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Geometry and10. Geometry and Topology

Gerhard Gröger, Betsy George

The representation of geometrical properties of
spatial objects as well as of their structural aspects
(topology) is crucial for GIS operations, analyses
and visualizations. This chapter introduces the
most important geometrical and topological con-
cepts, considering the two dimensional as well as
the three dimensional case. Particularly, the con-
cepts of the standard ISO 19107 Spatial schema are
introduced.
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10.1 Geometry

The main purpose of geometrical characterizations in
GIS is to represent the shape and metric properties of
spatial objects (features), in order to compute distances
between objects, to derive areas of surface objects or
volumes of solid objects, to perform spatial analyses
(Sect. 10.2) like viewshed calculation, spatial planning
and simulation, e.g. for noise emission, or to serve as
base for geovisualization.

Regarding the dimension of geometry, we have to
distinguish between the dimension of the geometry ob-
ject and the dimension of the embedding space. In this
section, the embedding space in general is 3-D; embed-
ding in 2-D planes are considered only in Sect. 10.1.2.
This section is structured according to the dimension
of the geometry objects: we start with 0-D to 2-D, con-
sider 2.5-D as special case, and finally discuss solid 3-D
objects.

An overview of geometrical 3-D models can be
found in [10.1–3]. This section presents models which
are relevant for 3-D-GIS, mainly boundary representa-
tions (Sect. 10.1.3), and gives a rough survey of other

concepts. The focus is on the geometry model pro-
vided by the standard ISO 19107 Spatial schema [10.4],
which is implemented particularly in the representation
and exchange language Geography Markup Language
(GML 3) [10.5–7].

The 2-D coordinates (x, y) ∈ R
2 or 3-D coordinates

(x, y, z) ∈ R
3 of the geometry objects are represented

according to any of the coordinate reference systems
introduced in Sect. 10.2.2.

10.1.1 0-D, 1-D, and 2-D Geometries

A point as a 0-D geometry is simply represented by
a 3-D coordinate (x, y, z). One-dimensional geometries
are curves or line segments which have start coordinates
and end coordinates. The shape of a curve between the
start and the end point is specified by an interpolation
method. The list of interpolation methods provided by
the ISO 19107 Spatial schema or by GML, for example,
is linear, geodesic, circular, elliptical, clothoid, conic,
polynomialSpline, cubicSpline, or rationalSpline. If the
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304 Part B Geographic Information

a) b) c)
Fig. 10.1a–c Three sur-
faces. (a) Planar polygon
delimited by for rings.
(b) 2-D disk delimited
by one ring. (c) Cylinder
surface delimited by two
rings

interpolation is linear, start and end points are connected
by a straight line. The other interpolation methods re-
quire some more parameter values. A circular line seg-
ment is represented by three control points, and an el-
liptical by four control points, for example. More details
on the interpolation methods are provided in [10.3, 4].

In general, curves or line segments are connected,
non-branching (i. e., have at most two start/end points)
and are non-self-intersecting. If the positions of the start
and the end points are identical, the curve is closed.

2-D geometries embedded in 3-D space, which are
typically called regions, polygons or surfaces, are con-
tinuous, connected 2-D point sets which are delimited
by curves. These curves have to be closed and form
so-called rings [10.4]. A ring is a closed sequence of
curves, where a curve starts where the predecessor in the
curve ends. The curves in a ring are non-intersecting.
A region is bounded by one exterior ring and by op-
tional interior rings, which define enclaves or holes in
the region. Figure 10.1a depicts as an example a region
with four rings, one exterior and three interior. Rings
may be composed of curves of any interpolation method
mentioned above in this section.

The shape of the surface, i. e., of the 2-D point set
delimited by its rings, is defined by interpolation meth-
ods, similar to the case of line segments. ISO 19107
Spatial schema and GML, for example, provide the
following interpolation methods: planar, spherical, el-
liptical, conic, tin, parametricCurve, polynomialSpline,
rationalSpline, triangulatedSpline. In planar surfaces,
all points of the surface are in the same plane. This
interpolation method is common in GIS and 3-D city
models; surfaces provided by commercial tools like
ArcGIS or Oracle Spatial are planar. For details of
the representations of other interpolation methods, the
reader is referred to [10.3, 4].

Surfaces are purely areal two-dimensional point
sets, without penetrations, T-shaped or X-shaped
touches. Mathematically, this property is captured by
the notion of a 2-manifold. A 2-manifold is a 2-D
point set where each point has a neighborhood in
the set which is topologically equivalent to an open

two-dimensional disk. Intuitively, for each point on a 2-
manifold, a small circular neighborhood centered at that
point can be deformed to a disk.

Another important property of surfaces is the num-
ber of boundaries. A disk (Fig. 10.1b) has one boundary,
whereas the number of boundaries of a cylinder sur-
face (Fig. 10.1c) is two. A sphere has no boundaries at
all. Such surfaces are called closed; they enclose a vol-
ume completely and hence are used to define solids
(Sect. 10.1.3).

A further relevant characteristic of surfaces em-
bedded in 3-D space and an essential precondition for
defining solid objects is orientability [10.2]. A sur-
face is orientable, if two opposite sides of the surface
can be distinguished. For the general case a more
formal definition of orientability is given in [10.8].
Well-known examples for non-orientable surfaces are
the Möbius strip and the Klein bottle; both are depicted
in Fig. 10.2.

An orientable surface can be given an orientation,
by labeling exactly one of the two sides as top or +.
When surfaces are used to define solids, the surface ori-
entation is chosen such that the top side points outward
relative to the solid’s interior. If one of the rings delimit-
ing a surface can be distinguished as an outer ring, as is
the case for planar polygons, the right-hand rule can be
applied to define an orientation. If the curve segments
in the exterior ring are oriented consistently, from start
to end point, then the side of the surface where the di-
rection of the ring appears counterclockwise is the top
side of the surface (Fig. 10.3).

Surfaces as well as line segments can be aggregated
to larger units, which again have the same properties as
the surfaces. The standard ISO 19107 defines surface
patches on the lowest level, which can be aggregated
to surfaces (class GM Surface). Surfaces similarly can
be aggregated to composite surfaces, which recursively
can again be part of a larger composite surface. Rules
for building composite surfaces from parts are dis-
cussed in Sect. 10.2.2, where topological data models
are reviewed. In fact, a composite surface is both a topo-
logical cell complex as well as a surface. A similar
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a) b)
Fig. 10.2a,b Non-orientable surfaces.
(a) Möbius strip; (b) Klein bottle

aggregation concept is defined for 1-D objects: line seg-
ments are aggregated to curves, and curves recursively
to composite curves.

In ISO 19107 and in GML, there is another type
of aggregation, which is defined less strictly and does
not provide the properties that composites have. This
type is called aggregate, and its subtype for 2-D
objects multisurface. The surfaces that are part of
a multisurface may overlap or penetrate, and the ag-
gregates may be unconnected. A similar concept is
defined for curves. The corresponding subtype of aggre-
gates is called multicurve, which may be unconnected
and branching, and the curves in a multicurve may
intersect.

10.1.2 Special Cases:
2-D as Embedding Space and 2.5-D

In most commercial 2-D GIS, geometries are embed-
ded in 2-D space, i. e., the third coordinate is omitted or
set to zero. Obviously, the interpolation of regions has
to be planar. An example for a 2-D geometry model is
GML 2 [10.5].

In the so-called 2.5-D geometry model, the embed-
ding space is 3-D, and the geometries are 0-D to 2-D,

Fig. 10.3 Orientation of a planar surface by applying the
right-hand rule

but there is an important restriction: for each geome-
try, the height value z is a function of each x/y-point,
i. e., at each x/y-point, there is at most one height value.
Typically, a 2.5-D model is used to represent the terrain
surface; in that case it is called a digital terrain model.
Due to the functional dependency between the planar
and the height values, vertical walls and overhangs, e.g.,
the wall of a building or a balcony, are outside the scope
of a 2.5-D model.

10.1.3 3-D Geometries

Spatial objects like buildings, rooms, or other vol-
ume objects are represented by solids. In geometrical
modeling, solids are described mathematically by rigid
bodies [10.9]. A rigid body is a bounded, regular, and
semianalytical subset of R

3. Regularity excludes non-
volume elements like point or line enclaves, while
semi-analytical sets are constructed by combining ana-
lytical sets – which are the range of analytical functions,
particularly polynomials – by the set operations differ-
ence, intersection and union. In boundary representation
schemes, which are widely used in geometrical mod-
eling, CAD, and GIS, solids are represented by their
bounding surfaces. Rigid bodies are exactly those
bodies which are bounded by a single, closed 2-
manifold [10.9].

In geometrical modeling, there are different
schemas to represent solids. The most important
are reviewed in the following sections: the bound-
ary representation, constructive solid geometry, raster
based or enumeration methods, sweep representa-
tions, and primitive instancing. For a comparison of
these representations on the basis of several criteria
(accuracy, domain, uniqueness, validity, closure, com-
pactness, and efficiency) the reader is referred to Foley
et al. [10.1].
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Boundary Representations
The most common representation schema for solids in
GIS is the boundary representation [10.1–4], which de-
fines solids by its bounding surfaces. The saddle roof
building in Fig. 10.4, for example, is modeled by a solid,
which is bounded by seven planar surfaces: a ground
surface, four wall surfaces, and two roof surfaces.

The composite surface or the set of surfaces bound-
ing a solid must obey the following three conditions.

1. The surfaces have to enclose the solid completely,
without gaps. This requirement is particularly met
by closed (composite) surfaces.

2. The surfaces have to be purely areal and non-
overlapping, i. e., must be a 2-manifold.

3. The surfaces have to be orientable, and must
be oriented in such a way that the top side of
all surfaces points outward the solid’s interior
(Sect. 10.1.1). However, each closed surface embed-
ded in 3-D space without penetrations is orientable.
This important theorem is implied by a well-known
proposition for closed surfaces, which states that
each closed surface embedded in 3-D space with-
out penetrations is homeomorphic to a sphere with
n ≥ 0 handles, which is orientable [10.3, 9]. Hence,
orientability does not need to be checked.

The solids provided by the standard ISO 19107
may have enclaves, which define volume voids inside
the solid. To represent enclaves, the surfaces bounding
a solid are grouped in so-called shells (class GM Shell).
Each solid is delimited by exactly one exterior shell
(which has already been defined by the three condi-
tions above) and optional interior shells, each bounding
a void (Fig. 10.5). The interior shells have to fulfill the
three conditions given above; particularly, the top sides

Fig. 10.4 Boundary representation of a saddle roof build-
ing

Fig. 10.5 Solid bounded by one exterior shell and one in-
terior shell, forming an enclave

of all surfaces defining the shell have to point towards
the enclave.

The aggregation concepts which were already intro-
duced for curves and surfaces are provided for solids
as well. A composite solid (class GM CompositeSolid)
is a topological cell complex consisting of solids,
which is again a solid, i. e., the exterior and all
interior shells of which each fulfills the three condi-
tions given above. A GM MultiSolid is an aggregation
of solids which does not obey any restrictions, i. e.,
which may penetrate each other or which may be
unconnected.

Some models define special solids which are not
bounded by a shell completely; such solids are used to
define 3-D tessellations, i. e., complete coverage of 3-D
space by solids.

Constructive Solid Geometry (CSG)
Constructive solid geometry (CSG) [10.2, 3] is a pro-
cedural modeling technique which allows to create
solid objects by using Boolean operators to combine
primitive objects. As primitives, boxes or cylinders are
typically used. Operations are transformations (rota-
tion, scaling, and translation) and set operations (union,
intersection, and difference). Figure 10.6 depicts, as ex-
ample, the representation of a solid saddle-roof building
as a CSG tree. Figure 10.6 gives an example of a repre-
sentation as a solid saddle roof building as a CSG tree.
From one box another box is subtracted (operator /) af-
ter transformation (translation and rotation), and from
the resulting box yet another box is subtracted, also af-
ter transformation (translation and rotation). To avoid
generating non-solid parts, regularized Boolean opera-
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b)

I

I

Box Box

Box

Transform

Transform

Resulta)
Fig. 10.6a,b CSG
model of a sim-
ple saddle
roof building.
(a) Transformed
primitives;
(b) CSG tree

tors are employed, which remove all purely areal, linear,
or point objects.

CSG is an implicit representation: not the result of
the derivation is represented, but the CSG tree contain-
ing the sequence of operations and the corresponding
parameters and primitives.

Sweep Representations
In sweep representations, a solid is generated by sweep-
ing a surface along a curve. All points in space that are
touched by sweeping the surface constitute the solid.
Three kinds of curves are typically used: lines (transla-
tion sweep), circles (rotation sweep), and combinations
of both.

A special case of sweeping is extrusion, where a pla-
nar, horizontal polygon is swept along a line that is
perpendicular to that surface (Fig. 10.7). This method is
often used to construct buildings in a 3-D city model
in the less detailed level of detail 1 (blocks models,
see [10.10]) from cadastral footprints. However, extru-
sion in that case is used as the method for constructing

a) b)

Fig. 10.7 Sweeping a polygon
yielding a solid (after [10.2])

the model; for storing the result of the extrusion, mostly
a boundary representation is used.

Raster Based/Enumeration Methods
In enumeration methods [10.2], space is partitioned
in regular cells (cuboids), which are called voxels.
A solid, for example, can be represented by listing all
voxels contained (completely or partially) in the solid
(Fig. 10.8). This method generalizes the partitioning of
2-D planes in rectangular raster cells.

Primitive Instancing
The modeling schema of primitive instancing [10.1, 2]
enables the representation of predefined, parameterized
geometrical primitive object types. To yield a geo-
metrical instance of that type, the variable parameters
have to be instantiated. An example is depicted in
Fig. 10.9, where a t-brick primitive with five parameters
w1, w2, h1, h2 and l is constructed by instantiat-
ing the corresponding parameter values. An important
application of primitive instancing in GIS is model-
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308 Part B Geographic Information

Fig. 10.8 Representation of a solid by voxels (after [10.2])

based building classification and 3-D reconstruction
from aerial laser scanning or imagery. The predefined
primitive object types are roof types (flat, mono-pitch,
saddle, hipped). A saddle roof type, for example, has

h1

w2

w1

h2

l

Fig. 10.9 t-brick constructed by primitive instancing (after
[10.2])

four parameters: ridge height, eaves height, length,
and width, under the assumption that the building is
symmetrical.

10.2 Topology

Whereas geometry deals with the shape and metric
properties of spatial objects, topology focuses on the
structure of and qualitative relations between spatial
objects, i. e., whether two objects overlap or whether
one object is contained in another. In mathematical
topology, two branches relevant for 3-D-GIS are dif-
ferentiated between: point set topology and algebraic
topology. Point set topology aims at defining and clas-
sifying qualitative relations between spatial objects.
These relations, also called topological predicates, pro-
vide essential elements of spatial query languages, e.g.,
to formalize a query retrieving all municipalities inside
North Rhine Westphalia, or to obtain all highways pass-
ing through California. Topological predicates are used
in OGC Filter encoding (ISO 19143) [10.11], which
are employed in the context of spatial data infrastruc-
tures, in the query language of the commercial database
Oracle Spatial [10.12], in query languages provided
by the commercial GIS ArcGIS, and in standards like
ISO 19107 [10.4].

Algebraic topology [10.13, 14] is the basis of many
data models in GIS, CAD, and computer graphics,
which are called topological data models. This branch
of mathematics provides formal rules to construct com-
plex objects from primitive ones, avoiding penetrations

and modeling touches of spatial objects explicitly.
Topological data models aim at providing efficient navi-
gational access without considering geometry and serve
as a base for the definition of consistent models. In this
section, we first discuss topological relations in differ-
ent dimensions and then address 3-D topological data
models.

10.2.1 Topological Relations

The specification of topological relations in general is
defined for arbitrary topological spaces. A topological
space [10.8],

which is a fundamental notion in topology, is a set
M together with a set N of subsets of M, called neigh-
borhoods, where the following conditions hold.

1. Each element m ∈ M is in a neighborhood n ∈ N .
2. The intersection of two neighborhoods of m ∈ M is

or contains a neighborhood of m.

Let M be a topological space and X a subset of M.
An element p ∈ M is near X, if each neighborhood of
p contains an element in X. The interior of X, denoted
X©, is the set of all elements in X, which are not ele-
ments near the complement of X. The boundary of X,
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R031 Disjoint

R179 Contains

R220 Inside

R400 Equal

R287 Meet

R435 Covers

R476 Covered by

R511 Overlap

A
B

A B

A B

A B

AB

A
B

A B

AB

Fig. 10.10 Eight relations for simple
regions distinguishable by Egen-
hofer’s 4-intersection model (after
[10.15])

denoted ∂X, is the set of all elements which are both
near X and to the complement of X. The exterior X− of
X is the complement of the union of the boundary and
the interior.

To illustrate these concepts, let M be the set R
3

and the neighborhoods n ∈ N be defined by open balls.
Then the interior and the boundary of spatial objects
(point sets) has an intuitive meaning: X may, for ex-
ample, be a box. The interior of the box (X©) is the
point set bounded by the six rectangles defining the box,
and the boundary (∂X) is defined by the six rectangles.
The exterior of the box (X−) is the space outside the
box.

Topological relations can be defined based purely
on the notions of interior, boundary, and exterior. We
now focus on the 4-intersection and the 9-intersection
model and its extensions in 2-D and 3-D. Another simi-
lar approach for defining topological relations is region
connection calculus [10.16].

2-D
The well-known 4-intersection model introduced by
Egenhofer and Franzosa [10.15] defines binary topo-
logical relations in 2-D, i. e., relations between two
objects. For two regions A and B, the intersections (∩)
of the interiors (A©, B©) and the boundaries (∂A, ∂B)
are considered systematically, in which it is only rele-
vant whether the intersection is empty or not. The result
is represented by a Boolean 2 × 2 matrix (an empty in-
tersection ∅ is denoted by false, a non-empty ∅ by true)

∣
∣
∣
∣
∣

A© ∩ B© A© ∩ ∂B

∂A ∩ B© ∂A ∩ ∂B

∣
∣
∣
∣
∣

.

The regions considered in that model are restricted
topologically: a region must be bounded by a single

connected, closed curve, which is non-self-intersecting
(i. e., a ring as defined in Sect. 10.1.3) and hence,
does not have holes. Not all of the 24 = 32 relations
have a spatial realization in that model; only eight
relations are possible (Fig. 10.10). The other 24 rela-
tions cannot occur due to dependencies between the
values of matrix elements. For example, if a boundary–
interior or interior–boundary intersection is non-empty,
then the interior–interior intersection is non-empty as
well.

This model can also be applied to points and curves,
where the boundary of a curve is defined as the union of
both end points, the interior is the curve without the end
points. The boundary of a point is empty, and the inte-
rior is the point itself. A line object must be connected,
non-branching, and non-self-intersecting.

Two extensions of the 4-intersection model have
been developed, which both provide a more fine-grained
differentiation of spatial arrangements. The first exten-
sion is to consider the exterior A− of a point set A as
well. In this 9-intersection model [10.17], a 3 × 3 matrix
denotes the Boolean intersection values. The relations
of the 9-intersection model are also called Egenhofer
operators [10.4]

∣
∣
∣
∣
∣
∣
∣

A© ∩ B© A© ∩ ∂B A© ∩ B−

∂A ∩ B© ∂A ∩ ∂B ∂A ∩ B−

A− ∩ B© A− ∩ ∂B A− ∩ B−

∣
∣
∣
∣
∣
∣
∣

.

Figure 10.11 depicts an example demonstrating that
the 9-intersection model is more powerful than the 4-
intersection model. In Fig. 10.11a,b, the region A and
a line segment B share boundaries, but in Fig. 10.11b,
both enclose a region completely. Hence, both situations
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a) b)

A A B
B

Fig. 10.11 Two topological different situations which can
be distinguished by the 9-intersection model but not by the
4-intersection model

are different topologically. In the 4-intersection model,
both situations are represented by the same relation:
the intersection of the interiors and of the bound-
aries/interiors is empty, whereas the intersecting of the
boundaries is not (A© ∩ B© = A© ∩∂B = ∂A∩ B© = ∅;
∂A ∩ ∂B = ¬∅). In the 9-intersection model, the inter-
section between the exterior of A and the boundary of B
is non-empty in Fig. 10.11a (A− ∩∂B = ¬∅), but empty
in Fig. 10.11b (A− ∩ ∂B = ∅). Hence, both situations
can be distinguished.

However, if 2-D objects embedded in 2-D space
are considered (Fig. 10.10), the 4-intersection and the
9-intersection models yield identical results. In gen-
eral, if the co-dimension – the difference between
the dimension of the embedding space and the di-
mension of the objects – is zero, both models are
identical.

A second extension of the 4-intersection model,
which also can be applied to the 9-intersection model,
is to consider the dimension of the intersection. The
situations in Fig. 10.12 cannot be differentiated by the
4-intersection model or the 9-intersection model, since
the relation meet in both cases, but both differ in the
dimension of the intersection, which is 0-D or 1-D.
The extension of the 4-intersection model to the 9-
intersection model and the inclusion of the dimension
of the intersection is called the dimensionally extended
9-intersection model or DE-9IM [10.18].

f1

f2

f1

f2

Fig. 10.12 Two situations which cannot be differentiated by the 4-
or 9-intersection model but by considering the dimension of the
intersection

3-D Relations
Zlatanova [10.19] extended the 4-intersection model to
3-D by using R

3 as the embedding space for points,
lines, and surfaces, and by considering solids. Solids
must have a single, connected, 2-manifold boundary.
Figure 10.13 depicts all possible relations between two
solids, which are identical to the relations between two
surfaces in 2-D (Fig. 10.10).

If the co-dimension is strictly greater than zero, a va-
riety of topological relations is observed between two
objects embedded in 3-D. As an example, Fig. 10.14
enumerates all 38 relations between two surfaces. These
relations cannot be named meaningfully; they are de-
noted by a decimal code preceded by the character R,
where the code is equivalent to the binary representation
of the 9-intersection matrix. The order of the matrix el-
ements in the binary code is as follows (the second row
denotes the decimal and the third the binary represen-
tation of the summand corresponding to the relation in
the first row)

∂A ∩ ∂B A© ∩ B© ∂A ∩ B©

28 = 256 27 = 128 26 = 64

100 000 000 10 000 000 1 000 000

A© ∩ ∂B A− ∩ B− A− ∩ ∂B A− ∩ B©

25 = 32 24 = 16 23 = 8 22 = 4

100 000 10 000 1000 100

∂A ∩ B− A© ∩ B−

21 = 2 20 = 1

10 1

For example, the code R287 (= 256+16+8+4+
2 + 1) is equivalent to the binary code 100011111
(= 100 000 000+10 000+1000+100+10+1); in that
relation, both boundaries intersect and all other inter-
sections not involving an exterior are empty (∂A ∩∂B =
A− ∩ B−= A− ∩∂B = A− ∩ B© = ∂A∩ B−= A© ∩ B−
= ¬∅/true; A© ∩ B© = ∂A∩ B© = A© ∩∂B = ∅/false).

The usage of the topological relations in query
languages is by referencing the name of the rela-
tion. In Oracle Spatial 11g, a combination of relation
names, connected by a logical OR, may be used. In
the simple features model [10.20], ISO 19107 Spatial
schema [10.4] and Oracle, a more flexible mechanism
is also employed: a method relate receives the complete
pattern of the 9-intersection matrix in row major form as
input, containing the values F (empty intersection), the
dimension 0, 1, 2, 3 of the intersection, or the wildcard
symbol N (the value does not matter).
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R031 Disjoint

R179 Contains

R220 Inside

R400 Equal

R287 Meet

R435 Covers

R476 Covered by

R511 OverlapA B

A B

AB

A A

A

BB

B

B

B

A

A

Fig. 10.13 Topological relations be-
tween two solids in R

3 (after [10.19])

R031

R063/R095

R093/R055

R117

R119/125

R127

R159

R220/R179

R221/R183

R223/R191

R247/253

R255

R277

R287

R349/R311

R319/351

R375/R381

R383

R400

R405

R415

R435/R476

R447/R479

R477/R439

R511

A

A

A

A

A A

A

A
A A

A
A

A A

AA

A
A

AA

AA

A

A

B

B

B

B
B B

B

B

B
A

B

B

B
B

B
B

B
B

BB

B
B

B B

B

B

Fig. 10.14 Topological relations between two surfaces in R
3 (after [10.19])

10.2.2 Topological Data Models

The theoretical foundation of all topological data mod-
els in GIS or CAD is the mathematical concept of

simplicial complexes and its generalization, the concept
of cell complexes [10.13, 14]. A cell complex consists
of four types of primitives: 0-cells, also called nodes,
1-cell, also called edges, 2-cells (faces), and 3-cells
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A B

a) b)
Fig. 10.15a,b Cell com-
plexes, (a) consisting
of two 2-cells A and B
touching in a common
edge (depicted bold), and
(b) of two 3-cells touch-
ing in a common face
(depicted dark)

s1

s2

Fig. 10.16 0-cells,
1-cells, 2-cells,
and 3-cells not
constituting
a cell complex:
the intersection
of solids s1 and
s2 is not a cell in
the boundary of
both cells

(topological solids). Each n-cell is topologically equiva-
lent to a manifold of the corresponding dimension. For
example, a 3-cell is topologically equivalent to a sphere,
and a 2-cell to a 2-D-disk. Each n-cell c is bounded by
(n −1)-cells c1, c2, . . . , ck, which are the boundary of
the cell. Vice versa, c is in the co-boundary of c1 . . . ck.
A cell complex is an aggregation of n-cells, where the
following condition holds.

• The intersection of two cells in the cell complex is
either empty or a cell which is part of the boundaries
of both cells.

Figure 10.15 gives two examples of cell complexes.
In Fig. 10.15a, the intersection of the 2-cells A and
B is the 1-cell depicted by thick lines. It is part of
the boundary of both A and B. The intersection of
the two 3-cells in Fig. 10.15b is given by the dark
colored 2-cell and the 0- and 1-cells in its bound-
ary. This structure is part of the boundary of both
3-cells. A counterexample is depicted in Fig. 10.16.
Two solids penetrate. Hence, the intersection of both
is not a common boundary; the structure is not a cell
complex.

The advantages of representing GIS data as a cell
complex are as follows.

• The model implies that there are no penetrations
or overlaps of the interiors of cells; cells touch at
least in common boundaries. This is an essential
consistency constraint for many GIS applications;
for example, two parcels do not overlap, and two
buildings do not penetrate.• The explicit representation of any touching between
objects, i. e., the boundary and co-boundary rela-
tions, facilitates navigational access to all neighbor-
ing objects, without the need to consider geometry.
This supports the efficient processing of queries in-
volving topological predicates, e.g., inside or touch.
These predicates were discussed in the last section.

All topological data models reviewed in the next sec-
tions are based on the concept of cell complexes. They
differ with regard to the dimension of the embedding
space (2-D or 3-D), the dimension of the cells, the
geometric shape of the cells (triangles/tetrahedrons, ar-
bitrary shape, enclaves), whether cells are explicitly or
implicitly modeled, and to which degree the boundary
and co-boundary relations are modeled explicitly.

2-D Models
Realizations of 2-D topological models are the maps
defined by Plümer and Gröger [10.21], which define
a complete coverage of the plane by faces and are char-
acterized axiomatically, i. e., provide an efficient and
effective method to check whether a dataset has the map
properties. In Gröger [10.22], the concept is extended
by allowing holes in faces. Molenaar’s [10.23, 24] sin-
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gle and multivalued vector maps are a special case of
the 3-D-version, which will be described in the next
section. The cells of the model presented by Egenhofer
et al. [10.25] are restricted to triangles geometrically,
whereas the coverages data type of Esri’s GIS tools
ArcGIS allow for faces of arbitrary shape, which may
contain holes.

Topological Networks
A topological network is a cell complex consisting of 0-
and 1-cells, which is embedded in 3-D space. Another
term for a topological network is a graph embedded in
3-D space. The focus of topological networks is on ex-
plicit modeling of the connectivity between line objects
(edges) and junctions (nodes), not on surface topol-
ogy. The main application area of topological networks
is the modeling of transportation or utility networks.
The third dimension is often not represented explic-
itly, but due to overpasses and underpasses, 2-D or
2.5-D models are not sufficient. A prominent and widely
used example is the standard Geographic Data Files
(GDF) [10.26], which are the base of all data models
for commercial vehicle navigation. Level 1 in GDF,
which is used for path finding, is a topological net-
work. Another example for a topological network is the
graph representing reachability inside buildings, which
is used for indoor path finding [10.27]. The representa-
tion of topological networks in data bases is discussed
in Chap. 3.

Class

Belongs to

Forward

Is in

Left

Border

Part of Part of RepresentsRight

Is on

Backward

Begin

End

Belongs to Belongs to Belongs to

Class Class Class

Surface Body

Face

Edge Arc Node

XYZ

Line Point

Fig. 10.17 Diagram of the
3-D FDS by Molenaar (after
[10.23])

3-D Models
A survey of 3-D topological models for GIS can be
found in Zlatanova et al. [10.28], whereas in Ellul and
Haklay [10.29] the requirements and benefits of such
models for GIS applications are identified. The first
topological data model in GIS from a historical perspec-
tive was the Formal Data Structure (FDS) presented
by Molenaar [10.30]. He distinguishes the primitive
nodes, arcs/edges, and faces. Volumes are called bod-
ies and exist on a feature level. Faces are bounded
by edges/arcs, and each arc has a start and an end
node. Each face has a body on the left and a body
on the right side (Fig. 10.17). Edges are straight lines
geometrically, and faces are planar and may contain
holes. Flick [10.31] extends the FDS by introducing
bodies as topological primitives. The urban data model
(UDM) developed by Coors [10.32] and the simplified
spatial schema [10.19] modify this model by omit-
ting the explicit representation of edges, facilitating
efficient visualization. For the same reason, faces in
the UDM are restricted to triangles. A topological
model based on simplicial complexes – the restric-
tion of cell complexes to triangles and tetrahedrons –
is the TEN (tetrahedral network) structure [10.33]. It
can be implemented in relational databases very effi-
ciently [10.34].

The topological model introduced by Pigot [10.35]
provides a full implementation of the concept of
cell complexes, including all boundary and co-
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Fig. 10.18 Boundary (left side) and co-boundary (right-hand side) relations (after [10.4])

boundary relations. The model defined by Gröger and
Plümer [10.36] extends cell complexes in two respects:
connectivity is considered as an additional requirement,
prohibiting floating buildings, for example, and two
special solids are introduced: a solid representing the
air space and one representing the Earth’ mass. Both
are bounded only partially. Hence, this model defines
a 3-D tessellation of space by solids: each point in
3-D space is in the boundary of a solid or in the
interior of exactly one solid. The declarative defini-
tion of the model is accompanied by axioms, which
are used to check effectively and efficiently whether
datasets are consistent, i. e., meet the requirements of
the model. Transaction rules for updating datasets while
preserving consistency are sketched in Gröger and
Plümer [10.36].

A further topological model is provided by the stan-
dard ISO 19107 Spatial schema [10.4]. The model
defines topological primitives for all dimensions (nodes,
edges, faces, topological solids) and fully realizes the
boundary and co-boundary relations. The properties of
the topological primitive are defined by its geometri-
cal counterparts, which were described in Sect. 10.1,
faces (class TP Face) must be connected and may

have holes delimited by interior rings, and topolog-
ical solids (class TP Solid) must also be connected
and may have enclaves bounded by interior shells. All
boundary and co-boundary relations are represented
explicitly (see the UML diagram in Fig. 10.18). In anal-
ogy to the orientable primitives on the geometry level,
directed topology objects interconnecting the topolog-
ical primitives are used to define consistently oriented
boundaries and co-boundaries (Fig. 10.18). For exam-
ple, the boundary of a TP Solid consists of a set of
directed faces (class TP DirectedFace); each directed
face is assigned to exactly one TP Face by the topo
role of the center association. This face is related to ex-
actly one other directed face, which represents the face’s
role in the boundary of another topological solid that is
a neighbor of the first one. Vice versa, the co-boundary
relations are defined by using directed topology objects:
a face, for example, has a co-boundary relation to two
directed solids, each of them relating to a solid that is
bounded by the face (Fig. 10.19).

In addition to the boundary and co-boundary rela-
tions, where the difference of dimensions of the cells is
1, there is a relation called isolated, which associates
a node (0-cell) with a face (2-cell) or a topological
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a)

b)

s1: TP_Solid

Center/topo

Boundary/boundary

Boundary/boundary

CoBoundary/Spoke

CoBoundary/Spoke

Center/topo

Center/topo

s2: TP_Solid

DF1: TP_DirF ..............

..............

DF2: TP_DirF

DF7: TP_DirF

DS1: TP_DirS

f1: TP_Face

DF8: TP_DirF

DS1: TP_DirS

f1

s1

s2

Fig. 10.19
(a) A 3-D scene
with two solids
s1 and s2 sharing
a face f1 and
(b) an extract
from the corre-
sponding UML
instance diagram
(the class names
TP DirectedFace
and
TP DirectedSolid
are abbreviated
to TP DirF and
TP DirS)

solid (3-cell), when this node is inside the interior of
the face or of the topological solid. Likewise, an edge
is related to a topological solid by that association,

when the edge is completely in the interior of the
solid.

ISO 19107 provides classes for defining topologies
(prefix TP ) that are independent of its geometrical
counterparts (prefix GM ), but are related by associa-
tions. The advantage of this approach is flexibility; there
are three options to use topology.

1. Topology is omitted, i. e., only the geometrical as-
pects are represented.

2. Both geometry and topology are modeled and

linked, combining the advantages of both represen-
tations.

3. Only topology is represented, i. e., a scene is rep-
resented purely structural by topological primitives
and its boundary and co-boundary relations, with-
out any (geo)metrical information like shape, size,
or location.

If the purely topological representation in case 3
is restricted to point and line primitives and the cor-
responding boundary and co-boundary relations, one
obtains the well-known graph structure. This structure
and corresponding algorithms which are crucial for GIS
are the topic of Sect. 10.3.

10.3 Graph Theory (Königsberg Bridge Problem)

10.3.1 The Problem Introduction

In GIS, concepts from graph theory are extremely
useful in expressing the spatial structure of enti-
ties seen as points, lines, areas, and solids, after

the geometrical details of these entities are removed.
For example, in transportation and river networks,
the topological properties of their structures can
be represented using graphs. This article describes
the origins of graph theory and the impact it has
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Fig. 10.20 Layout of the city of Königsberg showing the river,
bridges, and land areas

on various fields ranging from geography to eco-
nomics.

The Königsberg bridge problem is a classic prob-
lem, based on the topography of the city of Königsberg,
formerly in Germany but now known as Kaliningrad
and part of Russia. The river Pregel divides the city into
two islands and two banks as shown in Fig. 10.20.

The city had seven bridges connecting the main-
land and the islands (represented by thick lines in the
figure) [10.37–40]. The problem asks whether there is
a walk that starts at any island, traverses every bridge
exactly once, and returns to the start point. The solution
proposed by a Swiss Mathematician, Leonhard Euler,
led to the birth of a branch of mathematics called graph
theory, which finds applications in areas ranging from
engineering to the social sciences. Euler proved that
there is no solution to the problem based on the number
of bridges connecting each land area.

The results from the solution of the Königsberg
problem have been extended to various concepts in
graph theory. In graph theory a path that starts and ends
at the same node and traverses every edge exactly once
is called a Eulerian circuit. The result obtained in the
Königsberg bridge problem has been generalized as Eu-
ler’s theorem, which states that a graph has a Eulerian
circuit if and only if there are no nodes of odd de-
gree. A node is a node of odd degree if the number
of edges incident to the node is odd. Since the graph
corresponding to Königsberg has four nodes of odd de-
gree, it cannot have a Eulerian circuit. Subsequently the
concept of Eulerian paths was introduced, which deals
with paths that traverse every edge exactly once. It was
proved that such a path exists in a graph if and only if
the number of nodes of odd degree is 2 [10.39–43].

While studying the Königsberg bridge problem, Eu-
ler also observed that the number of bridges at every
land area would add up to twice the number of bridges.
This result came to be known as the hand-shaking

lemma in graph theory, which states that the sum of
node-degrees in a graph is equal to twice the number of
edges. This result is the first formulation of a frequently
used result in graph theory that states that the sum of
node degrees in a graph is always even [10.42, 43].

10.3.2 Abstraction

The Königsberg bridge problem was formulated based
on the layout of the city of Königsberg around the river
Pregel. The problem was to find a tour that starts at any
point in the city, crosses each bridge exactly once, and
returns to the starting point. No one succeeded in doing
this.

Leonhard Euler formulated the problem as finding
a sequence of letters A, B, C, D (that represent the land
areas) such that the pairs (A,B) and (A,C) appear twice
(thus representing the two bridges between A and B,
and A and C) and the pairs (A,D), (B,D), (C,D) appear
only once (these pairs would represent the bridges be-
tween A and D, B and D, and C and D). Euler used
a counting argument to prove that no such sequence ex-
ists, thus proving that the Königsberg bridge problem
has no solution. Euler presented this result in the pa-
per The Solution of Problem Relating to the Geometry
of Position at the Academy of Sciences of St. Peters-
burg in 1735. This paper, in addition to proving the
non-existence of a solution to the Königsberg bridge
problem, gave some general insights into arrangements
of bridges and land areas [10.41, 42, 44].

Euler summarized his main conclusions in three
points.

1. If there is any land area that is connected by an odd
number of bridges, then a cyclic journey that crosses
each bridge exactly once is impossible.

2. If the number of bridges is odd for exactly two land
areas, then there is a journey that crosses each bridge
exactly once is possible, if it starts at one of these
areas and ends in the other.

3. If there are no land areas that are connected by an
odd number of bridges, the journey can start and end
at any land area [10.42].

Euler gave heuristic reasons for the correctness
of the first conclusion. To complete a cyclic journey
around the land areas, crossing each bridge exactly
once, there must be a bridge to leave the area for ev-
ery bridge to enter it. This argument was generalized
to the conclusion that a cyclic journey is possible if ev-
ery island is connected by an even number of bridges.
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A D

C

B

Fig. 10.21 Graph
representation
of the city of
Königsberg

Formal proofs for the conclusions were not proposed
until the year 1871, in a posthumous paper by Hier-
holzer [10.38, 41].

The paper presented by Euler on the Königsberg
bridge problem can be considered to mark the birth of
graph theory in general. Later, a diagrammatic represen-
tation evolved, which involved nodes or vertices and the
connecting lines that are called edges. Using this repre-
sentation, the Königsberg problem is modeled as shown
in Fig. 10.21.

Circles, called nodes, represent the islands and the
banks and connecting lines called edges represent the
bridges. The number of edges that are incident on a node
is called the degree of the node [10.42]. In the Königs-
berg bridge problem, the number of bridges connecting
a land area would be the degree of the node representing
the land area.

In an undirected graph, a cycle that traverses every
edge exactly once is called a Euler tour or Euler cy-
cle. Any graph that possesses a Euler cycle is called
a Eulerian graph. A path that traverses each edge ex-
actly once with different starting point and end point
is called a Eulerian path. An undirected multigraph has

B C

DA

B C

DA

B C

DA

a) b) c)

Fig. 10.22a–c Illustration of a Eulerian path and a Eulerian cycle. (a) Eulerian path A-B-C-D-A-C; (b) Eulerian cycle
A-B-C-D-A-C-A; (c) Neither Eulerian path nor cycle exist

a Eulerian circuit (path) if and only if it is connected
and the number of vertices with odd degree is zero
(two).

Figure 10.22 illustrates the Eulerian path and the
Eulerian cycle in a graph. In Fig. 10.22a, a Eulerian path
exists and it can be observed that the graph has exactly
two, odd degree vertices, which would be the start and
end vertices of the Eulerian path, A-B-C-D-A-C. Fig-
ure 10.22b does not have vertices with odd degree and
has a Eulerian cycle, whereas Fig. 10.22c has neither a
Eulerian path nor a Eulerian cycle.

10.3.3 Finding a Eulerian Circuit in a Graph

The method successively finds cycles in the graph. At
each step the edges that are in the already discovered
cycles are removed and the cycle is spliced with the
one discovered in the previous step. This process is con-
tinued until all edges are exhausted. These basic ideas
were formalized into an algorithm in [10.45]. The al-
gorithm maintains a list L with each vertex x such that
the kth entry in the list indicates the vertex to visit when
vertex x is reached the kth time.

Algorithm
Step 1 Select any vertex v1. v = v1; set kv = 0. Label

all edges as unvisited.
Step 2 Select an unvisited edge e incident to v. Mark

this edge visited. Let w be the other end vertex
of e. Increment kv by 1 and Lv[kv] = w. If w

has an unvisited incident edge, go to step 3. If
not, y will be v1. Then, go to Step 4.

Step 3 Set v = w and go to Step 2.
Step 4 Find a vertex v1 such that there is at least one

visited edge and one unvisited edge incident
at v1. Set v = v1 and go to Step 2. If no such
vertex exists, go to Step 5.
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Fig. 10.23
Illustration of
the Eulerian
algorithm

Step 5 To construct the Eulerian circuit, start at v1.
The first time a vertex u is reached, pro-
ceed to the vertex Lu[ku]. Decrement ku and
continue.

Trace of the Algorithm for Fig. 10.23
Step 1 v1 = 1 = v; kx = 0 for x = 1, 2, 3, 4.
Step 2 Select edge a. w = 2; k2 = 1; visited (a) = 1.
Step 3 v = 2; Select edge b. w = 3; k3 = 1; visited

(b) = 1.
Step 4 v = 3; Select edge c. w = 4; k4 = 1; visited

(c) = 1.
Step 5 v = 4; Select edge d. w = 1; k1 = 1; visited

(d) = 1.
Step 6 v = 2;
Step 7 Select edge e; w = 4; k4 = 2; visited (e) = 1
Step 8 v = 4;
Step 9 Select edge f ; w = 2; k2 = 2; visited ( f ) = 1
Step 10 Construct the cycle as 1–2–4–2–3–4–1.

Road graph with edge weights Optimal route: 1–2–3–4–2–4–1–3–1
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Fig. 10.24a,b Illustration of
the Chinese postman prob-
lem algorithm. (a) Road
graph with edge weights;
(b) Optimal route: 1-2-3-4-2-
4-1-3-1

10.3.4 Key Applications

Eulerian cycles find applications in problems where
paths or cycles need to be found that traverse a set of
edges in a graph. Such problems are generally called
edge routing problems.

Snow Plow Problem
This problem requires finding the least distance route in
the road network that starts and ends at the station so
that snow can be cleared from the streets at minimum
cost. The minimum distance route is obviously the Eu-
lerian cycle, since this cycle traverses each edge exactly
once. However, it is unlikely that any real road network
would happen to satisfy the necessary conditions that
make it Eulerian. In that case, the problem moves to the
realm of the Chinese postman problem [10.45–47].

Chinese Postman Problem
A postman delivers mail everyday in a network of
streets. It is useful to know whether or not the postman
can traverse the network and return to the mail station
without driving the length of any street more than once.
If the network is not Eulerian, the problem is modified
to the one where it is required to find the shortest path,
which visits each edge at least once. This problem state-
ment requires a parameter to be associated with each
edge that represents the cost of traversing that edge. For
example, cost can be the represented in terms of the
length of the street, which the edge represents.

In a non-Eulerian graph, the postman’s circuit,
shortest or otherwise, will repeat one or more edges.
Every vertex is entered the same number of times that
it is left so that any vertex of odd degree has at least
one incident edge that is traversed at least twice. The
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Table 10.1 Shortest path cost between the pairs

1 2 3 4

1 0 4 3 2

2 4 0 4 2

3 3 4 0 3

4 2 2 3 0

Table 10.2 Matching and costs

Matching Cost

(1,2),(3,4) 4+3 = 7

(1,4),(2,3) 2+4 = 6

(1,3),(2,4) 3+2 = 5

Chinese postman problem is formulated as an optimiza-
tion problem where the total cost of repeated edges in
minimized.

Algorithm
Step 1 Find the shortest path between each pair of odd

degree.
Step 2 Find the subgraph G′ with the odd degree ver-

tices.
Step 3 Find the minimum weight matching of all the

edges in G′. The edges in the shortest path con-
necting a matched pair of odd degree vertices
should be repeated.

Figure 10.24 shows a sample graph with edge
weights and the Chinese postman algorithm finds the
least cost (minimum edge weight) path in the graph
such that every edge is traversed at least once. Ta-
ble 10.1 shows the shortest path costs between every
pair of vertices, which is used by the algorithm to find
the minimum weight matchings on edges. Matching of
a graph is a set of edges without common vertices. The
three possible matchings and the corresponding costs
are provided in Table 10.2. The algorithm finds that the
paths from vertex 1 to vertex 3, and the path from 2
to 4 must be repeated, since this is the minimum cost
matching (the cost is 5). The algorithm finds the optimal
route to be 1–2–3–4–2–4–1–3–1 in the graph shown in
Fig. 10.24.

Capacitated Chinese Postman Problem
This problem arises where each edge has a demand and
vehicles to be routed have finite capacities. For example,
in applications involving road salting in the winter sea-
son, there is a limit on the maximum amount of salt that
a truck can carry. The amount of salt required is fixed for

a road segment. The capacitated Chinese postman prob-
lem finds the sets of routes from a single station that
service all the road segments in the network at a mini-
mal cost and are subject to the constraint that the total
demand of each route does not exceed the capacity of
each truck. Christofides proposed an algorithm to solve
this problem.

Capacitated Arc Routing Problem
This problem is different from the capacitated Chinese
postman problem in that demands of some of the road
segments can be zero. This situation can arise in road
salting scenarios where state highways can be used for
traveling, but need not be salted. These edges can be
used to traverse between the edges that require the ser-
vice.

Both the capacitated Chinese postman problem and
capacitated arc routing problem are NP-hard [10.47],
and heuristic methods are normally used to obtain so-
lutions.

10.3.5 Graph Theory

The Königsberg problem had a powerful impact on
mathematics, paving the way for the creation of a new
modeling theory called graph theory. The applications
of graph theory are numerous in science and engineer-
ing. A few are listed below.

Graph Theory in Spatial Networks
The very fact that graph theory was born when Euler
solved a problem based on the bridge network of the
city of Königsberg points to the apparent connection be-
tween spatial networks (e.g., transportation networks)
and graphs. In modeling spatial networks, in addition
to nodes and edges, the edges are usually qualified by
adding weights that encode information like the length
of the road segment that the edge represents. Connec-
tivity and shortest paths in spatial networks have been
extensively studied using graphs [10.48].

Graph Theory in Geography
Graphs are also widely applied in geography in the
modeling of stream systems. Streams have been mod-
eled as hierarchical graphs and random graphs in the
literature [10.49].

In addition to the applications described above,
graphs find other wide applications, including modeling
of social networks, molecular structures in chemistry,
computer networks, electrical networks, and syntax
structures in linguistics.
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10.3.6 Future Directions

Relationships between Eulerian graphs and other graph
properties such as the Hamiltonian property are be-
ing studied [10.50]. Graphs, the mathematical model

which owes its origin to the Königsberg bridge prob-
lem, are being increasingly applied to several evolving
domains such as spatio-temporal networks, which has
necessitated the incorporation of temporal dimension in
graphs.
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