
10

Machine Learning Techniques
for Environmental Data Estimation

Vassilios Petridis1 and Vassilis Syrris2

1 Department of Electrical and Computer Engineering, Aristotle University of
Thessaloniki, Greece petridis@eng.auth.gr

2 Department of Electrical and Computer Engineering, Aristotle University of
Thessaloniki, Greece vsyrris@auth.gr

Summary. In this paper we investigate the issue of wind speed prediction at a par-
ticular location in the urban area of Thessaloniki, Greece, based on the historical
data containing wind parameter values at two other different locations. We evalu-
ate the performance of two significant machine learning methodologies, the Fuzzy
Lattice Neurocomputing (FLN) and the Support Vector Regression (SVR). The
results of the specific applications are compared with past work on the same data
set, and a discussion upon the exhibited features is carried out.

10.1 Introduction

Wind prediction (short/long-term) is of great significance for the wind energy
production which is the fastest growing type of renewable energy in Europe.
The energy produced strongly depends on the actual wind speed at a certain
location, so the power output cannot be guaranteed at all times. The objec-
tive for the energy market is the secure and economical management of a
power system [13], thus there is an urgent need for the development of flexible
computational techniques capable of controlling and governing efficiently the
energy resources.

Several researchers studied wind parameters at a certain location [9, 17].
However the performance of such an approach was not particularly remark-
able, at short-time prediction mainly, especially when compared with simple
techniques (e.g. Persistence). Wind forecasting is a stochastic process with
a high level of non-stationarity. This fact prompted researchers to take into
account spatial correlation of wind parameters at different locations [3, 19, 21].

This article describes two computational representations the first originat-
ing from the Fuzzy Lattice Neurocomputing (FLN) framework introduced in
[11, 12, 20] and the second from Support Vector Machines and the Kernel-
based framework. FLN is a scheme which combines elements from the Adap-
tive Resonance Theory (ART) [6], the mathematical theory of lattices [4] and

V. Petridis and V. Syrris: Machine Learning Techniques for Environmental Data Estimation,

Studies in Computational Intelligence (SCI) 67, 195–214 (2007)

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

196 V. Petridis and V. Syrris

the theory of fuzzy sets [25]. The FL-framework can handle families of inter-
vals. Also it can cope with disparate types of data including vectors, Boolean
data, symbols, images, text, graphs, etc. On the other hand, we have a promis-
ing regression technique, the Support Vector Regression (SVR) which has been
introduced by V. Vapnik and his collaborators [16, 23, 24]. It is deemed as a
universal learning machine founded on the principle of Structural Risk Mini-
mization which derives from statistical theory.

The goal herein is to test and validate the prediction hypothesis resolved by
both a FLN clustering/regression and a SVR approach. We examine the case
of real-time learning in a significantly non-stationary problem and we demon-
strate how the spatial correlation improves the final learning performance.
The application domain is the forecasting of wind speed at a meteorological
station based on values also measured by two other stations presenting spatial
correlation with the one in discussion.

10.2 Case Description

The study area is around the Thermaikos gulf, in the city of Thessaloniki,
Greece (Fig. 10.1); it is a region rather flat and almost at sea level. The type
of wind we are interested in is medium to high-speed. The prevailing winds
blow from the north-northwest. Therefore, two meteorological stations have
been situated at locations S1 and S2 that together with our location of interest,
the local station S0, are along the axis N-NW where strong winds appear. The
wind speed distribution is similar in all three stations. Their distances are:
(S1S2) = 27 km, (S2S0) = 12 km and obviously (S1S0) = 39 km.

One minute measurements of wind speed
and direction were collected at the afore-
mentioned three locations for a year [1] and
processed in order to remove non valid val-
ues and errors. The remaining set was aver-
aged for every 15 minutes eliminating thus
the measurement noise and the sudden wind
variations. The resulting measurements set
consists of 6 measurements at each instant
(υS1(t), ϕS1(t), υS2(t), ϕS2(t), υS0(t), ϕS0(t))
where υ and ϕ denote speed and direction
respectively. There are 3260 time instants.

S1

S2

S0

50 km 100 km

NORTH

PREVAILING
WINDS

10 km

THESSALONIKI
BAY

Fig. 10.1. The map shows the loca-
tion of the three meteorological sta-
tions

We point out that the location of the three stations allows the exploitation
of any spatial correlations among the locations involved. To this end we use
neighboring areas measurements concerning wind events in order to achieve

10 Machine Learning Techniques for Environmental Data Estimation 197

higher precision in the predictions regarding the study area. Our aim is to
predict future values of site S0 based on past values of all three stations.

In time-series prediction, the prediction origin, denoted t0, is the time from
which the prediction is generated. The time between the prediction origin and
the predicted data point is the prediction horizon h or the time lead of the
time series, while the stack of data used to conduct the prediction is defined
as batch history data, bhd, or look back length.

10.3 The FLN Forecasting Method

The reasoning behind the wind prediction problem as we formulate it is
to exploit possible similarities and correlations among the three stations by
means of FL-clustering application onto their historical data concerning wind
speed and wind direction. Thus, the subject matter is simplified and cast as
a problem of clustering; that is detecting sets of values the average of which,
with the suitable adjustment, can be employed as predictor. In case of new
evidence, the algorithm classifies it to a cluster. In fact this method is a regres-
sion technique involving two phases: a clustering process in the first phase and
a classification process in the second phase of the algorithm. The method is
applicable in a fuzzy lattice data domain and in this paper, in space R4.

10.3.1 The FL-framework

A lattice L is a partially ordered set of which any two elements have a greatest
lower bound (meet) denoted by x∧ y and a least upper bound (join) denoted
by x ∨ y. A lattice L is called complete when each of its subsets has a least
upper bound and a greatest lower bound in L. A non-void complete lattice
has a least element (O) and a greatest element (I).

At this point we mention a considerable asset of lattice theory in knowledge
representation. A lattice L can be the Cartesian product L = L1 × · · · × LN

of N constituent lattices L1, · · · , LN . A product lattice L involving disparate
constituent lattices has the potential of dealing with disparate types of data
such as vectors of real numbers, propositions, fuzzy sets, events in a probability
space, symbols, graphs, etc.
A useful function in a lattice L is a valuation function v : L → R defined by

v(x) + v(y) = v(x ∧ y) + v(x ∨ y), x, y ∈ L.

A valuation is called positive if and only if x < y ⇒ v(x) < x(y). An inclusion
measure function σ is defined on a complete lattice L as a map σ : L× L →
[0, 1] such that for u,w, x ∈ L the following three axioms are satisfied:

(Axm1) σ(x,O) = 0, x 	= O
(Axm2) σ(x, x) = 1,∀x ∈ L
(Axm3) u ≤ w ⇒ σ(x, u) ≤ σ(x,w) Consistency Property

198 V. Petridis and V. Syrris

Given a positive valuation function v(.) in a lattice L an inclusion measure
can be defined by the ratio σ(x, u) = v(u)

v(x∨u) [11]. The complete lattice τ(L)
of intervals of lattice elements has been analyzed in [11]. In that work it was
shown that an inclusion measure in a lattice L implies a fuzzy lattice, which
can be defined as follows: A fuzzy lattice is a pair < L,µ >, where L is a crisp
lattice and (L×L, µ) is a fuzzy set with membership function µ : L×L → [0, 1]
such that µ(x, y) = 1 if and only if x ≤ y. It turns out that < L, σ > is a
fuzzy lattice.

Finally the interval size is defined given a positive valuation function v(.)
in a lattice L. The size of an interval x = [a, b] ∈ τ(L) is a function Z : L→ R
as expressed in Z([a, b]) = v(b)− v(a).

10.3.2 Application of the method

In FL-data formulation we represent both parameters (speed and direction)
of each station as a 2-dimensional vector: xS0(t) = [υS0(t), ϕS0(t)], xS1(t) =
[υS1(t), ϕS1(t)], xS2(t) = [υS2(t), ϕS2(t)]. The data set DFL consists of xS0(t),
xS1(t), xS2(t) for 3260 time instants. So the reference domain is considered
to be the complete product lattice L = R2 × R2 (called a rectangle), where
a constituent complete lattice is the interval of real numbers. The prediction
scheme takes the form:

x̃S0(t0 + h) = f(xS0(t0), ..., xS0(t0 − (bhd − 1)), xS1(t0), ...,
xS1(t0 − (bhd − 1)), xS2(t0), ..., xS2(t0 − (bhd − 1))) (10.1)

During the experiments we set up the variables h and bhd to be equal.
A positive valuation function in R is given by v(x) = x. The inclusion

measure σ : R×R → [0, 1] is defined as:

σ(x, y) =
v(y)

v(x ∨ y)
=

y

max(x, y)
, x, y ∈ R.

In order to determine the inclusion measure of a point u = (x, y) into the
rectangle w = (x1, y1) × (x2, y2), we represent the former by its respective
degenerate rectangle u = (x, y) × (x, y) and then we introduce the following
formula that calculates the inclusion measure of u in w:

σ(u,w) =
1
2

(
mean(x1, x2)

max(x,mean(x1, x2))
+

mean(y1, y2)
max(y,mean(y1, y2))

)

(10.2)

where mean(a, b) = a+b
2 , a, b ∈ R.

It is worth mentioning that all the points of the constituent lattices are
comparable as we can see in the following example: consider the points u =
(0, 4) and w = (3, 2). Their degenerate rectangles are: u = (0, 4) × (0, 4)
and w = (3, 2) × (3, 2). According to the relationship (10.2) their respective
inclusion measures are: σ(u,w) = 1.5/2 = 0.75 and σ(w, u) = 1/2 = 0.5 and
consequently, we infer that u ≤ w.

10 Machine Learning Techniques for Environmental Data Estimation 199

10.3.3 Algorithm description

The prediction scheme of (10.1) is implemented by means of the algorithm
described in this subsection. Before we proceed to the essence of the FL learn-
ing mechanism, we should mention two crucial points for the fine tuning of
the model. A major parameter is the vigilance parameter ρ ∈ R which is nec-
essary for the clustering procedure in order to adjust the size of the clusters.
The vigilance parameter specifies the algorithm sensitivity. As ρ increases, the
calculated rectangles size increases too. Another basic factor is the correction
of the function outcome (10.1). After many experiments we obtain the best
results when we adjust the vigilance parameter as ρ = s (standard deviation of
the sample/time window), while the prediction improves if we take its average
with the last measured value, i.e. if xS0(t) is the last known value at station
S0 measured at time t and x̃S0(t + h) is the estimation at time t + h given by
the (10.1), then the final prediction is given by:

pS0(t + h) =
xS0(t) + x̃S0(t + h)

2
(10.3)

Moreover, there is no need for any normalization of the experimental values.
The algorithm consists of two phases, the clustering procedure and the

prediction function:
The clustering phase as an iterative procedure:

C1. A data set of n vectors is given.
C2. At the initial pass of the algorithm, the first vector is presented and its

degenerate rectangle constitutes the first cluster. As the algorithm pro-
ceeds a set of clusters CR is created CR = {CR1, ..., CRL} as described
in the sequel. A cluster is represented by a rectangle in R2 ×R2.

C3. At each iteration a new vector u = [x, y] is fed to the algorithm.
C4. The inclusion measure of u = [x, y] is calculated with respect to each

rectangle CR1, ..., CRL.
C5. Rectangles CR1, ..., CRL compete over input u = [x, y]. Winner is the

rectangle CRW which includes u the most, i.e. it has the largest inclusion
measure.

C6. Winner rectangle CRW is augmented tentatively so as to include the
degenerate rectangle u = [x, y]× [x, y]. For instance, if CRW = [x1, y1]×
[x2, y2] then the union rectangle CRU is calculated as:

CRU = [min(x, x1), min(y, y1)]× [max(x, x2), max(y, y2)]

C7. If size of CRU is smaller than or equals the vigilance parameter then the
rectangle CRW is replaced by CRU . Otherwise, reset occurs (i.e. the size
of CRW is reverted to its previous state and it is excluded from the list
of the candidate rectangles to be compared with u), and the next winner
is selected among the remaining rectangles.

200 V. Petridis and V. Syrris

C8. If all the rectangles have been reset, then input u = [x, y] is learned as a
new rectangle, CRnew = [x, y]× [x, y].

The prediction phase as a categorization procedure:

1. We set both the time horizon to be h steps from the last known measure-
ment at S0 (at the moment t = 0) and the look back length to be bhd.
This means that we want to estimate xS0 (t0 + h) based on bhd vectors.

2. The three vectors xS0(t = 0) = [υS0(t = 0), ϕS0(t = 0)], xS1(t = 0) =
[υS1(t = 0), ϕS1(t = 0)] and xS2(t = 0) = [υS2(t = 0), ϕS2(t = 0)] of the
data set DFL are selected.

3. The standard variation s of the above vectors is calculated.
4. For the clustering procedure [C1–C8] we use as data set the vectors

xS0(t = 0), xS1(t = 0), xS2(t = 0). The result is the generation of the
set of cluster/s referred to as CR.

5. An input vector W is presented to the algorithm. When t = 0 then W =
xS0(t = 0). The inclusion measure of W is calculated for each rectangle
of step 4 resulting thus in the inclusion measure vector.

6. The values of the inclusion measure vector are normalized to give the sum
of 1 producing the column vector [NIM(CRi)], where NIM(CRi) is the
normalized inclusion measure of rectangle CRi, i = 1, 2, ..., L.

7. The mean of a rectangle CRi = [x1i, y1i] × [x2i, y2i] is a point Mi =(
x1i+x2i

2 , y1i+y2i

2

)
i = 1, 2, ..., L. The estimation of xS0(t0 +h) is calculated

by multiplying the mean of each rectangle with its respective normalized
inclusion measure and then by summing each partial result, i.e. x̃S0(t0 +
h) = [Mi]× [NIM(CRi)], i = 1, 2, ..., L.

8. The estimate is corrected by averaging the produced result from step 7
with the last measurement (at the station S0) as shown in (10.3). The
outcome pS0 (t = 1) is the first estimation for one step ahead h = 1.

9. We check if we have reached the desired time horizon. If so, then the
algorithm stops otherwise it continues to the next step.

10. A new data set is created using the vectors xS0(t = 0), xS1(t = 0), xS2(t =
0), the estimate pS0 (t = 1) and the vectors for one step back (except the
case where we have reached the look back length bhd) xS0(t = −1), xS1(t =
−1), xS2(t = −1), i.e. NewData = {xS0(t−1), xS1(t−1), xS2(t−1), xS0(t0),
xS1(t0), xS2(t0), x̃S0(t1)}.

11. The vigilance parameter is taken equal to the standard variation of the
NewData data set.

12. We apply the clustering procedure [C1-C8] to the data set defined in step
10. New rectangles are formed representing the knowledge generated by
the contribution of new evidence.

13. The flow of the algorithm goes to stage 5 by using as new input the
estimated value pS0 (t = 1) (in general, by using the last estimated value),
i.e. W = pS0 (t = 1), and CR is the set of clusters generated in step 12.

10 Machine Learning Techniques for Environmental Data Estimation 201

10.4 The SVR Method

The theory of Support Vector Machines has been extended in order to cope
with regression problems. Suppose that we have a data set {(xi, yi), i =
1, 2, ..., n} of measurements where xi ∈ X and yi ∈ R (X denotes the space
of the input patterns and R is the set of real numbers). We consider that the
tuples (xi, yi) are taken from an unknown distribution P (x, y).

10.4.1 Linear regression

The formulation of the linear regression task stated by Vapnik [23] is the
following convex optimization problem:

minimize 1
2 ‖w‖

2 + C
n∑

i=1

(ξi + ξ∗i)

subject to

⎧
⎨

⎩

yi − 〈w, xi〉 − b ≤ ε + ξi

〈w, xi〉+ b− yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

(10.4)

where 〈·, ·〉 refers to the inner product in X. C > 0 is a pre-specified value that
determines the trade-off between the flatness of regressor and the amount up
to which deviations larger than ε are tolerated and ξi, ξ

∗
i are slack variables

interpreted as: ξ for exceeding the target value by more than ε and ξ∗ for
being more than ε below the target value (soft margin regression).

In addition to (10.4) a loss function is minimized. For our SV-models we
choose the linear ε-insensitive loss function :

Lε =
{

0 for |yi − (〈w, xi〉 − b)| ≤ ε
|yi − (〈w, xi〉 − b)| − ε otherwise

This defines an ε tube in such a way that if the predicted value is within
the tube then the loss is zero, whereas if the predicted point is outside the
tube, the loss is the magnitude of the difference between the predicted value
and the radius ε of the tube.

To assure that the training data appear as inner products among the
vectors and to better handle the constraints, the problem is transformed into
a Lagrangian formulation named the primal form:

LP = 1
2 ‖w‖

2 + C
n∑

i=1

(ξi + ξ∗i)−
n∑

i=1

(ηiξi + η∗
i ξ∗i)

−
n∑

i=1

ai (ε + ξi − (yi − 〈w, xi〉 − b))

−
n∑

i=1

a∗
i (ε + ξ∗i − (〈w, xi〉+ b− yi))

(10.5)

where ai, a
∗
i , ηi, η

∗
i ≥ 0 are the Lagrange multipliers.

Differentiating with respect to w, b, ξi, ξ
∗
i gives:

202 V. Petridis and V. Syrris

∂L
∂w = w −

n∑

i=1

(ai − a∗
i) xi = 0

∂L
∂b =

n∑

i=1

(a∗
i − ai) = 0

∂L
∂ξi

= C − ai − ηi = 0
∂L
∂ξ∗

i
= C − a∗

i − η∗
i = 0

(10.6)

Substituting for w into (10.5) and using the relations (10.6) the dual opti-
mization problem is obtained:

LD = − 1
2

n∑

i=1

n∑

j=1

(ai − a∗
i)
(
aj − a∗

j

)
〈xi, xj〉

− ε
n∑

i=1

(ai + a∗
i) +

n∑

i=1

(ai − a∗
i) yi

(10.7)

This function is maximized subject to:

n∑

i=1

(ai − a∗
i) = 0 and 0 ≤ ai, a

∗
i ≤ C (10.8)

Solving the first equation of (10.6) for w gives: w =
n∑

i=1

(ai − a∗
i) xi so the

candidate linear function takes the form:

f(x) = wx + b =
n∑

i=1

(ai − a∗
i) 〈xi, x〉+ b (10.9)

The Karush-Kuhn-Tucker complementary conditions [14, 15] are:

ai (ε + ξi − (yi − 〈w, xi〉 − b)) = 0
a∗

i (ε + ξ∗i − (〈w, xi〉+ b− yi)) = 0
ηiξi = (C − ai) ξi = 0
η∗

i ξ∗i = (C − a∗
i) ξ∗i = 0

(10.10)

The (10.10) imply that aia
∗
i = 0 which means that the set of dual variables

can never be nonzero at the same time. Those patterns xi with ai > 0 or
a∗

i > 0 are support vectors. If ai ∈ (0, C) or a∗
i ∈ (0, C) then (xi, yi) lies on

the boundary of the tube surrounding the regression function at distance ε.
Moreover, if ai = C or a∗

i = C then the point lies outside the tube. Thus, the
parameter b is computed as follows:

b = yi − 〈w, xi〉 − ε for ai ∈ (0, C)
b = yi − 〈w, xi〉+ ε for a∗

i ∈ (0, C)

10 Machine Learning Techniques for Environmental Data Estimation 203

10.4.2 Nonlinear regression

In this case the nonlinear function has the form: f(x) = 〈w, φ(x)〉 + b where
φ(x) is the image of input vector x in a high dimensional space. Using the
trick of kernel functions [7] the dual form (10.5) is replaced by the quadratic
problem:

LD = − 1
2

n∑

i=1

n∑

j=1

(ai − a∗
i)
(
aj − a∗

j

)
K (xi, xj)

−ε
n∑

i=1

(ai + a∗
i) +

n∑

i=1

(ai − a∗
i) yi

(10.11)

where K (xi, xj) = 〈φ(xi), φ(xj)〉 is a kernel function satisfying Mercer’s
conditions [8]. The relationship (10.11) is maximized subject to the con-
straints (10.8). Finally, the regressor takes the form:

f(x) =
n∑

i=1

(ai − a∗
i)K(xi, x) + b (10.12)

In that way, we manage to apply linear regression not in the low dimen-
sional input space but in a high dimensional (feature) space via the kernel
function which makes the mapping implicitly, i.e. without knowing φ(x).

10.4.3 The prediction of SV-models

As analyzed in previous section, the objective of SVR is to construct a hyper-
plane that lies “close” to as many of the data points as possible [22]. The
solution is obtained as a set of support vectors that can be sparse. These lie
on the boundary and as such summarize the information required to separate
the data.

SVR has an advantage over other function estimation methods: it is capa-
ble of controlling the capacity of the hypothesis; the algorithm selects the
subspace of the hypothesis space that is optimal in terms of some bound on
the generalization of the hypothesis. This fact leads to the choice of the kernel
function, the width of the ε-insensitive zone and the capacity control C for
controlling the regression model. Since there is not a rigorous way to select
the finest set of hyperparameters, i.e. kernel, ε and C, we use the leave-one-
out cross-validation method by constructing successive time windows of size
bhd + 1, i.e. we utilize bhd vectors in order to predict one value h steps ahead.

After a sufficient number of experiments, we obtained the best results when

we used the RBF kernel K (xi, xj) = 〈φ(xi), φ(xj)〉 = e−
(xi−xj)

2

2σ2 , where the
width of radial basis functions equals to σ = 0.08 and the other parameters
were tuned to the values: ε = 0.05, C = 1.

204 V. Petridis and V. Syrris

We developed two different models :

M1. Solve the quadratic optimization problem (10.11), calculate the Lagrange
multipliers and the bias and finally use the regressor (10.12) to get the
prediction.

M2. Solve the quadratic optimization problem (10.11) and express the final
prediction as a linear dependence of the arisen support vectors.

Each of the above models has two alternative versions concerning the input
data type and the output:

a. We define the sets V1 = {xi(t) = [υS0(t) υS1(t) υS2(t)] for t = 1, 2, ..., 3260}
(it consists of 3260 3-dimensional vectors) and V2 = {υS0(t), υS1(t), υS2(t)
for t = 1, 2, ..., 3260} (it consists of 3 × 3260 scalars). Thus, the inputs
of the models are either i) 3-dimensional vectors that is xi ∈ V1 or ii)
1-dimensional vectors that is xi ∈ V2.

b. The outcome of the models x̃S0 (t0 + h) can either i) remain intact or ii)
be averaged with the last measured value xS0 (t0) at S0, i.e.

predS0 (t0 + h) =
xS0 (t0) + x̃S0 (t0 + h)

2
(10.13)

For simplicity reasons, when we refer, for instance, to model M1.a(i).b(ii)

we mean the option which uses the regressor (10.12), it takes 3-dimensional
vectors as input and its output results from (10.13) (i.e. model M1, versions
a(i) and b(ii)). The same convention holds for all the other options.

10.4.4 Algorithms description

A sliding window is used containing x(t), x(t−1), ..., x(t−bhd+1). For example,
we consider as look back length 3 steps and as future time horizon 10 steps.
If we start at the moment t0 = 6, we use three vectors at time instances
t−2 = 4, t−1 = 5 and t0 = 6 as historical data which lead to the prediction at
t10 = 16. At next moment t0 = 7 we use the vectors at time instances t−2 = 5,
t−1 = 6 and t0 = 7 to make a prediction at time t10 = 17 etc. The algorithms
of the previous section are described more analytically below:

Algorithm M1.a(i).b(i)

S1) Set future time horizon h, the look back length bhd and the prediction
origin t0.

S2) Normalize data in [−1,1].
S3) For i = t0 to 3260:

S3.1) The vectors xi in regressor (10.12) are the vectors in the interval
(t0−bhd+1, t0): [xS1(t0−k), xS2(t0−k), xS0(t0−k)] and yi = xS0(t0−
k + h), where k = m− 1 and m = (bhd − 1), ..., 2, 1.

S3.2) Solve the quadratic problem.

10 Machine Learning Techniques for Environmental Data Estimation 205

S3.3) Use the regressor function (10.12) where
x = [xS1 (t0 + h) , xS2 (t0 + h) , xS0 (t0 + h)]

S3.4) The regressor’s output x̃S0(t0 + 2h) is the prediction for h steps
ahead.

Algorithm M2.a(i).b(i)

Until S3.2 the steps are the same with the previous algorithm.

— S3.3) We take into account the xS0(t0 + h) component of the input
vector x. Then we consider the xS0(t + h) component of the sup-
port vector SVi, i = 1, ...,M (where M is the number of sup-
port vectors) denoted by xSVi

S0
. Finally, the column vector Dist =

[|xSV1
S0

−xS0(t0 + h)|, ..., |xSVM

S0
−xS0(t0 + h)|]T is computed. The Dist

is normalized as NDist = Dist/
M∑

i=1

|xSVi

S0
− xS0(t0 + h)|.

— S3.4) The final prediction is: xS0(t0 + 2h) = [xSV1
S0

, ..., xSVM

S0
]×NDist.

In the cases 1.a(ii) and 2.a(ii) we modify step S3.1 as:
Select all vectors in the interval (t0 − bhd + 1, t0): [xS1(t0−k), xS0(t0−k+

h)] , [xS2(t0−k), xS0(t0−k+h)] , [xS0(t0−k), xS0(t0−k+h)], where k = m− 1
and m = (bhd − 1), ..., 2, 1.
In the cases 1.b(ii) and 2.b(ii) we change the outcome of step S3.4 using (10.13).

10.5 Model Evaluation

In order to test the performance of the models we compare the degree of their
prediction success with other approaches such as:
Persistence: The most commonly used reference model for short term fore-
casting of wind is the Persistence method which assumes that: ̏the conditions
that existed at the beginning of the forecast period will continue or persist
through to the end of the period˝[5]:

ỹt+h = yt where yt is the last measured value

This method is not only the simplest modeling approach but is also the
most economical to implement, and surprisingly accurate for short term fore-
casting (1 to 5 hours).
Moving Average: It is a widely used forecasting method constituting a gen-
eralization of the Persistence model. This simple approach is based on the
average value of the variable over a specific number of preceding periods. In
this paper we define the Moving Average method as

ỹt+h = 1
h

h−1∑

j=0

yt−j , h = 1, 2, ..., n, where h = bhd

As h goes to infinity the Moving Average tends to the global average: ỹt + h =
yt where yt is the average of all the available measurements until time t.

206 V. Petridis and V. Syrris

Recurrent Neural Networks: A Recurrent Neural Network employs feedback
connections and has the potential to represent ̏certain computational struc-
tures in a more parsimonious fashion˝[10]. RNNs address the temporal rela-
tionship of their inputs by maintaining an internal state. In the latest
bibliography regarding wind forecasting we find the RNN algorithm in [2]
and because of its having been applied on the same data set displaying good
performance we compare it to the FL-model.

To measure the precision of the models (i.e. how the model output is close
to the real value) we make use of three statistical types of errors:

• The Mean Absolute Error: MAE = 1
N

N∑

i=1

|yi − ỹi|

• The Normalized Mean Square Error: NMSE =

1
N

N∑

i=1

{
(yi−ỹi)2}

1
N

N∑

i=1

{(

yi− 1
N

N∑

i=1

yi

)2}

• The Root Mean Square Error: RMSE =

√

1
N

N∑

i=1

{
(yi − ỹi)

2
}

where yi is the real value, ỹi is the model output and N is the number of
tested values. Smaller values of the aforesaid uncertainty statistics denote
better model performance. The reason for using these criteria is that they
operate independently of application and target value specification while they
are not biased towards models that over or under predict.

10.6 Experimental Results

The FL-Approach: Tables 1.2, 1.3 regarding both parameters of wind (speed
and direction) display the comparison analysis among the reference models
and the proposed approach. We use symbol ̏-˝ when the value is not provided.
Explanation of the table columns is given in Table 1.1.

For the validation of the result, we adopt the sliding window where 2h× 3
is the window size for all the 3260 vectors and h is the time horizon within
which the variable to be predicted lies. When we try to make a prediction h
steps ahead from the moment t we take as input values the time frame h− 1
steps back from t, i.e. t, t− 1, ..., t− (h− 1) (each step refers to a period of 15
minutes).

The SV-Approach: The accuracy of each forecasting method is determined by
its specific architecture [8]. The SVR algorithms offer a sufficient number of
degrees of freedom in customizing models to a particular forecasting task. As
we mentioned before, in order to evaluate the candidate models and determine

10 Machine Learning Techniques for Environmental Data Estimation 207

the suitable architecture we adopt the leave-one-out cross-validation method;
we select these ones with the lowest error on the validation data set.

The following Tables (2.1, 3.1, 4.1) display the performance of the proposed
SV-models. We show these results which correspond to look back length bhd =
3 and 6 and to time horizon h = 1, 6, 20, 40, 80 and 160 steps ahead. At each
instant the first line of the tables refers to x̃S0 (t0 + h) and the second line
refers to predS0 (t0 + h).

208 V. Petridis and V. Syrris

Tables 2.2, 2.3, 3.2, 3.3, 4.2 and 4.3 provide the improvement percentage
with respect to both reference models, i.e. Persistence and Moving Average.
For example, the improvement percentage of SV model S0, S1, S2svs over the

10 Machine Learning Techniques for Environmental Data Estimation 209

Persistence using the criterion NMSE at 1200 minutes ahead and x̃S0 (t0 + 80)
(Table 2.1) is 1.52−1.35

1.52 × 100% = 11.47% (Table 2.3).
However, it is common that the performance varies in the data set and,

indeed, there is not an a priori reason to believe that accurate predictions

210 V. Petridis and V. Syrris

can be made at every single time step; in a mainly non-linear system, there
may be islands of predictability implanted in a sea of unpredictable or chaotic
behavior [18].

10 Machine Learning Techniques for Environmental Data Estimation 211

10.7 Discussion

Some interesting points emerging from the comparison analysis are given in
the following.

The FL-Approach:

1. The Moving Average method exhibits the poorest performance whereas
the RNN and the FLS0,S1,S2-approach demonstrate significant improve-
ment in comparison with it and the Persistence method. Up to a certain
degree, this result is expectable since the RNN and FLS0,S1,S2 exploit the
correlation among the three meteorological stations.

2. Additionally, the FLS0-approach utilizing only the historical data of sta-
tion S0 is not better than the Persistence in predicting wind speed, while
it behaves better in wind direction predictions. This can be explained by
the fact that the wind direction displays noticeably less variation than
wind speed.

3. In the first two steps (15 and 30 minutes) the FL-model cannot beat
the Persistence method because a crucial factor in FL-approach is the
formulation of rectangles and in this time horizon the created rectangles
are few and contain no significant information in order to result in more
precise predictions. The RNN model seems to perform better in this time
window but we have to consider the fact that it exploits more information
(steps back) in the training phase.

4. The percentage improvement of both FLS0,S1,S2 and RNN algorithms
compared with MA shows a slightly better performance of the former
especially after 4 steps ahead. For instance, at h = 8 the FLS0,S1,S2-model
presents a 24.31% improvement while the respective percentage of RNN
is 23.61%. Similarly, at h = 12 the FLS0,S1,S2-model displays a 22.99%
improvement while the respective percentage of RNN is 20.98%. However,
the RNN model and the FL-approach are not totally comparable since
they refer to slightly different samples. However, we have to stress the
fact that the FL-approach does not need any training while it is easily
tuned (the vigilance parameter is set equal to the standard variation of
the data sample and the curve correction is eventuated by means of the
last measured value) and presents both low computational and time cost.

5. Another advantage of the FL-model for the user is data compression and
the effortless extraction of simple rules (symbolic knowledge which has
meaning to humans) where the prediction of a new fact is calculated from
the weighted average of the created rectangles and its average with the
last measured value.

In Fig. 10.2, we indicate how the FL-model approximates the real curve.

212 V. Petridis and V. Syrris

0

2

4

6

8

10

12

0 200 400 600

Time (minutes)

W
in

d
 S

p
e
e
d
 (

m
 /
s
e
c
)

Real values FL-Model

Fig. 10.2. Approximation of real curve by the FL-model

The SV-Approach: We test the SV-models only for wind parameter predic-
tion.

1. The usage of small time frames (bhd=1 or bhd=6) limits the memory
requirements for storage of the kernel matrix whilst the impact of past
outliers is diminished. Moreover, after many tests we ascertained that
greater values for bhd do not give better results.

2. The two algorithms S0 svs and S0 with kernel cannot outperform any
other model. This indicates the need for additional information.

3. In most cases the predS0 (t0 + h) gives better results than x̃S0 (t0 + h).
The latter seems to have improved after 80 steps.

4. The approach with the 3-dimensional input vectors exhibits better per-
formance related to models with 1-dimensional input vectors.

5. The greater generalization ability is displayed by S0, S1, S2 svs, S0, S1,
S2−3d svs and S0, S1, S2−3d kernel especially after 20 steps ahead. We
note that these models take advantage of the spatial correlation among
the three stations.

We point out that the performance of SV algorithms depends crucially on an
appropriate choice of parameters. Although several different approaches exist
for their selection, the issue of how to practically select a good set is still far
from being resolved.

10.8 Conclusions

This paper applies comparatively two prediction methodologies (the Fuzzy
Lattice Neurocomputing and the Support Vector Regression) to a real-world
problem that of wind prediction which is a very demanding task. Short (0–6
hours) and long (>6 hours) time forecasting of wind variations is still an open
problem.

10 Machine Learning Techniques for Environmental Data Estimation 213

FLN and SVR have sound mathematical foundations. The results pro-
duced depend on the selection of the valuation function in the FLN case and
the kernel function in the SVR case. There are few parameters to adjust. In
FLN we just tune the vigilance parameter while in SVR we adjust the capac-
ity control and the kernel parameters (the width of the Gaussian kernel in
RBF case). Additionally, they can be applied to different types of data such
as real-valued vectors, symbols, images, text etc. Yet, only the FL technique
manages to cope with different types of data simultaneously by considering the
Cartesian product of multiple lattices. Both methodologies seek for a sparse
representation of the final solution, i.e. FLN utilizes intervals whereas SVR
uses the support vectors representing the bounds of the candidate solution
regions standing for diverse classes. The problem of missing and don’t care
attribute values in the data has not been explicitly addressed within the SVR
methodology whereas in the FL-framework missing values have been replaced
by the least element and don’t care values can be replaced by the greatest ele-
ment of the corresponding lattice. Finally, the model selection problem is still
an open research topic since both methodologies employ a quite expensive
way (cross validation) to select the model parameters.

We have assessed the performance of the proposed models by compar-
ing them with two well-known reference techniques employed widely as
benchmarks to time-series analysis, the Persistence and the Moving Aver-
age method, and additionally to a recurrent neural network. In general the
FL-approach demonstrates a satisfactory and constant performance. Future
work involves the testing of the FL-approach in dealing with data typically
containing high noise and significant non-stationarity. Finally, a synthesis of
these two effective methodologies (FL and SVR) might result in superior algo-
rithms.

References

1. Alexiadis MC (2002) Wind Speed Prediction at Aeolic Parks. PhD Thesis,
Aristotle Univ of Thessaloniki, Greece

2. Barbounis A (2005) Optimized Real-Time Learning Algorithms for the Train-
ing of RNNs and Fuzzy RNNs: Application on Wind Speed and Wind Power
Prediction at Aeolic Parks. PhD Thesis, Aristotle Univ of Thessaloniki, Greece

3. Beyer HG, Luther J, Steinberger-Willms R (1993) Power fluctuations in spa-
tially dispersed wind turbine systems. Solar Energy 50:297–306

4. Birkhoff G (1967) Lattice Theory. American Math Society, Col Pub 25
5. Box J, Jenkins G (1976) Time Series Analysis, Forecasting and Control. Hol-

Day
6. Carpenter G, Grossberg S (1987) A massively parallel architecture for self-

organizing neural pattern recognition machine. Computer Vision, Graphics and
Image Understanding 37:54–115

7. Cortes C, Vapnik V (1995) Support Vector Networks. Mach Learn 20:273–297
8. Cristianini N, Shawe-Taylor J (2000) An Introduction to Support Vector

Machines (and other kernel-based learning methods). Cambridge Univ Press

214 V. Petridis and V. Syrris

9. Daniel AR, Chen AA (1991) Stochastic simulation and forecasting of hourly
average wind speed sequences in Jamaica. Sol Energy 46:1–11

10. Elman JL (1991) Distributed representations, simple recurrent networks, and
grammatical structure. Machine Learning 7(2/3):195–226

11. Kaburlasos VG, Petridis V (2000) Fuzzy lattice neurocomputing (FLN) models.
Neural Networks 13(10):1145–1170

12. Kaburlasos VG, Petridis V (2002) Learning and decision-making in the frame-
work of fuzzy lattices. In: Jain LC, Kacprzyk J (eds) New Learning Paradigms
in Soft Computing, ser Studies in Fuzziness and Soft Computing 84:55–96.
Physica-Verlag, Heidelberg, Germany

13. Kariniotakis G, Pinson P, Siebert N, Giebel G, Barthelmie R (2004) The state
of the art in short-term prediction of wind power from an offshore perspective.
In: Proc SeaTechWeek

14. Karush W (1939) Minima of Functions of Several Variables with Inequalities
as Side Constraints. MS Thesis, Dept of Mathematics, Univ of Chicago

15. Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Proc 2nd Berkeley
Symp on Mathematical Statistics and Probabilistics pp 481–492. Univ of
California Press

16. Müller KR, Smola AJ, Rätsch G, Schölkopf B, Kohlmorgen J, Vapnik V (1997)
Prediction time series with support vector machines. In: Proc Int Conf on Arti-
ficial Neural Networks

17. Nielsen TS, Madsen H (1997) Statistical methods for predicting wind power.
In: Proc European Wind Energy Association Conference (EWEC) pp 755–758

18. Packard NH (1990) A genetic learning algorithm for the analysis of complex
data. Complex Systems 4(5):543–572

19. Palomino I, Martin F (1995) A simple method for spatial interpolation of the
wind in complex terrain. J Appl Meteorology 34(7):1678–1693

20. Petridis V, Kaburlasos VG (1999) Learning in the framework of fuzzy lattices.
IEEE Transactions on Fuzzy Systems 7(4):422–440

21. Schlueter RA, Park GL, Bouwmeester R, Shu L, Lotfalian M, Rastgoufard P,
Shayanfar A (1984) Simulation and assessment of wind array power variations
based on simultaneous wind speed measurements. IEEE Trans Power App Syst
103:1008–1016

22. Smola AJ and Schölkopf B (2004) A tutorial on support vector regression.
Statistics and Computing 14:199–222

23. Vapnik V (1995) The Nature of Statistical Learning Theory. Springer, NY
24. Vapnik V, Golowich SE, Smola A (1997) Support vector method for function

approximation, regression estimation, and signal processing. In: Adv in Neural
Information Processing Systems 9:281–287. The MIT Press, Cambridge

25. Zadeh LA (1965) Fuzzy sets. Information and Control 8:338–353

