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Data Mining a5. Data Mining and Knowledge Discovery

Shuliang Wang, Wenzhong Shi

In this chapter, data mining and knowledge dis-
covery (DMKD) is presented with basic concepts,
a brief history of its evolution, mathematical foun-
dations, and usable techniques, along with the
data warehouse and the decision support sys-
tem (DSS). First, dataset and knowledge will be
defined and elucidated as under DMKD. DMKD
is a discovery process with different hierarchies,
granularities, and/or scales. For a set of concepts
that may be best understood if being viewed and
explained from various perspectives, the chap-
ter starts with a definition followed by a table
explaining DMKD from different views (Sect. 5.1).
The evolution of DMKD is then briefly tracked from
the rapid advance in massive data to the birth
of DMKD (Sect. 5.2). Some mathematical founda-
tions are given in Sect. 5.3, i. e. probability theory,
statistics, fuzzy set, rough set, data fields, and
cloud models. Section 5.4 introduces some usable
DMKD techniques. DMKD is used to discover a set
of rules and exceptions with association, clas-
sification, clustering, prediction, discrimination,
and exception detection. In Sects. 5.5 and 5.6,
data warehouses and decision support systems are
given. The first one mentioned is one of the data
sources for DMKD, and DMKD is a new technique
to assist the latter with a task. Finally, trends and
perspectives are summarized and forecasted into
two promising fields, web mining and spatial data
mining (Sect. 5.7).
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5.1 Basic Concepts in Data Mining and Knowledge Discovery

Data mining and knowledge discovery (DMKD) is
the efficient extraction of interesting, previously un-

known, potentially useful, and ultimately understand-
able knowledge from huge datasets under a given task
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with constraints [5.1–4]. The process of DMKD may be
grouped into three significant steps [5.5, 6].

1. Data preparation (locating the mining target, col-
lecting background information, cleaning data).

2. Data mining (reducing data dimensions, selecting
mining techniques, discovering knowledge).

3. Knowledge application (interpretation, evaluation,
and application of the discovered knowledge).

5.1.1 Dataset and Knowledge in DMKD

The dataset may be an untreated accumulation of noisy,
fuzzy, random, disorderly and unsystematic data, con-
sisting of, e.g., positions, attributes, texts, raster images,
vector graphics, logs, voices, and multimedia in spe-
cial circumstances. They are internal, external and in
various formats. An integrated and shared collection
of logically related data constitutes a database to meet
the information needed by an organization. Because of
the challenge of dealing with large amounts of data in
the database, data warehousing that is subject-oriented,
integrated, time-variant, and nonvolatile, are devel-
oped for advanced data analyses and further DMKD.
So the datasets to be mined might be all of cur-
rent information assets to access, e.g., databases, data
cubes, data warehouses, data marts, and knowledge
bases.

The knowledge to discover is a set of rules and ex-
ceptions, along with different hierarchies, granularities,
and/or scales. With given data of sufficient size and
quality, DMKD may be capable of predicting trends,
describing patterns, or detecting exceptions [5.7]. The
trends and patterns are the rules to show the intersec-
tion of two or more objects or attributes according to
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a particular set of procedures. The rules may be an asso-
ciation rule, a characteristics rule, a discrimination rule,
a clustering rule, a classification rule, a serial rule, a pre-
dictive rule, and so on. The exception is the interesting
outlier. The knowledge bases capture the experience
derived from observations and interpretations of past
events or phenomena, and the application of methods to
past situations, in the form of rules, case studies, stan-
dard practices, and typical descriptions of objects and
object systems that can serve as prototypes.

5.1.2 Hierarchy, Granularity, and Scale
in DMKD

People may observe and analyze the same entity from
very different cognitive levels, and actively jump be-
tween the different levels. As a computerized simulation
of human cognition, DMKD may be implemented with
different hierarchies, granularities, and/or scales for the
same datasets for various needs. That is, it should dis-
cover the knowledge not only in worlds with the same
hierarchy, granularity, and scale, but also in worlds with
different hierarchy, granularity, and/or scale (Fig. 5.1).

1. The hierarchy reflects the level of cognitive discov-
ery and describes the summarized transformation
from the micro-view world to the macro-view
world, e.g., knowledge with different demands.

2. The granularity reflects the precision of interior
detail of DMKD and describes the combined trans-
formation from the fine world to the coarse world,
e.g., images with different pixel size.

3. The scale reflects the measurement of exterior
geometry of DMKD, and describes the zoomed
transformation from the large world to the small
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Table 5.1 DMKD from different views

View Data mining and knowledge discovery (DMKD) is . . .

Subject An interdisciplinary confluence of database systems, statistics, artificial intelligence, machine learn-
ing, pattern recognition, network.

Cognition An inductive process that leads from vast concrete datasets to a small set of knowledge, from special
phenomena to generic rules.

Analysis A process of uncovering knowledge from huge amounts of datasets via a sets of interactive, repetitive,
associative, and data-oriented manipulations.

Logic A data-mining process to discover knowledge but not to prove knowledge, and the knowledge is
constrained by the data and tasks.

System A computerized process from input to output of original data in a database, cleaned data in a data
warehouse, background information.

Methodology A method of matching the multidisciplinary philosophy of human thinking that suitably deals with
the complexity, uncertainty, and variety when summarizing data and representing knowledge.

world, e.g., observing a map with the manipulation
of zoom-in or zoom-out.

5.1.3 DMKD Understood
from Different Views

As an interdisciplinary topic, DMKD may be under-
stood from different views (Table 5.1) [5.3]. From the
data to knowledge view, it was presented in a database
system view by Han and Kamber [5.2], summarized in
a geospatial table by Thearling [5.8], and integrated in
a SDMKD (spatial DMKD) pyramid by Wang [5.9,10].

In the context of hierarchy, granularity, and/or
scale, the users at different levels want the knowl-
edge from the different worlds, i. e. the most concrete
knowledge with the smallest amount, a connecting
knowledge between the preceding world and the fol-
lowing world, and the most abstract knowledge with
the biggest amount. With micro-view hierarchy, fine
granularity, or large scale, DMKD is to uncover the

complicated external phenomenon in order to locally
distinguish the detailed distinctions for gaining indi-
vidual knowledge, the mining algorithms of which
may be accurate. Contrarily, with macro-view hier-
archy, coarse granularity, or small scale, DMKD is
to ignore razor-thin distinctions in order to globally
seek the generalized commonness for gaining pub-
lic knowledge, the mining algorithms of which may
be smooth. For instance, seen from the same mon-
itoring databases, a landslide firstly shows DMKD
continuously observed data instead of discrete symbolic
parameters or qualitative concepts. The top decision-
maker to guide the final direction may ask for the
most generalized knowledge for the whole landslide.
In order to bridge upper decision and lower decision
the middle decision-maker may demand the common
knowledge for each breaking-sector of the landslide.
To monitor the exact deformation rules, the bottom
decision-maker may want detailed knowledge of each
monitoring point.

5.2 Evolution of Data Mining and Knowledge Discovery

The evolution of DMKD may be regarded as a part of
the evolution of database system technology (Fig. 5.2).
When the related data are collected, databases are cre-
ated under database management systems (DBMS).
DBMS is software to define and manipulate database.
For a database system, it is necessary to provide spe-
cific database, DBMS, and related software. Under the

umbrella of new science and technology, database sys-
tems have been developed in several directions [5.2].
One is advanced database systems to study new data
models for new applications. Another is data anal-
ysis and cognition to interpret datasets for further
applications, one representative of which is DMKD
(Chap. 3).
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Fig. 5.2 DMKD evolution in the context of database system technology

5.2.1 Rapid Growth of Data Volume

The rapid increase in data acquisition, transmission, and
storage has resulted in the growth of vast computerized
datasets at unprecedented rates. These datasets come
from various sectors, e.g., business, education, govern-
ment, scientific community, Internet, or one of many
readily available off-line and online data sources in the
form of text, graphics, images, video, audio, anima-
tion, hyperlinks, markups, and so on. Moreover, they
are continuously increasing and are amassed in both the
attribute depth and the scope of instance objects every
time. These phenomena may be much more serious in
geospatial science.

Many data are georeferenced [5.11]. Spatial data
may come from natural resource investigations, sur-
veying and mapping, astronomical data, satellites, and
spacecraft images. They include not only positional data
and attribute data, but also spatial relationships among
spatial entities. Moreover, the spatial data structure is
more complex than the tables in an ordinary relational
database. In addition to tabular data, there are raster im-
ages and vector graphics in a spatial database. Their
attributes are not explicitly stored in the database. Con-
temporary Geographical Information Systems (GIS)
analysis functionalities are not enough to make full use
of spatial datasets.

Now, the huge amounts of computerized datasets
have far exceeded human ability to completely interpret
and use these datasets [5.3]. Many decisions are made
on large spatial datasets, e.g., the National Spatial Data
Infrastructure, Digital Earth, the National Aeronautics
and Space Administration, the National Geospatial-
Intelligence Agency, and the National Cancer Institute.

These decisions are spread across many application
domains including Earth science, ecology and environ-
mental management, public safety, epidemiology, and
climatology [5.4]. Therefore, it is possible and neces-
sary to extract valuable and usable knowledge from the
scalable repository of data and information.

5.2.2 Data Usage

In order to understand and make full use of these data
repositories, some techniques have been investigated
and tried, e.g., data analysis, machine learning, expert
systems, artificial intelligence, and especially database
system technology. In the database system, there are
specific database, DBMS, and related software. Ex-
amples are data models (e.g., hierarchical, network,
relational) along with tools (e.g. entity-relationship), in-
dexing and accessing methods (e.g. B-trees, hashing),
query languages (e.g. Structured Query Language), user
interfaces, forms, reports, query processing and query
optimization, transactions, online transactional process-
ing (OLTP), and concurrency control and recovery.
Advanced database systems are used to study new data
models (e.g., extended relational, object-oriented) for
new applications (e.g., spatial, temporal, multimedia,
active, stream and sensor, scientific and engineering,
knowledge-based).

Data analysis and cognition are used to identify
and interpret datasets for further applications. When
data were warehoused [5.12] OLTP was changed into
online analysis and processing (OLAP). In 2008, Kim-
ball [5.13] published his book on the data warehouse
toolkit. With the development of data warehouses, some
new terms were introduced, such as dimensions and
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facts, data marts in the 1960s, and business data ware-
house in 1988. In 1991, Prism Solutions introduced
Prism Warehouse Manager, software for developing
a data warehouse [5.12–15].

In order to improve the decision-making process,
a decision support system (DSS )was proposed in the
late 1970s [5.16]. The first decision support tools in-
cluded ad hoc query and reporting tools, optimization
and simulation models, OLAP, DMKD and data visu-
alization [5.17]. In parallel with DSS, spatial decision
support system (SDSS) evolved, associated with the
need to expand the GIS capabilities for tackling com-
plex, ill-defined, spatial decision problems [5.18].

5.2.3 Birth of DMKD

Although the aforementioned techniques are used to
manipulate data, it is ultimately up to humans to cast
the data into a usable hypothesis. When these tech-
niques are used for time-constrained analysis, some
variables or instances that seem to be unimportant of-
ten have to be discarded. However, the discarded items
may carry core information about unknown patterns.
Second, the accompanying need for improved com-
putational engines can be matched in a cost-effective
manner with parallel multiprocessor computer technol-
ogy. Third, web techniques develop very quickly, which
broadens the scope of data of the same entity, i. e.,
from local data to global data. As the Internet provides
dynamic sources of data and information, the web is be-
coming an important part of the computing community.
Fourth, most techniques focus on a database or data
warehouse, which is physically located in one place.
However, many data may be distributed in heteroge-
neous sites. People directly integrate industry-standard
data warehouses and OLAP platforms during the pro-

cess of data utilization. Finally, the decision support
system is an interactive software-based system intended
to assist human decision-makers to compile useful
information for identifying conflicts and making de-
cisions, rather than replace them. It also provides the
decision-making patterns instead of producing a solu-
tion to a problem [5.16].

Because of the challenge of dealing with large
amounts of datasets during the process of decision-
making, knowledge discovery in databases was pro-
posed in 1989 to answer the questions that traditionally
were too time-consuming to resolve. In 1995, the name
data mining was introduced for the search for valu-
able knowledge based on similarities between sweeps
through large databases. As both data mining and
knowledge discovery in databases virtually point to
the same techniques, people like to identify them to-
gether, i. e., data mining and knowledge discovery,
which has also become the name of an international
journal. Without pre-selecting a subset of variables
or instances under DMKD, users can explore the full
depth of a database and make inferences regarding
small but important segments of a population because
larger samples often generate lower estimation errors
and variance.

Now, some techniques have been given for DMKD
along with the applications, e.g., generalization, clas-
sification, association, clustering, outlier detection, and
prediction. When DMKD is implemented on high per-
formance parallel processing systems in the web, they
can analyze massive databases in minutes. Faster pro-
cessing allows users to experiment with more models to
understand complex data. High speed makes it practi-
cal for users to analyze huge quantities of data. Larger
databases, in turn, yield an improved precision of the
predictions.

5.3 Mathematical Foundations of DMKD

The usable mathematical foundations in common for
DMKD may be probability theory, statistics, fuzzy set,
rough set. The theory of data fields and cloud models was
developed primarily in China [5.9]. These are addressed
as typical techniques in the following sections.

5.3.1 Probability and Statistics

Probability and statistics [5.19] are suitable for DMKD
with randomness on the basis of stochastic probabili-

ties in the contexts of adequate samples and background
information.

The probability is extended to an interval instead
of an exact value in evidence theory. Given the same
information on an uncertain quantity, the plausibility
function and the belief function can be regarded as
upper probability and lower probability of possible val-
ues [5.20]. Spatial statistics (Chap. 2) primarily consists
of geostatistics, spatial point patterns, and lattice data,
with the algorithms of spatial autocorrelation, spatial
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interpolation, spatial regression, spatial interaction and
simulation, and modeling [5.21]. Geostatistics is a spa-
tial process indexed over a continuous space; spatial
point patterns pertain to the location of events of inter-
est, and lattice data are spatial data indexed over a lattice
of points [5.22]. Based on probability and statistics,
a set of physical or abstract objects may be grouped into
classes of similar objects, the process of which is called
clustering analysis [5.23].

5.3.2 Fuzzy Sets

A fuzzy set [5.24] is used in DMKD with fuzziness on
the basis of a fuzzy membership function that depicts an
uncertain probability [5.3].

As a consequence of the fuzzy characteristics of nat-
ural classes and concepts, a fuzzy set characterizes the
fuzziness via a fuzzy membership function instead of
the crisp characteristics function, and maps the uncer-
tainty to a numerical value on the interval [0,1] instead
to a set of the two values {0, 1}. The fuzzy member-
ship function is the relationship between the values of
an element and its membership belonging to a set [5.25].
Fuzzy sets allow an element to be partially in a set, and
each element is given a fuzzy membership value rang-
ing from 0 to 1, e.g., the membership of an element
belonging to a concept. An element is assigned to a se-
ries of membership values in relation to the respective
subsets of the universe of discourse since the concept of
multiple and partial class membership is fundamental
to fuzzy sets. If one only allowed the extreme member-
ship values of 0 (not an element of the set) and 1 (an
element of the set), this would actually be equivalent to
a crisp set [5.26]. Simultaneously, fuzzy sets deal with
the similarity of an element to a class. The accumulation
of membership values for one element can exceed 1,
but differs from the probability that always adds up
to 1. The entity with mixed classification, indetermi-
nate boundary, or gradual change may be described with
more than one fuzzy membership value.

5.3.3 Rough Sets

A rough set [5.27] is used in DMKD with incomplete-
ness via lower and upper approximation [5.27–29].

Given the universe of discourse U that is a finite and
nonempty set. Suppose an arbitrary set X ⊆ U . Xc is
the complement set of X, and X ∪ Xc = U; U/R is the
equivalence class set composed of disjoint subsets of U
partitioned by R ⊆ U ×U on U , [x]R is the equivalence
class of R including element x, and (U, R) formalizes an

approximate space. The definitions for lower and upper
approximation are

lower approximation (interior set) of X on U :
Lr(X) = {x ∈ U|[x]R ⊆ X} ,

upper approximation (closure set) of X on U :
Ur(X) = {x ∈ U|[x]R ∩ X �= Φ} .

If the approximate space is defined in the context of
region, then

positive region of X on U:

pos(X) = Lr(X) ,

negative region of X on U:

neg(X) = U −Ur(X) ,

boundary region of X on U:

bnd(X) = Ur(X)−Lr(X) ,

where X is defined if Lr(X) = Ur(X), while X is rough
with respect to bnd(X) if Lr(X) �= Ur(X). A subset
X ∈ U defined with the lower approximation Lr(X)
and upper approximation Ur(X) is called rough set.
The lower approximation Lr(X) is the set of elements
that surely belong to X, while the upper approxima-
tion Ur(X) is the set of elements that possibly belong to
X. The difference of the upper approximation and the
lower approximation is the uncertain boundary bnd(X).
It is impossible to decide whether or not an element
in bnd(X) belongs to the spatial entity because of the
incompleteness of the set. The rough degree is

Rdegree(X) = Rcard(Ur(X)−Lr(X))

Rcard(X)
× 100%

= Rcard(bnd(X))

Rcard(X)
× 100% ,

where Rcard(X) denotes the cardinality of set X; X is
crisp when Rdegree(X) = 0. Based on whether or not
the statistical information is used, the existing rough set
models may be grouped into two major classes such as
algebraic and probabilistic models [5.30].

Spatial entities may be depicted with rough sets
(Fig. 5.3). Suppose that there is an entity X and let the
amount of element units be

U = 36 ,

Lr(X) = 4 ,

Ur(X) = 20 ,

pos(X) = Lr(X) = 4 ,

neg(X) = U −Ur(X) = 36−20 = 16 ,

bnd(X) = Ur(X)−Lr(X) = 20−4 = 16 ,

Rdegree(X) = 16
20 × 100% = 80% .
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5.3.4 Data Fields

A data field [5.9] is applied in DMKD with inadequately
sampled data via diffusing the effect of observed data
to the mining task from the sample to the universe of
discourse. That is, understand the population of datasets
with the sampled data.

In physics, an entity, e.g., the electric charge, ra-
diates the effect from its location to the universe of
discourse, which produces a physical field. Similarly,
observed data may be regarded as diffusing the effect
to DMKD from its sampled location to the universe of
discourse in which the data field lives. In order to de-
pict the power of the observed data in the universe of
discourse, the potential function of the data field may
be derived from physical fields with the assumption that
all observed data diffuse the effects and are influenced
by the others at the same time.

The data field is often classified into two categories
according to its behavior under the symmetry transfor-
mations of space and time, named scalar field and vector
field. In this chapter, a scalar field with its potential
function is chosen as an example to express the prop-
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Fig. 5.4a,b Map of a two-
dimensional data field. (a) Equipo-
tential line of a one-point data field;
(b) equipotential line of multipoint
data field

erties. For a single data field created by sample A, the
potential φ of a point x1 in the number universe can be
computed by

ϕ(x) = m × e
−

( ‖x−x1‖
σ

)2

,

where ‖x − xi ‖ is the distance between A and xi , m
(m ≥ 0) denotes the power of A, and σ indicates in-
fluential factors. Usually, ‖x − x1‖ has a Euclidean
norm. Many types of influential factors σ , e.g., radiation
brightness, radiation gene, data amount, space between
the neighbor isopotentials, grid density of Cartesian co-
ordinates and so on, contribute to the data field.

In most cases, there is more than one sampling point
in the universe of discourse. In order to obtain the power
of any point under these circumstances, the effects of all
samples should be considered. Because of overlap, the
potential of each sample point in the number universe is
the sum of all data potentials. Referring to the potential
function, the potential can be calculated using

ϕ(x) =
n∑

i=1

(
mi × e

−
( ‖x−xi‖

σ

)2
)

,

where the sum is defined over all the sample points.
In a similar way to the distribution of a scalar physi-

cal field, the equipotential line or surface can be utilized
to describe the spatial distribution of the potential
function in the low-dimensional potential field. More
specifically, given a potential value Ψ , the correspond-
ing equipotential line or surface can be obtained, that
is, according to the set of potential values {Ψ1, Ψ2, . . .}
that satisfies φ(x) = Ψ , a series of equipotential lines or
surfaces can be the spatial distribution of potential func-
tion. The sketch map of a two-dimensional data field is
shown in Fig. 5.4.
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Fig. 5.5 The cloud model of displacement is 9 mm around; x is the
displacement, y is the membership to the concept

5.3.5 Cloud Models

A cloud model [5.31] is a mathematical model to im-
plement an uncertainty transition between a qualitative
concept and its quantitative data to represent the concept
in DMKD via integrating randomness and fuzziness.

The cloud model describes the fuzziness and ran-
domness by means of a set of three characteristics {Ex,
En, He} (Fig. 5.5). In the universe of discourse, Ex (ex-
pected value) is the position corresponding to the center
of the cloud gravity, the elements of which are fully
compatible with the linguistic concept; En (entropy) is
to depict the concept coverage, i. e. a measure of the
fuzziness, which indicates how many elements could
be accepted to the linguistic concept; and He (hyper-
entropy) is to measure the dispersion on the cloud drops,

which can also be considered as the entropy of En.
Figure 5.5 shows that the cloud model as a whole is ob-
servable as a shape but fuzzy in detail, which is similar
to the natural cloud in the sky. A piece of cloud is com-
posed of many droplets represented by data, any one of
which is a stochastic mapping in the universe of dis-
course from a qualitative fuzzy concept, along with the
membership of the data belonging to the concept. Given
{Ex, En, He} on a concept, the data may be generated to
depict the cloud droplets of a piece of cloud, which is
called the forward cloud generator. Given datasets, {Ex,
En, He} may also be generated to represent a concept
that is called the backward cloud generator.

The cloud model integrates randomness and fuzzi-
ness in a mathematical mapping with membership.
When the cloud model is generated, the mapping of
each cloud droplet is random, and its membership is
fuzzy, the process of which integrates randomness and
fuzziness. Take the displacement of landslide as an
example, the cloud model of displacement is around
9 mm in Fig. 5.5 is composed of many cloud droplets,
and each cloud droplet is a stochastic mapping with
its membership, i. e., stochastic data {. . . , 8 mm, 9 mm,
10 mm, . . . } with the membership {. . . , 0.9, 1, 0.9, . . . }.
The concept of displacement is around 9 mm is qual-
itative, while the data {. . . , 8 mm, 9 mm, 10 mm, . . . }
and the membership {. . . , 0.9, 1, 0.9, . . . } are quanti-
tative. The data {. . . , 8 mm, 9 mm, 10 mm, . . . } are the
displacements from actual landslide monitoring, and the
membership {. . . , 0.9, 1, 0.9, . . . } describes to what de-
gree the data belong to the concept of displacement is
around 9 mm under the given membership function.

5.4 Techniques of DMKD

The core components of data mining technique have
been in use for decades in specialized analysis tools
that work with relatively small volumes of data [5.32].
Today, the maturity of these techniques, coupled with
high-performance relational database engines and broad
data integration efforts, make these techniques prac-
tical in the environments of data warehouse and
network [5.4, 33]. Because DMKD is an interdisci-
plinary subject, there are various techniques associated
with different types of knowledge [5.34]. In order to dis-
cover useful knowledge, it is suitable to select more than
one technique to mine the same datasets simultaneously
under the given mining task. When they are applied,
some techniques are developed further [5.35].

5.4.1 Qualitative and Quantitative
Transform

Qualitative and quantitative transform is to link the
numerical data and the conceptual knowledge when
necessary during the process of DMKD. While the
amount of data is huge, the volume of extracted knowl-
edge is often very small. The more condensed the
knowledge, the bigger the disparity.

The backward cloud generator is to extract the con-
ceptual knowledge from numerical datasets, and the
forward cloud generator is to represent the qualitative
concept with quantitative data. Both of the issues are el-
ementary in DMKD. The type of cloud model has to be
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chosen according to the type of data distribution. Since
a normal distribution is ubiquitous, in the following the
normal cloud model is taken as an example to present
the algorithms of the forward cloud generator and back-
ward cloud generator. In detail the algorithms read as
follows.

Algorithm of the Forward Normal Cloud
Generator

Input.

Ex, En, He – three characteristics of a concept;
N – the number of cloud droplets to be generated.

Output.

Cloud droplet (xi , yi ) (i = 1, 2, . . ., N) – the quanti-
tative positions of N cloud droplets in data space and
the membership of each cloud droplet to the concept.

Steps.

1. Produce a normally distributed random number En′
with mean En and standard deviation He.

2. Produce a normally distributed random number x
with mean Ex and standard deviation En′;

3. Calculate

y = e
− (x−Ex)2

2(En′)2
.

4. Drop (xi , yi ) is a cloud drop in the universe of dis-
course.

5. Repeat steps 1–4 until N cloud-drops are generated.

Algorithm of the Backward Normal Cloud
Generator

Input.

Cloud droplet (xi , yi ) (i = 1, 2, . . ., N) – the quanti-
tative positions of N cloud droplets in data space and
the membership of each cloud drop to the concept.

Output.

Ex, En, He – three characteristics of the concept.

Steps.

1. Calculate the mean value of xi (i = 1, . . ., N),

Ex = 1

N

N∑
i=1

xi .

2. For each pair of (xi , yi ), calculate

Eni =
√

− xi − Ex

2 · ln yi
.

3. Calculate the mean value of Eni (i = 1, . . ., N),

En = 1

N

N∑
i=1

Eni .

4. Calculate the standard deviation of Eni ,

He =
√√√√ 1

N

N∑
i=1

(Eni − En)2 .

Because it builds the formal relationship between
the concept and its data independent of the applica-
tion field, the cloud model overcomes the weakness
of rigid and precisely defined specifications, which of-
ten conflict with the fuzzier human recognition process.
Moreover, it performs the interdynamic transition be-
tween the qualitative concepts and its quantitative data
through the use of mathematical functions under the
data distribution. During the process of DMKD with
the cloud model, the quantitative data first generate sev-
eral essential cloud models. The more condensed cloud
model may be generated from the essential cloud mod-
els by hierarchy. The top hierarchy of DMKD is the
most generalized knowledge, while the bottom hierar-
chy of DMKD is the objective data in databases.

5.4.2 Association

Association is to discover a logic rule among different
sets of entities that associate one or more objects with
other objects, to study the frequency of items occur-
ring together in datasets. It identifies the collections of
data attributes that are statistically related in the under-
lying data, e.g., the identification of seemingly unrelated
products that are often purchased together. Association
rule mining is that, given a database of transactions,
a minimal confidence threshold and a minimal support
threshold, find all association rules whose confidence
and support are above the corresponding thresholds. So
along with an associated rule, it is necessary to give
some parameters, e.g., support and confidence.

The association rule is of the form

X ⇒ Y [confidence, support] ,

where X and Y are disjoint conjunctions of attribute–
value pairs. The confidence of the rule is the conditional
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probability of Y given X, P(Y |X), and the support of the
rule is the prior probability of X and Y , P(X ∩Y ). Here,
probability is taken to be the observed frequency in the
dataset. For example,

Rain (location, amount of rain) ⇒
Landslide (location, occurrence)

[confidence = 98%, support = 76%] .

5.4.3 Classification

Classification is to discover a rule that defines whether
an entity belongs to a particular class with a defined
kind and quantity or a set of classes. For example, clas-
sifying remotely sensed images based on spectrum and
GIS data.

In DMKD, there are countless real examples where
the probability of one event is conditional on the prob-
ability of a previous one. Bayes’ theorem shows the
relation between one conditional probability and its in-
verse [5.36–38]. When applied to large databases under
Bayes’ theorem, the Bayesian classifier can statistically
predict a class membership probability that a given ob-
ject belongs to a particular class, with high accuracy
and speed [5.39]. A Bayesian network represents a joint
generalized probability density function over the uni-
verse of discourse [5.40–42].

Bayes’ Theorem
Suppose that X is an object with a tuple of at-
tributes (a1, a2, . . ., am ), i. e. X = (x1, x2, . . ., xm) in
which x1, x2, . . ., xm are the values of a1, a2, . . ., am .
The discourse of class C is partitioned into C =
(C1, C2, . . ., Cn) and their prior probabilities P(X) > 0,
P(Ci ) > 0, (i = 1, 2, . . ., n). Then, the probability
P(Ci |X) that X belongs to Ci is

P(Ci |X) = P(X|Ci )P(Ci )∑n
j=1 P(X|C j )P(C j )

= P(X|Ci )P(Ci )

P(X)
,

where P(Ci |X) is the posterior probability of Ci condi-
tioned on X. P(X|Ci ) is the posterior probability of X
conditioned on Ci , and P(X) is constant for all classes.
If P(C j ) are not known, it is commonly assumed that
P(C1) = P(C2) = . . . = P(Cn), or P(C j ) are estimated
by the ratio of the number of training tuples of class
C j in D to the number of training tuples in D. Given
data sets with many attributes it would be extremely
computationally expensive to compute P(X|C j )P(C j ).

Bayesian Classifiers
In order to simplify the computations of Bayes’ theo-
rem, a naïve Bayesian classifier assumes that the effect
of an attribute value on a given class is independent of
the values of the other attributes, which is called class
conditional independence

P(X|C j ) =
m∏

k=1

P(xk|C j )

= P(x1|C j ) × P(x2|C j ) × · · ·× P(xm |C j ) .

From the training tuples, the probabilities P(xk|C j ) can
be estimated along with attribute ak . If ak is categorical,
then P(xk|C j ) is the number of tuples of class C j in D
having the value xk for ak , divided by the number of
tuples of class C j in D. If ak is continuous-valued, then
it is typically assumed to have a Gaussian distribution
defined by

P(xk|C j ) = 1√
2πσC j

e
−

(xk−μC j
)2

2σ2
C j ,

where μC j , σC j are, respectively, the mean and the stan-
dard deviation of the values of attributes ak for training
tuples of class C j . Therefore, the classifier is

if P(Ci |X) = n
max
j=1

[
P(C j |X)

]
then X ∈ Ci , or

if P(X|Ci )P(Ci ) = n
max
j=1

[P(X|Ci )P(Ci )]

then X ∈ Ci .

When the assumption of class conditional independence
holds true, the naïve Bayesian classifier is the most ac-
curate in comparison with all other classifiers [5.2].

If the assumption proves false in practice, Bayesian
belief networks may be used [5.43].

Bayesian Belief Networks
The Bayesian network representation consists of a set of
local conditional generalized probability density func-
tions combined with a set of conditional independence
assertions that allow the construction of a global gen-
eralized probability density function from the local
generalized probability density function. A belief net-
work is defined by a directed acyclic graph and a set
of conditional probability tables. The conditional prob-
ability table for an attribute variable ai (i = 1, 2, . . ., m)
specifies the conditional distribution P(ai |Parents(ai )),
where Parents(ai ) are the parents of ai . Given its par-
ents, each variable is conditionally independent of its
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nondescendants in the network graph. This allows the
network to provide a complete representation of the
existing joint probability distribution with

P(x1, x2, . . . , xm) =
m∏

i=1

P(xi |Parents(ai ) )

=
m∏

i=1

P(xi |xi+1, xi+2 , . . . , xm) ,

where P(x1, x2, . . ., xm) is the probability of a particu-
lar combination of the values of X, and the values for
P(xi |Parents(ai )) correspond to the entries in the con-
ditional probability table for ai . Rather than returning
a single class label, the classification of Bayesian belief
networks process can return a probability distribution
that gives the probability of each class.

5.4.4 Clustering

Clustering is to discover a segmentation rule that groups
a set of objects by virtue of their similarity without the
knowledge of what causes the grouping and how many
groups exist. A cluster is a collection of data objects
that are similar to one another within the same cluster
and are dissimilar to the objects in other clusters. For
example, grouping crime locations to find distribution
patterns, and partitioning facial expressions to identify
various persons.

With different clustering distance, some objects may
be close to one another according to one distance
but farther away according to the other distance [5.7].
Such distances are, eg, Minkowski distance, Manhattan
distance, Euclidean distance (Manhattan and Euclid-
ian distance are covered in Chap. 6). Because they
are derived from the matching matrix, some measures
are given to compare various clustering results when
different clustering algorithms perform on a set of
data [5.23].

Minkowski Distance
Minkowski distance is a metric defined on Eu-

clidean space. Between two points P = (x1, x2, . . . , xn)
and Q = (y1, y2, . . . , yn) ∈ R

3, the Minkowski distance
of order p is defined as

(
n∑

i=1

|xi − yi |p

)1/p

.

When p = 1, Minkowski distance is Manhattan dis-
tance. When p = 2, it becomes the Euclidean distance.

In the limiting case of p reaching infinity, Chebyshev
distance (or maximum value distance) is obtained

lim
p→∞

(
n∑

i=1

|xi − yi |p

)1/p

= n
max
i=1

|xi − yi | .

So it can be considered as a generalization of some dis-
tances, e.g., Euclidean distance or Manhattan distance.

Chebyshev Distance
Chebyshev distance is a metric defined on a vector
space where the distance between two vectors is the
largest among all their differences along any standard
coordinate. In DMKD, it examines the absolute magni-
tude of the differences between coordinates of a pair of
objects. Since the minimum number of moves needed
by a king to move from one square on a chessboard
to another, equals the Chebyshev distance between the
centers of the squares in the game of chess, it is also
known as chessboard distance.

Mahalanobis Distance
Formally, the Mahalanobis distance (or generalized
squared interpoint distance) of a multivariate vector
x = (x1, x2, x3, . . ., xN )T from a group of values with
mean μ = (μ1, μ2, μ3, . . ., μN )T and covariance ma-
trix S is defined as

DM(x)
√

(x−μ)TS−1(x−μ) .

Mahalanobis distance can also be defined as a dissimi-
larity measure between two random vectors x and y of
the same distribution with the covariance matrix S.

Fuzzy Comprehensive Clustering
In fuzzy sets, fuzzy comprehensive evaluation and
fuzzy clustering analysis are two essential techniques.
Integrating them into DMKD, knowledge may be dis-
covered reasonably well [5.44].

• Firstly it acquires the fuzzy evaluation matrix on
each influential factor.• Then all fuzzy evaluation matrices multiply the cor-
responding weight matrices, the product matrix of
which is the comprehensive matrix on all factors.• Third, the comprehensive matrix is further used to
create a fuzzy similar matrix, on the basis of which
a fuzzy equivalent matrix is obtained.• Fourth, fuzzy clustering is implemented via the pro-
posed maximum remainder algorithms.

Part
A

5
.4



134 Part A Basics and Computer Science

Table 5.2 Land value is influenced by the factors and their detailed factors, along with weights

Factors u1 = point factors u2 = linear factors u3 = polygon factors

Factor a1 = 0.5 a2 = 0.2 a3 = 0.3

weights

Detailed u11 = u12 = u13 = u21 = u22 = u31 = U32 = U33 = U34 =
factors hospital station park road river power disaster pollution geology

Detailed a11 = a12 = a13 = a21 = a22 = a31 = a32 = a33 = a34 =
factor 0.15 0.05 0.3 0.15 0.05 0.1 0.05 0.1 0.05

weights

In the next paragraph we use these sets and matrices:

U set of influential factors
A matrix of weights
ui set of subfactors
Ai matrix of weights
V set of grades
X∼i

fuzzy membership matrix

Y∼i
fuzzy evaluation matrix of ui

Y(p) the fuzzy evaluation matrix of U , i. e., all fac-
tors, on the spatial entity p

Yl×n a total matrix of fuzzy comprehensive evalua-
tion on all entities

R∼ fuzzy similar matrix

t(R∼)l×l fuzzy equivalent matrix.

Suppose that the set of influential factors is
U = {u1, u2, . . ., um} with the matrix of weights
A = (a1, a2, . . ., am )T, and the set of detailed influ-
ential factors ui = {ui1, ui2, . . ., uiki} (i = 1, 2, . . ., m)
with the matrix of weights Ai = (ai1, ai2, . . ., aiki )T

(i = 1, 2, . . ., m) simultaneously. For example, land
value is influenced by the factors and their detailed fac-
tors, along with their weights (Table 5.2).

The set of evaluating grades is V = {v1, v2, v3, . . .,

vn}, including n grades. In the context of the given
grades, the fuzzy membership matrix X∼i

on the detailed

influential factors of factor ui may be described as

X∼i
=

⎛
⎜⎜⎜⎝

x11 x12 . . . x1n

x21 x22 . . . x2n

. . . . . . . . . . . .

xki 1 xki 2 . . . xki n

⎞
⎟⎟⎟⎠ .

When multiplying the fuzzy evaluation matrix and its
weight matrix, the fuzzy evaluation matrix of ui be-
comes Y∼i

= Ai ·X∼i
. The fuzzy evaluation matrix of U ,

i. e., all factors, on the spatial entity p is computed via

Y∼
(p) = A ·Y∼ = A · (Y∼1

, Y∼2
, . . ., Y∼i

, . . ., Y∼m
)T .

When p (p ≥ 1) spatial entities are evaluated at the same
time, a total matrix of fuzzy comprehensive evaluation
can be obtained. Let the number of spatial entities be l,
then

Y∼l×n
=

⎛
⎜⎜⎜⎝

y11 y12 . . . y1n

y21 y22 . . . y2n

. . . . . . . . . . . .

yl1 yl2 . . . yln

⎞
⎟⎟⎟⎠ ,

where p = 1, 2, . . ., l. Taking the element yij (i =
1, 2, . . ., l; j = 1, 2, . . ., n) of the matrix Y∼l×n

as orig-

inal data, the fuzzy similarity matrix can be created
via

rij =
∑n

k=1 (yik × y jk)
(∑n

k=1 y2
ik

)1/2
×

(∑n
k=1 y2

jk

)1/2
, i.e.,

R∼ = (rij )l×l ,

which indicates the fuzzy similarity relationships
among the entities.

The fuzzy similarity matrix R∼ = (rij )l×l has to

be changed into the fuzzy equivalent matrix t(R∼)
by the self-squared method [5.44] when clustering.
There is k (k = 1, 2, . . ., l, and k ≤ l) that makes
the equivalent matrix t(R∼) = R∼

2k
if and only if

R∼
2k = R∼

2k+1 = R∼
2k+2 = . . . = R∼

2l
. Then t(R∼) can be cal-

culated by

R∼ → R∼ ·R∼ = R∼
21 → R∼

21 ·R∼
21 = R∼

22 → R∼
22 ·R∼

22

= R∼
23 → . . . → R∼

2k
,

where i = 1, 2, . . ., l; j = 1, 2, . . ., l; i �= j; R∼ · R∼ =
max(min(ri1, r j1), min(ri2, r j2), . . ., min(rik, r jk), . . .,
min(ril, r jl)); max(.), min(.) are to choose the maxi-
mum or minimum of two elements, respectively. The
complexity of the calculus is 2k−1 < l ≤ 2k, that is,
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k < log2 n +1. The fuzzy equivalent matrix t(R∼) is

t(R∼)l×l =

⎛
⎜⎜⎜⎝

t11 t12 . . . t1l

t21 t22 . . . t2l

. . . . . . . . . . . .

tl1 tl2 . . . tll

⎞
⎟⎟⎟⎠ ,

with t(R∼) and α. The entities can be clustered by using
maximum remainder algorithms; α is a fuzzy confiden-
tial level that is the fuzzy probability that two or more
than two entities belong to the same cluster.

Maximum Remainder Algorithms
Input. t(R∼), α.

Output. A set of clusters.

Steps.

1. Select fuzzy confidential level α.
2. Summarize the elements column by column in the

fuzzy equivalent matrix t(R∼), excluding the diagonal
elements

Tj =
l∑

i=1

tij , (i �= j, i, j = 1, 2, . . ., l) .

3. Compute the maximum and the ratio

T (1)
max = max(T1, T2, . . ., Tl) , K (1)

j = Tj

T (1)
max

.

4. Put the K (1)
j ≥ α of entity j into the first cluster.

5. Repeat the steps 3 and 4 in the remaining Tj until
the end.

5.4.5 Prediction

Prediction is to discover an inner trend that forecasts
future values of some variables when the temporal or
spatial center is moved to another one, or predicts some
unknown or missing attribute values based on other sea-
sonal or periodical information. Examples are a forecast
bankruptcy and other forms of default, a forecast move-
ment trend of landslide based on available monitoring
data, and an identification of the segments of a popula-
tion likely to respond similarly to given events.

There are times when the use of prior knowledge
would be a useful contribution. For example, in gath-
ering data from deep-space observatories and planetary

probes, people do not always know what to expect or
even have hypotheses for what to test when gathering
such data. Classical inferential models do not permit
the introduction of prior knowledge into the calcula-
tions, which is an appropriate response to prevent the
introduction of extraneous data that might skew the ex-
perimental results. Bayesian inference [5.45] is useful
because it allows the inference system to construct its
own potential systems of meaning upon the data. Once
any implicit network is discovered within the data, the
juxtaposition of this network against other datasets al-
lows for quick and efficient testing of new theories and
hypotheses.

5.4.6 Discrimination

Discrimination is to discover a different feature that dis-
tinguishes one entity from another, to compare the core
features of objects between a target class and a con-
trasting class. For example, comparing land prices in
a suburban area with land prices in an urban center.

Characterizing both certainties and uncertainties,
rough sets are incompleteness-based reasoning in the
form of a decision-making table. Rough sets-based
DMKD is also a process of intelligent decision-making
under the umbrella of given datasets (Fig. 5.3). Lr(X) is
certainly Yes, neg(X) is surely No, while both Ur(X) and
bnd(X) are uncertainly Yes or No. With respect to an el-
ement x ∈ U , it is sure that x ∈ pos(X) belongs to X in
terms of its features, but x ∈ neg(X) does not belong
to X; while it cannot be ensured by means of avail-
able information whether or not x ∈ bnd(X) belongs to
X. So it can be seen that Lr(X) ⊆ X ⊆ Ur(X) ⊆ U , and
Ur(X) = pos(X)∪bnd(X).

Furthermore, spatial entities may be depicted with
rough sets under different granularities or different di-
mensional spaces. In Fig. 5.6a, Fig. 5.3 is used to study
granularity. When the granularity becomes double fine
it looks like in Fig. 5.6b,c and shows Fig. 5.3 in three
dimensions.

Probabilistic rough sets can be formulated on the
basis of the notions of rough membership functions as

μX (x), μX (x) ∈ [0, 1] ,

μX (x) = Rcard (X ∩[x]R)

Rcard ([x]R)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 x ∈ pos(x)

(0, 1) x ∈ bnd(x)

0 x ∈ neg(x)

1−μXc (x) x ∈ Xc
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Lr(X)

p × p 2p × 2p 3-D

Ur(X)

neg(X)

X

a) b) c)
Fig. 5.6a–c
Illustrations of
rough sets (af-
ter [5.46])

The rough membership value may be regarded as the
probability of x ∈ X given that x belongs to an equiv-
alence class. That is, it is taken for a conditional
probability to illustrate a certain degree of x belong-
ing to X, μX (x)+μc

X (x) = 1. Let P(X|[x]R) = μX (x)
and α ∈ [0, 1], a probabilistic rough set in α context is
defined

Lrα(X) = {x|P(X|[x]R) ≥ 1−α} ,

Urα(X) = {x|P(X|[x]R) > α} .

In this sense, μX (x) gives a probabilistic rough space of
X via a pair of upper approximation and lower approx-
imation.

An entity is described by a set of attributes
A = (a1, a2, . . ., am ). In the context of DMKD,
the attributes may be divided into conditional at-
tributes C = (a1, a2, . . ., ac) and decision attributes
D = (ac+1, ac+2, . . ., am), A = C ∪ D, C ⇒ D. There
is a subset S of C, S = (ap)(1 ≤ p ≤ c), S ⊆ C. If C −
S ⇒ D, then S is superfluous; ap(1 ≤ p ≤ c) in S is
called the superfluous attribute on the decision attributes
D, under which ap can be reduced. The attribute re-
duction may decrease the number of dimensions in
DMKD.

5.4.7 Exception

Exception is to detect an outlier that is isolated from
common rules or derivates from other data observations
substantially, used for identifying anomalous attributes
and entities. For example, a monitoring point detecting
exceptional movement predicts landslide and detects
fraudulent credit card transactions.

During the discovery process, some observations
may deviate so much from other data observa-
tions [5.47] that they identify and explain exceptions to
the rules. For example, spatial trend predictive model-

ing first discovers the centers that are a local maximum
of some nonspatial attribute, and then determines the
theoretical trend of some nonspatial attribute when
moving away from the centers. Finally a small number
of deviations are found that do not follow the pre-
dicted trend. These deviations may be noise or may
be generated by a different mechanism. So besides the
commonly used rules, outlier detection is used to ex-
tract the interesting exceptions from datasets in DMKD
via statistics, clustering, classification, and regression.
Outlier detection can also identify system faults and
fraud before they escalate with potentially catastrophic
consequences [5.9, 47].

Traditionally, outlier detection has been studied us-
ing statistics, and a number of discordance tests have
been developed. Most of these treat the outliers as
noise and try to eliminate their effects by removing
them or by developing some outlier-resistant meth-
ods [5.48]. In fact, these outliers may remedy the rules.
In the context of DMKD, they are treated as mean-
ingful input signals rather than noise. In some cases,
outliers represent unique characteristics of the objects
that are important to an organization. Therefore, a piece
of generic knowledge is the form of a rule plus an
exception.

Although outlier detection has been used for cen-
turies to detect and remove anomalous observations
from data, there is no rigid mathematical definition of
what constitutes an outlier. Ultimately, it is a subjective
exercise to determine whether or not an observation is
an outlier [5.49, 50]. There are three fundamental ap-
proaches to outlier detection [5.50].

1. The unsupervised approach to ascertaining the out-
liers without prior knowledge of the data, which
processes the data as a static distribution, pinpoints
the most remote points, and flags them as potential
outliers.
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2. The semi-supervised approach to modeling only
normality, in which the normal class is taught but
the algorithm learns to recognize abnormality.

3. The supervised approach to modeling both nor-
mality and abnormality, which requires pre-labeled
data, tagged as normal or abnormal.

A normal distribution of the data is assumed to
identify observations that are deemed unlikely on the
basis of mean and standard deviations. Distance-based
methods frequently use the distance to the k nearest
neighbors to label observations as outliers or nonout-
liers [5.51].

5.5 Data Warehouse for DMKD

A data warehouse is a subject-oriented, integrated, time-
variant and nonvolatile collection of data in support of the
management’s decision-making process [5.12, 14, 15].

Different from an organization’s existing opera-
tional database, the data warehouse is a centralized
repository that integrates data from several hetero-
geneous data sources. Its integration is used for
reorganization by forming new combinations of data,
while historical and stored data in the warehouse are
generally not revised. The new requirements of the data
warehouse often demand gathering, cleaning and inte-
grating new data from data marts that are tailored for
ready access by users. A data mart is a repository of data
gathered from operational data and other sources and is
designed to serve a particular community of knowledge
workers, while the data warehouse is a repository of an
organization’s electronically stored data [5.13, 14].

5.5.1 Data Warehouse Architecture

In data-warehouse architecture, there may be four
interconnected layers that are data sources, data ac-

Operational
databases

External sources

Warehouse
repository

Data
access

Data clean

Data ETL
(extraction, 
transformation,
loading)

Data refresh

Data
sources

Information
access

DMKD

OLAP

Report

Query
Data warehouse

Data marts

Data
dictionary

Data
cube

Fig. 5.7 Data warehouse architecture

cess, warehouse repository, and informational access
(Fig. 5.7).

The data sources layer contains the internal and ex-
ternal data of the data warehouse. Large data sources
may include scanned graphs, text documents, hypertext
documents, spreadsheets, images, sounds and video.
The example documents are policies and procedures,
product specifications, and catalogs, and corporate his-
torical documents, including minutes of meetings and
correspondence. Flat file data are extracted to a tempo-
rary intermediate layer for cleaning, transformation and
integration, and are finally loaded into the data ware-
house or data mart, e.g., operational databases, and or-
ganization’s enterprise resource planning (ERP) system.

The data access layer is the interface between the
data sources layer and the informational access layer.
The data warehouse serves as a foundation for improved
DMKD and decision making. It should adequately guar-
antee accurate and error-free data, a technically easy
access, incremental change, protection against misuse
and loss of data, and a well-defined model. In Fig. 5.7,
after data cleaning, users extract the required data from

Part
A

5
.5



138 Part A Basics and Computer Science

the data source and load the data into the data ware-
house in accordance with a pre-defined data-warehouse
model. ETL (extraction, transformation, and loading)
is responsible for the data in distributed heterogeneous
data sources such as relational databases. Because the
stored data are filtered and transformed, it avoids using
the wrong data analysis tools and incorrect analysis re-
sults. Furthermore, data warehouses are now accessed
on the web.

The warehouse repository layer is the core of data
warehouse, including the data warehouse for an orga-
nization and the data dictionary for the metadata of
the data directory. Data marts are further necessary
when the data warehouse is considered in a depart-
ment of the organization. Data cubes may be derived
from the data warehouse under multidimensional con-
straints. The data warehouse transforms the integrated
data into a multidimensional data model for efficient
querying and analysis so that all data elements relat-
ing to the same real-world event or object are linked
together. There are two leading approaches to storing
data in a data warehouse: the dimensional approach and
the normalized approach. A data warehouse uses the
database structure for modeling, where each dimension
corresponds to one or a set of properties. Each unit is
stored as a value that represents the kind of aggrega-
tion. The actual physical structure of the data warehouse
can be a relational data store or a data cube, which pro-
vides a multidimensional view of data and allows for
pre-computational and fast access to aggregated data.

The informational access layer contains the data ac-
cessed and the tools for reporting and analyzing them.
The data warehouse contains a standardized, consistent,
clean and integrated form of data coming from various
operational systems in use in the organization, struc-
tured in a way that specifically addresses the reporting
and analytical requirements. When decision-making,
the data warehouse manipulated by computerized tools
and operators provide additional functionality, OLAP
provide the higher level of functionality and decision
support that is linked to analysis of large collections of
historical data, and DMKD provide the highest implicit
patterns.

5.5.2 Data-Warehouse Design

There are two main methods for designing a data ware-
house, namely bottom-up design [5.13] and top-down
design [5.14]. They are interrelated in the informa-
tional access layer of the data-warehouse architecture
(Fig. 5.7). Additionally, a hybrid design has evolved
to take advantage of the fast turn-around time of the
bottom-up design and the organization-wide data con-
sistency of top-down design.

In the bottom-up design, firstly data marts are cre-
ated to provide reporting and analytical capabilities for
specific business processes. These data marts, which
contain atomic data and, if necessary, summarized data,
can eventually be merged to create a comprehensive
data warehouse. The combination of data marts is man-
aged through the implementation of a data-warehouse
bus architecture. Business values can be returned as
soon as the first data marts have been created. Main-
taining tight management over the data warehouse bus
architecture is fundamental to maintaining the integrity
of the data warehouse. It is important to make sure that
dimensions among data marts are consistent for man-
agement.

In top-down design, a data warehouse is a central-
ized repository for the entire organization, in which the
data warehouse is designed to use a normalized orga-
nization data model to provide a logical framework for
delivering business intelligence (BI) and business man-
agement capabilities. Atomic data at the lowest level
of detail are stored in the data warehouse. Dimensional
data marts containing data needed for specific business
processes or specific departments are created from the
data warehouse as it enables a relational database to
emulate the analytical functionality of a multidimen-
sional database. Since all data marts are loaded from
the centralized repository, the top-down design method-
ology generates highly consistent dimensional views of
data across data marts. It is a relatively simple task to
generate new dimensional data marts against the data
stored in the data warehouse. The main disadvantage of
the top-down approach is that it represents a very large
project with a very broad scope.

5.6 Decision Support System for DMKD

The decision support system (DSS) is an informa-
tion system that supports business and organizational
decision-making activities.

DSS is a set of tools rather than solutions to
a pre-determined set of problems. It is an information
application along with a human component that can
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sift through large amounts of data picked from many
choices and presents it suitably so that users make de-
cisions more easily, while an operational application
collects the data in the course of normal business oper-
ation [5.52]. Furthermore, decision-making is a process
from theory to practice, while DMKD is a process from
practice to the theory. DMKD is thus one of the tech-
nologies to aid DSS, as well as the database and the
data warehouse.

The decision-making process may be regarded as
an outcome of cognitive process to select a course
of action among several alternatives. Both human and
computer-based resources and capabilities working in-
teractively may come up with the best solution. The
computerized results of DSS are only referenced for
decision-making in the real world. The more important
the decision, the more carefully the DSS results are ref-
erenced. For example, the financial crisis of 2008/2009
has demonstrated that a final decision always requires
the weighting of interest done by a responsible hu-
man and that the blind belief in proposals generated by
a computer DSS can become extremely dangerous.

5.6.1 DSS Architecture

In the DSS architecture, there are four elements [5.17],
input, user knowledge and expertise, output, and de-
cisions (Fig. 5.8). The DSS taxonomy uses the mode
of assistance as the criterion [5.17] and user interface
should be graphical in nature together with online help.

The input components are the factors, numbers,
and characteristics that shall be analyzed. These com-
ponents are combined with the user’s knowledge and
expertise, which are specialized problem-solving skills
consisting of knowledge about a particular domain,
understanding problems within that domain, and skill
at solving some of these problems. The output com-
ponents are the agglomerated data from which the
decisions are derived. The decisions are the results gen-
erated by the DSS based on the user’s criteria and
the decision context, e.g., environments, documents,
business models, comparative sales figures, projected

GIS, GNSS, RS, ... DMKD SDSS

Solution

Spatial
data sets

Spatial
knowledge

Spatial
decisions

Problem Fig. 5.8 Architecture of a spatial de-
cision support system RS: remote
sensing; DMKD: data mining and
knowledge discovery; SDSS: spatial
decision support system

revenue figures, personal knowledge, and past experi-
ence.

In a DSS, the actual application for users allows
decision-making in a particular problem area and the
hardware/software environment allows for developing
specific applications with case tools or systems. The
tools include lower-level hardware/software, e.g., spe-
cial languages, function libraries, and linking modules.
An iterative developmental approach allows the DSS to
be changed and redesigned at various intervals. Once
the system is designed, it will need to be tested and
revised for the desired outcome.

When applied, DMKD is a technical supportable
tool for all data-referenced decision-making processes,
e.g., business, retails, police, medicine, transportation,
robot, navigation, GIS, remote sensing, and GNSS. It
is known that the data stored in the data warehouse are
in support of management’s decision-making processes.
Making a right decision is usually based on the quality
of data and the ability to sift through and analyze the
data to find trends from which solutions and strategies
can be created.

5.6.2 DSS Models

There are several types of DSS models. The models may
be passive, active and cooperative under the relationship
of the user in mind. The models may also be organi-
zational, departmental, and single user in the context
of the decision-making scope. In general, DSS models
are data-driven, model-driven, communications-driven,
document-driven, or knowledge-driven with the mode
of assistance as the underlying basis [5.17, 53].

A data-driven model focuses on faster, real-time ac-
cess to and manipulation of a time-series of internal
and sometimes external real-time data in larger, bet-
ter integrated databases. Simple file systems accessed
by query and retrieval tools provide the most elemen-
tary level of functionality. Data warehouse, OLAP,
and DMKD may provide much higher functionality.
A model-driven model emphasizes the access to and
the manipulation of mathematical models or business
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models to produce the patterns for supporting a solution
with limited data and parameters. Simple quantitative
models provide the most elementary level of func-
tionality. A model-driven DSS will be more complex,
yet understandable, and systems built using simula-
tions and their accompanying visual displays will be
increasingly realistic. A communications-driven model
focuses on facilitating decision-relevant collaboration
and communication when many collaborators work to-
gether to come up with a series of decisions in an
office or on the web, by using network and communi-
cation technologies. The communication technologies
are the dominant architectural component whose tools
include groupware, real-time video conferencing and
computer-based bulletin boards. A document-driven
(text-oriented) model focuses on providing document

retrieval and analysis for making decisions as well as
further manipulating the information to refine strategies,
by using computer storage and processing technologies.
A search engine is a primary decision-aiding tool asso-
ciated with a document-driven DSS. A document-driven
DSS will access larger repositories of unstructured data,
and the systems will present appropriate documents
in more useable formats. A knowledge-driven (sug-
gested or knowledge-based) model recommends actions
to decision-makers by using more sophisticated and
more comprehensive rules or facts. The advice from
knowledge-driven DSS will be better and the applica-
tions will cover broader domains. A web-based DSS is
a computerized system that delivers decision support in-
formation or tools to a user with a web browser, i. e.
a web-based collection of bookmarks.

5.7 Trends and Perspectives

Currently, new techniques and equipment are creating
new challenges for DMKD. For example, the Internet
of Things [5.54] enables the Internet to reach out into
the real world of physical objects. Ubiquitous devices
are mutually connected and extensively used, e.g., lap-
tops, palmtops, cell phones, and wearable computers,
in which the enormous quantity of data is being cre-
ated, transmitted, maintained, and stored. Digital Earth
globally provides spatial data for DMKD, along with
further applications. If the Internet of things is spatially
localized, a smart planet with instruments, interconnec-
tion and intelligence may come into being, in which
the amount of data resources will be much larger. Un-
der the Internet environment, more generic and useful
knowledge can be discovered from the localized data
together with global data in the context of a global
model. Now, more and more new DMKD applications
are happening, i. e. networked topological mining, com-
munity discovery, stream data mining, bio-data mining,
time serial mining, text mining, intrusion detection,
and privacy-preservation with DMKD. Sections 5.7.1
and 5.7.2 present two promising trends in DMKD.

5.7.1 Web Mining

Web mining is to extract useful patterns and implicit
information from artifacts or activities related to the
World Wide Web under the Internet [5.55, 56]. The
Internet provides a technology platform for further

extending the capabilities and deployment of comput-
erized decision support. And the World Wide Web
broadens data resources. The release of the HTML 2.0
specifications was a turning point in the development
of DMKD. Many DBMS vendors shifted their focus
to web-based analytical applications and business in-
telligence solutions. The enterprise knowledge portals
combined information portals, knowledge management,
business intelligence, and communications-driven DSS
in an integrated web environment.

Web mining may include web-content mining, web-
structure mining, and web-usage mining. Web-content
mining is to discover the knowledge from the con-
tent of web-based data, documents, and pages or their
descriptions. Web-structure mining is to uncover the
knowledge from the structure of websites and the topo-
logical relationship among different websites [5.57].
Web-usage mining is to extract web-user behavior or
modeling and predicting how a user will use and interact
with the web [5.58]. Because people are almost being
buried by reports, correspondence, memos, and other
paperwork, it is greatly promising to extract new, never-
before encountered knowledge from a body of textual
sources in the web. In DMKD, web mining is one of
the most promising areas. Srivastava et al. [5.59] have
given a taxonomy of different web-mining applications,
for example, personalization, system improvement, site
modification, business intelligence, and usage charac-
terization.
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5.7.2 Spatial DMKD

Spatial data are more complex, more dynamic and big-
ger than common affair datasets. The explosive growth
of spatial data and widespread use [5.60] of spatial
databases emphasizes the need for considering spa-
tial dimensions in DMKD. Spatial dimension means
each item of data has a spatial reference [5.61], where
each entity occurs on the continuous surface, or where
the spatial-referenced relationship exists between two
neighbor entities. In order to discover spatial knowl-
edge, a DMKD branch in geospatial science has been
developed further, i. e., spatial data mining and knowl-
edge discovery (SDMKD) [5.7, 11]. SDMKD was also
regarded as an interdisciplinary area at the intersection
of computer science and GIS [5.4].

The complexity of spatial data and intrinsic spa-
tial relationships limits the usefulness of conventional
data mining techniques for extracting spatial patterns.
Given proper analysis discovery, spatial data can repre-
sent a great deal of spatial information as many of them
are image-oriented [5.62]. With spatial databases, spa-

tial data warehouses, data cubes, spatial OLAP, spatial
knowledge bases, and related types of data, SDMKD
may help people to understand spatial data, find out the
relationships between two spatial data items or between
nonspatial items and spatial items, and characterize spa-
tial entities. Examples could be the association of a road
and a bridge, the clustering of similar grassland, the
analysis of the spatial distribution of bank locations, the
predication of future land use, the creation of buffers
related to service regions of government agencies, and
the overlapping regions of several neighboring retail
shops. The knowledge discovered may further enrich
the knowledge bases [5.1].

Because the spatial knowledge discovered can
support and improve spatial data-referenced decision-
making, spatial data mining has attracted significant
attention from computer scientists as well as spatial
statisticians. Moreover, it is clear that the acquisition,
storage, manipulation, and visualization of geospatial
data are special and require substantially different ap-
proaches and assumptions to those in other fields [5.2,
34, 62–64].
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