
4

Generalized Lattices Express Parallel
Distributed Concept Learning

Michael J. Healy and Thomas P. Caudell

University of New Mexico mjhealy@ece.unm.edu

Albuquerque, New Mexico 87131 tpc@ece.unm.edu

Summary. Concepts have been expressed mathematically as propositions in a dis-
tributive lattice. A more comprehensive formulation is that of a generalized lattice,
or category, in which the concepts are related in hierarchical fashion by lattice-like
links called concept morphisms. A concept morphism describes how an abstract con-
cept can be used within a more specialized concept in more than one way as with
“color”, which can appear in “apples” as either “red”, “yellow” or “green”. Further,
“color” appears in “apples” because it appears in “red”, “yellow” or “green”, which
in turn appear in “apples”, expressed via the composition of concept morphisms.
The representation of such concept relationships in multi-regional neural networks
can be expressed in category theory through the use of categories, commutative
diagrams, functors, and natural trasformations. Additionally, categorical model the-
ory expresses the possible worlds described by concepts. The analysis of morphisms
between the possible worlds highlights the importance of reciprocal connections in
neural networks.

4.1 Introduction

The contributions in this volume discuss lattice theory from different perspec-
tives. Some relate it to neural network algorithms in which the partial order
relation (≤ ) and the meet/join operations (∧, ∨ ), regarded as min/max
operations, are part of the computational model. There is a history of lat-
tice theory in neural network theoretical models [12, 18, 28], and in some the
meet/join operations have other interpretations. One of these involves sym-
bolic languages for modeling the semantics of neural computation. Symbolic
languages including formal logics have appeared over the years in attempts
to obtain a mathematically precise expression of the semantics of neural net-
works [2, 3, 6, 12, 13, 17, 19, 24, 26, 27]. In addition to classical propositional
and first-order logic [3], the logics used have included fuzzy logic [24], geo-
metric logic [12], and non-monotonic logics [26]. In the semantic model of
[12], the input data for a neural network represent paired entities from two
domains. The network’s long-term adaptation is explained as the learning of

M.J. Healy and T.P. Caudell: Generalized Lattices Express Parallel Distributed Concept

Learning, Studies in Computational Intelligence (SCI) 67, 59–77 (2007)

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007



60 M.J. Healy and T.P. Caudell

a geometric logic theory about each domain while simultaneously learning
an inference relation between the theories that expresses a mapping between
their domains. Because of the form of geometric logic used, this yields lattices
coupled by a very special type of lattice homomorphism. In the process of
learning, the network modifies its connection weights based upon input data,
and this effectively combines domain knowledge extracted from the data with
pre-existing knowledge to derive new theories and new inferences between
their formulas. Each initial theory consists of a set of predicates represent-
ing observable features of the entities, and proceeds through the adaptation
process to include derived formulas and their relationships, and these and the
modified inferencing express the information gained.

Vickers applies geometric logic, a non-Boolean logic similar to intuitionis-
tic logic ([29, 30]), to domain theory. The logic is applied as a “logic of finite
observations”. This derives from the interpretation of a statement Q in the
logic as affirmable: It cannot be falsified, only affirmed through demonstration
(observation or proof). The axioms of a geometric theory specify basic knowl-
edge about some domain. As with most logics, the propositions, predicates,
the formula-constructing operations—in this case conjunction and disjunction
along with the existential quantifier ∃—- and the proof theory of the logic,
resulting in entailments such as ∃xP (x) � ∃xQ(x) , are used to reason about
any domain to which the theory applies. In the logic of finite observations,
however, negation ¬ , implication formulas P (x) → Q(x) and the universal
quantifier ∀ are used only in formulating the axioms. Further, as with intu-
itionistic logic, the Law of the Excluded Middle (LEM, ∀x(P (x) ∨ ¬P (x)) is
not an axiom of geometric logic: It must be either established as valid when
it applies or assumed as an axiom of a theory where its use is desired. The
analyst has the task of formulating axioms for a theory sufficiently detailed to
express all relevant, pre-existing knowledge about the domain of investigation
and then applying the geometric operations to make inferences about new
data.

Propositional geometric logic is a special case of this. For a propositional
theory formulated in geometric logic, a lattice can be constructed from the
axioms, other propositions, and the entailments, where � becomes the lat-
tice order relation ≤ . Inference is then carried out based solely upon the
lattice operations of meet (∧ ) and join (∨ ), interpreted as conjunction and
disjunction. The full logic with predicates, quantifiers and open formulas, on
the other hand, requires a structure more general than a lattice— it requires
category theory.

Yet, single-argument predicates of the form P (x) are used within a lat-
tice in [12]. The explanation for this is that the argument x represents the
observations in a domain, not individual entities discussed within the domain
theory, and the predicate is affirmed when an observation applies to it. This
notation is a convenience for conducting an analysis over multiple domains
while maintaining the utmost simplicity. The different domains are obtained
by coupling networks with systems of interconnects to form a composite or



4 Generalized Lattices Express Parallel Distributed Concept Learning 61

multi-regional network. The example examined in [12] is that of a LAPART
network [13], a coupling of two ART-1 networks in such a way that the com-
posite network can learn inferences across theories in addition to learning
the individual theories. From this, a new theory can be formed that com-
bines the newly-formed sub-network theories together with the newly-formed
implications between their formulas, all based upon observation. A composite
domain accompanies the composite theory, having the form of a product—if
the domains are thought of as sets, the composite in this case is a cartesian
product. A finding of this analysis is that most of the structure supporting the
learning of coupled domain theories is missing from the example architecture.

The domain theories in propositional geometric logic yield upper-complete
distributive lattices, having infinite as well as finite joins and having finite
meets (the lattices have infinite meets, but they are non-geometric, so are not
used). Mathematically, an advantage of this use of geometric logic is that a
theory in the logic directly corresponds to a topology for its domain. This
makes it possible to perform model-theoretic analyses in terms of topological
spaces and continuous functions (although this is not quite point-set topology,
since a slight modification to the set union operation must be made). Thus,
the application of geometric propositional logic combines the advantages of
logical inference, lattice theory, topology, and domain theory in describing the
semantics of neural networks. This facilitates the design of improved neural
networks by noting which entailments, lattice meets and joins, and continuous
structures are missing from an existing architectural model. The analysis is
not restricted to binary-input neural networks because graded values can be
represented in a quantized form (see, for example, [13]). With all its advan-
tages, however, this kind of analysis reveals only a part of the gap between
present-day architectures and the full potential of neural networks.

More recently, we have been experimenting with a much more compre-
hensive semantic theory for neural networks based upon category theory [16].
Here, the main application of category theory is not to represent the predicate
version of geometric logic and assign formulas with predicates and quantifiers
to network nodes. Instead, neural network nodes are still regarded as rep-
resenting closed logical fragments, but these are whole domain theories and
the theories have quantities of more than one type. They are associated with
network nodes based upon the nodes’ input connection pathways traced back
to the input nodes, which are assigned theories that describe the properties
of the input features. Also, the logic in which the theories are expressed is
left to the analyst’s choice; it can be geometric, intuitionistic, classical first-
order, or fuzzy, and so forth. When adopted in full, this strategy enables the
expression of neural network semantics in the framework of categorical logic
and categorical model theory, resulting in a deeper and more useful analysis.
One example of this is an experiment with an application of a neural network
to multi-spectral imaging, in which an existing architecture was re-designed
to produce images with a significantly higher quality [15]. Here, we provide a
brief recounting of the categorically-based semantic theory.



62 M.J. Healy and T.P. Caudell

4.2 Lattices and Categories

A category can be thought of as a system of mathematical structures of some
kind, concrete or abstract, together with the relationships between them that
express that type of structure [1, 7, 20, 21, 25]. Each relationship, called a
morphism or arrow, has the form f : a −→ b with a domain object a and
a codomain object b . A lattice is a special case of a category in which the
morphisms are the relations a ≤ b . In a category C , each pair of arrows f :
a −→ b and g : b −→ c (with a head-to-tail match, where the codomain b of
f is also the domain of g as indicated) has a composition arrow g◦f : a −→ c
whose domain a is the domain of f and whose codomain c is the codomain
of g . In a lattice, of course, this expresses the transitivity of ≤. Composition
satisfies the familiar associative law, so that in triples which have a head-to-
tail match by pairs, f : a −→ b , g : b −→ c and h : c −→ d , the result of
composition is order-independent, h ◦ (g ◦ f) = (h ◦ g) ◦ f . Also, for each
object a , there is an identity morphism ida : a −→ a (in a lattice, a ≤ a )
such that the identities ida ◦ g = g and f ◦ ida = f hold for any arrows
f : a −→ b and g : c −→ a .

Unlike in a lattice, there can be many morphisms in either or both direc-
tions between a pair of objects a and b . The category Set of sets and
functions (with composition of functions) is a familiar example, for given arbi-
trary sets α and β , there can be many functions with either set as domain
or codomain. With a multiplicity of morphisms existing between two objects
in a typical category, and given the notion of composition, the notion of a
commutative diagram takes on great significance. A diagram in a category
C is simply a collection of objects and morphisms of C (the domain and
codomain objects of a morphism are always included with it). In a commuta-
tive diagram, any two morphisms with the same domain and codomain, where
at least one of the morphisms is the composition of two or more diagram mor-
phisms, are equal. Initial and terminal objects (the bottom and top elements
in a lattice) are also important when they exist in a category C . An initial
object i is the domain of a unique morphism f : i −→ a with every object
a of C as codomain. A terminal object t has every object a of C as the
domain of a unique morphism f : a −→ t with t as codomain.

The principle of duality is a fundamental notion in category theory. The
dual or opposite Cop of a category C has the same objects, and the arrows
and compositions g◦f reversed, fop◦gop . The dual of a statement in category
theory is the statement with the words “domain” and “codomain”, “initial”
and “final”, and the compositions reversed. If a statement is true of a category
C , then its dual is true of Cop ; if a statement is true of all categories, the dual
statement is also true of all categories because every category is dual to its
dual. Roughly speaking, “half the theorems of category theory are obtained
for free”, since proving a theorem immediately yields its dual as an additional
theorem (see any of [1, 21, 25]).



4 Generalized Lattices Express Parallel Distributed Concept Learning 63

In addition to the widely-used notion of duality, category theory provides
a mathematically rigorous notion of “isomorphism”, a term which is often
used in a loose, intuitive sense. One sometimes hears a statement such as
“the two [concepts, data types, program constructs, etc.] are in some sense
isomorphic”. If the entities under discussion can be formalized as objects in
a category, one can make such statements with mathematical rigor. If a, b
are objects of a category C such that there exist arrows f : a −→ b and
g : b −→ a with f ◦ g = idb and g ◦ f = ida , then the morphism f
is called an isomorphism (as is g also) and g is called its inverse (and f
is called the inverse of g ), and the two objects are said to be isomorphic.
The property of an identity morphism ensures that isomorphic objects in a
category are interchangeable in the sense that they have the same relationships
with all objects of the category. It is easily shown that all initial objects in
a category are isomorphic, and the same holds for terminal objects (see the
above definitions for initial and terminal objects).

Let ∆ be a diagram in a category C , shown in Fig. 4.1 with objects
a1, a2, a3, a4, a5 and morphisms f1 : a1 −→ a3, f2 : a1 −→ a4, f3 : a2 −→
a4, f4 : a2 −→ a5 . Also shown are two cone-like structures, K ′ and K ′′ . Each
of these cocones extends ∆ , forming a commutative diagram: For example,
K ′ adds an object b′ and morphisms g′i : ai −→ b′ (i = 1, . . . , 5) such that
g′3 ◦ f1 = g′1 = g′4 ◦ f2 and g′4 ◦ f3 = g′2 = g′5 ◦ f4 . The cocones for ∆
are objects in a category coc∆ whose morphisms are morphisms of C from
one cocone apical object to the other, h : b′ −→ b′′ , having the property that
the legs of the codomain cocone K ′′ factor through the legs of the domain
K ′ and the morphism h ,

b′′

b′

h

����������
K′′

K′

a3 a4 a5

a1

f1

����������� f2

�����������
a2

f3

����������� f4

�����������

∆

g′
3

���
�

�
�

�
�

�
�

g′
1

���
�
�
�
�
�
�
�
�
�
�

g′
4

���
�

�
�

�
�

�

g′
2

���
�

�
�

�
�

�
�

�
�

�
�

�

g′
5

			 	 	 	 	 	 	 	 	 	 	 	 	

g′′
3









































g′′
1

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

g′′
4

���
�

�
�

�
�

�
�

�
�

�

g′′
2

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�

g′′
5













Fig. 4.1. A cocone morphism h : K′ −→ K′′ in coc∆ is a morphism h : b′ −→ b′′

in C between the apical objects b′ and b′′ of cocones K′ and K′′ , respectively,
that is a factor of each leg morphism g′′

i : ai −→ b′′ of K′′ , with g′′
i = h ◦ g′

i



64 M.J. Healy and T.P. Caudell

g′′i = h ◦ g′i (i = 1, . . . , 5) . (4.1)

With morphisms so defined, the composition of cocone morphisms follows
directly. A colimit for the diagram ∆ is an initial object K in the category
coc∆ . That is, for every other cocone K ′ for ∆ , there exists a unique cocone
morphism h : K −→ K ′ . The original diagram ∆ is called the base diagram
for the colimit and the diagram ∆ formed by adjoining K to ∆ is called
its defining diagram. By initiality, all colimits for a given base diagram are
isomorphic. A coproduct is the colimit for a discrete diagram, one having
objects but no morphisms among them except the identity morphism for each
diagram object, which is always assumed to be present in a diagram. In Set ,
for example, coproducts are disjoint unions of the component sets.

Limits are the dual notion to colimits, obtained by “reversing the arrows”
and interchanging “initial” and “terminal”. By duality, a limit for a diagram
∆ , if one exists, is a terminal cone, whose morphisms are directed into the dia-
gram. A limit for a discrete diagram is called a product, and the leg morphisms
are called projections. The familiar cartesian product of sets is an example in
the category Set . Limits and colimits are useful constructs where they are
available, and colimits have a history of use in categorical logic and computer
science ([11, 32]). A theorem in category theory can be used to derive an algo-
rithm for calculating limits in any category that contains limits for all of its
diagrams, and similarly for colimits by dualization (see The Limit Theorem
in [25]).

4.3 A Category of Concepts

We express the semantics of a system in terms of a distributed system of
concepts about the system’s environment as well as the system itself. This
manner of describing a system can be thought of as a knowledge representa-
tion that is implicit in the system’s disposition to sample its environment and
act upon it. The concept system, of which the knowledge representation is a
part, is an ontology for the system’s environment as experienced through the
system inputs, both external to the system and possibly internally-generated
as well. The ontology is expressed mathematically as a category Concept
whose objects are symbolic descriptions (concepts) of domains of items (sensed
entities, events, situations, and their parts). The concepts are represented
incrementally in an adaptive system based upon sensor input, and, where
the capabilities exist, are based upon the interplay of sensor input with effer-
ence copy (where motor command outputs are used also as system inputs)
and with feedback from higher-level processing to levels of processing more
directly associated with the sensors. For example, the concept representations
in a neural network are formed through modification of connection weights,
which in some networks exist in both feedforward and feedback connection
pathways. Determining the knowledge representation capability of a given



4 Generalized Lattices Express Parallel Distributed Concept Learning 65

neural architecture, and designing architectures with a desired capacity, are
major goals of analysis using the semantic theory.

Through feedback, sensor inputs can be filtered and adaptively-formed
concept representations learned from them can be made consistent with the
already-existing knowledge representation store in, say, a cognitive system.
We refer to concept representations formed at or near the sensor level through
this two-way processing as percepts, even when they are not associated with
conscious awareness or a biological organism. Concept representations formed
through further processing at a “higher” level are, as a consequence, based
in perception. This view of concept representation based in perception has
important implications for theories of cognition and intelligence. Indeed, it
is consistent with converging evidence and theory in cognitive neuroscience
[4, 8, 9, 10, 22, 31]. Toward the end of this chapter, we discuss categorical
model theory and suggest that it indicates the desirability of feedback in a
neural network. It also provides a mathematical foundation for perceptual
knowledge representations.

As explained in Sect. 4.5, mathematical rigor is maintained in this formu-
lation by describing structure-preserving mappings from Concept to a cate-
gory representing the neural system’s computational structure, thus showing
how concepts, their morphisms, and the consequences of composition includ-
ing commutative concept diagrams are represented in the system computa-
tions. A Concept morphism s : T −→ T ′ is an association of the description
constituting concept T with a subconcept, or logical part, of the description
constituting concept T ′ , with the property that the axioms of the domain T
of the morphism are mapped to axioms or theorems of the codomain T ′ . We
use an already-available mathematical convenience, a category of formal logic
theories and theory morphisms ([7, 11, 23]) for the category Concept . The
category has an overall hierarchical structure, since the more abstract theories
are represented within the more specialized ones and the morphisms convey
this. We use the terms “theory” and “concept” interchangeably.

As shown in the next section, colimits provide a means of combining con-
cepts to derive concepts of greater complexity. Because they are more complex,
these concepts are also more specific, or specialized, than any of the concepts in
their diagrams. In the lattice formulation for geometric propositional logic, the
lattice meet ∧ operation plays an analogous role, since it forms a proposition
of greater specificity than those being combined. However, because colimits
are based upon diagrams in a category of theories, more can be expressed in
this manner than with lattices. The same can be said for limits relative to the
lattice join operation ∨ . Limits form simpler, hence, more abstract, concepts
than those in their base diagrams. But asserting that a category of theories is
more expressive than a lattice begs the question of whether the theory category
is not itself a lattice. After all, a lattice is a category, and in that sense a cate-
gory is a sort of generalized lattice. How is the concept category not a lattice?

The key point is that a theory category, like most categories, has many
“edges” between a given pair of “nodes”; that is, there can be many ways in



66 M.J. Healy and T.P. Caudell

which an object a is related to an object b (and, in many categories, b can be
related to a as well). This is a consequence of the complexity allowed in the
morphisms, which is two-fold: First, a theory morphism must map all symbols
(sorts, operations, constants) of the domain to symbols of the same type in
the codomain. Second, each axiom of the domain theory, when transformed
by symbol substitution, must become an axiom or theorem of the codomain
theory.

Consider a concept of color stated as a theory, as follows:

Concept T
sorts Colors, Items
op has color: Items*Colors -> Boolean
const c: Colors
Axiom color-is-expressed is

exists (it: Items) (has color (it, c))
end

The statement line sorts Colors, Items introduces the basic sorts, or “log-
ical containers”, of T ; logic in this form is called sorted. The explicit typing
of variables and constants in sorted theories such as T is a convenient alter-
native to using predicates to qualify the quantities in every formula, and it
allows operations to be interpreted as total (as opposed to partial) functions
whose domains are expressed in the theory as sorts. The line op has color:
Items*Colors -> Boolean specifies an operation has color. This operation
acts as a predicate with items and colors as arguments, where Items*Colors
is a product sort—a “container” for ordered pairs of items and colors. The
Boolean sort contains the truth values true and false. It is part of a theory
of logical operations that is implicitly included in every concept (it is an initial
object of the concept category). Notice that T also contains a constant c of
sort Colors; this can represent, for example, a feature always observed via
one sensor element of a system. The axiom color-is-expressed states that
the color c has some item that expresses it (in a sorted predicate calculus,
simply asserting a formula as shown is the same as stating that it is true).
This color is arbitrary, having no definition, but as a constant it is regarded
as a definite color nevertheless. In actuality, T does not have enough content
to constitute a theory about color, but it will suffice for this simple example.

To show how such an abstract theory might be used, let there be mor-
phisms s(i) : T −→ T (i) (i ∈ {1, 2, 3}) , where T ′, T ′′ and T (3) are concepts
representing three specific colors, red, yellow and green . For example:

Concept T’
sorts Colors, Items
op has color: Items*Colors -> Boolean
const red: Colors
Axiom red-is-expressed is

exists (it: Items) (has color (it,red))
end



4 Generalized Lattices Express Parallel Distributed Concept Learning 67

Theories T ′′ and T (3) are identical except that red is replaced by yellow
and green, respectively. The morphism s′ : T −→ T ′ has the form

Morphism s′ : Colors �→ Colors
Items �→ Items
has color �→ has color
c �→ red

Morphisms s′′ and s(3) are identical except for a color-symbol change. The
axiom re-naming (red-is-expressed replaces color-is-expressed) need
not be included in stating a morphism, since axiom names are simply a cos-
metic touch. Also, it is customary to omit symbols that remain unchanged
when stating a morphism, in this case Colors, Items and has color. Contin-
uing, T ′, T ′′ and T (3) are the domains for morphisms t(i) : T (i) −→ T (4) (i ∈
{1, 2, 3}) which have a common codomain, a theory that uses the three colors:

Concept T(4)

sorts Colors, Apples
op has color: Apples*Colors -> Boolean
const red: Colors
const yellow: Colors
const green: Colors
Axiom some-apple-colors is

exists (x, y, z: Apples)
(has color (x,red))
and (has color (y, yellow))
and (has color (z, green))

end

The morphism t′ : T ′ −→ T (4) , for example, has the form:

Morphism t′ : Items �→ Apples

(The mappings of Colors to Colors, has color to has color, and red to
red are not shown, as is customary.) Notice that the axiom of each of the
theories T ′, T ′′ and T (3), transformed by the symbol substitution from t′, t′′

and t(3), respectively, maps to a theorem of T (4) : For example, exists (x:
Apples) (has color (x,red)) is an immediate consequence of the axiom
some-apple-colors of T (4) .

Finally, the compositions t′ ◦ s′ , t′′ ◦ s′′ and t(3) ◦ s(3) are three distinct
morphisms with domain T and codomain T (4) . For example, t′ ◦ s′ : T −→
T (4) is as follows, by tracing the symbol mappings:

Morphism t′ ◦ s′ : Items �→ Apples
c �→ red

Therefore, the category Concept is not a lattice. Of course, there would have
been only one morphism from T to T (4) had T not included the constant



68 M.J. Healy and T.P. Caudell

c: Color. However, most theories are much more complex than the ones in
this example, increasing the possibilities for morphisms.

Another distinguishing feature of a category of theories is that colimits
and limits are more expressive than joins and meets, for they express the
contents of their base diagrams, not just the concepts. For example, colimits
“paste together” or “blend” the concepts in a diagram along shared concepts
as indicated in the diagram morphisms.

4.4 Colimits — An Example

The concept of a triangle can be derived as a colimit for a diagram involving
concepts about points and lines (the alternative of defining triangles in terms
of angles would complicate the example). We can start with a rather abstract
concept, a theory that defines lines in terms of undefined quantities, or primi-
tives, called points. The definition is expressed using a predicate on with two
arguments, a point and a line, and is true just in case the point “lies on” the
line (see [5] for a discussion of geometries based upon this definition).

Concept T1
sorts Points, Lines
const p1: Points
const p2: Points
const p3: Points
op on: Points*Lines -> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points)
((x not= y) implies

(exists L:Lines)
(on (x, L) and on (y, L) and

((forall m:lines) (on (x, m) and
on (y, m)) implies (m = L) ))

end

Notice that T1 also contains constants representing three arbitrary points
p1, p2 and p3 . Three other concepts T2, T3 and T4 share T1 except with dif-
ferent names for the point constants in each. The latter concepts also include
a line constant and associate two of the point constants with it via the on
predicate. This is specified with an additional axiom (name omitted) which
also states that the two point constants denote distinct points. For example:

Concept T2
sorts Points, Lines
const pa1: Points
const pa2: Points
const paext: Points
const La: Lines



4 Generalized Lattices Express Parallel Distributed Concept Learning 69

op on: Points*Lines --> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points)
((x not= y) implies

(exists L:Lines)
(on (x, L) and on (y, L) and

((forall m:lines) (on (x, m) and
on (y, m)) implies (m = L) ))

on (pa1, La) and on (pa2, La)
and (pa1 not= pa2)

end

Concepts T3 and T4 are identical, except with the names pa1, pa2, paext,
and La replaced with pb1, pb2, pbext, Lb in T3 and pc1, pc2, pcext, Lc in
T4. A morphism s1 : T1 −→ T2 maps the sort symbols Points and Lines and
the on predicate symbol to the corresponding symbols in T2 , which happen
to be identical. We reformulate all statements of T1 by term replacement in
accordance with the symbol mapping to form their image statements in T2 .
As a consequence, the axiom of T1 relating points to lines maps to itself as an
axiom of T2. The point constants p1, p2 and p3 map to the point constants
pa1, pa2 and paext. In T2 , pa1 and pa2 are associated with the line La
via the on predicate, and paext is intended as a point “external to” La.

Morphism s1 : p1 �→ pa1
p2 �→ pa2
p3 �→ paext

Morphisms s2 : T1 −→ T3 and s3 : T1 −→ T4 are similar to s1 but with
different point constant targets pb1, pb2, pbext and pc1, pc2, pcext :

Morphism s2 : p1 �→ pbext
p2 �→ pb1
p3 �→ pb2

Morphism s3 : p1 �→ pc2
p2 �→ pcext
p3 �→ pc1

In T3 , it is the images pb1 of p2 and pb2 of p3 that are associated with the
line constant, lb , while the image pbext of p1 is the “external” point. The
associations are similarly reordered in T4 ; the point-to-line associations in
each concept can be seen by noticing which points are the targets of those of
T1 under the appropriate morphism and applying term substitution. A colimit
for the diagram ∆ with objects T1, T2, T3, T4 and morphisms s1, s2, s3

(which always exists in the category Concept ) has a cocone as shown in
Fig. 4.2, with apical object T5 and leg morphisms �1 : T1 −→ T5 , �2 : T2 −→
T5 , �3 : T3 −→ T5 , and �4 : T4 −→ T5 . With ∆ as the base diagram, the
defining diagram of the colimit, ∆ , is commutative, with



70 M.J. Healy and T.P. Caudell

p2
p1

p3

x y
L

pa2

pa1

paext

pbext

pcextpb1 pb2
pc1

pc2
La

Lb

Lc

p1

p2 p3
La

Lb

Lc

s1
s2 s3

l1

l2
l3

l4

T1

T2 T3 T4

T5

∆

∆

Fig. 4.2. A pictorial illustration of the colimit base and defining diagrams ∆ and
∆ . The contents of the concepts involved are pictured along with the diagrammatic
structure. Solid dots and lines signify point and line constants. Concept T1 has no
line constant, so it is shown containing a dashed line with two open dots, representing
the axiom relating points and lines which is present in all the concepts

�1 = �2 ◦ s1 = �3 ◦ s2 = �4 ◦ s3 . (4.2)

The resulting colimit object, T5 , is as follows:

Concept T5
sorts Points, Lines
const p1: Points
const p2: Points
const p3: Points
const La: Lines
const Lb: Lines
const Lc: Lines
op on: Points*Lines -> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points)
((x not= y) implies

(exists L:Lines)
(on (x, L) and on (y, L) and

((forall m:lines) (on (x, m) and
on (y, m)) implies (m = L) ))



4 Generalized Lattices Express Parallel Distributed Concept Learning 71

on (p1, La) and on (p2, La) and
(p1 not= p2)

on (p2, Lb) and on (p3, Lb) and
(p2 not= p3)

on (p3, Lc) and on (p1, Lc) and
(p3 not= p1)

end

As a consequence of the commutativity of the defining diagram ∆ of the
colimit, its apical concept T5 is a “blending” or “pasting together” of T2, T3

and T4 along their common sub-concept T1 . That is, for the equality (4.2) to
hold, separate symbols of T2, T3 and T4 that are images of the same symbol
of T1 under the three diagram ∆ morphisms s1, s2 and s3 must merge into
a single symbol in the colimit apical concept T5 . To make this clear, each
symbol in T5 that is a merging of symbols has been assigned the name of the
T1 symbol underlying the merging. Thus, symbols such as Points, Lines and
on appear in T5 , and appear only once, since they are mapped to themselves
by each of the morphisms s1, s2 and s3 . The point constants p1, p2, p3 also
appear. However, in T5 , each one represents a merging of two point constants
from T2, T3 and T4 and as a consequence appears in the definition of two
different lines. In two of these concepts, the image of each single point constant
appears in the definition of a line, but as a different point on a different line
in each of the two concepts. In the third concept, it appears as an “external”
point, not on the line named in that concept. For example, p1 in T1 is
mapped to pa1 in T2 via s1 , to pbext in T3 via s2 , and to pc2 in T4 via
s3 . In T5 , therefore, it forms the point p1 at the intersections of lines La
and Lc , and lies external to line Lb . Because of the initiality of the colimit
cocone, any other cocone for ∆ is the codomain of a unique cocone morphism
whose domain is the cocone containing T5 . Therefore, T5 adds no extraneous
information to that in ∆ , and any other apical concept of a cocone for ∆ is
either isomorphic with T5 or extends it without duplicating it.

Because it is more complex, the colimit apical object is more specific, or
more specialized, than any of the concepts in its base diagram. Because it
expresses the “pasting together” of the base diagram concepts around their
shared sub-concepts, it expresses the concept relationships (morphisms) as
well as the concepts in its base diagram. Because of the Colimit Theorem,
the calculation of concept colimits can be automated. For example, the apical
object T5 and leg morphisms �1, �2, �3 , and �4 above can be derived auto-
matically from the objects and morphisms of the base diagram, ∆ . Other
examples are given in [32] for an application of engineering software synthesis
via category theory. Where they are available, limits can be calculated also,
yielding less complex or abstract theories and their attendant morphisms. This
facilitates the generalization of learned concepts to new contexts by extracting
useful invariants from them.



72 M.J. Healy and T.P. Caudell

The ability to calculate concept colimits and limits suggests the ability to
“flesh out” an ontology in an incremental fashion. This process can begin with
a collection of concepts and morphisms describing the most basic properties
of observable quantities and also any desired assumptions about the environ-
ment and the operation of a system within it. More specialized theories can
be calculated as colimits, and more abstract ones as limits, through re-use of
pre-existing concepts and morphisms. Taken together, the discussions in this
section and the previous one suggest the use of category theory in the study
of knowledge systems, learning, and the semantics of distributed, adaptive
systems such as neural networks. Conducting these studies while utilizing the
mathematical rigor of category theory requires the availability of categories
that express the system computations together with structure-preserving map-
pings from Concept to these categories. Any such mappings must be capable
of conveying only part of the ontology expressed in Concept , for two reasons:
(1) Concept is infinite and realizable systems are finite, and (2) in an adap-
tive system, only a part of the ontology will have been learned at any one time.
Another issue arises in systems with multiple sources of inputs working in par-
allel, such as neural networks with more than one sensor. Simultaneous inputs
from the different sensors obtain different types of information about the same
events. Fusing the information across sensors requires a multi-component sys-
tem that can make several knowledge representations act as one.

4.5 Structural Mappings and Systems

A functor F : C −→ D , with domain category C and codomain category D ,
associates to each object a of C a unique image object F (a) of D and to
each morphism f : a −→ b of C a unique morphism F (f) : F (a) −→ F (b)
of D . Moreover, F preserves the compositional structure of C , as follows.
Let ◦C and ◦D denote the separate composition operations in categories
C and D , respectively. For each composition g ◦C f defined for morphisms
of C , F (g ◦C f) = F (g) ◦D F (f) , and for each identity morphism of C ,
F (ida) = idF (a) . It follows that the images of the objects and morphisms in
a commutative diagram of C form a commutative diagram in D . This means
that any structural constraints expressed in C are translated into D and,
hence, F is a structure-preserving mapping. Functors can be many-to-one,
and by this means much of the structure of the domain category of a functor
can be “compressed”, so that not all the structure is represented explicitly
in the codomain. Functors can also be into mappings, so that the codomain
need not be entirely utilized in representing the domain; this leaves room
for a functor to be used in defining an extension of a given category, or in
representing a structure in the context of one with a greater complexity.

We have proposed elsewhere (for example, [15, 16]) that a neural network
at a given stage of learning can be associated with a category NA,w that
expresses both its connectivity and potential state changes in response to its



4 Generalized Lattices Express Parallel Distributed Concept Learning 73

next input. Here, A represents the architectural design including dynamic
properties (the dynamics are represented only in summary fashion as rules for
state changes), while w is the current connection-weight array. An analy-
sis of the network determines whether it is possible to define a functor
M : Concept −→ NA,w . This allows the knowledge-representation capabili-
ties of an existing architecture to be evaluated with mathematical rigor, and
can lead to insights for possible design improvements or for the design of
entirely new architectures. Since functors are many-to-one mappings, concepts
which have not been acquired at some stage of learning or simply cannot be
represented by a given neural network can be included in the analysis.

A further advantage of the categorical approach is the notion of natural
transformations, of the form α : F −→ G with domain functor F : C −→ D
and codomain functor G : C −→ D . A natural transformation α consists of
a system of D -morphisms αa , one for each object a of C , such that the
diagram in D shown in Fig. 4.3 commutes for each morphism f : a −→ b
of C . That is, the morphisms G(f) ◦ αa : F (a) −→ G(b) and αb ◦ F (f) :
F (a) −→ G(b) are actually one and the same, G(f) ◦ αa = αb ◦ F (f) . In
a sense, the two functors have their morphism images F (f) : F (a) −→ F (b) ,
G(f) : G(a) −→ G(b) “stitched together” by other morphisms αa, αb exist-
ing in D , indexed by the objects of C . In a multi-sensor system, with
each sensor having its own dedicated processing network and the networks
connected into a larger system, natural transformations express knowledge
coherence. They accomplish this by unifying the knowledge representations
of the subnetworks of a neural network, which can include subnetworks for
sensor association, planning and other functions (see [14] for an example net-
work). Figure 4.4 illustrates this notion for two functors M1 : Concept −→
NA,w and M2 : Concept −→ NA,w representing sensor-specific processing
knowledge and M3 : Concept −→ NA,w representing knowledge fusion in
an association region of a multi-regional network. Natural transformations
γ1 : M1 −→ M3 and γ2 : M2 −→ M3 provide knowledge coherence between
the separate knowledge representations.

F(a)
αa ��

F(f)

��

G(a)

G(f)

��
F(b)

αb

�� G(b)

Fig. 4.3. A commutative diagram associated with a natural transformation. The
morphisms G(f) ◦ αa : F (a) −→ G(b) and αb ◦ F (f) : F (a) −→ G(b) are one and
the same, G(f) ◦ αa = αb ◦ F (f)



74 M.J. Healy and T.P. Caudell

� � � � ��
�
�

�
�
�

� � � � �

Concept
Category

M1

�� ��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
�

M3

��

M2

��
��

��
��

��
��

��
��

�

��
��

��
��

��
��

��
�

� � � � � � � � � � � � � � � � ��
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�� � � � � � � � � � � � � � � � �

γ1
����������

������� �������
γ2

��� ��������������
�������

Sensor 1
Network

Association
Region

Sensor 2
Network

NA,w

Fig. 4.4. Functors map the hierarchy of a concept category to multiple regions.
Natural transformations represent coherent interconnections between hierarchy rep-
resentations

4.6 From Points to Models

In the topological-lattice account of [12, 29, 30], the instances of propositions
are referred to as points. This is suggestive, for the semantics of proposi-
tional geometric logic is analyzed in terms of topological systems (similar to
the spaces of point-set topology) and continuous functions. However, as men-
tioned in the aforementioned papers by Vickers, category theory is required
for expressing the semantics of the geometric predicate calculus. In this con-
text, the collection of points associated with a predicate formula is a space of
models, or possible worlds in which the predicate has a valid interpretation.
Category theory is required to express the internal structure of theories, and
their model spaces are also categories. The semantic theory presented here
replaces formulas with whole theories, with functors associating theories and
their morphism with objects and morphisms of a neural category . Here, the
models are possible worlds or situations in which a theory is valid.

Each concept morphism s : T −→ T ′ has an associated model-space mor-
phism, a functor Mod(s) : Mod(T ′) −→ Mod(T ) . Here, Mod(T ) and Mod(T ′)
are the model categories for T and T ′ , respectively. Since Mod(s) reverses
the direction of s , each instance of T ′ has a corresponding instance of
T . This fact has great significance for knowledge representation. In partic-
ular, it suggests a design principle for neural networks, as follows: Suppose
that neural category objects M(T ) and M(T ′) are the images of objects
(concepts) T and T ′ under a functor M : Concept −→ NA,w , and that
M(s) : M(T ) −→ M(T ′) is the image of a concept morphism s : T −→ T ′ .
We associate the activating inputs for the objects M(T ) and M(T ′) with
objects in the model categories Mod(T ) and Mod(T ′) , respectively. Given this
association, every input that activates M(T ′) must also activate M(T ) , a con-
sequence of the existence of the model-space morphism Mod(s) : Mod(T ′) −→



4 Generalized Lattices Express Parallel Distributed Concept Learning 75

Mod(T ) . This provides a mathematical justification—in fact, an imperative—
for the presence of feedback in neural networks. Further, this principle applies
in some appropriate form to the design of any knowledge representation
system.

The model-space morphism principle has important implications for limit
and colimit representations. For example, let T be the apical concept of a
limit cone for a diagram ∆ in Concept and let � : T −→ T ′ be one of the
leg morphisms for the limit cone, where T ′ is an object in the base diagram
∆ . Then, M(T ′) is an object in the image diagram M(∆) , and the model-
space morphism principle dictates that the image M(T ) of the limit apical
object must be activated through M(�) whenever M(T ′) is active. The reverse
is true for concept colimits: Every instance of the functorial image of a colimit
apical object must also be an instance of the objects in the image of its base
diagram. One consequence is that the analyst can detect limit and colimit
representations in a given neural network, and distinguish between them.

4.7 Conclusion

We express the semantics of a system in terms of a distributed system of
concepts. The system is an ontology for the system’s environment as experi-
enced through the system inputs, both external to the system and possibly
internally-generated as well. The ontology is expressed mathematically as a
category Concept whose objects are symbolic descriptions (concepts) of a
domain of items (sensed entities, events, situations, and their parts). We have
discussed a sense in which this category is a kind of generalized lattice, dif-
fering from a lattice in having morphisms, which are more expressive than
edges, with a consequent multiplicity of relationships between objects and
with diagrammatic constructions which provide automated concept deriva-
tions useful in expressing learning. Two modes of learning can be expressed,
specialization and abstraction. In a system such as a neural network with
incremental knowledge gain, these two modes serve to “fill out” a repre-
sentation of an ontology for the environment and functionality of the sys-
tem, beginning with basic knowledge about inputs. Mathematical rigor is
maintained through structure-preserving mappings from Concept to a cat-
egory representing the system’s computational structure, thus showing how
concepts, their morphisms, and the consequences of composition including
commutative concept diagrams are represented in the system computations.
Natural transformations formalize knowledge coherence, the unified operation
of the separate knowledge representations in the different subnetworks of a
multi-regional architecture. Another system of structure-preserving mappings
formalizes the relationship between possible worlds for the concept representa-
tions. The semantic theory thus offers a comprehensive mathematical theory
to support investigations in concept learning in adaptive, distributed systems.



76 M.J. Healy and T.P. Caudell

References

1. Adamek J, Herrlich H, Strecker G (1990) Abstract and Concrete Categories.
Cambridge University Press, Cambridge New York

2. Andrews R, Diederich J, Tickle A (1995) Survey and critique of techniques
for extracting rules from trained artificial neural networks. Knowledge-Based
Systems 8:373–389

3. Arbib M (1987) Brains, Machines, and Mathematics. Springer, Berlin
Heidelberg New York

4. Barsalou L (1999) Perceptual symbol systems. Behavioral and Brain Sciences
22:577–660

5. Bennet M (1995) Affine and Projective Geometry. John Wiley and Sons,
New York

6. Craven M, Shavlik J (1993) Learning symbolic rules using artificial neural
networks. In: Proc 10th Intl Machine Learning Conference pp 73–80

7. Crole R (1993) Categories for Types. Cambridge University Press, Cambridge
8. Damasio A (1989) Time-locked multiregional retroactivation: a systems-level

proposal for the neural substrates of recall and recognition. Cognition 33:25–62
9. Damasio A (1999) Decartes’ Error. Putnam, New York

10. Eichenbaum H (2004) Hippocampus: cognitive processes and neural represen-
tations that underlie declarative memory. Neuron 44:109–120

11. Goguen J, Burstall R (1992) Institutions: abstract model theory for specifica-
tion and programming. J Assoc Computing Machinery 39:95–146

12. Healy M (1999) A topological semantics for rule extraction with neural
networks. Connection Science 11:91–113

13. Healy M, Caudell T (1997) Acquiring rule sets as a product of learning in a
logical neural architecture. IEEE Trans Neural Networks 8:461–474

14. Healy M, Caudell T (2003) From categorical semantics to neural network
design. In: Proc Intl Joint Conf Neural Networks pp 1981–1986

15. Healy M, Olinger R, Young R, Caudell T, Larson K (2005) Modification of the
ART-1 architecture based on category theoretic design principles. In: Proc Intl
Joint Conf Neural Networks pp 457–462

16. Healy M, Caudell T (2006) Ontologies and worlds in category theory: implica-
tions for neural systems. Axiomathes 16:165–214

17. Heileman G, Georgiopoulos M, Healy M, Verzi S (1997) The generalization
capabilities of ARTMAP. In: Proc Intl Conf Neural Networks (ICNN)

18. Kaburlasos V, Petridis V (2000) Fuzzy lattice neurocomputing (FLN) models.
Neural Networks 13:1145–1170

19. Kasabov N (1996) Adaptable neuro production systems. Neurocomputing
13:95–117

20. Lawvere F, Schanuel S (1997) Conceptual Mathematics: A First Introduction
to Categories. Cambridge University Press, Cambridge

21. Mac Lane S (1971) Categories for the Working Mathematician. Springer, Berlin
Heidelberg New York

22. McClelland J, McNaughton B, O’Reilly R (1995) Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes
and failures of connectionist models of learning and memory. Psychological
Review 102:419–457

23. Meseguer J (1989) General logics. In: Ebbinghaus H-D, et al (eds) Logic
Colloquium ’87. Science Publishers B V, North-Holland



4 Generalized Lattices Express Parallel Distributed Concept Learning 77

24. Mitra S, Pal S (1995) Fuzzy multi-layer perceptron, inferencing and rule gen-
eration. IEEE Trans Neural Networks 6:51–63

25. Pierce B (1991) Basic Category Theory for Computer Scientists. MIT Press,
Cambridge, Mass London

26. Pinkas G (1995) Reasoning, nonmonotonicity and learning in connectionist net-
works that capture propositional knowledge. Artificial Intelligence 77:203–247

27. Sima J (1995) Neural expert systems. Neural Networks 8:261–271
28. Sussner P (2003) Generalizing operations of binary autoassociative morpholog-

ical memories using fuzzy set theory. J Math Imaging Vision 19:81–93
29. Vickers S (1992) Geometric theories and databases. In: Fourman M, et al (eds)

Applications of Categories in Computer Science, Proc LMS Symp Lec Note Ser
177. Cambridge University Press, Cambridge

30. Vickers S (1993) Topology via Logic. Cambridge University Press, Cambridge
31. Wickelgren I (1997) Getting a grasp on working memory. Science 275:1580–1582
32. Williamson K, Healy M, Barker R (2001) Industrial applications of software

synthesis via category theory-case studies using specware. Automated Software
Eng 8:7–30




