
13

Fuzzy Lattice Reasoning (FLR) Classification
Using Similarity Measures

Al Cripps1 and Nghiep Nguyen2

1 Middle Tennessee State University, Murfreesboro, TN 37132, USA
Dept. of Computer Science
acripps@mtsu.edu

2 Dept. of Economics and Finance
nguyen@mtsu.edu

Summary. In this work, we show that the underlying inclusion measure used by
fuzzy lattice reasoning (FLR) classifiers can be extended to various similarity and
distance measures often used in cluster analysis. We show that for the cosine similar-
ity measures, we can weigh the contribution of each attribute found in the data set.
Furthermore, we show that evolutionary algorithms such as genetic algorithms, tabu
search, particle swarm optimization, and differential evolution can be used to weigh
the importance of each attribute and that this weighting can provide additional
improvements over simply using the similarity measure. We present experimental
evidence that the proposed techniques imply significant improvements.

13.1 Introduction

This work provides a framework to extend fuzzy lattice reasoning (FLR) classi-
fiers [13] to use similarity and distance measures. Furthermore we demonstrate
experimentally the effectiveness of using similarity measures and evolutionary
algorithms to improve fuzzy lattice classifiers in the Cleveland heart bench-
mark classification problem.

Stemming from the adaptive resonance theory (ART) neural networks [2,
10], fuzzy lattice reasoning bases both its learning and generalization on the
computation of hyperboxes in space RN . Note that other classifiers including
ART, Min-Max neural networks and variations [2, 8, 10] compute hyperboxes
in RN . Nevertheless, a unique advantage of FLR is its applicability in a lattice
data domain including the product L = L1× . . .×LN of N constituent lattices
L1, . . . , LN [14].

A practical advantage of a lattice applicability is the capacity to deal
with disparate types of data, e.g. vectors of numbers, fuzzy sets, symbols,
graphs, etc. in applications [13, 14, 17, 18]. Note that with the proliferation of
information technologies, the latter capacity may be useful in dealing as well
with non-numeric data. Learning and generalization are effected in a lattice L

A. Cripps and N. Nguyen: Fuzzy Lattice Reasoning (FLR) Classification Using Similarity Mea-

sures, Studies in Computational Intelligence (SCI) 67, 263–284 (2007)

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

264 A. Cripps and N. Nguyen

by computing lattice L intervals. Apart from the simplicity of the method, this
work also shows that the computation of lattice intervals can imply significant
improvements in classification problems.

The layout of this paper is as follows. Section 13.2 provides the fuzzy lattice
classifier theoretic background. Section 13.3 explains principles of similarity
and distance measures while Section 13.4 discusses evolutionary algorithms.
Section 13.5 presents our theoretical classification improvements for the clas-
sifiers found in [6, 7, 14]. Section 13.6 investigates the characteristics of the
weighted cosine similarity measure. Section 13.7 provides empirical results
that demonstrate the improvement of our enhanced FLR classifiers when com-
pared to other classification methods for the Cleveland heart data. Finally, sec-
tion 13.8 summarizes the contribution of this work and delineates future work.

13.2 Fuzzy Lattice Theoretic Background

In this paper we employ the lattice theoretic notation introduced in [11, 13,
14]. More specifically, let L denote a mathematical lattice, then τ(L) denotes
the set of lattice L intervals. For this paper, we deal exclusively with a complete
lattice L, where O and I denote, respectively, the least and greatest elements
in L. It follows that τ(L) is, also, a complete lattice [14]. Furthermore, α(L)
denotes the set of atoms in a lattice L, the latter set α(L) includes all trivial
intervals (singletons); hence α(L) ⊂ τ(L).

Note that the conventional space RN of N -dimensional vectors is a product-
lattice of N identical, totally-ordered lattices R. A trivial interval in RN

includes the set of N -dimensional points. Moreover, the unit N -dimensional
hypercube IN is a complete lattice, where I equals the closed interval I = [0, 1].

An inclusion measure is a map σ : L × L → [0, 1], which satisfies the
following conditions for u,w, x ∈ L.

(C0) σ(x,O) = 0, x 	= O,
(C1) σ(x, x) = 1,
(C2) w ∧ u < w ⇒ σ(w, u) < 1, and
(C3) u ≤ w ⇒ σ(x, u) ≤ σ(x,w) - Consistency Property
We remark that σ(x, u) denotes the degree of inclusion of lattice element

x to lattice element u; hence symbols σ(x, u) and σ(x ≤ u) are used inter-
changeably.

A positive valuation v on a lattice L is a real function v : L → R which
satisfies both (1) v(x) + v(y) = v(x ∧ y) + v(x ∨ y) and (2) x < y implies
v(x) < v(y) for x, y ∈ L. Given a positive valuation function in a lattice L, one
can show that both of the following are inclusion measures: k(u ≤ w) = v(w)

v(u∨w)

and s(u ≤ w) = v(u∧w)
v(u) [11]. Furthermore note that for a positive valuation

function v in a lattice L, a metric distance is given in L by d(x, y) = v(x∨y)−
v(x∧ y) [11]. The work in [14] has shown how a positive valuation function in
a lattice L can be extended to the lattice τ(L) of intervals.

13 FLR Classification Using Similarity Measures 265

Given a category function g : α(L) →M whereM is a finite set of category
labels, then the finite labeled training data set is the pairs (ai, g(ai)), i =
1, . . . , n where ai is an atom in α(L) and g(ai) is the corresponding category
label. For classification problems, the goal is to learn a valid approximation of
category function g : α(L) →M so as to achieve an acceptable generalization
on the testing data.

Learning from the training data is effected by a fuzzy lattice algorithm
by computing fits, the latter are intervals of lattice elements computed by
the lattice-join of training data in the same category. A contradiction occurs
when a training datum from one category is included in a fit of a different
category. A fit is called tightest when the lattice-join with any training datum
from the same category (and not already in the fit) causes a contradiction.
We are most interested in those category functions that are tightest fits.

In [14], positive valuations of the form v(x1, . . . , xN) = c1x1 + . . .+ cNxN ,
where ci > 0 are defined, but are only used for one simple data set, and
in that case, a heuristic approach is used to find the constants ci > 0.
Almost exclusively in [6, 7, 14] a positive valuation function of the form
v(x1, . . . , xN) = x1 + . . . + xN is used, i.e., ci = 1, ∀i. We will refer to
positive valuations of the form v(x1, . . . , xN) = c1x1 + . . . + cNxN , where
ci > 0 as positive hyperplane valuations and the valuation of the form
v(x1, . . . , xN) = x1 + . . . + xN as the unit valuation.

In [6, 7, 14] the following five tightest fit classifiers are defined: FLR tight-
est fit (FLRtf), FLR first fit (FLRff), FLR maximal tightest fit (FLRmtf),
FLR ordered tightest fit (FLRotf), and FLR selective fit (FLRsf). In the sec-
tions that follow, we focus our attention upon these five classifiers plus the
valuations and inclusion measures used by these classifiers.

13.3 Introduction to Similarity and Distance Measures

In section 13.5 we will use similarity and distance measures to extend the
FLR classifiers found in [6, 7, 14]. In this section we provide an introduction
to these measures. In general, distance measures numerically how unlike (dif-
ferent) two datum are where as similarity measures numerically how alike two
datum are. For a similarity measure, the idea is that a higher value indicates
greater similarity where as for a distance measure, the lower (positive) value
indicates greater similarity. In concept, a similarity measure is the converse
of a distance measure. A formal definition of distance measure is given below,
however, we find no formal definition found for similarity measures in the lit-
erature. There are many popular measures defined in the literature (e.g. Lp

norm, Squared chord, squared Chi-squared, Canberra measure, Czekanowski
coefficient, cosine, and correlation coefficient) for which all can be thought of
as calculating a correlation between two data items (one of which is usually a
group centroid). Generally, for these measures it is necessary that each of the
two data items be expressed by a real-valued array of feature attributes.

266 A. Cripps and N. Nguyen

In section 13.5 we extend the FLR classifiers to use distance measures. For
our experimental application, we are mostly interested in the cosine similarity
measure often used in cluster analysis. For the cosine similarity measure, if
two data items x and y have K attributes each, then x and y can be thought
of as two vectors. The cosine similarity measure is then the cosine of the angle
between the two vectors x and y and is described by the formula [21]

CS(x,y) =
∑K

1 xi yi
√
∑K

1 x2
i

∑K
1

y2
i

The cosine distance metric is defined as CD(x,y) = 1− CS(x,y).
In section 13.5 we also use distance measures to extend the FLR classifiers.

Typically, a distance measure falls into one of two groups: metric and semi-
metric. To be classified as metric, a non-negative distance between two vectors
x and y must obey: 1) d(x, y) = 0 ⇒ x = y, 2) d(x, y) = d(y, x), 3) d(x, x) = 0,
and 4) when considering three objects, x, y and z, d(x, y) ≤ d(x, z) + d(z, y).
Distance measures that obey the last three rules, but fail to obey rule 1 are
referred to as semi-metric. The Lp norm is a well known group of distance
measures as defined by the following. The Lp norm between two data items
x and y each of which has K attributes is given by the formula

Lp(x,y) =
[
∑K

i=1
|xi− yi|p

]1/p

If p = 1 then this distance is known as the Manhattan distance; if p = 2
then the formula produces the well-known Euclidean distance. If p = ∞, then
the distance is called the Chebychev distance.

13.4 Introduction to Evolutionary Algorithms

Often times when a problem has no known algorithmic solution, i.e., not
known to be a tractable problem, then some type of search technique can be
used to arrive at a reasonable solution. In section 13.5 we are interested in find-
ing coefficients for hyperplane valuations associated with FLR classifiers for
which no known algorithmic solution exists. In section 13.7 we employ a group
of search techniques generally categorized as evolutionary algorithms to find
reasonable coefficients for hyperplane valuations associated with our experi-
mental data set. In general, evolutionary algorithms are based upon concepts
found in the study of population genetics. More specifically, the algorithms in
this category maintain a population (set) of candidate solutions (individuals)
to a problem. The fitness of a candidate solution is determined by evaluat-
ing how well it does on the problem, and the most fit candidate solution has
some type of effect on the overall makeup of the candidate population. Thus,
the population of candidate solutions evolves over time, hopefully resulting in
improved solutions for the problem.

13 FLR Classification Using Similarity Measures 267

In section 13.7 we employ four different Evolutionary Algorithms: Genetic
Algorithms [23], Tabu Search [9], Particle Swarm Optimization [15], and Dif-
ferential Evolution [19] to find coefficients associated with hyperplane val-
uations for FLR classifiers. The remainder of this section is devoted to an
introductory description of the four search techniques.

Genetic Algorithms [23] were introduced in the 1970’s by John Holland.
For this search technique, an initial population of candidate solutions is estab-
lished (either randomly or with some known constraints), on which a genetic
algorithm performs the following four steps until some stopping criterion is
met: 1. Establish the fitness of each candidate solution in the population from
time t; 2. Clone individuals from population t for a new population for time
t + 1 using the fitness distribution of the population from time t; 3. Perform
crossover in population t + 1; 4. Perform mutation in population t + 1. The
set of steps 1 – 4 is generally called a generation. In many cases, the stopping
criteria is merely a set number of generations. The crossover (step 3) combines
two chromosomes from the parents to produce a new offspring chromosome
with the desired affect being the offspring is better than the parents. Mutation
(step 4) is a random change of a parameter value somewhere in the popula-
tion, i.e., an alteration of one or more gene values in a chromosome. While
it is possible to use a high mutation rate, this effectively produces random
search. Most researchers use a very low mutation rate. Steps 2 and 3 are a bit
more complicated than the other steps.

In step 2, individuals from population t are selected to appear in popu-
lation t + 1 based on their fitness relative to the rest of the population. The
selection is generally either roulette wheel selection (where the entire set of
fitnesses is used to establish the composition of the roulette wheel), or else
the selection is a binary tournament selection (where pairs of individuals are
chosen randomly and the one with the best fitness is copied into the new
population).

In step 3, a percentage of the population is chosen in pairs to create new
candidate solutions. The chosen pairs are called parents, and the new indi-
viduals are called children. Children are created by choosing some parameters
from one parent and other parameters from the other parent. Typically the
children replace the parents in the population. There are three common forms
of crossover: one point, two point, and uniform. One point crossover ran-
domly selects a crossover point and everything to the left of that point comes
from one parent, while everything to the right of that point comes from the
other parent. Two point crossover randomly selects two points and everything
between the two points comes from one parent, while everything outside the
two points comes from the other parent. Uniform crossover randomly chooses
the parent for each parameter.

Tabu Search [9] is generally attributed to Fred Glover and like Genetic
Algorithms originated in the 1970’s. Unlike Genetic Algorithms, Tabu Search
works with a population of a single candidate solution and can be considered
a neighborhood search method. In addition to the single candidate solution

268 A. Cripps and N. Nguyen

population, there is a list of individuals that are neighbors of the candidate
solution and a historical memory of previously encountered candidate solu-
tions. The historical memory is called the Tabu list (there can be more than
one Tabu list). The first individual may be generated randomly or based on
some type of constraint. Once the individual’s fitness is determined, the Tabu
search algorithm will perform the following four steps until some stopping cri-
terion is met: 1. create a neighborhood of individuals for the current candidate
solution each of which is slightly different than the current candidate solution;
2. determine which of the newly created individuals has the best fitness; 3. if
the new best fitness is better than the current candidate solution’s fitness,
then keep the new individual and place the old individual on the Tabu list;
4. if the new fitness is worse than the previous fitness but it is not on the
Tabu list and it is only slightly worse than the current candidate solution,
then keep the new individual and place the old individual on the Tabu list.
As with Genetic Algorithms, Tabu Search has several parameters that must
be set: the size of the neighborhood, the size of the Tabu list, the number of
Tabu lists, the definition of “slightly worse”, and the stopping criterion.

Particle Swarm Optimization [15], which was introduced by Russell C.
Eberhart and James Kennedy in the 1990’s, is both a global and a neighbor-
hood optimization technique. The concept comes from observing the behavior
of groups of organisms in nature, e.g., schools of fish and flocks of birds. Indi-
viduals within the groups have a position and a velocity which change over
time relative to other individuals in the group. With this behavior in mind,
Particle Swarm Optimization maintains a population of candidate solutions
each of which has a position, x (i.e. a point in the search space) and a velocity
v (i.e. the distance to move from the current position in the next time step).
After initializing the population, the algorithm performs the following five
steps until some stopping criterion is met: 1. Calculate each candidate solu-
tion’s new position x = x + v; 2. Calculate the fitnesses of the new positions;
3. If a new fitness is better than the best fitness the individual has seen, χ,
then χ = x; 4. If a new fitness is better than the best fitness χg the swarm
has seen then χg = x; 5. Calculate the velocities for the new individuals using
the formula v = wv + c1r1(χ− x) + c2r2(χg − x).

Differential Evolution [19] was developed by Kenneth Price in the 1990’s.
Differential Evolution is very similar to genetic algorithms without the cloning
step or the mutation step. Instead, the algorithm performs the following four
steps for each individual (target) in the population: 1. Choose two random
population members and calculate their weighted sum; 2. Add the calculated
answer to a third randomly chosen individual; 3. Create a child by performing
crossover with the answer from step 2 and the target individual; 4. If the child’s
fitness is better than the target’s fitness, then replace the target with the child.

13 FLR Classification Using Similarity Measures 269

13.5 Classification Enhancements

This section describes enhancements to the inclusion measure used in [6, 7, 14].
Recall that each of the classifiers described and applied in [6, 7, 14] is based
upon an inclusion measure given by the function σ(u ≤ w) = v(w)

v(u∨w) , where v

is a positive valuation function. We will refer to this inclusion measure as the
σ-inclusion measure. Generally, for the experimental results found in [6, 7, 14]
the unit valuation function of the form v(x1, . . . , xN) = x1 + . . . + xN is used.
As noted in [14], we can also weigh each of the attributes x1, . . . , xN via a
positive hyperplane valuation function v(x1, . . . , xN) = c1x1 + . . . + cNxN ,
where ci > 0.

In the following, we investigate the effect of using the combination of
hyperplane valuations and the σ-inclusion measure. First, consider a point
C = (c1,. . ., cN) where each ci > 0 represents the coefficients used for the
positive hyperplane valuation, i.e. v(x1, . . . , xN) = c1x1 + . . . + cNxN . Since
the point C is in RN , we can translate C into polar coordinates as follows:

Let ρ =
√

c2
1 + . . . + c2

N , θ1, . . . , θN−2 be the polar angles and let θN−1 be
the azimuthal angle, then

c1 = ρ cosθ1

c2 = ρ sinθ1 cosθ2

c3 = ρ sinθ1 sinθ2 cosθ3

. . .
cN−1 = ρ sinθ1 sinθ2 . . . sinθN−2 cosθN−1

cN = ρ sinθ1 sinθ2 . . . sinθN−2 sinθN−1

Consider the evaluation of the positive hyperplane valuation function v(x),
v(x) = v(x1, . . ., xN) = c1x1 + . . . + cNxN

= ρ cosθ1x1 + ρ sinθ1 cosθ2x2 + . . . + ρ sinθ1 . . . sinθN−1xN

= ρ(cosθ1x1 + sinθ1 cosθ2x2 + . . . + sinθ1. . . sinθN−1xN)
= ρ(b1x1 + b2x2 + . . . + bNxN)
= ρ v′(x),

where the point B = (b1, b2, . . ., bN) is the point on the (unit) hypersphere
corresponding to the point C in RN , i.e. 1 =

√
b2
1 + . . . + b2

N with bi > 0.
Hence for the σ-inclusion measure with hyperplane valuation is given by

σ(u ≤ w) =
v(w)

v(u ∨ w)
=

ρv′(w)
ρv′(u ∨ w)

=
v′(w)

v′(u ∨ w)

Thus, the σ-inclusion measure defined in [14] using hyperplane valuations
is equivalent to using (unit) hypersphere valuations. In particular, this means
that we can limit our search space from the first quadrant of RN to the
(unit) hypersphere in the first quadrant of RN when trying to find reasonable
coefficients for a hyperplane valuation.

Next, we consider the relationship of the following three entities: 1) σ-
inclusion measure, 2) the distance (metric) d(u,w) = v(u ∨ w) − v(u ∧ w)
defined in [3] where v is a valuation, and 3) the L1(u,w) norm. For simplicity,

270 A. Cripps and N. Nguyen

we use the unit hypercube IN in RN , the unit valuation, and a point, say
w in IN ; we also use complement coding (in regards to the set A below) to
represent a data vector as detailed in [14]. With these conditions, we have
the following three sets being identical: A = {u ∈ IN : σ(u ≤ w) = N

N+m},
B = {u ∈ IN : d(u,w) = m}, and C = {u ∈ IN : L1(u,w) = m}. Using the
relationship between A, B, and C plus the fact that in IN , σ(u ≤ w) = N

N+m =
v(w)

v(w)+L1(u,w) we can see that the inclusion measure defined in [14] is based
upon the L1 norm. Furthermore, this relationship provides a general technique
to define a measure based upon distance measures, i.e. δ(u,w) ≡ v(w)

v(w)+d(u,w) ,
where d is a distance measure. Likewise, if s is a similarity measure such
that 0 ≤ s(u,w) ≤ 1 then we can define a measure as follows: δ(u,w) ≡

v(w)
v(w)+(1−s(u,w)) . We will refer to measures defined in this way (either using a
distance measure or similarity measure) as δ-measures.

Now consider the training data given in Fig. 13.1 which consists of 12 train-
ing data and 3 test data. We are interested in a solution with 100% accuracy
for the test data that uses the fewest number of hyperboxes possible. Using
the geometric interpretations described in [14] where the data are grouped via
hyperboxes, we quickly conclude there is no solution using the unit valuation
that is 100% accurate for the test data. In other words, one cannot place point
g in a training data rectangle without that rectangle also including point 7
or 8. This can be verified via experiments as well. To solve this problem, we
turn our attention to hyperplane valuations and σ-inclusion measure. Since
we have shown that we may limit our search for coefficients of the hyper-

Fig. 13.1. Fifteen training data are presented in the order a(0,0), b(.25,0), c(0,.5),
d(.25,.5), e(0,1), f (.25,1) (category “•”), and 1 (.75,0), 2 (1,1), 3 (.75,.5), 4 (1,.5),
5 (.75,1), 6 (1,1) (category “o”). Three test data are g(.5,.5) from category “•” and
7 (.5,0), 8 (.5,1) from category “o”. The problem is to find a tightest fit category
function that uses the fewest hyperboxes and has 100% test data accuracy

13 FLR Classification Using Similarity Measures 271

plane valuation to the first quadrant hypersphere, an exhaustive search is not
unreasonable, i.e. we can restrict our search to the circumference of the unit
circle in the first quadrant. Via experiments, we found that none of the five
classifiers FLRtf, FLRff, FLRmtf, FLRotf, andFLRsf can group the training
data with 100% test data accuracy using σ-inclusion measure with hyperplane
valuation. Actually for the given data found in Fig. 13.1, each of the five clas-
sifiers FLRtf, FLRff, FLRmtf, FLRotf, and FLRsf provide the same test data
accuracy results (one data point incorrect using two hyperboxes) whether a
unit or hyperplane valuation is used.

In an effort to find better inclusion measures, we have conducted numer-
ous experiments on different data sets using different δ-measures. We tried
well known distance and/or similarity measures such as the Lp norms, cosine,
squared chord, squared Chi-squared, Canberra measure, Czekanowski coeffi-
cient, and correlation coefficient. However, none of these δ-measures consis-
tently performed as well as the σ-inclusion measure defined in [14] when using
a unit valuation nor are these δ-measures able to solve the problem noted in
Fig. 13.1 when using a unit valuation.

In order to solve the problem in Fig. 13.1, we now turn our focus to a
δ-measure that uses weighted attributes. As previously noted, the σ-inclusion
measure using a hyperplane valuation is equivalent to a σ-inclusion measure

v′(w)
v′(u∨w) where the coefficients for v′ are taken from the unit hypersphere. This
equivalency is not true, however, of all δ-measures. Consider the weighted
(attribute) cosine similarity measure

ACS(u,w) =

∑

i

ciuiwi

√
(
∑

i

ciu2
i
)(
∑

i

ciw2
i
)

and the following four δ measures with ACD representing the attribute cosine
distance metric

δ1(u,w) = v(w)
v(w)+ACD(u,w) ,

δ2(u,w) = v(w)
v(w)+ACD(u∨w,w) ,

δ3(u,w) = v(w)
v(w∨u)+ACD(u∨w,w) , and

δ4(u,w) = v(w)−(1−ACD(u∧w,w))
v(w) .

Note that for each measure, constant vector C = (c1,. . ., cN) is used in both
the valuation function v(x) and the attribute cosine distance metric ACD.

We now reconsider the problem described in Fig. 13.1 and conduct exper-
iments using the five classifiers FLRtf, FLRff, FLRmtf, FLRotf, and FLRsf
using each of the four weighted cosine δ-measures: δ1, δ2, δ3, and δ4. For
each experiment, no FLR training parameters (such as epsilon for improved
accuracy) are used. Hence, this requires the coefficients used in the weighted
cosine δ-measure to completely compensate for all FLR parameters. Thus for
our experiments, each FLR classifier is simply used to compute the number
of hyperboxes needed by the training data, and in return, the number of

272 A. Cripps and N. Nguyen

correctly classified test data. The goal in each experiment is to find coeffi-
cients for the weighted cosine δ-measure such that the number of hyperboxes
is the fewest possible and 100% test data accuracy. Recall for the weighted
cosine δ-measure, our search space is not restricted to the unit circle. Hence
an exhaustive search of the first quadrant in R2 is used. When using the four
weighted cosine δ-measures, each of the five classifiers are able to solve the
problem in Fig. 13.1 using three hyperboxes and 100% test data accuracy. The
graph of the solution space for the classifier FLRotf using the δ2-measure is
given in Fig. 13.2. Table 13.1 provides a single solution (a pair of coefficients)
for each of the modified five classifiers (there are infinitely many solutions)
using the δ2-measure. As we previously stated, none of the five classifiers
FLRtf, FLRff, FLRmtf, FLRotf, and FLRsf can solve the problem given in
Fig. 13.1 using the original inclusion measure given in [14] and hyperplane val-
uations. It is only when one combines both the weighted cosine δ-measure and
hyperplane valuations are the modified five classifiers FLRtf, FLRff, FLRmtf,
FLRotf, and FLRsf able to solve the problem in Fig. 13.1. Via experiments,
we found that the δ2-measure is most successful (of the four δ1, δ2, δ3, and
δ4) in solving the problem in Fig. 13.1 and problems similar to those given
in Fig. 13.8, Fig. 13.9, and Fig. 13.10 below. Because of the success of δ2,
future unqualified references to weighted cosine δ-measure are assumed to be
a reference to the δ2 definition only.

Fig. 13.2. FLRotf weighted cosine solution for the problem described in Fig. 13.1

Table 13.1. Coefficients for weighted cosine δ measure associated with problem
described in Fig. 13.1

FLR classifier C1 coefficients C2 coefficients

FLRtf 6.391859 2.853784
FLRff 2.488825 5.349365
FLRmtf 6.391859 2.853784
FLRotf 2.761679 2.893634
FLRsf 2.761679 2.893634

13 FLR Classification Using Similarity Measures 273

Let’s revisit the definition of an inclusion measure given above, namely σ
is a map σ : L× L → [0, 1], which satisfies the following conditions

(C0) σ(x,O) = 0, x 	= O,
(C1) σ(x, x) = 1,
(C2) w ∧ u < w ⇒ σ(w, u) < 1, and
(C3) u ≤ w ⇒ σ(x, u) ≤ σ(x,w) - Consistency Property

and our definition of the weighted cosine δ-measure given above. First, con-
sider conditions (C0) and (C1), the unit hypercube, and the inclusion measure
defined by σ(u,w) = v(w)

v(u∨w) where v is a positive valuation. Under these cir-
cumstances, in order to satisfy condition (C1), σ(O,O) is defined to be 1 [11].
This definition is needed since one has division by zero whenever v(u ∨ w) is
zero in v(w)

v(u∨w) . Note that σ is not continous at O since as u approaches O,
σ(u,O) is zero and σ(u, u) is one. For the weighted cosine δ-measure, a similar
problem exists in that one has a division by zero whenever ACD(u∨w,w) is
undefined or equivalently whenever v(u ∨ w) = 0 or v(w) = 0 or equivalently
whenever v(u) = 0 or v(w) = 0. If one defines ACD(u,w) to be some value
geater than zero, say 1, whenever v(u) = 0 or v(w) = 0, then another problem
occurs when one evaluates δ(O,O), i.e. the value of δ(O,O) evaluates to 0
and in conflict with condition (C1). One solution is to define ACD(u,w) to
be zero whenever either v(u) = 0 or v(w) = 0 and define δ(O,O) = 1. Hence,
by defining special case values, we can satisfy conditions (C0) and (C1). An
alternative would be to modify (C1) to read as σ(x, x) = 1, for all x 	= O and
to define ACD(u,w) = 1 whenever v(u) = 0 or v(w) = 0. Now, let’s consider
condition (C2). In general, condition (C2) is not true even with the restriction
to positive valuations and special definitions for ACD. As an example, con-
sider the unit hypercube IN in RN and two points (vectors) u and w. Now if the
vectors u and w have the same direction (when viewed as vectors) and u < w

in IN , then w ∧ u = u < w and δ(w, u) = v(u)
v(u)+1−ACS(w∨u,u) = v(u)

v(u)+1−1 = 1.
To show that ACS(w ∨ u, u) is one, consider the following: 1) since w and u
have the same direction and w∧u = u < w, w∨u = w has the same direction
as u, 2) since ACS(w ∨ u, u) is the cosine of the angle formed between the
vector u and w∨u, the ACS(w∨u, u) is just the cosine of the angle zero since
u and w ∨ u have the same direction. This is in direct conflict with condition
(C2). An alternative for (C2) is w ∧ u ≤ w ⇒ σ(w, u) ≤ 1. In regards to
condition (C3), the weighted cosine δ measure does not meet this condition.
To demonstrate this, consider the unit hypercube IN in RN and three points
(vectors) x, u and w with 1) the vectors x and u having the same direction,
2) u < x and u < w in IN , 3) u 	= O, and 4) u and w do not have the same
direction (see Fig. 13.3 for an example in I2). Then

δ(x, u) = v(u)
v(u)+1−ACS(x∨u,u) = v(u)

v(u)+1−ACS(x,u) = v(u)
v(u)+1−1 = 1, and

δ(x,w) = v(w)
v(w)+1−ACS(x∨w,w) = v(w)

v(w)+1−m < 1,
where i) ACS(x, u) is one since the angle between x and u is zero, ii) ACS(x∨
w,w) is some constant m, 0 < m < 1, i.e. the angle between x ∨ w and w, θ,

274 A. Cripps and N. Nguyen

w

x

u

θ

x∨w

Fig. 13.3. For the given points, we have both δ(x, u) = 1 and δ(x, w) < 1

is between 0 and π/2, exclusive. Thus the weighted cosine δ measure fails to
meet condition (C3) and no alternative for (C3) is offered. Although no proof
is given here, note that δ3 as defined above is an inclusion measure.

13.6 Investigating Further the Weighted Cosine Measure

Let’s further consider the FLRotf solution noted in Fig. 13.2 and the weighted
cosine δ-measure. All of the coefficient solutions given in Fig. 13.2 give the
same set of hyperboxes, i.e. if we consider a specific coefficient solution, say
(5, 2), and apply the FLRotf classifier, then the resulting solution consists of
exactly three hyperboxes: one hyperbox containing the single point (.75, 0),
one hyperbox containing the single point (.75, 1), and one hyperbox containing
the single point (.25, .5). We will refer to these hyperboxes as A, B, and C
respectively. See Fig. 13.4. Is this solution a tightest fit solution, i.e. can
either of the hyperboxes A, B, and C be expanded to include more training
data without incurring a contradiction? Although visually it appears that
one can expand each of the hyperboxes, the fit is indeed (based upon the
computations) a tightest fit.

Although we cannot graph the weighted cosine δ-measure for the above
problem {z : z = δ(u,w), where u and w are members of I2× (dual of) I2}
since the input range is 8 dimensions, we can, however, graphically view the
how the weighted cosine δ-measure behaves for specific coefficients. To do
this, we consider a pair of coefficients from each of the blocks in the solution
space identified in Fig. 13.2: namely the coefficient pairs (5, 2), (2.75, 3), and
(2.3, 5.75) giving one pair from each region. To graphically view the measure,
we use three data sets: the training and test sets associated with Fig. 13.1 and a
third data set (validation) defined to be {(x, y, 1) : (x, y) ∈ I2 and 1 represents
the category for the pair}. The training and test sets are used to obtain the
hyperboxes identified in Fig. 13.4 (initial training) while the third data set is

13 FLR Classification Using Similarity Measures 275

Fig. 13.4. Hyperbox A contains the single point (.75, 0), hyperbox B contains the
single point (.75, 1), and hyperbox C contains the single point (.25, .5)

Fig. 13.5. Coefficients (2.75, 3) are employed in this figure

used to locate the boundary between the region correctly classified and the
region misclassified. We shall use this technique for multiple experiments that
follow. Note that we not using the validation set in the traditional sense, but
only to gather information about the boundary of the category regions given
since we are no longer dealing with traditional hyperboxes. Hence, for the
problem stated in Fig. 13.1 and coefficient solution space given in Fig. 13.2, the
category regions for each pair of coefficients are given in Fig. 13.5, Fig. 13.6,
and Fig. 13.7. For each the three figures, the category “•” is the shaded

276 A. Cripps and N. Nguyen

Fig. 13.6. Coefficients (2.3, 5.75) are employed in this figure

~.597~.411
10

1

Fig. 13.7. Coefficients (5, 2) are employed in this figure

portion while the category “o” is represented by the unshaded region. As
demonstrated in Fig. 13.5, Fig. 13.6, and Fig. 13.7, the shaded triangular
region grows and shrinks based upon the coefficients used in the weighted
cosine δ-measure. For the coefficients (1, 1), the triangular region disappears
with the category “•” being the rectangular region [0, .5]× [0, 1] and category
“o” being the remaining area. This results in two misclassifications for the test
data. In other words, without the “weighting” the cosine δ-measure achieves

13 FLR Classification Using Similarity Measures 277

the same results as the traditional FLNotf classifier (for this problem). It
is also interesting to note that for other coefficient pairs such as (8, 2), the
triangular region protrudes to the left instead of to the right, i.e. a mirror
image of the ones given in Fig. 13.5, Fig. 13.6, and Fig. 13.7.

Next, we investigate how the weighted cosine δ-measure adapts to a slightly
different test set (the training set remains as found in Fig. 13.1). Namely,
the test data set: g(.5, .75), h(.5, .25) from category “•” and 7(.5, 0), 8(.5, 1),
9(.5, .5) from category “o”. We can perform an exhaustive search and deter-
mine that in deed the weighted cosine δ-measure can solve this modified
problem as well. For one solution to this problem using the weighted cosine
δ-measure with coefficients (1.71, 2.1), see Fig. 13.8. In Fig. 13.8, the curve
line near the vertical line x = 0.5 represents the boundary between the two
categories “•” and “o” and is generated by the weighted cosine δ-measure
using coefficients (1.71, 2.1). When using the given coefficients, the FLNotf
with weighted cosine δ-measure is able to train with 100% accuracy and 100%
correct for the test set. Also in Fig. 13.8, the resulting trained hyperboxes
are labeled A, B, C, D, E, and F , i.e. there are 6 hyperboxes. Again, this
solution is a tightest fit. Visually, it appears that one could form one hyperbox
containing both the hyperbox A and hyperbox B, but in doing so, the single
box would cause miss classifications along the vertical line at x = 0.5.

Fig. 13.8. The training set consists of points a(0, 0), b(.25, 0), c(0, .5), d(.25, .5),
e(0, 1), f(.25, 1) (category “•”) and 1(.75, 0), 2(1, 1), 3(.75, .5), 4(1, .5), 5(.75, 1),
6(1, 1) (category “o”) plus the test data set: g(.5, .75), h(.5, .25) from category
“•” and 7(.5, 0), 8(.5, 1), 9(.5, .5) from category “o”. To produce the curve bound-
ary between the two categories, the weighted cosine δ-measure uses coefficients
(1.71, 2.1). The six hyperboxes A, B, C, D, E, and F represent the training results
for FLNotf and form a tightest fit

278 A. Cripps and N. Nguyen

Next, we experiment by tilting the series of test points found near x = .5
for Fig. 13.8 while the training set remains the same. We tilt the test points
to the left, i.e. negative slope, with a pivot point at (.5, .5). Via experimen-
tation, we determine that FLNotf is successful in achieving 100% accuracy
for the test data with a slope range from vertical down to −7 (actually some-
where between −6 and −7) with each line passing through the pivot point
(.5, .5). Thus for a slope of −7, the given line is y = −7x + 4 and corre-
sponding points g(.4643, .75), h(.5357, .25) from category “•” and 7(.5714, 0),
8(.4246, 1), 9(.5, .5) from category “o” are given in Fig. 13.9. Although the
FLNotf achieves success in adapting to the tilting, it does so by modifying
the curvature of the boundary (see Fig. 13.9) and not by tilting of the curve.
Hence the axis remains vertical. Again for these experiments, an exhaustive
search is first done to determine possible coefficients for the weighted cosine
δ-measure followed by the use of a validation set to determine the boundary
between the correctly classified sets.

Finally, we investigate how the weighted cosine δ-measure adapts to a
slightly different training and test set. Namely, a training set of a(0, 0),
b(.25, 0), c(0, .5), d(.25, .5), e(0, 1), and f(.25, 1) in category “•” and 1(.75, 0),
2(1, 1), 3(.75, 0.5), 4(1, 0.5), 5(.75, 1), and 6(1, 1) in category “o” plus the test
data set: (.5, 0.125), (.5, 0.375), (.5, 0.625), (.5, 0.875) from category “•” and
(.5, 0), (.5, 0.25), (.5, 0.5), (.5, 0.75), and (.5, 1) from category “o”. We again
perform an exhaustive search and determine that in deed the weighted cosine

Fig. 13.9. The training set consists of points a(0, 0), b(.25, 0), c(0, .5), d(.25, .5),
e(0, 1), f(.25, 1) (category “•”) and 1(.75, 0), 2(1, 1), 3(.75, .5), 4(1, .5), 5(.75, 1),
6(1, 1) (category “o”) plus the test data set: g(.4643, .75), h(.5357, .25) from category
“•” and 7(.5714, 0), 8(.4246, 1), 9(.5, .5) from category “o”. In this case the test data
are tilted to the left and are obtained from the line y = −7x+4. To produce the curve
boundary between the two categories, the weighted cosine δ-measure uses coefficients
(0.600012, 2.42178). Six hyperboxes represent the training results for FLNotf (there
are two hyperboxes along the y axis). These form a tightest fit

13 FLR Classification Using Similarity Measures 279

Fig. 13.10. The training set consists of points a(0, 0), b(.25, 0), c(0, .5), d(.25, .5),
e(0, 1), f(.25, 1) (category “•”) and 1(.75, 0), 2(1, 1), 3(.75, .5), 4(1, .5), 5(.75, 1),
6(1, 1) (category “o”) plus the test data set: (0.125, 0.5), (0.375, 0.5), (0.625, 0.5),
(0.875, 0.5) from category “•” and (.5, 0), (.5, 0.25), (.5, 0.5), (.5, 0.75), (.5, 1) from
category “o”. To produce the curve boundary between the two category regions, the
weighted cosine δ-measure uses coefficients (0.004, 0.255272). When using the given
coefficients, the FLNotf with weighted cosine δ-measure is able to train with 100%
accuracy and 100% correct for the test set. There are 11 hyperboxes in the training
results for FLNotf

δ-measure can solve this modified problem. For one solution to this prob-
lem using the weighted cosine δ-measure with coefficients (0.004, 0.255272),
see Fig. 13.10. In Fig. 13.10, the curve line near the vertical line x = 0.5
represents the boundary between the solution regions for the two categories
“•” and “o”. When using the given coefficients, the FLNotf with weighted
cosine δ-measure is able to train with 100% accuracy and 100% correct for
the test set. As noted in Fig. 13.10, the resulting 11 trained hyperboxes are
given. It is somewhat disappointing that this boundary region is not symmet-
rical, i.e. the spikes near y = 0.375 and y = 0.625 are not the same. This
observation tends to imply that if the following two data points were added
to the training set: (.75, 0.625), (1, 0.625), then certainly this solution would
not work. When these additional two points are added, we are not able via
experimentation using an exhaustive search for the weighted cosine δ-measure
coefficients determine a solution that is 100% accurate for the test data.

13.7 Experiments and Results

The general learning capacity of the classifiers FLRff, FLRotf, and FLRsf with
the weighted cosine δ-measure is demonstrated in this section by considering
the Cleveland heart benchmark classification problem from the UCI repository
of machine learning data sets [4].

280 A. Cripps and N. Nguyen

The Cleveland heart data set involves numeric data of various sizes includ-
ing missing attribute values. A missing attribute value is dealt with by replac-
ing it with the least element in the corresponding constituent lattice as
explained in [14]. Thus each data vector is represented in the lattice RN .
Complement coding is used to represent a data vector, in particular instead
of (x1, . . ., xN) the vector (1− x1, x1, . . ., 1− xN , xN) is used [12, 14].

For the Cleveland heart data, the problem is to diagnose heart disease
in a patient from a 14-attribute vector. This benchmark consists of 303 data
vectors. The severity of heart disease is indicated by an integer ranging from 0
(no heart disease) to 4. By collapsing the classes into two, i.e. absence versus
presence of heart disease, the problem becomes a “2-categories” problem as
opposed to the original “5-categories” problem. Because no training and test-
ing data sets are given explicitly, a keep-250-in series of 100 experiments is
carried out such that in each experiment 250 randomly selected data are used
for training and the remaining 53 data are left out for testing. Also, since we
are wanting to compare the weighted cosine δ-measure results with existing
published results for other classifiers. Since our comparison is to published
works that did not use a validation set in their experiments, neither will our
experiments use a validation set. Again, we are primarily interested in showing
the malleability of the weighted cosine δ-measure via our experiments.

Table 13.2 shows the results by various methods from the literature in
the 2-categories problem. Table 13.3 shows results for the 5-category problem
using various FLR classifiers as reported in [6, 7, 14]. In Table 13.3, the average
and the corresponding standard deviation are shown for both the classification
accuracy and the number of rules in a series of experiments. The same 100
randomly generated data sets are used in all 5-category problems listed in
Table 13.3.

For our experiments involving the Cleveland heart data, the same 100
randomly generated data sets are used in all 5-category problems. For each of
the three classifiers FLRff, FLRotf, and FLRsf, four evolutionary algorithms
are employed to find reasonable coefficients for the weighted cosine δ-measure.
All total, we conducted 1200 experiments (100 data sets with three classifiers

Table 13.2. Performance of various methods from the literature in classifying Cleve-
land’s 2-categories benchmark “heart problem”

Pattern classification method Classification accuracy (%)

Probability analysis 79.0
Conceptual clustering (CLASSIT) 78.9
ARTMAP-IC (10 voters) 78.0
Discriminant analysis 77.0
Instance based prediction (NTgrowth) 77.0
Instance based prediction (C4) 74.8
Fuzzy ARTMAP (10 voters) 74.0
KNN (10 neighbors) 67.0

13 FLR Classification Using Similarity Measures 281

Table 13.3. Performance of classifiers FLRtf, FLRff, FLRotf, FLRmtf, and FLRsf
in the Cleveland’s benchmark “5-categories” heart problem. Results are from [7]

Classification Accuracy Number of rules
FLR classifier Average std. Average std.

(%) deviation (%) deviation

FLRff 66.74 4.96 53.47 10.30
FLRotf 66.60 5.52 51.18 11.00
FLRsf 66.49 5.59 49.47 9.80
FLRmtf 65.38 5.00 61.24 7.00
FLRtf 56.74 7.23 86.81 4.67

and four evolutionary algorithms per classifier). For each of the four evolu-
tionary algorithms used, the same parameters are used on all 100 data sets
and for each classifier. Each FLR classifier is merely used to determine the
fitness of an evolutionary algorithm’s solution as noted in Sect. 13.4. We use
the Genetic Algorithm Utility Library (GAUL) software [1] for genetic algo-
rithms, tabu search, and differential evolution portion of our experiments.
For particle swarm optimization, we adapted software originally written by
Clerc [5].

For our experiments, we modify each FLR classifier FLRff, FLRotf, and
FLRsf to use the weighted cosine δ-measure in place of the traditional σ-
inclusion measure. For the problem given in Fig. 13.1, it is reasonable to use
an exhaustive search to find the hyperplane valuation for the weighted cosine
since the search space is the first quadrant of R2. However for larger problem
sets (with more attributes) such as the Cleveland heart data, an exhaustive
search is not realistic. For larger problem sets we employ evolutionary algo-
rithms to find a hyperplane valuation for the weighted cosine δ-measure.

In particular, we use evolutionary algorithms to provide a set of coefficients
for the weighted cosine δ-measure. In each experiment, the initial coefficient
set is randomly generated. Each of the FLR classifiers are then used to deter-
mine the fitness of the coefficients provided by the evolutionary algorithm, i.e.
to determine the number of test data correctly identified and the number of
hyperboxes used. Using the fitness information provided by the FLR classi-
fier, the evolutionary algorithm updates its candidate solution and in return
provides an additional set of coefficients for the weighted cosine δ-measure.
For each evolutionary algorithm and all data sets, the evolutionary algorithm
parameters remain fixed.

The parameter settings for each evolutionary algorithm follows. In all
cases, the stopping criterion for each evolutionary algorithm is a fixed number
of generations. For the genetic algorithm, a set of coefficients for the weighted
cosine δ-measure represent a single chromosome. We use a population size
of 500 which is initially randomly generated/seeded within the range 3.0 to
44.0. The stopping criterion is set to 200 generations; our mutation rate is
0.001 (i.e. one out of every 1000 parameters in a population was altered). For
selection we use binary tournament selection where the elitist parents survive

282 A. Cripps and N. Nguyen

from one generation to the next. For crossover, we use a two point crossover
in which two crossover points are randomly selected, and we set the percent-
age of the population that undergo crossover at 60%. We experimented with
multiple techniques of selection and mutation. For example, we experimented
with directional adjustments to the chromosome similar to what one would
do using a “hill climbing” technique, i.e. we iterated through the genes of a
chromosome making small adjustments and testing for improvement. Unfortu-
nately, none of techniques showed improvement over a mutation rate of 0.001
and binary tournament selection. For tabu search, we used a population size
of 500 which was initially randomly generated within the range of 0.3 and 50.
The stopping criterion was set to 300 generations. We used a single tabu list
size of 400 with a neighborhood size of 100. For mutation, we randomly chose
whether to swap or shift a list item. A member was tagged as tabu if it differed
no more than 0.1 from other members. For differential evolution, we used a
population size of 500 which was initially randomly generated within the range
0.3 and 50. The stopping criterion was set to 100 generations. We chose to use
the strategy “best”, crossover “exponential”, perbations “1”, weighting factor
0.5, and crossover 0.8. For particle swarm optimization, we used a swarm size
of 500, confidence coefficient of 1.42694, 100 informers, and 15 executions as
the stopping criterion.

Table 13.4 shows the results for the classifiers FLRff, FLRotf, and FLRsf
with the weighted cosine δ-measure for the 5-category problem. The use of the
weighted cosine δ-measure shows considerable improvement (approximately
10%) in the classification accuracy for this problem as compared to the same
classifiers for the same data sets using σ-inclusion measure. In fact, the 5-
category results are comparable to most other methods when they are applied
to the 2-category problem. See Table 13.2. When differential evolution is used
to find the coefficients of the weighted cosine δ-measure, each of three clas-
sifiers performed better than the original classifier in every case, i.e. in each
of the 100 data sets. Overall, the genetic algorithm and differential evolu-

Table 13.4. Both classification accuracy and no. rules statistics for FLRff, FLRotf,
and FLRsf in the Cleveland “heart problem” using weighted cosine δ-measure

FLRff FLRotf FLRsf
% clas accu no. rules % clas accu no. rules % clas accu no. rules

Method av sd 1-1∗ av sd av sd 1-1∗ av sd av sd 1-1∗ av sd

GA 75.2 2.7 100 49.0 3.6 75.3 2.5 99 49.7 3.6 75.3 2.6 99 48.9 3.5
Tabu 72.8 2.7 97 49.9 3.1 73.2 2.7 95 49.8 3.3 72.5 2.8 90 49.8 2.9
PSO 70.5 2.6 92 49.9 3.2 70.5 2.6 89 49.8 3.2 70.5 2.6 84 49.9 3.2
DE 75.5 2.3 100 50.8 3.8 75.2 2.5 100 51.2 4.3 75.5 2.3 100 50.9 3.8
Original 66.0 2.6 − 53.5 10.3 66.6 2.9 − 51.2 11.0 66.5 3.0 − 49.5 9.8
∗ For 100 data sets, a 1-to-1 comparison was made between an enhanced classi-

fier and the original one. For example, entry 97 for Tabu and FLRff indicates
that of the 100 data sets tested, the enhanced FLRff classifier outperformed
the traditional FLRff on 97 out of 100 data sets.

13 FLR Classification Using Similarity Measures 283

tion search techniques provided better results than tabu and particle swarm
optimization search techniques. Over fitting the training data is ruled out by
construction, i.e. no FLR training parameters are used for the FLR classifiers
and a fixed number of generations are used for each evolutionary algorithm
— independent of the data set used.

13.8 Discussion and Conclusion

This work builds upon previous work found in [6, 7, 14] by modifying the defi-
nition of an inclusion measure used in those articles to a measure that we refer
to as a δ measure. Although this measure is no longer an inclusion measure in
the strictest sense, it can still be used in the traditional FLR tightest fit classi-
fiers. We have also shown that the traditional σ-inclusion measure based upon
hyperplane valuations (used in previous articles) is actually limited to the unit
hypersphere valuation. It is also shown that the σ-inclusion measure is related
to the L1 norm (in IN). We have also extended the σ-inclusion measure to a δ
measure that is based upon distance and similarity measures. This extension
opens a corridor between FLR and cluster analysis research, i.e. the similarity
measures of cluster analysis can be used in FLR, and in return FLR classifiers
can be more readily applied to cluster analysis. We have shown that FLR clas-
sifiers using the weighted cosine measure are able to solve problems for which
σ-inclusion hyperplane measures could not. We have used the weighted cosine
δ-measure in FLR classifiers plus evolutionary algorithms to find the weights
associated with the cosine δ-measure. An application of three FLR classifiers
using δ-measure to the Cleveland heart data 5-category problem shows signifi-
cant improvements over alternative classification methods from the literature.
In fact, our results for the 5-category problem are comparable to alternative
classification methods reported in the literature for the 2-category problem.

Future work includes a comparison of the weighted cosine δ-measure and
σ-inclusion measure on other data sets. Additional work needs to be done in
search of similarity measures now used in cluster analysis that may be used
as δ measures. Additional research needs to be done to determine if there is a
more efficient way to find coefficients used in the weighted cosine δ-measure for
a given problem set. Open questions: is there a methodology that can be used
to find an optimal or near optimal set of coefficients for different problem sets;
are there other measures that can generally perform better than the weighted
cosine δ-measure.

References

1. Adcock S, Genetic Algorithm Utility Library, http://gaul.sourceforge.net/,
version devel-0.1849

2. Anagnostopoulos GC, Georgiopoulos M (2001) New geometric concepts in fuzzy-
ART and fuzzy-ARTMAP: category regions. In: Proc Intl J Conf Neural Net-
works (IJCNN) 1:32–37

284 A. Cripps and N. Nguyen

3. Birkhoff G (1967) Lattice Theory. American Math Society, Colloquium Publi-
cations XXV

4. Blake CL, Merz CJ (1998) UCI repository of machine learning data-bases
http://www.ics.uci.edu/ mlearn/MLRepository.html Univ California, Irvine

5. Clerc M, Basic particle swarm optimization software
http://clerc.maurice.free.fr/pso/PSO basic/zo

6. Cripps A, Kaburlasos VG, Nguyen N, Papadakis SE (2003) Improved exper-
imental results using fuzzy lattice neurocomputing (FLN) classifiers. In: Proc
Intl Conf Machine Learning, Models, Technologies and Applications (MLMTA)
pp 161–166

7. Cripps A, Nguyen N, Kaburlasos VG (2003) Three improved fuzzy lattice neu-
rocomputing (FLN) classifiers. In: Proc Intl J Conf Neural Networks (IJCNN)
3:1957–1962

8. Gabrys B (2002) Combining neuro-fuzzy classifiers for improved generalisation
and reliability. In: Proc Intl J Conf Neural Networks (IJCNN) 3:2410–2415

9. Glover F, Laguna M (1997) Tabu Search. Kluwer, Norwell, MA
10. Granger E, Rubin MA, Grossberg S, Lavoie P (2002) Classification of incomplete

data using the fuzzy ARTMAP neural network. In: Proc Intl J Conf Neural
Networks (IJCNN) 6:35–40

11. Kaburlasos VG (2006) Towards a Unified Modeling and Knowledge Represen-
tation Based on Lattice Theory — Computational Intelligence and Soft Com-
puting Applications, ser Studies in Computational Intelligence 27. Springer,
Heidelberg, Germany

12. Kaburlasos VG (2007) Granular enhancement of fuzzy-ART/SOM neural clas-
sifiers based on lattice theory. This volume, Chapter 1

13. Kaburlasos VG, Athanasiadis IN, Mitkas PA (2007) Fuzzy lattice reasoning
(FLR) classifier and its application for ambient ozone estimation. Intl J Approx-
imate Reasoning 45(1):152–188

14. Kaburlasos VG, Petridis V (2000) Fuzzy lattice neurocomputing (FLN) models.
Neural Networks 13(10):1145–1170

15. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proc IEEE
Intl Conf Neural Networks IV:1942–1948

16. Mitchell TM (1997) Machine Learning. McGraw-Hill, New York, NY
17. Petridis V, Kaburlasos VG (1998) Fuzzy lattice neural network (FLNN): a

hybrid model for learning. IEEE Trans Neural Networks 9(5):877–890
18. Petridis V, Kaburlasos VG (2001) Clustering and classification in structured

data domains using fuzzy lattice neurocomputing (FLN). IEEE Trans Knowl-
edge Data Engineering 13(2):245–260

19. Price K, Storn R, Lampinen J (2006) Differential Evolution — A Practical
Approach to Global Optimization. Springer-Verlag, New York, NY

20. Quinlan JR (1992) C4.5: Programs for Machine Learning. Morgan Kaufman,
San Mateo, CA

21. Rasmussen E (1992) Clustering algorithms. In: Information Retrieval: Data
Structures and Algorithms, Frakes WB, Baeza-Yates R (eds) pp 419-442. Pren-
tice Hall, Englewood Cliffs, NJ

22. Vapnik VN (1998) Statistical Learning Theory. Wiley, Chichester, UK
23. Vose MD (1999) The Simple Genetic Algorithm: Foundations and Theory. MIT

Press, Cambridge, MA

