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Summary. Morphological associative memories (MAMs) are based on a lattice
algebra known as minimax algebra. In previous papers, we gained valuable insight
into the storage and recall phases of gray-scale autoassociative memories. This article
extends these results to the heteroassociative and to the fuzzy case in view of the
fact that a gray-scale MAM model can be converted into a fuzzy MAM model that
coincides with the Lukasiewicz IFAM by applying an appropriate threshold. The
article includes experimental results concerning applications of MAM and fuzzy
MAM models in classification and prediction.

8.1 Introduction

A number of recent approaches to neurocomputing are either explicitly or
implicitly rooted in lattice theory [6]. These approaches include fuzzy lattice
neural networks [31], morphological neural networks [34, 35], and fuzzy min-
max neural networks [38, 39]. The morphological associative memory (MAM)
model that we discuss in this article belongs to the class of morphological
neural networks (MNNs).

The mathematical foundations of MNNs can be found in mathematical
morphology [18] which represents a set theoretic approach to image process-
ing. Mathematical morphology (MM) can be conducted very generally in a
complete lattice setting [36]. In mathematical morphology, an operator that
commutes with the lattice operation “meet” is called erosion and an operator
that commutes with the lattice operation “join” is called dilation. An ero-
sion can be formulated in terms of an inclusion measure and a dilation can
be constructed from a given erosion via a relationship of duality. A fuzzifi-
cation of an inclusion measure can be used to formulate a fuzzy erosion in
the complete lattice [0, 1]n and a fuzzy dilation arises as the dual of fuzzy
erosion. Other operators of mathematical morphology include anti-dilation,
anti-erosion, opening and closing. The four morphological operators dilation,
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erosion, anti-dilation, and anti-erosion can be considered to be the elementary
operators of mathematical morphology [4, 5].

In the context of artificial neural networks, we speak of a MNN if the first
step in computing the next state of a neuron is given by one of the four ele-
mentary morphological operators. A MNN whose neurons perform operations
in the fuzzy domain is called a fuzzy MNN. Applications of morphological
and hybrid morphological/linear neural nets include automatic target recog-
nition, land mine detection, handwritten character recognition, and prediction
of financial markets [2, 15, 21, 22, 30].

The morphological associative memory model represents one of the first
MNN models that appeared in the literature [35]. B. Raducanu, M. Graña
et al. have applied this type of MNN to the problems of face-localization, self-
localization, and hyperspectral image analysis [16, 17, 32]. Although initial
research efforts have focused on the binary autoassociative case, the MAM
model was proposed from the outset as a heteroassociative memory model for
the storage and the recall of real-valued patterns and a number of notable
features of autoassociative morphological memories (AMMs) such as optimal
absolute storage capacity and one-step convergence have been shown to hold in
the general case for real-valued patterns [35]. More importantly, these results
remain valid for integer-valued patterns since MAMs can be applied in this
setting without any roundoff errors.

In a recent paper, we presented a thorough analysis of gray-scale AMMs
[43]. Specifically, we described the fixed points and the basins of attraction
of real- and integer-valued AMMs. We also introduced a modified gray-scale
AMM model that produces as an output a fixed point which is closest to the
input pattern with respect to the Chebyshev distance. This article generalizes
some of these results to include the heteroassociative case. In particular, we
obtain a theorem that characterizes the output of a MAM for every input
pattern. Furthermore, we show that a slightly modified version of this theo-
rem describes the output patterns of a certain fuzzy morphological associa-
tive memory (FMAM). We construct this fuzzy model from the MAM model
by applying appropriate thresholds and we point out that the new FMAM
represents a special case of an implicative fuzzy associative memory (IFAM)
[44, 45]. Finally, we undermine our theoretical results by applying the MAM
and FMAM models to problems in classification and prediction.

8.2 Some Background Information on Lattice Theory,
Mathematical Morphology, and Minimax Algebra

In contrast to traditional semi-linear neural network models, morphological
neural networks perform the morphological operations of erosion or dilation at
every node. Alternatively, we can describe the operations that are performed
in each layer of a morphological neural network in terms of matrix products in
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minimax algebra. Minimax algebra is a lattice algebra which originated from
problems in operations research and machine scheduling [13, 14].

Lattice theory is concerned with algebraic structures that arise by impos-
ing some type of ordering on a set [6, 18, 36]. A partially ordered X is called a
lattice if and only if there exists an infimum and a supremum for every finite
subset of X. The infimum of Y ⊆ X is denoted by the symbol

∧
Y . Alterna-

tively, we write
∧

j∈J yj instead of
∧

Y if Y = {yj : j ∈ J} for some index
set J . Similar notations are used to denote the supremum of Y . We speak of
a complete lattice X if every (finite or infinite) subset has an infimum and a
supremum in X. From now on, we denote complete lattices by the symbols L

and M.
The elementary operations of mathematical morphology are erosion, dila-

tion, anti-dilation, and anti-erosion [5]. In the general complete lattice setting,
an erosion is an operator ε : L → M that commutes with the infimum opera-
tion [18, 37]. In other words, the operator ε represents an erosion if and only
if the following equality holds for every subset Y ⊆ L:

ε(
∧

Y ) =
∧

y∈Y

ε(y) . (8.1)

Similarly, an operator δ : L → M that commutes with the supremum
operation is called a dilation. In other words, the operator δ represents a
dilation if and only if the following equality holds for every subset Y ⊆ L:

δ(
∨

Y ) =
∨

y∈Y

δ(y) . (8.2)

Apart from erosions and dilations, we will also consider the elementary
operators anti-erosion and anti-dilation that are defined as follows [5, 18]. An
operator ε̄ is called an anti-erosion if and only if (8.3) holds for every Y ⊆ L

and an operator δ̄ is called a anti-dilation if and only if (8.4) holds for every
subset Y ⊆ L.

ε̄(
∧

Y ) =
∨

y∈Y

ε̄(y) , (8.3)

δ̄(
∨

Y ) =
∧

y∈Y

δ̄(y) . (8.4)

Erosions, dilations, anti-erosions, and anti-dilations exemplify the concept of
morphological operator, i.e., an operator that arises in the context of math-
ematical morphology [18]. Banon and Barrera showed that every mapping f
between complete lattices L and M can be represented either as the supre-
mum of pair-wise infimums of erosions and anti-dilations or as the infimum of
pair-wise supremums of dilations and anti-erosions [5].

In minimax algebra, we define certain algebraic structures called belts and
blogs (“bounded lattice ordered groups”). The set of extended real numbers
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R±∞ = R ∪ {+∞} ∪ {−∞}, exemplifies a belt as well as a blog. Specif-
ically, we have that (R±∞,∨,+) and (R±∞,∧,+′) represent belts and that
(R±∞,∨,∧,+,+′) represents a blog. The operations “+” and “+′” act like the
usual sum operation and are identical on R±∞ with the following exceptions:

(−∞) + (+∞) = (+∞) + (−∞) = −∞ , (8.5)
(−∞) +′ (+∞) = (+∞) +′ (−∞) = +∞ . (8.6)

If (E,⊕,⊗) and (F,⊕′,⊗′) are belts then a belt homomorphism is a function
f : E → F that is compatible with the operations. We refer to f as a belt
isomorphism if f is bijective. In this article, we employ the belt isomorphism
of conjugation, denoted by a “*” symbol, between the belts (R±∞,∨,+) and
(R±∞,∧,+′). This isomorphism is given as follows.

x∗ =

⎧
⎪⎨

⎪⎩

−x if x ∈ R ,

−∞ if x = +∞ ,

+∞ if x = −∞ .

(8.7)

We say that (R±∞,∨,+) is the conjugate of (R±∞,∧,+′) or simply that the
blog (R±∞,∨,∧,+,+′) is self-conjugate. Note that (Z±∞,∨,∧,+,+′) also
represents a self-conjugate blog.

A matrix A ∈ R
m×n
±∞ corresponds to a conjugate matrix A∗ ∈ R

n×m
±∞ . Each

entry a∗
ij = [A∗]ij of A∗ is given by

a∗
ij = (aji)∗ . (8.8)

Obviously, (A∗)∗ = A for all A ∈ R
m×n
±∞ , and thus the isomorphism of conju-

gation R
m×n
±∞ → R

n×m
±∞ is involutive. We say that a matrix A ∈ R

m×n
±∞ is finite

if every row vector and every column vector has at least one finite entry. In
particular, a vector x ∈ R

n
±∞ is finite if and only if x ∈ R

n.
The maximum and the minimum of two matrices are performed element-

wise. For matrices A,B ∈ R
m×n
±∞ , we have,

(A ∨B)∗ = A∗ ∧B∗ and (A ∧B)∗ = A∗ ∨B∗ . (8.9)

There are two types of matrix products with entries in R±∞. For an m×p
matrix A and a p×n matrix B with entries from R±∞, the matrix C = A ∨� B,
also called the max product of A and B, and the matrix D = A ∧� B, also called
the min product of A and B, are defined by

cij =
p∨

k=1

(aik + bkj) and dij =
p∧

k=1

(aik +′ bkj) . (8.10)

Suppose that A is an arbitrary matrix in R
m×n
±∞ . Consider operators εA and

δA such that εA(x) = A ∧� x and δA(x) = A ∨� x. Note that εA and δA associate
elements of the complete lattice R

n
±∞ with elements of the complete lattice
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R
m
±∞. Clearly, we have that εA is an erosion and δA is a dilation. Morphological

associative memories employ erosions and dilations of this form.
For appropriately sized matrices A and B with entries in R±∞, we obtain

the following equalities that will also be useful for describing MAMs.

(A ∨� B)∗ = B∗ ∧� A∗ and (A ∧� B)∗ = B∗ ∨� A∗ . (8.11)

Note that the second halves of (8.9) and (8.11) are the duals of the first
halves. As another example for this duality relationship, the reader may find a
true statement of minimax algebra as well as the corresponding dual statement
in (8.12) and (8.13) [13]. The matrices A, B, C are assumed to be appropriately
sized.

A ∨� (B ∧ C) ≤ (A ∨� B) ∧ (A ∨� C) ∀A,B,C . (8.12)
A ∧� (B ∨ C) ≥ (A ∧� B) ∨ (A ∧� C) ∀A,B,C . (8.13)

Finally, note that (8.9) and (8.11) imply that every statement in minimax
algebra induces a dual statement which simply arises by replacing each “∧”
symbol with a “∨” symbol and vice versa, and by reversing each inequality.
Taking advantage of this fact, we only need to present primal statements on
MAMs and we may omit the corresponding dual statements.

8.3 A Brief Review of Morphological Associative
Memories

Morphological associative memories (MAM) were originally conceived as
simple matrix memories endowed with recording recipes that are similar
to correlation recording. Suppose that we want to record k vector pairs(
x1,y1

)
, . . . ,

(
xk,yk

)
using a morphological associative memory [35]. Let

X denote the matrix in R
n×k whose column vectors are the vectors xξ ∈ R

n

and let Y denote the matrix in R
m×k whose column vectors are the vectors

yξ ∈ R
m, where ξ = 1, . . . , k. For simplicity, we write X = [x1, . . . ,xk] and

Y = [y1, . . . ,yk]. The first recording scheme consists in constructing an m×n
matrix WXY as follows:

WXY = Y ∧� X∗ . (8.14)

In other words, the entry wij of the matrix WXY is given by the equation

wij =
k∧

ξ=1

(yξ
i − xξ

j) . (8.15)

The second, dual scheme consists in constructing an m × n matrix MXY

of the form MXY = Y ∨� X∗. Note that the identity (WXY )∗ = MY X can be
deduced from (8.14) and (8.11).
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If the matrix WXY receives a vector x as input then the product WXY ∨� x
is formed. Dually, if the matrix MXY receives a vector x as input then the
product MXY ∧� x is formed.

We speak of a binary MAM if X ∈ {0, 1}n×k and Y ∈ {0, 1}m×k. In
the special case that X = Y , we obtain the autoassociative morphological
memories (AMMs) WXX and MXX [43]. If X 	= Y , we have a heteroassociative
morphological associative memory.

From now on, we will focus on the MAM WXY . Results concerning the
dual model MXY can be obtained in a similar fashion by applying the duality
relationship given by (8.9) and (8.11).

Example 8.1

X =

⎛

⎝
0 3 −3 1
8 6 −4 5
6 3 −3 −4

⎞

⎠ , (8.16)

WXX ∨� X = X = MXX ∧� X . (8.17)

Note that although the number of stored patterns exceeds the length of
the patterns in this example, we have perfect recall for undistorted patterns.
We will see in the next section that the absolute storage capacity for autoasso-
ciative morphological memories is unlimited, i.e., as many patterns as desired
can be stored in an AMM with perfect recall.

Example 8.2 Let X be as in Example 8.1 and let Y be as follows.

Y =

⎛

⎜
⎜
⎝

3 3 −1 1
−1 −4 −2 −5
0 1 4 −1
−1 −4 −5 −5

⎞

⎟
⎟
⎠ , (8.18)

WXY ∨� X =

⎛

⎜
⎜
⎝

3 3 −3 1
−1 −4 −10 −5
0 1 −5 −1
−1 −4 −10 −5

⎞

⎟
⎟
⎠ . (8.19)

Note the difference between Y and WXY ∨� X and the fact that Y ≥
WXY ∨� X. Unlike AMMs, heteroassociative morphological memories (HMMs)
are not capable of storing an arbitrary number of patterns.

8.4 Fundamental Results on Gray-scale Autoassociative
Morphological Memories

Autoassociative models represent an important special case for associative
memories [9, 19, 47]. In this section, we review some fundamental results con-
cerning gray-scale autoassociative morphological memories that have recently
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appeared in the literature [43]. We only need to formulate the results for the
AMM WXX since similar results for the dual model MXX can be obtained by
applying the relationship of duality that was discussed at the end of Sect. 8.2.

We begin by providing a powerful theorem that yields a complete char-
acterization of the fixed points and basins of attraction of gray-scale AMMs.
We say that a pattern x ∈ R

n
±∞ is a fixed point of the AMM WXX if and

only if WXX ∨� x = x. Similarly, we say that a pattern x ∈ R
n
±∞ is a fixed

point of the AMM MXX if and only if MXX ∧� x = x. We denote the set of
finite fixed points of WXX using the symbol F (WXX) and we denote the set
of finite fixed points of MXX using the symbol F (MXX).

Theorem 8.1 For X ∈ R
n×k, the sets F (WXX) and F (MXX) coincide. If

F denotes this set then F consists exactly of the following expressions:

n∨

i=1

k∧

ξ=1

(aξ
i + xξ) , where aξ

i ∈ R . (8.20)

Alternatively, the set F can be characterized as the set of all expressions of
the form

r∧

j=1

k∨

ξ=1

(cξ
j + xξ) , where cξ

j ∈ R and r ∈ N . (8.21)

Moreover, given an arbitrary pattern x ∈ R
n, we have

WXX ∨� x = x̂ and MXX ∧� x = x̌ , (8.22)

where x̂ is the supremum of x in F and where x̌ is the infimum of x in F .

Corollary 8.1 If F denotes F (WXX) = F (MXX) where X ∈ R
n×k then we

have

F = {
n∧

j=1

k∨

ξ=1

(cξ
j + xξ) : cξ

j ∈ R } . (8.23)

The proof of Theorem 8.1 involves some theorems on eigenvectors and
eigenvalues in minimax algebra [43]. Another, different proof of the first state-
ment of this theorem was independently presented in [33].

Theorem 8.1 has several important consequences, most notably the unlim-
ited absolute storage capacity and one-step convergence of AMMs. These facts
are formally expressed in the following corollaries.

Corollary 8.2 For all X ∈ R
n×k, the fixed points of WXX include the pat-

terns x1, . . . ,xk.

Corollary 8.3 Let X ∈ R
n×k. The set of finite fixed points of WXX consists

of all WXX ∨� x such that x ∈ R
n. Moreover, if x is attracted to xξ for some

ξ ∈ {1, . . . k} under an application of WXX then x is an eroded version of
xξ, i.e., x ≤ xξ.
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Theorem 8.1 also induces necessary and sufficient conditions for the per-
fect recall of an original pattern xγ [43]. These conditions are formulated in
Theorem 8.2.

Theorem 8.2 Let X ∈ R
n×k and let x ∈ R

n. The equality WXX ∨� x = xγ

holds if and only if x ≤ xγ and there is no “linear combination” l =
∨k

ξ=1(cξ +
xξ) 	= xγ such that x ≤ l ≤ xγ .

Example 8.3 Figure 8.1 depicts four images of size 64 × 64 with 256 gray
levels (these images represent downsized versions of images contained in the
database of the Computer Vision Group, University of Granada, Spain). For
each of these image, we generated a vector xξ of length 4096. We synthe-
sized the weight matrices WXX and MXX = −W t

XX of size 4096 × 4096,
applied them to the original patterns xξ, and we confirmed that perfect recall
was achieved as we had pointed out in Corollary 8.2. We also stored the vec-
tors xξ, ξ = 1, . . . , 4, using the optimal linear associative memory (OLAM)
[23], kernel associative memory (KAM) [47] the generalized BSB model of
Costantini et al. [12], and the complex-valued Hopfield net of Müezzinoǧlu
et al. [28].

Example 8.4 In this experiment, we probed the associative memory models
under consideration with incomplete patterns which arose from leaving away
substantial parts of the original images. The outcome of this experiment is
visualized in Fig. 8.2. Table 8.1 lists the resulting NMSEs produced by the
morphological memory WXX , the OLAM, and the generalized BSB model of
Costantini et al. for each partial image. Since the KAM model performed very
poorly in this experiment, we refrained from displaying the output of the KAM
in Fig. 8.2.

We would like to clarify that we did not conduct this experiment using the
complex-valued Hopfield net for the following reasons. Due to computational
limitations, the complex-valued Hopfield net can only store small segments of
the images. In this experiment, we may have an input segment that contains no
information at all, making it impossible to recover the desired image segment.

Fig. 8.1. Original images that were used in constructing the memories WXX and
MXX . Presenting the corresponding patterns as inputs to either one of WXX or
MXX results in perfect recall



8 Morphological Associative Memories for Classification and Prediction 157

Fig. 8.2. The images in the top row represent severely incomplete versions of orig-
inal face images. The following rows show - from top to bottom - the corresponding
recalled patterns using the morphological memory WXX , the OLAM, and the gen-
eralized BSB model

Table 8.1. NMSEs produced by AM models in applications to incomplete patterns
of Fig. 8.4

AMM WXX OLAM KAM Generalized BSB

Tree 0.0017 0.2302 1.0000 0
Lena 0.0137 0.4588 1.0000 0.0449
Cameraman 0.0088 0.6017 1.0000 0.1721
Church 0.0030 0.7448 1.0000 0.2332

Example 8.5 Theorem 8.1 and the dual version of Theorem 8.2 indicate that
the AMM MXX exhibits tolerance with respect to dilative noise. In order to
exemplify this type of noise tolerance, we added the absolute value of gaussian
noise with zero mean and with variance 0.1 to the original patterns xξ,
ξ = 1, . . . , 4. We compared xξ with the patterns that were retrieved by the
MXX memory and the other associative memory models. Table 8.2 displays
the resulting NMSEs for each model in 100 experiments for each pattern xξ,
ξ = 1, . . . , 4. Figure 8.3 provides for a visual interpretation of this simulation.
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Table 8.2. NMSEs produced by AM models in applications to patterns that were
corrupted by adding the absolute value of gaussian noise with zero mean and vari-
ance 0.1

MXX OLAM KAM Gen. BSB Compl. Hopf.

Dil. Gauss. 0.0247 0.4185 0.9950 0.4538 0.5460

Fig. 8.3. The images in the top row display the original Lena image, a corrupted
image that was generated by adding dilative gaussian noise, and the output of the
morphological memory MXX . The images in the bottom row show the corresponding
recalled patterns using - from left to right - the OLAM, the generalized BSB, and
the complex-valued Hopfield model

Since the KAM model performed very poorly in this experiment, we refrained
from displaying the output of the KAM in Fig. 8.3.

Theorems 8.1 and 8.2 imply that the AMMs WXX and MXX are not suited
for dealing with arbitrary noise, i.e., noise that is neither (mostly) erosive nor
(mostly) dilative. To overcome these limitations of the original AMM models,
we introduced modified versions of WXX and MXX that we denoted using
the symbols WXX + ν and MXX + µ. The AMMs WXX + ν and MXX + µ
exhibit a much better tolerance with respect to arbitrary noise compared to
WXX and MXX while maintaining the properties of optimal absolute storage
capacity and one-step convergence. For further details, we refer the reader to
a recent journal article [43].
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8.4.1 Applications of gray-scale autoassociative morphological
memories to classification problems

Autoassociative memory models such as the morphological models WXX and
MXX can be applied to solve multi-class classification problems. Suppose
that Xj represents the matrix that consists of all training patterns belonging
to class j. For a given test pattern x, we compute the Chebyshev distance
ζ(x,x(j)) where x(j) denotes WXjXj ∨� x. The smallest error ζ(x,x(j)) indi-
cates the class that corresponds to x. Obviously, the same principle of classi-
fication can be applied to other AMM models. For instance, we can employ
autoassociators such as the OLAM and the KAM together with the Euclidean
distance.

Example 8.6 Let us consider the image segmentation problem that is avail-
able from the UCI Repository of Machine Learning Databases [1]. In this
problem, we have 19 continuous attributes concerning a 3 × 3 region of a
hand-segmented image. The instances were drawn randomly from a database
of 7 outdoors images, namely, brickface, sky, foliage, cement, window, path,
and grass. The data set contains 30 instances per class for training and 300
instances per class for testing. The data was standardized before processed.

Table 8.3 displays the errors of classification that we obtained using the
autoassociative morphological memories WXX and MXX , the OLAM, and the
KAM model. The classifiers based on WXX and MXX yield the same result.
Table 8.3 also includes the image segmentation results obtained by a fuzzy
lattice neural network (FLNN) [31] and a support vector machine (SVM)
with gaussian kernel and one-against-one method. Note that the AMMs out-
performed the other classifiers except for the SVM model which succeeded in
providing the correct classification for 4 more patterns than the AMM models
WXX and MXX .

The implementation of the SVM model that we used in this experiment
is available on the Internet [7]. We chose to adopt the default parameters.
Finally, recall that a particular FLNN model or FLR classifier depends on the
choice of a positive valuation function [3, 20]. We employed the linear positive
valuation function v(x) = (x−xmin)/(xmax−xmin), where x ∈ [xmin, xmax].
We also conducted experiments considering the sigmoid valuation function
v(x) = 1/(1− exp[−λ(x−xmed)]), where xmed = (xmax−xmin)/2. The error
of classification obtained for λ = 1 and λ = 0.1 were 12.14% and 12.52%,
respectively.

Table 8.3. Results of the image segmentation problem

Classifier Error Rate Classifier Error Rate

AMM WXX 11.05% AMM MXX 11.05%
SVM 10.86% FLNN 12.00%
KAM 82.52% OLAM 82.95%
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Table 8.4. Results of the glass classification problem

Classifier Error Rate Classifier Error Rate

WXX 34.8 ± 4.1 MXX 34.8 ± 4.1
KAM 37.9 ± 4.2 KAA-2 37.4 ± 5.4
MLP 56.9 ± 6.1 SVM 42.2 ± 5.9

Example 8.7 Let us consider the Glass Recognition problem, another classi-
fication problem that can be found in the UCI Repository of Machine Learning
Databases [1]. The data set consists of six types of glass. Each type has 70,
17, 76, 13, 9, or 27 instances. The goal is to determine the glass type from
nine attributes.

Zhang et al. have considered this problem in a recent paper [48]. Several
classifiers such as multi-layer perceptrons and support vector machines were
tested using two-fold cross-validation. The data were normalized to the range
[−1, 1] in order to remove the scale effect, and each network was fine tuned.
Table 8.4 shows the results of the experiment. The acronym KAA-2 denotes
an extension of the KAM that was introduced by H. Zhang et al. The error
rates concerning the KAM, the KAA-2, the MLP, and the SVM model were
taken from [48].

Table 8.4 also displays the results obtained via applications of the morpho-
logical autoassociative memories. Note that the AMM based models outper-
formed the other classifiers including the SVM model.Moreover,an application
of the AMM model does not require any fine tuning of the network.

8.5 Heteroassociative and Fuzzy MAMs

Heteroassociative morphological memories (HMMs) naturally extend the auto-
associative models that we reviewed in the previous section. Heteroassociative
morphological memories have proved to be useful in several applications
[16, 17, 32]. Additional motivation for discussing HMMs can be drawn from
the fact that the following theorems on HMMs have some important conse-
quences for the fuzzy domain.

In contrast to binary HMMs [41], gray-scale HMMs have yet to be studied
extensively. In fact, only two theorems on gray-scale HMMs concerned with
conditions for perfect recall and tolerance to noise are known [35]. Unfor-
tunately, these conditions are rather complicated and hard to understand.
Therefore, we consider it timely to present new results which offer consider-
able insight into the functionality of HMMs. To this end, we will generalize the
fundamental results on gray-scale AMMs that we presented in the previous
section.

First, let us introduce a few pertinent notations. The symbol O(WXY )
denotes the set of all WXY ∨� x such that x ∈ R

n. Similarly, the symbol
O(MXY ) denotes the set of all MXY ∧� x such that x ∈ R

n. Theorem 8.1 and
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Corollary 8.3 imply that the set O(WXX) consists of the expressions given by
(8.20) or by (8.21). The first two statements of Theorem 8.3 generalize this
result to include the heteroassociative case.

Theorem 8.3 For X ∈ R
n×k and Y ∈ R

m×k, the sets O(WXY ) and
O(MXY ) coincide. If O denotes this set then O consists exactly of the fol-
lowing expressions:

n∨

i=1

k∧

ξ=1

(aξ
i + yξ) , where aξ

i ∈ R . (8.24)

Alternatively, the set O can be characterized as the set of the following expres-
sions:

r∧

j=1

k∨

ξ=1

(cξ
j + yξ) , where cξ

j ∈ R and r ∈ N . (8.25)

Moreover, for arbitrary x ∈ R
n, the pattern WXY ∨� x equals the smallest

expression given by (8.24) such that
∨n

i=1

∧k
ξ=1(a

ξ
i + xξ) is the supremum of

x in F . In addition, the pattern WXY ∨� x equals the smallest expression given
by (8.25) such that

∧r
j=1

∨k
ξ=1(c

ξ
j + xξ) is the supremum of x in F .

Proof. Let x ∈ R
n be an arbitrary input pattern. Consider the following

matrix Z ∈ R
p×k and the following vector z ∈ R

p
±∞, where p = n + m.

Z =
(

X
Y

)

and z =
(

x
−∞

)

. (8.26)

Here −∞ denotes the constant vector (−∞, . . . ,−∞)t of length m.
Note that WZZ ∈ R

p×p can be written in block matrix form as follows.

WZZ =
(

WXX WY X

WXY WY Y

)

. (8.27)

Computing the max product WZZ ∨� z yields

WZZ ∨� z =
(

WXX ∨� x ∨WY X ∨� (−∞)
WXY ∨� x ∨WY Y ∨� (−∞)

)

=
(

WXX ∨� x
WXY ∨� x

)

. (8.28)

The resulting vector is finite since WXX , WXY , and x are finite.
Moreover, the vector WZZ ∨� z represents a fixed point of WZZ because
WZZ ∨� WZZ = WZZ and because the max product is associative [14]. Identity
WZZ ∨� WZZ = WZZ follows from Theorem 11 of [43] and the fact that WZZ

has a zero diagonal [40].
Let f denote WZZ ∨� z ∈ FZ = F (WZZ) = F (MZZ). By Theorem 8.1,

the elements of FZ are described by (8.20) and (8.21) (where zξ replaces xξ).
Comparing these equations with (8.28) reveals that WXY ∨� x can be expressed
in terms of (8.24) and (8.25).
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Regarding the proof of the last two statements, we observe that f repre-
sents the supremum of f in FZ . As mentioned before, the set FZ consists of
the expressions given by (8.20) and (8.21) with zξ replacing xξ. Recall that f
can also be written in the form (WXX ∨� x,WXY ∨� y)t. Therefore, we have

f =
n∨

i=1

k∧

ξ=1

(aξ
i + zξ) =

r∧

j=1

k∨

ξ=1

(cξ
j + zξ) , (8.29)

where
∨n

i=1

∧k
ξ=1(a

ξ
i + xξ) =

∧r
j=1

∨k
ξ=1(c

ξ
j + xξ) is the supremum of x in

F = F (WXX) = F (MXX). Therefore, WXY ∨� x is as stated in the theorem.

Theorem 8.4 If O denotes O(WXY ) = O(MXY ) where X ∈ R
n×k and Y ∈

R
m×k then we have

O = {
n∧

j=1

k∨

ξ=1

(cξ
j + yξ) : cξ

j ∈ R } . (8.30)

For arbitrary x ∈ R
n, the pattern WXY ∨� x equals the smallest expression

given by (8.30) such that
∧n

j=1

∨k
ξ=1(c

ξ
j + xξ) is the supremum of x in F .

Proof. The proof of this theorem employs Corollary 8.1 and resembles the
proof of Theorem 8.3.

Corollary 8.4 For X ∈ R
n×k, Y ∈ R

m×k, and let x ∈ R
n be such that

WXX ∨� x = xγ . We have WXY ∨� x = yγ if and only if the following implica-
tion holds for all cξ ∈ R where ξ = 1, . . . , k.

xγ ≤
k∨

ξ=1

cξ + xξ ⇒ yγ ≤
k∨

ξ=1

cξ + yξ . (8.31)

Proof. Let us again consider the matrix Z and the vector z represented in
(8.26). Let x be as stated above.

Suppose that WXY ∨� x = yγ which – in view of (8.28) – implies that
WZZ ∨� z = zγ . In other words, we have ẑ = zγ , where ẑ denotes the supremum
of z in FZ . By Corollary 8.2, FZ consists of all patterns

∧n
j=1

∨k
ξ=1(c

ξ
j + zξ)

such that cξ
j ∈ R.

Consider arbitrary scalars cξ, where ξ = 1, . . . , k, such that the left hand
side of (8.31) holds. If u denotes

∨k
ξ=1(c

ξ + zξ) then u ∈ FZ represents an
upper bound of z = (x,−∞)t. We obtain the following relationships.

(
xγ

yγ

)

= zγ = WZZ ∨� z ≤ WZZ ∨� u = u =
k∨

ξ=1

[

cξ +
(

xξ

yξ

)]

. (8.32)

In particular, we recognize that yγ ≤
∨k

ξ=1(c
ξ +yξ) which shows that the

(8.31) is a necessary condition for WXY ∨� x = yγ .
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Let us now prove that (8.31) implies WXY ∨� x = yγ . Let
∧r

j=1

∨k
ξ=1(c

ξ
j +

yξ) denote the smallest pattern such that
∧r

j=1

∨k
ξ=1(c

ξ
j +xξ) = x̂, the supre-

mum of x in F = F (WXX).
By Theorem 8.3, we have WXY ∨� x =

∧r
j=1

∨k
ξ=1(c

ξ
j + yξ). Theorem 8.1

states that x̂ = WXX ∨� x which equals xγ by assumption. Thus, we obtain
the following identity

r∧

j=1

k∨

ξ=1

(cξ
j + xξ) = xγ . (8.33)

Equation (8.33) implies that the patterns
∨k

ξ=1(c
ξ
j + xξ) are bounded from

below by xγ for all j = 1, . . . , n. From (8.31) we infer that

k∨

ξ=1

(cξ
j + yξ) ≥ yγ ∀ j = 1, . . . , r . (8.34)

⇔
r∧

j=1

k∨

ξ=1

(cξ
j + yξ) ≥ yγ (8.35)

⇔
r∧

j=1

k∨

ξ=1

(cξ
j + yξ) ∧ yγ = yγ . (8.36)

Obviously, we have
∧r

j=1

∨k
ξ=1(c

ξ
j + yξ) ∧ yγ ≤

∧r
j=1

∨k
ξ=1(c

ξ
j + yξ) and

∧r
j=1

∨k
ξ=1(c

ξ
j + xξ) ∧ xγ = x̂ ∧ xγ = x̂ since x̂ =

∧r
j=1

∨k
ξ=1(c

ξ
j + xξ) =

WXX ∨� x = xγ . Therefore,
∧r

j=1

∨k
ξ=1(c

ξ
j + yξ)∧ yγ and

∧r
j=1

∨k
ξ=1(c

ξ
j + yξ)

coincide since the former is bounded from above by the latter pattern and
since the latter pattern

∧r
j=1

∨k
ξ=1(c

ξ
j + yξ) represents the smallest pattern

such that
∧r

j=1

∨k
ξ=1(c

ξ
j +xξ) = x̂. In view of (8.36), we are able to finish the

proof of the theorem as follows:

WXY ∧� x =
r∧

j=1

k∨

ξ=1

(cξ
j + yξ) =

r∧

j=1

k∨

ξ=1

(cξ
j + yξ) ∧ yγ = yγ . (8.37)

Theorem 8.3 and Corollary 8.4 completely characterize the output of
HMMs for any input pattern x. The rest of the article is concerned with the
implications of these results with respect to fuzzy morphological associative
memory (FMAM) models.

Note that the fuzzy domain [0, 1]n represents a complete lattice. An erosion
ε : [0, 1]n → [0, 1]m is called a fuzzy erosion. In a similar vein, we speak of fuzzy
dilations, fuzzy anti-dilations, and fuzzy anti-erosions. In fuzzy mathematical
morphology, a fuzzy erosion can be defined in terms of a fuzzy inclusion mea-
sure and a fuzzy dilation can be defined in terms of a fuzzy intersection
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measure [29, 42]. We consider fuzzy morphological neural networks to be
models of artificial neural networks that calculate an elementary operation
of mathematical morphology such as fuzzy erosion or fuzzy dilation at each
node. FMAMs belong to this class of models.

Let us consider a particular FMAM model. Let X ∈ [0, 1]n×k, Y ∈
[0, 1]m×k, and let WXY be defined as before. The symbols 0m×n and 0m

stand for the zero matrix of size m× n and the zero vector of length m. If W
denotes the m×n matrix WXY ∧0m×n then the Lukasiewicz FMAM is defined
in terms of the following relationship between an input pattern x ∈ [0, 1]n and
an output pattern y ∈ [0, 1]m.

y = (W ∨� x) ∨ 0m . (8.38)

The Lukasiewicz FMAM performs a fuzzy dilation [0, 1]m → [0, 1] at every
node. This fuzzy dilation can also be expressed in terms of a supremum of fuzzy
Lukasiewicz conjunctions, hence the name Lukasiewicz FMAM. Furthermore,
it can be shown that (8.38) yields the Lukasiewicz IFAM model [44, 45].

Recall that WXY =
∨k

ξ=1[y
ξ ∧� (xξ)∗]. Hence, the probability that WXY ∈

[−1, 0]m×n increases as more and more fundamental memories (xξ,yξ) are
stored in the network. If WXY ∈ [−1, 0]m×n then WXY equals W , the
weight matrix of the Lukasiewicz FMAM, and we may apply Theorem 8.3
to Lukasiewicz FMAMs which leads to the following corollary.

Corollary 8.5 Let X ∈ [0, 1]n×k and Y ∈ [0, 1]m×k such that WXY ∈
[−1, 0]m×n. For an arbitrary input pattern x ∈ [0, 1]n, an application of the
Lukasiewicz FMAM produces the maximum of 0m and the smallest expression
given by (8.24) such that

∨n
i=1

∧k
ξ=1(a

ξ
i + xξ) is the supremum of x in F .

Corollary 8.6 Let X ∈ [0, 1]n×k and Y ∈ [0, 1]m×k be such that WXY ∈
[−1, 0]m×n. Suppose that x ∈ [0, 1]n satisfies WXX ∨� x = xγ . We have
(W ∨� x) ∨ 0m = yγ if the following implication holds for all cξ ∈ R where
ξ = 1, . . . , k.

xγ ≤
k∨

ξ=1

cξ + xξ ⇒ yγ ≤
k∨

ξ=1

cξ + yξ . (8.39)

Proof. Let WXY and x ∈ [0, 1]n be as stated above. By Corollary 8.4,
the assumption that (8.31) holds for all cξ ∈ R, where ξ = 1, . . . , k,
implies that WXY ∨� x = yγ which belongs to [0, 1]m. Therefore, we have
(WXY ∨� x) ∨ 0m = yγ . Finally, note that WXY can be replaced by W since
WXY ∈ [−1, 0]m×n.

8.5.1 Applications of FMAMs in prediction

Fuzzy associative memories such as the FMAM can be used to implement
mappings of fuzzy rules. In this case, a set of rules in the form of human-like
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IF-THEN conditional statements are stored. In this subsection, we present two
applications of the FMAM model to the problem of forecasting time-series.

Example 8.8 Let us consider the problem presented in [10] and discussed
latter in [44, 45]. This problem consists of assessing the manpower requirement
in steel manufacturing industry in the state of West Bengal, India. Initially,
we have five linguistic values representing concepts such as “the requirement
in manpower is large”. A set of fuzzy conditional statements such as “If the
manpower requirement of year n is large, then that of year n+1 is very large”
is obtained from the past values. We converted these conditional statements
into the set of input-output pairs that are represented in Table 8.5 and we
generated the following matrix WXY .

WXY =

⎡

⎢
⎢
⎢
⎢
⎣

−0.5 −1.0 −1.0 −1.0 −1.0
0 −0.5 −1.0 −1.0 −1.0

−0.5 −0.5 −0.5 −1.0 −1.0
−1.0 −1.0 −1.0 −.5 −.5
−1.0 −1.0 −1.0 −0.5 0

⎤

⎥
⎥
⎥
⎥
⎦

. (8.40)

Since WXY ∈ [−1, 0]5×5, the matrices W and WXY coincide. Therefore,
Corollaries 8.5 and 8.6 can be applied. For example, if x = [1, 0.6, 0, 0, 0]T then
the supremum of x in F is WXX ∨� x = [1, 0.6, 0.1, 0, 0]T = x1∨[(0.1+x1)∧x2].
Note that the latter expression represents a meet of joins that can be easily
brought into the form

∨5
i=1

∧5
ξ=1(a

ξ
i +xξ) by adding some coefficients aξ

i ≥ 1.
By Corollary 8.5, we have (WXY ∨� x) ∨ 05 ≤ y1 ∨ [(0.1 + y1) ∧ y2] ∨ 05 =
[0.5, 1, 0.5, 0, 0]T . In fact, we calculate (WXY ∨� x) ∨ 05 = [0.5, 1, 0.5, 0, 0]T .

Now, let us consider Corollary 8.6. On one hand, Corollary 8.2 implies that
WXX ∨� x2 = x2. On the other hand, an application of the Lukasiewicz FMAM
to x2 yields [0, 0.5, 0.5, 0, 0]T 	= y2. Therefore, there are some cξ such that the
implication in (8.39) does not hold. We have, for example, that x2 ≤ x3

whereas y2 	≤ y3.

Table 8.5. Set of input and output pairs used in the forecasting application

ξ xξ yξ

1 [1.0, 0.5, 0, 0, 0]T [0.5, 1.0, 0.5, 0, 0]T

2 [0.5, 1.0, 0.5, 0, 0]T [0.5, 1.0, 0.5, 0, 0]T

3 [0.5, 1.0, 0.5, 0, 0]T [0, 0.5, 1.0, 0.5, 0]T

4 [0, 0.5, 1.0, 0.5, 0]T [0.5, 1.0, 0.5, 0, 0]T

5 [0, 0.5, 1.0, 0.5, 0]T [0, 0.5, 1.0, 0.5, 0]T

6 [0, 0.5, 1.0, 0.5, 0]T [0, 0, 0.5, 1.0, 0.5]T

7 [0, 0, 0.5, 1.0, 0.5]T [0, 0, 0.5, 1.0, 0.5]T

8 [0, 0, 0.5, 1.0, 0.5]T [0, 0, 0, 0.5, 1.0]T

9 [0, 0, 0, 0.5, 1.0]T [0, 0, 0, 0.5, 1.0]T
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Table 8.6. Average errors in forecasting manpower

Method Average Error

Lukasiewicz FMAM 2.29%

Kosko’s FAM 2.67%

Lukasiewicz GFAM 2.67%

Gödel IFAM 2.73%

Max-min FAM with threshold 2.73%

Goguen IFAM 2.99%

AM of Wang and Lu 2.99%

ARIMA2 5.48%

ARIMA1 9.79%

If x represents a fuzzy set corresponding to the manpower of year n then
(8.38) can be used to forecast the manpower of year n + 1 by means of the
Lukasiewicz FMAM. Specifically, a defuzzification of the output pattern y
according to the rule described in [10] yields the prediction for year n + 1.
Table 8.6 displays the average errors in the predictions that were obtained by
means of the Lukasiewicz FMAM and several other methods that can be found
in the literature [11, 24, 25, 44, 45, 46]. Figure 8.4 plots the manpower data
of the years 1984 through 1995. The actual values are compared to the predic-
tions obtained by some of these methods. Note that the Lukasiewicz FMAM
outperformed the other models.

Example 8.9 In this example, we applied the Lukasiewicz FMAM to the
problem of forecasting the average monthly streamflow of a large hydroelec-
tric plant called Furnas, that is located in southeastern Brazil. This problem
was previously discussed in [26, 27].

Note that the seasonality of the monthly streamflow suggests the use of 12
different models, one for each month of the year. Let sξ, for ξ = 1, . . . , q, be
samples of a seasonal streamflow time series. The goal is to estimate the value
of sγ from a subsequence of (s1, s2, . . . , sγ−1). Here, we employ subsequences
that correspond to a vector of the form

pγ = (sγ−h, . . . , sγ−1)T , (8.41)

where h ∈ {1, 2, . . . , γ − 1}. In this experiment, our FMAM based model only
uses a fixed number of three antecedents. For example, the values of January,
February, and March were considered for predicting the streamflow of April.

The uncertainty that is inherent in hydrological data suggests the use of
fuzzy sets to model the streamflow samples. For ξ < γ, a fuzzification of pξ

and sξ using Gaussian membership functions yields fuzzy sets xξ : U → [0, 1]
and yξ : V → [0, 1] respectively, where U and V represent finite universes of
discourse. A subset S of the resulting input-output pairs {(xξ,yξ), ξ < q} is
implicitly stored in the Lukasiewicz FMAM (we only construct the parts of the
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Fig. 8.4. Predictions of manpower. The continuous line represents the actual man-
power. The dashed line marked by ‘◦’ corresponds to the Lukasiewicz FMAM
model, the dotted line marked by ‘×’ corresponds to Kosko’s FAM model and
the Lukasiewicz Generalized FAM, the dotted line marked by ‘+’ corresponds to
Max-min FAM with threshold and Gödel IFAM, and the dotted line marked by ‘�’
corresponds to the Associative Memory model of Wang and Lu and the Goguen
IFAM. The lines marked by ‘
’ and ‘∇’ represent ARIMA1 and ARIMA2

weight matrix that are actually used in the recall phase). We employed the sub-
tractive clustering method to determine the set S [8]. Feeding the pattern xγ

into the FMAM model, we retrieved the corresponding output pattern yγ . For
computational reasons, xγ is modeled as a discrete Dirac-δ (impulse) function.
A defuzzification of yγ using the mean of maximum yields sγ .

Figure 8.5 shows the forecasted streamflows estimated by the prediction
model based on the FMAM for the Furnas reservoir from 1991 to 1998.
Table 8.7 compares the errors that were generated by the FMAM model and
several other models [26, 27]. In contrast to the FMAM-based model, the MLP,
NFN, and FPM-PRP models were initialized by optimizing the number of the
parameters for each monthly prediction. For example, the MLP considers 4
antecedents to predict the streamflow of January and 3 antecedents to pre-
dict the streamflow for February. Moreover, the FPM-PRP model also takes
into account slope information which requires some additional “fine tuning”.
We experimentally determined a variable number of parameters (including
slopes) for the FMAM model such that MSE = 0.88 × 105, MAE = 157, and
MPE = 15.
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Fig. 8.5. The streamflow prediction for the Furnas reservoir from 1991 to 1998. The
continuous line corresponds to the actual values and the dashed line corresponds to
the predicted values

Table 8.7. Mean square, mean absolute, and mean relative percentage errors pro-
duced by the prediction models

MSE MAE MPE
Methods (×105) (m3/s) (%)

FMAM 1.42 226 22
PARMA 1.85 280 28
MLP 1.82 271 30
NFN 1.73 234 20
FPM-PRP 1.20 200 18
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