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Summary. Incomplete information is a problem in many aspects of actual environ-
ments. Furthermore, in many scenarios the knowledge is not represented in a crisp
way. It is common to find fuzzy concepts or problems with some level of uncertainty.
There are not many practical systems which handle fuzziness and uncertainty and
the few examples that we can find are used by a minority. To extend a popular sys-
tem (which many programmers are using) with the ability of combining crisp and
fuzzy knowledge representations seems to be an interesting issue.

Fuzzy Prolog [5] is a language that models fuzziness and uncertainty. In this
chapter we enhance Fuzzy Prolog by using default knowledge to represent incomplete
information in Logic Programming. We also provide the implementation of this new
framework. This new release of Fuzzy Prolog handles incomplete information, it has
a complete semantics (the previous one was incomplete as Prolog) and moreover it
is able to combine crisp and fuzzy logic in Prolog programs. Therefore, new Fuzzy
Prolog is more expressive to represent real world.

Fuzzy Prolog inherited from Prolog its incompleteness. The incorporation of
default reasoning to Fuzzy Prolog removes this problem and requires a richer seman-
tics which it is discussed.

14.1 Introduction

World information is not represented in a crisp way. Its representation is
imperfect, fuzzy, etc., so that the management of uncertainty is very important
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in knowledge representation. There are multiple frameworks for incorporating
uncertainty in logic programming:

• fuzzy set theory
• probability theory
• multi-valued logic
• possibilistic logic

In [10] a general framework was proposed that generalizes many of the
previous approaches. At the same time an analogous theoretical framework
was provided and a prototype for Prolog was implemented [21]. Basically, a
rule is of the form A ← B1, . . . , Bn, where the assignment I of certainties is
taken from a certainty lattice, to the Bis. The certainty of A is computed by
taking the set of the certainties I(Bi) and then they are propagated using the
function F that is an aggregation operator. This is a very flexible approach
and in [5, 22] practical examples in a Prolog framework are presented.

In this work we extend the approach of [5] with arbitrary assignments of
default certainty values (non-uniform default assumptions). The usual seman-
tics of logic programs can be obtained through a unique computation method,
but using different assumptions in a uniform way to assign the same default
truth-value to all the atoms. The most well known assumptions are:

• the Closed World Assumption (CWA), which asserts that any atom whose
truth-value cannot be inferred from the facts and clauses of the program
is supposed to be false (i.e. certainty 0). It is used in stable models [2, 3]
and well-founded semantics [12, 13, 15],

• the Open World Assumption (OWA), which asserts that any atom whose
truth-value cannot be inferred from the facts and clauses of the program
is supposed to be undefined or unknown (i.e. certainty in [0, 1]). It is used
in [10].

There are also some approaches [23, 24] where both assumptions can be
combined and some atoms can be interpreted assuming CWA while others
follows OWA. Anyway, what seems really interesting is not only to combine
both assumptions but to generalize the use of a default value. The aim is
working with incomplete information with more guarantees.

The rest of the paper is organized as follows. Section 14.2 introduces the
Fuzzy Prolog language. A complete description of the new semantics of Fuzzy
Prolog is provided in Section 14.3. Section 14.4 completes the details about
the improved implementation using CLP(R) with the extension to handle
default knowledge. Some illustrating examples are provided in section 14.5.
Finally, we conclude and discuss some future work in section 14.6.

14.2 Fuzzy Prolog

In this section we are going to summarize the main characteristics of the Fuzzy
Prolog that we proposed in [5] and that is the basis of the work presented here.
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Fuzzy Prolog is more general than previous approaches to introduce fuzziness
in Prolog in some respects:

1. A truth value will be a finite union of closed sub-intervals on [0, 1]. This
is represented by Borel algebra, B([0, 1]), while the algebra E([0, 1]) only
considers intervals. A single interval is a special case of union of intervals
with only one element, and a unique truth value is a particular case of
having an interval with only one element.

2. A truth value will be propagated through the rules by means of an aggre-
gation operator. The definition of aggregation operator is general in the
sense that it subsumes conjunctive operators (triangular norms [9] like
min, prod, etc.), disjunctive operators [19] (triangular co-norms, like max,
sum, etc.), average operators (like arithmetic average, quasi-linear aver-
age, etc) and hybrid operators (combinations of the above operators [17]).
In [11]3 a resolution-Like Strategy based on a Lattice-Value Logic is pro-
posed, as in our approach, although it is limited to the Lukasiewicz’s
implication operator.

3. The declarative and procedural semantics for Fuzzy Logic programs are
given and their equivalence is proved.

4. An implementation of the proposed language is presented. A fuzzy program
is a finite set of
• fuzzy facts (A ← v, where A is an atom and v, a truth value, is an

element in B([0, 1]) expressed as constraints over the domain [0, 1]),
and

• fuzzy clauses (A ←F B1, . . . , Bn, where A,B1, . . . , Bn are atoms,
and F is an interval-aggregation operator, which induces a union-
aggregation, as by Definition 14.2, F of truth values in B([0, 1]) repre-
sented as constraints over the domain [0, 1]).

We obtain information from the program through fuzzy queries or fuzzy
goals (v ← A ? where A is an atom, and v is a variable, possibly instan-
tiated, that represents a truth value in B([0, 1])).

Programs are defined as usual but handling truth values in B([0, 1]) (the
Borel algebra over the real interval [0, 1] that deals with unions of intervals)
represented as constraints. We refer, for example, to expressions as: (v ≥
0.5 ∧ v ≤ 0.7) ∨ (v ≥ 0.8 ∧ v ≤ 0.9) to represent a truth value in
[0.5, 0.7]

⋃
[0.8, 0.9].

A lot of everyday situations can only be represented by this general rep-
resentation of truth value. There are some examples in [5].

The truth value of a goal will depend on the truth value of the subgoals
which are in the body of the clauses of its definition. Fuzzy Prolog [5] uses
aggregation operators [20] in order to propagate the truth value by means

3 This work discusses the resolution based on a Lattice-Valued Logic for the Prolog
language at theoretical level. In our approach we provide also an operational
semantics and an implementation using an extended Prolog with constraints.



290 S. Munoz-Hernandez and C. Vaucheret

of the fuzzy rules. Fuzzy sets aggregation is done using the application of a
numeric operator of the form f : [0, 1]n → [0, 1]. An aggregation operator
must verify f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1, and in addition it should
be monotonic and continuous. If we deal with the definition of fuzzy sets as
intervals it is necessary to generalize from aggregation operators of numbers to
aggregation operators of intervals. Following the theorem proved by Nguyen
and Walker in [16] to extend T-norms and T-conorms to intervals, we propose
the following definitions.

Definition 14.1 (interval-aggregation) Given an aggregation f : [0, 1]n →
[0, 1], an interval-aggregation F : E([0, 1])n → E([0, 1]) is defined as follows:

F ([xl
1, x

u
1 ], ..., [xl

n, xu
n]) = [f(xl

1, ..., x
l
n), f(xu

1 , ..., xu
n)].

Actually, we work with union of intervals and propose the definition:

Definition 14.2 (union-aggregation) Given an interval-aggregation
F : E([0, 1])n → E([0, 1]) defined over intervals, a union-aggregation
F : B([0, 1])n → B([0, 1]) is defined over union of intervals as follows:

F(B1, . . . , Bn) = ∪{F (E1, ..., En) | Ei ∈ Bi}.

In the presentation of the theory of possibility [25], Zadeh considers that
fuzzy sets act as an elastic constraint on the values of a variable and fuzzy
inference as constraint propagation.

In [5] (and furthermore in the extension that we presented in this paper),
truth values and the result of aggregations are represented by constraints.
A constraint is a Σ-formula where Σ is a signature that contains the real
numbers, the binary function symbols + and ∗, and the binary predicate
symbols =, < and ≤. If the constraint c has solution in the domain of real
numbers in the interval [0, 1] then c is consistent, and is denoted as solvable(c).

14.3 Semantics

This section contains a reformulation of the semantics of Fuzzy Prolog. This
new semantics is complete thanks to the inclusion of default value.

14.3.1 Least model semantics

The Herbrand universe U is the set of all ground terms, which can be made up
with the constants and function symbols of a program, and the Herbrand base
B is the set of all ground atoms which can be formed by using the predicate
symbols of the program with ground terms (of the Herbrand universe) as
arguments.
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Definition 14.3 (default value) We assume there is a function default
which implement the Default Knowledge Assumptions. It assigns an element of
B([0, 1]) to each element of the Herbrand Base. If the Closed World Assump-
tion is used, then default(A) = [0, 0] for all A in Herbrand Base. If Open
World Assumption is used instead, default(A) = [0, 1] for all A in Herbrand
Base.

Definition 14.4 (interpretation) An interpretation I = 〈BI , VI〉 consists
of the following:

1. a subset BI of the Herbrand Base,
2. a mapping VI , to assign

a) a truth value, in B([0, 1]), to each element of BI , or
b) default(A), if A does not belong to BI .

Definition 14.5 (interval inclusion ⊆II) Given two intervals I1 = [a, b],
I2 = [c, d] in E([0, 1]), I1 ⊆II I2 if and only if c ≤ a and b ≤ d.

Definition 14.6 (Borel inclusion ⊆BI) Given two unions of intervals U =
I1 ∪ · · · ∪ IN , U ′ = I ′1 ∪ · · · ∪ I ′M in B([0, 1]), U ⊆BI U ′ if and only if ∀Ii ∈ U ,
i ∈ 1..N , Ii can be partitioned in to intervals Ji1, ..., JiL, i.e. Ji1 ∪ ... ∪ JiL =
Ii, Ji1 ∩ ... ∩ JiL is the set of the border elements of the intervals (except the
lower limit of Ji1 and the upper limit of JiL) and for all k ∈ 1..L, ∃J ′

jk ∈
U ′ . Jik ⊆II J ′

jk where jk ∈ 1..M .

The Borel algebra B([0, 1]) is a complete lattice under ⊆BI (Borel inclu-
sion), and the Herbrand base is a complete lattice under ⊆ (set inclusion) and
so the set of all interpretations forms a complete lattice under the relation %
defined as follows.
Notice that we have redefined interpretation and Borel inclusion with respect
to the definitions in [5]. We will also redefine the operational semantics and
therefore the internal implementation of the Fuzzy Prolog library. Sections
below are completely new too. For uniformity reasons we have kept the same
syntax that was used in [5] in fuzzy programs.

Definition 14.7 (interpretation inclusion %) Let I = 〈BI , VI〉 and
I ′ = 〈BI′ , VI′〉 be interpretations. I % I ′ if and only if BI ⊆ BI′ and for all
B ∈ BI , VI(B) ⊆BI VI′(B).

Definition 14.8 (valuation) A valuation σ of an atom A is an assignment
of elements of U to variables of A. So σ(A) ∈ B is a ground atom.

In the Herbrand context, a valuation is the same as a substitution.

Definition 14.9 (model) Given an interpretation I = 〈BI , VI〉,
• I is a model for a fuzzy fact A ← v, if for all valuations σ, σ(A) ∈ BI and

v ⊆BI VI(σ(A)).
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• I is a model for a clause A ←F B1, . . . , Bn when the following holds:
for all valuations σ, σ(A) ∈ BI and v ⊆BI VI(σ(A)), where v =
F(VI(σ(B1)), . . . , VI(σ(Bn))) and F is the union aggregation obtained
from F .

• I is a model of a fuzzy program, if it is a model for the facts and clauses
of the program.

Every program has a least model which is usually regarded as the intended
interpretation of the program since it is the most conservative model. Let ∩
(that appears in the following theorem) be the meet operator on the lattice
of interpretations (I,%). We can prove the following result.

Theorem 14.1 (model intersection property) Let I1 = 〈BI1 , VI1〉, I2 =
〈BI1 , VI1〉 be models of a fuzzy program P . Then I1 ∩ I2 is a model of P .

Proof. Let M = 〈BM , VM 〉 = I1 ∩ I2. Since I1 and I2 are models of P , they
are models for each fact and clause of P . Then for all valuations σ we have

• for all facts A ← v in P ,
– σ(A) ⊆ BI1 and σ(A) ∈ BI2 , and so σ(A) ∈ BI1 ∩BI2 = BM ,
– v ⊆BI VI1(σ(A)) and v ⊆BI VI2(σ(A)), and so hence

v ⊆BI VI1(σ(A)) ∩ VI2(σ(A)) = VM (σ(A))
therefore M is a model for A ← v

• and for all clauses A ←F B1, . . . , Bn in P
– since σ(A) ∈ BI1 and σ(A) ∈ BI2 , hence σ(A) ∈ BI1 ∩BI2 = BM .
– if v = F(VM (σ(B1)), . . . , VM (σ(Bn))), since F is monotonic, v ⊆BI

VI1(σ(A)) and v ⊆BI VI2(σ(A)), hence v ⊆BI VI1(σ(A))∩VI2(σ(A)) =
VM (σ(A))

therefore M is a model for A ←F B1, . . . , Bn

and M is model of P .�

Remark 14.1 (Least model semantic). If we let M be the set of all models
of a program P , the intersection of all of these models,

⋂
M, is a model and it

is the least model of P . We denote the least model of a program P by lm(P ).

Example 14.1 Let’s see an example (from [5]). Suppose we have the follow-
ing program P :

tall(peter) ← [0.6, 0.7] ∨ 0.8
tall(john) ← 0.7
swift(john) ← [0.6, 0.8]
good player(X) ←luka tall(X), swift(X)

Here, we have two facts, tall(john) and swift(john) whose truth val-
ues are the unitary interval [0.7, 0.7] and the interval [0.6, 0.8], respectively,
and a clause for the good player predicate whose aggregation operator is the
Lukasiewicz T-norm.



14 Fuzzy Prolog 293

The following interpretation I = 〈B, V 〉 is a model for P , where
B = {tall(john), tall(peter), swift(john),

good player(john), good player(peter)} and

V (tall(john)) = [0.7, 1]
V (swift(john)) = [0.5, 0.8]

V (tall(peter)) = [0.6, 0.7] ∨ [0.8, 0.8]
V (good player(john)) = [0.2, 0.9]
V (good player(peter)) = [0.5, 0.9]

note that for instance if V (good player(john)) = [0.2, 0.5] I = 〈B, V 〉 cannot
be a model of P , the reason is that v = luka([0.7, 1], [0.5, 0.8]) = [0.7 + 0.5 −
1, 1 + 0.8− 1] = [0.2, 0.8] 	⊆II [0.2, 0.5].

The least model of P is the intersection of all models of P which is M =
〈BM , VM 〉 where
BM = {tall(john), tall(peter), swift(john),
good player(john)} and

VM (tall(john)) = [0.7, 0.7]
VM (swift(john)) = [0.6, 0.8]

VM (tall(peter)) = [0.6, 0.7] ∨ [0.8, 0.8]
VM (good player(john)) = [0.3, 0.5].

14.3.2 Fixed-point semantics

The fixed-point semantics we present is based on a one-step consequence oper-
ator TP . The least fixed-point lfp(TP ) = I (i.e. TP (I) = I) is the declarative
meaning of the program P , so is equal to lm(P ). We include it here for clarity
reasons although it is the same that in [5].

Let P be a fuzzy program and BP the Herbrand base of P ; then the
mapping TP over interpretations is defined as follows:

Let I = 〈BI , VI〉 be a fuzzy interpretation, then TP (I) = I ′, I ′ = 〈BI′ , VI′〉,
BI′ = {A ∈ BP | Cond}, VI′(A) =

⋃
{v ∈ B([0, 1]) | Cond}

where

Cond = (A ← v is a ground instance of a fact in P and
solvable(v)) or
(A ←F A1, . . . , An is a ground instance of a
clause in P, and
solvable(v), v = F(VI(A1), . . . , VI(An))).

Note that since I ′ must be an interpretation, VI′(A) = default(A) for all
A /∈ BI′ .

The set of interpretations forms a complete lattice, so that TP it is con-
tinuous.

Recall (from [5]) the definition of the ordinal powers of a function G over
a complete lattice X:
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G ↑ α =
{⋃

{G ↑ α′ | α′ < α} if α is a limit ordinal,
G(G ↑ (α− 1)) if α is a successor ordinal,

and dually,

G ↓ α =
{⋂

{G ↓ α′ | α′ < α} if α is a limit ordinal,
G(G ↓ (α− 1)) if α is a successor ordinal,

Since the first limit ordinal is 0, it follows that G ↑ 0 = ⊥X (the bottom
element of the lattice X) and G ↓ 0 = )X (the top element). From Kleene’s
fixed point theorem we know that the least fixed-point of any continuous
operator is reached at the first infinite ordinal ω. Hence lfp(TP ) = TP ↑ ω.

Example 14.2 Consider the same program P of the example 14.1 (from [5]),
the ordinal powers of TP are
TP ↑ 0 = {}
TP ↑ 1 = {tall(john), swift(john), tall(peter)} and

V (tall(john)) = [0.7, 0.7]
V (swift(john)) = [0.6, 0.8]
V (tall(peter)) = [0.6, 0.7] ∨ [0.8, 0.8]

TP ↑ 2 = {tall(john), swift(john), tall(peter), good player(john)} and

V (tall(john)) = [0.7, 0.7]
V (swift(john)) = [0.6, 0.8]
V (tall(peter)) = [0.6, 0.7] ∨ [0.8, 0.8]
V (good player(john)) = [0.3, 0.5]

TP ↑ 3 = TP ↑ 2.

Lemma 14.1 Let P a fuzzy program. Then M is a model of P if and only if
M is a pre-fixpoint of TP , that is TP (M) % M.

Proof. Let M = 〈BM , VM 〉 and TP (M) = 〈BTP
, VTP

〉.
We first prove the “only if” (→) direction. Let A be an element of Herbrand

Base, if A ∈ BTP
, then by definition of TP there exists a ground instance of

a fact of P , A ← v, or a ground instance of a clause of P , A ←F A1, . . . , An

where {A1, . . . , An} ⊆ BM and v = F(VM (A1), . . . , VM (An)). Since M is a
model of P , A ∈ BM , and each v ⊆BI VM (A), then VTP

(A) ⊆BI VM (A) and
then TP (M) % M . If A /∈ BTP

then VTP
(A) = default(A) ⊆BI VM (A).

Analogously, for the “if” (←) direction, for each ground instance
v = F(VM (A1), . . . , VM (An)), A ∈ BTP

and v ⊆BI VTP
(A), but as TP (M) %

M , BTP
⊆ BM and VTP

(A) ⊆BI VM (A). Then A ∈ BM and v ⊆BI VM (A)
therefore M is a model of P . �

Given this relationship, it is straightforward to prove that the least model
of a program P is also the least fixed-point of TP .
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Theorem 14.2 Let P be a fuzzy program. Then lm(P ) = lfp(TP ).

Proof.
lm(P ) =

⋂
{M | M is a model of P}

=
⋂
{M | M is a pre-fixpoint of P}

from lemma 14.1
= lfp(TP )

by the Knaster-Tarski
Fixpoint Theorem [18].�

14.3.3 Operational semantics

The improvement of Fuzzy Prolog is remarkable in its new procedural seman-
tics that is interpreted as a sequence of transitions between different states
of a system. We represent the state of a transition system in a computation
as a tuple 〈A, σ, S〉 where A is the goal, σ is a substitution representing the
instantiation of variables needed to get to this state from the initial one and
S is a constraint that represents the truth value of the goal at this state.

When computation starts, A is the initial goal, σ = ∅ and S is true (if
there are neither previous instantiations nor initial constraints). When we
get to a state where the first argument is empty then we have finished the
computation and the other two arguments represent the answer.

Definition 14.10 (Transition) A transition in the transition system is
defined as:

1. 〈A ∪ a, σ, S〉 → 〈Aθ, σ · θ, S ∧ µa = v〉
if h ← v is a fact of the program P , θ is the mgu of a and h, µa is the
truth value for a and solvable(S ∧ µa = v).

2. 〈A ∪ a, σ, S〉 → 〈(A ∪B)θ, σ · θ, S ∧ c〉
if h ←F B is a rule of the program P , θ is the mgu of a and h, c is
the constraint that represents the truth value obtained applying the union-
aggregation F to the truth values of B, and solvable(S ∧ c).

3. 〈A ∪ a, σ, S〉 → 〈A, σ, S ∧ µa = v〉
if none of the above are applicable and solvable(S ∧ µa = v) where µa =
default(a).

Definition 14.11 (Success set) The success set SS(P ) collects the answers
to simple goals p(x̂). It is defined as follows: SS(P ) = 〈B, V 〉
where B = {p(x̂)σ|〈p(x̂), ∅, true〉 →∗ 〈∅, σ, S〉} is the set of elements of the
Herbrand Base that are instantiated and that have succeeded; and V (p(x̂)) =
∪{v|〈p(x̂), ∅, true〉 →∗ 〈∅, σ, S〉, and v is the solution of S} is the set of truth
values of the elements of B that is the union (got by backtracking) of truth
values that are obtained from the set of constraints provided by the program P
while query p(x̂) is computed.
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Example 14.3 Let P be the program of example 14.1 (from [5]). Consider
the fuzzy goal

µ ← good player(X) ?

the first transition in the computation is

〈{(good player(X)}, ε, true〉 →
〈{tall(X), swift(X)}, ε, µ = max(0, µtall + µswift − 1)〉

unifying the goal with the clause and adding the constraint corresponding to
Lukasiewicz T-norm. The next transition leads to the state:

〈{swift(X)}, {X = john}, µ = max(0, µtall + µswift − 1) ∧ µtall = 0.7〉

after unifying tall(X) with tall(john) and adding the constraint regarding the
truth value of the fact. The computation ends with:

〈{}, {X = john}, µ = max(0, µtall+µswift−1)∧µtall = 0.7∧0.6 ≤ µswift∧
µswift ≤ 0.8〉

As µ = max(0, µtall +µswift−1)∧µtall = 0.7∧0.6 ≤ µswift∧µswift ≤ 0.8
entails µ ∈ [0.3, 0.5], the answer to the query good player(X) is X = john
with truth value the interval [0.3, 0.5].

In order to prove the equivalence between operational semantic and fixed-
point semantic, it is useful to introduce a type of canonical top-down eval-
uation strategy. In this strategy all literals are reduced at each step in a
derivation. For obvious reasons, such a derivation is called breadth-first.

Definition 14.12 (Breadth-first transition) Given the following set of
valid transitions:

〈{A1, . . . , An}, σ, S〉 → 〈{A2, . . . , An} ∪B1, σ · θ1, S ∧ c1〉
〈{A1, . . . , An}, σ, S〉 → 〈{A1, A3 . . . , An} ∪B2, σ · θ2, S ∧ c2〉

. . .
〈{A1, . . . , An}, σ, S〉 → 〈{A1, . . . , An−1} ∪Bn, σ · θn, S ∧ cn〉

a breadth-first transition is defined as
〈{A1, . . . , An}, σ, S〉 →BF 〈B1 ∪ . . . ∪Bn, σ · θ1 · . . . · θn, S ∧ c1 ∧ . . . ∧ cn〉

in which all literals are reduced at one step.

Theorem 14.3 Given an ordinal number n and TP ↑ n = 〈BTPn
, VTPn

〉.
There is a successful breadth-first derivation of length less or equal to n + 1
for a program P , 〈{A1, . . . , Ak}, σ, S1〉 →∗

BF 〈∅, θ, S2〉 iff Aiθ ∈ BTPn
and

solvable(S ∧ µAi
= vi) and vi ⊆BI VTPn

(Aiθ).

Proof. The proof is by induction on n. For the base case, all the literals are
reduced using the first type of transitions or the last one, that is, for each
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literal Ai, it exits a fact hi ← vi such that θi is the mgu of Ai and hi, and µAi

is the truth variable for Ai, and solvable(S1 ∧µAi
= vi) or µAi

= default(Ai).
By definition of TP , each vi ⊆BI VTP1

(Aiθ) where 〈BTP1
, VTP1

〉 = TP ↑ 1.
For the general case, consider the successful derivation,

〈{A1, . . . , Ak}, σ1, S1〉 →BF 〈B, σ2, S2〉 →BF . . . →BF 〈∅, σn, Sn〉
the transition 〈{A1, . . . , Ak}, σ1, S1〉 →BF 〈B, σ2, S2〉

When a literal Ai is reduced using a fact or there is not rule for Ai,
the result is the same as in the base case. Otherwise there is a clause hi ←F

B1i
, . . . , Bmi

in P such that θi is the mgu of Ai and hi ∈ Bσ2 and Bji
θi ∈ Bσ2,

by the induction hypothesis Bσ2 ⊆ BTPn−1
and solvable(S2 ∧ µBji

= vji
)

and vji
⊆BI VTPn−1

(Bji
σ2) then Bji

θi ⊆ BTPn−1
and by definition of TP ,

Aiθi ∈ BTPn
and solvable(S1 ∧ µAi

= vi) and vi =⊆BI VTPn
(Aiσ1). �

Theorem 14.4 For a program P there is a successful derivation

〈p(x̂), ∅, true〉 →∗ 〈∅, σ, S〉

iff p(x̂)σ ∈ B and v is the solution of S and v ⊆BI V (p(x̂)σ) where lfp(TP ) =
〈B, V 〉.

Proof. It follows from the fact that lfp(TP ) = TP ↑ ω and from the Theorem
14.3. �

Theorem 14.5 For a fuzzy program P the three semantics are equivalent,
i.e.

SS(P ) = lfp(TP ) = lm(P ).

Proof. The first equivalence follows from Theorem 14.4 and the second from
Theorem 14.2. �

14.4 Implementation and Syntax

14.4.1 CLP(R)

Constraint Logic Programming [7] began as a natural merging of two declara-
tive paradigms: constraint solving and logic programming. This combination
helps make CLP programs both expressive and flexible, and in some cases,
more efficient than other kinds of logic programs. CLP(R) [8] has linear arith-
metic constraints and computes over the real numbers.

Fuzzy Prolog was implemented in [5] as a syntactic extension of a CLP(R)
system. CLP(R) was incorporated as a library in the Ciao Prolog system4.

Ciao Prolog is a next-generation logic programming system which, among
other features, has been designed with modular incremental compilation in

4 The Ciao system [1] including our Fuzzy Prolog implementation can be down-
loaded from http://www.clip.dia.fi.upm.es/Software/Ciao
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mind. Its module system [1] permits having classical modules and fuzzy mod-
ules in the same program and it incorporates CLP(R).

Many Prolog systems have included the possibility of changing or expand-
ing the syntax of the source code. One way is using the op/3 built-in and
another is defining expansions of the source code by allowing the user to
define a predicate typically called term expansion/2. Ciao has redesigned
these features so that it is possible to define source translations and operators
that are local to the module or user file defining them. Another advantage of
the module system of Ciao is that it allows separating code that will be used
at compilation time from code which will be used at run-time.

The fuzzy library (or package in the Ciao Prolog terminology) which imple-
ments the interpreter of our Fuzzy Prolog language [5] has been modified to
handle default reasoning.

14.4.2 Syntax

Let us recall, from [5], the syntax of Fuzzy Prolog. Each Fuzzy Prolog clause
has an additional argument in the head which represents its truth value in
terms of the truth values of the subgoals of the body of the clause. A fact
A ← v is represented by a Fuzzy Prolog fact that describes the range of values
of v with a union of intervals (which can be only an interval or even a real
number in particular cases). The following examples illustrate the concrete
syntax of programs:

youth(45) ← [0.2, 0.5]
⋃

[0.8, 1]
tall(john) ← 0.7
swift(john) ← [0.6, 0.8]
good player(X) ←min tall(X),

swift(X)

youth(45):∼ [0.2,0.5]v[0.8,1]
tall(john):∼ 0.7
swift(john):∼ [0.6,0.8]
good player(X):∼min tall(X),

swift(X)

These clauses are expanded at compilation time to constrained clauses that
are managed by CLP(R) at run-time. Predicates . = ./2, . < ./2, . <= ./2,
. > ./2 and . >= ./2 are the Ciao CLP(R) operators for representing con-
straint inequalities, we will use them in the code of predicates definitions
(while we will use the common operators =, <, ≤, >, ≥ for theoretical defi-
nitions). For example the first fuzzy fact is expanded to these Prolog clauses
with constraints

youth(45,V):- V .>=. 0.2, V .<=. 0.5.
youth(45,V):- V .>=. 0.8, V .<. 1.
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And the fuzzy clause

good_player(X) :~ min tall(X),swift(X).

is expanded to

good_player(X,Vp) :- tall(X,Vq),
swift(X,Vr),
minim([Vq,Vr],Vp),
Vp .>=. 0,
Vp .=<. 1.

The predicate minim/2 is included as run-time code by the library. Its
function is adding constraints to the truth value variables in order to imple-
ment the T-norm min.

minim([],_).
minim([X],X).
minim([X,Y|Rest],Min):-

min(X,Y,M),
minim([M|Rest],Min).

min(X,Y,Z):- X .=<. Y , Z .=. X.
min(X,Y,Z):- X .>. Y, Z .=. Y .

We have implemented several aggregation operators as prod, max, luka
(Lukasiewicz operator), etc. and in a similar way any other operator can be
added to the system without any effort. The system is extensible by the user
simply adding the code for new aggregation operators to the library.

14.5 Combining Crisp and Fuzzy Logic

14.5.1 Example: Teenager student

In order to use definitions of fuzzy predicates that include crisp subgoals we
must define properly their semantics with respect to the Prolog Close World
Assumption (CWA) [4]. We will present a motivating example from [5].

Fuzzy clauses usually use crisp predicate calls as requirements that data
have to satisfy to verify the definition in a level superior to 0, i.e. crisp pred-
icates are usually tests that data should satisfy in the body of fuzzy clauses.
For example, if we can say that a teenager student is a student whose age is
about 15 then we can define the fuzzy predicate teenager student/2 in Fuzzy
Prolog as

teenager_student(X,V):~
student(X),
age_about_15(X,V2).
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In this example we pretend the goal teenager student(X,V ) provides:

• V = 0 if the value of X is not the name of a student.
• The corresponding truth value V if the value of X is the name of a student

and we know that his age is about 15 in a certain level.
• Unknown if the value of X is the name of a student but we do not know

anything about his/her age.

Note that we can face the risk of unsoundness unless the semantics of crisp
and fuzzy predicates is properly defined. CWA means that all non-explicit
information is false. E.g., if we have the predicate definition of student/1 as

student(john).
student(peter).

then we have that the goal student(X) succeeds with X = john or with
X = peter but fails with any other value different from these; i.e:

?- student(john).
yes

?- student(nick).
no

which means that john is a student and nick is not. This is the semantics
of Prolog and it is the one we are going to adopt for crisp predicates because
we want our system to be compatible with conventional Prolog reasoning.
But what about fuzzy predicates? According to human reasoning we should
assume OWA (non explicit information in unknown). Consider the following
definition of age about 15/2

age_about_15(john,1):~ .
age_about_15(susan,0.7):~ .

The goal age about 15(X,V ) succeeds with X = john and V = 1 or with
X = susan and V = 0.7. If we want to work with the CWA, like crisp
predicates do, then we will obtain V = 0 for any other value of X different
from john and susan. The meaning is that the predicate is defined for all
values and the membership value will be 0 if the predicate is not explicitly
defined with other value. In this example we know that the age of john is 15
and susan’s age is about 15 and with CWA we are also saying that the rest
of the people are not about 15. This is the equivalent semantics to the one
in crisp definitions but we think that we usually prefer to mean something
different, i.e. in this case we can mean that we know that john and susan are
about 15 and that we have no information about the age of the rest of people.

Therefore we do not know if the age of peter is about 15 or not; and we
know that nick’s age is definitely not about 15. We can explicitly declare

age_about_15(nick,0):~ .
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We are going to work with this semantics for fuzzy predicates because we
think it is the most alike to human reasoning. So a fuzzy goal can be true
(value 1), false (value 0) or having other membership value. We have added
the concept of unknown to represent no explicit knowledge in fuzzy definitions.
We understand that if we don’t have any information about a truth value V
then its value is something (a value, an interval or a union of intervals) in the
interval {0, 1}, so the most general assumption is the whole interval [0, 1]. The
interval is represented by its corresponding constraints V ≥ 0 and V ≤ 1.

Our way to introduce crisp subgoals into the body of fuzzy clauses is trans-
lating the crisp predicate into the respective fuzzy predicate. In the example
the way to obtain it is by overcoming the CWA behavior of the crisp predicate
student/1 to obtain the truth value 0 for student(susan). The solution is to
fuzzify crisp predicates when they are in the body of fuzzy clauses.

For each crisp predicate in the definition of fuzzy predicate, the compiler
will generate a fuzzy version to replace the original one in the body of the
clause. For the example above of crisp predicate student/1, the compiler will
produce the predicate f student/2 that is an equivalent fuzzy predicate to
the crisp one. For our example we obtain the following Prolog definition of
teenager student/2.

teenager_student(X,V):~
f_student(X,V1),
age_about_15(X,V2).

Where the default truth value of a crisp predicate is 0.

f_student(X,1):- student(X).
:-default(f_student/2,0).

Nevertheless, we consider for age about 15/2 and teenager student/2 that the
default value is unknown (the whole interval [0, 1]).

:-default(age_about_15/2,[0,1]).
:-default(teenager_student/2,[0,1]).

Observe the following consults:

?- age_about_15(john,X).
X = 1

?- age_about_15(nick,X).
X = 0

?- age_about_15(peter,X).
X .>=. 0, X .<=. 1

This means john’s age is about 15, nick’s age is not about 15 and we have
no data about peter’s age.
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We expect the same behavior with the fuzzy predicate teenager student/2,
i.e.:

?- teenager_student(john,V).
V .=. 1

?- teenager_student(susan,V).
V .=. 0

?- teenager_student(peter,V).
V .>=. 0, V .<=. 1

as john is a “teenager student” (he is a student and his age is about 15),
susan is not a “teenager student” (she is not a student) and we do not know
the value of maturity of peter as student because although he is a student, we
do not know if his age is about 15.

Now the internal fuzzy resolution is simple, sound and very homogeneous
because we only consider fuzzy subgoals in the body of the clause.

14.5.2 Example: Timetable compatibility

Another real example could be the problem of compatibility of a couple of
shifts in a work place. For example teachers that work in different class timeta-
bles, telephone operators, etc. Imagine a company where the work is divided
in shifts of 4 hours per week. Many workers have to combine a couple of shifts
in the same week and a predicate compatible/2 is necessary to check if two
shifts are compatible or to obtain which couples of shifts are compatible. Two
shifts are compatible when both are correct (working days from Monday to
Friday, hours between 8 a.m. and 18 p.m. and there are no repetitions of the
same hour in a shift) and in addition when the shifts are disjoint.

compatible(T1,T2):-
correct_shift(T1),
correct_shift(T2),
disjoint(T1,T2).

But there are so many compatible combinations of shifts that it would
be useful to define the concept of compatibility in a fuzzy way instead of in
the crisp way it is defined above. It would express that two shifts could be
incompatible if one of them is not correct or if they are not disjoint but when
they are compatible, they can be more or less compatible. They can have a
level of compatibility. Two shifts will be more compatible if the working hours
are concentrated (the employee has to go to work few days during the week).
Also, two shifts will be more compatible if there are few free hours between
the busy hours of the working days of the timetable.
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Fig. 14.1. Timetable 1 and 2

Therefore, we are handling crisp concepts (correct shift/1, disjoint/2)
besides fuzzy concepts (without gaps/2, few days/2). Their definitions, rep-
resented in Fig. 14.3 and Fig. 14.4, are expressed in our language in this simple
way (using the operator “: #” for function definitions and the reserved word
“fuzzy predicate”):

few_days :# fuzzy_predicate([(0,1),
(1,0.8),(2,0.6),
(3,0.4),(4,0.2),
(5,0)]).

without_gaps :# fuzzy_predicate([(0,1),
(1,0.8),(5,0.3),
(7,0.1),(8,0)]).

A simple implementation in Fuzzy Prolog combining both types of predi-
cates could be:

compatible(T1,T2,V):~ min
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Fig. 14.2. Timetable 3 and 4

f_correct_shift(T1,V1),
f_correct_shift(T2,V2),
f_disjoint(T1,T2,V3),
f_append(T1,T2,T,V4),
f_number_of_days(T,D,V5),
few_days(D,V6),
f_number_of_free_hours(T,H,V7),
without_gaps(H,V8).

Here append/3 gives the total weekly timetable of 8 hours from joining
two shifts, number of days/3 obtains the total number of working days of
a weekly timetable and number of free hours/2 returns the number of free
one-hour gaps that the weekly timetable has during the working days. The
f_predicates are the corresponding fuzzified crisp predicates. The aggregation
operator min will aggregate the value of V from V 6 and V 8 checking that
V 1, V 2, V 3, V 4, V 5 and V 7 are equal to 1, otherwise it fails. Observe the
timetables in Fig. 14.1 and Fig. 14.2. We can obtain the compatibility between
the couple of shifts, T1 and T2, represented in each timetable asking the
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0

1

0 1 2 3 4 5 6 7 8 hours

without_gaps

Fig. 14.4. Fuzzy predicate without gaps/2

subgoal compatible (T1, T2, V ). The result is V = 0.2 for the timetable 1,
V = 0.6 for the timetable 2, and V = 0 for the timetable 3 (because the shifts
are incompatible).

Regarding compatibility of shifts in a weekly timetable, we are going to
ask some questions about the shifts T1 and T2 of timetable 4 of Fig. 14.2.
One hour of T2 is not fixed yet.

We can note: the days of the week as mo, tu, we, th and fr; the slice of
time of one hour as the time of its beginning from 8 a.m. till 17 p.m.; one
hour of the week timetable as a pair of day and hour and one shift as a list of
4 hours of the week.

If we want to fix the free hour of T2 in the slice 10-11 a.m. but with a
compatibility not null, we obtain that only Tuesday is not compatible.:

?- compatible(
[(mo,9), (tu,10), (we,8), (we,9)],
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[(mo,8), (we,11), (we,12), (D,10)], V),
V .>. 0 .

D =/= tu

If we want to know how to complete the shift T2 given a level of compati-
bility higher than 70 %, we obtain the slice from 10 to 11 p.m. at Wednesday
or Monday morning.

?- compatible(
[(mo,9), (tu,10), (we,8), (we,9)],
[(mo,8), (we,11), (we,12), (D,H)],
V),

V .>. 0.7 .

V = 0.9, D = we, H = 10 ? ;
V = 0.75, D = mo, H = 10 ? ;
no

14.6 Conclusions and Future Work

Extending the expressivity of programming systems is very important for
knowledge representation. We have chosen a practical and extended language
for knowledge representation: Prolog.

Fuzzy Prolog presented in [5] is implemented over Prolog instead of imple-
menting a new resolution system. This gives it a good potential for efficiency,
more simplicity and flexibility. For example aggregation operators can be
added with almost no effort. This extension to Prolog is realized by inter-
preting fuzzy reasoning as a set of constraints [25], and after that, translating
fuzzy predicates into CLP(R) clauses. The rest of the computation is resolved
by the compiler.

In this paper we propose to enrich Prolog with more expressivity by adding
default reasoning and therefore the possibility of handling incomplete informa-
tion that is one of the most worrying characteristics of data (i.e. all information
that we need usually is not available but only one part of the information is
available) and anyway searches, calculations, etc. should be done just with
the information that we had.

We have developed a complete and sound semantics for handling incom-
plete fuzzy information and we have also provided a real implementation based
in our former Fuzzy Prolog approach.

We have managed to combine crisp information (CWA) and fuzzy informa-
tion (OWA or default) in the same program. This is a great advantage because
it lets us model many problems using fuzzy programs. So we have extended
the expressivity of the language and the possibility of applying it to solve real
problems in which the information can be defined, fuzzy or incomplete.
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Presently we are working in several related issues:

• Obtaining constructive answers to negative goals.
• Constructing the syntax to work with discrete fuzzy sets and its applica-

tions (recently published in [14]).
• Implementing a representation model using unions instead of using back-

tracking.
• Introducing domains of fuzzy sets using types. This seems to be an easy

task considering that we are using a modern Prolog [6] where types are
available.

• Implementing the expansion over other systems. We are studying now the
advantages of an implementation in XSB system where tabling is used.

• Using our approach for the engine of robots in a RoboCup league in a joint
project between our universities.
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