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Geodesy 8. Geodesy

Matthias Becker

Geodesy is the basis for all Geographic Infor-
mation System (GIS) applications as it provides
all information that is required for describ-
ing the location of a point at or close to the
Earth. In this chapter the basic definitions,
quantities and mathematical relations used in
Geodesy are described. It should provide the
important understanding of reference frames,
coordinates, height systems, their variation in
time and their relation to plane coordinates. It
also includes a review of the importance of the
gravity field and basic methods to determine
coordinates.
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8.1 Basics

Geodesy is closely related to natural sciences as well
as to technical sciences. It works strictly with the
Système International d’Unités (SI) system of phys-
ical units [m–kg–s] and can to a large extent be
represented by Euclidian geometry and Newtonian me-
chanics. Geodesy deals with the determination of the
size and shape of the Earth, its gravity field, and the ge-

ometric coordinates of surface or other points related
to the Earth. Since the availability of artificial Earth
satellites and the advances of space geodesy, this task
has been tremendously facilitated. For the first time the
precise figure of the Earth, its gravity field, and well-
defined global reference frames to monitor coordinates
and their changes in time could be derived. Tasks that
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186 Part B Geographic Information

geodesists worked on for centuries are now completed
within weeks. Presently the Earth is being covered with
a network of thousands of continuous global positioning
system (GPS) stations [8.1] which continuously record
variations in coordinates at the millimeter level. GPS,
as the precursor of similar global navigation satellite
systems (GNSS) to come, is the main tool for position-
ing, in particular for Geographic Information System
(GIS) applications. From the level of tens of meters in
navigation down to the submillimeter level in deforma-
tion analysis, coordinates can be measured in a global,
common, and homogeneous reference system.

The geometrical information obtained from GPS
has to be supplemented by gravity field informa-
tion [8.2] if the vertical or height component is
of interest. Today’s gravity field information comes
from the combination of satellite mission data with
high-resolution terrestrial gravity observations and has
a global accuracy of a few centimeters to decimeters if
used for determination of the physical reference surface
for height, the geoid (commonly referred to as mean
sea level). The combination of geoidal height and GPS
height leads to the vertical coordinate that is relevant
in GIS and many other surveying and mapping applica-
tions, commonly referred to as the height. At the present

level of accuracy, time-dependent geoid changes can
be monitored at the millimeter level averaged over re-
gions of about 500 km2. These changes may be caused
by gravity changes due to mass redistribution, such as
melting icecaps or glaciers or other global and local
effects.

Geometrical monitoring of regional surface defor-
mations is enabled by using remote sensing satellites
equipped with Synthetic Aperture RADAR (SAR) and
interferometric differential SAR. These techniques al-
low the derivation of digital terrain models at the
submeter level and the detection of variations in terrain
at the millimeter level.

The basic task of geodesy is the definition and re-
alization of coordinate systems and their interrelations
that allow the description of the continuously changing
Earth. By the collection and administration of all data
describing the geometrical and physical structure of the
Earth surface, users can apply this information to pro-
duce GIS systems to archive, display, and utilize these
data for all types of applications. For the proper use of
spatial data it is essential to understand these basic prin-
ciples and relationships in order to correctly assess the
data quality and its uncertainty, and to allow for correct
handling of geodetic data.

8.2 Concepts

Geodesy distinguishes a number of surfaces that have to
be clearly distinguished (Fig. 8.1). These are the solid
Earth surface (i. e., the topography), the reference el-
lipsoid, and equipotential surfaces such as the geoid or
a local level surface. The position of a point in space can
be described purely geometrically by three-dimensional
Cartesian coordinates referenced, e.g., to the center of
mass of the Earth.

Topography

Geoid

Ellipsoid

Fig. 8.1 Main geodetic surfaces

However, thinking of the spatial relation of the
position of this point to features on the Earth’s sur-
face, description in terms of latitude, longitude, and
ellipsoidal height is more appropriate and informa-
tive. Being still purely geometric, the introduction of
a sphere, or better a reference or mean Earth ellipsoid,
allows the separation of horizontal position and vertical
position above the ellipsoid. A mean sphere of radius
R = 6371.0 km may be sufficient for some applications,
but the use of an ellipsoid is more appropriate and still
simple enough to handle in computations. The flatten-
ing, i. e., the oblateness, of an ellipsoid fitted optimally
to the Earth results in a difference of 23 km between the
equatorial and the polar axis.

For an even better approximation of the Earth’s fig-
ure, the concept of level surfaces plays a major role.
Level surfaces are defined as being everywhere nor-
mal to the direction of the plumb line. On a level
surface, therefore, water cannot flow, and any liquid
will be at rest if it is part of a level surface. In partic-
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Geodesy 8.3 Reference Systems and Reference Frames 187

Mean Earth ellipsoid

Global geoid

N

N

Fig. 8.2 Mean Earth ellipsoid and global geoid

ular the undisturbed surface of the oceans, the mean
sea surface, is very close to a level surface. This
level surface best fitting to the mean sea surface is
called geoid, which extends inside the Earth’s crust
and serves as a reference for height determinations.
The geoid is a complicated surface that cannot be de-
scribed analytically and therefore cannot be used for
computations. It is described by the distance to the
best-fitting ellipsoid, which deviates by up to about
100 m from the geoid (Fig. 8.2). This vertical separa-
tion of ellipsoid and geoid determining the shape of

Global geodetic 3-D model
(3-D Cartesian coordinates)  

3-D hybrid model
= global or regional 2-D geometric model 

(ellipsoidal coordinates) plus physically defined height model 

2-D models obtained by conformal mapping onto the plane 

Fig. 8.3 The hierarchy of the three layers of coordinate
systems

the geoid is computed globally from models of the
geopotential, i.e., Earth gravity models (EGM), or lo-
cally from more precise regional and local geoidal
models.

For the use of coordinates in GIS we can distin-
guish conceptionally between the three layers illustrated
in Fig. 8.3. The first of these is global geodetic three-
dimensional (3-D) Cartesian coordinates for a unique
description in geometry space. The next level is the use
of a global or regional two-dimensional (2-D) surface
model, such as the ellipsoid, that allows the separa-
tion of the vertical coordinate and the introduction of
a level surface such as the geoid to work with physically
defined height models. The third layer contains 2-D
models that are obtained from the conformal projec-
tion of the curvilinear coordinates onto the plane, e.g.,
the most commonly used universal transverse Mercator
(UTM) coordinates.

8.3 Reference Systems and Reference Frames

This section describes the basic reference systems and
their realization in the form of reference frames. Refer-
ence systems are maintained by the International Earth
Rotation and Reference System Service [8.3] based
on the actual standards as defined by the International
Association of Geodesy (IAG) and the International
Astronomical Union (IAU). Fortunately, due to stan-
dardization and the predominant use of GNSS or
other satellite techniques, virtually all actual position-
ings are based on these systems, and coordinates are
given in the International Terrestrial Reference Frame
(ITRF) [8.4]. Current regional or national systems
are mostly based on the ITRF or are in the process

of being updated to it, which highlights the utmost
importance of the ITRF and the need for a proper def-
inition and understanding. The celestial system [8.5]
is as important, although not directly visible to the
user of positioning services. In addition we will intro-
duce the World Geodetic System 84 (WGS 84) due
to its wide use and the Geodetic Reference System 80
(GRS80) due to its importance in mapping and national
surveying.

As the Earth is rotating and as satellites are re-
volving in an inertial space, a supreme system, the
celestial reference system, must be used. It constitutes
an inertial frame of reference in which any body ini-

Part
B

8
.3



188 Part B Geographic Information

tially at rest will remain at rest indefinitely, or in which
a moving body moves in a straight line with con-
stant speed indefinitely; in other words, it is free from
any inertial forces. It can be defined as a frame of
reference in which Newton’s laws of motion apply ex-
actly. Terrestrial, Earth-fixed systems are not inertial
because they are revolving around the sun and rotat-
ing with the Earth, so virtual forces such as the Coriolis
force and the centrifugal force have to be taken into
account. Reference systems are constructed from ob-
servations by geodetic space techniques, and linking
them allows the unique realization of both the celes-
tial inertial system and the terrestrial system. In Fig. 8.4,
the three pillars of geodesy are shown together with
the observation techniques that are involved. Geomet-
rical observations, observations on Earth rotation, and

Geometry
and

deformation

Reference
frame

Gravity
and

geoid
Earth

rotation

Fig. 8.4 The three pillars of geodesy linked together by the
reference system

gravity field observations are combined to maintain the
reference frame.

8.4 Coordinate Reference System

Coordinate reference systems (CRS) are a combination
of at least one coordinate system together with its spatial
datum. In a CRS, positions or locations of geographic
information are described by coordinates. In GIS [8.6]
the schema for the definition of a CRS contains two dif-
ferent elements: the datum and the coordinate system
(Fig. 8.5). The datum defines how the CRS is related
to the Earth: the position of the origin, the scale, and
the orientation of coordinate axes, e.g., ED50 (Euro-
pean Datum 1950) and ETRS89 (European Terrestrial
Reference System 1989). A geodetic datum in addition
includes the parameters of a reference ellipsoid. A ver-
tical datum defines the reference potential of physical
heights (Sect. 8.5). The datum may also be a local en-
gineering datum. The coordinate system describes how
the coordinates are expressed in the specified datum,
e.g., as Cartesian coordinates, ellipsoidal coordinates
or coordinates of a map projection such as UTM. The

Geodetic

Coordinate reference system

Coordinate systemDatum

Geodetic EngineeringVertical

Fig. 8.5 Schema of CRS definition (after: ISO 19111:2007
Spatial referencing by coordinates)

coordinate system, as the mathematical part of the coor-
dinate reference system (CRS), is a set of rules, e.g.,
projection equations, for specifying how coordinates
are to be assigned to points. The list of coordinates
in a specified CRS constitutes the coordinate reference
frame (CRF).

8.4.1 Coordinate Systems
and Coordinate Types

In order to specify a location, three coordinates and (as
material points may be subject to motion) a time stamp
are required. The methods and concepts that are used to
fix a point in space are called the coordinate system.
They are defined by conventions. The most common
conventional coordinate system is the orthogonal sys-
tem of Cartesian coordinates (Fig. 8.6).

x =
⎛
⎜⎝

x1

x2

x3

⎞
⎟⎠ = x1e1 + x2e2 + x3e3 =

3∑
i=1

xiei ,

where ei · e j = δij =
⎧⎨
⎩

0 if i �= j

1 if i = j
. (8.1)

In three-dimensional geodetic applications the compo-
nents for the three axes are labeled x, y, z, thus

x =
⎛
⎜⎝

x1

x2

x3

⎞
⎟⎠ =

⎛
⎜⎝

x

y

z

⎞
⎟⎠ . (8.2)
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x-axis y-axis

z-axis
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z
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X

Fig. 8.6 Three-dimensional Cartesian coordinates

The other main system of orthogonal coordinates
used in geodesy is that of the geodetic surface co-
ordinates of an ellipsoid of rotation. These are the
ellipsoidal coordinates geodetic latitude ϕ, geodetic
longitude λ, and ellipsoidal height h (Fig. 8.7); ϕ is
the angle between the equatorial (x, y)-plane and the
normal to the ellipsoid, λ is the angle between the (x, z)-
plane located at the Greenwich mean meridian and the
normal to the ellipsoid, and h is the normal distance to
the ellipsoid. The size and figure of the ellipsoid are
defined by the major and the minor axes a and b. The
flattening f and the first and second eccentricity e and e′
as well as the polar radius of curvature c are derived

x y

z

O

h

n
x

P

λ

ϕxE

Fig. 8.7 Ellipsoidal coordinates and position vectors

constants that are used in calculations with ellipsoidal
coordinates, e.g., in conversion from and to Carte-
sian coordinates (Sect. 8.8.1, Fig. 8.13). In general, the
term geodetic coordinates is associated specifically with
the ellipsoid, used for large- and medium-scale map-
ping and in geodesy. The term geographic coordinates
is more general and is used for spherical coordinates
(Fig. 8.8) that are used for small-scale mapping or ap-
proximations to the ellipsoid.

An important distinction has to be made for natural
or astronomical coordinates. These describe the direc-
tion of the plumb line. At each point they give the
normal direction to the associated equipotential surface,
i. e., the local zenith direction. The astronomical coor-
dinates are dependent on the irregularities of the local
gravity field, but may differ from the ellipsoidal lati-
tude and longitude by up to 30′′ or more in mountainous
regions.

8.4.2 International Celestial Reference
System and Frame

The celestial reference system is a conventional system
that constitutes an inertial space-fixed system [8.7]. Its
origin is located at the barycenter (center of mass) of the
solar system. For the definition of the coordinate axis
some further explanation on the Earth and its rotational
motion is needed. The rotation axis of the Earth, or more
precisely the angular momentum axis, is used as the x3
axis of a Cartesian system. The position of this refer-
ence axis is called the celestial ephemeris pole (CEP).
As the rotation vector of the Earth oscillates for a num-
ber of reasons, a specific date (J2000.0, Sect. 8.3) has to
be defined at which the direction of the rotation axis is
used. The x1 axis of the celestial system points towards
the vernal equinox; it is specified by the direction of the
intersection of the equatorial plane of the Earth and the
ecliptic. The x2 axis completes the orthogonal system
of the International Celestial Reference System (ICRS).

The ICRS is realized by very-long-baseline inter-
ferometry (VLBI) estimates of equatorial coordinates
of a set of extragalactic compact radio sources, the
International Celestial Reference Frame (ICRF). By
appropriate modeling of VLBI observations in the
framework of general relativity, the directions of the
CEP and the vernal equinox are maintained fixed rela-
tive to this selected set of precise coordinates of quasars.
The catalogue of stars as used for optical astronomical
observations (the Fundamentalkatalog FK5 or FK6) is
aligned to ICRF and provides the primary realization of
ICRS at optical wavelengths.
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190 Part B Geographic Information

The relation between the celestial and the terrestrial
frames is of importance if astronomical methods of po-
sitioning or GNSS orbit determination in the framework
of navigation or positioning are required.

8.4.3 International Terrestrial Reference
System and Frame

For all tasks that are related to the Earth surface or
close to it an Earth-fixed system that rotates with the
Earth is appropriate. This again is a conventional sys-
tem that is geocentric, the center of mass being defined
for the whole Earth, including oceans and atmosphere.
The x3 Cartesian axis is attached to the mean Earth
rotation axis [8.8]. The position of this mean axis on
the Earth surface is called the Conventional Interna-
tional Origin and was initially given by the Bureau
International de l’Heure (BIH) orientation at 1984.0.
The direction of the x1 axis is the BIH 1984.0 mean
meridian of Greenwich, and x2 completes the orthog-
onal system. The latter two axes define the terrestrial
plane of the equator orthogonal to the mean rotation
axis.

The realization of the terrestrial conventional sys-
tem is called International Terrestrial Reference System
(ITRS), its realization is the International Earth Rota-
tion and Reference Frame Service (IERS) ITRS Product
Center. It is a set of points with their three-dimensional
Cartesian coordinates, respective point velocities, and

x
y

z

x

P

λ

ϕ

Fig. 8.8 Earth-fixed terrestrial system with geographic co-
ordinates

a reference epoch. It is important to keep in mind that,
at the present level of observational precision, the Earth
and in particular the Earth’s crust is constantly in mo-
tion and deforming. A purely static description may be
sufficient for some mapping or GIS applications. How-
ever, in view of the reference frames, for positioning
and GNSS applications, kinematic modeling of points
is mandatory. Changes in coordinates are at the 1–3 cm
level per year on average. Some regions, such as the
Pacific and South East Asia, however, exhibit locations
with velocities up to 24 cm per year. These motions can,
for the majority of the solid Earth surface, be described
quite well by plate motion models [8.9] as long as one
stays away from the plate boundaries. Within the defor-
mation zones at the plate boundaries, irregular and large
motion rates have to be expected.

The current procedure to compute the realiza-
tion is to combine the observations of space geodesy
techniques: VLBI, lunar and satellite laser ranging
(LLR, SLR), GPS, and Doppler orbitography and
radiopositioning integrated by satellite (DORIS) in
a least-squares adjustment. The combination method
makes use of local ties in collocation sites where two
or more geodetic systems are being operated. ITRF so-
lutions are published in intervals that depend on the
number of new observations and the expected changes
in the realization expected. The numbers (yy) follow-
ing the designation ITRF specify the last year whose
data were used in the formation of the frame. Hence
ITRF98 designates the frame of station positions and
velocities constructed using all of the IERS data avail-
able until 1998. The latest issue is ITRF2005 [8.8] with
more than 300 points. The coordinates, velocities, and
full covariance matrix of the least-squares adjustment
used for their estimation with the related uncertainties
can be obtained from the ITRF Product Center [8.4].
Actual positions of points at the time of observation or
any other specific epoch in time t can be computed by
(8.3)

x(t) = x0 +v(t − t0)+Σ[Δxi (t)] , (8.3)

where x(t) is the vector of coordinates at epoch t, x0
the vector of coordinates and velocities at the reference
epoch t0, v the vector of velocities, Δxi (t) the site-
specific time-dependent corrections (if available, e.g., in
case of earthquakes or other known variations of station
position in time).

The reference epoch of an ITRF solution is speci-
fied to be the central epoch of the data span that was
used in the computation. Presently it is January 1, 2000.
The site-specific corrections are needed if the station
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Geodesy 8.4 Coordinate Reference System 191

position is to be determined with highest accuracy, at
the centimeter or subcentimeter level. In general the
station positions and velocities in the latest ITRF re-
alization are accurate to the level of a few centimeters.
For national reference systems and networks or regional
densifications the coordinate solutions of the respec-
tive points are transformed into the ITRF by a suitable
three-dimensional transformation (Sect. 8.8.3).

It is important to understand the concept of time-
varying coordinates and the consequences for reference
frames and coordinate determination. All computations,
e.g., in GPS positioning, should be performed with ref-
erence coordinates at the measurement epoch. Only the
instantaneous coordinates correspond to the measured
coordinate differences that come from actual geodetic
observations. After that, the resulting coordinate sets
may be transformed to any desired reference epoch
as required, e.g., by some national reference system
definitions. An example is the European Reference Sys-
tem [8.10] that is defined as a system with a static datum
and a reference epoch at January 1, 1989. Therefore, af-
ter computation of new coordinates in the actual ITRF
at the observation epoch, the coordinates have to be
rotated back into the reference epoch by using the cor-
responding velocities. For Central Europe, for example,
this corresponds to a coordinate change of almost 50 cm
if observed in 2008. For stations that do not have their
own known velocity vector from repeated observations,
the revised no net rotation Northwestern University ve-
locity model (NNR-NUVEL-1A) for plate motion [8.9]
can be applied in stable regions. Other countries, e.g.,
New Zealand, that lie on an active fault, use a dy-
namic datum that is adapted to the rapid and irregular
changes of coordinates [8.11]. The typical procedure
for computing the coordinates of a new site in ITRF by
differential GPS is

1. compute the baseline coordinate components from
GPS observations at epoch t;

2. transform the known ITRF coordinates of the ref-
erence point to the actual values at the observation
epoch t by using its known ITRF velocities;

3. compute the coordinates of your new station;
4. in case one needs the coordinates in a national

reference frame at the respective reference epoch:
Transform the resulting coordinates by using, e.g.,
NUVEL plate motion velocities to the reference
epoch;

5. alternatively to point 4: For some national networks
transformation parameters are given which enable
the transformation of points in a certain region and

pertaining to a particular network by using empir-
ically determined values that keep the consistency
of a particular reference frame realization. Then the
back-rotation of step 4 using model velocities may
be replaced by a three-dimensional seven-parameter
coordinate transformation.

8.4.4 World Geodetic System (WGS 84)

The WGS 84 is a particular realization of the terres-
trial reference system that is implicitly connected to the
US GPS system. It is realized by the coordinates of the
tracking station antennae of the GPS ground segment
monitoring stations that are used to compute the broad-
cast ephemeris of the GPS satellites. In its predecessors
and earlier versions before 1996 (WGS 72, for example)
the WGS was determined exclusively from these obser-
vations. Since 1996, these tracking station coordinates
have been computed from the ITRF coordinates and ve-
locities, so WGS 84 is now identical to the ITRF [8.12].
Slight differences at the centimeter level may occur as
the WGS may use an older version of the ITRF and the
realization itself is less accurate than the primary In-
ternational GNSS Service (IGS) stations used in ITRF.
The difference does not matter in most navigation and
positioning applications. So, by using the GPS broad-
cast ephemeris in GPS point positioning, the resulting
coordinates will be in the ITRF at the observation
epoch. For geodetic work of utmost precision the meth-
ods described in the previous section have to be applied.

The WGS 84 definitions in addition include an asso-
ciated WGS 84 ellipsoid to convert the Cartesian x, y, z
coordinates to ellipsoidal latitude, longitude, and height
and a gravity field model to relate ellipsoidal height to
the geoid. The ellipsoidal flattening of the WGS 84 is
slightly different from that of the GRS80 (Table 8.1)
ellipsoid that should be used in geodesy, however the
difference for applications at or close to the Earth sur-
face is negligible. The gravity field model that is used
to compute the geoid as a global vertical reference sur-
face is the enhanced Earth Gravitational Model 1996
(EGM96), a spherical harmonic expansion complete to
degree and order 360. By use of this model, height
above mean sea level can be computed as H = h − N
to better than 1 m anywhere on the Earth.

8.4.5 Geodetic Reference System 1980

The Geodetic Reference System 1980 (GRS80) is the
official geodetic reference system recommended by the
International Association of Geodesy. It should be used
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Table 8.1 Parameters of the GRS80 and the WGS 84

Parameter GRS80 WGS 84

Equatorial radius of the Earth 6 378 137 m 6 378 137.0 m

Geocentric gravitational constant of the Earth, 3 986 005 × 108 m3/s2 (3 986 004.418±0.008) × 108 m3/s2

GM (including the atmosphere)

Reciprocal flattening of the reference ellipsoid 298.257222101 298.257223563

Angular velocity of the Earth, ω 7 292 115 × 10−11 rad/s 7 292 115 × 10−11 rad/s

in all geodetic work and in computations of the gravity
field both on the Earth’s surface and in outer space. The
definition is given in [8.13]. Four defining parameters
are used to uniquely define the best-fitting ellipsoid and
the reference gravity field (normal gravity and poten-
tial) of the Earth based on the theory of the geocentric
equipotential ellipsoid. The defining conventional con-
stants for GRS80 are given in Table 8.1.

Its origin and orientation are such that the minor
axis of the reference ellipsoid, defined above, is parallel

to the direction defined by the Conventional Interna-
tional Origin, and such that the primary meridian is
parallel to the zero meridian of the BIH-adopted lon-
gitudes, which is coincident with the x, y, z Cartesian
coordinate system constituted by the ITRF. The GRS80
should eventually replace all nongeocentric regional
reference systems and geodetic datums. Together with
the ITRF, it provides the basis for the computation of
globally homogeneous coordinates, mappings, and ref-
erence gravity field parameters.

8.5 Height Systems and Vertical Datum

8.5.1 Definition of Heights in Geodesy

The term height has an intrinsic problem in geodesy
as its definition can be purely geometric or based on
physics, i. e., the potential of the Earth. There is no
“best” height, as the use of a particular height defini-
tion depends on the application. Ellipsoidal heights are
defined in a purely geometric way and are not suited
for technical purposes. They are defined as the distance
from a point to the chosen reference ellipsoid along the
ellipsoidal normal.

Heights based on the potential primarily are not
measured in meters but in potential differences. The dif-
ference in potential WB − WA of two points is the work
done in transporting a unit mass of 1 kg from A to B.
This work is independent of the path taken from A to B.
Potential differences are measured by a combination of
geometric leveling and gravity measurements (=geopo-
tential leveling). The physical dimension of a potential
difference is m2 s−2. As users in general prefer a geo-
metric value in meters, a suitable definition of a metric
height system has to be agreed on. It should fulfill three
requirements [8.14]

• the height of a point should be unambiguous and
independent of the way it was measured;• the height should ideally be free of any hypothesis;

• corrections to measured height differences from
geometric leveling to obtain the system adopted
should be small so that their possible neglect does
not cause too large effects.

As seen in Fig. 8.9, equipotential surfaces are not
parallel, i. e., points with the same value of the potential
do not have the same ellipsoidal height and their ellip-
soidal height varies with position and the height itself.
In order to eliminate these variations that cause path
dependency of geometric leveling, gravity values along

Geoid W = W0

Ellipsoid

W = W2

W = W1

W = W3

dh1

dh2

Fig. 8.9 Ellipsoid, geoid, and nonparallel equipotential
surfaces Wi
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Geodesy 8.5 Height Systems and Vertical Datum 193

the leveling lines have to be known. For a potential in-
crement of dW , gravity of g, height increment of dh,
and leveled height difference of δh, the basic relation to
compute potential difference is: dW = −gdh. Integra-
tion along the leveling line gives the potential difference
WA − WB between a starting point A and an end point B
as

WA − WB =
B∫

A

gdh ≈
B∑
A

gδh . (8.4)

For the definition of a height system, a zero level has
to be defined. This is accomplished by the geoid, the
potential of which is labeled as W0 in the corresponding
relations. The potential difference to this value W0 is
called the geopotential number (CA):

CA = W0 − WA =
A∫

P0

gdh ≈
A∑
P0

gδh . (8.5)

The geopotential number can formally be converted to
a metric quantity by dividing it by a gravity value. The
value used in Europe is the gravity value of the reference
ellipsoid at 45◦ latitude, called normal gravity γ45. The
result is called dynamic height

HA = CA

γ45
. (8.6)

Dynamic heights are strict, as no water can flow be-
tween two points with identical heights and there are no
hypotheses involved. Their main drawback is the fact
that they require large corrections to the leveled height
differences and that they cannot be combined with GPS
heights as they do not have a defined zero level and no
geometrical interpretation.

Geoid 

Ellipsoid

Quasigeoid

Earth
surface

h
HO

H*

N �

Fig. 8.10 Height types: ellipsoidal height h, orthometric
height HO, normal height H∗, and the related reference
surfaces with their respective distance to the ellipsoid,
geoid height N , and height anomaly ζ

8.5.2 Orthometric Height HO

The orthometric height, HO, is the length of the slightly
curved plumb line from the geoid to the Earth surface
(Fig. 8.10). The orthometric height usually reflects local
variations in gravity as well as changes in topography.
A fictitious geopotential leveling along the plumb line
from the geoid to A will give the geopotential num-
ber CA. Because CA is independent of the leveling
path, the same value results from a geopotential lev-
eling along the Earth’s surface. The following relation
between HO

A and CA holds:

CA = W0 − WA =
A∫

A0

gdh = hA
1

hA

A∫

A0

gdh

= ḡA HO
A , (8.7)

HO
A = CA

ḡ∗
A

, (8.8)

where ḡ∗
A is the integral mean of the gravity along the

plumb line, which has to be computed from gravity
values measured at the Earth’s surface. This is where
hypothetical assumptions on the density enter. As a con-
sequence it is hardly possible to get orthometric heights
with millimeter accuracy, and in mountainous areas
even the centimeters may be uncertain. The require-
ments for a good height system given above are fulfilled
for the first item, to a large extent for the third one, but
not for the second one. One drawback is that water can
flow between two points with equal HO. However, the
most important advantage of HO values is that they can
be combined with ellipsoidal heights: The difference of
ellipsoidal heights equals the difference of orthometric
heights plus the difference of geoidal undulations:

(hB −hA) = (HB − HA)+ (NB − NA) . (8.9)

8.5.3 Normal Heights (H∗)

Normal heights are the most advanced concept. They
are related to the geodetic theory of the Russian geode-
sist Molodenskij. According to his idea, the surface of
the Earth is mapped point by point onto another sur-
face. Each point A on the surface of the Earth receives
a partner point Q on the same ellipsoid normal, above
or below A. The ellipsoidal height of Q depends on val-
ues that can be calculated without hypotheses, which is
what makes Molodenskij’s theory so attractive.

The normal height H∗ of point A is defined as the
ellipsoidal height of the partner point Q. The calculation
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of the height of Q depends on potential differences. The
basics are formulated according to

U0 −UQ = W0 − WA = CA , (8.10)

where U0, the mean Earth ellipsoid, generates an asso-
ciated theoretical gravity field. Its potential, labeled U0,
is by definition equal to the potential W0 of the geoid.
CA, the geopotential number, can be determined from
(8.5).

Thus, UQ is computable without hypotheses as

UQ = U0 −CA = WA − W0 +U0 .

The entirety of all points Q creates a surface that is near
but not identical to the Earth’s surface. This surface is
called the telluroid. The distance between the Earth’s
surface and the telluroid ζ is termed the height anomaly.

Similar to the orthometric heights (8.7), the follow-
ing relation holds for normal heights:

CA = U0 −UQ =
H∗∫

0

γ dH∗
A = γ̄Q H∗

A .

This leads to the normal height of point A, HA:

H∗
A = CA

γ̄Q
, (8.11)

where γ̄Q is the integral mean of the theoretical grav-
ity from the ellipsoid to point Q. It can be computed
as shown from the normal gravity formula once the
iterative determination of point Q is accomplished.

The quasigeoid is another surface commonly used
in geodetic science. The distance between a point A on
the Earth’s surface and the quasigeoid is exactly the nor-
mal height of the point HA. The pair of geoid height N
and orthometric height is equivalent to the pair of quasi-
geoid height and normal height.

The geometrical interpretation can be derived from
Fig. 8.10 as

(
HO

B − HO
A

)+ (NB − NA)

= (
H∗

B − H∗
A

)+ (ζB − ζA) . (8.12)

Table 8.2 Comparison of different height types (after [8.15])

Geopotential Dynamic Orthometric Normal (ζ − N) Geoidal Ellipsoidal
number C height height height (m) undulation N height
(kGal m) (m) (m) (m) (m) (m)

140.0704 142.839 142.801 142.800 +0.001 +0.60 143.40

694.0876 707.805 707.810 707.721 +0.089 +1.18 708.99

1090.1256 1111.670 1111.797 1111.645 +0.152 +2.35 1114.15

1420.8730 1448.954 1449.340 1449.037 +0.303 +2.77 1452.11

The quasigeoid is not an equipotential surface. It co-
incides by definition with the geoid on the oceans. On
the continents it runs slightly above it. The difference
between N and ζ depends on the geology and the to-
pography itself; in mountainous regions their difference
may amount to 40–50 cm.

The importance of orthometric and normal heights
lies in the fact that, as soon as the detailed geoid (or
quasigeoid) is known, costly leveling operations can be
replaced by GPS observations. The computation of the
necessary height anomalies as well as of geoid undu-
lations is the task of physical geodesy and is a very
ambitious problem. Regional models allow the compu-
tation of the geoid or quasigeoid height to centimeter
precision in a limited area. GPS leveling, the deter-
mination of physical heights by combining ellipsoidal
heights from GPS and geoid or quasigeoid heights, is
therefore about to replace traditional leveling on the na-
tional and regional scale. Global geopotential models,
however, are not yet sufficiently accurate to compute the
absolute N or ζ to better than decimeters (Sect. 8.6).

The comparison of the values of the four types of
heights in use is given in Table 8.2, to illustrate the
numerical values. They are taken from points of the
Austrian first-order leveling net ranging from the low-
lands to the Alps.

The choice of a particular height system depends on
each country, however, for Europe the use of normal
heights is recommended by the EUREF Subcommis-
sion of the IAG for Europe [8.16]. Based on an
adjustment of geopotential numbers, normal heights
are recommended as a standard. Future height systems
for precise applications in monitoring and geodynam-
ics will have to take height variations with time into
consideration.

Vertical Datum
The zero surface to which elevations or heights are re-
ferred to is called a vertical datum. Traditionally it is
associated with mean sea level. The mean sea level
(MSL) reference is realized by continuous measure-
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ments at tide gage stations. The average reading over
a sufficiently long interval defines MSL. MSL is then
used as zero elevation for a local or regional area.
MSL is an approximation to the geoid. Differences
arise locally because the sea level includes position-
and time-dependent components due to currents, winds,
tides, and salinity, among others, that cause a devia-
tion from an equipotential surface of the Earth gravity
field. This sea surface topography part is typically in
the decimeter range; globally it is between −1.5 and
+1.5 m. Therefore national height systems referred to
different tide gages may have offsets at the meter level.

For georeferencing and global monitoring of the
Earth the implementation of a unified global vertical da-
tum is needed. This will lead to greater accuracy in the
connection of national and continental datums. It will
also improve geoid computations, as it will remove sys-
tematic regional biases in gravity anomaly databases to
refer gravity anomalies to one unique geopotential sur-
face. However, due to a whole range of fundamental
geodetic questions such as the choice of the reference
potential of the mean Earth ellipsoid, the value of the
potential W0 for the geoid and its time dependency, plus
many more, there is no clear definition at the moment.
Presently the EGM gravity models are the de facto stan-

dard if used with ITRF-derived ellipsoidal heights from
GPS to compute HO or H∗. Both height systems, i.e.,
derived from tide gages and leveling and from GPS
leveling and geopotential models, are in use.

Height datums and height values, like all quantities
that stem from observations, can be inconsistent for sev-
eral reasons. In principle the geometric heights h may
change by δh due to changes in the reference ellip-
soid. The physical height H may change by δH due to
changes in gravity, leveling or reference potential at the
tide gage or selected zero point. Geoid heights N may
change by δN due to changes in the reference potential
W0 or geoid redefinitions. These effects generally ap-
pear as a near-constant bias in a given area, which may
be expressed by

h + δh = (H + δH)+ (N + δN) . (8.13)

The necessity to combine geometric coordinates and
a potential-based height led to the introduction of com-
pound coordinate reference system descriptions. The
compound coordinate reference system describes the
position by two independent coordinate reference sys-
tems, e.g., an ITRF-based geometry component and
a height system with a particular vertical datum for the
vertical.

8.6 Geopotential Models and Geoid

This section gives a brief description of geopotential
and geoid models in the framework of georeferencing
and GIS applications. They are used to compute phys-
ical heights above the geoid in combination with GPS
leveling, the realization and unification of the verti-
cal reference system, and the transformation of local
geodetic observations to a global reference frame. They
have to be consistent with the geometric terrestrial ref-
erence system, ITRF. In practice, global representation
of the geopotential of the Earth by an expansion in
spherical harmonics [8.14] is used. Until 2008, the IAG-
recommended global gravity field was the Earth Gravity
Model 96 (EGM96), computed by the US National
Geospatial-Intelligence Agency NGA (formerly known
as the Defense Mapping Agency (DMA) or National
Imagery and Mapping Agency (NIMA)) in coopera-
tion with the Ohio State University [8.17]. This data
is a set of fully normalized, Earth gravity (geopoten-
tial) coefficients, complete to degree (n) and order (m)
360, corresponding to a resolution of the gravity field’s
features at 100 km scale. These spherical harmonic co-

efficients are used in Clenshaw summation numerical
algorithms or fast Fourier transformation algorithms to
compute all quantities of interest to geodesy. These
are point gravity anomalies, point geoid heights, point
N–S or E–W components of the deflection of the
vertical, point total deflection of the vertical, point ra-
dial component of the gravity disturbance vector, and
point N–S or E–W component of the gravity distur-
bance vector. Detailed description of background and
application formulas are published in [8.12]. In 2009,
EGM96 was replaced by the EGM2008 [8.18]. This set
of coefficients is based on a combination of terrestrial
gravity observations and data from satellite gravity ob-
servations. These are satellite laser-ranging missions,
satellite altimetry missions over the oceans, and recently
the Challenging Minisatellite Payload (CHAMP), the
Gravity Recovery and Climate Experiment (GRACE),
and the Gravity Field and Steady-State Ocean Circula-
tion (GOCE) dedicated satellite gravity missions [8.19].
The latter missions have led to significant improvements
in the modeling of long-wavelength gravity signals.
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Fig. 8.11 EGM2008 geoid heights (m)

In combination with terrestrial gravity data of good
quality (±1 mGal, 1 mGal = 10−5 m/s2) and cover-
age, significantly improved continental-scale geoid and
quasigeoid models are provided. Accuracy and resolu-
tion in EGM2008 are significantly enhanced (Fig. 8.11),
the spatial resolution now being about 15 km, or de-
gree and order 2159 in the frequency domain. The
accuracy of geoid or quasigeoid height computation is
improved from about 0.3 m with EGM96 to 0.13 m,
as shown by comparison with selected GPS leveling
results. The accuracy, however, may vary in different
regions of the world depending on the terrestrial in-
put data available for the EGM2008 computation and
reach 0.5–1 m in extreme cases. The standard devia-

tion of the global geoid undulations with respect to
the WGS 84 ellipsoid is about 30.5 m, with minima
and maxima of −107 m and 85 m, respectively. These
values illustrate the deviation of the geoid from the
ellipsoid and the error that may arise if ellipsoidal
heights and physical heights above mean sea level are
not distinguished.

For GIS applications, the gridded data set of
EGM2008 and a particular version for the use with
WGS 84 are available from the NGA website, as for
previous models [8.20]. They have a resolution of 1, 2.5,
and 5 arcmin. Software for synthesis of harmonic coeffi-
cients or interpolation of the grids to particular positions
on the Earth is provided by NGA as well.

8.7 Time Systems

Time systems play a fundamental role when dealing
with space geodesy and advanced GNSS data analy-
sis. The typical example is the transformation between
the space-fixed ICRS and the Earth-fixed ITRF implic-
itly included in GNSS positioning. Sensor systems and
sensor fusion depends on precise timing and time syn-
chronization. Time is the fundamental quantity that,
moreover, is the basis of almost all modern geodetic ob-
servation techniques used in geodesy and GIS [8.21].
It is measurable at the level of one part in 1015. Re-
cent developments in optical clocks report two orders
of magnitude improvement in accuracy that will have

a huge impact on GNSS and positioning in the next
5–10 years [8.22]. This section gives a brief intro-
duction to the time scales used in GIS and geodesy.
Basically, we have to differentiate between the unit of
time, e.g., the interval of 1 s, and the epoch, i. e., a par-
ticular instance of an event in time. Each time system
may have its own unit and its own zero epoch.

There are four basic time systems that are in use.

1. Solar time is based on the daily path of a ficti-
tious sun that moves with constant velocity along
the equator. It is the basis of universal time (UT).
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One second is 1/86 400 of a solar day. Because of
the changes in rotational speed of the Earth and the
slowing down of Earth rotation, it is not constant.

2. Sidereal time is based on the rotational speed of the
Earth. The unit is the period of the Earth’s rotation
with respect to a point nearly fixed with respect to
the stars. One sidereal day is 4 min shorter than the
mean solar day, due to the revolution of the Earth
around the sun.

3. Atomic time (TAI) has the fundamental interval of
one Système International (SI) second. It is defined
as the duration of 9 192 631 770 cycles of radia-
tion corresponding to the transition between two
hyperfine levels of the ground state of cesium 133
(133Cs). The SI day is defined as 86 400 s, and the
Julian century as 36 525 days. TAI is the Interna-
tional Atomic Time scale, a statistical timescale
based on a large number of atomic clocks. The
origin was established on January 1, 1958. At mid-
night on January 1, 1958, universal time and sidereal
times effectively ceased to function as time systems.

4. Dynamic time is based on the equations of motions
of the solar system celestial bodies. The theory of
general relativity implies that we have to consider
the choice of an adequate inertial reference frame.
For events at or close to the Earth it is suitable
to use terrestrial dynamical time [temps dynamique
terrestre (TDT)], which represents a uniform time
scale for motion in the Earth’s gravity field. By def-
inition it has the same rate as an atomic clock on
Earth. TAI is related to the definition of TDT by the
definition

TDT = TAI+32 184 s . (8.14)

8.7.1 Time Scales and GNSS Times

TAI is a continuous time scale, and so does not remain
synchronized with the mean solar day (UT1), since the
Earth’s rotation rate is slowing by an average of about
1 s per year. This problem is taken care of by defin-
ing universal time coordinated (UTC), which runs at the
same rate as TAI but is incremented by leap seconds pe-
riodically. Leap seconds are introduced by the IERS so
that UTC does not vary from UT1 by more than 0.9 s.
Presently

UTC−TAI = −34 . (8.15)

GPS time is derived from TAI. The time signals
broadcast by the GPS satellites are synchronized with
the atomic clock at the GPS Master Control Station in

Colorado, USA. Global positioning system time GPST
zero was set to 0 h UTC on January 6, 1980. It is not
incremented by UTC leap seconds. Therefore, there is
an integer-second offset of 19 s between GPST and TAI
such that

GPST+19 s = TAI . (8.16)

As of 2009 there has been a total of 15 leap seconds
since January 6, 1980 so that currently

GPST+UTC = 15 s . (8.17)

For precise applications this offset between UTC
and GPST has to be adequately considered by specify-
ing the time system used. GPS time is primarily counted
in GPS week numbers and seconds of week. Since Jan-
uary 6, 1980 each week has been designated its own
number. For example February 4, 2009 is the day of
year 35 in GPS week 1517. To identify a given epoch
within the week, the concept of seconds of week is
used. This number counts from midnight between Sat-
urday and Sunday, the beginning of the GPS week.
Furthermore, for convenience the individual days of the
week are numbered: Sunday 1, Monday 2, Tuesday 3,
Wednesday 4, Thursday 5, Friday 6, and Saturday 7.
Professional GPS software uses the day of week and
seconds of day for numerical reasons.

Other GNSS, such as the Russian Global Navigation
Satellite System (GLONASS), or the future European
Galileo system, will maintain their own time system.
However, like GPS, they will be realizations of UTC
and steered to be within 1 μs of UTC, modulo whole
seconds. GNSS times are not adjusted for leap seconds.
Their offsets will be broadcast to users to allow interop-
erability and seamless use of all GNSS.

A continuous time count often used in astronomy,
geodesy, and GIS is the Julian date (JD). It describes
a number of days and the fraction of a day after a zero
epoch sufficiently in the past to precede the historical
record, chosen to be at 12 h UT on January 1, 4713 BC.
The JD of the standard epoch of UT is called J2000.0,
where

J2000.0 = JD2 451 545 : 0 = 2000 January 1.5dUT

= January 1st, 12 h UT . (8.18)

JD is a large number, so often it is replaced by the
modified Julian date (MJD)

MJD = JD−2 400 000.5 . (8.19)

Hence J2000.0 = MJD51 544.5. MJD, in contrary to
JD, starts at midnight.
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8.8 Conversions, Transformations, and Projections
There are two basic kinds of coordinate operations: co-
ordinate transformation and coordinate conversion.

Transformations are basic operations in geodesy.
They cover coordinate transformations between differ-
ent types of coordinate systems (Fig. 8.12), or linear,
affine, and projective transformations. Typically they
comprise translation, rotation, and a change in scale.
Formulas are available for Cartesian or for ellipsoidal
coordinates; the relevant set of formulas are known as
the Helmert transformation and Molodenskij formulas,
respectively. The latter also include terms to consider
the change in ellipsoid parameters, i. e., the dimension
of the ellipsoid. They were used in geodetic datum
transformations, e.g., to relate nongeocentric geodetic
systems with ellipsoidal coordinates to the ITRF and the
GRS80. Today’s GNSS-based coordinates are Cartesian
and are given in the ITRF or WGS 84; therefore, the
Helmert transformation is appropriate in most cases.
The transformation parameters in general are derived
empirically in a least-squares estimation by a set of
identical points known in both systems. Choice, allo-
cation, number, and the quality of coordinates of these
points extensively affect the results and the accuracy.

For three-dimensional CRS in general the seven-
parameter Helmert transformation is used for coordi-
nate transformations (8.36–8.38). For two-dimensional
and for geotopographical data, also a grid-based trans-
formation is usable. Values of ellipsoidal coordinates
of the identical points are computed first and stored
in a regular grid. The shifts for the transformation of
other or new coordinates are then computed by bilinear
interpolation inside the grid meshes.

The change from one coordinate system to another
based on the same datum is accomplished by a coor-
dinate conversion. In this case, mathematical rules are
specified. Generally these conversions are unambigu-
ous and can be realized with high accuracy. Examples
are map projections and conversions between Cartesian
and ellipsoidal coordinates.

The change of coordinates from one CRS to an-
other may result from a series of operations consisting

Coordinates
Source CRS

Datum 1
Coordinate system A    

Coordinates
Target CRS

Datum 2
Coordinate system A 

Coordinate
transformation  

Fig. 8.12 Schema of coordinate transformation (after [8.6])

of one or several transformations and conversions by
concatenated operations.

8.8.1 Conversion Between Ellipsoidal
and Cartesian Coordinates

Conversion between Cartesian coordinates, e.g., ob-
tained from the ITRF, and ellipsoidal coordinates used
to describe the location of a point on or above the ellip-
soid is often required in positioning and GIS. An ellipse,
and an ellipsoid, is defined by two parameters: the semi-
major axis a and the semiminor axis b. The equation of
an ellipsoid of revolution in a Cartesian system with ori-
gin in the center and z-axis in the minor axis is given
by

x2 + y2

a2
+ z2

b2
= 1 . (8.20)

A number of frequently used quantities that describe
the geometry of an ellipsoid of rotation can be derived
from the examination of a meridian curve of the ellip-
soid (Fig. 8.13): the flattening ( f ), the first eccentricity
(e), the second eccentricity (e′), and the radius of polar
curvature (c), defined as

f = a −b

a
; e2 = a2 −b2

a2
;

e′2 = a2 −b2

b2
; c = a2

b
. (8.21)

With the aid of auxiliary quantities

V =
√

1+ e′2cos2ϕ ,

N = c

V
,

M = c

V 3
. (8.22)

where M and N are the radii of curvature of the ellip-
soid in the direction of the meridian and orthogonal to
it, the transformation of the ellipsoidal coordinates to
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Fig. 8.13 Geometry of the ellipsoid

the Cartesian system is given by

x =
( c

V
+ H

)
cos ϕ cos λ

y =
( c

V
+ H

)
cos ϕ sin λ

z =
[ c

V
(1− e2)+h

]
sin ϕ

or

x = (N +h) cos ϕ cos λ

y = (N +h) cos ϕ sin λ

z = [N(1− e2)+h] sin ϕ . (8.23)

The inverse transformation is not as straightforward;
λ follows from

λ = arctan
( y

x

)
. (8.24)

Solving (8.23) for ϕ and h is theoretically possible but
very complicated. In practice this is done by an itera-
tive procedure starting with h = 0, or by an approximate
solution which nevertheless is rather accurate. The aux-
iliary terms θ and p are defined by

θ = arctan

(
az

bp

)
, p =

√
x2 + y2 . (8.25)

Latitude ϕ and height h result from

ϕ = arctan

(
z + e′2b sin3θ

p− e2a cos3θ

)
, (8.26)

h = p

cos ϕ
− c

V
. (8.27)

Care has to be taken to keep millimeter accuracy; lat-
itude and longitude have to be given to 0.0001′′ or to
3 × 10−8 accuracy. Two normals of the ellipsoid sub-
tending the small angle of 1′′ intersect the ellipsoid at
two points 30 m apart.

a

b

Circle with radius a

ϕ

p

Z

�   γ

Fig. 8.14 Geodetic latitude ϕ, reduced latitude β, and geo-
centric latitude γ

For many computations in a limited area the ellip-
soid can be substituted by an osculating sphere which
is situated tangent to the ellipsoid in a central point of
the region. The radius R of this sphere is equal to the
geometric mean of the principal radii M and N of the
ellipsoid M and N

R = c

V 2
; (8.28)

V has to be calculated for the latitude of the tangent
point.

Two different types of latitude at the ellipsoid have
to be distinguished: the reduced latitude β and the geo-
centric latitude γ . They are used in connection with
the gravity models of the geopotential (Sect. 8.6). As
seen in Fig. 8.14, the reduced latitude β is computed
by the circle with radius a and the vertical through the
point at the ellipsoid from the components p and a; the
geocentric latitude γ is computed from z and p:

β = arccos
( p

a

)
,

γ = arctan

(
z

p

)
. (8.29)

8.8.2 Local Geodetic Systems

For handling terrestrial data, the local observation sys-
tems as shown in Fig. 8.15 have to be related to the
global coordinates. The origin of a local system is
topocentric, i. e., at some point P on the surface of the
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Fig. 8.15 Local observations in the topocentric system and
their relation to the global CRS

Earth with the orthogonal axes u in direction of geodetic
north, v to the east, and the w-axis parallel to the local
normal on the ellipsoid. This system is also termed the
horizon system. A local observation to a fixed point Q
can be done by observing the distance s, the azimuth α,
and the zenith distance ζ . Note that actual observations
have to be corrected for the deflection of the vertical,
i. e., the difference between natural coordinates and el-
lipsoidal coordinates. The vector s can be computed as

s =
⎛
⎜⎝

u

v

w

⎞
⎟⎠ =

⎛
⎜⎝

cos α sin ζ

sin α sin ζ

cos ζ

⎞
⎟⎠ . (8.30)

Now the vector s has to be transformed into the
difference vector S of the position vectors of points P
and Q in the global CRS and its associated ellip-
soid. As shown in Fig. 8.15, the two Cartesian systems
have different orientations, so the conversion will in-
clude two rotations for latitude and longitude and one
mirroring to convert the left-handed local system into
the right-handed geocentric system. The transformation
then reads

S = (Δx, Δy, Δz)
T

= Rw(180◦ −λ)Rv(90◦ −ϕ)Rv · s = R · s , (8.31)

with

R =
⎛
⎜⎝

− sin ϕ cos λ − sin λ cos ϕ cos λ

− sin ϕ sin λ cos λ cos ϕ sin λ

cos ϕ 0 sin ϕ

⎞
⎟⎠ . (8.32)

For the inverse transformation we get, with the dif-
ference vector S = (Δx, Δy, Δz)

T
,

s =
√

Δx2 +Δy2 +Δz2 , (8.33)

α = arctan[(− sin λ ·Δx + cos λ ·Δy)

/(− sin ϕ cos λ ·Δx − sin ϕ sin λ ·Δy

+ cos ϕ ·Δz)] , (8.34)

ζ = arccos

[
1

s
(cos ϕ cos λ ·Δx + cos ϕ sin λ ·Δy

+ sin ϕ ·Δz)

]
. (8.35)

8.8.3 Coordinate Transformation
and Transformation
of Terrestrial Frames

Today’s modern reference frames based on satellite
geodesy are orthogonal and homogeneous. The stan-
dard relation for transformation between two reference
systems is a Euclidian similarity transformation with
seven parameters: three translation components, one
scale factor, and three rotation angles. At the level of
accuracy of ITRF2005, the transformation parameters
may partly be time dependent, due to different defi-
nitions used for the initial adjustment of a particular
frame. Therefore also the transformation of velocities
has to be considered by using the time derivative of
the seven parameters. At the ITRF website the de-
tailed transformation formulas and the most recent
estimates for the transformation parameters are avail-
able [8.4].

The transformation of coordinate vector x expressed
in a reference system S into a coordinate vector x′ ex-
pressed in a reference system S′ is computed by (8.36),
which consists of a translation for the shift in origin,
rotation, and scale change in all three axes (Fig. 8.16)

⎛
⎜⎝

x′

y′

z′

⎞
⎟⎠ =

⎛
⎜⎝

∂x

∂y

∂z

⎞
⎟⎠+

⎛
⎜⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠ ·

⎛
⎜⎝

x

y

z

⎞
⎟⎠ . (8.36)

The rotation matrix also includes a scale change. For
the transformation of coordinates, this affine map-
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Fig. 8.16 Three-dimensional spatial coordinate transfor-
mation

ping is constrained by implying conformity in using
only one scale factor m. This leads to the standard
seven-parameter similarity transformation widely used
in geodesy:

⎛
⎜⎝

x′

y′

z′

⎞
⎟⎠ =

⎛
⎜⎝

∂x

∂y

∂z

⎞
⎟⎠+ (1+m) · R ·

⎛
⎜⎝

x

y

z

⎞
⎟⎠ , (8.37)

R =
⎛
⎜⎝

1 ωz −ωy

−ωz 1 ωx

ωy −ωx 1

⎞
⎟⎠ . (8.38)

This transformation is known as the spatial or 3-D
seven-parameter Helmert transformation. In general,
the rotation angles ωi around the three coordinate axes
are quite small, and the simple form given in (8.38) can
be used. The transformation parameters are to be de-
termined by the use of at least three identical points
and by solving the equation for the seven parame-
ters. In general this is accomplished by least-squares
adjustment.

For sets of ellipsoidal coordinates and the transfor-
mation to a new reference ellipsoid an alternative to the
computation of new latitude, longitude, and ellipsoid
height by concatenation of three operations (geograph-
ical to geocentric, geocentric to geocentric, geocentric
to geographic) is possible using formulas derived by
Molodenskij [8.23]. These directly relate the changes
in geographical coordinate offsets by use of the trans-
formation parameters for the origin and the change in

ellipsoid parameters. Their short form is

ϕ′ = ϕ+ dϕ ,

λ′ = λ+ dλ ,

h′ = h + dh ,

dϕ′′ = [−dX sin ϕ cos λ− dY sin ϕ sin λ

+ dZ cos ϕ+ (a d f + f da) sin 2ϕ]
/(M sin 1′′) ,

dλ′′ = −dX sin ϕ+ dY cos λ

N cos ϕ sin 1′′ ,

dh = dX cos ϕ cos λ+ dY cos ϕ sin λ+ dZ sin ϕ

+ (a d f + f da) sin2 ϕ− da . (8.39)

Here, dX, dY , and dZ are the geocentric translation pa-
rameters, M and N are the meridian and normal radii of
curvature at the given latitude ϕ on the first ellipsoid,
da is the difference in the semimajor axes of the target
and source ellipsoids, and d f is the difference in the
flattening of the two ellipsoids.

8.8.4 Projections and Plane Coordinates

GIS, cartography, and surveying applications need
plane coordinates. There are numerous ways to project
the ellipsoid onto the plane, but it is not possible to
avoid distortions in distances in this process [8.23]. Ei-
ther areas or angles can be selected as the target quantity
not to be distorted so as to obtain an equal area or con-
formal (equal angular) mapping in the plane. In geodesy
and GIS, conformal maps are preferred as the distor-
tions of distances are not dependent on the directions.
They are computed from the solution of the Cauchy–
Riemann differential equation (8.42). There are many
possible choices of conformal maps. The modern form
of the transversal Mercator projection, the one of most
importance in GIS and geodesy, will be derived below.
A comprehensive collection of formulas and parameters
can be found in [8.24,25]. The general feature of projec-
tions is the fact that they are basically two-dimensional
mappings between two surfaces so that heights above
these surfaces remain unaffected.

Conformal mapping is facilitated by the one-to-one
transformation of an isothermal net of parameter lines
from one surface to the other. “Isothermal” means that
both sets of parameter lines are orthogonal and of the
same scale (isometric). The plane Cartesian coordinate
set is isothermal; the net of meridians and parallels, i. e.,
the geographic longitude λ and the latitude ϕ, are not.
However, an isothermal net on the sphere or the ellip-
soid can be generated by use of the Mercator function
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to convert the latitude ϕ to the isothermal latitude q:

q = ln

[
tan

(π

4
+ ϕ

2

) (
1− e sin ϕ

1+ e sin ϕ

)e/2
]

. (8.40)

The inversion is done iteratively by using ϕ = 0 as
a starting value

ϕi+1 = 2 arctan

[(
1− e sin ϕi

1+ e sin ϕi

)e/2

· exp(q)

]
.

(8.41)

Conformal mappings are now computed from the holo-
morphic function

x + i · y = f (q + i ·λ) , (8.42)

where the plane coordinate system components x and
y are the real and the imaginary part of the complex
function (8.42).

8.8.5 Meridian Strip Projection
(Transverse Mercator Projection)

This projection goes back to Gerhard Mercator in 1569
and was later derived by Gauss for ellipsoidal coor-
dinates. The formulas for practical calculations were
developed by various geodesists in different countries
and this projection is known under several names; the
internationally accepted name is transverse Mercator
projection (TMP). Maps projected by the TMP have
straight lines for all meridians and parallels. A partic-
ular meridian of the ellipsoid is adopted as the central

x

y

O

Fig. 8.17 Meridian strip projection scheme

meridian (CM) of the projection. Usually the central
meridian in its true length is chosen with a longitude
divisible by 3, i. e., 6◦, 9◦, 12◦. A small region, ±Δλ

east and west of the CM, is then mapped by (8.42), so
that the projection of the CM becomes the x- or North-
axis. The projection of the equator is the y- or East-axis
(Fig. 8.17). The origin of the plane coordinate system
is thus the intersection of the CM with the equator of
the reference ellipsoid at the chosen reference merid-
ian. The distortion increases with distance from the CM.
Therefore Δλ is usually limited to 1.5◦ or 3◦, leading to
stripes of 3◦ or 6◦ width.

For the conversion, practical formulas are published
based on series expansions [8.26]. An analytical solu-
tion based on the complex variables of the holomorphic
function (8.42) that is easily implemented was pub-
lished in [8.27] and elaborated upon in [8.28]. It is
facilitated in a two-step procedure for forward and back-
ward conversion from ellipsoidal to plane coordinates.

Conversion Between (ϕ‚λ) ↔ (q‚l)

q = arctan h(sin ϕ)− e arctan h(e sin ϕ) ,

l = λ , and

ϕi+1 = arcsin tan h(q + e arctan h(e sin ϕi ) ,

ϕ1 = 0

λ = l . (8.43)

Conversion Between (q‚l) → (x‚y)
Here the transformation between the two sets of isother-
mal coordinates is solved by the complex function
z = f (w), where the analytical function f is determined
by the presupposition of an undistorted CM

w = q + i · l

z = x + i · y

bi+1 = arcsin tan h[w+ e arctan h(e sin bi )] ,

bi = (ϕ̄+ i · λ̄)

z = M0(1+ E) ·b− M0
1
2 sin(2b)Eb with

E(e′2) =
∞∑

n=1

d′′
n

Eϕ(e′2, ϕ) =
∞∑

n=1

d′′
n

n−1∑
k=0

k′′
n

dn+1 = dn
(2n +1)(2n +3)

(2n +2)(2n +2)
e2 ; d0 = 1 ,

ki+1 = dn
(2i +2)

(2i +3)
sin2ϕ ; k0 = 1 . (8.44)
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The plane coordinates (x, y) are the real and imaginary
part of the complex variable z. Note that in many coun-
tries a constant [false easting (FE) and false northing
(FN)] is added to the y-coordinate in order to avoid
a negative sign and to indicate the zone or chosen CM.
Frequently, these coordinates are then termed right or
East for y, and high or North for x. Of course, when
doing the inverse transformation x, y → ϕ, λ this value
has to be eliminated first. In addition, the CM may not
be projected isometrically but must be multiplied by
a scale factor as in the case of UTM coordinates.

For the inverse transformation the inversion of the
above formulas is used, and q and l, respectively, are
the real and imaginary part of w.

Conversion Between (q‚l) → (x‚y)

bi+1 = z

M0(1+ E)
+ sin(2bi )

Eb(i−1)

2(1+ E)
; b0 = 0 ,

w = arctan h(sin b)− e arctan h(e sin b) with

M0 = a(1− e2) . (8.45)

The formulas exhibit quick convergence and itera-
tions can be limited to n = 3 or n = 4 in most cases to
arrive at centimeter accuracy.

Distortions of Distance and Areas. The conformal
mapping leaves angles unchanged, but distances and ar-
eas distorted the farther from the CM they are located.
Distances and areas are enlarged by the projection in
principle. Let s be the length of a geodetic line on the
ellipsoid, s′ the corresponding length in the plane, and
the areas be A on the ellipsoid and A′ in the plane. For
a sufficiently good approximation of the distortions it
suffices to use an osculating sphere of radius Rm, where
Rm is the mean radius at the mid-latitude of the region
in question. Then, with y1 and y2 as the y-coordinates
of the endpoints of a line or of the nearest and farthest
point of an area with respect to the CM,

s′ = s + s

6R2
m

(
y2

1 + y1 y2 + y2
2

)
,

A′ = A + A

3R2
m

(
y2

1 + y1 y2 + y2
2

)
,

R2
m = c2

V 4
m

. (8.46)

8.8.6 Universal Transverse Mercator System

To limit distortions, a grid system with several grid
zones and common defining parameters is used. Co-

ordinates throughout the system are repeated in each
zone. To make coordinates unambiguous the easting
is prefixed by the relevant zone number. This proce-
dure was adopted, e.g., by German mapping through the
Gauss–Kruger systems and later by US military map-
ping through the universal transverse Mercator (UTM)
grid system (Fig. 8.18). The CM is a derived parameter
to be computed from two other defining parameters, the
initial longitude (the western limit of zone 1) (λI) and
the zone width (W). Each of the remaining four trans-
verse Mercator defining parameters – CM or latitude of
natural origin, scale factor at natural origin, false east-
ing, and false northing – have the same parameter values
in every zone.

The standard transverse Mercator formulas above
are modified as zone number Z = INT[(λ+λI +
W)/W] with λ, λI, and W in degrees; λI is the ini-
tial longitude of the zoned grid system, and W is the
width of each zone of the zoned grid system. If λ < 0,
λ = (λI +360)◦. Then

λ0 = (ZW)−
[
λI +

(
W

2

)]
. (8.47)

For the forward calculation, the easting and northing
are

E = Z × 106+FE+ k0 y , (8.48)

N = FN+ k0x , (8.49)

and in the reverse calculation

x = N−FN

k0
, (8.50)

y = E− (FE+ Z × 106)

k0
. (8.51)

0        Y 0        Y 0        Y 0        Y0        Y

X X X X X

0°                6°               12°              18°

Fig. 8.18 Meridian strip projection scheme for UTM coor-
dinates
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For the UTM coordinates introduced by the US
military and now being used as standard in many coun-
tries, the Earth is divided into 60 zones, each having
a longitudinal extension of 6◦ (Fig. 8.18). The zones
are numbered from 1 to 60 beginning with the zone
between 180◦ and 174◦ West of Greenwich and pro-
gressing eastward. The central meridians λ0 are −177◦,
−171◦, −165◦, and so forth. The defining parameters
are λI = 177◦, k0 = 0.9996, FE = 500 000 m, FN = 0 m
North of equator or FN = 10 000 000.0 m North of 80◦
Southern latitude to equator, and W = 6◦.

By use of the scale factor k0, isometry at the CM is
lost, but now occurs for two curves parallel to the CM
at a distance of about ±180 km. Note that within these
two curves distortions are negative, whereas outside of
them distortions are positive.

The UTM system is used only up to latitudes of 80◦
North and 80◦ South. This is due to the convergence
of the meridians causing rapidly varying zones when
approaching the poles. For those regions the polar stere-
ographic projection, which is also conformal, is used.
This is a projection onto a plane tangent to the ellip-
soid at either one of the poles. The origin of the plane
system is the pole, and the images of the meridians are
straight lines through the pole. Parallels of equal latitude
are concentric circles.

An often-used projection is the Lambert conformal
conic projection, which is also used in the international
aeronautical charts.

8.8.7 Datum Transformation

The geodetic datum includes all information necessary
to define a geodetic system. Considering dimension
of the reference ellipsoid, the seven parameters for
the transformation to the ITRF and the height refer-
ence, ten parameters in total are required to define
the geodetic datum unambiguously. These parameters
are the three translations of the origin, three rotations
around the Cartesian axes, a scale factor, the two ref-
erence ellipsoid parameters a and f . In addition, for
the vertical reference system of the heights, the po-
tential of the geoid W0 has to be specified. In the
classical case of separated position and height coor-
dinates, such as with two-dimensional triangulation
networks, the datum had a slightly different definition.
In that case it comprised a reference surface consist-
ing of the parameters: the latitude and longitude of
an initial point (origin), the orientation of the net-
work, and the two parameters of a reference ellipsoid.
A map projection needs information about a reference

surface that is fixed by a geodetic datum in space (su-
perior coordinate reference system). National mapping
agencies define their own reference system. Differ-
ent countries may use the same parameters of the
reference surface but with different position and ori-
entation. National mapping agencies may use different
map projections, based on the same reference system.
Changing map projection between countries normally
needs a geodetic datum transformation, and different
map projections depend on scale, area and anticipated
distortion characteristics.

Plane coordinates for a particular ground location
and its height will vary based on the datum used to pro-
duce a particular map or chart. Therefore, it is essential
that the datum used to derive the coordinates be in-
cluded when reporting positions. ITRS and the GRS80
(or equivalently but less accurately the WGS 84) now
provide the single standard reference datum for geo-
graphic reference system worldwide. They should be
used in all new coordinate determinations and GIS ap-
plications. For the unification of older data, respective
transformations of the underlying reference systems and
datums have to be performed based on the formulas de-
scribed above. The general procedure of transformation
and conversion is recommended as follows.

The change of coordinates from one CRS to another
often involves several steps. A scheme that involves
a series of operations consisting of one or more trans-
formations and one or more conversions is given in
Fig. 8.19. If the necessary information is available, the
approach from plane coordinates in the source system
CRS1 to plane coordinates in another target system
CRS6 should ideally be made by using the Cartesian
ITRF coordinates to avoid distortions. For a rigor-
ous transformation, the use of ellipsoidal coordinates
of CRS2 and CRS5 is required. Databases of the pa-
rameters are compiled by various organizations [8.25].
However, for historical data the ten parameters required
are not available in many cases. Here, it may be ap-
propriate to use two- or three-dimensional similarity
transformations based on adjustments performed over
identical points. Missing height values, missing infor-
mation on the type or reference of the heights, and
missing information on the ellipsoid and the datum of
the triangulation are potential sources for major dis-
tortions and errors in the transformed coordinates, and
sophisticated methods have to be applied.

Table 8.3 presents some examples of datum trans-
formation parameters for illustration purposes. The
origins of the historical systems prior to satellite
geodesy all have large offsets and differences in the
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CRS 1
Source Datum / Coord. System 1

North / East

CRS 2
Source Datum / Coord. System 2

Latitude / Longitude / (ellip. height)

CRS 3
Source Datum / Coord. System 3

X / Y / Z

CRS 6
Target Datum / Coord. System 1

North / East

Conversion

Conversion

Conversion

Conversion

Transformation

CRS 5
Target Datum / Coord. System 2

Latitude /Longitude / (ellip. height)

CRS 4
Target Datum / Coord. System 3

X / Y / Z

Fig. 8.19 Example of combined coordinate conversion and transformation (after [8.29])

Table 8.3 Examples of historical and actual datum transformation parameters to ITRF2007 and GRS80 ellipsoid

Datum Ellipsoid da (m) d f (10−3) dX (m) dY (m) dZ (m) M (10−9) ωx (′′) ωy (′′) ωz (′′)
European
1950

International
1924

251 141.92702 −87 −96 −120 − − − −

North
American
1927

Clarke 1866 69.4 372.64639 −9 161 179 − − − −

Pulkovo
1942

Krassovsky
1940

108 4.80795 28 −121 −77 − − − −

ITRF 2005 GRS 80 − − 0.03 0.04 −0.08 0.59 0.0 0.0 0.0

ITRF 97 GRS 80 − − 0.02 0.03 −0.06 0.43 − − −
WGS 84
since 1994

WGS 84 − 0.00016 0.01 −0.01 0.02 7.7 0.003 0.000 −0.003

WGS 84
before
1994

WGS 84 − 0.00016 −0.060 0.52 0.22 0.01 −0.0183 0.0003 −0.007

semimajor axis a and flattening f . Modern CRS such
as the WGS 84 are geocentric, and the parameters de-
pend on the precision of their coordinate determination.
For the most recent WGS 84 realization and the various

ITRF realizations evolving with time, the transforma-
tion parameters just reflect improvements in reference
frame determination.

Actual parameters should be taken from [8.4, 12].

8.9 Coordinate Determination

The geocoding of objects or features is done by
geodetic techniques. The two basically different ap-
proaches are space-based coordinate determination
by GPS observations and terrestrial geodetic meth-
ods such as tacheometry. Terrestrial methods pri-
marily result in coordinates in a local topocentric

system and relative to an existing geodetic refer-
ence point. GPS coordinate results are in absolute
global coordinates, e.g., in the WGS 84, the ITRF
or a national datum. The principles of these two
different approaches are explained in the next two
subsections.
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8.9.1 GPS Coordinate Determination

GPS can be used as a proxy for all future GNSS, such
as the Russian GLONASS, the European Galileo sys-
tem, and the Chinese COMPASS system, which are to
become fully operational by 2014. Although built for
military purposes in the first place, civil use is guaran-
teed by the operating governments. The space segment
of each of the systems, a set of 24–30 satellites, or-
bits the Earth at an average height of 20 000 km in
a time of about 12 h. These orbits are very precisely
known from tracking network observations. Each of the
satellites transmits the information on its position on
at least two microwave frequencies; for GPS these are
1575.42 MHz (L1) and 1227.6 MHz (L2). The carrier
frequency is modulated by codes so that each satellite
can be identified and the distance between the satellite
and the user receiver–antenna can be calculated. This
distance is called the pseudorange as it is derived from
the travel time computed from the precise timing signals
included in the data message. Based on the known posi-
tion of at least four satellites and the respective ranges,
the user’s position is computed. As the orbits are given
in the ITRF, the user coordinates are also in this global
geocentric reference frame. In practice, most of today’s
receivers offer a coordinate conversion, e.g., to ellip-
soidal coordinates and height, optionally ellipsoidal or
above sea level if the EGM model is considered. Al-
ternatively, projected plane coordinates in a specified
datum often are implemented.

There are different levels of accuracy that can be
achieved by GPS observations depending on the observ-
ables used. Basically four levels may be distinguished,
as given in Table 8.4.

The respective receivers needed for the different lev-
els are quite different in price; the dual-frequency and
the phase observables options usually associated with
geodetic receivers are the most expensive. The use of
phase observables is the most advanced technique and
requires sophisticated software for evaluation. The rea-
son is the ambiguity inherent in the phase observations.

Table 8.4 GPS observables and typical accuracy for observations and coordinates

Observation type Range accuracy (m) Typical coordinate accuracy (m)

Code observations at one frequency 10–30 10

Code observations at one frequency supplemented 5–10 5

by augmentation system information such as EGNOS

in Europe or WAAS in the USA

Dual-frequency code observations 2–5 2–3

Carrier phase observations at two frequencies 0.003 m 0.01–0.03

The distance is composed of an integer number of full-
wavelength cycles of the carrier wave plus an actually
observed phase value. The integer number of cycles can-
not be determined directly by the receiver, and therefore
longer observing times or advanced filtering techniques
are needed to resolve these ambiguities. Only after these
procedures can accuracy of a few centimeters be ob-
tained. In case the phase observables are used in combi-
nation with the code observations, the point positioning
is named precise point positioning (PPP). For further in-
formation on the use of GNSS, refer to [8.30].

The resultant positional accuracy is determined es-
sentially by disturbances in the satellite clock, the atmo-
sphere, and the geometrical constellation of the satellites
used. The accuracy to be expected from GPS observa-
tions can be estimated in advance by use of the dilution
of precision value (DOP). There are several versions of
this; for point positioning the geometrical dilution of
precision (GDOP) and the position dilution of precision
(PDOP) are the most relevant. The GDOP describes the
quality of the solution; it is proportional to the volume
generated by the polyhedron formed by the satellites and
the user’s antenna. Both PDOP and GDOP can be com-
puted in advance without actual observations from ap-
proximate coordinates and predicted satellite ephemeris,
e.g., for planning the optimal time for a measurement.
The PDOP is computed from the trace of the cofactor
matrix of the adjustment of the position. Having con-
ducted observations, the accuracy is obtained from the
covariance matrix of the final adjustment results of the
position computation. GDOP values less than or equal to
4 are well suited for positioning, whereas values larger
than 8 should be avoided. For actual surveys it should be
observed that the visibility to the sky is such that a ho-
mogeneous distribution of more than four satellites at
elevations larger than 10◦ are available.

Relative Positioning
Due to the high spatial correlations of the main GPS
error sources, differential observations are often used
to mitigate these influences. This mode of operation is
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called differential GPS (DGPS). A reference receiver is
placed at a base station with known position and logs
the GPS data. One or more roving receivers are used
for new points. The difference of the known and the
actual determined position at the base station is used
to compute corrections to the observables. These cor-
rections – or alternatively the raw observation data of
the base receiver – can be transmitted by radio link or
via the Internet to the rover and be evaluated in real
time or in postprocessing. There are three basic types
of differential corrections.

1. Corrections to the coordinates determined by the
rover. These are associated with the National Marine
Electronics Association (NMEA) format standard
NMEA-183.

2. Corrections to the pseudoranges observed at the
rover These are associated with the Radio Techni-
cal Commission for the Maritime Services (RTCM)
or Radio Technical Commission for Aeronautics
(RTCA) standards like RTCM-10403.1.

3. Raw phase data or corrections to phase data. These
are associated with RTCM version 2.3 or version 3
standards (REF RTCM).

The improvement in accuracy by differential GPS
depends on the distance between base and rover.
In many countries commercial services are available
that offer the various corrections. They are based
on dense networks of reference stations like the
German Satellitenpositionierungsdienst der deutschen
Landesvermessung (SAPOS) or the National Geodetic
Survey (NGS) Continuously Operating Reference Sta-
tions (CORS) in the US [8.31]. The accuracy is in the
range of 3–6, 0.6–2 m, or at best for the differential
phase data usage at the 0.01–0.03 m level.

GNSS Outlook
The perspective for GNSS positioning is bright. The
system of systems, with four GNSS and more than 100
satellites, 20 of them above the horizon at a time, will al-
low centimeter accuracy in real time. Furthermore, the
new signal types and new frequencies of Galileo and
GPS will also allow use of GNSS in areas that are partly
shaded and to a certain degree for applications at the
meter level of accuracy indoors.

8.9.2 Terrestrial
and Local Coordinate Determination

Terrestrial measurements are made in the local topocen-
tric coordinate system. Terrestrial techniques are used in

areas with low GPS observability and short distances in
the kilometer range. Instruments are oriented along the
local vertical and so related to the actual gravity field at
the observation site. Primarily slant distances, and hori-
zontal and vertical angles are observed by tacheometers
to allow determination of polar coordinates and the
attachment of new points to known reference points.
Often the combination of GPS with a tacheometer is
practical. At least one known point for the setup of the

A

1

N

B

N

2

Fig. 8.20 Polar coordinate determination; rectangles are
known points, circles are new points

1

2

Zenith

Δhs

�

Fig. 8.21 Measurement of height difference by tachome-
ter: distance and zenith angle
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instrument and one other for the direction reference to
the grid coordinates is needed (Fig. 8.20). For height de-
termination, the distance and the vertical angles (zenith
angle) are used (Fig. 8.21). The local observations have
to be corrected to consider the local distortion and then
allow the computation of grid coordinates, e.g., UTM
northing and easting. Alternatively, the local 3-D vec-
tor can be transformed into geocentric ITRF Cartesian
coordinates by using (8.31).

Modern tacheometers are available with several lev-
els of accuracy; typical instruments measure distance at

the level of 0.003±2 × (10−6 × distance) in meters. In
combination with uncertainty of angular measurements
of less than 4 seconds of arc, coordinates can be de-
termined with uncertainties of 0.01–0.03 m over 1 km.
Tacheometers comprise the full integration in a soft-
ware suite for combination with GPS; object coding for
GIS by an electronic field book and a database con-
nection. Mobile GIS applications allow the formation
of objects from line and area data and the possibil-
ity of object classification with descriptive data in the
field.
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