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Summary. In this paper we investigate the issue of wind speed prediction at a par-
ticular location in the urban area of Thessaloniki, Greece, based on the historical
data containing wind parameter values at two other different locations. We evalu-
ate the performance of two significant machine learning methodologies, the Fuzzy
Lattice Neurocomputing (FLN) and the Support Vector Regression (SVR). The
results of the specific applications are compared with past work on the same data
set, and a discussion upon the exhibited features is carried out.

10.1 Introduction

Wind prediction (short/long-term) is of great significance for the wind energy
production which is the fastest growing type of renewable energy in Europe.
The energy produced strongly depends on the actual wind speed at a certain
location, so the power output cannot be guaranteed at all times. The objec-
tive for the energy market is the secure and economical management of a
power system [13], thus there is an urgent need for the development of flexible
computational techniques capable of controlling and governing efficiently the
energy resources.

Several researchers studied wind parameters at a certain location [9, 17].
However the performance of such an approach was not particularly remark-
able, at short-time prediction mainly, especially when compared with simple
techniques (e.g. Persistence). Wind forecasting is a stochastic process with
a high level of non-stationarity. This fact prompted researchers to take into
account spatial correlation of wind parameters at different locations [3, 19, 21].

This article describes two computational representations the first originat-
ing from the Fuzzy Lattice Neurocomputing (FLN) framework introduced in
[11, 12, 20] and the second from Support Vector Machines and the Kernel-
based framework. FLN is a scheme which combines elements from the Adap-
tive Resonance Theory (ART) [6], the mathematical theory of lattices [4] and

V. Petridis and V. Syrris: Machine Learning Techniques for Environmental Data Estimation,
Studies in Computational Intelligence (SCI) 67, 195-214 (2007)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007



196 V. Petridis and V. Syrris

the theory of fuzzy sets [25]. The FL-framework can handle families of inter-
vals. Also it can cope with disparate types of data including vectors, Boolean
data, symbols, images, text, graphs, etc. On the other hand, we have a promis-
ing regression technique, the Support Vector Regression (SVR) which has been
introduced by V. Vapnik and his collaborators [16, 23, 24]. It is deemed as a
universal learning machine founded on the principle of Structural Risk Mini-
mization which derives from statistical theory.

The goal herein is to test and validate the prediction hypothesis resolved by
both a FLN clustering/regression and a SVR approach. We examine the case
of real-time learning in a significantly non-stationary problem and we demon-
strate how the spatial correlation improves the final learning performance.
The application domain is the forecasting of wind speed at a meteorological
station based on values also measured by two other stations presenting spatial
correlation with the one in discussion.

10.2 Case Description

The study area is around the Thermaikos gulf, in the city of Thessaloniki,
Greece (Fig. 10.1); it is a region rather flat and almost at sea level. The type
of wind we are interested in is medium to high-speed. The prevailing winds
blow from the north-northwest. Therefore, two meteorological stations have
been situated at locations S and S5 that together with our location of interest,
the local station Sy, are along the axis N-NW where strong winds appear. The
wind speed distribution is similar in all three stations. Their distances are:
(5152) = 27 km, (S2Sp) = 12 km and obviously (51.50) = 39 km.

vy NoRTH
One minute measurements of wind speed ?‘,
and direction were collected at the afore-
mentioned three locations for a year [1] and
processed in order to remove non valid val-
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ues and errors. The remaining set was aver- WiNDs
aged for every 15 minutes eliminating thus ok

the measurement noise and the sudden wind ., SEE
variations. The resulting measurements set Geti s
consists of 6 measurements at each instant
(vsy (t); sy (1), U5, (), s, (1), V50 ()5 5, ()
where v and ¢ denote speed and direction
respectively. There are 3260 time instants.
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Fig. 10.1. The map shows the loca-
tion of the three meteorological sta-
tions

We point out that the location of the three stations allows the exploitation
of any spatial correlations among the locations involved. To this end we use
neighboring areas measurements concerning wind events in order to achieve
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higher precision in the predictions regarding the study area. Our aim is to
predict future values of site Sy based on past values of all three stations.

In time-series prediction, the prediction origin, denoted %, is the time from
which the prediction is generated. The time between the prediction origin and
the predicted data point is the prediction horizon h or the time lead of the
time series, while the stack of data used to conduct the prediction is defined
as batch history data, b4, or look back length.

10.3 The FLN Forecasting Method

The reasoning behind the wind prediction problem as we formulate it is
to exploit possible similarities and correlations among the three stations by
means of FL-clustering application onto their historical data concerning wind
speed and wind direction. Thus, the subject matter is simplified and cast as
a problem of clustering; that is detecting sets of values the average of which,
with the suitable adjustment, can be employed as predictor. In case of new
evidence, the algorithm classifies it to a cluster. In fact this method is a regres-
sion technique involving two phases: a clustering process in the first phase and
a classification process in the second phase of the algorithm. The method is
applicable in a fuzzy lattice data domain and in this paper, in space R*.

10.3.1 The FL-framework

A lattice L is a partially ordered set of which any two elements have a greatest
lower bound (meet) denoted by x Ay and a least upper bound (join) denoted
by = V y. A lattice L is called complete when each of its subsets has a least
upper bound and a greatest lower bound in L. A non-void complete lattice
has a least element (O) and a greatest element ().

At this point we mention a considerable asset of lattice theory in knowledge
representation. A lattice L can be the Cartesian product L = Ly X -+- X Ly
of N constituent lattices Ly, --- , Ly. A product lattice L involving disparate
constituent lattices has the potential of dealing with disparate types of data
such as vectors of real numbers, propositions, fuzzy sets, events in a probability
space, symbols, graphs, etc.

A useful function in a lattice L is a valuation function v : L. — R defined by

v(z) +o(y) =v(zAy) to(zVy),zy € L

A valuation is called positive if and only if z < y = v(z) < z(y). An inclusion
measure function o is defined on a complete lattice L asamap o0 : L X L —
[0, 1] such that for u,w,z € L the following three axioms are satisfied:

(Axml) o(x,0) =0,z # O
(Axm2) o(xz,2) =1,Vx € L
(Axm3) u < w = o(z,u) < o(z,w) Consistency Property
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Given a positive valuation function v(.) in a lattice L an inclusion measure

can be defined by the ratio o(x,u) = U(vxl) [11]. The complete lattice 7(L)
of intervals of lattice elements has been analyzed in [11]. In that work it was
shown that an inclusion measure in a lattice L implies a fuzzy lattice, which
can be defined as follows: A fuzzy lattice is a pair < L, >, where L is a crisp
lattice and (L x L, 1) is a fuzzy set with membership function p: Lx L — [0, 1]
such that p(x,y) = 1 if and only if © < y. It turns out that < L,o > is a
fuzzy lattice.

Finally the interval size is defined given a positive valuation function v(.)
in a lattice L. The size of an interval z = [a,b] € 7(L) is a function Z : L — R
as expressed in Z([a,b]) = v(b) — v(a).

10.3.2 Application of the method

In FL-data formulation we represent both parameters (speed and direction)
of each station as a 2-dimensional vector: zg, (t) = [vg, (t), ¢s, ()], s, () =
[vs, (t), s, (B)], s, (t) = [vs, (), s, (t)]. The data set Dpy, consists of g, (t),
xg,(t), zs,(t) for 3260 time instants. So the reference domain is considered
to be the complete product lattice L = R? x R? (called a rectangle), where
a constituent complete lattice is the interval of real numbers. The prediction
scheme takes the form:

Ts,(to +h) = f(ws,(to), ., x5, (to — (bra — 1)), s, (o), -, (10.1)
s, (tO - (bhd - 1))a rs, (to), ey LSy (tO - (bhd - 1))) .

During the experiments we set up the variables h and bpg to be equal.
A positive valuation function in R is given by v(z) = z. The inclusion
measure o : R x R — [0,1] is defined as:

v(y) y

O’(l’,y) - U(J?\/y) - max(x,y)’x’y € R.

In order to determine the inclusion measure of a point u = (x,y) into the
rectangle w = (x1,y1) X (x2,y2), we represent the former by its respective
degenerate rectangle u = (z,y) x (z,y) and then we introduce the following
formula that calculates the inclusion measure of u in w:

(1, W) = 1 mean (1, T2) mean(y1, y2) (10.2)
’ max(z, mean(ry,v2))  max(y, mean(yi,y2)) '

where mean(a, b) = %‘H’,a, beR.

It is worth mentioning that all the points of the constituent lattices are
comparable as we can see in the following example: consider the points u =
(0,4) and w = (3,2). Their degenerate rectangles are: u = (0,4) x (0,4)
and w = (3,2) x (3,2). According to the relationship (10.2) their respective
inclusion measures are: o(u,w) = 1.5/2 = 0.75 and o(w,u) = 1/2 = 0.5 and
consequently, we infer that v < w.
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10.3.3 Algorithm description

The prediction scheme of (10.1) is implemented by means of the algorithm
described in this subsection. Before we proceed to the essence of the FL learn-
ing mechanism, we should mention two crucial points for the fine tuning of
the model. A major parameter is the vigilance parameter p € R which is nec-
essary for the clustering procedure in order to adjust the size of the clusters.
The vigilance parameter specifies the algorithm sensitivity. As p increases, the
calculated rectangles size increases too. Another basic factor is the correction
of the function outcome (10.1). After many experiments we obtain the best
results when we adjust the vigilance parameter as p = s (standard deviation of
the sample/time window), while the prediction improves if we take its average
with the last measured value, i.e. if zg,(t) is the last known value at station
So measured at time ¢t and Zg,(t + h) is the estimation at time t + h given by
the (10.1), then the final prediction is given by:

xs,(t) + Ts,(t+ h)
2

Ps, (t +h)= (10.3)
Moreover, there is no need for any normalization of the experimental values.
The algorithm consists of two phases, the clustering procedure and the
prediction function:
The clustering phase as an iterative procedure:

C1. A data set of n vectors is given.

C2. At the initial pass of the algorithm, the first vector is presented and its
degenerate rectangle constitutes the first cluster. As the algorithm pro-
ceeds a set of clusters CR is created CR = {CRy,...,CRL} as described
in the sequel. A cluster is represented by a rectangle in R? x R2.

C3. At each iteration a new vector u = [z,y] is fed to the algorithm.

C4. The inclusion measure of u = [z,y] is calculated with respect to each
rectangle CRy,...,CRy.

C5. Rectangles CRy,...,CRy, compete over input v = [z,y]. Winner is the
rectangle C' Ry, which includes u the most, i.e. it has the largest inclusion
measure.

C6. Winner rectangle C' Ry is augmented tentatively so as to include the
degenerate rectangle u = [z,y] x [z,y]. For instance, if CRy = [x1,y1] X
[x2,y2] then the union rectangle C Ry is calculated as:

CRy = [min(z,z1),min(y, y1)] X [max(z, x2), max(y, y2)]

C7. If size of C Ry is smaller than or equals the vigilance parameter then the
rectangle C Ry is replaced by C'Ry. Otherwise, reset occurs (i.e. the size
of C Ry is reverted to its previous state and it is excluded from the list
of the candidate rectangles to be compared with u), and the next winner
is selected among the remaining rectangles.
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C8. If all the rectangles have been reset, then input u = [z, y] is learned as a

new rectangle, CRye = [z,y] X [z, Y]

The prediction phase as a categorization procedure:

1.

10.

11.

12.

13.

We set both the time horizon to be h steps from the last known measure-
ment at Sy (at the moment ¢ = 0) and the look back length to be bpgq.
This means that we want to estimate g, (top + h) based on bpq vectors.

. The three vectors xg,(t = 0) = [vs,(t = 0),ps,(t = 0)],25,(t = 0) =

[Usl (t = 0),(,051( = 0)] and TS, (t = 0) = [USZ (t = 0)’9052( = 0)] of the
data set Dy, are selected.

The standard variation s of the above vectors is calculated.

For the clustering procedure [C1-C8] we use as data set the vectors
x5,(t = 0),z5,(t = 0),z5,(t = 0). The result is the generation of the
set of cluster/s referred to as CR.

. An input vector W is presented to the algorithm. When ¢ = 0 then W =

xs,(t = 0). The inclusion measure of W is calculated for each rectangle
of step 4 resulting thus in the inclusion measure vector.

. The values of the inclusion measure vector are normalized to give the sum

of 1 producing the column vector [NIM (CR;)], where NIM(CR;) is the
normalized inclusion measure of rectangle CR;, i = 1,2, ..., L.

The mean of a rectangle CR; = [z14,y1:] X [X2:,y2:] Is a point M; =
(%, %) i =1,2,..., L. The estimation of zg, (to +h) is calculated
by multiplying the mean of each rectangle with its respective normalized

inclusion measure and then by summing each partial result, i.e. Zg, (to +
h) =[M;] x INIM(CR;)],i=1,2,...,L.

. The estimate is corrected by averaging the produced result from step 7

with the last measurement (at the station Sy) as shown in (10.3). The
outcome pg, (t = 1) is the first estimation for one step ahead h = 1.

We check if we have reached the desired time horizon. If so, then the
algorithm stops otherwise it continues to the next step.

A new data set is created using the vectors zg, (t = 0),zg, (t = 0),zs, (t =
0), the estimate pg, (t = 1) and the vectors for one step back (except the
case where we have reached the look back length bq) xg,(t = —1),zs, (t =
—1),zs,(t = —1), i.e. NewData = {xg,(t_1),zs, (t-1),2s,(t_1), zs,(t0),
TS, (t0)7 L3, (to), ‘%So (tl)}'

The vigilance parameter is taken equal to the standard variation of the
NewData data set.

We apply the clustering procedure [C1-C8] to the data set defined in step
10. New rectangles are formed representing the knowledge generated by
the contribution of new evidence.

The flow of the algorithm goes to stage 5 by using as new input the
estimated value pg, (t = 1) (in general, by using the last estimated value),
ie. W =pg, (t =1), and CR is the set of clusters generated in step 12.
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10.4 The SVR Method

The theory of Support Vector Machines has been extended in order to cope
with regression problems. Suppose that we have a data set {(z;,v:),7 =
1,2,...,n} of measurements where z; € X and y; € R (X denotes the space
of the input patterns and R is the set of real numbers). We consider that the
tuples (x;,y;) are taken from an unknown distribution P(x,y).

10.4.1 Linear regression

The formulation of the linear regression task stated by Vapnik [23] is the
following convex optimization problem:

minimize & ||wH +C Z (& +¢&F)

yi — {(w, a:l) -b<e+¢ (10.4)
subject to ¢ (w,x;) +b—y; <e+&F
&, & =0

where (-, -) refers to the inner product in X. C' > 0 is a pre-specified value that
determines the trade-off between the flatness of regressor and the amount up
to which deviations larger than € are tolerated and &;, & are slack variables
interpreted as: £ for exceeding the target value by more than ¢ and &* for
being more than & below the target value (soft margin regression).

In addition to (10.4) a loss function is minimized. For our SV-models we
choose the linear e-insensitive loss function :

7= JOfor |y, = ((w, i) —b)| < e
1y — (w, ;) — b)| — & otherwise

This defines an € tube in such a way that if the predicted value is within
the tube then the loss is zero, whereas if the predicted point is outside the
tube, the loss is the magnitude of the difference between the predicted value
and the radius € of the tube.

To assure that the training data appear as inner products among the
vectors and to better handle the constraints, the problem is transformed into
a Lagrangian formulation named the primal form:

n

Lo =4l + 0 % (6 -+€) — X 06+ €))

=1

a; (e + & — (¥ — (w, z;) — b)) (10.5)

|

N
Il
-

o8

= ai (e +&§ — ((w,z) +b—yi))

i=1

where a;,a},n;,n; > 0 are the Lagrange multipliers.
Differentiating with respect to w, b, &;, & gives:
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L —w— 3 (a;—al)zi =0
i=1
OL _ NS (0 —a) —
ob 7,; (a’i al) =0 (106)

SE=C-a;=n=0

9
356* =C—-aj—n; =0

Substituting for w into (10.5) and using the relations (10.6) the dual opti-
mization problem is obtained:

, ==t (10.7)

This function is maximized subject to:

Z(ai—af):()and()gai,afgc (10.8)
i=1
Solving the first equation of (10.6) for w gives: w = > (a; — a}) x; so the
i=1
candidate linear function takes the form:

n

fl@)=wz+b=> (a;i—a})(ziz)+b (10.9)

i=1
The Karush-Kuhn-Tucker complementary conditions [14, 15] are:

a; ((E +&i— (EJZ - (u)gng - b)))): 0

a; E+£Z_ w,T;) +0—1Y; =0

ni& = (C—a;)& =0 (10.10)
& =(C—a))& =0

The (10.10) imply that a;a = 0 which means that the set of dual variables
can never be nonzero at the same time. Those patterns x; with a; > 0 or
a¥ > 0 are support vectors. If a; € (0,C) or af € (0,C) then (x;,y;) lies on
the boundary of the tube surrounding the regression function at distance ¢.
Moreover, if a; = C or af = C then the point lies outside the tube. Thus, the
parameter b is computed as follows:

b=y — (w,z;) — ¢ for a; € (0,C)
b=y, — (w,z;) +¢ for aj € (0,C)
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10.4.2 Nonlinear regression

In this case the nonlinear function has the form: f(z) = (w, #(x)) + b where
¢(x) is the image of input vector x in a high dimensional space. Using the
trick of kernel functions [7] the dual form (10.5) is replaced by the quadratic
problem:

Lp=-33 3 (a —a}) (a - a3) K (x1,))

, ==t (10.11)
_EZ:l(az"’a:)"' ;(az —aj)yi
where K (z;,z;) = (¢(x;),¢(z;)) is a kernel function satisfying Mercer’s

conditions [8]. The relationship (10.11) is maximized subject to the con-
straints (10.8). Finally, the regressor takes the form:

n

fl@) = (a; — a})K(z;, ) + b (10.12)

i=1

In that way, we manage to apply linear regression not in the low dimen-
sional input space but in a high dimensional (feature) space via the kernel
function which makes the mapping implicitly, i.e. without knowing ¢(z).

10.4.3 The prediction of SV-models

As analyzed in previous section, the objective of SVR is to construct a hyper-
plane that lies “close” to as many of the data points as possible [22]. The
solution is obtained as a set of support vectors that can be sparse. These lie
on the boundary and as such summarize the information required to separate
the data.

SVR has an advantage over other function estimation methods: it is capa-
ble of controlling the capacity of the hypothesis; the algorithm selects the
subspace of the hypothesis space that is optimal in terms of some bound on
the generalization of the hypothesis. This fact leads to the choice of the kernel
function, the width of the e-insensitive zone and the capacity control C for
controlling the regression model. Since there is not a rigorous way to select
the finest set of hyperparameters, i.e. kernel, € and C, we use the leave-one-
out cross-validation method by constructing successive time windows of size
bra + 1, i.e. we utilize b4 vectors in order to predict one value h steps ahead.

After a sufficient number of experiments, we obtained the best results when
(wi=2;)®
we used the RBF kernel K (z;,2;) = (¢(x;), d(x;)) = e 2%, where the

width of radial basis functions equals to o = 0.08 and the other parameters
were tuned to the values: ¢ = 0.05, C' = 1.
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We developed two different models :

M1. Solve the quadratic optimization problem (10.11), calculate the Lagrange
multipliers and the bias and finally use the regressor (10.12) to get the
prediction.

M2. Solve the quadratic optimization problem (10.11) and express the final
prediction as a linear dependence of the arisen support vectors.

Each of the above models has two alternative versions concerning the input
data type and the output:

a. We define the sets Vi = {z;(t) = [vs, (t) vs, (t) vs, ()] for t =1,2,...,3260}
(it consists of 3260 3-dimensional vectors) and Vo = {vg, (), vs, (t), vs, (t)
for t = 1,2,...,3260} (it consists of 3 x 3260 scalars). Thus, the inputs
of the models are either i) 3-dimensional vectors that is z; € V; or ii)
1-dimensional vectors that is x; € V5.

b. The outcome of the models Zg, (to + h) can either i) remain intact or ii)
be averaged with the last measured value zg, (o) at So, i.e.

3, (to) + T3, (to + h)

preds, (to + h) = 5

(10.13)

For simplicity reasons, when we refer, for instance, to model M1.a;.b(;)
we mean the option which uses the regressor (10.12), it takes 3-dimensional
vectors as input and its output results from (10.13) (i.e. model M1, versions
a¢;) and b(;;)). The same convention holds for all the other options.

10.4.4 Algorithms description

A sliding window is used containing x(t), x(t—1), ..., 2(t—brq+1). For example,
we consider as look back length 3 steps and as future time horizon 10 steps.
If we start at the moment tg = 6, we use three vectors at time instances
t_o=4,t_1 =5 and ¢ty = 6 as historical data which lead to the prediction at
t10 = 16. At next moment ty = 7 we use the vectors at time instances t_o = 5,
t_1 =6 and ty = 7 to make a prediction at time t1g = 17 etc. The algorithms
of the previous section are described more analytically below:

Algorithm M1.a;y.bg)

S1) Set future time horizon h, the look back length b4 and the prediction
origin tg.
S2) Normalize data in [—1,1].
S3) For i =t to 3260:
S3.1) The vectors z; in regressor (10.12) are the vectors in the interval
(to—bra+1,t0): [xs,(to—k), s, (to— k), x5, (to— k)] and y; = x5, (o —
k+ h), where k =m — 1 and m = (bpq — 1), ..., 2, 1.
S3.2) Solve the quadratic problem.
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S3.3) Use the regressor function (10.12) where
x = [as, (to+h) s, (to + h) x5, (o + b))

S3.4) The regressor’s output Zg,(to + 2h) is the prediction for h steps
ahead.

Algom'thm M2a(l)b(l)
Until 53.2 the steps are the same with the previous algorithm.

— S3.3) We take into account the zg,(to + h) component of the input
vector z. Then we consider the zg,(t + h) component of the sup-
port vector SV;, i = 1,...M (where M is the number of sup-

port vectors) denoted by 22V Finally, the column vector D;s =
So
[\xgs/l — x5, (to+h)l, .oy |x§(§/M —xs5,(to+h)|]T is computed. The D

M
is normalized as ND;st = Djst/ > |x§(§/1 — x5, (to + ).
i=1
— S3.4) The final prediction is: zg, (to + 2h) = [xgg/l,...,xgg/’”] X ND;gs.

In the cases 1.a(;;) and 2.a(;;) we modify step S3.1 as:

Select all vectors in the interval (tg — bpg + 1,t0): [zs, (to—k), x5, (to —k+
M, [xs, (to—k),zs, (to—k+h)], [xs, (to—k), x5, (to—k+h)], where k =m — 1
and m = (bpg — 1),...,2, 1.

In the cases 1.b(;;y and 2.b(;;) we change the outcome of step $3.4 using (10.13).

10.5 Model Evaluation

In order to test the performance of the models we compare the degree of their
prediction success with other approaches such as:

Persistence: The most commonly used reference model for short term fore-
casting of wind is the Persistence method which assumes that: “the conditions
that existed at the beginning of the forecast period will continue or persist
through to the end of the period”[5]:

Up+n = Yy where y; is the last measured value

This method is not only the simplest modeling approach but is also the
most economical to implement, and surprisingly accurate for short term fore-
casting (1 to 5 hours).

Movwing Average: 1Tt is a widely used forecasting method constituting a gen-
eralization of the Persistence model. This simple approach is based on the
average value of the variable over a specific number of preceding periods. In
this paper we define the Moving Average method as

h—1

th-&-h = % E Z/t—j,h = 1,2, ., n, where h = bhd
j=0

As h goes to infinity the Moving Average tends to the global average: §; 4, =

Y, where 7, is the average of all the available measurements until time ¢.
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Recurrent Neural Networks: A Recurrent Neural Network employs feedback
connections and has the potential to represent “certain computational struc-
tures in a more parsimonious fashion”[10]. RNNs address the temporal rela-
tionship of their inputs by maintaining an internal state. In the latest
bibliography regarding wind forecasting we find the RNN algorithm in [2]
and because of its having been applied on the same data set displaying good
performance we compare it to the FL-model.

To measure the precision of the models (i.e. how the model output is close
to the real value) we make use of three statistical types of errors:

N
e The Mean Absolute Error: MAE = % Sy — Uil
i=1

e The Normalized Mean Square Error: NMSE = =

N
e The Root Mean Square Error: RMSE = \/J{, > {(yz - y})z}

i=1
where y; is the real value, y; is the model output and N is the number of
tested values. Smaller values of the aforesaid uncertainty statistics denote
better model performance. The reason for using these criteria is that they
operate independently of application and target value specification while they
are not biased towards models that over or under predict.

10.6 Experimental Results

The FL-Approach: Tables 1.2, 1.3 regarding both parameters of wind (speed
and direction) display the comparison analysis among the reference models
and the proposed approach. We use symbol “-” when the value is not provided.
Explanation of the table columns is given in Table 1.1.

For the validation of the result, we adopt the sliding window where 2h x 3
is the window size for all the 3260 vectors and h is the time horizon within
which the variable to be predicted lies. When we try to make a prediction h
steps ahead from the moment ¢ we take as input values the time frame h — 1
steps back from ¢, i.e. t,t —1,...,t — (h — 1) (each step refers to a period of 15
minutes).

The SV-Approach: The accuracy of each forecasting method is determined by
its specific architecture [8]. The SVR algorithms offer a sufficient number of
degrees of freedom in customizing models to a particular forecasting task. As
we mentioned before, in order to evaluate the candidate models and determine
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TABLE 1.1: EXPLANATION OF TABLES 1.2 AND 1.3

Colinm Comments

Time horizon ahead in minutes & hours.

1

2 Time horizon ahead in steps.

3 Time steps backwards. This column does not refer to the RNN approach sice this model needs to be trained at a sufficient number of
steps back in order to minimize the difference between real and estimated value.

456 NMSE, RMSE and MAE of the persistence method.

789 NMSE, RMSE and MAE of the moving average method.

10-11-12-13  NMSE of the moving average method upon the sample data used in [2], NMSE, percentage improvement compared to the NMSE
moving average model [2] and MAE of the RNN algorithm [2].

1415-16-17  NMSE, percentage improvement compared fo the NMSE moving average model, RMSE and MAE of the FL-prediction approach based
on information provided by the station S

18-19-20-21 NMSE, percentage improvement compared to the NMSE moving average model, RMSE and MAE of the FL-prediction approach based
on information provided by all stations S, Sy, S;.

i
COMPARISON OF THE FLL-APPROACH wmﬁéﬁhmmnwm PREDICTING WIND SPEED
Look FL-Clistering Approach

Ntrwes | s | P Persistence Moving Averase RNN 0 50,51,52

e |anea| it | NMSE RMSE MAE | NMSE RMSE MAE [MANMSE NMSE % MAE|NMSE & RMSE MAE [NMSE % RMSE MAE
B | T | T |07 0B 0526|007 G745 05236 O08S G066 2635 - 0027 0M 041 0325|002 000 645 05220
9 | 2| 2 |ooses 1ms ozmo|osew 15 osom2| oies  oors 2598 - |oose 954 108 0760|ooser 954 10848 0760
@ih | 4 | 4 ooes 1aeor roxe|oiow 1505 1osos| o omw w0 - |oowms 109 L4y 1omo|ooen 47 1374 asms
w | o] s Jone 17 1o o 1sus 10| 02ss  om@ o - [orss 1a3s 17 1210|0102 2411 16067 11454
o | 8 | s [osss 1wm aess|ozso aoms raess| ome o oane me - [oas2 1505 19as 1aafoaes 31 1820 12903
10 | 0] 10 Jowsss 2w ismfomso 22 rewr| 0w o8 2211 - |eas0 1sa1 2185 1506|0008 2400 200% 14120
o | 12 ]| 12 [0y 2ioss resiofozsss damr 1as0| oar ome 209 - [o2:8 s 2251 1e1s4| 00w 299 27 15157
s | 2 | 2 ossr soxw zims|omsy sam 2| - c o |esess isas soes 20909 0sus 2421 2930 20886
oam| @ | @ [osss ars umfiow ase ] - - o o s s s 2t

TABLE 13
COMPARISON OF THE FL-APRO ACH WITH THE REFERENCEMODELS IN PREDICTING WIND DIRECTION
Look F-Clistering Appraach

P . Persisence Moving Avasge RNN % 50,581,582

e lapea] neih [ NMSE RMSE MAE [ NMSE RMSE MAE [ MANMSE NMSE % MAE|NMSE G RMSE MAE |NMSE % RMSE MAE
I B R A ) T ] O0T O 0200 GIZS] oI D00 G2t O.zE]
0 | 2| 2 |oos osem ouma]oosis o oas| - o |eosso 615 ot orvefomsm 615 ode 04
@i | 4| 4 |omes oo o2ez|ooe osmo ozms| - o |emo s o 0269 |0m 1519 casn ase
w | s | s Jorm oss osoaosn oses o] - <o - |oam 105 05148 0302|003 2288 0473 03131
o | s | s foasss ossn osos[oom esm ome| - oo Jeasa 1sae osest 0| osis 278 05172 03422
0 | 0| 10 |oun oss o [omy os oamo| - <o | o 1sae osi08 03818 | 0aer 077 0ssiT 03693
o | 2 | a2 foaw ase oant|ozo emo oss| - - o |eisso 162 0sSi6 0426 0isss 3290 05833 0975
s | 2 | 2 osiss os1e osws|ossso osme oeens| - <o |erws 152 0830 0593 | ooy 060 0753 05402
mwam| & | s [osue 1 ores|oser esme oes| - oo - o o e 76 oses aem

the suitable architecture we adopt the leave-one-out cross-validation method;
we select these ones with the lowest error on the validation data set.

The following Tables (2.1, 3.1, 4.1) display the performance of the proposed
SV-models. We show these results which correspond to look back length b4 =
3 and 6 and to time horizon h = 1,6, 20,40, 80 and 160 steps ahead. At each
instant the first line of the tables refers to Zg, (to + k) and the second line
refers to preds, (to + h).
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TABLE 2.1
COMPARISON OF SV MODELS ( 1-DIMENSIONAL INPUT VECTORS ) WITH THE REFERENCE MODELS
SV Models
Look Persistence Moving Average 0 svs S0 wath kernel SO, ST, 52svs |80, 81, 82 with kernel

Minutes | Steps | back

shead | ahead | length NMSE RMSE MAE|NMSE RMSE

MAE| NMSE RME

MAE| NMSE RMSE MAE| NMSE RMSE MAE]| NMSE RMSE MAE|

15 1 3 003 009 006 006 013 009) 010 017 012) 207 076 0.18) 021 024 019 011 017 012
15 1 3 003 009 006 006 013 009) 005 001 Q08| 054 039 001) 007 004 001 ) 005 012 008
90-1.5h 6 3 013 021 015 014 022 0ld6f 017 024 017 178 077 023] 021 026 0200 018 0325 018
90-1.5h 6 3 013 021 015 014 014 021 015) 053 042 018 013 021 0.15) 0.4 022 016

300-5h 20 3 033 035 025] 034 036 036 026 18 031 031 034 035 025| 035 035 026
300-5h 20 3 33 035 025] 034 033 035 025] 070 050 027) 030 033 023 033 034 025
600-100 | 40 3 093 047 035)] 094 097 048 036] 311 087 039] 087 046 033 092 047 036
G00-10h | 40 3 093 047 035] 094 047 035] 093 047 035] 143 059 036) 084 045 033 090 047 035
1200-20n| &0 3 152 061 044] 151 060 044 153 061 044 364 094 047) 135 057 042 143 059 044

1200-200] 80 3 152 061 044 151 060 044) 151 060 044 198 069 045) 137 058 042 145 059 044
2400-40h| 160 3 156 056 043] 152 055 042] 1.52 056 042 411 091 045] 143 054 040| 143 054 042
2400-40n) 160 3 156 056 043) 152 055 042) 152 055 042 201 065 043] 142 054 04| 146 054 042

The algorithms SO svs and SO with kernel use as input data only the measurements of station Sy, The SO svs and 80.S1,S2 svs are
M2 .a;; algorithms while the S0 with kernel and S0.51,82 with kernel are M1 .a;, algorithms.

TABLE2.2
IMPROVEMENT (%) OF SV MODELS ( 1-DIMENSIONAL INPUT VECTORS) AND PERSISTENCE RELATED TO MOVING AVERAGE
SV Models
Look -
o0 Persistence S0 svs SO with kernel S0, 81, 82 svs S0, S1, §2 with kernel

Minutes | Steps | back

NMSE RMSE MAE| NMSE RMSE MAE | NMSE  RMSE ~ MAE | NMSE RMSE  MAE RMSE  MAE
ahead | ahead | length
15 1 3| 4660 2693 2651 -76.26 -32.80 -35.70[ -3548.56 50449 -10744]-268.02 -91.98 -114.13] -95.44  -39.80 -38.01
15 1 3| 4660 2693 2651| 1753 912 778 | 4758 20806 2708 2131 -10.23 2050 | 1344 696 4.86

90-15h 6 3 829 424 378] -20.02 955 -10.53] -113602 -25157 -50.36 | -44.34 -20.14 -26.89 | -25.08 -11.74 -1657
90-1.5h 6 3 829 424 378 463 234 270,65 29252 <1466 | 1092 5.62 3.64 393 2.06 -0.96
300-5h 20 3 145 073 021] -655 -330 -447.12 -13407 -2380] -052 033 -1.04 | 402 -1.99 -6.18
300-5h 20 3 145 073 021 151 0.69 -1056 4349 694 | 1191 608 6.83 3.62 1.83 -0.25
600-10h | 40 3 079 040 0J7) -3.56  -1.84 223199 8234 -1LT ) T44 in 5.44 1.67 0.84 -141
600-100 | 40 3 079 040 077 086 036 040 | -52.10 2342 -187 1036 525 7.25 3.88 1.96 1.35
1200-200 | 80 3 0.68 -0.34 -1.01] -1.59 -087 -094] -141.07 -5538 680 | 1086 552 4.94 5.59 2.83 0.07
1200-20h ] 80 3 068 034 -101| 031 008 -004 | 3124 -4 -1T3 902 455 534 4.00 2.06 0.78
2400-40h ) 160 3 291 -144 -177| -046 026 -015| -17138 6478  -6.85 5.88 296 367 374 291 113

2400-40h | 160 3 291 -1.44 177 0.03 001 -0.01 3808 -17.02 -1.89 6.14 3.09 3.15 3.38 1.71 (.84
TABLE2.3
IMPROVEMENT (%) OF SV MODELS ( 1-DIMENSIONAL INPUT VECTORS) AND MOVING AVERAGE RELATED TO PERSISTENCE
Look SV Models
0 Moving Average S0 svs SO with kernel S0, S1, 82 svs 80, 81, S2 with kernel

Minutes | Steps | back
ahead | ahead | length

15 1 3 -87.27 -36.85 -36.07]-230.09 -81.82 -8464|-6732.72 72723 -182.26]-58920 -162.72 -191.36] -26601 -91.31 -87.79

7 7305 |-127.019 -50.84 -62.10  -27.32  -2945
90-1.5h 6 3 -9.04 442 -393|-3087 1440 -1488 |-1247.78 -267.12 -56.27 | -57.39 2546 3187 -3635 -16.69 2115
90-150 | 6 3 404 442 S400 <198 -lel | 30406 -101.04 1907 | 287 145 -0.14 475 228 -
300-5h 20 3 -L4T 073 021 -812 -4.06 2392 | -455.08 13579 2402 200 -107 0 -1.25 -5.55 274 640

NM!

RMSE MAE | NMSE RMSE  MAE | NMSE RMSE  MAE | NMSE  RMSE  MAE | NMSE RMSE  MAE

15 1 3 -87.27 3685 -36.07) -54.43 2437 2548 | -1674.55 -321

n

300-5h 20 3 -147 073 021 D06 -0.04 0.51 | -108.62  -44.34  -7.07 | 1061 539 6.63 221 L1l -0.46
600-10h 40 3 (.80 040 -0.78 4.39 225 3m 23464 8307 12.04 671 334 470 (1.89 045 2.20
600-10h | 40 3 <080 040 -078 | 007 004 038 | -5331 2391 266 | 965 4.87 6.53 3l 157 0.58
1200-20h| 80 3 068 034 100 0.90 0.52 0.07 13043 5485 573 | 1147 584 588 623 37 1.07
1200-200 ) 80 3 068 034 100 | 098 0.42 095 -3034  -1425  -071 964 4.87 6.28 474 240 1.77
2400-40h | 160 3 283 142 174 238 1.17 1.58 163.71 6243 -499 8.54 434 534 840 429 2.85
2400-40h | 160 3 283 142 174 | 286 1.41 1.73 -35.05  -1624  -0.12 8.79 447 4.83 6.11 3.11 2.56

Tables 2.2, 2.3, 3.2, 3.3, 4.2 and 4.3 provide the improvement percentage
with respect to both reference models, i.e. Persistence and Moving Average.
For example, the improvement percentage of SV model Sy, S, Sasvs over the
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TABLE 3.1
COMPARISON OF SV MODELS (3-DIMENSION AL INPUT VECTORS) WITH THE REFER ENCE MODELS
Look A ] SV Models

Minutes | Steps | back Persistence Moving Average S0O,S1,S2-3d svs S0.51,52-3d kernel
ahead ahead | length NMSE RMSE MAE| NMSE RMSE MAE| NMSE RMSE MAE| NMSE RMSE MAE)
15 L 3 | 003 009 006| 006 013 009 030 029 022] 048 036 030
15 1 3 0.03 0.09  0.06 0.06 013 0.09 0.09 016 0.12 0.14 0.19 0.16
90-1.5h | 6 3 | o3 021 0as| 014 022 ode| 027 030 023 043 038 031
90-1.5h | 6 3 o1z 021 oas| 014 022 ots| 014 021 016 018 025 0.20
300-5h | 20 3 | 033 035 025| 034 035 025| 037 036 027]| 050 042 035
300-5h | 20 3 | o33 035 025| 034 035 025|] 029 032 023| 033 034 027
600-10h | 40 3 | 093 047 035| 094 047 035| 0.84 045 033]| 096 048 040
600-10h | 40 3 | 093 047 035| 094 047 035]| 080 044 032] 081 044 035
1200-20n| 80 3 152 061 044| 151 060 044| 123 055 o040| 1235 054 o045
1200-20h | 80 3 152 061 044]| 151 060 o044| 120 056 o040| 124 055 043
2400-40h 160 3 1.56 0.56  0.43 1.52 0.55 042 1.39 0.53 0.39 1.34 0.52 0.44
2400-40n]| 160 | 3 1.56 056 043] 152 055 o042] 137 053 o40] 128 051 040

The S0,81,52-3d svs is a M2.a;, algorithm and the S0,51,52-3d kernel is a M1.a,, algorithm

- -3 4
IMPROVEMENT (%) OF S¥Y MODELS (3-DIMENSIONAL l]\llll’al‘ﬁl\‘fll__igl:)lls) AND PERSISTENCE RELATED TO MOVING AVERAGE
SV Models
Minutes | Steps [b::,II: Persistence ] S0.51.82-3d svs S0.51,52-3d kernel
ahead ahead | length NMSE RMSE MAE| NMSE RMSE MAE NMS RMSE MAE
15 1 3 46.60 26.93 26.51| -428.68 -130.10 -149.67| -743.65 -190.68 -238.73
15 1 3 460.00  26.93 20.51| -57.94 -25.77 -3541 -140.94  -5534 -80.80
90-1.5h 6 3 8.29 424 378 | -84.84 -35905 4466 | -19845 -72.76 -101.10
90-1.5h 6 3 8.29 424 378 4.80 2.43 -1.03 -27.70 -13.01 -28.47
300-5h 20 3 1.45 073 0.21 -8.84 -d.40 -7.21 -47.67 -21.61 -41.31
300-5h 20 3 1.45 073 0.21 13.38 6.86 6.49 3.61 1.75 -8.58
600-10h 40 3 0.79 040 0.77 10.28 5.21 6.20 -2.25 -1.19 -14.23
600-10h 40 3 0.79 0.40 0.77 14.81 9.32 13.70 7.03 1.29
1200-20h 80 3 -0.608  -0.34 -1.01 18.27 8.71 18.39 9.82 -3.17
1200-20h 80 3 -0.68 -0.34 -1.01 14.61 8.17 17.63 9.17 3.07
2400-40h 160 3 -2.91 -1.44  -1.77 8.41 6.44 11.80 6.06 -3.98
2400-40h 160 3 -2.91 -1.44 -1.77 9.59 4.89 4.83 15.26 7.92 3.74
TABLE 3.3
IMPROVEMENT (57) OF SV MODELS (3-DIMENSIONAL INPUT VECTORS) AND MOVING AVERAGE RELATED TO PERSIS TENCE
SV Maodels
Laok Moving Average 50,51,82-3d svs S0,51,52-3d kernel
Minutes | Steps | back = = U e
ahead ahead | length NMSE RMSE MAE | NMSE RMSE MAE NMSE RMSE  MAE
15 1 3 -87.27 -3G.85 -36.07| -890.08 -214.89 -239.71|-1479.93 -2907.78 -360.89
15 1 3 -87.27 -30.85 -30.07|-19578 -72.11 -84.24 | -351.21 -112.58 -146.08
90-1.5h ] : -9.04 -4.42 -393|-101.55 -41.97 -50.34 | -225.44 -80.40  -109.00
90-1.5h ] -9.04 442 -393 -3.81 -1.89 -5.00 -39.25 -18.00 -33.51
300-5h 20 3 -1.47 -0.73 -0.21 -10.45 -5.17 -7.43 -49.84 -22.50 -4l.6l
300-5h 20 3 -1.47 -0.73  -0.21 12.10 618 6.29 2.19 1.03 -8.80
600-10h 40 3 -0.80 -0.40 -0.78 9.56 4.83 5.47 -3.06 -1.59 -15.12
600-10h 40 3 -0.80 -0.40 -0.78 14.13 7.26 8.62 13.01 6.66 0.52
1200-20h 80 3 0.68 0.34 1.00 18.83 9.84 9.62 18.94 10.13 -2.15
1200-20h 80 3 0.68 0.34 1.00 15.19 7.84 9.08 18.19 9.48 4.04
2400-40h | 160 3 2.83 1.42 1.74 11.00 5.64 8.07 14.30 7.40 -2.18
2400-40h 160 3 2.83 1.42 1.74 12.15 6.25 6.48 17.65 9.23 5.42

Persistence using the criterion NMSE at 1200 minutes ahead and Z g, (to9 + 80)

1.52—1.35

(Table 2.1) is %5

x 100% = 11.47% (Table 2.3).

However, it is common that the performance varies in the data set and,
indeed, there is not an a priori reason to believe that accurate predictions
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TABLE4.1
COMPARISON OF § V MODELS ( 1-DIMENSIONAL & 3-DIMENSIONAL INPUT VECTORS) WITH THE REFERENCE MODELS
SV Models
S0.851,52- 10 kernel | SO.SLS2-3dsvs | 50,81,82-3d kernel
MAL| NMSE RMSE MAE| NMSE RMSE MAE| NMSE RMSE MAE

Look
Minutes | Steps | back
ahead | ahead | leng(h

15 1 G 003 009 006| 007 015 0I0f 019 025 02| 007 006 01| 026 029 022] 035 034 027

Persistence Moving Average | SO.SLS2-1d sv:
NMSE RMSE MAE|NMSE RMSE MAE]NMSE RMSE

@

15 1 G 003 009 006 0.07 015 0I0] 006 014 011) 004 011 008) 008 006 042 000 018 (.15
90-1.5h ] 6 012 021 015 014 023 016] 020 028 021) 015 024 017 025 031 023| 034 036 029
90-1.5h 3 [ 012 021 015] 014 023 Ole] 012 021 015] 012 021 015) 013 022 ol6f 016 024 019
300-5h 20 [ 032 035 025] 033 035 025] 034 036 026)] 033 036 025| 036 037 027 045 041 034
300-5h 20 [ 032 035 025] 033 035 025] 029 033 023] 031 034 025] 028 033 023 031 034 027
G00-100 | 40 6 100 047 035] 102 048 035) 095 046 033) 102 048 036| 091 045 033] 1.01 048 039
600-100 | 40 6 LOO 047 035] 102 048 035) 090 045 033] 099 047 035]| 086 044 032 088 044 035
1200-20h ] 80 6 143 061 044 141 060 044] 127 057 042] 141 0060 044] LI6 055 040} 119 0355 045
1200-20h ] 80 6 143 061 044 141 0060 0440 129 038 041] 140 060 044] 121 0560 040 120 0356 043
2400-40h | 160 6 122 0356 043 L16 055 041] L10 0353 04 117 055 042) L08 053 039] 106 052 043
2400-40h | 160 [ 122 050 043] 116 041§ 1.10 053 04 1.18 0.42] 1.07 053 040 1.03 052 041

S0,51,82-1d svs: M2.a , 80,51,82-1d kernel: M1Lag;, , S0,S1,82-3d svs: M2.a;;, , S0,51,52-3d kernel: M1.a;,

TABLE4.2
IMPROVEMENT (%) OF SV MODELS (1 -DIMENSIONAL & 3-DIMENSIONAL INPUT VECTORS) AND PERSISTENCE RELATED TO MOVING AVERAGE
SV Models
Persistence S0,51,82-1d svs 80,81,82-1d kernel 80,51,82-3d svs S0,51,82-3d kernel
NMSE RMSE MAE| NMSE RMSE MAE | NMSE RMSE MAE | NMSE RMSE MAE | NMSE RMSE MAE

Look
Minutes | Steps | back
ahead | ahead | length
15 1 6 | 6143 3700 37.93)-19118 -70.64 -80.53| -12.82 -622  -5.01 |-294.65 -98.66 -11641]-43277 -130.82 -161.50)
15 1 6 | 6143 37090 37.93) 615 312 520 4376 2501 2485 | 1808 866 -17.09 | -55.56 2472 4175
90-1.5h 6 6 1686 882 8521 4412 -20.05 -2641| -4.17 206 <271 | <7703 -33.05 4136 |-14301 -55.89 -78.34
90-1.5h 6 6 16.86 882 832] 1522 792 637 14.26 740 726 992 509 211 | -10.05 491 -17.61
300-5h 20 6 434 219 138] 161  -080 -1.84 | -0.76 0.38 099 | 768 377 694 | 3492 -16.15  -33.51
300-5h 20 6 434 219 138] 1367 7090 772 5.16 2.61 227 | 1542 203 763 728 3T -5.85
600-100 | 40 4 206 105 181 723 3o AT2 .16 .08 027 | 1134 584 6.99 0.62 031 -11.03
600-100 | 40 6 200 105 L81| 1142 588 815 281 141 L70 | 1610 840 1042 | 1368  7.00 233
1200-200 80 6 -L15 058 -173) 1030 529 450 0.11 005 053 | 1813 052 825 | 1613 842 34
1200-200f 80 6 -L15 058 -173| 886 453 5.08 0.64 032 036 | 1444 750 777 | 1522 792 222

2400-400 | 160 6 5060 <255 2323 533 2.70 3.28 -0.70 -0.35 -0.86 724 3.69 5.68 ®.84 452 -4.99
2400400 | 160 | 6 | sa6 2ss 323] sa6 267 246 | as2 075 a2s | w1 aas 302 | 1137 sss s
TABLE43
IMPROVEMENT (5‘(} OF SV MODELS (I*DIMI‘.NSI()NAI‘ & 3-DIMENSIONAL INPUT VECTORS) AND MOVING AVERAGE RELATED TO PERSISTENCE

SV Models
Lock |\ oving Average S0,S1.S2-1d svs 50,51,52-1d kernel S0,S1.52-3d svs S0,51,52-3d kernel

Minutes | Steps | back
ahead | ahead | length
15 1 6 -159.30 -61.03 -61.10) -655.04 -174.78 -205.34] -19255  -71.04  -69.17 [-923.33 21990 -248.64] -1281.46 -271.68 -321.28

NMSE RMSE MAE | NMSE  RMSE  MAE | NMSE  RMSE  MAE | NMSE RMSE  MAE | NMSE  RMSE  MAE

15 1 6 |-15930 -61.03 -6L.10] -14336 -56.00 -69.49 | -4582 -2076  -21.08 |-206.17 -7498 -38.81 | -30336 -100.84 -128.37|
90-15h 6 6 2028 -9.67 <931 7335 -31.66 0 -3R0T| <2529 -11.94 1227 |-112.94 4592 -5452 ) -192.29 27097 -04.94
9(-1.5h 6 6 -2028 967 931 -1.98 -0.9% -2.34 -313 -1.55 -1.37 -8.35 -4.09 -1.00 -3237  -1505 2850
300-5h 20 6 453 224 (140 | 621 3.00 3.26 5.33 2.63 240 1256 -6.10 8.44 41.03 1876 -35.39
300-5h 20 6 453 224 -140) 9.7 501 6.43 0.80 043 0.90 1159 597 633 3.08 1.55 -1.34
600-10h | 40 6 213 -106 -184) 525 266 399 229 L4 202 944 4.84 527 -151 075 -13.07
600-10h | 40 6 213 106 -1B4| 953 488 6.45 0.73 0.37 012 ] 1431 743 8.76 11.84 6.11 0.52
1200-20h] 80 6 L4 057 170 | 11.33 383 6.12 1.25 0.63 1.18 1906 1003 981 17.09 8.94 1.98
1200-200] 80 6 L4 057 170 | 990 508 6.69 1.77 089 1.35 1541 8.03 934 1618 8.45 388

2400-40h| 160 6 491 248 313 | 998 512 6.31 4.24 2.4 2.30 1179 6,08 8.63 13.31 689 -L71
2400-40h | 160 6 491 248 313 | 991 5.08 551 346 1.75 194 1270 656 6.92 15.71 8.19 487

can be made at every single time step; in a mainly non-linear system, there
may be islands of predictability implanted in a sea of unpredictable or chaotic
behavior [18].
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10.7 Discussion

Some interesting points emerging from the comparison analysis are given in
the following.

The FL-Approach:

1.

The Moving Average method exhibits the poorest performance whereas
the RNN and the F'Lg, s, s,-approach demonstrate significant improve-
ment in comparison with it and the Persistence method. Up to a certain
degree, this result is expectable since the RNN and F'Lg, s, ,s, exploit the
correlation among the three meteorological stations.

. Additionally, the F'Lg, -approach utilizing only the historical data of sta-

tion Sy is not better than the Persistence in predicting wind speed, while
it behaves better in wind direction predictions. This can be explained by
the fact that the wind direction displays noticeably less variation than
wind speed.

. In the first two steps (15 and 30 minutes) the FL-model cannot beat

the Persistence method because a crucial factor in FL-approach is the
formulation of rectangles and in this time horizon the created rectangles
are few and contain no significant information in order to result in more
precise predictions. The RNN model seems to perform better in this time
window but we have to consider the fact that it exploits more information
(steps back) in the training phase.

. The percentage improvement of both FLg, s, s, and RNN algorithms

compared with MA shows a slightly better performance of the former
especially after 4 steps ahead. For instance, at h = 8 the F'Lg, s, ,s,-model
presents a 24.31% improvement while the respective percentage of RNN
is 23.61%. Similarly, at h = 12 the FLg, s, s,-model displays a 22.99%
improvement while the respective percentage of RNN is 20.98%. However,
the RNN model and the FL-approach are not totally comparable since
they refer to slightly different samples. However, we have to stress the
fact that the FL-approach does not need any training while it is easily
tuned (the vigilance parameter is set equal to the standard variation of
the data sample and the curve correction is eventuated by means of the
last measured value) and presents both low computational and time cost.

. Another advantage of the FL-model for the user is data compression and

the effortless extraction of simple rules (symbolic knowledge which has
meaning to humans) where the prediction of a new fact is calculated from
the weighted average of the created rectangles and its average with the
last measured value.

In Fig. 10.2, we indicate how the FL-model approximates the real curve.
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Fig. 10.2. Approximation of real curve by the FL-model

The SV-Approach: We test the SV-models only for wind parameter predic-
tion.

1. The usage of small time frames (bpg=1 or bpq=6) limits the memory
requirements for storage of the kernel matrix whilst the impact of past
outliers is diminished. Moreover, after many tests we ascertained that
greater values for by do not give better results.

2. The two algorithms S0 svs and SO with kernel cannot outperform any
other model. This indicates the need for additional information.

3. In most cases the predgs, (to + h) gives better results than Zg, (to + h).
The latter seems to have improved after 80 steps.

4. The approach with the 3-dimensional input vectors exhibits better per-
formance related to models with 1-dimensional input vectors.

5. The greater generalization ability is displayed by 50,51, 52 svs, S0,S1,
S52—3d svs and S0, S1,52—3d kernel especially after 20 steps ahead. We
note that these models take advantage of the spatial correlation among
the three stations.

We point out that the performance of SV algorithms depends crucially on an
appropriate choice of parameters. Although several different approaches exist
for their selection, the issue of how to practically select a good set is still far
from being resolved.

10.8 Conclusions

This paper applies comparatively two prediction methodologies (the Fuzzy
Lattice Neurocomputing and the Support Vector Regression) to a real-world
problem that of wind prediction which is a very demanding task. Short (0-6
hours) and long (>6 hours) time forecasting of wind variations is still an open
problem.
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FLN and SVR have sound mathematical foundations. The results pro-
duced depend on the selection of the valuation function in the FLN case and
the kernel function in the SVR case. There are few parameters to adjust. In
FLN we just tune the vigilance parameter while in SVR we adjust the capac-
ity control and the kernel parameters (the width of the Gaussian kernel in
RBF case). Additionally, they can be applied to different types of data such
as real-valued vectors, symbols, images, text etc. Yet, only the FL technique
manages to cope with different types of data simultaneously by considering the
Cartesian product of multiple lattices. Both methodologies seek for a sparse
representation of the final solution, i.e. FLN utilizes intervals whereas SVR
uses the support vectors representing the bounds of the candidate solution
regions standing for diverse classes. The problem of missing and don’t care
attribute values in the data has not been explicitly addressed within the SVR
methodology whereas in the FL-framework missing values have been replaced
by the least element and don’t care values can be replaced by the greatest ele-
ment of the corresponding lattice. Finally, the model selection problem is still
an open research topic since both methodologies employ a quite expensive
way (cross validation) to select the model parameters.

We have assessed the performance of the proposed models by compar-
ing them with two well-known reference techniques employed widely as
benchmarks to time-series analysis, the Persistence and the Moving Aver-
age method, and additionally to a recurrent neural network. In general the
FL-approach demonstrates a satisfactory and constant performance. Future
work involves the testing of the FL-approach in dealing with data typically
containing high noise and significant non-stationarity. Finally, a synthesis of
these two effective methodologies (FL and SVR) might result in superior algo-
rithms.
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