ mapping κ(x) : Xf → { ( ∈ Θ : ( satisfies (7) for x },
whose range is nonempty by (6) and Assumption 1. (i.e. invert the function
φ(0, ·)) ⎡⎢⎢⎢⎢⎢⎣

kf (x)
∂kf

∂x f(x, kf (x))
...

Lr
fkf

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
φ(0, ()
∂φ
∂τ (0, ()

...
∂rφ
∂τr (0, ()

⎤⎥⎥⎥⎥⎥⎦ (7)

3. Specify γ = 1
2γk, and simulate the dynamics forward from xκ(0) = x under

control u = φ(τκ, ω) until one of the conditions in Assumption 2 fails, at a
time τκ = δ∗. Set δ(x) = cδδ

∗, for any cδ ∈ (0, 1).

This approach effectively assigns κ(x) by fitting a series approximation of or-
der r to the input trajectory generated by u = kf (x). By the invariance (and
compactness) of the inner approximations X ε

f and Σε for some ε∗ > 0, a lower
bound εδ ≡ εδ(ε∗) > 0 exists such that δ(x) ≥ cδεδ, ∀x ∈ Xf . In contrast, a
similar problem of initializing input trajectories is solved in [4] by using forward
simulation of the dynamics ẋ = f(x, kf (x)) to generate u(t). Within our frame-
work, however, it could be difficult to ensure that these generated trajectories
lie within the span of P .

5 Real-Time Design Approach

5.1 Constraint Handling

While both active-set and interior-point approaches have been successfully used
to handle constraints in NMPC problems, one limitation of using active sets
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within the context of our realtime framework is that constraint violation can
only be tested at discrete, pre-defined points in time along the prediction in-
terval. In contrast, interior point approaches such as [9] preserve constraint fea-
sibility all points along the prediction trajectory, which is advantageous when
the time support tθ is nonuniform and potentially involves large intervals. A
second benefit of using interior-point methods is that nominal robustness in the
presence of state constraints is guaranteed automatically, whereas it is shown in
[10] that active set approaches must be modified to use interior approximations
of the constraint in order to guarantee nominal robustness. To this end, the
constraints are incorporated defining

La(x, u) = L(x, u) + µ (Bx(x) + Bu(u)) , W a(xf ) = W (xf ) + µBxf
(xf ) (8)

where µ > 0 is a design constant, and Bx, Bu, Bxf
are barrier functions on the

respective domains X, U and Xf . For the purposes of this work, it is assumed
that the barrier functions are selected a-priori to satisfy the following mini-
mum criteria, where the pair (s, S) is understood to represent {(x,X), (u,U),
(xf ,Xf )}.[-1mm]

Criterion 1. The individual barrier functions each satisfy

1. Bs : S→ R≥0 ∪ {∞}, and Bs is C1+ on the open set S̊.
2. s→ ∂S (from within) implies Bs(s)→∞.
3. Bs ≡ 0 on s ∈ ΣS, and Bs ≥ 0 on s ∈ S \ΣS.

The assumed differentiability of Bs is for convenience, and could be relaxed to
locally Lipschitz. We note that additional properties such as convexity of S and
Bs or self-concordance of Bs (see [9, 11]) are not technically required, although in
practice they are highly advantageous. The third criterion implies that the Bs is
“centered” around the target set Σ. For basic regulation problems (Σ = {(0, 0)})
with convex constraints a self concordance-preserving recentering technique is
given in [9], which could be extended to more general Σ, but likely at the expense
of self-concordance. For nonconvex constraints, a barrier function satisfying Cri-
terion 1 must be designed directly. In addition to the above criteria, it must be
ensured that substituting (8) does not compromise the stability condition (4).
Thus we require:

Criterion 2. For a given local stabilizer satisfying Assumption 2, the barrier
functions Bx, Bu, Bxf

and multiplier µ are chosen to satisfy, for all x ∈ Xf ,

sup
(τ, x0)∈I(x)

{
∇Bxf

(x)Tf(x, φ(τ, κ(x0))) + Bx(x) + Bu(φ(τ, κ(x0)))
}
≤ 1

µ
γ(‖x‖ΣX

)

(9)
I(x) � { (τ, x0) ∈ [0, δ(x0)]×Xf : ẋκ =f(xκ, φ(t, x0)), xκ(0)=x0 and xκ(τ)=x }

In general, Criterion 2 can be readily satisfied if 1) level curves of BXf
are

invariant; i.e. they align with level curves of W , 2) µ is chosen sufficiently small,
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and 3) the growth rates of Bx and φ ◦ Bu are less than that of γ in an open
neighbourhood of Σ. When using the design approach for κ and δ in Section 4.1,
one can treat Criterion 2 as a constraint on the interval length δ(x) by designing
the barriers to satisfy

∇Bxf
(x)T f(x, kf (x)) + Bx(x) + Bu(kf (x)) <

1
µ
γ(‖x‖ΣX

) . (10)

5.2 Description of Closed-Loop Behaviour

Before detailing our MPC controller, it will be useful to denote z � [xT , tθ
T
, θT ]T

as the vector of closed-loop states. The cost function is then defined as

J(t, z) =
∫ tθ

N

t La(xp(τ), uφ(τ)) dτ + W a(xp(tθN )) (11a)

s.t. dxp

dτ = f(xp, uφ(τ, z, φ)), xp|τ=t = x . (11b)

Step 1: Initialization of tθ and θ
Let (t0, x0) ∈ R × X0 denote an arbitrary feasible initial condition for (1). The
first step is to initialize the control parameters to any value in the feasible set
Φ(t0, x0,P), which is guaranteed by Lemma 1 to be tractable. In the simple case
where X0 ⊆ Xf , then feasible parameter values can be obtained from forward sim-
ulation of the dynamics under the feedbacks κ(·) and δ(·); otherwise a dual pro-
gramming program could be solved to identify feasible initial parameter values.

Step 2: Continuous flow under dynamic feedback
At any instant t ∈ [t0, tθ1] we assume that the model prediction xp(τ, t, z, φ) is
‘instantaneously’ available. This prediction information is used to update the
control states in real time, so the closed-loop dynamics evolve under dynamic
feedback as:

ż =

⎡⎢⎣ ẋ

ṫθ

θ̇

⎤⎥⎦ =

⎡⎢⎣ f(x, φ(t− tθ0, θ1))
Proj

{
−kt α(t, z)Γt∇tθJT , Ξ(t)

}
Proj

{
−kθΓθ∇θJ

T , ΘN
}

⎤⎥⎦ while t ≤ tθ1 (12a)

α(t, z) �

⎡⎢⎣ 1 0 0

0 sat
(

tθ
1−t
ε , [0, 1]

)
0

0 0 I

⎤⎥⎦
nθ×nθ

(12b)

Ξ(t) =
{
tθ ∈ RN+1

∣∣∣ (πi(t, tθ) ≥ 0, i = 1, . . . N) and
(∑

i=1,...Nπi ≤ T
)}

(12c)

where ε > 0 is a small constant, and π represents the coordinate transformation

πi(t, tθ) =

{
t− tθ0 i = 0

tθi − tθi−1 i = 1, . . . N

}
∈ R

N+1
≥0 (13)
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The function α serves to restrict the adaptation of tθ1 such that the intersection
t = tθ1 is transversal, resulting in deterministic closed-loop behaviour. Although
(12a) appears nonautonomous, all time-dependence disappears under transfor-
mation (13).

The gradient terms ∇θJ and ∇tθJ in (12a) represent sensitivities of (11a),
for which differential sensitivity expressions must be solved. Fortunately, several
efficient algorithms (for example [12]) exist for simultaneous solution of ODE’s
with their parametric sensitivity equations, which can additionally be efficiently
decomposed by the intervals of tθ. The matrices Γtθ > 0 and Γθ > 0 define the
type of descent-based optimization used. While constant matrices generating
(scaled-) steepest-descent trajectories are the simplest choice, higher order defi-
nitions such as Gauss-Newton or full order Newton (appropriately convexified)
could be used.

The operator in (12a) of the form ṡ = Proj(ν, S) denotes a (Lipschitz) param-
eter projection like those defined in [13], where the component of ν orthogonal
to ∂S is removed as s approaches ∂S. This results in the properties 1) s(t0) ∈ S

=⇒ s ∈ S for all t ≥ t0, and 2) ∇sJ · Proj(−kΓ ∇sJ
T , S) ≤ 0. For brevity, the

reader is referred to [13] and reference therein for details on the design of such
an operator. We note that applying this operator to θ serves simply to ensure
that θ(t) ∈ Θ, not to enforce u(t) ∈ U. Enforcing u(t) ∈ U by selection of Θ
(rather than using Bu) is possible in special cases when U is a convex set, and
φ is convex in both arguments.

Lemma 2. Over any interval of existence t ∈ [t0, t1] of the solution to (12a)
starting from (tθ, θ)(t0) ∈ Φ(t0, x(t0),P), the closed-loop flows satisfy 1) dJ

dt =
∇tJ +∇zJ ż < 0 when x 	∈ ΣX, and 2) (tθ, θ)(t) ∈ Φ(t, x(t),P).

Step 3: Parameter re-initialization
When the equality t = tθ1 occurs, the nθ parameters assigned to the first interval
are no longer useful as degrees of freedom for minimizing (11a); instead, it is
more beneficial to reassign these degrees of freedom to a new interval at the tail
of the prediction horizon. This takes the form of the discrete jump mapping

z+ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x+ = x

(tθi )
+ =

{
tθi+1

tθN + δ(xp(tθN ))
i = 0 . . . (N − 1)
i = N

(θi)+ =

{
θi+1

κ(xp(tθN ))
i = 1 . . . (N − 1)
i = N

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
if t ≥ tθ1 (14)

where the feedbacks κ(·) and δ(·) are used to initialize the parameters for the
new interval. Following execution of (14), the algorithm repeats back to Step 2.

Lemma 3. The jump mapping in (14) is such that 1) J(t, z+) − J(t, z) ≤ 0,
and 2) (tθ, θ)+ ∈ Φ(t, x,P)

Remark 1. The manner in which the horizon tθN recedes (i.e. by (14)) differs
from many other realtime approaches, in which the horizons recede continuously.
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While it may seem more natural to enforce a continuous recede ṫθ, this generally
violates the dynamic programming principle, in which case stability can only
be claimed if one assumes either 1) N = 1 and (1) is globally prestabilized
[3], 2) φ contains a very large number of bases, or 3)

∣∣tθi − tθi−1

∣∣ is very small
[2]. In contrast, we require none of these assumptions. (While Lemma 1 implies
“sufficiently large N”, the requirements for feasible initialization are significantly
less conservative than for preservation of stability as in [2]).

5.3 Hybrid Trajectories and Stability

The closed-loop behaviour resulting from the algorithm in Section 5.2 is that
of a dynamic control law whose controller states exhibit discontinuous jumps.
As such, neither classical notions of a “solution” nor those from the sampled-
data literature apply to the closed-loop dynamics. Instead, a notion of solution
developed for hybrid systems in [14] (and other recent work by the same authors)
can be applied, in which trajectories are described as evolving over the “hybrid
time” domain - i.e. a subset of [0, ∞) × N0 given as a union of intervals of the
form [tj , tj+1] × {j}. In this context, the continuous dynamics (12a) have the
form żπ = F (zπ) on the flow domain

SF � { zπ : π0 ≤ π1 and (tθ, θ) ∈ Φ(t, x,P) }, tθ ≡ tθ(t, π), t arbitrary
(15)

where zπ denotes a coordinate change of z with tθ transformed by (13). Likewise,
(14) has the form z+

π = H(zπ) on the jump domain

SH � { zπ : π0 ≥ π1 and (tθ, θ) ∈ Φ(t, x,P) }, tθ ≡ tθ(t, π), t arbitrary
(16)

Lemmas 2 and 3 guarantee the invariance of SF ∪SH , the domain on which either
a flow or jump is always defined. Although SF and SH intersect, uniqueness of
solutions results from the fact that F (zπ) points out of SF on SF ∩SH [15, Thm
III.1]. In the language of [15], the resulting closed-loop system is a nonblocking,
deterministic hybrid automaton which accepts a unique, infinite execution. Using
this notion of solution, the behaviour can be summarized as follows:

Theorem 1. Let an input parameterization P be selected to satisfy Assumption
1, and assume that a corresponding local stabilizer κ(x), δ(x) and penalty func-
tion W (x) are found which satisfy Assumption 2 on the Xf . Furthermore, let the
constraints in (2c) be enforced by barrier functions satisfying Criteria 1 and 2.
Then, using the dynamic feedback algorithm detailed in Section 5.2, the target
set Σ is feasibly, asymptotically stabilized with domain of attraction Xdoa(N)
containing Xf . Furthermore, ∃N∗ ≥ 1 such that Xdoa(N) ≡ X0 for N ≥ N∗.

6 Simulation Example

To illustrate implementation of our approach, we consider regulation of the
stirred tank reactor from [16], with exothermic reaction A −→ B resulting in
dynamics
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Fig. 1. Closed-loop state profiles from three different x0, using various φ

ĊA =
v

V
(CAin − CA)− k0 exp

(
−E
RTr

)
CA

Ṫr =
v

V
(Tin − Tr)−

∆H

ρ cp
k0 exp

(
−E
RTr

)
CA +

UA

ρ cp V
(Tc − Tr)

Constants are taken from [16]: v=100 �/min, V =100 �, ρ cp=239 J/� K, E/R =
8750 K, k0=7.2×1010 min−1, UA=5×104 J/min·K, ∆H=−5×104 J/mol, CAin=1
mol/�, Tin=350 K. The target is to regulate the unstable equilibrium Ceq

A =0.5
mol/�, T eq

r =350 K, T eq
c =300 K, using the coolant temperature Tc as the input,

subject to the constraints 0 ≤ CA ≤ 1, 280 ≤ Tr ≤ 370 and 280 ≤ Tc ≤ 370.
Using the cost function L(x, u) = x′Qx+u′Qu, with x = [CA−Ceq

A , Tr−T eq
r ]′,

u = (Tc − T eq
c ), Q = diag(2, 1/350), R = 1/300, the linearized local controller

kf (x) = [109.1, 3.3242]x and cost W (x) = x′Px, P = [17.53, 0.3475; 0.3475,
0.0106], were chosen. Four different choices of the basis φ(τ, θi) were tested,

φC = θi1 φL = θi1 + θi2τ φQ = θi1 + θi2τ + θi3τ
2 φE = θi1exp (−θi2τ)

with N chosen (intentionally small) such that the total size of θ remained similar
(NC=8, NL=NE=4, NQ=3). In each case, the gains kθ=0.1 and kt=0.5 were
used in the update laws, with Γt ≡ I and Γθ chosen as a diagonally scaled identity
matrix (i.e. scaled steepest-descent updates). The feedbacks κ(x) were derived
by analytically solving (7), while δ(x) was chosen using forward simulation as
described in Section 4.1. In all cases, initial conditions for tθ and θ were chosen
to approximate the trajectory Tc(t), t ∈ [0, 1.5], resulting under LQR feedback
u = kf (x).

Three different initial conditions were tested, and the closed-loop state pro-
file for each parameterization are shown in Figures 1 and 2, with corresponding
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Fig. 2. Closed-loop trajectories from (CA, T ) = (0.3, 363). Symbols same as Fig. 1.

Table 1. Actual closed-loop cost to practically (at t=10min) stabilize to setpoint

(CA, Tr)0 LQR φC φL φQ φE

(0.3, 363) 0.285 0.310 0.281 0.278 0.279
(0.3, 335) 1.74 1.80 1.55 1.42 1.41
(0.6, 335) 0.596 0.723 0.570 0.567 0.558

closed-loop costs reported in Table 1. Using higher-order parameterizations such
as φE and φQ over coarse time-intervals resulted in lower cost than φC (which
used smaller intervals), thus making better use of approximately the same num-
ber of optimization parameters. Although the equilibrium is open-loop unstable,
large interval-lengths are not problematic since (12a) provides a continuous-time
state-feedback for kθ > 0.

7 Conclusions

In this work, a framework has been proposed for continuous-time NMPC in which
the dynamics associated with the nonlinear program are allowed to evolve in the
same timescale as the process dynamics, without compromising closed-loop sta-
bility. The unique manner in which the prediction horizon recedes accommodates
the use of efficient basis functions capable of parameterizing the input trajectory
over large intervals using relatively few parameters. Adapting the time support of
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the parameterization, if desired, helps to maximize the efficiency of the param-
eterization. By allowing for stabilization to a general target set, a broad class of
control problems can be addressed within the given framework.
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A Proof of Lemma 2

It can be shown from (11a) that ∇tJ = −La(xp, uφ) − 〈∇xJ, f(xp, uφ)〉. From
(12a),

dJ

dt
= ∇tJ +∇zJ ż

=−La(xp, uφ)−
〈
∇tθJ, Proj{kt αΓt∇tθJT, Ξ}

〉
−
〈
∇θJ, Proj{kθΓθ∇θJ

T, ΘN}
〉

≤ −γL(‖xp, uφ‖Σ)

The conditions of the lemma guarantee that J(t0, z0) is bounded (although not
uniformly), and the above ensures that J(t, z) ≤ J(t0, z0), for all t ∈ [t0, t1].
Since all dynamics in (12a) are locally Lipschitz on the set Z = { z : (tθ, θ) ∈
Φ(t, x(t),P) }, continuity of the solution implies that the states can only exit Z
by either 1) reaching the boundary A = cl{Z} \ Z (i.e. the set where x ∈ ∂X,
uφ ∈ ∂U, or xp(tθN ) ∈ ∂Xf ), or 2) passing through the boundary B = Z \ Z̊. The
first case is impossible given the decreasing nature of J and limz→A J(t, z) =∞,
while the second case is prevented by the parameter projection in (12a).

B Proof of Lemma 3

The first claim follows from

J(t, z+)−J(t, z) =

tθ+
N∫

tθ
N

La(xp(τ, t, z+, φ), uφ(τ, z+, φ)) dτ + W a(xp+
f )−W a(xp

f )

=

δ(xp
f )∫

0

L(xκ(τ), φ(τ, κ(xp
f )) + µ

(
Bx(xκ(τ)) + Bu(φ(τ, κ(xp

f )))
)
dτ

+ W (xp+
f )−W (xp

f ) + µ
(
Bxf

(xp+
f )−Bxf

(xp
f )

)
≤ 0 (by (4) and (9))

where xp
f � xp(tθN , t, z, φ), xp+

f � xp(tθ+
N , t, z+, φ), and xκ(·) is the solution to

ẋκ = f(xκ, φ(t, κ(xp
f ))), xκ(0) = xp

f . The second claim follows by the properties
of κ(x) guaranteed by Assumption 2, since the portion of the xp(τ) and uφ(τ)
trajectories defined on τ ∈ (t, tθN ] are unaffected by (14).

C Proof of Theorem 1

Using the cost J(zπ) as an energy function (where J(zπ) ≡ J(s, x, tθ−s, θ) from
(11a), with s arbitrary), the result follows from the Invariance principle in [15,
Thm IV.1]. The conditions of [15, Thm IV.1] are guaranteed by Lemmas 2, 3,
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and the boundedness of the sets X, U, Θ and Ξ (which ensures that trajectories
remain in a compact subset of SF ∪ SH). Thus, zπ asymptotically converge to
M , the largest invariant subset of {zπ | J̇ = 0 under (12a)} ∪ { zπ : J+ − J =
0 under (14) }. Since H maps into the interior of SF (strictly away from SH),
zeno solutions are not possible. This implies M ⊂ {zπ | J̇ = 0}, and thus from
the proof of Lemma 2 it follows that M = { zπ : (x, uφ) ∈ Σ }. Feasibility
holds from Lemmas 2 and 3, while the last claim follows from Lemma 1 and the
compactness of X0.
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Summary. Model predictive control (MPC) is a very effective approach to con-
trol nonlinear systems, especially when the systems are high dimensional and/or
constrained. MPC formulates the problem of input trajectory generation as an op-
timization problem. However, due to model mismatch and disturbances, frequent
re-calculation of the trajectories is typically called for. This paper proposes a two-
time-scale control scheme that uses less frequent repeated trajectory generation in a
slow loop and time-varying linear feedback in a faster loop. Since the fast loop reduces
considerably the effect of uncertainty, trajectory generation can be done much less fre-
quently. The problem of trajectory generation can be treated using either optimization-
based MPC or flatness-based system inversion. As proposed, the method cannot handle
hard constraints. Both MPC and the two-time-scale control scheme are tested via the
simulation of a flying robotic structure. It is seen that the MPC scheme is too slow
to be considered for real-time implementation on a fast system. In contrast, the two-
time-scale control scheme is fast, effective and robust.

1 Introduction

Model predictive control (MPC) is an effective approach for tackling problems
with nonlinear dynamics and constraints, especially when analytical computa-
tion of the control law is difficult [4, 14, 17]. MPC involves re-calculating at
every sampling instant the inputs that minimize a criterion defined over a hori-
zon window in the future, taking into account the current state of the system.

A crucial point in MPC is the extensive use of the dynamic model. Since the
model is not always accurate, the predicted state evolution may differ from the
actual plant evolution, which requires frequent re-calculation of the inputs. So-
lutions to this problem are proposed in the literature. One possibility is to cast
the problem into a robust framework, where optimization is performed by taking
the uncertainty into account explicitly. Robust predictive control computes input
trajectories that represent a compromise solution for the range of uncertainty
considered [2, 11, 12]. Such a methodology is widely used in the process indus-
try, where system dynamics are sufficiently slow to permit its implementation.
However, due to the complexity of the calculations involved in robust predictive
control, its applicability to fast dynamics is rather limited. Several promising

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 551–563, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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approaches have been proposed to decrease the computational time required by
nonlinear MPC schemes. These approaches rely mostly on cleverly chosen coarse
parametrizations [6, 13]. Though very effective, these approaches require that the
input trajectories be sufficiently simple to tolerate low-dimensional representa-
tions.

Another solution consists in tracking the system trajectories with a fast feed-
back loop. If the local dynamics are nearly time invariant, linear control theory
provides effective tools to design this feedback loop. However, for systems having
strongly-varying local dynamics, there is no systematic way of designing such a
feedback law [1, 15, 16]. This trajectory-tracking problem can be tackled by the
neighboring-extremal theory whenever the inputs and states are not constrained.
For small deviations from the optimal solution, a linear approximation of the sys-
tem and a quadratic approximation of the cost are quite reasonable. In such a
case, a neighboring-extremal (NE) controller provides a closed-form solution to
the optimization problem. Hence, the optimal inputs can be approximated using
state feedback, i.e. without explicit numerical re-optimization.

This paper presents two approaches to control a simulated robotic flying struc-
ture known as VTOL (Vertical Take-Off and Landing). The structure has 4 in-
puts and 16 states. It is a fast and strongly nonlinear system. The control schemes
are computed based on a simplified model of the system, while the simulations
use the original model. The simplified VTOL model is flat [7, 8].

The first control approach is based on MPC. The use of repeated optimization
of a cost function describing the control problem provides a control sequence that
supposedly rejects uncertainties in the system.

The second control approach combines a flatness-based feedforward trajectory
generation in a slow loop and a linear time-varying NE-controller in a faster loop.
The slow loop generates the reference input and state trajectories, while the fast
loop ensures good tracking of the state trajectories. This control scheme is suffi-
ciently effective to make re-generation of the reference trajectories unnecessary.

The paper is organized as follows. Section 2 briefly revisits optimization-based
MPC, system inversion for flat systems and NE-control. The proposed two-time-
scale control scheme is detailed in Section 3. Section 4 presents the simulated
operation of a VTOL structure. Finally, conclusions are provided in Section 5.

2 Preliminaries

2.1 Nonlinear MPC

Consider the nonlinear dynamic process:

ẋ = F (x, u), x(0) = x0 (1)

where the state x and the input u are vectors of dimension n and m, respectively.
x0 represents the initial conditions, and F the process dynamics.



A Two-Time-Scale Control Scheme for Fast Unconstrained Systems 553

Predictive control of (1) is based on repeatedly solving the following optimiza-
tion problem:

min
u[tk,tk+Tc)

J = Φ(x(tk + Tp)) +

tk+Tp∫
tk

L(x(τ), u(τ))dτ (2)

s.t. ẋ = F (x, u), x(tk) = xm(tk) (3)
S(x, u) ≤ 0 T (x(t + Tp)) = 0 (4)

where Φ is an arbitrary scalar function of the states and L an arbitrary scalar
function of the states and inputs. xm(t) represents the measured or estimated
value of x(t). S is a vector function of the states and inputs that represents
inequality constraints and T is a vector function of the final states that represents
equality constraints. The prediction horizon is noted Tp and the control horizon
is noted Tc. In the following, Tc = Tp = T will be used. The solution to problem
(2)-(4) will be noted (x∗, u∗). A lower bound for the re-optimization interval
δ = tk+1 − tk is determined by the performance of the available optimization
tools.

2.2 System Inversion for Flat Systems

If the system (1) is flat in the sense of [7, 8], with y = h(x) being named the flat
output, then, for a given sufficiently smooth trajectory y(t) and a finite number
σ of its derivatives, it is possible to compute the corresponding inputs and states:

u = u(y, ẏ, ..., y(σ)) x = x(y, ẏ, ..., y(σ)). (5)

u(y, ẏ, ..., y(σ)) is a nonlinear function that inverts the system.

2.3 Neighboring-Extremal Control

Upon including the dynamic constraints of the optimization problem in the cost
function, the augmented cost function, J̄ , reads:

J̄ = Φ(x(tk + T )) +

tk+T∫
tk

(
H − λT ẋ

)
dt (6)

where H = L+λTF (x, u), and λ(t) is the n-dimensional vector of adjoint states
or Lagrange multipliers for the system equations. The first-order variation of
J̄ is zero at the optimum. For a variation ∆x(t) = x(t) − x�(t) of the states,
minimizing the second-order variation of J̄ , ∆2J̄ , with respect to ∆u(t) = u(t)−
u∗(t) represents a time-varying Linear Quadratic Regulator (LQR) problem, for
which a closed-form solution is available [3]:

∆u(t) = −K(t)∆x(t) (7)
K = H−1

uu

(
Hux + FT

u S
)

(8)



554 S. Gros et al.

Ṡ = −Hxx + S(FuH
−1
uu Hux − Fx) (9)

+(HxuH
−1
uu F

T
u − FT

x )S + SFuH
−1
uu F

T
u S + HxuH

−1
uu Hux

S(tk + T ) = Φ(x(tk + T )) (10)

The S matrix is computed backward in time. This computation can be numer-
ically demanding. Controller (7)-(10) is termed the NE-controller. Note that it
does not take constraints into account.

3 Two-Time-Scale Control Scheme

The repeated solution of (2)-(4) provides feedback to the system. Yet, since
the time necessary to perform the optimization can be rather large compared
to the system dynamics, the feedback provided by the re-optimization tends to
be too slow to guarantee performance and robustness. Hence, it is proposed to
add a fast feedback loop in the form of a NE-controller. The resulting control
scheme is displayed in Figure 1. The NE-controller operates in the fast loop at a
sampling frequency appropriate for the system, while the reference trajectories
are generated in the slow loop at a frequency permitting their computation. Note
that, if the time-scale separation between the two loops is sufficient, uref (t) can
be considered as a feedforward term for the fast loop.

3.1 Trajectory Generation

The generation of the reference trajectories uref(t) and xref (t) can be computed
via optimization (e.g. nonlinear MPC) or direct system inversion (as is possible
for example for flat systems [10]).

3.2 Tracking NE-Controller

The NE-controller (7)-(10) can be numerically difficult to compute. Its com-
putation is simplified if the optimization problem considers trajectory track-
ing. Indeed, for tracking the trajectories uref (t) and xref (t), Φ and L can be
chosen as:

Φ =
1
2
(x− xref )TP (x− xref ) (11)

L =
1
2
(x− xref )TQ(x− xref ) +

1
2
(u− uref )TR(u− uref) (12)

for which the solution to problem (2)-(3) is u∗(t) = uref (t) and x∗(t) = xref (t).
Furthermore, the adjoints read:

λ̇ = −HT
x = −FT

x λ−Q(x− xref ) (13)
λ(tk + T ) = Φx(tk + T ) = 0 (14)
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Trajectory
Generation

Plantu x

uref xref

+

Objectives

NE-controller
-K(t)

∆u ∆x

+

-

+

   slow loop
(feedforward)

  fast loop
(feedback)

Fig. 1. Scheme combining trajectory generation (via optimization or system inversion)
and NE-control

i.e. they are zero along the whole trajectory. Hence, the NE-controller reduces
to:

∆u(t) = −K(t)∆x(t) (15)
K = R−1FT

u S (16)
Ṡ = −Q− SFx − FT

x S + SFuR
−1FT

u S (17)
S(tk + T ) = P (18)

which can be viewed as a time-varying LQR. Note that, if the local system
dynamics are nearly constant, the NE-controller is well approximated by a LQR
with a constant gain matrix K. In contrast, if the system is strongly time-varying,
it is necessary to compute the time-varying NE-controller (15)-(18).

4 Application to a VTOL Structure

4.1 System Dynamics

The simulated example is a VTOL structure.
The structure is made of four propellers mounted on the four ends of an

orthogonal cross. Each propeller is motorized independently. The propeller ro-
tational velocities are opposed as follows (when top viewed, counted counter-
clockwise): propellers 1 and 3 rotate counterclockwise, while propellers 2 and
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G

d

h
d
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e1
e2

e3

η1 η2

E 3

E 1

E 2
φ

φ
E 1

E 2
E 2

E 3

1

2

3

Fig. 2. (E1, E2, E3) is a frame attached to the VTOL at its center of mass G. h is
the vertical distance between center of mass and propeller center. d is the horizontal
distance between center of mass and propeller axis. The transformation (e1, e2, e3) →
(E1, E2, E3) is defined by (i) rotation of angle η1 around axis 1, (ii) rotation of angle
η2 around axis 2, (iii) rotation of angle φ around axis 3.

4 rotate clockwise. The angle of attack (AoA) of the blades and the positions
of the propellers are fixed relative to the structure. The VTOL is controlled by
means of the four motor torques. The states of the system are:

X =
[
x y z η1 η2 φ ẋ ẏ ż η̇1 η̇2 φ̇ ρ̇1 ρ̇2 ρ̇3 ρ̇4

]
(19)

Variables
[
x y z

]
give the position of the center of gravity G in [m] within the

laboratory referential (e1, e2, e3). Variables
[
η1 η2 φ

]
give the angular attitude

of the structure in [rad], with the transformation from the laboratory referential
to the VTOL referential, (e1, e2, e3) → (E1, E2, E3), being described by the
matrix Φ(η1, η2, φ) = Re3 (φ)Re2 (η2)Re1 (η1), where Re(α) is a rotation of angle
α around the basis vector e.

Variable ρ̇k is the speed of the propeller k in [rad/s]. The model of the VTOL
can be computed by means of analytical mechanics. The aerodynamical forces
and torques generated by the propellers are modeled using the standard squared
velocity law. The resulting model is rather complicated and will not be explicited
here. The reader is referred to [9] for details. The model is nonlinear, and its
local dynamics are strongly time varying.

A simplified model can be computed by removing certain non-linearities,
which is well justified in practice. Introducing the notations

v1 =
4∑

k=1

ρ̇2
k v2 =

4∑
k=1

(−1)kρ̇2
k v3 = ρ̇2

1 − ρ̇2
3

v4 = ρ̇2
2 − ρ̇2

4 v5 =
4∑

k=1

ρ̇k
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the simplified model can be written as:⎡⎢⎣ ẍ

ÿ

z̈

⎤⎥⎦ = Cxyz

⎡⎢⎣ sin(η2)
−cos(η2)sin(η1)
cos(η2)cos(η1)

⎤⎥⎦ v1 −

⎡⎢⎣ 0
0
g

⎤⎥⎦ (20)

φ̈ = Cφv2 (21)

η̈1 =
1

C1
η1
cos(η2)2 + C2

η1

(Cdsin(η2)v2 + Cs d cos(η2)(sin(φ)v3 + cos(φ)v4)

− IM
A cos(η2)η̇2v5) (22)

η̈2 = Cη2(−cos(φ)v3 + sin(φ)v4 + IA
Mcos(η2)η̇1v5) (23)

v̇k = uk k = 1, ..., 4 (24)

with the constants

Cxyz =
Cs

M5 + 4m
Cφ =

Cd

4IA
M + 4md2 + I5

M

C1
η1

= −I5
M + I5

S − 4IA
M + 4IA

S − 2md2 + 4mh2 C2
η1

= IM
5 + 4IA

M + 4md2

Cη2 =
Csd

4IA
S + 2md2 + 4mh2 + I5

S

The inputs uk, k = 1...4, do not represent the physical inputs (the motor
torques Mk), but are related to them by invertible algebraic relationships. The
numerical values of the parameters used in the simulations are given in Table 1.
Parameters I5

M , I5
S , IA

M , IA
S are the inertias of the main body and the propellers,

respectively. Parameters Cs and Cd are the aerodynamical parameters of the
propellers. Parameters M5, m are the masses of the main body and propellers,
respectively.

The simplified model is flat. The flat outputs are: Y =
[
x y z φ

]
.

Table 1. Model parameters

Cs 3.64 × 10−6 Ns2 d 0.3 m
Cd 1.26 × 10−6 Nms2 I5

M 181 × 10−4 Nms2

M5 0.5 kg I5
S 96 × 10−4 Nms2

m 2.5 × 10−2 kg IA
M 6.26 × 10−6 Nms2

h 0.03 m IA
S 1.25 × 10−6 Nms2

4.2 Control Problem

The control problem is of the tracking type: the VTOL structure must be driven
smoothly from some initial configuration to another predefined configuration. A
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translation from the position (x = 0 [m], y = 0 [m], z = 0 [m], φ = 0 [rad]) to the
position (x = 1 [m], y = 1 [m], z = 1 [m], φ = 2π [rad]) will be considered. The
speeds and accelerations are zero initially. The control problem is unconstrained.
The controllers are computed using the simplified model, while the simulations
are done with the original model. Perturbations are introduced in the aero-
dynamical parameters Cs and Cd to represent the uncertainty resulting from
self-induced turbulences and surface effects: C1

s , C1
d , C2

s , C2
d are perturbed +50

percent and C3
s , C3

d , C4
s , C4

d −50 percent, Ck
d and Ck

s being the aerodynamical
coefficients of propeller k.

4.3 MPC

The choice of cost function for the MPC scheme is:

J =
1
2

tk+T∫
tk

[(x̄− x̄sp)TQ(x̄− x̄sp) + ūTRū]dt
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Fig. 3. Simulation results for the MPC scheme
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Fig. 4. Simulation results for the Two-time-scale scheme. xref and x are given by the
dashed and solid lines, respectively.

with x̄sp the state setpoints, x̄=
[
X(1 : 12)v1 v2 v̄3 v̄4

]T,and ū=
[
u1 u2 ū3 ū4

]T,
where

v̄3 = sin(φ)v3 + cos(φ)v4 ˙̄v3 = ū3 (25)
v̄4 = −cos(φ)v3 + sin(φ)v4 ˙̄v4 = ū4 (26)

The setpoints correspond to the final states to which the system must be driven.
This change of variables removes the coupling between the states. The corre-
sponding reference torques and states trajectories for the original model can be
computed algebraically from x̄ and ū. The weighting matrices R and Q are cho-
sen so as to obtain the desired dynamics. Here, they are chosen diagonal, with
the diagonal terms RD and QD given as:

RD = 10−9 ·
[
1.8 · 10−3 0.1058 28.125 27.38

]
QD(1 : 8) = 103 ·

[
1 1.5 1 0.5 0.1 1 0.5 0.45

]
QD(9 : 16) = 103 ·

[
0.5 0.5 0.5 0.5 0 0 0 0

]
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The choice of the prediction horizon T for the nonlinear MPC scheme is not
obvious. Too short a prediction horizon tends to lead to stability problems,
while too long an horizon is not desirable from a computational point of view
[4]. The prediction horizon chosen for the MPC is T = 4[s], with the sampling
time δ = 0.1 [s].

With no parametric uncertainty in Cs and Cd, the MPC scheme is able to
move the VTOL nicely to the desired setpoints despite the fact that the inputs
are computed based on the simplified model. However, MPC struggles when
the parametric uncertainty on the aerodynamical coefficient exceeds 10 percent.
Figure 3 shows the control performance for a 10 percent perturbation, the per-
turbation being applied to the four propellers as indicated in Subsection 4.2.
The control is slow, each optimization takes minutes (the exact computation
time depends on the algorithm used) and exhibits a large overshoot.

4.4 Two-Time-Scale Control

The flatness property of the simplified model allows generating the reference
input and state trajectories algebraically, which reduces the computation time
significantly. The NE-controller in the fast loop ensures good tracking of the
state references. The cost function is :

J =
1
2

Tf∫
tk

[(x̄ − x̄ref )TQ(x̄− x̄ref ) + (ū− ūref )TR(ū− ūref )]dt

where the matrices Q and R are the same as for MPC, and (x̄ref , ūref) are
the reference trajectories generated by the system inversion loop. The choice of
final time for trajectory generation is Tf = 4[s], and the outputs trajectories are
chosen such that the reference velocities and accelerations are zero at Tf .

This control scheme exhibits a nice behavior as shown in Figure 4. The ref-
erence input and state trajectories are parametrized using polynomials. They
are generated once, and no re-calculation is needed. The computation time for
the flatness-based trajectory and feedback generation is fairly low (1.5[s] for the
trajectory considered). Figure 5 displays the gains of the NE-controller. Since
the gains are strongly time varying, the NE-controller cannot be approximated
by a LQR.

4.5 Stability

The stability analysis of two-time-scale systems is usually treated within the
singular perturbation framework, such as in [5]. However, considering that the
NE-controller approximates the optimality objective of the MPC, it is reasonable
to seek a stability proof that shows that the slow and the fast loops work toward
the same goal, which does not require a time-scale separation. This work is part
of ongoing research.
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Fig. 5. Selected elements of the (4 × 16)-dimensional matrix of NE-controller gains
to track the flatness-based trajectories; the gains shown correspond to the states η1

(solid), η2 (dashed) and φ (dotted)

4.6 Handling Constraints

MPC is well suited to handle input and state constraints. As far as the system-
inversion method is concerned, the flat output trajectories are parameterizations
of the input and state trajectories. Hence, using system inversion, it is possible to
generate flat output reference trajectories that take input and state constraints
into account. Though the problem of adjusting the flat output trajectories in
order to respect inputs and states constraints can be difficult [4], designing flat
output trajectories that respect output constraints is straightforward. Further-
more, since the flat outputs are independent and freely assignable, no dynamical
constraint limits their tracking performance. Though hard constraints cannot
be taken into account by the NE-controller, using a reasonable back-off from
the flat output constraints and a sufficiently aggressive NE-controller, it is ar-
guably possible to respect the flat output constraints (provided that states and
inputs are unconstrained). Yet, enforcing input and state constraints using the
proposed approach is still far more challenging.
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5 Conclusion

This paper has proposed a two-time-scale control scheme that uses repeated tra-
jectory generation in a slow loop and time-varying linear feedback based on the
neighboring-extremal approach in a faster loop. The slow loop provides reason-
able reference trajectories, while the fast loop ensures robustness. Feedforward
trajectory generation is obtained using flatness-based system inversion.

The two-time-scale approach as well as MPC have been used in simulation
to control a VTOL flying structure. Though the simplified model of the struc-
ture is flat, control based on feedback linearization is not appropriate because it
lacks robustness with respect to the model uncertainties typically encountered in
VTOL structures. MPC requires a high re-optimization frequency and, in addi-
tion, cannot accommodate large model uncertainties. In contrast, the proposed
two-time-scale control scheme is sufficiently robust that it does not require re-
calculation of the reference trajectories. The flatness-based approach is very fast,
and will be used for experimental implementation on a laboratory-scale VTOL
structure, for which re-generation of the reference trajectories may be necessary.
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Summary. This paper presents a Receding Horizon Control (RHC) algorithm to the
problem of on-line flight path optimization for aircraft in a dynamic Free-Flight (FF)
environment. The motivation to introduce the concept of RHC is to improve the robust
performance of solutions in a dynamic and uncertain environment, and also to satisfy
the restrictive time limit in the real-time optimization of this complicated air traffic
control problem. Compared with existing algorithms, the new algorithm proves more
efficient and promising for practical applications.

1 Introduction

“Free-Flight”(FF) is one of the most promising strategies for future air traffic
control (ATC) systems [1, 2]. Within the FF framework, each individual aircraft
has the first responsibility to plan its flight in terms of safety, efficiency and
flexibility. One of the key enabling techniques is real-time path planning using
onboard flight management systems. Reference [3] proposes an effective Genetic
Algorithm (GA) for searching optimal flight paths in an FF environment, where
no pre-defined flight routes network exists. However, two questions arise for the
GA in [3]: how to cope with unreliable information in a dynamic environment,
and how to improve real-time properties.

This paper introduces the concept of Receding Horizon Control (RHC) to the
GA in [3] and then develops a more efficient algorithm for online optimizing
flight paths in a dynamical FF environment. As an N-step-ahead online opti-
mization strategy, firstly, RHC provides a promising way to deal with unreliable
information for far future, and therefore increase the robustness/adoptation of
the algorithms against environmental uncertainties/changes; secondly, the intro-
duction of RHC can significantly reduce the heavy computational burden of the
GA in [3] to an acceptable level. These achievements mainly rely on carefully
choosing horizon length and properly designing terminal penalty in the newly
proposed algorithm.

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 565–572, 2007.
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2 Online Flight Path Optimization in FF Environment

2.1 Optional Free Flight Paths

In contrast to conventional pre-defined flight routes networks, there are numerous
optional free flight paths in an ideal FF environment, as illustrated in Fig.1.
Following [4], this paper uses the concept of “time-slice” and a set of discrete
optional headings to transform the non-conflict-airspace into a dynamic flight
routes network, and the optimization problem can be reasonably simplified.

Time-slice and discrete optional headings set are two system parameters which
determine the complexity of the flight routes network. As discussed in [3], longer
time-slice and less optional headings lead to a less flexible network; in the op-
posite extreme, the network becomes unnecessarily complicated. Referring to
some papers on air conflict detection and resolution [4], where 5-min-long time
interval and 10◦ discrete angular change for optimizing only local manoeuvres
is adopted, this paper, to optimize global flight paths, uses a 10-min time-slice
and a discrete set

Ω = [0◦, 10◦, 20◦, · · · , 350◦, θdire] (1)

where θdire is the direct-heading, which is defined as the direction of the destina-
tion airport with reference to the waypoint where the aircraft arrives at the end
of the current time-slice. The ground ATC systems are supposed to periodically
broadcast environmental information, particularly data of unavailable-regions, to
each individual aircraft. Each individual aircraft uses the latest information to
optimize the remained flight path starting from the next time-slice. An optional
flight path is composed of a series of sub-trajectories associated with time-slices.
The sub-trajectory for the current time-slice is determined by the previous run
of optimization.

Fig. 1. Optimized path in an FF environment

2.2 Performance Index for Flight Path Optimization

In this paper, for the sake of simplification, only flight time cost is chosen as the
index for flight path optimization. Flight time cost can be easily transformed into
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Fig. 2. Variables and parameters of a sub-trajectory and related speeds

other useful indexes for flight path optimization, such as fuel cost [5]. According
to the discussion in Section 2.1, an optional flight path is determined by a number
of waypoints. When the heading and the beginning waypoint of a sub-trajectory
are given, since the flight time along a sub-trajectory is a time-slice (i.e., 10
minutes), the coordinates of the end waypoint of this sub-trajectory can be
calculated by referring to Fig.2

xB = xA + SAB cos θBA, yB = yA + SAB sin θBA (2)

where SAB is the distance between two waypoints and

SAB = vETts, θBA = θE (3)

vE =
√
v2

W + v2
Air + 2vEVAir cos(θW − θAir) (4)

θE = θAir + sin−1(vW sin(θW − θAir)/VE) (5)

vAir = fM2v(Mopti, hC) θW = ϕA vW = vA (6)

Mopti and hc are cruise Mach and cruise altitude respectively, fM2V (·) is a
function calculating air speed with Mopti and hc as inputs, and Tts is 10 minutes.
Since a sub-trajectory is very short as the result of the 10-min-long time-slice,
it is reasonable to assume that the average wind parameters along the sub-
trajectory are the same as those at the beginning waypoint, as described in Eq. 6.
(xB , yB) are then used as the beginning waypoint of new sub-trajectory, and the
wind parameter (ϕB, vB) can then be calculated by an interpolation method
proposed in [6] based on (xB , yB) and atmospheric conditions broadcasted by
ATC agencies. The coordinates of the end waypoint of the new sub-trajectory
can be calculated in the same way. The computation of sub-trajectories keeps
going on until the destination airport is reached.

For the last sub-trajectory in an optional flight path, the end waypoint is
the destination airport, and the actual flight time along the last sub-trajectory
needs to be calculated using a similar method as Eq.(2-6). Suppose the flight
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time along the last sub-trajectory is tlast, and, excluding the last sub-trajectory,
there are sub-trajectories in an optional flight path. Then the corresponding
flight time cost is

J1 = N̄Tts + tlast (7)

3 RHC Algorithms

Similar to most other existing methods (e.g., see [7]), to online optimize FF
paths, the GA in [3] optimizes, in each time-slice, the rest flight path from
the end of current sub-trajectory to the destination airport. As a consequence,
it suffers heavy computational burden, although it was proved to be effective
in searching optimal paths in an FF environment. Also, the robustness of the
algorithm in [3] against unreliable information in a dynamic FF environment has
not been addressed.

3.1 The Idea of RHC

The proposed algorithm takes advantage of the concept of RHC to overcome
the above problems in [3]. RHC is a widely accepted scheme in the area of
control engineering, and has many advantages against other control strategies.
Recently, attention has been paid to applications of RHC in those areas such as
management and operations research [8]. Simply speaking, RHC is an N -step-
ahead online optimization strategy. At each step, i.e., time-slice, the proposed
RHC algorithm optimizes the flight path for the next N time-slices into the
near future. Therefore, no matter how long the flight distance is, the online
computational time for each optimization is covered by an upper bound, which
mainly depends on N , the horizon length. Also, a properly chosen receding
horizon can work like a filter to remove unreliable information for the far future.

The online optimization problem in the proposed RHC algorithm is quite
different from that in conventional dynamic optimization based methods, such
as the GA in [3], where J1 given in (7) is chosen as the performance index to
be minimized in online optimization. The performance index adopted by the
proposed RHC algorithm is given as

J2(k) = N(k)Tts + Wterm(k) (8)

where Wterm(k) is a terminal penalty to assess the flight time from the last way-
point to the destination airport. The discussion about Wterm(k) will be given
later and more detailed discussion can be found in [9]. The proposed RHC algo-
rithm for optimizing flight paths in a dynamic FF environment can be described
as following:

S1:When an aircraft takes off from the source airport, fly the departure pro-
gram, let k = 0, and set P (0) as the allocated departure fix of the departure
program.
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S2:Receive updated environment data from ATC agencies, set P(k) as the initial
point to start flight path optimization, and then solve the following minimiza-
tion problem

min
P (k+1|k),P (k+2|k),...,P (k+N |k)

J2(k) (9)

subject to available headings in Ω and unavailable regions, where P (k +
i|k), i = 1, . . . , N, is the end waypoint of ith sub-trajectory in an original
potential flight path at kth step. Denote the optimal solution as [P̂ (k +
1|k), P̂ (k + 2|k), . . . , P̂ (k + N)|k], and the associated shortcut-taken flight
path as [P̂ (k + 1|k), P̂ (k + 2|k), . . . , P̂ (k + ceil(M(k))|k], where M(k) is the
number of time slices in the shortcut-taken flight path, and ceil rounds M(k)
to the nearest integer towards infinity.

S3:When the aircraft arrives at P (k), set P (k + 1) = P̂f (k + 1|k) and then fly
along the sub-trajectory determined by [P (k), P (k + 1)].

S4: If P (k + 1) is not the destination airport, let k = k + 1, and go to Step 2;
otherwise, the algorithm stops.

3.2 The Length of Receding Horizon and Terminal Penalty

The choice of N , the horizon length, is important to design the proposed al-
gorithm. The online computational time for each optimization is covered by an
upper bound, which mainly depends on N and can be estimated through sim-
ulations. As long as the time-slice is larger than the upper bound, no matter
how long the entire flight distance is, the real-time properties of the proposed
algorithm are always guaranteed. Also, a properly chosen receding horizon can
work like a filter to remove unreliable information for the far future. A larger N
results in heavier online computational burden, but if N is too small, the RHC
algorithm becomes “shortsighted”, and the performance significantly degrades.
A properly chosen N should be a good trade-off on these factors which depend
on the dynamics of the systems and the quality of the information.

However, the nature of the receding horizon concept makes the proposed al-
gorithm only taking into account the cost within the receding horizon, which
implies shortsightedness in some sense. The introduction of terminal penalty
Wterm(k) in J2(k) can compensate for this shortsightedness. When applying
RHC in online FF path optimization, if no terminal penalty is used, very poor
performance even instability (in the sense that the aircraft fails to arrive at the
destination airport) is observed in [9]. Several choices of the terminal penalty
have been proposed and investigated in [9]. Due to space limit, only one terminal
penalty is presented in this paper, which is defined as

Wterm(k) = (β|θ3|/θ4 + 1)dis(Plast(k), PDA)/vE (10)

where θ3, θ4 and β are illustrated in Fig.3. PSA, PDA, Pprev(k) and Plast(k)
are the source airport, the destination airport, the second last waypoint in an
optional FF path, and the last waypoint in an optional FF path, respectively,
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Fig. 3. Definition of a terminal penalty

and IW/OW stands for unavailable airspace regions located on/outside the way
directly from Plast(k) to PDA. From Fig.3, one can see that: θ3 > 0 means that
the heading of the last sub-trajectory in a potential flight path is over-turning,
i.e., aircraft will turn unnecessarily far away from PDA; θ3 < 0 means under-
turning, i.e., aircraft will fly into IW unavailable airspace. |θ3|/θ4 is used to assess
how much the over-turning or under-turning is when compared with θ4. A larger
value of |θ3|/θ4 means more excessive turning of the aircraft (either over-turning
or under-turning), and will therefore lead to a heavier terminal penalty. β ≥ 0
is a tuning coefficient, and β = 0 when there is no IW unavailable airspace.

In order to evaluate the proposed RHC algorithm, the simulation system re-
ported in [3] is adopted to set up different FF environments, and the conventional
dynamic optimization based GA in [3], denoted as CDO, is also used for the com-
parative purpose. The proposed RHC algorithm, denoted as RHC, modifies the
online optimizer in [3] by taking into account the concept of RHC, as discussed
before. More details of the GA optimizer can be found in [3]. In the simulation,
unless it is specifically pointed out, the horizon length is N = 6, and the terminal
penalty Wterm(k) defined in (10) is adopted for RHC. Six simulation cases are
defined in Tab. 1 with different degrees of complexity of the FF environment,
where DD stands for the Direct Distance from the source airport to the destina-
tion one, and UR for Unavailable Region. In Cases 1 to 3, the UR’s are static,
while the UR’s vary in Cases 4 to 6; in other words, they may move, change in
size, and/or disappear randomly. The comparative simulation focuses on online
computational times (OCT’s) and performances, i.e., actual flight times (AFT’s)
from the source airport to the destination one. Numerical results are given in
Tables 2 to 4, where 10 simulation runs are conducted under either RHC or CDO
for each static case, while 200 simulation runs are carried out for each dynamic
case. Firstly, RHC is compared with CDO in static cases, and simulation results
are given in Table 2. One can see that CDO achieves the best performance,
i.e., the least AFT’s, in all 3 cases. This is understandable because conventional
dynamic optimization strategy, by its nature, should be the best in terms of



Receding Horizon Control for Free-Flight Path Optimization 571

Table 1. Six simulation cases

Static environment Dynamic environment

DD (nm)
No. of UR’s

Case 1 Case 2 Case 3
500 1000 2000
1 6 14

Case 4 Case 5 Case 6
500 1000 2000
1 6 14

Table 2. Simulation results in static cases

CDO RHC

Ave. OCT(s)
Ave. AFT (s)
Max.OCT(s)
Max. AFT(s)

Case 1 Case 2 Case 3
1.2687 8.3675 77.536
3965.6 7407.3 14868
5.3970 37.479 364.92
3966.9 7435.7 14913

Case 1 Case 2 Case 3
2.5675 4.8498 7.3047
3966.2 7421.5 14905
5.7970 7.408 15.551
3968.7 7480.4 15052

Table 3. Simulation results in dynamic cases

CDO RHC

Ave. OCT(s)
Ave. AFT (s)
Max.OCT(s)
Max. AFT(s)

Case 4 Case 5 Case 6
0.9623 9.448 68.9219
4222.0 7475 16192
5.317 38.96 347.915
4223.9 8492 16638

Case 4 Case 5 Case 6
2.4930 3.8419 7.8754
4221.6 7454.3 15932
5.8990 6.3190 17.694
4223.1 7995.8 16118

a given performance index when no uncertainties are present. Table 2 shows
that the performance of RHC is very close to that of CDO, which implies that
RHC works very well in static cases. As for OCT’s, RHC is clearly much more
efficient than CDO. Since one time-slice is 10-minutes-long, one can see that
there is no problem for RHC to run in real-time, while CDO does struggle
to complete online computation in some cases. Dynamic cases are our main
concern, and some corresponding simulation results are given in Table 3. As for
performance, in relatively simple cases like Case 4 and Case 5, CDO and RHC
have similar AFT’s, while in complicated cases like Case 6, the performance of
RHC is better than that of CDO. Again, RHC provides reliable and promising
real-time properties against CDO.Tab. 4 highlights that the horizon length N
should be properly chosen. If N is too small, the performance is very poor,
as is the case of N=1 and N=3 in Tab. 4. However, if N is too large, OCT’s
increase, but the performance is not necessarily improved further. Instead, the
performance could degrade in dynamic cases, as shown for N = 9.
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Table 4. Influence of N on RHC

Static environment
Case 1 Case 2 Case 3

Dynamic environment
Case 4 Case 5 Case 6

N=1
OCT(s)
AFT(s)

N=3
OCT(s)
AFT(s)

N=6
OCT(s)
AFT(s)

N=9
OCT(s)
AFT(s)

0.8340 0.9365 1.336
4006.5 8054.9 17891
1.3003 1.9507 2.539
3965.0 7811.0 15674
2.5675 4.8498 7.305
3966.2 7421.5 14905
4.6264 10.6017 18.25
3965.9 7407.6 14894

0.7337 0.8465 1.2590
4225.1 7976.8 16922
1.2907 1.4612 2.2652
4226.5 7482.6 16207
2.4930 3.8419 7.8754
4221.6 7454.3 15932
4.0966 8.5754 17.737
4221.9 7462.4 16074

4 Conclusions

This paper introduces the concept of RHC to the online optimization of flight
paths in a dynamical FF environment. Attention is particularly paid to the hori-
zon length and terminal penalty to guarantee the success of the proposed algo-
rithm. Simulation results show that, regarding performance, the proposed RHC
algorithm is as good as the existing algorithm in the absence of uncertainties,
and achieves better solutions in a dynamic environment. The main advantage
of the RHC algorithm is its high efficiency regarding the online computational
time.

References

[1] C.D. Wickens, et al (1998). Airspace System Integration-The Concept of Free
Flight. National Academy Press.

[2] S. Kahne (2000). Annual reviews in Control, 24:21–29.
[3] XB Hu, et al (2004). Eng. Applications of Artificial Intelligence,17:897–907.
[4] N. Durand N, et al (1995). Air Traffic Control Quarterly, 3(3).
[5] S.F. Wu (1990). Studies on the flight performance management, Ph.D. Thesis,

Nanjing University of Aero. and Astro., China.
[6] J.A. McDonald and Y. Zhao (2000). Time benefits of free-flight for a commercial

aircraft. In The Proc. of the AIAA GNC Conference, Denver,CO,USA, 2000.
[7] G. Guastalla, et al (2000). Transportation Sci., 34:394–401.
[8] S. Chand et al (2002). Manufacturing and Service Operations Manag., 4:25-43.
[9] X.B. Hu (2005). New Results and New Developments in Model Predictive Control.

Ph.D. Thesis, Dept. of Aero. and Auto. Eng., Loughborough University.



An Experimental Study of Stabilizing Receding
Horizon Control of Visual Feedback System with
Planar Manipulators

Masayuki Fujita, Toshiyuki Murao, Yasunori Kawai, and Yujiro Nakaso

Department of Mechanical and Control Engineering, Tokyo Institute of Technology,
2-12-1 S5-26 O-okayama Meguro-ku, Tokyo 152-8552, Japan
fujita@ctrl.titech.ac.jp

Summary. This paper investigates vision based robot control based on a receding
horizon control strategy. The stability of the receding horizon control scheme is guar-
anteed by using the terminal cost derived from an energy function of the visual feedback
system. By applying the proposed control scheme to a two-link direct drive manipula-
tor with a CCD camera, it is shown that the stabilizing receding horizon control nicely
works for a planar visual feedback system. Furthermore, actual nonlinear experimental
results are assessed with respect to the stability and the performance.

1 Introduction

Robotics and intelligent machines need sensory information to behave au-
tonomously in dynamical environments. Visual information is particularly suited
to recognize unknown surroundings. In this sense, vision is one of the highest
sensing modalities that currently exist. Vision based control of robotic systems
involves the fusion of robot kinematics, dynamics, and computer vision to control
the motion of the robot in an efficient manner. The combination of mechanical
control with visual information, so-called visual feedback control or visual servo-
ing, is important when we consider a mechanical system working in dynamical
environments [1].

In previous works, Kelly [2] considered the set-point problem with a static tar-
get for a dynamic visual feedback system that includes the manipulator dynamics
which is not be negligible for high speed tasks. The authors discussed passivity
based control of the eye-in-hand system [3, 4]. However, the control law proposed
in [3] is not based on optimization, the desired control performance cannot be
guaranteed explicitly.

Receding horizon control, also recognized as model predictive control is a
well-known control strategy in which the current control action is computed by
solving, a finite horizon optimal control problem on-line [5]. A large number of
industrial applications using model predictive control can be found in chemical
industries where the processes have relatively slow dynamics. On the contrary, for
nonlinear and relatively fast systems such as in robotics, few implementations
of the receding horizon control have been reported. For the receding horizon
control, many researchers have tackled the problem of stability guarantees. An
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Fig. 2. Schematic diagram

approach proposed by Parisini et al. [6] is based on using a quadratic endpoint
penalty of the form axT (t+ T )Px(t+ T ) for some a > 0, some positive definite
matrix P and a terminal state x(t+T ). Jadbabaie et al. [7] showed that closed-
loop stability is ensured through the use of a terminal cost consisting of a control
Lyapunov function. Moreover, these results were applied to the Caltech Ducted
Fan to perform aggressive maneuvers [8, 9]. Visual feedback, however, is not
considered here. Predictive control could be of significant benefit when used in
conjunction with visual servoing. With the incorporation of visual information,
the system could anticipate the target’s future position and be waiting there to
intercept it [10].

In this paper, stabilizing receding horizon control is applied to the planar
visual feedback system in [3], a highly nonlinear and relatively fast system. This
represents a first step towards high performance visual servoing targeting more
aggressive maneuvers. The main idea is the use of the terminal cost derived from
an energy function of the visual feedback system. By applying the proposed
control scheme to a two-link direct drive manipulator with a CCD camera, it is
shown that the stabilizing receding horizon control nicely works for the planar
visual feedback system. Furthermore, the experimental results are assessed with
respect to performance.

First, passivity-based control of a planar visual feedback system is reviewed.
Next, a stabilizing receding horizon control for a planar visual feedback system
using a control Lyapunov function is proposed. Then, the control performance of
the stabilizing receding horizon control scheme is evaluated through experiments
with a two-link direct drive manipulator with a camera as shown in Fig. 1.

2 Visual Feedback System with Planar Manipulator

The dynamics of n-link rigid robot manipulators can be written as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)
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where q, q̇ and q̈ are the joint angle, velocity and acceleration, respectively, τ is
the vector of the input torque [11]. We assume that the robot evolves in a plane
of n = 2, referring to Figs. 1 and 2.

The objective of visual feedback control is to bring the camera which is
mounted on the end-effector of the manipulator to the position of the target
object, i.e., to bring a image feature parameter vector f = [fx fy]T to the origin.
The image feature parameter vector f is obtained from a perspective transforma-
tion. Although details are omitted for lack of space, the planar visual feedback
system is given as follows [3, 12].[

ξ̇

ḟ

]
=

[
−M(q)−1C(q, q̇)ξ + wfM(q)−1JT

p Rwcf

− sλ
zwo

RT
wcJpξ −RT

wcṘwcf

]
+

[
M(q)−1 0

0 − sλ
zwo

RT
wcJp

]
u (2)

where u := [uT
ξ uT

d ]T is the control input, ξ := q̇ − ud is the error vector with
respect to the joint velocity, the scalar wf > 0 is a weight for the input torque,
Rwc is a rotation matrix and Jp is the manipulator Jacobian. A scalar s > 0
is the scale factor in pixel/m, λ is the focal length of the camera and zwo is a
constant depth parameter. We define the state of the visual feedback system as
x := [ξT fT ]T . The purpose of this paper is to control this planar visual feedback
system (2) by using stabilizing receding horizon control.

In previous work [3], the passivity of the visual feedback system (2) is derived
by using the following energy function V (x)

V (x) =
1
2
ξTM(q)ξ +

wfzwo

2sλ
fTf. (3)

Here, we consider the following control input

u = −Kν := uk, K :=

[
Kξ 0
0 Kd

]
, ν := Nx :=

[
I 0
0 −wfJ

T
p Rwc

]
x, (4)

where Kξ := diag{kξ1, kξ2} ∈ R2×2 and Kd := diag{kd1, kd2} ∈ R2×2 are
positive gain matrices. Differentiating V (x) along the trajectory of the system
and using the control input uk, the next equation is derived.

V̇ = νTu = −xTNTKNx. (5)

Therefore, the equilibrium point x = 0 for the closed-loop system (2) and (4) is
asymptotic stable, i.e., uk is a stabilizing control law for the system.

3 Stabilizing Receding Horizon Control

In this section, the finite horizon optimal control problem for the visual feed-
back system (2) is considered. Receding horizon schemes are often based on the
following cost function.
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J(u, t) =

t+T∫
t

l(x(τ), u(τ))dτ + F (x(t + T )), F (x(t + T ))≥0 (6)

l(x(t), u(t)) = xT (t)Q(t)x(t) + uT (t)R(t)u(t), Q(t)≥0, R(t) > 0. (7)

The resulting open loop optimal control input u∗ is implemented until a new
state update occurs, usually at pre-specified sampling intervals. Repeating these
calculations yields a feedback control law.

The following lemma concerning a control Lyapunov function is important to
prove a stabilizing receding horizon control. The definition for a control Lya-
punov function M(x) is given by

inf
u

[
Ṁ(x) + l(x, u)

]
≤ 0, (8)

where l(x, u) is a positive definite function [7].

Lemma 1. Suppose that the following matrix P is positive semi definite.

P := ρNTKN −Q−NTKTRKN, ρ > 0. (9)

Then, the energy function ρV (x) of the visual feedback system (2) can be regarded
as a control Lyapunov function.

The proof is straightforward using a positive definite function l(x(t), u(t)) (7)
and the stabilizing control law uk (4) for the system. Suppose that the terminal
cost is the control Lyapunov function ρV (x), the following theorem concerning
the stability of the receding horizon control holds.

Theorem 1. Consider the following cost function for the visual feedback system
(2).

J(u, t) =

t+T∫
t

l(x(τ), u(τ))dτ + F (x(t + T )) (10)

l(x(t), u(t)) = xT (t)Q(t)x(t) + uT (t)R(t)u(t), Q(t)≥0, R(t) > 0 (11)
F (x) = ρV (x), ρ > 0. (12)

Suppose that P (9) is positive semi definite, then the receding horizon control for
the visual feedback system is asymptotically stabilizing.

This theorem is proven by using a similar method as in [7], details are omitted
due to lack of space. Theorem 1 guarantees the stability of the receding horizon
control using a control Lyapunov function for the planar visual feedback system
(2) which is a highly nonlinear and relatively fast system. Since the stabilizing
receding horizon control design is based on optimal control theory, the control
performance should be improved compared to the simple passivity-based control
[3], under the condition of adequate gain assignment in the cost function. In
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this paper, as a first step, we propose unconstrained stabilizing receding horizon
control schemes. In the near future, we will consider constraints which represent
one of the advantages of receding horizon control, and develop it using level set,
see [7].

Moreover, focused on the inverse optimality approach [12], the following corol-
lary is derived.

Corollary 1. Consider the following weights of the cost function (10)-(12).

Q(t) = qNT (t)KN(t), q≥0 (13)
R(t) = rK−1, r > 0 (14)

ρ = 2
√
qr. (15)

Then, the receding horizon control for the visual feedback system is asymptotically
stabilizing, the receding horizon control law is

u∗ = −
√

q

r
KNx (16)

and the cost-to-go is given by

J∗ = ρV (x). (17)

If the weights of the terminal cost function are set to (13)-(15), then the controller
that satisfies infu[Ṁ(x) + l(x, u)] = 0 is analytically derived.

In the next section, the stabilizing receding horizon control is applied to a
planar visual feedback system. It is expected that the control performance is
improved using the receding horizon control.

4 Experimental Results

In this section, the proposed stabilizing receding horizon control is tested on
an actual planar visual feedback system which is an image based direct visual
servo system. The manipulator used in the experiments (see Fig. 1), is con-
trolled by a digital signal processor (DSP) from dSPACE Inc., which utilizes a
powerPC 750 running at 480 MHz. Control programs are written in MATLAB
and SIMULINK, and implemented on the DSP using the Real-Time Workshop
and dSPACE Software which includes ControlDesk and Real-Time Interface. A
XC-HR57 camera is attached to the tip of the manipulator. The video signals
are acquired by a frame graver board PicPort-Stereo-H4D and the image pro-
cessing software HALCON. The sampling time of the controller and the frame
rate provided by the camera are 16.7 [ms] and 60 [fps], respectively. To solve
the real time optimization problem, the software C/GMRES [13] is utilized. The
target object is projected on the liquid crystal monitor. The control objective
is to bring the image feature parameter vector f to the origin. The experiment
is carried out with the initial condition q1(0) = π/6 [rad], q2(0) = −π/6 [rad],
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Fig. 3. Experimental comparison with different control schemes (solid: receding hori-
zon control (T = 0.02 [s], ρ = 1), dashed: passivity based control)

q̇1(0) = q̇2(0) = 0 [rad/s], wf = 0.0001, zwo = 0.9 [m], sλ = 1230 [pixel],
f(0) = [−120 − 160]T [pixel] (1 [pixel] = 0.74 [mm]).

In this experiment, we compare the performance of the receding horizon con-
trol law proposed in Theorem 1 and the passivity based control law uk (4). The
weights of the cost function (10) were selected as Q = diag{65, 1.5, 10, 100} ×
10−9, R = diag{0.04, 1.7, 0.005, 0.00045} and ρ = 1 satisfy P≥0. The controller
parameters for the passivity based control law uk (4) were empirically selected
as Kξ = diag{6.5, 0.15} and Kd = diag{50, 550}. The control input with the
receding horizon control is updated within every 16.7 [ms]. It must be calculated
by the receding horizon controller within that period. The horizon was selected
as T = 0.02 [s].

The experimental results are presented in Fig. 3, showing the velocity error
ξ2, the image feature parameter fy and the control inputs uξ2 and ud2, re-
spectively. The rise time applying the receding horizon control is shorter than
that for the passivity based control. The controller predicts the movement of
the target object using the visual information, as a result the manipulator
moves more aggressively. This validates one of the expected advantages of the
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Table 1. Values of the Integral Cost

Control Scheme cost
Passivity based Control 106.1
Receding Horizon Control (T = 0.02 [s], ρ = 1) 61.8
Receding Horizon Control (T = 0.02 [s], ρ = 1.05) 108.9
Receding Horizon Control (T = 0.02 [s], ρ = 1.1) 209.2
Receding Horizon Control (T = 0.05 [s], ρ = 1) 56.3
Receding Horizon Control (T = 0.1 [s], ρ = 1) 55.1

stabilizing receding horizon control for the visual feedback system. From Fig. 3,
the asymptotic stability can be also confirmed experimentally. The steady state
performance is also better than for the passivity based control. Still, a non-
vanishing steady state error is observed most probably due to the influence of
the unmodeled manipulator dynamics(e.g. friction). This problem will be in-
vestigated in the near future. We assume that an integrator in the control will
improve the steady state performance [14].

The performance for other parameter values T and ρ is compared in terms
of the integral cost in Table 1. Since the cost of the stabilizing receding horizon
method is smaller than the passivity based control method under conditions of
the adequate cost function, it can be easily verified that the control performance
is improved. With increasing weight of the terminal cost from ρ = 1 to ρ = 1.1
the cost increases, too. With higher terminal cost the state value is reduced more
strictly, using a large control input. In this experiment, since the weights of the
control input are larger than those of the state, the cost increased consequently.
As the horizon length increases from T = 0.02 to T = 0.1, the cost is reduced. In
the case of T = 0.5, the calculation can not be completed within one sampling
interval, due to limited computing power.

5 Conclusions

This paper proposes a stabilizing receding horizon control for a planar visual
feedback system, which is a highly nonlinear and relatively fast system. It is
shown that the stability of the receding horizon control scheme is guaranteed by
using the terminal cost derived from an energy function of the visual feedback
system. Furthermore, it is verified that the stabilizing receding horizon control
nicely works for the planar visual feedback system through experiments with a
nonlinear experimental system. In the experimental results, the control perfor-
mance of the stabilizing receding horizon control is improved compared to that
of the simple passivity based control. In this paper, the stabilizing receding con-
troller was implemented for a low level inner loop, in the near future, we would
like to tackle the implementation on a high level outer loop.



580 M. Fujita et al.

Acknowledgement

The authors would like to thank Mr. S. Mimoto, Mr. H. Matsuda and Mr. T.
Yamada, Tokyo Institute of Technology for their time and invaluable help.

References

[1] S. Hutchinson, G.D. Hager and P.I. Corke (1996). A tutorial on visual servo con-
trol. IEEE Trans. Robotics and Automation. 12(5):651–670.

[2] R. Kelly (1996). Robust asymptotically stable visual servoing of planar robots.
IEEE Trans. Robotics and Automation. 12(5):759–766.

[3] A. Maruyama and M. Fujita (1998). Robust control for planar manipulators with
image feature parameter potential. Advanced Robotics. 12(1):67–80.

[4] H. Kawai and M. Fujita (2004). Passivity-based dynamic visual feedback control
for three dimensional target tracking: stability and L2-gain performance analysis.
Proc. 2004 American Control Conference. 1522–1527.

[5] D.Q. Mayne, J.B. Rawlings, C.V. Rao and P.O.M. Scokaert (2000). Constrained
model predictive control: stability and optimality. Automatica. 36(6):789–814.

[6] T. Parisini and R. Zoppoli (1995). A receding-horizon regulator for nonlinear
systems and a neural approximation. Automatica. 31(10):1443–1451.

[7] A. Jadbabaie, J. Yu and J. Hauser (2001). Unconstrained receding-horizon control
of nonlinear systems. IEEE Trans. Automatic Control. 46(5):776–783.

[8] J. Yu, A. Jadbabaie, J. Primbs and Y. Huang (2001). Comparison of nonlin-
ear control design techniques on a model of the caltech ducted fan. Automatica.
37(12):1971–1978.

[9] A. Jadbabaie and J. Hauser (2002). Control of a thrust-vectored flying wing: a
receding horizon – LPV approach. International Journal of Robust and Nonlinear
Control. 12(9):869–896.

[10] A.E. Hunt and A.C. Sanderson (1982). Vision-based predictive robotic tracking
of a moving target. Technical Report. Carnegie Mellon University.

[11] M.W. Spong, S. Hutchinson and M. Vidyasagar (2006). Robot modeling and con-
trol. John Wiley & Sons.

[12] M. Fujita, A. Maruyama, M. Watanabe and H. Kawai (2000). Inverse optimal
H∞ disturbance attenuation for planar manipulators with the eye-in-hand system.
Proc. 39th IEEE Conference on Decision and Control. 3945–3950.

[13] T. Ohtsuka (2004). A continuation/GMRES method for fast computation of non-
linear receding horizon control. Automatica. 40(4):563–574.

[14] J.B. Rawlings (2000). Tutorial overview of model predictive control. IEEE Control
Systems Magazine. 20(3):38–52.



Coordination of Networked Dynamical Systems

Alessandro Casavola1, Domenico Famularo2, and Giuseppe Franzè1
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Summary. In this paper we present a nonlinear predictive control strategy for the
supervision of networked control systems subject to coordination constraints. Such a
system paradigm, referred hereafter to as constrained dynamic network, is character-
ized by a set of spatially distributed dynamic systems, connected via communication
channels, with possible dynamical coupling and constraints amongst them which need
to be controlled and coordinated in order to accomplish their overall objective. The
significance of the method is that it is capable of ensuring no constraints violation
and loss of stability regardless of any, possibly unbounded, time-delay occurrence. An
application to the coordination of two autonomous vehicles under input-saturation and
formation accuracy constraints is presented.

1 Introduction

The advent of wireless communication networks allows the conceivability of new
challenging control applications, as those of accomplishing coordinated dynamic
tasks amongst a network of remotely located dynamic systems connected via
the Internet or other communication networks as depicted in Fig. 1. There, the
master station is in charge of supervising and coordinating the slave systems.
In particular, ri, wi, xi, yi and ci represent respectively: the nominal refer-
ences, the feasible references, the states, the performance-related outputs and
the coordination-related outputs of the slave systems. In such a context, the
supervision task can be expressed as the requirement of satisfying some track-
ing performance, viz. yi ≈ ri, whereas the coordination task consists of enforcing
some constraints ci ∈ Ci and/or f(c1, c2, ...., cN ) ∈ C on each slave system and/or
on the overall network. To this end, the supervisor is in charge of modifying the
nominal references into the feasible ones, when the tracking of the nominal path
would produce constraints violation.

Examples of constrained spatial networks which would require advanced co-
ordination ability include unmanned flight formations [5] and satellite constel-
lations [8]; fault tolerant control systems for intelligent vehicle highway [10],
electric power grids [1] and telerobotics [6]. See also [7, 9] and references therein
for a comprehensive and up-to-date discussion on the theoretical and applicative
challenges on the topic.

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 581–589, 2007.
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Fig. 1. Dynamic network

The effectiveness of the proposed method will be demonstrated by considering
the coordination of the planar motion of two autonomous vehicles, simply mod-
elled as two masses, subject to a dynamic coupling due to elastic and viscous
forces between them. See also [8] for a similar but more realistic application.
Moreover, actuator saturation is present and has to be taken into account and
the coordination task will consist of satisfying, along a given path, a set of forma-
tion accuracy constraints with respect to the rigid motion (the two masses rigidly
connected). It will be shown that if the round-trip delay of the communication
network can be assumed bounded, only data transfer between the master and
each slave is necessary. On the contrary, in the case of possibly unbounded time-
delay (as over the Internet), also direct data transfer with guaranteed time-to-
delivering properties amongst the slaves is required. Teleoperation applications
of this strategy have also been undertaken and have been reported in [3].

The overall scheme is based on a extension of the Command Governor ap-
proach, introduced in [2] in more standard control contexts, to a distributed
master/slaves structure in the presence of communication time-delay. Then, in
the next two sessions we briefly introduce the basic CG approach and indicate
how such a generalization can be accomplished. Finally, a simulative example
will be presented and conclusive remarks end the paper.

2 The Distributed Master/Slaves CG Approach

In this section we will illustrate how to extend the basic CG approach of [2], a
suitable variant of standard NMPC schemes, to master/slaves distributed con-
trol structures in the presence of no-negligible communication time-delay. For
simplicity, the presentation will be limited to a single slave. The extension to
the more general case of many-slaves is, mutatis mutandis, direct.

The typical system structure we will consider for each remote side is depicted
in Fig. 2-(Left) where τ indicates a generic time-delay. It consists of a primal
compensated plant, described by the following state-space representation⎧⎪⎨⎪⎩

x(t + 1) = Φx(t) + Gw(t)
y(t) = Hyx(t)
c(t) = Hcx(t) + Lw(t)

(1)
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Fig. 2. (Left) Slave side. (Right) Master side.

and of the slave part of the command governor (CG) logic and buffering devices.
It is assumed that:

A1 (Stability) The system (1) is asymptotically stable;
A2 (Offset-free) Hy(In − Φ)−1G = Ip, viz. the system features zero tracking

error in steady-state for constant inputs;

In (1), x(t) ∈ IRn is an enlarged state which may collect plant and compensator
states; ŵ(t − τ, t) ∈ IRm the command received from the master site. It is to
be understood as generated at time t− τ for being applied exactly at time t or
never; w(t) ∈ IRm the command that the slave CG logic actually applies to the
plant at time t. It would typically be w(t) = ŵ(t− τ, t) if a constant time-delay
τ were present. However, when the latter would not be available, the slave CG
logic is typically instructed to apply the previous applied command w(t − 1);
r(t) ∈ IRm is a reference sequence which the output y(t) ∈ IRm is required to
track. Typically ŵ(t − τ, t) = r(t) if no constraints were present; and finally
c(t) ∈ IRnc the prescribed constraint output vector, viz. c(t) ∈ C, ∀t ∈ ZZ+, with
C a specified convex and compact set.

At the master side, we consider the system structure of Fig. 2-(Right). In
this case, we have the models of the remote systems and their primal controllers
along with a buffering data structure which allows predictions and real data
fusion. In particular, all future state predictions are updated each time a new
piece of information is received from the remote sites. All “hatted” variables in
the figure have the same meaning of their slave side counterparts.

The basic idea here is that the master CG logic device acts as if the time-delay
would not be present by modifying, whenever necessary, the reference r(t + τ)
into ŵ(t, t+ τ) so as to avoid possible constraint violations. Because of random,
possibly unbounded, time-delay there exists a certain amount of uncertainty
at the master side on the actual sequence of commands which the slave CG
unit will apply from t onward and, in turn, on the remote state. Therefore, an
effective choice of ŵ(t, t+τ) cannot be based only on the state prediction x̂(t+τ),
which would correspond to the timely application of all subsequent commands
generated by the master unit as it would result from a constant time-delay τ . On
the contrary, it should be based on a discrete set of state predictions X̂ (t+ τ |t),
consisting of all state predictions x̂(t + τ) based on the information available
at time t and corresponding to all possible command sequences {w(t), w(t +
1), ..., w(t + τ − 1)} potentially generated by the slave CG selection strategy as
a consequence of all possible combinations of missing data in the given time
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interval. It is worth pointing out here that, because of constraints, ŵ(t, t+ τ) is
guaranteed to be admissible only if applied at time t + τ when, supposedly, the
state of the remote plant will be one of the vectors contained in X̂ (t + τ |t).

In order to make our discussion more precise, let τf (t) and τb(t) be the forward
and, respectively, backward time-delays at each time instant t, viz. τf (t) is the
delay from the master to the slave unit whereas τb(t) is the delay in the opposite
direction. We assume further that the following upper-bounds

τf (t) ≤ τ̄f and τb(t) ≤ τ̄b, ∀t ∈ ZZ+ (2)

are either known due to the nature of the communication channel or prescribed
as operative limits within to ensure some level of tracking performance. In the
latter case, we can distinguish two different operative modes

Normal case: (2) holds true; (3)
Abnormal case: ∃t s.t. τf (t) > τ̄f . (4)

Note that the abnormal mode depends only on the forward time-delay. The
previous assumptions on time-delay and the two different operative modes allow
one to cover in a unified fashion most of communication channels of interest,
e.g. different delays between the forward and backward directions, constant or
random delay, bounded or possibly unbounded delay, etc.

At each time instant t, let tb ≤ t and tf ≤ t denote respectively the most recent
time instants in which the master has received a piece of information from the
slave and vice versa. In the normal case (3) it results that t ≥ tb ≥ t − τ̄b and
t ≥ tf ≥ t− τ̄f . On the contrary, t− tf and t− tb can be arbitrarily large in the
abnormal case (4). Then, we consider the following family of master/slave CG
strategies

Master CG -ŵ(t, t + τ̄f ) := F1

(
r(t + τ̄f ), X̂ (t+ τ̄f |tb), ŵ(t− 1, t+ τ̄f − 1)

)
(5)

Slave CG - w(t) := F2 (w(t− 1), r(t), ŵ(t− τ̄f , t)) (6)

where F1 and F2 are memoryless functions which implement the master/slave
CG logic. In particular, ŵ(t, t + τ̄f ) in (5) is the command computed at time t
for being applied at time t+ τ̄f and ŵ(t− τ̄f , t) in (6) is the command generated
in the past to be applied at time instant t. Note that such a command may
possibly not be available at time t at the slave side. In designing F1 and F2 we
want to build up a distributed mechanism which consists in selecting, at each
time t, commands ŵ(t, t + τ̄f ) and w(t) in such a way that w(t) is the best
approximation of r(t) at time t, under the constraint c(t) ∈ C, ∀t ∈ ZZ+, and
irrespective of all possible time-delays such as (3)-(4). Moreover, in the normal
case (3) it is further required that: 1) w(t) → wr when r(t) → r, wr being
the best feasible approximation of r; 2) the overall master/slave CG logic has a
finite time response, viz. w(t) = r̂ in finite time, whenever r(t) ≡ r. It is worth
commenting that in the abnormal case (4) the latter tracking performance cannot
be satisfied and only stability and constraint satisfaction can be ensured.
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A suitable generalization of the standard CG selection logic is given, for the
master part, by

ŵ(t, t+τ̄f ) =

{
min

w∈V(X̂(t+τ̄f |tb))
‖w − r(t + τ̄f )‖2Ψ if V(X̂ (t + τ̄f |tb)) is non-empty

ŵ(t− 1, t+ τ̄f − 1), otherwise
(7)

where Ψ = Ψ ′ > 0p and ‖w‖2Ψ := w′Ψw, and V(X̂ (t + τ̄f |tb)) collects all step
virtual commands, whose corresponding constraints vector predicted evolutions
starting at time t+ τ̄f from any x ∈ X̂ (t+ τ̄f |tb) are satisfied for all future time
instants. The rationale underlying the above strategy hinges upon the property
of virtual command sequences ensuring that if w is an admissible command at
time t from the state x, it will be as such in all future time instants if constantly
applied. Note that V(X̂ (t + τ̄f |tb)) may be empty, this means that the actual
uncertainty on x(t + τ̄f ) is so large that we cannot use (7) to compute an ad-
missible virtual command. However, the previously computed virtual command
ŵ is still admissible and we are authorized to send it to the slave CG unit for
being applied at time t.

The slave part of the CG logic is far simpler and reduces to

w(t) =

{
ŵ(·, t), if available and ‖ŵ(·, t)− r(t)‖2Ψw

< ‖w(t− 1)− r(t)‖2Ψw

w(t − 1), otherwise
(8)

The basic properties of the above master/slave strategy have been described in
details in [4] and are here briefly condensed.

Theorem 1. Let the assumptions A1-A2 hold true. Consider the system (1)
along with the CG master/slave (7)-(8) selection strategy. Then:
Abnormal case (possibly unbounded time-delay):

1. The cardinality of X̂ (t + τ̄f |tb) may become unbounded;
2. The set V(X̂ (t+ τ̄f |tb)) is finitely determined;
3. V(τ̄f |0)) 	= ∅, need not imply that V(X (t+ τ̄f |tb)) will be non-empty in some

future time-instant;
4. c(t) ∈ C for all t ∈ ZZ+;
5. The overall system remains asymptotically stable but tracking performance

may be lost, viz. w(t) 	→ wr as r(t) ≡ r;

Normal case (bounded time-delay):

1. The cardinality of X̂ (t + τ̄f |tb) is bounded;
2. If the set V(X̂ (t + τ̄f |tb)) is empty at a certain time instant t, it remains

empty for a finite number of steps only;
3. If the set X̂ (t+ τ̄f |tb) consists of a single vector, then V(X̂ (τ̄f |0)) non-empty

implies V(X̂ (t + τ̄f |t− τ̄b)) non-empty for all t ∈ ZZ+;



4. c(t) ∈ C for all t ∈ ZZ+;
5. The overall system remains asymptotically stable and tracking performance

are never lost. In particular, w(t)→ wr as r(t) ≡ r. �

The previous CG master/slave strategy has a lot of customizing possibilities
that can be exploited in order to trade-off between tracking performance and
robustness with respect to time-delay, ultimately depending on the choice of
the predictions to be contained in X̂ (t + τ̄f |tb). Hereafter we will consider the
extreme cases with respect to the cardinality of X̂ (t+ τ̄f |tb), denoted as Lowest-
Data-Redundancy (LDR) and Highest-Data-Redundancy (HDR) schemes.

LDR: It contains only one prediction, viz. X̂ (t + τ̄f |tb) = {x̂(t + τ̄f |tb)} with
x̂(t + τ̄f |tb) := Φt+τ̄f−tbx(tb) +

∑t+τ̄f−tb−1
k=0 ΦkGŵ(t− 1− k, t+ τ̄f − 1− k).

It is based on the optimistic assumption that data are never lost. It works
well during normal phases but it may degrade remarkably during abnormal
phases;

HDR: It is based on the pessimistic assumption that data are always lost.
Then, X̂ (t+ τ̄f |tb) has to contain all predictions corresponding to all possible
combinations of admissible commands application. Observe that at each time
instant two possibilities arise: to apply the scheduled command (if available)
or keep to apply the most recent applied command. For this strategy, the
tracking performance is quite independent from the occurrences of normal
or abnormal phases.

Remark 1. It is worth pointing out that the LDR strategy requires a data re-
synchronization procedure each time the slave CG unit does not receive a new
command from the master. This procedure has been described in [3].

3 Example: Two Dynamically Coupled Autonomous
Vehicles

In this example we want to coordinate the motion of two autonomous vehicles
by using a communication channel subject to possibly unbounded time-delay.
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Fig. 3. (Left) Communication time-delay between Master and Slave 1. (Middle) Com-
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i,j within the saturation limits. (Right) Tracking errors within

the prescribed limits.

The LDR strategy will be used and a direct link between the two vehicles is
assumed.

The state-space representation of the overall system is given by the following
equations

m1ẍ1 =−k(x1 − x2)− β(ẋ1 − ẋ2) + F x
1 , m1ÿ1 =−k(y1 − y2)− β(ẏ1 − ẏ2) + F y

1

m2ẍ2 =−k(x2 − x1)− β(ẋ2 − ẋ1) + F x
2 , m2ÿ2 =−k(y2 − y1)− β(ẏ2 − ẏ1) + F y

2
(9)

where m1 and m2 are the two masses, k the spring constant, β the viscous
coefficient of the damper and F x

i and F y
i , i = 1, 2, the forces acting as inputs.

Each subsystem is locally pre-compensated by a suitable controller ensuring
offset-free tracking error to constant set-points on positions.

The constraint set C is described by
∣∣F x,y

i,j (t)
∣∣ < 1 [N ], |yi(t)− ri(α(t))| <

0.05 [m], where α(t) is a time-depending real parameter in [0, 1] which will be
used to parameterize the nominal path r(α(t)). It is possible to show that the
previous CG scheme can be formulated in terms of α̂(t) (in place of ŵ(t)), which
allows the achievement of the feasible paths by selecting the largest admissible
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100-200), 60%/40% Normal/Abnormal cases (steps 200-300) (Middle) LDR - path-
following profiles: 100% Normal cases (dash), 90%/10% Normal/Abnormal cases (dash-
dot), 60%/40% Normal/Abnormal cases (continuous). (Right) HDR - path-following
profiles: 100% Normal cases (dash), 90%/10% Normal/Abnormal cases (dash-dot),
60%/40% Normal/Abnormal cases (continuous).

increment δα̂(t) := α̂(t + 1) − α̂(t) along the nominal path. In the simulation
we have used an upper-bound of τ̄f = 25 sampling steps on the time-delay. The
LDR scheme is only considered in Figs 3-5. The grey zones here denote the
re-synchronization procedure. In particular, in Fig. 3 are reported the commu-
nication time-delays, in Fig. 4 the corresponding α̂(t) and α(t) sequences and in
Fig. 5 the constrained signals.

A further experiment was carried out in Fig. 6 in order to compare the LDR
and HDR strategies. On the left, the used time-delay occurrences were reported.
They consist of 100% of Normal cases between steps 1−100, a 90%/10% percent-
age of Normal/Abnormal cases between steps 100− 200 and 60%/40% between
steps 200 − 300. A way to evaluate how the proposed LDR and HDR strate-
gies perform, in terms of tracking performance under Normal and Abnormal
phases, is that of considering the corresponding α(t) plots. They are reported
in Figs. 6-(Middle) for LDR and (Left) and HDR. One can see that LDR is
the best strategy under normal conditions but it is very sensible to the pres-
ence of abnormal phases whereas HDR performance is essentially invariant for
small percentages of abnormal cases and degrades only slightly for larger per-
centages. Anyway, for both strategies stability and constraints fulfillments are
always ensured.

4 Conclusions

In this paper we have presented a predictive control strategy for the constrained
supervision and coordination of dynamic systems in spatial networks. All rele-
vant properties have been summarized and the effectiveness demonstrated by a
simulative experiment.
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Summary. Completely centralized control of large, networked systems is impractical.
Completely decentralized control of such systems, on the other hand, frequently results
in unacceptable control performance. In this article, a distributed MPC framework with
guaranteed feasibility and nominal stability properties is described. All iterates gen-
erated by the proposed distributed MPC algorithm are feasible and the distributed
controller, defined by terminating the algorithm at any intermediate iterate, stabilizes
the closed-loop system. The above two features allow the practitioner to terminate the
distributed MPC algorithm at the end of the sampling interval, even if convergence is
not attained. Further, the distributed MPC framework achieves optimal systemwide
performance (centralized control) at convergence. Feasibility, stability and optimal-
ity properties for the described distributed MPC framework are established. Several
examples are presented to demonstrate the efficacy of the proposed approach.

1 Introduction

With ever increasing demands on productivity and efficiency of operation, the
chemical industry today places significant importance on plantwide automation.
Improvements in practical control technology can cut costs and raise profits.
Designing the best decentralized control configuration for a given large-scale
plant is an area of active research. A recent review article on this topic is avail-
able [8]. A number of articles have focused on improved plantwide decentralized
control. A survey of decentralized control methods for large-scale systems can
be found in [16]. Performance limitations arising from the decentralized control
framework are described in [3]. Most decentralized controller design approaches
approximate or ignore the interactions between the various subsystems [10, 17].

The broad industrial impact of model predictive control (MPC), especially
in the chemical industry, is evident from recent reviews [13, 20]. However, MPC
subsystems may interact significantly, causing a deterioration in systemwide con-
trol performance. A suboptimal strategy for centralized MPC of interconnected
systems was proposed in [1]. In [21], a plantwide control strategy based on the
integration of linear and nonlinear MPC coupled with a plant decomposition

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 591–605, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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procedure was described. The opportunity presented for cross-integration within
the MPC framework and potential requirements and benefits of such technology
has been discussed in [4, 7, 9].

2 Motivation

Consider the distillation column described in [12, p. 813]. Tray temperatures act
as inferential variables for composition control. The outputs y21, y7 are the tem-
peratures of trays 21 and 7 respectively and the inputs L, V denote the reflux
flowrate and the vapor boilup flowrate to the distillation column. Two SISO PID
controllers with anti-reset windup are used to control the temperatures of the
two trays. The implications of the relative gain array (RGA) elements on con-
troller design has been studied in [18]. While the RGA for this system suggests
pairing L with y21 and V with y7, we intentionally choose a bad control variable–
manipulated variable pairing. PID-1 manipulates V to control y21. PID-2 con-
trols y7 by manipulating L. It will be shown later that unlike cooperation-based
formulations, decentralized or communication-based strategies cannot repair this
kind of bad design choice. The PID controllers are tuned employing the rules
described in [12, p. 531]. The system exhibits unstable closed-loop behavior due
to the poor manipulated variable–control variable pairing. Expectedly, decen-
tralized MPC does not fare any better. For such a small control problem, the fix
is well known and obvious; switching the manipulated variable–control variable
pairing gives much improved performance (though suboptimal) with the two
decentralized PID and MPC controllers.
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Fig. 1. Supercritical fluid extraction (SFE) process. Supercritical CO2 is used to ex-
tract iso-propyl alcohol (ipa) from a dilute aqueous solution.

In a chemical plant with a network of interconnected units, the choice of which
manipulated variable(s) to pair with which control variable(s) is a complicated
one. Often, the allocation of the set of control variables and corresponding ma-
nipulated variables is dictated by physical and/or operational constraints. In
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many situations, the simple interconnection of these unit-based control configu-
rations achieves unacceptable closed-loop performance. To illustrate this point,
consider the supercritical fluid extraction process (SFE) described in [14, 15].
The SFE process consists of four main units–the extractor, stripper, reboiler and
trim cooler. The SFE process is characterized by significant coupling between
the different units and is known to represent a challenging plantwide control
problem. A fixed decentralized control configuration, based on a physical de-
composition of the plant, is assumed. A schematic of the SFE plant with the
control divisions is shown in Figure 1. In the decentralized control configuration
there are three MPCs, one for each control subsystem. The first MPC manipu-
lates the solvent flowrate (S) to the extractor to control the raffinate composition
(xipa

R ) at the outlet of the extractor. The second MPC manipulates the reflux and
boilup flow rates (L, V ) to control the top and bottom compositions in the strip-
per (xipa

D , xipa
B ). The third MPC manipulates the shell tube temperature (Tsh) in

the trim cooler to control the temperature of the solvent entering the extractor
(TS). All inputs are constrained to lie between an upper and lower limit. In the
centralized MPC framework, a single MPC controls the whole plant.

In the decentralized MPC framework, the interconnections between the units
are ignored. Consequently, the setpoint tracking performance of outputs xipa

R
and xipa

D exhibits large tracking errors. Also, the upper bound constraint on the
solvent flow rate S to the extractor is active at steady state (see Figure 3).
Therefore, the setpoint is unreachable under decentralized MPC. Centralized
MPC, on the other hand, tracks the new setpoint with much smaller tracking
errors. None of the input constraints are active at steady state. Quantitatively,
centralized MPC outperforms decentralized MPC by a factor of 350 (Table 1)
based on measured closed-loop performance.

In most cases, however, centralized control is not a viable plantwide con-
trol framework. To the best of our knowledge, no large-scale centralized models
are available today in any field. Operators of large, interconnected systems (an
entire chemical plant, for instance) view centralized control as monolithic and
inflexible. With many plants already functional with some form of decentralized
MPCs, practitioners do not wish to engage in complete control system re-design
as would be necessary to implement centralized MPC. While a decentralized
philosophy creates tractable modeling and control problems, choosing to ignore
the interconnections between subsystems may result in poor systemwide control
performance.

A recent article [5] points out that there has been a strong tendency in the
control community to look for centralized control solutions; however, the expo-
nential growth of the centralized control law with system size makes its imple-
mentation unrealistic for large, networked systems. The only recourse in such
situations is to establish a “divide and conquer” strategy that allows one to
break the large-scale control problem into several smaller subproblems. The un-
derlying challenge in any “divide and conquer” control strategy is to establish
a protocol for integrating different components of the interconnected system to
achieve good overall performance.
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In this work, a cooperation-based control strategy that facilitates the inte-
gration of the various subsystem-based MPCs is described. The interactions
among the subsystems are assumed to be stable; system re-design is recom-
mended otherwise. The proposed cooperation-based distributed MPC algorithm
is iterative in nature. At convergence, the distributed MPC algorithm achieves
optimal (centralized) control performance. In addition, the control algorithm
can be terminated at any intermediate iterate without compromising feasibil-
ity or closed-loop stability of the resulting distributed controller. The proposed
method also serves to equip the practitioner with a low-risk strategy to explore
the benefits achievable with centralized control by implementing cooperating
MPC controllers instead. In many situations, the structure of the system and
nature of the interconnections establishes a natural, distributed hierarchy for
modeling and control. A distributed control framework also fosters implemen-
tation of a cooperation-based strategy for several interacting processes that are
not owned by the same organization.

3 Modeling for Integrating MPCs

Consider a plant comprised of M interconnected subsystems. The notation
{1,M} is used to represent the sequence of integers 1, 2, . . .M .

Decentralized models. Let the decentralized (local) model for each subsystem
be represented by a discrete, linear time invariant (LTI) model of the form

xii(k + 1) = Aiixii(k) + Biiui(k), (1a)

yii(k) = Ciixii(k), ∀ i ∈ {1, M}, (1b)

in which k is discrete time, and we assume (Aii, Bii, Cii) is a minimal realization
for each (ui, yi) input-output pair.

In the decentralized modeling framework, it is assumed that the subsystem-
subsystem interactions have a negligible effect on system variables. Frequently,
components of the networked system are tightly coupled due to material/energy
and/or information flow between them. In such cases, the “decentralized” as-
sumption leads to a loss in achievable control performance.

Interaction models (IM). Consider any subsystem i ∈ {1,M}. The effect of
any interacting subsystem j 	= i on subsystem i is represented through a discrete
LTI model of the form

xij(k + 1) = Aijxij(k) + Bijuj(k) (2a)

yij(k) = Cijxij(k), ∀ i, j ∈ {1, M}, j 
= i (2b)

in which (Aij , Bij , Cij) denotes a minimal realization for each (uj �=i, yi) interact-

ing input-local output pair. The subsystem output is given by yi(k) =
M∑

j=1
yij(k).
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Composite models (CM). For each subsystem, the combination of the de-
centralized model and all the interaction models is termed the composite model
(CM). The decentralized state vector xii is augmented with states arising due
to the influence of external subsystems.

Let xi =
[
x

′
i1, . . . , x

′
ii, . . . , x

′
iM

]′

denote the CM states for subsystem i. For
notational convenience, the CM for subsystem i is written as

xi(k + 1) = Aixi(k) + Biui(k) +
∑
j �=i

Wijuj(k) (3a)

yi(k) = Cixi(k) (3b)

in which Ci = [Ci1 . . . Cii . . . CiM ] and

Ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai1

. . .

Aii

. . .

AiM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

Bii

0

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Wij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

...

0

Bij

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The CM for the entire plant can be written as
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

...

x1M

...

xM1

...

xMM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k+ 1)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11

. . .

A1M

. . .

AM1

. . .

AMM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

...

x1M

...

xM1

...

xMM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k)+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11

. . .

B1M

...

BM1

. . .

BMM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
u1

...

uM

⎤⎥⎥⎥⎦ (k),

⎡⎢⎢⎢⎣
y1

...

yM

⎤⎥⎥⎥⎦ (k) =

⎡⎢⎢⎢⎣
C11 · · · C1M

. . .

CM1 · · · CMM

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

...

x1M

...

xM1

...

xMM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k).

For large, networked systems after identification of the significant interactions
from closed-loop operating data, we expect many of the interaction terms to be
zero. In the decentralized modeling framework, all of the interaction terms are
assumed zero.
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Centralized model. The full plant (centralized) model can be thought of as a
minimal realization of the CM for the entire plant. The centralized model is

x(k + 1) = Ax(k) + Bu(k), (5a)

y(k) = Cx(k). (5b)

4 Communication-Based MPC 1

In the communication-based MPC (comm-MPC) formulation, each subsystem’s
MPC exchanges predicted state and input trajectory information with MPCs
of interconnected subsystems until all trajectories converge. Convergence of the
communicated trajectories is implicitly assumed and is, consequently, a limita-
tion of this control framework. The communication-based controller utilizes the
interaction models to quantify the influence of the interacting subsystem inputs
on the local subsystem. The effect of the interconnections is considered in the
computation of the optimal control law. The objective function is the one for
the local subsystem only.

Unstable closed-loop behavior with comm-MPC. It has been shown
in [19] that the lack of well defined properties for comm-MPC makes it an unreli-
able strategy for plantwide control. To illustrate the undesirable consequences of
employing the comm-MPC formulation, we revisit the distillation column exam-
ple described in Section 2. Figure 2 illustrates the performance of the different
MPC based control formulations. While centralized MPC (cent-MPC) drives
the system to the new setpoint, the inputs V, L in the comm-MPC formulation
saturate and subsequently the system is closed-loop unstable.

Fig. 2. Distillation column ([12]). Performance of different MPC frameworks.

5 Feasible Cooperation-Based MPC (FC-MPC)

In devising an MPC-based plantwide control strategy, one might expect that
modeling the interconnections between the subsystems is sufficient to improve
control performance. We know from Section 4 that this idea is incorrect and
can potentially cause unstable closed-loop behavior. To provide a means for

1 Similar Ideas Proposed by [2, 6].
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cooperative behavior among the different subsystem-based MPCs, we replace
each local objective φi, i ∈ {1,M} by one that represents the systemwide im-
pact of local control actions. One simple choice is to employ a strong convex
combination of the local subsystems’ objectives as the objective function in each
FC-MPC i.e., φ =

∑
wiφi, wi > 0,

∑
i wi = 1.

For each subsystem i ∈ {1,M}, the set of admissible controls Ωi is as-
sumed to be a compact, convex set containing the origin in its interior. We
assume that the CM (Ai, Bi, {Wij}j �=i, Ci) is available for each subsystem
i ∈ {1,M}.

Cost function. The local objective for each subsystem-based MPC is

φi (xp
i (k), up

i (k); xi(k)) =
∞∑

t=k

1
2
[
yp

i (t|k)′Qyiy
p
i (t|k) + up

i (t|k)′Riu
p
i (t|k)

]
, (6)

in which xp
i (k)=[xp

i (k + 1|k)′, xp
i (k + 2|k)′, . . .] ′, up

i (k) = [up
i (k|k)′, up

i (k + 1|k)′, . . .] ′

and Qi = Ci
′QyiCi ≥ 0, Ri > 0 are symmetric weighting matrices with (Q1/2

i , Ai)
detectable. The notation p is used to indicate the iteration number. During
each MPC optimization, the state and input trajectories (xj �=i(k),uj �=i(k)) of
the interacting subsystems’ MPCs are not updated; they remain at (xp−1

j �=i (k),
up−1

j �=i (k)). For notational convenience, we write xi ≡ xi(k) and ui ≡ ui(k).
In some cases, the process sampling time may be shorter than the time re-

quired for convergence of the iterative algorithm. To allow for intermediate ter-
mination, we require that all iterates generated by the cooperation-based MPC
algorithm are feasible and that the resulting distributed control law guarantees
stability of the nominal closed-loop system. To ensure strict systemwide feasi-
bility of the intermediate iterates, the CM states xi(t|k), t ≥ k are eliminated
from (6) using (3).

For subsystem i and iterate p, the optimal input sequence u
p(∗)
i is obtained

as

u
p(∗)
i ∈ arg min

ui

1
2
ui

′Riui +

⎛⎝ri +
M∑

j �=i

Hiju
p−1
j

⎞⎠′

ui + constant (7a)

subject to ui(t|k) ∈ Ωi, k ≤ t ≤ k + N − 1, (7b)

ui
′ =

[
ui(k|k)′, ui(k + 1|k)′, . . . , ui(k + N − 1|k)′] , Hij =

M∑
l=1

wlEli
′(·)QlElj ,

Ri = wi(·)Ri + wiE
T
ii(·)QiEii +

M∑
j �=i

wjEji
′(·)QjEji,

ri(k) = wiEii
′(·)Qifix̂i(k) +

M∑
j �=i

wjEji
′(·)Qjfix̂j(k),
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Eij =

⎡⎢⎢⎢⎢⎢⎣
Bij 0 . . . . . . 0

AiBij Bij 0 . . . 0
...

...
...

...
...

AN−1
i Bij . . . . . . . . . Bij

⎤⎥⎥⎥⎥⎥⎦ , fi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai

A2
i

...

...

AN
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(·)Qi = diag
(
Qi, . . . , Qi, Qi

)
,

(·)Ri = diag
(
Ri, Ri, . . . , Ri

)
,

and Qi is an appropriately chosen terminal penalty, as described in the sequel.
The symbol x̂i(k) denotes the estimate of the CM state vector for subsystem i at
discrete time k. The corresponding infinite horizon input trajectory is u

p(∗)
i

′ =[
u

p(∗)
i

′, 0, 0, . . .
]
.

Let the state sequence generated by the input sequence ui and initial state
x be represented as x

(ui;x)
i . The notation x̂ is used to denote [x̂1

′, x̂2
′, . . . , x̂M

′].
An algorithm for FC-MPC is described below.

Algorithm 1. Given
(
u0

i , xi(k)
)

(·)Qi ≥ 0, (·)Ri ≥ 0, i ∈ {1, M}, pmax(k) ≥ 0
and ε > 0
p ← 1, ei ← Γε, Γ  1
while ei > ε for some i ∈ {1, M} and p ≤ pmax(k)

do ∀ i ∈ {1, M}
u

∗(p)
i ∈ arg min FC-MPCi, (see (7))

up
i = wiu

∗(p)
i + (1 − wi) up−1

i

ei = ‖up
i − up−1

i ‖
end (do)
for each i ∈ {1, M}

Transmit generated input trajectories (up
i ) to interconnected subsystems

end (for)

xp
i ← x

(u
p
1 ,u

p
2 ,...,u

p
M

;x̂(k))
i , ∀ i ∈ {1, M}

p ← p + 1
end (while)

The following properties can be established for cooperation-based MPC using
Algorithm 1.

• The cooperation-based cost function is a nonincreasing function of the itera-
tion number p. Since the cost function is also bounded below, it is convergent.

• All limit points generated by Algorithm 1 are optimal i.e., the solution ob-
tained at convergence of the FC-MPC algorithm (Algorithm 1) is within a
pre-specified tolerance of the centralized MPC solution.

5.1 State Feedback

Distributed MPC control law. At time k, let the FC-MPC algorithm be
terminated after p(k) = s iterates. For the state feedback case, x̂i = xi, the
actual subsystem state. Let

us
i (x(k)) =

[
us

i (x(k), k)′, us
i (x(k), k + 1)′, . . .

] ′, ∀ i ∈ {1, M} (8)
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represent the solution to Algorithm 1 after s iterates. Under the state feed-
back distributed MPC control law, the input applied to subsystem i is ui(k) =
us

i (k|k) ≡ us
i (x(k), k).

Closed-loop stability (Stable decentralized modes). If Qi > 0, Ri > 0 and
the terminal penalty Qi is the solution to the Lyapunov equation Ai

′QiAi−Qi =
−Qi, ∀ i ∈ {1,M} then the closed-loop system x(k + 1) = Ax(k) + Bu(x(k)),
in which u(x(k)) = [up(k)

1 (x(k), k)′, up(k)
2 (x(k), k)′, . . . , , . . . , up(k)

M (x(k), k)′]′, is
exponentially stable under the distributed MPC control law defined by (8) for
x(k) ∈ X , the constrained stabilizable set for the system, and all p(k) > 0.

Controller performance index. For the examples presented in this paper,
the controller performance index for each plantwide control configuration is cal-
culated as

Λcost(k) =
1
k

k∑
j=0

M∑
i=1

1
2
[
xi(j)′Qixi(j) + ui(j)′Riui(j)

]
. (9)

Table 1. SFE process. Closed-loop control costs associated with different MPC based

plantwide control strategies.∆Λcost(config)% = Λcost(config) − Λcost(cent)
Λcost(cent) × 100.

Λcost ∆Λcost%
Centralized MPC 0.306

Decentralized MPC 107.5 3.5 × 104

FC-MPC (1 iterate) 0.316 0.33
FC-MPC (10 iterates) 0.306 0

SFE process. Consider the SFE process described in Section 2. The control
costs associated with the different MPC based plantwide control frameworks are
given in Table 1. The presence of an active steady-state input constraint makes
the setpoint unreachable under decentralized MPC. The closed-loop performance
of the distributed controller derived by terminating the FC-MPC algorithm after
1 iterate is within 0.35% of cent-MPC performance. After 10 iterates, the closed-
loop performance of FC-MPC is indistinguishable from that of cent-MPC. The
performance of cent-MPC, decent-MPC and FC-MPC for control of the extractor
is shown in Figure 3.

Closed-loop stability (Unstable decentralized modes). The real Schur
decomposition for each Ai, i ∈ {1,M} gives

Ai =
[
Usi Uui

] [Asi (·)Ai

Aui

] [
Usi

′

Uui
′

]
,

in which Asi and Aui represent the stable and unstable eigenvalue blocks re-
spectively. Since the decentralized model is minimal, (Aii, Bii) is controllable.
The control horizon N ≥ ri, the number of unstable modes, ∀ i ∈ {1,M}. An
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Fig. 3. SFE process (Extractor). Closed-loop performance of different plantwide con-
trol formulations.

additional terminal constraint Uui
′xi(k + N |k) = 0, that forces the unstable

decentralized modes to the origin at the end of the control horizon, is enforced
in the FC-MPC optimization problem (7). It is assumed that x(k) ∈ XN, the
N-step constrained stabilizable set for the system. For initialization, a feasible
input trajectory for each subsystem i ∈ {1,M} can be computed by solving
a linear program. If Qi > 0, Ri > 0 and the terminal penalty is chosen to be
Qi = UsitlowerQiUsi

′, in which tlowerQi is the solution to the Lyapunov equation
Asi

′tlowerQiAsi− tlowerQi = −Usi
′QiUsi , ∀ i ∈ {1,M}, then the closed-loop sys-

tem x(k + 1) = Ax(k) + Bu(x(k)) is exponentially stable under the distributed
control law defined by (8) for x(k) ∈ XN and all p(k) > 0.

Fig. 4. Behavior of the cooperation-based cost function with iteration number at k = 6

Example. We consider a 5 input (m), 5 output (y), 30 state (n) plant with
3 subsystems. Each subsystem has 1 unstable decentralized mode. Subsystem
1 is represented by a CM consisting of 2 inputs, 2 outputs and 10 states. The
CMs for subsystems 2, 3 have m = 2, y = 2, n = 14 and m = 1, y = 1, n = 6.
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respectively. The performance of FC-MPC terminated after 1 iterate is within 5%
of centralized MPC performance. Figure 4 shows the behavior of the cooperation-
based cost function with iteration number at k = 6. The FC-MPC algorithm
converges to the centralized MPC solution after 9 cooperation-based iterates.

5.2 Output Feedback

It is assumed that a steady-state Kalman filter, utilizing the following model, is
employed to estimate the subsystem model states from local measurements.

xi(k + 1) = Aixi(k) + Biui(k) +
∑
j �=i

Wijuj + wi(k), (10a)

yi = Cixi(k) + νi(k), (10b)

where wi(k) and νi(k) are zero-mean, normally distributed disturbances with
covariances Qxi and Rvi respectively. In the presence of nonzero mean distur-
bances, suitable disturbance models may be used to remove steady-state offset.
Disturbance models that realize off-set free performance under decentralized
MPC can be employed in the FC-MPC framework to achieve zero off-set steady-
state behavior.

Distributed MPC control law. At time k, define the open-loop trajectory
obtained after s cooperation-based iterates as

us
i (x̂(k)) =

[
us

i (x̂(k), k)′, us
i (x̂(k), k + 1)′, . . .

] ′ , ∀ i ∈ {1, M}. (11)

The distributed MPC control law under output feedback is defined as ui(k) =
us

i (k|k) ≡ us
i (x̂(k), k), ∀ i ∈ {1,M}.

Closed-loop stability (Stable decentralized modes). We assume that a
stable, steady-state Kalman filter exists for each subsystem2. If Qi > 0, Ri >
0, ∀ i ∈ {1,M}, the closed-loop system x(k + 1) = Ax(k) + Bu(x̂(k)), in
which u(x̂(k)) = [up(k)

1 (x̂(k), k)′, up(k)
2 (x̂(k), k)′, . . . , up(k)

M (x̂(k), k)′]′ is exponen-
tially stable under the distributed control law defined by (11) for x̂(k) ∈ X and
all p(k) > 0.

Distillation column ([12]). The performance of the FC-MPC formulation
terminated after 1 cooperation-based iterate is shown in Figure 2. Unlike comm-
MPC, which destabilizes the system, the controller derived by terminating the
FC-MPC algorithm after just 1 iterate stabilizes the closed-loop system.

Closed-loop stability (Unstable decentralized modes). We know (Aii,
Bii) is controllable and N ≥ ri for each i ∈ {1,M}. With slight abuse of
notation, define X i

e,N(k) ≡ X i
e,N(x̂i(k)) to be the set of subsystem state

estimate errors ei(k) for which there exists a perturbed input sequence

2 Detectability of (Ai, Ci) guarantees the existence of a stable, steady-state Kalman
filter.
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{ui(k + j|k + 1) = u
p(k)
i (k + j|k) + vi(k + j|k + 1) ∈ Ωi}N−1

j=1 at time k + 1 such
that Uui

′x̂i(k+N |k+1) = 0. As in the state feedback case, a terminal constraint
Uui

′x̂i(k + N |k) = 0 is enforced in the FC-MPC optimization problem (7). We
define e(k) = [e1(k)′, e2(k)′, . . . , eM (k)′]′ and use the notation Xe,N ≡ Xe,N(x̂) to
denote X 1

e,N ×X 2
e,N × . . .XM

e,N. The domain of attraction for the closed-loop sys-
tem is the set ΓN � {(x̂(k), e(k)) | x̂(s) ∈ XN and e(s) ∈ Xe,N ∀ s ≥ k}. If Qi >
0, Ri > 0, ∀ i ∈ {1,M}, the closed-loop system x(k + 1) = Ax(k) + Bu(x̂(k)),
in which u(x̂(k)) = [up(k)

1 (x̂(k), k)′, up(k)
2 (x̂(k), k)′, . . . , up(k)

M (x̂(k), k)′]′ is ex-
ponentially stable under the distributed control law defined by (11) for all
(x̂(k), e(k)) ∈ ΓN and all p(k) > 0.

6 Partial Feasible Cooperation-Based MPC (pFC-MPC)

In the the FC-MPC framework, the objective of each local MPC is known to all
interconnected subsystem MPCs. This global sharing of objectives may not be
desirable in some situations. As a simple example, consider the system depicted
in Figure 5. Assume that the y2 setpoint is unreachable and that u2 is at its
bound constraint. From a practitioner’s standpoint, it is desirable to manipulate
input u1, to the largest extent possible, to achieve all future y1 setpoint changes.
Conversely, it is desirable to manipulate u2 to track setpoint changes in y2. By
definition, a decentralized control structure is geared to realize this operational
objective. However, the resulting closed-loop performance may be quite poor.
Centralized control, on the other hand, utilizes an optimal combination of the
inputs u1, u2 to achieve the new setpoint. The centralized MPC framework,
though optimal, may manipulate both u1 and u2 significantly.

u1

pFC − MPC 1

pFC − MPC 2

u2

y1

y2

Plant

Weak interaction

Strong interaction

Fig. 5. 2 × 2 interacting system. Effect of input u1 on output y2 is small compared to
u1 − y1, u2 − y1 and u2 − y2 interactions.

To track the setpoint of y1 exclusively with input u1 and setpoint of y2 pri-
marily with u2, the concept of partial cooperation is employed. This approach
of designing controllers to explicitly handle operational objectives is similar in
philosophy to the modular multivariable controller (MMC) approach of [11]. The
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Fig. 6. Closed-loop performance of pFC-MPC and cent-MPC for the system in
Figure 5

principal goal is to meet operational objectives, even if the resulting controller
performance is not optimal. The partial cooperation-based MPC for subsys-
tem 1 (pFC− MPC1) manipulates u1 but has access only to the local objec-
tive φ1(see (6)) that quantifies the cost of control action u1 on y1. The partial
cooperation-based MPC for subsystem 2 (pFC −MPC2) manipulates u2 and re-
tains access to both subsystem objectives φ1 and φ2. Therefore, pFC−MPC2
evaluates the cost of control action u2 on a global level i.e., its effect on both
system outputs y1 and y2.

We consider an example in which an initial (reachable) setpoint change is
made to y2. Tracking errors for output y2 are weighted 50 times more than
tracking errors for output y1. At times 3 and 6, unreachable y2 setpoint changes
are made. For each of the new y2 setpoints, the input u2 is at its upper bound
at steady state. The pFC-MPC algorithm is terminated after 1 iterate. The
closed-loop performance of cent-MPC and pFC-MPC are shown in Figure 6.
Cent-MPC, in violation of the desired mode of operation, manipulates input
u1 (in addition to u2) to track the y2 target optimally. Since the y1 setpoint
is unchanged and pFC−MPC1 has access only to objective φ1, u1 remains
unaltered. To control y2, pFC−MPC2 can only manipulate u2. However, u2 is
already at its bound constraint and consequently, y2 is unchanged. Thus, the
pFC−MPC formulation, though suboptimal, achieves the desired operational
objectives.

7 Conclusions

An iterative, cooperation-based MPC algorithm for integrating the different
subsystem MPCs was described. The proposed algorithm achieves optimal



604 A.N. Venkat, J.B. Rawlings, and S.J. Wright

systemwide control performance (centralized control) at convergence. Further,
all intermediate iterates are feasible and the resulting distributed control law
guarantees closed-loop stability under state and output feedback. Several exam-
ples were presented to illustrate feasibility, nominal stability and performance
performance properties of the proposed distributed MPC framework.
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Summary. The purpose of this paper is to demonstrate the application of a re-
cently developed theory for distributed nonlinear model predictive control (NMPC)
to a promising domain for NMPC: dynamic management of supply chain networks.
Recent work by the first author provides a distributed implementation of NMPC for
application in large scale systems comprised of cooperative dynamic subsystems. By
the implementation, each subsystem optimizes locally for its own policy, and commu-
nicates the most recent policy to those subsystems to which it is coupled. Stabilization
and feasibility are guaranteed for arbitrary interconnection topologies, provided each
subsystem not deviate too far from the previous policy, consistent with traditional
MPC move suppression penalties. In this paper, we demonstrate the scalability and
performance of the distributed implementation in a supply chain simulation example,
where stages in the chain update in parallel and in the presence of cycles in the in-
terconnection network topology. Using anticipative action, the implementation shows
improved performance when compared to a nominal management policy that is derived
in the supply chain literature and verified by real supply chain data.

1 Introduction

A supply chain can be defined as the interconnection and evolution of a demand
network. Example subsystems, referred to as stages, include raw materials, dis-
tributors of the raw materials, manufacturers, distributors of the manufactured
products, retailers, and customers. Between interconnected stages, there are two
types of process flows: 1) information flows, such as an order requesting goods,
and 2) material flows, i.e., the actual shipment of goods. Key elements to an
efficient supply chain are accurate pinpointing of process flows and timing of
supply needs at each stage, both of which enable stages to request items as
they are needed, thereby reducing safety stock levels to free space and capital
[3]. Recently, Braun et al. [2] demonstrated the effectiveness of model predictive
control (MPC) in realizing these elements for management of a dynamic semi-
conductor chain, citing benefits over traditional approaches and robustness to
model and demand forecast uncertainties. In this context, the chain is isolated
from competition, and so a cooperative approach is appropriate. Limitations of
their approach are that it requires acyclic interconnection network topologies,

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 607–615, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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and sequential updates from downstream to upstream stages. Realistic supply
chains contain cycles in the interconnection network, and generally do not op-
erate sequentially, i.e., stages typically update their policies in parallel, often
asynchronously. To be effective in the general case, a distributed MPC approach
should demonstrate scalability (stages are locally managed), stability, permit
parallel updates, and allow for cycles in the interconnection network topology.
The purpose of this paper is to demonstrate the application of a recently de-
veloped distributed implementation of nonlinear MPC (NMPC) [4, 5] to the
problem of dynamic management of supply chain networks. By this implemen-
tation, each subsystem optimizes locally for its own policy, and communicates
the most recent policy to those subsystems to which it is coupled. Stabilization is
guaranteed for arbitrary interconnection topologies (permitting cycles), provided
each subsystem not deviate too far from the previous policy. A contribution of
this paper is to demonstrate the relevance and efficacy of the distributed NMPC
approach in the venue of supply chain management.

2 Problem Description

A supply chain consists of all the stages involved in fulfilling a customer request
[3]. A three stage supply chain network consisting of a supplier S, a manufacturer
M, and a retailer R is shown in Figure 1, and will be the focus of this paper.
Dell employs a “build-to-order” management strategy that is based on a version
of the chain in Figure 1, where R is the customer, M is Dell, S is a chip supplier
[3]. Each variable shown has a superscript denoting the corresponding stage it is

Fig. 1. Block diagram of a three stage supply chain comprised of a supplier S, a
manufacturer M, and a retailer R

associated with. The classic MIT “Beer Game” [7] is used as an example three
stage supply chain. In the beer game, the supplier S may be thought of as the
supplier of bottles to the manufacturer M, who brews and “bottles” the beer,
and then ships it to the retailer R for sale to customers. The supply chain is
therefore driven by customer demand (number of cases sold per day), which
then triggers a series of information flows and material flows. The information
flows are assumed to have negligible time delays, and are represented by the
three left pointing arrows in Figure 1. The material flows are assumed to have
shipment delays, and are represented by the arrows that pass through blocks



Distributed MPC for Dynamic Supply Chain Management 609

labeled τ2, where τ2 is a constant representing the amount of delay in days to
move the goods. In the case of the supplier, the outgoing information flow (oS

r )
is converted through fabrication into materials, and this conversion process is
modeled as a simple delay. Since material flows downstream, we say that R is
downstream from M (likewise, M is downstream from S), while M is upstream
from R (likewise, S is upstream from M). The customer can be thought of as a
stage downstream (not shown) from R in our model.

Each stage x ∈ {S,M,R} in Figure 1 is characterized by 3 state variables,
defined as follows. The stock level sx is the number of items currently available
in stage x for shipment to the downstream stage. The unfulfilled order of stock
ox

u is the number of items that stage x has yet to receive from the upstream stage.
The backlog of stock bx is the number of committed items that stage x has yet
to ship to the downstream stage. The exogenous inputs (assumed measureable)
are the demand rate dx

r , defined as the number of items per day ordered by
the downstream stage, and the acquisition rate ax

r , defined as the number of
items per day acquired from the upstream stage. The outputs are the order rate
ox

r , defined as the number of items per day ordered from the upstream stage,
and the shipment rate lxr , defined as the number of items per day shipped to
the downstream stage. The order rate is the decision variable (control). By our
notation, all rate variables are denoted by an r subscript. The model, state and
control constraints for any stage x ∈ {S,M,R} are

ṡx(t) = ax
r (t)− lxr (t)

ȯx
u(t) = ox

r (t)− ax
r (t)

ḃx(t) = dx
r (t)− lxr (t)

⎫⎪⎬⎪⎭ , t ≥ 0, (1)

subject to
0 ≤ (sx(t), ox

u(t), bx(t)) ≤ smax

0 ≤ ox
r (t) ≤ or,max

}
, t ≥ 0, (2)

where lxr (t) = dx
r (t − τ1) + bx(t)/tb. The dynamics of the supply chain in the

present work arise either from rates of accumulation, or from one of two types of
material flow delay (see [7], Chapter 11). Equation (1) describes the first-order
dynamics for stock, unfulfilled orders, and backlog, each arising from rates of
accumulation. The constraints on the state and control in (2) reflect that stock,
unfulfilled order and backlog are independently bounded from below by zero and
from above by a common constant smax, and that the control (order rate) is non-
negative and bounded by the positive constant or,max. The objective of supply
chain management is to minimize total costs, which includes avoiding backlog
(keep near zero) and keeping unfulfilled orders and stock near desired (typically
low) levels [7]. Specifically, the control objective for each stage is (sx(t), ox

u(t))→
(sd, o

x
ud(t)), where sd is a constant desired stock (common to every stage) and

ox
ud(t) = tll

x
r (t) is the desired unfulfilled order. The flow constant tl represents the

lead time from the downstream stage. Note that if the demand rate converges to
a steady value dx

r (t)→ dr, then backlog will converge to zero, the shipment rate
converges lxr (t) → dr, and the desired unfulfilled order becomes the constant
ox

ud = tldr. For each stage x ∈ {S,M,R}, the acquisition rate ax
r (t) and the
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demand rate dx
r (t) are defined as follows: S: aS

r (t) = oS
r (t − τ2), dS

r (t) = oM
r (t);

M: aM
r (t) = lSr (t − τ2), dM

r (t) = oR
r (t); and R: aR

r (t) = lMr (t − τ2). The demand
rate at the retailer dR

r (t) is an input defined as the current/projected customer
demand. After substitutions, we have the following models for each of the three
stages. For the supplier stage,

ṡS(t) = oS
r (t− τ2)− oM

r (t− τ1)− bS(t)/tb
ȯS

u(t) = oS
r (t)− oS

r (t− τ2)

ḃS(t) = oM
r (t)− oM

r (t− τ1)− bS(t)/tb

⎫⎪⎬⎪⎭ . (3)

For the manufacturer stage,

ṡM(t) = oM
r (t− τ1 − τ2) + bS(t− τ2)/tb − oR

r (t− τ1)− bM(t)/tb
ȯM

u (t) = oM
r (t)− oM

r (t− τ1 − τ2)− bS(t− τ2)

ḃM(t) = oR
r (t)− oR

r (t− τ1)− bM(t)/tb

⎫⎪⎬⎪⎭ . (4)

For the retailer stage,

ṡR(t) = oR
r (t− τ1 − τ2) + bM(t− τ2)/tb − dR

r (t− τ1)− bR(t)/tb
ȯR

u (t) = oR
r (t)− oR

r (t− τ1 − τ2)− bM(t− τ2)/tb
ḃR(t) = dR

r (t)− dR
r (t− τ1)− bR(t)/tb

⎫⎪⎬⎪⎭ . (5)

We say that two stages have bidirectional coupling if the differential equa-
tion models of both stages depend upon the state and/or input of the other
stage. Equations (3)–(5) demonstrate the dynamic bidirectional coupling be-
tween stages S and M, and stages M and R. Due to the bidirectional coupling,
there are two cycles of information dependence present in this chain. Cycle one:
the model (3) for S requires the order rate oM

r from M, and the model (4) for
M requires the backlog bS from S. Cycle two: the model (4) for M requires the
order rate oR

r from R, and the model (5) for R requires the backlog bM from
M. Cycles complicate decentralized/distributed MPC implementations, since at
any MPC update, coupled stages in each cycle must assume predictions for the
states/inputs of one another. Such predictions are different in general than the
actual locally computed predictions for those states/inputs. When cycles are
not present, life is easier, as the stages can update sequentially, i.e., stages up-
date in order from downstream to upstream, and the actual predictions from
downstream stages can be transmitted to upstream stages at each update. In
accordance with the MPC approach, the first portion of these actual predictions
is implemented by each stage. Thus, the absence of cycles implies that stages
can transmit policies that will be implemented. The sequential update approach
is taken by Braun et al. [2], whose supply chain example contains no cycles.
When cycles are present, on the other hand, actual predictions are not mutually
available. Thus, some predictions must be assumed, incurring an unavoidable
discrepancy between what a stage will do and what coupled stages assume it
will do. One way to address this issue is to assume that the other stages react
worst case, i.e., as bounded contracting disturbances, as done first by Jia and
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Krogh [6]. The implementation employed here address the cycle issue in another
way [4, 5]. Coupled stages receive the previously computed predictions from one
another prior to each update, and rely on the remainder of these predictions as
the assumed prediction at each update. To bound the unavoidable discrepancy
between assumed and actual predictions, each stage includes a local move sup-
pression penalty on the deviation between the current (actual) prediction and
the remainder of the previous prediction.

3 Control Approaches

The nominal feedback policy, derived in [7], is given by

ox
r (t) = lxr (t) + k1[sd − sx(t)] + k2[ox

ud(t)− ox
u(t)], k1, k2 ∈ (0,∞).

In the simulations in Section 4, the state and control constraints (2) are enforced
by using saturation functions. The nominal control is decentralized in that the
feedback for each stage depends only on the states of that stage. Simulation-
based analysis and comparisons with real data from actual supply chains is
presented as a justification for this choice of control in [7].

For the distributed MPC approach, the continuous time models are first dis-
cretized, using the discrete time samples tk = k ∗ δ, with δ = 0.2 days as the
sample period, and k ∈ N = {0, 1, 2, ...}. The prediction horizon is Tp = P ∗ δ
days, with P = 75, and the control horizon is Tm = M ∗ δ days, with M = 10. For
all three stages, the stock sx and unfulfilled order ox

u models are included in the
MPC optimization problem. The backlog bx, on the other hand, is not included
in the optimization problem, as it is uncontrollable. Instead, the backlog is com-
puted locally at each stage using the discretized model, the appropriate exogenous
inputs that the model requires, and the saturation constraint in (2). For update
time tk, the actual locally predicted stock defined at times {tk, ..., tk+P } is de-
noted {sx(tk; tk), ..., sx(tk+P ; tk)}, using likewise notation for all other variables.
The true stock at any time tk is simply denoted sx(tk), and so sx(tk) = sx(tk; tk),
again using likewise notation for all other variables. In line with the notational
framework in the MATLAB MPC toolbox manual [1], the set of measurable inputs
are termed measured disturbances (MDs). By our distributed MPC algorithm,
the MDs are assumed predictions. The set of MDs for each stage x ∈ {S,M,R}
is denoted Dx(tk), associated with any update time tk. The MDs for the three
stages are DS(tk) = {bS

as(k),oM
r,as(k)}, DM = {bM

as(k),bS
as(k),oR

r,as(k)} and
DR = {bR

as(k),bM
as(k), dR

r }, where ox
r,as(k) = {ox

r,as(tk; tk), ..., ox
r,as(tk+P ; tk)} and

bx
r,as(k) is defined similarly using the assumed predicted backlog. The (·)as sub-

script notation refers to the fact that, except for the demand rate at the retailer
dR

r , all of the MDs contain assumed predictions for each of the associated vari-
ables. It is presumed at the outset that a customer demand dR

r (·) : [0,∞)→ R is
known well into the future and without error. As this is a strong assumption, we
are considering stochastic demand rates in our more recent work. Although it is
locally computed, each stage’s backlog is treated as an MD since it relies on the
assumed demand rate prediction from the downstream stage. Note that the initial
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backlog is always the true backlog, i.e., bx
r,as(tk; tk) = bx(tk) for each stage x and

at any update time tk. Let the set X x(tk) = {sd, o
x
ud(tk; tk), ..., ox

ud(tk+P ; tk)} de-
note the desired states associated with stage x and update time tk. Using the equa-
tions from the previous section, the desired unfulfilled order prediction ox

ud(·; tk)
in X x(tk) can be computed locally for each stage x given the MDs Dx(tk). By our
distributed MPC implementation, stages update their control in parallel at each
update time tk. The optimal control problem and distributed MPC algorithm for
any stage are defined as follows.
Problem 1. For any stage x ∈ {S,M,R}, and at any update time tk, k ∈ N:
Given: the current state (sx(tk), ox

u(tk)), the MDs Dx(tk), the desired states
X x(tk), the non-negative weighting constants (Ws,Wou ,Wu,Wδu), and a non-
negative target order rate otarg

r ,

Find: the optimal control ox
r,∗(k)� {ox

r,∗(tk; tk),ox
r,∗(tk+1; tk), ..., ox

r,∗(tk+M−1; tk)}
satisfying

ox
r,∗(k) =arg min

{ P∑
i=1

Ws [sx(tk+i; tk)− sd]
2+Wou [ox

u(tk+i; tk)− ox
ud(tk+i; tk)]2

+
M−1∑
j=0

Wu

[
ox

r (tk+j ; tk)− otarg
r

]2 +Wδu [ox
r (tk+j ; tk)−ox

r (tk+j−1; tk)]2
}
,

where ox
r (tk−1; tk) � ox

r,∗(tk−1; tk−1), subject to the discrete-time version of the
appropriate model (equation (3), (4) or (5)), and the constraints in equation (2). �
Algorithm 1. The distributed MPC law for any stage x ∈ {S,M,R} is as
follows:

Data: Current state: (sx(t0), ox
u(t0), bx(t0)). Parameters: δ, M , P , (Ws,Wou ,Wu,

Wδu), and otarg
r .

Initialization: At initial time t0 = 0, generate Dx(t0) as follows: (a) Choose a
nominal constant order rate ox,nom

r , set ox
r,as(ti; t0) = ox,nom

r , for i = 0, ..., P , and
if x = R or M, transmit ox

r,as(0) to M or S, respectively; (b) Compute bx
r,as(0),

and if x = S or M, transmit to M or R, respectively. Compute X x(t0) and solve
Problem 1 for ox

r,∗(0).
Controller:

1. Between updates tk and tk+1, implement the current control action ox
r,∗(tk; tk).

2. At update time tk+1:
a) Obtain (sx(tk+1), ox

u(tk+1), bx(tk+1)).
b) Generate Dx(tk+1) as follows:

i. Set ox
r,as(tj+k+1; tk+1) = ox

r,∗(tj+k+1; tk), for j = 0, ...,M − 2 and
ox

r,as(tj+k+1; tk+1) = ox
r,∗(tk+M−1; tk) for i = M − 1, ..., P . If x = R

or M, transmit ox
r,as(k + 1) to M or S, respectively.

ii. Compute bx
r,as(k + 1), and if x = S or M, transmit to M or R,

respectively.
c) Compute X x(tk+1) and solve Problem 1 for ox

r,∗(k + 1).
3. Set k = k + 1 and return to step 1. �



Distributed MPC for Dynamic Supply Chain Management 613

By this algorithm, each stage initially computes an optimal order rate policy
assuming neighboring stages employ a nominal constant order rate. For every
subsequent update, each stage computes an optimal order rate policy, assuming
that the MDs are based on the remainder of the previously computed policies
computed of neighboring stages.

4 Numerical Experiments

The simulations were carried out in MATLAB 7.0, using Simulink 6.2 and the
Model Predictive Control Toolbox 2.2. The nominal and distributed MPC ap-
proaches are compared on the full three stage problem, given a step increase and
decrease in the customer demand rate at the retailer. For simulation purposes,
we choose dR

r (t) = 200 cases/day for t ∈ [0,∞) \ [5, 15) and dR
r (t) = 300 for

t ∈ [5, 15). The response for the three stages under the nominal control policy
(k1 = 1/15, k2 = 1/30) is shown in Figure 2. To implement the distributed MPC
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Fig. 2. Nominal response to step increase at 5 days and decrease at 15 days in retailer
customer demand rate dR

r

Algorithm 1, the anticipative action of the MPC Toolbox is employed so that
each entire assumed prediction can be used. Recall that the assumed predic-
tions are not the actual predictions, although the move suppression terms (Wδu

weighted) in the cost are used to ensure that these predictions are not too far
apart. The forecasted demand rate at the retailer is also used with the antic-
ipation option turned on. A more “apples-to-apples” comparison would be to
incorporate internal models with the nominal approach that use the forecasted
customer demand rate. The response for the three stages under the distributed
MPC policy with anticipation is shown in Figure 3. The weights used in MPC
for each stage are (Wu,Wδu,Ws,Wou) = (1, 5, 5, 1). The stock and unfulfilled
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Fig. 3. Distributed MPC response to the same demand rate dR
r . By using anticipation,

the state responses are improved, and the order rates are smoother.

order state responses are an improvement over the nominal approach, both in
terms of steady-state error and settling time. The nonzero steady-state error in
the unfulfilled order and stock of stages M and R can be predicted by using
system-type analysis. The well known “bullwhip effect” [3, 7] encountered in the
coordination of a multi-stage supply chain is also seen in both figures, indicated
by the increase in the maximum order rate excursion as one moves upstream
from retailer to supplier.

5 Conclusions and Extensions

In this paper, a supply chain management problem was defined using the classic
MIT “Beer Game” [7]. A nominal feedback policy, derived and experimentally
validated in the supply chain literature, was then compared to a distributed
MPC algorithm. The numerical experiments showed that the algorithm yielded
improved performance over the nominal policy when the customer demand rate
can be reliably forecasted. While one might redefine the nominal approach to
include internal models that leverage forecasts, it is clear that MPC trivializes
making use of forecasted inputs via anticipation, while respecting state and con-
trol constraints. As part of our on going work, we will consider a multi-echelon
supply chain problem [3], in which at least two players operate within each
stage. The decision problem becomes more complicated in these chains, since
the update rates of different players in a stage are different in general, requiring
an extension of the distributed MPC theory to asynchronous timing conditions.
Additionally, we will consider stochastic (brownian) demand rate forecasts, and
more realistic production models in the manufacturing stage.
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1 Introduction

The importance of the obstacle avoidance problem is stressed in [4]. Computation
of reachability sets for the obstacle avoidanceproblem is addressed, for continuous-
time systems in [4, 5] and for discrete-time systems in [12]; further results appear in,
for instance [2, 17, 18]. The obstacle avoidance problem is inherently non–convex.
Most existing results are developed for the deterministic case when external dis-
turbances are not present. The main purpose of this paper is to demonstrate that
the obstacle avoidance problem in the discrete time setup has considerable struc-
ture even when disturbances are present. We extend the robust model predictive
schemes using tubes (sequences of sets of states) [9, 11, 14] to address the robust
obstacle avoidance problem and provide a mixed integer programming algorithm
for robust control of constrained linear systems that are required to avoid specified
obstacles. The resultant robust optimal control problem that is solved on–line has
marginally increased complexity comparedwith that required for model predictive
control for obstacle avoidance in the deterministic case.

This paper is organized as follows. Section 2 discusses the general idea of robust
control invariant tubes for the obstacle avoidance problem. Section 3 considers
in more detail the case when system being controlled is linear. Section 4 presents
a simple tube controller, establishes its properties and provides an illustrative
example. Finally, Section 5 gives conclusions and indicates further extensions.

Notation: Let N � {0, 1, 2, . . .} and Nq � {0, 1, . . . , q} for q ∈ N. A poly-
hedron is the (convex) intersection of a finite number of open and/or closed
half-spaces, a polytope is the closed and bounded polyhedron and a closed
(open) polygon is the union of a finite number of polytopes (polyhedra). Given
two sets U ⊂ Rn and V ⊂ Rn, the Minkowski set addition is defined by
U ⊕ V � {u + v | u ∈ U , v ∈ V}, the Minkowski/Pontryagin set difference
is: U 4 V � {x | x⊕ V ⊆ U}. The distance of a point z from a set X is denoted
by d(z,X) � inf{|z − x| | x ∈ X}.

2 Problem Formulation

We consider the following discrete-time, time-invariant system:

x+ = f(x, u, w) (1)

R. Findeisen et al. (Eds.): Assessment and Future Directions, LNCIS 358, pp. 617–627, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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where x ∈ Rn is the current state, u ∈ Rn is the current control input and x+

is the successor state and f : Rn ×Rm ×Rp → Rn; the bounded disturbance
w is known only to that extent that it belongs to the compact set W ⊂ Rp that
contains the origin in its interior. The system is subject to the following set of
hard constraints:

(x, u, w) ∈ X×U×W (2)

where X and U are compact (closed and bounded) sets respectively, each con-
taining the origin in its interior. Additionally it is required that the state trajec-
tories avoid a predefined open set O, generally specified as the union of a finite
number of open sets, introducing an additional state constraint

x /∈ O, O �
⋃

j∈Nq

Oj , (3)

The hard state constraints (2) and (3) can be converted into a single non–convex
state constraint:

x ∈ XO � X \O (4)

Let W � W̄N denote the class of admissible disturbance sequences w � {w(i) |
i ∈ NN−1}. Let φ(i;x, π,w) denote the solution at time i of (2) when the control
policy is π, the disturbance sequence is w and the initial state is x at time 0; a
policy π is a sequence of control laws, i.e. π � {µ0(·), µ1(·), . . . , µN−1(·)} where
µi(·) is the control law (mapping state to control) at time i.

Given a set X ⊂ Rn and a control law µ : X → U where U ⊂ Rm we define:

X+ � F(X,µ,W), F(X,µ,W) � {f(x, µ(x), w) | (x,w) ∈ X ×W} (5)

U(X,µ) � {µ(x) | x ∈ X} (6)

Robust model predictive control is defined, as usual, by specifying a finite-horizon
robust optimal control problem that is solved on-line. In this paper, the robust
optimal control problem is the determination of an appropriate tube, defined as a
sequence X � {X0, X1, . . . , XN} of sets of states, and an associated control pol-
icy π = {µ0(·), µ1(·), . . . , µN−1(·)} that minimize an appropriately chosen cost
function and satisfy the following set of constraints, for a given initial condition
x ∈ XO, that generalize corresponding constraints in [6]:

x ∈ X0, (7)
Xi ⊆ XO, ∀i ∈ NN−1 (8)
XN ⊆ Xf ⊆ T ⊆ XO, (9)

U(Xi, µi) ⊆ U, ∀i ∈ NN−1 (10)
F(Xi, µi,W) ⊆ Xi+1, ∀i ∈ NN−1 (11)

where F(Xi, µi,W) and U(Xi, µi) are defined, respectively, by (5) and (6), T ⊆
XO and Xf ⊆ T are a target set and its appropriate subset. It is assumed that
XO 	= ∅ and moreover that the set T is assumed to be compact (i.e. closed and
bounded) and convex set containing the origin in its interior. The relevance of
the constraints (7)– (11) is shown by the following result [6, 11]:
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Proposition 1 (Robust Constraint Satisfaction). Suppose that the tube X
and the associated policy π satisfy the constraints (7)–(11). Then the state of the
controlled system satisfies φ(i;x, π,w) ∈ Xi ⊆ XO for all i ∈ NN−1, the control
satisfies µi(φ(i;x, π,w)) ∈ U(Xi, µi) ⊆ U for all i ∈ NN−1, and the terminal
state satisfies φ(N ;x, π,w) ∈ Xf ⊆ T ⊆ XO for every initial state x ∈ X0 and
every admissible disturbance sequence w ∈ W̄.

Let θ � {X, π} and let, for a given state x ∈ XO, Θ(x) (the set of admissible θ)
be defined by:

Θ(x) � {θ | x ∈ X0, Xi ⊆ XO, U(Xi, µi) ⊆ U,

F(Xi, µi,W) ⊆ Xi+1, ∀i ∈ NN−1, XN ⊆ Xf ⊆ T} (12)

Consider the cost function defined by:

VN (x, θ) �
N−1∑
i=0

�(Xi, µi(·)) + Vf (XN ) (13)

where �(·) is path cost and Vf (·) is terminal cost and consider the following,
finite horizon, robust optimal control problem PN (·):

PN (x) : V 0
N (x) = arg inf

θ
{VN (x, θ) | θ ∈ Θ(x)} (14)

θ0(x) ∈ arg inf
θ
{VN (x, θ) | θ ∈ Θ(x)} (15)

The set of states for which there exists an admissible tube–control policy pair θ
is clearly given by:

XN � {x | Θ(x) 	= ∅} (16)

The robust optimal control problem PN (x) is highly complex in general case,
since it requires optimization over control policies and sets. We focus attention
on the case when the system being controlled is linear and constraints specified
by (2) are polytopic while obstacle avoidance constraint (3) are polygonic so that
the overall state constraints (4) are polygonic.

3 Linear – Polygonic Case

Here we consider the linear discrete-time, time invariant, system:

x+ = f(x, u, w) � Ax + Bu + w (17)

where, as before, x ∈ Rn is the current state, u ∈ Rm is the current con-
trol action, x+ is the successor state, w ∈ Rn is an unknown disturbance and
(A,B) ∈ Rn×n×Rn×m. The disturbance w is persistent, but contained in a con-
vex and compact set W ⊂ Rn that contains the origin. We make the standing
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assumption that the couple (A,B) is controllable. With system (17) we associate
the corresponding nominal system:

z+ = Az + Bv (18)

where z ∈ Rn is the current state, v ∈ Rm is the current control action and z+

is the successor state of the nominal system. Let φ(i;x, π,w) denote the solution
at time i of (17) when the control policy is π � {µ0(·), µ1(·), . . . , µN−1(·)}, the
disturbance sequence is w and the initial state is x at time 0. If the initial state
of nominal model is z at time 0 then φ̄(k; z,v) denotes the solution to (18) at
time instant k, given the control sequence v � {v0, v1 . . . vN−1}.
Definition 1. [1] A set Ω ⊂ Rn is a robust positively invariant (RPI) set
for system x+ = f(x,w) and constraint set (X,W) if Ω ⊆ X and f(x,w) ∈
Ω, ∀w ∈W, ∀x ∈ Ω.

A set Ω ⊂ Rn is a positively invariant (PI) set for system x+ = f(x) and
constraint set X if Ω ⊆ X and f(x) ∈ Ω, ∀x ∈ Ω.

A set Ω ⊂ Rn is a robust control invariant (RCI) set for system x+ =
f(x, u, w) and constraint set (X,U,W) if Ω ⊆ X and for every x ∈ Ω there
exists a u ∈ U such that f(x, u, w) ∈ Ω, ∀w ∈W.

A set Ω ⊂ Rn is a control invariant (CI) set for system x+ = f(x, u) and
constraint set (X,U) if Ω ⊆ X and for every x ∈ Ω there exists a u ∈ U such
that f(x, u) ∈ Ω.

If the set Ω is a RCI set for system x+ = f(x, u, w) and constraint set (X,U,W),
then there exists a control law ν : Ω → U such that the set Ω is a RPI set
for system x+ = f(x, ν(x), w) and constraint set (Xν ,W) with Xν � {x ∈
X | ν(x) ∈ U}. The control law ν(·) is any control law satisfying:

ν(x) ∈ U(x), U(x) � {u ∈ U | f(x, u, w) ∈ Ω, ∀w ∈W}, x ∈ Ω (19)

An interesting observation [7, 14] is recalled next:

Proposition 2. Let Ω be a RPI set for system x+ = Ax + Bν(x) + w and
constraint set (Xν ,W), where Xν � {x ∈ X | ν(x) ∈ U}. Let also x ∈ z⊕Ω and
u = v+ν(x−z). Then for all v ∈ Rm, x+ ∈ z+⊕Ω where x+ � Ax+Bu+w, w ∈
W and z+ � Az + Bv.

Proposition 2 allows us to exploit a simple parameterization of the tube-policy
pair (X, π) as follows. The state tube X = {X0, X1, . . . , XN} is parametrized by
{zi} and R as follows:

Xi � zi ⊕R (20)

where zi is the tube cross–section center at time i and R is a set representing
the tube cross–section. The control laws µi(·) defining the control policy π =
{µ0(·), µ1(·), . . . , µN−1(·)} are parametrized by {zi} and {vi} as follows:

µi(y) � vi + ν(y − zi), y ∈ Xi, (21)

for all i ∈ NN−1, where vi is the feedforward component of the control law and
ν(·) is feedback component of the control law µi(·). With appropriate constraints
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on vi, i ∈ NN−1 and tube cross–section R, the tube X and associated policy π
satisfy (7)– (11) and, hence, Proposition 1. For a fixed tube cross–section R of
appropriate properties, discussed next, the sequence {zi} is the sequence of tube
centers and is required to satisfy (18), subject to tighter constraints than those
in (4), as discussed in the sequel.

3.1 Construction of Simple Robust Control Invariant Tube

Appropriate Tube Cross–Section R
A suitable choice for the tube cross–section R is any RCI set for x+ = Ax+Bu+w
and constraint set (T,U,W). Since T ⊆ XO by assumption it is clear that any
RCI set R for x+ = Ax+Bu+w and constraint set (T,U,W) is also a RCI set
for x+ = Ax+Bu+w and constraint set (XO,U,W). Consequently, we assume
that:

Assumption 3.1 The set R is a compact RCI set for system (17) and con-
straint set (αT, βU,W) where (α, β) ∈ [0, 1)× [0, 1).

A practical consequence of Assumption 3.1 is the fact that there exists a control
law ν : R → U such that R is RPI set for system x+ = Ax + Bν(x) + w
and constraint set (Xν ,W), where Xν � {x ∈ αT | ν(x) ∈ βU} with (α, β) ∈
[0, 1)× [0, 1). Note that the set R need not be a convex (for instance polytopic,
ellipsoidal) set; we merely require that it satisfies Assumption 3.1. Clearly, it is
desirable to reduce conservatism introduced by the simple tube-control policy
parametrization. Several methods can be employed to construct the RCI set R
and corresponding control policy ν(·), see for instance [1, 3, 10] for a set of the
standard methods. Additionally a set of recent and improved methods, that allow
one to minimize an appropriate norm of the set R and to compute this set by
solving an appropriately specified optimization problem can be found in [15, 16].

Given a set R satisfying Assumption 3.1 and corresponding control law ν(·)
such that the set R is RPI set for system Ax + Bν(x) + w and constraint set
(Xν ,W), where Xν � {x ∈ αT | ν(x) ∈ βU} with (α, β) ∈ [0, 1)× [0, 1), let the
sets Uν , ZO, Tf , V be defined as follows:

Uν � {ν(x) | x ∈ R}, ZO � XO 4R, Tf � T4R, V � U4 Uν . (22)

Since T ⊆ XO, Assumption 3.1 implies the sets ZO, Tf , V are non–empty sets.
If the sets R, Uν and T are polytopes, the set ZO is polygonic and the sets V
and Tf are polytopic and all contain the origin [12, 16]. Note that z ⊕R ⊆ XO
for any z ∈ ZO by definition of the Minkowski/Pontryagin set difference.

Appropriate Tube Terminal Set Xf ⊆ T

The parametrization for the state tube X motivates the introduction of a set of
sets of the form Φ � {z⊕R | z ∈ Zf} (Φ is a set of sets, each of the form z ⊕R
where R is a set) that is set robust control invariant [13, 16]:
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Definition 2. A set of sets Φ is set robust control invariant (SRCI) for system
x+ = f(x, u, w) and constraint set (T,U,W) if, for any set X ∈ Φ, (i) X ⊆ T
and, (ii) there exists a policy θX : X → U such that X+ = F(X, θX ,W) �
{f(x, θX(x), w) | (x,w) ∈ X ×W} ⊆ Y for some set Y ∈ Φ.

In order to characterize a simple set robust control invariant set Φ, we addition-
ally assume that:

Assumption 3.2 The set Zf is a control invariant set for the system (18) and
constraint set (Tf ,V).

We now recall the following result recently established in [13, 16]:

Theorem 1. Suppose that assumptions 3.1 and 3.2 are satisfied. Then Φ �
{z⊕R | z ∈ Zf} is a set robust control invariant for system x+ = Ax+Bu+w
and constraint set (T,U,W).

Given an X � z ⊕R ∈ Φ the corresponding policy θX : X → U can be defined
by:

θX(x) = ϕ(z) + ν(x− z), x ∈ X, X = z ⊕R ∈ Φ (23)

where ϕ(·) is a control law such that Zf is PI set for z+ = Az + Bϕ(z) and
Zϕ � Tf ∩ {z | ϕ(z) ∈ V} and ν(·) is a control law such that R is RPI set for
x+ = Ax + Bν(x) + w and (Xν ,W). As discussed in [13, 14], an appropriate
tube terminal set Xf such that Xf ⊆ T ⊆ XO is defined by:

Xf � Zf ⊕R (24)

where the sets R and Zf satisfy assumptions 3.1 and 3.2 respectively. With this
choice for the terminal set the domain of attraction is enlarged (compared to the
case when Xf = R) [13, 14]. In the sequel, we assume that Assumptions 3.1– 3.2
hold and additionally that the terminal set Zf , V and R are polytopes.

4 Robust Model Predictive Controller

4.1 Simple Tube Controller

We are now in position to propose a relatively simple optimal control problem
that approximates the robust optimal control problem PN (x) and whose solu-
tion, if it exists, yields the tube–policy pairs satisfying all the conditions specified
by (7)– (11). We require that the state trajectory of the nominal model (the se-
quence of tube centers) z � {z0, z1, . . . , zN} and corresponding control sequence
v = {v0, v1, . . . , vN−1} satisfy the tighter constraints, defined in (22). Let the set
VN (x) of admissible control–state pairs for nominal system at state x be defined
as follows:

VN (x) � {(v, z) | (φ̄(k; z,v), vk) ∈ ZO ×V, ∀k ∈ NN−1,

φ̄(N ; z,v) ∈ Zf , x ∈ z ⊕R} (25)
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Since the set ZO is polygon and the sets Zf , V, R are polytopes it follows
that the set VN(x) is a polygonic set ; it is, in principle, possible to obtain more
detailed characterization of the set VN (x) [12, 16]. An appropriate cost function
can be defined as follows:

VN (v, z) �
N−1∑
i=0

�(zi, vi) + Vf (zN ), �(x, u) � |x|2Q + |u|2R, Vf (x) � |x|2P (26)

where for all i, zi � φ̄(i; z,v) and �(·) is the stage cost and Vf (·) is the ter-
minal cost, and where P , Q and R are positive definite matrices of appopriate
dimensions. We also assume, as is standard [8], that:

Assumption 4.1 The terminal cost satisfies Vf (Az + Bϕ(z)) + �(z, ϕ(z)) ≤
Vf (z) for all z ∈ Zf .

We consider the resultant, simplified, optimal control problem defined by :

PS
N (x) : V 0

N (x) � inf
v,z
{VN (v, z) |(v, z) ∈ VN (x)} (27)

(v0(x), z0(x)) ∈ arg inf
v,z
{VN(v, z) |(v, z) ∈ VN(x)} (28)

The domain of the value function V 0
N (·), the controllability set, is:

XN � {x | VN (x) 	= ∅} (29)

Note that the simplified optimal control problem PS
N (x) can be posed as a mixed

integer quadratic programming problem, since VN (x) is polygonic and VN (·) is
quadratic, so that its global minimizer (or a set of global minimizers, in which
case an appropriate selection can be made) can be found for any x ∈ XN .
For each i let Vi(x) and Xi be defined, respectively, by (25) and (29) with i
replacing N . The sequence {Xi} is a monotonically non-decreasing set sequence,
i.e. Xi ⊆ Xi+1 for all i ∈ N. The sets Xi are in general polygons [12] and are
not necessarily connected due to nonconvexity of state constraints. Given any
x ∈ XN the solution to PS

N (x) defines the corresponding optimal simple tube:

X0(x) = {X0
i (x)}, X0

i (x) = z0
i (x)⊕R, (30)

for i ∈ NN , and the corresponding control policy π0(x) = {µ0
i (·) | i ∈ NN−1}

with
µ0

i (y;x) = v0
i (x) + ν(y − z0

i (x)), y ∈ X0
i (x) (31)

where, for each i, z0
i (x) = φ̄(i; z0(x),v0(x)). We now establish that the sim-

ple RCI tube X0(x) and corresponding policy π0(x) satisfy all the constraints
specified by (7)– (11) for any x ∈ XN . Let:

U(X0
i (·), µ0

i (·)) � v0
i (x)⊕ Uν (32)

By construction X0
i (x) ⊆ XO for all i ∈ NN because z0

i (x) ∈ ZO yields that
z0

i (x) ⊕ R ⊆ ZO ⊕ R ⊆ XO for all i ∈ NN . Also, z0
N (x) ∈ Zf yields that
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z0
N(x)⊕R ⊆ Zf ⊕R = Xf ⊆ T. Similarly, U(X0

i (·), µ0
i (·)) ⊆ U for all i ∈ NN−1

because v0
i (x) ∈ V yields that v0

i (x) ⊕ Uν ⊆ V ⊕ Uν ⊆ U for all i ∈ NN−1.
Finally, by Proposition 2 it follows that {Ay+Bµ0

i (y;x) +w | (y, w) ∈ X0
i (x)×

W} ⊆ X0
i+1(x) for all i ∈ NN−1. Clearly, an analogous observation holds for

any arbitrary couple (v, z) ∈ VN (x) given any arbitrary x ∈ XN .
We consider the following implicit robust model predictive control law κ0

N (·)
yielded by the solution of PS

N (x):

κ0
N (x) � v0

0(x) + ν(x− z0(x)) (33)

We establish some relevant properties of the proposed controller κ0
N (·) by ex-

ploiting the results reported in [9].

Proposition 3. (i) For all x ∈ R, V 0
N (x) = 0, z0(x) = 0, v0(x) = {0, 0, . . . , 0}

and κ0
N (x) = ν(x). (ii) Let x ∈ XN and let (v0(x), z0(x)) be defined by (28),

then for all x+ ∈ Ax + Bκ0
N (x) ⊕W there exists (v(x+), z(x+)) ∈ VN (x+) and

V 0
N (x+) ≤ V 0

N (x)− �(z0(x), v0
0(x)). (34)

The main stability result follows from Theorem 1 in [9] (definition of robust
exponential stability of a set can be found in [9, 14]):

Theorem 2. The set R is robustly exponentially stable for controlled uncertain
system x+ = Ax + Bκ0

N (x) + w, w ∈W. The region of attraction is XN .

The proposed controller κ0
N (·) results in a set sequence {X0

0 (x(i))}, where:

X0
0 (x(i)) = z0(x(i))⊕R, i ∈ N (35)

and z0(x(i)) → 0 exponentially as i → ∞. The actual trajectory x(·) � {x(i)},
where x(i) is the solution of x+ = Ax+Bκ0

N (x)+w at time i ∈ N, corresponding
to a particular realization of an infinite admissible disturbance sequence w(·) �
{wi}, satisfies x(i) ∈ X0

0 (x(i)), ∀i ∈ N. Proposition 3 implies that X0
0 (x(i)) ⊆

XN , ∀i ∈ N and Theorem 2 implies that X0
0 (x(i)) → R (where R ⊆ T) as

i→∞ exponentially in the Hausdorff metric.

4.2 Illustrative Example

Our illustrative example is a double integrator:

x+ =

[
1 1
0 1

]
x +

[
1
1

]
u + w (36)

with w ∈W � { w ∈ R2 : |w|∞ ≤ 0.2 }, x ∈ X � {x ∈ R2 | |x|∞ ≤ 20, x1 ≤
1.85, x2 ≤ 2}, u ∈ U � {u | |u| ≤ 2} and T � { x ∈ R2 : |x|∞ ≤ 3 } ∩ X ,
where xi is the ith coordinate of a vector x. The cost function is defined by (26)
with Q = 100I,R = 100; the terminal cost Vf (x) is the value function (1/2)x′Pfx
for the optimal unconstrained problem for the nominal system. The horizon is
N = 8. The tube cross-section R is constructed by using methods of [15, 16].
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The sequence of the sets {Xi}, i = 0, 1, . . . , 8, where Xi is the domain of V 0
i (·)

and the terminal set Xf = Zf ⊕R where Zf satisfies Assumption 3.2 and is the
maximal positively invariant set [1] for system z+ = (A+BK)z under the tighter
constraints Tf = T 4 R and V = U 4 Uν where K is unconstrained DLQR
controller for (A,B,Q,R), is shown in Figure 1 together with obstacles O1 and
O2.
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Fig. 2. RMPC Tube Trajectory

A RMPC tube {z0
0(x(i))⊕R} for initial state x0 = (−4.3,−5.3)′ is shown in

Figure 2 for a sequence of random admissible disturbances. The dash-dot line is
the actual trajectory {x(i)} due to the disturbance realization while the dotted
line is the sequence {z0

0(x(i))} of optimal initial states for corresponding nominal
system.
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5 Conclusions and Extensions

This note has introduced a relatively simple tube controller for the obstacle
avoidance problem for uncertain linear discrete time systems. The robust model
predictive controller ensures robust exponential stability of R, a RCI set – the
‘origin’ for the controlled uncertain system. The complexity of the correspond-
ing robust optimal control problem is marginally increased compared with that
for conventional model predictive control. The proposed robust model predic-
tive scheme guarantees robust obstacle avoidance at discrete moments; thus the
resultant controller, if applied to a continuous time system, will not necessar-
ily ensure satisfaction of constraints between sampling instants. However, this
problem can be dealt with as will be shown in a future paper. It is possible to
consider the cases when control objective is merely reaching the target set T
rather than stabilizing an “equilibrium point” R ⊆ T; it is also, in principle,
possible to treat the “multi-system” – “multi-target” case. These modifications
are relatively straight–forward, but they require a set of appropriate changes. Fi-
nally, combining the results reported in [11], an extension of the proposed robust
model predictive scheme to the class of piecewise affine discrete time systems is
possible.
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Summary. A multi-stage nonlinear model predictive controller is derived for the real-
time coordination of multiple aircraft. In order to couple the versatility of hybrid sys-
tems theory with the power of NMPC, a finite state machine is coupled to a real time
optimal control formulation. This methodology aims to integrate real-time optimal con-
trol with higher level logic rules, in order to assist mission design for flight operations
like collision avoidance, conflict resolution, and reacting to changes in the environment.
Specifically, the controller is able to consider new information as it becomes available.
Stability properties for nonlinear model predictive control are described briefly along
the lines of a dual-mode controller. Finally, a small case study is presented that con-
siders the coordination of two aircraft, where the aircraft are able to avoid obstacles
and each other, reach their targets and minimize a cost function over time.

1 Introduction

Coordination of aircraft that share common air space is an important problem
in both civil and military domains. Ensuring safe separation among aircraft, and
avoidance of obstacles and no-fly zones are key concerns along with optimization
of fuel consumption, mission duration and other criteria. In previous work [10] we
developed an optimal control formulation for this problem with path constraints
to define the avoidance requirements and flyability constraints. There we con-
sidered a direct transcription, nonlinear programming strategy solved with the
IPOPT solver [11]. Results for conflict resolution, using detailed flight models
and with up to eight aircraft, were obtained quickly, and motivated the imple-
mentation of such strategy in real time.

The level of information for these problems, including recognition of obstacles
and the presence of other aircraft, evolves over time and can be incomplete at a
given instant. This motivates the design of an on-line strategy able to consider
new information as it becomes available. For this purpose we propose a nonlinear
model predictive control (NMPC) approach. This approach integrates real-time
optimal control with higher level logic rules, in order to assist mission design
for flight operations like collision avoidance and conflict resolution. In this work,
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such integration is achieved by coupling a Finite State Machine (FSM) with an
NMPC regulator. The FSM receives the current state of the environment and
outputs a collection of sets, which is used to alter a nominal optimal control
problem (OCP) in the NMPC regulator. For instance, the detection of a new
obstacle leads the FSM to add a new element to the relevant set. The update
then alters a nominal OCP by adding the constraints pertinent to the obstacle
just detected, thus leading to an optimal avoidance maneuver.

In the next section we derive the multi-stage NMPC problem formulation.
Within this framework the NMPC regulator incorporates a 3 degree-of-freedom
nonlinear dynamic model of each aircraft, and considers a path constrained OCP
that minimizes a performance index over a moving time horizon. In addition,
we describe characteristics of the NMPC formulation that allow the aircraft to
meet their targets. Stability properties for NMPC are discussed and adapted to
the particular characteristics of this application in Section 3. In Section 4, our
overall approach is applied to a small case study which demonstrates collision
avoidance as well as implementation of the NMPC controller within the FSM
framework. Finally, Section 5 concludes the paper and presents directions for
future work.

2 Optimization Background and Formulation

We begin with a discussion of the dynamic optimization strategy used to develop
our NMPC controller.

Optimization of a system of Differential Algebraic Equations (DAEs) aims
to find a control action u ∈ U ⊆ Rnu such that a cost functional is minimized.
The minimization is subject to operational constraints and leads to the following
Optimal Control Problem (OCP):

min
u

J [zd(tF ), tF ]

subject to: żd = fd[zd, za, u], t ∈ TH

0 = zd(tI)− zd,I

0 = fa[zd, za, u], t ∈ TH

0 ≤ g[zd, za, u, t], u(t) ∈ U, t ∈ TH

(1)

where zd ∈ Rnd and za ∈ Rna are the vectors of differential and algebraic vari-
ables, respectively. Given u(t), a time horizon of interest TH := [tI , tF ] and ap-
propriate initial conditions zd(tI) = zd,I , the dynamic behavior of the aircraft can
be simulated by solving the system of DAEs: żd = fd[zd, za, u], fa[zd, za, u] = 0,
with this DAE assumed to be index 1. Notice that some constraints are en-
forced over the entire time interval TH . In this study, we solve this problem
with a direct transcription method [4, 5], which applies a simultaneous solu-
tion and optimization strategy. Direct transcription methods reduce the original
problem to a finite dimension by applying a certain level of discretization. The
discretized version of the OCP, a sparse nonlinear programming (NLP) prob-
lem, can be solved with well known NLP algorithms [5] like sequential quadratic
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programming or interior point methods. The size of the NLP resulting from the
discretization procedure can be very large, so the NLP algorithm used for the
solution must be suitable for large scale problems.

In this work, the OCP is transcribed into an NLP via collocation on finite
elements. As described in [5], the interval TH is divided into nE finite elements.
Within element i, the location of collocation point j occurs at the scaled root of
an orthogonal polynomial. In this work, roots of Radau polynomials are used,
as they allow to stabilize the system [3] when high index constraints are present.
State profiles are approximated in each element by polynomials; differential
states are represented by monomial basis polynomials while algebraic states and
controls are represented by Lagrange basis polynomials. These polynomials are
substituted into the DAE model and the DAE is enforced, over time, at Radau
collocation points over finite elements. Continuity across element boundaries is
also enforced for the differential state profiles. With this approximation, the
optimal control problem (1) can be written as:

min φ(w)
subject to: c(w) = 0

wL ≤ w ≤ wU .

(2)

Here, the equality constraint vector c(w) contains the discretized differential
equations and constraints of (1). Notice that inequality constraints are enforced
as equalities via slack variables. In a similar manner, the vector w consists of
the polynomial coefficients for the state, control, algebraic and (possibly) slack
variables.

The NLP (2) is solved using a primal-dual interior point method. Specifically,
we use the Interior Point OPTimizer– IPOPT [11]. This solver follows a barrier
approach, in which the bounds on the variables of the NLP problem (2) are
replaced by a logarithmic barrier term added to the objective function, and a
sequence of these barrier problems is solved for decreasing values of the penalty
parameter. In essence, IPOPT approaches the solution of (2) from the interior of
the feasible region defined by the bounds. A detailed description of IPOPT, both
from the theoretical and algorithmic standpoints, can be found in [11]. In this
study, IPOPT is used through its interface with AMPL [7], a modeling language
that eases the problem declaration and provides the solver with exact first and
second derivatives via automatic differentiation.

2.1 Nonlinear Model Predictive Control

If a perfect model is available for dynamic behavior of the aircraft, as well as full
information regarding the surrounding environment, an a priori computation of
the optimal control actions would be possible. However, neither of these occur in
practice; the dynamic models merely approximate the behavior of the aircraft,
and the system operates in a partially unknown airspace. An alternative to
handle the modeling inaccuracies and relative lack of information, is to compute
the optimal controls (maneuvers) in real time.
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Nonlinear Model Predictive Control (NMPC) is a closed loop control strategy
in which a nonlinear model of the system is used to compute an optimal control
via the solution of an optimal control problem. This computation is performed in
real time, at every sampling interval [1]. Among the main advantages of NMPC,
is the ability to compute the control using higher fidelity nonlinear models (as
opposed to linear-model approximation of the dynamics) and impose constraints
explicitly. For a thorough overview of both the generalities and formal treatment
of NMPC and related on-line control strategies, please refer to [1, 6, 8].

In the context of the methodology presented above, the NMPC controller
requires us to formally represent the DAE model in (2) as the discrete time,
nonlinear, autonomous system

z(k + 1) = f̄ [z(k), u(k)], (3)

where z(k) ∈ Rn and u(k) ∈ Rm are, respectively, the (differential) state and
control variables, evaluated at time points tk with integers k > 0. (Note that since
the DAE system in (2) is index one, the algebraic variables can be represented as
implicit functions of z(k).) The nonlinear function f̄ : Rn×m �→ Rn is assumed
to be twice continuously differentiable with respect to its arguments, and the
evolution in (3) results from the solution of the DAE in (1). The goal is to find
a control law such that a performance index is minimized, and both states and
controls belong to a given set: z(k) ∈ Z and u(k) ∈ U, ∀k.

It is important to distinguish between the actual states and controls, and
the predicted or computed states and controls. For this reason, we introduce the
following notation: z(k) is the actual state of the physical system at time step
k, which is reached by the actual implementation of the control action u(k− 1).
On the other hand, z̄(l) is the predicted state from time step k, l steps into the
future, by the simulation of the system with the computed control action ū(l−1).

At time step k, we define the performance index

J [z(k), ū, N ] =
N−1∑
l=0

ψ[z̄(l), ū(l)] + F [z̄(N)], (4)

which is a function of the initial condition z(k), the vector of control actions
ū used to simulate the system, and the length of the prediction horizon N . In
the interest of finding the best performance index, an optimization problem is
formulated:

min
ū

J [z(k), ū, N ] =
N−1∑
l=0

ψ[z̄(l), ū(l)] + F [z̄(N)]

subject to:
z̄(l + 1) = f̄ [z̄(l), ū(l)]

z̄(0) = z(k)
ḡ[z̄(l), ū(l)] ≤ 0

ū ∈ U.

(5)
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where the inequality constraints ḡ[·] ≤ 0 correspond to inequality constraints
from (2).

This problem can be considered within the framework of (1) and is solved
using the direct transcription strategy outlined in the previous section. The
solution to (5) is given by ū∗

k = [ū∗(0), ū∗(1), . . . , ū∗(N − 1)].
In NMPC, the first element of ū∗ is implemented on the actual system, defining

the control law u(k) = κ̄[z(k)] := ū∗(0) that leads to the closed loop system
z(k + 1) = f̄ [z(k), κ̄[z(k)]] = f̄ [z(k), u(k)]. At the next sampling interval k + 1,
a new control action, u(k + 1), is found in a similar manner.

2.2 Multistage Controller

In the application at hand, some information about the environment is not known
a priori. For instance, the presence of an obstacle could be unknown until such
obstacle is within radar distance of the aircraft. For this reason, it is not possible
to include all the pertinent constraints in the optimization problem a priori.
Also, a new way-point might be assigned to an aircraft at any given time. These
difficulties can be overcome by using a multi-stage controller. Specifically, we
couple a finite state machine (FSM) with the NMPC controller.

An FSM is an event-driven system, that makes a transition from one state to
another when the condition defining the transition is true. In our application,
to each state of the FSM corresponds a set S relevant to a nominal OCP. The
OCP is formed by constraints and variables that are indexed by S. The FSM
is also able to alter parameters relevant to the OCP, for instance, the position
and radius of a recently detected obstacle. The new information is passed to the
nominal OCP by altering the set S, and irrelevant information is removed in a
similar manner.

The states in the FSM correspond to the modes of operation: provide mission:
which assigns missions to to the corresponding aircraft and issues an appropri-
ate trigger, wait: which forces aircraft to wait until a mission is assigned, cruise:
where control actions are computed and implemented for each aircraft to reach
the setpoint defined by the current mission and detect obstacles, avoid: which
obtains geography (e.g. position and radius) of detected obstacles and formu-
lates appropriate constraints for the cruise mode, assess outcome: which veri-
fies whether the targets have been reached and triggers new missions, and lock
mode, described below. Additional information related to the FSM can be found
in [2]. The NMPC controller, formed by a nominal OCP whose constraints and
variables are indexed by the set S, is embedded into the cruise and lock modes.

The NMPC block solves an OCP that includes the following constraints: DAE
system describing the dynamic response of the aircraft and flyability constraints
(like stall speed, maximum dynamic pressure, and others); conflict resolution
enforcing a minimum radial separation among aircraft; and obstacle avoidance
enforcing a minimum separation between aircraft and obstacles. A schematic
view of the coupling between the FSM and the NMPC block is presented in
Figure 1.
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RADAR

WP FSM
{ S : }

NMPC u∗
AIRCRAFT z

Fig. 1. Schematic view of the coupling between the FSM and the NMPC block. The
current state together with the set-point and radar readings cause the FSM to update
the set S which, in return, alters the structure of the nominal OCP within the NMPC
block. The optimal control action u∗ obtained in the NMPC block is implemented in
the system.

In order for each aircraft to reach a given target in an efficient manner, we
define the following objective functional for each prediction horizon k:

J [z(k), ū, N ] =
∑

i

Pi

⎡⎢⎣1
2

tk
F∫

tk
I

(
ū2

1,i + ū2
2,i

)
dt + ηiΦ(z̄i, z

sp
i )|tk

F

⎤⎥⎦ (6)

where u1,i and u2,i are the forward and vertical load factors for aircraft i, respec-
tively. In this application it suffices to consider the load factor as the acceleration
experienced by the aircraft. We choose to minimize the load factor terms because
there is a direct relation between the acceleration of an aircraft and fuel con-
sumption (higher forward or upward accelerations require more fuel) and pilot
safety and comfort.

In (6), the contributions of each aircraft are added up, weighted by a fac-
tor Pi ≥ 0 representing the priority of each aircraft. Each contribution includes
an integral term, that measures the control effort, and an exact penalty term
Φ(z̄i, z

sp
i )|tk

F
= ‖z̄i(tkF ) − zsp

i ‖1, weighted by a factor ηi  0, that enforces the
target.

The target is imposed with an exact penalty term and not with a hard con-
straint, because it is not possible to know a priori when the aircraft will reach
the target. If the aircraft are far from their targets, the exact penalty formulation
encourages a closer distance to the target, without necessarily reaching it. On
the other hand, if the target can be reached within the time horizon of the NMPC
controller, the exact penalty is equivalent to a hard constraint, provided that the
weighting factor ηi is sufficiently large (see [9]; in this work we use ηi = 105).
If the target can be reached within the time horizon k, the FSM transitions to
the lock mode, which reduces the interval tF by one unit at k + 1, until the
target is reached. The penalty term has important implications on the stability
properties, as discussed in the next section. The objective functional (6) together
with the above constraints and appropriate initial conditions specify the OCP
given to the NMPC block.

The FSM was implemented in Matlab as a collection of switch statements.
The optimization step of the NMPC block is implemented in AMPL using
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IPOPT as the NLP solver. Communication between the NMPC and the FSM
was carried out through files updated in every time horizon. In this work, we use
a prediction horizon of N = 10, tF − tI ≤ 60 seconds, and a sampling time of 6
seconds. We acknowledge that the length of the prediction and implementation
horizons are critical tuning parameters in NMPC. The main trade-off is that
longer horizons provide solutions closer to the off-line, full-length optimization,
but require longer CPU times.

3 Stability Properties

In this section we consider the nominal stability for a particular stage of our
controller which solves (5). Ensuring stability of z(k + 1) = f̄ [z(k), h(z(k)] is a
central problem in NMPC, and can be achieved by several methods [1]. The aim
is to find a control law such that the origin for the closed-loop system (without
loss of generality assumed to be the setpoint) is asymptotically stable, with a
large region of attraction. All techniques require some modification to the OCP
(5) solved on-line, but have the following in common:

• a positive definite, scalar cost function or performance index J(·), with a
final penalty term F (·),
• a nonlinear model f̄(·) describing the dynamic response of the system, from

an initial condition z(0), N steps into the future.
• control constraints U and state constraints Z, and
• a terminal constraint z ∈ Zs.

For instance, setting N = ∞ in (5) leads to an Infinite Horizon nonlinear
control (IH), which can be proved to provide a stabilizing control law. How-
ever, its implementation requires the approximation of an infinite summation,
leading to a difficult optimization problem that normally cannot be solved in
a reasonable time frame. The difficulties associated with the implementation of
the IH, motivated the development of control strategies based on finite-horizon
(FH) optimization. In particular Nonlinear Receding Horizon (NRH) control, is
a group of methodologies (of which NMPC is a member) that specifically aims
to solve problem (5).

Important cases of NRH include the zero-state (ZS) terminal constraint for
which the terminal cost F (·) ≡ 0 and Zs = {0}, meaning that the end point con-
straint is enforced as a hard constraint. ZS can guarantee stability if there exists a
nonempty neighborhood of the origin ZC(N) for which it is possible to find a con-
trol sequence u(k), k = {0, . . . , N −1} capable of driving z(k+1) = f̄ [z(k), u(k)]
to the origin in N steps (i.e. z(N) = 0), and the initial condition z(0) is within
that neighborhood. An important drawback of the ZS methodology is that it can
require prohibitively long time horizons for ZC(N) to exist and, even if ZC(N)
exists for a short horizon, this might result in excessive control effort. In addition,
satisfying the equality constraint can be computationally demanding.

The idea of replacing the equality constraint by an inequality, which is much
easier to satisfy, motivates the Dual Mode (DM) controller, for which the F (·) is
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chosen as an upper bound on the cost of some stabilizing controller that regulates
the system, whenever it is within the neighborhood of the origin defined by Zs.
In the implementation of DM, FH control is applied until z(t) ∈ Zs, at which
point the controller switches to a stabilizing state feedback controller u(t) =
κ(z(t)). Stability of the DM controller can be paraphrased by the following
theorem [1, 6, 8]:

Theorem 1 (Nominal Stability of NMPC). Consider the system described
by (3), then with advancing k > 0, the NMPC controller leads to a monotonic
decrease of J [z(k)] and it is asymptotically stable within a region at least twice
the size of Zs, if we assume:

• F (z) > 0, ∀z ∈ Zs\{0},
• there exists a local control law u = κ(z) defined on Zs, such that f̄(z, κ(z)) ∈

Zs, ∀z ∈ Zs, and
• F (f̄ [z, κ(z)])− F (z) ≤ −ψ[z, κ(z)], ∀z ∈ Zs.

We can apply this result directly for a particular assigned set of way-points if
we assume that the cost of some stabilizing controller (including manual control
of the aircraft) can be overestimated by the exact penalty term in (6) over the
entire test field, i.e., F (z(tkF )) = ηΦ(zi, z

sp
i )|tk

F
and Zs = Z. A practical realiza-

tion of this assumption occurs for η suitably large. Because of this assumption
and the implementation of the exact penalty term, the stability result applies to
(5) for aircraft only in the cruise and lock modes, and the performance index
decreases monotonically within these modes. However, we caution that this re-
sult does not imply monotonic decrease over the entire set of missions. As new
missions are assigned or as different constraints are added in the avoid mode,
the performance index may indeed increase. The analysis of overall stability (the
global case) is left for future work.

4 Two Aircraft Case Study

We now consider the case of two aircraft that accomplish separate missions
(defined by way-points (wp)) in a constrained airspace. The trajectory through
which a given aircraft reaches the target must be obstacle free and, at every
point in time, the different aircraft must maintain a safe distance from each
other. The airspace is known to have obstacles, for some of which the position
and size are known a priori. The aircraft are also equipped with radar, which
can detect a previously unknown obstacle. It is assumed that the radar is able
to determine both shape and location of a given obstacle within its scope.

Aircraft dynamics can be described by the state variables, zd =T [x y h v χ γ],
corresponding to east-range, north-range, altitude, air speed, heading angle and
flight path angle, respectively. The control variables are given by u =T [u1 u2 u3]
and correspond to forward load factor, vertical load factor, and bank angle,
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Fig. 2. Test field for the case studies. Aircraft 1 (dotted) and 2 (solid).

respectively. After some simplifying assumptions, the equations of motion are
stated for each aircraft as:

ẋ = v cos γ cosχ, v̇ = g(u1 − sin γ),

ẏ = v cos γ sinχ, χ̇ = − g
v

(
u2 sin u3

cos γ

)
,

ḣ = v sinγ, γ̇ = − g
v (u2 cosu3 + cos γ) ,

(7)

where g is the standard acceleration. In order to produce flyable maneuvers, con-
straints defining the flight envelope and other restrictions modeling the perfor-
mance capabilities of the aircraft are added to the formulation. Using SI units,
we have the air density, ρ = 1.222 exp(−h/9144.0) and bounds on velocity,
v ≥ vS

√
9144.0/ρ, v2 ≤ 2qmax/ρ and control variables uj ∈ [uj min, uj max], j =

1, . . . 3. Here vS is the stall speed and qmax is the maximum dynamic pressure.
We now consider two aircraft flying in the test field presented in Figure 2,

where the three small cylinders are pop-up obstacles; their presence is not known
a priori. Two missions are assigned to each aircraft: wp1→wp3→wp4 for air-
craft 1, and wp3→wp1→wp2 for aircraft 2. Using the proposed multi-stage
NMPC approach, both aircraft are able to reach the assigned way-points, while
avoiding obstacles and (locally) minimizing the load factor terms. In Figure 3,
notice that aircraft 1 reached the second way-point in 560 seconds, while air-
craft 2 reached the second way-point in 660 seconds. The optimization prob-
lem solved at each NMPC horizon varies in size, since different information is
added and subtracted as the flight evolves. The largest NLP solved consists of
1406 variables and 1342 constraints. The average CPU time required to solve the
NMPC problem was 0.2236 seconds, and the maximum CPU time required was of
0.8729 seconds.1

1 SUN Java Workstation: dual AMD64-250 processors @ 2.4GHz with 16GB RAM,
running Linux operating system.
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Fig. 3. Optimal control actions for aircraft 1 (left) and 2 (right). Forward load factor
(solid, inner axis) and vertical load factor (dashed, outer axis).

5 Conclusions and Future Work

We present a multi-stage, NMPC-based control strategy for the real time coor-
dination of multiple aircraft. The controller couples a finite state machine with
a nonlinear model predictive controller. With the proposed methodology, it is
possible to coordinate several aircraft, such that they can perform several mis-
sions in partially unknown environments. The main advantage of this controller
is its ability to consider new information as it becomes available and its ability
to define several modes of operation.

A case study with two aircraft was presented. It is noticed that the CPU times
required to compute the control action are small compared to the physical time
of the implementation (3.7%, on average). Stability of the controller is achieved
based on properties of the dual mode NMPC controller and robustness can be
promoted by tuning certain parameters within the NMPC regulator. Although
good results can be obtained with the methodology presented, it is desirable to
investigate more general conditions under which the controller is stable for the
entire FSM, in the presence of disturbances, and also with known robustness
margins.

The NMPC controller could also be used to assist in the decision-making
process involved in the unmanned control of aerospace vehicles. We believe that
the concept of combining the versatility of hybrid systems theory with the power
of large-scale optimal control can prove very useful in the design of advanced
control strategies for the efficient coordination of multiple aircraft.
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Nonlinear Predictive Control, F. Allgöwer and A. Zheng, eds., vol. 26 of Progress
in Systems Theory, Basel, 2000, Birkhäuser, pp. 23,44.
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