




Javaan Singh Chahl, Lakhmi C. Jain, Akiko Mizutani and Mika Sato-Ilic (Eds.)

Innovations in Intelligent Machines - 1



Studies in Computational Intelligence, Volume 70

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springer.com

Vol. 49. Keshav P. Dahal, Kay Chen Tan, Peter I. Cowling
(Eds.)
Evolutionary Scheduling, 2007
ISBN 978-3-540-48582-7

Vol. 50. Nadia Nedjah, Leandro dos Santos Coelho,
Luiza de Macedo Mourelle (Eds.)
Mobile Robots: The Evolutionary Approach, 2007
ISBN 978-3-540-49719-6

Vol. 51. Shengxiang Yang, Yew Soon Ong, Yaochu Jin
Honda (Eds.)
Evolutionary Computation in Dynamic and Uncertain
Environment, 2007
ISBN 978-3-540-49772-1

Vol. 52. Abraham Kandel, Horst Bunke, Mark Last (Eds.)
Applied Graph Theory in Computer Vision and Pattern
Recognition, 2007
ISBN 978-3-540-68019-2

Vol. 53. Huajin Tang, Kay Chen Tan, Zhang Yi
Neural Networks: Computational Models
and Applications, 2007
ISBN 978-3-540-69225-6

Vol. 54. Fernando G. Lobo, Cláudio F. Lima
and Zbigniew Michalewicz (Eds.)
Parameter Setting in Evolutionary Algorithms, 2007
ISBN 978-3-540-69431-1

Vol. 55. Xianyi Zeng, Yi Li, Da Ruan and Ludovic Koehl
(Eds.)
Computational Textile, 2007
ISBN 978-3-540-70656-4

Vol. 56. Akira Namatame, Satoshi Kurihara and
Hideyuki Nakashima (Eds.)
Emergent Intelligence of Networked Agents, 2007
ISBN 978-3-540-71073-8

Vol. 57. Nadia Nedjah, Ajith Abraham and Luiza de
Macedo Mourella (Eds.)
Computational Intelligence in Information Assurance
and Security, 2007
ISBN 978-3-540-71077-6

Vol. 58. Jeng-Shyang Pan, Hsiang-Cheh Huang, Lakhmi
C. Jain and Wai-Chi Fang (Eds.)
Intelligent Multimedia Data Hiding, 2007
ISBN 978-3-540-71168-1

Vol. 59. Andrzej P. Wierzbicki and Yoshiteru
Nakamori (Eds.)
Creative Environments, 2007
ISBN 978-3-540-71466-8

Vol. 60. Vladimir G. Ivancevic and Tijana T. Ivacevic
Computational Mind: A Complex Dynamics
Perspective, 2007
ISBN 978-3-540-71465-1

Vol. 61. Jacques Teller, John R. Lee and Catherine
Roussey (Eds.)
Ontologies for Urban Development, 2007
ISBN 978-3-540-71975-5

Vol. 62. Lakhmi C. Jain, Raymond A. Tedman
and Debra K. Tedman (Eds.)
Evolution of Teaching and Learning Paradigms
in Intelligent Environment, 2007
ISBN 978-3-540-71973-1

Vol. 63. Wlodzislaw Duch and Jacek Mańdziuk (Eds.)
Challenges for Computational Intelligence, 2007
ISBN 978-3-540-71983-0

Vol. 64. Lorenzo Magnani and Ping Li (Eds.)
Model-Based Reasoning in Science, Technology, and
Medicine, 2007
ISBN 978-3-540-71985-4

Vol. 65. S. Vaidya, L. C. Jain and H. Yoshida (Eds.)
Advanced Computational Intelligence Paradigms in
Healthcare-2, 2007
ISBN 978-3-540-72374-5

Vol. 66. Lakhmi C. Jain, Vasile Palade and Dipti
Srinivasan (Eds.)
Advances in Evolutionary Computing for System
Design, 2007
ISBN 978-3-540-72376-9

Vol. 67. Vassilis G. Kaburlasos and Gerhard X. Ritter
(Eds.)
Computational Intelligence Based on Lattice
Theory, 2007
ISBN 978-3-540-72686-9

Vol. 68. Cipriano Galindo, Juan-Antonio
Fernández-Madrigal and Javier Gonzalez
A Multi-Hierarchical Symbolic Model
of the Environment for Improving Mobile Robot
Operation, 2007
ISBN 978-3-540-72688-3

Vol. 69. Falko Dressler and Iacopo Carreras (Eds.)
Advances in Biologically Inspired Information Systems:
Models, Methods, and Tools, 2007
ISBN 978-3-540-72692-0

Vol. 70. Javaan Singh Chahl, Lakhmi C. Jain, Akiko
Mizutani and Mika Sato-Ilic (Eds.)
Innovations in Intelligent Machines-1, 2007
ISBN 978-3-540-72695-1



Javaan Singh Chahl
Lakhmi C. Jain
Akiko Mizutani
Mika Sato-Ilic
(Eds.)

Innovations in Intelligent
Machines - 1

With 146 Figures and 10 Tables



Dr. Javaan Singh Chahl
Defence Science and Technology

Organisation
Edinburgh
South Australia
Australia

Prof. Lakhmi C. Jain
University of South Australia
Mawson Lakes Campus
Adelaide, South Australia
Australia

E-mail:- Lakhmi.jain@unisa.edu.au

Dr. Akiko Mizutani
Odonatrix Pty Ltd
Adelaide
South Australia
Australia

Prof. Mika Sato-Ilic
Faculty of Systems and Information

Engineering
University of Tsukuba
Japan

Library of Congress Control Number: 2007927247

ISSN print edition: 1860-949X
ISSN electronic edition: 1860-9503
ISBN 978-3-540-72695-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: deblik, Berlin
Typesetting by the SPi using a Springer LATEX macro package
Printed on acid-free paper SPIN: 11588450 89/SPi 5 4 3 2 1 0



Foreword

Innovations in Intelligent Machines is a very timely volume that takes a
fresh look on the recent attempts of instilling human-like intelligence into
computer-controlled devices. By contrast to the machine intelligence research
of the last two decades, the recent work in this area recognises explicitly the
fact that human intelligence is not purely computational but that it also has
an element of empirical validation (interaction with the environment). Also,
recent research recognises that human intelligence does not always prevent
one from making errors but it equips one with the ability to learn from mis-
takes. The latter is the basic premise for the development of the collaborative
(swarm) intelligence that demonstrates the value of the virtual experience pool
assembled from cases of successful and unsuccessful execution of a particular
algorithm.

The editors are to be complemented for their vision of designing a frame-
work within which they ask some fundamental questions about the nature
of intelligence in general and intelligent machines in particular and illustrate
answers to these questions with specific practical system implementations in
the consecutive chapters of the book.

Chapter 2 addresses the cost effectiveness of “delegating” operator’s intel-
ligence to on-board computers so as to achieve single operator control of mul-
tiple unmanned aerial vehicles (UAV). The perspective of cost effectiveness
allows one to appreciate the distinction between the optimal (algorithmic)
and the intelligent (non-algorithmic, empirical) decision-making, which nec-
essarily implies some costs. In this context the decision to use or not to use
additional human operators can be seen as the assessment of the “value” of
the human intelligence in performing a specific task.

The challenge of the development of collaborative (swarm) intelligence and
its specific application to UAV path planning over the terrain with complex
topology is addressed in Chapters 3 and 4. The authors of these chapters
propose different technical solutions based on the application of game the-
ory, negotiation techniques and neural networks but they reach the same
conclusions that the cooperative behaviour of individual UAVs, exchanging



VI Foreword

information about their successes and failures, underpins the development of
human-like intelligence. This insight is further developed in Chapter 8 where
the authors look at the evolution-based dynamic path planning.

Chapter 5 emphasises the importance of physical constraints on the UAVs
in accomplishing a specific task. To re-phrase it in slightly more general terms,
it highlights the fact that algorithmic information processing may be numer-
ically correct but it may not be physically very meaningful if the laws of
physics are not taken fully into account. This is exactly where the importance
of empirical verification comes to fore in intelligent decision-making.

The practice of processing uncertain information at various levels of
abstraction (granulation) is now well recognised as a characteristic feature
of human information processing. By discussing the state estimation of UAVs
based on information provided by low fidelity sensors, Chapter 6 provides a ref-
erence material for dealing with uncertain data. Discussion of the continuous-
discrete extended Kalman filter placed in the context of intelligent machines
underlines the importance of information abstraction (granulation).

Chapters 7 and 9 share a theme of enhancement of sensory perception of
intelligent machines. Given that the interaction with the environment is a key
component of intelligent machines, the development of sensors providing omni
directional vision is a promising way to achieving enhanced levels of intelli-
gence. Also the ability to achieve, through appropriate sensor design, long
distance (low accuracy) and short distance (high accuracy) vision correlates
closely with the multi-resolution (granular) information processing by humans.

The book is an excellent compilation of leading-edge contributions in the
area of intelligent machines and it is likely to be on the essential reading list of
those who are keen to combine theoretical insights with practical applications.

Andrzej Bargiela
Professor of Computer Science
University of Nottingham, UK



Preface

Advanced computational techniques for decision making on unmanned sys-
tems are starting to be factored into major policy directives such as the United
States Department of Defence UAS Roadmap. Despite the expressed need for
the elusive characteristic of “autonomy”, there are no existing systems that
are autonomous by any rigorous definition. Through the use of sophisticated
algorithms, residing in every software subsystem (state estimation, naviga-
tion, control and so on) it is conceivable that a degree of true autonomy
might emerge. The science required to achieve robust behavioural modules for
autonomous systems is sampled in this book. There are a host of technologies
that could be implemented on current operational systems. Many of the behav-
iours described are present in fielded systems albeit in an extremely primi-
tive form. For example, waypoint navigation as opposed to path planning, so
the prospects of upgrading current implementations are good if hurdles such
as airworthiness can be overcome. We can confidently predict that within a
few years the types of behaviour described herein will be commonplace on
both large and small unmanned systems.

This research book includes a collection of chapters on the state of art in
the area of intelligent machines. We believe that this research will provide a
sound basis to make autonomous systems human-like.

We are grateful to the authors and reviewers for their vision and contribu-
tion. The editorial assistance provided by Springer-Verlag is acknowledged.

Editors



Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

Intelligent Machines: An Introduction
Lakhmi C. Jain, Anas Quteishat, and Chee Peng Lim . . . . . . . . . . . . . . . . 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Learning in Intelligent Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 Application of Intelligent Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Unmanned Aerial Vehicle (UAV) . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Underwater Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Space Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 Humanoid Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5 Other Attempts in Intelligent Machines . . . . . . . . . . . . . . . . . . . . . 6

4 Chapters Included in this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Predicting Operator Capacity for Supervisory Control
of Multiple UAVs
M.L. Cummings, Carl E. Nehme, Jacob Crandall, and Paul Mitchell . . . 11
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Previous Experimental Multiple UAV studies . . . . . . . . . . . . . . . . . . . . 12
3 Predicting Operator Capacity through Temporal Constraints . . . . . . 14

3.1 Wait Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Experimental Analysis of the Fan-out Equations . . . . . . . . . . . . . 16
3.3 Linking Fan-out to Operator Performance . . . . . . . . . . . . . . . . . . . 24
3.4 The Overall Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 The Human Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Optimization through Simulated Annealing . . . . . . . . . . . . . . . . . 28
3.7 Results of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



X Contents

4 Meta-Analysis of the Experimental
and Modeling Prediction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Team, Game, and Negotiation based Intelligent Autonomous
UAV Task Allocation for Wide Area Applications
P.B. Sujit, A. Sinha, and D. Ghose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2 Existing Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3 Task Allocation Using Team Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Basics of Team Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Team Theoretic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Task Allocation using Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Decision-making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Search using Game Theoretic Strategies . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 N-person Game Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Solution Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

UAV Path Planning Using Evolutionary Algorithms
Ioannis K. Nikolos, Eleftherios S. Zografos, and Athina N. Brintaki . . . . 77
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
1.2 Cooperative Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
1.3 Path Planning for Single and Multiple UAVs . . . . . . . . . . . . . . . . 80
1.4 Outline of the Current Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2 B-Spline and Evolutionary Algorithms Fundamentals . . . . . . . . . . . . . 86
2.1 B-Spline Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.2 Fundamentals of Evolutionary Algorithms (EAs) . . . . . . . . . . . . 88
2.3 The Solid Boundary Representation . . . . . . . . . . . . . . . . . . . . . . . 89

3 Off-line Path Planner for a Single UAV . . . . . . . . . . . . . . . . . . . . . . . . . 90
4 Coordinated UAV Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1 Constraints and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2 Path Modeling Using B-Spline Curves . . . . . . . . . . . . . . . . . . . . . 93
4.3 Objective Function Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 The Optimization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1 Differential Evolution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Radial Basis Function Network for DE Assistance . . . . . . . . . . . 99



Contents XI

5.3 Using RBFN for Accelerating DE Algorithm . . . . . . . . . . . . . . . . 102
6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1 Trends and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Evolution-based Dynamic Path Planning
for Autonomous Vehicles
Anawat Pongpunwattana and Rolf Rysdyk . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2 Dynamic Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3 Probability of Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4 Planning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.1 Algorithm for Static Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.2 Algorithm for Dynamic Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5 Planning with Timing Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6 Planning in Changing Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Algorithms for Routing Problems Involving UAVs
Sivakumar Rathinam and Raja Sengupta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
2 Single Vehicle Resource Allocation Problem

in the Absence of Kinematic Constraints . . . . . . . . . . . . . . . . . . . . . . . . 148
2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
2.2 Relevant Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3 Multiple Vehicle Resource Allocation Problems
in the Absence of Kinematic Constraints . . . . . . . . . . . . . . . . . . . . . . . . 155
3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.2 Single Depot, Multiple TSP(SDTSP) . . . . . . . . . . . . . . . . . . . . . . 156
3.3 Multiple Depot, Multiple TSP (MDMTSP) . . . . . . . . . . . . . . . . . 158
3.4 Generalized Multiple Depot Multiple TSP (GMTSP) . . . . . . . . 159

4 Resource Allocation Problems in the Presence
of Kinematic Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.3 Alternating Algorithm for the Single UAV Case . . . . . . . . . . . . . 164
4.4 Approximation Algorithm for the Multiple UAV Case . . . . . . . . 165

5 Summary and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170



XII Contents

State Estimation for Micro Air Vehicles
Randal W. Beard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
1 UAV State Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
2 Sensor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

2.1 Rate Gyros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
2.2 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
2.3 Pressure Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
2.4 GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

3 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4 State Estimation via Model Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

4.1 Low Pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.2 State Estimation by Inverting the Sensor Model . . . . . . . . . . . . . 183

5 The Continuous-Discrete Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.1 Dynamic Observer Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.2 Essentials from Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.3 Continuous-Discrete Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 191

6 Application of the EKF to UAV State Estimation . . . . . . . . . . . . . . . . 195
6.1 Roll and Pitch Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.2 Position and Course Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Evolutionary Design of a Control Architecture
for Soccer-Playing Robots
Steffen Prüter, Hagen Burchardt, and Ralf Salomon . . . . . . . . . . . . . . . . . . 201
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
2 The Slip Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

2.1 Slip and Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
2.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
2.3 Self-Organizing Kohonen Feature Maps and Methods . . . . . . . . . 206
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

3 Improved Position Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
3.1 Latency Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
3.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
3.3 Back-Propagation Networks and Methods . . . . . . . . . . . . . . . . . . . 211

4 Local Position Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.1 Increased Position Accuracy by Local Sensors . . . . . . . . . . . . . . . 213
4.2 Embedded Back-Propagation Networks . . . . . . . . . . . . . . . . . . . . . 213
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5 Path Planning using Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 217
5.1 Gene Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.2 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.3 Evolutionary operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
5.4 Continous calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
5.5 Calculation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220



Contents XIII

5.6 Finding a Path in Dynamic Environments . . . . . . . . . . . . . . . . . . 220
6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Toward Robot Perception through Omnidirectional Vision
José Gaspar, Niall Winters, Etienne Grossmann,
and José Santos-Victor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
2 Omnidirectional Vision Sensors: Modelling and Design . . . . . . . . . . . . 226

2.1 A Unifying Theory for Single Centre of Projection Systems . . . 228
2.2 Model for Non-Single Projection Centre Systems . . . . . . . . . . . . . 229
2.3 Design of Standard Mirror Profiles . . . . . . . . . . . . . . . . . . . . . . . . . 230
2.4 Design of Constant Resolution Cameras . . . . . . . . . . . . . . . . . . . . 233
2.5 The Single Centre of Projection Revisited . . . . . . . . . . . . . . . . . . . 237

3 Environmental Perception for Navigation . . . . . . . . . . . . . . . . . . . . . . . 238
3.1 Geometric Representations for Precise Self-Localisation . . . . . . . 239
3.2 Topological Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

4 Complementing Human and Robot Perceptions
for HR Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
4.1 Interactive Scene Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
4.2 Human Robot Interface based on 3D World Models . . . . . . . . . . 262

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265



Intelligent Machines: An Introduction

Lakhmi C. Jain∗, Anas Quteishat∗∗, and Chee Peng Lim∗∗

School of Electrical & Information Engineering∗

University of South Australia
School of Electrical & Electronic Engineering∗∗

University of Science Malaysia

Abstract. In this chapter, an introduction to intelligent machine is presented.
An explanation on intelligent behavior, and the difference between intelligent and
repetitive natural or programmed behavior is provided. Some learning techniques
in the field of Artificial Intelligence in constructing intelligent machines are then
discussed. In addition, applications of intelligent machines to a number of areas
including aerial navigation, ocean and space exploration, and humanoid robots are
presented.

1 Introduction

“Intelligence” is an expression commonly used for humans and animals, and
only until recently for machines. But what is intelligence? How can we say that
this creature or machine is intelligent? Indeed, a lot of explanations and defi-
nitions for intelligence exist in the literature. Among them, a comprehensible
excerpt from [1] with respect to intelligence is as follows.

“A very general mental capability that, among other things, involves
the ability to reason, plan, solve problems, think abstractly, compre-
hend complex ideas, learn quickly and learn from experience”

In general, it is believed that the main factors involved in “intelligence” are
the capabilities of autonomously learning and adapting to the environment.
So, unless the creature or machine learns from its environment, it may not be
considered as intelligent. An interesting example is the behavior of the digger
wasp, a Sphex ichneumoneus insect [2]. When the female wasp returns to its
hole with food, she will first leave the food at the threshold and go inside the
hole to check for intruders. If there is no intruder, she will take the food inside.
However, if the food is moved, say a few inches, from the original position,
she will put the food back on the threshold, go inside, and check for intruders
again. The same procedure is repeated again and again if she found the food
is displaced. This shows that the element of intelligence, i.e. ability to adapt
to new circumstances, is missing in this behavior of the Sphex insect.

L.C. Jain et al.: Intelligent Machines: An Introduction, Studies in Computational Intelligence

(SCI) 70, 1–9 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



2 L.C. Jain et al.

When we talk about intelligent machines, the first thing that normally
appears in our mind is robots. Indeed, robots have been invented to substi-
tute humans in performing a lot of tasks involving repetitive and laborious
functions, for examples pick-and-place operations in manufacturing plants.
However, robots that are operated based on a programmed manner and in a
fully controlled environment are not considered as intelligent machines. Such
robots will easily fail when the application and/or the environment contain
some uncertain condition. As an example, in applications that involve haz-
ardous and uncertain environments such as handling of radioactive and explo-
sive materials, exploration into space and ocean, robots that can react to
changes in their surrounding are very much needed. As a result, robots have
to be equipped with “intelligence” so that they can be more useful and usable
when operating in uncertain environments.

To be considered as an intelligent machine, the machine has to be able to
interact with its environment autonomously. Interacting with the environment
involves both learning from it and adapting to its changes. This characteristic
differentiates normal machines from intelligent ones. In other words, a normal
machine has a specific programmed set of tasks in which it will execute accord-
ingly. On the other hand, an intelligent machine has a goal to achieve, and it
is equipped with a learning mechanism to help realize the desired goal [3].

The organization of this chapter is as follows. In section 2, some learning
methodologies for intelligent machines are discussed. In section 3, applications
of intelligent machines to a number of areas including unmanned aerial vehi-
cles, robots for space and ocean exploration, humanoid robots are presented.
A description of each chapter included in this book is presented in section 4,
and a summary of this chapter is included in section 5.

2 Learning in Intelligent Machines

When tackling learning from the machine perspective, Artificial Intelligence
(AI) has become one of the main fields of interest. The definition of AI can be
considered from three viewpoints [4]: (i) computational psychology–mimicking
and understanding human intelligence by the generation of a computer
program that behaves in the same way; (ii) computational philosophy–
formulating a model that is implementable in a computer for understanding
intelligent behaviors at the human level; and (iii) machine intelligence–
attempting to program a computer to carry out tasks, until recently, only
people could do.

In general, the learning process in intelligent machines involves acquiring
information about its environment, and deploying the information to establish
knowledge about the environment, and, subsequently, generalizing the knowl-
edge base so that it can handle uncertainty in the environment. A number of
machine intelligence techniques have been developed to introduce learning in
machines, e.g. imitation learning [5] and reinforcement learning [6]. For robot



Intelligent Machines: An Introduction 3

learning, researchers have proposed a multi-learning method that makes use
of more than one learning techniques [3]. Besides, different aspects of research
in robotics have been conducted, which include robot mobility and control [7],
robot perception [8], as well as the use of soft computing techniques for intelli-
gent robotic systems [9]. On the other hand, the divide and conquer principle
is applied to the learning tasks [10]. Each algorithm is given a specific task
to handle. The learning algorithms are chosen carefully after considering the
characteristics of the specific task. Another potential solution to learning is
intelligent agents. Agents collect data and learn about the surrounding envi-
ronment, and adapt to it [11]. The learning process in agents also requires
a self-organizing mechanism to control a society of autonomous agents [12].
It should be noted that the task of imparting learning into intelligent machines
is not an easy one; however the learning capability is what makes a machine
intelligent.

3 Application of Intelligent Machines

The applications of intelligent machines are widespread nowadays, extending,
for example, from Mars rover invented by NASA to intelligent vacuum cleaners
found in our homes. Some examples of intelligent machines are as follows.

3.1 Unmanned Aerial Vehicle (UAV)

There are some aerial missions and tasks that are not suitable for human pilots
either because it is too dangerous like military operations, or it takes a long
time in the air like mapping tasks. Yet, these tasks are important. UAVs have
been invented to carry out such mission-critical tasks [13]. Typically, an UAV
comprises onboard processing capabilities, vision, GPS (Global Positioning
System) navigation, and wireless communication. One of the main functions
of an UAV is to navigate in an uncontrolled environment, which also is often an
unknown environment, safely, and, at the same time, to perform its required
task [14]. What makes an UAV intelligent is the ability to fly to its target
under varying conditions. As it is not possible to predict all possible navigation
scenarios in one program, the UAV has to learn from its environment, and
adapt to the changes as they occur in order to reach the destination.

An UAV used to collect data in the atmosphere between satellite and the
ground base is created by National Oceanic and Atmospheric Administration
(NOAA), USA. The UAV is able to fill the gap where land-based and satellite-
based observations fall short, thus giving a view of the planet never seen before
[15]. Another UAV, a version of the military MQ9 Predator B, is used by the
Department of Homeland Security, USA to monitor remote and inaccessible
regions of the border. The UAV is equipped with special cameras and other
sensors, and is able to stay in the air for up to 30 hours [16].



4 L.C. Jain et al.

Fig. 1. Flight test of the Avatar UAV
(copyright of Agent Oriented Software, used by permission)

On the other hand, a flight test of an agent-controlled UAV, the Avatar
[17], has been successfully conducted in Australia, as shown in Figure 1.
The Avatar is equipped with an intelligent agent-based control system, with
the capability of real-time processing of flight and weather data, e.g. Avatar’s
position, air speed, ground speed, and drift, to assist the autopilot in deter-
mining the best route to fly.

3.2 Underwater Robot

Ocean exploration has attracted the attention of scientists for ages, as there
are many parts of the oceans that are unknown to humans. Another purpose
for exploring the oceans is because of commercial interests, e.g., communica-
tion cables, oil lines, and gas lines placed on the seabed. This has triggered
researches into intelligent underwater robots for inspecting lines and cables
faults, as well as for other scientific research purposes. Today, remotely oper-
ated vehicles (ROV) have been used as underwater robots, but controlling
these vehicles requires high skills in an unknown environment [18]. An exam-
ple of an underwater robot is shown in Figure 2. One of the applications of
this robot is to inspect and repair underwater pipelines [19]. The robot is con-
trolled from the surface with simple instructions, and it has to interact with
uncertainty in the environment to complete a given task.

3.3 Space Vehicle

One of the ultimate applications of intelligent machines is in space exploration.
In this domain, “Opportunity”, as shown Figure 3, is one of the latest Mars
rovers sent by NASA. Its mission is to explore Mars by maneuvering on the
surface of Mars, and sending images and information back to Earth.



Intelligent Machines: An Introduction 5

Fig. 2. The Underwater Robot
(copyright of Associate Professor Gerald Seet Gim Lee, Nanyang Technological

University, Singapore, used by permission)

Fig. 3. The “Opportunity” Mars Rover
(public domain image, courtesy of NASA/JPL-Caltech)

3.4 Humanoid Robot

Humanoid robots are designed to imitate human movement, behavior, and
activities. These robots can sense, actuate, plan, control, and execute activi-
ties. Among the successful humanoid robots include ASIMO [20] from Honda
(Figure 4a), QRIO [21] from Sony (Figure 4b), and Actroid [22, 23] from
Kokoro Co. and Advanced Media (Figure 5).

Each of these robots has its own salient features. ASIMO is a fast moving
humanoid robot. It can walk to its goal while avoiding obstacles in its way.
QRIO is the first affordable humanoid robot in the market for entertainment
proposes. This robot can walk with children, dance with them by imitating
their movements.

On the other hand, Actroid is an android that has its facial and body
movements similar to real human movements. Actroid greets people in four
languages (Chinese, English, Japanese, and Korean) and starts talking with



6 L.C. Jain et al.

(a) ASIMO (b) QRIO

Fig. 4. Humanoid robots
(public domain images, courtesy of wikimedia commons)

(a)  The Actroid robot (b) Face of Actroid

Fig. 5. Snapshots of the Actroid robot
(copyright of Aleksandar Lazinica, used by permission)

people when it hears “Hello”. This office reception robot is also able to con-
trol its motions expressively within the context of a conversation, e.g., facial
expressions, lip movements, and behaviour.

3.5 Other Attempts in Intelligent Machines

a. Unmanned Combat Air Vehicle (UCAV) project [24]: the objective of this
project is to demonstrate the effectiveness of using UCAV to effectively
and affordably prosecute twenty-first century lethal strike missions within
the emerging global command and control architecture.



Intelligent Machines: An Introduction 7

b. Micromechanical Flying Insect (MFI) project [25]: the objective of this
project is to create an insect-like device that is capable of flying autono-
mously.

c. Medical micro-robot project [26]: this projects aims to create the world’s
smallest micro-robot as wide as human hair at about 250 micron.
This micro-robot will be used to transmit images and deliver microscopic
payloads to parts of the body outside the reach of existing catheter tech-
nology.

4 Chapters Included in this Book

This book includes nine chapters. Chapter one introduces intelligent machines
and presents the chapters included in this book. Chapter two by Cummings
et al. is on predicting operator capacity for supervisory control of UAVs. The
authors have considered a cost-performance model in this study. Chapter three
by Sujit et al. is on team, game and negotiation based intelligent autonomous
UAV task allocation for a number of applications. The authors have also
presented a scheme of searching in an unknown environment. Chapter four by
Nikolas et al. is on path planning using evolutionary algorithms. The authors
have used Radial Basis Function Neural Network in evolutionary environment
in the design of their off-line path planner for UAV. Chapter five by Rathinam
and Sengupta is on algorithms on routing problems related to UAVs. The
authors have presented a class of routing problems and including review and
recent developments.

Chapter six by Beard is on state estimation for micro air vehicles. The
author has presented mathematical models for the sensors for multiple air
vehicles. Chapter seven by Pongpunwattana and Rysdyk is on evolution-based
dynamic path panning for autonomous vehicles. The algorithms take into
account the uncertain information of the environment and dynamics of the
system. Chapter eight by Prüter et al. is on evolutionary design of control
architecture for soccer-playing robots. Artificial intelligence techniques are
used to compensate the effect of slipping wheels, changing friction values,
noise and so on. The final chapter by Gasper et al. is on robot perception
through omnidirectional vision. The authors have examined how robots can
use images which convey only 2D information to drive its actions in 3D space.
The design of a navigation system considering sensor design, environmental
representations, navigation control and user interaction is presented.

5 Summary

This chapter has presented an introduction to intelligent machines. A discus-
sion on intelligence and the difference between intelligent and natural repet-
itive or programmed behaviors are given. The importance of an intelligent



8 L.C. Jain et al.

machine to learn from its changing environment and to adapt to the new
circumstances is discussed. Although there are various machine intelligence
techniques to impart learning to machines, it is yet to have a universal one for
this purpose. Some applications of intelligent machines are highlighted, which
include unmanned aerial vehicles, underwater robots, space vehicles, and
humanoid robots, as well as other projects in realizing intelligent machines.
It is anticipated that intelligent machines will ultimately play a role, in one
way or another, in our daily activities, and make our life comfortable in future.

References

1. “Mainstream Science on Intelligence”, Wall Street Journal, Dec. 13, 1994, p A18.
2. “Artificial Intelligence”, Encyclopædia Britannica. 2007. Encyclopædia Britan-

nica Online, <http://www.britannica.com/eb/article-9009711>, access date: 10
Feb 2007

3. S. Takamuku and R.C. Arkin, “Multi-method Learning and Assimilation”,
Mobile Robot Laboratory Online Publications, Georgia Institute of Technology,
2007.

4. S.C. Shapiro, Artificial Intelligence, in A. Ralston, E.D. Reilly, and D. Hem-
mendigner, Eds. Encyclopedia of Computer Science, Fourth Edition,. New York
Van Nostrand Reinhold, 1991

5. S. Schaal, “Is imitation learning the route to humanoid robots?” Trends in
Cognitive Scienes, vol. 3, pp. 233–242, 1999.

6. J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning for humanoid
robotics”, Proceedings of the third IEEE-RAS International Conference on
Humanoid Robots, 2003.

7. S. Patnaik, L. Jain, S. Tzafestas, G. Resconi, and A. Konar, (eds), Innovations
in Robot Mobility and Control, Springer, 2006.

8. B. Apolloni, A. Ghosh, F. Alpaslan, L. Jain, and S. Patnaik, (eds), Machine
Learning and Robot Perception, Springer, 2006.

9. L.C. Jain, and T. Fukuda, (editors), Soft Computing for Intelligent Robotic
Systems, Springer-Verlag, Germany, 1998.

10. P. Langley, “Machine learning for intelligent systems,” Proceedings of Fourteenth
National Conference on Artificial Intelligence, pp. 763–769, 1997.

11. F. Sahin and J.S. Bay, “Learning from experience using a decision-theoretic
intelligent agent in multi-agent systems”, Proceedings of the 2001 IEEE Moun-
tain Workshop on Soft Computing in Industrial Applications, pp. 109–114, 2001.

12. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, 1988.

13. D.A. Schoenwald, “AUVs: In space, air, water, and on the ground”, IEEE Con-
trol Systems Magazine, vol. 20, pp. 15–18, 2000.

14. A. Ryan, M. Zennaro, A. Howell, R. Sengupta, and J.K. Hedrick, “An overview
of emerging results in cooperative UAV control”, Proceedings of 43rdIEEE Con-
ference on Decision and Control, vol. 1, pp. 602–607, 2004.

15. “NOAA Missions Now Use Unmanned Aircraft Systems”, NOAA Mag-
azine Online (Story 193), 2006, <http://www.magazine.noaa.gov/stories/
mag193.htm>, access date: 13 Feb, 2007



Intelligent Machines: An Introduction 9

16. S. Waterman, “UAV Tested For US Border Security”, United Press Inter-
national, <http://www.spacewar.com/reports/UAV Tested For US Border
Security 999.html>, access date: 30 March 2007

17. “First Flight-True UAV Autonomy At Last” Agent Oriented Software, (Press
Release of 6 July 2004), <http://www.agent-software.com/shared/resources/
pressReleases.html>, access date: 14 Feb. 2007

18. J. Yuh, “Underwater robotics”, Proceedings of IEEE International Conference
on Robotics and Automation, vol. 1, pp. 932–937, 2000.

19. “Intelligent Machines, Micromachines, and Robotics”, <http://www.ntu.
edu.sg/mae/Research/Programmes/Imr/>, access date:12 Feb 2007

20. J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade, “Foot-
step Planning for the Honda ASIMO Humanoid”, Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pp. 629–634, 2005.

21. F. Tanaka, B. Fortenberry, K. Aisaka, and J. R. Movellan, “Developing dance
interaction between QRIO and toddlers in a classroom environment: Plans for
the first steps”, Proceedings of the IEEE International Workshop on Robot and
Human Interactive Communication, p. 223–228 2005.

22. K.F. MacDorman and H. Ishiguro, “The uncanny advantage of using androids in
cognitive and social science research,” Interaction Studies, vol. 7, pp. 297–337,
2006.

23. A. Lazinica, “Highlights of IREX 2005”, <http://www.ars-journal.com/ars/
Free Articles/IREX-2005.htm>, access date: 20 March, 2007

24. “X-45 Unmanned Combat Air Vehicle (UCAV)”, <http://www.fas.org/man/
dod-101/sys/ac/ucav.htm>, access date: 14 Feb 2007

25. “Micromechanical Flying Insect (MFI) Project”, <http://robotics.eecs.
berkeley. edu/∼ronf/MFI/>, access date: 14 Feb 2007

26. E. Cole, “Fantastic Voyage: Departure 2009”, <http://www.wired.com/
news/technology/medtech/0,72448-0.html?tw=wn technology 1>, access date:
14 Feb 2007



Predicting Operator Capacity for Supervisory
Control of Multiple UAVs

M.L. Cummings, Carl E. Nehme, Jacob Crandall, and Paul Mitchell

Humans and Automation Laboratory,
Massachusetts Institute of Technology,
Cambridge, Massachusetts

Abstract. With reduced radar signatures, increased endurance, and the removal of
humans from immediate threat, uninhabited (also known as unmanned) aerial vehi-
cles (UAVs) have become indispensable assets to militarized forces. UAVs require
human guidance to varying degrees and often through several operators. However,
with current military focus on streamlining operations, increasing automation, and
reducing manning, there has been an increasing effort to design systems such that
the current many-to-one ratio of operators to vehicles can be inverted. An increas-
ing body of literature has examined the effectiveness of a single operator controlling
multiple uninhabited aerial vehicles. While there have been numerous experimental
studies that have examined contextually how many UAVs a single operator could
control, there is a distinct gap in developing predictive models for operator capacity.
In this chapter, we will discuss previous experimental research for multiple UAV con-
trol, as well as previous attempts to develop predictive models for operator capacity
based on temporal measures. We extend this previous research by explicitly consid-
ering a cost-performance model that relates operator performance to mission costs
and complexity. We conclude with a meta-analysis of the temporal methods outlined
and provide recommendation for future applications.

1 Introduction

With reduced radar signatures, increased endurance and the removal of
humans from immediate threat, uninhabited (also known as unmanned) aerial
vehicles (UAVs) have become indispensable assets to militarized forces around
the world, as proven by the extensive use of the Shadow and the Predator in
recent conflicts.

Current UAVs require human guidance to varying degrees and often
through several operators. For example, the Predator requires a crew of two
to be fully operational. However, with current military focus on streamlin-
ing operations and reducing manning, there has been an increasing effort to
design systems such that the current many-to-one ratio of operators to vehicles
can be inverted (e.g., [1]). An increasing body of literature has examined the

M.L. Cummings et al.: Predicting Operator Capacity for Supervisory Control of Multiple UAVs,

Studies in Computational Intelligence (SCI) 70, 11–37 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



12 M.L. Cummings et al.

effectiveness of a single operator controlling multiple UAVs. However, most
studies have investigated this issue from an experimental standpoint, and thus
they generally lack any predictive capability beyond the limited conditions and
specific interfaces used in the experiments.

In order to address this gap, this chapter first analyzes past literature
to examine potential trends in supervisory control research of multiple unin-
habited aerial vehicles (MUAVs). Specific attention is paid to automation
strategies for operator decision-making and action. After the experimental
research is reviewed for important “lessons learned”, an extension of a ground
unmanned vehicle operator capacity model will be presented that provides
predictive capability, first at a very general level and then at a more detailed
cost-benefit analysis level. While experimental models are important to under-
stand what variables are important to consider in MUAV control from the
human perspective, the use of predictive models that leverage the results from
these experiments is critical for understanding what system architectures are
possible in the future. Moreover, as will be illustrated, predictive models that
clearly link operator capacity to system effectiveness in terms of a cost-benefit
analysis will also demonstrate where design changes could be made to have
the greatest impact.

2 Previous Experimental Multiple UAV studies

Operating a US Army Hunter or Shadow UAV currently requires the full
attention of two operators: an AVO (Aerial Vehicle Operator) and a MPO
(Mission Payload Operator), who are in charge respectively of the navigation
of the UAV, and of its strategic control (searching for targets and monitoring
the system). Current research is aimed at finding ways to reduce workload and
merge both operator functions, so that only one operator is required to manage
one UAV. One solution investigated by Dixon et al. consisted of adding audi-
tory and automation aids to support the potential single operator [2]. Exper-
imentally, they showed that a single operator could theoretically fully control
a single UAV (both navigation and payload) if appropriate automated offload-
ing strategies were provided. For example, aural alerts improved performance
in the tasks related to the alerts, but not others. Conversely, it was also shown
that adding automation benefited both tasks related to automation (e.g. navi-
gation, path planning, or target recognition) as well as non-related tasks.
However, their results demonstrate that human operators may be limited in
their ability to control multiple vehicles which need navigation and payload
assistance, especially with unreliable automation. These results are concordant
with the single-channel theory, stating that humans alone cannot perform high
speed tasks concurrently [3, 4]. However, Dixon et al. propose that reliable
automation could allow a single operator to fully control two UAVs.

Reliability and the related component of trust is a significant issue in the
control of multiple uninhabited vehicles. In another experiment, Ruff et al. [5]



Predicting Operator Capacity for Supervisory Control of Multiple UAVs 13

found that if system reliability decreased in the control of multiple UAVs, trust
declined with increasing numbers of vehicles but improved when the human
was actively involved in planning and executing decisions. These results are
similar to those experimentally found by Dixon et al. in that systems that
cause distrust reduce operator capacity [6]. Moreover, cultural components of
trust cannot be ignored. Tactical pilots have expressed inherent distrust of
UAVs as wingmen, and in general do not want UAVs operating near friendly
forces [7].

Reliability of the automation is only one of many variables that will deter-
mine operator capacity in MUAV control. The level of control and the context
of the operator’s tasks are also critical factors in determining operator capac-
ity. Control of multiple UAVs as wingmen assigned to a single seat fighter has
been found to be “unfeasible” when the operator’s task was primarily naviga-
ting the UAVs and identifying targets [8]. In this experimental study, the level
of autonomy of the vehicles was judged insufficient to allow the operator to
handle the team of UAVs. When UAVs were given more automatic functions
such as target recognition and path planning, overall workload was reduced.

In contrast to the previous UAVs-as-wingmen experimental study [6]
that determined that high levels of autonomy promotes overall performance,
Ruff et al. [5] experimentally determined that higher levels of automation
can actually degrade performance when operators attempted to control up
to four UAVs. Results showed that management-by-consent (in which a
human must approve an automated solution before execution) was superior to
management-by-exception (where the automation gives the operator a period
of time to reject the solution). In their scenarios, their implementation of
management-by-consent provided the best situation awareness ratings and
the best performance scores for controlling up to four UAVs.

These previous studies experimentally examined a small subset of UAVs
and beyond showing how an increasing number of vehicles impacted operator
performance, they were not attempting to predict any maximum capacity. In
terms of actually predicting how many UAVs a single operator control, there is
very little research. Cummings and Guerlain [9] showed that operators could
experimentally control up to 12 Tactical Tomahawk missiles given significant
missile autonomy. However, these predictions are experimentally-based which
limits their generalizability. Given the rapid acquisition of UAVs in the mili-
tary, which will soon follow in the commercial section, predictive modeling
for operator capacity will be critical for determining an overall system archi-
tecture. Moreover, given the range of vehicles with an even larger subset of
functionalities, it is critical to develop a more generalizable predictive mod-
eling methodology that is not solely based on expensive human-in-the-loop
experiments, which are particularly limited for application to revolutionary
systems.

In an attempt to address this gap, in the next section of this paper, we will
extend a predictive model for operator capacity in the control of unmanned
ground vehicles to a UAV domain [10], such that it could be used to predict



14 M.L. Cummings et al.

operator capacity, regardless of vehicle dynamics, communication latency,
decision support, and display designs.

3 Predicting Operator Capacity through Temporal
Constraints

While little research has been published concerning the development of a
predictive operator capacity model for UAVs, there has been some previous
work in the unmanned ground vehicle (robot) domain. Coining the term “fan-
out” to mean the number of robots a human can effectively control, Olsen et al.
[10, 11] propose that the number of homogeneous robots or vehicles a single
individual can control is given by:

FO =
NT + IT

IT
=

NT

IT
+ 1 (1)

In this equation, FO (fan-out) is dependent on NT (Neglect Time), the
expected amount of time that a robot can be ignored before its performance
drops below some acceptable threshold, and IT (Interaction Time) which is
the average time it takes for a human to interact with the robot to ensure it
is still working towards mission accomplishment. Figure 1 demonstrates the
relationship of IT and NT.

While originally intended for ground-based robots, this work has direct
relevance to more general human supervisory control (HSC) tasks where oper-
ators are attempting to simultaneously manage multiple entities, such as in
the case of UAVs. Because the fan-out adheres to Occam’s Razor, it provides
a generalizable methodology that could be used regardless of the domain, the
human-computer interface, and even communication latency problems. How-
ever, as appealing as it is due to its simplicity, in terms of human-automation
interaction, the fan-out approach lacks two critical considerations: 1) The
important of including wait times caused by human-vehicle interaction, and
2) How to link fan-out to measurable “effective” performance. These issues
will be discussed in the subsequent section.

IT

Segment 
IT+NT

NT 

Can insert ITs
for additional 
robots here

Fig. 1. The relationship of NT and IT for a Single Vehicle



Predicting Operator Capacity for Supervisory Control of Multiple UAVs 15

3.1 Wait Times

Modeling interaction and neglect times are critical for understanding human
workload in terms of overall management capacity. However, there remains
an additional critical variable that must be considered when modeling human
control of multiple robots, regardless of whether they are on the ground or in
the air, and that is the concept of Wait Time (WT). In HSC tasks, humans
are serial processors in that they can only solve a single complex task at a time
[3, 4], and while they can rapidly switch between cognitive tasks, any sequence
of tasks requiring complex cognition will form a queue and consequently wait
times will build. Wait time occurs when a vehicle is operating in a degraded
state and requires human intervention in order to achieve an acceptable level
of performance. In the context of a system of multiple vehicles or robots, wait
times are significant in that as they increase, the actual number of vehicles that
can be effectively controlled decreases, with potential negative consequences
on overall mission success.

Equation 2 provides a formal definition of wait time. It categorizes total
system wait time as the sum of the interaction wait times, which are the
portions of IT that occur while a vehicle is operating in a degraded state
(WTI), wait times that result from queues due to near-simultaneous arrival of
problems (WTQ), plus wait times due to operator loss of situation awareness
(WTSA). An example of WTI is the time that an unmanned ground vehicle
(UGV) idly waits while a human replans a new route. WTQ occurs when a
second UGV sits idle, and WTSA accumulates when the operator doesn’t even
realize a UGV is waiting. In (2), X equals the number of times an operator
interacts with a vehicle while the vehicle is in a degraded state, Y indicates the
number of interaction queues that build, and Z indicates the number of time
periods in which a loss of situation awareness causes a wait time. Figure 2
further illustrates the relationship of wait times to interaction and neglect
times.

Increased wait times, as defined above, will reduce operator capacity, and
Equation 3 demonstrates one possible way to capture this relationship. Since

Robot 1

Robot 2

Robot 3

Robot 1

Robot 2

Robot 3

IT`

IT+NT

WTQ1

WTQ2  IT`` 

 IT

IT+NT

WTSA IT```

(a) (b)

Fig. 2. Queuing wait times (a) versus situational awareness wait times (b)



16 M.L. Cummings et al.

WTI is a subset of IT, it is not explicitly included (although the measurement
technique of IT will determine whether or not WTI should be included in the
denominator.)

WT =
∑X

i=1
WTIi +

∑Y

j=1
WTQj +

∑Z

k=1
WTSAk (2)

FO =
NT

IT +
∑Y

j=1 WTQ +
∑Z

k=1 WTSAk

+ 1 (3)

While the revised fan-out (3) includes more variables than the original
version, the issue could be raised that the additional elements may not pro-
vide any meaningful or measurable improvement over the original equation
which is simpler and easier to model. Thus to determine how this modification
affects the fan-out estimate, we conducted an experiment with a UAV simu-
lation test bed, holding constant the number of vehicles a person controlled.
We then measured all times associated with equations 1 and 3 to demonstrate
the predictions made by each equation. The next section will describe the
experiment and results from this effort.

3.2 Experimental Analysis of the Fan-out Equations

In order to study operator control of multiple UAVs, a dual screen simulation
test bed named the Multi-Aerial Unmanned Vehicle Experiment (MAUVE)
interface was developed (Fig. 3). This interface allows an operator to effec-
tively supervise four independent homogeneous UAVs simultaneously, and
intervene as the situation requires. In this simulation, users take on the role
of an operator responsible for supervising four UAVs tasked with destroying
a set of time-sensitive targets in a suppression of enemy air defenses (SEAD)
mission. The left side of the display provides geo-spatial information as well
as a command panel to redirect individual UAVs. The right side of the display
provides temporal scheduling decision support in addition to data link “chat
windows” commonly in use in the military today [12]. Details of the display
design such as color mappings and icon design are discussed elsewhere [13].

The four UAVs launched with a pre-determined mission plan, so initial
target assignments and routes were already completed. The operator’s pri-
mary job in the MAUVE simulation was to monitor each UAV’s progress,
replan aspects of the mission in reaction to unexpected events and in some
cases manually execute mission critical actions such as arming and firing of
payloads. The UAVs supervised by participants in MAUVE were capable of 6
high-level actions: traveling en route to targets, loitering at specific locations,
arming payloads, firing payloads, performing battle damage assessment, and
returning to base, generally in this order.

In the MAUVE simulations, flight control was fully automated as was the
basic navigation control loop in terms of heading control. Operators were occa-
sionally required to replan route segments due to pop-up threat areas so the



Predicting Operator Capacity for Supervisory Control of Multiple UAVs 17

F
ig

.
3
.

T
h
e

M
A

U
V

E
D

u
a
l
S
cr

ee
n

In
te

rf
a
ce



18 M.L. Cummings et al.

navigation loop was only partially automated. As will be discussed in more
detail next, the mission management autonomy was varied as an independent
facto in the experiment.

Levels of Autonomy. Recognizing that the level of autonomy introduced
in the mission/payload management control loop can significantly impact an
operator’s ability to control multiple vehicles, and thus neglect, interaction,
and wait times, we developed four increasing levels of decision support for
the temporal management of the four UAVs: Manual, Passive, Active, and
Super-active, which loosely correlate to the Sheridan and Verplank Levels
[14] of 1, 2, 4, 6 (shown in Table 1). The manual level of decision support
(Fig. 1a) presents all required mission planning information in a text-based
table format. It essentially provides tabular data such as waypoints, expected
time on targets, etc., with no automated decision support. It is representative
of air tasking orders that are in use by military personnel today.

The passive LOA (Fig. 4b) represents an intermediate mission manage-
ment LOA in that it provides operators with a color-coded timeline for the
expected mission assignments 15 minutes in the future. With this visual rep-
resentation, recognizing vehicle states with regard to the current schedule is
perceptually-based, allowing users to visually compare the relative location of
display elements instead of requiring individual parameter searches such as
what occurs in the manual condition.

The active LOA (Fig. 4c) uses the same horizontal timeline format as the
passive automation level, but provides intelligent aiding. In the active version,
an algorithm searches for periods of time in the schedule that it predicts
will cause high workload for the operator, directing the operator’s attention

Table 1. Levels of Automation

Automation Level Automation Description

1 The computer offers no assistance: human
must take all decision and actions.

2 The computer offers a complete set of
decision/action alternatives, or

3 Narrows the selection down to a few, or
4 Suggests one alternative, and
5 Executes that suggestion if the human

approves, or
6 Allows the human a restricted time to veto

before automatic execution, or
7 Executes automatically, then necessarily

informs humans, and
8 Informs the human only if asked, or
9 Informs the human only if it, the computer,

decides to.
10 The computer decides everything and acts

autonomously, ignoring the human.



Predicting Operator Capacity for Supervisory Control of Multiple UAVs 19

Fig. 4 a-d. Increasing levels of decision and action support in Mauve



20 M.L. Cummings et al.

towards them. High workload areas, or “bottlenecks,” are highlighted through
a reverse shading technique while the rest of the colors are muted, but still
visible. In addition to identifying areas of high workload, the computer also
recommends a course of action to alleviate the high workload areas, such as
moving a particular Time on Target (TOT).

The super-active LOA (Fig. 4d) also builds upon the passive level visual
timeline, but instead of making recommendations to the operator as in the
active LOA, a management-by-exception approach is taken whereby the com-
puter automatically executes the arming and firing actions when the rules of
engagement for such actions are met, unless vetoed by the operator in less
than 30 seconds (LOA 6, Table 1).

Experiment Protocol. Training and testing of participants was conducted
on a four screen system called the multi-modal workstation (MMWS) [15],
originally designed by the Space and Naval Warfare (SPAWAR) Systems Cen-
ter. The workstation is powered by a Dell Optiplex GX280 with a Pentium
4 processor and an Appian Jeronimo Pro 4-Port graphics card. During test-
ing, all mouse clicks, both in time and location, were recorded by software.
In addition, screenshots of both simulation screens were taken approximately
every two minutes, all four UAV locations were recorded every 10 seconds,
and whenever a UAV’s status changed, the time and change made were noted
in the data file.

A total of 12 participants took part in this experiment, 10 men and 2
women, and they were recruited based on whether they had UAV, military
and/or pilot experience. The participant population consisted of a combina-
tion of students, both undergraduates and graduates, as well as those from the
local reserve officer training corps (ROTC) and active duty military person-
nel. All were paid $10/hour for their participation. In addition, a $50 incentive
prize was offered for the best performer in the experiment.

The age range of participants was 20–42 years with an average age of 26.3
years. Nine participants were members of the ROTC or active duty USAF
officers, including seven 2nd Lieutenants, a Major and a Lieutenant Colonel.
While no participants had large-scale UAV experience, 9 participants had
piloting experience. The average number of flight hours among this group
was 120.

All participants received between 90 and 120 minutes of training until
they achieved a basic level of proficiency in monitoring the UAVs, redirecting
them as necessary, executing commands such as firing and arming of payload,
and responding to online instant messages. Following training, participants
tested on two consecutive 30 minute sessions, which represented low and high
workload scenarios. These were randomized and counter-balanced to prevent a
possible learning effect. The low replanning condition contained 7 replanning
events, while the high replanning condition contained 13. Each simulation was
run several times faster than real time so an entire strike could take place over
30 minutes (instead of several hours).



Predicting Operator Capacity for Supervisory Control of Multiple UAVs 21

Results and Discussion. In order to determine whether or not the revised
fan-out prediction in (3) provided a more realistic estimate than the original
fan-out (1), the number of vehicles controlled in the experiment was held con-
stant (four) across all levels of automation. Thus if our proposed prediction
was accurate, we should be able to predict the actual number of vehicles the
operators were controlling. As previously discussed, all times were measured
through interactions with the interface which generally included mouse move-
ments, selection of objects such as vehicles and targets for more information,
commanding vehicles to change states, and the generation of communication
messages.

Neglect time was counted as the time when operators were not needed by
any single vehicle, and thus were monitoring the system and engaging in sec-
ondary tasks such as responding to communications. Because loiter paths were
part of the preplanned missions, oftentimes to provide for buffer periods, loiter
times were generally counted as neglect times. Loitering was only counted as
a wait time when a vehicle was left in a loiter pattern past a planned event
due to operator oversight. Interaction time was counted as any time an oper-
ator recognized that a vehicle required intervention and specifically worked
towards resolving that task. This was measured by mouse movements, clicks,
and message generations. The method of measuring NT and IT, while not
exactly the same as [11], was driven by experimental complexity in represent-
ing a more realistic environment. However, the same general concepts apply in
that neglect time is that time when each vehicle operated independently and
interaction time is that time one or more vehicles required operator attention.

As discussed previously, wait times were only calculated when one or more
vehicle required attention. Wait time due to interactions (e.g., the time it
took an operator to replan a new route once a UAV penetrated a threat area)
was subsumed in interaction time. Wait time due to queuing occurred when,
for example, a second UAV also required replanning to avoid an emergent
threat and the operator had to attend to the first vehicle’s problem before
immediately moving to the second. Wait time due to the loss of situation
awareness was measured when one or more vehicles required attention but was
not noticed by the operator. This was the most difficult wait time to capture
since operators had to show clear evidence that they did not recognize a UAV
required intervention. Examples of wait time due to loss of situation awareness
include the time UAVs spend flying into threat areas with no path correction,
and leaving UAVs in loiter patterns when they should be redirected.

Figures 5 and 6 demonstrate how the wait times varied both between the
two fan-out equations as well the increasing levels of automation under low
and high workload conditions respectively. Using the interaction, neglect, and
wait times calculated from the actual experiment, the solid line represents the
predictions using (1), the dashed line represents the predictions of (2), and the
dotted line shows how many UAVs the operators were actually controlling,
which was held constant at four.



22 M.L. Cummings et al.

0

5

10

15

20

Manual Passive Active Super Active

Level of Automation

M
ax

im
u

m
 N

u
m

b
er

 o
f 

V
eh

ic
le

s

No Wait Times

 Wait Times

Baseline of 4 UAVs 

Fig. 5. Low Workload Operator Capacity Prediction

0

2

4

6

8

10

12

Manual Passive Active Super Active

Level of Automation

M
ax

im
u

m
 N

u
m

b
er

 o
f 

V
eh

ic
le

s

No Wait Times

 Wait Times

Baseline of 4 UAVs 

Fig. 6. High Workload Operator Capacity Predictions

Low Workload Predictions. Under the low workload condition, three impor-
tant trends should be noted. Under the lower levels of automation for both
the original and revised fan-out equations, operator capacity was essentially
flat, and a significant increase was not seen until the use of a higher automa-
tion strategy, management-by-exception, was implemented. It is important to
remember that the metric is time and not overall decision quality or perfor-
mance. However, independent performance measures indicated that at the low
workload level, operators were able to effectively control all four vehicles [16].



Predicting Operator Capacity for Supervisory Control of Multiple UAVs 23

The second trend of note is the fact that for the low workload condition,
the revised fan-out model (3) provides a more conservative estimate of approx-
imately 20% under that of the model that does not consider wait times (1).
However, the third important trend in this graph demonstrates that for both
(1) and (3) the predictions were much higher than the actual number of UAVs
controlled. This spare capacity under the low workload condition was empir-
ically observed, in that subjective workload measures (NASA-TLX) and per-
formance scores were statistically the same when compared across all four
levels of autonomy (lowest pair wise comparison pvalue = .111 (t = 1.79,
DOF = 8), and p = .494 (t = .72, DOF = 8) respectively).

Thus for the low workload condition across all levels of automation, oper-
ators were underutilized and performing well. Thus they theoretically could
have controlled more vehicles. Using the revised FO model (3), under the
manual, passive, and active conditions, operators’ theoretical capacity could
have increased by ∼75% (up to 7 vehicles). Under the highest autonomy for
mission management, predictions estimate operators could theoretically con-
trol (as an upper limit) four times as many, ∼17 vehicles. Previous air traffic
control (ATC) studies have indicated that 16-17 aircraft are the upper limit
for en route air traffic controllers [17]. Since controllers are only providing nav-
igation assistance and not interacting with flight controls and mission sensors
(such as imagery), the agreement between ATC en route controller capacities
and low workload for UAV operators is not surprising.

High Workload Predictions. While the low workload results and predictions
suggest that operators are capable of controlling more than four vehicles in
MAUVE, the results from the high workload scenarios paint an entirely dif-
ferent picture. The high workload scenarios were approximately double the
workload over the low workload scenarios, and represent a worst case sce-
nario. Performance results indicate that those operators with the active level
of automation were not able to control their four UAVs effectively, but all
other operators were with varying degrees of success. As in the low work-
load condition, the revised fan-out model (3) is the more conservative and as
demonstrated in Figure 6, more closely predicts the actual number of four vehi-
cles assigned to each operator. Moreover, while under the low workload con-
dition, the estimates of controller capacity dropped almost uniformly across
automation levels by 20% for the original fan-out model. However, under high
workload, they dropped 36–67% for the model that includes wait times. The
largest difference between conditions occurred for the active level of automa-
tion. In addition to the lower number of predicted vehicles, the active condi-
tion produced statistically lower performance scores (e.g., t = 2.26, DOF = 8,
p = 0.054 for the passive-active comparison). This was attributed to the
inability of subjects in the active condition to correctly weight uncertainty
parameters and is discussed in detail elsewhere [16].

As in the low workload results, subjects performed the best (in terms
of time management) under the highest level of automation for mission



24 M.L. Cummings et al.

Fig. 7. Wait Time Proportions

management (super-active), with a theoretical maximum of seven vehicles.
However, under this condition in the experiment, subjects exhibited automa-
tion bias and approved the release of more weapons on incorrect targets than
for the passive and active levels. Automation bias, the propensity for opera-
tors to take automated recommendations without searching for disconfirming
evidence, has been shown to be a significant problem in command and con-
trol environments and also operationally for the Patriot missile [18]. Thus
increased operator capacity for management-by-exception systems must be
weighed against the risk of incorrect decisions, by either the humans or the
automation.

Wait Time Proportions. Figures 5 and 6 demonstrate that the inclusion of
wait times in a predictive model for operator capacity in the control of MUAVs
can radically reduce the theoretical maximum limit. Figure 7 demonstrates
the actual proportions of wait time that drove those results. Strikingly, under
both low and high workload conditions, the wait times due to the loss of
situation awareness dominated overall wait times.

This partitioning of wait time components is important because it demon-
strates where and to what degree interventions could potentially improve both
human and system performance. In the case of the experiment detailed in this
chapter, clearly more design intervention, form both and automation and HCI
perspective, is needed that aids operators in recognizing that vehicles need
attention. As previously demonstrated, some of the issues are directly tied to
workload, i.e., operators who have high workloads have more loss of situa-
tion awareness. However, often loss of situation awareness occurred because
operators did not recognize a problem which could mitigated through better
decision aiding and visualization.

3.3 Linking Fan-out to Operator Performance

Results from the experiment conducted to compare the original fan-out (1)
and the revised fan-out estimate which includes wait times (3), demonstrate



Predicting Operator Capacity for Supervisory Control of Multiple UAVs 25

the revised model is both more conservative and closer to the actual num-
ber of vehicles under successful control. While under low workload, both the
experiment and prediction indication that operators could have controlled
more vehicles than four, the only high workload scenario in which operators
demonstrated any spare capacity was with the super-active (management-
by-exception) decision support. Moreover, wait time caused by the lack of
situation awareness dominated overall wait time. In addition, this research
demonstrates that both workload and automated decision support can dra-
matically affect wait times and thus, operator capacity.

While more pessimistic than the original fan-out equation (1), the revised
fan-out equation can really only be helpful for broad “ballpark” predictions
of operator capacity. This methodology could provide system engineers with
a system feasibility metric for early manning estimations, but what primar-
ily limits either version of the fan-out equation is the inability to represent
any kind of cost trade space. Theoretically fan-out, revised or otherwise, will
predict the maximum number of vehicles an operator can effectively control,
but what is effective is often a dynamic constraint. Moreover, the current
equations for calculating fan-out do not take into account explicit perfor-
mance constraints. In light of the need to link fan-out to some measure of
performance, as well as the inevitability of wait times introduced by human
interaction, we propose that instead of a simple maximum limit prediction,
we should instead find the optimal number of UAVs such that the mission
performance is maximized.

3.4 The Overall Cost Function

Maximizing UAV mission performance is achieved when the overall per-
formance of all of the vehicles, or the team performance, is maximized.
Consider multiple UAVs that need to visit multiple targets, either for destruc-
tion (SEAD missions as discussed previously) or imaging (typical of Intelli-
gence, Search, and Reconnaissance (ISR) missions). A possible cost function
is expressed in (4):

C = Total Fuel Cost + Total Cost of Missed Targets
+Total Operational Cost (4)

Total Fuel Cost is the amount of fuel spent by all the vehicles for the
duration of the mission multiplied by the cost of consuming that fuel. The
Total Cost of Missed Targets is the number of targets not eliminated by
any of the UAVs multiplied by the cost of missing a single target. The
Total Operational Cost is the total operation time for the mission multiplied
by some operational cost per time unit, which would include costs such as
maintenance and ground station operation costs. This more detailed cost func-
tion is given in (5).



26 M.L. Cummings et al.

C = cost of fuel∗total UAV distance
+ cost per missed target∗# of missed targets
+ operation cost per time∗total time (5)

In order to maximize performance, the cost function should be minimized
by finding the optimal values for the variables in the cost equation. However,
the variables in the cost equation are themselves dependent on the number of
UAVs and the specific paths planned for those UAVs. One way to minimize the
cost function is to hold the number of UAVs variable constant at some initial
value and to vary the mission routes (individual routes for all the UAVs) until
a mission plan with minimum cost is found. We then select a new setting for
the number of UAVs variable and repeat the process of varying the mission
plan in order to minimize the cost. After iterating through all the possible
values for the number of UAVs, the number of UAVs with the least cost and
the corresponding optimized mission plan are then the settings that minimize
the cost equation. As the number of UAVs is increased, new routing will be
required to minimize the cost function. Thus, the paths, which determine time
of flight, are a function of number of UAVs.

Moreover, if a target is missed, then there is an additional, more significant
cost. When the number of UAVs planned is too low, the number of missed
targets increases and hence the cost is high. When the number of UAVs is
excessive, more UAVs are used than required and thus additional, unnecessary
costs are incurred. We therefore expect the lowest cost to be somewhere in
between those two extremities, and that the shape of the cost curve is therefore
concave upwards1 (Figure 8). The profile in Figure 8 does not include the effect
of wait times, and it does not take into account the interaction between the
vehicles and the human operator.

# of UAVs

M
is
si
on

 P
la

n 
C

os
t

Too many
UAVs

Too many 
missed targets

# of UAVs with 
minimum cost

Fig. 8. Mission Plan Costs as a Function of Number of UAVs

1 Note that this claim is dependent on the assumption that the UAVs indepen-
dently perform tasks.



Predicting Operator Capacity for Supervisory Control of Multiple UAVs 27

In terms of wait times, any additional time a vehicle spends in a degraded
state will add to the overall cost expressed in (5). Wait times that could incre-
ase mission cost can be attributed to 1) Missing a target which could either
mean physically not sending a UAV to the required target or sending it out-
side its established TOT window, and 2) Adding flight time through route
mismanagement, which in turn increases fuel and operational costs. Thus,
wait times will shift the cost curve upwards. However, because wait times will
likely be greater in a system with more events, and hence more UAVs, we
expect the curve to shift upwards to a greater extent as the number of UAVs
is increased.

In order to account for wait times in a cost-performance model, which
as previously demonstrated is critical in obtaining a more accurate operator
capacity prediction, we need a model of the human in our MUAV system,
which we detail in the next section.

3.5 The Human Model

Since the human operator’s job is essentially to “service” vehicles, one way to
model the human operator is through queuing theory. The simplest example
of a queuing network is the single-server network shown in Figure 9.

Modeling the human as a single server in a queuing network allows us
to model the queuing wait times, which can occur when events wait in the
queue for service either as a function of a backlog of events or the loss of
situation awareness. For our model, we model the inter-arrival times of the
events with an exponential distribution, and thus the arrivals of the events
will have a Poisson distribution. In terms of our model, the events that arrive
are vehicles that require intervention to bring them above some performance
threshold. Thus neglect time for a vehicle is the time between the arrival of
events from that particular vehicle and interaction time is the same as the
service time.

The arrival rate of events from each vehicle is on average one event per
each (NT + IT) segment. The total arrival rate of events to the server (the
operator) is the average arrival rate of events from each vehicle multiplied by
the number of vehicles.

Arrival rate 
of events 

l
SERVER 

Service Rate 
µ

QUEUE 

Fig. 9. Single Server Queue



28 M.L. Cummings et al.

Arrival rate = λ = # of UAVs ∗ 1 event

(NT + IT )
=

# of UAVs
NT + IT

events

time
(6)

In terms of the service rate, by definition, the operator takes, on average, an
IT length of time to process each event. Therefore assuming that the operator
can constantly service events (i.e., does not take a break while events are in
the queue):

Service rate = µ =
1

IT

events

time
(7)

By using Little’s theorem, we can show that the mean time an event spends
in the queue is:

Wq =
λ/µ

µ − λ
(8)

For the purposes of our predictive model, we will assume that this wait
time in the queue (Wq, eqn. 8) includes both situation awareness wait times
(WTSA) as well as wait times due to operator engagement in another task
(referred to as WTQ in the previous section).

Now that we have established our operator model based on queuing theory,
we will now show how this human model can be used to determine operator
capacity predictions through simulated annealing optimization.

3.6 Optimization through Simulated Annealing

The model that captures the optimization process for predicting the number of
UAVs that a single operator can control is depicted in Figure 10. The optimizer
takes in as input the number of UAVs, the mission description (including
the number of targets and their locations), parameters describing the vehicle
attributes (such as UAV speed), and other parameters including the weights
that are used to calculate the cost of the mission plan. The optimizer in our
model (programmed in MATLAB R©) iterates through the # of UAVs variable,
applying a Simulated Annealing algorithm to find the optimal paths plan,
as described earlier. The # of UAVs with the smallest cost is then selected
as that corresponding to the optimal setting. As previously discussed, the
human is modeled as a server in a priority queuing system that services events
generated by the UAVs according to arrival priorities. The average arrival and

 
Optimizer Prediction 

Model of Human

Number_of_UAVs 

Mission Description 

Vehicle Attributes 

Fig. 10. Optimization Model



Predicting Operator Capacity for Supervisory Control of Multiple UAVs 29

Table 2. Optimization Parameters

Name Unit Value

Mission Data (includes number of targets, - 5–10 targets
time on targets, and locations)
UAV speed mi/hr 100
UAV Endurance hr 5
UAVs launch location Cartesian 0,0
Cost per missed target $/target 1500
Cost of fuel per min $/min 10
Cost of operations per min $/min 1
NT min 32

IT min 0.31

service rates as well as their corresponding probabilistic distributions are as
assumed earlier.

We chose the simulated annealing (SA) technique for heuristic-based opti-
mization. There were several benefits to selecting the SA technique over other
optimization techniques. First, SA is a technique that is well suited to avoid-
ing local minima, a property that is necessary when sub-optimal solutions can
exist while searching for the global optimum as is the case in evaluating dif-
ferent mission plans. Also, SA introduces randomness such that the technique
generates alternative acceptable solutions on different runs, hence allowing the
system designer to seek alternative optimal designs when initial solutions are
not feasible. Two limitations of SA are that problems with many constraints
can be difficult to implement and that run times can be long. Our problem,
however, is one of few constraints and hence their implementation was not an
issue. Also, since optimization takes place in mission planning stages and not
in time-critical mission replanning, the long run times have a minimal adverse
effect.

Model Parameters, Constraints, and Variables. The list of parame-
ters established for the design process is presented in Table 2. We selected
generic UAV capabilities that would be exhibited by small-to-medium size
UAVs engaged in an ISR mission such as the Hunter or Shadow. Our cost
function was discussed previously (5) and Table 3 details the constraints used
in our model.

3.7 Results of Simulation

We first investigated the cost-UAV number relationship for the theoretical
best case in which the human operator is “perfect” and introduces no delays
in the system. In Figure 11, the optimized cost is plotted against the number

2 Interaction and neglect times were determined using the MAUVE interface
described previously.



30 M.L. Cummings et al.

Table 3. Constraints for Simulated Annealing

Constraints

• A UAV cannot visit targets for which it cannot
meet the times on target

• Each UAV must visit at least one target
• UAV routes must start and end at launch

locations.

1 2 3 4 5 6 7 8 9 10
2000

4000

6000

8000

10000

12000

14000

M
is

si
on

 c
os

t 

#UAVs used 

Fig. 11. Minimum Cost versus Number of UAVs

of UAVs variable, with a mission plan of 10 targets. As predicted, the curve
is concave upwards and has a global minimum where the cost is minimized.

We then proceeded to include the effect of the human operator and hence,
wait times. It was assumed that during periods of wait times, UAVs loitered in
the same spot and therefore maintained the same geographic location on the
map. In order to demonstrate how plan complexity could affect the problem,
we included three scenarios in which 5, 7, and 10 targets were represented, as
depicted in Figure 12.

Figure 12a shows the effect of a relatively simple mission with only 5 tar-
gets. In general, the effect of wait times on the cost curve is minimal, i.e., the
minimum theoretical best case is equal to that with the operator wait time
case. This is not unexpected, since simple missions have a rather small sensi-
tivity to wait times. The simplicity of the missions does not overburden the
operator who is operating in a robust cognitive state, and can accommodate
the wait times without incurring increased costs.

Figure 12b demonstrates how the curves can shift as a function of increas-
ing task complexity (7 versus 5 targets). The cost curves between the theoreti-
cal best case and the operator wait time model clearly deviate and the optimal
number of UAVs that should be controlled decreases from 4 to 3 UAVs. This



Predicting Operator Capacity for Supervisory Control of Multiple UAVs 31

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 10
4

Cost curve 
with wait 
times included

C
os

t

Number of UAVs
(a)

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 104

x 104

C
os

t

Number of UAVs
(b)

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
os

t

Number of UAVs

(c)

Fig. 12. Cost surves with (a) 5 targets (b) 7 targets, and (c) 10 targets

is primarily due to the fact that the wait times generally affect the longer
routes where the probability of missing targets increases.

The results for 10 targets are shown in Figure 12c, which demonstrate a
significant divergence from the theoretically perfect operator model and the



32 M.L. Cummings et al.

Fig. 13. Operational Demands vs. Human Limitations in Mission Planning

model with wait times, especially beyond 5 UAVs. Interestingly, as in the case
with 5 targets, the minimum cost occurs at 2 UAVs for 10 targets. However,
in the case of 5 targets, only 2 UAVs were needed to meet the operational
requirements and the operator could meet this demand. However, with 10 tar-
gets, 2 UAVs became the minimum cost point because of operator limitations,
i.e., the wait times incurred by controlling more vehicles became unacceptably
high. Thus, at the inflection point in these curves, the left region is primarily
constrained by operational demands, but the right region is dominated by
human performance limitations, specifically wait times, as seen in Figure 13.

Another interesting trend across the predictions in Figures 12a-c is the
relatively flatness of the curves in the left region. For example, there is gen-
erally a plateau in performance such that dramatic increases are not seen
in cost until more than 5 UAVs are managed. In the case of 5 targets and
up to 5 UAVs under control, costs increased at a rate of 33% per additional
UAV. Beyond 5 UAVs, the mission increased at a rate of 74% per UAV, a
much sharper increase, which suggests that operator performance is relatively
robust up to 5 UAVs, at which point the operator is saturated and severely
limits overall mission success. These graphs demonstrate that the more com-
plex mission requirements added to the cognitive load of the operators, thus
workload had to be reduced by reducing the number of UAVs under control.

In terms of the fan-out and revised fan-out equations (1 & 3), using the
same neglect and interaction times as in the cost-based simulation model
(Table 2), as well as the wait times derived from the queuing theory model
(8), the predictions are seen in Figure 14. While the original fan-out estimated
a constant 11 vehicles, given the wait times that would build with increas-
ing numbers of UAVs under control, the optimal control point is 5 vehicles



Predicting Operator Capacity for Supervisory Control of Multiple UAVs 33

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11

Possible Number of UAVs

O
p

er
at

o
r 

C
ap

ac
it

y
Fan-out (1)

Revised Fan-out (3)

Fig. 14. Predictions Using Cost-Based Simulation Inputs

using the revised fan-out. Interestingly this number is very close to what was
experimentally observed in the previously described experiment.

4 Meta-Analysis of the Experimental and Modeling
Prediction methods

Two methods for determining maximum operator capacity for supervisory
control of multiple UAVs have been presented, both based on operator inter-
actions and wait times for mission tasks, as well as neglect times during which
one or more vehicles operate autonomously. The strengths and weaknesses of
each method will now be discussed, as well as how these methods could be
used synergistically.

In the first method, the original fan-out equation that related operator
interaction and vehicle neglect times (1) was revised to include operator wait
times (3). An experiment was conducted to determine if the revised fan-out
predictions more closely matched actual human-in-the-loop control scenarios.
The results showed that the revised fan-out model produced more conservative
estimates when modified to include wait times caused by human interactions,
which include interaction wait time, wait time in the queue, and wait time
due to the loss of situation awareness.

While this temporal-based method for computing fan-out gives more con-
servative general estimates, it lacks the cost-benefit analysis trade space rep-
resentation that can be found through optimization methods that provide for
sensitivity analysis. For example, in the experiment, it was estimated that
operators could control 7–16 UAVs in a low workload scenario, but only 3–7
vehicles in high workload settings. The ranges resulted from increasing levels
of automation as an experimental independent variable. Because these pre-
dictions were based on experimental data (which were discrete across four
different levels of automation), there can be no post-hoc sensitivity analysis,



34 M.L. Cummings et al.

only refining the experimental method and running more human subject trials,
which is very expensive and labor intensive.

In comparison, optimization methods such as the example presented here
provide not only predictions for operator capacity but also directly link the
capacity to a system performance measure, which was cost in our example. By
developing the estimates through the fan-out approach, there is only the con-
sideration of a vaguely defined threshold for acceptable operator performance.
Furthermore, there is no way to directly infer how this human performance
affects the overall system, which is actually the more critical variable, partic-
ularly in command and control settings. Moreover, while it was very expen-
sive in terms of experimental design for human subjects to examine mission
complexity in terms of low and high workload, in the cost-based simulation
method, mission complexity was represented by the number of targets, which
was relatively not costly to alter. Thus, this type of prediction method allows
for more specific and detailed predictions for operator capacity, as well as how
the external environment (i.e., number of targets) will affect overall mission
success.

However, while the simulation estimations provide for multivariate sensi-
tivity analysis across operator and system performance metrics, one drawback
is the inability to directly correlate the predictions to possible design inter-
ventions. As previously discussed, the cost-based simulation links the exter-
nal environment to both operator and system performance, but it inherently
lacks the ability to parse out which system parameters could and should be
changed to improve operator and autonomy performance. For example, in the
SA model, all wait times are included in a single measure, however the wait
times (interaction, queuing, and situation awareness) fundamentally have dif-
ferent causes. In addition, as demonstrated in Figure 7, the different types of
wait times can have dramatically different values and without the ability to
model and see the separate effects of different wait time sources, it is not clear
what design interventions could occur to mitigate them (such as improved
decision support or increased vehicle autonomy.)

Moreover, a cost-based simulation cannot represent the impact of specific
automation strategies on operator performance. It is often assumed that as
autonomy levels increase (as depicted in Table 1), the need for human interac-
tion decreases, and thus lowers system wait times. However, as can be seen in
Figure 15, these assumptions are not always accurate. In the experiment pre-
viously discussed, we predicted that as system autonomy increased, wait times
due to an operator workload queue (referred to as wait time in the queue in
the previous section) would decrease. However, the dotted line demonstrates
what queuing wait times were actually observed, and there was clearly an
anomaly with the active condition that corresponds to LOA 4 in Table 1.
Described more in detail in [16], what was hypothesized to be a decision
support tool to mitigate operator workload actually degraded operator per-
formance and caused increased, instead of decreased, wait times. This insight
was only gained through the experimental derived interaction, neglect, and



Predicting Operator Capacity for Supervisory Control of Multiple UAVs 35

Fig. 15. Wait Times in the Queue across Levels of Automation

wait times. Because the SA optimization approach and other similar sto-
chastic approaches assume an a priori distribution (both in arrival rates and
service times), if such simulation methods are not used in conjunction with
experimentally derived data, results are highly speculative and lack external
validity.

This last point about the problem with assumptions highlights an inherent
limitation to both methods: Estimating interaction, neglect, and wait times.
As previously discussed, for the cost-based simulation, a distribution must be
selected for wait times, and presently there is little theoretical or empirical
basis for doing so. In addition, interaction and neglect times must be selected a
priori and while these could be estimated from system design parameters, they
are highly contextual and will likely dramatically change with different levels
of autonomy, decision support, mission complexity, operator training, etc.

Similarly, even experimentally derived interaction, neglect, and wait times
can be difficult to measure. Unfortunately the times and the associated costs
(degraded performance, etc.) are very difficult to capture in performance-
based simulations such as the one reported in this study. Through using soft-
ware that tracked users’ cursor movements and activation of control devices,
we were able to determine on a gross level when a subject was actively engaged
with a particular UAV, but subtle transitions are difficult to capture. The
use of psychophysiologic measurement devices may be of use in addition to
performance-based measures but the application of these methods needs sig-
nificantly more investigation.



36 M.L. Cummings et al.

5 Conclusions

With the recognition that intelligent autonomy could allow a single opera-
tor to control multiple vehicles (including air, ground, and water), instead of
the converse which is true today, there is increasing interest in predicting the
maximum numbers of autonomous vehicles an operator can control. A critical
system architecture question is then how many vehicles could one operator
control? While there are other methods that could be used to predict this
number (e.g., cognitive modeling which suffers from the ability to represent
highly complex systems, and simulations and experiments with advanced pro-
totypes, which suffer from exorbitant development costs), we demonstrated,
through two different methods, how this number can be estimated by consid-
ering the temporal elements of supervisory control of multiple UAVs.

In the first method, we demonstrated that past equations of fan-out omit-
ted important aspects of human interactions with multiple UAVs. We suggest
an alternative equation that captures some of these aspects using wait times.
However, these temporal approaches to measuring fan-out are limited since
these results are not explicitly linked to performance. In comparison, we used
cost-based simulation model that links operator performance to both mission
costs and complexity; however, it suffers from problematic assumptions and
an inability to highlight specific areas for design interventions.

While each method has strengths and weaknesses, they are not mutually
exclusive. The two approaches can be synergistic in that temporal data gath-
ered experimentally for initial rough estimates such as fan-out can provide
more valid simulation models. Predictions then made through optimization
simulations can be furthered refined through sensitivity analyses and appro-
priately focused human-in-the-loop experiments. In this way, effects of increas-
ing UAVs and/or system autonomy can be seen on system performance as well
as operator performance. In terms of application, this iterative approach to
predicting operator capacity would likely provide the most benefit early in
the systems engineering conceptual stages when unmanned aerial systems are
still in development and uncertainty in system parameters is high.

Acknowledgments

The research was supported by grants from Boeing Phantom Works and
Lincoln Laboratory.

References

1. J. Franke, V. Zaychik, T. Spura, and E. Alves, “Inverting the Operator/Vehicle
Ratio: Approaches to Next Generation UAV Command and Control,” presented
at Association for Unmanned Vehicle Systems International and Flight Interna-
tional, Unmanned Systems North America Baltimore, MD, 2005.



Predicting Operator Capacity for Supervisory Control of Multiple UAVs 37

2. S. Dixon, C. Wickens, and D. Chang, “Mission Control of Multiple Unmanned
Aerial Vehicles: A Workload Analysis,” Human Factors, in press.

3. A.T. Welford, “The psychological refractory period and the timing of high-speed
performance - a review and a theory,” British Journal of Psychology, vol. 43,
pp. 2–19, 1952.

4. D.E. Broadbent, Perception and Communication. Oxford: Pergamon, 1958.
5. H.A. Ruff, S. Narayanan, and M.H. Draper, “Human Interaction with Levels of

Automation and Decision-Aid Fidelity in the Supervisory Control of Multiple
Simulated Unmanned Air Vehicles,” Presence, vol. 11, pp. 335–351, 2002.

6. S. Dixon, C.D. Wickens, and D. Chang, “Unmanned Aerial Vehicle Flight Con-
trol: False Alarms Versus Misses,” presented at Humans Factors and Ergonomics
Society 48th Annual Meeting, New Orleans, 2004.

7. M.L. Cummings and D. Morales, “UAVs as Tactical Wingmen: Control Methods
and Pilots’ Perceptions,” in Unmanned Systems, vol. February, 2005.

8. S.L. Howitt and D. Richards, “The Human Machine Interface for Airborne Con-
trol of UAVs,” presented at 2nd AIAA “Unmanned Unlimited” Systems, Tech-
nologies, and Operations—Aerospace, Land, and Sea Conference and Workshop,
San Diego, CA, 2003.

9. M.L. Cummings and S. Guerlain, “Developing Operator Capacity Estimates for
Supervisory Control of Autonomous Vehicles,” Human Factors, in press.

10. D.R. Olsen and S.B. Wood, “Fan-out: Measuring Human Control of Multiple
Robots,” presented at CHI2004, Vienna, Austria, 2004.

11. D.R. Olsen and M.A. Goodrich, “Metrics for Evaluating Human-Robot Interac-
tions,” presented at Performance Metrics for Intelligent Systems, Gaithersburg,
MD, 2003.

12. M.L. Cummings, “The Need for Command and Control Instant Message Adap-
tive Interfaces: Lessons Learned from Tactical Tomahawk Human-in-the-Loop
Simulations,” CyberPsychology and Behavior vol. 7, 2004.

13. M.L. Cummings and P.M. Mitchell, “Managing Multiple UAVs through a Time-
line Display,” presented at AIAA InfoTech, Arlington, VA, 2005.

14. T.B. Sheridan and W.L. Verplank, “Human and Computer Control of Under-
sea Teleoperators,” MIT, Cambridge, Man-Machine Systems Laboratory Report
1978.

15. G. Osga, K. Van Orden, N. Campbell, D. Kellmeyer, and D. Lulue, “Design
and Evaluation of WarfighterTask Support Methods in a Multi-Modal Watch-
station,” SPAWAR, San Diego 1874, 2002.

16. M.L. Cummings and P.J. Mitchell, “Automated Scheduling Decision Support
for Supervisory Control of Multiple UAVs,” Journal of Aerospace Computing,
Information, and Communication, in press.

17. B. Hilburn, P.G. Jorna, E.A. Byrne, and R. Parasuraman, “The Effect of Adap-
tive Air Traffic Control (ATC) Decision Aiding on Controller Mental Work-
load,” in Human-automation Interaction: Research and Practice. Mahwah, NJ:
Lawrence Erlbaum, 1997, pp. 84–91.

18. M. L. Cummings, “Automation Bias in Intelligent Time Critical Decision Sup-
port Systems,” presented at AIAA Intelligent Systems, Chicago, IL, 2004.



Team, Game, and Negotiation based Intelligent
Autonomous UAV Task Allocation for Wide
Area Applications

P.B. Sujit1, A. Sinha2, and D. Ghose3

1 Department of Electrical and Computer Engineering, Brigham Young University,
Provo, Utah, USA

2 Department of Aerospace Engineering, Indian Institute of Science,
Bangalore, India

3 Department of Aerospace Engineering, Indian Institute of Science,
Bangalore, India
pbsujit@byu.edu, asinha@aero.iisc.ernet.in,dghose@aero.iisc.ernet.in

Abstract. Unmanned aerial vehicles (UAV) have the potential to be used for
search and surveillance missions, and as munitions in the battlefield. The UAVs
are deployed in swarms as they may not have sufficient computational, sensor, and
operational capability to complete the task single-handedly. A desirable feature for
these UAV swarms is the capability of intelligent autonomous decision making and
coordination, with minimal or no centralized control. In this chapter, we present
decentralized and distributed task allocation schemes based on concepts from team
theory, game theory, and from negotiation techniques used in decision-making prob-
lems arising in economics, and apply these to design intelligent decision-making
strategies for multiple UAV systems performing a wide area search and surveillance
mission. We also address the task of searching an unknown environment, which is a
major component in such missions, separately using game theoretical concepts.

1 Introduction

Unmanned aerial vehicles are being extensively used for military and civi-
lian applications, like search, surveillance and as munitions in the battlefield.
They play a crucial role in information gathering from hostile and unknown
regions. These UAVs can also be used as munitions to search, attack and
destroy targets in an unknown region. The UAVs used for these applications
may have limited effectiveness and may not have the required stealth capabil-
ity and munition payload to complete the task single-handedly. Hence, there
is a necessity for such UAVs to be deployed in swarms. A desirable feature for
these UAV swarms is the capability of intelligent autonomous decision making
and coordination. The UAVs operating in an unknown region are expected to

P.B. Sujit et al.: Team, Game, and Negotiation based Intelligent Autonomous UAV Task Allo-

cation for Wide Area Applications, Studies in Computational Intelligence (SCI) 70, 39–75 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



40 P.B. Sujit et al.

carry out several tasks in relation to the targets or other entities of interest
present in the region [1, 2]. An efficient task allocation method is necessary
to assign UAVs to targets.

The classical solution for such task allocation problems is a centralized one
that generates the necessary commands for the UAVs. But, centralized task
allocation systems have well known limitations and do not address scalabil-
ity issues too well. Hence, there is a necessity to develop decentralized task
allocation algorithms. These algorithms must be suitable for implementation
in a multiple agent UAV swarm, should be scalable, and also have low com-
putational overheads. An efficient task allocation strategy should have the
ultimate objective to complete the mission in minimum time by cooperating
and coordinating with other UAVs. Cooperation can be achieved by explicit
or implicit communication with neighbouring UAVs.

In this chapter, we will present decentralized and distributed task allo-
cation schemes based on concepts from team theory, game theory, and from
negotiation techniques used in decision-making problems arising in economics,
and apply these to design intelligent decision-making strategies for multiple
UAV systems performing a wide area search and surveillance mission [3]-[8].
In this context, we will explore the role that communication between UAVs
plays during decision-making.

The overall problem of task allocation is modelled as a sequence of tasks
that the UAVs need to carry out on a target. The allocation of tasks will
depend on various factors such as the proximity of the UAV to the target, its
perception of the target status, its capability to carry out the task at hand,
the choice that it may have in carrying out a given task or obtain greater
benefit by performing some other tasks, where the choice can be between
some alternate targets or tasks, and so on. All this needs to be carried out in
a decentralized and distributed manner.

In team theoretical task allocation, each UAV takes decision autonomously.
The UAV senses the status of the target and evaluates the expected benefit of
attacking the target. The UAV also senses the presence of other UAVs within
its sensor radius, and estimates the probability of the neighbouring UAVs
attacking the target. Based on these values (expected benefit of attacking a
target and the probability of the other UAVs attacking the same target), a
linear programming problem is formulated. The UAV decides on a task/target
assignment based on the solution provided by this formulation, which is proven
to be team optimal. An important feature of the decision-making process is
that, there is no explicit communication between UAVs. This formulation
is especially useful in a hostile environment where communication between
UAVs is either minimal or just not possible.

In negotiation based task allocation we restore the communication among
UAVs for decision making. Each UAV broadcasts its intentions to attack a
target, along with its perceived benefit in doing so, to its neighbours. A UAV
evaluates all the proposals that it receives. The evaluation is carried out by
comparing the benefits proposed by other UAVs in attacking the same target.



Team, Game, and Negotiation based UAV Task Allocation 41

It is shown that negotiation based task allocation can efficiently allocate tasks
and targets to UAVs, and detect and resolve conflicts between neighbour-
ing UAVs. The decision-making mechanism has very low computational over-
heads, and is shown to be scalable to large number of UAVs and targets.

One of the major tasks that need to be carried out in such wide area oper-
ations is that of search and it has enough facets of its own to merit a separate
treatment. The search task is carried out to detect targets in an unknown
region. The problem associated with search is to develop coordination algo-
rithms for multiple UAVs to minimize search route duplication and maximize
the information collected during the operation. We show that intelligent distri-
buted algorithms, based on game theory, can be developed to perform such
search tasks.

2 Existing Literature

Task allocation of UAVs is an active research area for the past few years. When
a UAV detects a target, it broadcasts the information to all the other UAVs in
the search space. Since, the information is common to all the UAVs, each UAV
independently solves a task allocation algorithm and determines its task. The
various task allocation schemes developed by researchers are based on network
flow model [9] [10], mixed integer linear programming (MILP) [11], dynamic
programming [12] or genetic algorithm [13]. The task allocation can also have
additional objectives like minimize path lengths [14], or timing constraints
[10]. Turra et al. [15] present a task allocation algorithm for multiple UAVs
performing search, identification, attack, and verification tasks in an unknown
region for targets that move in real time. These authors also address the
problem of obstacle avoidance. Jin et al. [16] propose a probabilistic task
allocation scheme for the scenario presented in [9, 1].

Recently, market based approaches have shown a considerable increase in
performance for task allocation strategies to multiple agent applications. Dias
and Stenz [17, 18] introduce a novel approach for coordinating robots based on
the free market architecture in economics. The approach defines revenues and
cost functions across the possible plans for executing a specified task. The task
is accomplished by decomposing it into sub-tasks and allowing the robots to
bid and negotiate to carry out these sub-tasks. Gerkey and Mataric [19] use
an auction mechanism for multi-robot coordination while they analyze the
communication and computational complexity involved in multi-robot task
allocation in [20]. The authors categorize the task allocation methods based
on the capability of the robots and the kind of tasks involved. Mataric et al.
[21] develop various task allocation strategies and study their performance on
a multi robot application with sensor noise. Their simulation study is com-
pared with results obtained using experiments. Gurfil [22] also uses an auction
mechanism for task allocation among multiple UAVs performing search and
destroy mission. Lagoudakis et al. [23] use auction algorithm for assigning



42 P.B. Sujit et al.

unexplored tasks to group of mobile robots. The paper also provides some
theoretical bounds on the computational complexity of the proposed algo-
rithm. Sariel and Balch [24] present an auction scheme with various objectives.
The various objectives are based on traveling salesman problems.

In reality, the UAVs are subjected to limited communication constraint
which most of the researchers have not addressed. Hence, the algorithm devel-
oped either cannot adhere to the limitation imposed by UAVs, or they cannot
be easily extended. Hence, there is necessity to develop task allocation algo-
rithms that are distributed and can perform efficiently. In this chapter we pro-
pose team theory, game theory, and negotiation based task allocation schemes
that consider the communication constraint of the UAVs into account and
show that they perform better than various other strategies.

3 Task Allocation Using Team Theory

3.1 Basics of Team Theory

A team (as defined in [25]) is a group of individuals each of whom takes deci-
sion about something different but who receive a common reward as a joint
result of all those decisions. The individuals get information about the external
situation (state of the environment) through observations and communication
and so the information available to different individuals are different. They
take decision based on their respective information. The state of the environ-
ment is a random variable, the probability distribution of which is known a
priori to the individuals. Based on the state of the environment and the deci-
sion taken, the team incurs a common payoff. Team theory deals with finding
the best communication and the best decision rules, given the payoff function,
the probability distribution of the environment and the communication cost.

Let T = {1, 2, . . . , N} denote a team of N individuals or decision makers
and S denote the set of alternative states of the environment. We consider
the set S to be discrete and finite, i.e., the possible configuration/state of the
environment is finite. The probability mass function defined on the set S is
given by γ(s).

When the state of the environment is s∈S, each decision maker receives
the signal yi(s) as information through the process of observation. Let Yi =
{yi} denote the set of alternative signals that the decision maker i can receive
as information. The function ηi : S → Yi is called the information function of
the ith decision maker and so

yi = ηi(s) (1)

The set of all information function η = {η1, η2, . . . , ηN} is called the informa-
tion structure of the team.

Based on the information yi received by the ith team member, it takes
the decision xi. Let Xi = {xi} be the set of alternative decisions that the ith



Team, Game, and Negotiation based UAV Task Allocation 43

decision maker can take. Then, the function δi : Yi → Xi is called the decision
function for the ith decision maker and we have

xi = δi(yi) (2)

Considering the decision function of all the decision makers, the vector
δ = {δ1, δ2, . . . , δN} is called the team decision function. There can be some
constraints on the team decision functions. For example, for every s ∈ S, let
k(s) ∈ R

n be a close convex set. We will consider only those decision func-
tions for which δ(η(s)) ∈ k(s),∀s. Let x = {x1, x2, . . . , xN} denote the team
decision.

The outcome of the decisions of the team members depends jointly on the
state s and the team decision x and it is determined according to some function
u(s, x) which is pre-specified. Hence, the payoff of the team is given by

ω = u(s, x) (3)

The team decision problem is concerned with finding the maximum expected
payoff with respect to the team decision function i.e.,

max
δ

E[ω(s, x)] = max
δ

∑

x∈k(s)

γ(s)u(s, δ(η(s))) (4)

If the payoff function is linear in the decision variables, the team is called a
linear team. As shown in [26], the solution of the linear team can be obtained
by solving a linear programming problem in the decision function space. Let
the payoff function be ω =

∑
i Cixi, where Ci is a function of the state and

so it is also a random variable. Then, the objective function is given as

max
x∈k(s)

E

[∑

i

Cixi

]
, (5)

3.2 Problem Formulation

Let us consider a battlefield scenario where N UAVs are deployed to search
and destroy targets within a stipulated time. Thus the team T consists
of the N UAVs, which are the decision makers. The environment comp-
rises of the targets of different strengths scattered on a plain. Assume
that there are M targets, the location and the strength of which are not
known a priori to the UAVs. We define the state of the environment as
s = ({Zu

i }N
i=1, {Zt

j}M
j=1, {Vj}M

j=1) where Zu
i is the position of the ith UAVs, Zt

j

is the position of the jth target and Vj is the strength/values of the jth target.
The UAVs can observe the environment within a given sensor radius. We

assume that there is no communication among the UAVs. Thus, the infor-
mation available to the UAVs about the state of the environment are the
number of targets, their values and the number of other UAVs present within



44 P.B. Sujit et al.

the sensor radius. It is assumed that UAVs know the position of both the
targets and other UAVs precisely but the strength of the targets are known
with certain probability which is a function of the distance between the UAV
and the target.

Let us assume that at time ts, UAV i can see mi number of targets and
ni number of UAVs within its sensor range. It senses the value of the targets
with probability p(dij), j = 1, · · · ,mi where dij is the distance between the
ith UAV and the jth target. Based on these information, the ith UAV decides
its action, which can be attacking any one of the j targets or opting for search.
The decision taken by the ith UAV is given as xi = [xi1, xi2, . . . , ximi

, xi(mi+1)]
where xij ∈ {0, 1} denotes whether the ith UAV will perform the task j or
not. Here, the task j = mi + 1 is the search task.

Let the benefit of performing the task xij by the ith UAV be Cij . In
general, Cij is a function of the states of the environment, i.e. the current
position of the UAVs, the current position of the targets and the value of the
targets. We will model Cij in the next section. The payoff of the whole team
is then given as

ω =
ni∑

i=1

mi+1∑

j=1

Cijxij (6)

The objective of the team is to maximise ω with respect to the action, xij

taken by the UAVs at time ts. We assume that the overall mission of the UAVs
will be optimal if the decision taken at each time step is optimal. However,
there may be some constraints on the combined decision taken by the team
x = [x1, x2, · · · , xn] due to practical limitations. At any given time, an UAV
can perform only one task, so

mi∑

j=1

xij = 1, i = 1, 2, · · · , ni (7)

For the mission to be effective, it is necessary that only one UAV be assigned
to one target at a given time. However the number of targets present may be
more than the number of UAVs and so it may not be possible to assign UAVs
to all the targets. Thus, we have

ni∑

i=1

xij ≤ 1, j = 1, 2, · · · ,mi (8)

Hence, the optimization problem can be posed as maximize ω in (6) with
respect to x subjected to the constraints in (7)-(8) and xij ∈ {0, 1},∀i, j.
Here, both the objective function as well as the constraints are linear. Thus,
it can be solved using linear programming. However, linear programming give
solution in xij ∈ [0, 1]. For this class of problem, it is easy to see that for



Team, Game, and Negotiation based UAV Task Allocation 45

every xij = ζ such that 0 < ζ < 1, there exits a solution x̂ij =0 or 1 that will
give a better or equal performance. Since we assume decentralized control of
the UAVs, each UAV solves the optimization problem individually to decide
on its action.

3.3 Team Theoretic Solution

The problem defined in Section 3.1 assumes that the optimization problem
is solved globally. However, in the scenario that we consider, the UAVs do
not have global information. Each UAV solves the optimization problem with
only local information available to it. Moreover, the value of the target status
is a random variable. Hence, we use concepts from team theory to solve this
optimization problem.

Before reformulating this problem, we define the benefit Cij that the ith

UAV gets by performing the task j. If it is a search task then

Cis =
time left in the mission

total flight time
(9)

If it is the task of attacking the target j then,

Cij = Vjwr − Sij (10)

where, Vj = value of target j, wr = the weightage given to the search task
over the task of attacking a target, and

Sij =
time to reach the target j by UAV i

total flight time
(11)

However, the ith UAV knows the values of the target j with some proba-
bility. The probability distribution is assumed to be linear and is shown in
Figure 1(a). Let pr(dij) define the probability of target j to have a value r
at a distance dij . Here, r = {0, 0.5, 1} where, when r = 1, the target has not
been attacked and is intact, when r = 0.5 the target is partially destroyed,
and when r = 0 the target is fully destroyed. Thus, Cij ’s are random variables
with probability distribution p(dij) = [p1(dij), p0.5(dij), p0(dij)].

Speculation/BDA: Since speculation on the target is done at every time step,
and is reflected on the value of targets, we will not attach any separate benefit
to the speculative task.

Each UAV also has to estimate the benefits that its neighbouring UAV
(say the kth UAV) will get from the different tasks that it can perform. It
calculates the benefits as follows:

Search task: The search task is similar to that defined above, hence the search
value is the same for all UAVs.



46 P.B. Sujit et al.

1

3
1_

p
i

p
j ,

 
p
k

sr distance

d
^

UAVi

jUAV

P
a

b

sr

Fig. 1. (a) Probability distribution of the values of the targets as a function of
distance (b) Determination of virtual targets

Attacking target j: If target j is within the sensor radius of the kth UAV then

Ckj = Vjwr − Skj (12)

If target j is not in the sensor range of the kth UAV then Ckj = 0. Here,
we have assumed that all the UAVs have the same sensor range and hence the
ith UAV can estimate whether the jth target is within the sensor range of the
kth UAV.

Attacking virtual target: The concept of virtual target is used to estimate the
environment beyond the sensor range of the ith UAV (see Figure 1(b)). The
ith UAV cannot see the shaded region which the jth UAV can see. Depending
on the number of targets present in that shaded region, the behaviour of the
jth UAV will vary. To estimate the number of targets that might be there, we
assume that the targets are uniformly distributed. We take into consideration
the combined effect of all these target, which we assume to be placed at a point
p, equidistant from point (a, b). This combined target is called the virtual
target for the kth UAV. The benefit that the kth UAV gets for attacking this
virtual target k̂ is

Ckk̂ = (average value of target)nkwr − Skk̂ (13)

where, nk is the number of targets that can be present in the shaded
region. Therefore, nk =ni (area of shaded region)/(πs2

r) and Clk̂ = 0,∀ l =
1, . . . , ni, l �= k, and sr is the sensor range. That is, for any other UAVs,
the benefit of attacking the virtual target k̂ of the kth UAV is zero. Let us
denote T i

v = {k̂1, k̂2, · · · , k̂ni−1} to be the set of virtual targets for the ni − 1
neighbours that the ith UAV has to take into account.

Since, Cij are random variables, the ith UAV will maximize the expected
payoff. The expectation is calculated on the basis of the joint probability
distribution Pi(s) on the state. Here, we assume that the value of the targets
are independent, therefore

Pi(s) =
mi∏

j=1

p(dj) (14)



Team, Game, and Negotiation based UAV Task Allocation 47

The objective is to maximize the expected payoff E(ω) with the constraints
defined in Section 3.1, thus each UAV solves the following linear programming
problem:

max
x

E(
∑

ij

cijxij) (15)

i = 1, . . . , ni; j = 1, . . . ,mi,mi + 1, (mi + 1) + 1, . . . , (mi + 1) + (ni − 1)

subject to
∑

j

xij = 1,∀i;
∑

i

xij ≤ 1∀j; xi,ĵ = 0, ∀i, and ĵ ∈ T i
v; xij ∈ [0, 1], ∀i, j

where j = mi + 1 is a search task, j = (mi + 1) + 1, . . . , (mi + 1) + (ni − 1)
represent the virtual targets.

3.4 Simulation Results

We demonstrate the effectiveness of using team theory for a multi-UAV task
allocation problem using a simulation environment. Consider a geographical
search space of 100×100 with 20 targets present in the geographical region, as
shown in Figure 2(a). The search and attack operation is carried out for 200
time steps, which also represents the flight time of the UAVs. The sensor range
of each UAV is 20. The location of the targets are not known a priori to the
UAVs. All the targets in the search space have the same target value for these
set of simulations, however, in general, the target may have different target
values depending on their threat levels. The targets are located randomly in
the search space. We use 7 UAVs for the mission. The UAVs perform search,
attack and speculative tasks on the target. We compare the results when UAVs
use team theory based decision making with other types of task allocations,
namely, greedy allocation, and limited sensor range with full communication.

Greedy Allocation

In this allocation scheme, each UAV decides to move to a target that would
give maximum benefit. Since the value of the targets are random variables, we
consider the expected value of the target to calculate the benefit Cij . Hence,
the ith UAV’s decision is given by:

max
j

Cij = max
j

[E(Vj)wr − Sij ] (16)



48 P.B. Sujit et al.

100
0

100
Search Region 

UAVs 

Targets 

5 10 15 20 25 30 35 40
45

50

55

60

65

70

75

80

Performance vs sensor radius

Sersor radius

%
 V

al
ue

 o
f t

ar
ge

t d
es

tr
oy

ed

0 50 100 150 200
0

20

40

60

80

100

No. of steps

%
 V

al
ue

 o
f t

ar
ge

t d
es

tr
oy

ed

Performance vs No. of steps

Team Theory
Greedy
with communication

0 100 20015050
0

20

40

60

80

100

No. of steps

%
 ta

rg
et

 d
es

tr
oy

ed

Performance vs No. of steps

greedy
team theory
communication

(a) (b)

(c) (d)

Fig. 2. (a) Search region with UAVs and targets (b) Number of targets destroyed
completely (c) Performance of target value destroyed with variation in sensor range
for the UAVs (d) Average target value destroyed; performance on averaging over 20
different maps

Limited Sensor Range with Full Communication

Here, each UAV has limited sensor range sr but can communicate with all
the other UAVs. Whenever new information is sensed by a UAV, the UAV
broadcasts the information to all the other UAVs. We assume that there are
no communication delays. Hence, all the UAVs have the same information
about the state of the environment at any given time. So, all the UAVs solve
the same LP problem. Moreover, the concept of virtual target does not apply
here, as the ith UAV knows the number of targets present in the neighbours’
sensor region through communication. Similar to the greedy strategy, the UAV
would like to maximize the expected value of the target. The ith UAV solves
the following problem

max
xij

∑
Cijxij (17)



Team, Game, and Negotiation based UAV Task Allocation 49

subject to
∑

j

xij = 1;
∑

i

xij ≤ 1; xij ∈ [0, 1], ∀i, j

where i = 1, . . . , N and j = 1, . . . , ta, with ta representing all the targets
detected so far.

Figure 2(b) shows the performance curves for 7 UAVs performing search
and attack tasks on a 100 × 100 search space shown in Figure 2(a). For eval-
uation of the performance by each strategy we use the percentage values of
the target destroyed (Td). For instance, at time step ti, if, say, tc targets are
completely destroyed, th targets are half destroyed, and tn targets are not
attacked, then

Td = tc + 0.5th + 0tn (18)

The target value destroyed (Td) provides an insight into how many targets
are half destroyed or fully destroyed in the search space. We can see that
as time passes the number of targets being destroyed increases and hence the
target value destroyed (Td) also increases. The performance of greedy strategy
is found to be the worst compared to other two strategies. However, team
theoretic strategy performs the best in spite of there being no communication
between UAVs.

Figure 2(b) show the performance of a particular simulation. To obtain the
average performance of all the strategies, we carry out the simulation for 20
different random target maps for 200 time steps, each with the same UAV posi-
tions. During the search task, it is logical that, after some time, during which
search is carried out and if no targets are found, the UAV has to change its
direction, so that there is a better chance of finding a target. Hence, after every
10 steps of search task, the UAVs change their direction of search by a random
angle. Hence, the performance of the target destroyed sometimes depends on
the random change in search direction. Hence, to average out the randomness
of search we simulate search and attack operation over each target map three
times and consider the average performance. Figure 2(d) shows the average
performance of each strategy for 20 such randomly generated target maps.
From the figure we can see that initially all the strategies perform almost at
the same level but as time progresses, team theoretic strategy outperforms the
other strategies. This is a significant result since the team theoretic strategy
assumes no communication between UAVs and has limited sensor range. In
case of full communication, there is considerable communication cost and the
computational cost are also more, when compared to team theoretic strate-
gies, as the UAV has to consider all the other UAVs information about the
targets. The greedy strategy has a tendency to move in groups and thus not
effectively using the resources of having multiple UAVs for the mission. Team
theory perform better and is scalable to large scale systems as the information
sensing is local and consequently the computational effort is less.



50 P.B. Sujit et al.

Figures 2(b) and 2(d) shows that the team theoretic strategy performs
better than the other strategies. Another study examines the effect of sensor
radius on Td (Figure 2(c)). Here, we considered a random target map and
carried out three simulations for each sensor radius. The effect of sensor radius
shown is the average of the three simulations. The figure shows that for this
particular case sensor radius of about 25 gives the best performance compared
to any other sensor radius. The performance of team theory, greedy and full
communication strategies depends on the sensor range. If the sensor radius
is small, a UAV can sense very small area and the decision taken will not
be effective. We expect that with increase in sensor range the performance
will also improve. In the case of team theory, this is not true because if we
consider a large sensor range, the estimated value of the virtual target will
be incorrect. This is because the area sensed by the kth UAV can include
regions beyond the search region space where there are no targets. But, the
ith UAV does not consider this fact and assumes equal density of targets
everywhere. This unnecessarily gives more weightage on the virtual target
and the overall performance decreases. This effect can be seen in Figure 2(c).
This problem can be resolved if we consider other parameters such as target
density gradients or restriction to the search space.

The ratio of search value to the target value also plays a crucial role. If we
give equal priority to search and attacking a target then the UAV may opt
for search task even though there is a target near it. On the other hand, if we
increase the value of the target then there is a possibility that the UAV may
loiter in the vicinity of a target which is already destroyed. In our simulations,
we considered the search value to be 25% of the target attack value and this
yielded good results. But, a more focused study is necessary to examine this
aspect of the problem.

4 Task Allocation using Negotiation

In this section, we present a task allocation algorithm for multiple UAVs
performing search and attack tasks in an unknown region using negotiation
scheme for the scenario given in Section 3. Here we assume that once a target
is attacked, it is destroyed and hence battle damage assessment task on the
target is not necessary to be performed. This is one of the very few applications
available that exploits the use of negotiation for a network of UAVs involved
in a practical problem of decision-making.

4.1 Problem Formulation

Consider N UAVs/agents performing a search and destroy operation on a
bounded region consisting of M targets whose exact positions are not known
a priori. The basic problem of task allocation is to efficiently assign agent
Ai ∈ N , to target mi ∈ M , such that the mission is completed as quickly as



Team, Game, and Negotiation based UAV Task Allocation 51

possible. The task allocation problem can be solved by using either a central-
ized controller or a decentralized controller. In the former case each agent
communicates the information it has to the central controller that solves a
task allocation algorithm and assigns each agent to a particular task. How-
ever, implementing this task allocation strategy in real-time requires large
communication overheads and will not be scalable to large number of agents
and targets. Also, these strategies are not robust to failures. Hence, a decen-
tralized task allocation strategy, which avoids many of these problems, may be
more advantageous if implemented on a multi-agent system. One way of imple-
menting a decentralized task allocation strategy would be by making each
agent broadcast its information to all the other agents so that each agent has
the required information to solve the task allocation problem independently
and assign a task for itself. The implementation of this task allocation strat-
egy also requires large amount of communication among the agents. To reduce
this demand one can define a neighbourhood concept for each agent so that
an agent communicates its information only to those agents that are in its
neighbourhood. The neighbourhood can be range dependent, in which case it
is dynamic or pre-defined, in which case it is static or randomly selected. In
this work, we will assume only range dependent neighbourhood for agents.

The implementation of decentralized task allocation with finite communi-
cation range poses several challenging problems. For instance, consider Case
A in Figure 3 where agent A1 and A2 have target T1 in their sensor range and
an allocation has to take place as to which agent should be assigned to the
target. The task allocation can be done using a greedy strategy, in which case
both the agents would move towards the same target which is not desirable.
Another task allocation mechanism used in multi-robot literature is based

T2 T1

A3

A2A1

A1

A2

T1

A2

A1
T1

T2

Case A

Case B Case D

Case C

A1
A2

A3

Fig. 3. Some scenarios for decision-making



52 P.B. Sujit et al.

on auctions [20]. But in the application under consideration since the system
of UAVs is decentralized, each agent would become an auctioneer and hence
both the agents would auction the same target.

Consider Case B in Figure 3, where A1 has T1 and T2 in its sensor range
while A2 has only T2. The auction mechanism requires broadcast of all the
target and their associated costs. Resolving conflicts using auctions is a diffi-
cult task. In Case C, we can see that A1 sees T1 while A3 is already on its way
to attack T1. So, A1 wastes some resource in moving towards a target that is
already assigned, Since the communication is limited it does not have access
to the assignment of other agents. Instead of T1 it could have attacked T2.
Here too greedy and auction algorithm would not yield good performance. In
Case D, agent A3 gets the auction information from A1 and A2 about T1, now
A3 does not know to which agent it has to send the bid. A modification to the
standard auction algorithm may eliminate some of the difficult issues, how-
ever this would complicate the decision-making rules for multiple agents using
auction mechanism locally. These complications in using auctions for limited
communication cases motivate us to use negotiation as a tool to handle these
situations efficiently. In Case A, A1 and A2 can negotiate on which agent
would be assigned to target T1. While in Case B, A1 and A2 can negotiate
such that one agent attacks T1 and the other moves towards T2. In Case C,
A2 can detect a conflict between A1 and A3 and send decisions such that A1

or A3 move towards T1. However, in Case D, A3 actually negotiates between
A1 and A2, which are not neighbours, and detects possible conflict and hence
provides an efficient task allocation decision.

However, the implementation of negotiation scheme involves designing of
negotiation rules over which the decision-making process takes place. In the
next section we describe the negotiation scheme employed for decision-making.

At every time step each agent has to perform a task. The task can be
(i) searching for a target or (ii) attacking a target. Each agent senses its
environment consisting of other agents and targets. An agents’ assignment for
a task depends on four different situations. These situations are dependent
on the availability of neighbouring agents and targets. The four situations, in
which agent Ai has to perform a task and play a role in the decision making
process are:

1. No targets and no neighbours
Task: Search
Decision role: Continue to move in the same direction

2. No targets but has neighbours
Task: Perform search or attack. The target information may be provided

by the neighbouring agents.
Decision role: Acts as a negotiator for neighbouring agents

3. Targets are present but no neighbours
Task: Attack
Decision role: Select a target that yields maximum value



Team, Game, and Negotiation based UAV Task Allocation 53

4. Target as well as neighbours are present
Task: Search or attack
Decision role: Negotiate with neighbours

Once an agent Ai is present within a distance d from the target, we assume
that the agent can destroy the target effectively. An agent has to negotiate
with its neighbouring agents for an efficient task allocation. The agents are not
subjected to any turn radius constraints and hence can move in any direction.
The agents have to maximize the number of targets destroyed in the search
space by coordinating with its neighbouring agents through negotiation.

4.2 Decision-making

Negotiation as a Tool to Handle Uncertainty in Agent Actions

In general, negotiation refers to the communication process that facilitates
coordination and cooperation among a group of agents [27]. In multi-agent
systems, its aim is to resolve problems related to resource allocation and task
assignments between various agents in a decentralized setting.

Our approach is somewhat similar to Rubinstein’s model of strategic nego-
tiation [28] where agents make proposals that are either accepted or rejected
by other agents; and whether an agent implements its proposal or not depends
on what other agents do. However, our approach is different from Rubinstein’s
model on many counts due to the nature of the task allocation problem. Unlike
most negotiation models we do not have a situation where each proposal is
vetted by all the other agents. In fact, due to the connectivity restrictions, we
have a network of agents where an agent is not necessarily directly connected
to all other agents. So, each agents decision is based on the response of only
those agents that are connected to it. Moreover, unlike in Rubinstein’s model,
agents make simultaneous offers at pre-defined decision epochs and the actions
are accordingly distributed between agents. Another way in which our model
differs from Rubinstein’s model is that in a task allocation problem the need
for negotiation arises mainly because of lack of information about the action
of other agents. So, the whole process of negotiation is geared towards deter-
mining the action of an agent in a coordinated autonomous fashion without
assuming any kind of hierarchy or priority among agents.

A coordinated decision by an agent would be one that is not in conflict with
the decision of its neighbors. There is no conflict except that which arises due
to uncertainty of agent actions. For example, it occurs when more than one
agent is planning to attack the same target, thus decreasing the effectiveness
of the mission. Resolution of such conflicts can be effected either by

(i) Direct communication/negotiation as in the case when an Agent Ai and
another agent Aj are within communication range.

(ii) Indirect negotiation when an Agent Ai and another agent Aj , Aj �∈ N (Ai)
want to attack the same target T, and Ai and Aj are connected through



54 P.B. Sujit et al.

a sequence of communication links through other agents. For instance,
they may be connected through a third agent Ak with Aj ∈ N (Ak) and
Ak ∈ N (Ai).

In the first case, since Aj is within the communication range of Ai, it can
exchange information with Aj and resolve the conflict. While in the second
case, Ai does not know about the existence of Aj and so direct communication
is not feasible. So, the intermediate agents are important in the negotiation
process. In the negotiation scheme developed next, we will show that it is the
neighboring agents who contribute to the decision-making of agent Ai.

Negotiation Scheme

Each agent Ai performs the following actions during decision-making: (i) Sends/
receives proposals (ii) Processes received proposals and sends Accept/Reject
decisions to proposing agents (iii) Computes own route decision (iv) Implements
decision. All these actions happen within each negotiation cycle. This is shown
in Figure 4. Note that an agent Ai that has no targets will have only the second
segment, while the agents that have targets as well as neighbouring agents will
have all the four segments of decision-making.

The different segments of the negotiation cycle are described below:

Send/receive proposals (NC1): Each agent evaluates the benefit associated
with each target. Let bi(Tj) be the expected benefit that Ai gets by attacking
target Tj , which is given by

bi(Tj) = Vjwr − Sij (19)

where, Vj = value of target Tj , wr = the weight given to search task over
the task of attacking a target, Sij = (time to reach the target Tj by agent
Ai)/(total flight time). The benefit set Bi of Ai consists of benefits for all the
tasks an agent has. Let Ti be the set of all targets. The benefit set for agent
Ai is represented as:

Bi = {bi(Tj) | Tj ∈ Tj} (20)

Agent Ai chooses a target TSi
for which Ai gets the maximum value, as

Si = arg max
j

{bi(Tj) ∈ Bi} (21)

Send proposals
Process 
received 
proposals

Send
accept/reject
decisions

Decide action
 based on
accept/reject
decisions received

A Negotiation cycle

NC1 NC2 NC3 NC4

Fig. 4. Negotiation cycle



Team, Game, and Negotiation based UAV Task Allocation 55

The proposal of agent Ai, sent to its neighboring agents, is of the form
Qi = (Ai, TSi

, bi(TSi
)), containing the proposer agent’s identification, pro-

posed target, and the value associated with TSi
.

Processing received proposals (NC2) and sending decisions (NC3): Let Qi be
the set of proposals received by agent Ai from its neighbors Aj , including its
own proposal.

Qi = {(Aj , CSj
, βj);L(Aj) ∈ N (L(Ai), qc)}

Let T i
k be a target that appears in at least one of the proposals received

by Ai. That is, T i
k = TSj

for some Qj ∈ Qi. For each such T i
k, define A(T i

k)
as the set of agents that have proposed T i

k, and B(T i
k) as the set of values

associated with agents in A(T i
k). So,

A(T i
k) = {Aj | Qj ∈ Qi, TSj

= T i
k}

B(T i
k) = {bi(Tj) | Aj ∈ A(T i

k))} (22)

Using the above sets (A(T i
k) and B(T i

k)), agent Ai sends accept or reject
decision to its neighbors using the following rules:

Rule 1: An agent Ai sends accept to agent Aj , if

A(T i
k) = {Aj} (23)

That is, A(T i
k) is a singleton containing only agent Aj (note that Aj could be

Ai itself).

Rule 2: If A(T i
k) is not a singleton then agent Ai sends accept to that agent

in A(T i
k) which obtain the maximum value by attacking target T i

k and reject
to all other agents in A(T i

k). That is, accept is sent to Aj′ ∈ A(T i
k) if,

j′ = arg max
j

{bi(Tj) ∈ B(T i
k)} (24)

Note that Rule 2 subsumes Rule 1. But they are stated separately for clarity.
Again Aj′ can be Ai itself.

Rule 3: An agent can send only one accept for one target. If there are more
than one j′ then the agent selects one of them.

Rule 4: For Ai to decide on its action at the current search step it has to get
accept from all its neighboring agents to which it had sent its proposals.

Rule 1 implies that when an agents’ proposal is not in conflict with other
agents’ proposals an accept can be sent without considering the other agents’
decisions. When more than one agent proposes to attack Tk then there is
a conflict between the proposing agents which Ai has to resolve. The con-
flict can be resolved by comparing the benfits’ proposed by the agents. Agent
Ai compares the bi(Tj) received for target Tk and sends accept decision to an



56 P.B. Sujit et al.

agent Ak which has the highest bi(Tj) and reject decisions to the remaining
agents. An agent Ai can receive a mix of accept and reject decisions from
its neighbors. If we allow the agent to attack a target Tk, since it has got
acceptance from some of the agents, this assignment would cause ineffective
performance as multiple agents will get assigned to the same target. Hence,
Rule 4 guards against agents getting multiple assignment. Rules 1-4 are the
key to the negotiation scheme. While implementing Rule 3, we may encounter
situations where more than one agent has the same bi(Tj), in which case we
use a deadlock resolution scheme that resolves such deadlocks.

Computing route decision (NC4): Agent Ai decides whether to implement or
discard its proposed task based on the accept or reject decisions received from
its neighbors. The agent implements its proposal if it receives accept decisions
from all its neighbors and discards it if the agent receives a reject from even
one of its neighbors. An agent that received a reject for its proposal from at
least one neighbor will go on to the next negotiation cycle and this process
will continue till it receives all accept decisions. An agent that has arrived at a
decision (after receiving accept from all its neighbors) will not send any more
proposals during subsequent negotiation cycles. The sequence of negotiation
cycles will terminate automatically when all the agents have converged to a
decision. Later we will prove that only a finite number of negotiation cycles
are necessary. When an agent Ai receives reject for all its proposals, it adopts
the search task.

Additional Target Information Exchange

An agent that has received acceptance to its proposal may have other tar-
gets within its sensor range. An agent Ai can send this information to its
neighbouring agents who can use it. The information that an agents sends is
the target location and its value as perceived by Ai. This information will be
more useful for those agents that may not have decided any targets but are
neighbours of Ai. The target information broadcast by Ai can also be useful
if all the proposals of agent Aj ∈ N (Ai) are rejected.

Once an agent receives the available targets from agent Ai, it can make
assignment to any of the targets based on random number generation, greedy
strategy, or start a negotiation with its neighbouring agents for obtaining an
assignment. Here, we use greedy strategy for simplicity.

Deadlock Resolution Mechanism

We define a deadlock, when an agent Ai is unable to decide to whom it has
to send an acceptance. This situation can happen when more than one agent,
with the same bi(Tj) value, seeks target Tj to attack. Since the bi(Tj) values
are same, use of Rule 2 is not possible and agent Ai cannot send acceptance



Team, Game, and Negotiation based UAV Task Allocation 57

to all the agents as that will violate Rule 3. There are two possible ways of
resolving deadlock: loss information and token algorithm.

Loss information: In this scheme, agent Ai requests for more information from
agents in A(T i

k). This additional information will aid in effective decision-
making. The additional information that an agent requests is the value of
possible loss that each proposing agent suffers if it chooses the next best
action instead of the proposed action. Let the new benefit vector for agent Ak

be B̂k and the loss λk be evaluated using (25) as,

B̂k = {Bk \ bi(CSK
)}; λk = maxBk − max B̂k (25)

where, ′\′ denotes set difference. When agent Ai requests for loss information,
the loss λk is sent to agent Ai. Let Λi represent the set of loss information
received from all the agents in A(T i

k). An accept is sent to an agent Aj that
satisfies the condition in (26) and reject is sent to the remaining agents.

Aj = arg max
i

(Λi) (26)

Suppose there are multiple bi(Tj)’s that are at the next highest level, then
the same procedure needs to be repeated. Using the loss information does
not guarantee that the deadlock will be resolved. This situation can arise
when multiple agents have the same loss value. In that case, we use a token
algorithm as given below.

Token Algorithm : Every agent Ai carries a unique token number Ki. When-
ever the above situation (of the loss being equal) occurs wherein the agent
is unable to decide to whom it has to send acceptance, the agent requests
for token number of the agents Ak,Ak ∈ A(T i

k). Agent Ai compares these
token numbers and chooses an agent Aj with the least token number. The
token number of Aj is increased by a number N̂ , where N̂ is an arbitrary
large number greater than N . This scheme ensures that an agent that has
been selected earlier in this situation, will not be selected again in a similar
situation if there is at least one other agent which has not been selected before.

Some Theoretical Results

Theorem 1. If more than one agent is proposing a target Tj, then at least
one of the agents will receive all acceptances from its neighbors.

Proof. Let A(T i
j ) be the set of agents proposing target Tj as their proposal.

Then, by Rule 2, agent Ai sends an accept decision to agent Aj which has
the maximum bi(Tj). If there are multiple agents with same bi(Tj) then Ai

invokes the deadlock resolution mechanism by which one agent would receive
an accept. �	



58 P.B. Sujit et al.

Theorem 2. The negotiation terminates in a finite number of negotiation
cycles.

Proof. From Theorem 1 we observe that, at each negotiation cycle, at least
one of the agents gets all accept and so decides upon a target for its next step.
Since there are a finite number of agents, in a finite number of negotiation
cycles each agent would decide upon a target to attack. If the target are not
available then they continue to search task. Hence, all the agents would decide
upon a task in a finite number of negotiation cycles. The maximum number
of negotiation cycles an agent can go through is N . �	

4.3 Simulation Results

A simulation study is conducted on a battlefield scenario of size 100 × 100.
Through these simulations we show that the negotiation scheme performs
better than greedy strategy in terms of average number of targets destroyed.
The simulation is carried out using 7 UAVs for 100 different sets of target posi-
tions with each set having 20 targets. The a priori knowledge about number
of targets present in the space and their initial positions are not available to
the UAVs. We also study the performance of negotiation and greedy schemes
for various sensor radius.

From Figure 5 we can see that the negotiation scheme outperforms the
greedy strategy. The number of targets using negotiation scheme is higher and

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14

16

18

20

Time taken to destroy targets

A
ve

ra
ge

 n
um

be
r 

of
 ta

rg
et

s 
de

st
ro

ye
d

G sr= 10

G sr= 20

Nsr= 20
Nsr= 30

G sr= 40

G sr= 30

G sr= 50
Nsr=10

and sr=40

Nsr=50

G   > Greedy strategy
N  > Negotiation scheme

Fig. 5. Average number of target hits for 100 different target positions



Team, Game, and Negotiation based UAV Task Allocation 59

the time taken to accomplish the mission is comparatively low. An expected
result of increase in performance with increase in sensor range can be seen
for the performance curves of negotiation scheme in the figure. However, this
intuitive result is not true for greedy strategy.

The performance of greedy strategy with sensor radius sr = 10 is better
than higher sensor radius sr = 20 to sr = 50. This is due to the fact with low
sensor radius, the UAVs are unable to sense the targets initially and hence
move in the initial heading direction (spreading out). But, with higher sensor
radius, the agents are able to sense the target from their initial positions and
hence all the UAVs move in the direction of sensed target as a swarm. Hence,
the performance is worse when compared to lower sensor radius.

We carried out another set of simulations to study the performance of task
allocation algorithm for different target distributions on the search space. In
order to conduct these experiments we define a proximity factor that deter-
mines the nature of the distribution or spread of targets in the search space.
The proximity factor is defined as:

ρ =
Sr

1
N

∑N
i=1

√
(xi − xc)2 + (yi − yc)2

(27)

where N is number of targets, (xi, yi) represents the position of the ith target
location, (xc, yc) the mean of all the target positions and Sr the sensor radius.
Low proximity factor implies well separated targets compared to the sensor
radius. While high proximity factor ensures that the targets are placed very
closely. Figure 6 show different target distributions in the search space.

The simulations are carried out using 7 UAVs for a search space consisting
of 50 targets, with different proximity factors. Figure 7 shows the performance
of negotiation and negotiation with target information based task allocation

UAVs

Targets

UAVs

targets

Fig. 6. Battle field with 20 targets for proximity factors ρ = 0.625 and ρ = 0.11,
while the sensor radius sr = 10



60 P.B. Sujit et al.

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

45

50

Time steps

N
um

be
r 

of
 ta

rg
et

s 
de

st
ro

ye
d

ρ=0.266

ρ=0.443

ρ=0.886ρ=1.77

Negotiation only

Negotiation with
information exchange

Fig. 7. Number of targets destroyed for different proximity factors

schemes. From the figure we can see that for lower proximity factors the
number of targets destroyed are low as compared to the number of targets
destroyed in the higher proximity factor case. When the proximity factor is
small, the effect of target information sharing during decision-making by the
agents that have targets in their sensor range is significant. For ρ = 0.266,
we can see from the figure that the performance of negotiation with target
information based task allocation is better than that using negotiation only.
Here, the target information broadcast plays a crucial role in enhancing the
performance. Similar kind of effect can be seen for ρ = 0.443. However, for
σ = 0.886, the negotiation based task allocation is better than that with
target information exchange. This is due to the fact that the additional infor-
mation about distant targets makes the agent choose distant targets to attack
rather than perform search in its own neighborhood. This causes UAVs to
miss nearer targets outside its sensor range. For ρ = 1.77, the performance is
the same for both the negotiation schemes. Since the proximity factor is high,
all the agents can sense all the targets hence there is no improvement in per-
formance with information exchange. It should be noted that the amount of
information broadcast also plays a crucial role in the performance of the task
allocation. Hence, there is always a tradeoff between how much of information
should be broadcast and the performance.



Team, Game, and Negotiation based UAV Task Allocation 61

5 Search using Game Theoretic Strategies

In the previous section we have seen search task to be a part of other tasks
to be carried out by the UAVs. However, there are applications like search
and surveillance missions where search is the only task that has to be carried
out. By search we mean that the UAVs are deployed in an unknown region to
collect information about the region.

Consider an unknown region over which a search mission has to be carried
out. Based on the a priori knowledge of the search space, an uncertainty
map is constructed. The uncertainty map is discretized into cells. Here, we
discretize the map into a grid of hexagonal cells, as they offer the flexibility
to move in any direction while expending the same amount of energy. The
uncertainty map constitutes real numbers between 0 and 1 associated with
each cell in the search space. These numbers represent the uncertainty with
which the location of the target is known in that cell. An uncertainty value of
0 would imply that everything is known about the cell (that is, one can say
with certainty whether a target is located in that cell or not). On the other
hand, an uncertainty value of 1 would imply that nothing can be said about
the location of the target in that cell.

One of the motivations for modeling a search problem in a game theore-
tical framework arises from the fact that this framework gives the flexibility
of using two different solution concepts: one based on cooperation between
players and the other based upon non-cooperation. Application of these
notions to the economics had to take into account the fact that players are
not inherently altruistic, thus making the cooperative framework somewhat
untenable, unless the cooperation is enforced by a third party. On the other
hand, in the non-cooperative framework it has been shown that in repeated
games, cooperation automatically emerges as the best noncooperative solu-
tion and hence the notion of cooperation is inherent and enforceable in the
non-cooperative framework. Although when we consider cooperation between
automated agents that are devoid of any selfish motive and have only a com-
mon goal in mind, it is more logical to use a cooperative framework, in our
work we show that the non-cooperative framework is almost equally effective
and is no more computationally time consuming than the cooperative frame-
work. There are other reasons too, related to the specific problem structure,
which justifies the usage of the non-cooperative framework. For instance, when
the sensor performance is unreliable or noisy, or due to ineffective communica-
tion the uncertainty map of each agent changes with time unknowingly to the
other agents, leading to different uncertainty map for different agents. In such
situations, the cooperative decision making mechanism breaks down. Here we
show that when this is the case, the non-cooperative Nash strategies perform
better than the cooperative strategies.



62 P.B. Sujit et al.

5.1 N-person Game Model

The strategies that we propose for N agents/search agents is based on a game
theoretical model. We use q-step look ahead planning [29], where q determines
the depth of the exploratory search to obtain optimal strategies.

The objective of the agents is to select their next action or path at time t
in order to maximize their benefits (that is, maximize uncertainty reduction).
This problem can be modelled as a N -person non-zero sum game with each
agent as a player and the set of paths available to each agent as the set of
strategies.

Another approach to decision-making in this situation, without the bene-
fit of communication between agents, is to make some assumption on the
behavior of other agents in the search space. So, a player/agent may consider
the rest of the N − 1 players to be one single player. Hence, we can model the
N -person game as one player playing against the rest of N − 1 players taken
together as a single player (a coalition of N − 1 players). Here, we describe
both the models.

The payoff to each agent can be expressed in terms of search effectiveness
functions. Every cell has an uncertainty value associated with it. Let Pq

i (Csi
),

i ∈ {1, 2 . . . , N} be the set of all possible paths of length q, for an agent Ai,
emanating from cell Csi

. A path P j
i (Csi

) ∈ Pq
i (Csi

), j = 1, 2, . . . , |Pq
i (Csi

)|,
is an ordered set of cells P j

i (Csi
), defined as,

P j
i (Csi) =

{
Cj,1

i , Cj,2
i , Cj,3

i , . . . , Cj,q
i | Cj,k

i ∈ C, Cj,1
i = Csi , Cj,k+1

i ∈ N (Cj,k
i )
}

(28)

where, C is the collection of all cells, Csi
is the current position of Ai, and

N (Cj,k
i ) is the set of all neighboring cells of Cj,k

i .
Let the uncertainty value of a cell Ck at time t, as perceived by Ai, be

Ui(Ck, t). Given a path P j
i (Csi

) of agent Ai, suppose Ai is at cell Cl at time
t then the reduction of uncertainty associated with Cl, and the subsequent
updated value of uncertainty, is evaluated as follows:

Case 1: Only Ai is in cell Cl at time t, then

vi(t) = Ui(Cl, t)βi (29)
Ui(Cl, t + 1) = Ui(Cl, t)(1 − βi) (30)

where, vi(t) is the benefit that agent Ai would obtain (that is, the amount of
uncertainty reduction that it will achieve) when it visits cell Cl.

Case 2: When more than one agent visits cell Cl at time t, let A represent
this set of agents. Then,

vi(t) = β̃β̂iUi(Cl, t) (31)

Ui(Cl, t + 1) = Ui(Cl, t) −
N∑

i=1

vi(t) (32)



Team, Game, and Negotiation based UAV Task Allocation 63

where,

β̃ = 1 −
∏

j∈A
(1 − βj); β̂i =

βi∑
j∈A βj

(33)

So, given N routes P1, P2, P3, . . . , PN of the N agents, where Pi is any P j
i ∈

Pq
i (we drop the Csi

argument from the path notation P j
i (Csi

) as well as
from Pq

i (Csi
), the set of all possible paths, for simplicity), the reduction in

uncertainty achieved by Ai at each step t (t = 1, 2, . . . , q) is given by vi(t)
and is computed using Case 1 or Case 2 as the case may be. Note that this
computation has to be done simultaneously for all the agents. The total benefit
to Ai due to path Pi is

mi(P1, . . . , PN ) =
q∑

t=1

vi(t) (34)

which represents the payoff obtained by Ai as the agents choose strategies
P1, P2, . . . , PN . The functions mi :

∏
i=1,...,N Pq

i → R
+, from the set of

paths to the uncertainty reduction value, are called the search effectiveness
functions.

5.2 Solution Concepts

The decision to choose a particular path that would provide the maximum
information gain (or uncertainty reduction) can be based on various strategies.
We consider the following strategies: Noncooperative Nash strategy, coali-
tional Nash strategy, security strategy, cooperative strategy, greedy strategy,
and globally optimal strategy. The Nash, security, coalitional Nash, and greedy
strategies do not require any kind of communication to arrive at an optimal
decision, while cooperative and globally optimal strategies require communi-
cation to implement the decision making process.

(i) Noncooperative Nash Equilibrium Strategy: When the agents do not com-
municate with each other to decide on their future action at time t, and each
agent assumes that the other N − 1 agents take actions that are beneficial to
them, then we can use the concept of noncooperative Nash equilibrium.

(ii) Coalitional Nash Strategy: This is similar to the non-cooperative Nash
equilibrium strategy, except that each agent assumes the other N − 1 agents
to form a coalition and take actions jointly that are jointly beneficial to them.

(iii) Security Strategy: This strategy becomes relevant when, as before, the
agents do not communicate with each other and each agent assumes the other
N − 1 agents to be adversaries. In such a situation the best strategy for the
agent is to secure its minimal benefit. Hence, it is logical for the agent to use
security strategy that would guarantee a minimal payoff.



64 P.B. Sujit et al.

(iv) Cooperative Strategy: The agents communicate with each other and
decide collectively (jointly) to take the best possible action. This is also the
centralized decision making case.
(v) Greedy Strategy: Agents do not communicate among themselves and use
greedy strategy. An agent does not consider the effect of the possible actions
of the others agent and selects an action that yields the maximum benefit to
itself. This strategy is used for comparison purposes only.
(vi) Globally Optimal Strategy: The game theoretical strategies are based on
local information up to q steps. Hence, the solution is optimal for these q steps
and not globally optimal. We can obtain a globally optimal solution by making
q equal to the largest possible number of steps in an agent’s search path.
This requires huge computational time and also increases the computational
complexity as the domain of the search effectiveness function increases. We
will not use this strategy but, for the interested researcher, some heuristic
algorithms to implement such strategies are discussed in [30].

Non-cooperative N-person Nash Equilibrium Strategy

We define a non-cooperative N -person game in normal form for N agents [31].
A N -person game consists of N search effectiveness functions mi, i = 1, . . . , N .
The ordered N - tuple of real numbers (m1(P1, . . . , PN ), . . . , mN (P1, . . . , PN ))
denotes the payoff to each agent respectively. The players do not cooperate
with each other and arrive at their decisions independently. In such a sit-
uation the equilibrium solution can be stated as: An N-tuple of strategies
{P ∗

1 , P ∗
2 , . . . , P ∗

N} with P ∗
i ∈ Pq

i is said to constitute a noncooperative (Nash)
equilibrium solution for an N-person nonzero-sum game, if the following N
inequalities are satisfied for all Pi ∈ Pq

i , i ∈ N .

m1∗ � m1(P ∗
1 , P ∗

2 , P ∗
3 , . . . , P ∗

N ) ≥ m1(P1, P
∗
2 , . . . , P ∗

N−1, P
∗
N )

m2∗ � m2(P ∗
1 , P ∗

2 , . . . , P ∗
N ) ≥ m2(P ∗

1 , P2, P
∗
3 , . . . , P ∗

N−1, P
∗
N )

...
...

...

mN∗ � mN (P ∗
1 , P ∗

2 , . . . , P ∗
N ) ≥ mN (P ∗

1 , P ∗
2 , P ∗

3 , . . . , P ∗
N−1, PN ) (35)

The N -tuple (m1∗,m2∗, . . . ,mN∗) is known as a noncooperative (Nash) equi-
librium outcome of the N -person game in normal form. The pure strategy
Nash equilibrium may not exist always. In this case we need to compute
mixed strategies which guarantee a solution to the noncooperative game.
Mixed Strategies : A mixed strategy for a player is a probability distribution
on the space of its pure strategies. An allowable strategy for Ai is to choose
P 1

i with probability (w.p.) yi
1, P 2

i , w.p. yi
2, . . ., P

|Pq
i
|

i w.p. yi
|Pq

i
|, so that,

|Pq
i
|∑

k=1

yi
k = 1, and 0 ≤ yi

k≤1 (36)



Team, Game, and Negotiation based UAV Task Allocation 65

An N -tuple {yi∗ ∈ Y i, i ∈ N} is said to constitute a mixed strategy non-
cooperative (Nash) equilibrium solution for a N-person game in normal form,
if the following N inequalities are satisfied for all yj ∈ Y j , j ∈ N :

J1∗ �
∑

Pq
1

∑

Pq
2

. . .
∑

Pq
N

y1∗
P1

y2∗
P2

. . . yN∗
PN

m1(P1, P2, . . . , PN )

≥
∑

Pq
1

∑

Pq
2

. . .
∑

Pq
N

y1
P1

y2∗
P2

. . . yN∗
PN

m1(P1, P2, . . . , PN )

J2∗ �
∑

Pq
1

∑

Pq
2

. . .
∑

Pq
N

y1∗
P1

y2∗
P2

. . . yN∗
PN

m2(P1, P2, . . . , PN )

≥
∑

Pq
1

∑

Pq
2

. . .
∑

Pq
N

y1∗
P1

y2
P2

y3∗
P3

. . . yN∗
PN

m2(P1, P2, . . . , PN )

...
...

...
JN∗ �

∑

Pq
1

∑

Pq
2

. . .
∑

Pq
N

y1∗
P1

y2∗
P2

. . . yN∗
PN

mN (P1, P2, . . . , PN )

≥
∑

Pq
1

∑

Pq
2

. . .
∑

Pq
N

y1∗
P1

y2∗
P2

. . . yN−1∗
PN−1

yN
PN

mN (P1, P2, . . . , PN ) (37)

The noncooperative Nash equilibrium outcome of a N -person game in mixed
strategies is given by the N -tuple {J1∗, . . . , JN∗}. If there exists an inner
mixed strategy solution then, such a solution {yi∗ ∈ Y̆ i; i ∈ N} of an N -person
game in normal form satisfies the following set of equations:

∑

Pq
2

. . .
∑

Pq
N

y2∗
P2

. . . yN∗
PN

{m1(P1, . . . , PN ) − m1(P l
1, P2, . . . , PN )} = 0,

P1 ∈ Pq
1 , P1 �= P l

1,∑

Pq
1

∑

Pq
3

. . .
∑

Pq
N

y1∗
P1

y3∗
P3

. . . yN∗
PN

{m2(P1, . . . , PN ) − m2(P1, P
l
2, . . . , PN )} = 0,

P2 ∈ Pq
2 , P2 �= P l

2,

...
...

∑

Pq
1

. . .
∑

Pq
N−1

y1∗
P1

. . . yN−1∗
PN−1

{mN (P1, . . . , PN ) − mN (P1, . . . , PN−1, P
l
N )} = 0,

PN ∈ Pq
N , PN �= P l

N (38)

where, P l
i is any one of the search paths in Pq

i , and Y̆ i is the interior of Y i. If
the inner mixed strategy solution does not exist then the above formulation
may not yield a feasible solution. In that case, we may have to choose some
other algorithm. The domain of the search effectiveness function increases



66 P.B. Sujit et al.

with increase in q and also increase in number of players. Hence, solving the
algebraic equations becomes computationally time consuming. In order to
reduce computational time we use the concept of domination [31].

Dominating Strategies : There are certain strategies for an agent which yield
less profit than other strategies. For instance, consider agent Ai choosing path
P k

i that has higher benefit than path P l
i , for all possible combination of the

paths of the rest of the N −1 agents. Then, we can eliminate path P l
i without

affecting the equilibrium solution. Since the objective of the searchers is to
maximize their benefits, we are eliminating a strategy with lower benefit. In
general, for Ai, considering the search effectiveness function mi, we say that
path P k

i dominates path P l
i , if

mi(P1, . . . , P
k
i , . . . , PN ) ≥ mi(P1, . . . , P

l
i , . . . , PN ), ∀ Pj ∈ Pq

j , j �= i (39)

and if, for at least one j, the strict inequality holds. Eliminating dominated
strategies will reduce the computational time required to compute the mixed
equilibrium strategy. The concept of dominating strategies in non-zero sum
games as formulated above is similar to the dominating strategies as formu-
lated for zero sum games [31]. The dominating strategies concept is applicable
only for noncooperative games and not for cooperative and security strategies.

Coalitional Nash Strategies

In this model, we assume that agent Ai is playing against the coalition of
the rest of the N − 1 agents. The game is modelled as a bimatrix game
which consists of two search effectiveness matrices, M1,i = {m1,i

kl } and M2,i =
{m2,i

kl }. The matrix M1,i represents the benefit obtained by agent Ai. Every
element m1,i

kl = Vi(P k
i , P̂ ), P̂ = {(P1, P2, . . . , PN )|Pj �= Pi, j = 1, . . . , N},

represents the benefit obtained by agent Ai choosing path P k
i ∈ Pq

i while
the coalition chooses a strategy l, l = 1, 2, . . . , |

∏N
j=1
j �=i

Pq
j |. The matrix M2,i

represents the benefit obtained by the coalition and every element m2,i
kl =∑N

j=1
j �=i

Vj(P k
i , P̂ ). The agent Ai assumes the coalition to be a single player.

The players (Ai and the coalition) arrive at their decisions independently. In
such a situation the equilibrium solution can be stated as: A pair of strategies
{row k∗, column l∗} is said to constitute a noncooperative (Nash) equilibrium
solution to the bimatrix game, if the following pair of inequalities are satisfied,
∀ k = 1, 2, . . . , |Pq

i | and ∀ l = 1, 2, . . . , |
∏N

j=1
j �=i

Pq
j |

m1,i
k∗l∗ ≥ m1,i

kl∗ , m2,i
k∗l∗ ≥ m2,i

k∗l (40)

The agent Ai considers strategy k∗ as its equilibrium strategy. Each agent
computes the two search effectiveness matrices and considers k∗ as its equi-
librium strategy. The dimension for the search effectiveness matrix is



Team, Game, and Negotiation based UAV Task Allocation 67

|Pq
i | × |

N∏

j=1
j �=i

Pq
j | (41)

The pure strategy Nash equilibrium may not always exist, in which case we
have to use mixed strategy equilibrium. The main disadvantage of using the
earlier model is that, if there is no inner mixed strategy Nash solution then
we may not be able to find a feasible solution. However, in this model we can
directly use the bilinear programming method to compute the mixed strategies
equilibrium.

A pair {y∗, z∗} constitutes a mixed-strategy Nash Equilibrium solution
to a bimatrix game (M1,i,M2,i) if, and only if, their exists a pair (f∗, g∗)
such that {y∗, z∗, f∗, g∗} is a solution of the following bilinear programming
problem:

min
y,z,f,g

[−y
′
M1,iz − y

′
M2,iz + f + g] (42)

subject to

− M1,iz ≥ −f · 1|Pq
i
|, − M2,i′z ≥ −g · 1|∏N

j=1
j �=i

Pq
j
|

y ≥ 0, z ≥ 0, y
′ · 1|Pq

i
| = 1, z · 1|∏N

j=1
j �=i

Pq
j
| = 1 (43)

where 1|Pq
1 (Cs1 )| and 1|

∏N
j=1
j �=i

Pq
j
| are column vectors of dimensions |Pq

i | and

|
∏N

j=1
j �=i

Pq
j |, with all elements equal to 1.

Security Strategy

In security strategy the individual agents try to secure their minimal profits
assuming adversarial behavior of the other players. For this purpose, the coali-
tional form given above is the ideal framework to obtain security strategies.
Then, agent Ai chooses a ’row k∗’ whose smallest entry is no smaller than the
smallest entry of any other row, which implies

V
¯
(M1,i) = max

k
min

l
m1,i

kl , k∗ = arg max
k

{min
l

m1,i
kl } (44)

where, k = 1, 2, . . . , |Pq
i |, and l represents a particular combination of strate-

gies used by the N − 1 agents and

l = 1, 2, . . . , |
N∏

j=1
j �=i

Pq
j | (45)

Further, k∗ is the security strategy for Ai, and V
¯
(M i) is the guaranteed payoff

to Ai. Every agent computes the security strategy individually and adopts the
route given by k∗.



68 P.B. Sujit et al.

Cooperative Strategy

In this strategy the agents communicate during the decision process. The
agents jointly choose a strategy such that the joint payoff of the game is maxi-
mized. Each agent computes the same search effectiveness function M and
decides it’s q step look ahead path using the function M . For N agents, let the
search effectiveness function be M = m1(P1, . . . , PN ) + . . . + mN (P1, . . . , PN )
which represents the joint payoff due to all the agents’ actions. A N -tuple of
strategies (P ∗

1 , . . . , P ∗
N ) is said to be a cooperative strategy, if the following

condition is satisfied:

m1(P ∗
1 , . . . , P ∗

N ) + . . . + mN (P ∗
1 , . . . , P ∗

N ) = M(P ∗
1 , . . . , P ∗

N ) ≥
M(P1, . . . , PN ) = m1(P1, . . . , PN ) + . . . + mN (P1, . . . , PN ),∀ Pi ∈ Pq

i (46)

The cooperative strategy used in game theory involves communication
between the players to coordinate their actions and arrive at a mutually
acceptable decision. The drawback of cooperative strategy, when used in eco-
nomics, where the players are selfish by nature, is that player may violate
the mutually decided upon agreement to earn larger benefits at the cost of
others. In our scenario, since the agents are automated, they can be assumed
to be altruistic and hence they do not violate the decided upon agreement.
Hence, using the search effectiveness functions, each agent can also compute
the cooperative strategy without explicit communication between the agents.
The equilibrium solution remains the same whether communication is present
or not, provided that all the agents possess the same uncertainty map.

Greedy Strategy

In this case, the agents do not communicate among themselves and use a
greedy strategy to determine their future actions. This is similar to the non-
cooperative strategy used in [32]. The agent chooses a path P k

i with a look
ahead policy of q, using the following relation:

mi(P k
i ) ≥ mi(P j

i ), ∀ j = 1, 2, . . . , |Pq
i | (47)

where mi(P k
i ) is the benefit obtained by agents Ai using path P k

i and it is
evaluated using Eqn. (29).

Selection of Strategies

When there are multiple solutions, the selection of strategies by players
becomes a crucial issue. The security and greedy strategies are straightfor-
ward to implement. If there exists multiple security or greedy strategies, any
one of them will guarantee the same payoff level. In fact, for security strategies
the actual payoff is bound to be higher for the players so long as they stick to



Team, Game, and Negotiation based UAV Task Allocation 69

their security strategies. In the case of multiple cooperative strategies, since
all players communicate with each other during the decision process, they can
decide to adopt a strategy which is beneficial to the overall team goal. One
can also devise some protocol to automate this selection so that communica-
tion between agents can be dispensed with. But when multiple solutions occur
for pure or mixed strategy Nash equilibrium, the agents have to select one of
them. Since every agent can evaluate the search effectiveness function of all the
other agents, they can jointly select a solution whose joint payoff is maximum.
The selection of solution does not involve any communication with the other
agents, but uses the available data through evaluation of search effectiveness
functions. The solution method of choosing a strategy that would maximize
the agents benefit is common for all the agents. When a mixed strategy equi-
librium exists then agents can make a choice based on maximum likelihood
or by random number generation. Here, we choose the maximum likelihood
method.

5.3 Simulation Results

For the purpose of simulation, a region composed of hexagonal grids of size
30×30 is considered. We consider five agents with randomly located initial
positions in the search space. We initially assume a perfect information case
where each agent has the same uncertainty map throughout the search oper-
ation, although it is not a necessary condition. A typical uncertainty map is
shown in Figure 8 along with the initial positions of the searchers. The per-
centage of uncertainty in a cell is proportional to the size of the grey area in
the cell. The total uncertainty in the search space is defined as the sum of the
uncertainties in all the cells.

The uncertainty map is updated at every search step in time. The simula-
tion is carried out for look ahead step lengths of q = 1 and q = 2. The agents’
uncertainty reduction factors are assumed to remain constant throughout the

Fig. 8. A typical uncertainty map for 30×30 hexagonal grid



70 P.B. Sujit et al.

0 20 40 60 80 100 120 140 160 180 200
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
x 104

Number of steps

A
ve

ra
ge

 to
ta

l u
nc

er
ta

in
ty

q = 1

Greedy
Security

Nash
Coalition
Cooperative

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 104

Number of steps

A
ve

ra
ge

 to
ta

l u
nc

er
ta

in
ty

q = 2

Greedy
Security

Nash
Coalition Nash
Cooperative

Fig. 9. Performance of various strategies for q = 1 and q = 2 averaged over 50 maps
and with same initial searcher positions

search operation and have values β1 = 0.5, β2 = 0.4, β3 = 0.6, β4 = 0.8, and
β5 = 0.7. We will study the performance of various game theoretical strategies
on total uncertainty reduction in a search space.

The simulation was carried out for 50 different uncertainty maps with the
same initial placement of agents and same total uncertainty in each map. The
positions of the searchers are as shown in Figure 8 and the total initial uncer-
tainty in each map is assumed to be 4.75×104. The average total uncertainty
is the average of the total uncertainty for the 50 maps at each step, computed
up to a total of 200 search steps.

Figure 9 shows the comparative performance of various strategies with
different look ahead policies of q = 1 and q = 2. We can see that the average
total uncertainty reduces with each search step. The cooperative, noncoop-
erative Nash, and coalitional Nash strategies perform equally well and they
are better than the other strategies. From this figure we can see that for all
the search strategies, look ahead policy of q = 2 performs better than q = 1,
which is expected.

However, with the increase in look ahead policy length the computational
time also increases significantly. Figure 10 gives the complete information
on the computational time requirements of each strategy for q = 1 and
q = 2. Since we consider 50 uncertainty maps, 5 agents, and 200 search steps,
there are 5× 104 number of decision epochs involved in the complete simula-
tion. We plot the computational time needed by each decision epoch, where
(i-1) × 103 + 1 to i × 103 decision epochs (marked on the vertical axis) are
the decisions taken for searching the i-th map. So each point on the graph
represents the time taken by the search algorithm to compute the search
effectiveness function (wherever necessary) and arrive at the route decision.
These computation times are obtained using a dedicated 3 GHz, P4 machine.
All decision epochs that take computation time ≤ 10−3 seconds are plotted
against time 10−3 seconds. The last plot in each set of graphs shows the dis-
tribution of computation times for various strategies in terms of the total
number of decision epochs that need computation time less than the value



Team, Game, and Negotiation based UAV Task Allocation 71

on the horizontal axis. These plots reveal important information about the
computational effort that each strategy demands.

Finally, we carried out another simulation to demonstrate the utility of
the Nash strategies when the perceived uncertainty maps of the agents are
different from the actual uncertainty map. For this it was assumed that the
uncertainty reduction factors (β) of the agents fluctuate with time due to
fluctuation in the performance of their sensor suites due to environmental
or other reasons. Each agent knows its own current uncertainty reduction
factor perfectly but assumes that the uncertainty reduction factors of the
other agents to be the same as their initial value. This produces disparity
in the uncertainty map between agents and from the actual uncertainty map
which evolves according to the true β values as the search progresses. The
variation in the value of β for the five agents are shown in Figure 11.

In this situation the total uncertainty reduction is as shown in Figure 12,
which shows that both the Nash strategies, which do not make any assumption

10-3 10-2 10-1 100 101 102
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

x 10
4

Time in seconds

N
um

be
r 

of
 d

ec
is

io
n 

ep
oc

hs

q = 1

security

cooperative

greedy
Nash

Coalitional Nash

10-3 10-2 10-1 100 101 102
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5
x 104

Time in seconds

N
um

be
r 

of
 d

ec
is

io
n 

ep
oc

hs

q = 2

security

greedy

Nash & Coalitional Nash

Cooperative

Fig. 10. Computational time of various strategies for q = 2 for random initial
uncertainty maps

0 20 40 60 80 100 120 140 160 180 200

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

β

Variation of β with time steps
β1

β
2

β
3

β
4

β
5

Fig. 11. Variation in the uncertainty reduction factors



72 P.B. Sujit et al.

0 20 40 60 80 100 120 140 160 180 200
1.5

2

2.5

3

3.5

4

4.5

5 x 104

Number of steps

T
ot

al
 u

nc
er

ta
in

ty
q = 1

GreedyCooperative

Nash 
Coalition Nash

0 20 40 60 80 100 120 140 160 180 200
1.5

2

2.5

3

3.5

4

4.5

5 x 104

Number of steps

T
ot

al
 u

nc
er

ta
in

ty

q = 2

Greedy

Cooperative

Nash
Coalition Nash

Fig. 12. Performance in the non-ideal case with varying β

about the other agents’ actions, perform equally well and are also better than
the cooperative strategy which assumes cooperative behavior from the other
agents.

6 Conclusions

In this chapter, we addressed the problem of task allocation among auto-
nomous UAVs operating in a swarm using concepts from team theory, negoti-
ation, and game theory, and showed that effective and intelligent strategies can
be devised from these well-known theories to solve complex decision-making
problems in multi-agent systems. The role of communication between agents
was explicitly accounted for in the problem formulation. This is one of the
first use of these concepts to multi-UAV task allocation problems and we
hope that this framework and results will be a catalyst to further research in
this challenging area.

Acknowledgements

This work was partially supported by the IISc-DRDO Program on Advanced
Research in Mathematical Engineering.

References

1. C. Schumacher, P. Chandler, S. J. Rasmussen: Task allocation for wide area
search munitions via iterative netowrk flow, AIAA Guidance, Navigation, and
Control Conference and Exhibit, August, Monterey, California, 2002, AIAA
2002–4586

2. J.W. Curtis and R. Murphey: Simultaneaous area search and task assignment
for a team of cooperative agents, AIAA Guidance, Navigation, and Control
Conference and Exhibit, August, Austin, Texas, 2003, AIAA 2003–5584



Team, Game, and Negotiation based UAV Task Allocation 73

3. P.B. Sujit, A. Sinha, and D. Ghose: Multi-UAV task allocation using team the-
ory, Proc. of the IEEE Conference on Decision and Control, Seville, Spain,
December 2005, pp. 1497–1502

4. P.B. Sujit and D. Ghose, Multiple agent search in an unknown environment
using game theoretical models, Proc. of the American Control Conference,
Boston, pp. 5564–5569, 2004

5. P.B. Sujit and D. Ghose: Search by UAVs with flight time constraints using
game theoretical models, Proc. of the AIAA Guidance Navigation and Con-
trol Conference and Exhibit, San Francisco, California, August 2005, AIAA-
2005-6241

6. P.B. Sujit, A. Sinha and D. Ghose: Multiple UAV Task Allocation using Negotia-
tion, Proceedings of Fifth International joint Conference on Autonomous Agents
and Multiagent Systems, Japan, May. 2006 (to appear)

7. P.B. Sujit and D. Ghose: Multi-UAV agent based negotiation scheme, Proc. of
the American Control Conference, Portland, Oregon, June 2005, pp. 2995–3000

8. P.B. Sujit and D. Ghose: A self assessment scheme for multiple-agent search,
Proc. of the American Control Conference, Minneapolis, June 2006 (to appear)

9. K.E. Nygard, P.R. Chandler, M. Pachter: Dynamic network flow optimization
models for air vehicle resource allocation, Proc. of the the American Control
Conference, June 2001, Arlington, Texas, pp. 1853–1858

10. C. Schumacher, P. Chandler, M. Pachter, L.S. Pachter: UAV task assignment
with timing constraints, AIAA Guidance, Navigation, and Control Conference
and Exhibit, August, Austin, Texas, 2003, AIAA 2003–5664

11. C. Schumacher and P. Chandler: UAV task assignment with timing constraints
via mixed-integer linear programming, AIAA Unmanned Unlimited Techni-
cal Conference, Workshop and Exhibit, Chicago, Illinois, Sept. 2004, AIAA-
2004-6410

12. M. Alighanbari and J. How: Robust decentralized task assignment for coopera-
tive UAVs, AIAA Guidance, Navigation, and Control Conference and Exhibit,
Keystone, Colorado, Aug. 21–24, 2006

13. M. Darrah, W. Niland and B. Stolarik: UAV cooperative task assignments
for a SEAD mission using genetic algorithms, AIAA Guidance, Navigation,
and Control Conference and Exhibit, Keystone, Colorado, Aug. 2006, AIAA-
2006-6456

14. C. Schumacher, P.R. Chandler, S. J. Rasmussen, and D. Walker: Task allocation
for wide area search munitions with variable path length, Proc. of the American
Control Conference, June, Denver, Colorado, 2003, pp. 3472–3477

15. D. Turra, L. Pollini, and M. Innocenti: Real-time unmanned vehicles task alloca-
tion with moving targets, AIAA Guidance, Navigation, and Control Conference
and Exhibit, Providence, Rhode Island, August 2004, AIAA 2004–5253

16. Y. Jin, A. A. Minai, M. M. Polycarpou: Cooperative real-time search and task
allocation in UAV teams, IEEE Conference on Decision and Control, Maui,
Hawaii, December 2003, Vol. 1 , pp. 7–12

17. M.B. Dias and A. Stentz: A free market architecture for distributed control of
a multirobot system, 6th International Conference on Intelligent Autonomous
Systems, Venice, Italy, July 2000, pp. 115–122

18. M.B. Dias, R.M. Zlot, N. Kalra, and A. Stentz: Market-based multirobot coor-
dination: A survey and analysis, Technical report CMU-RI-TR-05-13, Robotics
Institute, Carnegie Mellon University, April 2005



74 P.B. Sujit et al.

19. B. Gerkey, and M.J. Mataric: Sold!: Auction methods for multi-robot control,
IEEE Transactions on Robotics and Automation, Vol. 18, No. 5, October 2002,
pp. 758–768

20. B. Gerkey, and M.J. Mataric: A formal framework for the study of task allocation
in multi-robot systems, International Journal of Robotics Research, Vol. 23,
No.9, Sep 2004, pp. 939–954

21. M.J. Mataric, G.S. Sukhatme, and E.H. Stergaard: Multi-robot task allocation
in uncertain environments, Autonomous Robots, Vol. 14, 2003, pp. 255–263

22. P. Gurfil: Evaluating UAV flock mission performance using Dudeks taxon-
omy, Proc. of the American Control Conference, Portland, Oregon, June 2005,
pp. 4679–4684

23. M. Lagoudakis, P. Keskinocak, A. Kleywegt, and S. Koenig: Auctions with per-
formance guarantees for multi-robot task allocation, Proc. of the IEEE Interna-
tional Conference on Intelligent Robots and Systems, Sendai, Japan, September
2004, pp. 1957–1962

24. S. Sariel and T. Balch: Real time auction based allocation of tasks for multi-
robot exploration problem in dynamic environments, AAAI workshop on Inte-
grating Planning into Scheduling, Pittsburgh, Pennsylvania, July 2005, Eds.
Mark Boddy, Amedeo Cesta, and Stephen F. Smith, pp. 27–33

25. J. Marschak: Elements for a theory of teams, Management Science, Vol. 1, No.
2, Jan 1955, pp. 127–137

26. R. Radner: The linear team: An example of linear programming under uncer-
tainty, Proc. of 2nd Symposium in Linear Programming, Washington D.C, 1955,
pp. 381–396

27. S. Kraus: Automated negotiation and decision making in multiagent envi-
ronments, Multi-Agent Systems and Applications, Springer LNAI 2086, (Eds.)
M.Luck, V. Marik, O. Stepankova, and R. Trappl, 2001, pp. 150–172

28. A. Rubinstein: Perfect equilibrium in a bargaining model, Econometrica, Vol.
50, No. 1, 1982, pp. 97–109

29. K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu, Y. Yang, M. Flint,
and M. Baum: Cooperative control for autonomous air vehicles, Cooperative
Control and Optimization, (R. Murphey and P. M. Pardalos, eds.), vol. 66,
Kluwer Academic Publishers, 2002, pp. 233–271

30. R.F. Dell, J.N. Eagel, G.H.A. Martins, and A.G. Santos: Using multiple
searchers in constrained-path, moving-target search problems, Naval Research
Logistics, Vol. 43, pp. 463–480, 1996

31. T. Basar and G.J. Olsder: Dynamic Noncooperative Game Theory, Academic
press, CA 1995

32. S. Ganapathy and K.M. Passino: Agreement strategies for cooperative control
of uninhabited autonomous vehicles, Proc. of the American Control Conference,
Denver, Colorado, 2003, pp. 1026–1031

Author Biographies

P.B. Sujit has received his Bachelor’s Degree in Electrical Engineering from
the Bangalore University, MTech from Visveswaraya Technological University,
and PhD from the Indian Institute of Science, Bangalore. At present, he is a
Post Doctoral Fellow at Brigham Young University, Provo, Utah. His research



Team, Game, and Negotiation based UAV Task Allocation 75

interests include multi-agent systems, cooperative control, search theory, game
theory, economic models, and task allocation.

A. Sinha has received her Bachelor’s Degree in Electrical Engineering from
Jadavpur University, Kolkata, India, and MTech from Indian Institute of Tech-
nology, Kanpur, India. At present she is a graduate student at the Department
of Aerospace Engineering, Indian Institute of Science, Bangalore, India. Her
research interests include cooperative control of autonomous agents, team the-
ory, and game theory.

D. Ghose is a Professor in the Department of Aerospace Engineering at the
Indian Institute of Science, Bangalore, India. He obtained a BSc(Engg) degree
from the National Institute of Technology (formerly the Regional Engineer-
ing College), Rourkela, India, in 1982, and an ME and a PhD degree, from
the Indian Institute of Science, Bangalore, in 1984 and 1990, respectively.
His research interests are in guidance and control of aerospace vehicles, col-
lective robotics, multiple agent decision-making, distributed decision-making
systems, and scheduling problems in distributed computing systems. He is an
author of the book Scheduling Divisible Loads in Parallel and Distributed Sys-
tems published by the IEEE Computer Society Press (presently John Wiley).
He is in the editorial board of the IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, and the IEEE Transactions on
Automation Science and Engineering. He has held visiting positions at the
University of California at Los Angeles and several other universities. He is
an elected fellow of the Indian National Academy of Engineering.



UAV Path Planning Using Evolutionary
Algorithms

Ioannis K. Nikolos, Eleftherios S. Zografos, and Athina N. Brintaki

Department of Production Engineering and Management,
Technical University of Crete, University Campus,
Kounoupidiana, GR-73100, Chania, Greece
jnikolo@dpem.tuc.gr

Abstract. Evolutionary Algorithms have been used as a viable candidate to solve
path planning problems effectively and provide feasible solutions within a short time.
In this work a Radial Basis Functions Artificial Neural Network (RBF-ANN) assisted
Differential Evolution (DE) algorithm is used to design an off-line path planner for
Unmanned Aerial Vehicles (UAVs) coordinated navigation in known static maritime
environments. A number of UAVs are launched from different known initial locations
and the issue is to produce 2-D trajectories, with a smooth velocity distribution along
each trajectory, aiming at reaching a predetermined target location, while ensuring
collision avoidance and satisfying specific route and coordination constraints and
objectives. B-Spline curves are used, in order to model both the 2-D trajectories
and the velocity distribution along each flight path.

1 Introduction

1.1 Basic Definitions

The term unmanned aerial vehicle or UAV, which replaced in the early 1990s
the term remotely piloted vehicle (RPV), refers to a powered aerial vehicle
that does not carry a human operator, uses aerodynamic forces to provide
vehicle lift, can fly autonomously or be piloted remotely, can be expendable
or recoverable, and can carry a lethal or non lethal payload [1]. UAVs are
currently evolving from being remotely piloted vehicles to autonomous robots,
although ultimate autonomy is still an open question.

The development of autonomous robots is one of the major goals in Robot-
ics [2]. Such robots will be capable of converting high-level specification of
tasks, defined by humans, to low-level action algorithms, which will be exe-
cuted in order to accomplish the predefined tasks. We may define as plan this
sequence of actions to be taken, although it may be much more complicated
than that. Motion planning (or trajectory planning) is one category of such

I.K. Nikolos et al.: UAV Path Planning Using Evolutionary Algorithms, Studies in Computa-

tional Intelligence (SCI) 70, 77–111 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



78 I.K. Nikolos et al.

problems. Besides the great variety of planning problems and models found
in Robotics, some basic terms are common throughout the entire subject.

The state space includes all possible situations that might arise during
the planning procedure. In the case of an UAV each state could represent its
position in physical space, along with its velocity. The state space could be
either discrete or continuous; motion planning is planning in continuous state
spaces. Although its definition is an important component of the planning
problem formulation, in most cases is implicitly represented, due to its large
size [3].

Planning problems also involve the time dimension. Time may be explicitly
or implicitly modeled and may be either discrete or continuous, depending
on the planning problem under consideration. However, for most planning
problems, time is implicitly modeled by simply specifying a path through a
continuous space [3].

Each state in the state space changes through a sequence of specific actions,
included in the plan. The connection between actions and state changes should
be specified through the use of proper functions or differential equations.
Usually, these actions are selected in a way to “move” the object from an
initial state to a target or goal state.

A planning algorithm may produce various different plans, which should
be compared and valued using specific criteria. These criteria are generally
connected to the following major concerns, which arise during a plan gen-
eration procedure: feasibility and optimality. The first concern asks for the
production of a plan to safely “move” the object to its target state, without
taking into account the quality of the produced plan. The second concern asks
for the production of optimal, yet feasible, paths, with optimality defined in
various ways according to the problem under consideration [3]. Even in simple
problems searching for optimality is not a trivial task and in most cases results
in excessive computation time, not always available in real-world applications.
Therefore, in most cases we search for suboptimal or just feasible solutions.

Motion planning usually refers to motions of a robot (or a collection of
robots) in the two-dimensional or three-dimensional physical space that con-
tains stationary or moving obstacles. A motion plan determines the appropri-
ate motions to move the robot from the initial to the target state, without
colliding into obstacles. As the state space in motion planning is continuous, it
is uncountably infinite. Therefore, the representation of the state space should
be implicit. Furthermore, a transformation is often used between the real world
where the robots are moving and the space in which the planning takes place.
This state space is called the configuration space (C-space) and motion plan-
ning can be defined as a search for a continuous path in this high-dimensional
configuration space that ensures collision avoidance with implicitly defined
obstacles. However, the use of configuration space is not always adopted and
the problem is formulated in the physical space; especially in cases with con-
stantly varying environment (as in most of UAV applications) the use of confi-
guration space results in excessive computation time, which is not available in



UAV Path Planning Using Evolutionary Algorithms 79

real-time in-flight applications. Path planning is the generation of a space path
between an initial location and the desired destination that has an optimal or
near-optimal performance under specific constraints [4]. A detailed descrip-
tion of motion and path planning theory and classic methodologies can be
found in [2] and in [3].

1.2 Cooperative Robotics

The term collective behavior denotes any behavior of agents in a system of
more than a single agent. Cooperative behavior is a subclass of collective behav-
ior which is characterized by cooperation [5]. Research in cooperative Robot-
ics has gained increased interest since the late 1980’s, as systems of multiple
robots engaged in cooperative behavior show specific benefits compared to a
single robot [5]:

• Tasks may be inherently too complex, or even impossible, for a single
robot to accomplish, or the performance is enhanced if using multiple
agents, since a single robot, despite its capabilities and characteristics, is
spatially limited.

• Building or using a system of simpler robots may be easier, cheaper,
more flexible and more fault-tolerant than using a single more compli-
cated robot.

In [5] cooperative behavior is defined as follows: Given some tasks specified
by a designer, a multiple robot system displays cooperative behavior if, due
to some underlying mechanism, i.e. the “mechanism of cooperation”, there is
an increase in the total utility of the system.

Geometric problems arise when dealing with cooperative moving robots,
as they are made to move and interact with each other inside the physical 2D
or 3D space. Such geometric problems include multiple-robot path planning,
moving to and maintaining formation, and pattern generation [5].

According to Fujimura [6], path planning can be either centralized or distri-
buted. In the first case a universal path planner makes all decisions. In the sec-
ond case each agent plans and adjusts its path. Furthermore, Arai and Ota [7]
allow for hybrid systems that are combinations of on-line, off-line, centralized,
or decentralized path planners. According to Latombe [2], centralized planning
takes into account all robots, while decoupled planning corresponds to indep-
endent computation of each robot’s path. Methods originally used for single
robots can be also applied to centralized planning. For decoupled planning
two approaches were proposed: a) prioritized planning, where one robot at a
time is considered, according to a global priority, and b) path coordination,
where the configuration space-time resource is appropriately scheduled to plan
the paths.

Cooperation of UAVs has gained recently an increased interest due to the
potential use of such systems for fire fighting applications, military missions,



80 I.K. Nikolos et al.

search and rescue scenarios or exploration of unknown environments (space-
oriented applications). In order to establish a reliable and efficient frame-
work for the cooperation of a number of UAVs several problems have to be
encountered:

• UAV task assignment problem: a number of UAVs is required to per-
form a number of tasks, with predefined order, on a number of targets.
The requirements for a feasible and efficient solution include taking into
account: task precedence and coordination, timing constraints, and flyable
trajectories [8]. The task re-assignment problem should be also considered,
in order to take into account possible failure of a UAV to accomplish its
task. The task assignment problem is a well-known optimization problem;
it is NP-hard and, consequently, heuristic techniques are often used.

• UAV path planning problem: a path planning algorithm should provide
feasible, flyable and near optimal trajectories that connect starting with
target points. The requirement for feasible trajectories dictates collision
avoidance between the cooperating UAVs as well as between the vehicles
and the ground. The requirement of flyable trajectories usually dictates
a lower bound on the turn radius and speed of the UAVs [8]. Addition-
ally, an upper bound for the speed of each UAV may be required. The
path optimality can be defined in various ways, according to the mission
assigned. However, a typical requirement is to minimize the total length
of the paths.

• Data exchange between cooperating UAVs and data fusion: exchange
of information between cooperating UAVs is expected to enhance the
effectiveness of the team. However, in real world applications communica-
tion imperfections and constraints are expected, which will cause coordi-
nation problems to the team [9]. Decentralized implementations of the
decision and control algorithms may reduce the sensitivity to communi-
cation problems [10].

• Cooperative sensing of the targets: the problem is defined as how to
co-operate the UAV sensors in terms of their locations to achieve optimal
estimation of the state of each target [11] (a target localization problem).

• Cooperative sensing of the environment: the problem is defined as how
to cooperate the UAV sensors in order to achieve better awareness of
the environment (popup threats, changing weather conditions, moving
obstacles etc.). In this category we may include the coordinated search of
a geographic region [12].

1.3 Path Planning for Single and Multiple UAVs

Compared to the path-planning problem in other applications, path planning
for UAVs has some of the following characteristics, according to the mission
[13, 14, 15]:



UAV Path Planning Using Evolutionary Algorithms 81

• Stealth, in order to minimize the probability of detection by hostile radar,
by flying along a route which keeps away from possible threats and/or has
a lower altitude to avoid radar detection.

• Physical feasibility, which refers to the physical (or technology) limitations
from the use of UAVs, such as limited range, minimum turning angle,
minimum and maximum speed etc.

• Performance of mission, which imposes special requirements, including
maximum turning angle, maximum climbing/diving angle, minimum and/
or maximum flying altitude and specific approaching angle to the target
point.

• Cooperation between UAVs in order to maximize the possibility of mission
accomplishment.

• Real-time implementation, which asks for computationally efficient
algorithms.

The characteristics above imply special issues that have to be consi-
dered for an efficient modeling of the (single or multiple) UAV path planning
problems.

Path modeling:

The simpler way to model an UAV path is by using straight-line segments
that connect a number of way points, either in 2D or 3D space [12, 15]. This
approach takes into account the fact that in typical UAV missions the shortest
paths tend to resemble straight lines that connect way points with starting
and target points and the vertices of obstacle polygons. Although way points
can be efficiently used for navigating a flying vehicle, straight-line segments
connecting the corresponding way points cannot efficiently represent the real
path that will be followed by the vehicle. As a result, these simplified paths
cannot be used for an accurate simulation of the movement of the UAV in
an optimization procedure, unless a large number of way points is adopted.
In that case the number of design variables in the optimization procedure
explodes, along with the computation time. The problem becomes even more
difficult in the case of cooperating flying vehicles.

In [16], paths from the initial vehicle location to the target location
are derived from a graph search of a Voronoi diagram that is constructed
from the known threat locations. The resulting paths consist of line segments.
These paths are subsequently smoothed around each way point, in order to
provide feasible trajectories within the dynamic constraints of the vehicle. A
great advantage of the Voronoi diagram approach is that it reduces the path
planning problem from an infinite dimensional search, to a finite-dimensional
graph search. This important abstraction makes the path planning problem
feasible in near-real time, even for a large number of way points [16].

Vandapel et al. [17] used a network of free space bubbles to model the
path of small scale UAVs, in order to solve the path planning problem of
autonomous unmanned aerial navigation below the forest canopy. Using a



82 I.K. Nikolos et al.

priori aerial data scans of forest environments, they compute a network of
free space bubbles, which form safe paths within the forest environment.
Their approach is tailored to the problem of small scale UAVs and can be
decomposed into two steps: 1) the scene made of 3-D points is segmented
into three classes (ground, vegetation and tree trunk-branches). 2) A path
planning algorithm explores the segmented environment and computes con-
nected obstacle-free areas, which will subsequently form a network of tunnels
intersecting at some locations.

An alternative approach is to model the UAV dynamics using the Dubins
car formulation [18]. The UAV is assumed to fly with constant altitude,
constant flight speed and to have continuous time kinematics [19]. This
approach cannot efficiently model real world scenarios, which may include
3D terrain avoidance or following of stealthy routes. However, this approach
seems to be sufficient enough for task assignment purposes to cooperating
UAVs flying at safe altitudes [19, 8, 20].

B-Spline curves have been used for trajectory representation in 2-D
environments (simulated annealing based path line optimization, combined
with fuzzy logic controller for path tracking) [21], and in 3-D environments
(Evolutionary Algorithm based path line optimization for a UAV over rough
terrain) [22, 23]. B-Spline curves need a few variables (the coordinates of
their control points) in order to define complicated 2D or 3D curved paths,
providing at least first order derivative continuity. Each control point has a
very local effect on the curve’s shape and small perturbations in its position
produce changes in the curve only in the neighborhood of the repositioned
control point.

Cooperation Scenarios:

Path planning algorithms were initially developed for the solution of the prob-
lem of a single UAV. The increasing interest for missions involving cooperating
UAVs resulted in the development of algorithms that take into account the
special characteristics and constraints of such missions. The related works
present various scenarios, formulations and approaches connected to cooper-
ating UAV path planning problems. Some of the most representative scenarios
are presented below.

Beard et al. [16] considered the scenario where a group of UAVs is required
to transition through a number of known target locations, with a number
of threats in the region of interest. Some threats are known a priori, some
others “pop up” or become known only when a UAV flies near them. It is
desirable to have multiple UAVs arrive on the boundary of each target’s radar
detection region simultaneously. Collision avoidance is ensured by supposing
that individual UAVs fly at different pre-assigned altitudes. In this work the
problem is decomposed in several sub-problems: a) The assignment problem
of a number of UAVs to a number of targets in a way that each target has
multiple UAVs assigned to it, with a high preference to specific targets. b) The



UAV Path Planning Using Evolutionary Algorithms 83

determination for each team of UAVs assigned to a target of an estimated time
over target that ensures simultaneous intercept and is feasible for all UAVs
in the team. c) The determination of a path (specified via waypoints) that
can be completed within the specified time over target, taking into account
minimum and maximum velocity constraints. d) The transformation of the
initial path into a feasible UAV trajectory. e) The development of controllers
for each UAV to track their computed trajectory.

A simpler scenario is presented in [15], where the problem under consider-
ation is to generate routes for cooperating UAVs in real time, which take into
account the exposure of UAVs to the threats and enable the vehicles to arrive
at their goal location simultaneously. Some of the threats are known a priori,
some of them “pop up” or become known only when a UAV approaches to it.
For each UAV are imposed minimum and maximum velocity constraints. The
cooperation related constraints are: a) the simultaneous arrival of all UAVs
at goal locations, and b) the collision avoidance between UAVs.

In [20] the motion-planning problem for a limited resource of mobile sensor
agents (MSAs) is investigated, in an environment with a number of targets
larger than the available MSAs. The MSAs are assumed to move much faster
than the targets. In order to keep the targets in surveillance the members
of the MSA team have to fly back and forth to update the targets’ status.
This NP-hard problem is essentially a combination of the problems of sensor
resource management and robot motion planning. The problem is formulated
as an optimization problem whose objective is to minimize the average time
duration between two consecutive observations of each target.

In [12] the objective is to provide a coordinated plan for searching a geo-
graphic region, represented by a grid of cells, using a team of searchers. Each
cell is characterized by its elevation and a cost parameter that corresponds to
the danger of visiting it. Each vehicle carries a sensor, characterized by scan
radius, angle and direction. The mission objective is the target coverage, i.e.
the percentage of the region that must be scanned during the mission. Scans
can be performed only from safe cells (the cell and all 8 neighbors should
have been previously scanned). Additionally the path that connects scanning
points should traverse through already scanned cells (a soft constraint). For
safety reasons scanning paths are not allowed to be very close to each other.

Solution methodologies:

Path planning problems are actually multi-objective multi-constraint optimi-
zation problems, in most cases very complex and computationally demanding
[24]. The problem complexity increases when multiple UAVs should be used.
Various approaches have been reported for UAVs coordinated route planning,
such as Voronoi diagrams [16], mixed integer linear programming [25, 26] and
dynamic programming [27] formulations.

In [25, 26] mixed-integer linear programming (MILP) is used to solve
tightly-coupled task assignment problems with timing constraints. The



84 I.K. Nikolos et al.

advantage to this approach is that it yields the optimal solution for the given
problem. The primary disadvantage is the high computational time required.

In [16] the motion-planning problem was decomposed into a waypoint path
planner and a dynamic trajectory generator. The path-planning problem was
solved via a Voronoi diagram and Eppstein’s k-best paths algorithm. The
trajectory generator problem was solved via a real-time nonlinear filter that
explicitly accounts for the dynamic constraints of the vehicle and modifies
the initial path. This decomposition of the motion-planning problem has the
advantage of decomposing a non-polynomial optimization problem into two
sub-problems that can be computed in near-real time, with the disadvantage
of providing a suboptimal solution [16].

Computational intelligence methods, such as Neural Networks [28], Fuzzy
Logic [29] and Evolutionary Algorithms (EAs) [15, 23] (or, in some cases, a
combination of them) have been successfully used in the development of algo-
rithms that produce trajectories for guiding mobile robots in known, unknown
or partially known environments.

During the past few years, it has been shown by many researchers that
EAs are a viable candidate to solve path planning problems effectively and
provide feasible solutions within a short time without demanding excessive
computer power. The reasons behind choosing EAs as an optimization tool
for the path-planning problem are their high robustness compared to other
existing directed search methods, their ease of implementation in problems
with a relatively high number of constraints, and their high adaptability to
the special characteristics of the problem under consideration [23].

Traditionally, EAs have been used for the solution of the path-finding
problem in ground based or sea surface navigation [30]. Commonly, the gen-
erated trajectory composed of straight line segments, connecting successive
way points, that guided a mobile robot or a vehicle along a 2-D path on the
earth’s or sea’s surface. The design variables used represented the coordinates
of the way points, where the vehicle changes its direction. Other approaches
took into account the time dimension by using design variables that also
described the vehicle steady speed as it traversed a part of its path. When the
vehicle’s operational environment was partially known or dynamic, a feasible
and safe trajectory was planned off-line by the EA, and the algorithm was
used on-line whenever unexpected obstacles were sensed [31, 32]. EAs have
been also used for solving the path-finding problem in a 3-D environment for
underwater vehicles, assuming that the path is a sequence of cells in a 3-D
grid [33, 34].

In [23] an EA based framework was utilized to design an off-line/on-line
path planner for UAVs autonomous navigation. The path planner calculates
a curved path line, represented using B-Spline curves in a 3-D rough terrain
environment; the coordinates of B-Spline control points serve as design vari-
ables. The off-line planner produces a single B-Spline curve that connects
the starting and target points with a predefined initial direction. The on-line
planner gradually produces a smooth 3-D trajectory aiming at reaching a



UAV Path Planning Using Evolutionary Algorithms 85

predetermined target in an unknown environment; the produced trajectory
consists of smaller B-Spline curves smoothly connected with each other. For
both off-line and on-line planners, the problem is formulated as an optimiza-
tion one; each objective function is formed as the weighted sum of different
terms, which take into account the various objectives and constraints of the
corresponding problem. Constraints are formulated using penalty functions.

Changwen Zheng et al. [15] proposed a route planner for UAVs, based
on evolutionary computation, which can be used to plan routes for either
single or multiple vehicles. The flight route consists of straight-line segments,
connecting the way points from the starting to the goal points. A real coded
chromosome representation is used; for each way point its physical coordinates
are used as design variables, along with a state variable, which provides infor-
mation on the feasibility of the corresponding way point and the feasibility
of the route segment connecting the point to the next one. The cost func-
tion of flight route penalizes the length of the route, penalizes flight routes at
high altitudes and routes that come dangerously close to known ground threat
sites. The imposed constraints on route segments are relevant to: minimum
route leg length, maximum route distance, minimum flying height, maximum
turning angle, maximum climbing/diving angle, simultaneous arrival at tar-
get location and no collision between vehicles. The route planning problem
is formulated as the problem of minimization of the cost function under the
aforementioned constraints.

In [8] a multi-task assignment problem for cooperating UAVs is formulated
as a combinatorial optimization problem. A Genetic Algorithm is utilized for
assigning the multiple agents to perform multiple tasks on multiple targets.
The algorithm allows efficiently solving this NP-hard problem and, addition-
ally, allows taking into account requirements such as task precedence and
coordination, timing constraints, and flyable trajectories. The performance
metric for the optimization problem is defined as the cumulative distance
traveled by the vehicles to perform all of the required tasks; the objective is
to minimize this metric subject to the above requirements. Integer encoding
is used for the chromosomes, which are composed of two rows; the first row
presents the assignment of a vehicle to perform a task on the target appear-
ing on the second row. The algorithm was compared to a stochastic random
search and a deterministic branch and bound search methods and found to
provide near optimal solutions considerably faster than the other methods.

1.4 Outline of the Current Work

The following scenario was considered in this work: Assuming a number of
UAVs at different known initial locations, the issue is to produce 2-D tra-
jectories, with a desirable velocity distribution along each trajectory, reach-
ing a common target under specific coordination and route constraints. The
constraints and objectives refer to: minimum path lengths, collision avoid-
ance between the flying vehicles and the ground, predefined minimum and



86 I.K. Nikolos et al.

maximum UAV velocity magnitudes during their flights, predefined safety
distance between UAVs, near simultaneous arrival to the target and target
approach from different directions.

This work is an extension of a previous one [35], which used Differential
Evolution (DE) in order to find optimal paths of coordinated UAVs, with
the paths being modeled with straight line segments. The main drawback of
that approach was the need of a large number of segments for complicated
paths, resulting in a large number of design variables and, consequently, gen-
erations to converge. In this work the Differential Evolution (DE) algorithm is
combined with a Radial Basis Functions Network (RBFN), which serves as a
surrogate approximation, in order to reduce the number of exact evaluations
of candidate solutions. The candidate paths are modeled in the physical space
and evaluated with respect to the physical (working) space. B-Spline curves
are used for path line modeling, and complicated paths can be produced with
a small number of control variables.

The rest of the chapter is organized as follows: section 2 contains
B-Spline and Evolutionary Algorithms fundamentals; the solid terrain formu-
lation, used for experimental simulations, is also presented. An off-line path
planner for a single UAV will be briefly discussed in section 3, in order to
introduce the concept of UAV path planning using Evolutionary Algorithms.
Section 4 deals with the concept of coordinated UAV path planning using
Evolutionary Algorithms. The problem formulation is described, including
assumptions, objectives, constraints, objective function definition and path
modeling. Section 5 presents the optimization procedure using a combination
of Differential Evolution and a Radial Basis Functions Artificial Neural Net-
work, which is used as a surrogate model in order to enhance the converge
rate of Differential Evolution algorithm. Simulations results are presented in
section 6, followed by discussion and conclusions in section 7.

2 B-Spline and Evolutionary Algorithms Fundamentals

2.1 B-Spline Curves

Straight-line segments cannot represent a flying objects path line, as it is
usually the case with mobile robots, sea and undersea vessels. B-Splines are
adopted to define the UAV desired path, providing at least first order deriva-
tive continuity. B-Spline curves are well fitted in the evolutionary procedure;
they need a few variables (the coordinates of their control points) in order to
define complicated curved paths. Each control point has a very local effect on
the curve’s shape and small perturbations in its position produce changes in
the curve only in the neighborhood of the repositioned control point.

B-Spline curves are parametric curves, with their construction based on
blending functions [36, 37]. Their parametric construction provides the ability



UAV Path Planning Using Evolutionary Algorithms 87

to produce non-monotonic curves. If the number of control points of the cor-
responding curve is n + 1, with coordinates (x0, y0, z0), . . . , (xn, yn, zn), the
coordinates of the B-Spline curve may be written as

x (u) =
n∑

i=0

xi · Ni,p (u) , (1)

y (u) =
n∑

i=0

yi · Ni,p (u) , (2)

z (u) =
n∑

i=0

zi · Ni,p (u) , (3)

where u is the free parameter of the curve, Ni,p(u) are the blending functions
of the curve and p is its degree, which is associated with curve’s smoothness
(p + 1 being its order). Higher values of p correspond to smoother curves.

The blending functions are defined recursively in terms of a knot vector
U = {u0, . . . , um}, which is a non-decreasing sequence of real numbers, with
the most common form being the uniform non-periodic one, defined as

ui =

⎧
⎨

⎩

0 if i < p + 1
i − p if p + 1 ≤ i ≤ n
n − p + 1 if n < i.

(4)

The blending functions Ni,p are computed, using the knot values defined
above, as

Ni,0 (u) =
{

1 if ui ≤ u < ui+1

0 otherwise,
(5)

Ni,p (u) =
u − ui

ui+p − ui
Ni,p−1 (u) +

ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1 (u) . (6)

If the denominator of either of the fractions is zero, that fraction is defined
to have zero value. Parameter u varies between 0 and (n−p+1) with a constant
step, providing the discrete points of the B-Spline curve. The sum of the values
of the blending functions for any value of u is always 1.

The use of B-Spline curves for the determination of a flight path provides
the advantage of describing complicated non-monotonic 3-dimensional curves
with controlled smoothness with a small number of design parameters, i.e.
the coordinates of the control points. Another valuable characteristic of the
adopted B-Spline curves is that the curve is tangential to the control polygon
at the starting and ending points. This characteristic can be used in order to
define the starting or ending direction of the curve, by inserting an extra fixed
point after the starting one, or before the ending control point. Figure 1 shows
a quadratic 2-dimensional B-Spline curve (p = 2) with its control points and
the corresponding control polygon.



88 I.K. Nikolos et al.

Fig. 1. A quadratic (p = 2) 2-dimensional B-Spline curve, produced using a uniform
non-periodic knot vector, and its control polygon

2.2 Fundamentals of Evolutionary Algorithms (EAs)

EAs are a class of search methods with remarkable balance between exploita-
tion of the best solutions and exploration of the search space. They combine
elements of directed and stochastic search and, therefore, are more robust
than directed search methods. Additionally, they may be easily tailored to
the specific application of interest, taking into account the special character-
istics of the problem under consideration [38, 39, 30].

The natural selection process is simulated in EAs, using a number (popu-
lation) of individuals (candidate solutions to the problem) to evolve through
certain procedures. Each individual is represented through chromosome - a
string of numbers (bit strings, integers or floating point numbers), in a sim-
ilar way with chromosomes in nature; it contains the design variables of the
optimization problem. Each individual’s quality is represented by a fitness
function tailored to the problem under consideration.

Classic Genetic Algorithms (GAs) use binary coding for the representation
of the genotype. However, floating point coding moves EAs closer to the prob-
lem space, allowing the operators to be more problem specific; this provides a
better physical representation of the space constraints. Additionally, directed
search techniques gain physical meaning and they are easily applicable.

In general, EA starts by generating, randomly, the initial chromosome
population with their genes (the design variables in the case of floating point
coding) taking values inside the desired constrained space of each design vari-
able. The lower and higher constraints of each gene may be chosen in a way
that specific undesirable solutions may be avoided. Although the shortening of
the search space reduces the computation time, it may also lead to sub-optimal
solutions, due to the lower variability between the potential solutions.



UAV Path Planning Using Evolutionary Algorithms 89

After the evaluation of each individual’s fitness function, operators are
applied to the population, simulating the according natural processes. Applied
operators include various forms of recombination, mutation and selection,
which are used in order to provide the next generation chromosomes. The
first classic operator applied to the selected chromosomes is the one-point
crossover scheme. Two randomly selected chromosomes are divided in the
same (random) position, while the first part of the first one is connected to
the second part of the second one and vice-versa. The crossover operator is
used to provide information exchange between different potential solutions to
the problem.

The second classic operator applied to the selected chromosomes is the uni-
form mutation scheme. This asexual operator alters a randomly selected gene
of a chromosome. The new gene takes its random value from the constrained
space, determined in the beginning of the process. The mutation operator is
used in order to introduce some extra variability into the population.

The resulting intermediate population is evaluated and a fitness function is
assigned to each member of the population. Using a selection procedure (diff-
erent for each type of EA) the best individuals of the intermediate population
(or the best individuals of the intermediate and the previous population) will
form the next generation. The process of a new generation evaluation and
creation is successively repeated, providing individuals with high values of
fitness function.

2.3 The Solid Boundary Representation

In the simulation results that will be presented the terrain where UAVs fly is
represented by a meshed 3-D surface, produced using mathematical functions
of the form

z (x, y) = sin (y + a) + b · sin (x) + c · cos
(
d ·
√

x2 + y2
)

+ e · cos (y) + f · sin
(
f ·
√

x2 + y2
)

+ g · cos (y) , (7)

where a, b, c, d, e, f , g are constants experimentally defined, in order to
produce either a surface with mountains and valleys (as shown in Fig. 2) or a
maritime environment with islands close to each other (as shown in Fig. 6).

A graphical interface has been developed for the visualization of the terrain
surface, along with the path lines [23]. The corresponding interface deals with
different terrains produced either artificially or based on real geographical
data, providing an easy verification of the feasibility and the quality of each
solution. The path-planning algorithm considers the boundary surface as a
group of quadratic mesh nodes with known coordinates.



90 I.K. Nikolos et al.

Fig. 2. A typical simulation result of the off-line path planner for a single UAV;
the horizontal section of the terrain represents the imposed upper limit to the UAV
flight. The starting position is marked with a circle

3 Off-line Path Planner for a Single UAV

The off-line path planner, discussed in detail in [23], will be briefly presented
here, in order to introduce the concept of UAV path planning using Evo-
lutionary Algorithms. The off-line planner generates collision free paths in
environments with known characteristics and flight restrictions. The derived
path line is a single continuous 3-D B-Spline curve, while the solid bound-
aries are interpreted as 3-D rough surfaces. The starting and ending control
points of the B-Spline curve are fixed. A third point close to the starting one
is also fixed, determining the initial flight direction. Between the fixed control
points, free-to-move control points determine the shape of the curve, taking
values in the constrained space. The number of the free-to-move control points
is user-defined. Their physical coordinates are the genes of the EA artificial
chromosome.

The optimization problem to be solved minimizes a set of four terms,
connected to various objectives and constraints; they are associated with the
feasibility and the length of the curve, a safety distance from the obstacles and
the UAV’s flight envelope restrictions. The objective function to be minimized
is defined as

f =
4∑

i=1

wifi. (8)

Term f1 penalizes the non-feasible curves that pass through the solid
boundary. The penalty value is proportional to the number of discretized curve



UAV Path Planning Using Evolutionary Algorithms 91

points located inside the solid boundary; consequently, non-feasible curves
with fewer points inside the solid boundary show better fitness than curves
with more points inside the solid boundary. Term f2 is the length of the
curve (non-dimensional with the distance between the starting and destina-
tion points) used to provide shorter paths.

Term f3 is designed to provide flight paths with a safety distance from
solid boundaries

f3 =
nline∑

i=1

nground∑

j=1

1/ (di,j/dsafe)
2
, (9)

where nline is the number of discrete curve points, nground is the number of
discrete mesh points of the solid boundary, di,j is the distance between the
corresponding nodes and curve points, while dsafe is a safety distance from the
solid boundary. Term f4 is designed to provide curves with a prescribed mini-
mum curvature radius [23]. Weights wi are experimentally determined, using
as criterion the almost uniform effect of the last three terms in the objective
function. Term w1f1 has a dominant role in Eq. 8 providing feasible curves in
few generations, since path feasibility is the main concern. The minimization
of Eq. 8, through the EA procedure, results in a set of B-Spline control points,
which actually represent the desired path.

Initially, the starting and ending path-line points are determined, along
with the direction of flight. The limits of the physical space, where the vehicle
is allowed to fly (upper and lower limits of their Cartesian coordinates), are
also determined, along with the ground surface. The determined initial flight
direction is used to compute the third fixed point close to the starting one;
its position is along the flight direction and at a pre-fixed distance from the
starting point.

The EA randomly produces a number of chromosomes to form the initial
population. Each chromosome contains the physical coordinates of the free-
to-move B-Spline control points. Using Eqs. 1 to 6, with a constant step of
parameter u, a B-Spline curve is calculated for each chromosome of the popu-
lation in the form of a sequence of discrete points. Subsequently, each B-Spline
is evaluated, using the aforementioned criteria, and its objective function is
calculated. Using the EA procedure, the population of candidate solutions
evolves during the generations; at the last generation the population member
with the smallest value of objective function is the solution to the problem
and corresponds to the path line with the best characteristics according to
the aforementioned criteria.

The simulation runs have been designed in order to search for path lines
between “mountains”. For this reason, an upper ceiling for flight height has
been enforced, which is represented in the graphical environment by the hor-
izontal section of the terrain. A typical simulation result is demonstrated
in Fig. 2.



92 I.K. Nikolos et al.

4 Coordinated UAV Path Planning

This section describes the development and implementation of an off-line
path planner for Unmanned Aerial Vehicles (UAVs) coordinated navigation
and collision avoidance in known static maritime environments. The problem
formulation is described, including assumptions, objectives, constraints, objec-
tive function definition and path modeling.

4.1 Constraints and Objectives

The path planner was designed for navigation and collision avoidance of a
small team of autonomous UAVs in maritime environments. Known and static
environments are considered, characterized by the existence of a number of
islands with short distances between them. The flight height is assumed to
be almost constant, close to the sea-level, and the path-planning problem
is formulated as a 2-D one. Having N UAVs launched from different known
initial locations, the issue is to produce N 2-D trajectories, formed by B-Spline
curves, with a desirable velocity distribution along each trajectory, aiming at
reaching a predetermined target location, while ensuring collision avoidance
either with the environmental obstacles or with the UAVs. Additionally the
produced flight paths should satisfy specific route and coordination objectives
and constraints. Each vehicle is assumed to be a point, while its actual size is
taken into account by equivalent obstacle – ground growing.

The general constraint of the problem is the collision avoidance between
UAVs and the ground. The route constraints are:

(a) Predefined initial and target coordinates for all UAVs
(b) Predefined initial and final velocity magnitudes for all UAVs, and
(c) Predefined minimum and maximum UAV velocity magnitudes during their

flights.

Additionally, a single route objective is imposed: minimum path lengths,
for maximizing the effective range of each vehicle. All three route constraints
are explicitly taken into account by the optimization algorithm. The route
objective is implicitly handled by the algorithm, through the definition of the
objective function.

Besides route constraints and objective, coordination-relative constraints
and objectives are imposed, which are implicitly handled by the algorithm,
through the objective function definition. The coordination objectives used in
this work are the following:

(a) Each UAV should arrive at the target, using a different path and a different
approach vector, but the time of arrival for all UAVs should be as close
as possible.



UAV Path Planning Using Evolutionary Algorithms 93

(b) Approaching the target from different directions. All angles between
successive approaching directions should be as equal as possible, in order
to assure an almost uniform distribution of UAVs around the target during
their approach, for maximizing the probability of mission accomplishment.

The single coordination constraint is defined as keeping a minimum safety
distance between UAVs, in order to ensure:

(a) collision avoidance between UAVs, and
(b) a spatial separation between the corresponding flight corridors, which, for

some missions, increases the probability of survival.

4.2 Path Modeling Using B-Spline Curves

In this work each path is constructed using a B-Spline curve. Although the
resulting curve in the physical space should be a 2-D one, 3-D B-Spline curves
are utilized for the construction of each path. The two dimensions are used
for the production of the x, y coordinates in the physical space of motion
(horizontal plane), while the 3rd dimension corresponds to the velocity c along
the path. For this reason, each B-Spline control point is defined by 3 numbers,
corresponding to xk,j , yk,j , ck,j(k = 0, . . ., n, j = 1, . . ., N,N being the number
of UAVs, while n + 1 is the number of control points in each B-Spline curve,
the same for all curves). In this way a smooth variation of velocity c is defined
along the path. The first (k = 0) and last (k = n) control points of the control
polygon are the initial and target points of the jth UAV, which are predefined
by the user. The corresponding velocities c0,j , cn,j (launch and approaching
velocities) are also predefined by the user.

The control polygon of each B-Spline curve is defined by successive straight
line segments. For each segment, its length seg lengthk,j , and its direction
seg anglek,j are used as design variables (k = 1, . . ., n − 1, j = 1, . . ., N).
Design variables seg anglek,j are defined as the difference between the direc-
tion (in deg.) of the current segment and the previous one. For the first
segment of each control polygon seg angle1,j is measured from x-axis. Addi-
tionally, the UAVs’ velocities ck,j at each control point are used as design
variables, except for the starting and target points (where they are prede-
fined).

Using seg lengthk,j and seg anglek,j the coordinates of each B-Spline con-
trol point xk,j and yk,j can be easily calculated. The use of seg lengthk,j and
seg anglek,j as design variables instead of xk,j and yk,j was adopted for two
reasons. The first reason is the fact that abrupt turns of each flight path can
be easily avoided by explicitly imposing short lower and upper bounds for the
seg anglek,j design variables. The second reason is that by using the proposed
design variables a better convergence rate was achieved compared to the case
with the B-Spline control points’ coordinates as design variables. The latter
observation is a consequence of the shortening of the search space, using the



94 I.K. Nikolos et al.

proposed formulation. The lower and upper boundaries of each independent
design variable are predefined by the user. Velocity boundaries depend on the
flight envelope of each UAV. For the first segment of each control polygon
seg angle1,j upper and lower boundaries can be selected such as to define an
initial flight direction. Additionally, by selecting lower and upper boundaries
for the rest of seg anglek,j variables close to 0 degrees (for example −30◦ to
30◦), abrupt turns may be avoided.

4.3 Objective Function Formulation

The optimum flight path calculation for each UAV is formulated as a mini-
mization problem. The objective (cost) function to be minimized is formulated
as the weighted sum of five different terms

f =
5∑

i=1

wifi, (10)

where wi are the weights and fi are the corresponding terms described below.
Term f1 corresponds to the single route objective of short flight paths and

is defined as the sum of the non-dimensional lengths of all N flight paths
(B-Spline curves)

f1 =
N∑

j=1

lj , (11)

where lj is the non-dimensional length of the jth path, given as

lj =
Lj√

(xtarget − x0,j)
2 + (ytarget − y0,j)

2
− 1. (12)

In Eq. 12 Lj is the length of the jth path, xtarget, ytarget are the coordinates
of the target point and x0,j , y0,j are the coordinates of the jth starting point.
In Eq. 12, for the calculation of the non-dimensional length lj , the distance
between the starting and target points is subtracted, in order to obtain zero
f1 value for straight line paths.

Term f2 is a penalty term, designed in order to materialize the general
constraint of collision avoidance between UAVs and the ground. All N flight
paths are checked whether or not pass through each one of the M ground
obstacles. Discrete points are taken along each B-Spline path and they are
checked whether or not they lie inside an obstacle. If this is true for a discrete
point of the path line, a constant penalty is added to term f2. Consequently,
term f2 is proportional to the number of discrete points that lie inside obsta-
cles. Additionally, for each path line, a high penalty is added in case that even
one discrete point of the corresponding path lies inside an obstacle.

Term f3 was designed in order to take into account the second coordination
objective, i.e. the target approach from different directions. For each flight



UAV Path Planning Using Evolutionary Algorithms 95

1

2

3

4

Target

angle4= sort_angle1

angle1
angle2

Fig. 3. Definition of azimuth angles, calculated for the last control polygon segment
of each flight path

path the opposite to the flight direction azimuth angle of the last B-Spline
control polygon segment is calculated as (Fig. 3)

anglej =

⎧
⎨

⎩

arctan (∆y/∆x) if ∆y ≥ 0 and ∆x ≥ 0
2π − arctan (∆y/∆x) if ∆y < 0 and ∆x ≥ 0
π + arctan (∆y/∆x) if ∆x < 0

(13)

∆y = yn−1,j − yn,j , ∆x = xn−1,j − xn,j .

All calculated azimuth angles anglej , (j = 1, . . ., N) are sorted in a
descending order and stored as variables sort anglej . An additional variable
sort angleN+1 is calculated as

sort angleN+1 = sort angle1 − 2π. (14)

Subsequently, the deference between two successive sort anglej is calculated as

∆sort anglej = sort anglej − sort anglej+1, j = 1, . . . , N, (15)

where ∆sort anglej is the angle between two successive flight paths, connected
to the target point (Fig. 4). We define opt angle as

opt angle = 2π/N. (16)

Variable opt angle denotes the optimum angle between successive B-Spline
flight paths as UAVs are approaching the target, in order to have uniform
distribution of UAVs around the target.



96 I.K. Nikolos et al.

1

2

3

4

Target

Dsort_angle1

Dsort_angle2

Dsort_angle3

Dsort_angle4

Fig. 4. Definition of ∆sort anglej

Term f3 is then calculated as:

f3 =

N∑
j=1

|opt angle − ∆sort anglej |

ref angle
. (17)

In Eq. 17, ref angle is a small reference angle which is used to provide a
non-dimensional form of f3 and takes a value equal to π/20.

Term f4 is relevant to the single coordination constraint (keep a safety
distance between UAVs), while term f5 is relevant to the first coordination
objective (arrival at target with minimum time intervals). For their calcula-
tion, a flight simulation is needed. Each candidate solution is defined by the
corresponding design variables. Then the coordinates of all B-Spline control
points are computed, while the coordinates and the velocities at the starting
and target points are predefined by the user. Assuming a simultaneous launch-
ing of all UAVs at t = 0, a simulation of their flights is performed. According
to B-Spline theory [36, 37], each curve is constructed in the physical space by
giving specific values to the u parameter in the parametric space. Taking a
constant increment of u, discrete points are computed along each curve, with
the coordinates and velocity provided by the B-Spline function. Having the x,
y coordinates and the UAV velocity in each discrete point, the time needed
by the UAV to reach the next point can be easily computed. In this way,
starting from the initial point at t = 0, a time of arrival can be assigned to
each discrete point along each path. The time of arrival to the target for each
UAV is stored in variable t currj .

Taking a constant time step, linear interpolations between successive dis-
crete points are performed, and the position of each UAV is calculated for a



UAV Path Planning Using Evolutionary Algorithms 97

specific time step. Subsequently, the distances between all UAVs are calcu-
lated in each time step and in case that a distance is less than a predefined
safety distance dsafe, a penalty is added to term f4.

Term f5 is calculated as

f5 =
N∑

j=1

(t max−t currj) /t max (18)

where t max is the time of arrival of the last UAV. As the main objective is
to obtain feasible paths, weights in Eq. 10 were experimentally determined in
order term w2f2 dominate the rest.

5 The Optimization Procedure

5.1 Differential Evolution Algorithm

In this work, Differential Evolution (DE) [40, 41] is used as the optimization
tool. DE is an extremely simple to implement EA, which has demonstrated
better convergence performance than other EAs. Differential Evolution algo-
rithm represents a type of Evolutionary Strategy, especially formed in such
a way, so that it can effectively deal with continuous optimization problems,
often encountered in engineering design, being a recent development in the
field of optimization algorithms. The classic DE algorithm evolves a fixed size
population, which is randomly initialized. After initializing the population,
an iterative process is started and at each iteration (generation), a new popu-
lation is produced until a stopping condition is satisfied. At each generation,
each element of the population can be replaced with a new generated one.
The new element is a linear combination between a randomly selected ele-
ment and a difference between two other randomly selected elements. Below
a more analytical description of the algorithm’s structure is presented.

Given an objective function

fobj (X) : Rnparam → R, (19)

the optimization target is to minimize the value of this objective function by
optimizing the values of its parameters (design variables)

X =
(
x1, x2, . . . , xnparam

)
, xj ∈ R, (20)

where X denotes the vector composed of nparam objective function parameters
(design variables). These parameters take values between specific upper and
lower bounds

x
(L)
j ≤ xj ≤ x

(U)
j , j = 1, . . . , nparam. (21)



98 I.K. Nikolos et al.

The DE algorithm implements real encoding for the values of the objective
function’s parameters. In order to obtain a starting point for the algorithm,
an initialization of the population takes place. Often the only information
available is the boundaries of the parameters. Therefore the initialization is
established by randomly assigning values to the parameters within the given
boundaries

x
(0)
i,j = r ·

(
x

(U)
j − x

(L)
j

)
+ x

(L)
j , i = 1, . . . , npop, j = 1, . . . , nparam, (22)

where r is a uniformly distributed random value within range [0, 1]. DE’s
mutation operator is based on a triplet of randomly selected different individ-
uals. A new parameter vector is generated by adding the weighted difference
vector between the two members of the triplet to the third one (the donor).
In this way a perturbed individual is generated. The perturbed individual
and the initial population member are then subjected to a crossover opera-
tion that generates the final candidate solution

x
′(G+1)

i,j =

⎧
⎨

⎩
x

(G)
Ci,j

+ F ·
(
x

(G)
Ai,j

−x
(G)
Bi,j

)
if (r ≤ Cr ∨ j = k) ∀ j = 1, . . . , nparam

x
(G)
i,j otherwise ,

(23)
where x

(G)
Ci,j

is called the “donor”, G is the current generation,

i = 1, . . . , npop, j = 1, . . . , nparam

Ai ∈ [1, . . . , npop] , Bi ∈ [1, . . . , npop] , Ci ∈ [1, . . . , npop]
Ai �= Bi �= Ci �= i
Cr ∈ [0, 1] , F ∈ [0, 1+] , r ∈ [0, 1] ,

(24)

and k a random integer within [1, nparam], chosen once for all members of
the population. The random number r is seeded for every gene of each chro-
mosome. F and Cr are DE control parameters, which remain constant during
the search process and affect the convergence behaviour and robustness of the
algorithm. Their values also depend on the objective function, the character-
istics of the problem and the population size.

The population for the next generation is selected between the current
population and the final candidates. If each candidate vector is better fitted
than the corresponding current one, the new vector replaces the vector with
which it was compared. The DE selection scheme is described as follows (for
a minimization problem)

X
(G+1)
i =

⎧
⎨

⎩
X

′(G+1)

i if fobj

(
X

′(G+1)

i

)
≤ fobj

(
X

(G)
i

)

X
(G)
i otherwise .

(25)

A new scheme [42] to determine the donor for mutation operation is
used, for accelerating the convergence rate. In this scheme, donor is ran-
domly selected (with uniform distribution) from the region within the “hyper-
triangle”, formed by the three members of the triplet. With this scheme the



UAV Path Planning Using Evolutionary Algorithms 99

donor comprises the local information of all members of the triplet, provid-
ing a better starting-point for the mutation operation that result in a better
distribution of the trial-vectors. As it is reported in [42], the modified donor
scheme accelerated the DE convergence rate, without sacrificing the solution
precision or robustness of the DE algorithm.

The random number generation (with uniform probability) is based on
the algorithm presented in [43], which computes the remainder of divisions
involving integers that are longer than 32 bits, using 32-bit (including the
sign bit) words. The corresponding algorithm, using an initial seed, produces
a new seed and a random number. In each different operation inside the DE
algorithm that requires a random number generation, a different sequence
of random numbers is produced, by using a different initial seed for each
operation and a separate storage of the corresponding produced seeds. By
using specific initial seeds for each operation, it is ensured that the different
sequences differ by 100,000 numbers.

5.2 Radial Basis Function Network for DE Assistance

Despite their advantages, EAs ask for a considerable amount of evaluations.
In order to reduce their computational cost several approaches have been pro-
posed, such as the use of parallel processing, the use of special operators and
the use of surrogate models and approximations. Surrogate models are auxil-
iary simulations that are less physically faithful, but also less computationally
expensive than the expensive simulations that are regarded as “truth”. Sur-
rogate approximations are algebraic summaries obtained from previous runs
of the expensive simulation [44, 45]. Such approximations are the low-order
polynomials used in Response Surface Methodology [46, 47], the kriging esti-
mates employed in the design and analysis of computer experiments [48], and
the various types of Artificial Neural Networks [45]. Once the approximation
has been constructed, it is typically inexpensive to use.

DE has been demonstrated to be one of the most promising novel EAs, in
terms of efficiency, effectiveness and robustness. However, its convergence rate
is still far from ideal, especially when it is applied in optimization problems
with time consuming objective functions. In order to enhance the convergence
rate of DE algorithm, an approximation model is used for the objective func-
tion, based on a Radial Basis Functions Artificial Neural Network [49]. In
general a RBFN (Fig. 5), is a three layer, fully connected feed-forward net-
work, which performs a nonlinear mapping from the input space to the hidden
space (RL → RM ), followed by a linear mapping (RM → R1) from the hidden
to the output space (L is the number of input nodes, M is the number of
hidden nodes, while the output layer has a single node).

The corresponding output yy(xx), for an input vector xx=[xx1, xx2,. . . ,xxL]
is given

yy (xx) =
M∑

i=1

wi · ϕi (xx). (26)



100 I.K. Nikolos et al.

Fig. 5. A Radial Basis Function Artificial Neural Network

where ϕi(xx) is the output of the ith hidden unit

ϕi (xx) = G (‖xx − cci‖) , i = 1, . . . ,M. (27)

The connections (weights) to the output unit (wi, i=1,. . . ,M) are the only
adjustable parameters. The RBFN centers in the hidden units cci, i=1,. . . ,M
are selected in a way to maximize the generalization properties of the network.
The nonlinear activation function G in our case is chosen to be the Gaussian
radial basis function

G (u, σ) = exp
(
−u2

/
σ2
)
, (28)

where σ is the standard deviation of the basis function.
The selection of RBFN centers plays an important role for the predictive

capabilities and the generalization of the network. There are several strate-
gies that can be adopted concerning the selection of the radial-basis functions
centers in the hidden layer, while designing a RBFN. Haykin refers to the
following [49]: a) Random selection of fixed centers, which is the simplest
approach and the selection of centers from the training data set is a sensible
choice, given that the latter is adequately representative for the problem at
hand. b) Self-organized selection of centers, where appropriate locations for
the centers are estimated with the use of a clustering algorithm whose assign-
ment is to partition the training set in homogeneous subsets. c) Supervised



UAV Path Planning Using Evolutionary Algorithms 101

selection of centers, which is the most generalized form of a RBFN since the
location of the centers undergo a supervised learning process along with the
rest of the network’s free parameters.

The standard process is to select the input vectors in the training set as
RBFN centers. In this case results M=NR, where NR is the number of train-
ing data. For large training sets (resulting in large M values) this choice is
expected to increase storage requirements and CPU cost. Additionally, the
M=NR choice could lead to over-fitting and/or bad generalization of the
network. The proposed solution [49, 45] is the selection of M<NR and con-
sequently the search for sub-optimal solutions, which will provide a better
generalizing capability to the network.

As far as training is concerned, there are two different approaches, the
direct and the iterative learning. In our case the first approach was adopted.
The direct learning process is based on a matrix formulation of the governing
equations of RBF network. The presentation of the network with the NR input
patterns allows the formulation of a (NR × M) matrix H, which becomes
square in the special case when NR=M. Each line in the interpolation matrix
H corresponds to a learning example and each column to a RBFN center. The
output unit values result in the form of the matrix product:

H (NR × M) w (M × 1) = yy (NR × 1) , (29)

where yy is the desired output vector as provided by the training dada set,
and w is the synaptic weights vector, which consists of M unknowns to be
computed.

A possible way for inverting H is through the Gram-Schmidt technique.
H is first decomposed as

H = QR, (30)

with Q and R being (NR×M) and (M ×M) matrices respectively, where R
is upper triangular and

QTQ = diag (1, 1, . . . , 1) . (31)

After the computation of Q and R matrices, the weights vector can be com-
puted using back-substitution in

R(M × M)w(M × 1) = QT (M × NR)yy(NR × 1) (32)

There are several reasons why one should choose RBFN as the approxi-
mation model; Haykin [49] offers comparative remarks for RBFNs and Multi-
layer Perceptrons (MLPs). However, the main reason for choosing RBFNs is
their compatibility with the adopted local approximation strategy, as it is
described in the subsequent section. The use of relatively small numbers of
training patterns i.e. small networks, helps creating local range RBFNs. That
in turn allows the inversion of matrix H to use almost negligible CPU time
and the approximation error is kept very small. We should keep in mind that



102 I.K. Nikolos et al.

the computing cost associated with the use of neural networks is the cost of
training the networks, whereas the use of a trained network to evaluate a new
individual adds negligible computation cost [45].

5.3 Using RBFN for Accelerating DE Algorithm

In each DE generation, during the evaluation procedure, each trial vector
must be evaluated and then compared with the corresponding current vector,
in order to select the better-fitted between them to pass to the next genera-
tion. The concept is to replace the costly exact evaluations of trial vectors with
fast inexact approximations, and at the same time maintain the robustness
of the DE algorithm. During the evaluation phase, each trial vector is pre-
evaluated, using the approximate model. If it is pre-evaluated as lower-fitted
(higher objective function in minimization problems) than the corresponding
vector of the current population, then no further exact evaluation is needed
and the current vector is transferred to the next generation, while the trial
vector is abandoned. In case the trial vector is pre-evaluated as better fit-
ted than the corresponding current vector, then an exact re-evaluation takes
place after the pre-evaluation, along with a new comparison between the two
vectors. If the trial vector is still better-fitted than the current vector, then
the trial vector passes to the next generation. Otherwise the current vector is
the one that will pass to the next generation. Additionally, a small percent-
age of the candidate solutions, are selected with uniform probability to be
exactly evaluated, without taking into account their performance provided by
the approximation model. In the first two generations, all vectors are exactly
evaluated. According to the afore mentioned procedure, only exactly evaluated
trial vectors have the opportunity to pass to the new generation, so the cur-
rent population always comprises exactly evaluated individuals. In this way,
one part of the comparison (the current vector) is always an exact-evaluated
vector, and this enhances the robustness of the procedure.

The result of each evaluation (exact or inexact), along with the corre-
sponding chromosome, are stored in a database. In order to have a local
approximation model, only the best-fitted individuals of database entries are
used in each generation to re-train the RBFN. In this way the approxima-
tion model evolves with the population and uses only the useful information
for approximating the objective function. The surrogate model predictions
replace exact and costly evaluations only for the less-promising individuals,
while the more-promising ones are always exactly evaluated.

6 Simulation Results

The same artificial environment was used for all the test cases considered, with
different starting and target points. The (experimentally optimized) settings
of the Differential Evolution algorithm were as follows: population size = 50,



UAV Path Planning Using Evolutionary Algorithms 103

F = 0.99, Cr = 0.85. The algorithm was defined to terminate after 700 gener-
ations, although feasible solutions can be reached in less than 30 generations.
The large number of generations was used in order to compare the convergence
behavior between the original DE algorithm and the RBFN assisted one. For
the 4 test cases presented here, 3 free-to-move control points were used for
each B-Spline path, resulting in a total number of control points equal to 5
for each B-Spline curve (along with the fixed starting and target points). For
3 different paths (corresponding to 3 UAVs) and 3 free-to-move control points
for each path, a total number of 27 design variables are needed (seg lengthk,j ,
seg anglek,j and ck,j , for each pathj and each control point k).

Figures 6 to 9 present simulation results for the four different test cases,
using the RBFN assisted DE. For all test cases safety distance dsafe was set
equal to 12.5% of the length of each side of the rectangular terrain. For all test
cases, term f4 of the cost function converged to zero, indicating no violation
of the safety distance constraint. Concerning the time intervals between the
first and the last arrival to the target, for all the test cases considered this
time interval was kept less than about 3% of the flight duration (0.71% for the
1st case, 3.08% for the 2nd case, 1.33% for the 3rd case and 1.41% for the 4th
case). As it can be observed, term f3 of the fitness function managed to pro-
duce uniform distribution of UAVs around the target for all cases considered.
Even for the fourth test case a uniform distribution of UAV paths around the
target was achieved, although the target point was positioned very close to
an obstacle (island coast).

As it has been already stated, the main reason for introducing the RBFN
surrogate model was to speed-up the optimization procedure. However, as

Fig. 6. The first test case for the coordinated UAV path planning



104 I.K. Nikolos et al.

Fig. 7. The second test case for the coordinated UAV path planning

Fig. 8. The third test case for the coordinated UAV path planning

it was observed, the introduction of RBFN assistance resulted in a deeper
convergence (better final value of fitness function), compared to the original
DE. Both algorithms (the original DE and the RBFN assisted DE) were used
in order to solve the path planning problem for the aforementioned four test
cases, using the same parameters. In order to compare the effect of RBFN



UAV Path Planning Using Evolutionary Algorithms 105

Fig. 9. The fourth test case for the coordinated UAV path planning

Fig. 10. Convergence histories for the first test case, with and without the use of
the RBFN assistance

surrogate model, the convergence histories for the four test cases of the DE
algorithm (with and without the RBFN assistance) are presented in Fig. 10 to
13. As it can be observed, the adoption of the approximation model resulted
in a considerable reduction in the number of exact evaluations for a specific
fitness value. This reduction, for all cases considered, reached or exceeded
80% of the number of exact evaluations with respect to the case without



106 I.K. Nikolos et al.

Fig. 11. Convergence histories for the second test case, with and without the use
of the RBFN assistance

Fig. 12. Convergence histories for the third test case, with and without the use of
the RBFN assistance

RBFN assistance. As the introduction of the RBFN has a minor effect on
the computation time, this 80% reduction in the number of exact evaluations
results in a speedup factor approximately equal to 5 to the whole computation
procedure, which is very important for real world applications of such kind.



UAV Path Planning Using Evolutionary Algorithms 107

Fig. 13. Convergence histories for the fourth test case, with and without the use of
the RBFN assistance

7 Conclusions

This work is an extension of a previous one, which used Differential Evolution
in order to find optimal paths of coordinated UAVs, with the paths being
modeled with straight line segments. Although very satisfactory results were
achieved, the main drawback of the previous approach was the need of a
large number of segments for complicated paths, resulting in a large number
of design variables. However, as the number of design variables increases, the
dimensionality of the optimization problem also increases; consequently, much
more generations are needed for a converged solution, which is not always
affordable for real world applications.

In this work an off-line path planner for UAVs coordinated navigation
and collision avoidance in known static maritime environments was presented.
The problem was formulated as a single-objective optimization one, with the
objective function being the weighted sum of different terms, which corre-
spond to various objectives and constraints of the problem. B-Spline curves
were adopted in order to model the 2-D flight paths, as they provide the abil-
ity to produce complicated paths with a small number of control variables.
In this way the number of design variables, and the dimensionality of the
optimization problem, can be kept small. The velocity distribution along each
flight path was also modeled using the B-Spline formulation. A Radial Basis
Function Artificial Neural Network was introduced in the Differential Evo-
lution algorithm (the optimizer) to serve as a surrogate model and decrease
the number of costly exact evaluations of the objective function. The RBF
Network managed to considerably reduce the DE computation time and to
provide deeper convergence to the optimization procedure.



108 I.K. Nikolos et al.

The path planner was tested in a simulated environment, and the sim-
ulation results demonstrated the ability of the algorithm to produce near
optimal paths without violating the imposed constraints. The adoption of
the B-Spline formulation provided the ability to keep the number of design
variables as small as possible, and at the same time produce reasonable and
smooth paths, without abrupt turns.

Future work will be focused on the development of an on-line path planner
for coordination of a team of UAVs. The methodology that will be used for
the planner will be a combination of this work and the work presented in [23],
where an on-line path planner for a single UAV was presented, which is able
to gradually produce B-spline paths in an unknown 3D environment.

7.1 Trends and challenges

The military market for UAVs has demonstrated a strong positive trend dur-
ing the past decade, with the corresponding commercial market showing a
similar behavior, although not so strong [1]. This trend is expected to con-
tinue, as the technology provides new solutions to the problems of autonomous
navigation of UAVs, and new ideas are emerging about the roles and tasks
that can be assigned to UAVs. The trend is supported by the large num-
ber of research teams that are working in the field. In particular, the field of
UAV cooperation gained increased interest during the past years due to the
advantages of using a team of UAVs instead of a single one to accomplish a
complicated mission. However, because of the youth of the field, the research
has been “scenario” oriented, and a rigorous formalism is still missing. Work
is still needed in the direction of clarifying: a) the assumptions about the sys-
tems of cooperating UAVs, b) the terminology used to describe the various
problems under consideration, c) the different categories of working scenarios,
d) the objectives and constraints for each problem, e) the “best practices”
that can be adopted for specific problems or sub-problems.

The research in the field of cooperating UAVs is highly interdisciplinary,
and knowledge from different science and technology fields is needed, even
from the beginning of the formulation of the problem under consideration. It
would be highly beneficially for the researchers, especially for those working
in more theoretical fields, to collaborate with possible users of the systems
or methodologies under development. Some of the problems, relevant to UAV
cooperation, that gain high interest are: a) the assignment of multiple tasks
to a team of UAVs, b) the path planning problem of cooperating UAVs in
the presence of various cooperation and mission constraints, c) information
exchange and data fusion between the cooperating vehicles, d) cooperative
sensing of targets, e) cooperative sensing of the environment, f) centralized
versus distributed coordination methodologies, especially for cases with com-
munication problems between the vehicles, g) on-line mission rescheduling and
task reassignment for fault-tolerant systems.



UAV Path Planning Using Evolutionary Algorithms 109

References

1. Newcome, L.R.: Unmanned Aviation, a Brief History of Unmanned Aerial Vehi-
cles. AIAA (2004)

2. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers (1991)
3. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)
4. Gilmore, J.F.: Autonomous vehicle planning analysis methodology. Proceedings

of the Association of Unmanned Vehicles Systems Conference. Washington, DC
(1991) 503–509

5. Uny Cao, Y., Fukunaga, A.S., Kahng, A.B.: Cooperative Mobile Robotics:
Antecedents and Directions. Autonomous Robots 4 (1997) 7-27

6. Fujimura, K.: Motion Planning in Dynamic Environments. Springer-Verlag, New
York, NY, (1991)

7. Arai, T. and Ota, J. 1992. Motion planning of multiple robots. Proceedings of
the IEEE/RSJ IROS (1992) 1761–1768

8. Shima, T., Rasmussen, S.J., Sparks, A.G.: UAV Cooperative Multiple Task
Assignments using Genetic Algorithms. Proceedings of the 2005 American Con-
trol Conference, June 8-10, Portland, OR, USA (2005)

9. Shima, T., Rasmussen, S.J., Sparks, A.G.: UAV Team Decision and Control
using Efficient Collaborative Estimation. Proceedings of the 2005 American
Control Conference, June 8-10, Portland, OR, USA (2005)

10. Mitchell, J.W. and Sparks, A.G.: Communication Issues in the Cooperative
Control of Unmanned Aerial Vehicles. Proceedings of the Forty-First Annual
Allerton Conference on Communication, Control, & Computing (2003)

11. Schumacher, C.: Ground Moving Target Engagement by Cooperative UAVs.
Proceedings of the 2005 American Control Conference, June 8-10, Portland,
OR, USA (2005)

12. Moitra, A., Mattheyses, R.M., Hoebel, L.J., Szczerba, R.J., Yamrom, B.: Mul-
tivehicle reconnaissance route and sensor planning. IEEE Transactions on
Aerospace and Electronic Systems, 37 (2003) 799–812

13. Bortoff, S.: Path planning for UAVs. Proceedings of the Amer. Control Conf.,
Chicago, IL, (2000) 364–368

14. Szczerba, R.J., Galkowski, P., Glickstein, I.S., and Ternullo, N.: Robust algo-
rithm for real-time route planning. IEEE Transactions on Aerospace Electronic
Systems 36 (2000) 869–878

15. Zheng, C., Li, L., Xu, F., Sun, F., Ding, M.: Evolutionary Route Planner for
Unmanned Air Vehicles. IEEE Transactions on Robotics 21 (2005) 609–620

16. Beard, R.W., McLain, T.W., Goodrich, M.A., Anderson, E.P.: Coordinated tar-
get assignment and intercept for unmanned air vehicles. IEEE Transactions on
Robotics and Automation, 18 (2002) 911–922

17. Vandapel, N., Kuffner, J., Amidi, O.: Planning 3-D Path Networks in Unstruc-
tured Environments. Proceedings of the IEEE International Conference on
Robotics and Automation, ICRA (2005)

18. Dubins, L.: On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal position. American Journal of Math.
79 (1957) 497–516.

19. Shima, T., Schumacher, C.: Assignment of cooperating UAVs to simultaneous
tasks using Genetic Algorithms. AIAA Guidance, Navigation, and Control Con-
ference and Exhibit, San Francisco (2005)



110 I.K. Nikolos et al.

20. Tang, Z., and Ozguner, U.: Motion Planning for Multi-Target Surveillance with
Mobile Sensor Agents. IEEE Transactions on Robotics 21 (2005) 898-908

21. Martinez-Alfaro H., and Gomez-Garcia, S.: Mobile robot path planning and
tracking using simulated annealing and fuzzy logic control. Expert Systems with
Applications 15 (1988) 421–429

22. Nikolos, I.K., Tsourveloudis, N., and Valavanis, K.P.: Evolutionary Algorithm
Based 3-D Path Planner for UAV Navigation. CD-ROM Proceedings of the
9th Mediterranean Conference on Control and Automation, Dubrovnik, Croatia
(2001)

23. Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C., Kostaras, A.: Evolutionary
Algorithm based offline / online path planner for UAV navigation. IEEE Trans-
actions on Systems, Man, and Cybernetics – Part B: Cybernetics 33 (2003)
898–912

24. Mettler, B., Schouwenaars, T., How, J., Paunicka, J., and Feron E.: Autonomous
UAV guidance build-up: Flight-test Demonstration and evaluation plan. Pro-
ceedings of the AIAA Guidance, Navigation, and Control Conference, AIAA-
2003-5744 (2003)

25. Richards, A., Bellingham, J., Tillerson, M., and How., J.: Coordination and
control of UAVs. Proceedings of the AIAA Guidance, Navigation and Control
Conference, Monterey, CA, (2002)

26. Schouwenaars, T., How, J., and Feron, E.: Decentralized Cooperative Trajectory
Planning of multiple aircraft with hard safety guarantees. Proceedings of AIAA
Guidance, Navigation, and Control Conference and Exhibit, AIAA-2004-5141
(2004)

27. Flint, M., Polycarpou, M., and Fernandez-Gaucherand, E.: Cooperative Control
for Multiple Autonomous UAV’s Searching for Targets. Proceedings of the 41st
IEEE Conference on Decision and Control (2002)

28. Gomez Ortega, J., and Camacho, E.F.: Mobile Robot navigation in a partially
structured static environment, using neural predictive control. Control Eng.
Practice 4 (1996) 1669–1679

29. Kwon, Y.D., and Lee, J.S.: On-line evolutionary optimization of fuzzy con-
trol system based on decentralized population. Intelligent Automation and Soft
Computing 6 (2000) 135–146

30. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer Publications (1999)

31. Smierzchalski, R.: Evolutionary trajectory planning of ships in navigation traffic
areas. Journal of Marine Science and Technology 4 (1999) 1–6

32. Smierzchalski, R., and Michalewicz Z.: Modeling of ship trajectory in collision
situations by an evolutionary algorithm. IEEE Transactions on Evolutionary
Computation 4 (2000) 227–241

33. Sugihara, K., and Smith, J.: Genetic Algorithms for Adaptive Motion Planning
of an Autonomous Mobile Robot. Proceedings of the 1997 IEEE International
Symposium on Computational Intelligence in Robotics and Automation, Mon-
terey, California (1997) 138–143

34. Sugihara, K., and Yuh, J.: GA-based motion planning for underwater robotic
vehicles. UUST-10, Durham, NH (1997)

35. Nikolos, I.K., Brintaki, A.: Coordinated UAV Path Planning Using Differential
Evolution. Proceedings of the 13th Mediterranean Conference on Control and
Automation, IEEE, Limassol, Cyprus (2005)



UAV Path Planning Using Evolutionary Algorithms 111

36. Piegl, L., Tiller, W.: The NURBS Book. Springer (1997)
37. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, A Prac-

tical Guide. Academic Press (1988)
38. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley (1989)
39. Holland, J.H.: Adaptation in Natural and Artificial Systems. The MIT Press

(1992)
40. Storn, R., and Price, K.: DE - a Simple and Efficient Adaptive Scheme for Global

Optimization over Continuous Space. ICSI, Technical Report TR-95-012 (1995)
41. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution, a Practical

Approach to Global Optimization. Springer-Verlag, Berlin Heidelberg (2005)
42. Hui-Yuan F., Lampinen J., Dulikravich G.S.: Improvements to Mutation Donor

Formulation of Differential Evolution. Proceedings of EUROGEN 2003 confer-
ence on Evolutionary Methods for Design, Optimization and Control, Applica-
tions to Industrial and Societal Problems, CIMNE, Barcelona (2003)

43. Marse, K. and Roberts, S.D.: Implementing a portable FORTRAN uniform (0,1)
generator. Simulation (1983) 41–135

44. Torczon, V., Trosset, M.W.: Using Approximations to Accelerate Engineering
Design Optimization. NASA/CR-1998-208460, ICASE Report No. 98-33 (1998)

45. Giannakoglou, K.C.: Design of optimal aerodynamic shapes using stochastic
optimization methods and computational intelligence. Progress in Aerospace
Sciences 38 (2002) 43–76

46. Myers, R.H., Montgomery, D.C.: Responce Surface Methodology: Progress and
Product in Optimization Using Designed Experiments. Wiley – Interscience,
New York (1995)

47. Shyy, W., Papila, N., Vaidynathan, R., Tucker, K.: Global Design Optimization
for Aerodynamics and Rocket Propulsion Components. Prog. Aerospace Sci. 37
(2001) 59–118

48. Ratle, A.: Optimal Sampling Strategies for Learning a Fitness Model. Proceed-
ings of the 1999 Congress on Evolutionary Computation (CEC99), Washington
DC, USA (1999)

49. Haykin, S.: Neural Networks, a Comprehensive Foundation. Second Edition,
Prentice Hall (1999)



Evolution-based Dynamic Path Planning
for Autonomous Vehicles

Anawat Pongpunwattana and Rolf Rysdyk

Autonomous Flight Systems Laboratory
University of Washington, Seattle, WA 98195

Planning is an essential element of autonomous systems. This work presents
a dynamic path planning algorithm for an unmanned autonomous vehicle
to execute a set of assigned tasks in a changing environment. This problem
comprises path planning and task sequencing. The approach adopted here
is to solve these subproblems simultaneously using an evolutionary planning
algorithm and a stochastic model of the environment. During the mission,
the planner replans and adapts the path in response to changes in the envi-
ronment. Simulation results demonstrate that the path planning algorithm
can compute feasible effective solutions to path planning problems. These
include planning with timing constraints and dynamic planning with moving
targets and obstacles. The vehicle is able to autonomously travel from the
initial location to the goal location while avoiding obstacles and performing
the assigned tasks.

1 Introduction

The path planning algorithm presented here was developed as a part of the
Evolution-based Cooperative Planning System (ECoPS) [19]. The ECoPS
is a distributed system for real-time task and path planning for a team of
autonomous vehicles. The planning algorithms are based on the combina-
tion of a market-based planning architecture and optimization techniques
called Evolutionary Computation (EC). The planning system was success-
fully demonstrated for the Defense Advanced Research Projects Agency
under the Mixed Initiative Control of Automa-teams program. In related
work, it is scheduled for flight testing on Seascan Unmanned Aerial Vehicles
(UAVs) manufactured by The Insitu Group in combination with autonomous
Unmanned Surfaces Vehicles (USVs), see Figure 1.

The overall goal of this work is to increase autonomy of unmanned vechi-
cles. A vehicle is called autonomous if it has the ability to plan its own actions
using the acquired information about its environment to accomplish its tasks.

A. Pongpunwattana and R. Rysdyk: Evolution-based Dynamic Path Planning for Autonomous

Vehicles, Studies in Computational Intelligence (SCI) 70, 113–145 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



114 A. Pongpunwattana and R. Rysdyk

Fig. 1. The Insitu Group Seascan UAV (Top) and the Northwind Marine Seafox
USV (Bottom)

Path Planning
Task Allocation
Search Patterns
Human Mission Command

Strategic (low bandwidth)

Tactical (medium bandwidth)

State Stabilization
Signal Tracking
Inner Loop or “autopilot”
Configuration changes

Target Observation
Path Following
Communication & Cooperation
Human Monitor Interaction

Dynamics and Control (high bandwidth)

Fig. 2. Hierarchy of vehicle autonomy

Figure 2 shows three layers in the design of autonomy for air vehicles. The
stability and control, as well as the guidance aspects, of air vehicles are well
established, but strategic decision making is not. A major challenge in improv-
ing autonomy of unmanned vehicles is strategic planning. The focus of this
work is on path planning. This problem is not just planning a path between
two target locations, but an optimal path to visit all the targets. This is essen-
tially a mission planning problem for a single vehicle. The problem is composed
of path planning and task sequencing between various target locations.

There are several approaches to path planning. A popular one is graph-
based search. In this approach, as described by Murphy [16], the environment



Evolution-based Dynamic Path Planning for Autonomous Vehicles 115

in which the vehicle operates is discretized and represented by a graph com-
posed of a number of nodes linked together with arcs. Each node corresponds
to a location in the environment and an arc links two adjacent nodes. There
is a cost associated with each arc. A path in this graph consists of a series
of connected arcs. One advantage of this approach is the compactness of the
topological map of the environment represented by the graph. The path plan-
ning problem is to find the optimal path from one node to another in the
graph. The planning algorithm minimizes the total cost which is the sum of
the cost of each arc in the path. A graph search algorithm such as Dijkstra’s
algorithm or the A∗ algorithm [17] can be used to find the optimal path. Thrun
[25], Mata and Mitchell [15], Mandow [14], and Bander [2] have all worked on
this graph-based planning concept and applied it to many scenarios.

Another approach to path planning is probabilistic roadmap planning
(PRM). It is an efficient method to compute collision-free paths for vehi-
cles with many degrees of freedom [12]. This method consists of two phases, a
building phase and a query phase. The building phase is the construction of a
graph called roadmap. The nodes in the roadmap are collision-free configura-
tions and the edges linking the nodes are collision-free paths which enable a
robot to move from one configuration to another. The query phase is finding
a path between an initial and goal configurations by connecting these config-
uration nodes to the road map and searching the roadmap for a sequence of
edges linking the two nodes. This method was originally developed for holo-
nomic robots in a static environment. Overmars [18] applied this technique to
simple holonomic robots and non-holonomic robots having constrained kine-
matics and high degrees of freedom. LaValle and Kuffner [13] proposed a
randomized path planning technique similar to PRM for robots having high
degree-of-freedom with both kinematic and dynamic constraints. Song et al.
[24] proposed a new method of building and querying probabilistic roadmaps
to improve the performance of the planning process.

The common drawback of the above approaches is the requirement to
repeatedly update the graph representing the environment if it is changing
rapidly. Evolution-based approach is suitable in this situation. It does not
require a graph-based representation of the environment. Furthermore, evolu-
tionary algorithms are continual adaptation techniques favorable for dynamic
path planning. They can run continuously during the execution of the plans
and handle changes in the operating environment and the vehicle capabili-
ties. Evolution-based techniques respond to the changing environment quickly
because they do not have to recompute the entire plans. The current plan is
adapted in response to the changes. Works in this approach have been investi-
gated by several researchers [9], [26], [6], [10], and [20].

Dynamic path planning is typically solved using a hierarchical approach
such as Brumitt [3] and Chien et al. [7]. In such approach, the planning sys-
tem is divided into two levels, task sequencing and local path planning. The
path planner provides optimal local paths for traveling between each pair
of target locations and between the current vehicle location and all target



116 A. Pongpunwattana and R. Rysdyk

locations. These optimal paths must also satisfy all the given constraints such
as avoiding obstacles in the environment. The cost information of this set of
local paths is then used during the evaluation of candidate overall paths. This
process is performed by the mission planner which determines the optimal
sequence of target locations for the vehicle to visit during the mission. The
planning at this level is a combinatorial optimization problem. This approach
is shown to be effective in a static environment. However, it may not be
suitable in dynamic environments where the targets and obstacles may move
during the mission. The changes in the environment force the planning sys-
tem to frequently update the local paths prior to the optimization process for
task sequencing. The process of updating the local paths is computationally
extensive because it often needs to update most if not all of the local paths
joining all target locations.

In this paper, we present an evolution-based dynamic path planning algo-
rithm to compute paths for a vehicle to reach a set of targets while avoiding
obstacles in the environment. The planning algorithm searches for the opti-
mal path that maximizes an objective function and satisfies all the constraints
imposed on the problem. The planner must be able to compute an effective
path off-line prior to the start of the mission and dynamically adapt the path
in response to changes in the environment during the mission.

The remaining sections are organized as follows. Section 2 describes the
concept of dynamic path planning and a stochastic model of the system used
to formulate the planning problem. In Section 3, we present a technique to
approximate the probability of intersection of a vehicle and a site in the envi-
ronment. This technique addresses the collision avoidance problem, either with
static or moving objects such as other vehicles. The planning algorithm is pre-
sented in Section 4. Example problems of static and dynamic path planning
are also given. Section 5 and 6 show the ability of the planning algorithm
to handle timing constraints and a changing environment. Finally Section 7
provides a summary and conclusion of the work presented here.

2 Dynamic Path Planning

Dynamic path planning is a continual process which generates a new path
by adapting previously computed paths for future motion. This concept is
illustrated in Figure 3. We define a spawn point as a time where the planner
updates the output trajectory. During the course of the mission, the planner
continually computes an updated path which starts at the next closest spawn
point. In the figure, the closest spawn point is located at time tsp

which is the
execution time horizon of the vehicle controller. This spawn point separates
the committed section and the adapting section of the planned trajectory
previously computed at time tsp−1 . The committed section, which will not be
altered, is a portion of the path for the time period tk < t < tsp

. The adapt-
ing section of the trajectory remains free to be further refined by the planner.



Evolution-based Dynamic Path Planning for Autonomous Vehicles 117

Vehicle 
at time tk 

Spawn point tsp

Planning 
horizon

Committed section
tk < t < tsp

Path computed 
at time tsp−1

Adapting section
tsp < t < tN

Previous
spawn point tsp−1

time

Execution 
time horizon

Planning 
time horizon

tk tsp
tsp−1 tN}

Time-available-to-plan

Fig. 3. Illustration of the concept of dynamic path planning. A vehicle (at time tk)
is moving along a trajectory previously computed at time tsp−1 which is shown as
a gray line. The next closest spawn point at time tsp is shown as a black diamond

The time tN at the end point of this trajectory segment is the planning time
horizon. It can either be fixed or a variable whose value is specified by the
planner. An update trajectory is sent to the vehicle’s controller for execution
every time the vehicle reaches a spawn point. The planner will start comput-
ing a new trajectory starting at the next spawn point. The time difference
between two adjacent spawn points (∆Ts = (tsp

− tsp−1)) specifies the maxi-
mum time available to plan for the planner to update its path. In this manner,
the planner can incorporate any new information about the environment that
becomes available during the mission. The trade-off between time available to
plan and adaptability is important. One would want the non-adapting commit-
ted sections of the planned path to be short in a highly dynamic environment.
However, that shortens the time available to plan. The shorter time available
to plan requires faster planning algorithms. Hence, dynamic planning algo-
rithms must be fast enough to compute new plans within the specified time
limit.

The concept of this dynamic planning process is very similar to that of the
Model-based Predictive Control [4]. Figure 4 illustrates the block diagram of a



118 A. Pongpunwattana and R. Rysdyk

Path 
Planner

State Predictor

Vehicle
Environment

x(k)
zV(k)

aV(k)

Command 
Generator

u(k)
Q(k)

Q(k)
X([sp,N] k)

World

x(k)

x(k)
xF

ref

xF
ref xF

ref

Fig. 4. Block diagram of a dynamic path planning system

dynamic path planning system. Like model-based predictive control systems,
the current state information is periodically fed back to the state predictor.
Given a set of assigned tasks, a candidate path and the current environment
information, the state predictor provides the planner predicted future states
of the system using a dynamic model. Using this prediction, the planner com-
putes a path that optimizes an objective function which is a function of the
future system states. The path together with the information of the assigned
tasks is then sent to the command generator to generate commanded posi-
tions and payload actions for the vehicle. This sequence is repeated in the
next time period. The quality of computed paths depends on the quality of
the model. The difficulty of the problem hinges on how the objective function
and the constraints on the input variables are defined. The rest of this section
describes the model and the objective function used in this work. To simplify
our notation in the following equations describing the model, any sampled
signal s(tk) at time tk, where k can assume any non-negative integer value, is
written as s(k).

The variables shown in Figure 4 have the following meanings:

u(k) = commanded inputs to the vehicle at time tk
x(k) = states of the world at time tk
xV (k) = states of the vehicle at time tk
xE(k) = states of the environment at time tk
xF (k) = task states at time tk
xF

ref = desired values of the task states
zV (k) = location of the vehicle at time tk
aV (k) = action of the vehicle at time tk
Q(k) = trajectory for time tk ≤ t ≤ tN
X̂([sp, N ]|k) = predicted states of the world at time tsp

, tsp
+1, . . . , tN

given information observed at time tk

In real-world applications, environment information is often known with a
limited level of certainty. It is practical to account for this uncertainty in the



Evolution-based Dynamic Path Planning for Autonomous Vehicles 119

planning algorithm by using a stochastic model. The model presented here is
for 2-dimension problems, but it can be extended to 3-dimension problems.
The system considered here consists of a vehicle and its environment. We call
this system the world. The vehicle is assigned to perform NT tasks.

For a planning time horizon tN , the world model used to predict future
states during the time tk < t ≤ tN can be written in a discrete form as

x(q + 1) = f(x(q), u(q)), q = k, k + 1, . . . , N − 1 (1)

where f is the state transition function, x is the state vector of the system
which includes states of the vehicle xV , states of the environment xE , and
task states xF . That is x = [xV , xE , xF ]T . We assume that the information of
all states at time tk is available to the planner except xE which is known with
a limited level of certainty. In the following equations, the expected value of
a random variable y will be simply written as ỹ.

The state of each task i, xF
i , indicates whether the task is completed;

xF
i = 1 when the task is initially assigned, and xF

i = 0 if it is completed.
The states of the vehicle consists of its position zV , velocity żV , and health
state ξV . That is xV = [zV , żV , ξV ]T . The health state indicates if the vehicle
is intact or destroyed; ξV = 1 if the vehicle is intact, and ξV = 0 if it is
destroyed.

We define sites as any objects in the environment. The states of the envi-
ronment are the states of all the sites. Obstacles are special types of sites with
ability to change the states of vehicles if they become in contact. A target is
defined as a site in the environment associated with a task. Thus, a site can
be a target and an obstacle simultaneously, or it can be neither. The number
of obstacles NO plus the number of targets NG is not necessary equal to the
number of all the sites NS . The states of the environment are composed of
the position zE , velocities żE and health states ξE of all the sites. That is
xE = [zE , żE , ξE ]T . The health state of site j indicates whether the site exists
or not; ξE

j = 1 if the site exists, and ξE
j = 0 if it does not exist.

The input to the vehicle u includes a commanded position z̄V and a com-
manded velocity ¯̇zV of the vehicle, and a task assignment vector d̄V . That is
u = [z̄V , ¯̇zV , d̄V ]T . Given a trajectory Q(sp−1) previously computed at time
tsp−1 , the commanded position and velocity while tq ∈ (tk, tN ] are given by

z̄V (q) = hx(Q(sp−1), q) (2)
¯̇zV (q) = hv(Q(sp−1), q)

where Q represents the set of parameters needed to define the planned trajec-
tory. The mapping functions hx and hv, and Q, depend on how the trajectory
is encoded. The task assignment vector d̄V is a NT × 1 vector whose element
i is equal to one if

∣∣∣xF
ref,i − xF

i

∣∣∣ > 0, otherwise it is zero.
Using the following equations, we describe the stochastic model used to pre-

dict the expected values of all system states x̃ =
[
z̃V , ˜̇zV , ξ̃V , z̃E , ˜̇zE , ξ̃E , x̃F

]T
.



120 A. Pongpunwattana and R. Rysdyk

The feedback information of the states x(k) known at time tk and the
commanded inputs u(q) = [z̄V (q + 1), ¯̇zV (q + 1), d̄V (q + 1)]T for all
q ∈ {k, k + 1, . . . , N − 1} is given. We assume that the vehicle’s guidance
system can follow its commanded trajectory. Thus, the predicted position
and velocity of the vehicle is equivalent to the commanded inputs:

z̃V (q + 1) ≡ z̄V (q + 1) (3)
˜̇zV (q + 1) ≡ ¯̇zV (q + 1)

for all q ∈ {k, k + 1, . . . , N − 1}. Assuming the location of each obstacle is
independent of the location of all other obstacles, the dynamic propagation
of the expected health state ξ̃V of the vehicle is given by

ξ̃ V (q + 1) = ξ̃ V (q)
No∏

j=1

(
1 − B̃v

j (q + 1)ξ̃O
j (q)ηO

j

)
(4)

Here B̃v
j (q+1) is the probability that the vehicle collides or intersects with an

obstacle j during the time tq < t ≤ tq+1. The variable ξ̃O
j is the expected value

of the health state of obstacle j, and ηO
j is the effectiveness of the obstacle j

in destroying a vehicle if they make contact. The value of ηO
j is in the range

[0, 1]. B̃v
j (q + 1) is a function of z̃V , ˜̇zV , z̃E and the environment uncertainty

parameter vector σx. The details of how to compute B̃v
j are given in Section 3.

The position of site j ∈ {1, 2, . . . , NS} at time tk is a random variable
which can be written as

zE
j (k) = z̃E

j (k) + εx
j (5)

where z̃E
j is the expected value of the position. εx

j is assumed to be a random
variable with zero mean with a probability density function

ρx
j

(
x, σx

j

)
=

{
1/(π

(
σx

j

)2), ‖x‖ ≤ σx
j

0, ‖x‖ > σx
j

(6)

Here σx
j is a given parameter specifying the uncertainty radius of site j. The

area within the circle with center location z̃E
j and radius σx

j contains all pos-
sible locations of the site.

The velocity of site j ∈ {1, 2, . . . , NS} known at time tk is also a random
variable expressed by

żE
j (k) = ˜̇zE

j (k) + εv
j (7)

where ˜̇zE
j is the expected value of the velocity and εv

j is assumed to be a
random variable with zero mean and a probability density function

ρv
j

(
v, σv

j

)
=

{
1/(π

(
σv

j

)2), ‖v‖ ≤ σv
j

0, ‖v‖ > σv
j

(8)



Evolution-based Dynamic Path Planning for Autonomous Vehicles 121

σv
j is a given parameter specifying the bound of the uncertainty in the velocity.

In the model presented here, each site is assumed to maintain constant
velocity at all times. Therefore, the expected velocity of site j while tq ∈
(tk, tN ] is given by

˜̇zE
j (q) = ˜̇zE

j (k) (9)

As a result, the dynamic propagation of the expected position of site j is
given by

z̃E
j (q + 1) = z̃E

j (q) + ˜̇zE
j (k)∆t (10)

for all q ∈ {k, k + 1, . . . , N − 1} and ∆t = tq+1 − tq. The dynamic equation of
the uncertainty radius σx

j is given by

σx
j (q + 1) = σx

j (q) + σv
j (k)∆t (11)

The dynamic propagation of the expected value of the state of task i, i ∈
{1, 2, . . . , NT }, is described by

x̃F
i (q + 1) = x̃F

i (q)
(
1 − B̃i

υ(q + 1)ξ̃V (q)ηV
)

(12)

where B̃i
υ is the probability that the path of vehicle v intersects the target

location zG
i associated with task i during the time tq < t ≤ tq+1. The details

of how to compute B̃i
υ are given in Section 3. ηV is the effectiveness of the

vehicle in performing the task. Using the Equations 3 to 12, we can compute
the expected values of all states at time tq ∈ (tk, tN ].

To formulate the planner’s objective function, we define a variable R̃i(q)
as the task score the vehicle will have at time tq as a result of executing task
i. This task score is used as a measure of success of the mission. The expected
task score of task i for q ∈ {1, 2, . . . , N} is given by

R̃i(q + 1) = R̃i(q) + αF
i (q)

(
x̃F

i (q) − x̃F
i (q + 1)

)
; R̃i(0) = 0 (13)

Substituting Equation 12 into Equation 13, we obtain

R̃i(q + 1) = R̃i(q) + αF
i (q)(x̃F

i (q)
(
B̃i

υ(q + 1)ξ̃V (q)ηV
)

(14)

where αF
i (q) is the score weighting factor for task i. It can either be a constant

or a time dependent function. This function is used to define a time window
requirement for the vehicle to execute each task.

At any time tk < tsp
, the goal of the planner is to find a path that

maximizes the predicted total score obtained by completing each task while
minimizing the predicted operation cost during the time tsp

< t ≤ tN . The
objective function can be written as

J̃ =
NT∑

i=1

(
R̃i(N) − R̃i(sp)

)
− C̃(Q(sp)) (15)



122 A. Pongpunwattana and R. Rysdyk

where C̃ is the function used to compute the expected operation cost of the
vehicle traveling along its planned path Q(sp) during time tsp

< t ≤ tN .
Substituting Equation 14 into Equation 15, the objective function becomes

J̃ =
NT∑

i=1

N−1∑

q=sp

αF
i (q)x̃F

i (q)
(
B̃i

υ(q + 1)ξ̃ V (q)ηV
)
− C̃(Q(sp)) (16)

The cost function C̃ is defined as

C̃(Q(sp)) = αV
(
ξ̃ V (sp) − ξ̃ V (N)

)
+ αQ(1 − F (N)) (17)

where αV is the vehicle cost weighting factor, and αQ is the path cost weight-
ing factor. F (N) is the ratio of the amount of fuel remaining in the vehicle’s
fuel tank at time tN to the full capacity of the tank. The weighting factors
αF

i , αV , and αQ are parameters whose values are set based on the opera-
tor’s assessment of the task accomplishment, cost of vehicle loss, and fuel
consumption.

From the description of the stochastic world model provided above, we can
see that the states of the world, which include task states, vehicle states, and
states of the environment, are coupled. For example, the probability of success
in executing a task at a time during the mission depends on the probability
of survival of the vehicles at that time. This, in turn, depends on the states of
the obstacles intersecting with the vehicles along the path. Hence, to evaluate
the utility function J̃ given in Equation 16, it is necessary to run a simulation
to predict the expected values of the world states at each of the discretized
time steps.

3 Probability of Intersection

The position of each site i is assumed to be known with limited certainty.
It is described by the expected value z̃E

i and a probability density func-
tion ρx

i . An intersection of a site and a vehicle is predicted probabilistically.
This section presents the approach proposed by Rathbun and Capozzi [20] to
approximate the probability of intersection of a vehicle and a site with limited
knowledge about the location of the site.

In general, a collision or intersection of two objects has an effect on both
objects. In our model, the effects of an intersection depend on the effective
ranges of the site and the vehicle. We define the effective range of a site as
the radius of the circular area where the site can affect the states of any vehicle
within that area. The effective range of a vehicle is defined as the radius of the
circular area where the vehicle can affect the states of any site being within
that area. For any pair of site i with an effective range RO

i and a path Qυ of a
vehicle υ with an effective range RV

υ , we define the site-to-vehicle intersection



Evolution-based Dynamic Path Planning for Autonomous Vehicles 123

region as the region in space Zv
i of all points within a distance RO

i from the
path Qυ,

Zυ
i = {z : ‖z − s‖ < RO

i ,∀s ∈ S} (18)

where S is the set of all points along the path Qv. If the center location of
the site, zE

i , is within the site-to-vehicle intersection region, the states of the
vehicle can be changed by the site. The vehicle-to-site intersection region is
defined as the region in space Zi

v of all points within a distance RV
v from the

path Qv,
Zi

v = {z : ‖z − s‖ < RV
v ,∀s ∈ S} (19)

If the center location of the site is within the vehicle-to-site intersection region,
the states of the site can be changed by the vehicle.

Let denote ρi the probability density function of the position of site i in
2-dimension space. The probability that site i hits vehicle v is the integral of
the density function over the site-to-vehicle intersection region:

B̃v
i =

∫ ∫

Zv
i

ρi(z)dxdy (20)

The probability that vehicle v hits site i is the integral of the density function
over the vehicle-to-site intersection region:

B̃i
v =

∫ ∫

Zi
v

ρi(z)dxdy (21)

We do not know the solutions to the Equation 20 and 21 for a piecewise set
of path segments generated by our path planner. Instead, a computationally
efficient technique is used to approximate the probability of intersection. We
call this method, Field Integral Approximation [20]. In this method, we define
two probability density fields βv

i and βi
v related to the probability density

function ρi of the site. The probability density field βv
i is defined such that

the probability that site i hits vehicle v can be approximated by integrating
the probability density field along the path Qv,

B̃v
i =

∫

Qv

βv
i ds (22)

Likewise, the probability density field βi
v is defined the same way. The prob-

ability that vehicle v hits site i can then be written in the form

B̃i
v =

∫

Qv

βi
vds (23)

The remaining question is how to determine the fields βv
i and βi

v that
provide a good approximation of the exact probabilities. Work by Rathbun
and Cappozi [20] suggests an approximation method for a site having con-
stant probability density at all points located at the same distance from the



124 A. Pongpunwattana and R. Rysdyk

site’s expected center location. In this method, the probability density field
at a distance r from the center location of the site is defined by a function
which provides the correct probability of intersection given a path of a single
revolution about the expected center location of the site at the distance r.
The two probability density fields are given by

βv
i (r) =

pi(r + RO
i ) − pi(r − RO

i )
2πr

(24)

and

βi
v(r) =

pi

(
r + RV

v

)
− pi

(
r − RV

v

)

2πr
(25)

where pi(r) is the probability that the center location of site i is within a
distance r of the expected location z̃E

i ,

pi(r) =
∫ r

0

2πyρx
i (y)dy (26)

where ρx
i is the probability density function of the position of the site. For

r < 0, we define
pi(r) = −pi(|r|), r < 0 (27)

For a site with a probability density function,

ρx
i (x, σx

i ) =

{
1/
(
π (σx

i )2
)

, ‖x − z̃E
i ‖ ≤ σx

i

0, ‖x − z̃E
i ‖ > σx

i

(28)

the probability distribution function p(r) is given by

pi(r) =
{

r2/ (σx
i )2 , r ≤ σx

i

1, r > σx
i

(29)

For simple types of paths, it may be possible to determine a closed form solu-
tions to the Equation 22 and 23. For complex types of paths, the probability
of site i encountering vehicle v during time tq < t ≤ tq+1 can be approximated
as a summation of the probability density field βv

i along the path which can
be written as

B̃v
i (q + 1) =

M−1∑

k=0

βv
i (‖z̃V

v (Tk) − z̃E
i (Tk)‖)˜̇zV

v (Tk)∆T (30)

Here z̃V
v (Tk) is the expected position of the vehicle moving along on the path

Qv at time tTk
with tT0 = tq and tTM

= tq+1 · z̃E
i (Tk) is the expected center

location of the site at time tTk
· ˜̇zV

v (k) is the velocity of the vehicle at time
tTk

. ∆T is the time step of the numerical integration, and ∆T = Tk+1 − Tk.
M is the number of steps used to discretize the time period. The probability
of vehicle v hitting site i during time tq < t < tq+1 can be approximated by

B̃i
v(q + 1) =

M−1∑

k=0

βi
v(‖z̃V

v (Tk) − z̃E
i (Tk)‖)˜̇zV

v (Tk)∆T (31)



Evolution-based Dynamic Path Planning for Autonomous Vehicles 125

4 Planning Algorithm

In this section, we describe an evolutionary algorithm for solving the dynamic
path planning problem presented in Section 2. This problem basically is iter-
atively finding a path represented by the variable Q(sp) that maximizes the
objective function given in Equation 16.

The algorithm presented here can be used to compute both the static and
dynamic path planning problems. Static or off-line path planning is a process
used to compute an optimal path connecting the initial position of the vehicle
to the goal location prior to the start of a mission. Dynamic path planning
is an iterative process. This planning problem is dynamic because it changes
as the vehicle moves along the last updated path. In a dynamic environment,
the locations of objects in the environment may also change. We will first
describe the algorithm for static path planning. Then we extend the static
path planning algorithm to be used for dynamic path planning.

4.1 Algorithm for Static Planning

The path planning algorithm presented here is based on the algorithm
described in Rathbun et al. [21]. An evolutionary algorithm is used to solve
the underlying optimization problem. The general concept of the planning
algorithm is illustrated in Figure 5. The algorithm runs in a loop which has
three phases. It starts by randomly generating a population of encoded plans.
Then it evaluates the fitness value of each plan. The next step is to select the
best plan to be the candidate solution for this generation. Using a selection
scheme, a portion of the plans in the population are selected to be the parents
of the next generation based on their fitness values. The last step is to pro-
duce offspring from the parents selected in the previous phase. An offspring
is generated by cloning a parent and applying a mutation mechanism to it or
by crossover of two parents. This loop is run continuously to update the plan
as the optimization process proceeds.

Population

Produce 
Offspring 
(mutation)

Evaluate 
(fitness)

Selection

Decode

Environment

Vehicle 
Capabilities

Goals

Constraints

Plan Encoding Best Plan

Fig. 5. Overview of evolutionary planning algorithms



126 A. Pongpunwattana and R. Rysdyk

The planning algorithm used in the Evolution-based Cooperative Plan-
ning System (ECoPS) is based on both Genetic Algorithms (GA) [11] and
Evolutionary Programming (EP) [8]. Work by Capozzi [5] suggests that the
algorithm combining features of both paradigms can improve the performance
of the optimization process for path planning problems. The design of evolu-
tionary path planning algorithms involves the following issues: path encoding,
fitness evaluation, mutation mechanisms, and selection scheme. The follow-
ing subsections describes these issues of path planning problems for a single
autonomous vehicle. Extensions to multiple cooperating UAVs are given in [1].

Path Encoding

One of the key issues of applying evolutionary computation to a given problem
is finding a good representation of each individual in the population which
adequately represents a candidate solution to the problem. In path planning
problems, the search space Ω which consists of the parameters of the chosen
path representation must be defined. These parameters must be sufficient to
specify a candidate path in spatial and/or temporal space. Examples of path
representations are:

– Sequence of waypoints: A sequence of waypoints including the initial and
goal locations are used to represent a path. A path represented by these
waypoints is the linked straight-line segments connecting the initial loca-
tion, all the waypoints in the sequence, and the goal location.

– Sequence of velocity vectors: A path is presented by a time sequence of
velocity vectors whose elements are speed, heading and climb angle. Using
a fixed time interval, this representation allows the planning algorithm to
constrain the candidate solution to lie within the acceleration capabilities
of the vehicle.

– Sequence of maneuvers: A path is represented by a time sequence of prim-
itive maneuvers which are achievable by the vehicle. Examples of maneu-
vers are speed-up, slow-down, turn-left, turn-right, and so on. The time
duration of each maneuver can be varied.

– Sequence of motion primitives: In this representation, a path is a chain of
motion primitives linked together end to end. Examples of motion prim-
itives are a straight line segment, constant radius curve, constant climb
angle line segment.

In ECoPS, a path is encoded as a sequence of simple segments chained
end-to-end, shown in Figure 6. The locations of the vehicle and the goal are
shown as a blue triangle and a green circle respectively. In this approach, for 2-
dimension problems, there are two elemental types of segments, straight lines
and constant radius curves, shown in Figure 7. The segment parameters are
limited to keep motion within the vehicle capabilities. Continuity is enforced
between the joining end of a segment and the starting point, heading, and
speed of another joining segment. We also enforce every path to end at the



Evolution-based Dynamic Path Planning for Autonomous Vehicles 127

G

Fig. 6. An encoded path which is composed of a chain of connected segments

start position, 
heading, speed

len
gt

h
en

d 
sp

ee
d

start position, 
heading, speed

len
gt

h

radius

Fig. 7. Elemental path segment types

goal location by adding a number of segments at the end of the last segment
to extend the path to the goal location. The go-to-goal segments are added
to a new path after it is created.

Fitness Evaluation

Fitness of a candidate path is the value which represents the performance
measure of the path based on the objectives given by the problem. The fitness
of individuals in the population must be determined during the evaluation
process. Individuals with higher fitness have more chance to survive during
the selection process. The fitness function is a parameterized function which
is used to evaluate fitness of each candidate path. Typically, the fitness func-
tion is a weighted linear combination of parameterized terms which represent
the mission specifications and constraints. The quality of the resulting path
depends heavily on the fitness function. Examples of basic components in the
fitness function are:

– RangeGoal: Distance from the terminal point of a trial path to the goal
location.

– RangeTargets: Distance of the closest approach between a trial path and
the assigned targets.

– ObstacleIntersection: A measure of the degree to which a trial path inter-
sects with any known obstacles in the field of operation.

– FuelConsumption: The amount of fuel required for the vehicle to travel
along a trial path.

– PathLength: The cumulative length of a trial path.



128 A. Pongpunwattana and R. Rysdyk

In ECoPS, the fitness function is a complex function designed to capture
the dynamics and uncertainties in the system. The fitness value of a candidate
path is defined as the inverse of the loss function given by

L = αL

(
1 − J̃

αF
sum

)
(32)

where J̃ is the objective function given in Equation 16. αL is a scaling factor,
and αF

sum is defined by

αF
sum =

NT∑

i=1

αF
i,max (33)

and
αF

i,max = max{αF
i (k), k = 0, 1, . . . , N} (34)

where αF
i (k) is time-dependent score weighting function of task i at time step

k. If there is no assigned task or all the tasks are completed, the loss function
is given by

L = αL

(
1 − J̃

αV

)
(35)

where αV is the vehicle cost weighting factor.

Mutation Mechanisms

Mutation mechanisms are essential for the evolution process to improve the
fitness of the candidate path generated in each generation and to eventually
converge to an optimal solution. A mutation has the effect of randomly moving
a candidate solution from one point in the search space to another. Therefore,
an effective set of mutation mechanisms must be able to move a candidate
solution from one point to any point in the search space by applying a series of
these mutation mechanisms. Work by Rudolph [23] shows that this property of
mutation mechanisms is necessary for an evolutionary algorithm to converge.

The selection of the types of mutation mechanisms depends on the pop-
ulation representation. For example, in the representation using waypoints,
mutation can be done by randomly perturbing the physical location of vari-
ous points in the waypoint sequence. Therefore, the mutation of the ith trial
solution can be expressed as

xi+µ
k = xi

k + G(0, σi), k = {1, 2, . . . , c} (36)

where xi
k is the kth waypoint in the original sequence, xi+µ

k is the kth waypoint
in the mutated sequence, µ is the number of parents in the population, and
G(0, σi) presents a Gaussian random variable with zero mean and standard
deviation of σi. This perturbation is applied only to c waypoints chosen at
random where c ∈ {0, 1, . . . , li} and li is the length of the waypoint sequence.



Evolution-based Dynamic Path Planning for Autonomous Vehicles 129

Mutate 1-Point Mutate 2-Points

Mutate Expand Mutate Shrink

Crossover

Fig. 8. Path mutation mechanisms

In ECoPS, offsprings are created either by crossing over two randomly
selected individuals in the population, or by copying an individual and mutat-
ing it using one of the mutation mechanisms chosen at random. We have five
mutation mechanisms which are illustrated in Figure 8. The mutation mech-
anisms change the parameters of some of the segments in a selected path
but ensure that the mutated path is within the vehicle’s capabilities. The list
below explains each of the mutation mechanisms.

– Mutate 1-Point: randomly changes the parameters of one or more seg-
ments, and then re-locates all the following unchanged segments to enforce
the end-point constraints. The first segment to be mutated and the num-
ber of segments to be mutated are selected at random.

– Mutate 2-Points: randomly changes the parameters of one or more seg-
ments, computes the new resultant end point for those segments (similar



130 A. Pongpunwattana and R. Rysdyk

G

Mutate

G

Fig. 9. Go-to-goal segments are added at the end of each mutated path to force the
path to end at the goal location

to Mutate 1-Point), and then connects back to the start of another seg-
ment of the path further along. The beginning segment and the segment
joined to are both chosen at random.

– Crossover: takes the starting segments of one path and the ending seg-
ments of another and joins the two sets of segments together.

– Mutate Expand: adds one or more randomly created segments onto the
end of the path. All the original parts of the path are left untouched.

– Mutate Shrink: removes one or more segments from the end of the path.
The number of segments to be removed are selected at random.

Some of these mutation mechanisms require a method to construct of join-
ing segments which connect the ending point of a segment of a path being
mutated to the starting point of another segment while maintaining the con-
tinuity of the whole path. The methods used to compute joining segments
are presented in [19]. For a particular joining, all three methods are used, but
the resulting path with the shortest total length is selected. Once a new path
is created through the mutation process, a set of segments called go-to-goal
segments are added to the mutated path. This modification makes all paths
in the population end at the goal location. This procedure is illustrated in
Figure 9.

Selection Scheme

Given a population of the size µ + λ, the selection scheme is a mechanism
for selecting µ individuals to be parents of the nth generation. These µ par-
ents will be used to create λ offspring in the next mutation process. Many
types of selection schemes can be used in the evolution process. In this
research, a q-fold binary tournament selection scheme is chosen. Figure 10
illustrates the procedures of the selection scheme which can be described as
follows.



Evolution-based Dynamic Path Planning for Autonomous Vehicles 131

3 Fitness

270

360

167

486

120

ScoreIndex
1

2

3

4

5

6

7

8

3
ScoreIndex

1

2

3

4

5

6

7

8

2

randomly 
select

Fig. 10. Illustration of the tournament selection scheme. The plan with index num-
ber 2 is compared to other four randomly selected plans

For each individual i ∈ {1, 2, . . . , (µ + λ)}:
1. Draw q ≥ 2 individuals randomly from the population (excluding individ-

ual i) with uniform probability 1
µ+λ−1 . Denote these competitors by the

indices {i1, i2, . . . , iq}.
2. Compare individual i’s fitness against each of the competitors, ij , j ∈

1, 2, . . . , q. Whenever the fitness of individual i is not worse than that of
competitor ij , individual i scores a point.

The score that each individual receives during the tournament is an integer
in the range [0, q]. After the scores of all individuals are determined, the top
µ individuals with the best scores are selected as the parents for the next
generation.

Path Planning Example

To demonstrate the performance of the planning algorithm, we present the
results of a static path planning problem. In this problem, the mission objec-
tive is to observe all the assigned targets and return safely to the goal location.
The path planner runs the evolutionary algorithm with a population size of
30. The tournament selection algorithm selects 15 of them to be parents for
the next evolution cycle. The score weighting function of each task is shown
in Figure 11. Unless otherwise specified, the profile of this function is the same
for this example and all other planning examples presented in other sections.

The performance of the the planning algorithm was validated using the
Open Experimental Platform (OEP) simulation program developed by the
Boeing Company. The OEP is designed for evaluation of planning and coordi-
nated control methodologies in a Monte Carlo simulation. System parameters
can be specified as constants or random variables with specific probability
distributions. The OEP can simulate large numbers of vehicles and targets.



132 A. Pongpunwattana and R. Rysdyk

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (sec)

S
co

re
αF

max

αmin
F

Fig. 11. Normal task score profile

Table 1. Planner parameters

Parameter Description Value

αF
min minimum task score weighting factor 3500

αF
max maximum task score weighting factor 7000

αV vehicle cost weighting factor 2500
αQ fuel cost weighting factor 300
αL loss function scaling factor 250

Table 2. Simulation parameters

Parameter Description Value Unit

ηO obstacle payload effectiveness 0.5 –
RO obstacle payload range 30 km
σO obstacle uncertainty radius 20 km
σG target uncertainty radius 20 km
ηV vehicle payload effectiveness 0.7 –
RV vehicle payload range 20 km
Va vehicle speed 150 m/s
Fuelinit vehicle initial fuel level 6.0 liters
Fuelmax vehicle max fuel level 7.0 liters

It simulates effects caused by actions or events occurring during the simu-
lation. Simulation entities are customizable and may be used to represent a
variety of air and ground vehicles, targets, and buildings. Unless otherwise
specified, the values of parameters listed in Table 1 and 2 are used in all of
the simulations presented here.



Evolution-based Dynamic Path Planning for Autonomous Vehicles 133

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

Longitude (deg)

La
tit

ud
e 

(d
eg

)
step = 0
time = 0

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

1

1

step = 15
time = 0

(a) (b)

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

1

1

step = 30
time = 0

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

1

1

step = 40
time = 0

(c) (d)

Fig. 12. Snapshots of off-line path planning with multiple targets

Inthisexampleproblem,therearethreetargetsandthreeobstacles.Figure 12
shows snapshots of the planning results for different generations in the evolution
process. The vehicle is represented by a triangle with vehicle number on it. The
dashed circle around the vehicle represents the range of the payload on-board the
vehicle. This payload can be a sensor or offensive payload. The square markers
represent actual locations of sites. Each of these square markers will have a
vehicle number on it if the site is a target and assigned to that vehicle. A solid
circle located near each square marker represents an area which covers all of
the possible locations of the site represented by the square marker. Each filled
square marker with a dashed circle around it represents a site with defensive
capabilities which can destroy or change the health states of vehicles if they
are within the area marked by the dashed circle. The goal location where the
vehicle is required to be at the end of the mission is represented by a hexagram
in the plots. This representation of the scenario in the plots is also used in all
other planning examples. The results show the ability of the planner to generate
an effective path to visit all the assigned targets and avoiding collision with the



134 A. Pongpunwattana and R. Rysdyk

0 20 40 60 80 100 120 140 160 180 200
100

120

140

160

180

200

220

240

260

280

300

Generation

E
x
p

e
c
te

d
 v

a
lu

e
 o

f 
lo

s
s
 f

u
n

c
ti
o

n

Fig. 13. Evolution of the loss function of the candidate path in each generation

Current spawn point

Best path
Next spawn 

point

Follow this trajectory

Current spawn point

Fig. 14. Concept of dynamic path planning algorithm which retains the knowledge
gained from the previous planning cycle

obstacles. Figure 13 shows that the expected value of the loss function decreases
dramatically in the early generations. The path planner then fine tunes the
resultant path in later generations.

4.2 Algorithm for Dynamic Planning

Dynamic path planning is a continuous process. A diagram describing the
concept of the dynamic path planning is shown in Figure 14. The planning
problem in each cycle is a similar problem to that in the previous cycle. This
approach attempts to preserve some information of the past solutions and



Evolution-based Dynamic Path Planning for Autonomous Vehicles 135

uses it as the basis to compute new solutions even though the new problem
is slightly different from the previous problem. This takes an advantage of
evolutionary algorithms that several candidate solutions are available at any
time during the optimization process.

The planner of the vehicle continually updates its path while the vehicle is
moving in the field of operation. The planning process starts with the static
path planning process to generate an initial population P0 and find the first
best candidate path Q(0) ∈ P0 depicted as the black path in Figure 14. The
location of the first spawn point is at the desired vehicle position z̄V (s1) at
time ts1 specified by the path Q(0). The following steps in the dynamic path
planning algorithm are described below

1. Generate a new population Pi+1 from the current population Pi by updat-
ing all the paths in the current population to begin at the location of the
next spawn point. The paths are modified by removing a small number of
segments from the start of the paths and adding other segments to join
the paths to the spawn point.

2. Run the static planning algorithm continuously to update the population
and to find the best candidate path.

3. Send the updated candidate path to the vehicle navigator once the vehicle
reaches the current spawn point.

4. Update the estimates of the locations of sites in the environment.
5. Return to step 1

To demonstrate dynamic path planning, we revisit the scenario presented
in the last planning example. Starting from the off-line planning result shown
in frame (d) of Figure 12, the results of dynamic planning are shown in
Figure 15. Frames in the figure show snapshots of the simulation at various
simulation time steps. In this simulation, the vehicle is assumed to have an
on-board radar which can improve the estimates of nearby sites’ locations.
The radar can detect a site within the range of 60 kilometers with 40 meters
standard deviation. During the simulation, the planning algorithm updates
the candidate path every 10 seconds of the simulation time. The size of the
execution time horizon, which is the time difference between two consecu-
tive spawn points, is 100 seconds. Since the scenario does not change during
the simulation, the dynamically updated path is little different to the off-line
planned path. The vehicle follows the path to successfully observe the first two
targets, but misses the last target in its first attempt. Frame (c) of Figure 15
shows that the planner is able to quickly update the path to guide the vehicle
back to the target and eventually observe the target as shown in Frame (d).

5 Planning with Timing Constraints

To incorporate time-of-execution specifications into the path planning prob-
lem, the task score weighting factor αF

i used in the objective function is defined
as a time-dependent function. This time-dependent score weighting function



136 A. Pongpunwattana and R. Rysdyk

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

1

1

step = 9

time = 900

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

1

step = 22

time = 2200

(a) (b)

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

step = 46

time = 4600

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

Longitude (deg)

La
tit

ud
e 

(d
eg

)
step = 56

time = 5600

(c) (d)

1

1

1

1

1

1

1

1

Fig. 15. Snapshots of dynamic path planning at different time steps. Each observed
target is marked with a cross symbol

αF
i (q) can be used to define a time window for the vehicles to execute each

task. This function gives a high positive value during the time period in which
we want the vehicle to perform the task. The function gives a small positive
value or zero value during the time period in which executing the task does
not meet the mission objectives.

In this section, we present an example showing the ability of the planner
to generate paths which satisfy the imposed timing constraints. The mission
objective is to observe a target site which is protected by a nearby defensive
site. There are two vehicles each of which has its own path planner. The task of
Vehicle 1, which has an offensive payload, is to destroy the defensive site before
the beginning of the execution time window of the target site. Vehicle 2, which
is equipped with a sensor payload, has to observe the target after the beginning
of the the execution time window. That is at 2000 seconds after the mission
starts. The duration of the execution time window is 500 seconds. Observing
the target site after the expiration time of the execution time window yields



Evolution-based Dynamic Path Planning for Autonomous Vehicles 137

a smaller task score. The profiles of score weighting functions of both tasks
are given in Figure 16. Figure 17 and 18 show the results of an off-line path
planning problem with timing constraints.

In this simulation, each vehicle is equipped with a planner which has identi-
cal knowledge of the environment and planning parameters. The static off-line
planning result in Figure 17 shows that the planner of Vehicle 1 decides to go
directly to the defensive site while Vehicle 2 takes a longer path to wait for
the expiration of the the execution time period for reaching the target site.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (sec)

S
c
o
re

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

Time (sec)

S
c
o
re

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(a) (b)

Fig. 16. Frame (a) shows the profile of the task score weighting function of the
defensive site. Frame (b) shows the profile of the task score weighting function of
the target

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

step = 30

time = 0

12 2

Fig. 17. Off-line path planning with execution time window



138 A. Pongpunwattana and R. Rysdyk

0 50 100 150
70

80

90

100

110

120

130

140

150

Generation

E
x
p

e
c
te

d
 v

a
lu

e
 o

f 
lo

s
s
 f

u
n

c
ti
o

n vehicle1

vehicle2

Fig. 18. Evolution of off-line path planning loss function with execution time
window

To verify that the path planners are capable of generating plans with timing
constraints, we ran a simulation starting with the off-line planning results.
The dynamic planning simulation results are shown in Figure 19. Frame (b)
of the figure shows that Vehicle 1 reaches the defensive site well before the
simulation time 2000 seconds and successfully destroys the obstacle, although
the vehicle is also destroyed. Frame (c) shows that Vehicle 2 reaches the target
site at time 2200 seconds and successfully observes the target. If it is impor-
tant for Vehicle 1 to survive, this can be insured by adjustment of the task
score weighting function. However, the example illustrates the use of a vehicle
in a sacrificial role.

6 Planning in Changing Environment

In a changing environment, obstacles and targets may move unexpectedly
during the operation. Dynamic planning is essential in this situation. The
planner must be capable of replanning during the mission and predicting
future states of the sites in the environment. In ECoPS, the site locations and
their uncertainties are predicted using Equation 10 and 11.

One advantage in using the approximation to the probability of intersec-
tion described in Equation 30 or 31 is the ease with which it can be extended
to include moving sites. It is the form of the solution which is a summation
over a defined function that allows for the simple inclusion of time into the
equations. This approach accommodates the integration of uncertainties and
dynamics of the environment into the model and the objective function.

This section provides two examples of planning in dynamic uncertain envi-
ronments. The first example is a scenario with one moving target which is



Evolution-based Dynamic Path Planning for Autonomous Vehicles 139

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Longitude (deg)

L
a
ti
tu

d
e
 (

d
e
g
)

step = 5

time = 500

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

2

Longitude (deg)

L
a

ti
tu

d
e

 (
d

e
g

)

1
2

step = 14

time = 1400

(a) (b)

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

2

Longitude (deg)

L
a
ti
tu

d
e
 (

d
e
g
)

1
2

step = 22

time = 2200

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1
2

Longitude (deg)

L
a

ti
tu

d
e

 (
d

e
g

)

1
2

step = 34

time = 3400

(c) (d)

1

2

1
2

Fig. 19. Dynamic path planning with execution time window

initially located at position (14.0, 2.5) and later heads west at the speed of
300 kilometers/hour after the vehicle has been moving for 100 seconds. In this
example, the radius of the uncertainty circle of each obstacle and target is 10
kilometers. During the off-line planning period, the planner does not have the
knowledge that the target will move in the future. The off-line planning result
is shown in Figure 20. During the mission, the planner will need to dynam-
ically adapt its path to intersect with the predicted location of the target.
Frame (a) and (b) of Figure 21 show that the planner is adapting the path
to intersect the target at a predicted location. In this simulation, the planner
has knowledge of the velocity of the target site. The planner decides to wait
until the target moves past the area covered by the top-right defensive site,
and the vehicle successfully observes the target as shown in frame (c). The
expected value of the loss function during the simulation is shown in Figure 22.
The spike in the plot is due to the unexpected movement of the target which
causes the planner to temporarily lose track of the target. The value of the loss
function drops near zero when the vehicle intersects and successfully observes
the target.



140 A. Pongpunwattana and R. Rysdyk

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Longitude (deg)

L
a

ti
tu

d
e

 (
d

e
g

)
1

step = 0

time = 0

1

Fig. 20. Off-line path planning result. The planner have no knowledge that the
target will move in the future

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

step = 2
time = 200

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Longitude (deg)

La
tit

ud
e 

(d
eg

)

step = 11
time = 1100

(a) (b)

10
10.5 11 11.5 12 12.5 13 13.5 14 14.5 150

0.5

1

1.5

2

2.5

3

3.5

4

1

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

step = 23

time = 2300

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

step = 42
time = 4200

(c) (d)

1

1

1

Fig. 21. Snapshots of dynamic path planning with a moving target



Evolution-based Dynamic Path Planning for Autonomous Vehicles 141

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

Time sample

E
xp

ec
te

d 
va

lu
e 

of
 lo

ss
 fu

nc
tio

n

Fig. 22. Evolution of dynamic path planning with a moving target

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

step = 0

time = 0

Fig. 23. Off-line path planning result. The planner does not have the knowledge
that the obstacles will move in the future

The second example is a dynamic planning problem with moving obstacles.
During the off-line planning, the planner does not have the knowledge that
the obstacles will move in the future. The off-line planning result shown in
Figure 23 illustrates that the planner is able to find a near-optimal path to go
almost directly to the target and the goal location. Almost immediately after
the vehicle starts moving from its initial location, the obstacles begin moving
north and south to block the vehicle from getting in and out of the area where
the target is located. Figure 24 shows snapshots of the dynamically generated
path during the simulation. These snapshots show that the vehicle is able



142 A. Pongpunwattana and R. Rysdyk

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

step = 6
time = 600

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

step = 20
time = 2000

(a) (b)

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

step = 27

time = 2700

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

1

Longitude (deg)

La
tit

ud
e 

(d
eg

)

1

step = 39

time = 3900

(c) (d)

Fig. 24. Snapshots of dynamic path planning with moving obstacles

to avoid collision with the obstacles and successfully observe the target and
finally reach the goal location. The expected value of the loss function at each
time step is given in Figure 25. The first spike in the plot occurs when the
obstacles start moving. The planner dynamically replans the path with a lower
loss value according to the new updated information about the environment.

7 Conclusion

The goal of this work is to develop a dynamic path planning algorithm for
autonomous vehicles operating in changing environments. The algorithm must
be capable of replanning during the operation. We present the concept of
dynamic path planning and a framework to solve the planning problem based
on a model-based predictive control scheme. We describe a model used to
predict the expected values of future states of the system. The model takes
into account the uncertain information of the environment and the dynamics
of the system.



Evolution-based Dynamic Path Planning for Autonomous Vehicles 143

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

Time sample

E
xp

ec
te

d 
va

lu
e 

of
 lo

ss
 fu

nc
tio

n

Fig. 25. Evolution of dynamic path planning with moving obstacles

We present an evolutionary algorithm suitable for dynamic path plan-
ning problems. The algorithm was developed as part of the Evolution-based
Cooperative Planning System for teams of autonomous vehicles. The algo-
rithm is used to find an optimal path that maximizes an objective function.
This function is formulated using the stochastic world model to capture the
dynamics and uncertainties in the system. The algorithm has been applied to
path planning for UAVs in real wind fields and predicted icing conditions [22].
Extensions to apply this algorithm to the coupled task of the path planning
problem for multiple cooperating vehicles are reported in [19].

Simulation results demonstrate that the path planning algorithm can
provide computationally feasible effective solutions to all of the path plan-
ning problems which include planning with timing constraints and dynamic
planning with moving targets and obstacles. Even though there are some
uncertainties in the knowledge of the environment, the algorithm can generate
feasible paths which are within the capabilities of the vehicle to complete all
tasks and to avoid collision with the obstacles. During the mission, the planner
is able to quickly adapt the path in response to changes in the environment.

8 Acknowledgments

The research presented in this paper is partially funded by the Washington
Technology Center. The simulation software is provided by the Boeing
Company. Professor Emeritus Juris Vagners at the University of Washington
provided direction and advice for this research.



144 A. Pongpunwattana and R. Rysdyk

References

1. R. Rysdyk A. Pongpunwattana. Real-time planning for multiple autonomous
vehicles in dynamic uncertain environments. Journal of Aerospace Computing,
Information, and Communication, 1(12):580–604, 2004.

2. J. L. Bander and C. C. White. A heuristic search algorithm for path determi-
nation with learning. IEEE Transactions of Systems, Man, and Cybernetics –
Part A: Systems and Humans, 28:131–134, January 1998.

3. B. L. Brumitt and A. Stentz. Dynamic mission planning for multiple mobile
robots. In Proceedings of the IEEE International Conference on Robotics and
Automation, Minneapolis, MN, April 1996.

4. E. F. Camacho and C. Bordons. Model Predictive Control. Springer, London,
UK, 1999.

5. B. J. Capozzi. Evolution-Based Path Planning and Management for
Autonomous Vehicles. PhD thesis, University of Washington, 2001.

6. B. J. Capozzi and J. Vagners. Evolving (semi)-autonomous vehicles. In Pro-
ceedings of the AIAA Guidance, Navigation, and Control Conference, Montreal,
Canada, August 2001.

7. S. Chien et al. Using iterative repair to improve the responsiveness of planning
and scheduling for autonomous spacecraft. In IJCAI99 Workshop on Scheduling
and Planning meet Real-time Monitoring in a Dynamic and Uncertain World,
Stockholm, Sweden, August 1999.

8. D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. IEEE Press, Piscataway, NJ, second edition, 2000.

9. D. B. Fogel and L. J. Fogel. Optimal routing of multiple autonomous underwater
vehicles through evolutionary programming. In Proceedings of the 1990 Sympo-
sium on Autonomous Underwater Vehicle Technology, pages 44–47, Washington,
DC, 1990.

10. C. Hocaoğlu and A. C. Sanderson. Planning multiple paths with evolutionary
speciation. IEEE Transctions on Evolutionary Computation, 5(3):169–191, June
2001.

11. J. Holland. Adaptation in Natural and Artificial Systems. PhD thesis, University
of Michigan, Ann Arbor, MI, 1975.

12. L. E. Kavraki et al. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on Robotics and Automa-
tion, 12(4):566–580, 1996.

13. S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Pro-
ceedings of IEEE International Conference on Robotics and Automation, 1999.

14. A. Mandow et al. Multi-objective path planning for autonomous sensor-based
navigation. In Proceedings of the IFAC Workshop on Intelligent Components for
Vehicles, pages 377–382, 1998.

15. C. S. Mata and J. S. Mitchell. A new algorithm for computing shortest paths in
weighted planar subdivisions. In Symposium on Computational Geometry, pages
264–273, 1997.

16. R. R. Murphy. Introduction to AI Robotics. MIT Press, 2000.
17. N. J. Nilsson. Principles of Artificial Intelligence. Tioga Publisher Company,

Palo Alto, CA, 1980.
18. M. H. Overmars and P. Svestka. A probabilistic learning approach to motion

planning. In Goldberg, Halperin, Latombe, and Wilson, editors, Algorithmic



Evolution-based Dynamic Path Planning for Autonomous Vehicles 145

Foundations of Robotics, The 1994 Workshop on the Algorithmic Foundations
of Robotics, 1995.

19. A. Pongpunwattana. Real-Time Planning for Teams of Autonomous Vehicles in
Dynamic Uncertain Environments. PhD thesis, University of Washington, 2004.

20. D. Rathbun and B. J. Capozzi. Evolutionary approaches to path planning
through uncertain environments. In AIAA 1st Unmanned Aerospace Vehicles,
Systems, Technologies, and Operations Conference and Workshop, Portsmouth,
VA, May 2002.

21. D. Rathbun et al. An evolution based path planning algorithm for autonomous
motion of a uav through uncertain environments. In Proceedings of the AIAA
21st Digital Avionics Systems Conference, Irvine, CA, October 2002.

22. J. C. Rubio. Long Range Evolution-based Path Planning for UAVs through Real-
istic Weather Environments. PhD thesis, University of Washington, 2004.

23. G. Rudolph. Convergence of evolutionary algorithms in general search spaces. In
Proceedings of the Third IEEE Conference on Evolutionary Computation, pages
50–54, Piscataway, NJ, 1996.

24. G. Song et al. Customizing PRM roadmaps at query time. In Proceedings of
IEEE International Conference on Robotics and Automation, 2001.

25. S. Thrun et al. Map learning and high-speed navigation in rhino. In Artificial
Intelligence and Mobile Robots. MIT Press, Cambridge, MA, 1998.

26. J. Xiao et al. Adaptive evolutionary planner/navigator for mobile robots. IEEE
Transactions on Evolutionary Computation, 1:18–28, April 1997.



Algorithms for Routing Problems Involving
UAVs

Sivakumar Rathinam1 and Raja Sengupta2

1 University of California, Berkeley rsiva@berkeley.edu
2 University of California, Berkeley raja@path.berkeley.edu

Abstract. Routing problems naturally arise in several civil and military applica-
tions involving Unmanned Aerial Vehicles (UAVs) with fuel and motion constraints.
A typical routing problem requires a team of UAVs to visit a collection of targets
with an objective of minimizing the total distance travelled. In this chapter, we
consider a class of routing problems and review the classical results and the recent
developments available to address the same.

1 Introduction

This chapter is dedicated to reviewing classical approaches and disseminating
recent approaches on the resource allocation problems that arise in the use
of Unmanned Aerial Vehicles (UAVs). Small autonomous UAVs are seen as
ideal platforms for many applications such as monitoring a set of targets,
mapping a given area, aerial surveillance, fire monitoring etc. A collection of
small autonomous UAVs with the necessary sensors can potentially replace a
manned vehicle in dangerous environments and warfare. A common mission
that can be carried out by a group of UAVs is a surveillance operation where
a set of destinations needs to be monitored. If the number of destinations to
be visited are higher than the number of UAVs available, then the following
resource allocation questions naturally arises:

1. How to partition the set of destinations into subsets such that each UAV
gets a subset of destinations to monitor?

2. Given a subset for each UAV, how to determine the order in which the
destinations should be monitored?

3. Can we find a partition and an order for each UAV such that the total
distance travelled by the UAVs is minimum or the total risk encountered
is minimum?

If there is only one vehicle, the problem of finding an optimal sequence
such that each destination is visited once and the total distance travelled

S. Rathinam and R. Sengupta: Algorithms for Routing Problems Involving UAVs, Studies in

Computational Intelligence (SCI) 70, 147–172 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



148 S. Rathinam and R. Sengupta

A B

Minimum distance to travel from A to B ≠ minimum distance from B to A

Fig. 1. An example that illustrates the asymmetry in resource allocation problems
involving UAVs

by the vehicle is minimum is called the Travelling Salesman Problem (TSP).
TSP is known to be NP-Hard [1],[2]. That is, there are no algorithms that
are currently available in the literature that can solve the TSP optimally in
polynomial time3. There are other variants of the standard TSP that can
be useful for applications involving UAVs. For example, in multiple UAV
problems, vehicles might start their missions from a single depot or from
multiple depots.

The presence of kinematic constraints for the UAV complicates these
resource allocation problems further. A typical constraint that is used in plan-
ning problems involving UAVs is the yaw rate constraint. The yaw rate con-
straint models the inability of a UAV to turn at any arbitrary yaw rate. This
yaw rate constraint introduces asymmetry in the distances travelled between
two points. For example, a UAV starting at destination A with heading ψA

and arriving at destination B with heading ψB may not equal the length of its
optimal path starting at destination B with heading ψB and arriving at desti-
nation A with heading ψA. An illustration of this asymmetry for an example
is shown in figure 1.

This chapter formulates three sets of resource allocation problems that are
useful in the context of UAVs and presents algorithms that have been devel-
oped in the literature to address each of them. To simplify the presentation,
the chapter formulates each resource allocation problem, discusses the relevant
literature and presents algorithms to solve the same in separate sections.

2 Single Vehicle Resource Allocation Problem
in the Absence of Kinematic Constraints

2.1 Problem Formulation

Let one UAV be required to visit n destinations. Let V be the set of ver-
tices that correspond to the location of the UAV and the destinations, with
the first vertex V1 representing the UAV and V2, . . . , Vn+1 representing the
3 An algorithm can solve a problem in polynomial time if the number of steps

required to run the algorithm is a polynomial function of the input size of the
problem.



Algorithms for Routing Problems Involving UAVs 149

destinations. Let E = V × V denote the set of all edges (pairs of vertices)
and let c : E → �+ denote the cost function with c(Vi, Vj) (or simply,
cij) representing the cost of travelling from vertex Vi to vertex Vj . Costs
are symmetric, that is, cij = cji. A tour of the UAV is an ordered set of
n + 2 elements of the form {V1, Vi1 , . . . , Vin

, V1}, where Vil
, l = 1, . . . , n

corresponds to n distinct destinations being visited in that sequence. The
overall cost, C(TOUR), associated with the tour of the UAV is defined as
C(TOUR) = c1,i1 +

∑n−1
k=1 cik,ik+1 + cin,1. Given the graph G = (V,E), the

single vehicle problem (SVP) is to find a tour for the UAV that minimizes
the overall cost.

2.2 Relevant Literature

The formulated problem is essentially the single Travelling Salesman Problem
(TSP) as referred to in the operations research literature. For a general cost
function (i.e. cij), it has been proved that there exists no algorithm with
a constant approximation factor unless P=NP [1]. An approximation factor
β(P,A) of using an algorithm A to solve the problem P (objective is minimize
some cost function) is defined as

β(P,A) = sup
I

(
C(I,A)
Co(I)

), (1)

where I is a problem instance, C(I,A) is the cost of the solution by apply-
ing algorithm A to the instance I and Co(I) is the cost of the optimal solution
of I. In simple terms, the algorithm A produces an approximate solution to
every instance I of the problem P , whose cost is within β(P,A) times the
optimal solution of I. Constant factor approximation algorithms are useful in
the sense that they give an upper bound to the cost of the resulting solution
that is independent of the size of the problem. If the cost function satisfies tri-
angle inequality and is symmetric, constant factor approximation algorithms
are available. If i, j, k denote the destinations to be visited then satisfying
triangle inequality means that cij ≤ cik + ckj . The following are the two main
approximation algorithms available for the single TSP:

• 2 approximation algorithm [2].
• 1.5 approximation algorithm by Christofides [3].

When the destinations lie on a Euclidean plane, the cost function has
additional properties that was exploited by Arora in [4]. Given any ε > 0,
Arora’s algorithm finds a solution with an approximation factor of 1 + ε in
time nO( 1

ε ).
As far as the lower bounds are concerned, Held and Karp’s result [5], [6]

is the best known result for the TSP. An advantage of deriving good lower
bounds is that they can be incorporated in branch and bound solvers used
to solve the TSP to obtain faster results. Also, if one can find lower bounds



150 S. Rathinam and R. Sengupta

that are close to the optimal solution in an efficient way, then the quality of
using an algorithm can be found out by comparing the solution produced by
the algorithm directly with the lower bound than with the optimal solution
which may require a large time to compute. The experimental results in [7]
show that even for large size problems, Held-Karp’s lower bound gets within
1-2% of the optimal solution. An important feature of Held-Karp’s algorithm
is that the results are very close to the optimal solution for any general cost
function (i.e. cost function doesn’t have to satisfy triangle inequality). Hence,
in the context of UAVs, this might be ideal as the cost function could be
determined by the risk of travelling between any two destinations and hence,
may not satisfy triangle inequality.

In this section we review three algorithms, namely the 2-Approx algorithm,
the 1.5-Approx algorithm and the Held-Karp’s lower bounding algorithm that
can be used to address the SVP.

2.3 Algorithms

Before we present the algorithms, we define some of the terms commonly
used in the TSP literature. Let {i, j} indicate the edge joining vertex i and
vertex j. A subgraph G′ of G is defined as G′ := (V,E′) where E′ ⊆ E. The
cost of a subgraph is defined as the sum of the cost of all the edges present in
E′. A spanning tree is a subgraph of G that spans all the vertices in V and
does not contain a cycle. A minimum spanning tree of G is a spanning tree
of G that has minimum cost. The degree of a vertex v in graph G = (V,E)
indicates the total number of edges present in E incident on v. An Eulerian
graph is a graph where each vertex has an even degree. A perfect matching
of a graph G corresponds to a subgraph G′ of G that has each vertex having
a degree equal to 1. An Eulerian walk of G is a path that visits each edge in
G exactly once and each vertex in G atleast once.

2-Approx Algorithm

Assuming the costs are symmetric and satisfy triangle inequality, the approxi-
mation algorithm 2-Approx [2] is as follows:

1. Find the Minimum Spanning Tree (MST) of the graph G. An example
illustrating this step of the algorithm is given in Fig. 2.

2. Double every edge in the MST to get an Eulerian graph (Fig. 3).
3. Find an Eulerian walk on this Eulerian graph (Fig. 4).
4. Find the tour such that the vehicle visits the vertices of G in the order of

their first appearance in the Eulerian walk (Fig. 5).

The following theorem in [2] shows that 2-Approx has an approximation
factor of 2.
Theorem 1. The algorithm 2-Approx solves the SVP with an approximation
factor of 2 in O(n2) steps when the costs are symmetric and satisfy triangle
inequality.



Algorithms for Routing Problems Involving UAVs 151

UAV

destination

Fig. 2. Find the minimum spanning tree

UAV

destination

Fig. 3. Double the edges in the minimum spanning tree to construct an Eulerian
graph

1.5-Approx Algorithm

Christofides in [3] reduced the approximation factor from 2 to 1.5 by coming up
a better way of constructing the Eulerian graph from the minimum spanning
tree. This gave rise to the following 1.5-Approx algorithm for SVP:

1. Find the Minimum Spanning Tree (MST) of the graph G. This step is
same as the step 1 presented in the 2-Approx algorithm (Fig. 2).

2. Find the minimum cost perfect matching (PM) on all the odd degree
vertices in the MST (Fig. 6).

3. Add all the edges in MST and PM to get an Eulerian graph (Fig. 7).
4. Find an Eulerian walk on this Eulerian graph (Fig. 8).



152 S. Rathinam and R. Sengupta

UAV

destination

direction of travel

Fig. 4. Find an Eulerian walk

UAV

destination

direction of travel

Fig. 5. Find a tour from the Eulerian walk

5. Find the tour such that the vehicle visits the vertices of G in the order of
their first appearance in the Eulerian walk (Fig. 9).

The following theorem in [3] shows that SVP has an approximation factor
of 1.5.

Theorem 2. The algorithm 1.5-Approx solves the SVP with an approxima-
tion factor of 1.5 in O(n2.5) steps when the costs are symmetric and satisfy
triangle inequality.

Held-Karp’s Lower Bound

Held and Karp [5] derived a lower bound to SVP by first noting the fact that
every tour is a 1-tree. A 1-tree is a tree on vertices V = {V2, . . . Vn+1} with two
additional edges incident on vertex V1. So if the minimum cost 1-tree on the set
V turns out to be a tour, it also solves the SVP. The basic idea behind the
Held-Karp algorithm is the observation that the optimal solution of a SVP
does not alter by changing the costs of the edges from cij to cij + πi + πj ,



Algorithms for Routing Problems Involving UAVs 153

UAV

destination

with odd degree

Fig. 6. Find the minimum cost perfect matching (PM) on the odd degree vertices
of MST

UAV

destination

Fig. 7. Add the edges from MST with the edges in PM



154 S. Rathinam and R. Sengupta

UAV

destination

Fig. 8. Find an Eulerian walk

UAV

destination

Fig. 9. Find a tour from the Eulerian walk

where as, the optimal solution of the minimum cost 1-tree may change. πi can
be treated as weights on each vertex i∈V . The reason why the optimal solu-
tion for a SVP doesn’t change is because for any tour x,

∑
{i,j}∈x(cij+πi+πj)

=
∑

{i,j}∈x cij + 2
∑

i∈V πi. Therefore, arg minx{
∑

{i,j}∈x(cij + πi + πj) :
x∈T}=arg minx{

∑
{i,j}∈x cij : x ∈ T}, where T is the set of all tours in V . But

if y denotes a 1-tree, then,
∑

{i,j}∈y(cij +πi +πj) =
∑

{i,j}∈y cij +
∑

i∈V πidiy,
where diy is the degree of vertex i in y. Hence, the additional cost added
depends on the degree of each vertex in the 1-tree. Using the fact that every
tour is a 1-tree, we have,

min
y∈Q

∑

{i,j}∈y

cij +
∑

i∈V

πidiy ≤ min
x∈T

∑

{i,j}∈x

cij + 2
∑

i∈V

πi, (2)



Algorithms for Routing Problems Involving UAVs 155

where Q is the set of all 1-trees in V . Therefore, for any given vector π,

min
y∈Q

∑

{i,j}∈y

cij +
∑

i∈V

πi(diy − 2) ≤ min
x∈T

∑

{i,j}∈x

cij . (3)

Since the above equation is true for any π, we get the following result:

Theorem 3.

max
π

min
y∈Q

∑

{i,j}∈y

cij +
∑

i∈V

πi(diy − 2) ≤ min
x∈T

∑

{i,j}∈x

cij . (4)

The left hand side in the above result provides a lower bound to the SVP.
Let w(π) = miny∈Q

∑
{i,j}∈y cij+

∑
i∈V πi(diy−2). For any fixed π, calculating

w(π) is that of finding an optimal 1-tree. An optimal 1-tree can be easily solved
using the Prim’s algorithm [2]. Note that the function w(π) is concave in π.
This lends itself to a gradient ascent algorithm that produces a sequence of
lower bounds to the SVP as discussed in [5],[6].

3 Multiple Vehicle Resource Allocation Problems
in the Absence of Kinematic Constraints

The resource allocation problems considered in this section involves multiple
UAV’s where vehicles could start from a single depot or from multiple depots.
The general problem discussed in this section is as follows: Given a set of
UAVs and destinations, find tours for each UAV such that (1) each destination
is visited once by only one UAV (2) the sum of the tour cost of all the UAVs
is minimum. As mentioned in the introduction, there are several variants of
this multiple vehicle problem. In this section, we present three such variants
and discuss approaches to solve them. To avoid using redundant variables in
the problem formulation, each variant is formulated separately under each
subsection.

3.1 Literature Review

The Multiple Travelling Salesmen Problem (MTSP) has two distinct cases -
one case where all vehicles start at a root vertex (referred to as Single Depot
MTSP) and an other where vehicles may start at different locations (referred
to as Multiple Depot MTSP). Please refer to the recent paper by Bektas [8]
for an extensive review of MTSP’s. Bellmore and Hong [9] consider a Single
Depot MTSP where each vehicle is available for service at a specific cost and
the edge costs need not satisfy triangle inequality. Since the objective is to
reduce the total cost travelled by the vehicles, there could be situations when
the optimal solution will not necessitate using all the vehicles. Bellmore and



156 S. Rathinam and R. Sengupta

Hong [9] provide a way of transforming this single depot MTSP to a standard
TSP for the asymmetric case and Rao [10] discuss the symmetric version of
the same problem. GuoXing [11] also provides a transformation of a variant
of an asymmetric, Multiple Depot MTSP to an Asymmetric TSP, wherein
most applicable literature for the standard asymmetric TSP can be put to
good use. Recently, Rathinam et al. [12] provided a 2−approx algorithm for
Multiple Depot MTSP when the edge costs are symmetric and satisfy triangle
inequality. In their work, each vehicle start and end at different locations.
Also, Darbha [13] discuss a generalized version of the multiple depot MTSP’s
where there is an upper bound on the number of vehicles that can be used.
The following subsections discuss three variants of the multiple vehicle TSP
presented in Rao [10], Rathinam et al. [12] and Darbha [13].

3.2 Single Depot, Multiple TSP(SDTSP)

Problem Formulation

Let there be n destinations and m UAVs. V consists of the vertex V0 repre-
senting the depot along with vertices V1, . . . , Vn that represent the destina-
tions. There are m UAV’s, u0, u1...um−1, present in the depot (vertex V0).
Let E = V × V denote the set of all edges (pairs of vertices). A edge join-
ing vertices Vi and Vj is represented as (Vi, Vj). Each edge (Vi, Vj) has a
cost denoted by c(Vi, Vj) (or simply, cij). A tour is an ordered set, TOURi,
of at least r + 2, r ≥ 1 elements of the form {V0, Vi1 , . . . , Vir

, V0}, where
Vil

, l = 1, . . . , r corresponds to r distinct destinations being visited in that
sequence by UAV ui. There is a cost, C(TOURi), associated with a tour for
the UAV ui and is defined as C(TOURi) = c0,i1 +

∑r−1
k=1 cik,ik+1 + cir,0. Also,

there is a fixed price Ci of using the UAV ui. Without loss of generality, we
assume that C0 ≤ C1... ≤ Cm−1. If Sp is the set of p UAVs chosen to visit
the destinations, the overall cost is defined as

∑
i∈Sp

[C(TOURi)+Ci]. Given
the graph G = (V,E) the problem is to choose p (1 ≤ p ≤ m) vehicles so that
each destination is visited by only one UAV and the overall cost is a minimum
among all possible choices of p and their corresponding tours.

Transformation of SDTSP to a Single TSP

Rao [10] presents an approach to solve SDTSP by transforming SDTSP to
an equivalent single TSP. By doing this, most of the available heuristics for
the single TSP can be used to get solutions for the SDTSP. It turns out in
practice, this method of transforming the given SDTSP to a single TSP does
not yield good results as the number of the vehicles increases [14]. Neverthe-
less, this approach gives an insight as to how multiple vehicle problems can
be dealt with.



Algorithms for Routing Problems Involving UAVs 157

The basic idea is to construct a new graph G′ = (V ′, E′) and the corres-
ponding cost function such that finding a single optimal tour on graph G′

is equivalent to solving the SDTSP. Graph G′ = (V ′, E′) is constructed as
follows:

• Add additional m−1 vertices to V represented by V−1, V−2...V−(m−1). The
new set of vertices V ′ := V

⋃
{V−1, V−2...V−(m−1)}.

• E′ contains
1. every edge present in E.
2. an edge (V−i, Vj) if (V0, Vj) is present in E, ∀i ∈ {1, 2..(m − 1)} and

∀j ∈ {1..n}.
3. an edge (V−i, V−(i−1)), ∀i ∈ {1..(m − 1)}.

• The new cost function c′ : E′ → �+ is defined as follows:
1. c′(Vi, Vj) = c(Vi, Vj), ∀i = {1, 2..n}, ∀j = {1, 2..n} and edge

(Vi, Vj) ∈ E.
2. c′(V−i, Vj) = c(V0, Vj) + 1

2Ci, ∀i = {0, 1, ..(m − 1)}, ∀j = {1, 2..n} and
edge (V0, Vj) ∈ E.

3. c′(V−i, V−i+1) = 1
2 (Ci−1 − Ci), ∀i ∈ {1..(m − 1)}.

An example of this transformation is shown in Fig. 10 and Fig. 11. The
main result in Rao [10] that helps us solve the SDTSP is stated in the fol-
lowing theorem.

Theorem 4. Solving the SDTSP on graph G is equivalent to solving a single
TSP on the transformed graph G′.

V0

V2

V1

V4

V3

V5

V6

c01

c56

c23

c12

c04

c06

destination

depot

c45

c34

Fig. 10. An example of a graph G with 3 vehicles present at the depot



158 S. Rathinam and R. Sengupta

c45

V0

V2 V1

V4

V3

V5

V6

V-2

V-1

C0/2+c01

c56

c23

c12

C0/2+c04

C0/2+c06c34

(C0-C1)/2

(C1-C2)/2
C1/2+c01

C2/2+c01

C1/2+c04

C2/2+c04

C1/2+c06

C2/2+c06

depot

destination

added vertices

Fig. 11. Transformed graph G′

3.3 Multiple Depot, Multiple TSP (MDMTSP)

Let there be n destinations and m UAVs. Let V be the set of vertices that
correspond to the destinations, the starting and the terminal location of the
UAVs. The first m vertices of V namely, V1, . . . , Vm, represents the start-
ing locations of the UAVs (i.e., the vertex Vi corresponds to the starting
location of the ith vehicle). The next n vertices in V , Vm+1, . . . , Vm+n, rep-
resents the destinations. Finally, vertices Vm+n+1, . . . , V2m+n in V represents
the possible terminal locations of the UAVs. Let E = V × V denote the set
of all edges (pairs of vertices) and let c : E → �+ denote the cost function
with c(Vi, Vj) (or simply, cij) representing the cost of travelling from vertex



Algorithms for Routing Problems Involving UAVs 159

Vi to vertex Vj . We consider costs that are symmetric and satisfy triangle
inequality. A path is an ordered set, PATHi, of at least r + 2, r ≥ 1 ele-
ments of the form {Vi, Vi1 , . . . , Vir

, Vif
}, where Vil

, l = 1, . . . , r corresponds
to r distinct destinations being visited in that sequence by the ith UAV and
Vif

is a terminal location. Any two paths PATHi and PATHj are such that
PATHi

⋂
PATHj = Φ. There is a cost, C(PATHi), associated with a path

for the ith UAV and is defined as C(PATHi) = ci,i1 +
∑r−1

k=1 cik,ik+1 + cir,if
.

Let each UAV be allowed to choose any one of the given terminal locations
present in Vm+n+1, . . . , V2m+n not visited by other UAVs. Given the graph
G = (V,E), find m UAV paths such that each destination is visited by only
one UAV and the overall cost defined as

∑m
i=1 C(PATHi) is minimum.

Approximation Algorithm for MDMTSP

Before, we present the approximation algorithm we give the definition of a
constrained forest as discussed in [12]. A constrained forest is a subgraph of
G with m disjoint trees such that each tree spans exactly one vertex from
{V1, . . . , Vm}, exactly one vertex from {Vm+n+1, . . . , V2m+n} and a subset of
vertices from {Vm+1, . . . , Vm+n}. (i.e. each tree must consist of exactly one
starting vertex and one terminal vertex). The approximation algorithm CF
[12] that solves the MDMTSP is as follows:

1. Find the minimum cost constrained forest. The output of this step for an
example with five vehicles is shown in Fig. 12.

2. For each tree corresponding to a vehicle, double its edges to construct its
Eulerian graph (Fig. 13).

3. Then construct a path for each vehicle based on its Eulerian graph
(Fig. 14). This step essentially uses the same algorithm implemented for
the tour computation in the single TSP (section 2.3).

The following theorem in [12] shows algorithm CF has an approximation
factor of 2.

Theorem 5. The algorithm CF solves the MDMTSP with an approximation
factor of 2 in O((n + 2m)6) steps when the costs are symmetric and satisfy
triangle inequality.

3.4 Generalized Multiple Depot Multiple TSP (GMTSP)

Problem Formulation

Let there be n destinations and m UAVs. Let V be the set of vertices that
correspond to the location of UAVs and the destinations, with the first m



160 S. Rathinam and R. Sengupta

UAV starting
location

Destination

terminal location

Fig. 12. Step 1 of algorithm CF for MDMTSP: Find the optimal constrained
forest

UAV starting 
location

Destination

terminal location

Fig. 13. Step 2 of algorithm CF for MDMTSP: Double the edges in each tree to
get a Eulerian graph for each vehicle



Algorithms for Routing Problems Involving UAVs 161

UAV starting 
location

Destination

terminal location

Fig. 14. Step 3 of algorithm CF for MDMTSP: Construct a path out of each
Eulerian graph

vertices V1, . . . , Vm representing the UAVs (i.e., the vertex Vi corresponds to
the ith UAV) and Vm+1, . . . , Vm+n representing the destinations. Let E =
V × V denote the set of all edges (pairs of vertices) and let c : E → �+

denote the cost function with c(Vi, Vj) (or simply, cij) representing the cost of
travelling from vertex Vi to vertex Vj . We consider costs that are symmetric,
i.e. cij = cji and satisfy triangle inequality. A tour is an ordered set, TOURi,
of at least r + 2, r ≥ 1 elements of the form {Vi, Vi1 , . . . , Vir

, Vi}, where
Vil

, l = 1, . . . , r corresponds to r distinct destinations being visited in that
sequence by the ith UAV. There is a cost, C(TOURi), associated with a tour
for the ith UAV and is defined as C(TOURi) = ci,i1 +

∑r−1
k=1 cik,ik+1 + cir,i.

If Sp is the set of p vehicles chosen to visit the destinations, the overall cost
is defined as

∑
i∈Sp

C(TOURi). Given the graph G = (V,E), and a number
p ≤ m, choose at most p UAVs so that each destination is visited by at least
one UAV and the overall cost is a minimum among all possible choice of p or
fewer UAVs and their corresponding tours.

Approximation Algorithm for GMTSP

The approximation algorithm CT [13] that solves the GMTSP is given as
follows:

1. Construct a graph G̃ as follows: Add a new vertex (called as the root)
denoted by r. Connect r to all the vertices denoting the UAVs through zero



162 S. Rathinam and R. Sengupta

cost edges. Remove the edges between any pair of vertices representing
the UAVs.

2. Construct a constrained Minimum Spanning Tree on G̃ such that the sum
of the degrees of the vertices denoting the UAVs to be at most m + p.

3. By dropping all the edges between the root vertex and each of the vertices
representing the UAVs in the constrained MST found from step 2, one will
get a forest consisting of at most p non-trivial trees (a non-trivial tree is
one which consists of atleast one edge) that spans all destinations with
exactly one UAV in each tree and at least m − p vehicles that are not
incident on any edge.

4. We then double the edges of the non-trivial trees and construct a tour
for each of the vehicles by following the exact procedure outlined in the
2-approximation algorithm for single TSP in section 2.3.

The following theorem in [13] shows this algorithm CT has an approxima-
tion factor of 2.

Theorem 6. The algorithm CT solves the MVMDP with an approximation
factor of 2 in O((n + m)4) steps when the costs are symmetric and satisfy
triangle inequality.

4 Resource Allocation Problems in the Presence
of Kinematic Constraints

4.1 Problem Formulation

Let (x(vi, t), y(vi, t), θ(vi, t)) denote the position and the heading of UAV
vi at time t. Let each UAV start at an initial heading θ(vi, 0) = αi. Sim-
ilarly, let (x(dj , t), y(dj , t)) denote the position of destination dj at time t.
Since the destinations are assumed to be stationary, let (x̄(dj), ȳ(dj)) =
(x(dj , t), y(dj , t)) ∀ t. Given a set of UAVs {v1, v2, ...vm} and destinations
{d1, d2, ...dn}, the problem is to

• assign a sequence of destinations Pi to each UAV to visit such that
{d1, d2...dn} = {

⋃
i Pi} and {Pi}

⋂
{Pj} = ∅ if i �= j.

• assign to each UAV vi, a path through the sequence Pi such that the path
of each UAV vi satisfies the following kinematic constraints:

dx(vi, t)
dt

= vo cos (θ(vi, t)),

dy(vi, t)
dt

= vo sin (θ(vi, t)),

dθ(vi, t)
dt

= Ω where Ω ε [−ω,+ω], (5)



Algorithms for Routing Problems Involving UAVs 163

where, vo denotes the speed, ω represents the bound on the yaw rate and
r = vo

ω is the minimum turning radius of each UAV.

Let the sequence Pi for UAV vi be di1 , ...dik
. Assigning a path for UAV

vi through its sequence Pi of destinations also implies assigning the angles of
approach βdi

at each destination and assigning the angle of return βvi
at which

the UAV comes back to its initial position (x(vi, 0), y(vi, 0)). For example, the
ith UAV moves from (x(vi, 0), y(vi, 0), αi) to (x̄(di1), ȳ(di1), β(di1)), and then
from (x̄(di1), ȳ(di1), β(di1)) to (x̄(di2), ȳ(di2), β(di2)) and so on. After reaching
dik

, it comes back to its initial position (x(vi, 0), y(vi, 0)) at an angle βvi
.

The objective is to minimize
∑n

i=1 Cost(Pi), where Cost(Pi) is the total
distance travelled by the ith UAV.

The above problem is called as the RAP(m), i.e, Resource Allocation
Problem for m UAVs.

4.2 Literature Review

Significant interest in the potential of realizing a mission in battle field envi-
ronments using a collection of small autonomous UAVs was the main motiva-
tion that lead to the formulation of problems such as RAP(m). Resource allo-
cation problems concerning UAVs has received considerable attention in the
last 7 years [15], [16], [17], [18], [19],[20], [21], [22], [23]. A more general version
of RAP(m) with each destination requiring multiple tasks was formulated
in [24]. Yang et al. [25] consider path planning for an UAV with kinematic
constraints given fixed initial and final positions in the presence of obsta-
cles. The UAV in their work is required to visit a destination and then
reach a final position avoiding threats and other obstacles. This is related
to RAP(1) in the absence of obstacles when there is one destination on the
tour. The single vehicle problem (RAP(1)) has been addressed by several
authors [26], [27], [29], [30]. In [26], Savla et al. bound the distance of the UAV
path between any points (x1, y1, θ1) and (x2, y1, θ2) in terms of the Euclidean
distance between the corresponding points. Also, using this result, they pro-
pose an algorithm which bounds the total distance travelled by the vehicle
in terms of the Euclidean distance tour. Ny et al. [27] provide an algorithm
with an approximation factor of (1+max{ 8πr

Dmin
, 14

3 }) log n, where Dmin is the
minimum Euclidean distance between any two locations. They approximate
RAP(1) as an asymmetric TSP and use the bound of log n by Frieze et al.
[28] to get the approximation factor. In [29], Rathinam et al. provide an algo-
rithm for RAP(1) with an approximation factor of 4.56 by assuming that
Dmin ≥ 2r. The main difference between the result in [29] and [27] is that
Rathinam et al. approximate the RAP(1) as as symmetric TSP and hence
the approximation factor is independent of n. Tang et al. [30] also provide a
heuristic for RAP(1)that uses an approximate gradient method to determine
the path of the UAV. However, there are no bounds presented in [30].

The paper that is most relevant to the multiple vehicle problem
(RAP(m)) is the work by Tang et al. [30]. In [30], Tang et al. provide



164 S. Rathinam and R. Sengupta

heuristics for multiple vehicles tracking moving destinations using clustering
and gradient techniques. Even though [30] consider moving destinations, their
main results are for stationary destinations which is essentially the RAP(m).
Also heuristics for more general versions of RAP(m) are presented in [31]
[32], but there are no bounds. Rathinam et al. [29] provide a algorithm for
RAP(m) with an approximation factor of 6.07 by assuming that Dmin ≥ 2r.
In the following subsections, we review two algorithms, one by Savla et al.
[26] for the single vehicle case and an other by Rathinam et al. [29] for the
multiple vehicle case.

Remark: Before we discuss the algorithms, we present the result by
L.E. Dubins [33] which forms the motivation for the paths chosen in the
algorithms. L.E. Dubins [33] gives the optimal path the vehicle must travel
between any two points subject to the path constraints given by equations 5.
Henceforth, any curved segment of radius r along which the vehicle executes
a clockwise (counterclockwise) rotational motion is denoted by R(L), and the
segment along which the vehicle travels straight is denoted by S. Thus the
path in figure 15 is an RSL path. Dubin’s result states that the path joining
the two points (x1, y1, θ1) and (x2, y2, θ2) that has minimal length subject to
constraints in 5, is one of RSR, RSL, LSR, LSL, RLR and LRL. Such an
optimal path between any two points that has minimum length subject to
constraints in 5 would be called a Dubin’s path in this chapter.

4.3 Alternating Algorithm for the Single UAV Case

Let the number of destination points be (n ≥ 2).

1. Compute the optimal single TSP tour ignoring the kinematic constraints
of the vehicles (i.e. find the optimal single TSP tour based on the Euclid-
ean distances between all the points). Let the sequence of the destinations
in the calculated tour be denoted by di1 , ...din

.

x1,y ,q1 1

,qx2,y2 2

Fig. 15. Shortest path - {clockwise, straight, counter clockwise}



Algorithms for Routing Problems Involving UAVs 165

2. Since the sequence of the destinations is known, the path of the UAV can
be determined by fixing the heading angles at each of the destinations.
The heading angles are now fixed as follows:
a) Let j = 1.
b) If j is odd and j ≤ n − 1, fix βij

to be the orientation of the line

segment joining dij
to dij+1 , i.e β(dij

) := arctan [
ȳ(dij+1 )−ȳ(dij

)

x̄(dij+1 )−x̄(dij
) ].

c) If j is odd and j = n, fix βij
to be the orientation of the line seg-

ment joining din
to the initial position of the vehicle, i.e β(dij

) :=
arctan [ y(v1,0)−ȳ(din )

x(v1,0)−x̄(din ) ].
d) if j is even, fix β(dij

) := β(dij−1).
e) if j = n fix the return angle of the UAV to its initial position, βv1 ,

equal to β(din
) and stop. Else, if j < n, assign j =⇒ j + 1 and go to

step (b).
3. Now construct Dubin’s path from (x(vi, 0), y(vi, 0), αi) to (x̄(di1), ȳ(di1),

β(di1)) and then from (x̄(di1), ȳ(di1), β(di1)) to (x̄(di2), ȳ(di2), β(di2)) and
so on. For the last leg of the tour that joins din

to the initial vehi-
cle location, construct a Dubin’s path from (x̄(din

), ȳ(din
), β(din

)) to
(x(vi, 0), y(vi, 0), βv1).

An example of the alternating algorithm is shown in Fig. 16. The main
result in [26] bounds the length of the Dubin’s path D(p1, p2) that joins p1 =
(x1, y1, θ1) to p2 = (x2, y2, θ2) in terms of the Euclidean distance E(p1, p2)
between the points, where E(p1, p2) :=

√
(x1 − x2)2 + (y1 − y2)2. This result

is stated in the following theorem.

Theorem 7. D(p1, p2) ≤ E(p1, p2) + κπr where κ ∈ [2.657, 2.658] and r is
the minimum turning radius of the UAV.

4.4 Approximation Algorithm for the Multiple UAV Case

Rathinam et al. [29] assume that the Euclidean distances between any two
destinations and the Euclidean distance between the initial position of each
UAV and a destination is greater than twice the minimum turning radius
of the UAV. This is a reasonable assumption in the context of unmanned
aerial UAVs which carry sensors that have footprints that are greater
than 2r. This implies that

√
(x̄(dj) − x̄(dk))2 + (ȳ(dj) − ȳ(dk))2 ≥ 2r and√

(x(vi, 0) − x̄(dj))2 + (y(vi, 0) − ȳ(dj))2 ≥ 2r, ∀j �= k, ∀j, k ∈ {1, 2..n},∀i
∈ {1, 2..m}.

First, we give a simple algorithm S for the UAV v1 to find a path to
travel from positions (x(v1), y(v1), α1) to (x̄(dj), ȳ(dj)). Note that the final
approach angle at the position (x̄(dj), ȳ(dj)) is free to be chosen. Algorithm
S is as follows:

1. Find the distances of two possible paths the UAV could take: RS and LS.
2. Choose the path that has the minimum distance.



166 S. Rathinam and R. Sengupta

Once, this path is followed, the UAV reaches the position (x̄(dj), ȳ(dj)) at
some final angle θ and this angle is chosen as the heading at the final position.

The algorithm MV A for the RAP(m) is as follows:

1. Construct a complete graph with vertices being all the UAVs and desti-
nations. Assign the Euclidean distance as the cost to each edge that joins
a UAV to a destination and a destination to a destination. Assign zero
cost to an edge that joins any two UAVs.

2. Find the minimum spanning tree of the graph using Prim’s algorithm [2].
This minimum spanning tree will contain exactly m − 1 zero cost edges
where m is the number of UAVs (Fig. 17).

3. Remove the zero cost edges to get a tree for each UAV (Fig. 18).
4. For each tree corresponding to a UAV, double its edges to construct a

Eulerian graph (Fig. 19). Then construct a tour for each UAV based on
the Eulerian graph. A tour for each UAV is a sequence of destinations for
it to visit (Fig. 20). (This step is similar to tour construction for the single
TSP discussed in section 2.3).

5. Use the above sequence and construct paths using algorithm S between
any two consecutive locations. For example, use algorithm S to construct
a path from (x(v1), y(v1), α1) to (x̄(d1), ȳ(d1)). Say, the UAV reaches the

1. Calculate the Euclidean TSP tour 2. Fix the headings at each destination

3. Construct  the Dubinspath between any two consecutive 
    destinations on the Euclidean TSP tour

UAV

destination

Fig. 16. Alternating Algorithm for the RAP(1)



Algorithms for Routing Problems Involving UAVs 167

UAV
destination

0

0

Fig. 17. Calculate the minimum spanning tree (MST). In this example, there are
3 UAVs, hence MST will have 2 zero cost edges

UAV
destination

Fig. 18. Remove the zero cost edges from MST to yield a tree for each UAV

destination d1 at an angle θ. Again, use algorithm S to construct a path
from (x̄(d1), ȳ(d1), θ) to (x̄(d2), ȳ(d2)) and so on. (Fig. 21).

The above algorithm has an approximation factor of 6.07 [29]. This is
stated in the following theorem.

Theorem 8. AlgorithmMV A with the assumptions on the minimum Euclid-
ean distance solves the RAP(m) with an approximation factor equal to
2(π + 1 − tan−1(2)) ≈ 6.07 in O((n + m)2) steps.



168 S. Rathinam and R. Sengupta

UAV
destination

Fig. 19. After removing the zero cost edges, double the edges of the MST to get a
Eulerian graph for each UAV

UAV
destination

Fig. 20. Compute a tour based on the Eulerian graph for each UAV

UAV
destination

Fig. 21. Use the sequence got from the tour and construct paths using the S
algorithm between the corresponding locations



Algorithms for Routing Problems Involving UAVs 169

5 Summary and Open Problems

This chapter formulated a set of resource allocation problems that are moti-
vated by the applications involving Unmanned Aerial Vehicles. Since UAVs
have fuel constraints in them and the distance travelled by the vehicles depend
upon its fuel capacity, the problems focussed on the objective of minimizing
the total distance travelled. Since these problems are variants or generaliza-
tions of the Travelling Salesman Problem that is NP-Hard, approximation
algorithms were presented to solve the same. The kinematics of the UAVs
further complicate these resource allocation problems and methods that have
been presented in this chapter combine results from the TSP and the opti-
mal control literature. The following part of the section discusses some of the
key issues that have not been addressed in this chapter and the related open
problems in the context of UAV applications:

• Approximation algorithms with lesser bounding factors:
This chapter reviewed algorithms with an approximation factor of 2 for
different variants of multiple depot routing problems. It is not clear
whether the Christofides algorithm can be extended to the multiple depot
case. The main difficulty in deriving lesser approximation factors is due to
the hardness in obtaining a suitable partition of the destination vertices.
Another result that is worth mentioning here is a complexity result for the
bottleneck variants of the multiple depot problem. In [35], it is stated that
it is hard to derive an algorithm with an approximation factor less than 2
unless P=NP for bottleneck variants. It is unclear whether a similar result
can be derived for the multiple depot problems presented in this chapter.

• Distributed algorithms:
The algorithm for the multi depot problem given in this paper involved
finding a minimum spanning tree of all the vertices. It is known that mini-
mum spanning tree computations can be distributed and auction style
algorithms can be developed for these problems as shown in [34]. But it
seems that there is a tradeoff between obtaining a tighter approximation
factor versus distributed computation. It is intuitive that it would be even
harder to obtain distributed algorithms with approximation factors less
than 2. Recent results in [34] suggest some approaches for these routing
problems based on auctions. Further studies on distributed, routing algo-
rithms are suggested in the context of UAV applications.

• Computational results involving UAVs:
The main difference between the routing problems involving UAVs and the
TSP variants is that UAVs have additional kinematic and dynamic con-
straints. Though there are several theoretical results for routing problems
involving UAVs currently in the literature, there have been no computa-
tional results that compare the performance of different heuristics for these



170 S. Rathinam and R. Sengupta

problems. Even though algorithms with approximation factors are helpful,
there might be simple heuristics that could perform well in practice. The
main difficulty of these routing problems involving UAVs is that there are
no existing methods to calculate the optimal cost. However lower bounds
based on Euclidean distances can be easily derived using the algorithms
presented in this paper. A study comparing the performance of different
heuristics for a given number of depots and destinations would be very
useful.

• Heterogeneous vehicles:
All the problems considered in this chapter assumed a homogeneous collec-
tion of vehicles. Many applications involving UAVs might require vehicles
with different capabilities to act in a cooperative manner. A simple case
would be when the vehicles have a different minimum turning radius. It
is unclear even whether algorithms with approximation factors of 2 are
possible for these problems.

• Adding and deleting destination points:
In military applications, it would be common to have tasks removed or
added as the mission progresses. A simple scenario would be when certain
destination points are deleted or added frequently. A naive approach to
deal with such scenarios would be to recompute solutions whenever the
destinations change. But this might require a large computation time. A
very useful research direction would be to derive algorithms that can adapt
itself to changing scenarios. In particular, the following question is the one
to ask: Can one devise a routing algorithm for all the vehicles that does not
recompute the entire solution from scratch but rather uses old information
in building new solutions?

References

1. Vazirani, V.V., 2001. Approximation algorithms, Springer
2. Papadimitriou, C.H., Steiglitz, K., 1998. Combinatorial optimization: algo-

rithms and complexity, Dover publications
3. Christofides, N., 1976. Worst-case analysis of a new heuristic for the travelling

salesman problem. In: J.F. Traub (Editor), Algorithms and Complexity: New
Directions and Recent Results, Academic Press, pp. 441

4. Arora, S., 1996. Polynomial-time approximation schemes for Euclidean TSP
and other geometric problems. Proceedings of the 37th Annual Symposium on
the Foundations of Computer Science, pp. 2–11

5. Held, M., Karp, R.M., 1970. The traveling salesman problem and minimum
spanning trees. Operations Research 18, pp. 1138–1162

6. Held, M., Karp, R.M., 1971. The travelling salesman problem and minimum
spanning trees: Part II. Mathematical Programming 18, pp. 6–25

7. Gutin, G., Punnen, A.P. (Editors), 2002. The travelling salesman problem and
its variations. Kluwer Academic Publishers



Algorithms for Routing Problems Involving UAVs 171

8. Bektas, T., 2006. The Multiple Traveling Salesman Problem: an Overview
of Formulations and Solution Procedures. OMEGA: The International Journal
of Management Science, 34(3), 209–219

9. Bellmore, M., Hong, S., 1977. A note on the symmetric multiple travelling
salesman problem with fixed charges. Operations Research 25, pp. 871–874

10. Rao, M.R., 1980. A note on multiple travelling salesmen problem. Operations
Research 28(3), pp. 628–632

11. GuoXing, Y., 1995. Transformation of multidepot multisalesmen problem to
the standard traveling salesman problem. European Journal of Operations
Research 81, pp. 557–560

12. Rathinam, S. and Sengupta, R., 2006. Lower and upper bounds for a symmet-
ric, multiple depot, multiple travelling salesman problem. Submitted to IEEE
conference on Decision and Control

13. Darbha, S., 2005. Combinatorial motion planning of reed-shepp vehicles, Final
Report, American Society for Engineering Education (ASEE)\ Airforce Office
of Scientific Research(AFOSR), Summer Faculty Program, Air Force Research
Laboratory, Eglin, Florida

14. Gavish, B., Srikanth, K., 1986. An optimal solution method for the multiple
travelling salesman problem. Operations Research 34(5), pp. 698–717

15. Chandler, P.R., Pachter, 1998. m., Research issues in autonomous control of
tactical UAVs. American Control Conference, pp. 394–398

16. Chandler, P.R., Rasmussen, S.R., Pachter, M., 2000. UAV cooperative path
planning. Proceedings of the GNC, pp.1255–1265

17. Chandler, P.R., Pachter, M., 2001. Hierarchical control of autonomous control
of tactical UAVs. Proceedings of GNC, pp. 632-642

18. Chandler, P.R., Rasmussen, S.R., Pachter, M., 2001. UAV cooperative control.
American Control Conference

19. Schumacher, C., Chandler, P.R., Rasmussen, S.R., 2001. Task allocation for
wide area search munitions via network flow optimization. AIAA Guidance,
Navigation, and Control Conference and Exhibit, Montreal, Canada

20. Chandler, P.R., Pachter, M., Swaroop, D., Fowler, J.M., Howlett, J.K.,
Rasmussen, S.R., Schumacher, C., Nygard, K., 2002. Complexity in UAV coop-
erative control. Proceedings of the American Control Conference, Anchorage,
Arkansas

21. Maddula, T., Minai, A.A., Polycarpou, M.M., 2002. Multi-target assign-
ment and path planning for groups of UAVs. S. Butenko, R. Murphey, and
P. Pardalos (Eds.), Kluwer Academic Publishers

22. Richards, A., Bellingham, J., Tillerson, M., How, J. P., 2002. Co-ordination
and control of multiple UAVs. AIAA Guidance, Navigation, and Control Con-
ference

23. Alighanbari, M., Kuwata, Y., How, J.P., 2003. Coordination and control of
multiple UAVs with timing constraints and loitering. Proceeding of the IEEE
American Control Conference

24. Darbha, S., 2001. Teaming Strategies for a resource allocation and coordination
problem in the cooperative control of UAVs. AFRL Summer Faculty Report,
Dayton, Ohio

25. Yang, G., Kapila, V., 2002. Optimal path planning for unmanned air vehicles
with kinematic and tactical constraints. Proceedings of the 41st IEEE Confer-
ence Decision and Control 2, pp. 1301–1306



172 S. Rathinam and R. Sengupta

26. Savla, K., Frazzoli, E., Bullo, F., 2005. On the point-to-point and travel-
ing salesperson problems for Dubin’s vehicle. American Control Conference,
Portland, Oregan

27. Ny, J.L., Feron, E., 2005. An approximation algorithm for the curvature con-
strained traveling salesman problem. Proceedings of the 43rd Annual Allerton
Conference on Communications, Control and Computing

28. Frieze, A., Galbiati, G., Maffioli, F., 1982. On the worst-case performance of
some algorithms for the asymmetric traveling salesman problem. Networks 12,
pp. 23–39

29. Rathinam, S., Sengupta, R., Swaroop, D., 2005. A resource allocation algorithm
for multi vehicle systems with non-holonomic constraints. Accepted in IEEE
Transactions on Automation Science and Engineering

30. Tang, Z., Ozguner, U., 2005. Motion planning for multi-target surveillance with
mobile sensor agents. IEEE Transactions of Robotics

31. Beard, R., Mclain, T., Goodrich, M., Anderson, E., 2002. Coordinated target
assignment and intercept for unmanned air vehicles. IEEE Transactions on
Robotics and Automation 18(6), pp. 911–922

32. Mclain, T., Beard, R., 2003. Cooperative path planning for timing critical
missions. Proceedings of the American Control Conference, Denver, Colorado

33. Dubins, L.E., 1957. On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents.
American Journal of Mathematics 79(3), pp. 487–516

34. Lagoudakis, M. G., Markakis, E., Kempe, D. , Keskinocak, P., Kleywegt, A.,
Koenig, S., Tovey, C., Meyerson, A., and Jain, S., June 2005. Auction-Based
Multi-Robot Routing. Proceedings of Robotics: Science and Systems I, Cam-
bridge, USA

35. Hochbaum, S., July 1996. Approximation Algorithms for NP-Hard Problems



State Estimation for Micro Air Vehicles

Randal W. Beard

Department of Electrical and Computer Engineering
Brigham Young University, Provo, Utah
beard@ee.byu.edu

Abstract. Autopilots for small UAVs are generally equipped with low fidelity sen-
sors that make state estimation challenging. In addition, the sensor suite does not
include units that measure angle-of-attack and side-slip angles. The achievable flight
performance is directly related to the quality of the state estimates. Unfortunately,
the computational resources on-board a small UAV are generally limited and pre-
clude large state Kalman filters that estimate all of the states and sensor biases.
In this chapter we describe simple models for the sensors typically found on-board
small UAVs. We also describes a simple cascaded approach to state estimation that
has been extensively flight tested using the Kestrel autopilot produced by Procerus
Technologies. Our intention is to provide a tutorial of continuous-discrete Kalman
filtering with application to state estimation for small UAVs.

High fidelity estimates of the position, velocity, attitude, and angular rates
are critical for successful guidance and control of intelligent UAVs. The achiev-
able fidelity of the state estimates depends upon the quality of the sensors
on-board the UAV. Unfortunately, high quality sensors are usually heavy and
expensive. This is particularly true for sensors that directly measure the atti-
tude of the UAV. In this chapter we focus on the problem of state estimation
using light weight, inexpensive, low quality sensors. In doing so, our target
platforms are small and micro air vehicles with limited payload capacity.

In recent years, several autopilots for small UAVs have appeared on the
commercial market. These include the Procerus Kestrel [4], the Cloudcap
Piccolo [2], and the Micropilot MP2028 [3]. Each of these autopilots use the
following sensors:

• rate gyros,
• accelerometers,
• pressure sensors, and
• GPS.

We will assume throughout this chapter that these are the only sensors that
are available for state estimation.

R.W. Beard: State Estimation for Micro Air Vehicles, Studies in Computational Intelligence

(SCI) 70, 173–199 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



174 R.W. Beard

The limited payload capacity of small UAVs not only restricts the type and
quality of the sensors, it also limits the computational resources that can be
placed on-board the UAV. For example, the Procerus Kestrel autopilot has an
8-bit Rabbit microcontroller with 512K of memory. Therefore, Kalman filters
that estimate all of the states as well as the sensor biases are not feasible. The
objective of this chapter is to describe simple attitude estimation techniques
for small UAVs that require limited computational resources.

The chapter is organized as follows. In Section 1 we define and briefly
describe the states that need to be estimated. In Section 2 we describe the
sensors that are generally available on small UAVs and develop mathematical
models of their behavior. Section 3 briefly describes the simulation environ-
ment that is used to demonstrate the algorithms described in this chapter.
Section 4 describes simple state estimation techniques that use digital low pass
filters and sensor model inversion. In Section 5 we provide a brief review of the
continuous-discrete Kalman filter. Finally, Section 6 describes the application
of the continuous-discrete extended Kalman filter to roll, pitch, position, and
heading estimation.

1 UAV State Variables

Aircraft have three degrees of translational motion and three degrees of rota-
tional motion. Therefore, there are twelve state variables as listed below:

pn = the inertial north (latitude) position of the UAV,
pe = the inertial east (longitude) position of the UAV,
h = the altitude of the UAV,
u = the body frame velocity measured out the nose,
v = the body frame velocity measured out the right wing,
w = the body frame velocity measured through the belly,
φ = the roll angle,
θ = the pitch angle,
ψ = the yaw angle,
p = the roll rate,
q = the pitch rate,
r = the yaw rate.

The state variables are shown schematically in Figure 1. As an alternative to
expressing the velocity vector as (u, v, w)T , it can be expressed in terms of
the airspeed Va, the angle-of-attack α, and the side-slip angle β. The trans-
formation between the two representations is given by [22]



State Estimation for Micro Air Vehicles 175

Fig. 1. This figures depicts some of the UAV state variables. The forward velocity
u and the roll rate p are defined along the roll axis which points out the nose of the
UAV. The side slip velocity v and the pitch rate q are defined along the pitch axis
which points out the right wing of the UAV. The downward velocity w and the yaw
rate r are defined with respect to the yaw axis which points out the belly of the
UAV. The Euler angles are defined by first yawing ψ about the yaw axis, pitching
θ about the transformed pitch axis, and finally rolling φ about the transformed roll
axis

⎛

⎝
u
v
w

⎞

⎠ = Va

⎛

⎝
cos α cos β

sin β
sinα cos β

⎞

⎠ . (1)

Va =
√

u2 + v2 + w2

α = tan−1
(w

u

)
(2)

β = tan−1

(
v√

u2 + w2

)
.

There are several other quantities that are also of interest for guidance and
control of UAVs including the flight path angle γ, the course angle χ, and the
ground velocity Vg. The flight path angle defines the inertial climb angle of
the UAV and is given by

γ = θ − α cos φ − β sin φ.

Note that in wings level flight, this formula reduces to the standard equation
γ = θ − α. The course angle defines the inertial heading of the UAV which
may be different than the yaw angle ψ due to wind. If (wn, we)T is the wind
vector in the inertial frame, then we have the following relationships

Vg

(
cos χ
sin χ

)
= Va

(
cos ψ cos γ
sin ψ cos γ

)
+
(

wn

we

)

Vg =

√

V 2
a cos2 γ + 2Va cos γ

√
w2

n + w2
e cos

(
ψ − tan−1

(
we

wn

))
+ w2

n + w2
e



176 R.W. Beard

χ = tan−1

(
Va sinψ cos γ + we

Va cos ψ cos γ + wn

)
.

The kinematic evolution of the Euler angles are given by [22]
⎛

⎝
φ̇

θ̇

ψ̇

⎞

⎠ =

⎛

⎝
1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ) sec(θ) cos(φ) sec(θ)

⎞

⎠

⎛

⎝
p
q
r

⎞

⎠ , (3)

and the navigational equations of motion are given by

ṙn = Va cos ψ cos γ + wn = Vg cos χ cos γ (4)
ṙe = Va sin ψ cos γ + we = Vg sin χ cos γ (5)

ḣ = Va sin γ. (6)

2 Sensor Models

This section derives mathematical models for sensors typically found on small
and micro UAVs. In particular, we discuss rate gyros, accelerometers, pressure
sensors, and GPS sensors.

2.1 Rate Gyros

A MEMS rate gyro contains a small vibrating lever. When the lever undergoes
an angular rotation, Coriolis effects change the frequency of the vibration, thus
detecting the rotation. A brief description of the physics of rate gyros can be
found in Ref [9, 15, 23].

The output of the rate gyro is given by

ygyro = kgyroω + βgyro(T ) + ηgyro,

where ygyro is in Volts, kgyro is a gain, ω is the angular rate in radians per
second, βgyro is a temperature dependent bias term, and ηgyro is a zero mean
Gaussian process with known variance. The bias term βgyro(T ) is a function of
the temperature T and can be effectively determined by use of a temperature
chamber before flight.

If three rate gyros are aligned along the x, y, and z axes of the UAV, then
the rate gyros measure the angular body rates p, q, and r as follows:

ygyro,x = kgyro,xp + βgyro,x(T ) + ηgyro,x

ygyro,y = kgyro,yq + βgyro,y(T ) + ηgyro,y

ygyro,z = kgyro,zr + βgyro,z(T ) + ηgyro,z.

We will assume that kgyro,∗, βgyro,∗(T ), and the covariance of ηgyro,∗ have
been determined a priori and are known in-flight. MEMS gyros are analog
devices that are sampled by the on-board processer. We will assume that the
sample rate is given by Ts. As an example, the Procerus Kestrel autopilot
samples its rate gyros at approximately 120 Hz.



State Estimation for Micro Air Vehicles 177

2.2 Accelerometers

A MEMS accelerometer contains a small plate attached to torsion levers. The
plate rotates under acceleration which changes the capacitance between the
plate and the surrounding walls. The change in capacitance is proportional to
the linear acceleration [1, 23].

The output of the accelerometers is given by

yacc = kacca + βacc(T ) + ηacc,

where yacc is in Volts, kacc is a gain, a is the acceleration in meters per second
squared, βacc is a temperature dependent bias term, and ηacc is zero mean
Gaussian noise with known variance.

Accelerometers measure the specific force in the body frame of the vehicle.
A physically intuitive explanation is given in [22, p. 13–15]. An additional
explanation is given in [19, p. 27]. Mathematically we have

⎛

⎝
ax

ay

az

⎞

⎠ =
1
m

(F − Fgravity)

= v̇ + ω × v − 1
m

Fgravity.

In component form we have

ax = u̇ + qw − rv + g sin θ

ay = v̇ + ru − pw − g cos θ sin φ

az = ẇ + pv − qu − g cos θ cos φ.

The output of an accelerometer is usually in units of [g], therefore kacc =
1/g. The output of the accelerometers are therefore given by

yacc,x =
u̇ + qw − rv + g sin θ

g
+ βacc,x(T ) + ηacc,x

yacc,y =
v̇ + ru − pw − g cos θ sinφ

g
+ βacc,y(T ) + ηacc,y (7)

yacc,z =
ẇ + pv − qu − g cos θ cos φ

g
+ βacc,z(T ) + ηacc,z. (8)

As with the rate gyros, we will assume that the biases and noise statistics are
known and available in-flight. MEMS accelerometers are analog devices that
are sampled by the on-board processer. We will assume that the sample rate
is given by Ts.

2.3 Pressure Sensors

Small autopilots typically have two pressure sensors: a static pressure sensor
which is used to measure altitude, and a dynamic pressure sensor which is
used to measure airspeed. These sensors will be discussed in the following two
sections.



178 R.W. Beard

Altitude Sensor

Pressure is a measure of force per unit area or

P =
F

A
,

where P is the pressure, F is the force, and A is the area. The static pressure
at a particular altitude is determined by the force exerted by a column of air
at that altitude:

P =
mcolumng

A
,

where mcolumn is the mass of the column of air, g is the gravitational constant,
and A is the area upon which the column is exerting pressure. The density of
air is the mass per unit volume. Since the volume is given by the area times
the height we get

P = ρhg,

where ρ is the density of air and h is the altitude [8, 11].
Therefore, the output of the static pressure sensor is given by

ystatic pres = ρgh + βstatic pres + ηstatic pres,

where βstatic pres is a slowly varying bias and ηstatic pres is a zero mean Gaussian
process. To remove the bias, we collect multiple measurements of the pressure
on the ground and average to remove the Gaussian noise to obtain

ȳstatic pres(hground ) = ρghground + βstatic pres.

If we know the altitude of the ground station above sea level and the
density of the surrounding air, then the bias βstatic pres can be determined. If,
on the other hand, we are interested in the height above the ground station
then we can subtract the calibrated ground measurement to obtain

ystatic pres(∆h)
�
= ystatic pres(h) − ȳstatic pres(hground)
= ρg(h − hground) + ηstatic pres(t),
= ρg∆h + ηstatic pres(t),

where ∆h is the height above the ground station.

Air Speed Sensor

When the UAV is in motion, the atmosphere exerts dynamic pressure on the
UAV in the direction of airflow. The dynamic pressure is given by [8]

PI =
1
2
ρV 2

a ,



State Estimation for Micro Air Vehicles 179

where Va is the airspeed of the UAV. Bernoulli’s theorem states that [8]

Ps = PI + PO,

where Ps is the total pressure, and PO is the static pressure.
Therefore, the output of the differential pressure sensor is

ydiff pres = Ps − PO + ηdiff pres

=
1
2
ρV 2

a + ηdiff pres(t),

where ηdiff pres is a zero mean Gaussian process with known variance.
The static and differential pressure sensors are analog devices that are

sampled by the on-board processer. We will assume that the sample rate is
given by Ts.

2.4 GPS

There are several sources of GPS error. Table 1 lists the sources of error and the
respective error budget. The data was obtained from http://www.montana.
edu/places/gps/lres357/slides/GPSaccuracy.ppt.

The current weather affects the speed of light in the atmosphere. However,
this inaccuracy should be relatively constant for a given day. We will model
the effect of the atmosphere by a random variable drawn from a Gaussian
distribution with a standard deviation equal to 5 meters.

The geometry of the Satellites viewed by the receiver is used to triangulate
the location of the GPS receiver. Triangulation is much more effective in the
horizontal plane than in the vertical direction. The satellite geometry is slowly
changing in time. Therefore we will measure the effect of satellite geometry
as a sinusoid with amplitude equal to 2.5

√
2 (RMS=2.5), with a constant but

unknown frequency ωgeometry and a phase that is a random variable drawn
from a uniform distribution over [−π, π].

We will assume that the clock drift is relatively constant over time. There-
fore, we will model the clock drift by a constant random variable drawn from
a Gaussian distribution with standard deviation of 1.5 meters.

Effect Ave. Horizontal Error Ave. Vertical Error

Atmosphere 5.5 meters 5.5 meters
Satellite Geometry 2.5 meters 15 meters
(Ephemeris) data
Satellite clock drift 1.5 meters 1.5 meters
Multipath 0.6 meters 0.6 meters
Measurement noise 0.3 meters 0.3 meters

Table 1. This table lists average error estimates for commercial grade GPS units.
Atmosphere, satellite geometry, clock drift, and multipath produce a near constant
bias term. The measurement noise is modeled as an additive Gaussian process



180 R.W. Beard

Multipath is a function of the position of the UAV. Therefore we will
assume that the error is a sinusoidal signal with a magnitude of 0.6

√
2, a

frequency equal to ωmultipath and a random phase drawn from a uniform distri-
bution over [−π, π].

We will model the measurement noise as a zero mean Gaussian process
with a variance equal to 0.3 meters. The model for the GPS signal is therefore
given by

yGPS,n(t) = pn + νn,atmosphere + νclock + ηn,measurement(t)

+ 2.5
√

2 sin(ωgeometryt + νn,geometry)

+ 0.6
√

2 sin(ωmultipatht + νn,multipath)
yGPS,e(t) = pe + νe,atmosphere + νe,clock + ηe,measurement(t)

+ 2.5
√

2 sin(ωgeometryt + νe,geometry)

+ 0.6
√

2 sin(ωmultipatht + νe,multipath)
yGPS,h(t) = h + νh,atmosphere + νh,clock + ηh,measurement(t),

+ 15
√

2 sin(ωgeometryt + νh,geometry)

+ 0.6
√

2 sin(ωmultipatht + νh,multipath),

where pn, pe, and h are the actual earth coordinates and altitude above sea
level respectively. The GPS receiver also computes estimated ground speed
and heading from the measurements listed above. Accordingly, we have

yGPS,Vg =

√(
yGPS,n(t + Ts) − yGPS,n(t)

Ts

)2

+

(
yGPS,e(t + Ts) − yGPS,e(t)

Ts

)2

yGPS,course = tan−1

(
yGPS,e(t + Ts) − yGPS,e(t)

yGPS,n(t + Ts) − yGPS,n(t)

)
.

The update rate of a GPS receiver is typically on the order of TGPS = 1
second. However, the update rate can vary between 0.1−2 seconds, depending
on the GPS receiver.

3 Simulation Environment

We will illustrate the quality of the state estimation techniques proposed
in this chapter via simulation. This section briefly describes the simula-
tion environment which is a six degree-of-freedom nonlinear flight simulator
called Aviones, developed at Brigham Young University using C/C++, and
which runs on the Microsoft Windows operating system. The sensor mod-
els described in the previous section were implemented in Aviones using the
parameters shown in Table 2. We have assumed that sensor biases are esti-
mated before flight and are therefore not included in the simulator, with the
exception of GPS, where it is not possible to estimate the biases.



State Estimation for Micro Air Vehicles 181

Parameter Value Units

σgyro,x 0.005 rad/sec
σgyro,y 0.005 rad/sec
σgyro,z 0.005 rad/sec
σacc,x 0.005 m/sec2

σacc,y 0.005 m/sec2

σacc,z 0.005 m/sec2

σstatic pres 0.4 meters
σdiff pres 0.4 meters/sec
σmag,x 500 nanotesla
σmag,y 500 nanotesla
σmag,z 500 nanotesla
σGPS,n 0.5 meters
σGPS,e 0.5 meters
σGPS,h 0.5 meters
ν̄atmosphere 5.5 meters
ν̄clock 1.5 meters
ν̄geometry 2.5 meters
ν̄multipath 0.6 meters

Table 2. Sensor parameters used in the Aviones flight simulator. σ∗ denote the
variance of a zero mean Gaussian process. ν∗ denotes a random variable drawn
uniformly from the set [0, ν̄∗]

The state estimate plots shown in this chapter are all associated with a
similar flight trajectory which was dictated by the following autopilot com-
mands (using full state feedback).

• Throughout maneuver:
Hold airspeed at 10.0 m/s.

• 0 ≤ t ≤ 2.5 seconds:
Hold a pitch angle of 20 degrees.
Hold a roll angle of 30 degrees.

• 2.5 ≤ t ≤ 5.0 seconds:
Hold a pitch angle of −20 degrees.
Hold a roll angle of 0 degrees.

• 5.0 ≤ t ≤ 8.0 seconds:
Hold a pitch angle of 20 degrees.
Hold a roll angle of −30 degrees.

• 8.0 ≤ t ≤ 10.0 seconds:
Hold a pitch angle of −20 degrees.
Hold a roll angle of 0 degrees.

• 8.0 ≤ t ≤ 10.0 seconds:
Hold a pitch angle of −20 degrees.
Hold a roll angle of 0 degrees.

• 10.0 ≤ t ≤ 13.0 seconds:
Hold a pitch angle of 20 degrees.
Hold a roll angle of 30 degrees.



182 R.W. Beard

0 5 10 15 20 25
0

100

200

pn

0 5 10 15 20 25
0

50

100

pe

0 5 10 15 20 25
1700

1720

1740

h

0 5 10 15 20 25
- 50

0

50

φ

0 5 10 15 20 25
 - 50

0

50

θ

0 5 10 15 20 25
- 200

0

200

ψ

time (sec)
0 5 10 15 20 25

- 100

0

100

p

time (sec)

0 5 10 15 20 25
 - 500

0

500

q

0 5 10 15 20 25
 - 50

0

50

r

0 5 10 15 20 25
0

10

20

Va

Fig. 2. Actual states during the simulated test maneuver used throughout the
article. The positions pn and pe are in units of meters from home base, h is in units
of meters above sea level, Va is in meters/sec, p, q, and r are in units of degrees/sec,
and φ, θ, and ψ are in units of degrees

• 13.0 ≤ t ≤ 30.0 seconds:
Hold a pitch angle of 0 degrees.
Hold a roll angle of 0 degrees.

A plot of the state variables during this maneuver is shown in Figure 2.

4 State Estimation via Model Inversion

The objective of this section is to demonstrate that computationally simple
state estimation models can be derived by inverting the sensor models. As we
shall demonstrate, the quality of the estimates produced by this method is,
unfortunately, relatively poor for some of the states.

4.1 Low Pass Filters

All of the state estimation schemes require low-pass filtering of the sensor
signals. For completeness, we will briefly discuss digital implementation of a
first order low-pass filter.



State Estimation for Micro Air Vehicles 183

The Laplace transform representation of a simple unity DC gain low-pass
filter is given by

Y (s) = C(s)U(s)
�
=

a

s + a
U(s),

were u(t) is the input of the filter and y(t) is the output. Taking the inverse
Laplace transform we obtain

ẏ = −ay + au. (9)

By introducing an integrating factor, it is straightforward to show that the
solution to this differential equation is given by

y(t + T ) = e−aT y(t) + a

∫ T

0

e−a(T−τ)u(τ) dτ.

Assuming that u(t) is constant between sample periods results in the expres-
sion

y(t + T ) = e−aT y(t) + a

∫ T

0

e−a(T−τ) dτu(t)

= e−aT y(t) + (1 − e−aT )u(t). (10)

Note that this equation has a nice physical interpretation: the new value of
y (filtered value) is a weighted average of the old value of y and u (unfil-
tered value). We will use the notation C(s){·} to represent the low-pass filter
operator. Therefore x̂ = C(s){x} is the low-pass filtered version of x.

4.2 State Estimation by Inverting the Sensor Model

In this section we will derive the simplest possible state estimation scheme
based on inverting the sensor models. While this method is effective for angu-
lar rates, altitude, and airspeed, it is not effective for estimating the position
and Euler angles.

Position and Heading

The position variables pn, pe and the course heading χ can be estimated by
low-pass filtering the GPS signals:

p̂n = C(s){yGPS,n} (11)
p̂e = C(s){yGPS,e} (12)
χ̂ = C(s){yGPS,course}. (13)

Figure 3 shows the actual and estimated states using this scheme. Note
that since the measurements are received at 1 Hz, the estimates have a sampled
data characteristic that includes significant delay.



184 R.W. Beard

0 5 10 15 20 25
0

50

100

150
pn (m)

actual
estimated

0 5 10 15 20 25
0

50

100

pe (m)

actual
estimated

0 5 10 15 20 25
-200

0

200

χ(deg)

time (sec)

actual
estimated

Fig. 3. Actual and estimated values of pn, pe, and h after low pass filtering the GPS
sensor. The actual and estimated values of χ are wrapped so that they lie between
±180 degrees

Angular Rates

Similarly, the angular rates p, q, and r can be estimated by low-pass filtering
the rate gyro signals:

p̂ = C(s){ygyro,x}/kgyro,x (14)
q̂ = C(s){ygyro,y}/kgyro,y (15)
r̂ = C(s){ygyro,z}/kgyro,z. (16)

Figure 4 shows the actual and estimated states using this scheme. Note
that low pass filtering the rate gyros results in acceptable estimates of p, q,
and r.

Altitude

GPS is not accurate enough to estimate the altitude. Therefore, we will use
the absolute pressure sensor. Recall that

ystatic pressure = ρg(h − hground) + ηstatic pressure.

Therefore, a simple estimation scheme is

ĥ = hground +
C(s){ystatic pressure}

ρg
. (17)



State Estimation for Micro Air Vehicles 185

0 5 10 15 20 25
- 100

0

100

p (deg/s)
actual
estimated

0 5 10 15 20 25
- 200

0

200

400

q (deg/s)

actual
estimated

0 5 10 15 20 25
- 50

0

50

r (deg/s)

time (sec)

actual
estimated

Fig. 4. Actual and estimated values of the angular rates p, q, and r after low pass
filtering the rate gyros

Airspeed

Recall that
ydiff pres =

1
2
ρV 2

a + ηdiff pres.

Therefore, a simple estimation scheme is

V̂a =
√

2
ρ
C(s){ydiff pres}. (18)

Figure 5 shows the actual and estimated altitude and airspeed using this
scheme. Again note that inverting the sensor models results in acceptable
estimates of altitude and airspeed.

Roll and Pitch Angles

Roll and pitch angles are the most difficult variables to estimate well on small
UAVs. A simple scheme, that works in unaccelerated flight, can be derived as
follows. Recalling that

yaccel,x =
u̇ + qw − rv + g sin θ

g
+ ηaccel,x



186 R.W. Beard

0 5 10 15 20 25
1690

1700

1710

1720

1730

1740

h (m)

actual
estimated

0 5 10 15 20 25
8

10

12

14

16

18

Va (m/s)

time (sec)

actual
estimated

Fig. 5. Actual and estimated values of h and Va after low pass filtering the pressure
sensors and inverting their models

yaccel,y =
v̇ + ru − pw − g cos θ sin φ

g
+ ηaccel,y

yaccel,z =
ẇ + pv − qu − g cos θ cos φ

g
+ ηaccel,z.

and that in unaccelerated flight u̇ = v̇ = ẇ = p = q = r = 0, we get that

C(s){yaccel,x} = sin θ

C(s){yaccel,y} = − cos θ sin φ

C(s){yaccel,z} = − cos θ cos φ.

Solving for φ and θ we get

φ̂accel = tan−1

(
C(s){yaccel,y}
C(s){yaccel,z}

)
(19)

θ̂accel = tan−1

(
C(s){yaccel,x}√

C(s){yaccel,y}2 + C(s){yaccel,z}2

)
. (20)

Figure 6 shows the actual and estimated roll and pitch angles during the
sample trajectory using this scheme. Note that the sample trajectory severely
violates the unaccelerated flight assumptions. Clearly, model inversion does



State Estimation for Micro Air Vehicles 187

0 5 10 15 20 25
- 200

- 100

0

100

200

φ (deg)

actual
estimated

estimated

0 5 10 15 20 25
- 50

0

50

100

θ (deg)

time (sec)

actual

Fig. 6. Actual and estimated values of roll angle φ and pitch angle θ using simple
model inversion

not work well for attitude estimation during accelerated flight. Another idea
is to combine model inversion with the integral of roll and pitch as estimated
by the rate gyros.

Recalling that

φ̇ = p + q sin φ tan θ + r cos φ tan θ

θ̇ = q cos φ − r sin φ

and assuming that φ ≈ 0 and θ ≈ 0 we get

φ̇ = p

θ̇ = q.

Therefore we can integrate these equations to obtain an additional estimate
of φ and θ:

φ̂int =
∫ t

−∞
p(τ) dτ

θ̂int =
∫ t

−∞
q(τ) dτ.



188 R.W. Beard

0 5 10 15 20 25 30
- 100

- 50

0

50

φ (deg)
actual
estimated

0 5 10 15 20 25 30
- 50

0

50

100

150

θ (deg)

time (sec)

actual
estimated

Fig. 7. Actual and estimated values of roll angle φ and pitch angle θ combining
model inversion with the integral of the rate gyros

Combining the estimate from the integrator and the accelerometers we obtain

φ̂ = κφ̂int + (1 − κ)φ̂accel

θ̂ = κθ̂int + (1 − κ)θ̂accel,

where κ ∈ (0, 1).
Figure 7 shows the actual and estimated roll and pitch angles using this

scheme. It can be observed that the integration of the rate gyros causes a drift
in the estimate of φ and θ.

While low pass filtering and model inversion work well for estimates of p,
q, r, Va and h, we need more sophisticated techniques to adequately estimate
pn, pe, χ, φ, and θ. In Section 5 we will review the basics of Kalman filter
theory. In Section 6 we use two extended Kalman filters to obtain estimates
for pn, pe, χ, φ, and θ.

5 The Continuous-Discrete Kalman Filter

The objective of this section is to give a brief review of Kalman filter theory.
There are many excellent references on Kalman filtering including [12, 13, 14,
16, 5]. We will provide a brief derivation and then focus on the application of
the Kalman filter to UAV state estimation.



State Estimation for Micro Air Vehicles 189

5.1 Dynamic Observer Theory

As a first step in deriving the Kalman filter, we briefly review dynamic observer
theory. Consider the linear time-invariant system modeled by the equations

ẋ = Ax + Bu

y = Cx.

A continuous-time observer for this system is given by the equation

˙̂x = Ax̂ + Bu︸ ︷︷ ︸ + L (y − Cx̂)︸ ︷︷ ︸, (21)

copy of the model correction due to sensor reading

where x̂ is the estimated value of x. Letting x̃ = x − x̂ we get that

˙̃x = (A − LC)x̃

which implies that the observation error decays exponentially to zero if L is
chosen such that the matrix A − LC is Hurwitz [20].

In practice, the sensors are usually sampled and processed in digital hard-
ware at a sample rate Ts. How should the observer equation shown in Eq. (21)
be modified to account for sampled sensor readings? The typical approach is
to propagate the system model between samples using the equation

˙̂x = Ax̂ + Bu (22)

and then to update the estimate when a measurement is received using the
equation

x̂+ = x̂− + L(y(tk) − Cx̂−), (23)

where tk is the instant in time that the measurement is received and x̂− is
the state estimate produced by Eq. (22) at time tk. Equation (22) is then
re-instantiated with initial conditions given by x̂+. The continuous-discrete
observer is summarized in Table 3 [16]. The observation process is shown
graphically in Figure 8. Note that a fixed sample rate is not required. The
continuous-discrete observer can be implemented using Algorithm 1 which is
listed below.

5.2 Essentials from Probability Theory

Let X = (x1, . . . , xn)T be a vector whose elements are random variables. The
mean, or expected value of X is denoted by

µ =

⎛

⎜⎝
µ1

...
µn

⎞

⎟⎠ =

⎛

⎜⎝
E{x1}

...
E{xn}

⎞

⎟⎠ = E{X},



190 R.W. Beard

System model:
ẋ = Ax + Bu
y(tk) = Cx(tk)
Initial Condition x(0).

Assumptions:
Knowledge of A, B, C, u(t).
No measurement noise.

In between measurements (t ∈ [tk−1, tk)):

Propagate ˙̂x = Ax̂ + Bu.
Initial condition is x̂+(tk−1).
Label the estimate at time tk as x̂−(tk).

At sensor measurement (t = tk):

x̂+(tk) = x̂−(tk) + L
(
y(tk) − Cx̂−(tk)

)
.

Table 3. Continuous-discrete observer for linear time-invariant systems

Fig. 8. This figure shows qualitatively the evolution of the state estimate. The
solid line represents the actual state variable and the dashed line represents the
state estimate. Measurements are received at discrete times denoted by ti. Between
measurements, the state estimate is computed by propagating the state model. At
the measurements, the estimate is updated via a weighted average of the current
estimate and the measurement

Algorithm 1 Continuous-Discrete Observer
1: Initialize: x̂ = 0.
2: Pick an output sample rate Tout which is much less than the sample rates of the

sensors.
3: At each sample time Tout:
4: for i = 1 to N do {Propagate the state equation.}
5: x̂ = x̂ +

(
Tout

N

)
(Ax̂ + Bu)

6: end for
7: if A measurement has been received from sensor i then {Measurement Update}
8: x̂ = x̂ + Li (yi − Cix̂)
9: end if

where
E{xi} =

∫
ξfi(ξ) dξ,



State Estimation for Micro Air Vehicles 191

and f(·) is the probability density function for xi. Given any pair of compo-
nents xi and xj of X, we denote their covariance as

cov(xi, xj) = Σij = E{(xi − µi)(xj − µj)}.

The covariance of any component with itself is the variance, i.e.,

var(xi) = cov(xi, xi) = Σii = E{(xi − µi)(xi − µi)}.

The standard deviation of xi is the square root of the variance:

stdev(xi) = σi =
√

Σii.

The covariances associated with a random vector X can be grouped into a
matrix known as the covariance matrix:

Σ =

⎛

⎜⎜⎜⎝

Σ11 Σ12 · · · Σ1n

Σ21 Σ22 · · · Σ2n

...
. . .

...
Σn1 Σn2 · · · Σnn

⎞

⎟⎟⎟⎠ = E{(X − µ)(X − µ)T } = E{XXT } − µµT .

Note that Σ = ΣT so that Σ is both symmetric and positive semi-definite,
which implies that its eigenvalues are real and nonnegative.

The probability density function for a Gaussian random vector is given by

fX(X) =
1√

2π det Σ
exp
[
−1

2
(X − µ)T Σ−1(X − µ)

]
,

in which case we write
X ∼ N (µ, Σ) ,

and say that X is normally distributed with mean µ and covariance Σ.
Figure 9 shows the level curves for a 2D Gaussian random variable with diff-
erent covariance matrices.

5.3 Continuous-Discrete Kalman Filter

In this section we assume the following state model:

ẋ = Ax + Bu + Gξ (24)
yk = Cxk + ηk,

where yk = y(tk) is the kth sample of y, xk = x(tk) is the kth sample of x, ηk

is the measurement noise at time tk, ξ is a zero-mean Gaussian process with
covariance Q, and ηk is a zero-mean Gaussian random variable with covariance
R. Note that the sample rate does not need to be be fixed. The covariance
R can usually be estimated from sensor calibration, but the covariance Q



192 R.W. Beard

Fig. 9. Level curves for the pdf of a 2D Gaussian random variable. On the left is
the pdf when the covariance matrix is diagonal with Σ11 < Σ22. In the middle is a
pdf when Σ22 < Σ11. On the right is a pdf for general Σ = ΣT > 0. The eigenvalues
and eigenvectors of Σ define the major and minor axes of the level curves of the pdf

is generally unknown and therefore becomes a system gain that can be tuned
to improve the performance of the observer.

We will use the observer given by Eqs. (22) and (23). Define the estimation
error as x̃ = x − x̂. The covariance of the estimation error is given by

P (t) = E{x̃(t)x̃(t)T }.

Note that P (t) is symmetric and positive semi-definite, therefore its eigen-
values are real and non-negative. Also small eigenvalues of P (t) imply small
variance, which implies low average estimation error. Therefore, we would like
to choose L to minimize the eigenvalues of P (t). Recall that

tr(P ) =
n∑

i=1

λi,

where tr(P ) is the trace of P and λi are the eigenvalues. Therefore, minimizing
tr(P ) minimizes the estimation error covariance. Our objective is to pick the
estimation gain L in Table 3 to minimize tr(P (t)).

Between Measurements.

Differentiating x̃ we get

˙̃x = ẋ − ˙̂x
= Ax + Bu + Gξ − Ax̂ − Bu

= Ax̃ + Gξ,

which implies that

x̃(t) = eAtx̃0 +
∫ t

0

eA(t−τ)Gξ(τ) dτ.



State Estimation for Micro Air Vehicles 193

We can compute the evolution for P as

Ṗ =
d

dt
E{x̃x̃T }

= E{ ˙̃xx̃T + x̃ ˙̃xT }
= E

{
Ax̃x̃T + Gξx̃T + x̃x̃T AT + x̃ξT GT

}

= AP + PAT + GE{ξx̃T }T + E{x̃ξT }GT ,

where

E{ξx̃T } = E

{
ξ(t)x̃0e

AT t +
∫ t

0

ξ(t)ξT (τ)GT eAT (t−τ) dτ

}

=
1
2
QGT ,

which implies that
Ṗ = AP + PAT + GQGT .

At Measurements.

At a measurement we have that

x̃+ = x − x̂+

= x − x̂− − L
(
Cx + η − Cx̂−)

= x̃− − LCx̃− − Lη.

Therefore

P+ = E{x̃+x̃+T }

= E
{(

x̃− − LCx̃− − Lη
) (

x̃− − LCx̃− − Lη
)T}

= E
{
x̃−x̃−T − x̃−x̃−T CT LT − x̃−ηT LT

− LCx̃−x̃−T + LCx̃−x̃−T CT LT + LCx̃−ηT LT

= −Lηx̃−T + Lηx̃−T CT LT + LηηT LT
}

= P− − P−CT LT − LCP− + LCP−CT LT + LRLT . (25)

Our objective is to pick L to minimize tr(P+). A necessary condition is

∂

∂L
tr(P+) = −P−CT − P−CT + 2LCP−CT + 2LR = 0

=⇒ 2L(R + CP−CT ) = 2P−CT

=⇒ L = P−CT (R + CP−CT )−1.



194 R.W. Beard

Plugging back into Eq. (25) give

P+ = P− + P−CT (R + CP−CT )−1CP− − P−CT (R + CP−CT )−1CP−

+ P−CT (R + CP−CT )−1(CP−CT + R)(R + CP−CT )−1CP−

= P− − P−CT (R + CP−CT )−1CP−

= (I − P−CT (R + CP−CT )−1C)P−

= (I − LC)P−.

Extended Kalman Filter.

If instead of the linear state model given in (24), the system is nonlinear, i.e.,

ẋ = f(x, u) + Gξ (26)
yk = h(xk) + ηk,

then the system matrices A and C required in the update of the error covari-
ance P are computed as

A(x) =
∂f

∂x
(x)

C(x) =
∂h

∂x
(x).

The extended Kalman filter (EKF) for continuous-discrete systems is given
by Algorithm 2.

Algorithm 2 Continuous-Discrete Extended Kalman Filter
1: Initialize: x̂ = 0.
2: Pick an output sample rate Tout which is much less than the sample rates of the

sensors.
3: At each sample time Tout:
4: for i = 1 to N do {Propagate the equations.}
5: x̂ = x̂ +

(
Tout

N

)
f(x̂, u)

6: A = ∂f
∂x

(x̂)

7: P = P +
(

Tout
N

) (
AP + PAT + GQGT

)

8: end for
9: if A measurement has been received from sensor i then {Measurement Update}

10: Ci = ∂hi
∂x

(x̂)
11: Li = PCT

i (Ri + CiPCT
i )−1

12: P = (I − LiCi)P
13: x̂ = x̂ + Li (yi − Cix̂).
14: end if



State Estimation for Micro Air Vehicles 195

6 Application of the EKF to UAV State Estimation

In this section we will use the continuous-discrete extended Kalman filter
to improve estimates of roll and pitch (Section 6.1) and position and course
(Section 6.2).

6.1 Roll and Pitch Estimation

From Eq. 3, the equations of motion for φ and θ are given by

φ̇ = p + q sinφ tan θ + r cos φ tan θ + ξφ

θ̇ = q cos φ − r sinφ + ξθ,

where we have added the noise terms ξφ ∼ N (0, Qφ) and ξθ ∼ N (0, Qθ) to
model the sensor noise on p, q, and r. We will use the accelerometers as the
output equations. From Eq. (7), the output of the accelerometers is given by

yaccel =

⎛

⎜⎜⎝

u̇+gw−rv
g + sin θ

v̇+ru−pw
g − cos θ sinφ

ẇ+pv−qu
g − cos θ cos φ

⎞

⎟⎟⎠+ ηaccel. (27)

However, since we do not have a method for directly measuring u̇, v̇, ẇ, u,
v, and w, we will assume that u̇ = v̇ = ẇ ≈ 0 and we will use Eq. (1) and
assume that α ≈ θ and β ≈ 0 to obtain

⎛

⎝
u
v
w

⎞

⎠ ≈ Va

⎛

⎝
cos θ

0
sin θ

⎞

⎠ .

Substituting into Eq. (27) gives

yaccel =

⎛

⎜⎜⎝

qVa sin θ
g + sin θ

rVa cos θ−pVa sin θ
g − cos θ sinφ

−qVa cos θ
g − cos θ cos φ

⎞

⎟⎟⎠+ ηaccel.

Letting x = (φ, θ)T , u = (p, q, r, Va)T , ξ = (ξφ, ξθ)T , and η = (ηφ, ηθ)T , we get
the nonlinear state equation

ẋ = f(x, u) + ξ

y = h(x, u) + η,

where

f(x, u) =
(

p + q sinφ tan θ + r cos φ tan θ

q cos φ − r sinφ

)



196 R.W. Beard

h(x, u) =

⎛

⎜⎜⎝

qVa sin θ
g + sin θ

rVa cos θ−pVa sin θ
g − cos θ sinφ

−qVa cos θ
g − cos θ cos φ

⎞

⎟⎟⎠ .

Implementation of the extended Kalman filter requires the Jacobians

∂f

∂x
=

(
q cos φ tan θ − r sin φ tan θ q sin φ−r cos φ

cos2 θ

−q sin φ − r cos φ 0

)

∂h

∂x
=

⎛

⎜⎜⎜⎝

0 qVa

g cos θ + cos θ

− cos φ cos θ − rVa

g sin θ − pVa

g cos θ + sin φ sin θ

sin φ cos θ
(

qVa

g + cos φ
)

sin θ

⎞

⎟⎟⎟⎠ .

The state estimation algorithm is given by Algorithm 2.
Figure 10 shows the actual and estimated roll and pitch attitudes obtained

by using this scheme, where we note significant improvement over the results
shown in Figures 6 and 7. The estimates are still not precise due to the
approximation that u̇ = v̇ = ẇ = β = θ − α = 0. However, the results are
adequate enough to enable non-aggressive MAV maneuvers.

0 2 4 6 8 10 12 14 16
- 40

- 20

0

20

40

φ (deg)

actual
estimated

0 2 4 6 8 10 12 14 16
 - 40

 - 20

0

20

40

θ (deg)

time (sec)

actual
estimated

Fig. 10. Actual and estimated values of φ and θ using the continuous-discrete
extended Kalman filter



State Estimation for Micro Air Vehicles 197

0 2 4 6 8 10 12 14 16
0

50

100

150

pn (m) actual
estimated

0 2 4 6 8 10 12 14 16
0

50

100

pe (m)

actual
estimated

0 2 4 6 8 10 12 14 16
- 200

0

200

χ (deg)

time (sec)

actual
estimated

Fig. 11. Actual and estimated values of pn, pe, and χ using the continuous-discrete
extended Kalman filter

6.2 Position and Course Estimation

The objective in this section is to estimate pn, pe, and χ using the GPS sensor.
From Eq. (3), the model for χ is given by

χ̇ = ψ̇ = q
sin φ

cos θ
+ r

cos φ

cos θ
.

Using Eqs. (4) and (5) for the evolution of pn and pe results in the system
model

⎛

⎜⎝

ṗN

ṗE

χ̇

⎞

⎟⎠ =

⎛

⎜⎜⎝

Vg cos χ

Vg sinχ

q sin φ
cos θ + r cos φ

cos θ

⎞

⎟⎟⎠+ ξp

�
= f(x, u) + ξp,

where x = (pn, pe, χ)T , u = (Vg, q, r, φ, θ)T and ξp ∼ N (0, Q).
GPS returns measurements of pn, pe, and χ directly. Therefore we will

assume the output model

yGPS =

⎛

⎝
pn

pe

χ

⎞

⎠+ ηp,



198 R.W. Beard

where ηp ∼ N (0, R) and C = I, and where we have ignored the GPS bias
terms. To implement the extended Kalman filter in Algorithm 2 we need the
Jacobian of f which can be calculated as

∂f

∂x
=

⎛

⎜⎝
0 0 −Vg sinχ

0 0 Vg cos χ

0 0 0

⎞

⎟⎠ .

Figure 10 shows the actual and estimated values for pn, pe, and χ obtained
by using this scheme. The inaccuracy in the estimates of pn and pe is due to
the GPS bias terms that have been neglected in the system model. Again,
these results are sufficient to enable non-aggressive maneuvers.

7 Summary

Micro air vehicles are increasingly important in both military and civil applica-
tions. The design of intelligent vehicle control software pre-supposes accurate
state estimation techniques. However, the limited computational resources on
board the MAV require computationally simple, yet effective, state estima-
tion algorithms. In this chapter we have derived mathematical models for
the sensors commonly deployed on MAVs. We have also proposed simple
state estimation techniques that have been successfully used in thousands
of hours of actual flight tests using the Procerus Kestrel autopilot (see for
example [7, 6, 21, 10, 17, 18]).

Acknowledgments

This work was partially supported under grants AFOSR grants FA9550-04-1-
0209 and FA9550-04-C-0032 and by NSF award no. CCF-0428004.

References

1. http://www.silicondesigns.com/tech.html.
2. Cloudcap technology. http://www.cloudcaptech.com.
3. Micropilot. http://www.micropilot.com/.
4. Procerus technologies. http://procerusuav.com/.
5. Brian D.O. Anderson and John B. Moore. Optimal Control: Linear Quadratic

Methods. Prentice Hall, Englewood Cliffs, New Jersey, 1990.
6. D. Blake Barber, Stephen R. Griffiths, Timothy W. McLain, and Randal

W. Beard. Autonomous landing of miniature aerial vehicles. In AIAA Infotech@
Aerospace, Arlington, Virginia, September 2005. American Institute of Aeronau-
tics and Astronautics. AIAA-2005-6949.



State Estimation for Micro Air Vehicles 199

7. Randal Beard, Derek Kingston, Morgan Quigley, Deryl Snyder, Reed
Christiansen, Walt Johnson, Timothy McLain, and Mike Goodrich. Autonomous
vehicle technologies for small fixed wing UAVs. AIAA Journal of Aerospace,
Computing, Information, and Communication, 2(1):92–108, January 2005.

8. Robert E. Bicking. Fundamentals of pressure sensor technology. http://www.

sensorsmag.com/articles/1198/fun1198/main.shtml.
9. Crossbow. Theory of operation of angular rate sensors. http://www.xbow.com/

Support/Support pdf files/RateSensorAppNote.pdf.
10. Stephen Griffiths, Jeff Saunders, Andrew Curtis, Tim McLain, and Randy

Beard. Obstacle and terrain avoidance for miniature aerial vehicles. IEEE Robot-
ics and Automation Magazine, 13(3):34–43, 2006.

11. David Halliday and Robert Resnick. Fundamentals of Physics. John Wiley &
Sons, 3rd edition, 1988.

12. Andrew H. Jazwinski. Stochastic Processes and Filtering Theory, volume 64
of Mathematics in Science and Engineering. Academic Press, Inc., New York,
New York, 1970.

13. R.E. Kalman. A new approach to linear filtering and prediction problems.
Transactions ASME Journal of Basic Engineering, 82:34–35, 1960.

14. R.E. Kalman and R.S. Bucy. New results in linear filtering and prediction
theory. Transaction of the ASME, Journal of Basic Engineering, 83:95–108,
1961.

15. Robert P. Leland. Lyapunov based adaptive control of a MEMS gyroscope.
In Proceedings of the American Control Conference, pages 3765–3770, Anchor-
age, Alaska, May 2002.

16. Frank L. Lewis. Optimal Estimation: With an Introduction to Stochastic Control
Theory. John Wiley & Sons, New York, New York, 1986.

17. Timothy W. McLain and Randal W. Beard. Unmanned air vehicle testbed
for cooperative control experiments. In American Control Conference, pages
5327–5331, Boston, MA, June 2004.

18. Derek R. Nelson, D. Blake Barber, Timothy W. McLain, and Randal W. Beard.
Vector field path following for miniature air vehicles. IEEE Transactions on
Robotics, in press.

19. Marc Rauw. FDC 1.2 - A SIMULINK Toolbox for Flight Dynamics and Control
Analysis, February 1998. Available at http://www.mathworks.com/.

20. Wilson J. Rugh. Linear System Theory. Prentice Hall, Englewood Cliffs,
New Jersey, 2nd edition, 1996.

21. Jeffery B. Saunders, Brandon Call, Andrew Curtis, Randal W. Beard, and
Timothy W. McLain. Static and dynamic obstacle avoidance in miniature air
vehicles. In AIAA Infotech@Aerospace, number AIAA-2005-6950, Arlington,
Virginia, September 2005. American Institute of Aeronautics and Astronautics.

22. Brian L. Stevens and Frank L. Lewis. Aircraft Control and Simulation. John
Wiley & Sons, Inc., Hoboken, New Jersey, 2nd edition, 2003.

23. Navid Yazdi, Farrokh Ayazi, and Khalil Najafi. Micromachined inertial sensors.
Proceedings of the IEEE, 86(8):1640–1659, August 1998.



Evolutionary Design of a Control Architecture
for Soccer-Playing Robots

Steffen Prüter1, Hagen Burchardt1, and Ralf Salomon1

1Institute of Applied Microelectronics and Computer Engineering
University of Rostock
18051 Rostock, Germany
{steffen.prueter, hagen.burchardt, ralf.salomon}@uni-rostock.de

Abstract. Soccer-playing robots provide a good environment for the application of
evolutionary algorithms. Among other problems, slipping wheels, changing friction
values, and real-world noise are significant problems to be considered. This chapter
demonstrates how artificial intelligence techniques such as Kohonen maps, genetic
algorithms, and evolutionary-evolved neural networks, can compensate those effects.
As soccer robots are physical entities, all adaptation algorithms have to meet real-
time constraints.

1 Introduction

The Robot World Cup Initiative (RoboCup) [1] is an international project to
advance research on mobile robots and artificial intelligence (AI). The long-
time goal is to create a humanoid robot soccer team that is able to compete
against the human world-champion team by 2050. RoboCup consists of the
following three different fields. RoboCup Junior focuses on teaching children
and beginners on how to build and operate simple robots. The RoboCup
Rescue section works on robots for disaster and other hostile environments.
And RoboCup Soccer is on robot teams that play soccer against each other
in different leagues.

RoboCup Soccer itself is further divided into five different leagues, each
having its own rules, goals, and robot designs. The simulation league con-
siders only teams of simulated robots. The four-legged league, by contrast,
only Sony’s physical AIBO robot dogs play each other. Both the small-size
and the middle size league focus on self made robots with varying degrees
of complexities and capabilities. Finally, the humanoid league is about two-
legged robots that behave in a human-like fashion. The division into different
fields and leagues allows virtually every research team to participate in and
to contribute to the RoboCup initiative within its given financial and human
resource limits.

S. Prüter et al.: Evolutionary Design of a Control Architecture for Soccer-Playing Robots,

Studies in Computational Intelligence (SCI) 70, 201–222 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



202 S. Prüter et al.

RoboCup soccer is of particular interest for many AI-researchers, because
it combines engineering tasks, such as building robot hardware and designing
electronic components, with computer science applications, such as localiza-
tion of objects, finding the robots’ positions, and calculating the best path
through obstacles. Another interesting challenge emerges from the require-
ment that all team members have to communicate with each other in order
to develop a cooperative behavior. Research on artificial intelligence may help
find the optimal solution in all of these areas. Within the field of RoboCup
soccer, the small-size league (SSL) allows for pursuing the research mentioned
above at a relatively low budget.

Fig. 1 illustrates the general setup used by all teams of the small-size
league. Two cameras are mounted approximately four meters above the floor
and observe a field of four by five meters in size on which two teams each con-
sisting of five robots play against each other. The cameras send their images
to a host PC on which an image processing software determines the ball’s
as well as robots’ positions. Depending on all recognized positions a software
component derives the next actions for its own team members such that the
team exhibits a cooperative behavior. By utilizing wireless DECT modules,
the PC software transmits the derived actions to the robots, which execute
them properly and eventually play the ball.

Fig. 2 shows the omnidirectional drive commonly used by most robots
of the small-size league. As can be seen, an omnidirectional drive consists of

control 
PC

control 
PC

team 1 team 2

Fig. 1. The physical setup in RoboCup’s small-size league

x

y

a
a a

a

w
he

el
 1 w

heel 2

wheel 3
F3

F1yF

F2 F2y

Fig. 2. An omnidirectional drive with its calculation model



Evolutionary Design of a Control Architecture for Soccer-Playing Robots 203

firewire
memory

image
analysing

strategie
DECT

camera control PC robot

Fig. 3. The image processing system consists of five stages which all contribute to
the processing delays, which are also known as latency times

three wheels, which are located at an angle of 120 degrees to one another.
This drive has the advantage that a robot can be simultaneously doing both
moving forward and spinning around its own central axis. Furthermore, the
particular wheels, as shown on the left-hand-side of Fig. 2, yield high grip in
the rotation direction, but almost-vanishing friction perpendicular to it. The
specific orientation of all three wheels, as illustrated on the right-hand-side
of Fig. 2, requires advanced controllers and they exhibit higher friction than
standard two-wheel drives. The later drive requires sophisticated servo loops
and (PID1) controllers [8].

Depending on the carpet and the resulting wheel-to-carpet friction, one or
more wheels may slip. As a consequence, the robot leaves its desired moving
path. Section 2 shows how Kohonen feature maps [4] can alleviate this problem
to a large extent. The results indicate that in comparison to linear algorithms,
neural networks yield a better compensation with less effort.

The processing sequence starting at the camera image and ending with the
robots executing their action commands suffer from significant time delays,
as illustrated in Fig. 3. These time delays have the consequence that when
receiving a command, the robot’s current position does not correspond to
the position shown in the camera image. Consequently, the actions are either
inaccurate or may lead to improper behavior in the extreme case. For example,
the robot may try to kick the ball even though it is no longer within reach.

These time delays induce two problems: (1) The actual robot position has
to be extrapolated on the PC. (2) The robot has to track its current position.
Section 3 discusses how by utilizing back-propagation networks [4], the control
software, which runs on the host PC, can compensate for those time delays.
The experiments indicate that this approach yields significant improvements.

Section 4 discusses how the position correction can be further improved by
the robot itself. To this end, the robot employs its own back-propagation net-
work to learn its own specific slip and friction effects. This local, robot specific
mechanism complements the global correction done by the neural network as
discussed in Section 3. Section 5 demonstrates the implementation of path
planning using genetic algorithms. Experiments demonstrate that the robot

1 PID is the abbreviation of Proportional-Integrate-Differential. For further details,
the reader is referred to [8]



204 S. Prüter et al.

hardware is capable of running this task in real-time and that the algorithm
adapts to environmental changes such as moving obstacles. Section 6 con-
cludes this chapter with a brief discussion including on outline of possible
future research.

2 The Slip Problem

As is well known, robots are moving by spinning their wheels. The resulting
direction of the robot depends on the wheels’ speeds relative to each other.
Usually, PID controllers regulate the motors by comparing the target speed
with the tick-count delivered by the attached wheel encoders. However, the
PID controllers are not always able to archive this goal when controlling omni-
directional drives, because some wheels occasionally slip. As a consequence,
the robot deviates from its expected path. This section uses self-organizing
Kohonen feature maps [3, 6] to precisely control the wheels.

2.1 Slip and Friction

Slip occurs when accelerating or decelerating a wheel in case the friction
between wheel and ground is too low. In case of slipping wheels the driven
distance does not match the distance that corresponds to the measured wheel
ticks. In other words, the robot has moved a distance shorter (acceleration)
or longer (deceleration) than it “thought”. Fig. 4 illustrates the effect when
wheel 3 is slipping.

Friction is another problem that leads to similar effects. It results from
mechanical problems between moving and non-moving parts and also between
the robot parts and the floor. In most cases, but not always, servo loops
can compensate for those effects. Similarly to the slip problem, friction leads
to imprecise positions. In addition, high robot speeds, non-constant friction
values, and real-world noise make this problem even worse.

1
2

3
1 2

3
1 2

3

B

A

C

1
2

3
A 1

2

3
B 1

2

3
C

slip at wheel 3 no slip

Fig. 4. A slipping wheel, e.g., wheel 3, may lead to a deviating moving path



Evolutionary Design of a Control Architecture for Soccer-Playing Robots 205

2.2 Experimental Analysis

The various effects of slip and friction are experimentally measured in two
stages. The first stage is dedicated to the determination of the robot’s orien-
tation error ∆α. To this end, the robot is located in the center of a circle with
1m in radius. The wheel speeds are set as follows:

r1 = v · sin(π − 60).
r2 = v · sin(π + 60). (1)
r3 = v · sin(π + 180) = −r1 − r2.

with ri=1...3 denoting the rotation speed of wheel i and v denoting the robot’s
center speed. In an ideal case, these speed settings would make the robot
move in a straight line. In the experiment, the robot moves 1 m. After moving a
distance with a moderate speed, the robot’s orientation offset ∆α is measured
by using the camera and the image processing system. Fig. 5 illustrates this
procedure.

Stage two repeats the experiments of the first stage. However, the rear
wheel is adjusted by hand such that the robot’s orientation does not change
while moving. This stage then measures the drift ∆ϕ, as illustrated in Fig. 6.

−6
−5
−4
−3
−2
−1

0
1
2
3
4
5

0 90 180 270 360
angle j

co
rr

ec
tio

n 
va

lu
e

Fig. 5. Turning behavior of the robot due to internal rotation and its correction
with an additional correction value of the rear wheel 1 for different angles ϕ

1m

 

 

−10

−5

0

5

10

15

90 180 270
angle j

360

angular drift j

j

j'

Fig. 6. Drift values ∆ϕ for different angels ϕ with rotation compensation



206 S. Prüter et al.

Stages one and two were repeated for twelve different values of ϕ. The
corresponding correction values for wheel 1 and drift values ∆ϕ are plotted
in Fig. 5 and Fig. 6, respectively.

2.3 Self-Organizing Kohonen Feature Maps and Methods

Since similar friction and slip values have similar effects with respect to the
moving path, self-organizing Kohonen feature maps [3, 4, 6] are the method of
choice for the problem at hand. To train a Kohonen map, the input vectors �xk

are presented to the network. All nodes calculate the Euclidean distance di =
‖�xk − �wi‖ of their own weight vector �wi to the input vector �xk. The winner,
that is, the node i with the smallest distance di, and its neighbors j update
their vectors �wi and �wj , respectively, according to the following formula

�wj = �wj + η (�xj − �wj) · h (i, j) . (2)

Here h(i, j) denotes a neighborhood function and η denotes a small learn-
ing constant. Both the presentation of the input vectors and the updating of
the weight vectors continue until the updates are reduced to a small margin.
It is important to note that during the learning process, the learning rate η
as well as the distance function h(i, j) has to be decreased. After the training
is completed, a Kohonen network maps previously unseen input data onto
appropriate output values.

As Fig. 7 shows, all experiments have used a one-dimensional Kohonen
map. The number of neurons was varied between 1 and 256. Normally, training
a Kohonen maps includes finding an optimal distribution of all nodes. Since
in this application, all driving directions are equally likely, the neurons were
equally distributed over the input range 0 ≤ ϕ < 360. Thus, learning could
be speed up significantly by initializing all nodes at equidistant input values
ϕi ← i · 360/n. Here n denotes the number of neurons.

Xi

w1 w2 w3 w4
wm

...

Input

Output

Select max activation

Yi

1 2 3 4 m

Fig. 7. A one-dimensional Kohonen map used to compensate for slip and friction
errors



Evolutionary Design of a Control Architecture for Soccer-Playing Robots 207

×

×

×

+
+

+

v

K
oh

on
en

 M
ap

PID

PID

PID

Motors / Wheels

ϕ

y

Fig. 8. From a given translational moving direction ϕ, a Kohonen feature map
determines three motor speeds which are multiplied by the desired speed v and
updated by an additional desired rotation speed ω

In addition, the neurons were also labeled with the rotation speed of all
three wheels. Such architectures are also known as extended Kohonen maps in
the literature [4, 6]. For the output value, the network calculates the weighted
average over the outputs of the two highest activated units. It should be noted
that the activation of the nodes is inversely proportional to the distance di.

ai = e−di (3)

Training was started with a learning rate η = 0.3. The neighborhood
function h(i, j) is 1 for i = j, 0.5 for |i − j| = 1, and 0 otherwise. After every
30 cycles, the learning rate was divided by 2, and training was stopped after
150 iterations.

After training is finished, the map has been uploaded into the robot. As
shown in Fig. 8, the desired direction is applied as input to the map. The two
most active units are selected and the motor speeds are interpolated linearly
based on the corresponding angles of the units and the input angle. After
that, the motor speeds are multiplied by the desired velocity. An additional
rotation component ω is added in the last step.

2.4 Results

As shown in Fig. 9, the results of the experimental analysis have indicated
that the hand-crafted rotation compensation for α works well over a large
range of speeds v.

Therefore, the Kohonen feature maps were only used to compensate for
the drift ∆ϕ. Fig. 10 shows the maximum angular drift as a function of the
number of nodes. As expected, the error decreases with an increasing number
of nodes. With respect to both the computational demands and resulting
precision, 32 neurons are considered to be suitable. It should be noted that
choosing a power of two greatly simplifies the implementation.

Fig. 11 shows the correction of the drift by means of the Kohonen feature
map with 32 neurons. It can be seen that in comparison to Fig. 6, the error
has been reduced by a factor of five. It should be mentioned that further
improvements are not achievable due to mechanical limitations.



208 S. Prüter et al.

0 18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 0
−4

−3

−2

−1

0

1

2

3

4 V1
V2
V3
V4

Angle j

A
ng

ul
ar

 d
rif

t ∆
j

Fig. 9. Robot drift depending on the direction φ and the robot speed v

A
ng

ul
ar

 d
rif

t ∆
j

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 6 8 16 32 64 128 256

Kohonen count

Fig. 10. Angular drift ∆ϕ of the Kohonen map as a function its number of neurons

0 18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 0
−3,5

−3
−2,5

−2
−1,5

−1
−0,5

0
0,5

1
1,5

2
2,5

Direction j

D
ire

ct
io

n 
O

ffs
et

 ∆
j

Fig. 11. Robot behavior after direction drift compensation



Evolutionary Design of a Control Architecture for Soccer-Playing Robots 209

3 Improved Position Prediction

As has been outlined in the introduction, the latency caused by the image-
processing-and-action-generation loop leads to non-matching robot positions.
As a measurable effect, the robot starts oscillating, turning around the tar-
get position, missing the ball, etc. This section utilizes a three-layer back-
propagation network to extrapolate the robot’s true position from the camera
images.

3.1 Latency Time

RoboCup robots are real-world vehicles rather than simulated objects. There-
fore, all algorithms have to account for physical effects, such as inertia and
delays, and have to meet real-time constraints. Because of the real-time con-
straints, exact algorithms would usually require too much a calculation time.
Therefore, the designer has to find a good compromise between computational
demands and the precision of the results. In other words, fast algorithms with
just a sufficient precision are chosen.

As mentioned in the introduction, latency is caused by various components
which include the camera’s image grabber, the image compression algorithm,
the serial transmission over the wire, the image processing software, and the
final transmission of the commands to the robots by means of the DECT mod-
ules. Even though the system uses the compressed YUV411 image format [7],
the image processing software, and the DECT modules are the most signifi-
cant parts with a total time delay of about 200 ms. For the top-level control
software, which is responsible for the coordination of all team members, all
time delays appear as a constant-time lag element. The consequences of the
latency problem are further illustrated in Fig. 12 and Fig. 13.

Fig. 12 illustrates the various process stages and corresponding robot posi-
tions. At time t0, the camera takes an image with the robot being on the
left-hand-side. At the end of the image analysis (with the robot being at

t0 true position while
image grabbing

t2 true position when the data
is received by the robot

ball

t1 true position when
the image is analyzed

calculated position after
image analysis

position after data
processing

Fig. 12. Due to the latency problem, the robot receives its commands at time t2,
which actually corresponds to the image at time t0



210 S. Prüter et al.

Data in
servo loop

Real robot
position

Robot stay
Robot

accelerate
Robot reach

position
Servo loop
send stop Robot stops

Fig. 13. Problem of stopping the robot at the desired position

position command

52

100

94
98

95
78
65

98

87
76

98

99
101

64

94

96

Lateny time= 7 control cycles Control cycles
6 87 9 10

50

3
19

0
17
34

36

15
delay histogram 

nu
m

be
r 

of
 it

er
at

io
ns

Fig. 14. Detection of the Latency time in the control loop

the old position), the robot has already advanced to the middle position. At
time t2, the derived action commands arrive at the robot, which has further
advanced to the position at the right-hand-side. In this example, when being
in front of the ball, the robots receive commands which actually belong to a
point in time in which the robot was four times its body length away from
the ball.

Fig. 13 illustrates how the time delay between image grabbing and receiv-
ing commands leads to an oscillating behavior at dedicated target positions
(marked by a cross in the figure).

3.2 Experimental Analysis

In order to effectively compensate for the effects discussed above, the knowl-
edge of the exact latency time is very important. The overall latency time was
determined by the following experiment: The test software was continuously
sending a sinusoidal drive signal to the robot. With this approach, the robot
travels 40 cm forward and than 40 cm backwards. The actual robot position as
was seen in the image data was then correlated with the control commands.
Fig. 14 shows, the duration of the latency time is seven time slots in length,
which totals up to 234 ms with 30 frames send by the camera.



Evolutionary Design of a Control Architecture for Soccer-Playing Robots 211

For technical reasons, the time delay of the DECT modules is not constant
and the jitter is in the order of up to 8 ms. The values given above are averages
taken over 100 measurements.

3.3 Back-Propagation Networks and Methods

In general, Kohonen feature maps could be used for addressing the present
problem, as was shown in Section 2. In the present case, however, the robot
would have to employ a multi-dimensional Kohonen map. For five dimensions
with ten nodes each, the network would consist of 105 = 100, 000 nodes, which
would greatly exceed the robot’s computational capabilities.

Multi-layer feed-forward networks are another option, since they are gen-
eral problem solvers [4] and have low resource requirements. The principal
constituents of this network are nodes with input values, an internal acti-
vation function, and one output value. A feed-forward network is normally
organized in layers, each layer having its own specific number of nodes. The
number of nodes in the input and output layers are given by the environment
and/or problem description.

The activation of the nodes is propagated layer by layer from input to
output. In so doing, each node i calculates its net input neti =

∑
i

wijoj as

a weighted sum of all nodes j to which it is connected by means of weight
wij . Each node then determines its activation oi = f(neti), f(neti) = 1/(1 +
e−neti), with f(neti) called the logistic function [4].

During training, the algorithm presents all available training patterns, and
calculates the total error sum.

E(�w) =
∑

p

Ep(�w) =
1
2

∑

p

∑

i

(op
i − tpi )

2. (4)

Here p denotes the number of patterns (input/output vector) number and
tpi denotes the target value for pattern p at output neuron i. After calculating
the total error E(�w) the back-propagation algorithm then updates all weights
wi. This is done by performing a gradient-descend step:

�w ← �w − η∇E(�w), (5)

with η denoting a small learning constant, also called the step size. The cal-
culation of the total error sum E(�w) and the subsequent weight update is
repeated, until a certain criterion, such as a minimal error sum or stagnation,
is met. For further implementation detail, the interested reader is referred to
the literature [4].

The experiments in this section were performed with a network having one
hidden layer, and a varying number of hidden neurons between 2 ≤ h ≤ 15.
The learning rate was set to η = 1/2000 and training was performed over at
most 10,000 iterations.



212 S. Prüter et al.

To simplify the task for the neural network, the network adopts a compact
coding for the input patterns. This was achieved in the following way. The
origin of the coordinate system is set to the robot’s current position, and all
other vectors are given relative to that one. The network’s output is also given
in relative coordinates. The input vector consists of the following nine values:
six values for the position and orientation of the previous two time steps,
and three values for the target position and orientation. The output vector
has three values as well. For training and testing, 800 plus 400 patterns were
obtained by means of practical experiments.

Fig. 15 shows the average prediction error of a feed-forward network as a
function of the number of hidden neurons. It can be seen that three hidden

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

2 3 4 5 6 7 10 15 20 25

number of hidden neurons

av
er

ag
e 

er
ro

r

Fig. 15. The average prediction error of a feed-forward network as a function of the
number of hidden neurons

0

2

4

6

8

10

12

1 3 4 5 6 7 8 9 10 12 15
steps

2

sq
ua

re
d 

er
ro

r

Fig. 16. Square average error as a function of the number of prediction steps into
the future



Evolutionary Design of a Control Architecture for Soccer-Playing Robots 213

units yield sufficient good results, larger networks do not decrease the net-
work’s error.

Since the time delay equals seven camera images the network has to make
its prediction for seven time steps in the future.

Fig. 16 plots the networks accuracy when predicting more than one
timestamp. It can be seen that the accuracy drastically degrades beyond
eleven time steps.

4 Local Position Correction

Another approach to solve the latency problem is to do the compensation
on the robot itself. The main advantage of this approach is that the robot’s
wheel encoders can be used to obtain additional information about the robot’s
actual behavior. However, since the wheel encoders measure only the wheel
rotations, they cannot sense any slip or friction effects directly.

4.1 Increased Position Accuracy by Local Sensors

In the ideal case of slip-free motion, the robot can extrapolate its current
position by combining the position delivered by the image processing system,
the duration of the entire time delay, and the traveled distance as reported
by the wheel encoders. In other words: When slip does not occur, the robot
can compensate for all the delays by storing previous and current wheel tick
counts. This calculation is illustrated in Fig. 17.

Since the soccer robots are real-world entities, they also have to account
for slip and friction, which are among other things, nonlinear and stochastic
by nature. The following subsection employs back-propagation networks to
account for those effects.

4.2 Embedded Back-Propagation Networks

This section uses the same neural network architectures as have already been
discussed in Subsection 3.3. Due to the resource limitations of the robot

1
2

3
4

5

yoffset

xoffset

camera
position

corrected robot 
position

 

∑=
latency

∑ =
latency

i =1

i =1

hxi

hyi

xoffset

yoffset

Fig. 17. Extrapolation of the robot’s position using the image processing system
and the robot’s previous tick count



214 S. Prüter et al.

Input

FFN Output

set weights

microcontroller on the robot

Error Backpropagation

FFN Copyweights

PC outside the field
wireless 

communication

FFN Output

weights

Fig. 18. Separation of the actual feed-forward network (indicated by FFN in the
figure) and the back-propagation training algorithm

hardware, the numbers of nodes and connections that the robot can store on
its hardware is limited. From a hardware point of view, the memory available
on the robot itself is the major constraint. In addition to the actual learn-
ing problem, this section is also faced with the challenge of finding a good
compromise between the network’s complexity and its processing accuracy.

A second constraint to be taken into account concerns the update mecha-
nism of the learning algorithm. It is known that, back-propagation temporarily
stores the calculated error counts as well as all the weight changes ∆wij [4].
This leads to a doubling of the memory requirements, which would exhaust
the robot’s onboard memory size even for moderately sized networks. As a
solution for the problem, this section stores those values on the central control
PC and communicates the weight changes by means of the wireless commu-
nication facility. This separation is illustrated in Fig. 18. Thereby, the neural
network can be trained on a PC using the current outputs of the FFN on
the robot. A further benefit of the method is that the training can be done
during the soccer game, provided that the communication channel has enough
capacity for game-control and FFN data. The FFN sends its output values to
the PC, which then compares them with the camera data after the latency
time t. The PC uses the comparison results to train its network weights with-
out interfering with the robot control. When training is completed and the
results are better than the currently used configuration, the new weights are
sent to the robot, which start computing the next cycle with these weights.

4.3 Methods

Since the coding of the present problem is not trivial, this section provides a
detailed description. In order to avoid a combinatorial explosion, the robot is
set at the origin of the coordinate system for every iteration. All other values,
such as target position and orientation, are relative to that point. The relative
values mentioned above are scaled to be within the range −40 to 40. All angles
are directly coded between 0 and 359 degrees. With all these values, the input
layer has to have seven nodes.

Fig. 19 illustrates an example configuration. This configuration considers
three robot positions labeled “global”, “offset”, and “target”. The first robot



Evolutionary Design of a Control Architecture for Soccer-Playing Robots 215

target

ta
rg

et
y

targetx

globalangle

offsetangle

offsetx

of
fs

et
y

robot

target position
angle

Fig. 19. And example of the configuration for the slip and friction compensation.
See text for details

corresponds to the position as provided by the image processing system. The
second position called “offset”, corresponds to the robot’s true position and
hence includes the traveled distance during the time delay. The third robot
symbolizes the robot’s target position. As mentioned previously, the neural
network estimates the robot’s true positions (labeled by “offset”) from the
target position, the robot’s previous position, and its traveled distances.

All experiments were done using 400 pre-selected training patterns and
800 test patterns. The initial learning rate was set to η = 0.1. During the
course of learning, the learning rate was increased by 2% in case of decreasing
error values and decreased by 50% for increasing error values. In 10% of all
experiments, the back-propagation became ‘stuck’ in local optima. These runs
were discarded. Learning was terminated, if no improvement was obtained over
100 consecutive iterations.

4.4 Results

Fig. 20 shows the average and maximal error for 3 to 50 hidden neurons
organized in one hidden layer. It can be seen that above 20 hidden neurons,
the network does not yield any further improvement. This suggests that in
order to account for the limited resources available, at most 20 hidden neurons
should be used.

Fig. 21 and Fig. 22 summarize some results achieved by networks with two
hidden layers. Preliminary experiments have focused on finding a suitable ratio
between the hidden neurons in the two hidden layers. Fig. 21 suggests that a
ratio 3:1 yield the best results.

Similar to Fig. 20, Fig. 22 shows the error values for two hidden layers
with a ratio of 3:1 neurons. The numbers on the x-axis indicate the number



216 S. Prüter et al.

er
ro

r

Fig. 20. Average and maximal error of a feed-forward back-propagation network as
a function of the number of hidden neurons

av
er

ag
e 

er
ro

r

Fig. 21. Average error of a network with two hidden layers as a function of the
ratio of the numbers of neurons of two hidden layers

of units in the first and second hidden layer, respectively. From the results, it
may be concluded that a network with 45 and 15 neurons in the hidden layers
constitutes a good compromise. Furthermore, a comparison of Fig. 20 and
Fig. 22 suggest that in this particular application, networks with one-hidden
layer perform better than those with two-hidden layers.

When training neural networks, the network’s behavior on unseen patterns
is of particular interest. Fig. 23 depicts the evolution of both the averaged
training and test errors. It is evident that after about 100,000 iterations,
the test error stagnates or even increases even though the training error
continues decreasing. This behavior is known as Over-Learning in the liter-
ature [4].



Evolutionary Design of a Control Architecture for Soccer-Playing Robots 217

er
ro

r

Fig. 22. Average and maximal error for a feed-forward back-propagation network
with two hidden layers as a function of the two numbers of hidden neurons

0.01

0.1

1

av
er

ag
e 

er
ro

r 10

100

1 10 100 1000 10000 100000 1000000 10000000

learning cycles

average error learn values

average error test values

Fig. 23. Typical difference between the training and test error during the course of
learning

5 Path Planning using Genetic Algorithms

This section demonstrates how genetic-algorithm-based path planning can be
employed on a RoboCup robot. It further demonstrates that a first solution
is continuously updated to a changing environment.

The purpose of path planning algorithms is to find a collision free route
that satisfies certain optimization parameters between two points. In dynamic
environments, a found solution needs to be re-evaluated and updated to envi-
ronmental changes.

In case of RoboCup, all robots on the field are obstacles. Due to the global
camera view, the positions of all robots and hereby all obstacles are known
by the robot.

Genetic algorithms use evolutionary methods to find an optimal solution.
The solution space is formed by parameters. Possible solutions are repre-
sented as individuals of a population. Each gene of an individual represents



218 S. Prüter et al.

Length x1 y1 x2 y2 x3 y3

Fig. 24. Gene Encoding of an Individual

a parameter. A complete set of genes forms an individual. A new generation
is formed by selecting the best individuals from the parent generation and
applying evolutionary methods, such as recombination and mutation. After a
new generation is generated, each offspring is tested with a fitness function.
From all offspring, and in case of (µ + λ)-strategy also from the parents, the
µ best individuals are chosen as the parents of the next generation. µ usually
denotes the number of parents whereas λ is the number of generated children
for the next generation.

5.1 Gene Encoding

To apply genetic algorithms to the problem of path planning, the path needs
to be encoded into genes. An individual represents a possible path. The path
is stored in way points. The start and the destination point of the path are
not part of an individual. As the needed number of way points is not known
in advance, it is variable. Consequently, the gene length is variable too.

As shown in Fig. 24, each way point is stored in its x and y coordinates
as integer values.

The obstacles are relatively small compared to the size of the field and
their number cannot exceed nine because each team consists of five robots.
This leaves enough room for navigation, three way points between start and
end positions are sufficient to find a route. Therefore, the maximal number of
way points is set to three.

5.2 Fitness Function

The fitness function is important for the algorithm’s stability, because an inad-
equate function may lead to either stuck at local minima or oscillations around
an optimum. Fitness functions are usually constructed by accumulation of
weighted evaluation functions. In case of path planning, needed evaluation
functions are the path length and a collision avoidance term.

When choosing the representation of the obstacles, it needs to be consid-
ered that the calculation is done on the robot. Therefore, the memory footprint
is a very important factor.

Each obstacle is stored with its coordinates and its size. This allows for
obstacles of any shape. Vectored storing of obstacles provides a higher accu-
racy and a lower memory consumption but also rises the calculation effort.

The error function consists of the path length and the collision penalty
where pathi denotes the length of the sub path, di the distance between path
and the obstacle center in case the obstacle is hit, ro the radius of the obstacle,



Evolutionary Design of a Control Architecture for Soccer-Playing Robots 219

and cpenalty a penalty constant. The penalty for hitting an obstacle depends
on the distance to its center. The deeper the path is in the obstacle, the higher
the penalty should be. Consequently, the fitness raises when the error function
lowers.

f =
4∑

i=1

pathi +
ncollision∑

i=0

cpenalty · max(0, ro − di) (6)

The collision penalty needs to have a larger influence than a long route.
Therefore, cpenalty is set to twice the length of the field. Consequently, when
the error function has a higher value than twice the field length, no collision
free route has been found.

5.3 Evolutionary operations

Evolutionary algorithms find a problem solution by generating new individ-
uals using evolutionary operators. The operators split into two main classes.
Crossover operators exchange genes of two individuals, while the mutation
operators modify genes of individuals by altering the values of genes. Both
classes help to keep the population diverse.

Zheng et al. [15] proposed six mutation operators, which are specially
designed for the problem field of path planning. These operators range from
modification of one gene over exchange operators to insertion and deletion of
way points.

Genetic as well as evolutionary operators can influence the number of way
points in the path and thereby the length of the gene.

5.4 Continous calculation

Robots are not static devices. They move around, and their environment and
with it the obstacle positions change. Even the destination position of the
robot may change. Therefore, the path finding algorithm needs to run during
the entire course from the start position to the destination. Due to this reasons,
path finding on a robot is a continuing process. On the other hand, the robot
does not need to know the best route before it starts driving; a found collision
free route is sufficient.

The calculation is done in the main loop of the robot’s control program.
In the same loop, the data frame is evaluated, and the wheel speeds are calcu-
lated. The time between two received data frames is 35 ms. Due to the other
tasks that need to be finished in the main loop, the evaluation time for path
planning is limited to 20 ms. As the experiments will show, these constraints
allow only for the evaluation of one complete generation during every control
loop cycle. As mentioned above, the found route does not need to be perfect
to start moving. Therefore, the robot does never need to wait longer then four
cycles until it can start moving.



220 S. Prüter et al.

5.5 Calculation Time

In this experiment, the time needed to evaluate a population is measured.
The parameters vary from 1 to 3 for µ and 10 to 30 for λ. µ is denoting the
parent population size while λ is denoting the number of children. The scenario
includes four obstacles along the path. For this measurement a plus strategy
is used. All times in Table 1 are averaged measurements with a maximal error
of 0.9 ms. The timings vary because the randomly chosen genetic operators
need different times.

The result indicates that it is possible to use up to 30 offspring in one
generation. However, due to variations in calculation speed, it is saver to use
only 20 offspring.

5.6 Finding a Path in Dynamic Environments

In real-world scenarios, the obstacles as well as the robot are moving. The
movement of the obstacles starts at time step 10 and finishes at time step 30.
The robot drives with a speed of 5 pixels per time step. At the beginning, the
obstacles are positioned in a way that the robot has enough space between
them. In their end position, the robot needs to drive around them.

Fig. 25 shows that until the obstacles start to move, the error function
has the same value as the direct distance to the destination. As soon as the
obstacle starts to move, the robot is adjusting its path. At time step 22, the
distance between both obstacles is smaller than the robot size. At this point,

Table 1. Calculation time for one generation depending on µ and λ

µ λ = 10 λ = 20 λ = 30

1 5.5 ms 11.2 ms 15.5 ms
2 6.5 ms 14.8 ms 20.7 ms
3 7.2 ms 14.4 ms 20.5 ms

Start

Destination

robot
path

original
robot path

0
0

100

200

300

400

500

600

700

Distance
to Des-
tination

Fitness

10 20 30

Path change
needed

New path
found

Generation

obstacle movement

Fig. 25. Path planning and robot movement in a dynamic environment



Evolutionary Design of a Control Architecture for Soccer-Playing Robots 221

the fitness function raises by factor of two. The algorithm finds a new route
within four time steps.

For this experiment, a (2+20)-strategy was used. Because the fitness func-
tion changes when the robot or the obstacles move, found solutions need to
be re-calculated in each step. Otherwise, the robot will not change its path as
a found solution remains valid.

6 Discussion

This chapter has given a short introduction to the world-wide RoboCup ini-
tiative. The focus was on the small-size league, where two teams of five robots
play soccer against each other. Since no human control is allowed, the system
has to control the robots in an autonomous way. To this end, a control soft-
ware analyzes images obtained by two cameras and then derives appropriate
control commands for all team members.

The omnidirectional drives used by most research teams exhibit certain
inaccuracies due to two physical effects called ‘slip’ and ‘friction’. Section 2 has
applied Kohonen feature maps to compensate for rotational and directional
drift caused by the two effects.

Unfortunately, the image processing system exhibits various time delays at
different stages, which leads to erroneous robot behavior. Sections 3 and 4 have
incorporated back-propagation networks in order to alleviate this problem by
learning techniques which enable precise predictions to be made.

The results presented in this chapter show that neural networks can sig-
nificantly improve the robot’s behavior with respect to accuracy, drift, and
response. Additional experiments, which are not discussed in this chapter,
have shown that these enhancements lead to an improved team behavior.

The experimental results have also revealed the following deficiencies: Both
Kohonen and back-propagation networks require a training phase prior to
the actual operation. This limits the networks’ online adaptation capabili-
ties. Furthermore, the architectures presented here still require hand-crafted
adjustments to some extent. In addition, the resources available on the mobile
robots significantly limit the complexity of the employed networks. Finally,
the usage of back-propagation networks create the two well-known problems
of over-learning and local minima.

Path planning based on evolutionary algorithms on a RoboCup small-size
league robot is a possible option. The implementation meets the real-time
constraints that are given by the robot’s hardware and the environment. The
algorithm is capable of finding a path from source to destination and to adapt
to environmental changes.

Future research will address the problems discussed above. For this goal,
the incorporation of short-cuts into the back-propagation networks seems to
be a promising option. The investigation of other learning and self-adaptive
principles, such as Hebbian learning [4], seems essential for developing truly



222 S. Prüter et al.

self-adaptive control architectures. Another important aspect will be the
development of complex controllers which could fit into the low computational
resources provided by the robot’s onboard hardware.

Acknowledgements

The authors gratefully thank Thorsten Schulz, Guido Moritz, Christian
Fabian and Mirko Gerber for helping with all the very time consuming practi-
cal time-consuming experiments. Special thanks are due to Prof. Timmermann
and Dr. Golatowski for their continuous support.

References

1. http://www.robocup.org
2. A. Gloye, M. Simon, A. Egorova, F. Wiesel, O. Tenchio, M. Schreiber, S. Behnke,

and R. Rojas: Predicting away robot control latency, Technical Report B-08-03,
FU-Berlin, June 2003.

3. T. Kohonen: Self-Organizing Maps,Springer Series in Information Sciences, Vol.
30, Springer, Berlin, Heidelberg, New York, 1995, 1997, 2001. Third Extended
Edition, ISBN 3-540-67921-9, ISSN 0720-678X.

4. R. Rojas: Neural Networks - A Systematic Introduction, Springer-Verlag, Berlin,
1996.

5. Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Informa-
tion Storage and Organization in the Brain, Cornell Aeronautical Laboratory,
Psychological Review, v65, No. 6, pp. 386–408.

6. H. Ritter, K. Schulten: Convergence Properties of Kohonen’s Topology Con-
serving Maps, Biological Cybernetics, Vol. 60, pp 59, 1988

7. J.C. Russ, The Image Processing Handbook, Fourth Edition, CRC Press, 2002,
ISBN: 084931142X

8. K.J. Astrom, T. Hagglund, PID Controllers: Theory, Design, and Tuning, Inter-
national Society for Measurement and Con; 2nd edition, 1995

9. D. Rumelhart, J. Mccelland: Parallel Distributed Processing, MIT Press, 1986
10. D. Rumelhart: The basic ideas in neural net-works, Communications of the

ACM 37, 1994 86–92
11. Mohamad H. Hassoun, Fundamentals of artificial neural networks, MIT Press,

1995
12. Marvin L. Minsky and Seymour Papert, Perceptrons (expanded addition), MIT

Press, 1988
13. J.C. Alexander and J.H. Maddocks, “On the kinematics of wheeled mobile

robots” Autonomous Robot Vehicles, Springer Verlag, pp. 5–24, 1990.
14. Balakrishna, R., and Ghosal, A., “Two dimensional wheeled vehicle kinematics,”

IEEE Transaction on Robotics and Automation, vol.11, no.l, pp. 126–130, 1995
15. C.W. Zheng, M.Y. Ding, C.P. Zhou, “Cooperative Path Planning for Multiple

Air Vehicles Using a Co-evolutionary Algorithm”, Proceedings of International
Conference on Machine Learning and Cybernetics 2002, Beijing, 1:219–224.



Toward Robot Perception
through Omnidirectional Vision

José Gaspar1, Niall Winters2, Etienne Grossmann1,
and José Santos-Victor1 ∗

1 Instituto de Sistemas e Robótica
Instituto Superior Técnico
Av. Rovisco Pais, 1
1049-001 Lisboa - Portugal.
(jag,etienne,jasv)@isr.ist.utl.pt

2 London Knowledge Lab
23-29 Emerald St
London WC1N 3QS, UK.
n.winters@ioe.ac.uk

“My dear Miss Glory, Robots are not people. They are mechanically more
perfect than we are, they have an astounding intellectual capacity...”

From the play R.U.R. (Rossum’s Universal Robots) by Karel Capek, 1920.

1 Introduction

Vision is an extraordinarily powerful sense. The ability to perceive the envi-
ronment allows for movement to be regulated by the world. Humans do this
effortlessly but we still lack an understanding of how perception works. Our
approach to gaining an insight into this complex problem is to build artificial
visual systems for semi-autonomous robot navigation, supported by human-
robot interfaces for destination specification. We examine how robots can use
images, which convey only 2D information, in a robust manner to drive its
actions in 3D space. Our work provides robots with the perceptual capabili-
ties to undertake everyday navigation tasks, such as go to the fourth office in
the second corridor. We present a complete navigation system with a focus on
building – in line with Marr’s theory [57] – mediated perception modalities.
We address fundamental design issues associated with this goal; namely sensor
design, environmental representations, navigation control and user interaction.

∗ This work was partially supported by Fundação para a Ciência e a Tecnologia
(ISR/IST plurianual funding) through the POS Conhecimento Program that
includes FEDER funds. Etienne Grossmann is presently at Tyzx.com.

J. Gaspar et al.: Toward Robot Perception through Omnidirectional Vision, Studies in

Computational Intelligence (SCI) 70, 223–270 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



224 J. Gaspar et al.

A critical component of any perceptual system, human or artificial, is the
sensing modality used to obtain information about the environment. In the
biological world, for example, one striking observation is the diversity of ocular
geometries. The majority of insects and arthropods benefit from a wide field
of view and their eyes have a space- variant resolution. To some extent, the
perceptual capabilities of these animals can be explained by their specially
adapted eye geometries. Similarly, in this work, we explore the advantages
of having large fields of view by using an omnidirectional camera with a 360
degree azimuthal field of view.

Part of the power of our approach comes from the way we construct rep-
resentations of the world. Our internal environmental representations are tai-
lored to each navigation task, in line with the information perceived from the
environment. This is supported by evidence from the biological world, where
many animals make alternate use of landmark-based navigation and (approxi-
mate) route integration methods [87]. Taking a human example when walking
along a city avenue, it is sufficient to know our position to within an accu-
racy of one block. However, when entering our hall door we require much
more precise movements. In a similar manner, when our robot is required to
travel long distances, an appearance-based environmental representation is
used to perceive the world [89]. This is a long-distance/low-precision naviga-
tion modality. For precise tasks, such as docking or door traversal, perception
switches from the appearance-based method to one that relies on image fea-
tures and is highly accurate. We characterize these two modes of operation
as: Topological Navigation and Visual Path Following, respectively.

Combining long-distance/low-precision and short-distance/high-accuracy
perception modules plays an important role in finding efficient and robust
solutions to the robot navigation problem. This distinction is often overlooked,
with emphasis being placed on the construction of world models, rather than
concentrating on how these models can be used effectively.

In order to effectively navigate using the above representations, the robot
needs to be provided with a destination. We have developed human-robot
interfaces for this task using (omnidirectional) images for interactive scene
modelling. From a perception perspective, our aim is to design an inter-
face where an intuitive link exists between how the user perceives the world
and how they control the robot. We achieve this by generating a rich scene
description of a remote location. The user is free to rotate and translate this
model to specify a particular destination to the robot. Scene modelling, from a
single omnidirectional image, is possible with limited user input in the form of
co-linearity, co-planarity and orthogonality properties. While humans have an
immediate qualitative understanding of the scene encompassing co-planarity
and co-linearity properties of a number of points in the scene, robots equipped
with an omnidirectional camera can take precise azimuthal and elevation
measurements.



Toward Robot Perception through Omnidirectional Vision 225

1.1 State of the Art

There are many types of omnidirectional vision systems and the most common
ones are based on rotating cameras, fish-eye lenses or mirrors [3, 45, 18]. Baker
and Nayar listed all the mirror and camera setups having a Single View Point
(SVP) [1, 3]. These systems are omnidirectional, have the 360◦ horizontal
field of view, but do not have constant resolution for the most common scene
surfaces. Mirror shapes for linearly imaging 3D planes, cylinders or spheres
were presented in [32] within a unified approach that encompasses all the
previous constant resolution designs [46, 29, 68] and allowed for new ones.

Calibration methods are available for (i) most (static) SVP omnidirec-
tional setups, even where lenses have radial distortion [59] and (ii) for non-
SVP cameras set-ups, such as those obtained by mounting in a mobile robot
multiple cameras, for example [71]. Given that knowledge of the geometry of
cameras is frequently used in a back-projection form, [80] proposed a gen-
eral calibration method for general cameras (including non-SVP) which gives
the back-projection line (representing a light-ray) associated with each pixel
of the camera. In another vein, precise calibration methods have begun to
be developed for pan-tilt-zoom cameras [75]. These active camera set-ups,
combining pan-tilt-zoom cameras and a convex mirror, when precisely cali-
brated, allow for the building of very high resolution omnidirectional scene
representations and for zooming to improve resolution, which are both useful
characteristics for surveillance tasks. Networking cameras together have also
provided a solution in the surveillance domain. However, they pose new and
complex calibration challenges resulting from the mixture of various camera
types, potentially overlapping fields-of-view, the different requirements of cali-
bration quality and the type of calibration data used (for example, static or
dynamic background) [76].

On a final note, when designing catadioptric systems, care must be taken
to minimize defocus blur and optical aberrations as the spherical aberra-
tion or astigmatism [3, 81]. These phenomena become more severe when
minimising the system size, and therefore it is important to develop opti-
cal designs and digital image processing techniques that counter-balance the
image malformation.

The applications of omnidirectional vision to robotics are vast. Start-
ing with the seminal idea of enhancing the field of view for teleoperation,
current challenges in omnidirectional vision include autonomous and cooper-
ative robot-navigation and reconstruction for human and robot interaction
[27, 35, 47, 61].

Vision based autonomous navigation relies on various types of information,
e.g. scene appearance or geometrical features such as points or lines. When
using point features, current research, which combines simultaneous locali-
zation and map building, obtains robustness by using sequential Monte-Carlo



226 J. Gaspar et al.

methods such as particle filters [51, 20]. Using more stable features, such as
lines, allows for improved self-localization optimization methods [19]. [10, 54]
use sensitivity analysis in order to choose optimal landmark configurations for
self-localization. Omnidirectional vision has the advantage of tracking features
over a larger azimuth range and therefore can bring additional robustness to
navigation.

State of the art automatic scene reconstruction, based on omnidirec-
tional vision, relies on graph cutting methodologies for merging point clouds,
acquired at different robot locations [27]. Scene reconstruction is mainly
useful for human robot interaction, but can also be used for inter-robot inter-
action. Current research shows that building robot teams can be framed as
a scene independent problem, provided that the robots observe each other
and have reliable motion measurements [47, 61]. The robot teams can then
share scene models allowing better human to robot-team interaction.

This chapter is structured as follows. In Section 2, we present the modell-
ing and design of omnidirectional cameras, including details of the camera
designs we used. In Section 3, we present Topological Navigation and Visual
Path Following. We provide details of the different image dewarpings (views)
available from our omnidirectional camera: standard, panoramic and bird’s–
eye views. In addition, we detail geometric scene modelling, model tracking,
and appearance-based approaches to navigation. In Section 4, we present
our Visual Interface. In all cases, we demonstrate mobile robots navigat-
ing autonomously and guided interactively in structured environments. These
experiments show that the synergetic design, combining perception modules,
navigation modalities and humanrobot interaction, is effective in realworld
situations. Finally, in Section 5, we present our conclusions and future research
directions.

2 Omnidirectional Vision Sensors:
Modelling and Design

In 1843 [58], a patent was issued to Joseph Puchberger of Retz, Austria for the
first system that used a rotating camera to obtain omnidirectional images. The
original idea for the (static camera) omnidirectional vision sensor was initially
proposed by Rees in a US patent dating from 1970 [72]. Rees proposed the
use of a hyperbolic mirror to capture an omnidirectional image, which could
then be transformed to a (normal) perspective image.

Since those early days, the spectrum of application has broadened to
include such diverse areas as tele-operation [84, 91], video conferencing [70],
virtual reality [56], surveillance [77], 3D reconstruction [33, 79], structure from
motion [13] and autonomous robot navigation [35, 89, 90, 95, 97]. For a survey
of previous work, the reader is directed to [94]. A relevant collection of papers,
related to omnidirectional vision, can be found in [17] and [41].



Toward Robot Perception through Omnidirectional Vision 227

Omnidirectional images can be generated by a number of different sys-
tems which can be classified into four distinct design groupings: Camera-Only
Systems; Multi-Camera – Multi-Mirror Systems; Single Camera – Multi-
Mirror Systems, and Single Camera – Single Mirror Systems.

Camera-Only Systems: A popular method used to generate omnidirectional
images is the rotation of a standard CCD camera about its vertical axis.
The captured information, i.e. perspective images (or vertical line scans) are
then stitched together so as to obtain panoramic 360◦ images. Cao et al.
[11] describe such a system fitted with a fish-eye lens [60]. Instead of relying
upon a single rotating camera, a second camera-only design is to combine
cameras pointing in differing directions [28]. Here, images are acquired using
inexpensive board cameras and are again stitched together to form panoramas.
Finally, Greguss [40] developed a lens, he termed the Panoramic Annular Lens,
to capture a panoramic view of the environment.

Multi-Camera – Multi-Mirror Systems: This approach consists of arranging a
cluster of cameras in a certain manner along with an equal number of mirrors.
Nalwa [63] achieved this by placing four triangular planar mirrors side by side,
in the shape of a pyramid, with a camera under each. One significant prob-
lem with multi-camera – multi-mirror systems is geometric registering and
intensity blending the images together so as to form a seamless panoramic
view. This is a difficult problem to solve given that, even with careful align-
ment, unwanted visible artifacts are often found at image boundaries. These
occur not only because of variations between the intrinsic parameters of each
camera, but also because of imperfect mirror placement.

Single Camera – Multi-Mirror Systems: The main goal behind the design of
single camera – multi-mirror systems is compactness. Single camera – multi-
mirror systems are also known as Folded Catadioptric Cameras [66]. A simple
example of such a system is that of a planar mirror placed between a light ray
travelling from a curved mirror to a camera, thus “folding” the ray. Bruckstein
and Richardson [9] presented a design that used two parabolic mirrors, one
convex and the other concave. Nayar [66] used a more general design consisting
of any two mirrors with a conic-section profile.

Single Camera – Single Mirror Systems:

In recent years, this system design has become very popular; it is the approach
we chose for application to visual-based robot navigation. The basic method
is to point a CCD camera vertically up, towards a mirror.

There are a number of mirror profiles that can be used to project light
rays to the camera. The first, and by far the most popular design, uses a
standard mirror profile: planar, conical, elliptical, parabolic, hyperbolic
or spherical. All of the former, with obvious exception of the planar mirror,
can image a 360◦ view of the environment horizontally and, depending on
the type of mirror used approximately 70◦ to 120◦, vertically. Some of the



228 J. Gaspar et al.

mirror profiles, yield simple projection models. In general, to obtain such a
system it is necessary to place the mirror at a precise location relative to
the camera. In 1997, Nayar and Baker [64] patented a system combining a
parabolic mirror and a telecentric lens, which is well described by a simple
model and simultaneously overcomes the requirement of precise assembly.
Furthermore, their system is superior in the acquisition of non-blurred images.

The second design involves specifying a specialised mirror profile in
order to obtain a particular, possibly task-specific, view of the environment.
In both cases, to image the greatest field-of-view the camera’s optical axis is
aligned with that of the mirrors’. A detailed analysis of both the standard
and specialised mirror designs are given in the following Sections.

2.1 A Unifying Theory for Single Centre of Projection Systems

Recently, Geyer and Daniilidis [37, 38] presented a unified projection model
for all omnidirectional cameras with a single centre of projection. They showed
that these systems (parabolic, hyperbolic, elliptical and perspective3) can be
modelled by a two-step mapping via the sphere. This mapping of a point in
space to the image plane is graphically illustrated in Fig. 1 (left). The two
steps of the mapping are as follows:

1. Project a 3D world point, P = (x, y, z) to a point Ps on the sphere surface,
such that the projection is normal to the sphere surface.

2. Subsequently, project to a point on the image plane, Pi = (u, v) from a
point, O on the vertical axis of the sphere, through the point Ps.

Fig. 1. A Unifying Theory for all catadioptric sensors with a single centre of pro-
jection (left). Main variables defining the projection model of non-single projection
centre systems based on arbitrary mirror profiles, F (t) (right)

3 A parabolic mirror with an orthographic lens and all of the others with a standard
lens. In the case of a perspective camera, the mirror is virtual and planar.



Toward Robot Perception through Omnidirectional Vision 229

The mapping is mathematically defined by:
[

u
v

]
=

l + m

l · r − z

[
x
y

]
, where r =

√
x2 + y2 + z2 (1)

As one can clearly see, this is a two-parameter, (l and m) representation,
where l represents the distance from the sphere centre, C to the projection
centre, O and m the distance from O to the image plane. Modelling the various
catadioptric sensors with a single centre of projection is then just a matter
of varying the values of l and m in 1. As an example, to model a parabolic
mirror, we set l = 1 and m = 0. Then the image plane passes through the
sphere centre, C and O is located at the north pole of the sphere. In this
case, the second projection is the well known stereographic projection. We
note here that a standard perspective is obtained when l = 0 and m = 1. In
this case, O converges to C and the image plane is located at the south pole
of the sphere.

2.2 Model for Non-Single Projection Centre Systems

Non-single projection centre systems cannot be represented exactly by the
unified projection model. One such case is an omnidirectional camera based
on an spherical mirror. The intersections of the projection rays incident to the
mirror surface, define a continuous set of points distributed in a volume[2],
unlike the unified projection model where they all converge to a single point.
In the following, we derive a projection model for non-single projection centre
systems.

The image formation process is determined by the trajectory of rays that
start from a 3D point, reflect on the mirror surface and finally intersect with
the image plane. Considering first order optics [44], the process is simplified to
the trajectory of the principal ray. When there is a single projection centre it
immediately defines the direction of the principal ray starting at the 3D point.
If there is no single projection centre, then we must first find the reflection
point at the mirror surface.

In order to find the reflection point, a system of non-linear equations can
be derived which directly gives the reflection and projection points. Based on
first order optics [44], and in particular on the reflection law, the following
equation is obtained:

φ = θ + 2.atan(F ′) (2)

where θ is the camera’s vertical view angle, φ is the system’s vertical view
angle, F denotes the mirror shape (it is a function of the radial coordinate,
t) and F ′ represents the slope of the mirror shape. See Fig. 1 (right).

Equation (2) is valid both for single [37, 1, 96, 82], and non-single pro-
jection centre systems [12, 46, 15, 35]. When the mirror shape is known, it
provides the projection function. For example, consider the single projection



230 J. Gaspar et al.

centre system combining a parabolic mirror, F (t) = t2/2h with an ortho-
graphic camera [65], one obtains the projection equation, φ = 2atan(t/h)
relating the (angle to the) 3D point, φ and an image point, t.

In order to make the relation between world and image points explicit it is
only necessary to replace the angular variables by cartesian coordinates. We
do this assuming the pin-hole camera model and calculating the slope of the
light ray starting at a generic 3D point (r, z) and hitting the mirror:

θ = atan

(
t

F

)
, φ = atan

(
− r − t

z − F

)
. (3)

The solution of the system of equations (2) and (3) gives the reflection point,
(t, F ) and the image point (f.t/F, f) where f is the focal length of the lens.

2.3 Design of Standard Mirror Profiles

Omnidirectional camera mirrors can have standard or specialised profiles,
F (t). In standard profiles the form of F (t) is known, we need only to find
its parameters. In the specialised profiles the form of F (t) is also a degree of
freedom to be derived numerically. Before detailing the design methodology,
we introduce some useful properties.

Property 1 (Maximum vertical view angle) Consider a catadioptric
camera with a pin-hole at (0, 0) and a mirror profile F (t), which is a strictly
positive C1 function, with domain [0, tM ] that has a monotonically increasing
derivative. If the slope of the light ray from the mirror to the camera, t/F is
monotonically increasing then the maximum vertical view angle, φ is obtained
at the mirror rim, t = tM .

Proof: from Eq. (2) we see that the maximum vertical view angle, φ is
obtained when t/F and F ′ are maximums. Since both of these values are
monotonically increasing, then the maximum of φ is obtained at the maximal
t, i.e. t = tM .

�

The maximum vertical view angle allows us to precisely set the system
scaling property. Let us define the scaling of the mirror profile (and distance
to camera) F (t) by (t2, F2)

.= α.(t, F ), where t denotes the mirror radial coor-
dinate. More precisely, we are defining a new mirror shape F2 function of a
new mirror radius coordinate t2 as:

t2
.= αt ∧ F2(t2)

.= αF (t). (4)

This scaling preserves the geometrical property:

Property 2 (Scaling) Given a catadioptric camera with a pin-hole at (0, 0)
and a mirror profile F (t), which is a C1 function, the vertical view angle is
invariant to the system scaling defined by Eq. (4).



Toward Robot Perception through Omnidirectional Vision 231

Proof: we want to show that the vertical view angles are equal at corre-
sponding image points, φ2(t2/F2) = φ(t/F ) which, from Eq. (2), is the same as
comparing the corresponding derivatives F ′

2(t2) = F ′(t) and is demonstrated
using the definition of the derivative:

F ′
2(t2) = lim

τ2→t2

F2 (τ2) − F2 (t2)

τ2 − t2
= lim

τ→t

F2 (ατ) − F2 (αt)

ατ − αt
= lim

τ→t

αF (τ) − αF (t)

ατ − αt
= F ′(t)

�

Simply put, the scaling of the system geometry does not change the local
slope at mirror points defined by fixed image points. In particular, the mirror
slope at the mirror rim does not change and therefore the vertical view angle
of the system does not change.

Notice that despite the vertical view angle remaining constant the observed
3D region actually changes but usually in a negligible manner. As an example,
if the system sees an object 1 metre tall and the mirror rim is raised 5 cm due
to a scaling, then only those 5 cm become visible on top of the object.

Standard mirror profiles are parametric functions and hence implicitly
define the design parameters. Our goal is to specify a large vertical field of
view, φ given the limited field of view of the lens, θ. In the following we detail
the designs of cameras based on spherical and hyperbolic mirrors, which are
the most common standard mirror profiles.

Cameras based on spherical and hyperbolic mirrors, respectively, are
described by the mirror profile functions:

F (t) = L −
√

R2 − t2 and F (t) = L +
a

b

√
b2 + t2 (5)

where R is the spherical mirror radius, (a, b) are the major and minor axis of
the hyperbolic mirror and L sets the camera to mirror distance (see Fig. 2).
As an example, when L = 0 for the hyperbolic mirror, we obtain the omnidi-
rectional camera proposed by Chahl and Srinivasan’s [12]. Their design yields
a constant gain mirror that linearly maps 3D vertical angles into image radial
distances.

Fig. 2. Catadioptric Omnidirectional Camera based on a spherical (left) or an a
hyperbolic mirror (right). In the case of a hyperbolic mirror L = 0 or L = c and
c =

√
a2 + b2



232 J. Gaspar et al.

Chahl and Srinivasan’s design does not have the single projection centre
property, which is obtained placing the camera at one hyperboloid focus,
i.e. L =

√
a2 + b2, as Baker and Nayar show in [1] (see Fig. 2 (right). In

both designs the system is described just by the two hyperboloid parameters,
a and b.

In order to design the spherical and hyperbolic mirrors, we start by fixing
the focal length of the camera, which directly determines the view field θ.
Then the maximum vertical view field of the system, φ, is imposed with the
reflection law Eq. (2). This gives the slope of the mirror profile at the mirror
rim, F ′. Stating, without loss of generality, that the mirror rim has unitary
radius (i.e. (1, F (1)) is a mirror point), we obtain the following non-linear
system of equations: {

F (1) = 1/ tan θ
F ′(1) = tan (φ − θ) /2 . (6)

The mirror profile parameters, (L,R) or (a, b), are embedded in F (t), and are
therefore found solving the system of equations.

Since there are minimal focusing distances, Dmin which depend on the
particular lens, we have to guarantee that F (0) ≥ Dmin. We do this apply-
ing the scaling property (Eq. (4)). Given the scale factor k = Dmin/F (0)
the scaling of the spherical and hyperbolic mirrors is applied respectively as
(R,L) ← (k.R, k.L) and (a, b) ← (k.a, k.b). If the mirror is still too small to
be manufactured then an additional scaling up may be applied. The camera
self-occlusion becomes progressively less important when scaling up.

Figure 3 shows an omnidirectional camera based on a spherical mirror,
built in house for the purpose of conducting navigation experiments. The
mirror was designed to have a view field of 10o above the horizon line. The
lens has f = 8mm (vertical view field, θ is about ±15o on a 6.4mm× 4.8mm
CCD). The minimal distance from the lens to the mirror surface was set to
25cm. The calculations indicate a spherical mirror radius of 8.9cm.

Fig. 3. Omnidirectional camera based on a spherical mirror (left), camera mounted
on a Labmate mobile robot (middle) and omnidirectional image (right)



Toward Robot Perception through Omnidirectional Vision 233

Fig. 4. Constant vertical, horizontal and angular resolutions (respectively left,
middle and right schematics). Points on the line l are linearly related to their
projections in pixel coordinates, ρ

2.4 Design of Constant Resolution Cameras

Constant Resolution Cameras, are omnidirectional cameras that have the
property of linearly mapping 3D measures to imaged distances. The 3D
measures can be either elevation angles, vertical or horizontal distances (see
Fig. 4). Each linear mapping is achieved by specializing the mirror shape.

Some constant resolution designs have been presented in the literature,
[12, 46, 15, 37] with a different derivation for each case. In this section, we
present a unified approach that encompasses all the previous designs and
allows for new ones. The key idea is to separate the equations for the reflection
of light rays at the mirror surface and the mirror Shaping Function, which
explicitly represents the linear projection properties to meet.

The Mirror Shaping Function

Combining the equations that describe the non-single projection centre model
(Eqs. (2) and (3)) and expanding the trigonometric functions, one obtains
an equation of the variables t, r, z encompassing the mirror shape, F and
slope, F ′:

t
F + 2 F ′

1−F ′2

1 − 2 tF ′

F (1−F ′2)

= − r − t

z − F
(7)

This is Hicks and Bajcsy’s differential equation relating 3D points, (r, z) to
the reflection points, (t, F (t)) which directly imply the image points, (t/F, 1)
[46]. We assume without loss of generality that the focal length, f is 1, since
it is easy to account for a different (desired) value at a later stage.

Equation 7 allows to design a mirror shape, F (t) given a desired relation-
ship between 3D points, (r, z) and the corresponding images, (t/F, 1). In order
to compute F (t), it is convenient to have the equation in the form of an explicit



234 J. Gaspar et al.

expression for F ′ 4. Re-arranging Eq. (7) results in the following second order
polynomial equation:

F ′2 + 2α F ′ − 1 = 0 (8)

where α is a function of the mirror shape, (t, F ) and of an arbitrary 3D point,
(r, z):

α =
− (z − F ) F + (r − t) t

(z − F ) t + (r − t) F
(9)

We call α the mirror Shaping Function, since it ultimately determines the
mirror shape by expressing the relationship that should be observed between
3D coordinates, (r, z) and those on the image plane, determined by t/F . In
the next section we will show that the mirror shaping functions allow us to
bring the desired linear projection properties into the design procedure.

Concluding, to obtain the mirror profile first we specify the shaping func-
tion, Eq. (9) and then solve Eq. (8), or simply integrate:

F ′ = −α ±
√

α2 + 1 (10)

where we choose the + in order to have positive slopes for the mirror shape, F .

Setting Constant Resolution Properties

Our goal is to design a mirror profile to match the sensor’s resolution in order
to meet, in terms of desired image properties, the application constraints. As
shown in the previous section, the shaping function defines the mirror profile,
and here we show how to set it accordingly to the design goal.

For constant resolution mirrors, we want some world distances, D, to be
linearly mapped to (pixel) distances, p, measured in the image sensor, i.e. D =
a0.p+ b0 for some values of a0 and b0 which mainly determine the visual field.

When considering conventional cameras, pixel distances are obtained by
scaling metric distances in the image plane, ρ. In addition, knowing that those
distances relate to the slope t/F of the ray of light intersecting the image plane
as ρ = f. t

F . The linear constraint may be conveniently rewritten in terms of
the mirror shape as:

D = a.t/F + b (11)

Notice that the parameters a and b can easily be scaled to account for a
desired focal length, thus justifying the choice f = 1.

We now specify which 3D distances, D(t/F ), should be mapped linearly
to pixel coordinates, in order to preserve different image invariants (e.g. ratios
of distances or angles in certain directions).

Constant Vertical Resolution - The aim of the first design procedure is to
preserve the relative vertical distances of points located at a fixed distance,

4 Having an explicit formula for F ′ allows to directly use matlab’s ode45 function



Toward Robot Perception through Omnidirectional Vision 235

Linear Property Mirror Shaping Function

z = a.t/F + b
r = C

α =
−
(
a t

F
+ b − F

)
F + (C − t) t(

a t
F

+ b − F
)

t + (C − t) F
(12)

r = a.t/F + b
z = C

α =
− (C − F ) F +

(
a t

F
+ b − t

)
t

(C − F ) t +
(
a t

F
+ b − t

)
F

(13)

ϕ = a.t/F + b
r = C.cos(ϕ)
z = C.sin(ϕ)

α =
−
(
C sin(a t

F
+ b) − F

)
F +

(
C cos(a t

F
+ b) − t

)
t(

C sin(a t
F

+ b) − F
)

t +
(
C cos(a t

F
+ b) − t

)
F

(14)

Table 1. Mirror Shaping Functions for constant vertical, horizontal and angular
resolutions

C, from the camera’s optical axis. In other words, if we consider a cylinder
of radius, C, around the camera optical axis, we want to ensure that ratios
of distances, measured in the vertical direction along the surface of the cylin-
der, remain unchanged when measured in the image. Such invariance should
be obtained by adequately designing the mirror profile - yielding a constant
vertical resolution mirror.

The derivation described here follows closely that presented by Gaechter
and Pajdla in [30]. The main difference consist of a simpler setting for the
equations describing the mirror profile. We start by specialising the linear con-
straint in Eq. (11) to relate 3D points of a vertical line l with pixel coordinates
(see Fig. 4). Inserting this constraint into Eq. (9) we obtain the specialised
shaping function of Eq. (12) in Table 1.

Hence, the procedure to determine the mirror profile consists of integrat-
ing Eq. (10) using the shaping function of Eq. (12), while t varies from 0 to
the mirror radius. The initialization of the integration process is done by com-
puting the value of F (0) that would allow the mirror rim to occupy the entire
field of view of the sensor.

Constant Horizontal Resolution (Bird’s Eye View) - Another interesting
design possibility for some applications is that of preserving ratios of dis-
tances measured on the ground plane. In such a case, one can directly use
image measurements to obtain ratios of distances or angles on the pavement
(which can greatly facilitate navigation problems or visual tracking). Such
images are also termed Bird’s eye views.

Figure 4 shows how the ground plane, l, is projected onto the image plane.
The camera-to-ground distance is represented by −C (C is negative because
the ground plane is lower than the camera centre) and r represents radial
distances on the ground plane. The linear constraint inserted into Eq. (9)



236 J. Gaspar et al.

yields a new shaping function (as in Eq. (13)), which after integrating Eq. (10)
results in the mirror profile proposed by Hicks and Bajcsy [46].

Constant Angular Resolution - One last case of practical interest is that of
obtaining a linear mapping from 3D points spaced by equal angles to equally
distant image pixels, i.e. designing a constant angular resolution mirror.
Figure 4 shows how the spherical surface with radius C surrounding the sen-
sor is projected onto the image plane. In this case the desired linear property
relates angles with image points. Then, placing the constraints into Eq. (9) we
finally obtain Eq. (14).

Integrating Eq. (10), using the shaping function just obtained (Eq. (14)),
would result in a mirror shape such as the one of Chahl and Srinivasan [12].
The difference is that in our case we are imposing the linear relationship
from 3D vertical angles, ϕ directly to image points, (t/F, 1) instead of angles
relative to the camera axis, atan(t/F ).

Shaping functions for Log-polar Sensors - Log-polar cameras are imaging
devices that have a spatial resolution inspired by the human-retina. Unlike
standard cameras, the resolution is not constant on the sensing area. More pre-
cisely, the density of the pixels is higher in the centre and decays logarithmic-
ally towards the image periphery. The organisation of the pixels also differs
from the standard cameras, as a log-polar camera consists of a set of concen-
tric circular rings, each one with a constant number of pixels. Advantageously,
combining a log-polar camera with a convex mirror results in an omnidirec-
tional imaging device where the panoramic views are extracted directly due
to the polar arrangement of the sensor.

In a log-polar camera, the relationship of the linear distance, ρ, measured
on the sensor’s surface and the corresponding pixel coordinate, p, is specified
by p = logk(ρ/ρ0), where ρ0 and k stand for the fovea radius and the rate of
increase of pixel size towards the periphery.

As previously stated, our goal consists of setting a linear relationship
between world distances (or angles), D and corresponding (pixel) distances,
p. Combining into the linear relationship the perspective projection, ρ = t/F
and the logarithmic law of the log-polar camera, results in the following
constraint:

D = a. log(t/F ) + b (15)

The only difference in the form of the linear constraint when using con-
ventional or log-polar cameras, Eqs. (11) and (15), is that the slope t/F is
replaced by its logarithm. Hence, replacing the slope by its log directly in
Eqs. (12), (13) and (14), results in the desired shaping functions for the log-
polar camera.

Concluding, we obtained a design methodology of constant resolution
omnidirectional cameras, that is based on a shaping function whose speci-
fication allows us to choose a particular linear property. This methodology
generalises a number of published design methods for specific linear proper-
ties. For example the constant vertical resolution design results in a sensor



Toward Robot Perception through Omnidirectional Vision 237

Fig. 5. Svavisca camera equipped with the combined mirror (left) and world scene
with regular patterns distributed vertically and over the floor (middle). Panoramic
and bird’s eye views (right). The bird’s eye views have a transformation from carte-
sian to polar coordinates. The bird’s eye view at right originated from the fovea
area

equivalent to that of Gaechter et al [30]. Of particular interest is a constant
angular resolution sensor, that is an implementation of a spherical sensor pro-
viding a constant number of pixels per solid angle. This is similar to Conroy
and Moore’s design [15], but with the difference that, due to the nature of the
log-polar camera, we do not need to compensate for lesser pixels when moving
closer to the camera axis.

Figure 5 shows an omnidirectional based on the prototype log-polar camera
Svavisca [55]. The mirror is a combined design, encompassing constant vertical
and horizontal resolutions, respectively, in the outer and in the two inner
annular regions. Vertical and ground patterns in the real world are use to test
for linear properties. The panoramic image results from a direct read out of
the sensor and the bird’s eye views are obtained after a change from polar
to cartesian coordinates. In the panoramic image, the vertical sizes of black
squares are equal to those of the white squares, thus showing linearity from
3D measures to image pixel coordinates. In the bird’s eye views the rectilinear
pattern of the ground was successfully recovered.

2.5 The Single Centre of Projection Revisited

A question related to the use of non-single centre of projection sensors is how
different they are from single projection centre ones? What is the degree of
error induced by a locus of viewpoints? We have studied this problem using
the catadioptric sensor with a spherical mirror [33]. As outlined in Sect. 2.1,
the Unifying Theory covers all catadioptric sensors with a single centre of
projection. A projection model governing a catadioptric sensor with a generic
mirror profile is given in Sect. 2.2. If the Unifying Theory can approximate a
non-single centre of projection camera, one would expect that - using both
models - the error between projecting 3D points to the image plane would be
small. It turns out that for real-world points further than 2m away from the
catadioptric sensor the error in the image plane is less than 1 pixel.

Derrin and Konolige [23] also approximated a single centre of projection
but used a concept they termed iso-angle mapping. They constructed a virtual



238 J. Gaspar et al.

system by displacing all incoming rays, each having a unique Euler angle, so
as they converged at a single point. Thus, their method produced a camera
with a single centre of projection, imaging a distorted scene. Since they did
not derive an analytical expression for the distortion, it was measured as a
change in the height of a small object, given a change in its elevation angle
and remained less than 2.5%.

Concluding, many omnidirectional vision systems, despite not having a
single projection centre, are well approximated by a single projection centre
model. In this way models based on the single projection centre property may
become the most common, in the same way as the pin-hole model is used for
standard cameras even when it is just an approximation valid for the tasks at
hand.

3 Environmental Perception for Navigation

Traditionally, localisation has been identified as a principal perceptual com-
ponent of the navigation system of a mobile robot [53]. This has driven
continuous research and development on sensors providing direct localisation
measurements.

There is a large variety of self-localisation solutions available [5] in the
literature. However, in general they are characterised by a hard and limiting
tradeoff between robustness and cost. As paradigmatic and extreme examples
we can refer to solutions based on artificial landmarks (beacons) and those
based on odometry. Solutions based on beacons are robust but expensive
in terms of the materials, installation, maintenance or configuration to fit
a specific new purpose. The solutions based on odometry are inexpensive, but
since they rely on the integration of the robot’s internal measurements, i.e.
not grounded to the world, errors accumulate over time.

We use vision to sense the environment as it allows navigation to be regu-
lated by the world. In particular, we have noted the advantages of omnidirec-
tional vision for navigation, including its flexibility for building environmental
representations. Our robot combines two main navigation modalities: Visual
Path Following and Topological Navigation. In Visual Path Following, the
short-distance / high-accuracy navigation modality, the orthographic view of
the ground plane is a convenient world model as it makes simple represent-
ing / tracking ground plane features and computing the pose of the robot.
Panoramic views are a complementary representation, which are useful in the
identification and extraction of vertical line features. These types of views are
easily obtained from omnidirectional cameras using image dewarpings.

In Topological Navigation, the large-distance low-precision navigation
modality, omnidirectional images are used in their raw format to characterise
the environment by its appearance. Omnidirectional images are advantageous
as they are more robust to occlusions created e.g. by humans. Visual servoing
is included in topological navigation as the means of providing local control.



Toward Robot Perception through Omnidirectional Vision 239

This eliminates the need to built highly detailed environment representations,
thus saving computational (memory) resources.

In summary, both Visual Path Following and Topological Navigation rely
upon environmental perception (self-localisation) for regulating movement.
The main point here is that perception is linked to internal representations
of the world which are chosen according to the tasks at hand. We will now
detail Geometrical Representations for precise self-localisation, necessary for
Visual Path Following, and Topological Representations for global positioning
leading, necessary for Topological Navigation.

3.1 Geometric Representations for Precise Self-Localisation

Robot navigation in cluttered or narrow areas, such as when negotiating a door
traversal, requires precise self-localisation in order to be successful. In other
words, the robot has to be equipped with precise environmental perception
capabilities.

Vision-based self-localisation derives robot poses from images. It encom-
passes two principal stages: image processing and pose-computation. Image
processing provides the tracking of features in the scene. Pose-computation is
the geometrical calculation to determine the robot pose from feature obser-
vations, given the scene model.

Designing the image processing level involves modelling the environment.
One way to inform a robot of an environment is to give it a CAD model,
as in the work of Kosaka and Kak [52], recently reviewed in [24]. The CAD
model usually comprises metric values that need to be scaled to match the
images acquired by the robot. In our case, we overcome this need by defining
geometric models composed of features of the environment directly extracted
from images.

Omnidirectional cameras based on standard mirror profiles, image the
environment features with significant geometrical distortion. For instance, a
corridor appears as an image band of variable width and vertical lines are
imaged radially. Omnidirectional images must therefore be dewarped in order
to maintain the linearity of the imaged 3D straight lines.

Pose-computation, as the robot moves in a plane, consists of estimating a
2D position and an orientation. Assuming that the robot knows fixed points in
the environment (landmarks) there are two main methods of self-localisation
relative to the environment: trilateration and triangulation [5]. Trilateration
is the determination of a vehicle’s position based on distance measurements
to the landmarks. Triangulation has a similar purpose but is based on bearing
measurements.

In general, a single image taken by a calibrated camera provides only
bearing measurements. Thus, triangulation is a more “natural” way to calcu-
late self-localisation. However, some camera poses / geometries provide more
information. For example, a bird’s eye view image (detailed in the follow-
ing subsection) provides an orthographic view of the ground plane, providing



240 J. Gaspar et al.

simultaneous observation of bearings and distances to floor landmarks. Given
distances and bearings, the pose-computation is simplified to the calculation
of a 2D rigid transformation.

The fact that the pose-computation is based on feature locations, implies
that they contain errors, propagated from the feature tracking process. To
overcome this, we propose a complimentary pose-computation optimisation
step, based on a photometric criterium. We term this optimisation fine pose
adjustment, as opposed to the pose-computation based on the features which
is termed coarse pose computation. It is important to note that the pose-
estimation based on features is important for providing an initial guess for
the fine pose adjustment step.

Image Dewarpings for Scene Modelling

Images acquired with an omni-directional camera, e.g. based on a spherical
or hyperbolic mirror, are naturally distorted. Knowing the image formation
model, we can correct some distortions to obtain Panoramic or Bird’s Eye
Views.

The panoramic view groups together, in each scan line, the projections of
all visible points, at a constant angle of elevation. The bird’s eye view is a
scaled orthographic projection of the ground plane. These views are advanta-
geous e.g. for extracting and tracking vertical and ground plane lines.

Panoramic and Bird’s Eye Views are directly obtained by designing cus-
tom shaped mirrors. An alternative approach, as described next, is to simply
dewarp the omnidirectional images to the new views.

Panoramic View: 3D points at the same elevation angle from the axis of
the catadioptric omnidirectional vision sensor, project to a 2D circle in the
image. Therefore, the image dewarping is defined simply as a cartesian to
polar coordinates change:

I(α,R) = I0 (R cos(α) + u0, R sin(α) + v0)

where (u0, v0) is the image centre, α and R are the angle and radial coordi-
nates. The steps and range of α and R are chosen according to the resolution,
and covering all the effective area, of the omnidirectional image. One rule for
selecting the step of α is to make the number of columns of the panoramic
image equal to the perimeter of the middle circle of the omnidirectional image.
Hence inner circles are over-sampled and outer circles are sub-sampled. This
rule gives a good tradeoff between data loss due to sub-sampling and memory
consumption for storing the panoramic view.

Bird’s Eye View: In general, 3D straight lines are imaged as curves in the
omnidirectional image. For instance, the horizon line is imaged as a circle.
Only 3D lines that belong to vertical planes containing camera and mirror
axis project as straight (radial) lines.



Toward Robot Perception through Omnidirectional Vision 241

In order to dewarp an omnidirectional image to a bird’s eye view, notice
that the azimuthal coordinate of a 3D point is not changed by the imaging
geometry of the omnidirectional camera. Therefore, the dewarping of an omni-
directional image to a bird’s eye view is a radial transformation. Hence, we
can build a 1D look up table relating a number of points at different radial
distances in the omnidirectional image and the respective real distances. The
1D look up table is the radial transformation to be performed for all directions
on an omnidirectional image in order to obtain the bird’s eye view.

However, the data for building the look up table is usually too sparse.
In order to obtain a dense look up table we use the projection model of
the omnidirectional camera. Firstly, we rewrite the projection operator, Pρ

in order to map radial distances, ρground measured on the ground plane, to
radial distances, ρimg, measured in the image:

ρimg = Pρ(ρground, ϑ) (16)

Using this information, we build a look up table that maps densely sampled
radial distances from the ground plane to the image coordinates. Since the
inverse function cannot be expressed analytically, once we have an image
point, we search the look up table to determine the corresponding radial
distance on the ground plane.

Figure 6 illustrates the dewarpings of an omnidirectional image to obtain
the Bird’s Eye and Panoramic Views. Notice that the door frames are imaged
as vertical lines in the Panoramic view and the corridor guidelines are imaged
as straight lines in the Bird’s Eye view, as desired.

As a final remark, notice that our process to obtain the look up table encod-
ing the Bird’s Eye View, is equivalent to performing calibration. However, for

Fig. 6. Image dewarping for bird’s eye and panoramic views. (Top-left) original
omnidirectional image, (top-right) bird’s eye view and (bottom) panoramic view



242 J. Gaspar et al.

our purposes a good dewarping is simply the one that makes straight lines on
the ground plane appear straight in the Bird’s Eye View.

As long as the mirror, camera and support (mobile platform) remain fixed
to each other, the dewarpings for panoramic and bird’s eye views are time
invariant and can be programmed with 2D lookup tables. The dewarpings are
done efficiently in this way.

Doing fixed image dewarpings is actually a way to do (or help) Scene
Modelling. The image dewarpings make geometrical properties of the scene
clearly evident and as such simplify scene modelling to collecting a number of
features.

Geometric Scene Modelling and Model Tracking

Geometric models of the scene are collections of segments identified in Bird’s
Eye and Panoramic views5. Ground segments are rigidly interconnected in the
Bird’s Eye views while vertical segments will vary their locations according
to the viewer location. Considering both types of segments, the models are
“wire-frames” whose links change according to the viewpoint.

Each scene model must have a minimal number of features (line segments)
in order to allow self-localisation. One line of the ground plane permits finding
only the orientation of the robot and gives a single constraint on its locali-
sation. Two concurrent ground lines, or one ground and one vertical, already
determine robot position and orientation. Given three lines either all vertical,
one on the ground, two on the ground (not parallel) or three on the ground
(not all parallel), always permit us to compute the pose and therefore form
valid models6.

Figure 7 shows one example of modelling the scene using line segments
observed directly in the scene. The model is composed of three ground lines,
two of which are corridor guidelines, and eight vertical segments essentially
defined by the door frames. A single door frame (i.e. two vertical lines) and
one corridor guideline would suffice but it is beneficial to take more lines than
minimally required in order to improve the robustness of self-localisation.

In order to represent a certain scene area, and to meet visibility7 and qual-
ity criteria, a minimal number of segments are required. Models characterising
different world regions are related by rigid 2D transformations. These trans-
formations are firstly defined between every two neighbour models at locations
where both models are (partially but with enough relevance) visible. Naviga-
tion is therefore possible in the area composed as a union of individual areas,
provided by each individual model.
5 Despite the fact that localisation can be based on tracked image corners [74], more

robust and stable results are obtained with line segments as noted for example
by Spetsakis and Aloimonos in [78].

6 Assuming known the xy coordinates of the intersection of the vertical line(s) with
the ground plane.

7 see Talluri and Aggarwal in [83] for a geometrical definition of visibility regions



Toward Robot Perception through Omnidirectional Vision 243

Fig. 7. Geometric models for a door crossing experiment. The segments composing
the model (bottom right) are illustrated in the panoramic and bird’s eye view images,
respectively (top and bottom left)

Assuming that the robot pose evolves smoothly over time, the model seg-
ments need to be detected only once – at the initialisation stage. From then
on, we need only track them, which is much more efficient in computational
terms. We track both edges lying on the ground plane and vertical edge seg-
ments, using respectively the bird’s eye and panoramic views (details in [31]).

Pose Computation

The self-localisation procedure is based on the tracking of the geometric
models. The tracking of the models requires rigidity of the world structure
(but naturally not rigidity of the observed model segments themselves).

A simple method of calculating pose from the models arises when the
segments of the model intersect at ground points (as in the model shown
in Fig. 7). In this case, the model, despite encompassing ground and verti-
cal segments, is simplified to the case of a set of ground points. This set of
points moves rigidly in the Bird’s Eye View, and therefore self-localisation is
in essence the computation of the 2D transformation tracking the movement
of the points. This method requires intersecting segments, which is similar to
tracking corners but in a much more stable manner. This is especially true
when dealing with long segments, as the noise in the orientation of small seg-
ments may become significant, affecting the computation of the intersections
and the quality of corner estimates.

Alternatively, localisation is achieved through an optimisation procedure,
namely minimizing the distance between model and observed line segments,
directly at the pose parameters. Intuitively, the best pose estimate should align



244 J. Gaspar et al.

the scene model and the observed lines as well as possible. This is computa-
tionally more expensive, but more robust to direction errors on the observed
line segments [34].

Defining pose as x = [x y θ] and the distance between the segments ab
and cd as d (cd, ab) = f (c − a, b − a) + f (d − a, b − a) where a, b, c, d are the
segment extremal points and f is the normalised internal product, f(v,v0) =∣∣vT .v⊥

0

∣∣/
∥∥v⊥

0

∥∥, the problem of pose estimation based on the distance between
model and observed segments can be expressed by the minimization of a cost
functional:

x∗ = argx min
∑

i

d (si, s0i(x)) (17)

where si stands for observed vertical and ground line segments, and s0i indi-
cates the model segments (known a priori). The minimization is performed
with a generic gradient descent algorithm provided that the initialisation is
close enough. For the initial guess of the pose there are also simple solutions
such as using the pose at the previous time instant or, when available, an
estimate provided by e.g. a 2D rigid transformation of ground points or by a
triangulation method [4].

The self-localisation process as described by Eq. (17), relies exclusively
on the observed segments, and looks for the best robot pose justifying those
observations on the image plane. Despite the optimization performed for pose-
computation, there are residual errors that result from the low-level image
processing, segment tracking, and from the method itself. Some of these errors
may be recovered through the global interpretation of the current image with
the a priori geometric model. Since the model is composed of segments asso-
ciated with image edges, we want to maximize the sum of gradients, ∇I at
every point of the model wire-frame, {Pi}. Denoting the pose by x then the
optimal pose x∗ is obtained as:

x∗ = argx max µ(x) = argx max
∑

i

|∇I (P(Pi;x))| (18)

where P is the projection operator and µ(x) represents the (matching) merit
function. Given an initial solution to Eq. (17), the final solution can be found
by a local search on the components of x.

Usually, there are model points that are non-visible during some time
intervals while the robot moves. This is due, for example, to camera (platform)
self-occlusion or to the finite dimensions of the image. In these cases, the merit
matching merit function does not smoothly evolve with pose changes: it is
maximized by considering the maximum number of points possible, instead
of the true segment pose. Therefore, we include a smoothness prior to the
function. One solution is to maintain the gradient values at control points of
the model for the images when they are not visible.



Toward Robot Perception through Omnidirectional Vision 245

Visual Path Following

Visual Path Following can be described in a simple manner as a trajectory
following problem, without having the trajectory explicitly represented in the
scene. The trajectory is only a data structure learnt from example / experience
or specified through a visual interface.

Visual Path Following combines the precise self-localisation (detailed in
the preceding sections) with a controller that generates the control signals for
moving the robot, such as that proposed by de Wit et al [21].

Experiments were conducted using an omnidirectional camera with a
spherical mirror profile (shown in Fig. 3), mounted on a TRC labmate mobile
robot. Figure 8 illustrates tracking and self-localization while traversing a door
from the corridor into a room. The tracked features (shown as black circles)
are defined by vertical and ground-plane segments, tracked in bird’s eye view
images.

Currently, the user initializes the relevant features to track. To detect the
loss of tracking during operation, the process is continuously self-evaluated
by the robot, based on gradient intensities obtained within specified areas
around the landmark edges (Eq. 18). If these gradients decrease significantly
compared to those expected, a recovery mechanism is launched.

Fig. 8. Feature tracking at three instants (a,b,c), scene-model tracking in the robot
coordinate system (d) and the self-localisation result obtained by fixing the tracked
scene-model (e)



246 J. Gaspar et al.

The appropriate choice of the sensor and environmental representations,
taking into account the task at hand, results in an efficient methodology that
hardwires some tasks requiring precise navigation.

3.2 Topological Representations

A topological map is used to describe the robot’s global environment and
obtain its qualitative position when travelling long distances. It is represented
as a graph: nodes in the graph correspond to landmarks, i.e. distinctive places
such as corners. Links connect nodes and correspond to environmental struc-
tures that can be used to control the pose of the robot. In order to effectively
use this graph the robot must be able to travel along a corridor, recognize
the ends of a corridor, make turns, identify and count door frames. These
behaviours are implemented through an appearance based system and a visual
servoing strategy.

An appearance based system [62] is one in which a run–time image is com-
pared to a database set for matching purposes. For example, in our corridor
scene, the appearance based system provides qualitative estimates of robot
position and recognizes distinctive places such as corner or door entrances.

Therefore, the topological map is simply a collection of inter-connected
images. To go from one particular locale to another, we do not have to think
in precise metric terms. For example, to move the robot from one corner to
the opposite one we may indicate to the robot to follow one corridor until the
first corner and then to follow the next corridor until the next corner, thus
reaching the desired destination, or to complete more complex missions such
as “go to the third office on the left-hand side of the second corridor”.

To control the robot’s trajectory along a corridor, we detect the corridor
guidelines and generate adequate control signals to keep the robot on the
desired trajectory. This processing is performed on bird’s eye views of the
ground plane, computed in real-time.

When compared to geometric approaches, topological maps offer a parsi-
monious representation of the environment, are highly computationally effi-
cient [85], scale easily and can explicitly represent uncertainties in the real
world [7].

Image Eigenspaces as Topological Maps

In general, sizeable learning sets are required to map the environment and so
matching using traditional techniques, such as correlation, would incur a very
high computational cost. If one considers the images as points in space, it
follows that they shall be scattered throughout this space, only if they differ
significantly from one other. However, many real-world environments (offices,
highways etc.) exhibit homogeneity of structure, leading to a large amount of
redundant information within the image set. Consequently, the images are not



Toward Robot Perception through Omnidirectional Vision 247

scattered throughout a high dimensional space but – due to their similarity –
lie in a lower dimensional subspace.

We implement dimensionality reduction using the classical procedure of
Principal Component Analysis (PCA)8, as described by Murase and Nayar in
[62], and detailed by Winters in [88] or Gaspar, Winters and Santos-Victor in
[35]. Simply put, Principal Component Analysis reduces the dimension-
ality of a set of linearly independent input variables, while still accurately
representing most of the original data. The reconstruction of this original
data is optimal in the sense that the mean square error between it and the
original data is minimized.

Imagine that we represent images as L-dimensional vectors in R
L. Due to

the similarity between images (data redundancy) these vectors will not span
the entire space of R

L but rather, they will be confined (or close, to be more
precise) to a lower-dimensional subspace, R

M where M << L. Hence, to save
on computation, we can represent our images by their co-ordinates in such
a lower-dimensional subspace, rather than using all of the pixel information.
Each time a new image is acquired, its capture position can easily be deter-
mined by projecting it into the lower-dimensional subspace and finding its
closest match from the a priori set of points (images).

A basis for such a linear subspace can be found through PCA, where
the basis vectors are denominated Principal Components. They can be
computed as the eigenvectors of the covariance matrix of the normalised
set of images acquired by the robot. The number of eigenvectors that can be
computed in such a way is the same as the number of images in the input
data, and the eigenvectors are the same size as the images.

Each reference image is associated with a qualitative robot position (e.g.
half way along the corridor). To find the robot position in the topological
map, we have to determine the reference image that best matches the current
view. The distance between the current view and the reference images can be
computed directly using their projections (vectors) on the lower dimensional
eigenspace. The distance is computed between M-dimensional coefficient vec-
tors (typically 10 to 12), as opposed to image size vectors (128 × 128). The
position of the robot is that associated with the reference image having the
lowest distance.

When using intensity images, comparison of images is essentially a sum
of squared differences of brightness (radiance) values and because of this the
robot is prone to miscalculating its location where large non-uniform devi-
ations in illumination occur. This can be overcome by using edge images,
although these are not robust to edge-point position errors. The solution
therefore, is to compare shapes instead of edge-points, or more specifically
the distance between shapes present in both images. There are several possible

8 It is sometimes known as the application of the Karhunen-Loève transform
[67, 86].



248 J. Gaspar et al.

definitions of the distance between shapes. Two very well known are chamfer
distance and the the Hausdorff distance.

Localisation Based on the Chamfer Distance

The chamfer distance is based on the correlation of a template edge-image
with a distance transformed image. The distance transform of an edge-image
is an image of the same size as the original, that indicates at each point the
distance to the closest edge point [6, 36, 16].

The chamfer distance transform9 is computed from an edge-image using
the forward and backward masks shown in Fig. 9 [6, 36]. There are various
possible values for the constants in the masks. We use the values according to
Montanari’s metric [16].

The constants shown in the masks are added to each of the local values
and the resulting value of the mask computation is the minimum of the set.
Both masks are applied along the rows of the initialised image.

Figure 10 shows the distance transform of the edges of an omnidirectional
image. We remove the inner and outer parts of the omnidirectional image as
they contain artifact edges, i.e. edges not related to the scene itself, created
by the mirror rim and the robot plus camera self-occlusion.

Finally, given the distance transform, the chamfer distance of two shapes
is then computed as the correlation:

Fig. 9. Forward and backward masks for computing the distance transform. The
element in bold face indicates the centre of the mask

(a) (b) (c)

Fig. 10. Distance transform: (a) original omnidirectional image, (b) edges found
in an annular region of the omnidirectional image and (c) the distance transform of
the edge-image

9 Not to be confused with the chamfer distance between two shapes. The chamfer
distance transform is an image processing operation useful for computing the
chamfer distance of two shapes.



Toward Robot Perception through Omnidirectional Vision 249

d (D,T ) =

∑
i,j

DijTij

∑
i,j

Tij
(19)

where T is a template edge-image and D is the distance transform of the edges
of the current run-time image. As weaker edges (small gradient magnitudes)
are more susceptible to noise, we set Tij to the gradient magnitudes of the
template images, instead of binary edges. Hence, we give more weight to the
strongest edges.

Equation 19 says that the chamfer distance is an average of the distances
between corresponding points of the shapes. In a strict sense, it is an approx-
imation as the underlying chamfer distance transform is itself an approxima-
tion to the Euclidean distance. In practice this difference is not relevant as
typically the shapes to compare are at similar poses and the distances between
the points are small enough to make negligible the difference of the chamfer
and the Euclidean distances.

In the topological localisation application, we want to find the database
image corresponding to the current run-time image. In order to find the best
matching we search the database using the chamfer distance as the comparison
measure. The comparison of images is done from an edge-image to a distance
transformed edge-image. The distance transformation may be applied either to
the run time or to the database images [36]. We apply the distance transform
to the run time edge-images and leave to the template edge-images the role
of selecting the relevant edge locations.

The distance as defined by Eq. (19) is zero for perfectly matching images.
Therefore we search for the image matching the current image Im in a set
T1 . . . Tn by minimizing Eq. (19),

n̂ = argn min d (D(Im), Tn) . (20)

Notice that, unlike recognition applications such as pedestrian and sign detec-
tion in an image [36], in the localisation application the template and run-time
images have equal sizes. The search parameter is an image index instead of
translation, rotation and scaling. The range of the index is the size of the
database.

Usually there are a large number of database images, and thus under-
taking localisation, as in Eq. (20), is computationally expensive. However it
only needs to be performed once, when the robot is dropped-in-scene. During
normal operation there is a causality constraint along the consecutive loca-
tions. We reduce the search range to a window around the last location, typ-
ically ±5 images.

Eigenspace Approximation to the Hausdorff Fraction

The Hausdorff distance [73] (of which the Hausdorff fraction is a subset) is a
technique whereby one can measure the distance between two sets of points,



250 J. Gaspar et al.

in our case edge images. A number of Hausdorff distance measures are defined
by the following equations:

H(A,B) = max(h(A,B), h(B,A)) (21)

where
h(A,B) = max

a∈A
min
b∈B

‖ a − b ‖ (22)

Here A and B represent sets of points. h(A,B) measures the distance from
each point in A to the nearest point in B and the maximum distance is termed
the directed distance from A to B, and is the normal choice for critical time
dependent systems.

The Hausdorff distance is very sensitive to even a single outlying point
in one of the shapes. The Generalised Hausdorff distance, defined by
Huttenlocher et al in [48], is thus proposed as a similar measure but that
is robust to partial occlusions. The generalised Hausdorff distance is an f th

quantile of the distances between all the points of one shape to the corre-
sponding points of the other shape. The quantile is chosen according to the
expected noise and occlusion levels.

In recognition applications, the generalised Hausdorff distance is further
specialised to save computational power. The Hausdorff fraction, the measure
we are interested in, instead of measuring a distance between shapes evaluates
the percentage of superposition when one of the shapes is dilated. Further-
more, for computational efficiency, principal components analysis is included
resulting in an eigenspace approximation to the Hausdorff fraction [49].

The eigenspace approximation is built as follows: Let Im be an observed
edge image and Id

n be an edge image from the topological map, arranged
as column vectors. The Hausdorff fraction, �(Im, Id

n), which measures the
similarity between these images, can be written as:

�(Im, Id
n) =

IT
mId

n

‖Im‖2
(23)

An image, Ik can be represented in a low dimensional eigenspace [62, 92] by
a coefficient vector, Ck = [ck

1 , · · · , ck
M ]T , as follows:

ck
j = eT

j .(Ik − Ī).

Here, Ī represents the average of all the intensity images and can be also
used with edge images. Thus, the eigenspace approximation to the Hausdorff
fraction can be efficiently computed as:

�̂(Im, Id
n) =

CT
mCd

n + IT
mĪ + IdT

n Ī − ‖Ī‖2

‖Im‖2
. (24)

One important issue, when approximating the Hausdorff fraction, is to
include some tolerance in matching step. Huttenlocher et al. [49] build the



Toward Robot Perception through Omnidirectional Vision 251

Fig. 11. (a) An omnidirectional image obtained at 11:00, (b) one obtained at 17:00;
(c) An edge-detected image and (d) its retrieved image

eigenspace using both dilated and un-dilated model views and pre-process the
run time edge images to dilate the edges. In our pre-processing we use low pass
filtering instead of edge dilation. The purpose here is to maintain the local
maxima of gradient magnitude at edge points while enlarging the matching
area. We found this to be a good tradeoff between matching robustness and
accuracy.

To test this view-based approximation we collected a sequence of images,
acquired at different times, 11am and 5pm, near a large window. Figure 11
shows the significant changes in illumination, especially near the large window
at the bottom left hand side of each omnidirectional image. Even so, the view
based approximation can correctly determine that the unknown image shown
in Fig. 11(a) was closest to the database image shown in Fig. 11(b), while PCA
based on brightness distributions would fail. For completeness, Fig. 11 (c) and
(d) shows a run-time edge image and its corresponding retrieved image using
the eigenspace approximation to the Hausdorff fraction.

Integrating Topological Navigation and Visual Path Following

When continuously operating, the mobile robot is usually performing topo-
logical navigation. At some points of the mission the navigation modality is
required to change to the visual path following. Thus, the robot needs to
retrieve the scene features (straight lines in our case) chosen at the time of
learning to specific this particular visual path following task.



252 J. Gaspar et al.

The search for the features can be approached as a general pattern match-
ing problem using e.g. a generalised Hough transform as in [93, 26]. We
approach the problem by coordinating the two navigation modalities. To find
the features, the uncertainty of the location of the robot is controlled by using
more detailed topological maps and by increasing the searching regions of the
features otherwise bounded according to the maximum speed of the robot.

During system initialisation, the robot will normally begin at a known
docking place and the undocking visual path following task may be immedi-
ately elicited. Of course, the robot may have to start at an unknown (within
the topological map) position, i.e. a drop-in-scene case. Should this occur,
then self-localisation is performed using the topological localisation module.

The combination of omnidirectional images and the Topological and Visual
Path Following navigation strategies are illustrated by the complete experi-
ments described in this section. We believe that the complementary nature of
these approaches and the use of omnidirectional imaging geometries result in
a very powerful solution to build efficient and robust navigation systems.

Topological Localisation Results

We perform two experiments to test the three topological localisation
methods, presented above. In the first experiment we test that the images
after compression by the various methods are still sufficiently different to
yield correct localisation results, and in the second experiment we test the
robustness of the methods against illumination changes.

The experiments are based on three sequences of images: one database
sequence describing the environment and two run-time sequences acquired
along a fraction of the represented environment. One of the run time sequences
was acquired at a time of the day different to the database set, resulting
therefore in very different lighting conditions.

Experiment 1: the run time sequence, as compared to the database, is
acquired under similar illumination conditions, the length of the traversed
path is about 50% of the original and the images are acquired at a different
sampling frequency (distance between consecutive images). Figure 12 shows
that the three methods give similar localisation results, as desired. The small
differences among the methods are due to the distinct image database (appear-
ance set) construction techniques. The figure shows that in this experiment
the three methods, despite compressing information, preserve enough detail
to distinguish each image relative to all the others.

Experiment 2: Fig. 13 shows topological localisation performed by each
of the methods for two sequences taken in the same path but at different
times of the day, resulting in very different lighting conditions. As expected,
the PCA-based method, i.e. the one using brightness values directly, fails to
obtain correct locations in areas of large non-uniform illumination change (i.e.
the last part of the test). The other two methods, which are based on edges,
obtain better results.



Toward Robot Perception through Omnidirectional Vision 253

Fig. 12. Three methods of topological localisation, (top, from left to right): local-
isation based on PCA, Chamfer distance and Hausdorff distance. The clear valleys
show that there is enough information to distinguish the robot locations. (Bottom)
localisation as found by each of the methods i.e. ordinates corresponding to mini-
mum values found at each time instant on the 3D plots

Fig. 13. Topological localisation experiments using the three methods over two
sequences acquired under different lighting conditions. From left to right: localisation
based on PCA, Distance transform and Hausdorff distance

As expected, the edges based methods are more suited to dealing with
very different illuminations. In our navigation experiments we use mainly the
PCA over brightness values, as most of our scenario is not subject to large
illumination changes, and using brightness values is more informative than
using only edges. For the parts of the scene where illumination can change
significantly we use the Hausdorff based method. The reason of its choice
when compared to the Distance transform, is that it is faster for the first
localisation at dropped-in-scene situations.

Integrated Navigation Experiments

The concluding experiment integrates global and local navigational tasks, by
combining the Topological Navigation and Visual Path Following paradigms.



254 J. Gaspar et al.

Fig. 14. (Left) Bird’s eye view of the corridor. (Right) Measurements used in the
control law: the robot heading θ and distance d relative to the corridor centre. The
controller is designed to regulate to zero the (error) measurements actuating on the
angular and linear speeds of the robot

To navigate along the topological graph, we still have to define a suitable
vision-based behaviour for corridor following (links in the map). In different
environments, one can always use simple knowledge about the scene geome-
try to define other behaviours. We exploit the fact that most corridors have
parallel guidelines to control the robot heading direction, aiming to keep the
robot centred in the corridor.

The visual feedback is provided by the omnidirectional camera. We use
bird’s eye views of the floor, which simplifies the servoing task, as these images
are a scaled orthographic projection of the ground plane (i.e. no perspective
effects). Figure 14 shows a top view of the corridor guidelines, the robot and
the trajectory to follow in the centre of the corridor.

From the images we can measure the robot heading with respect to the
corridor guidelines and the distance to the central reference trajectory. We
use a simple kinematic planner to control the robot’s position and orientation
in the corridor, using the angular velocity as the single degree of freedom.

Notice that the use of bird’s eye views of the ground plane simplifies both
the extraction of the corridor guidelines (e.g. the corridor has a constant
width) and the computation of the robot position and orientation errors, with
respect to the corridor’s central path.

Hence, the robot is equipped to perform Topological Navigation relying
on appearance based methods and on its corridor following behaviour. This
is a methodology for traversing long paths. For local and precise navigation
the robot uses Visual Path Following as detailed in Sect. 3.1. Combining these
behaviours the robot can perform missions covering extensive areas while
achieving local precise missions. In the following we describe one such mission.

The mission starts in the Computer Vision Lab. Visual Path Following
is used to navigate inside the Lab, traverse the Lab’s door and drive the
robot out into the corridor. Once in the corridor, control is transferred to the
Topological Navigation module, which drives the robot all the way to the end
of the corridor. At this position a new behaviour is launched, consisting of
the robot executing a 180◦ turn, after which the topological navigation mode
drives the robot back to the Lab entry point.



Toward Robot Perception through Omnidirectional Vision 255

Fig. 15. Experiment combining visual path following for door traversal and topo-
logical navigation for corridor following

During this backward trajectory we use the same image eigenspaces as
were utilised during the forward motion by simply rotating, in real-time,
the acquired omnidirectional images by 180◦. Alternatively, we could use
the image’s power spectrum or the Zero Phase Representation [69]. Finally,
once the robot is approximately located at the lab entrance, control is passed
to the Visual Path Following module. Immediately it locates the visual land-
marks and drives the robot through the door. It follows a pre-specified path
until the final goal position, well inside the lab, is reached. Figure 15 shows
an image sequence to relate the robot’s motion during this experiment.

In Fig. 16(a) we used odometric readings from the best experiment to plot
the robot trajectory. When returning to the laboratory, the uncertainty in
odometry was approximately 0.5m. Thus, door traversal would not be possi-
ble without the use of visual control. Figure 16(b), shows the actual robot
trajectory, after using ground truth measurements to correct the odometric
estimates. The mission was successfully accomplished.

This integrated experiment shows that omnidirectional images are advan-
tageous for navigation and support different representations suitable both for
Topological Maps, when navigating between distant environmental points,
and Visual Path Following for accurate path traversal. Additionally, we have
described how they can help in coping with occlusions, and with methods of
achieving robustness against illumination changes.

4 Complementing Human and Robot Perceptions
for HR Interaction

Each omnidirectional image provides a rich description and understanding
of the scene. Visualization methods based on panoramic or bird’s eye views
provide a simple and effective way to control the robot. For instance, the



256 J. Gaspar et al.

−

−

−

−

−

−
−

Fig. 16. A real world experiment combining Visual Path Following for door tra-
versal and Topological Navigation for long-distance goals. Odometry results before
(a) and after (b) the addition of ground truth measurements

robot heading is easily specified by clicking on the desired direction of travel in
the panoramic image, and the desired (x, y) locations are specified by clicking
in the bird’s-eye view.

Using 3D models further improves the visualization of the scene. A unique
feature of such a representation is that the user can tell the robot to arrive to
a given destination at a certain orientation simply by rotating the 3D model.
Beyond the benefits of immersion, it allows to group the information of many
views and get a global view of the environment.

In order to build the 3D scene models, we propose Interactive Scene Recon-
struction, a method based on the complimentary nature of Human and Robot
perceptions. While Humans have an immediate qualitative understanding of
the scene encompassing co-planarity and co-linearity properties of a number
of points of the scene, Robots equipped with omnidirectional cameras can take
precise azimuthal and elevation measurements.

Interactive scene reconstruction has recently drawn lots of attention.
Debevec et al in [22], propose an interactive scene reconstruction approach
for modelling and rendering architectural scenes. They derive a geometric
model combining edge lines observed in the images with geometrical proper-
ties known a priori. This approach is advantageous relative to building a CAD
model from scratch, as some information comes directly from the images. In
addition, it is simpler than a conventional structure from motion problem
because, instead of reconstructing points, it deals with reconstructing scene
parameters, which is a much lower dimension and better conditioned problem.



Toward Robot Perception through Omnidirectional Vision 257

In [79] Sturm uses an omnidirectional camera based on a parabolic mirror
and a telecentric lens for reconstructing a 3D scene. The user specifies rele-
vant points and planes grouping those points. The directions of the planes are
computed e.g. from vanishing points, and the image points are back-projected
to obtain parametric representations where the points move on the 3D pro-
jection rays. The points and the planes, i.e. their distances to the viewer, are
simultaneously reconstructed by minimizing a cost functional based on the
distances from the points to the planes.

We build 3D models using omnidirectional images and some limited user
input, as in Sturm’s work. However our approach is based on a different recon-
struction method and the omnidirectional camera is a generalised single pro-
jection centre camera modelled by the Unified Projection Model [37]. The
reconstruction method is that proposed by Grossmann for conventional cam-
eras [43], applied to single projection centre omnidirectional cameras for which
a back-projection model was obtained.

The back-projection transforms the omnidirectional camera to a (very
wide field of view) pin-hole camera. The user input is of geometrical nature,
namely alignment and coplanarity properties of points and lines. After back-
projection, the data is arranged according to the geometrical constraints,
resulting in a linear problem whose solution can be found in a single step.

4.1 Interactive Scene Reconstruction

We now present the method for interactively building a 3D model of the envi-
ronment. The 3D information is obtained from co-linearity and co-planarity
properties of the scene. The texture is then extracted from the images to
obtain a realistic virtual environment.

The 3D model is a Euclidean reconstruction of the scene. As such, it may
be translated and rotated for visualization and many models can be joined
into a single representation of the environment.

As in other methods [50, 79], the reconstruction algorithm presented here
works in structured environments, in which three orthogonal directions, “x”,
“y” and “z” shape the scene. The operator specifies in an image the location
of 3D points of interest and indicates properties of alignment and planarity.
In this section, we present a method based on [42].

In all, the information specified by the operator consists of:

– Image points corresponding to 3D points that will be reconstructed,
usually on edges of the floor and of walls.

– Indications of “x−”, “y−” and “z =constant” planes as and of alignments
of points along the x, y and z directions. This typically includes the floor
and vertical walls.

– Indications of points that form 3D surfaces that should be visualized
as such.



258 J. Gaspar et al.

The remainder of this section shows how to obtain a 3D reconstruction from
this information.

Using Back-projection to form Perspective Images

In this section, we derive a transformation, applicable to single projection
centre omnidirectional cameras that obtain images as if acquired by perspec-
tive projection cameras. This is interesting as it provides a way to utilize
methodologies for perspective cameras directly with omnidirectional cameras.
In particular, the interactive scene reconstruction method (described in the
following sections) follows this approach of using omnidirectional cameras
transformed to perspective cameras.

The acquisition of correct perspective images, independent of the scenario,
requires that the vision sensor be characterised by a single projection centre
[2]. The unified projection model has, by definition, this property but, due to
the intermediate mapping over the sphere, the obtained images are in general
not perspective.

In order to obtain correct perspective images, the spherical projection
must be first reversed from the image plane to the sphere surface and then,
re-projected to the desired plane from the sphere centre. We term this reverse
projection back-projection.

The back-projection of an image pixel (u, v), obtained through spherical
projection, yields a 3D direction k · (x, y, z) given by the following equations
derived from Eq. (1):

a = (l + m), b = (u2 + v2)
[

x
y

]
=

la − sign(a)
√

a2 + (1 − l2)b
a2 + b

[
u
v

]
(25)

z = ±
√

1 − x2 − y2

where z is negative if |a| /l >
√

b, and positive otherwise. It is assumed,
without loss of generality, that (x, y, z) is lying on the surface of the unit
sphere. Figure 17 illustrates the back-projection. Given an omnidirectional
image we use back-projection to map image points to the surface of a sphere
centred at the camera viewpoint10.

At this point, it is worth noting that the set M = {P : P = (x, y, z)} inter-
preted as points of the projective plane, already define a perspective image.
By rotating and scaling the set M one obtains specific viewing directions and

10 The omnidirectional camera utilized here is based on a spherical mirror and there-
fore does not have a single projection centre. However, as the scene depth is large
as compared to the sensor size, the sensor approximates a single projection cen-
tre system (details in [33]). Hence it is possible to find the parameters of the
corresponding unified projection model system and use Eq. (25).



Toward Robot Perception through Omnidirectional Vision 259

Fig. 17. (Top) original omnidirectional image and back-projection to a spherical
surface centred at the camera viewpoint. (Below) Examples of perspective images
obtained from the omnidirectional image

focal lengths. Denoting the transformation of coordinates from the omnidirec-
tional camera to a desired (rotated) perspective camera by R then the new
perspective image {p : p = (u, v, 1)} becomes:

p = λKRP (26)

where K contains intrinsic parameters and λ is a scaling factor. This is the
pin-hole camera projection model [25], when the origin of the coordinates is
the camera centre.

Figure 17 shows some examples of perspective images obtained from the
omnidirectional image. The perspective images illustrate the selection of the
viewing direction.

Aligning the Data with the Reference Frame

In the reconstruction algorithm we use the normalised perspective projection
model [25], by choosing K = I3×3 in Eqs. (25) and (26):

p = λRP (27)

in which p = [u v 1]T is the image point, in homogeneous coordinates and
P = [x y z]T is the 3D point. The rotation matrix R is chosen to align the
camera frame with the reference (world) frame. Since the z axis is vertical,
the matrix R takes the form:

R =

⎡

⎣
cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎤

⎦ , (28)



260 J. Gaspar et al.

where θ is the angle formed by the x axis of the camera and that of the world
coordinate system. This angle will be determined from the vanishing points
[14] of these directions.

A vanishing point is the intersection in the image of the projections of
parallel 3D lines. If one has the images of two or more lines parallel to a given
3D direction, it is possible to determine its vanishing point [79].

In our case, information provided by the operator allows for the determi-
nation of alignments of points along the x and y directions. It is thus possible
to compute the vanishing points of these directions and, from there, the angle
θ between the camera and world coordinate systems.

Reconstruction Algorithm

Having determined the projection matrix R in Eq. (27), we proceed to esti-
mate the position of the 3D points P . This will be done by using the image
points p to linearly constrain the unknown quantities.

From the projection equation, one has p×RP = 03, which is equivalently
written

SpRP = 03, (29)

where Sp is the Rodrigues matrix associated with the cross product with
vector p.

Writing this equation for each of the N unknown 3D points gives the linear
system: ⎡

⎢⎢⎢⎣

Sp1R
Sp2R

. . .
SpN

R

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

P1

P2

...
PN

⎤

⎥⎥⎥⎦ = A.P = 03N . (30)

where A is block diagonal and P contains the 3N coordinates that we wish
to estimate:

Since only two equations from the set defined by Eq. (29) are independent,
the co-rank of A is equal to the number of points N . The indeterminacy in
this system of equations corresponds to the unknown depth at which each
points lies, relatively to the camera.

This indeterminacy is removed by the planarity and alignment information
given by the operator. For example, when two points belong to a z = constant
plane, their z coordinates are necessarily equal and there is thus a single
unknown quantity, rather than two. Equation (30) is modified to take this
information into account by replacing the columns of A (resp. rows of P)
corresponding to the two unknown z coordinates by a single column (resp.
row) that is the sum of the two. Alignment information likewise states the
equality of two pairs of unknowns.

Each item of geometric information provided by the user is used to trans-
form the linear system in Equation (30) into a smaller system involving only
distinct quantities:



Toward Robot Perception through Omnidirectional Vision 261

A′P ′ = 03N . (31)

This system is solved in the total least-squares [39] sense by assigning to
P ′ the singular vector of A′ corresponding to the smallest singular value. The
original vector of coordinates P is obtained from P ′ by performing the inverse
of the operations that led from Eq. (30) to Eq. (31).

The reconstruction algorithm is easily extended to the case of multiple
cameras. The orientation of the cameras is estimated from vanishing points
as above and the projection model becomes:

p = λ(RP − Rt) (32)

where t is the position of the camera. It is zero for the first camera and is one
of t1 . . . tj if j additional cameras are present.

Considering for example that there are two additional cameras and follow-
ing the same procedure as for a single image, similar A and P are defined for
each camera. The problem has six new degrees of freedom corresponding to
the two unknown translations t1 and t2:

⎡

⎣
A1

A2 −A2.12

A3 −A3.13

⎤

⎦

⎡

⎢⎢⎢⎢⎣

P1

P2

P3

t1
t2

⎤

⎥⎥⎥⎥⎦
= 0 (33)

where 12 and 13 are matrices to stack the blocks of A2 and A3.
As before co-linearity and co-planarity information is used to obtain a

reduced system. Note that columns corresponding to different images may be
combined, for example if a 3D point is tracked or if a line or plane spans
multiple images. The reduced system is solved in the total least-squares sense
and the 3D points P are retrieved as in the single-view case. The detailed
reconstruction method is given in [42].

Results

Our reconstruction method provides estimates of 3D points in the scene. In
order to visualise these estimates, facets are added to connect some of the 3D
points, as indicated by the user. Texture is extracted from the omnidirectional
images and a complete textured 3D model is obtained.

Figure 18 shows an omnidirectional image and the superposed user input.
This input consists of the 16 points shown, knowledge that sets of points
belong to constant x, y or z planes and that other sets belong to lines parallel
to the x, y or z axes. The table on the side of the images shows all the
user-defined data. Planes orthogonal to the x and y axes are in light gray
and white respectively, and one horizontal plane is shown in dark gray (the
topmost horizontal plane is not shown as it would occlude the other planes).



262 J. Gaspar et al.

Fig. 18. Interactive modelling based on co-planarity and co-linearity properties
using a single omnidirectional image. (Top) Original image with superposed points
and lines localised by the user. Planes orthogonal to the x, y and z axis are shown in
light gray, white, and dark gray respectively. (Table) The numbers are the indexes
shown on the image. (Below) Reconstruction result and view of the textured mapped
3D model

Figure 18 shows the resulting texture-mapped reconstruction. This result
shows the effectiveness of omnidirectional imaging to visualize the immediate
vicinity of the sensor. It is interesting to note that just a few omnidirectional
images are sufficient for building the 3D model (the example shown utilized a
single image), as opposed to a larger number of “normal” images that would
be required to reconstruct the same scene [50, 79].

4.2 Human Robot Interface based on 3D World Models

Now that we have the 3D scene model, we can build the Human Robot inter-
face. In addition to the local headings or poses, the 3D model allows us to spec-
ify complete missions. The human operator selects the start and end locations
in the model, and can indicate points of interest for the robot to undertake
specific tasks. See Fig. 19.

Given that the targets are specified on interactive models, i.e. models built
and used on the user side, they need to be translated as tasks that the robot
understands. The translation depends on the local world models and navi-
gation sequences the robot has in its database. Most of the world that the
robot knows is in the form of a topological map. In this case the targets are
images that the robot has in its image database. The images used to build



Toward Robot Perception through Omnidirectional Vision 263

Fig. 19. Tele-operation interface based on 3D models: (top) tele-operator view,
(middle) robot view and (bottom) world view

the interactive model are nodes of the topological map. Thus, a fraction of a
distance on an interactive model is translated as the same fraction on a link
of the topological map.

At some points there are precise navigation requirements. Many of these
points are identified in the topological map and will be invoked automatically
when travelling between nodes. Therefore, many of the Visual Path Following
tasks performed do not need to be explicitly defined by the user. However,
should the user desires, he may add new Visual Path Following tasks. In that
case, the user chooses landmarks, navigates in the interactive model and then
asks the robot to follow the same trajectory.

Interactive modelling offers a simple procedure for building a 3D model
of the scene where a vehicle may operate. Even though the models do not
contain very fine details, they can provide the remote user of the robot with
a sufficiently rich description of the environment. The user can instruct the
robot to move to desired position, simply by manipulating the model to reach
the desired view point. Such simple scene models can be transmitted even
with low bandwidth connections.

5 Conclusion

The challenge of developing perception as a key competence of vision-based
mobile robots is of fundamental importance to their successful application in
the real world. Vision provides information on world structure and compares
favourably with other sensors due to the large amount of rich data available.



264 J. Gaspar et al.

In terms of perception, omnidirectional vision has the additional advantage of
providing output views (images) with simple geometries. Our sensors output
Panoramic and Bird’s Eye views that are images as obtained by cylindrical
retinas or pin-hole cameras imaging the ground plane. Panoramic and Bird’s
Eye views are useful for navigation, namely for servoing tasks, as they make
localisation a simple 2D rigid transformation estimation problem. Successful
completion of the door crossing experiment, for example, relied on the tracking
of features surrounding the sensor. Such experiments are not possible with
limited field of view (conventional) cameras. Even cameras equipped with pan-
and-tilt mounting would be unable to perform the many separate landmark
trackings shown in our experiments.

Designing navigation modalities for the task at hand is easier and more
effective when compared to designing a single complex navigation mode [8].
Therefore, in this work, emphasis was placed on building appropriate repre-
sentations rather than always relying upon highly accurate information about
the environment. The decision to use this representation was partly inspired
by the way in which humans and animals model spatial knowledge. Our com-
bined navigation modalities, Visual Path Following and Topological Naviga-
tion, constituted an effective approach to tasks containing both short paths
to follow with high precision and long paths to follow qualitatively.

Interactive Scene Reconstruction was shown to be an effective method
of obtaining 3D scene models, as compared to conventional reconstruction
methods. For example, the model of the corridor corner, in Sect.4, was built
from a single image. This constitutes a very difficult task for automatic recon-
struction due to the low texture. These 3D models formed the basis for the
human-robot interface. Unlike many other works, a unique feature of this rep-
resentation was that the user could specify a given destination, at a certain
orientation, simply by rotating the 3D model.

When considering the system as a whole, (i) our approach to visual percep-
tion was found to be useful and convenient because it provided world-structure
information for navigation, tailored to the task at hand, (ii) the navigation
modalities fulfilled the purpose of semi-autonomous navigation by providing
autonomy while naturally combining with the human-robot interface, (iii) the
human-robot interface provided intuitive way to set high level tasks, by com-
bining limited user input with the simple output of the sensor (images).

In the future, omnidirectional vision will certainly have many develop-
ments. Many current catadioptric setups assume a rigid mounting of the
mirror on the camera. Pan-tilt-zoom cameras have been demonstrated to
be convenient for surveillance tasks, because of providing a large (virtual)
field-of-view while having good resolution when zooming at regions of interest
[75]. Adding convex mirrors will allow enlarging the field-of-view and achiev-
ing faster pan-tilt motions, obtaining the so termed active omnidirectional
camera. Networking cameras poses new calibration challenges resulting from
the mixture of various camera types, the overlapping (or not) of the fields-
of-view, the different requirements of calibration quality (many times can be



Toward Robot Perception through Omnidirectional Vision 265

reduced just to a topological connection between cameras) and the type of
calibration data used (as simple as static background or as dynamic as people
moving) [76].

As suggested by the title, we believe there is a large amount of work still to
be done before we have a full and true understanding of perception. We believe
that key challenges can be addressed by building artificial vision systems. In
the future our understanding of perception will allow for robots with visual
perception systems, robust enough to cope with new and novel environments.
Then, as happened with computers, almost every person will have their very
own robot, or what we may term the personal service robot.

References

1. S. Baker and S. K. Nayar, A theory of catadioptric image formation, Proc. Int.
Conf. Computer Vision (ICCV’97), January 1998, pp. 35–42.

2. A theory of single-viewpoint catadioptric image formation, International Journal
of Computer Vision 35 (1999), no. 2, 175–196.

3. R. Benosman and S. B. Kang (eds.), Panoramic vision, Springer Verlag, 2001.
4. M. Betke and L. Gurvits, Mobile robot localization using landmarks, IEEE Trans.

on Robotics and Automation 13 (1997), no. 2, 251–263.
5. J. Borenstein, H. R. Everett, and Liqiang Feng, Navigating mobile robots: Sen-

sors and techniques, A. K. Peters, Ltd., Wellesley, MA, 1996 (also: Where am I?
Systems and Methods for Mobile Robot Positioning, ftp://ftp.eecs.umich.
edu/people/johannb/pos96rep.pdf).

6. G. Borgefors, Hierarchical chamfer matching: A parametric edge matching algo-
rithm, IEEE Transactions on Pattern Analysis and Machine Intelligence 10
(1988), no. 6, 849–865.

7. R. Brooks, Visual map making for a mobile robot, Proc. IEEE Conf. on Robotics
and Automation, 1985.

8. R. A. Brooks, A robust layered control system for a mobile robot, IEEE Trans-
actions on Robotics and Automation 2 (1986), 14–23.

9. A. Bruckstein and T. Richardson, Omniview cameras with curved surface mir-
rors, Proceedings of the IEEE Workshop on Omnidirectional Vision at CVPR
2000, June 2000, First published in 1996 as a Bell Labs Technical Memo,
pp. 79–86.

10. D. Burschka, J. Geiman, and G. Hager, Optimal landmark configuration for
vision-based control of mobile robots, Proc. IEEE Int. Conf. on Robotics and
Automation, 2003, pp. 3917–3922.

11. Z. L. Cao, S. J. Oh, and E.L. Hall, Dynamic omni-directional vision for mobile
robots, Journal of Robotic Systems 3 (1986), no. 1, 5–17.

12. J. S. Chahl and M. V. Srinivasan, Reflective surfaces for panoramic imaging,
Applied Optics 36 (1997), no. 31, 8275–8285.

13. P. Chang and M. Herbert, Omni-directional structure from motion, Proceed-
ings of the 1st International IEEE Workshop on Omni-directional Vision
(OMNIVIS’00) at CVPR 2000, June 2000.

14. R. Collins and R. Weiss, Vanishing point calculation as a statistical inference
on the unit sphere, Int. Conf. on Computer Vision (ICCV), 1990, pp. 400–403.



266 J. Gaspar et al.

15. T. Conroy and J. Moore, Resolution invariant surfaces for panoramic vision
systems, IEEE ICCV’99, 1999, pp. 392–397.

16. Olivier Cuisenaire, Distance transformations: Fast algorithms and applications
to medical image processing, Ph.D. thesis, U. Catholique de Louvain, October
1999.

17. K. Daniilidis (ed.), 1st international ieee workshop on omnidirectional vision at
cvpr 2000, June 2000.

18. ——, Page of omnidirectional vision hosted by the grasp laboratory, http://www.
cis.upenn.edu/∼kostas/omni.html, 2005.

19. P. David, D. DeMenthon, and R. Duraiswami, Simultaneous pose and correspon-
dence determination using line features, Proc. IEEE Conf. Comp. Vision Patt.
Recog., 2003.

20. A. Davison, Real-time simultaneous localisation and mapping with a single cam-
era, IEEE Int. Conf. on Computer Vision, 2003, pp. 1403–1410 vol. 2.

21. C. Canudas de Wit, H. Khennouf, C. Samson, and O. J. Sordalen, Chap.5:
Nonlinear control design for mobile robots, Nonlinear control for mobile robots
(Yuan F. Zheng, ed.), World Scientific series in Robotics and Intelligent Sys-
tems, 1993.

22. P. E. Debevec, C. J. Taylor, and J. Malik, Modeling and rendering architecture
from photographs: a hybrid geometry and image-based approach, SIGGRAPH,
1996.

23. S. Derrien and K. Konolige, Approximating a single viewpoint in panoramic
imaging devices, Proceedings of the 1st International IEEE Workshop on Omni-
directional Vision at CVPR 2000, June 2000, pp. 85–90.

24. G. DeSouza and A. Kak, Vision for mobile robot navigation: A survey, IEEE
Transactions on Pattern Analysis and Machine Intelligence 24 (2002), no. 2,
237–267.

25. O. Faugeras, Three-dimensional computer vision - a geometric viewpoint, MIT
Press, 1993.

26. Mark Fiala, Panoramic computer vision, Ph.D. thesis, University of Alberta,
2002.

27. S. Fleck, F. Busch, P. Biber, H. Andreasson, and W. Straber, Omnidirectional 3d
modeling on a mobile robot using graph cuts, Proc. IEEE Int. Conf. on Robotics
and Automation, 2005, pp. 1760–1766.

28. J. Foote and D. Kimber, Flycam: Practical panoramic video and automatic cam-
era control, Proc. of the IEEE Int. Conference on Multimedia and Expo, vol. III,
August 2000, pp. 1419–1422.

29. S. Gaechter and T. Pajdla, Mirror design for an omnidirectional cam-
era with a uniform cylindrical projection when using svavisca sensor, Tech.
report, Czech Tech. Univ. - Faculty of Electrical Eng. ftp://cmp.felk.cvut.cz/
pub/cmp/articles/pajdla/Gaechter-TR-2001-03.pdf, March 2001.

30. S. Gaechter, T. Pajdla, and B. Micusik, Mirror design for an omnidirectional
camera with a space variant imager, IEEE Workshop on Omnidirectional Vision
Applied to Robotic Orientation and Nondestructive Testing, August 2001,
pp. 99–105.

31. J. Gaspar, Omnidirectional vision for mobile robot navigation, Ph.D. thesis,
Instituto Superior Técnico, Dept. Electrical Engineering, Lisbon - Portugal,
2003.



Toward Robot Perception through Omnidirectional Vision 267

32. J. Gaspar, C. Deccó, J. Okamoto Jr, and J. Santos-Victor, Constant resolution
omnidirectional cameras, 3rd International IEEE Workshop on Omni-directional
Vision at ECCV, 2002, pp. 27–34.

33. J. Gaspar, E. Grossmann, and J. Santos-Victor, Interactive reconstruction from
an omnidirectional image, 9th International Symposium on Intelligent Robotic
Systems (SIRS’01), July 2001.

34. J. Gaspar and J. Santos-Victor, Visual path following with a catadiop-
tric panoramic camera, Int. Symp. Intelligent Robotic Systems, July 1999,
pp. 139–147.

35. J. Gaspar, N. Winters, and J. Santos-Victor, Vision-based navigation and envi-
ronmental representations with an omni-directional camera, IEEE Transactions
on Robotics and Automation 16 (2000), no. 6, 890–898.

36. D. Gavrila and V. Philomin, Real-time object detection for smart vehicles, IEEE,
Int. Conf. on Computer Vision (ICCV), 1999, pp. 87–93.

37. C. Geyer and K. Daniilidis, A unifying theory for central panoramic systems and
practical applications, ECCV 2000, June 2000, pp. 445–461.

38. ——, Catadioptric projective geometry, International Journal of Computer
Vision 43 (2001), 223–243.

39. Gene H. Golub and Charles F. Van Loan, Matrix computations, third ed., Johns
Hopkins Studies in the Mathematical Sciences, The Johns Hopkins University
Press, 1996. MR 1 417 720.

40. P. Greguss, Panoramic imaging block for 3d space, US patent 4,566,763, January
1986, Hungarian Patent granted in 1983.

41. P. Greguss (ed.), Ieee icar 2001 workshop on omnidirectional vision applied to
robotic orientation and non-destructive testing, August 2001.

42. E. Grossmann, D. Ortin, and J. Santos-Victor, Algebraic aspects of recon-
struction of structured scenes from one or more views, British Machine Vision
Conference, BMVC2001, September 2001, pp. 633–642.

43. Etienne Grossmann, Maximum likelihood 3d reconstruction from one or more
uncalibrated views under geometric constraints, Ph.D. thesis, Instituto Superior
Técnico, Dept. Electrical Engineering, Lisbon–Portugal, 2002.

44. E. Hecht and A. Zajac, Optics, Addison Wesley, 1974.
45. R. Hicks, The page of catadioptric sensor design, http://www.math.drexel.

edu/∼ahicks/design/, 2004.
46. R. Hicks and R. Bajcsy, Catadioptric sensors that approximate wide-angle

perspective projections, Proceedings of the Computer Vision and Pattern Recog-
nition Conference (CVPR’00), June 2000, pp. 545–551.

47. A. Howard, M.J. Mataric, and G. Sukhatme, Putting the ‘i’ in ‘team’: an ego-
centric approach to cooperative localization, IEEE Int. Conf. on Robotics and
Automation, 2003.

48. D. Huttenlocher, G. Klanderman, and W. Rucklidge, Comparing images using
the hausdorff distance, IEEE Transactions on Pattern Analysis and Machine
Intelligence 15 (1993), no. 9, 850–863.

49. D. Huttenlocher, R. Lilien, and C. Olsen, View-based recognition using an
eigenspace approximation to the hausdorff measure, IEEE Transactions on
Pattern Analysis and Machine Intelligence 21 (1999), no. 9, 951–956.

50. S. B. Kang and R. Szeliski, 3d scene data recovery using omnidirectional multi-
baseline stereo, CVPR, 1996, pp. 364–370.



268 J. Gaspar et al.

51. N. Karlsson, E. Di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and
M. Munich, The vslam algorithm for robust localization and mapping, Proc.
IEEE Int. Conf. on Robotics and Automation, 2005, pp. 24–29.

52. A. Kosaka and A. Kak, Fast vision-guided mobile robot navigation using model-
based reasoning and prediction of uncertainties, CVGIP: Image Understanding
56 (1992), no. 3, 271–329.

53. J. J. Leonard and H. F. Durrant-Whyte, Mobile robot localization by tracking
geometric beacons, IEEE Trans. on Robotics and Automation 7 (1991), no. 3,
376–382.

54. R. Lerner, E. Rivlin, and I. Shimshoni, Landmark selection for task-oriented
navigation, Proc. Int. Conf. on Intelligent Robots and Systems, 2006,
pp. 2785–2791.

55. LIRA-Lab, Document on specification, Tech. report, Esprit Project n. 31951–
SVAVISCA - available at http://www.lira.dist.unige.it - SVAVISCA–
GIOTTO Home Page, May 1999.

56. A. Majumder, W. Seales, G. Meenakshisundaram, and H. Fuchs, Immersive tele-
conferencing: A new algorithm to generate seamless panoramic video imagery,
Proceedings of the 7th ACM Conference on Multimedia, 1999.

57. D. Marr, Vision, W.H. Freeman, 1982.
58. B. McBride, Panoramic cameras time line, http://panphoto.com/TimeLine.

html.
59. B. Micusik and T. Pajdla, Structure from motion with wide circular field of

view cameras, IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) 28 (2006), no. 7, 1135–1149.

60. K. Miyamoto, Fish-eye lens, Journal of the Optical Society of America 54
(1964), no. 8, 1060–1061.

61. L. Montesano, J. Gaspar, J. Santos-Victor, and L. Montano, Cooperative local-
ization by fusing vision-based bearing measurements and motion, Int. Conf. on
Intelligent Robotics and Systems, 2005, pp. 2333–2338.

62. H. Murase and S. K. Nayar, Visual learning and recognition of 3d objects from
appearance, International Journal of Computer Vision 14 (1995), no. 1, 5–24.

63. V. Nalwa, A true omni-directional viewer, Technical report, Bell Laboratories,
February 1996.

64. S. K. Nayar, Catadioptric image formation, Proc. of the DARPA Image Under-
standing Workshop, May 1997, pp. 1431–1437.

65. ——, Catadioptric omnidirectional camera, Proc. IEEE Conf. Computer Vision
and Pattern Recognition, June 1997, pp. 482–488.

66. S. K. Nayar and V. Peri, Folded catadioptric cameras, Proceedings of the IEEE
Computer Vision and Pattern Recognition Conference, June 1999.

67. E. Oja, Subspace methods for pattern recognition, Research Studies Press, 1983.
68. M. Ollis, H. Herman, and S. Singh, Analysis and design of panoramic stereo

using equi-angular pixel cameras, Tech. report, Carnegie Mellon University
Robotics Institute, TR CMU-RI-TR-99-04, 1999, comes from web.

69. T. Pajdla and V. Hlavac, Zero phase representation of panoramic images for
image based localization, 8th Inter. Conf. on Computer Analysis of Images and
Patterns CAIP’99, 1999.

70. V. Peri and S. K. Nayar, Generation of perspective and panoramic video from
omnidirectional video, Proc. DARPA Image Understanding Workshop, 1997,
pp. 243–246.



Toward Robot Perception through Omnidirectional Vision 269

71. R. Pless, Using many cameras as one, Proc CVPR, 2003, pp. II: 587–593.
72. D. Rees, Panoramic television viewing system, us patent 3 505 465, postscript

file, April 1970.
73. W. Rucklidge, Efficient visual recognition using the hausdorff distance, Lecture

Notes in Computer Science, vol. 1173, Springer-Verlag, 1996.
74. J. Shi and C. Tomasi, Good features to track, Proc. of the IEEE Int. Conference

on Computer Vision and Pattern Recognition, June 1994, pp. 593–600.
75. S. Sinha and M. Pollefeys, Towards calibrating a pan-tilt-zoom camera network,

OMNIVIS’04, workshop on Omnidirectional Vision and Camera Networks (held
with ECCV 2004), 2004.

76. S.N. Sinha and M. Pollefeys, Synchronization and calibration of camera networks
from silhouettes, International Conference on Pattern Recognition (ICPR’04),
vol. 1, 23–26 Aug. 2004, pp. 116–119 Vol. 1.

77. T. Sogo, H. Ishiguro, and M. Treivedi, Real-time target localization and track-
ing by n-ocular stereo, Proceedings of the 1st International IEEE Workshop on
Omni-directional Vision (OMNIVIS’00) at CVPR 2000, June 2000.

78. M. Spetsakis and J. Aloimonos, Structure from motion using line correspon-
dences, International Journal of Computer Vision 4 (1990), no. 3, 171–183.

79. P. Sturm, A method for 3d reconstruction of piecewise planar objects from single
panoramic images, 1st International IEEE Workshop on Omnidirectional Vision
at CVPR, 2000, pp. 119–126.

80. P. Sturm and S. Ramalingam, A generic concept for camera calibration, Proceed-
ings of the European Conference on Computer Vision, Prague, Czech Republic,
vol. 2, Springer, May 2004, pp. 1–13.

81. W. Sturzl, H. Dahmen, and H. Mallot, The quality of catadioptric imaging -
application to omnidirectional stereo, European Conference on Computer Vision,
2004, pp. LNCS 3021:614–627.

82. T. Svoboda, T. Pajdla, and V. Hlaváč, Epipolar geometry for panoramic cam-
eras, Proc. European Conf. Computer Vision, July 1998, pp. 218–231.

83. R. Talluri and J. K. Aggarwal, Mobile robot self-location using model-image
feature correspondence, IEEE Transactions on Robotics and Automation 12
(1996), no. 1, 63–77.

84. G. Thomas, Real-time panospheric image dewarping and presentation for remote
mobile robot control, Journal of Advanced Robotics 17 (2003), no. 4, 359–368.

85. S. Thrun and A. Bucken, Integrating grid-based and topological maps for mobile
robot navigation, Proceedings of the 13th National Conference on Artifical Intel-
ligence (AAAI’96), 1996.

86. S. Watanabe, Karhunen-loève expansion and factor analysis, Transactions of the
4th Prague Conference on Information Theory, Statistical Decision Functions
and Random Processes, 1965, pp. 635–660.

87. R. Wehner and S. Wehner, Insect navigation: use of maps or ariadne’s thread?,
Ethology, Ecology, Evolution 2 (1990), 27–48.

88. N. Winters, A holistic approach to mobile robot navigation using omnidirectional
vision, Ph.D. thesis, University of Dublin, Trinity College, 2002.

89. N. Winters, J. Gaspar, G. Lacey, and J. Santos-Victor, Omni-directional vision
for robot navigation, 1st International IEEE Workshop on Omni-directional
Vision at CVPR, 2000, pp. 21–28.

90. N. Winters and J. Santos-Victor, Omni-directional visual navigation, 7th Inter-
national Symposium on Intelligent Robotics Systems (SIRS’99), July 1999,
pp. 109–118.



270 J. Gaspar et al.

91. N. Winters and G. Lacey, Overview of tele-operation for a mobile robot, TMR
Workshop on Computer Vision and Mobile Robots. (CVMR’98), September
1999.

92. N. Winters and J. Santos-Victor, Omni-directional visual navigation, Proc. Int.
Symp. on Intelligent Robotic Systems, July 1999, pp. 109–118.

93. P. Wunsch and G. Hirzinger, Real-time visual tracking of 3-d objects with
dynamic handling of occlusion, IEEE Int. Conf. on Robotics and Automation,
April 1997, pp. 2868–2873.

94. Y. Yagi, Omnidirectional sensing and its applications, IEICE Transactions on
Information and Systems (1999), no. E82-D-3, 568–579.

95. Y. Yagi, Y. Nishizawa, and M. Yachida, Map-based navigation for mobile robot
with omnidirectional image sensor COPIS, IEEE Trans. Robotics and Automa-
tion 11 (1995), no. 5, 634–648.

96. K. Yamazawa, Y. Yagi, and M. Yachida, Obstacle detection with omnidirectional
image sensor hyperomni vision, IEEE ICRA, 1995, pp. 1062–1067.

97. J. Zheng and S. Tsuji, Panoramic representation for route recognition by a
mobile robot, International Journal of Computer Vision 9 (1992), no. 1, 55–76.




