


Conceptual Modelling
in Information Systems Engineering



John Krogstie · Andreas Lothe Opdahl
Sjaak Brinkkemper (Eds.)

Conceptual Modelling
in Information Systems
Engineering

With 75 Figures and 8 Tables

123



Editors

John Krogstie

NTNU and SINTEF
Sem Sælandsvei 7–9
7491 Trondheim
Norway
krogstie@idi.ntnu.no

Andreas Lothe Opdahl

Department of Information Science and Media Studies
University of Bergen
Fosswinckelsgate 6
5007 Bergen
Norway
Andreas.Opdahl@uib.no

Sjaak Brinkkemper

Department of Information and Computing Sciences
Universiteit Utrecht
Centrumgebouw Noord, office B229
Padualaan 14, De Uithof
3584CH Utrecht
The Netherlands
s.brinkkemper@cs.uu.nl

Library of Congress Control Number: 2007927092

ACM Computing Classification (1998): D.2, H.1, H.4

ISBN 978-3-540-72676-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the editors
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: KünkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3180/YL - 5 4 3 2 1 0



Preface

This book is a collection of 20 state-of-the-art contributions in information 
systems engineering. It was compiled on the occasion of Arne Sølvberg’s 
67th birthday. 67 is the normal retirement age in Norway, and although 
Arne has promised to keep working until 70 (at least), we found this to be 
a good opportunity to honour him, especially since the CAiSE conference 
will be held in Trondheim this year. The papers will be presented at the In-
formation Systems Engineering Symposium in Trondheim on 11 June 
2007 as a pre-conference event to CAiSE’07. 

The contributions were invited from the many friends and colleagues t-
hat Arne has around the world. During the last 40 years he has made a 
number of friends in the international research community in his chosen 
field of study. It has not been an easy task to select whom to invite to con-
tribute. People have been more than eager to contribute. The friends are so 
numerous that it is not possible to avoid offending many who rightfully 
may feel that they should also have been invited to contribute. 

Arne did not know about this initiative (although he might have sus-
pected something of this kind, being involved himself in a similar book 
project in connection with the retirement of his colleague Janis Bubenko in 
2000). The initiators and editors of this book are John Krogstie of the 
Norwegian University of Science and Technology (NTNU), Andreas Op-
dahl of the University of Bergen and Sjaak Brinkkemper of the University 
of Utrecht. We have selected the contributors ourselves and, given the lim-
ited size of a book, we have selected as best we could. We have invited 
friends from the different realms of Arne’s scientific life, from the domes-
tic scene, from VLDB, from IFIP, from ERCIM, and obviously, from the 
CAiSE community. Some of those invited have jointly written their contri-
butions, some have contributed together with their colleagues, and some 
have done it alone. We hope that the blend is satisfactory. 

When planning the book, we decided on a “free-for-all” attitude regard-
ing the themes, although we asked for a focus on the use of conceptual 
modelling and an outline of  the development from the past to the current 
and future states in an author’s particular field. The papers are fairly co-
herent in attacking problems in areas related to conceptual modelling and 



VI      Preface 

information systems engineering, pointing to further directions for the 
field.

We are very pleased with the comprehensiveness of this book and are 
thankful that we have had the good fortune to edit it. We wish to thank 
Monika Riepl and Ralf Gerstner at Springer for their efficient support in 
the publication of this book. 

It is an honour to be allowed to present this gift to Arne, as a token of 
our appreciation of his contributions to information systems engineering 
research and teaching. 

John Krogstie      Andreas Opdahl    Sjaak Brinkkemper   (editors) 
March 2007



Short biography of Arne Sølvberg 

Arne Sølvberg was born on 13 February 1940 at Klepp, Jæren in the south-
western part of Norway. He was the eldest of five children, with three 
brothers and one sister. He became Professor of Computer Science at The 
Norwegian University of Science and Technology in Trondheim, Norway 
already in 1974, the first professor in the Computer Science Department 
(IDB), which had been established two years earlier. 

Arne Sølvberg began his studies in 1958 and received a Siv.Ing. (M.Sc.) 
degree in applied physics in 1963 and a Dr.Ing. (Ph.D.) degree in com-
puter science in 1971, both from The Norwegian Institute of Technology 
(now incorporated in NTNU – The Norwegian University of Science and 
Technology). Sølvberg's Ph.D., under the guidance of Børje Langefors, 
was the first doctoral degree in computer science in Trondheim. Between 
1963 and 1974 Arne worked at SINTEF Runit, building up and leading 
their information systems group. 

Professor Sølvberg has been Dean of NTNU’s Faculty of Information 
Technology, Mathematics and Electrical Engineering since 2002. 



VIII     Short biography of Arne Sølvberg

His main fields of research are information systems design methodol-
ogy, database design, information modelling, information systems engi-
neering environments, and model driven development. 

He has been active in several international organizations for research 
cooperation. He was involved from the start in the establishment of IFIP 
TC8: Information Systems, and was the Norwegian national representative 
at the IFIP General Assembly in 1979 to 1982. He was chairman of IFIP 
WG8.1 for Information Systems Design from 1982 to 1988. He was a trus-
tee of the VLDB Endowment until 1994. He was a co-founder of the 
CAiSE conference series in 1989 together with Janis Bubenko. Originally 
a Nordic conference, it quickly was established as an international meeting 
place for researchers within the area of information systems engineering. 

He has been a visiting scientist at IBM San Jose Research Labs, The 
University of Florida, The Naval Postgraduate School, The University of 
California at Santa Barbara, and most recently at the University of Califor-
nia at Los Angeles. 

During his years as Professor, Arne Sølvberg guided a large number of 
Ph.D. students to their degrees. He has developed and taught numerous 
university courses and has inspired generations of students. He played an  
active role in the development of technical computer studies in Norway. It 
is specifically worth mentioning the work he did in building up the so-
called “customer led projects” already from 1974, giving students real as-
signments from real customers, introducing to them the wicked problems 
of information systems engineering first hand. 

Arne reached the usual Norwegian retirement age of 67 in February 
2007, but is still active as the Dean of the IME-faculty. He is also the cur-
rent vice-chair of ERCIM and is leading the cross-disciplinary ICT-
programme at NTNU. 

Arne Sølvberg is married to Ingeborg Sølvberg, also a professor at IDI, 
NTNU. They have two daughters, Astrid, who has a Ph.D. in pedagogics, 
and Ingrid, who has a Master’s in marine technology (both work in Trond-
heim). Arne and Ingeborg have three grandchildren and live at Steinan, in 
the west part of Trondheim. 



List of Authors 

Nicholas Berente 
Information Systems Dept., Case Western Reserve University 
10900 Euclid Avenue, Cleveland, Ohio  44106, USA 
berente@case.edu 

Janis A. Bubenko jr., Professor Emeritus 
Dept. of Computer and Systems Science, 
Royal Institute of Technology/Stockholm University 
Forum 100, SE-16440 Kista, Sweden 
janis@dsv.su.se 

Jordi Cabot, Dr. 
Estudis d'Informàtica, Multimedia i Telecomunicació, 
Universitat Oberta de Catalunya 
Rbla. del Poblenou, 156, E-08018 Barcelona, Spain 
jcabot@uoc.edu 

Antje Dietrich 
Inst. für Programmstrukturen und Datenorganisation (IPD), 
Universität Karlsruhe 
Postfach 6980, D-76128 Karlsruhe, Germany 
antje@ipd.uka.de 

Klaus R. Dittrich, Professor 
Dept. of Informatics, University of Zurich 
Binzmühlestrasse 14, CH-8050 Zurich, Switzerland 
dittrich@ifi.unizh.ch 

Johann Eder, Professor 
Dept. of Knowledge and Business Engineering, University of Vienna 
Dr.-Karl-Lueger-Ring 1, A-1010 Wien, Austria 
Johann.Eder@univie.ac.at 

Sergio España 
Dept. of Information Systems and Computation, 
Valencia University of Technology 
Camino de Vera s/n, 46022 Valencia, Spain 
sergio.espana@dsic.upv.es 



X     List of Authors 

Arturo González, Dr. 
Dept. of Information Systems and Computation, 
Valencia University of Technology 
Camino de Vera s/n, 46022 Valencia, Spain 
agdelrio@dsic.upv.es 

Jon Atle Gulla, Professor 
Dept. of Computer and Information Science, 
Norwegian University of Science and Technology 
N-7034 Trondheim, Norway 
jag@idi.ntnu.no 

Terry Halpin, Professor 
Neumont University 
10701 S River Front Pkwy Ste 300, South Jordan, Utah, 84095, USA 
terry@neumont.edu  

Keith G Jeffery, Professor, Director IT and International Strategy 
CCLRC Rutherford Appleton Laboratory 
Chilton, Didcot, OXON OX11 0QX, UK 
k.g.jeffery@rl.ac.uk

Paul Johannesson, Professor 
Dept. of Computer and Systems Sciences, 
Stockholm University/Royal Institute of Technology 
Forum 100, SE-164 40 Kista, Sweden 
pajo@dsv.su.se 

Krishna Kavi, Professor 
Dept. of Computer Science and Engineering, University of North Texas 
3940 N. Elm Street, Suite F201, Denton, Texas 76207-7102, USA 
kavi@cs.unt.edu 

John Krogstie, Professor 
Dept. of Computer and Information Science, 
Norwegian University of Science and Technology 
N-7034 Trondheim, Norway 
John.Krogstie@idi.ntnu.no 

David Kung, Professor 
Dept. of Computer Science and Engineering, 
University of Texas at Arlington 
416 Yates Street, NH 300, Arlington, TX 76019, USA 
kung@uta.edu 



                                            List of Authors  XI  

Marek Lehmann, Dr. 
Dept. of Knowledge and Business Engineering, University of Vienna 
Dr.-Karl-Lueger-Ring 1, A-1010 Wien, Austria 
Marek.Lehmann@univie.ac.at 

Peter C. Lockemann, Professor 
Inst. für Programmstrukturen und Datenorganisation (IPD), 
Universität Karlsruhe 
Postfach 6980, D-76128 Karlsruhe, Germany 
lockeman@ipd.uka.de 

Kalle Lyytinen, Professor 
Information Systems Dept., Case Western Reserve University 
10900 Euclid Avenue, Cleveland, Ohio  44106, USA 
kalle@case.edu 

Antoni Olivé, Professor 
Dept. Llenguatges i Sistemes Informàtics, 
Universitat Politècnica de Catalunya 
C/ Jordi Girona Salgado 1-3, E-08034 Barcelona, Spain 
olive@lsi.upc.edu 

Andreas L. Opdahl, Professor 
Dept. of Information Science and Media Studies, University of Bergen 
N-5020 Bergen, Norway 
Andreas.Opdahl@uib.no 

Óscar Pastor, Professor 
Dept. of Information Systems and Computation, 
Valencia University of Technology 
Camino de Vera s/n, 46022 Valencia, Spain 
opastor@dsic.upv.es 

Barbara Pernici, Professor 
Dipartimento di Elettronica e Informazione, Politecnico di Milano 
piazza Leonardo da Vinci 32, 20133 Milano, Italy 
barbara.pernici@polimi.it 

Klaus Pohl, Professor, Scientific Director 
Software Systems Engineering, University of Duisburg-Essen/ 
Lero - The Irish Software Engineering Research Centre 
Schützenbahn 70 ("Altbau"), 45117 Essen, Germany 
klaus.pohl@sse.uni-due.de 



XII     List of Authors 

Oliver Raabe, Dr. 
Inst. für Informationsrecht, Universität Karlsruhe 
Postfach 6980, D-76128 Karlsruhe, Germany 
raabe@ira.uka.de 

Colette Rolland, Professor 
Université Paris1 Panthéon Sorbonne 
90 Rue de Tolbiac, 75013 Paris, France 
rolland@univ-paris1.fr 

Ernst Sikora 
Software Systems Engineering, University of Duisburg-Essen 
Schützenbahn 70 ("Altbau"), 45117 Essen, Germany 
ernst.sikora@sse.uni-due.de 

Guttorm Sindre, Professor 
Dept. of Computer and Information Science, 
Norwegian University of Science and Technology 
N-7034 Trondheim, Norway 
Guttorm.Sindre@idi.ntnu.no 

Bernhard Thalheim, Professor 
Dept. of Computer Science, Christian Albrechts University Kiel 
Olshausenstr. 40, D-24118 Kiel, Germany 
thalheim@is.informatik.uni-kiel.de 

Anthony I. Wasserman, Professor, Executive Director 
Carnegie Mellon West 
Moffett Field, CA 94035, USA 
tonyw@west.cmu.edu 

Patrick Ziegler 
Dept. of Informatics, University of Zurich 
Binzmühlestrasse 14, CH-8050 Zurich, Switzerland 
pziegler@ifi.unizh.ch 



Contents

Preface ....................................................................................................... V

Short biography of Arne Sølvberg ........................................................VII

List of Authors .........................................................................................IX

From Information Algebra to Enterprise Modelling and Ontologies – 
a Historical Perspective on Modelling for Information Systems 
Janis A. Bubenko jr......................................................................................1 

Fact-Oriented Modeling: Past, Present and Future  
Terry Halpin...............................................................................................19 

Data Integration - Problems, Approaches, and Perspectives 
Patrick Ziegler, Klaus R.Dittrich ...............................................................39

Challenges to Conceptual Modelling  
Bernhard Thalheim ....................................................................................59 

Interoperable Management of Conceptual Models  
Andreas L. Opdahl, Guttorm Sindre ..........................................................75

Uniform and Flexible Data Management in Workflow Management 
Systems
Johann Eder, Marek Lehmann ...................................................................91

Using Models in Enterprise Systems Projects  
Jon Atle Gulla ..........................................................................................107

The Role of Business Models in Enterprise Modelling 
Paul Johannesson .....................................................................................123 



XIV      Contents 

Capturing System Intentionality with Maps  
Colette Rolland ........................................................................................ 141

Conceptual Modeling and Software Design of Multi-agent Systems        
David Kung, Krishna Kavi…………………………………………….. 159

Agent Approach to Online Legal Trade  
Antje Dietrich, Peter C. Lockermann, Oliver Raabe ............................... 177 

Methods and Tools for Developing Interactive Information Systems       
Anthony I. Wasserman …………………………………………………195

Conceptual Alignment of Software Production Methods
Óscar Pastor, Arturo González, Sergio España ....................................... 209

The Co-Development of System Requirements and Functional 
Architecture  
Klaus Pohl, Ernst Sikora..........................................................................229

Capturing Dependability Threats in Conceptual Modelling
Guttorm Sindre, Andreas L. Opdahl........................................................ 247

What Is Being Iterated? Reflections on Iteration in Information 
System Engineering Processes  
Nicholas Berente, Kalle Lyytinen............................................................ 261

Systems Development in a GRIDs Environment 
Keith G. Jeffery ....................................................................................... 279

Adaptive Information Systems
Barbara Pernici ........................................................................................ 295 

Modelling of the People, by the People, for the People  
John Krogstie ........................................................................................... 305

A Research Agenda for Conceptual Schema-Centric Development  
Antoni Olivé, Jordi Cabot............................................................. …..…319  

Bibliography...........................................................................................335

Index .......................................................................................................339



From Information Algebra to Enterprise Modelling 
and Ontologies – a Historical Perspective on 
Modelling for Information Systems 

Janis A. Bubenko jr 

Royal Institute of Technology and Stockholm University, Kista, Sweden 

Abstract. Evolution of research and practice in the area of conceptual modelling for 
information systems during more than four decades is examined. It focuses on activi-
ties related to research and practice in the early system development phases. It com-
ments on a large number of modelling methods published in the 1960-ies, 70-ies, and 
80-ies as well as on the report "Concepts and Terminology of the Conceptual Schema 
and the Information Base" reporting the work by the ISO working group 
ISO/TC97/SC5/WG5 in the early 80-ies. Approaches which are based on a temporal 
and deductive view of the application domain as well as object-oriented modelling 
languages are acknowledged. The paper continues with a discussion of principles and 
research problems related to a topic we call "Enterprise Modelling" and "Ontology 
Modelling". The role of conceptual modelling in information systems development 
during all these decades is seen as an approach for capturing fuzzy, ill-defined, in-
formal "real-world" descriptions and user requirements, and then transforming them 
to formal, in some sense complete, and consistent conceptual specifications. During 
the last two decades an additional role of modelling has evolved - to support user and 
stakeholder participation in enterprise analysis and requirements formulation and in 
development of shared conceptualisations of specific domains.  

1 Introduction 

Modelling has always been an essential part of developing information 
systems. In the very early attempts of modelling, focus was on describing 
the domain in strict, formal, and computer independent terms. What were 
modelled were data and operations on data. Data were modelled in abstract 



2      Janis A. Bubenko jr 

terms using concepts such as information set, entity, attribute, production 
rule, etc. This kind of modelling started in the late fifties. 

The purpose of this paper is to acknowledge the work introducing a 
large number of basic modelling concepts, some as early as in 1958. Sec-
tion 2 presents some pioneers: Young and Kent’s early approach (1958) 
towards abstract formulation of data processing problems, CODASYL De-
velopment Committee's Language Structure Group's report "An Informa-
tion Algebra" in 1962, and the infological approach and the elementary 
message concept, presented by Langefors in 1965. Section 3 describes a 
large number of conceptual modelling styles and approaches introduced 
during the seventies, as well as a number of activities or special interest 
groups within IFIP, ACM, and VLDB that were established in order to 
promote conceptual modelling. Section 4 aims at illustrating the situation 
during the eighties – method and model comparison and the search for a 
common framework. This period also gave birth to temporally oriented 
and object oriented approaches. Section 5 illustrates modelling trends dur-
ing the nineties: to extend the scope of conceptual modelling, e.g. by mod-
elling organisational intentions and problems, business rules, business 
processes, etc., and to apply it also in the business and organisational 
analysis phases of the systems life cycle. The paper is concluded in section 
6.

2 Pioneering Work 

Already in 1958 two electrical engineers, Young and Kent, [38] argued for 
the importance of a “precise and abstract way of specifying the informa-
tional and time characteristics of a data processing problem”. Their nota-
tion “should enable the analyst to organize the problem around any piece 
of hardware”. As we can see, their purpose of an abstract specification was 
to use it as an invariant basis for designing different alternative implemen-
tations, perhaps even using different hardware components. Performance 
and cost of computer equipment were important design factors at that time. 

Important concepts introduced by Young and Kent are 
Information set/item, e.g. sets of customer numbers (P2), customer 
names (P10), order dates, (P1) etc. 
Defining relationship, e.g. P2  P10 (where  denotes isomorphism), P1
= P7  P8 X P9, where the last three information sets denote days, 
months and years. 
Document descriptions using document components explained by the 
use of definitions of information sets 



From Information Algebra to Enterprise Modelling and Ontologies   3 

Producing relationship. e.g. D1 D2 (where D1 is the document “ship-
ping notice” and D2 is the document “invoice” 
Conditions, e.g. tE (D2) – tE (D1)  2 days, where tE denotes the “extrin-
sic time” of the document, i.e. the time when it was created or produced. 

Young and Kent also suggested a graphical notation to represent the dif-
ferent descriptions and relations. These diagrams looked more like electri-
cal wiring diagrams. We believe they were, compared to UML diagrams of 
today, considerably less user friendly and more difficult (if not impossible) 
to understand for non-engineers. In any case, it feels important to mention 
these two pioneers in abstract representation of information systems. They 
even had the notion of extrinsic as well as intrinsic time in order to express 
relations and different kinds of conditions. However, as could be expected, 
it is impossible to finds any traces of practical use of the above ideas. 

The next step in modelling for information systems was taken by the 
CODASYL Development Committee1  [10]. The motivation behind the 
committee’s model was essentially the same as for Young and Kent “…to 
arrive at a proper structure for a machine independent problem definition 
language, at the system level of data processing”. The committee writes: 
“In general, the underlying concepts of the Algebra have been implicitly 
understood for years by the business systems analyst. An information sys-
tem deals with objects and events in the real world that are of interest. 
These real objects and events, called “entities”, are represented in the sys-
tem by data. The data processing system contains information from which 
the desired outputs can be extracted through processing. Information about 
a particular entity is in the form of “values” which describe quantitatively 
or qualitatively a set of attributes or “properties” that have significance in 
the system”. 

Information Algebra is based on three undefined concepts: Entity, Prop-
erty, and Value. Based on these concepts the Algebra introduces further 
concepts such as Property Value Set (V) (e.g. employee number sets), Co-
ordinate sets (Q) (e.g. Q = (q1, q2) = (employee number, hourly pay-rate) 
and the Property space (P) of a coordinate set Q (e.g. P = Q1 X Q2). A 
number of additional Algebra concepts such as a “line” (an ordered set of 
points in P), an “area” (a subset of P), and a “bundle” (a way of relating 
lines) are defined. All these, and many more concepts, are then used to ab-
stractly define files and operations on data in files.  In summary, the In-
formation Algebra is a wonderful example of a strict mathematical formu-
lation of a data processing problem and operations on data. Regretfully, as 

                                                     
1 The mathematical ideas behind the Information Algebra were initially developed 

by Robert Bosak of the Systems Development Cooperation. 



4      Janis A. Bubenko jr 

could be expected, it is not possible to find references to realistic, practical 
use of the Algebra. On the other hand, we can easily imagine how the ba-
sic concepts of it inspired a number of followers, such as the relational 
data model and the semantic data models, developed during the seventies. 

The next notable development of the sixties was a number of theoretical 
notions introduced for information systems by Börje Langefors. They ap-
peared in a number of shorter papers during the early sixties when Lange-
fors was at the Swedish SAAB aircraft company (e.g. [19]). Many of these 
reports were used for system analyst training at SAAB. In 1967 many of 
these reports were compiled in the book “Theoretical Analysis of Informa-
tion Systems”[20], the first university textbook on information systems 
development in Sweden. 

Langefors introduced a number of concepts related to modelling for in-
formation systems among others the partitioning of the system develop-
ment life-cycle in four important method areas 

Methods for management and control of organisations 
Methods for analysis and description of information systems at an ele-
mentary, “problem oriented” level (the “infological” realm) 
Methods for design and analysis of computerised information process-
ing systems (The “datalogical” realm) 
Methods for implementation of the information system on computer 
hardware (processors, storage units, communication channels, etc.) and 
choice of hardware. Methods for installation. 

In the infological realm Langefors suggested that the smallest element 
that could contain any meaningful information was the elementary mes-
sage. An elementary message is a quadruple <S, T, A, V> where S is the 
identification of a system point, T is the moment of time, A the name of a 
state variable, and V is the value of the state variable. The reader recog-
nizes that S is what we nowadays call an entity or an object, A is the name 
of a property or an attribute, and V is the property value. An interesting 
notion is the reference to time, the time of the validity of the assertion. A 
time-less statement in an information base <S, A, V> can, at any time, be 
true or false. On the other hand a statement with a temporal reference <S, 
T, A, V> if true when inserted in the information base, is always true. We 
will return to the use of time in conceptual modelling as well as in data 
base management in subsequent chapters. 

In summary, the important contribution of the sixties was the confirma-
tion of the significance of the infological realm, i.e. the realm where data 
processing problems were expressed formally in a machine-independent 



From Information Algebra to Enterprise Modelling and Ontologies   5 

way. This laid the basis for a wealth of new modelling notions during the 
next decade. 

3    Refinement – New Models and Extensions 

The decade of 1970 is characterised by introduction of new models as well 
as refinement and extensions of a number of information modelling lan-
guages. Different actors with different ambitions were active here. Perhaps 
the most enthusiastic data modelling researchers at this time came from the 
database community. Also the Information Systems community as well as 
some AI-people joined in. For the database designers, the primary purpose 
of modelling was the need to define what kind of reality the data in the 
data base (or in an Information Systems) should describe. This should be 
described in a machine independent way, i.e. it should not be in terms of 
records, record descriptions and access links. It should rather be in terms 
of concepts similar to the ones expressed by the proponents of the Infor-
mation Algebra, i.e. entities, properties, relationships, and such. 

Some important events, which significantly contributed to further de-
veloping the field of data modelling, occurred in the seventies: 

In the early seventies IFIP formed a Technical Committee 2 (TC2) on 
Software. A few years later TC2 established a Working Group (WG2.6) 
on Database. WG 2.6 then took the initiative to launch a number of Work-
ing Conferences on Data Base Management and Data Modelling. The first 
four of them had a considerable focus on data modelling issues and prob-
lems. The first was held in Cargèse, Corsica [21] in 1974.  The second was 
held in Wepion, Belgium[13], the third in Freudenstadt [25], Germany, 
and the fourth in Nice, France [26]. 

The Standards Planning and Requirements Committee (SPARC) of 
the American National Standards Institute Information Processing Systems 
(ANSI/X3) Committee,  proposed in 1975 a three-schema architecture for 
data bases [1]. The architecture defined three separate schemas, or views,
for describing data in a database. They were the External Schema or User 
View, the Conceptual Schema or the Logical View, and the Internal 
Schema or Implementation View. A journal publication appeared in 1978 
[34]. The architecture had a major impact on thinking about the contents, 
structure, as well as of the interoperability of data base systems. 

The IFIP Technical Committee 7 (TC 7) on Information Systems was 
formed in 1977. TC8’s Working Group 8.1 deals with formal description 
and analysis of information systems. As databases are natural parts of in-
formation systems, many data base researchers joined also WG-8.1. Sev-



6      Janis A. Bubenko jr 

eral of the methods for IS – design and development discussed in WG-8.1 
also had substantial suggestions of concepts regarding conceptual data 
models. 

ACM’s Special Interest Group on Management of Data (SIGMOD) 
started its annual conferences in 1975. Besides a large number of technical 
data base problems, also papers on data base design and conceptual data 
modelling were solicited. SIGMOD’s annual conferences as well as its pe-
riodical SIGMOD Newsletter significantly contributed to spreading of data 
and conceptual modelling ideas on the North American continent as well 
as in the rest of the world. 

The VLDB series of conferences started 1975 in Framingham, Massa-
chusetts. The motivation for having a special conference for “very large” 
data bases was the introduction of powerful disk-based storage devices for 
direct access. This created a need to develop technology and methods how 
to structure, store, access, and manipulate large amounts of data. Many of 
the papers presented at VLDB dealt with data modelling, structuring, and 
access, as well as with performance issues. VLDB is held annually in the 
months of August – September. Later VLDB formed an Endowment, con-
sisting of 21 trustees who are responsible for the continuity of the confer-
ence series. The proceedings of VLDB were published by Morgan Kauf-
mann during 17 years. Since 1992 they are published by Springer. 

Which were the significant issues, insights and proposals during the 
seventies regarding conceptual data modelling? In the author’s view, the 
following are candidates: 

An “object” and “the name of an object” are different things. This 
“obvious” insight is still not generally acknowledged even among some 
“ontology fans” of today. Some of the first data modelling researchers to 
recognize this distinction were Michael Senko [33] and Sjir Nijssen in his 
NIAM model [24]. 

Binary vs. relational models: Many new types of data models pre-
sented in the seventies were binary models, i.e. models composed of trip-
lets <A, R, B> where A and B are objects (or entities) and R denotes a re-
lationship (see for instance Abrial’s model of 1974 [2]). Some researchers 
advocated a third node type, a relationship that could be ternary or a higher 
order relationship (the well known Entity-Relationship model [9] had this 
property). A substantial part of the data modelling community advocated 
the relational data model (suggested by [11] at IBM Research), not only 
for its simplicity, but also for its mathematical strictness. Considerable dis-
cussions, pro and contra, took part between followers of both camps. Even 
at IBM people were in different camps, while the management of IBM Re-
search put considerable resources in developing the relational data base 
management system R*. Today the battle is settled: conceptual data mod-



From Information Algebra to Enterprise Modelling and Ontologies   7 

els are generally used as high-level problem oriented descriptions of or-
ganisations and data. Relational models are seen as implementation ori-
ented descriptions. 

Specialisation and generalisation, inheritance: Some conceptual 
models permitted definition of subtypes and supertypes of entities, and 
definition of how properties of a supertype could be inherited by subtype 
entities.

Distinction between types, sets, and instances: These notions initially 
came from the field of Semantic Networks within Artificial Intelligence, 
primarily used for representation of knowledge and to support automatic 
systems for reasoning about knowledge. 

Constraints and deduction: The purpose of defining constraints is to 
define which entities, relationships, and property values are permitted in 
the set of instances of a data model schema. Another type of constraints 
may define how the set of instances of a data model may change, e.g. by 
stating pre- and post-conditions for transactions. Deduction in its turn per-
mitted the definition of derived entities, relationships and attributes. An 
example of a data model of the seventies that had a rich language for defi-
nitions of this kind is the Semantic Data Model [18]. Also, the use of logic 
for expressing conceptual models, including rules, was presented [12]. 

The temporal dimension: The importance of time in conveying infor-
mation was noted by Young and Kent as well as by Langefors (see above). 
This notion was further developed by Bubenko  [5] who suggested an ap-
proach to design a conceptual schema that contained “time-stamped” in-
formation including a set of derivation rules. Bubenko also argued [6] that 
inclusion of the temporal dimension in information modelling improved 
user understanding and, therefore, also the quality of the conceptual 
schema. 

Data Model Based Data Base Management Systems. Most, if not all, 
semantic modelling approaches were at this time intended to develop ab-
stract descriptions of the content and the constraints and rules of a data 
base. Data bases were subsequently implemented using a Data Base Man-
agement System (DBMS). The major types of systems were the hierarchi-
cal, the network and the relational types of DBMS. There was, however, 
one exception. The CADIS group in Stockholm developed already in 1970 
a DBMS, called CS1 (CADIS System 1) that was based on a binary data 
model (inspired by the LEAP language [15]). The CS was further devel-
oped and supplemented with a procedural data manipulation language [3]. 
This “fourth generation language” (4GL) later became a Swedish software 
product, that evidently led to significantly shorter system development 
times as well as less error-prone software. The CS could not match the 
marketing effort of relational systems and it did not lead to markets outside 



8      Janis A. Bubenko jr 

Sweden. Surprisingly enough the CADIS System is still being used for 
systems development in several sites in Sweden.

Graphical query languages: One very peculiar achievement during the 
seventies was a graphical query language using a binary data model. Mike 
Senko introduced around 1976 the light-pen oriented language FORAL LP 
by which transactions could be defined on a binary data model displayed 
on a screen by pointing to nodes and arcs of the model as well as to letters 
and numbers. In this way a transaction was built-up and then translated to 
the FORAL language. Unfortunately, Senko was years ahead of the rest of 
the computing community and, therefore not appreciated by some influen-
tial colleagues. Also the graphics hardware was extremely primitive at that 
time. The idea was not further developed until in the late eighties when it 
was used by SISU2 [22] to build a graphical query language referring to a 
conceptual model of a domain. The graphical language was then translated 
to SQL. This tool was called HYBRIS. The idea was further exploited in a 
number of EU projects in connection with access to multi-media data.  

In summary, we feel that most of the essential basic concepts of model-
ling were invented and presented during the seventies. Not all approaches 
presented became practically used, but they formed a solid platform for 
further developments during the eighties and nineties. 

4 The Search for a Common Framework 

A large number of more or less similar modelling languages and concepts 
were published during the seventies. It seems we reached a common desire 
to compare the different models and try to find a common acceptable 
framework. At least there was an aspiration to better understand, evaluate, 
and/or improve parts of existing methods and to harmonize them. Like-
wise, there was a wish to enhance the requirements capture and validation 
stage of the systems life-cycle by application of powerful, abstract model-
ling techniques. In this connection also the question “what are we model-
ling?” was raised. Is it the data base or the real-world? And whose real 
world is it?

One notable activity during the end of the seventies is the start-up of a 
working group WG3 in the subcommittee SC5 of ISO/TC 97. Three years 
later, in 1981, the working group presented a preliminary report “Concepts 
and Terminology for the Conceptual Schema” [17]. The overall charter of 
the group was to prepare for standardisation in the area of data base man-
                                                     
2 SISU stands for Swedish Institute for Systems Development. Mare about SISU 

can be found at http://roxy.cnet.se/vnapps/SISUWeb/Frontpage_default.vns 



From Information Algebra to Enterprise Modelling and Ontologies   9 

agement. Some important objectives chartered to the group were 1) to de-
fine concepts for the conceptual schema language, 2) to define or monitor 
definition of conceptual schema languages, 3) to develop a methodology 
for assessing conceptual schema languages, 4) to assess proposals for con-
ceptual schema languages. The group never fully reached these apparently 
very tough goals. Neither was the preliminary report ever finalized. But the 
report left, at that time, a heavy impact on the modelling community. The 
report also became frequently referenced. 

Taking the three-schema approach [1] as a starting point, the working 
group makes a number of important distinctions between the universe of 
discourse and a universe of discourse description. Two principles, sug-
gested by the group, have been frequently cited.  

1. A conceptual schema should be as free as possible of any aspect ir-
relevant to the universe of discourse, e.g. aspects of internal physical 
data representation, organization, and access within the data base sys-
tem, or aspects of particular external user representations, such as ex-
ternal language or message formats, etc.  

2. All relevant aspects, rules, etc. of the abstraction system should be 
described in the conceptual schema. None of them can occur else-
where, in particular not in application programs formulated apart 
from the conceptual schema. 

The group then examines four classes of modelling approaches 1) the 
entity attribute relationship, 2) the entity relationship, 2) the binary rela-
tionship, and 4) the interpreted predicate logic approaches for their expres-
sive power with respect to a particular domain description. Not surpris-
ingly, the fourth approach was found superior. Considering the principles 
above, we can also see that the so called “object-oriented” modelling ap-
proaches of the nineties, e.g. UML, do not fully match properties required 
for a conceptual schema language due to some deficiencies regarding its 
expressive power.

One problem with most modelling approaches seems to be how to ex-
press temporal or dynamic rules and constraints, e.g. how to express the 
rule “the salary of a permanently employed person must not decrease”. 
One way to handle this is to use a deductive, temporal modelling approach 
[7]. In this approach the conceptual schema consists of time stamped 
predicate definitions and a set of derivation rules. Predicates define state 
information, e.g. employed (p, t), as well as events, e.g. employment (p, t). 
All state information is derived from corresponding events, e.g. a person is 
employed at time t if s/he has been employed before time t and not fired 
before time t. The non-decreasing salary rule above could be expressed by 
stating that the salary of an employee at time t+1 must be greater or equal 



10      Janis A. Bubenko jr 

to that person’s salary at time t. Further work on the deductive, temporal 
approach is reported by Olivé [27,28]. 

In an alternative approach the entity-relationship model is augmented 
with time, e.g. a non-permanent, time varying entity, relationship, or at-
tributed is marked as “temporal”. Using temporal operators such as “some-
time in the past”, “sometime in the future”, or “in the next state” different 
kinds of temporal constraints can be defined. 

Several other semantically rich and expressive modelling approaches 
were introduced during the eighties , e.g. RML [16]. RML, in particular, 
also paved the way for increased attention to requirements engineering as a 
significant phase in the systems development life cycle. During the eight-
ies an interest was also expressed in the topic of “historical databases”. 
This gave birth to data models that treated several aspects of time, i.e. the 
time of an event, the observation time of the event and the transaction time
of the event. This data base concept was called “multi-temporal data-
bases”.

The search for a common modelling and method framework continued 
during the eighties. One particular manifestation of this is the IFIP WG 8.1 
Working Conference series on System Development Methodologies that 
was initiated in 1982. The series became known as CRIS – Comparative 
Review of Information Systems Design Methodologies [29-31]. This series 
exposed a large number of modelling approaches in the realm of informa-
tion system design. While the comparison between approaches hardly gave 
significant insights, the discussions among method authors stimulated 
them to insights that eventually would improve their own approaches. 
CRIS also stimulated a number of follow-up conferences as well as the 
forming of a task group FRISCO (Framework of Information System 
COncepts) that in 1995 presented an extensive report which provides a ref-
erence background for modelling in the information system area [14]. In 
particular, the report3 “justifies the information system area scientifically 
by placing it in a more general context, comprising philosophy, ontology, 
semiotics, system science, organisation science, as well as computer sci-
ence”, thereby anchoring concepts of the information system area to con-
cepts of the other areas.

In this connection we should not forget the “synergy-workshops” 
started, mainly by North-American researchers, in 1980 in Pingree Park 
[4] where the aim was to explore advances in: data bases4, artificial intelli-

                                                     
3 For the full FRISCO report see: http://www.mathematik.uni-marburg.de/-

~hesse/papers/fri-full.pdf 
4 From the data base standpoint it was essentially data modelling that was dis-

cussed 



From Information Algebra to Enterprise Modelling and Ontologies   11 

gence and programming languages in order to look for synergetic cross-
fertilization of concepts and theories. As with the CRIS conference series 
there were no immediate practical effects of this set of activities. But they 
brought together scientists with different perspectives and they most likely 
laid a basis for future innovations. Perhaps the “ontology movement”, see 
below, is such a result. 

5 Participation and Understanding 

The 90-ties lead to increased development and use of advanced conceptual 
modelling methods and techniques. One of the main questions during the 
eighties regarding modelling was “What are we modelling?” The nineties 
brought new questions in to the inquiry. Why are we modelling and how 
are we modelling became two of the new issues. Furthermore, we were 
moving from relatively well defined, limited scope applications into new, 
less well conceptualised applications and not well bounded problem do-
mains. It was in most cases difficult to achieve full understanding and con-
sensus of the world.

In Europe many collaborative projects in IT were sponsored by the 
European Union via the European Commission (EC). In its ESPRIT 
framework, EC argued for increased focus on organisational aspects, par-
ticipation and understanding when developing IT-systems for practical 
applications. In particular it argued for “increased understanding and sup-
port of human activities at all levels in an organisation”.

An example of this expressed need is the TEMPORA project where a 
temporal ER-type of model was developed (see for instance [23], and ex-
ample in Fig.1). The TEMPORA conceptual model also included submod-
els of business goals and rules. Goals and rules could be expressed over 
time using temporal logic as could “derived” entity and relationship types. 
In this sense we can say that TEMPORA paved the way for extending the 
scope of modelling. This illustrates the movement from conceptual model-
ling to “business modelling” or “enterprise modelling”. 



12      Janis A. Bubenko jr 

Fig. 1. An ER-type model of TEMPORA with temporal dimension for both enti-
ties and relationships (from [23]).   

An example of a model with extended scope is the EKD (Enterprise 
Knowledge Development) approach. EKD is a derivative of the 
TEMPORA model. The EKD modelling approach was first developed in 
the EU-project F3 (“F Cube”, EU Nr. 6353) and then further elaborated in 
the ELEKTRA project (22927) [8] [32]. Later EKD was used in several 
more projects, national as well as international, for instance in Hyper-
knowledge5 (28401). EKD differs from the approaches discussed earlier in 
this paper foremost through two distinguishing characteristics. 

Firstly, it is an approach strongly based on involvement and participa-
tion of “stakeholders” (users, managers, owners …). This means that an 
EKD model is gradually built by its stakeholders in participatory model-
ling seminars, led by one or more facilitators. The work mode is using a 
wall covered with a plastic sheet and posting pieces of paper on it, repre-
senting components of the different models. Later the modelling results are 
documented in a computer by a documentation specialist. Secondly. it is a 
multi-model approach involving not only a model for conceptual structures 
but also interlinked submodels for goals, actors, business rules, business 
processes, and requirements to be stated for the information system, if such 
is developed. All these models are interlinked, for instance a goal in a goal 
model may refer to a concept in the concepts model, if the concept is used 
in the goal description (see Fig. 2).

The EKD approach, or other multi-model, participatory approaches 
similar to EKD, are now in frequent use in a wide range of practical appli-

                                                     
5 The latest EKD description can be found at ftp://ftp.dsv.su.se/users/js/ekd_-

user_guide_2001.pdf 



From Information Algebra to Enterprise Modelling and Ontologies   13 

cations and having a spectrum of purposes. We find uses of this kind of 
approach not only for information system development, but also for organ-
isational development, business process analysis, knowledge management 
studies, and many more. We do not have a complete trace of all places 
where this kind of approach is applied, but we know several instances in 
Sweden, UK, France, Greece, Austria, and Latvia. 

Fig. 2. A top view of the multi-model approach EKD, showing different types of 
models in interaction. The “Concepts model” can be said to correspond to what 
was earlier called a data model or a conceptual model. 

A quickly developing modelling topic, related to EKD, concerns devel-
opment and use of “business patterns”, i.e. documentation and re-use of 
successful conceptualisations of subsets of an EKD interlinked model. 
However, lack of space prevents us from dwelling further into the topic 
here.

Last in this section, I wish to comment on what might be called “the on-
tology movement”. The concept “ontology” has during the nineties be-
come increasingly popular and used in different kinds of disciplines. What 
seems to be behind it is the need for better “understanding” and a “shared 
conceptual view” of different (problem) domains. Another need is to im-
prove understanding, of information on “the Web”, i.e. what does a par-
ticular page on the web “mean and describe”. and perhaps even make the 



14      Janis A. Bubenko jr 

semantic of it automatically manageable. Naturally, this has lead to in-
creased use of conceptual modelling, not only for development of informa-
tion systems but for all kinds of organisational or scientific analysis in dif-
ferent application domains, be it medicine, transportation, or defence. The 
term “ontology” seems to have as many definitions as there are “ontolo-
gists”. An oversimplified definition of an ontology6 is “An ontology of 
domain X is a conceptual description, preferably formal, of what “there is” 
in the domain”. Ontological descriptions of domains range from simple 
taxonomic dictionaries to complex logical models. In [35] the authors try 
to describe the distinction between data modelling and ontology engineer-
ing. In essence the authors say that data models are conceptualisations de-
veloped for well bounded application program domains, while an ontology 
is a high generic-level conceptualisation of a problem domain to be shared 
by all applications of that domain. It is however, not clear whether the au-
thors mean that a domain ontology should be developed before the applica-
tions and then used by all of them. 

There seem to be two observations with the ontological movement: 1) 
not all ontologists seem to be aware of advances in conceptual modelling 
several decades earlier, and  2) the purpose and the process of developing 
an ontological model is not always made clear. The first observation usu-
ally leads to the opinion that UML is the starting point of conceptual mod-
elling. The second leads to the problem of “closure”: what is a “complete” 
ontological model? In modelling for information systems this question is 
easily answered: the conceptual model (see Fig. 2) must include descrip-
tions of all concepts needed in a complete systems description, i.e. con-
cepts appearing in goal definitions, information needs definitions, rule 
definitions, process definitions, etc. etc. Since ontologies seem normally to 
be developed for domains, without a particular application in mind, this 
seems to lead to difficulties regarding the completeness of an ontology. 

6 Concluding Remarks and Dedication  

This subjective, one man’s view of four decades of conceptual data model-
ling in connection with information systems design is obviously incom-
plete. It has not been practically possible to tell about all developments and 
achievements in the area. It has not been possible to give a fair set of rele-
vant references showing all important work being published and exposed. 

                                                     
6 In dictionaries ontology is often defined as ”The branch of metaphysics that 

studies the nature of existence or being as such”. 



From Information Algebra to Enterprise Modelling and Ontologies   15 

Contributions in this widening area during the past forty years are too 
many.  Nevertheless, I hope the reader will find my view of the evolution, 
influenced by the “Scandinavian school”, interesting as a complement to 
other historical contributions. 

A simple conclusion can be drawn from the description above. Starting 
from simple and well bounded conceptual descriptions of information and 
data base systems, the area of modelling is exploding and encompasses 
now many different kinds of “knowledge advancing and building” activi-
ties in many possible domains. The importance of stakeholder participation 
is well recognised  (see e.g. [36]) leading to increased use of a participa-
tory work mode. The consultant-type of analysis is being replaced by 
group-work putting severe demands on availability of skilled facilitators as 
well as tools for cooperative work. However, due to the immense number 
of applications being developed, there is a lack of trained and skilled sys-
tem developers and modellers. The market is open for all kinds of “hack-
ers” that we can observe by the lack of quality and security of many vital 
public as well as private information and software systems in our society. 

This paper is dedicated to my friend Professor Arne Sølvberg. Arne has 
been in the middle of this evolutionary work, described above, since the 
late sixties. We have had everlasting discussions in different parts of the 
world and in different environments such as IFIP, ACM, and VLDB, about 
numerous issues in the modelling area. Most often we have had similar and 
compatible views of modelling issues and concepts. Arne has skilfully 
managed his research teams in national as well as in international projects, 
in particular in projects supported by the European Commission. He has 
contributed to projects as well as to promoting scientific communication 
between people in different countries and continents. He has, in particular, 
cared to support the new eastern European nations to speed up the process 
of integration with rest of the EU-countries.  

I would like to end this paper with a citation from a paper by Arne [37]: 
“Computational devices, communication systems and storage devices are 
becoming commodities. Moore’s law is still valid, and price/performance 
for the equipment decreases by the month. Computers will be so deeply 
engrained in the fabric of our societies that they will seem to have disap-
peared as distinct devices. Software, humans and all kinds of intelligent ar-
tefacts will be interwoven in information systems of interacting, autono-
mous subsystems. One of the great challenges ahead is to manage 
technical complexity. Another is to be able to easily change, in our human 
societies, what we do and how we do it. Low ability to master technical 
complexity together with low ability to change our ways, spells disaster. 
We need to have systems that can evolve as the needs and desires of indi-



16      Janis A. Bubenko jr 

viduals and organizations evolve. We need to build our societies such that 
they can change as new technology makes new developments possible”. 

References 

[1] ANSI/X3/SPARC, Study Group on Data Base Management Systems: Interim 
Report 75-02-08. ACM SIGMOD Newsletter, 1975. 7(2). 

[2] Abrial, J.R.: Data Semantics. In: Data Base Management, ed. Klimbie J.W.,  
Koffeman, K.L.  (North Holland/ Elsevier. 1974). pp 1-69. 

[3] Berild, S.,Nachmens, S.: CS4 a Tool for Database Design by Infological Simu-
lation. In: 3rd International Conference on Very Large Data Bases (Tokyo 
1977) 

[4]  Brodie, M.L.,  Zilles, S. N. (eds): Proceedings of Workshop on Data Abstrac-
tion, Databases, and Conceptual Modelling. 1981, ACM SIGMOD Record, 
Vol. 11, No. 2, Feb. (1981) 

[5] Bubenko, J.A., Jr.: The Temporal Dimension in Information Modelling. In: 
IFIP WG 2.6 Working Conference on Architecture and Models in Data Base 
Management Systems. Nice, France: (North Holland, 1977). 

[6] Bubenko, J.A., Jr.: Validity and Verification Aspects of Information Model-
ing. In: 3rd International Conference on Very Large Data Bases. Tokyo: 
(IEEE Computer Society, 1977) 

 [7] Bubenko, J.A., Jr.: Information Modeling in the Context of Systems Devel-
opment. In: Information Processing 80. Tokyo, Japan and Melbourne, Austra-
lia: (North Holland 1980). 

 [8] Bubenko, J.A., Jr, Brash, D.,Stirna, J.: EKD User Guide., Dept. of Computer 
and Systems Science, KTH and Stockholm University, Sweden.: Kista. (1988) 

 [9] Chen, P.P., The Entity-Relationship Model - Towards a Unified View of Data. 
ACM TODS,  1(1) ( 1976). 

[10] CODASYL, D.C.: An Information Algebra Phase 1 Report. Communications 
of the ACM, 5(2),190-204 (1962) 

[11]  Codd, E.F.: A Relational Model for Large Shared Data Banks. Communica-
tion of the ACM, 13(6), 377-387 (1970) 

[12]  Deliyanni, A., Kowalski, R.: Logic and Semantic Networks. Communications 
of the ACM, 22(1), 184-192 (1979) 

[13]  Douqué, B.C.M., Nijssen,G.M. (eds): Data Base Description. Proceedings of  
the IFIP WG2.6 special Working Conference. (North Holland, 1975) 

[14] Falkenberg, E.D., Hesse, W.. Lindgreen, P., Nilsson, B.E., Rolland, C., 
Stamper, R., Van Assche, F.,  Verreijn-Stuart, A.A., Voss, K. (eds): A Frame-
work of Information Systems Concepts. The FRISCO Report., The IFIP WG 
8.1 Task Group FRISCO (1995) 

[15]  Feldman, J.A., Rovner, P.D. An Algol-based Associative Language. Com-
munication of the ACM, 12(8): 439-449 (1969) 

[16]  Greenspan, S.J., Borgida, A., Mylopoulos, J.: A Requirements Modelling 
Language and its Logic. Information Systems, 11(1), 9-23 (1986) 



From Information Algebra to Enterprise Modelling and Ontologies   17 

[17] van Griethuysen, J.J., ed: Conceprs and Terminology for the Conceptual 
Schema (preliminary report).  (ISO TC97/SC5/WG5, 1982) 

[18]  Hammer, M., McLeod. D.:The Semantic Data Model: a Modelling Mecha-
nism for Data Base Applications. in SIGMOD 1978.  Austin, Texas: (ACM, 
1978) 

[19]  Langefors, B.:Some Approaches to the Theory of Information Systems.. BIT, 
3(34),  229 - 254. (1963) 

[20]  Langefors, B.: Theoretical Analysis of Information Systems., Lund, Sweden: 
(Studentlitteratur, 1967) 

[21]  Klimbie, J.W., Koffeman, K.L. (eds): Data Base Management. (North Hol-
land/American Elsevier, 1974) 

[22] Lundh, J., Rosengren, P.: HYBRIS - A First Step Towards Efficient Informa-
tion Management.  SISU, Swedish Institute for Systems Development, Box 
1250, S-164 28 Kista, Sweden (1989) 

[23] McBrien, P., Seltveit,A-H., Wangler, B.: An Entity-Relationship Model Ex-
tended to Describe Historical Information. In: International Conference on In-
formation Systems and Management of Data - CISMOD '92.  Bangalore, In-
dia: (Indian National Scientific Documentation Centre., 1992) 

[24] Nijssen, G.M.: A Gross Architecture for the Next Generation Database Man-
agement Systems. In: Modelling in Data Base Management Systems. Freu-
denstadt, Germany: (North Holland, 1976) 

[25]  Nijssen, G.M., ed: Modelling in Data Base Mangement Systems. Proceedings 
of the IFIP WG 2.6 Working Conference, Freudenstadt, 5-8 Jan.( North Hol-
land, Amsterdam, 1976) 

[26]  Nijssen, G.M., ed: Architecture and Models in Data Base Management. Pro-
ceedings of the IFIP TC2 Working Conference, Jan. (North Holland/Elsevier 
Science, New York 1977) 

[27]  Olivé, A.: A Comparison of the Operational and Deductive Approaches to In-
formation Systems Modeling. In: IFIP Congress 1986. (North Holland, 1986) 

[28]  Olivé, A.: On the Design and Implementation of Information Systems from 
Deductive Conceptual Models. In VLDB89. Amsterdam. (1989) 

[29]  Olle, T.W., Sol,H.G., Verrijn-Stuart, A.A. (eds): Information System Design 
Methodologies: a Comparative Review. (North Holland, Amsterdam 1982) 

[30]  Olle, T.W., Sol, H. G. ,  Tully, C.J. (eds): Information System Design Meth-
odologies: a Feature Analysis. (North Holland, Amsterdam 1983) 

[31]  Olle, T.W., Sol, H.G. , Verrijn-Stuart, A.A. (eds): Information Systems De-
sign Methodologies: Improving the Practice. (North Holland, Amsterdam 
1986) 

[32]  Persson, A., Stirna.J.: Why Enterprise Modelling - an Explorative Study Into 
Current Practice. In: The 13th International Conference on Advanced Informa-
tion Systems Engineering, CAiSE ‘02.  Interlaken, Switzerland (Springer 
2002) 

[33]  Senko, M.E., Altman,E.B., Astrahan, M.M.,  Fehder, P.L.: Data Structures 
and Accessing in Database Systems. IBM Systems Journal,  12(1) (1973) 

[34] Tsichritzis, D., Klug, A.: The ANSI/X3/SPARC DBMS Framework. Infor-
mation Systems, 1978. 3: 173-191 (1978) 



18      Janis A. Bubenko jr 

[35] Spyns, P., Meersman, R., Jarrar,M.: Data Modelling versus Ontology Engi-
neering. SIGMOD Record, 31(4): 12-17 (2002) 

[36]  Sølvberg, A.: Co-operative Concept Modelling, In: Information Systems En-
gineering - State of the Art and Research Themes, Brinkkemper,S., Linden-
crona, E., Sølvberg, A. Editors. (Springer, London 2000) pp 305-317 

[37]  Sølvberg, A.: Conceptual Modeling: A Key to Quality Information Systems. 
In: Proceedings of the Fourth International Conference on Quality Software 
(QSIC’04). Braunschweig, Germany (IEEE Computer Society Press 2004) 

[38]  Young, J.W., Kent,H.K.: Abstract Formulation of Data Processing Problems. 
Journal of Industrial Engineering, (Nov. Dec.): 471-479 (1958) 



Fact-Oriented Modeling: Past, Present and Future

Terry Halpin 

Neumont University, Utah, USA.

Abstract. Fact-oriented modeling is a conceptual approach that enables one to model 
and query business domains in terms of the underlying facts of interest, where all facts 
and rules may be verbalized in language readily understandable by non-technical users 
of those business domains. Unlike Entity-Relationship modeling and object-oriented 
modeling, fact-oriented modeling treats all facts as relationships (unary, binary, ternary 
etc.). Grouping of facts into attribute-based structures (e.g. ER entities, UML objects, 
database relations, XML elements) is considered a lower level, implementation issue 
that is irrelevant to capturing the essential business semantics. This chapter provides a 
brief history of the fact-oriented modeling approach, illustrates its main concepts and 
benefits via a case study, reviews the current state of the art in terms of methodology 
and tooling perspectives, and identifies several topics for future research.  

1 Introduction 

Fact-oriented modeling is a conceptual approach to information modeling 
and information systems engineering [83], designed to promote correct-
ness, clarity, and adaptability. The approach enables one to model, trans-
form, and query information in terms of the underlying facts of interest, 
where facts and rules may be verbalized in language readily understand-
able by non-technical users of the business domain. In contrast to Entity-
Relationship (ER) modeling [17], Unified Modeling Language (UML) 
class diagrams [71], Relational Database (RDB) schemas and Extended 
Markup Language (XML) schemas, fact-oriented models are attribute-
free, treating all facts as relationships (unary, binary, ternary etc.). For ex-
ample, instead of the attributes Person.isSmoker and Person.birthCountry, 
the following fact types are used: Person smokes; Person was born in Country.

Avoiding attributes in the base model enhances semantic stability. For 
example, if we used a birthCountry attribute and later decided to record the 



20      Terry Halpin 

population of countries, then we would need to remodel the information as 
a relationship and recode any queries based on it. An attribute-free ap-
proach also enables all fact structures to be easily populated with fact in-
stances to help validate models by discussing concrete examples (more dif-
ficult with attributes, especially multi-valued ones), as well as facilitating 
natural verbalization (compare Pat smokes with Pat.isSmoker = true).

For information modeling, fact-oriented graphical notations are typi-
cally far more expressive than those provided by other notations (see later). 
Fact-oriented textual languages are based on formal subsets of native lan-
guages, so are easier for business people to understand than technical lan-
guages like the Object Constraint Language (OCL) [88]. However, attrib-
ute-based notations provide value in enabling more compact diagrams, and 
are closer to implementation data structures. For such reasons, fact-
oriented modeling is often used in conjunction with attribute-based nota-
tions, especially for the original conceptual analysis. Since fact-oriented 
modeling includes procedures for mapping to attribute-based structures, 
such as those of ER, UML, RDB, or XML, it may be used productively to 
front-end such approaches.  

Though less well known than ER and object-oriented approaches, fact-
oriented modeling has been used successfully in industry and academia for 
over 30 years. This chapter focuses on Object-Role Modeling (ORM), the 
most popular fact-oriented approach, so-called because it pictures the 
world in terms of objects (entities or values) that play roles (parts in rela-
tionships). We use the term “ORM” to include a number of closely related 
dialects, all of which use a similar object-role graphical notation, and stress 
model validation via verbalization and sample fact populations. Other fact-
based (attribute-free) approaches adopting different graphical notations in-
clude the Object-oriented Systems Model (OSM) [24], and the fact model-
ing technique in the Semantics of Business Vocabulary and Business Rules 
(SBVR) proposal [73]. For a basic introduction to ORM see [44], and for 
comparisons of ORM with ER and/or UML see [35, 36]. 

The rest of this chapter is structured as follows. Section 2 sketches a 
brief history of ORM, section 3 outlines the ORM notation, section 4 illus-
trates ORM’s modeling process via a small case study, section 5 discusses 
recent and future research initiatives, and section 6 provides a conclusion 
and list of references. 



Fact-Oriented Modeling: Past, Present and Future      21 

2 A Brief History of ORM 

Research in the 1970s, especially in Europe, developed high level seman-
tics for modeling information systems. Abrial [1], Senko [81] and others 
modelled with binary relationships. In 1973, Falkenberg generalized their 
work to n-ary relationships and excluded attributes at the conceptual level 
because they involved “fuzzy” distinctions and also complicated schema 
evolution. Later, Falkenberg proposed the fundamental ORM framework, 
which he called the “object-role model” [28]. This framework allowed n-
ary and nested relationships, but depicted roles with arrowed lines. 

Nijssen  [68] adapted this framework by introducing the circle-box nota-
tion for objects and roles, and adding a linguistic orientation and design 
procedure to provide a modeling method called ENALIM (Evolving NAtu-
ral Language Information Model) [69]. Nijssen’s team of researchers at 
Control Data in Belgium developed the method further, including van Ass-
che who classified object types into lexical object types (LOTs) and non-
lexical object types (NOLOTs). Today, LOTs are commonly called “Entity 
types” and NOLOTs are called “Value types”. The late Bill Kent provided 
several semantic insights and clarified many conceptual issues [63], the re-
cent republication of his seminal text on Data and Reality testifying to the 
continued relevance of his contributions [64]. 

Meersman added subtyping to the approach, and made major contribu-
tions to the RIDL query language [65] with Falkenberg and Nijssen. The 
method was renamed “aN Information Analysis Method” (NIAM) and 
summarized by Verheijen and van Bekkum [86]. Later, the acronym 
“NIAM” was given different expansions, e.g. “Natural language Informa-
tion Analysis Method”. Two matrix methods for subtype determination 
were developed, one by Vermeir [87] and one by Falkenberg and others. 

In the 1980s, Nijssen and Falkenberg moved to the University of 
Queensland, where the method was enhanced by Halpin, who provided the 
first full formalization [31], including schema equivalence proofs, and 
made several refinements and extensions. In 1989, Halpin and Nijssen co-
authored a book on the approach, followed a year later by Wintraecken’s 
book [89]. Today several books, including major works by Halpin [24], 
and Bakema, Zwart and van der Lek [4] expound on the approach. 

Many researchers contributed to the ORM approach, and there is no 
space here to list them all. Today various versions of ORM exist, but all 
adhere to the fundamental object-role framework. Although most ORM 
proponents favour n-ary relationships, some preferred Binary-Relationship 
Modeling (BRM), e.g. Shoval [82]. Habrias [30] developed an object-
oriented version called MOON (Normalized Object-Oriented Method). 



22      Terry Halpin 

The Predicator Set Model (PSM) was developed mainly by ter Hofstede, 
Proper and van der Weide [56], and includes complex object constructors. 
De Troyer and Meersman [19] developed a version with constructors 
called Natural Object-Relationship Model (NORM). Halpin developed an 
extended version called Formal ORM (FORM), and with Bloesch and oth-
ers at InfoModelers Inc. developed an associated query language called 
ConQuer [7]. Bakema, Zwart, and Van der Lek [4] recast entity types as 
nested relationships, to produce Fully Communication Oriented Informa-
tion Modeling (FCO-IM). 

Various software tools support different flavours of the fact-oriented 
approach. The earliest tools developed by Nijssen, Meersman and others at 
Control Data (e.g. IAST, RIDL*) are no longer available. Bloesch, Halpin, 
and others developed VisioModeler (discontinued but freely available), 
ActiveQuery (currently unavailable), and the ORM modeling solution in 
Microsoft® Visio for Enterprise Architects [48]. The FCO-IM version is 
supported by the commercial tool CaseTalk (www.casetalk.com) and by 
the freeware tool Infagon (www.mattic.com). Dogma Modeler 
(www.starlab.vub.ac.be) and T-Lex [85] are academic ORM-based tools 
for specifying ontologies. NORMA [15], an open-source plug-in to Micro-
soft® Visual Studio, is currently under development to provide deep sup-
port for the next generation of ORM (http://sourceforge.net/projects/orm).

3 The ORM Graphical Notation 

ORM includes graphical and textual notations for specifying models, as 
well as procedures for creating, transforming, mapping, and querying 
models. This section outlines the main ORM graphical symbols, and the 
next section discusses a procedure using this notation to specify models.  

For space considerations, we limit our attention to the ORM 2 notation 
[43], as supported by the NORMA tool. Figure 1 lists the main graphical 
symbols, numbered for easy reference, which are now briefly explained. 
The next section illustrates the use of many of these symbols. 

An entity type (e.g. Person) is depicted as a named, soft rectangle (sym-
bol 1). As a configuration option, the soft rectangle may be replaced by an 
ellipse (symbol 2), which was commonly used in earlier versions of ORM, 
or a hard rectangle (symbol 3). A value type (e.g. PersonName) is a lexical 
object type (instances are typically character strings or numbers) and is 
shown as a named, dotted soft rectangle (symbol 4). Each entity type has a 
reference scheme, indicating how each instance of the entity type may be 
mapped via predicates to a combination of one or more values. 



Fact-Oriented Modeling: Past, Present and Future      23 

Fig. 1. ORM graphic symbols 

A simple injective (1:1 into) reference scheme maps entities to single 
values. For example, countries may be identified by country codes (e.g. 
‘US’). In such cases the reference scheme may be abbreviated as in symbol 
5 by displaying the reference mode in parentheses, e.g. Country (.code). 
The reference mode indicates how values relate to the entities. Values are 
constants with a known denotation, so require no reference scheme. 

Typically each entity type has a preferred reference scheme. Relation-
ships used for preferred reference are called existential facts (e.g. there ex-
ists a country that has the country code ‘US’). The other relationships are 
elementary facts (e.g. The country with country code ‘US’ has a popula-
tion of 300 000 000). In symbol 6, an exclamation mark declares that an 
object type is independent. This means that instances of that type may exist 
without participating in any elementary facts. By default, this is not so. 

A fact type results from applying a logical predicate a sequence of one 
or more object types. Each predicate comprises a named sequence of one 
or more roles (parts played in the relationship). A predicate is basically a 
sentence with object holes in it, one for each role, which each role depicted 
as a box and played by exactly one object type. Symbol 7 shows a unary 
predicate (e.g. … smokes), symbols 8 and 9 depict binary predicates (e.g. 
… was born in …), and symbol 10 shows a ternary predicate. Predicates of 
higher arity (number of roles) are allowed. Each predicate has at least one 

AA

[role1] [role2]

A A A
(ref) A !

R R / S S R

R* R** R+

1 2 3 4 5 6 7 8 9 10

11 12 13

A

14 15 16 17 18

19 20 21 22 23 24 25

R
“A”

A A A

26

{a1, a2, a3}
{a1 .. an}
{a ..}

{(a1 .. a2)}
{[a1 .. a2]}

{[a1 .. a2)}
{(a1 .. a2]}

27 28 29 30 31 32
n

n
n

n..m

33 34

f
35 36 37 38 39



24      Terry Halpin 

predicate reading. ORM uses mixfix predicates, so objects may be placed 
at any position in the predicate (e.g., the fact type Person introduced Person to 
Person uses the predicate “… introduced … to …”). Mixfix predicates al-
low natural verbalization of n-ary relationships, as well as non-infix binary 
relationships (e.g. in Japanese, verbs are at the end).  

Forward readings traverse the predicate from left to right (if displayed 
horizontally) or top to bottom (if displayed vertically). Inverse readings re-
verse the reading direction, as indicated by a reverse arrow-tip (symbol 9). 
For binaries, forward and inverse readings may be separated by a slash 
(symbol 8). Optionally, forward arrow-tips may be used for forward read-
ings. Optionally, roles may be given role names, displayed in square 
brackets (symbol 11). An asterisk after a predicate reading indicates that 
the fact type is derived from other fact types (symbol 12). If the fact type is 
both derived and stored, a double asterisk is used (symbol 13). Fact types 
that are only partly derived are marked “+” (symbol 14). Object types and 
predicates displayed in multiple places are shadowed (symbols 15, 16). 

Internal uniqueness constraints are depicted as bars over one or more 
roles in a predicate to declare that instances for that role (combination) in 
the fact type population must be unique (e.g. symbols 17, 18). For exam-
ple, adding a uniqueness constraint over the first role of Person was born in 
Country declares that each person was born in at most one country. If the 
constrained roles are not contiguous, a dotted line separates the parts of the 
uniqueness bar that do constrain roles (symbol 18). A predicate may have 
one or more uniqueness constraints, at most one of which may be declared 
preferred by using a double-bar (symbol 19).  

An external uniqueness constraint shown as a circled uniqueness bar 
(symbol 20) may be applied to two or more roles from different predicates 
by connecting to them with dotted lines. This indicates that instances of the 
combination of those roles in the join of those predicates are unique. For 
example, if a state is identified by combining its state code and country, we 
add an external uniqueness constraint to the roles played by Statecode and 
Country in: State has Statecode; State is in Country. To declare an external 
uniqueness constraint preferred, a circled double-bar is used (symbol 21).  

If we want to talk about a relationship, we may objectify it (make an ob-
ject out of it) so that it can play roles. Graphically, the objectified predicate 
(a.k.a. nested predicate) is enclosed in a soft rectangle, with its name in 
quotes (symbol 22). Roles are connected to their players by a line segment 
(symbol 23). A mandatory role constraint declares that every instance in 
the population of the role’s object type must play that role. This is shown 
as a large dot placed either at the object type end (symbol 24) or the role 
end (symbol 25). An inclusive-or (disjunctive mandatory) constraint may 
be applied to two or more roles to indicate that all instances of the object 



Fact-Oriented Modeling: Past, Present and Future      25 

type population must play at least one of those roles. This is shown by 
connecting the roles by dotted lines to a circled dot (symbol 26). 

To restrict the population of an object type or role, the relevant values 
may be listed in braces connected by a dotted line to the object type or role 
(symbol 27). For ordered values, a range is declared using “..” between the 
first and last values. For continuous ranges, a square or round bracket indi-
cates the end value is respectively included or excluded. For example, 
“(0..10]” denotes a range of positive (hence excluding 0) real numbers up 
to and including 10. These constraints are called value constraints.

Symbols 28-30 denote set comparison constraints, which apply only be-
tween compatible role sequences (i.e. sequences of one or more roles, 
where the corresponding roles have the same host object type). A dotted 
arrow with a circled subset symbol from one role sequence to another de-
picts a subset constraint, restricting the population of the first sequence to 
be a subset of the second (symbol 28). A dotted line with a circled “=” 
symbol depicts an equality constraint, indicating the populations must be 
equal (symbol 29). A circled “X” (symbol 30) depicts an exclusion con-
straint, indicating the populations are mutually exclusive. Exclusion and 
equality constraints may be applied between two or more sequences. Com-
bining an inclusive-or constraint with an exclusion constraint yields an ex-
clusive-or constraint (symbol 31). 

A solid arrow (symbol 32) from one object type to another indicates that 
the first object type is a (proper) subtype of the other. For example, Wom-
an is a subtype of Person. Mandatory (circled dot) and exclusion (circled 
“X”) constraints may also be displayed between subtypes, but are implied 
by other constraints if the subtypes are given formal definitions. 

Symbol 33 shows four kinds of frequency constraint. Applied to a se-
quence of one or more roles, these indicate that instances that play those 
roles must do so exactly n times, at least n and at most m times, at most n
times, or at least n times. 

Symbol 34 shows eight kinds of ring constraint that may be applied to a 
pair of roles played by the same host type. Read left to right and top row 
first, these indicate that the binary relation formed by the role population 
must respectively be irreflexive, asymmetric, antisymmetric, reflexive, in-
transitive, acyclic, intransitive and acyclic, or intransitive and asymmetric. 

All the constraints so far considered are alethic (necessary, so can’t be 
violated) and are coloured violet. ORM 2 also supports deontic versions 
(obligatory, but can be violated) of these constraints. These are coloured 
blue, and either add an “o” for obligatory, or soften lines to dashed lines. 
Displayed here are the deontic symbols for uniqueness (symbol 35), man-
datory (symbol 36), set-comparison (symbol 37), frequency (symbol 38) 
and ring (symbol 39) constraints.  



26      Terry Halpin 

4 The ORM Modeling Procedure 

The information systems life cycle usually involves several stages: feasibility 
study; requirements analysis; conceptual design of data and services; logical de-
sign; external design; prototyping; internal design and implementation; testing and 
validation; and maintenance. ORM’s conceptual schema design procedure
(CSDP) focuses on the analysis and design of data. The conceptual schema speci-
fies the information structure of the business domain: the types of fact that are of 
interest; constraints on these; and perhaps derivation rules for deriving some facts 
from others. With large domains, the universe of discourse is divided into conven-
ient modules, the CSDP is applied to each, and the resulting subschemas are inte-
grated into the global conceptual schema. Table 1 shows a popular version of the 
CSDP, which we now illustrate with a small case study.  

Step 1 is the most critical. Examples of the required information are 
verbalized in natural language. Such examples, known as data use cases,
are often available as output reports or input forms, perhaps from a current 
manual version of the required system. If not, the modeller may work with 
the client to produce examples. To avoid misinterpretation, a domain ex-
pert (a person who understands the business domain) assists with the ver-
balization. It helps if the speaker imagines he/she has to convey the infor-
mation contained in the examples to a friend over the telephone. 

For our case study, we consider a fragment of an information system 
maintained by a book publisher. One required service is to provide a report 
about books, an extract of which is shown in Table 2. In the first phase of 
Step 1, the domain expert verbalizes the information naturally as they un-
derstand it. For example, the subject matter expert might informally ver-
balize the information on the first row of table 1 thus: “The book with 
ISBN 1-33456-012-3 is titled ‘Mizu no Kokoro’ and was published in 
2002. This book sold 5000 copies in 2003, 6000 copies in 2004, and 5000 
copies in 2005, totalling 16000 copies sold. It is a best seller”.  

Table 1. The conceptual schema design procedure (CSDP) 

Step Description 
1.

2.
3.

4.
5.
6.
7.

Transform familiar information examples into elementary facts, 
and apply quality checks. 
Draw the fact types, and apply a population check. 
Check for entity types that should be combined,  
and note any arithmetic derivations. 
Add uniqueness constraints, and check arity of fact types. 
Add mandatory role constraints, and check for logical derivations. 
Add value, set comparison and subtyping constraints. 
Add other constraints and perform final checks. 



Fact-Oriented Modeling: Past, Present and Future      27 

Table 2. Extract from a report about books 

SalesISBN Title Pub-
lished

Transla-
tion of Year Nr Total

Best
Seller?

1-33456-
012-3

Mizu no 
Kokoro

2002  2003 
2004
2005

5000
6000
5000 16000 Y

2-55860-
123-6

Mind Like 
Water 

2004 1-33456-
012-3

2004
2005

3000
3000 6000 N

3-540-
25432-2

Informatics 2005  2005 2000 2000 N 

4-567-
12345-3

Informatics 2006      

5-123-
45678-5

Semantics       

The second row includes a new kind of fact: “The book with ISBN 2-
55860-123-6 is translated from the book with ISBN 1-33456-012-3”. We 
now have examples of all the kinds of facts provided by the table. 

In the second phase of Step 1, the modeller rephrases the information as 
elementary facts, ensuring all objects are well identified. Here the term 
“fact” means a proposition taken to be true by the business. An elementary 
fact asserts that an object has a property or that one or more objects par-
ticipate in a relationship, where that relationship cannot be expressed as a 
conjunction of simpler (or shorter) facts without introducing new object 
types. The information expressed informally above may be rephrased into 
eight elementary facts (“CE” denotes “Common Era”): 

The Book identified by ISBN 1-33456-012-3 has the BookTitle ‘Mizu no Kokoro’. 
The Book identified by ISBN 1-33456-012-3 was published in the Year 2002 CE. 
The Book identified by ISBN 1-33456-012-3 in the Year 2003 CE sold NrCopies 5000. 
The Book identified by ISBN 1-33456-012-3 in the Year 2004 CE sold NrCopies 6000. 
The Book identified by ISBN 1-33456-012-3 in the Year 2005 CE sold NrCopies 5000. 
The Book identified by ISBN 1-33456-012-3 sold total NrCopies 16000. 
The Book identified by ISBN 1-33456-012-3 is a best seller. 
The Book identified by ISBN 2-55860-123-6 is translated from the Book identified by 
ISBN 1-33456-012-3. 

The third, fourth, and fifth facts are instances of the same type. There 
are two entity types, Book and Year, whose reference (identification) 
schemes may be abbreviated as Book(ISBN) and Year(CE), and two value 
types BookTitle and NrCopies. Abstracting out the instance data and refer-
ence schemes leads to the following six fact types. Here the object types 
are distinguished by starting with a capital letter (other styles may be used 
instead, e.g. underlining); the rest of the sentence is the predicate reading. 

Book has BookTitle. Book was published in Year. Book in Year sold NrCopies. 
Book sold total NrCopies. Book is a best seller. Book is translated from Book. 



28      Terry Halpin 

Book
(ISBN)

has

BookTitle

1-33456-012-3  Mizu no Kokoro
2-55860-123-6  Mind Like Water
3-540-25432-2  Informatics
4-567-12345-3  Informatics
5-123-45678-5  Semantics

Fig. 2. Populating a fact type with sample data 

The third, fourth, and fifth facts are instances of the same type. There 
are two entity types, Book and Year, whose reference (identification) 
schemes may be abbreviated as Book(ISBN) and Year(CE), and two value 
types BookTitle and NrCopies. Abstracting out the instance data and refer-
ence schemes leads to the following six fact types. Here the object types 
are distinguished by starting with a capital letter (other styles may be used 
instead, e.g. underlining); the rest of the sentence is the predicate reading. 

Later steps in the CSDP involve diagramming the fact types, adding 
constraints, noting any fact types that are derived from others, and catering 
for subtyping. Constraints are validated with the domain expert by ver-
balization and population. As a simple example, Fig. 2 populates the fact 
type Book has BookTitle with sample data. The uniqueness and mandatory 
constraints on the left role may be jointly verbalized as “Each Book has ex-
actly one BookTitle”. The lack of a uniqueness constraint on the right-hand 
role is verbalized as “It is possible that more than one Book has the same BookTi-
tle”.

The sample data illustrates the uniqueness constraint pattern (entries in 
the left role’s column are unique, but duplicate entries occur in the right-
hand column). If a constraint is in doubt, negative verbalizations may be 
used to spell out what it means to violate the constraint, and this can be il-
lustrated by populating with counterexamples [0, 0]. While the example 
shown here is basic, the fact-based approach enables this validation proc-
ess to be applied to all its fact types and constraints. 

Now suppose the information system is also required to output reports 
like those shown in Table 3 and Table 4. Here “PNr” denotes a personnel 
number used to identify people who work in some capacity for the book 
publisher, as staff and/or authors and/or reviewers. Table 4 lists details 
about books assigned to people for review. The result column indicates the 
grade that the reviewer assigned to that book (if known).  

An ORM schema for the domain described in the three reports is shown 
in Fig. 3. Some aspects (e.g. the derivation rule for best sellers) need to be 
obtained by questioning the domain expert. 



Fact-Oriented Modeling: Past, Present and Future      29 

Book
(ISBN)

is authored by

Person
(.nr)

is assigned for review by
“ReviewAssignment !”

PersonName

has/is of

Gender
(.code)

is of

{‘M’, ‘F’}

has

PersonTitle

is restricted to

resulted in

Grade
(.nr) {1..5}

BookTitle

has

Year
(CE)

was published in

Published
Book

is translated from

… in … sold ...

NrCopies
sold total- * is a best seller*

Each PublishedBook is a Book that was published in some Year.
* For each PublishedBook, totalCopiesSold= sum(copiesSoldInYear).
* PublishedBook is a best seller iff PublishedBook sold total NrCopies >= 10000.

[copiesSoldInYear]

[totalCopiesSold]

2

Table 3. Extract from a report about persons employed by the publisher 

PNr Name Title Gender Books authored 
1
2
3
4
5
6
7
8
9

John Smith 
Don Bradchap 
Sue Yakamoto 
Yoko Ohyes 
Isaac Seldon 
Ann Gables 
John Smith 
Ann Jones 
Selena Moore 

Mr
Sir
Mrs
Dr
Dr
Ms
Mr
Ms
Mrs

M
M
F
F
M
F
M
F
F

1-33456-012-3
2-55860-123-6
3-540-25432-2, 5-123-45678-5 

4-567-12345-3
5-123-45678-5

Table 4. Extract from a report about book reviews 

Review Assignment ISBN Title
PNr Name Result

1-33456-012-3

2-55860-123-6

3-540-25432-2

4-567-12345-3

Mizu no Kokoro 

Mind Like Water 

Informatics

Informatics

1
4
2
5
6
1
7
1
5

John Smith 
Yoko Ohyes 
Don Bradchap 
Isaac Seldon 
Ann Gables 
John Smith 
John Smith 
John Smith 
Isaac Seldon 

4
5
5
5
4
4
5

Fig. 3. An ORM schema for the case study 

The external uniqueness constraint (circled bar) reflects the publisher’s 
policy of publishing at most one book of any given title in any given year. 



30      Terry Halpin 

The ring constraint indicates that the book translation relationship is acyc-
lic. The exclusion constraint ensures that no person may review a book that 
he or she authors. The frequency constraint ensures that any book that is 
assigned for review has at least two reviewers. The subset constraint en-
sures that if a person has a title that is restricted to a specific gender (e.g. 
‘Mrs’ is restricted to females), then that person must be of that gender—a 
simple example of a constraint involving a conceptual join path [38]. The 
textual declarations provide a subtype definition as well as two derivation 
rules, one in attribute style (using role names) and one in relational style. 

5 ORM Research and Practice 

Once constructed, an ORM schema can be transformed into logical, inter-
nal, and external structures for implementation. Decades of research has 
gone into forward engineering ORM schemas into RDB schemas (e.g.
[18], [80]) as well as reverse engineering to ORM (e.g. [13, 5, 82]), and 
automated support for this is provided by various ORM tools. More re-
cently, research has been conducted to transform ORM schemas to other 
structures, including UML (e.g. [8]), XML schema (e.g. [6]), external 
forms and web interfaces (e.g. [12, 20, 23]). Some ORM tools also provide 
automated mapping to object programming code [15], and efforts are un-
derway to generate complete applications from an ORM model (e.g. [74]). 

Conceptual query languages exist to directly query ORM models, rather 
than using a lower level language like SQL or XQuery to query implemen-
tation structures generated from ORM models. The first such language was 
RIDL [65], followed by LISA-D [56], and ConQuer [7] which was sup-
ported in the ActiveQuery tool (no longer available). Research is under 
way in the NORMA project to provide a unified textual language for for-
mulating and querying ORM models, offering the expressive power of 
FORML and ConQuer but with a friendlier syntax. 

In contrast with UML, ORM is primarily concerned with static informa-
tion modeling, and has little support for dynamic rules and process model-
ing. To address this deficiency, many extensions to ORM have been pro-
posed to model temporal aspects and business processes. The TOP model 
[29] allows fact types to be qualified by a temporal dimension and granu-
larity. TRIDL [11] includes time operators and action semantics, and 
LISA-D [56] supports basic updates. Task structures and task transactions 
model various processes [53], with formal grounding in process algebra. 
EVORM [78] formalizes first and second order evolution of information 
systems. Some explorations have addressed reaction rules [52], behav-



Fact-Oriented Modeling: Past, Present and Future      31 

ioural extensions [19], and the derivation of activity models from ORM 
models [79]. Recent research indicates that the fact-oriented approach is 
even more suitable than UML for adding state machine behavioural se-
mantics [67], and for specifying dynamic rules (e.g. dynamic rules may be 
declared in the context of a fact type, not just an object type or class) [3]. 

On-going research is addressing the use of ORM for designing and reus-
ing ontologies[e.g. 21, 84, 85], and on transforming ORM models to OWL 
(Web Ontology Language) and other description logics. Many proposals 
seek to enrich ORM with additional semantics to address issues such as 
context-aware systems [55], part-whole relationships [62], default reason-
ing [51], varieties of conceptual join s [38], and deontic rules [45]. Various 
papers have discussed whether to extend ORM with direct support for col-
lection types, higher-order types, and algebraic data types [33, 39, 75]. 

Because ORM diagrams can rapidly get very large as the size of the 
domain grows, abstraction mechanisms have been proposed for managing 
very large ORM schemas [14, 60, 61], and some of these techniques are 
finding their way into ORM tools.  

Support for objectification (reification of relationships) has been en-
riched (e.g. by allowing objectification of unaries). FCO-IM treats all en-
tity types as objectified relationships[4], while the version of ORM sup-
ported by NORMA supports implicit objectification, based on a new 
formalization of situational and propositional nominalization [40]. 

Considerable research has been conducted in the context of ORM on the 
related topics of schema patterns, schema equivalence, schema transfor-
mation, conceptual optimization, and subtyping patterns [2, 18, 50, 31, 
49]. Research efforts have investigated the use of ORM in conjunction with 
other methodologies, such as DEMO [22] and Agent Object Relationship 
(AOR) modeling [52]. Empirical research has and is being conducted on 
the use of ORM in education [e. g. 27, 9], and on the modeling process it-
self (how to best use the language to construct models) [10, 58, 59]. 

ORM has been used productively in industry for three decades. Recent 
case studies on the practical benefits of ORM in industry cover topics such 
as data quality firewalls[77], dynamic multidimensional denormaliza-
tion[54], requirements engineering [26] and decision support systems[76]. 

6 Conclusion 

This chapter provided a brief historical overview of the fact-oriented ORM 
approach, explained its graphical notation, illustrated its basic modeling 
process with a small case study, and identified many of the past, current, 



32      Terry Halpin 

and ongoing research efforts to improve the methodology. Industrial use of 
ORM has repeatedly shown that its main benefit lies in lifting the commu-
nication between modeller and domain expert to a level where they can 
readily understand and validate the model in fine detail.  

Although originating over 30 years ago, the fact-oriented approach has 
only recently begun to enjoy significant adoption. Possible reasons for this 
increase in popularity include wider penetration of ORM courses in secon-
dary and tertiary education, and the emergence of powerful software tools 
supporting ORM. Additionally, ORM is now seen as more relevant be-
cause of the heightened perception within the information engineering 
community of the importance of requirements analysis and the productiv-
ity benefits of model-driven development. While European pioneers such 
as Arne Sølvberg, to whom this book is dedicated, have long espoused a 
conceptual approach to information engineering, due recognition of the 
value of semantic modeling has only recently arisen in many countries. An 
ORM Foundation (www.ormfoundation.org) is now being set up to facili-
tate the continued development of the fact-oriented approach.

References 

[1] Abrial, J.R. (1974) Data Semantics. In: Klimbie JW, Koffeman KL (eds) Data 
Base Management. North-Holland, Amsterdam, pp 1–60 

[2] Azizah, F.N., Bakema, G. (2006) Data Modeling Patterns using Fully Com-
munication Oriented Information Modeling. In: Meersman R et al. (eds) On 
the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, LNCS 
vol 4278. Springer, Berlin Heidelberg New York, pp 1221–1230. 

[3] Balsters, H., Carver, A., Halpin, T., Morgan, T. (2006) Modeling Dynamic 
Rules in ORM. In: Meersman R et al. (eds) On the Move to Meaningful Inter-
net Systems 2006: OTM 2006 Workshops, LNCS vol 4278. Springer, Berlin 
Heidelberg New York 

[4] Bakema, G., Zwart, J., van der Lek, H. (2000) Fully Communication Oriented 
Information Modelling. Ten Hagen Stam, The Netherlands. 

[5] Bird, L.J. (1997) Data Reverse Engineering: From a relational database system 
to a 3-dimensional conceptual schema. PhD thesis, University of Queensland. 

[6] Bird, L., Goodchild A, Halpin T (2000) Object Role Modeling and XML 
Schema. In: Conceptual Modeling – ER2000, Proc. 19th ER Conference, Salt 
Lake City, October 2000, LNCS vol 1920. Springer, Berlin Heidelberg New 
York, pp 309–322 

[7] Bloesch, A., Halpin, T. (1997) Conceptual queries using ConQuer-II. In: Proc 
ER’97: 16th Int. Conf. on Conceptual Modeling, LNCS vol 1331. Springer, 
Berlin Heidelberg New York, pp 113–126 



Fact-Oriented Modeling: Past, Present and Future      33 

[8] Bollen, P. (2002) A Formal Transformation from Object Role Models to UML 
class diagrams. In: Proc. EMMSAD’02 Workshop, Toronto. 

[9] Bollen, P. (2006) Using Fact-orientation for Instructional design. In: Meers-
man R, Tari Z, Herrero P et al. (eds) On the Move to Meaningful Internet Sys-
tems 2006: OTM 2006 Workshops, LNCS vol 4278. Springer, Berlin Heidel-
berg New York, pp 1231–1241 

[10] Bommel, P. van, Hoppenbrouwers, S., Proper, H., Weide, Th P. van der 
(2006) Exploring Modelling Strategies in a Meta-modelling Context. In: 
Meersman R et al. (eds) On the Move to Meaningful Internet Systems 2006: 
OTM 2006 Workshops, LNCS vol 4278. Springer, Berlin Heidelberg New 
York, pp 1128–1137 

[11] Bruza, P.D., Weide, Th P. van der (1989) The Semantics of TRIDL, Techni-
cal Report 89–17, Department of Information Systems, University of Ni-
jmegen. 

[12] Campbell, L., Halpin, T. (1993) Automated Support for Conceptual to Exter-
nal Mapping. In: Brinkkemper S, Harmsen F (eds) Proc 4th Workshop on 
Next Generation CASE Tools, Univ. Twente Memoranda Informatica 93–32, 
Paris (June), pp 35-51 

[13] Campbell, L., Halpin, T. (1994) The reverse engineering of relational data-
bases. In: Proc 5th Workshop on Next Generation CASE Tools, Utrecht. 

[14] Campbell, L., Halpin, T., Proper, H. (1996) Conceptual Schemas with Ab-
stractions: making flat conceptual schemas more comprehensible. Data Knowl 
Eng 20(1): 39–85. 

[15] Curland, M., Halpin, T. (2007) Model Driven Development with NORMA. 
In: Proc. HICSS-40, CD-ROM, IEEE Computer Society. 

[16] Cuyler, D., Halpin, T. (2005) Two Meta-Models for Object-Role Modeling. 
In: Krogstie J, Halpin T, Siau K (eds) Information Modeling Methods and 
Methodologies, Idea Publishing Group, Hershey, pp 17–42 

[17] Chen, P.P. (1976) The entity-relationship model—towards a unified view of 
data. ACM Transactions on Database Systems, 1(1), pp 9–36 

[18] De Troyer, O. (1993) On Data Schema Transformations, PhD thesis, Uni. Til-
burg.  

[19] De Troyer, O., Meersman, R. (1995) A logic framework for a semantics of 
object oriented data modeling. In: OOER’95: Object-Oriented and Entity-
Relationship Modeling, LNCS vol. 1021. Springer, Berlin Heidelberg New 
York, pp 238–249 

[20] De Troyer, O., Castelyn, S., Plessers, P. (2005). Using ORM to Model Web 
Systems. In: Meersman R et al. (eds) On the Move to Meaningful Internet Sys-
tems 2005: OTM 2005 Workshops, LNCS vol 3762. Springer, Berlin Heidel-
berg New York, pp. 700–709 

[21] Dietz, J.L.G. (2005) A World Ontology Specification Language. In: Meers-
man R et al. (eds) On the Move to Meaningful Internet Systems 2005: OTM 
2005 Workshops, LNCS vol 3762. Springer, Berlin Heidelberg New York, pp 
688–699 



34      Terry Halpin 

[22] Dietz, J.L.G., Halpin, T. (2004) Using DEMO and ORM in Concert: A Case 
Study. In: Siau K (ed) Advanced Topics in Database Research, vol. 3, Idea 
Group, Hershey 

[23] Dumas, M., Aldred, L., ter Hofstede, A. (2002) From Conceptual Models to 
Constrained Web Forms. In: Kashyap V,  Shklar L (eds) Real World Semantic 
Web Applications, IOS Press, pp 50–68 

[24] Embley, D.W. (1998) Object Database Development, Addison-Wesley. 
[25] Embley, D.W., Wu, H.A., Pinkston, J.S., Czejdo, B. (1996) OSM-QL: a cal-

culus-based graphical query language, Tech Report, Brigham Young Univer-
sity, Utah 

[26] Evans, K. (2005) Requirements Engineering with ORM, In: Meersman R et 
al. (eds) On the Move to Meaningful Internet Systems 2005: OTM 2005 Work-
shops, LNCS vol 3762. Springer, Berlin Heidelberg New York, pp 646–655 

[27] Everest, G. (1994) Experiences teaching NIAM/OR modeling. In: Nijssen 
GM, Sharp J (eds), NIAM-ISDM 1994 Conf. Working papers, Albuquerque, 
pp N1–26 

[28] Falkenberg, E. (1976) Concepts for modeling information. In: Nijssen GM 
(ed) Proc. 1976 IFIP Working Conf. on Modelling in Data Base Management 
Systems, North-Holland Publishing, pp 95–109 

[29] Falkenberg, E., van der Weide, Th. P. (1988) Formal Description of the TOP 
Model, Technical Report 88-01, Department of Information Systems, Univer-
sity of Nijmegen 

[30] Habrias, H. (1993) Normalized Object Oriented Method. In: Encyclopedia of 
Microcomputers, vol. 12, Marcel Dekker, New York, pp 271–285 

[31] Halpin, T. (1989) A Logical Analysis of Information Systems: static aspects 
of the data-oriented perspective, PhD thesis, University of Queensland 

[32] Halpin, T. (2000) Integrating fact-oriented modeling with object-oriented 
modeling. In: Siau K, Rossi M (eds) Information Modeling for the new Mille-
nium, Idea Group Publishing, Hershey, pp 150–166 

[33] Halpin, T. (2000) Modeling collections in UML and ORM. In: Proc 
EMMSAD’00: 5th IFIP WG8.1 Int Workshop on Evaluation of Modeling 
Methods in Systems Analysis and Design, Kista, Sweden 

[34] Halpin, T. (2001) Information Modeling and Relational Databases, Morgan 
Kaufmann, San Francisco. 

[35] Halpin, T. (2002) Information Analysis in UML and ORM: a Comparison. In: 
Siau K (ed) Advanced Topics in Database Research, vol. 1, Idea Group, Her-
shey,

[36] Halpin, T. (2004) Comparing Metamodels for ER, ORM and UML Data 
Models. In: Siau K (ed) Advanced Topics in Database Research, vol. 3, Idea 
Group, Hershey 

[37] Halpin, T. (2004) Business Rule Verbalization. In: Doroshenko A, Halpin T, 
Liddle S, Mayr H (eds) Information Systems Technology and its Applications,
Proc. ISTA-2004, Salt Lake City, Lec. Notes in Informatics, vol. P-48, pp 39–
52



Fact-Oriented Modeling: Past, Present and Future      35 

[38] Halpin, T. (2005) Constraints on Conceptual Join Paths. In: Krogstie J, Hal-
pin T, Siau K (eds) Information Modeling Methods and Methodologies, Idea 
Group, Hershey 

[39] Halpin, T. (2005) Higher-Order Types and Information Modeling. In: Siau K 
(ed) Advanced Topics in Database Research, vol. 4, Idea Pub. Group, Her-
shey, pp 218–237 

[40] Halpin, T. (2005) Objectification. In: Castro J, Teniente E (eds) Proc. 
CAiSE’05 Workshops, FEUP, Porto, pp 519–532 

[41] Halpin, T. (2005) Fact-Orientation Meets Agent-Orientation. In: Bresciani P 
et al. (eds) Agent-Oriented Information Systems II, LNAI vol 3508, Springer, 
Berlin Heidelberg New York, pp 97–109 

[42] Halpin, T. (2005) Information Modeling in UML and ORM: A Comparison. 
In: Khosrow-Pour M (ed) Encyclopedia of Information Science and Technol-
ogy, vol. 3, Idea Publishing Group, Hershey, pp 1471–1475 

[43] Halpin, T. (2005) ORM 2. In: Meersman R et al. (eds) On the Move to Mean-
ingful Internet Systems 2005: OTM 2005 Workshops, LNCS vol 3762. 
Springer, Berlin Heidelberg New York, pp 676–687 

[44] Halpin, T. (2006) Object-Role Modeling (ORM/NIAM). In: Bernus P, Mer-
tins K, Schmidt G (eds) Handbook on Architectures of Information Systems,
2nd edition, Springer, Berlin Heidelberg New York, Heidelberg, pp 81–103   

[45] Halpin, T. (2006) Business Rule Modality. In: Latour T,  Petit M (eds) Proc. 
CAiSE’06 Workshops, Namur University Press, pp 383–394 

[46] Halpin, T., Bloesch, A. (1999) Data modeling in UML and ORM: a compari-
son. Journal of Database Management, 10(4): 4–13 

[47] Halpin, T., Curland, M. (2006) Automated Verbalization for ORM 2. In: 
Meersman R et al. (eds) On the Move to Meaningful Internet Systems 2006: 
OTM 2006 Workshops, LNCS vol 4278. Springer, Berlin Heidelberg New 
York, pp 1181–1190 

[48] Halpin, T., Evans, K., Hallock, P., MacLean, W. (2003) Database Modeling 
with Microsoft® Visio for Enterprise Architects, Morgan Kaufmann, San Fran-
cisco.

[49] Halpin, T.,Proper, H. 1995, ‘Subtyping and polymorphism in Object-Role 
Modeling’, Data and Knowledge Engineering, 15: 251–281. 

[50] Halpin, T, Proper, H. (1995) Database schema transformation and optimiza-
tion. In: Papazoglou M (ed) OOER’95: Object-Oriented and Entity-
Relationship Modeling, LNCS vol 1021. Springer, Berlin Heidelberg New 
York, pp 191–203 

[51] Halpin, T., Vermeir, D. (1997) Default reasoning in information systems. In: 
Database Applications Semantics, Chapman & Hall, London, pp 423–441 

[52] Halpin, T., Wagner, G. (2003) Modeling Reactive Behavior in ORM’. Con-
ceptual Modeling – ER2003, LNCS vol 2813. Springer, Berlin Heidelberg 
New York, pp 567–569 

[53] ter Hofstede, A.H.M. (1993) Information Modelling in Data Intensive Do-
mains, PhD thesis, University of Nijmegen 

[54] Hansen, J., dela Cruz, N. (2006) Evolution of a Dynamic Multidimensional 
Denormalization Meta Model Using Object Role Modeling. In: Meersman R 



36      Terry Halpin 

et al. (eds) On the Move to Meaningful Internet Systems 2006: OTM 2006 
Workshops, LNCS vol 4278. Springer, Berlin Heidelberg New York, pp 
1160–69 

[55] Henricksen, K., Indulska, J., McFadden, T. (2005) Modelling Context Infor-
mation with ORM. In: Meersman R et al. (eds) On the Move to Meaningful 
Internet Systems 2005: OTM 2005 Workshops, LNCS vol 3762. Springer, 
Berlin Heidelberg New York 

[56] ter Hofstede, A.H.M., Proper, H.A., Weide, Th.P. van der (1993) Formal 
definition of a conceptual language for the description and manipulation of in-
formation models, Information Systems, vol. 18, no. 7, pp 489–523 

[57] ter Hofstede, A.H.M., Weide, Th.P van der (1993) Expressiveness in concep-
tual data modeling’, Data and Knowl Eng 10(1): 65–100 

[58] Hoppenbrouwers, S., Lindeman, H., Properm H. (2006) Capturing Modeling 
Processes—Towards the MODial Modeling Laboratory. In: Meersman R et al. 
(eds) On the Move to Meaningful Internet Systems 2006: OTM 2006 Work-
shops, LNCS vol 4278. Springer, Berlin Heidelberg New York, pp 1242–1252 

[59] Hoppenbrouwers, S., Proper, H., Weidem Th.P. van der (2005), Fact Calcu-
lus: Using ORM and Lisa-D to Reason about Domains. In: Meersman R et al. 
(eds) On the Move to Meaningful Internet Systems 2005: OTM 2005 Work-
shops, LNCS vol 3762. Springer, Berlin Heidelberg New York, pp 720–729 

[60] Jarrar, M. (2005) Modularization and Automatic Composition of Object-Role 
Modeling (ORM) Schemes. In: Meersman R et al. (eds) On the Move to 
Meaningful Internet Systems 2005: OTM 2005 Workshops, LNCS vol 3762. 
Springer. 

[61] Keet, M. (2005) Using Abstractions to facilitate Management of Large ORM 
Models. In: Meersman R et al. (eds) On the Move to Meaningful Internet Sys-
tems 2005: OTM 2005 Workshops, LNCS vol 3762. Springer, Berlin Heidel-
berg New York, pp 603–612 

[62] Keet, M. (2006) Part-Whole Relations in Object-Role Models. In: Meersman 
R et al. (eds) On the Move to Meaningful Internet Systems 2006: OTM 2006 
Workshops, LNCS vol 4278. Springer, Berlin Heidelberg New York, pp 
1118–1127 

[63] Kent, W. (1977) Entities and relationships in Information. In: Nijssen GM 
(ed) Proc 1977 IFIP Working Conf on Modelling in Data Base Management 
Systems, Nice, France, North-Holland Publishing, pp 67–91 

[64] Kent, W. (2000) Data and Reality, 2nd edition, 1stBooks Library, Blooming-
ton. 

[65] Meersman, R. (1982) The RIDL conceptual language, Research report, Int. 
Centre for Information Analysis Services, Control Data Belgium, Brussels. 

[66] Mok, W., Embley, D. (1996) Transforming conceptual model to object-
oriented database designs: practicalities, properties and peculiarities. In: Proc 
ER’96: 15th Int. Conf. on conceptual modeling, LNCS, vol. 1157. Springer, 
Berlin Heidelberg New York 

[67] Morgan, T. (2006) Some Features of State Machines in ORM. In: Meersman 
R et al. (eds) On the Move to Meaningful Internet Systems 2006: OTM 2006 



Fact-Oriented Modeling: Past, Present and Future      37 

Workshops, LNCS vol 4278. Springer, Berlin Heidelberg New York, pp 
1211–1220 

[68] Nijssen, G.M. (1976) A gross architecture for the next generation database 
management systems. In: Nijssen GM (ed) Proc. 1976 IFIP Working Conf. on 
Modelling in Data Base Management Systems, Freudenstadt, Germany, 
North-Holland Publishing 

[69] Nijssen, G.M. (1977) Current issues in conceptual schema concepts. In: Ni-
jssen GM (ed) Proc. 1977 IFIP Working Conf. on Modelling in Data Base 
Management Systems, Nice, France, North-Holland Publishing, pp 31–66 

[70] Oaks, P., ter Hofstede, A., Edmond, D., Spork, M. (2003) Extending concep-
tual models for web based applications, Conceptual Modeling – ER2003,
Proc. 22nd ER Conference, Chicago, LNCS vol 2813. Springer, Berlin Heidel-
berg New York, pp 216–245  

[71] Object Management Group 2003, UML 2.0 Superstructure Specification.
Online at: www.omg.org/uml. 

[72] Object Management Group 2005, UML OCL 2.0 Specification. Online at: 
http://www.omg.org/docs/ptc/05-06-06.pdf. 

[73] Object Management Group 2006, Semantics of Business Vocabulary and 
Business Rules Interim Specification. Online at: www.omg.org/cgi-
bin/doc?dtc/06-03-02. 

[74] Pepels, B., Plasmeijer, R. (2005) Generating Applications from Object Role 
Models. In: Meersman R et al. (eds) On the Move to Meaningful Internet Sys-
tems 2005: OTM 2005 Workshops, LNCS vol 3762. Springer, Berlin Heidel-
berg New York, pp 656–665 

[75] Pepels, B., Plasmeijer, R., Proper, H. (2006) Fact-Oriented Modeling from a 
Programming Language Designer’s Perspective. In: Meersman R et al. (eds) 
On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops,
LNCS vol 4278. Springer, Berlin Heidelberg New York, pp 1170–1180 

[76] Pierson, E., dela Cruz, N. (2005) Using Object Role Modeling for Effective 
In-house Decision Support Systems. In: Meersman R et al. (eds) OTM 2005 
Workshops, LNCS vol 3762. Springer, Berlin Heidelberg New York, pp 636–
645 

[77] Piprani, B. (2006) Using ORM-based Models as a Foundation for a data 
Quality Firewall in an Advanced Generation Data Warehouse. In: Meersman 
R et al. (eds) On the Move to Meaningful Internet Systems 2005: OTM 2005 
Workshops, LNCS vol 3762. Springer, Berlin Heidelberg New York, pp 
1148–1159 

[78] Proper, H.A. (1994) A Theory for Conceptual Modeling of Evolving Applica-
tion Domains, PhD thesis, University of Nijmegen 

[79] Proper, H.A., Hoppenbrouwers SJB, Weide thP van der (2005) A Fact-
Oriented Approach to Activity Modeling. In: Meersman R et al. (eds) OTM 
2005 Workshops, LNCS vol 3762. Springer, Berlin Heidelberg New York, pp 
666–675 

[80] Ritson, P., Halpin, T. (1993) Mapping Integrity Constraints to a Relational 
Schema. In: Proc. 4th Australian Conf on Inf. Systems, Brisbane, pp 381–400 



38      Terry Halpin 

[81] Senko, M. (1975) Information systems: records, relations, sets, entities and 
things. Information Systems 1(1): 3–13 

[82] Shoval, P., Shreiber, N. (1993) Database reverse engineering: from the rela-
tional to the binary relational model. Data and Knowl Eng 10: 293–315 

[83] Sølvberg, A., Kung, C.H. (1993) Information Systems Engineering. Springer.. 
[84] Spyns, P. (2005) Object Role Modeling for Ontology Engineering in the 

DOGMA Framework. In: Meersman R et al. (eds) OTM 2005 Workshops,
LNCS vol 3762. Springer, Berlin Heidelberg New York, pp 710–719 

[85] Trog, D., Vereecken, J., Christiaens, S., De Leenheer, P., Meersman, R. 
(2006) T-Lex: a Role-based Ontology Engineering Tool. In: Meersman R et 
al. (eds) On the Move to Meaningful Internet Systems 2006: OTM 2006 Work-
shops, LNCS vol 4278. Springer, Berlin Heidelberg New York, pp 1191–1200 

[86] Verheijen, G., van Bekkum, J. (1982) NIAM: an information analysis 
method. In: Information systems Design Methodologies: a comparative re-
view, Proc. IFIP WG8.1 Working Conf., Noordwijkerhout, The Netherlands, 
North Holland Publishing. 

[87] Vermeir, D. (1983) Semantic hierarchies and abstractions in conceptual sche-
mata. Information Systems 8(2): 117–124 

[88] Warmer, J., Kleppe, A. (2003) The Object Constraint Language, 2nd edn, 
Addison-Wesley 

[89] Wintraecken, J. (1990) The NIAM Information Analysis Method: Theory and 
Practice, Kluwer, Deventer, The Netherlands 



Data Integration – Problems, Approaches, and 
Perspectives

Patrick Ziegler, Klaus R. Dittrich 

University of Zurich, Switzerland

Abstract. Data integration is one of the older research fields in the database area and 
has emerged shortly after database systems were first introduced into the business 
world. In this paper, we briefly introduce the problem of integration and, based on an 
architectural perspective, give an overview of approaches to address the integration is-
sue. We discuss the evolution from structural to semantic integration and shortly pre-
sent our own research in the SIRUP (Semantic Integration Reflecting User-specific 
semantic Perspectives) approach. Finally, an outlook to challenging areas of future re-
search in the realm of data integration is given. 

1 Introduction 

In today’s business world, it is typical that enterprises run different but co-
existing information systems. Employing these systems, enterprises strug-
gle to realize business opportunities in highly competitive markets. In this 
setting, the integration of existing information systems is becoming more 
and more indispensable in order to dynamically meet business and cus-
tomer needs while leveraging long-term investments in existing IT infra-
structure.

In general, integration of multiple information systems aims at combin-
ing selected systems so that they form a unified new whole and give users 
the illusion of interacting with one single information system. The reason 
for integration is twofold: First, given a set of existing information sys-
tems, an integrated view can be created to facilitate information access and 
reuse through a single information access point. Second, given a certain in-
formation need, data from different complementing information systems is 
combined to gain a more comprehensive basis to satisfy the need. 



40      Patrick Ziegler, Klaus R. Dittrich 

There is a manifold of applications that benefit from integrated informa-
tion. For instance, in the area of business intelligence (BI), integrated in-
formation can be used for querying and reporting on business activities, for 
statistical analysis, online analytical processing (OLAP), and data mining 
in order to enable forecasting, decision making, enterprise-wide planning, 
and, in the end, to gain sustainable competitive advantages. For customer 
relationship management (CRM), integrated information on individual 
customers, business environment trends, and current sales can be used to 
improve customer services. Enterprise information portals (EIP) present 
integrated company information as personalized web sites and represent 
single information access points primarily for employees, but also for cus-
tomers, business partners, and the public. Last, but not least, in the area of 
e-commerce and e-business, integrated information enables and facilitates 
business transactions and services over computer networks. 

Similar to information, IT services and applications can be integrated, 
either to provide a single service access point or to provide more compre-
hensive services to meet business requirements. For instance, integrated 
workflow and document management systems can be used within enter-
prises to leverage intraorganizational collaboration. Based on the ideas of 
business process reengineering (BPR), integrated IT services and applica-
tions that support business processes can help to reduce time-to-market 
and to provide added-value products and services. Thereby, interconnect-
ing building blocks from selected IT services and applications enables 
supply chain management within individual enterprises as well as coopera-
tion beyond the boundaries of traditional enterprises, as in interorganisa-
tional cooperation, business process networks (BPN), and virtual organiza-
tions. For instance, in e-procurement, supply and demand for producer 
goods are provided with integrated information and services to streamline 
the purchasing process for institutional buyers. Thus, it is possible to by-
pass intermediaries and to enable direct interaction between supply and 
demand, as in business-to-business (B2B), business-to-consumer (B2C), 
and business-to-employee (B2E) transactions. These trends are fuelled by 
XML that is becoming the industry standard for data exchange as well as 
by web services that provide interoperability between various software ap-
plications running on different platforms. 

In the enterprise context, the integration problem is commonly referred 
to as enterprise integration (EI). Enterprise integration denotes the capabil-
ity to integrate information and functionalities from a variety of informa-
tion systems in an enterprise. This encompasses enterprise information in-
tegration (EII) that concerns integration on the data and information level 
and enterprise application integration (EAI) that considers integration on 
the level of application logic. In this paper, we focus on the integration of 



Data Integration - Problems, Approaches, and Perspectives    41 

information and, in particular, highlight integration solutions that are pro-
vided by the database community. Our goal is to give, based on an archi-
tectural perspective, a database-centric overview of principal approaches to 
the integration problem and to illustrate some frequently used approaches. 
Additionally, we introduce semantic integration that is needed in all inte-
gration examples given above and that forms a key factor for current and 
future integration solutions. 

An outlook to our own approach to personal semantic data integration 
and future research challenges round off this paper which is an extension 
of [37]. 

The structure of this paper is as follows: In the following Section, we 
sketch the problem of integration. Section 3 presents principal approaches 
to address the integration issue and in Section 4, the evolution from struc-
tural to current semantic integration approaches is discussed. Our work in 
the SIRUP project is outlined in Section 5 and then, an outlook to chal-
lenging areas of future data integration research is given. Finally, Section 7 
concludes the paper. 

2 The Problem of Integration 

Integration of multiple information systems generally aims at combining 
selected systems so that they form a unified new whole and give users the 
illusion of interacting with one single information system. Users are pro-
vided with a homogeneous logical view of data that is physically distrib-
uted over heterogeneous data sources. For this, all data has to be repre-
sented using the same abstraction principles (unified global data model and 
unified semantics). This task includes detection and resolution of schema 
and data conflicts regarding structure and semantics.

In general, information systems are not designed for integration. Thus, 
whenever integrated access to different source systems is desired, the 
sources and their data that do not fit together have to be coalesced by addi-
tional adaptation and reconciliation functionality. Note that there is not the 
one single integration problem. While the goal is always to provide a ho-
mogeneous, unified view on data from different sources, the particular in-
tegration task may depend on: 

the architectural view of an information system (see Fig. 1), 
the content and functionality of the component systems, 
the kind of information that is managed by component systems (alpha-
numeric data, multimedia data; structured, semi-structured, unstructured 
data),



42      Patrick Ziegler, Klaus R. Dittrich 

requirements concerning autonomy of component systems, 
intended use of the integrated information system (read-only or write  

access), 
performance requirements, and 
the available resources (time, money, human resources, etc.) [12]. 

Additionally, several kinds of heterogeneity typically have to be consid-
ered. These include differences in: 

hardware and operating systems, 
data management software, 
data models, schemas, and data semantics, 
middleware,
user interfaces, and 
business rules and integrity constraints. 

3 Approaches to Integration 

In this section, we apply an architectural perspective to give an overview 
of the different ways to address the integration problem. The presented 
classification is based on [12] and distinguishes integration approaches ac-
cording to the level of abstraction where integration is performed. 

Information systems can be described using a layered architecture, as 
shown in Fig. 1: On the topmost layer, users access data and services 
through various interfaces that run on top of different applications. Appli-
cations may use middleware — transaction processing (TP) monitors, 
message oriented middleware (MOM), SQL-middleware, etc. — to access 
data via a data access layer. The data itself is managed by a data storage 
system. Usually, database management systems (DBMS) are used to com-
bine the data access and storage layer. 

In general, the integration problem can be addressed on each of the pre-
sented system layers. For this, the following principal approaches — as il-
lustrated in Fig. 1 — are available: 

Manual Integration 

Here, users directly interact with all relevant information systems and 
manually integrate selected data. That is, users have to deal with different 
user interfaces and query languages. Additionally, users need to have de-
tailed knowledge on location, logical data representation, and data seman-
tics.



Data Integration - Problems, Approaches, and Perspectives    43 

Common User Interface 

In this case, the user is supplied with a common user interface (e.g., a web 
browser) that provides a uniform look and feel. Data from relevant infor-
mation systems is still separately presented so that homogenization and in-
tegration of data yet has to be done by the users (for instance, as in search 
engines).

Integration by Applications 

This approach uses integration applications that access various data 
sources and return integrated results to the user. This solution is practical 
for a small number of component systems. However, applications become 
increasingly fat as the number of system interfaces and data formats to 
homogenize and integrate grows. 

Integration by Middleware 

Middleware provides reusable functionality that is generally used to solve 
dedicated aspects of the integration problem, e.g., as done by SQL-
middleware.

Common Data Storage

Integration by Applications

Middleware Integration

Uniform Data Access

Common User Interface

"Manual" Integration

User Interface

Application Application Application

Middleware

User Interface

Application Application Application

Middleware

Data
Management

Data Access

Data Storage

Data
Management

Data Access

Data Storage

Data Data

User User

Fig. 1. General Integration Approaches on Different Architectural Levels 



44      Patrick Ziegler, Klaus R. Dittrich 

While applications are relieved from implementing common integration 
functionality, integration efforts are still needed in applications1. Addition-
ally, different middleware tools usually have to be combined to build inte-
grated systems. 

Uniform Data Access 

In this case, a logical integration of data is accomplished at the data access 
level. Global applications are provided with a unified global view of 
physically distributed data, though only virtual data is available on this 
level. Local information systems keep their autonomy and can support ad-
ditional data access layers for other applications. However, global provi-
sion of physically integrated data can be time-consuming since data access, 
homogenization, and integration have to be done at runtime. 

Common Data Storage 

Here, physical data integration is performed by transferring data to a new 
data storage; local sources can either be retired or remain operational. In 
general, physical data integration provides fast data access. However, if lo-
cal data sources are retired, applications that access them have to be mi-
grated to the new data storage as well. In case local data sources remain 
operational, periodical refreshing of the common data storage needs to be 
considered.

In practice, concrete integration solutions are realized based on the pre-
sented six general integration approaches. Important examples include:

Mediated query systems represent a uniform data access solution by 
providing a single point for read-only querying access to various data 
sources, e.g., as in TSIMMIS [9]. A mediator [34] that contains a global 
query processor is employed to send subqueries to local data sources; 
returned local query results are then combined. 
Portals as another form of uniform data access are personalized door-
ways to the internet or intranet where each user is provided with infor-
mation according to his detected information needs. Usually, web min-
ing is applied to determine user-profiles by click-stream analysis; 
thereby, information the user might be interested in can be retrieved and 
presented.

                                                     
1 For instance, SQL-middleware provides a single access point to send SQL que-

ries to all connevcted component systems. However, query results are not inte-
grated into one single, homogeneous result set. 



Data Integration - Problems, Approaches, and Perspectives    45 

Data warehouses realize a common data storage approach to integra-
tion. Data from several operational sources (on-line transaction process-
ing systems, OLTP) are extracted, transformed, and loaded (ETL) into a 
data warehouse. Then, analysis, such as online analytical processing 
(OLAP), can be performed on cubes of integrated and aggregated data. 
Operational data store are a second example of a common data storage. 
Here, a “warehouse with fresh data” is built by immediately 2 propagat-
ing updates in local data sources to the data store. Thus, up-to-date inte-
grated data is available for decision support. Unlike in data warehouses, 
data is neither cleansed nor aggregated nor are data histories supported. 
Federated database systems (FDBMS) achieve a uniform data access 
solution by logically integrating data from underlying local DBMS. 
Federated database systems are fully-fledged DBMS; that is, they im-
plement their own data model, support global queries, global transac-
tions, and global access control. Usually, the five-level reference archi-
tecture by [30] is employed for building FDBMS. 
Workflow management systems (WFMS) allow to implement business 
processes where each single step is executed by a different application 
or user. Generally, WFMS support modeling, execution, and mainte-
nance of processes that are comprised of interactions between applica-
tions and human users. WFMS represent an integration-by-application 
approach.
Integration by web services performs integration through software com-
ponents (i.e., web services) that support machine-to-machine interaction 
over a network by XML-based messages that are conveyed by internet 
protocols. Depending on their offered integration functionality, web ser-
vices either represent a uniform data access approach or a common data 
access interface for later manual or application-based integration. 
Model management introduces high-level operations between models 
(such as database schemas, UML models, and software configurations) 
and model mappings; such operations include matching, merging, selec-
tion, and composition [6]. Using a schema algebra that encompasses all 
these operations, it is intended to reduce the amount of hand-crafted 
code required for transformations of models and mappings as needed for 
schema integration. Model management falls into the category of man-
ual integration. 
Peer-to-peer (P2P) integration is a decentralized approach to integra-
tion between distributed, autonomous peers where data can be mutually 

                                                     
2 That is, not within the same transaction, but within a period of time that is rea-

sonable according to the particular application requirement 



46      Patrick Ziegler, Klaus R. Dittrich 

shared and integrated through mappings between local schemas of 
peers. P2P integration constitutes, depending on the provided integration 
functionality, either a uniform data access approach or a data access in-
terface for subsequent manual or application-based integration. 
Grid data integration provides the basis for hypotheses testing and pat-
tern detection in large amounts of data in grid environments, i.e., inter-
connected computing resources being used for high-throughput comput-
ing. Here, often unpredictable and highly dynamic amounts of data have 
to be dealt with to provide an integrated view over large (scientific) data 
sets. Grid data integration represents an integration by middleware ap-
proach.
Personal data integration systems (e.g., [38]) are a special form of man-
ual integration. Here, tailored integrated views are defined (e.g., by a 
declarative integration language), either by users themselves or by dedi-
cated integration engineers. Each integrated view precisely matches the 
information needs of a user by encompassing all relevant entities with 
real-world semantics as intended by the particular user; thereby, the in-
tegrated view reflects the user’s personal way to perceive his application 
domain of interest. 
Collaborative integration (e.g., [25]), another special form of manual 
integration, is based on the idea to have users to contribute to a data in-
tegration system for using it. Here, initial partial schema mappings are 
presented to users who answer questions concerning the mappings; 
these answers are then taken to refine the mappings and to expand the 
system capabilities. Similar to folksonomies, where data is collabora-
tively labelled for later retrieval, the task of schema mapping is distrib-
uted over participating users. 
In Dataspace systems [13], co-existence of all data (i.e., both structured 
and unstructured) is propagated rather than full integration. A dataspace 
system is used to provide the same basic functionality, e.g., search fa-
cilities, over all data sources independently of their degree of integra-
tion. Only when more sophisticated services are needed, such as rela-
tional-style queries, additional efforts are made to integrate the required 
data sources more closely. In general, dataspace systems may simulta-
neously use every one of the presented six general integration ap-
proaches.



Data Integration - Problems, Approaches, and Perspectives    47 

4 From Structural to Semantic Integration 

Database technology was introduced in enterprises since the late 1960s to 
support (initially rather simple) business applications. As the number of 
applications and data repositories rapidly grew, the need for integrated data 
became apparent. As a consequence, first integration approaches in the 
form of multidatabase systems [21] were developed around 1980 — e.g., 
MULTIBASE [24]. This was a first cornerstone in a remarkable history of 
research in the area of data integration. The evolution continued over me-
diators (e.g., Garlic [8]) and agent systems (e.g., InfoSleuth [4]) to ontol-
ogy-based (e.g., OBSERVER [26]), peer-to-peer (P2P) (e.g., Piazza [19]), 
and web service-based integration approaches (e.g., Active XML [1]). Re-
cently, tailored personal data integration (e.g., SIRUP [38]), collaborative 
integration (e.g., MOBS [25]), and dataspace systems [13] are being ad-
dressed by the research community (see Figure 2). 

In general, early integration approaches were based on a relational or 
functional data model and realized rather tightly-coupled solutions by pro-
viding one single global schema. To overcome their limitations concerning 
the aspects of abstraction, classification, and taxonomies, object-oriented 
integration approaches [7] were adopted to perform structural homogeniza-
tion and integration of data. With the advent of the internet and web tech-
nologies, the focus shifted from integrating purely well-structured data to 
also incorporating semi- and unstructured data while architecturally, 
loosely-coupled mediator and agent systems became popular. 

However, integration is more than just a structural or technical problem. 
Technically, it is rather easy to connect different relational DBMS (e.g., 
via ODBC or JDBC). More demanding is to integrate data described by 
different data models; even worse are the problems caused by data with 
heterogeneous semantics. For instance, having only the name “loss” to de-
note a relation in an enterprise information system does not provide suffi-
cient information to doubtlessly decide whether the represented loss is a 
book loss, a realized loss, or a future expected loss and whether the values 
of the tuples reflect only a roughly estimated loss or a precisely quantified 
loss. Integrating two “loss” relations with (implicit) heterogeneous seman-
tics leads to erroneous results and completely senseless conclusions. 
Therefore, explicit and precise semantics of integratable data are essential 
for semantically correct and meaningful integration results. Note that none 
of the principal integration approaches in Section 3 helps to resolve seman-
tic heterogeneity; neither is XML that only provides structural information 
a solution. 



48      Patrick Ziegler, Klaus R. Dittrich 

In the database area, semantics can be regarded as people’s interpreta-
tion of data and schema items according to their understanding of the 
world in a certain context. In data integration, the type of semantics con-
sidered is generally real-world semantics that are concerned with the 
“mapping of objects in the model or computational world onto the real 
world [. . .] [and] the issues that involve human interpretation, or meaning 
and use of data and information” [27]. In this setting, semantic integration 
is the task of grouping, combining or completing data from different 
sources by taking into account explicit and precise data semantics in order 
to avoid that semantically incompatible data is structurally merged. That is, 
semantic integration has to ensure that only data related to the same or suf-
ficiently similar3 real-world entity or concept is merged. A prerequisite for 
this is to resolve semantic ambiguity concerning integratable data by ex-
plicit metadata to elicit all relevant implicit assumptions and underlying 
context information.

Time

Ad-hoc Integration /
File Management

Loose Coupling / Scalability 1994-1997

1975 1980 1985 1990 1995 2000 2005

XML & Integration 1998-2004

Web Services 2002-
Peer-to-Peer 2003-

Grid & Integration 2004-

Ontologies 1996-

Model-based Mediation 2000-2003

(Simple) Domain Models 1993-1996

Context & Integration 1994-2000

Model Management 2000-

Object-Orientation 1991-1997
Mediators 1992-1999

Bus Systems / CORBA 1995-1999

Information Retrieval & Integration 1997-2000

Federated Databases 1990-2001

Data Warehousing 1995-2000

WWW & Integration 1994-2000

Multidatabase Systems 1980-1996

Agents / Matchmaking 1994-1997

Personal Data Integration 2004-

Website / Content Management 1997-1999

Neural Networks 1994-2000

Mappings 1999-

Wrapper Generation 1997-2000

Semantic Web 2001-

Dataspaces 2006-
Collaborative Integration 2004-

2010

Fig. 2. Data Integration Research Trends over Time 

                                                     
3 How much similarity is considered as sufficient depends on the particular infor-

mation need and application area. 



Data Integration - Problems, Approaches, and Perspectives    49 

 One idea to overcome semantic heterogeneity in the database area is to 
exhaustively specify the intended real-world semantics of all data and 
schema elements. Unfortunately, it is impossible to completely define what 
a data or schema element denotes or means in the database world [29]. 
Therefore, database schemas do typically not provide enough explicit se-
mantics to interpret data always consistently and unambiguously [30]. 
These problems are further worsened by the fact that semantics may be 
embodied in data models, conceptual schemas, application programs, the 
data itself, and the minds of users. Moreover, there are no absolute seman-
tics that are valid for all potential users; semantics are relative [15]. These 
difficulties concerning semantics are the reason for many still open re-
search challenges in the area of data integration.

Ontologies — which can be defined as explicit, formal descriptions of 
concepts and their relationships that exist in a certain universe of dis-
course, together with a shared vocabulary to refer to these concepts — can 
contribute to solve the problem of semantic heterogeneity. Compared with 
other classification schemes, such as taxonomies, thesauri, or keywords, 
Ontologies allow more complete and more precise domain models [20]. 
With respect to an ontology a particular user group commits to, the seman-
tics of data provided by data sources for integration can be made explicit. 
Based on this shared understanding, the danger of semantic heterogeneity 
can be reduced. For instance, ontologies can be applied in the area of the 
Semantic Web to explicitly connect information from web documents to 
its definition and context in machine-processable form; thereby, semantic 
services, such as semantic document retrieval, can be provided.

In database research, single domain models and ontologies were first 
applied to overcome semantic heterogeneity. As in SIMS [3], a domain 
model is used as a single ontology to which the contents of data sources 
are mapped. Thus, queries expressed in terms of the global ontology can 
be asked. In general, single-ontology approaches are useful for integration 
problems where all information sources to be integrated provide nearly the 
same view on a domain [33]. In case the domain views of the sources dif-
fer, finding a common view becomes difficult. To overcome this problem, 
multi-ontology approaches like OBSERVER [26] describe each data 
source with its own ontology; then, these local ontologies have to be 
mapped, either to a global ontology or between each other, to establish a 
common understanding. Thus, it is now state of the art that information 
systems “carry with them an explicit model of the world that they operate 
in, a model of what the data that they carry stand for.” [32]. 



50      Patrick Ziegler, Klaus R. Dittrich 

5 Personal Semantic Data Integration in the SIRUP 
Approach

Mapping all data to one single domain model or ontology forces users to 
adapt to one single conceptualization of the world. This contrasts to the 
fact that receivers of integrated data widely differ in their conceptual inter-
pretation of and preference for data — they are generally situated in vari-
ous real-world contexts and have different conceptual models of the world 
in mind [17]. These models do not only vary between different people in 
the same domain, but even for the same individual over time [14]. COIN 
[17] was one of the first research projects to consider the different contexts 
data providers and data receivers are situated in. 

In our own research, we continue the trend of taking into account user 
specific aspects in the process of semantic integration. We address the 
problem how individual mental domain models and personal semantics of 
concepts can be reflected in data integration to provide tailor-made inte-
gration for personal information needs. In the SIRUP (Semantic Integra-
tion Reflecting User-specific semantic Perspectives) approach [38], we in-
vestigate how data — equipped with explicit, queryable semantics — can 
be effectively preintegrated on a conceptual level. Thereby, we aim at ena-
bling users to perform declarative data integration by conceptual modeling 
of their individual ways to perceive a domain of interest. 

Origin of our research is the observation that different users often have 
diverse views of reality — i.e., they perceive and conceptualize the same 
real world part differently, according to their relative points of view, their 
information needs, and expectations [23]. Additionally, none of these co-
existing views of the real world can be regarded as being more correct than 
another because each view is intended for a worthy purpose [31]. In gen-
eral, we refer to this phenomenon as data receiver heterogeneity. Imposing 
a single global schema for all users can have severe limitations that seri-
ously interfere with the users’ individual work because thereby, data re-
ceiver sovereignty is violated. Sovereignty of data receivers refers to the 
fact that using integrated data must be non-intrusive [28]; i.e., users should 
not be forced to adapt to any standard concerning structure and semantics 
of data they desire. Therefore, to take a “one integrated schema fits all” 
approach is definitely not a satisfactory solution. We generally subsume 
problems that cause a single global schema to be inappropriate for particu-
lar users as perspectual integration mistakes [38]. These include: 

Data selection mistakes are caused when data that is available through 
the global schema is, from the users’ perspective, inappropriately col-



Data Integration - Problems, Approaches, and Perspectives    51 

lected and selected from a given data source — for example, by only in-
cluding particular local relations in the global schema. 
Source selection mistakes occur when the decision of the global schema 
designer, which data sources to incorporate into the global schema, dif-
fers from individual users’ preferences for data from various origins 
(e.g., due to quality or reliability). 
Entity granularity mistakes refer to the fact that the degree of granular-
ity in which information is represented in the global schema can be too 
coarse-grained (general) or too fine-grained (specialized) according to 
the requirements of individual users — e.g., by integrating a “seminar” 
and a “colloquium” relation into a general global “course” relation. 
Attribute granularity mistakes are problems of inadequate granularity 
concerning attributes of entities in the global schema. 
Data semantics mistakes arise when the global schema provides an inte-
grated view on data that is semantically not related according to the in-
dividual perception of specific users. For instance, data concerning lec-
tures and seminars may be globally merged since both represent similar 
forms of teaching. However, this is not useful for people who are only 
interested in seminars because seminar information is blurred with lec-
tures.
Last, but not least, data taxonomy mistakes occur when generalization / 
specialization hierarchies given by the global schema do not fit the per-
spective of the particular domain according to individual users. 

In general, all six integration mistakes presented can be independently 
combined to form combined perspectual integration mistakes. 

To avoid perspectual integration mistakes, we advocate user-specific, 
personal semantic data integration. However, to be suitable for this, data 
integration approaches have to meet certain requirements. We summarize 
these requirements with the ASME criteria [36]: 

Abstraction refers to shielding users from low-level heterogeneities of 
underlying data sources; 
Selection means the possibility of user-specific selection of data and 
data sources for individual integration; 
Modeling corresponds to the availability of means to incorporate user 
specific perception of the domain for which integrated data is desired in 
the process of data integration; 
Explicit semantics refers to means for explicitly representing the in-
tended real-world semantics of data. 

As shown in [36], current data integration approaches fail to completely 
meet these requirements. In response to this, we propose the SIRUP ap-



52      Patrick Ziegler, Klaus R. Dittrich 

proach to personal semantic data integration to fulfil all the ASME criteria 
entirely. 

In SIRUP, data providers declaratively link groups of attributes repre-
senting alphanumeric data for particular real-world concepts (e.g., “data-
base lecture at University of Zurich”) to so-called IConcepts (short for “In-
termediate Concept”). Each IConcept represents a single, distinct concept 
of the real world, and for each real-world concept, there is only one single 
IConcept in a SIRUP integration system. To make its meaning explicit for 
both, humans and computers, every IConcept is connected to an ontologi-
cal concept (through the SOQA ontology API [40]) that precisely repre-
sents its intended semantics. Thus, by connecting attribute data from di-
verse data sources to IConcepts, data from these sources is pre-integrated 
on a conceptual level and its intended semantics made explicit. In order to 
allow more than one data source to provide data concerning a particular 
concept of the real world and to distinguish the origin of data, all the at-
tributes from each data source are organized as separate attribute groups in 
their respective IConcept. In addition, data providers annotate all attributes 
they provide for IConcepts so that metadata on attribute meaning, data 
types, key constraints, measurement units, etc. is explicitly available for 
users.

Based on these foundations, we provide a declarative integration and 
query language so that users, equipped with suitable IConcept search tools 
(see [39]), can derive user-specific concepts (UserConcepts) that are tai-
lored to their information needs from the available set of IConcepts. These 
UserConcepts can be organized in hierarchies so that individually inte-
grated, virtual views (so-called Semantic Perspectives) representing user-
specific conceptual domains models to precisely meet personal informa-
tion needs can be built. In the whole process of UserConcept modeling and 
combination, all available metadata including ontology links is automati-
cally maintained and propagated; thus, Semantic Perspectives are anno-
tated individual schemas over diverse data sources with explicit semantics. 
Finally, queries against Semantic Perspectives can be formulated that are 
processed by the respective SIRUP integration system. If desired, resulting 
data can be exported in a variety of formats, such as XML documents, re-
lational tuples (through JDBC), and Excel spreadsheets. 

6 Outlook 

Albeit there is a remarkable history of research in the field of data integra-
tion and in spite of significant progress that has been made since the mid-



Data Integration - Problems, Approaches, and Perspectives    53 

1990s, ranging from concepts and algorithms to systems and commercial 
aspects, significant challenges still remain [18]. In this section, we present 
some areas that exhibit such challenges for future data integration research 
from our own perspective. 

First of all, dynamic markets and increased competition demand for 
higher degrees of flexibility concerning data access and interoperability in 
the business domain. Thus, enterprises are faced with the requirement to 
provide multiple co-existing integrated views on their distributed corporate 
data sources to flexibly support different information needs. For instance, 
to enable banks to precisely assess credit risks according to the Basel II 
standard for risk management4, a comprehensive and sound basis of inte-
grated customer data is necessary. While in most banks, the needed data is 
available, it is often scattered over distributed sources, can be inconsistent 
and partially available only in hard paper copies. This alone is a challeng-
ing integration task for many banks; however, it is aggravated by the fact 
that alternative ways to organize the integrated data can simultaneously be 
necessary to support distinct information needs (e.g., categorization of 
credit risks according to geographical criteria or based on customer types). 
Here, personal data integration approaches like SIRUP can contribute.

Fostering agile cross-enterprise cooperation is another area that imposes 
challenges for data integration. For example, for virtual organizations as 
sets of organizational units that work towards a common goal, on-the-fly 
data integration is extremely important due to their dynamic nature [35]. 
To effectively provide the needed information by all the cooperating part-
ners in a timely manner, each of them being situated in a different real-
world context having his own conceptual model of the world in mind, 
flexible and tailored data integration is a prerequisite. Based on adequately 
integrated data, required applications like supply chain management 
(SCM), enterprise resource planning (ERP), and customer relationship 
management (CRM) can be realized. 

Another area of inter-organizational cooperation between organizational 
units is e-science. Here, virtual experiments based on intensive computa-
tions and huge amounts of data are performed in grid environments, as, for 
example, in earth sciences, particle physics, and bioinformatics. Not only 
is data integration in this field required to meet diverse scientific informa-
tion needs, but also scalability and manageability issues rise due to the fact 
that masses of data need to be handled efficiently. A key factor for inter-
disciplinary multi-national e-science projects is the ability to precisely sat-
isfy the data integration and sharing needs of the involved research groups 
from diverse disciplines. Similarly, successful work in life sciences and e-
                                                     
4 See http://www.bis.org/publ/bcbsca.htm 



54      Patrick Ziegler, Klaus R. Dittrich 

health relies on integrated access to disparate forms of data that are spread 
over many biological and medical institutions by taking into account local 
data semantics. For these areas, user and group-specific integration ap-
proaches like SIRUP can be useful. 

As one of the goals of data integration is the provision of unified access 
to multiple data sources, privacy and security are important issues. Thus, 
flexible yet effective means for access control in integrated systems are 
necessary [22]. Despite the fact that integration can provide many benefits, 
data integration and data sharing are often hampered by privacy concerns 
[10]. For instance, companies abstain from exchanging data because of 
fear to be exploited by competitors or regulatory institutions. Similarly, in-
tegrated access to patient data can advance medical research but may be 
impossible without proven measures for privacy protection and access con-
trol. Therefore, the development of techniques to guarantee data integra-
tion and data sharing without loss of privacy is essential. 

Data quality, that can be characterized through accuracy, completeness, 
timeliness, and consistency of data, is of major interest for the usability of 
integrated data. In the realm of data integration, however, often complex 
data flows between data producers, data integrators, and consumers of in-
tegrated data have to be taken into account to provide appropriate data 
quality solutions. Fortunately, ontology-enhanced schemas, as used in se-
mantic data integration, represent an important prerequisite for high qual-
ity integrated data and can thus ease quality related issues [16]. In particu-
lar, the possibility for users to verify where data originates from and how it 
was combined and converted into its current form are central in enabling 
users to distinguish between facts and beliefs and, in consequence, to es-
tablish trust in integrated data [16]. Therefore, data lineage and traceability 
issues are likely to play an important role in future integrations systems, 
especially when complex data transformations over widely distributed data 
sources are involved. In addition, globally enforcing integrity constraints 
can help users to trust integrated data from diverse sources [11]. 

In our own work in the SIRUP project, we focus on personal semantic 
integration of structured and annotated alphanumeric data. However, un-
structured data, such as letters, reports, presentations, emails, and web 
pages constitute about 80-90% of all the data in enterprises according to 
current estimates by analyst firms, such as Gartner. Thus, there is a big 
challenge to transform this into valuable integrated information that pre-
cisely serves the needs in a dynamic business world. One approach to 
manage this may be provided by the emerging concept of dataspaces that 
postulates co-existing structured and unstructured data sets without ini-
tially requiring to integrate all data. Similar loosely-coupled approaches to 
data integration are represented by social networks and data sharing com-



Data Integration - Problems, Approaches, and Perspectives    55 

munities who collaboratively and incrementally contribute to building an 
integrated set of data. Here, the vision is to provide ease of use in commu-
nity data sharing so that also non-expert users can manage and share their 
diverse data with minimal effort [2]. However, the future needs to show to 
what extent these approaches can contribute to reach the grand challenge 
as formulated in the Asilomar report on database research [5], i.e., to make 
it easy for everyone to store, organize, access, and analyze the majority of 
human information online. 

7 Conclusions 

In this paper, we gave an overview of issues and principal approaches in 
the area of integration seen from a database perspective. Even though data 
integration is one of the older research topics in the database area, there is 
yet no silver bullet solution and there is none to be expected in the near fu-
ture. The most difficult integration problems are caused by semantic het-
erogeneity; they are being addressed in current research focusing on apply-
ing explicit, formalized data semantics to provide semantics-aware 
integration solutions. Despite this, considerable work remains to be done 
for the vision of truly personal semantic integration in form of easy to use 
and scalable solutions to become true. 

References 

[1]  Abiteboul, S., Benjelloun,O., Milo.T.: Web Services and Data Integration. In 
Third International Conference on Web Information Systems Engineering 
(WISE 2002), pages 3–7, Singapore, December 12-14, 2002. IEEE Computer 
Society.

[2]  Abiteboul, S., Polyzotis, N.: The Data Ring: Community Content Sharing. In 
Third Biennial Conference on Innovative Data Systems Research (CIDR 
2007), Asilomar, CA, USA, January 7-10, 2007. Online Proceedings. 

[3]  Arens, Y., Chee, C.H., Hsu, C.-N,  Knoblock, C.A.: Retrieving and Integrat-
ing Data from Multiple Information Sources. International Journal of Coop-
erative Information Systems (IJCIS), 2(2):127–158, 1993. 

[4]  Bayardo, R. J. ,Bohrer, B., Brice, R. S., Cichocki, A., Fowler, J., Helal, A.,  
Kashyap, V., Ksiezyk, T., Martin, G., Nodine, M.H., Rashid, M., Rus-
inkiewicz, M., Shea, R.,  Unnikrishnan, C., Unruh, A., Woelk, D.: InfoSleuth: 
Agent-Based Semantic Integration of Information in Open and Dynamic Envi-
ronments. In 1997 ACM SIGMOD International Conference on Management 
of Data (SIGMOD 1997), pages 195–206, Tucson, Arizona, USA, 1997. 
ACM. 



56      Patrick Ziegler, Klaus R. Dittrich 

[5] Bernstein, P., Brodie, M., Ceri, S., DeWitt, D., Franklin, M., Garcia-Molina, 
H., Gray, J., Held, J., Hellerstein, J., Jagadish, H.V., Lesk, M., Maier, D.,  
Naughton, J.,  Pirahesh, H., Stonebraker,  M., Ullman, J.:The Asilomar Report 
on Database Research. SIGMOD Record, 27(4):74–80, 1998. 

[6] Bernstein, P.A., Halevy, A.Y., Pottinger, R.A.: A Vision for Management of 
Complex Models. ACM SIGMOD Record, 29(4):55–63, 2000. 

[7] Bukhres, O.A., Elmagarmid, A.K. editors. Object-Oriented Multidatabase Sys-
tems: A Solution for Advanced Applications. Prentice-Hall, 1996.

[8] Carey, M., Haas, L., Schwarz, P., Arya, M., Cody, W., Fagin, R., Flickner, M., 
Luniewski, A., Niblack, W., Petkovic, D., Thomas, J., Williams, J.,  Wim-
mers, E.: Towards Heterogeneous Multimedia Information Systems: The Gar-
lic Approach. In 5th Internationa lWorkshop on Research Issues in Data En-
gineering- Distributed Object Management (RIDE-DOM 1995), pages 124–
131, Taipei, Taiwan, March 6-7, 1995. 

[9]  Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, 
Y. , Ullman, J., Widom, J.: The TSIMMIS Project: Integration of Heterogene-
ous Information Sources. In 16th Meeting of the Information Processing Soci-
ety of Japan (IPSJ), pages 7–18, Tokyo, Japan, October, 1994. 

[10] Clifton, C., Kantarcioglu, M., Doan, A., Schadow, G., Vaidya, J., Elmagar-
mid, A.K., Suciu, D.: Privacy-Preserving Data Integration and Sharing. In 9th

ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery (DMKD 2004), pages 19–26, Paris, France, June 13, 2004. ACM. 

[11] Conrad, S.,  Höding, M.,  Saake, G.,  Schmitt, I., Türker,C.: Schema Integra-
tion with Integrity Constraints. In 15th British National Conference on Data-
bases (BNCOD 1997), pages 200–214, London, UK, July 7-9, 1997. Springer. 

[12] Dittrich, K.R., Jonscher,D.: All Together Now — Towards Integrating the 
World’s Information Systems. In Advances in Multimedia and Databases for
the New Century, pages 109–123, Kyoto, Japan, November 30 - December 2, 
1999. World Scientific Press. 

[13] Franklin, M.J., Halevy, A.J., Maier,D.: From Databases to Dataspaces: A 
New Abstraction for Information Management. SIGMOD Record, 34(4):27–
33, 2005. 

[14] Gaines, B.R, Shaw,M.L.G: Comparing the Conceptual Systems of Experts. In 
11th International Joint Conference on Artificial Intelligence (IJCAI 1989),
pages 633–638, Detroit, Michigan, USA, August, 1989. Morgan Kaufmann. 

[15] Garc´ıa-Solaco, M., Saltor, F., Castellanos,M.: Semantic Heterogeneity in 
Multidatabase Systems. In O. A. Bukhres and A. K. Elmagarmid, editors, Ob-
ject-Oriented Multidatabase Systems. A Solution for Advanced Applications,
pages 129–202. Prentice-Hall, 1996. 

[16] Gertz, M., Özsu, M.T., Saake, G., Sattler,K.U.: Report on the Dagstuhl Semi-
nar “Data Quality on the Web”. SIGMOD Record, 33(1):127–132, 2004. 

[17] Goh, C.H, Madnick, S.E., Siegel, M.: Context Interchange: Overcoming the 
Challenges of Large-Scale Interoperable Database Systems in a Dynamic En-
vironment. In Third International Conference on Information and Knowledge
Management (CIKM 1994), pages 337–346, Gaithersburg, USA, November 
29 - December 2, 1994. ACM. 



Data Integration - Problems, Approaches, and Perspectives    57 

[18] Halevy, A.Y.: Data Integration: A Status Report. In Datenbanksysteme in 
Business, Technologie und Web (BTW 2003), volume 26, pages 24–29, Leip-
zig, Germany, February 26-28, 2003. Gesellschaft f¨ur Informatik (GI).

[19] Halevy, A.Y., Ives, Z.G, Suciu, D., Tatarinov, I.: Schema Mediation in Peer 
Data Management Systems. In 19th International Conference on Data Engi-
neering (ICDE 2003), pages 505–518, Bangalore, India, March 5-8, 2003. 
IEEE Computer Society. 

[20] Huhns, M.N., Singh, M.P.: Agents on the Web: Ontologies for Agents. IEEE 
Internet Computing, 1(6):81–83, 1997. 

[21] Hurson, A.R., Bright, M.W.: Multidatabase Systems: An Advanced Concept 
in Handling Distributed Data. Advances in Computers, 32:149–200, 1991. 

[22] Jonscher, D., Dittrich, K. R.: An Approach for Building Secure Database    
Federations. In 20th International Conference on Very Large Data Bases 
(VLDB 1994), pages 24–35, Santiago de Chile, Chile, September 12-15, 1994. 
Morgan Kaufmann. 

[23] Kent, W.: Data and Reality. Basic Assumptions in Data Processing Recon-
sidered. North-Holland, Amsterdam, 1978. 

[24] Landers, T., Rosenberg, R.L.: An Overview of MULTIBASE. In Second In-
ternational Symposium on Distributed Data Bases (DDB 1982), pages 153–
184, Berlin, Germany, September 1-3, 1982. North-Holland.

[25] McCann, R., Doan, A.,Varadaran, V. Kramnik, A. Zhai, C. Building Data In-
tegration Systems: A Mass Collaboration Approach. In Sixth International
Workshop on Web and Databases (WebDB 2003), pages 25–30, San Diego, 
California, USA, June 12-13, 2003. 

[26] Mena, E., Kashyap, V., Sheth, A.P., Illarramendi, A.: OBSERVER: An Ap-
proach for Query Processing in Global Information Systems based on Interop-
eration across Pre-existing Ontologies. In First IFCIS International Confer-
ence on Cooperative Information Systems (CoopIS 1996), pages 14–25, 
Brussels, Belgium, June 19-21, 1996. IEEE Computer Society. 

[27] Ouksel, A.M., Sheth, A.P.: Semantic Interoperability in Global Information 
Systems: A Brief Introduction to the Research Area and the Special Section. 
SIGMOD Record, 28(1):5–12, 1999. 

[28] Scheuermann, P., Elmagarmid, A.K., Garcia-Molina, H., Manola, F., 
McLeod, D., Rosenthal, A., Templeton,M.: Report on the Workshop on Het-
erogenous Database Systems held at Northwestern University, Evanston, Illi-
nois, December 11-13, 1989. SIGMOD Record, 19(4):23–31, 1990. 

[29] Sheth, A.P., Gala, S.K., Navathe,S.B.: On Automatic Reasoning for Schema 
Integration. International Journal of Intelligent and Cooperative Information
Systems, 2(1):23–50, 1993. 

[30] Sheth, A.P., Larson, J.A.: Federated Database Systems for Managing Distrib-
uted, Heterogeneous, and Autonomous Databases. ACM Computing Surveys,
22(3):183–236, 1990. 

[31] Sølvberg. A.:Data and What They Refer to. In Conceptual Modeling, Current 
Issues and Future Directions, Selected Papers from the Symposium on Con-
ceptual Modeling, Los Angeles, California, USA, held before ER 1997, pages
211–226. Springer, 1997.



58      Patrick Ziegler, Klaus R. Dittrich 

[32] Sølvberg, A.: Conceptual Modeling in a World of Models. In R. Kaschek, 
editor, Entwicklungsmethoden f¨ur Informationssysteme und deren An-
wendung, EMISA 1999, pages 63–77, Fischbachau, Germany, 1999. Teubner. 

[33] Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neu-
mann, H., Hübner, S.: Ontology-Based Integration of Information - A Survey 
of Existing Approaches. In IJCAI-2001 Workshop on Ontologies and Infor-
mation Sharing, pages 108–117, Seattle, USA, April 4-5, 2001. 

[34] Wiederhold, G.: Mediators in the Architecture of Future Information Sys-
tems. IEEE Computer, 25(3):38–49, 1992. 

[35] Winslett, M.: Databases in Virtual Organizations: A Collective Interview and 
Call for Researchers. SIGMOD Record, 34(1):86–89, 2005. 

[36] Ziegler, P.: User-Specific Semantic Integration of Heterogeneous Data: What 
Remains to be Done? Technical Report ifi-2004.01, Department of Informat-
ics, University of Zurich. http://www.ifi.unizh.ch/techreports/TR 2004.html, 
2004. 

[37] Ziegler, P., Dittrich, K.R.: Three Decades of Data Integration - All Problems 
Solved? In 18th IFIP World Computer Congress (WCC 2004), Volume 12,
Building the Information Society, pages 3–12, Toulouse, France, August 22-
27, 2004. Kluwer. 

[38] Ziegler, P., Dittrich, K. R.: User-Specific Semantic Integration of Heteroge-
neous Data: The SIRUP Approach. In First International IFIP Conference on
Semantics of a Networked World (ICSNW 2004), pages 44–64, Paris, France, 
June 17-19, 2004. Springer. 

[39] Ziegler, P., Kiefer, C., Sturm, C., Dittrich, K.R., Bernstein, A.: Detecting 
Similarities in Ontologies with the SOQA-SimPack Toolkit. In 10th Interna-
tional Conference on Extending Database Technology (EDBT 2006), pages 
59–76, Munich, Germany, March 26-31, 2006. Springer. 

[40] Ziegler, P., Sturm, C., Dittrich, K.R.: Unified Querying of Ontology Lan-
guages with the SIRUP Ontology Query API. In Datenbanksysteme in Busi-
ness, Technologie und Web (BTW 2005), pages 325–344, Karlsruhe, Ger-
many, March 2-4, 2005. Gesellschaft f¨ur Informatik (GI). 



Challenges to Conceptual Modelling 

Bernhard Thalheim 

Christian Albrects University, Kiel, Germany 
 

Abstract. Database and information systems technology has substantially changed. Nowa-
days, content management systems, (information-intensive) web services, web information
systems, collaborating systems, internet databases, OLAP information systems, distributed
and nomadic information systems, etc. have become challenges to current technology. At the
same time, object-relational technology has gained the maturity for being widely applied.
Conceptual modelling has not (yet) covered all these novel topics. It has been concentrated
for more than two decades around specification of structures. Meanwhile, it is accepted that
functionality, interactivity and distribution must be included into conceptual modelling of xyz
information systems.

In this paper we demonstrate how achievements of conceptual modelling can be exploited
for development of user-oriented content management systems and for the development of
distributed and collaborating information systems.
Content and content management have become buzzwords. They are still heavily overloaded,
not well understood or defined and heavily misused. Moreover, the user dimension is not yet
incorporated. We base this approach on proposals made by the Scandinavian school of con-
ceptual modelling and especially on work of A. Sølvberg.
Specification of distribution has neglected over a long period. Instead of explicit specification
of distribution, multi-database systems and federated database systems have been extensively
discussed in the literature. We develop a specification framework for collaborating informa-
tion systems by intertwining and integrating specification of communication, coordination and
cooperation.

1 Introduction

Database literature and teaching is divided into at least two branches: applications
and their formal treatment on the basis of database theory. The first branch uses
database theory mainly on the basis of results obtained until the mid-80ies. For
computer engineers, logics and algebra becomes more and more a ‘Terra incognita’.
There are already statements that database theory research is ‘dead on its feet’ 1. How-

1 M. Stonebraker, ICDE, Vienna 1993



60      Bernhard Thalheim 

ever, database theory, database application formalization and database applications
have gained from logics and discrete mathematics more than it is acknowledged.

1.1 Information Systems Design and Development

The problem of information system2 design can be stated as follows:
Design the logical and physical structure of an information system in a given
database management system (or for a database paradigm), so that it con-
tains all the information required by the user and required for the efficient
behavior of the whole information system for all users. Furthermore, specify
the database application processes and the user interaction.

The implicit goals of database design are:

• to meet all the information (contextual) requirements of the entire spectrum of
users in a given application area;

• to provide a “natural” and easy-to-understand structuring of the information con-
tent;

• to preserve the designers entire semantic information for a later redesign;
• to achieve all the processing requirements and also a high degree of efficiency in

processing;
• to achieve logical independence of query and transaction formulation on this

level;
• to provide a simple and easily to comprehend user interface family.

Over the last years database structures have extensively been discussed. Some
of the open questions have been satisfactorily solved. Modelling includes, however,
more aspects:

Structuring of a database application is concerned with representing the database
structure and the corresponding static integrity constraints.

Functionality of a database application is specified on the basis of processes and
dynamic integrity constraints.

Distribution of information system components is specified through explicit speci-
fication of distribution.

Interactivity is provided by the system on the basis of foreseen stories for a number
of envisioned actors and is based on media objects which are used to deliver the
content of the database to users or to receive new content.

This understanding has led to the co-design approach to modelling by specification
structuring, functionality, distribution, and interactivity. These four aspects of
modelling have both syntactic and semantic elements.

2 A database system consists of a number of databases and a database management system.
An information system extends the database system by the application system and by pre-
sentation systems.



Challenges to Conceptual Modelling      61 

1.2 Information System Models in General

Database design is based on one or more database models. Often, design is restricted
to structural aspects. Static semantics which is based on static integrity constraints
is sparsely used. Processes are then specified after implementing structures. Behav-
ior of processes can be specified by dynamic integrity constraints. In a late stage,
interfaces are developed. Due to this orientation the depth of the theoretical basis is
different as shown in the following table displaying the state of the art in the 90ies:

Used in practice Theoretical
background

Earliest layer
of specification

Structures well done well developed strategic
Static semantics partially used well developed conceptual
Processes somehow done parts and pieces requirements
Dynamic semantics some parts parts and glimpses implementation
Services implementations ad-hoc implementation
Exchange frames intentionally

done
nothing implementation

Interfaces intuitive nothing implementation
Stories intuitive nothing implementation

Database design Database design requires consistent and well-integrated devel-
opment of structures, processes, distribution, and interfaces. We will demonstrate
below that extended entity-relationship models allow to handle all four aspects.

Database systems are now extended to web information systems, to data ware-
house, to intelligent knowledge bases, and to data analysis systems. This extension
can be developed in a conservative fashion or based on novel paradigms. As long as
novel paradigms do not overcome the problematic parts of database systems operat-
ing, conservative extension must be preferred. In this case we need a good architec-
ture [7, 6] for extensions of systems.

At the same time, we need to model database systems quality . The quality cri-
teria are often stated in a rather fuzzy form. Typical quality criteria are [5] accuracy,
changeability, fault tolerance, operability, performance, privacy, recoverability, reli-
ability, resource efficiency, safety, security, stability, and testability.

2 Cultivating Database Research For Content Systems

Content management became vital within the web information systems context.
These systems integrate generation, delivery and storage of complex structured ob-
jects with rights management, with service management in distributed environment,
with customer management, with update and quality management, and with context
dependent delivery depending on the user, the HCI, and the actual systems situa-
tion. Content is complex enriched data and may become ready-to-use data. Infor-
mation is related to the users dimension. Information as processed by humans, is
content perceived or noticed, selected and organized by its receiver, because of his
subjective human interests, originating from his/her instincts, feelings, experience,



62      Bernhard Thalheim 

intuition, common sense, values, beliefs, personal knowledge, or wisdom simultane-
ously processed by his/her cognitive and mental processes, and seamlessly integrated
in his/her recallable knowledge. Content management systems are thus information
systems that support extraction, storage and delivery of complex information.

This section shows that a sophisticated separation of concern allows to develop
a flexible, powerful and completely pleasing content management. We separate four
dimensions: the media type dimension for data, the concept dimension for the-
ories and semantics, the topic dimensions for annotation and referencing, and the
referent dimension for handling the concerns of users. The first three dimensions
are the basis for content management. The first and third dimension are classically
representing assets in industrial content management systems.

2.1 The Content Trinity: Media Types, Concepts, and Topics

Content is often considered to be a generalization of knowledge, information, and
data. This generalization must capture all aspects of concern. We separate three dif-
ferent aspects of concern for content and content management systems: syntactical
aspects mainly related to data management, semantical aspects mainly related to the
knowledge background, and pragmatical aspects mainly related to the utilization, an-
notation, and querying of users and user communities. Instead we prefer a separation
of aspects of concern:

Pragmatics concentrates on the meaning of terms used by a community of users.
Semantics expresses the interpretation of terms used by a community of users.
Syntax restricts attention to the language, its construction, and the way of using it

through utterances or expressions.

This separation is expressed in the semiotic triangle in Figure 1. Media objects [9]
are associated with concepts that specify the semantical meaning of media object
suites and topics that specify the pragmatical understanding of users.

Semantics Pragmatics

Syntax���
Media object
(Database) computation

���
Concept

Validation

���
Topic
Presentation
Presentation theory

(Database) computation theory

Model theory

�
�
�
��

�
�

�
��

Infon

Semantical
unit Asset

�
�
�
��

interpretation

�
�

�
��

foundation

�presentation
�explanation

�
�

�
�	

content
delivery

�
�
�
�


annotation

�
�
�
��

�
�

�
��

Concept Topic

Media object

Semantical
unit

Asset

Infon

Fig. 1. Separation of concerns based on the semiotic triangle on media objects, concepts and
topics



Challenges to Conceptual Modelling      63 

The media object-topic pairs are called assets [10]. The concept-topic terms are
called infons [1]. Logics calls concept-media object pairs semantical units. These
pairs may be considered as relations or mappings in Figure 1 such as

interpretation that maps concepts to media object suites,
foundation that provides concepts for given media object suites,
explanation that maps topics to concepts,
presentation that relates topic suites to media object suites,
annotation that represents media object suites by topics, and
content delivery that provides media object suites for given topic suites.

Media objects may be structured, semi-structured, or unstructured by the media
types. They are data that are generated from underlying databases, ordered, hierar-
chically representable, tailorable to various needs and enhanced by functionality for
its usage. A suite consists of a set of elements, an integration or association schema
[16] and obligations requiring maintenance of the association[13]. In the case of a
media object suite, we specify media objects based on a type system enabling in
describing structuring and functionality of media objects, in describing their associ-
ations through relationship types and constraints. The functionality of media objects
is specified by a retrieval expression, the maintenance policy and a set of functions
supporting the utilization of the media object and the media object suite.

Concepts C are described by the triple
(meta information, intension specification, extension) .

The intension can be specified by providing the logical theory on the basis of a set
of formulas of the predicate logics. The extension of C specifies the mappings to the
content spaces and is used for associating data or media objects with concepts.
The concept intension is given by (1) intext of the concept, i.e., a syntactical descrip-
tion of mandatory, normal and optional parameter, (2) by context of the application
area, of the history of things under consideration, (3) by semantics specified through
a set of formulas defined over the intext and the context and based on an interpreta-
tion theory, and (4) by usage and pragmatics that restricts the application and usage
of the concept. Concepts are rather ‘small’ logical theories representing the meaning
of content.

Topics T include the annotation of content. They are described by the triple
(user community, topic description, topic population)

for a given user community (or cultural context based on a population that serves as
typical examples for the given topic. The topic description is given by

(topicRef, subjectIdentity, scope, baseName, association, roles, member, parameters) .
Topics are given by an ortho-normalized language [8], by a glossary, by a thesaurus,
or by an ontology. A glossary is a collection of textual glosses or of specialized terms
with their meanings. A thesaurus is a list of subject headings or descriptors about a
particular field together with their synonyms usually with a cross-reference system
for use in the organization of a collection of documents for reference and retrieval.



64      Bernhard Thalheim 

2.2 The Referent or User Dimension

Users do not mainly base their utterances on glossaries, thesauri, or ortho-normalized
languages. Instead they assume that they will be understood on the basis of context,
especially cultural context, their habits, their association to communities or their task
background. We may use this association for the development of a user dimensions of
advanced content management systems. An advanced content management systems
may by based on the content-concept-topic triangle that uses explicit mappings from
the user dimension to this triangle. We explore this idea in the next two sections.

The Referent Model Language (RML) is the basis for our model for the user
dimension of advanced content management systems. RML was originally devel-
oped in order to support work in heterogeneous databases and data warehousing
[11]. RML is based on set theory. Our model is based on set and graph theory. The
basic constructs of RML are referent sets and individuals, their properties and
relations. These corresponds to the need for expressing interpretations in terms of
real-world things. From the area of semantic data models, one has identified a set
of general abstraction mechanisms: Classification, aggregation, generalization and
association, which are all supported by the language.

Humans have their reasoning capabilities, their memory chunks, and their ex-
pression capabilities. The memory chunks should be based on the achievement of
neural network research. So far, it is assumed that humans based their reasoning and
storage on suites of neurons. These suites can be called memes that are specified by

• names or (fuzzy or navigation) identification facilities,
• a number of properties,
• associations with different co-/adhesions and repulsion to other memes,
• activation and deactivation facilities,
• and groupings for different purposes.

In Figure 2 we extend the semantic triangle by the user dimension and relate memes
to topics based on user understanding, user enrichment, and user expression capabil-
ities.

Semantics Pragmatics

Syntax
����

Media objects

����
Concepts

����
Topics

�
�
�
�
�
�

�
�

�
�

�
� �

�
�

�
�

�

User
����

Memes

Domain understanding

Enrich

Utterance

Fig. 2. The tetrahedron for user-oriented content management



Challenges to Conceptual Modelling      65 

This notion generalizes the notion of knowledge objects developed for knowl-
edge maps. Memes are related to their users. We follow the approach of [4] and use
a two-step procedure similar to [2] for memes evolution. Memes are extensively dis-
cussed and applied in [3, 12]. These resources consider memes to be units of cultural
evolution and selection. They can be folded and be used for derivations. The main
operations on memes are understanding, enrichment, and expression. These three
kinds of operations are similar to the main database operations: read, compute, and
write. We extend these operations to general transformations: replication operations
depending on replication slots, operations for extracting, transforming and loading
memes into other memes, and composition operations.

2.3 Memes of the Referent Dimension and Information

We used a notion of information that is better fitted to the needs of information
systems and of content systems. It bases the existence of information for a user on
this users abilities for perception (1), abilities for selection (2), the interests (3), the
knowledge obtained so far (4), and abilities for integration (5). This notion nicely
corresponds to different uses of information as noted in [12]: generation, externaliza-
tion, recording, protection, communication, distribution, sharing, referencing, edit-
ing, search, analysis, management, and annihilation.

Classically memes have been considered as structures that are encoded within a
gene or a suite of genes. We may, however, consider also dynamic memes that al-
low a change over the lifespan of a human organism. The brain pattern (b-pattern)
consists of a suite of neurons. B-pattern may be stable or instable. Their formation,
transformation, and removal requires energy. Therefore, stability and transformation
is based on minimal energy consumption. Additionally, b-pattern have their compo-
sitionality and replication that is characterized by the general ability for composition
or replication the general properties required for composition or replication, the topo-
logical and geometrical properties including distance and relative location, and the
ad-/cohesion and repulsion within a suite and to other suites.

Using b-pattern we may now characterize the meme as a suite of b-pattern that
is enhanced by activation facilities. These facilities support building, removal, and
change of memes. Typical activation facilities are based on stimulants such as posi-
tive or negative emotions, good or bad practices (for keeping, refining or checking),
and requests for change or replacement (delete, store in the background and link,
insert, update). Stimulants are usually increasing or decreasing the energy level. Re-
quests for change are often based on imposing some stress to memes. If the energy
level becomes too low for a meme then this meme is lost or forgotten. This process
can also be explicitly described by deactivation mechanisms.

Memes can be accessed by pattern matching or by navigation. Pattern match-
ing is based on overlay structures that might be applied. The access to a meme may
lead to a change of pattern (control memes), to invocation of replication or compo-
sition (collector memes), or to orchestration of a new set of b-pattern (information
meme). We may now combine composition, replication and query functions to com-
plex functions that represent the users ability for deduction, induction, abduction,



66      Bernhard Thalheim 

and reasoning such as non-monotonic, approximate, temporal, epistemic, and quali-
tative reasoning. The limited ability of users to apply formal reasoning, their specific
kind of logics, their specific topic landscape can also be represented through suites
of memes.

2.4 An Example

Let us consider two content suites which use the concepts Person and Address. We
need to characterise each of them by media types, concepts, and topics. Additionally
we might want to give a characterisation through memes. The media type specifi-
cation of these content suites follows classical schemata which are widely used in
literature, e.g. the one in [14].

Concepts are specified based on the triple
(meta information, intension specification, extension) .

Let us omit the meta information specification and consider the other elements of
concept specification. We may specify the intention by a small theory for the Per-
son concept based on a general database schema that uses parameters (denoted by
-prefixes), optional attributes (denoted by square bracket) and references to other

structures (denoted by �), for instance by the schema in Figure 3.

KindDescription

Property

[Priority]

Status
Description

�

�
�

��

��� ���
�������

�

association

Is Of

��� ���
�������

�

Partner
Since

Until

[Comment]

Person
First names Title Salutation

Birth data Biometrical data
Gender family history

Family name Christian name

[Passport] characteristics

��� ���
������

�

�Employee
IntervalCharacterisation

Abilities
profile

��� ���
������ �Profil

YearOfProfExperienceA

�+

�

�
Educational

profile

CV

LastEntry

Educational
institution

��� ���
������

�

�graduated
by

Date

Specialisation

Subject

Place

Name

�+�
�

���

� Organi-
sation

Name

��� ���
������

�

external
��� ���

������internal
������

Type of
role

Description

[Comment]

Fig. 3. The concept schema of the Person concept

The intext is usually associated to a context. In this example we relate the person
concept to the parameterised context, e.g. ( enterpriseIS, tasksActor) .
This context limits parameters, e.g. the following ones:

τ ( association) = employee partner
τ ( characteristics) = names birthData identData gender

family additCharact profile .



Challenges to Conceptual Modelling      67 

The concept theory is based on explicit specification of axioms Σ EpistemLogics
Person

which are formulated in a logical language, for instance in the deontic first-order
predicate logic Σ

DeontTempPL/1
Person , for instance the following formulas:

F(update(Person. birthData))
α“divorced′′ ( person) → ∃past y

(Association(Is.Partner. y,Of.Partner. person,Since,Until) ∧ Until < today)
The first axiom states that a birth date of a person cannot be changed and is preserved
in our applications. The second axiom states that divorced people must have ha a
partner in the past and belongs to general knowledge and is usually not represented
in the database.

Pragmatics and usage of concepts can be given in a similar way. They provide
the background for combining concepts like the one at the end of this subsection.
The extension of the Person concept is give by a set of person models M Person.

Addresses also specify a set of possible addresses under consideration, e.g.
MAddress.

Concepts and media types are partially associated by instantiation of parameters
and by refinement of notions used for concepts. If a concept element is not associated
to a media type element then it cannot be instantiated by media object data. If the
media type provides more data than requested by the concepts then we may use these
data as auxiliary data. For instance, we may associate the parameter familie with

T (BirthName, Father, Mother) or with T (BirthName, { Child } ).
Another more complex association relates name with

T (FirstNames<(FirstName,use)>, FamName, [BirthName,] Title:{AcadTitle} FamTitle)
or more simply with T (ChristianName, FamilyName, Nickname).

Concepts may be combined. We may, for instance, combine the two concepts
Person and Address by Practical usage of the address for a person. This combination
is partial and can be given by association schemata like the one in following figure.

�

�
�

�
�

�
��

Address

Practical usage

Person

•

• •

• •• ••
Contact
address

Partner
address

External usage

Internal usage

Supplier
Customer

Employee
Authorised representative

Private person

The algebra can also be based on the algebra for extended ER models [13], i.e.
has operations such as ∪ , ∩ , \ , π , �, µ , ν , ρNameSpace, Aggr , and srch0,h1,h2 .



68      Bernhard Thalheim 

Topics T are described by the triple
(user community, topic description, topic population)

We associate concepts to topics and may thus use the association of concepts and
media objects for associating topics with media objects. Some of the topics are not
associated and thus not supported by corresponding content. For instance, the Ad-
dress concept considers the address a the main or deputy place where a person or
organization may be communicated with or directions for delivery on the outside of
an object ( or the designation of place of delivery placed between the heading and
salutation on a business letter but does not consider the address as a location (as in
the memory of a computer) where particular information is stored as the readiness
and capability for dealing, as the manner of bearing oneself, as a formal communi-
cation or as a dutiful and courteous attention. In the same form we restrict the topic
of the Person to (a) human, (b) personality of a human being and (c) reference of a
segment of discourse to the speaker. We exclude characters or parts in or as if in a
play, the topic of abstract person and the the bodily appearance.

2.5 Content Management

A content system [15] consists of a content management system and a set of media
object suites, a set of concepts and a set of topics. The content management system
uses special subsystems for management of media objects, concepts and topics. The
first subsystem is an extended database management system. The concept subsystem
has features for export and import of concepts, for recording and archiving concepts,
for distributing concepts, for sharing concepts, for quoting and reusing concepts, and
for editing fragments of concept suites. Therefore, this subsystem can be understood
as a specific knowledge base [12]. The topic subsystem supports functions for merg-
ing a topic into a topic map, merge base names, merge a topic with another topic,
and merge a topic map with another map.

The functionality necessary for each dimension is based on engines that have
been developed in the past:

database and data warehouse system which handle basic data, derived com-
plex data, extract, transform, and load (ETL) data from one database system
to the other one,

AI and theorem proving systems that enable in deriving new pieces of concepts
and that support handling of small logical theories, and

topic or ontology engines which are based on XML technology, name spaces,
linking facilities.

2.6 Data Extraction Frameworks

Surprises, data warehousing, and complex applications often require sophisticated
data analysis. The most common approach to data analysis is to use data mining
software or reasoning systems based on artificial intelligence. These applications
allow to analyse data based on the data on hand. At the same time data are often



Challenges to Conceptual Modelling      69 

observational or sequenced data, noisy data, null-valued data, incomplete data, of
wrong granularity, of wrong precision, of inappropriate type or coding, etc. There-
fore, brute-force application of analysis algorithms leads to wrong results, to losses
of semantics, to misunderstandings etc.

We may use approaches known from mathematics for the development of data
analysis framework. We thus need general frameworks for data analysis beyond the
framework used for data mining.

An approach to semantics- and pragmatics-preserving data analysis we devel-
oped in our data mining projects is based on the following steps:

1. Modelling of the tasks and problems and their data requirements.
2. Selection of possible appropriate analysis algorithms, categorisation of their out-

come and pitfalls within the task and problem scope, development of an appli-
cation frame for application of the chosen algorithms.

3. Categorisation, extraction of macro- and meta-data, adaption of the data to the
analysis needs and modelling of data semantics and pragmatics.

4. Extraction, transformation and loading of macro-data for the chosen analysis
algorithms, including cleansing and adaption of the data.

5. Application, stepwise refinement and correction of the analysis algorithms.
6. Modelling of the obtained analysis results with their semantics and pragmatics.

This approach is based on modelling of data analysis algorithms, on their require-
ments to data, their functions for analysis and their transformations of the data.

3 Specification of Distribution

Specification of distribution has neglected over a long period. Instead of explicit
specification of distribution different collaborating approaches have been tried such
as multi-database systems, federated database systems,

3.1 View Suite

Classically, (simple) views are defined as singleton types which data is collected
from the database by some query.

create view name (projection variables)
select projection expression

from Database sub-schema
where selection condition

group by expression for grouping
having selection among groups

order by order within the view



70      Bernhard Thalheim 

Since we may have decided to use the class-wise representation simple views are
not the most appropriate structure for exchange specification. Instead we use view
suites for exchange. A suite consists of a set of elements, an integration or association
schema and obligations requiring maintenance of the association.

Simple examples of a view suites are already discussed in [13] where view suites
are ER schemata. The integration is given by the schema. Obligations are based
on the master-slave paradigm, i.e., the state of the view suite classes is changed
whenever an appropriate part of the database is changed.

Additionally, views should support services. Services provide their own data and
functionality. This object-orientation is a useful approach whenever data should be
used without direct or remote connection to the database engine.

We generalize the view specification frame used in relational databases by the
frame:
generate MAPPING : VARS → OUTPUT STRUCTURE

from DATABASE TYPES

where SELECTION CONDITION

represent using GENERAL PRESENTATION STYLE

& ABSTRACTION (GRANULARITY, MEASURE, PRECISION)
& ORDERS WITHIN THE PRESENTATION

& HIERARCHICAL REPRESENTATIONS

& POINTS OF VIEW

& SEPARATION

browsing definition CONDITION

& NAVIGATION

functions SEARCH FUNCTIONS

& EXPORT FUNCTIONS

& INPUT FUNCTIONS

& SESSION FUNCTIONS

& MARKING FUNCTIONS

The extension of views by functions seems to be an overhead during database
design. Since we extensively use views in distributed environments we save efforts
of parallel and repetitive development due to the development of the entire view suite
instead of developing each view by its own.

3.2 Services

Services are usually investigating on one of the (seven) layers of communication
systems. They are characterized by two parameters: Functionality and quality of ser-
vice. Nowadays we prefer a more modern approach [7]. Instead of functions we
consider informational processes. Quality of service is bounded by a number of
properties that are stated either at implementation layer or at conceptual layer or
at business user layer. Services consist of informational processes, the character-
istics provided and properties guaranteeing service quality, i.e. S = (I,F , ΣS)
where I = (V ,M, ΣT ).

Informational processes are specified by the ingredients:



Challenges to Conceptual Modelling      71 

Views from the view suite V are the resources for informational processes. Since
views are extended by functions they are computational and may be used as
statistical packages, data warehouses or data mining algorithms.

The services manager M supports functionality and quality of services and man-
ages containers, their play-out and their delivery to the client. It is referred to as
a service provider.

The competence of a service manifests itself in the set of tasks T that may be
performed.

Service characteristics F is characterized depending on the abstraction layers:

Service characteristics at business user layer are based on service level agree-
ments and the informational processes at this layer.

Service characteristics at conceptual layer describe properties the service must
provide in order to meet the service level agreements. Further, functions avail-
able to the client at specified by their interfaces and semantic effects.

Service characteristics at implementation layer specify the syntactical interfaces
of functions, the data sets provided and their behavior and constraints to the in-
formation system and to the client.

Quality of service ΣS is characterized depending on the abstraction layers:

Quality parameters at business user layer may include ubiquity ( access unre-
stricted in time and space) and security (against failures, attacks, errors; trust-
worthy).

Quality parameters at conceptual layer subsume interpretability (formal frame-
work for interpretation) and consistency (of data and functions).

Quality parameters at implementation layer include durability (access to the en-
tire information unless it is explicitly overwritten), robustness (based on a failure
model for resilience, conflicts, and persistency), performance (depending on the
cost model, response time and throughput), and scalability (to changes in ser-
vices, number of clients and servers).

3.3 Exchange Frames

The exchange frame is defined by

exchange architecture usually provided a system architecture integrating the in-
formation systems through communication and exchange systems,

collaboration style specifying the supporting programs, the style of cooperation
and the coordination facilities, and

collaboration pattern specifying the roles of the partners, their responsibilities,
their rights and the protocols they may rely on.

Distributed database systems are based on local database systems and follow
a certain integration strategy. Integration is based on total integration of the local
conceptual schemata into a global distribution schema.



72      Bernhard Thalheim 

Beside the classical distributed system we support also other architecture such as
database farms, incremental information system societies and cooperating informa-
tion systems. The later are based on the concept of cooperating views [13]. Incre-
mental information system societies are the basis for facility management systems.
Simple incremental information systems are data warehouses and content manage-
ment systems.

Database farms are generalizing and extending the approaches to federated
information systems and mediators. Their architecture is displayed in Figure 4.
Farms are based on the co-design approach and the information unit and container
paradigm:

Information units are generalized views. Views are generated on the basis of the
database. Units are views extended by functionality necessary for the utilization
of view data. We distinguish between retrieval information units and modifica-
tion information units. The first are used for data injection. The later allow to
modify the local database.

Containers support the export and the import of data by bundling information units
provided by view states. Units are composed to containers which can be loaded
and unloaded in a specific way. The unloading procedure supports the dialogue
scenes and steps.

The global communication and farming system provides the exchange protocols,
has facilities for loading and unloading containers and for modification of mod-
ification information units.

We do not want to integrate entirely the local databases but provide only cooperating
views.

Local
DBS

Farm
container
system

Filter and
transfor-
mation
system

System A

Local
applic.

User
interface

Local users of A

Global
communications

and farming
system

User
interface

Global users

Local
DBS

Farm
container
system

System B

Filter and
transfor-
mation
system

Local
applic.

User
interface

Local user of B

Fig. 4. Database Systems Farm

The exchange architecture may include the workplace of the client describing
the actors, groups, roles and rights of actors within a group, the task portfolio and



Challenges to Conceptual Modelling      73 

the organization of the collaboration, communication, and cooperation.

The collaboration style is based on four components describing

supporting programs of the information system including session management,
user management, and payment or billing systems;

data access pattern for data release through the net, e.g., broadcast or P2P, for
sharing of resources either based on transaction, consensus, and recovery models
or based on replication with fault management, and for remote access including
scheduling of access;

the style of collaboration on the basis of peer-to-peer models or component models
or push-event models which restrict possible communication;

and the coordination workflows describing the interplay among partners, discourse
types, name space mappings, and rules for collaboration.

We know a number of collaboration pattern supporting access and configu-
ration (wrapper facade, component configuration, interceptor, extension interface),
event processing (reactor, proactor, asynchronous completion token, accept con-
nector), synchronization (scoped locking, strategized locking, thread-safe interface,
double-checked locking optimization) and parallel execution (active object, monitor
object, half-sync/half-async, leader/followers, thread-specific storage):

Proxy collaboration uses partial system copies (remote proxy, protection proxy,
cache proxy, synchronization proxy, etc.).

Broker collaboration supports coordination of communication either directly,
through message passing, based on trading paradigms, by adapter-broker
systems, or callback-broker systems.

Master/slave collaboration uses tight replication in various application scenar-
ios (fault tolerance, parallel execution, precision improvement; as processes,
threads; with(out) coordination).

Client/dispatcher collaboration is based on name spaces and mappings.
Publisher/subscriber collaboration is also known as the observer-dependents

paradigm. It may use active subscribers or passive ones. Subscribes have their
subscription profile.

Model/view/controller collaboration is similar to the three-layer architecture of
database systems. Views and controllers define the interfaces.

Collaboration pattern generalize protocols. They include the description of partners,
their responsibilities, roles and rights.



74      Bernhard Thalheim 

References 

[1] Al-Fedaghi, S. S., Fiedler, G., and Thalheim, B. Privacy enhanced information 
systems. In Proc. EJC’05, Informaton Modelling and Knowledge Bases Vol. 
XVII, Series Frontiers in Arificial Intelligence, (Tallinn, 2005), IOS Press. 

[2] Bienemann, A., Schewe, K.-D., and Thalheim, B. Towards a theory of generi-
city based on government and binding. In Proc. ER’06, LNCS 4215 (2006), 
Springer, pp. 311–324. 

[3] Blackmore, S. The Meme Machine. Oxford University Press, Oxford, 1999. 
[4] Chomsky, N. Some concepts and consequences of the theory of government 

and binding. MIT Press, 1982. 
[5] Jaakkola, H., and Thalheim, B. Software quality and life cycles. In ADBIS’05 

(Tallinn, September 2005), Springer, pp. 208– 220. 
[6] Lenz, H.-J., and Thalheim, B. OLTP-OLAP schemes for sound applications. In 

TEAA 2005 (Trondheim, 2005), vol. LNCS 3888, Springer, pp. 99–113.
[7] Lockemann,P. Information system architectures: From art to science. In Proc. 

BTW’2003, Springer, Berlin (2003), pp. 1–27.
[8] Ortner, E., and Schienmann, B. Normative language approach - a framework 

for understanding. B. Thalheim, Ed., LNCS 1157, Springer, Berlin, pp. 261–
276. 

[9] Schewe, K.-D., and Thalheim, B. Structural media types in the development of 
dataintensive web information systems. In Web Information Systems, W. R. 
D. Taniar, Ed. IDEA Group, 2004, pp. 34–70. 

[10]Schmidt, J., and Sehring, H.-W. Conceptual content modeling and manage-
ment - the rationale of an asset language. In Proc. PSI’03, LNCS , Springer, 
2003 (2003). Perspectives of System Informatics. 

[11] Sølvberg, A. Data and what they refer to. In Conceptual modeling: Historical 
persepectives and future trends, P. C. et. al, Ed., no. 1565 in LNCS. Springer, 
Berlin, 1998.

[12] Tanaka, Y. Meme media and meme market architectures: Knowledge media 
for editing, distributing, and managing intellectual resources. J. Wiley, Ho-
boken, 2003.

[13] Thalheim, B. Entity-relationship modeling – Foundations of database techno-
logy. Springer, Berlin, 2000. 

[14] Thalheim, B. The person, organization, product, production, ordering, delive-
ry, invoice, accounting, budgeting and human resources pattern in database 
design. Tech. Rep. Preprint I-07-2000, Brandenburg University of Technolo-
gy at Cottbus, Institute of Computer Science, 2000. 

[15] Thalheim, B. The co-design framework to content specification. In BIS’2004 
(2004), W. Abramowicz, Ed., IEEE Press, pp. 326–351. 

[16] Thalheim, B. Codesign of structuring, functionality, distribution and interac-
tivity. Australian Computer Science Comm. 31, 6 (2004), 3–12. Proc. 
APCCM’2004.



Interoperable Management of Conceptual Models 

Andreas L. Opdahl1, Guttorm Sindre2

1 University of Bergen, Norway,  
2 Norwegian University of Technology and Science, Trondheim Norway,   

Abstract. The paper reviews a line of conceptual-modelling research that originated in 
Arne Sølvberg’s Information Systems Group at the Norwegian University of Science 
and Technology in the 1980-ies. The line of research has since produced results such 
as facet modelling, ontological analyses and evaluations of modelling languages and a 
template-based approach to modelling-construct description. Currently, focus is on de-
veloping a revised version of the Unified Enterprise Modelling Language (UEML). 
Finally, the paper offers paths for further work. 

1 Introduction 

Several of the most significant breakthroughs in the ICT area in the last 
decades have originated in new ways of connecting and integrating previ-
ously disconnected information resources: One breakthrough occurred in 
the 1970-ies, when advances in data management and data modelling, 
combined with a better understanding of the practical problems of manag-
ing very large databases, lead to the relational model of data and to rela-
tional databases, a breakthrough that greatly improved organisations’ abil-
ity to leverage information resources on structured tabular form. Another 
breakthrough occurred in the 1980-ies and early 1990-ies, when develop-
ments in networking technology and middleware, combined with a better 
understanding of its potential, lead to the emergence of the world-wide 
web, a breakthrough that greatly improved societies’, organisations’ and 
individuals’ abilities to leverage information resources on semi-structured 
hypermedia form. Other important breakthrough technologies, which have 
similarly facilitated integrated use of new types of information resources, 
include object technology and web services.



76      Andreas L. Opdahl , Guttorm Sindre 

However, no technology or theory yet exists for leveraging another type 
of information resources that is becoming increasingly important. These 
information resources are neither tabular nor in hypermedia form, nor ob-
jects, nor web services, but represented and visualised as diagrammatic
models. Already today, diagrammatic languages and models are used 
widely to develop and manage ISs and for general management of enter-
prises. Several current trends ensure that diagrams will be even more cen-
tral in future ISs: model-driven enterprise ISs (including ERP, SCM and 
CRM systems), model-driven enterprise application integration (EAI) and 
ontology-driven software interoperability, ontology-driven agents on the 
semantic web, model-driven engineering and model-driven software de-
velopment, including the OMG’s model-driven architecture (MDA) initia-
tive.

When ISs become model-driven, the ability to use and re-use a multi-
tude of models in an integrated manner becomes crucial for developing 
and maintaining open, adaptable, robust, evolvable and interoperable ISs. 
Furthermore, and partly as a result, the enterprises themselves and their ac-
tivities become model-driven too. Integrated model use thereby becomes 
key to both ISs and enterprises, making it necessary to facilitate integra-
tion of the languages in which the models are expressed. 

This paper reviews a line of conceptual-modelling research that aims at 
developing theory and technology for interoperable management of con-
ceptual models. The line originated in the Information Systems Group at 
the Norwegian University of Science and Technology (then the Norwegian 
Institute of Technology, NTH) in the 1980-ies, under the leadership of Pro-
fessor Arne Sølvberg. Along the way, results such as facet modelling, on-
tological analyses and evaluations of modelling languages, the template-
based approach to modelling-construct description and the Unified Enter-
prise Modelling Language (UEML) will be presented and discussed. The 
paper will finally outline paths for further work, emphasising opportunities 
for empirical validation, with the aim of contributing to establishing con-
ceptual modelling as a core for the information systems field. 

The paper thus aims to present a line of work as it has emerged over two 
almost two decades and to trace its roots back to its origin in the Informa-
tion Systems Group in Trondheim. In consequence, too little space has 
been left to acknowledge the many other important sources that the authors 
have been inspired by and built on. The reference list contains a plethora 
of pointers to earlier efforts and comparisons with related work. 



Interoperable Management of Conceptual Models      77 

2 Phenomena and Behaviours 

During the late 1970-ies and the 1980-ies, research in the Information Sys-
tems Group centred heavily around conceptual modelling from structural 
and behavioural perspectives. Centrally, Sølvberg’s [36] Phenomenon 
Model (PM) supported integrated representation of information and mate-
rial structures. Sølvberg and Kung’s [6, 38] Behaviour Net Model (BNM) 
offered an early extension and interpretation of Petri Nets that supported 
enactable behavioural modelling of informational and material processes 
formalised using pre- and postconditions. The Process Port Model (PPM) 
(e.g., [4], although the work had started around 1985 and involved many 
others) offered a DFD-type notation extended with representation of mate-
rial and informational flows as well as processes with pre- and postcondi-
tions. PPM process nodes were also annotated with input and output ports 
to visualise the allowable combinations of inputs to and outputs of each 
process step. 

When the authors joined Sølvberg’s group in the second half of the 
1980-ies, they joined a group that would produce results as diverse as the 
conceptual model quality framework SEQUAL [5, 8], techniques and tools 
for software performance engineering [14, 30, 31], the misuse-case model-
ling technique [35], the PPP tool- and languagset [4] and the facet-
modelling framework [28, 29]. A large group of master and doctoral stu-
dents made pointed contributions to these efforts. For example, Sindre [32] 
developed algorithms for automatically generating pre-and postconditions 
in multi-level BNM models, which were then implemented and validated 
[33]. Lindland & Opdahl [7] used a temporal logic language to map se-
mantically between the BNM and PPM models, whereas Opdahl [12] pro-
posed an integrated formalisation of the PM and PPM languages. A few 
years later, Sindre [34] proposed a new common notation, Hicons, with the 
power to express both structure and behaviour in an integrated manner, 
whereas Opdahl [13] developed a tool-supported framework for estimating 
the performance of proposed software during development, based on the 
PPM language1. Continuing the group’s emphasis on integrated analysis of 
informational and materials aspects, Opdahl & Sindre [27] also presented a 
discussion of basic concepts for representing concrete problem domains. 

Although diverse on the surface, we can identify several commonalities 
among the activities of Sølvberg’s group in this period, key to the spread 
of its results: 

                                                     
1 The international orientation of the group is examplified by both these PhD’s being parts 

of European projects: Tempora (ESPRIT-II Project No. 2469) and IMSE (IST-508011).



78      Andreas L. Opdahl , Guttorm Sindre 

Problem-domain focus. At a time when much focus was placed on rep-
resenting technology artefacts, such as proposed software solutions, al-
most all the activities in the group were instead orientated towards the 
problem domain.2

Operationalism and animation. Despite they problem orientation, most 
of the solutions proposed were operational in form, a some of them even 
amenable to simulation and animation. 
Formality. Most of the activities and solutions proposed had at least 
some degree of formal grounding, contributing to their clarity and appli-
cability. 
Integrated approaches. Many projects were tying together already pro-
posed solutions, often across modelling languages and techniques. 
Continuity and cohesion. Most of the student projects were building on 
previous projects. Even when seemingly new activities were initiated or 
solutions proposed, they would have underlying connexions to past ac-
tivities.3

The line of work presented in this paper originates in and incorporates sev-
eral of the above themes. 

3 Items and Facets 

After the explosion of modelling approaches during the 1980-ies, at the 
start of the 1990-ies it was becoming clear that approaches were needed to 
integrate diagram languages and models beyond simple bi-language 
model-to-model translation. A variety of modelling perspectives, or orien-
tations, had been introduced, including structural, behavioural, declarative, 
actor-oriented, business-rule oriented, object oriented ones etc. In [28], the 
authors argued that “the priorities set by choosing one particular orienta-
tion will mean that the aspects not promoted by that orientation will be 
more difficult to account for during analysis”. More specifically, “Orienta-
tion means that some aspects of phenomena in the problem domain will be 
difficult to capture and/or easy to forget because the modelling constructs 
which represent them are less important in (or even missing from) the 
modelling approach used” (representational bias); “Orientation means that 

                                                     
2 Already in 1979, Sølvberg had argued “that the conceptual schema should contain an on-

tological subschema (i.e. a 'reality' model)”, which could be used to “proving semantical 
equivalence/difference of databases.” [37], thus predating a topical idea in the ontology 
community by many years.

3 For example, the software performance work in IMSE followed earlier efforts by [11].



Interoperable Management of Conceptual Models      79 

the problem domain will be looked at from one particular perspective the 
whole time, thus hiding weaknesses that would be more apparent from 
other perspectives” (perspective bias); “Orientation means that it will be 
difficult to communicate a model to people to whom the particular orienta-
tion is unnatural, although easy to others” (communication bias); and “Ori-
entation means that the problem-domain models may inherently support 
the participation and interests of some of the individuals and groups af-
fected by development, but not those of others” (interest bias) [28, 29]. 

They authors instead proposed a facet modelling framework from the 
view “that clearly orientated models are not to be striven for in the early 
phases of problem analysis, but rather a source of problems on their own” 
[28]. The goal of facet modelling was to “allow the modeller to (1) choose 
to represent a wide range of aspects of real-world phenomena depending 
on the problem at hand, and (2) simultaneously represent several aspects of 
the same real-world phenomenon whenever needed” [28, 29]. 

Facet modelling differed from mainstream multi-perspective modelling 
frameworks because it did not attempt to integrate languages by represent-
ing them using metaobjects, -properties and -relationships or similar con-
cepts inspired by ER models or class diagrams. Opdahl & Henderson-
Sellers [25] later elaborated this position, criticising mainstream ap-
proaches because they easily lead to referentially redundant meta models, 
where several modelling constructs or model elements refer to the same 
classes, things or properties in the problem domain. Facet modelling in-
stead avoided referential redundancy at the language level by “breaking 
down” each modelling construct into its “smallest parts” in three steps – 
where each step eliminated a source of referential redundancy as explained 
below – and by making sure that each resulting “smallest parts” was never 
duplicated in a facet model or language.  

The details of the framework have been described in detail elsewhere, 
e.g., [25, 29]. Here, space allows only a brief explanation of the above 
three steps. Step 1: At the instance level, facet modelling assumes that the 
problem domain consists of classes, things and properties that exist inde-
pendently of observers, but acknowledges that these classes, things and 
properties are conceptualised differently by different observers in different 
situations.4 The framework therefore distinguishes between items, which 
represent classes, things and their properties per se, and facets, which rep-
resent the various conceptualisations of the classes, things and properties. 
Step 2: Facet modelling also acknowledges that different conceptualisa-
tions of the same thing may overlap in the sense that they may reflect 

                                                     
4 Facet modelling has evolved since it was first proposed; this paper presents the most cur-

rent version.



80      Andreas L. Opdahl , Guttorm Sindre 

some of the same properties of the thing. The framework therefore lets 
facets have subfacets, and two or more facets of the same item may share 
one or more subfacets. Step 3: Even conceptualisations of different things 
may overlap. The framework therefore lets two or more facets of distinct 
items have one or more subfacets in common. We say that such a subfacet 
is a link subfacet (or just link) because it is common to subfacets of dis-
tinct items. The authors have argued that the concepts of items, facets and 
subfacets – shared as well as links – thereby provide a minimal set of con-
cepts needed to integrate conceptual models and modelling languages 
without introducing referential redundancy. 

4 The Need for Ontological Foundations 

Further work on facet modelling sought to refine it into a practical frame-
work for modelling enterprises and their information systems [15, 16]. 
This turned out to be difficult in practice. The framework provided a pre-
cise view of what the result of language integration should be, but it of-
fered few practical guidelines on how to reach such a result. Given a mod-
elling construct in an established modelling language, which category (or 
categories) of phenomena did it represent and which aspects? When did 
aspects overlap and when were they disjunctive? How could the exact 
overlap between aspects be identified? Questions such as these indicated 
that the precise conceptual structure of the framework needed to be under-
pinned by an equally precise semantics. Given the concrete-focus of many 
of the languages focussed on at the time, the Bunge-Wand-Weber repre-
sentation model of information systems (“the BWW model”, e.g., [39-41]) 
seemed a suitable platform. This choice emphasised the referential aspect 
of semantics, recognising that concrete concepts draw their meaning in 
part from the phenomena in and/or aspects of enterprises and information 
systems that they are intended to represent.5 The choice also implies a fo-
cus on concrete problem domains, as opposed to purely conceptual do-
mains.6

The match between central facet modelling and BWW-concepts turned 
out to be straightforward; individual and categorical phenomena corre-
sponded to things and classes of things, whereas complex and primitive 

                                                     
5 We will revisit other aspects of meaning, such as pragmatic issues, in the Discussion.
6 Other types of domains may need to be treated differently from concrete domains.



Interoperable Management of Conceptual Models      81 

facets corresponded, respectively, to compound and non-compound 
BWW-properties.7

As soon as the basic correspondences between facet modelling and the 
BWW-model had been fleshed out, work could be started on analysing ex-
isting modelling languages in terms of the BWW-model, with the aim to 
prepare those languages for being reformulated as facet languages. The 
OPEN Modelling Language (OML) was analysed first [21] and the Uni-
fied Modeling Language (UML) next [22]. An analysis of part-whole rela-
tions in object-oriented languages was also performed [26].8

The ontological analyses and evaluations also augmented other ontology 
work based on the BWW model because the aim was slightly different: 
Whereas the present work prepared for incorporating the analysed lan-
guages as facet languages, other BWW work prepared for empirical 
evaluations of the same languages. One consequence was that, whereas the 
present work did sometimes propose improvements to existing languages, 
other analyses were careful not to add to or otherwise change the lan-
guages analysed. (This may explain some of the differences between the 
UML analyses in [3] and [22].) 

5 Describing Modelling Constructs with Templates 

The ontological analyses and evaluations of existing modelling languages 
soon lead to further developments of facet modelling. For example, [17] 
demonstrated how enterprise knowledge modelling can be animated 3-
dimensionally based on facet models, whereas [25] criticised conventional 
OPRR (object-property-relationship-role) approaches to meta modelling, 
as already explained, showing how referential redundancy potentially 
hampers consistency checking, update reflection and reuse of model con-
tent across diagrams or models. 

Even more effort has been put into a side result of the ontological analy-
ses and evaluations: In addition to clarifying and offering improvements to 
modelling languages, this work provided useful insights about using the 
BWW model to describe modelling languages and their constructs. In this 
respect, a few shortcomings were identified: 

                                                     
7 Indeed, the exercise made it clear that facet modelling had from the start been more 

strongly inspired by the BWW-model than the authors were aware of.
8 Although part-whole relations do not play a central role in practical enterprise and IS 

modelling, they become critical when distinct perspectives represented at different 
granularities need to be precisely integrated



82      Andreas L. Opdahl , Guttorm Sindre 

A typical BWW analysis describes modelling constructs only at the 
level of ontological categories (classes, properties, states, transforma-
tions etc.) but, in many cases, it is also important which classes, prop-
erties, states, transformations etc. the construct is intended to repre-
sent.
A typical BWW analysis describes modelling constructs only in terms 
of a single ontological category but, in many cases, the modelling con-
struct may represent a scene played by several types of ontological 
categories together, e.g., one or more classes along with the properties 
they possess or one or more transformation laws along with the trans-
formations they effect.9

A typical BWW analysis does not take modalities into account. But 
modelling constructs differ as to whether they represent factual asser-
tions about the problem domain, someone’s knowledge about the do-
main, goals that someone wants to achieve in the domain etc. 
Not all BWW concepts are equally important for practical purposes. 
For example, state and transformation spaces are rarely accounted for 
by existing modelling languages and this does not appear to be a prob-
lem for practical modelling. On the other hand, classes/things, and the 
various types of properties, states and transformations/events are cen-
tral.10

In response, [23] propose a template-based approach to describing model-
ling constructs. The template is based on the BWW model and, addition-
ally, it offers a structured approach to construct description, where the de-
scription of each construct is separated into descriptions of:11

Instantiation level: Is the construct intended to represent individual 
things and their particular properties, states and transformations? Or is 
it intended to represent classes and their characteristic properties, 
states and transformations? Or is it intended to represent both levels? 
Classes: Which thing or class of things in the problem domain is the 
construct intended to represent? Even when a construct primarily 
represents a property, state or transformation, this field remains 

                                                     
9 For example, a whole-part relation describes two specific classes of things – a composite 

and component class – with a particular ontological property – a part-whole relation – 
between them, which also characterises the two classes.

10 In the first volume of his Treatise, when Mario Bunge [2, p. 27] illustrates the hierarchy 
of objects in his basic ontology, the following four types of extralinguistic factual objects 
are shown: “Concrete thing”, “Property, state, or change of a thing”.

11 The template has evolved since it was first proposed; this paper presents the most current 
version. For example, behaviour was less developed in the first template version, and 
transformations were called “events”.



Interoperable Management of Conceptual Models      83 

relevant, because every property, state or transformation must occur 
in a specific thing or class. A construct definition can have several 
class entries, because some constructs are even intended to represent 
more than one thing or class at the same time. 
Properties: Which property or properties in the problem domain is the 
construct intended to represent? Again, even when a construct 
primarily represents not a property but, e.g., a state or transformation, 
this field is relevant, because every state or transformation pertains to 
one or more properties. 
Behaviour: Even when two modelling constructs are intended to 
represent the same properties of the same things or classes, they may 
be intended to represent different behaviours. For example, one 
modelling construct may be intended to represent just their existence, 
i.e., a static representation. Other modelling constructs may be 
intended to represent a state of the classes, things or properties, or a 
transformation, or a process, i.e., alternative dynamic representations. 

Fig. 1. In the UEML meta-meta model, modelling constructs are mapped onto 
classes, properties, states and transformations in a common ontology.



84      Andreas L. Opdahl , Guttorm Sindre 

This entry distinguishes between the four cases and provides sub-
entries to specify the relevant case in detail. 
Modality: We are used to think about enterprise and IS models as 
asserting what is the case. However, not all modelling constructs are 
intended for making assertions. The modality entry distinguishes 
constructs that are intended to represent recommendations, 
obligations, permission etc. instead of assertions. 

The result is an approach that offers fine-grained description of individual 
modelling constructs while remaining grounded in the BWW model. Fur-
thermore, the ontological concepts used to describe modelling constructs 
are maintained in a common ontology, which grows incrementally and dy-
namically as more constructs are added and which ties descriptions of dif-
ferent modelling constructs together in fine detail.12 It is also organised hi-
erarchically. In consequence, when two or more modelling constructs – 
from the same or from different languages – have been described using the 
UEML approach, the exact relationships between them can be identified in 
terms of the common ontology, paving the way for comparison, consis-
tency checking, update reflection, view synchronisation and, eventually, 
model-to-model translation across modelling language boundaries. 

The template offers several other advantages [23]: The standardised 
definitions become grounded in the BWW model and Bunge’s ontological 
model not only generally — in terms of whether they represent general on-
tological categories such as “classes” or “properties” — but also specifi-
cally in terms of which classes and/or properties they represent. The clarity 
and precision of the definitions is thereby enhanced. The standardised 
definitions become more cohesive and, thus, more learnable, understand-
able and directly comparable with one another. The template can also be 
seen as a contribution to making the BWW model easier to use because it 
offers a structured approach to comparing, defining and integrating lan-
guages.

The template was validated using example constructs, revised and par-
tially formalised through OCL constraints [24]. Figure 1 shows the meta-
meta model that ties the approach together. It is called a meta-meta model 
because it is a model of how to model languages and because models of 
languages are called meta models. The top part of the meta-meta model is 
for managing the relationships between languages, their diagram types and 
their modelling constructs. The bottom part shows the structure of the 

                                                     
12 The common ontology was initially derived from the BWW model and was designed 

from the start to grow incrementally as additional classes, properties, states and transfor-
mations are introduced in order to describe new modelling constructs.



Interoperable Management of Conceptual Models      85 

common ontology. The middle part is for breaking down modelling con-
structs and mapping them onto the common ontology. 

6 The Unified Enterprise Modelling Language 

The Unified Enterprise Modelling Language (UEML) is an ongoing effort 
to develop an intermediate language for modelling enterprises and related 
domains, such as information systems [1]. Hence, its primary aim is not to 
propose new modelling constructs or new visual notations, but to integrate 
existing modelling languages in a structured and cohesive way. A first 
version of UEML was established in the UEML Thematic Network (TN) 
(2002-2003). A second version is currently being finalised as part of the 
INTEROP Network of Excellence (NoE) (2003-2007).  

The template-based approach was chosen as the starting point for defin-
ing UEML 2 according to the following steps [18]: A construct description 
was first created for each modelling construct to be incorporated. Each 
construct description had a presentation part that dealt with the visual 
presentation of the modelling construct (covering lexemes, syntax and 
some simple pragmatics). It also had a representation part that accounted 
for which enterprise phenomena the construct was intended to represent 
(covering reference, a central aspect of semantics).13

The representation part followed the approach presented in Section 5 
and used separation of reference to break each modelling construct into its 
ontologically atomic parts, i.e., parts that mapped one-to-one with an onto-
logical concept, which is either a class, property, state or transformation. 
Based on the meta-meta model, a prototype tool for managing language 
and construct descriptions, UEMLBase, was developed. UEMLBase man-
ages the representation part of language and construct descriptions using 
the OWL plug-in for the Protégé tool. 

UEMLBase currently contains descriptions of constructs from ARIS, 
BPML, GRL, IDEF3, ISO19440, KAOS, UEML 1.0, coloured Petri nets 
and selected UML notations, although not all these languages are yet de-
scribed in full detail. Less detailed analyses have also been undertaken on 
other languages. The UEML group currently focuses on finishing the de-
scription of these languages and on validating them empirically. 
Matulevicius, Heymans & Opdahl [9, 10] discusses GRL and KAOS spe-

                                                     
13 The UEML 2 work in INTEROP has two additional activities: determining requirements 

for UEML and selecting languages to incorporate. A related task is developing a virtual 
handboook for enterprise modelling [1].



86      Andreas L. Opdahl , Guttorm Sindre 

cifically. Opdahl & Berio [19] discusses the UEML approach in a global 
setting, based on the SEQUAL framework[5]. 

7 Discussion 

The template-based/UEML approach of sections 5 and 6 differs from facet 
modelling of section 3 in the following ways: 

UEML was explicitly grounded in the BWW model from the start, 
whereas facet modelling was coupled to the BWW model later and 
less strictly. 
UEML treats presentation and representation separately, where facet 
modelling covers them using the same set of concepts.  
UEML does not attempt to be uniform across instantiation levels, 
whereas facet modelling uses the same set of concepts at the instance, 
type, meta type and meta-meta type levels. 
UEML explicitly mentions behaviour, through states and transforma-
tions, which are not central concepts in the original facet-modelling 
framework. 

At the same time, the two approaches are essentially compatible: 

They have the same ontological foundation in the BWW model. 
They both focus on breaking modelling constructs down into their 
smallest parts, in particular on breaking down properties/facets. 
The classes in the common ontology correspond to FM-language phe-
nomena, and common-ontology properties correspond to FM-meta 
type facets.

In this way, the template-based approach can be seen as a simplified ver-
sion of facet modelling, better suited for establishing and validating an ini-
tial collection of incorporated languages. 

Opdahl & Berio [20] propose a roadmap for further evolution of UEML 
along the following dimensions: (1) Language breadth: include more lan-
guages14; (2) Ontological depth: refine the common ontology; (3) Onto-
logical clarity: elaborate the common ontology language; (4) Presentation: 
extend the support for presentation issues; (5) Mathematical formality: de-
fine UEML semantics formally; (6) Tool support: provide GUI and valida-
tion support; (7) Model management: provide support for model manage-
                                                     
14 In addition to broadening the UEML to cover additional languages, selected critical lan-

guage features, such as behavioural execution semantics and part-whole relations could 
also be analysed in more detail.



Interoperable Management of Conceptual Models      87 

ment in addition to language management; (8) Validation: provide struc-
tural and behavioural language and model validation; (9) Dissemination: 
make UEML known in industry and academia and promote it as a stan-
dard; (10) Community: establish and maintain a committed and cohesive 
community for managing and evolving UEML and its approach.  

Validation must play a particularly important role in future work. Work 
has already started on validating UEML by comparing construct-similarity 
estimates derived from UEMLBase with expert estimates of the same simi-
larities. Further validation attempts should use UEML to facilitate cross-
language model-to-model translation and then empirically evaluate the 
translation results, either by direct evaluation by modelling experts or by 
systematically comparing UEML and expert translations. Gradually, 
UEML should then be validated in increasingly realistic industrial settings 

As argued by Weber [42], conceptual modelling has the potential to be-
come a core for the information systems field. Many researchers are cur-
rently seeking to establish such a core grounded in the BWW model, in 
corresponding ontological models or in models from the cognitive sci-
ences, often combining analytic and experimental means. Our line of re-
search can be seen as one such attempt. In addition to offering practical so-
lutions for interoperable management of conceptual models, it has the 
potential to contribute to a core for the information systems field by mak-
ing the BWW model more amenable to empirical evaluation in two ways: 
Firstly, the UEML approach analyses modelling constructs in terms of 
specific classes, properties, states and transformations. UEML analyses 
thereby potentially become more precise than BWW analyses of the same 
constructs, and they should thus be easier to falsify empirically. Secondly, 
the UEML approach has the potential to support practical tasks such as 
consistency checking and model translation across languages. In conse-
quence, UEML analyses can be evaluated more directly, e.g., as explained 
above for model translations, by comparing them in practice with the re-
sults of experts performing the same tasks. Further work is needed to dem-
onstrate that the UEML/template-based approach – and its cousin, facet 
modelling – indeed have the power to facilitate such stronger empirical 
validation.

8 Conclusions 

The paper has reviewed a line of conceptual-modelling research that origi-
nated in the information systems group at the Norwegian University of 
Science and Technology in the 1980-ies. The paper has also outlined a few 



88      Andreas L. Opdahl , Guttorm Sindre 

paths for further work. As the above discussion shows that facet modelling 
and the UEML approach are compatible, the two approaches should even-
tually be aligned, either using the experience and constructs descriptions 
from the UEML work to extend facet modelling or by incorporating fur-
ther ideas from facet modelling into UEML. 

Acknowledgments. The authors are indebted to all the participants in the 
Domain Enterprise Modelling research group within the INTEROP Net-
work of Excellence (IST-805011). 

References 

[1] Berio, G., A. Opdahl, V. Anaya and M. Dassisti, Deliverable DEM1. 2005, 
Interop-NoE, IST-508011, Domain Enterprise Modelling. 

[2] Bunge, M., Semantics 1: Sense and Reference. Treatise on Basic Philosophy. 
Vol. 1. 1974, Boston: Reidel. 

[3] Evermann, J. and Y. Wand. Towards Ontologically Based Semantics for 
UML Constructs. in Proc. 20th International Conference on Conceptual Mod-
eling - ER’2001. 2001. Yokohama, Japan: Springer. 

[4] Gulla, J.A., O.I. Lindland and G. Willumsen, PPP - an integrated CASE envi-
ronment, in Advanced Information Systems Engineering (Proc. CAiSE*91), 
R. Andersen, J.A. Bubenko jr., and A. Sølvberg, Editors. 1991, Springer: Hei-
delberg. p. 194-221. 

[5] Krogstie, J., A Semiotic Approach to Quality in Requirements Specifications, 
in Organizational Semiotics. 2001, Springer: Heidelberg. p. 231-249. 

[6] Kung, C.H. and A. Sølvberg, Activity Modeling and Behaviour Modeling, in 
Information Systems Design Methodologies: Improving the Practice (Proc. 
IFIP WG8.1 WC CRIS’86), T.W. Olle, H.G. Sol, and A.A. Verrijn-Stuart, 
Editors. 1986, North-Holland. p. 145-171. 

[7] Lindland, O.I. and A.L. Opdahl, Representation of Diagrammatic Systems 
Specifications in Temporal Logic. 1987, IS Group, Dept. of Electrical Engi-
neering and Computer Science, Norwegian Institute of Technology: Trond-
heim. 

[8] Lindland, O.I., G. Sindre and A. Sølvberg, Understanding Quality in Concep-
tual Modelling. IEEE Software, 1994. 11(2): p. 42-49. 

[9] Matulevi ius, R., P. Heymans and A.L. Opdahl. Comparison of goal-oriented 
languages using the UEML approach. in Proc. EI2N’06. 2006. Bordeaux. 

[10] Matulevi ius, R., P. Heymans and A.L. Opdahl. Ontological Analysis of 
KAOS Using Separation of Reference. in Proc. EMMSAD’06. 2006. Luxem-
bourg. 

[11]  Oftedahl, H. and A. Sølvberg, Data Base Design Constrained by Traffic Load 
Estimates. Information Systems, 1981. 6(4): p. 267-282. 



Interoperable Management of Conceptual Models      89 

[12]  Opdahl, A.L., RAPIER - Rapid Application Prototyper for Information Engi-
neering Recourse. 1987, IS Group, Dept. of Electrical Engineering and Com-
puter Science, Norwegian Institute of Technology: Trondheim. 

[13]  Opdahl, A.L., Performance Engineering During Information System Devel-
opment, Ph.D. Thesis, IS Group, Department of Electrical Engineering and 
Computer Science, . 1992, Norwegian Institute of Technology: Trondheim. 

[14]  Opdahl, A.L., Sensitivity Analysis of Combined Software and Hardware Per-
formance Models: Open Queueing Networks. Performance Evaluation, 1995. 
22(1): p. 75-92. 

[15]  Opdahl, A.L. Towards a Facet Modelling Language. in Proc. 5th European  
Conference on Information Systems - ECIS’97. 1997. Cork, Ireland. 

[16]  Opdahl, A.L. Multi-Perspective Modelling of Requirements: A Case Study 
Using Facet Models. in Proc. Third Australian Conference on Requirements 
Engineering - ACRE’98. 1998. Geelong, Australia. 

[17] Opdahl, A.L., Multi-Perspective Multi-Purpose Enterprise Knowledge Mod-
elling, in Concurrent Engineering: Enhanced Interoperable Systems (Proc. 
CE’2003), R. Jardim-Goncalves, J. Cha, and A. Steiger-Garcão, Editors. 
2003, A.A. Balkema Publishers. p. 609-617. 

[18]  Opdahl, A.L. The UEML Approach to Modelling Construct Description. in 
Proc. I-ESA’06. 2006. Bordeaux, France. 

[19]  Opdahl, A.L. and G. Berio. Interoperable language and model management 
using the UEML approach. in Proc. First International Workshop on Global 
Integrated Model Management – G@mma’06. 2006. Shanghai. 

[20]  Opdahl, A.L. and G. Berio. A Roadmap for UEML. in Proc. I-ESA’06. 2006. 
Bordeaux.

[21]  Opdahl, A.L. and B. Henderson-Sellers, Grounding the OML Metamodel in 
Ontology. Journal of Systems and Software, 2001. 57( 2): p. 119-143. 

[22]  Opdahl, A.L. and B. Henderson-Sellers, Ontological evaluation of the UML 
using the Bunge-Wand-Weber model. Software and Systems Modelling (So-
SyM), 2002. 1(1): p. 43-67. 

[23]  Opdahl, A.L. and B. Henderson-Sellers, A Template for Defining Enterprise 
Modelling Constructs. Journal of Database Management (JDM), 2004. 15(2). 

[24]  Opdahl, A.L. and B. Henderson-Sellers, Chapter 6: Template-Based Defini-
tion of Information Systems and Enterprise Modelling Constructs, in Ontolo-
gies and Business System Analysis, P. Green and M. Rosemann, Editors. 
2005, Idea Group Publishing. 

[25]  Opdahl, A.L. and B. Henderson-Sellers, A Unified Modeling Language With-
out Referential Redundancy. Data and Knowledge Engineering (DKE), 2005. 
55(3). 

[26]  Opdahl, A.L., B. Henderson-Sellers and F. Barbier, Ontological Analysis of 
Whole-Part Relationships in OO Models. Information and Software Technol-
ogy, 2001. 43(6): p. 387-399. 

[27]  Opdahl, A.L. and G. Sindre, A Taxonomy for Real-World Modelling Con-
cepts. Information Systems, 1994. 19(3): p. 229-241. 



90      Andreas L. Opdahl , Guttorm Sindre 

[28] Opdahl, A.L. and G. Sindre, Facet Models for Problem Analysis, in Ad-
vanced Information Systems Engineering (Proc. CAiSE*95), J. Iivari, K. Ly-
ytinen, and M. Rossi, Editors. 1995, Springer: Berlin. 

[29]  Opdahl, A.L. and G. Sindre, Facet Modelling: An Approach to Flexible and 
Integrated Conceptual Modelling. Information Systems, 1997. 22(5): p. 291-
323. 

[30]  Opdahl, A.L., G. Sindre and V. Vetland. Performance Considerations in Ob-
ject-Oriented Reuse. in Proc. Second International Workshop on Software 
Reuse. 1993. Lucca, Italy: IEEE Computer Society. 

[31]  Opdahl, A.L. and A. Sølvberg, Conceptual Integration of Information System 
and Performance Modelling, in Information Systems Concepts: Improving the 
Understanding (Proc. IFIP WG8.1 WC FRISCO-2), E.D. Falkenberg, C. Rol-
land, and E.N. El-Sayed, Editors. 1992, North-Holland: Amsterdam. 

[32]  Sindre, G., Abstraction of Behaviour Network Models. 1987, IS Group, Dept. 
of Electrical Engineering and Computer Science, Norwegian Institute of 
Technology: Trondheim. 

[33]  Sindre, G., RAPACITY - An Approach to Constructivity in Conceptual Mod-
elling. 1988, IS Group, Dept. of Electrical Engineering and Computer Sci-
ence, Norwegian Institute of Technology: Trondheim. 

[34]  Sindre, G., HICONS: A General Diagrammatic Framework for Hierarchical 
Modelling, Ph.D. Thesis, Dept. of Electrical Engineering and Computer Sci-
ence. 1990, Norwegian Institute of Technology: Trondheim. 

[35]  Sindre, G. and A.L. Opdahl, Eliciting Security Requirements with Misuse 
Cases. Requirements Engineering Journal, 2005. 10(1): p. 34-44. 

[36]  Sølvberg, A., A Contribution to the Definition of Concepts for Expressing 
Users’ Information Systems Requirements, in Entity-Relationship Approach 
to Systems Analysis and Design (Proc. ER’79), P.P. Chen, Editor. 1979, 
North-Holland: Amsterdam. p. 381-402. 

[37]  Sølvberg, A. Software Requirement Definition and Data Models. in Proc. 5th 
International Conference on Very Large Databases (VLDB’79). 1979. Rio de 
Janeiro: IEEE Computer Society. 

[38]  Sølvberg, A. and C.H. Kung, On Structural and Behavioural Modelling of 
Reality, in Data Base Semantics (Proc. IFIP WG2.6 WC DS-1), T.B. Steel Jr. 
and R. Meersman, Editors. 1986, North-Holland: Amsterdam. p. 205-221. 

[39]  Wand, Y. and R. Weber. An Ontological Analysis of some Fundamental In-
formation Systems Concepts. in Proc. Ninth International Conference on In-
formation Systems - ICIS’88. 1988. Minneapolis. 

[40]  Wand, Y. and R. Weber, On the Deep Structure of Information Systems. In-
formation Systems Journal, 1995. 5: p. 203-223. 

[41]  Wand, Y. and R. Weber, On the ontological expressiveness of information 
systems analysis and design grammars. Journal of Information Systems, 1993. 
3: p. 217-237. 

[42]  Weber, R.A., Ontological Foundations Of Information Systems. 1997, Mel-
bourne, Australia: Coopers And Lybrand Accounting Research Methodology 
Monograph No. 4, Coopers And Lybrand. 



Uniform and Flexible Data Management in 
Workflow Management Systems  

Johann Eder, Marek Lehmann 

University of Vienna, Austria 

Abstract. Various kinds of data are processed in workflow management systems: from 
case data to control data, from internal data to access to external databases or docu-
ments exchanged in inter-organizational workflows. We propose a uniform treatment 
of all kinds of business data in workflows. This is achieved by an abstraction mecha-
nism which enables the transparent access to data in any source in a uniform way. 
Moreover, we ensure simplicity by binding the human user interface layer of the 
workflow system with XML-based forms. The concept contributes to transparency of 
data location, and logical and physical independence of data, business logic and pres-
entation in workflow systems. It facilitates the reuse of predefined activities and forms 
on di erent data sets and eases the interaction of a workflow with its environment by 
abstracting from the actual representation of data.  

1 Introduction

There is already a quite long history of endeavours to model business proc-
esses and support their execution. A particular role always played the two 
intertwined, but separate aspects: the data or structural aspect and the dy-
namic, behavioural or process aspect [23,24]. Workflow management sys-
tems are a successful product of these research and development e orts.
As we will argue below, workflow management typically focuses on the 
process aspect of business processes. In this paper we argue that workflow
management systems should improve the management and handling of 
data and present an approach for uniform and flexible data management in 
Workflow Management Systems.  

Workflow processes may involve di erent kinds of business data. Each 
workflow management system(WfMS)[1] must be able to handle these 



92      Johann Eder, Marek Lehmann 

data, which may come from many di erent sources. These data are used in 
two di erent ways. First, they are required by individual activities. Sec-
ond, the WfMS uses data to make automatically the control flow decisions 
based on data values. Clearly, workflow management would be not possi-
ble without data. It is perhaps surprising, that the data perspective in 
workflow management was usually left in the background[7].Only quite 
recently interest in data management aspects of workflow systems in-
creased somewhat with the analysis of workflow data patterns[18] which 
in particular showed how complex the handling of data in workflow man-
agement system actually is.  

Workflow Management systems (WfMSs) are not intended to provide 
general data management systems capabilities, although they have to be 
able to work with large amounts of data coming from di erent sources. 
Business data, describing persistent business information necessary to run 
an enterprise, maybe controlled either by a WfMS or be managed in exter-
nal systems (e.g. corporate database).The WfMS needs a direct data access 
to make control flow decisions based upon data values. An important 
drawback is that WfMS-external data can only be used indirectly for this 
purpose, e.g. be queried for control decisions. Therefore, most of the activ-
ity programming is related to accessing external databases[3], a great im-
pediment for flexibility, understandability and changeability of 
workflows[8]. On the other hand, data used within a workflow system may 
be in di erent types and formats. Basically each product uses di erent, 
proprietary solutions varying from the minimal set of built-in primitive 
types(number, string, date) to user defined types. This sometimes causes 
inconsistency with the XML data format used in inter organizational 
workflows and by web services.  

In a typical workflow, performing of a manual task is often associated 
with filling in some form (e.g. purchase order form).A form has a certain 
format and is composed of a number of fields with some kind of structure. 
These fields are mapped to the data used within the workflow. Existing 
WfMSs support form based manual tasks in two ways: they o er their own 
proprietary form format or allow web based solutions to be used. The 
drawback of the former case is, that the client software must understand 
the form format. The client software must be installed on a machine of 
each human workflow participant which increases installation and mainte-
nance costs. In the latter case, the workflow management system may o er
web based form processing like HTML forms (e.g.PantaRhei[11]).Well 
accepted and understood web standards enable the use of many design 
tools and do not require specific client software, except a standard web 
browser. On the other hand, HTML-based solutions are very limited. 



Uniform and Flexible Data Management in Workflow  Systems      93 

Forms described in HTML are flat, more sophisticated user interface and 
client behaviour requires lot of programming in scripting languages(e.g. 
JavaScript) or form processing on the server side. Another important 
drawback is the necessity to provide the mapping between HTML form 
fields, represented as a set of attribute-value pairs, and data used internally 
in a workflow.  

We propose to solve all three presented problems. The problematic issue 
of data location is sorted out by the introduction of data access plug-ins 
which manage the distributed data sources, so that access to business data 
is transparent. Limitations of the internal data formats are avoided by bas-
ing our system upon XML which provides a flexible data representation. 
The third problem solved concerns the complexity of the interface layer in 
most workflow management systems. In order to provide fast and easy 
communication with the human actors, we use XForms technology to pre-
sent XML data in a web browser. We validated the functionality of the 
proposed approach in a prototype WfMS.  

Section 2 presents our mechanism for accessing transparently business 
data stored in many di erent data sources. An XML based user interface is 
described in Sec. 3. Both these mechanisms are incorporated into our 
workflow metamodel in Sec. 4 and the prototype architecture in Sec. 5. We 
discuss related work in Sec.6 and draw some conclusions in Sec.7.  

2 Uniform XML Based Data Access

We propose to provide the workflow management system with a uniform 
and transparent access method to all business data stored in any data 
source. The workflow management system should be able to use data com-
ing from external and independent systems to determine a state transition 
or to pass it between activities as parameters. This is achieved by an ab-
straction layer called data access plug-ins [13]. Data access plug-ins are 
reusable and interchangeable wrappers around external data sources which 
present to the workflow management system the content of underlying data 
sources and manage the access to it. The functionality of external data 
sources is abstracted in these plug-ins.  

On the other hand, we propose to use XML as the main business data 
format at every stage of workflow processing. The workflow management 
system should be able to test conditions on XML data to determine the sta-
te transitions, regardless of where these data are stored and maintained. 
Data passing between activities should also rely on XML-standards, inde-
pendent of whether these activities are internal to a workflow or external. 



94      Johann Eder, Marek Lehmann 

Both goals aim at a seamless integration of intra-and inter-organizational 
workflows and on location transparency of data.  

2.1 Data Access Plug-ins

A data access plug-in is a wrapper presenting to the workflow management 
system the content of external data sources as XML documents. Each data 
access plug-in provides documents in one or several predefined XML 
Schema types. Both a data access plug-in and XML Schema types served 
by this plug-in are registered to the workflow management system. Once 
registered, a data access plug-in can be reused in many workflow
definitions to access external data as XML documents of a given type. A 
workflow designer specifies in a workflow definition which document 
should be accessed by which data access plug-in.  

Consider the following frequent scenario: an enterprise has a large data-
base with the customer data stored in several relations and used in many 
processes.  

In our approach the company defines a complex XML Schema type de-
scribing customer data and implements a data access plug-in which wraps 
this database and retrieves and stores customer data in XML format. This 
has several advantages:  

Business data from external systems are accessible by the WfMS. Thus, 
these data can be passed to activities and used to make control flow de-
cisions.
Activities can be parameterized with XML documents of predefined 
types. The logic for accessing external data sources is hidden in a data 
access plug-in fetching documents passed to activities at runtime. This 
allows activities to be truly reusable and independent of physical data 
location.
Making external data access explicit with the data access plug-ins rather 
than hiding it in the activities improves the understandability, maintain-
ability and auditability of process definitions.
Both data access plug-ins and XML Schema type are reusable.  
This solution is easily evolvable. If the customer data have to be moved 
to a di erent database, it is su cient to use another data access plug-in. 
The process definition and activities remain basically unchanged.  

The task of a data access plug-in is to translate the operations on XML 
documents to the underlying data sources. A data access plug-in exposes to 
the workflow management system using a simple interface which allows 
XML documents to be read, written or created in a collection of many 



Uniform and Flexible Data Management in Workflow  Systems      95 

documents of the same XML Schema type. Each document in the collec-
tion is identified by a unique identifier. The plug-in must be able to iden-
tify the document in the collection given only this identifier.

Each data access plug-in allows an XPath expression to be evaluated on 
a selected XML document. The XML documents used within a workflow
can be used by the workflow engine to control the processing flow. This is 
done in conditional split nodes by evaluating the XPath conditions on 
documents. If a given document is stored in an external data source and 
accessed by a data access plug-in, then the XPath condition has to be 
evaluated by this plug-in. XPath is also used to access data values in XML 
documents.  

Data access plug-ins can be used in workflow definitions described in 
our workflow definition language WDL-X. A sample WDL-X fragment of 
an order processing workflow is presented in Fig. 1. There is a declaration 
of two documents typed with XML Schema. An order document is of type 
orderType (line 3) and is accessed by a data access plug-in or-
derDbPlugin, i.e. it is stored outside of the workflow repository. A docu-
ment describing an invoice is stored in the repository (line 4).  

1: <process name="processOrder" owner="marek" version="1.0"> 
2:    <documents> 
3:         <document name="order" type="orderType" accessPlugin="orderDbPlugin"/> 
4:    <document name="invoice" type="invoiceType"/> 
5: </documents> 

Fig. 1. SampleWDL-Xscriptfragment with a declaration of a document accessed 
by a plug-in  

A data access plug-in can be wrapped around any data source, if it pro-
vides the described basic functionality. In particular a data access plug-in 
can be also wrapped around a web service. In this case the functionality of 
a data access plug-in is limited only to read mechanisms (i.e. open and re-
trieve document, test XPath expression) and update operations are not al-
lowed. This limitation is imposed by two facts: the data access plug-ins are 
intended only to serve data, but the web services o er interfaces to provide 
services and have active properties. A call to a web service can start an ex-
ternal workflow. Such a behaviour initiated by a data access plug-in would 
make the workflow definition obscure and very di cult to analyze and 
maintain. Therefore, we argue that an implementation of a data access 
plug-in based on a web service should be done very carefully to avoid un-
welcome side e ects during the workflow execution. On the other hand, 
the web services are very good sources of data. A recent empirical study 



96      Johann Eder, Marek Lehmann 

shows that majority (up to 84%) of existing public web services are simply 
data sources, and most of them o er just one operation[14]. Such web ser-
vices can provide data which are completely managed outside the context 
of an active workflow instance, e.g. credit card validity, tax rates, metal 
and oil prices, currency exchange rates.

2.2 Generic Data Access Plug-in  

A proposal we described in [13] required data access plug-ins to be defined 
each time from scratch. On the other hand, most business data remain 
stored in relational databases. Therefore, a generic and expandable solu-
tion for relational data sources was needed. A generic data access plug-in 
(GDAP) o ers basic operations and can be extended by users to their 
specific data sources. GDAP is responsible for mapping of the hierarchical 
XML documents used by workflows and activities into flat relational data 
model used by external databases. Thus, documents produced by GDAP 
can be seen as XML views of relational data.  

The workflows and activities managed by the WfMS can run for a long 
time. In a loosely coupled WfMS scenario it is neither reasonable nor pos-
sible to lock data in the original database for  processing time in a 
workflow. At the same time these data can be modified by other systems or 
workflows[7]. In order to provide optimistic concurrency control, some 
form of view invalidation is required[20]. Therefore, GDAP provides a 
view freshness control and view invalidation method. In case of view up-
date operations GDAP automatically checks whether the view is not stale 
before propagating update to the original database.  

3 XML Based User Interface

We propose an XForms based user interface to the manual tasks. XForms 
is a new standard[10] for describing forms. It is both XML based and web 
enabled. These features are very important. First, we use XML as the data 
format internally in the workflow management system and to communicate 
with the external systems. Because XForms are designed to work with 
XML, there are no inconsistencies and no need for special data mappings 
or transformations. On the other hand, by giving access to manual tasks 
from a simple web browser, we provide access to  workflow applications 
for a large number of users at very low installation and maintenance cost. 
Moreover, this enables external users(e.g. customers) to initiate and take 



Uniform and Flexible Data Management in Workflow  Systems      97 

part in a workflow, e.g. by submitting an order request from their own web 
browser. Thus, enterprise-wide and inter-organizational workflows can be 
easily created with standardized tools [3].  

Traditionally such functionality was provided by HTML forms, but for 
large and complex systems it is obvious, that HTML forms have many dis-
advantages. Traditional forms remember the data entered by the user in a 
flat form, as a set of attribute-value pairs. Such data, when received by the 
server, have to be additionally processed and validated. Another problem 
was caused by the necessity to provide a mapping between flat HTML 
forms and data format used internally in the workflow, e.g. hierarchical 
XML is usually mapped into HTML with XSLT[2]. On the contrary, the 
XForms standard allows data to be validated on the client side. Moreover, 
XForms provide a more advanced graphical interface together with data 
derivation and calculation mechanisms. XForms make clear distinction be-
tween the data content and the graphical presentation. What is most impor-
tant, XForms are designed to work with XML. All these features make 
XForms an ideal technology for workflow management systems.  

An XForm has a set of input and output parameters which are defined in 
its code. Each XForm parameter has its unique string identifier and is an 
XML document which may by typed by an XML Schema type. A form 
can accept a set of XML Schema typed XML documents as the input pre-
sented to a user and used for internal calculations. It can also produce 
XML documents as output.  

A manual task has also a set of input and output parameters which are 
XML documents described by XML Schema types. The user interface to 
such manual tasks is provided by XForms. When a user chooses a manual 
task from a worklist, all the required documents are retrieved(possibly 
with data access plug-ins) and passed to a XForm as input parameters. The 
parameterized XForm is presented to the user. After the user finishes the 
interaction with the XForm, the results are sent as one or more XML docu-
ments to the workflow management system which saves them in appropri-
ate locations (possibly using data access plug-ins).  

A manual task can have associated a default form in its definition as 
presented in Fig. 2. The important issue is to provide a mapping between 
the parameters of a manual task and an XForm. Each formal parameter of 
the task is mapped to a formal parameter of the form. The number of the 
parameters must be the same, mapped parameters must have the same 
XML Schema type and same input mode (IN, INOUT, OUT). The actual 
parameters of a task instance are used to parameterize a form template at 
runtime, and a complete and parameterized XForm is send to the client.  



98      Johann Eder, Marek Lehmann 

1: <manualTaskDefinition name="produceInvoice" owner="marek" 
defaultForm="invoiceForm">

2:    <formalParameters> 
3:       <formalParameter name="order" inputMode="IN" 

dataType="orderType" 
mapToFormParam="order"/>

4:       <formalParameter name="invoice" 
inputMode="OUT"
dataType="invoiceType" 
mapToFormParam="invoice"/>

5:   </formalParameters> 
6: </manualTaskDefinition> 

Fig. 2. WDL-X definition of a manual task with an associated default form

Forms are reusable. The same XForm can be used by di erent manual 
tasks and can take di erent documents as input. A workflow designer 
specifies a default form for each manual task registered in the workflow
management system. When the task is used as a single step in a workflow
definition, the system uses its default form to provide the user interface. 
The workflow designer may override this default form in a particular 
workflow definition and specify that, a manual task used in a particular 
step should use a di erent form. This makes the task independent from the 
user interface representation. For example the same manual task may have 
di erent interface to di erent users, e.g. di erent to a secretary and 
di erent to a manager.

4 Workflow Metamodel  

We propose a new workflow metamodel which captures both data access 
plug-ins and forms together with reusable workflows and activities and as-
sociated data (Fig. 3).The metamodel reflects the nested structure of com-
plex activities and supports the graph representation of workflows. The 
metamodel is tailored to the purpose of this paper and, therefore, does not 
contain all components required in a workflow metamodel, e.g. we do not 
consider the organizational structure.

A workflow uses activities and can have a set of declared documents.
Documents can be passed to activities as parameters. An activity is either a 
task, a complex activity or a (sub-) workflow. An activity can be used to 
compose complex activities and workflows. An activity occurrence in such 
a composition is represented by a step. One activity can be represented by 



Uniform and Flexible Data Management in Workflow  Systems      99 

several steps in one or several other complex activities or workflows. In 
other words, steps are placeholders for reusable activities. Between the 
subsequent steps there is additionally a transition from a predecessor to a 
successor. The control structure of a complex activity is described by its 
type (seq for sequence, par for parallel and cond for conditional). We limit 
our metamodel only to the description of full blocked workflows [26].  

In the presented metamodel, workflow graphs can be viewed on 
di erent levels of detail. A workflow or a complex activity can be viewed 
as a composed whole, with all its relations to the subactivities. It can also 
be viewed decomposed into a full flattened graph. This is achieved by ac-
tivity steps and control steps. An attribute type of a step can have either a 
value activity (for activity steps) or one of the following for the control 
steps: par-split, par-join, cond-split or cond-join. An activity step o ers a 
compact view of a complex activity. In a graph representation it would be 
a complex activity represented as a single box. An activity step has a 
method flatten which eliminates a level of composition. A control step 
represents a control element such as a split or a join. As we permit only 
full blocked workflows, each join has a corresponding split and vice versa. 
This is represented by a recursive relation is_counterpart. Corresponding 
control steps are the boundaries of a complex activity. The control steps 
o er a more detailed view on a workflow graph. They have a method 
unflatten which is inverse to the method flatten. Both methods are de-
scribed in [12].

Each document used in a workflow definition is typed with an XML 
Schema type (DocType) which has a unique name. The XML documents 
may be used as variables declared in a workflow definition, or used as 
formal parameters to activities. An XML document declared in a workflow
definition can be accessed by a data access plug-in. Each data access plug-
in can serve documents of predefined XML Schema types. The XML 
Schematype of a document accessed by the data access plug-in must by 
among types supported by this plug-in.  

Each workflow can have many workflow instances. Within a workflow
instance are instantiated documents and steps of a corresponding workflow
definition. Step instances represent actual activity instances. Which activ-
ity is instantiated by a given step instance is described by the relation be-
tween a step instance and a corresponding step and the relation between a 
step and an activity. A type of a step instance is the same as a type of a 
corresponding step. The step instances form a workflow instance graph. 
Each step can have predecessors and successors and the transitions be-
tween them. The hierarchical structure of activity instances is reflected by 
the recursive relation parent.



100      Johann Eder, Marek Lehmann 

Fig. 3.  Workflow metamodel 



Uniform and Flexible Data Management in Workflow  Systems      101 

Fig. 4. Proposed WfMS architecture with data access plug-ins 

Instances of documents, declared in the workflow definition as accessed 
with a data access plug-in, are served at runtime by this plug-in. Each 
document instance has a unique internal identifier, used by the workflow
management system. The instances of documents accessed by a data ac-
cess plug-in have additionally an external identifier, used by the plug-in to 
identify the document instance. This is a reference to the actual document 
content in an external data source. 

A manual task registered in the workflow management system, may 
have a default XForm. Each form has a unique name and a set of formal 
parameters. The parameters of the manual task are mapped into parameters 
of the form. A workflow designer may override this default form in a 
workflow definition, and decide to use a di erent form for a particular step 
corresponding to this manual task. In this case the parameter mapping 
must be also provided. 

5 Proposed Architecture and Prototype  

We propose a new architecture of a workflow management system which 
supports the usage of XML documents at every stage of workflow process-
ing. This architecture allows the workflow management system to trans-
parently access many sources of business data via data access plug-ins and 



102      Johann Eder, Marek Lehmann 

to provide user interface to manual task with XForms. The architecture is 
presented in Fig. 4.

The workflow engine provides operational functions to support the exe-
cution of workflow instances, based on the workflow definitions. The 
workflow repository stores both workflow definitions and workflow in-
stances (control data). It can also contain business data local to the 
workflow management system, i.e. local XML documents. The program
interaction manager calls programs implementing automated activities.  

The worklist manager is responsible for worklists of the human actors 
and for the interaction with the client software (worklist handlers). Human 
actors execute the manual tasks with a user interface provided by XForms. 
Therefore, the worklist handler must be capable of handling XForms. The 
worklist manager parameterizes XForm templates with XML documents 
passed as actual parameters to manual tasks and sends these XForms to the 
worklist handler. The worklist handler may send back the output XML 
documents.  

The access to external data sources is provided with data access plug-
ins. The data access plug-in manager is responsible for registering and 
managing data access plug-ins. The WfMS is extensible, because new data 
access plug-ins can be registered to the manager and used in the workflow
definitions. This architecture is very flexible, because existing data access 
plug-ins may be replaced by new ones without any integration into exist-
ing workflow definitions.

The presented architecture was prototypically implemented [22]. A 
lightweight workflow engine was implemented as a Java servlet, which 
produced parameterized XForms instead of standard HTML to communi-
cate with clients. We used Apache Tomcat as a servlet container and the 
DENG browser1 to present XForms. The prototype represented internally 
all business data as XML documents accessed by data access plug-ins. Our 
implementation included GDAP for relational databases and another one 
for XML files stored in a file system.  

The current implementation of the GDAP for relational databases [9] 
takes advantage of the XML-DBMS middleware for transferring data be-
tween XML documents and relational databases [6]. XML-DBMS maps 
the XML document to the database according to an object-relational map-
ping in which element types are generally viewed as classes and attributes 
and XML text data as properties of those classes. An XML-based mapping 
language allows the user to define an XML view of relational data by 
specifying these mappings. The XML-DBMS supports also insert, update 
and delete operations.  

                                                     
1 See http://sourgeforge.net/projects/dengmx 



Uniform and Flexible Data Management in Workflow  Systems      103 

6 Related Work

In most existing workflow management systems, data used to control the 
flow of the workflow instances (i.e. workflow relevant data) are controlled 
by the workflow management system itself and stored in the workflow re-
pository. If these data originate in external data sources, then external data 
are usually copied into the workflow repository. There is no universal 
standard for accessing external data in workflow management systems. 
Basically each product uses di erent solutions [19]. A chain of so called 
materialization and dematerialization programs was proposed in [16].Such 
chains can be attached to activities. On the contrary, we proposed to asso-
ciate data access plug-ins to documents used in a workflow and not to ac-
tivities. This has two main advantages. First, it allows a business logic of 
activities to be separated from a data access logic of data access plug-ins. 
Second, both the activity and the data access plug-in are independent and 
can be reused in many workflow definitions and easily maintained and re-
placed.

The importance of XML technology is increasing tremendously in the 
workflow management. Workflow management systems [26], B2B stan-
dards [21], and Web services [4] use XML as a data format. Methods for 
integrating workflow management systems with standards for web services 
are becoming more important [17, 21].Web services are sometimes treated 
as data sources and composed using data integration techniques [25]. An-
other approach for processing XML documents in workflow management 
systems is presented in [5]. The authors proposed to partition a single 
XML document into several meaningful segments, i.e. units of work that 
can be performed by an activity in a workflow process.

Forms used for manual tasks can have proprietary format or use HTML 
like in PantaRhei [11]. PantaRhei used even a form-flow metaphor to pro-
vide access to workflow specific data. The authors of [2] proposed to use 
process aware XSLT style sheets to provide an active user interface to 
XML data used in workflows. There are also proposals to use XSLT to 
produce GUI for web services [15]. But mixing XSLT with the business 
logic can make a workflow definition very obscure. The XForms which 
provide only presentation and are reusable and data and business logic in-
dependent are a great step forward.



104      Johann Eder, Marek Lehmann 

7 Conclusions 

It was our ambition to show that integrated consideration of the data as-
pects and the dynamic aspects of workflow systems is possible and that 
this integrated view can lead to rather lean and flexible systems which are 
comparatively easy to comprehend and use due to uniform general archi-
tectural principles. We did so by designing and implementing a small 
workflow management system which shows how data management can be 
both flexible and uniform.  

The main contributions of the presented approach for uniform access to 
data in workflows are:

Separation of the business logic (activities), data access mechanism 
(data access plug-ins) and user interface (XForms).  
All data in workflows (application data, workflow relevant data, data in 
external sources, etc.) are described, represented and processed uni-
formly.  
We o er a simple and transparent mechanism for accessing data stored 
in many di erent data sources (workflow repository, external systems).  
Seamless integration with external systems can be achieved by ex-
change of process and application data in XML format.
XML datatypes and data access plug-ins can be reused in many 
workflow definitions.
Reusability of activities is made easier and is no longer prohibited by 
di erences in data representation.  

Thanks to XForms and the way they are parameterized in our system, 
the user interface to manual tasks is more flexible and modular. Moreover, 
the interface is not fixed, as in many typical applications, but the XForms 
templates can be easily redesigned and improved, without the need to 
change the implementation. And last but not least, the use of browser en-
sures portability which is nowadays a very important feature.  

The concept and the architecture we propose strives for achieving true 
physical and logical independence of process and data. The abstraction 
represented in exchangeable plug-ins for data access frees workflow
definitions from the accidentiality of representation formats. Besides the 
obvious advantages for intra-and interorganisational exchange of data and 
documents, maintenance and evolution of workflow systems will benefit
considerably.  



Uniform and Flexible Data Management in Workflow  Systems      105 

Acknowledgments  We would like to thank our students: Christian Dreier, 
Maciej Siekierski and Aleksandra Wojnowska, who implemented the pro-
totype WfMS and GDAP. 

References

[1] van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, 
and Systems. MIT press, Cambridge, MA, 2002. 

[2] Aberer, K., Datta, A., Despotovic, Z :Separating business process from user in-
teraction utilizing process-aware xslt style-sheets. In WECWIS’02: Proceed-
ings of the Fourth IEEE International Workshop on Advanced Issues of E-
Commerce and Web-Based Information Systems (WECWIS’02), page 69. 
IEEE Computer Society, 2002. 

[3] Ader, M.: Workflow and business process management comparative study. 
Volume 2. Technical report, Workflow & Groupware Strat´egies, June 2003. 

[4]  Andrews, S., Curbera, F., Dholakia, H.,Goland, Y., Klein, J., Leymann, F., 
Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: 
Business process execution language for web services (bpel4ws). Technical 
Report 1.1, BEA, IBM, Microsoft, SAP, Siebel Systems, 5 May 2003. 

[5] Bae, H., Kim, H.: A document-process association model for workflow man-
agement. Comput. Ind., 47(2):139–154, 2002. 

[6] Bourret, R.: Xml-dbms middleware. Viewed: May 2005, http://www.-
rpbourret.com/xmldbms/index.htm. 

[7] Bussler. C.: Has workflow lost sight of dataflow?, 1999. High Performance 
Transaction System Workshop 1999. 

[8] Carlsen, S., Krogstie, J.,  Sølvberg, A., Lindland, O.I.: Evaluating 
      flexible workflow systems. In Hawaii International Conference on System  

Sciences (HICSS-30), 1997. 
[9] Dreier, C.: Generischer datenzugriff in xml-gest¨utzten lighweight workflow 

management system. Master’s thesis, University of Klagenfurt, 2005. 
[10] Dubinko, M., Klotz Jr. L.L., Merrick, R., Raman, T.V.: Xforms 1.0. W3c rec-

ommendation, World Wide Web Consortium (W3C), 14 October 2003. 
[11] Eder, J., Groiss, H., Liebhart, W.: The workflow managament system panta 

rhei. In A. Dogac, L. Kalinichenko, T. ¨Oszu, and A.Sheth, editors, Workflow 
Management Systems and Interoperability. Springer-Verlag, 1998. 

[12] Eder, J., Gruber, W.: A meta model for structured workflowssupporting 
workflow transformations. In Proceedings of the 6th East European Confer-
ence on Advances in Databases and Information Systems (ADBIS 2002), vol-
ume 2435 of Lecture Notes in Computer Science, pages 326–339. Springer- 
Verlag, 2002. 

[13] Eder, J., Lehmann, M.: Uniform access to data in workflows. In Kurt Bauk-
necht, Martin Bichler, and Birgit Pröll, editors, Proceedings of the 5th Interna-
tional Conference on E-Commerce and Web Technologies, EC-Web 2004, 



106      Johann Eder, Marek Lehmann 

volume 3182 of LNCS, pages 66–75, Zaragoza, Spain, August/September 
2004. Springer-Verlag. 

[14] Fan, J., Kambhampati, S.: A snapshot of public web services. SIGMOD Re-
cord, 34(1):24–32, March 2005. 

[15] Kassoff, M., Kato, D., Mohsin, W.: Creating guis for web services IEEE 
Internet Computing, 7(5):66–73, 2003. 

[16] Leymann, F., Roller, D.: Production Workflow. Concepts and Techniques. 
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999. 

[17] Lienhard, H.: Web services and workflow - a unified approach. In Workflow-
cHandbook 2003, pages 49–60. Workflow Management Coalition, 2003. 

[18] Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: 
Workflow data patterns. Proc. of 24th Int. Conf. on Conceptual Modeling 
(ER05), 3716:353–368. 

[19] Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: 
Workflow data patterns. Technical Report FIT-TR-2004-01, Queensland Uni-
versity of Technology, Brisbane, Australia, April 2004. 

[20] Rys, M.: Bringing the internet to your database: Using sqlserver 2000 and 
xml to build loosely-coupled systems. In Proceedings of the 17th International 
Conference on Data Engineering ICDE, April 2-6, 2001, Heidelberg, Ger-
many, pages 465–472. IEEE Computer Society, 2001. 

[21] Sayal, M., Casati, F., Dayal, U., Shan, M-S.: Integrating workflow manage-
ment systems with business-to-business interaction standards. In Proceedings 
of the 18th International Conference on Data Engineering (ICDE’02), page 
287. IEEE Computer Society, 2002. 

[22] Siekierski, M., Wojnowska, A.: Xforms workflow engine. Technical report, 
University of Klagenfurt, 2004. 

[23] Sølvberg, A., Kung, C.H.: Activity modelling and behaviour modelling. In 
Information Systems Design Methodologies: Improving the Practice, 1986. 

[24] Sølvberg, A., Kung, C.H.: On structural and behaviour modelling of reality. 
In Database Semantics, 1986. 

[25] Thakkar, S., Knoblock, C.A., Ambite, J-L.: A view integration approach to 
dynamic composition of web services. In Proceedings of 2003 ICAPS Work-
shop on Planning Web Services, 2003. 

[26] WfMC. Workflow process definition interface - xml process definition lan-
guage (xpdl). Technical Report WFMC-TC-1025, Workflow Management 
Coalition, 2002. 



Using Models in Enterprise Systems Projects 

Jon Atle Gulla 

IDI, NTNU, Trondheim, Norway  

Abstract. In enterprise systems projects, modeling is used both to configure 
the application and work out more efficient work processes.  Due to the com-
plexity and volatility of the domain, these projects tend to be very expensive 
and can easily fail and threaten the whole existence of the enterprise.  This pa-
per emphasizes the use of models in these projects and exposes some of the 
challenges they need to deal with.  We present some recent work that may help 
us apply conceptual modeling more successfully when developing new busi-
ness processes and configuring new systems. In particular we discuss how 
models may be expanded with performance-related information that is needed 
to assess the quality of the business processes supported by the computerized 
enterprise system. 

1 Introduction 

Organizations today depend on information systems that help them carry 
out their operations efficiently and reliably and keep information updated 
and available.  Some of these systems have been developed internally and 
cover just a small fraction of the organization’s processes or data.  They 
are often not well integrated with other systems and require a substantial 
amount of manual work to complete the business processes.  Increasingly, 
however, large-scale standard packages are replacing the smaller and spe-
cialized solutions.  From 1985 to 1997 the share of large organizations us-
ing packaged enterprise systems rose from about 30% to 95% [15]. When 
Hydro Agri Europe introduced its SAP enterprise system in 1999, it re-
placed around 120 applications that were used all over Hydro’s 17 sites in 



108      Jon Atle Gulla 

Europe.  Whereas the packages in the past were only used by large organi-
zations, we now have software intended for small and mid-size companies 
as well.  A survey of European mid-size companies shows that the adop-
tion of packaged enterprise systems increased from about 27% in 1998 to 
more than 50% in 2000 [20].  With the introduction of light versions and 
accelerated implementation tools in recent years this trend has continued 
and few organizations are now running their businesses without packaged 
solutions.

An enterprise system1 is a packaged application that supports and auto-
mates business processes and manages business data. They come with pre-
implemented and customizable modules that reflect best practice for com-
mon business operations.  Business data from different functional areas are 
integrated and kept consistent across the organization.  A characteristic of 
enterprise systems is their complexities both in terms of business data and 
in the way they affect the organization’s business practices and individual 
work tasks.

The functionality of enterprise systems is broken down into high-level 
work areas like logistics, financial accounting, and human resources.  
Within each area, there are modules that tend to correspond to organiza-
tions’ functional units.  There are modules for plant maintenance, sales & 
distribution, materials management, service management, asset manage-
ment, finance, etc.  Some of these modules are again split into sub-
modules that also correspond to organizational units.  The Materials Man-
agement module contains sub-modules for purchasing, inventory manage-
ment, and invoice verification, for example.   

Enterprise systems are among the largest and most complex IT systems 
on the market.  They process thousands of transactions every day and store 
information about all aspects of the business.  Unified data about materials, 
vendors and customers need to be defined and maintained as the business 
evolves. Parts of the organization also have to be modelled in great detail, 
like the structure and materials used in production plants.  SAP R/3, the 
market leader among ERP systems, offers several thousand transactions 
that potentially penetrate about every business process of the company.  
This complexity combined with the generality of customizable modules 
makes ERP projects large and difficult to control.  A survey among Aus-
tralian companies showed that it took between 6 and 7 years to complete 
an ERP project from early design to a successful company transformation 
[2].  In the Hydro Agri project, 120 applications were replaced by an SAP 
                                                     
1 The term enterprise system is often used synonymously with enterprise business 

application or with the more restricted term enterprise resource planning (ERP) 
system. 



Using Models in Enterprise Systems Projects      109 

R/3 solution that integrated 47 legal companies [7]. When STATOIL, a 
Norwegian petroleum company, introduced their integrated enterprise sys-
tem in 2001, they had around 245,000 sales orders and 11,000 work orders 
created every month, almost 400,000 materials and 900,000 customers de-
fined, and an underlying database that increased by 30-40 GB every 
month. The complexity is further increased by cultural and legal differ-
ences among the sites to be supported by the enterprise system [11, 16]. 

The most difficult complexity comes from the intricate relationship be-
tween enterprise system and organization.   Organizations with complex 
structures and processes will necessarily need enterprise systems that are 
customized to deal with this type of complexity.  As the organizational 
complexities grow, it will be increasingly more difficult to analyze the or-
ganization’s needs and agree on the requirements to the enterprise system.  
There are rarely any clear lists of requirements in enterprise systems pro-
jects.  The organization has vague ideas of how their operations can be 
made more efficient, but these ideas cannot be directly translated into sys-
tem requirements.  They also depend on the way the organization works, 
their internal structures and their business processes. An alternative to cus-
tomizing a strict approval system for purchase orders, for example, is to 
involve managers directly when purchase orders are created. While defin-
ing the system requirements, thus, the project needs to define organiza-
tional structures and business processes as well.  The fundamental chal-
lenge is to find the combination of system customization and business 
reengineering that optimizes business processes with respect to speed, 
quality and costs.  This involves knowledge of functional areas of the or-
ganization, enterprise system technology, technical issues, management 
structures, and external factors like legal requirements and partnerships.  
Terminological misunderstandings and cultural conflicts are not uncom-
mon when people from so different backgrounds meet to discuss project 
objectives.

 The issue of wicked problems is also getting more apparent in the 
enterprise system sector.  A system engineering problem is wicked if the 
system requirements and the implemented system mutually affect each 
other.  As soon as the enterprise system is in operation, thus, new require-
ments tend to develop, leading to ever new cycles of requirements engi-
neering and system implementation. 

Enterprise systems come with pre-implemented customizable modules 
that do not require any programming to run.  The behaviour of each mod-
ule is controlled by a number of system-defined parameters.  To set up the 
system, the project needs intimate knowledge of the nature of these pa-
rameters and how they combine to produce a running enterprise solution.  
Understanding how business needs map onto these parameters is vital to 



110      Jon Atle Gulla 

the project and necessitates experts on both business issues and enterprise 
system features.   

Reference models, or best practice models, document the functionality 
of the systems in more abstract and comprehensible terms.  SAP uses a 
simple process modeling language, Event Process Chains (EPC), to pro-
vide a conceptual overview of their system’s capabilities and recom-
mended business processes.  As illustrated in Figure 1, these models serve 
as a bridge from the users’ perceived real-world problems to the customi-
zation tables implementing the desired application behaviour. 

We will in the following see how conceptual modeling supports the cus-
tomization of enterprise systems and help us reengineer the organizations’ 
IT-supported business flows.  Even though enterprise systems projects are 
more model-driven than traditional software engineering projects, there are 
still fundamental challenges with using traditional process models in these 
projects.  We discuss some aspects of enterprise models that tend to be 
problematic in large-scale projects, but also present some recent work that 
sheds more light on how modeling can be successfully applied to reengi-
neer organizations’ processes with information technology. 

2 Business Reengineering with Enterprise Systems 

Enterprise systems provide a shift of focus from programming special-
purpose applications to assessing real-world phenomena with humans in-
teracting with computers or other machineries.  Since the systems come 
with pre-defined packages, the emphasis is on how these packages can be 
used to fulfil a larger task or process.  It may be that they can be combined 
with other packages in more comprehensive applications, but it might also 
be that they should be accessed directly by people that do parts of the work 
manually themselves.  This represents a shift from replacing people with 
software to designing more efficient work processes with the help of com-
puterized systems.   

Whereas old applications helped organizations to optimize the use of 
their resources, modern enterprise systems help organizations optimize 
their business processes across various resource boundaries. Resource op-
timization leads to improved performance at the departmental level, but 
may not have a positive effect on the whole organization.  Due to interface 
problems between departments, the result is often additional costs or less 
efficiency at the company level.   

Training is an activity that often suffers from resource optimization.  In 
many organizations the Human Resource department is responsible for all 



Using Models in Enterprise Systems Projects      111 

training and career planning.  The training costs are part of their budget 
and affect the overall measured performance of the department.  Since the 
HR department does not generate revenues, its performance tends to be 
measured in terms of costs and vaguely defined value creation.  Since key 
performance indicators for HR departments often include total training 
costs, the department’s performance may increase by keeping training at 
the lowest possible level. 

Application level
(real world)

Implementation
level

(software)

Model level
(Process model)

Application level
(real world)

Implementation
level

(software)

Model level
(Process model)

Fig. 1. Three views of enterprise systems 

Another example of resource optimization is found in many old produc-
tion plants with no preventive plant maintenance.  Critical production parts 
are not replaced before they break down and the production halts.  It is 
then important that they can either order the parts very fast or keep suffi-
cient stocks of critical materials at the plant.  For the plant maintenance 
department itself, this may look like a good strategy,  as they make full use 
of all parts, do not need any sophisticated IT support to monitor the use of 
materials, and can simplify many procedures for maintenance and repair.  
The costs of a larger inventory of spare parts are often attributed to the 
warehouse department anyway.  What is quite serious, however, is that the 
strategy may lead to complete process stops if several parts break down 
simultaneously or unnecessary warehouse costs. 

The objective of business process optimization is to optimize the per-
formance of processes rather than departments.  The efficiency of depart-
mental work is important also in the process optimization philosophy, but 



112      Jon Atle Gulla 

we now also have to take into account the interfaces between departments 
and the way activities are grouped together to create value.  In the case of 
HR and training we now need to analyze how training fits into the process 
of preparing employees for particular projects and estimate the additional 
value of having better trained people in these projects.  In the plant main-
tenance case we must compare two production scenarios, with and without 
preventive maintenance, and analyze the strengths and weaknesses of both 
scenarios.  Each scenario constitutes a possible business process that in-
cludes the costs of both plant maintenance and production activities.   

The process of evaluating what is desirable from a process perspective 
with what is feasible with the enterprise systems packages are often re-
ferred to as fit analysis [7]. The objective of the project is to find a fit that 
provides substantial process improvements at low development and main-
tenance costs. 

3 Business Modeling 

Whereas traditional software engineering was about automating tasks, in-
formation systems engineering is about the constructive collaboration 
among humans and computerized applications.  The information system 
comprises both manual and automated parts that coordinate their work and 
each contribute to the fulfilment of some pre-defined processes or transac-
tions [18]. 

 The development of information systems typically includes an analysis 
of some real-world phenomena, a determination of system requirements, 
and coordinated work among a number of parties.  Several kinds of stake-
holders may be negotiating in the process, and the result is a product that 
guides the successive realization of the computerized part of the system.  
The whole development process has been referred to as a change process 
due to its overall goal of replacing existing structures or systems with new 
ones, or – focusing on the intra-dependencies between system require-
ments and various system representations – as a series of transformations. 

The information system is built from a series of increasingly detailed 
and focused models.  By starting from an analysis of a business area, i.e. 
an unsatisfactory real-world system, a conceptual model is constructed and 
gradually refined to assess the problems and needs of the system.  In the 
beginning, both the information system and the environment may be in-
cluded, but as the final conceptual model is finished, automation bounda-
ries are introduced into the model.  These decide which parts of the system 
are to constitute the computerized information system, and they guide the 



Using Models in Enterprise Systems Projects      113 

subsequent configuration and implementation stages.  From a modeling 
perspective, we can view these stages as a continuation of the design stage, 
in which construction details are added to realize the behaviour of the de-
sign model.  Having implemented the computerized information system, 
we put it into operation in the larger real-world information system.  The 
whole process is illustrated in Figure 2. 

Fig. 2. Information systems development cycle 

The modeling approach advocated in information systems engineering 
has been adopted in enterprise systems projects.  The initial real-world 
model constitutes the AS-IS model of the enterprise, and the final decom-
posed model – the TO_BE model – determines how the new enterprise 
system should be configured.  However, the TO_BE model is constrained 
by the functional limits of the enterprise system or the project’s willing-
ness to develop additional software to integrate with standard system func-
tionality. 

As a bridge between system configuration and real-world problems, the 
conceptual model needs to satisfy the often conflicting needs for compre-
hensibility and representativeness: 

Comprehensibility refers to the stakeholders’ ability to understand 
the modeling language and correctly read the models constructed 
Representativeness refers to the modeling language’s ability to rep-
resent information systems aspects important to the development of 
computerized parts and the evaluation of the system as a whole. 

Computerized
information system Iterated decomposition

of automated part

Automation
boundaries
introduced

Iterated 
decomposition
of model

Real-world
model

Unsatisfactory
real-world
system

Real-world
system with
computerized
information 
system

Computerized
information system Iterated decomposition

of automated part

Automation
boundaries
introduced

Iterated 
decomposition
of model

Real-world
model

Unsatisfactory
real-world
system

Real-world
system with
computerized
information 
system



114      Jon Atle Gulla 

A number of formal graphical conceptual modeling languages have 
been introduced over the years.  Many of them build on traditional Petri 
nets of data flow diagrams, but are extended with more real-world con-
cepts and formalized according to some mathematical or logical theory.  
Sølvberg’s early work on Behaviour Net models, defined as an extension 
of Petri Nets, was followed by formalized process models that added logi-
cal expressions and clear interfaces to data models as well as more low-
level decision trees or flow charts.  The formal foundation of these lan-
guages made it possible to develop proper CASE tools that could verify 
the models and help the users evaluate their content by means of code gen-
eration, explanation generation and various abstraction strategies [8, 13, 
17, 21].   His work on the PPP language was later followed by Carlsen’s 
APM modeling language, which is geared towards workflow systems and 
has proven itself useful in enterprise systems projects [4].  The model in 
Figure 3 shows a high-level APM diagram for the purchasing process in 
SAP R/3.  The rounded boxes like Purchase requisition express a function 
or activity to be carried out and are further decomposed into new diagrams.  
At the lowest level, these activities are either enterprise system transac-
tions or basic undecomposed manual work.  Each activity may be associ-
ated with an actor, some tool support and necessary transaction data, 
though these process details are usually added when the more low-level 
models are developed.  They may specify, for example, that the purchasers 
in the purchasing department should use transaction code ME21 and mas-
ter data about materials, vendors and contracts when new purchase orders 
are created.  Logical ports on the flows between activities are introduced at 
lower levels to indicate more precisely how activities are triggered and co-
ordinated.

A fundamental problem with all these process languages was the valida-
tion against real-world phenomena and user needs.  Formal models can be 
checked for consistency and completeness, but these tests do not reveal 
whether the model is a suitable representation of the process being mod-
elled.  Borrowing concepts from linguistics, Lindland et al. developed a 
model quality framework that describes the conceptual model’s quality in 
terms of syntactic, semantic and pragmatic quality.  Whereas syntactic 
quality refers to whether the model is syntactically correct, semantic and 
pragmatic quality reflect the model’s capturing of relevant domain aspects 
and the user’s ability to understand its content, respectively [12].   

Even though the quality framework has been useful in the analysis of 
models and modeling languages, it does not say much about the effective-
ness or efficiency of the processes being modelled and later supported by 
the deployed enterprise systems.  This depends both on the use of re-
sources internally and the external events, to which the system needs to re-



Using Models in Enterprise Systems Projects      115 

spond.  It is, for example, more important to run frequent processes speedy 
and economically than processes that are only used every now and then.  
Also, certain sales processes need to be run extremely fast to generate new 
revenues, even though it would be cheaper to implement a slower process 
where all customers are dealt with once a month.  Effective and efficient 
process execution depends on the design of the process, but also on the re-
sources available for executing it and the external load. Theoretical per-
formance models may help us with some of this [3], though we still need 
real usage data and strategic knowledge of the business. 

Another complexity with enterprise systems is the mutual dependency 
between computerized system and perceived user needs.  When the new 
computerized system is deployed, it allows the users to work differently or 
do things they could not do in the past.  New user needs emerge as the us-
ers realize that the new system may generate new opportunities or can be 
further improved. 

Fig. 3. High-level APM model of the purchasing process (from [22]) 

Take for example Hydro Agri’s SAP system that was developed to inte-
grate production sites all over Europe.  The original plan was to source 
goods from warehouses anywhere in Europe, but keep the familiar separate 
sales offices.  However, as the application was gradually put into opera-
tion, the project organization realized that they could simplify both techni-
cal, organizational and legal matters by defining one pan-European sales 
organization rather than keeping all the local national sales organizations.  
As a result, the development of enterprise systems is never completely fin-
ished.  Every upgrade generates new user requirements that calls for a later 



116      Jon Atle Gulla 

upgrade.  The phenomenon is often referred to as the wicked problem of 
information systems development and forces the organization to constantly 
monitor the use of their enterprise systems [18]. 

The wicked nature of enterprise systems and the lack of load and re-
source data in conceptual models has later been addressed by work on 
process mining and automatic model reengineering. 

4 Expanding Models with Performance Indicators 

Change projects aim at optimizing business processes and make better use 
of the enterprise system resources across the enterprise. Hammer [9] and 
Davenport and Short [6] were the first to describe more or less systematic 
approaches to improving entire business processes. An important aspect 
that distinguishes various change project methodologies is whether a clean
sheet approach is adopted, or whether an existing process is taken as a 
starting point and gradually refined to reach the specified objectives. 
Techniques like Business Process Reengineering aim at drastically struc-
turing business processes from scratch and with minimal influence from 
the decisions and ideas behind existing process structures. Other tech-
niques, like Business Process Redesign, have a more structured approach 
for getting from AS_IS to TO_BE. In general, clean sheet approaches tend 
to be riskier as they break away from existing known procedures. On the 
other hand, they also tend to deliver higher benefits when they succeed, as 
inefficiencies can be rooted out [14]. 

A proper conceptualization and description of AS_IS is a costly effort, 
and many change projects do not see the value of measuring and identify-
ing the “old” solution when they have clear ideas of the TO_BE. However, 
even for clean sheet business process reengineering projects we need to 
identify AS_IS properly in order to estimate potential gains and measure 
these gains when the projects are accomplished. For this reason, most or-
ganizations are interested in identifying AS_IS in an objective, representa-
tive and, maybe most importantly, cost-efficient manner. 

Activities that can be carried out to identify current business process be-
haviour include on-the-job observations, workshops and employee inter-
views. The downside of these approaches is that they suffer from subjec-
tive, fragmented, and possibly unreliable sources of data. Involving more 
people may improve the quality of this manual process evaluation work, 
but the required costs and amount of coordination may soon exceed the 
gains of this group work.  Simulation and cost models have also been used, 



Using Models in Enterprise Systems Projects      117 

though they both require very specialized modeling competence and are 
difficult to use in vague, unclear and wicked system contexts [1, 5]. 

Automated process mining techniques can to some extent replace the 
manual approaches and produce AS_IS information that is both objective 
and structured. Process mining techniques can also be applied to collect 
and investigate performance indicators related to the business flow.  
Among the process mining applications available today are EMiT/ProM, 
Process Miner, EVS, HP Process Intelligence tools suite, and ARIS Proc-
ess Performance Manager [19]. 

Empirical business models (EBMs) are business process models where 
information about historical execution instances is coupled to each activ-
ity. Structurally, an EBM shares many commonalities with traditional data 
flow diagrams.  They contain activities that produce specific end results 
like documents or products and are carried out by certain actors or actor 
roles in particular departments.  Activities depend on each other to the ex-
tent that an activity may consume or refer to the end results of others. 

Also other model formalisms, like High level Petri Nets, relate context 
information to the model elements. Specifically for EBMs is that informa-
tion about the execution instances are stored and kept as an integral part of 
the model.  

From each execution instance we can gather information like execution 
timestamp, user, user-role, department, and other resources involved in the 
execution. By keeping this instance information tightly to the graphical 
model representation, the model can serve as an interactive front-end for 
more detailed statistical analyses. Including more resource-specific data in 
the models, we have an extensive basis for uncovering unknown relation-
ships and patterns. Examples of resource specific data include vendors, 
products, customers, shipping providers, etc. Several studies have been 
carried out to show the potential of merging data from event logs with 
other data sources, i.e., a data warehouse. 

As described, change projects require information from multiple sources 
to allow the right decisions to be made and the project to complete suc-
cessfully. EBMs seek to cover several of the information needs related to 
change projects and create a dynamic, interactive and model-based basis 
for AS_IS analysis. We will in the following provide an example model 
that is extracted using the Enterprise Visualization Suite (EVS) from Busi-
nesscape AS [10]. The given case examples are extracted from purchase 
data in the SAP R/3 implementation at the Norwegian Agricultural and 
Marketing Cooperative (FKT). A detailed presentation of this case study 
and a more detailed description of the process mining techniques involved 
in the extraction process are found in [10].  



118      Jon Atle Gulla 

Figure 4 shows the EBM that was extracted with the EVS tool. The 
model shows the procurement process from the creation of purchase requi-
sitions to the creation of invoice documents and goods movements. The 
activities (shown as rounded boxes) represent different transactions in 
SAP. An arrowed line represents a flow of resources, typically a docu-
ment. When ME21N – Create Purchase Order has an arrowed line to 
ME22N – Change Purchase Order, it means that the first activity produces 
a document (a purchase order) that the latter activity consumes.  

As we can see, the procurement process is fairly complex with numer-
ous alternative process paths and transaction codes. There are several 
transactions that are related to procurement, and there are several ways of 
carrying out a purchase. Spare parts to production activities, different types 
of customer products, and office supplies require different purchasing pro-
cedures that are all covered by alternative process paths in the model. Even 
though the model is dynamically constructed from event logs, it reflects 
very well the functions in the reference model of SAP R/3.  

For each activity box a set of performance indicators are calculated and 
visualized:

Number of monthly executions – The area of the circular icon at the 
lower left corner of the activity boxes is an average measure of number 
of executions per month for the respective activity. The specific area is 
relative to the largest value that is present in the model, though the exact 
value is presented as numbers to the right of the circular icon. 
Average duration – The size of the dark pie of the circular icons is a 
average measure of the duration for the respective activity. The size is 
relative to the largest duration value present in the model, but the exact 
duration value is also presented to the right of the circular icon. 
Trends – The latest trends of throughput and duration are shown as ar-
rows pointing upwards or downwards, depending on the abruptness of 
the trend. 

In figure 4, we can see that the activities Create Goods Movement and 
Create Purchase Requisition are executed most frequently, while the ac-
tivities ME51N – Create Purchase Requisition and MR8M - Cancel In-
voice Document are executed rather infrequently.  We notice that created 
purchase requisitions are changed rather frequently, which may indicate 
some weaknesses in the way these requisitions are set up.  The purchasing 
process is mostly stock-driven, since most the purchase orders are gener-
ated automatically (transaction code ME59) based on stock level. This 
makes sense, because Felleskjøpet has several warehouses, from which the 
goods may be sourced without any negotiation.  



Using Models in Enterprise Systems Projects      119 

Fig. 4. Empirical process model for purchasing process in Felleskjøpet 



120      Jon Atle Gulla 

The Create Goods movement transaction is simply used to transfer the 
goods from one warehouse to the one requesting the goods.  This takes in 
total about 17 days (13 hours for the purchase order generation and 397 
hours for the goods transfer), compared to the 55 days needed to purchase 
a new material with the manual purchasing transactions (56 hours for find-
ing a vendor, 50 hours for completing the purchase order, and 1219 hours 
before the goods are delivered by the vendor).   

Incorporating these empirical data into the process model, we may 
evaluate the performance of existing processes and detect deficiencies or 
bottlenecks that should be removed.  If speed is important, it would here be 
tempting to define a new business process that makes use of automatic 
purchase orders and large warehouses to deliver almost all goods needed 
by Felleskjøpet.  This would be more expensive, though, as the company 
would need to keep larger stocks of goods available in their warehouses at 
all times. 

Figure 5 shows how seasonal variation affects the automatic creation of 
purchase orders at Felleskjøpet.  The analysis spans from week 40 in 2005 
to week 36 in 2006. Selling equipment, fertilizers and other farming goods, 
Felleskjøpet has substantially more transactions in the spring and summer 
months and should plan their internal resources correspondingly.  The exe-
cution times follow a very regular pattern, because the transactions are 
normally run in batches at pre-defined time intervals. The execution time 
is unnormally long right after Christmas and in July, which may indicate 
that the transactions are not run during the holidays.  The very long execu-
tion time in January does not pose a huge problem, though, as the number 
of transactions is low in the winter.  

Fig. 5. Seasonal characterization of Felleskjøpet’s purchasing process 



Using Models in Enterprise Systems Projects      121 

5 Conclusions 

Conceptual modeling is today an integral part of large-scale enterprise sys-
tems projects.  They allow the project to focus on the reengineering of 
work processes rather than the technical realization of enterprise transac-
tions.  They also provide a uniform formalism for representing the views 
of all the stakeholders of the system as well as the generic functionality of 
the enterprise system packages, while still being formal enough to guide 
the subsequent configuration and tailoring of system functionality. There 
are today a wide range of tool-supported process modeling languages that 
lend themselves to sophisticated verification checks, code generation, ab-
straction and explanation generation. Traditional process modeling lan-
guages lack however the means to evaluate the effectiveness and effi-
ciency of business processes.  Simulation languages have been introduced 
in recent years to address this, though it seems hard to describe the organi-
zation’s resources and the external load in terms of precise mathematical 
formulas. Research on process mining and empirical business models 
seems to be more useful in analyzing the performance of processes within 
a firm conceptual modeling framework.  Empirical data about processing 
times, process frequencies and dependencies supplement traditional proc-
ess languages’ focus on functional issues and are both necessary.   

References 

[1]   Anupindi, R., Chopra, S., Deshmukh, S. D., Van Mieghem, J. A., and Zemel, 
E.: Managing Business Process Flows.  Prentice Hall, 1999. 

[2]  Booth, P., Matolcsy, Z., Wieder, B.: ERP Systems Survey Benchmark Report 
1999.  Enterprise Resource Planning Systems Project, University of Technol-
ogy, Sydney. 

[3]  Brataas, G., Hughes, P. H. and Sølvberg, A.: Performance Engineering of 
Workflow Systems With an Integrated View of Human and Computerised 
Work Processes. In Proceedings of  the 9th International Conference on Ad-
vanced Information Systems Engineering (CAiSE’97). Barcelona, 1997. 

[4]   Carlsen, S., Krogstie, J., Sølvberg, A. and Lindland, O. I., Evaluating Flexible 
Workflow Systems, In:  Hawaii International Conference on System Sciences 
(HICSS-30), Maui, Hawaii, 1997. 

[5]  Currie, W. L., and Hlupic, V.: Simulation Modelling: The Link Between 
Change Management Approaches.Knowledge and Business Process Manage-
ment,  Chapter III, pp. 33-50. IDEA Group Publishing, 2003. 

[6]   Davenport, T. H. and Short, J. E.: The New Industrial Engineering:  Informa-
tion Technology and Business Process Redesign. Sloan Management Review, 
Vol. 31, No. 4, 1990, pp. 11-27. 



122      Jon Atle Gulla 

[7]  Gulla, J. A. and Brasethvik, T.: On the Challenges of Business Modeling in 
Large-Scale Reengineering Projects. In Cheng (ed.), Proceedings of 
ICRE'2000, Schaumburg, Illinois, June 2000. 

[8] Gulla, J. A., Lindland, O. I., and Willumsen, G.:  PPP: An Integrated CASE 
Environment. In Andersen, R., Bubenko jr., J. A., and Sølvberg, A. (Eds.): 
Proceedings of CAiSE’91, pp. 194-221, Trondheim, May 1991. Springer. 

[9]  Hammer, M.: Reengineering work: Don’t automate. Obliterate.  Harvard 
Business Review, July/August 1990, pp. 104-112. 

[10] Ingvaldsen, J. E. and Gulla, J. A.: Model Based Business Process Mining. 
Journal of Information Systems Management, Special Issue on Business Intel-
ligence, Volume 23, No. 1, pp. 19-31, Winter 2006.  

[11]  Krumbholz, M. and Maiden, N. A. M.: ow Cultuer Might Impact on the Im-
plemenation of Enterprise Resource Planning Packages.  In Proceedings of the 
12th International Conference on Advanced Information Systems Engineering 
(CAiSE’2000), June 2000, pp. 279-293. 

[12]  Lindland, O. I.,  Sindre, G. and Sølvberg, A.: Understanding Quality in Con-
ceptual Modeling, IEEE Software, 11(2):42-49, March 1994.   

[13]  Lindland, O. I., Willumsen, G., Gulla, J. A. and Sølvberg, A.: Prototyping in 
transformation-based case environments. In Proceedings of SEKE'93 pages 
696--603, Hotel Sofitel, San Francisco Bay, USA, 1993. Knowledge Systems 
Institute.  

[14]  Reijers, H. A.: Process Design and Redesign. Process-Aware Information 
Systems, John Wiley & Sons, 2005, pp. 207-234. 

[15]  Robsen, W.: Strategic Management & Information Systems. Second Edition. 
Financial Times/Prentice Hall. 1997.  

[16]  Soh, C., Kien, S. S., and Tay-Yap, J.: Cultural Fits and Misfits: Is ERP a Uni-
versal Solution? Communications of the ACM, Vol. 43, No. 3, April 2000, 
pp. 47-51. 

[17]  Sølvberg A.: Data and what they refer to, in P.P.Chen et al.(eds.): Conceptual 
Modeling, pp.211-226, Lecture Notes in Computer Science, Springer Verlag, 
1999 

[18]  Sølvberg, A. and Kung, C. H.: Information Systems Engineering. Springer-
Verlag, 1993 

[19]  van der Aalst, W. M. P. and Weijters, A. J. M. M.: Process Mining: A Re-
search Agenda.  Computers in Industry, Vol. 53, No. 3. Elsevier Science Pub-
lishers. 2004, pp. 231-244. 

[20]  van Erdigen, Y. M., van Hillegersberg, J., and Waarts, E.: ERP Adoption by 
European Midsize Companies.  Communciations of the ACM, April 2000, 
Vol. 43, No. 4, pp. 27-31.  

[21]  Yang, M. and Sølvberg, A.: The new PPP: Its architecture and repository 
management. In Proceedings of the Fifth Workshop on The Next Generation 
of CASE Tools Utrecht, Holland, 1994. 

[22]  Zanchi, M., Su, X., and Gulla, J. A.: Modelling with APM in ERP Projects. 
Open Enterprise Solutions: Systems, Experiences, and Organizations Confer-
ence, Rome, Italy, 2001. 



The Role of Business Models in Enterprise 
Modelling

Paul Johannesson   

Stockholm University/Royal Institute of Technology, Kista, Sweden 

Abstract. In order to cope with increasingly complex business and IT environments, 
organisations need effective instruments for managing their knowledge about these 
environments. Essential among these instruments are enterprise models that represent 
an organisation including its domain of work, processes, and context. Most enterprise 
models have focussed on information and process structures, but there has recently 
also been a growing interest in goal models, describing the intention of actors. We 
suggest that there is a need for an additional type of model, often called value model or 
business model, that focuses on the value created and interchanged between actors in a 
business environment. This kind of model provides a clear and declarative foundation 
for other kinds of enterprise models and they will become increasingly important in 
managing a complex environment characterised by collaboration, variety, and change. 

1 The Roles of Modelling

Today’s enterprises and IT systems are facing an increasingly complex en-
vironment characterised by collaboration, variety, and change. Enterprises 
are becoming more and more dependent on their business networks. In or-
der to cope with tasks they cannot handle alone, enterprises need to col-
laborate with others in ever changing constellations. Organisations are ex-
periencing ever more variety in their business, including products, 
customers, and enterprise infrastructure. Organisations have to manage an 
environment that is constantly changing and where lead times, product life 
cycles, and partner relationships are shortening. In order to cope with in-
creasingly complex business and IT environments, organisations need ef-
fective instruments for managing their knowledge about these environ-
ments. Essential among these instruments are models, i.e. representations 
of aspects of an organisation including the domain of work, the processes, 



124      Paul Johannesson         

and the context. Models have been used for a long time in information sys-
tems design, and it is possible to identify three main ways of utilising 
models, [8]:  

Models as sketches. Models are used as sketches to describe possible so-
lutions to problems or to document existing solutions in order to facilitate 
communication among stakeholders. The idea is to use the models as in-
formal support for explanation and communication.   

Models as blueprints. Models are used as blueprints for implementing 
IT systems and services. The idea is that the models shall be sufficiently 
precise and formal for programmers, database designers and other IT ex-
perts to build a functioning system.  

Executable models. Executable models take the idea of models as blue-
prints one step further. The models shall be formal enough to be automati-
cally translatable into executable code. In this way, the coding step is 
eliminated, thereby reducing cost and risk for introducing errors.  

The approach of executable models is not new but has been a vision for 
many years, [17]. Recently, it has got more momentum through OMG’s 
launching of MDA, Model Driven Architecture, [14]. The purpose of 
MDA is to support model-driven engineering of software systems. System 
functionality is first to be defined in a platform-independent model (PIM), 
typically using UML as a modelling language. This PIM will then be trans-
formed into a platform-specific model (PSM) adapted to a software envi-
ronment like .Net or EJB.  

Realizing the vision of MDA will require the solution of a number of 
difficult problems and issues including the modelling of dynamics, accep-
tance of standards by users and vendors, correct and reliable model trans-
formation algorithms, and the spreading of expertise and skills in MDA. 
Another issue is the choice of model types to be used for PIMs in the con-
text of information systems design. Most models for this purpose, also 
called enterprise models, have focussed on information and process struc-
tures. Recently, there has also been a growing interest in goal models, de-
scribing the intention of actors, [16]. In this Chapter, we suggest that there 
is a need for an additional type of model, often called value model or busi-
ness model, that focuses on the value created and interchanged between 
actors in a business environment. We argue that this kind of 
model provides a clear and declarative foundation for other kinds of enter-
prise models and that they will become increasingly important in manag-
ing a complex environment characterised by collaboration, variety, and 
change. The Chapter is structured as follows. Section 2 gives a brief over-
view of enterprise models, in particular conceptual, process and goal mod-
els. Section 3 introduces business models, and Section 4 discusses how 
business models can be related to process and goal models. The final sec-



The Role of Business Models in Enterprise Modelling       125 

tion concludes the paper and points out a number of research directions for 
business modelling.    

2 Conceptual, Process and Goal Models  

2.1 Conceptual Models

Describing a system by means of conceptual models means viewing the 
world as consisting of objects that belong to different classes, have distinct 
properties, and are related to each other in various ways. The objects are 
born, they are affected by events, they acquire and lose properties, they in-
teract with other objects, and finally they die. This way of viewing a sys-
tem provides a powerful representation and reasoning tool that has been 
put to use in many different contexts. It has been used for business engi-
neering, requirements engineering, database design, information systems 
design, and many other applications. One of the first conceptual modelling 
languages was the ER approach, which was based on the notions of entities 
and relationships, [5]. Another influential language is NIAM and its suc-
cessors, [11], that are based on a binary association approach and provides 
an expressive graphical notation for rule formulation. UML, which has its 
roots in software engineering, is today widely used also for conceptual 
modelling.  

2.2 Process Models 

Process models are used to represent the business processes of an organisa-
tion. A well-known definition of a business process is “a specific ordering 
of work activities across time and place, with a beginning, an end, and 
clearly-defined inputs and outputs; a structure for action”, [6]. There are 
many other definitions, but in principle they all state that busi-
ness processes are relationships between inputs and outputs, where the in-
puts are transformed into outputs using a series of work activities that add 
value to the inputs.  

There exist a large number of languages and notations for process mod-
els, each focusing on different aspects of business processes.  One kind of 
process model is the Data Flow Diagram, which shows the flow of data 
from one place to another. A Data Flow Diagram describes how data en-
ters and leaves a process, the data produced and consumed by the activities 
of the process, the storage of the data within the process, and the organisa-
tional function responsible for the process. Another kind of process model 



126      Paul Johannesson         

is the Role Activity Diagram, which focuses on the roles responsible for 
different activities within a process and the interactions between theses 
roles. Still another kind of process model is IDEF0, which is a graphical 
notation for business processes showing their inputs, outputs, controls that 
govern the activities, and resources that are used to carry out the activities 
of the processes. There are also many other business process languages in-
cluding EPC, BPMN and UML activity diagrams. Most of these languages 
are semi-formal and do not provide a precise semantics, but there have 
been attempts to formalise them using languages like Petri nets and pi-
calculus. A formally defined and comprehensive process modeling lan-
guage is YAWL, [25], which addresses control flow, data flow as well as 
resource aspects of business processes.  

2.3 Goal models

Goal models have been used in requirements engineering to understand 
a problem domain and to map out the interests of different stakeholders. 
One of the most widely known languages for goal modelling is i*, [16], 
which provides constructs for modelling goals, tasks, resources, and de-
pendencies between actors. While i* holds a strong position in the aca-
demic community, there are also goal modelling languages with a more 
practical orientation. One of these languages is the Business Motivation 
Model, BMM [4]. A basic notion in BMM is that of a goal, 
which expresses something a business seeks to accomplish, a desired fu-
ture state of affairs or condition. Examples of goals are being the market 
leader in an industry or having a profit of more than 1 million euros. Goals 
can be decomposed, i.e. one goal can be a part of another goal.

Furthermore, BMM includes the notion of means, i.e. something that 
can be used to achieve a goal. Means can take different forms, as they can 
be instruments, devices, capabilities, techniques or methods. A means 
states what an organisation will do or use to achieve a goal, while a goal 
tells what the organisation views as desirable. There are two main kinds of 
means, course of action and directive such as business rules and policies. 
A course of action tells how an enterprise will behave to achieve a goal, 
while a directive governs or restrains the use of courses of actions. Another 
component of BMM is the influencer, i.e. something that can impact an en-
terprise in its employment of means or achievement of goals. An influen-
cer expresses an objective state of affairs, while a goal is something that an 
organisation decides about – it wants to accomplish the goal. Similarly, a 
means is something that the organisation chooses itself – it decides to use a 
means in order to achieve a goal.



The Role of Business Models in Enterprise Modelling       127 

3 Business Models 

A business model should help to answer a number of questions about a 
business idea and its realisation. The following are examples of such ques-
tions, formulated from one agent’s perspective:  

Which is our value proposition?  
What do we offer to our customers?  
Why do the customers find this valuable?  
How do we go about to create this value and how do we market it?  
Can we deliver the value ourselves?  
Do we need to cooperate with other actors?
Is our network of suppliers and partners sustainable?

These are some basic examples of questions that a business model 
should help to answer, and they illustrate that a business model is quite dif-
ferent from other types of models used in enterprise analysis and design. In 
particular, a business model is different from a process model.  A business 
model gives a high level view of the activities taking place in and between 
organisations by identifying agents, resources and the exchange of re-
sources between the agents. So, a business model focuses on the what in 
business. A process model, on the other hand, focuses on the how, as it 
deals with operational and procedural aspects of business communication, 
including control flow, data flow and message passing. In other words, a 
business model takes a declarative view, while a process model takes a 
procedural view.  

There exist a number of languages for business models, where the three 
most comprehensive and well defined are REA, e3value, and BMO.  These 
three languages were originally developed for different and specific pur-
poses, but there has also been recent work on expanding their applicability. 
REA was originally intended as a basis for accounting information systems 
[15] and focused on representing increases and decreases of value in an 
organisation. REA has subsequently been extended to form a foundation 
for enterprise information systems architectures, and it has also been ap-
plied to e-commerce frameworks [22]. e3value focuses on modelling value 
networks of cooperating business partners and provides instruments for 
profitability analysis that help in determining whether a certain value net-
work is sustainable [10]. Extensions of e3value have been suggested that 
incorporate process related aspects as well as risk management [3] and 
[23] and strategic analysis, [24]. BMO differs from the two other ap-
proaches by being wider in scope, as it also addresses internal capabilities 



128      Paul Johannesson         

and resource planning. Furthermore, BMO incorporates marketing aspects 
describing value propositions as well as marketing channels [19].  

3.1 The Resource-Event-Actor Framework  

The Resource-Event-Actor (REA) framework was formulated originally in 
[15] and has been developed further, e.g. [9, 22]. Its conceptual origins can 
be traced back to business accounting where the needs are to manage and 
monitor businesses through a technique called double-entry bookkeeping. 
The core concepts in the REA ontology are Resource, Event, and Actor 
and the intuition behind them is that every business transaction can be de-
scribed as two events where two actors exchange resources. To acquire a 
resource, an agent has to give up some other resource. For example, in a 
purchase the buyer has to give up money in order to receive some goods. 
There are two events taking place here from the buyer’s perspective: one 
where the amount of money is decreased and another where the amount of 
goods is increased. A corresponding change of control of resources takes 
place at the seller's side, where the amount of money is increased while the 
amount of goods is decreased. Thus, an exchange occurs when an agent 
receives resources from another agent and gives resources back to that 
agent. REA does not model only exchanges but also conversions, which 
occur when an agent consumes resources in order to produce other re-
sources.

3.2 The e3value Ontology  

The e3value ontology, [10], aims at identifying exchanges of value objects, 
similar to the resources in REA, between the actors in a business case. It 
also supports profitability analysis of business cases. e3value was designed 
to contain a minimal set of concepts and relations to make it easy to under-
stand for business and domain experts. The basic concepts in e3value are 
actors, value objects, value ports, value interfaces, value activities and 
value exchanges. An actor is an economically independent entity, typically 
a legal entity, such as an enterprise or a consumer. A market segment is a 
set of actors with similar preferences. A value object is something that is 
of economic value for at least one actor, e.g. cars, Internet access, and 
stream of music. A value port is used by an actor to provide or receive 
value objects to or from other actors. A value port has a direction, in or out 
indicating whether a value object flows into or out of the actor. A value in-
terface consists of at least two in and out ports belonging to the same actor. 
Value interfaces are used to model reciprocity in business transactions. A 



The Role of Business Models in Enterprise Modelling       129 

value exchange is a pair of value ports of opposite directions belonging to 
different actors. It represents one or more potential trades of value objects 
between these value ports. A value activity, similar to conversions in 
REA, is an operation that can be carried out in an economically profitable 
way for at least one actor.  

Fig. 1 gives an example of an e3value model, which shows a business 
case for a Massively Multiplayer Online Game (MMOG). In this business 
model there are three principle actors involved - the game producer, the 
Internet Service Provider and the Customers. The game producer is re-
sponsible for producing the game content and selling and distributing its 
software on CD to the customers. In order to play the game, the customers 
need to have Internet access, which they get from the Internet Service Pro-
vider. They also need access to the game server, which is provided by the 
game producer. In the figure, actors are graphically shown by rectangles, 
value activities by rounded rectangles, value ports by triangles, value inter-
faces by oblong rectangles enclosing value ports, and value exchanges as 
lines between value ports with the names of value objects as labels.  

Fig. 1. An e3value model for an MMOG case 



130      Paul Johannesson         

3.3 The Business Model Ontology  

The Business Model Ontology (BMO) as proposed in [18] provides an on-
tology that allows describing the business model of an enterprise precisely 
and in depth. BMO consists of nine core concepts in four categories. The 
categories are Product, Customer Interface, Infrastructure Management, 
and Financial Aspects. The single concept in Product is Value Proposition, 
which is an overall view of a company’s bundle of products and services 
that are of value to a customer.

Customer Interface contains three concepts; Target Customer, Distribu-
tion Channel, and Relationship. A target customer is a segment of custom-
ers to which a company wants to offer value. A distribution channel is a 
means of getting in touch with the customers. A relationship is the kind of 
link a company establishes between itself and its customers.  

Infrastructure Management contains three concepts; Value Configura-
tion, Capability, and Partnership. A value configuration describes the con-
stellation of activities and resources necessary to create value for custom-
ers. A capability is the ability to execute a repeatable pattern of actions that 
are needed for creating value for customers. A partnership is a voluntary, 
cooperative agreement between two or more enterprises with the purpose 
to create value for customers.  

Financial Aspects contains two concepts; Cost Structure and Revenue 
Model. Cost structure is the financial representation of all the means em-
ployed in the business model. Revenue Model describes the way a com-
pany makes money through a variety of revenue flows.  

3.4 On Value Exchanges  

In all of the approaches above, the notion of resource and value exchange 
are essential. In order to show the relationships between business models 
and other kinds of models, these notions need to be analysed in more de-
tail.  A first distinction can be made between resources and rights on re-
sources. A resource is an object that is regarded as valuable by some ac-
tors. A right on a resource expresses that an actor is entitled to use that 
resource in some way. An example is the ownership of a book, which 
means that an actor is entitled to read the book, give it away, or even de-
stroy it. Another example of a right is borrowing a book, which gives the 
actor the right to read it, but not to give it away or destroy it. For a value 
exchange, both the resource being transferred and the right on the resource 
have to be specified. For example, the two value exchanges in which a car 



The Role of Business Models in Enterprise Modelling       131 

is sold and borrowed concern the same resource but differ in the rights be-
ing transferred.

Another component of a value exchange is the custody of the resource 
being exchanged from one actor to another. An actor has the custody of a 
resource if she has immediate charge and control of the resource, typically 
physical access to the resource. If an actor has the custody of a resource, 
this does not mean that she has any rights on the resource. For example, a 
distributor may have the custody of some goods, but he is not allowed to 
use the goods for any purpose. Providing custody of a resource is essential 
in a value exchange, as the buyer is typically unable to exercise the rights 
she gets unless she has custody of the resource.  

A value exchange may also include the transfer of some evidence 
document that certifies that the buyer has certain rights on a resource. A 
typical example of an evidence document is a movie ticket that certifies 
that its owner has the right to watch a movie. Summarising, a value ex-
change can be seen as combining four components:  

The resource being exchanged from one actor to another, e.g., a book  
The right that the buyer obtains on the resource, e.g., the ownership of a 
book  
The custody of the resource, e.g., buyer’s physical access to a book  
The evidence document, e.g., a ticket  

4 Relating Business models to Other Kinds of Enterprise 
Models

In this section, we will discuss how business models relate to other kinds 
of enterprise models, in particular process models and goal models. 

4.1 From Business Model to Process Model

A business model has a clearly declarative form and is expressed in terms 
that can be easily understood by business users. In contrast, a process 
model has a procedural form and is at least partially expressed in terms, 
like sequence flows and gateways, that are not immediately familiar to 
business users. Furthermore, it is often difficult to understand the reasons 
behind a certain process design and what consequences alternative designs 
would have. One way to address these problems is to base process model-
ling on a declarative foundation using business models. Such a foundation 
would provide justifications, expressible in business terms, for design de-



132      Paul Johannesson         

cisions made in process modelling, thereby facilitating communication be-
tween systems designers and business experts. More concretely, a business 
model can be used as the starting point for designing a process model. 
However, this design cannot be automated as many different process mod-
els can realise the same business model, and additional knowledge about 
the intended process has to be introduced.   

Designing a process model based on a business model can be viewed as 
a process consisting of three phases. First, the processes needed for realis-
ing the business model are identified, which results in a set of process 
names. Secondly, the internal structure of each process identified is de-
signed according to a number of patterns. Finally, the designed processes 
are related to each other based on different kinds of dependencies. The fol-
lowing design process is based on and elaborates on the one proposed in 
[2], and it is assumed that the business model used as a starting point is in 
the form of an e3value diagram.  

Phase 1: Identifying processes  

This phase consists of three steps, where the first two steps extend the 
business model and the third one identifies a set of processes based on the 
extended model.  

Step 1: For each value exchange, determine whether the custody compo-
nent of the value exchange exists and shall be modelled explicitly. If so, 
add one or more arrows to the model representing transfers of custody 
from one actor to another.  This step can be viewed as “factoring out” the 
custody component of a value exchange and modelling it explicitly by ad-
ditional flows in the model. It should be noted that several actors, and pos-
sibly also new actors, may be involved in transferring the custody from 
one actor to another.

Step 2: For each value exchange, determine whether the evidence docu-
ment component of the value exchange exists and shall be modelled ex-
plicitly. If so, add one or more arrows to the model that represent transfers 
of evidence documents from one actor to another. Analogously to the step 
for custody, this step can be viewed as factoring out the evidence docu-
ment component of a value exchange. Also in this case, several actors may 
be involved, e.g., when a ticket office supplies tickets on behalf of other 
service providers.



The Role of Business Models in Enterprise Modelling       133 

Step 3: Identify a set of processes based on the extended e3value model 
from Step 2 and the Open-EDI transaction phases, [7].  

For each value transaction, one negotiation process is introduced  
For each arrow in the extended model, one actualization process is in-
troduced
For each arrow in the extended model, optionally one post-actualization 
process is introduced

Phase 2: Designing the internal structure of processes  

The internal structure of each process identified in the previous phase 
needs to be designed, including control, data, and resource flows. This can 
be done from scratch but an attractive alternative is to base the design on a 
library of process patterns. As the number of patterns in such a library will 
be large, there is a need for structuring mechanisms that facilitate naviga-
tion and search. Two well-known structuring mechanisms are generalisa-
tion and specialisation, as employed in, for example, the MIT Process 
Handbook, [13]. Furthermore, the patterns need to be characterised so that 
a designer easily can choose between patterns for the same purpose. The 
list of possible characteristics is in principle open-ended, but for proc-
esses realising value exchanges, empirical research indicates that there are 
four main characteristics to be considered, [21]:  

risk - the risk one agent takes in an exchange, e.g. delivering a resource 
without getting paid   
type of resource - the type of resource being exchanged, e.g. goods, in-
formation or services  
time -  the time needed for carrying out an exchange  
cost - the cost for carrying out an exchange, often called transaction cost  

 It is often necessary to make a trade-off between desirable characteris-
tics of an exchange process. For example, the risk of an exchange may be 
reduced by introducing a letter of credit procedure, which on the other 
hand will increase costs and lead times. Furthermore, the needs and desires 
of different agents also have to be balanced, e.g. the risk for one agent may 
be reduced by requesting a down payment, but this will increase the risk 
for the other agent in the exchange.   

Phase 3: Relating processes  

In the two previous phases, a number of processes were introduced and de-
signed. These processes may need to be related to each other, e.g. they 



134      Paul Johannesson         

may have to be put into sequence. One instrument for doing this is to use 
the notion of dependencies between activities as suggested in [1]. The 
two most relevant dependencies in this context are flow dependencies and 
trust dependencies. A flow dependency is a relationship between two ac-
tivities, which expresses that the resources obtained by the first activity are 
required as input to the second activity. An example is a retailer who has to 
obtain a product from an importer before selling it to a customer. A trust 
dependency is a relationship between two activities, which expresses that 
the first activity has to be carried out before the other one as a consequence 
of low trust between the actors. Informally, a trust dependency states that 
one actor wants to see the other actor do her work before doing his own 
work. From these dependencies, relationships between the previously in-
troduced processes can be added.  

Basing process design on business models provides a number of advan-
tages:

Business Orientation. Instead of going directly into procedural details, a 
business model allows business experts to describe the underlying busi-
ness reasons that govern the flow of processes. In particular, relations 
between activities can be specified in terms of notions like re-
source flow, trust, coordination, and reciprocity.  
Traceability. Components in a  process model can be explained by and 
tracked back to business oriented notions and motivations expressed in a 
business model.  
Flexibility. The transformations from business model to process model 
give the main structure of a process model. However, the approach al-
lows for flexibility by letting the internal structure of the processes be 
based on patterns.  This means that the lower-level details of a process 
model can be tailored to the situation at hand by selecting appropriate 
patterns from a library.  

4.2 Business Models and Goal Models

Goal models, similarly to business models, are typically used in the earliest 
phases of information systems design, where they help in clarifying inter-
ests, intentions, and strategies of different stakeholders. As suggested in 
[24], goal models often focus on the capabilities, customers, and competi-
tion of an enterprise. An enterprise formulates goals that it intends to ob-
tain and uses its capabilities, i.e. internal resources, for this purpose. An 
important goal for any enterprise is to establish profitable relationships 



The Role of Business Models in Enterprise Modelling       135 

with its customers, which are actors or market segments that buy the prod-
ucts of the enterprise. An enterprise also has to closely watch the activities 
of its competition, i.e. other actors that address the same market seg-
ments. Thus, goal models are closely related to business models, as their 
subject matter naturally can be expressed in terms of the basic notions of 
business models. This relationship can be used for improving goal model-
ling as well as business modelling. For example, expressing goals, means 
and influencers in terms of agents, resources and economic events encour-
ages precise and uniform formulations that make goal models more ex-
pressive and easier to understand. Another use is to design a to-be business 
model based on an as-is business model and a goal model expressing de-
sired changes of a business. Thus, the goal model is used to suggest which 
actors, resources and exchanges that are needed to realise a business idea. 
The most important part of a goal model for this purpose are the means as 
they express how a business should be carried out and be changed in order 
to obtain certain goals. BMM makes a distinction between two kinds of 
means, courses of action and directives such as business rules and policies. 
A course of action tells how an enterprise will behave to achieve a goal, 
while a directive governs or restrains the use of courses of actions. After 
having surveyed a large number of goal models, we have found that almost 
all courses of actions concern the acquisition, production, maintenance, or 
provisioning of resources. In other words, means address the fundamental 
entities of business models - resources, events and agents. Thus, it be-
comes possible to formulate next to all means occurring in goal models ac-
cording to a limited number of templates as given below (“resource” is 
here used as a synonym of “value object”):    

1. offer <resource> to <actor | market segment>  
2. stop offering <resource> to <actor | market segment>  
3. procure <resource> from <actor | market segment>  
4. stop procuring <resource> from <actor | market segment>  
5. produce <resource> in <value activity>  
6. stop producing <resource> in <value activity>  
7. (increase | decrease) production of <resource> in <value activity>  
8. outsource <value activity> to < actor | market segment>   

An example of a goal model for the MMOG case, where the means have 
been formulated according to the templates above, is given in Fig. 2. 



136      Paul Johannesson         

Fig. 2. A goal model for the MMOG case 

Given an as-is business model and a goal model, containing a number of 
means formulated according to the templates above, it is straight-forward 
to construct a to-be business model that takes the means into account. The 
following rules can be applied for this purpose:  

1. For a means of the form “offer <resource> to <actor | market seg-
ment>”, add a value exchange for the resource in existing or new 
value interfaces

2. For a means of the form “stop offering <resource> to <actor | market 
segment>”, remove a value exchange for the resource and possibly 
associated value interfaces   

3. For a means of the form “procure <resource> from <actor | market 
segment>”, add a value exchange for the resource and possibly asso-
ciated value interfaces  

4. For a means of the form “stop procuring <resource> from <actor | 
market segment>”, remove a value exchange for the resource and 
possibly associated value interfaces  

5. For a means of the form “(produce | create | launch | initiate | ...) <re-
source> in <value activity>”, add a value activity producing the re-
source



The Role of Business Models in Enterprise Modelling       137 

6. For a means of the form “stop producing <resource> in <value activ-
ity>”, remove the resource from the value activity and possibly also 
the value activity  

7. For a means of the form “increase | decrease) production of <re-
source> in <value activity>”, no changes are made to the business 
model  

8. For a means of the form “outsource production of <resource> to <ac-
tor | market segment>”, remove the resource from a value activity and 
possibly remove the value activity, add a new value exchange with 
associated value interfaces to a, possibly new, actor or market seg-
ment

Fig. 3. A to-be e3value model based on a goal model 

Applying the means in the goal model of Fig. 2 to the as-is business 
model of Fig. 1 will result in the to-be business model of Fig. 3. 



138      Paul Johannesson         

5 Concluding Remarks

In this chapter, we have discussed business models, their purpose and how 
they can be related to other kinds of enterprise models in business, re-
quirements, and information systems engineering. It is envisaged that 
business models will play a major role in model driven architectures, as 
they possess important advantages compared to other types of models. In 
particular, they provide a compact view of a business scenario by focusing 
on its value aspects and disregarding procedural aspects. This means that 
business models can be quickly and easily comprehended also by business 
experts, and they thereby provide an adequate means for explanation and 
communication. Business models also facilitate communication by being 
expressed in notions that are directly relevant for business and domain ex-
perts, like values, actors, and exchanges. Business models are still a new 
kind of model, and there remains a number of open issues to be addressed, 
among them the following:   

Identifying value objects. In principle, anything can be a value object as 
long as it is regarded as valuable by someone. However, in practice it is 
important to find guidelines for identifying value objects so 
that different analysts will produce similar and uniform models. A first 
step may be to identify typical classes of value objects like goods, ser-
vices, information, and money.   
Relationships to strategic issues. Business models show the “what” in a 
business scenario but not the “why”. There is a need to model the moti-
vations behind a certain value proposition and relate the business model 
to the strategy of an enterprise. One basis for this is Porter's five forces 
theory, [20], and another is the value theory of Holbrook, [12]. Initial 
results based on these approaches can be found in [24].    
Relationships to operational issues. In this chapter, we have outlined 
how business models can be related to process models on the opera-
tional level. A related issue is how to identify services based on a busi-
ness model.    

References 

[1] Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Johannesson, P.: 
A Declarative Foundation of Process Models. In: CAiSE05, 18th International 
Conference on Advanced Information systems Engineering, Porto 2005 
(Springer, Berlin Heidelberg New York 2005) 



The Role of Business Models in Enterprise Modelling       139 

[2] Andersson, B., Bergholtz, M., Grégoire, B., Johannesson, P., Schmitt, M., 
Zdravkovic, J.; From Business to Process Models – a Chaining Methodology. 
In: BUSITAL 2006, A workshop on Business/IT Alignment 
and Interoperability, Luxembourg (2006) 

[3] Bergholtz, M., Bertrand, G., Johannesson, P., Schmitt, M., Wohed, P. and 
Zdravkovic, J.: Integrated Methodology for linking business and process 
models with risk mitigation. In: REBNITA05, 1st International Workshop on 
Requirements Engineering for Business Need and IT Alignment,  Paris, 
(2005) 

[4] The Business Motivation Model, http://www.businessrulesgroup.org/ 
bmm.shtml 

[5] Chen, P.: The Entity-Relationship Model-Toward a Unified View of Data, 
ACM Transactions on Database Systems, (1976) 

[6] T. Davenport: Process Innovation: reengineering work through information 
technology, Harvard Business School, (1992) 

[7] Open-EDI phases with REA, UN-Centre for Trade Facilitation and Electronic 
Business, http://www.unece.org/cefact/docum/download/02bp_rea.doc 

[8] Fowler, M.: UML Distilled, Addison Wesley, (2004) 
[9] Geerts, G., McCarthy, W. E.: An Accounting Object Infrastructure For 

Knowledge-Based Enterprise Models. IEEE Intelligent Systems & Their Ap-
plications, pp. 89-94, (1999) 

[10] Gordijn, J.: e-Business Model Ontologies. In: e-Business Modelling Using the 
e3value Ontology, Wendy Curry (ed.), pp. 98-128, Elsevier Butterworth-
Heinemann, UK, (2004) 

[11] Halpin, T.: Conceptual schema and relational database design, Prentice-Hall, 
Inc. Upper Saddle River, NJ, USA, (1996) 

[12] Holbrook, M. B.: Consumer Value – A Framework for Analysis and Re-
search, Routledge, New York, NY, (1999) 

[13] Malone. T. et al.: Towards a handbook of organizational processes, MIT 
eBusiness Process Handbook, http://ccs.mit.edu/21c/mgtsci/index.htm 

[14] OMG - Model Driven Architecture, http://www.omg.org/mda/ 
[15] McCarthy W. E.: The REA Accounting Model: A Generalized Framework 

for Accounting Systems in a Shared Data Environment. The Accounting Re-
view, (1982) 

[16] Mylopoulos, J., Chung, L., Yu, E.; From object-oriented to goal-oriented re-
quirements analysis. Communications of the ACM, 42(1) (1999) 

[17] Opdahl, A., Sølvberg, A.: Conceptual integration of information system and 
performance modelling. In: IFIP WG 8.1 Working Conference on Information 
System Concepts -- Improving The Understanding Alexandria, Egypt, April 
13--15 (1992) 

[18] Osterwalder, A.: The Business Model Ontology. A Proposition in a Design 
Science Approach. PhD-Thesis. University of Lausanne (2004) 

[19] Osterwalder, A., Pigneur, Y., Tucci, C.: Clarifying Business Models: Origins, 
Present and Future of the Concept. Communications of the Association for In-
formation Science (CAIS), Vol. 15, p. 751-775 (2005) 

[20] Porter, M.: Competitive Stategy, New York, Free Press (1979) 



140      Paul Johannesson         

[21] Schmitt M., Grégoire, B.: Risk Mitigation Instruments for Business Models 
and Process Models. In: REBNITA05, 1st International Workshop on Re-
quirements Engineering for Business Need and IT Alignment (2005) 

[22] UN/CEFACT Modeling Methodology (UMM) User Guide. 
http://www.unece.org/cefact/umm/. 

[23] Weigand H., Johannesson P., Andersson B., Bergholtz M., Edirisuriya A., 
Ilayperuma T.: On the Notion of Value Object. In: CAiSE06 19th International 
Conference on Advanced Information systems Engineering, Luxembourg 
2005 (Springer, Berlin Heidelberg New York 2005) 

 [24] Weigand H., Johannesson P., Andersson B., Bergholtz M., Edirisuriya A., 
Ilayperuma T., Strategic analysis using value modeling – the c3-value ap-
proach, In: Fourtieth Annual Hawaii International Conference on System Sci-
ences (CD-ROM), January 7-10, 2007, Computer Society Press (2007) 

[25] YAWL Foundation, http://www.yawlfoundation.org/ 



Capturing System Intentionality with Maps

Colette Rolland 

Université Paris1 Panthéon Sorbonne 

Abstract.  Conceptual modelling has emerged as a means to capture the relevant as-
pects of the world on which it is necessary to provide information. Whereas conceptual 
models succeeded in telling us how to represent some excerpt of the world in informa-
tional terms, they failed to guide system analysts in conceptualising purposeful sys-
tems, i.e. systems that meet the expectations of their users. This chapter aims to inves-
tigate this issue of conceptualising purposeful systems and to discuss the role that goal 
driven approaches can play to resolve it. It considers the challenge of new systems 
having a multifaceted purpose and shows how intention/strategy maps help facing this 
challenge.  

1 Introduction 

Traditionally Information System (IS) engineering has made the assump-
tion that an information system captures some excerpt of world history and 
hence has concentrated on modelling information about the Universe of 
Discourse [43]. This is done through conceptual modelling that aims at ab-
stracting the specification of the required information system i.e. the con-
ceptual schema, from an analysis of the relevant aspects of the Universe of 
Discourse about which the users’ community needs information [9]. This 
specification concentrates on what the system should do, that is, on its 
functionality. Such a specification acts as a prescription for system con-
struction. Whereas conceptual modelling allowed our community to under-
stand the semantics of information and led to a large number of semanti-
cally powerful conceptual models [23] and associated tools [20], 
experience demonstrates that it failed in supporting the delivery of systems 
that were accepted by the community of their users. Indeed, a number of 
studies show [11, 24, 41] that systems fail due to an inadequate or insuffi-
cient understanding of the requirements they seek to address. Further, the 



142      Colette Rolland  

amount of effort needed to fix these systems has been found to be very 
high [17]. To correct this situation, it is necessary to address the issue of 
building purposeful systems, i.e. information systems that are seen as ful-
filling a certain purpose in an organisation. Understanding this purpose is a 
necessary condition for the conceptualisation of these purposeful systems. 
The foregoing suggests to go beyond the functionality based view of con-
ceptual modelling and to extend the ‘what is done by the system’ approach 
with the ‘why is the system like this’. This why question is answered in 
terms of organisational objectives and their impact on information systems 
supporting the organisation. The expectation is that as a result of a refocus 
on the why question, more acceptable systems will be developed in the fu-
ture.

The objective of this chapter is to deal with the above issue of conceptu-
alising purposeful systems and to show how a representation system called 
Map can help to this end. Map is a goal-driven approach similar to those 
developed in requirements engineering [1, 5, 6, 21, 28, 32, 34] business 
process reengineering [2, 22, 27, 44] and enterprise/business modelling 
with a holistic viewpoint [26, 38]. In these approaches goal-modelling 
proved to be an efficient means to capturing the ‘Whys’ and establishing a 
close relationship with the ‘Whats’. The Map representation system con-
forms to goal models in the fact that it recognizes the concept of a goal (in-
tention) but departs from those by introducing the concept of strategy to 
attain a goal. This choice was motivated by: 

a) the fundamental distinction between what to achieve (the goal) and 
the manner to achieve it (the strategy),  

b) practice: managers and stakeholders do not naturally make this 
distinction

c) pitfalls generated by this confusion:  
i. strategies are expressed as goals, then unnecessarily in-

creasing the size of the goal model,  
ii. alternative ways to make the business are more difficult to 

discover whereas reasoning about alternative ways of 
achieving a goal is easier,  

iii. recognizing stable elements in a business (intentions) ver-
sus more versatile ones (strategies) is difficult. 

d) the need to introduce variability in the new generation of informa-
tion systems. Whereas earlier, a system met the purpose of a single 
organization and of a single set of customers, a system of today 
must be conceived in a larger perspective, to meet the purpose of 
several organizations and to be adaptable to different usage situa-
tions and customer sets. The former is typical of an ERP-like de-



Capturing System Intentionality with Maps   143  

velopment situation whereas the latter is the concern of product-
line development [4, 42] and adaptable software. In the software 
community, this leads to the notion of software variability which is 
defined as the ability of a software system to be changed, custom-
ized or configured to a specific context [13]. Whereas the software 
community studies variability as a design problem and concen-
trates on implementation issues [3, 26, 42], we believe like [14] 
that capturing variability at the goal level is essential to meet the 
multi-purpose nature of new information systems. 

e) the essential role of strategies in capturing variability in goal 
models: Whereas traditional goal modelling concentrates on goal 
discovery, variability extends it to consider the many different 
ways of goal achievement For example, for the goal Purchase Ma-
terial, earlier it would be enough to know that an organization 
achieves this goal by forecasting material need. Thus, Purchase 
Material was mono-purpose: it had exactly one strategy for its 
achievement. However, in the new context, it is necessary to intro-
duce other strategies as well, say the Reorder Point strategy for 
purchasing material. Purchase Material is multi-purpose: it has 
many strategies for goal achievement. Our position is that variabil-
ity implies a move from systems with a mono-facetted purpose to 
those with a multi-facetted purpose and points to the need to bal-
ance goal-orientation with the introduction of strategies for goal 
achievement. This is the essence of intention/strategy maps which 
we present here. 

An intention/strategy map, or map for short, is a graph, with nodes as 
intentions and strategies as edges. An edge entering a node identifies a 
strategy that can be used for achieving the intention of the node. The map 
therefore, shows which intentions can be achieved by which strategies 
once a preceding intention has been achieved. Evidently, the map is capa-
ble of expressing variability in goal achievement and therefore, can help 
modelling the multi-facetted purpose of a system.    

The remainder of this paper is organized in two main sections. The next 
section presents the Map representation system. In section 3 we illustrate 
the key aspects of Map with an excerpt of a real project conducted at 
DIAC, the financial branch of the Renault motor which grants credit to 
Renault customers and sells other related financial services. The Map ap-
proach was used to handle the standardization of practices in the various 
DIAC subsidiaries located in different countries in the world. In section 4 
we conclude by summing up the lessons learnt from using Map in different 
European projects. 



144      Colette Rolland  

2   The Map representation system 

In this section we introduce the key concepts of a map and their relation-
ships and brought out their relevance to capture multi-facetted purposes. 

Map is a representation system that was originally developed to repre-
sent a process model expressed in intentional terms [35]. It provides a rep-
resentation mechanism based on a non-deterministic ordering of intentions
and strategies that allows us to modelling the multi-facetted purpose of a 
system To-Be. The key concepts of the map and their inter-relationships 
are shown in the map meta-model of Fig.1 which is drawn using standard 
UML notations.  

A map is composed of several sections. A section is an aggregation of 
two kinds of intentions, source and target, linked together with a strat-
egy.
An intention is a goal that can be achieved by the performance of a 
process. An intention is according to Jackson [16], ‘an optative’ state-
ment, it expresses what is wanted, a state or a result that is expected to 
be reached or maintained in the future. For example, Make Room Book-
ing is an intention to make a reservation for a room in a hotel. The 
achievement of this intention leaves the system in the state, Booking
made. Each map has two special intentions, Start and Stop, associated 
with the initial and final states respectively. We use a linguistic ap-
proach to define a template for formulating an intention. Our linguistic 
approach is inspired by Fillmore’s case grammar [12] and its extension 
by Dik [8]. It views an intention statement as composed of a verb and 
different parameters which play specific roles with respect to the verb. 
The structure of an intention is the following: 

Intention: Verb <Target> [<Parameter>]* 

Table 1 summarizes these parameters. In addition to the linguistic tem-
plate, [29] proposed a classification of verbs and defined  for each class, a 
verb frame which indicates the mandatory and optional parameters. For in-
stance, the frame of the verb remain is remain [Qual,(Ref),(Loc),(Time)].
This frame means that « remain » is always followed by a quality and op-
tionally followed by a referent, a location and a time point. 

A strategy is an approach, a manner or a means to achieve an intention. 
Let us assume that bookings can be made on the Internet. This is a way 
of achieving the room booking intention, i.e. a strategy. By visiting a 
travel agency is another strategy to achieve the same intention. It shall 
be noticed that the linguistic template for intention wording includes the 



Capturing System Intentionality with Maps   145  

parameter way which specializes into manner and means. Strategies in 
the Map representation system provide the means to capture variability 
in intention achievement.
A section is an aggregation of the source intention, the target intention, 
and a strategy. As shown in Fig. 1 it is a triplet <Isource, Itarget, Ssource-target>.
A section expresses the strategy Ssource-target using which, starting from 
the source intention, Isource, the target intention, Itarget can be achieved. . 
The triplet <Start, Make Room Booking, on the Internet> is a section; 
similarly <Start, Make Room Booking, by visiting a travel agency> con-
stitutes another section.

Fig. 1. The map meta-model 

A section is the basic construct of a map which itself can be seen as an 
assembly of sections. When a map is used to model a multi-facetted pur-
pose, each of  its sections represents a facet. The set of sections model the 
purpose in its totality and we will see below that the relationships between 
sections and between a section and a map lead to the representation of the 
multi-facetted perspective.  

A map section, a facet, highlights a consistent and cohesive characteris-
tic of the system that stakeholders want to be implemented through some 
functionality. A facet in our terms is close to the notion of feature defined 
in FODA [19] as a “prominent or distinctive user-visible aspect, quality or 



146      Colette Rolland  

characteristic of a system”. However, our view of a facet emphasizes the 
intention that the underlying functionality allows to achieve. We believe 
that a facet is a useful abstraction to express variability in intentional 
terms. 

A map is graphically represented as a directed graph from Start to Stop. 
Intentions are represented as nodes and strategies as edges between these. 
The graph is directed because the strategy shows the flow from the source 
to the target intention. The map of  Fig. 2 contains six sections/facets MS0 
to MS5.

Table 1. The intention parameters 

Parameter Description Example
Target The Target (Tar) designates an entity affected by

the goal. We distinguish two types of target,
object and result.

Object An object  (Obj) exists before the goal is achieved. ‘Check (room availability) Obj ’

(a) ‘Make (room booking) Res ’
(b) ‘Define (customer’s
request) Res ’

Destination ‘Offer (booking facility) Obj (to
the customer) Dest ’

Means Means (Mea) designates an entity which acts as
an instrument using which a goal is to be
performed.

Offer (booking facility) Res (to
customers) Dest (with Internet
booking system) Mea

Manner The manner (Man) defines the way in which the
goal is achieved.

‘Check (availability) Obj (in a real
time process) Man ’

Beneficiary The beneficiary (Ben) is the person (or group of
persons) in favour of whom the goal is achieved.

‘Reduce (work load) Obj (for the
hotel staff) Ben ’

Referent The Referent (Ref) is the entity with regard to
which an action is performed, or a state is attained
or maintained.

‘Adjust(price) Obj (to inflation
rate) Ref ’

Quality The quality (Qual) defines a property that has to
be attained or preserved.

‘Remain(more reliable) Qual (than 
our competitors) Ref ’

Location The Location (Loc) situates the goal in space.
This case implies no movement, or movement
within the same location.

‘Make (room booking) Res (in a
travel agency) Loc ’

Time The Time  (Time) situates the goal in time. ‘Remove (option booking) Obj 

(after 8 days) Time ’
Quantity Quantity (Quan) quantifies an evolution that

should occur
‘Reduce(price) Obj (by 3%) Quan

‘Read (the validity date of
card) Obj  (in the card chip) So ’

Result Result (Res) can be of two kinds (a) entity which
does not exist before the goal is achieved (b)
abstract entity which exists but is made concrete
as a result of goal achievement.

Source The two types of direction (Dir), namely source
(So) and destination (Dest) identify respectively,
the initial and final location of objects to be
communicated.



Capturing System Intentionality with Maps   147  

Fig. 2. The map as a graph

There are three relationships between sections (Fig. 4), namely thread,
path and bundle which generate multi-thread and multi-path topologies in 
a map. 

Thread relationship: It is possible for a target intention to be achieved 
from a source intention in many different ways. Each of these ways is 
expressed as a section in the map. Such a map topology is called a 
multi-thread and the sections participating in the multi-thread are said to 
be in a thread relationship with one another. MS1 and MS2 are in a 
thread relationship in Fig. 2. Assume that Accept Payment is another in-
tention in our example and that it can be achieved in two different ways, 
By electronic transfer or By credit card. This leads to a thread relation-
ship between the two sections shown in Fig. 3.  

It is clear that a thread relationship between two sections regarded as fac-
ets represents directly the variability associated to a multi-facetted pur-
pose. Multi-faceting is captured in the different strategies to achieve the 
common target intention.

Fig. 3. An example of thread relationship 

Path relationship: This establishes a precedence/succession relationship 
between sections. For a section to succeed another, its source intention 

MakeRoom 
Booking

Accept
Payment

By electronic
transfer

By credit card

The two sections are in a thread 
relationship with one another

because they represent two different
ways of achieving Accept Payment

from Make Room Booking.

MakeRoom 
Booking

Accept
Payment

By electronic
transfer

By credit card

The two sections are in a thread 
relationship with one another

because they represent two different
ways of achieving Accept Payment

from Make Room Booking.



148      Colette Rolland  

must be the target intention of the preceding one. MS0, MS1, MS4, 
MS5 is a path of the map in Fig. 2. In Fig. 4,  the two sections <Start, 
Make Room Booking, On the Internet>, <Make Room Booking, Accept 
Payment, By credit card> form a path. 

From the point of view of modeling facets, the path introduces a composite 
facet whereas the section based facet is atomic. 
.

Fig. 4. An example of path relationship.

Given the thread and the path relationships, an intention can be achieved 
by several combinations of sections. Such a topology is called a multi-
path. In general, a map from its Start to its Stop intentions is a multi-path 
and may contain multi-threads. Let us assume in our example that it is pos-
sible to Stop either because a customer retracts from making the booking 
(By customer retraction) or after payment (Normally). Fig. 5 shows the en-
tire map with the purpose to Make Confirmed Booking. This  map contains 
several paths from Start to Stop out of which two forming a multi-path are 
highlighted in Fig. 5.  

Clearly, the multi-path topology is yet another way of representing the 
multi-facetted perspective. Multi-faceting in this case is obtained by com-
bining various sections together to achieve a given intention of the map. 
Consider for instance the intention Accept payment in Fig. 5; there are four 
paths from Start to achieve it; each of them is a different way to get the in-
tention achieved and in this sense, participates to the multi-faceting. Each 
path is a composite facet composed of two atomic facets.  This can be ex-
tended to the full map which can be seen as composed of a number of 
paths from Start to Stop. This time these paths introduce multi-faceting but 
to achieve the intention of the map which in our example, is Make Con-
firmed Booking. 

Start Make Room 
Booking

Accept
Payment

By electronic
transferOn the Internet There is a path relationship between

these sections. Infact, Accepting
Payment Transfer can be fulfilled

after a booking has been made.
Start Make Room 

Booking
Accept

Payment

By electronic
transferOn the Internet There is a path relationship between

these sections. Infact, Accepting
Payment Transfer can be fulfilled

after a booking has been made.



Capturing System Intentionality with Maps   149  

Fig. 5. The multi-path of the map Make Confirmed Booking 

Bundle relationship: A section that is a bundle of other sections ex-
presses that only one of its sections can be used in realizing the target 
intention. Consider Make Room Booking and Accept Payment once 
again. Let it be that the hotel has entered into an agreement with an air-
line to provide rooms against miles earned by passengers. Accordingly, 
payment is accepted either normally or (exclusive) from the airlines 
miles.  Notice that the difference between a thread and bundle relation-
ship is the exclusive OR of sections in the latter versus an OR in the 
former.

Fig. 6. The bundle relationship 

Fig. 4 also shows that a section of a map can be refined as another map 
through the refinement relationship. The entire refined map then repre-
sents the section as shown in Fig. 7. Refinement is an abstraction 
mechanism by which a complex assembly of sections at level i+1 is 
viewed as a unique section at level i. As a result of refinement, a section 
at level i is represented by multiple paths & multiple threads at level 
i+1.

From the point of view of multi-faceting, refinement allows to look to the 
multi-facetted nature of a facet. It introduces levels in the representation of 

Start

MakeRoom 
Booking

Accept
Payment

By electronic
transferOn the Internet

Stop

By visiting a 
travel agency

By credit
card

Normally
By customer
retractation

Path1: <Start, Make Room Booking,
On the Internet >, < Make Room 
Booking, Accept Payment, By electronic
Transfer>, < MakepaymentStop, 
Normally>

Path2: <Start, Make Room Booking,
On the Internet >, < Make Room 
Booking, AcceptPayment, By credit card
>, < Makepayment, Stop, Normally>

Start

MakeRoom 
Booking

Accept
Payment

By electronic
transferOn the Internet

Stop

By visiting a 
travel agency

By credit
card

Normally
By customer
retractation

Path1: <Start, Make Room Booking,
On the Internet >, < Make Room 
Booking, Accept Payment, By electronic
Transfer>, < MakepaymentStop, 
Normally>

Path2: <Start, Make Room Booking,
On the Internet >, < Make Room 
Booking, AcceptPayment, By credit card
>, < Makepayment, Stop, Normally>

Make Room
Booking

Accept
Payment

Payment strategy

NormalPayment strategy

Airline Miles strategy

<Make Room Booking, Accept
Payment, Normal Payment

strategy> and <Make Room
Booking, Accept Payment, Airline

Miles strategy> form a bundle

Make Room
Booking

Accept
Payment

Payment strategy

NormalPayment strategy

Airline Miles strategy

<Make Room Booking, Accept
Payment, Normal Payment

strategy> and <Make Room
Booking, Accept Payment, Airline

Miles strategy> form a bundle



150      Colette Rolland  

the multi-facetted purpose which is thus, completely modelled through a 
hierarchy of maps. 

Fig. 7. The refinement relationship 

To sum up a)The purpose of the artefact is captured in a hierarchy of 
maps. The intention associated to the root map is the high level statement 
about the purpose. Using the refinement mechanism each section of the 
root map can be refined as a map and the recursive application of this 
mechanism results in a map hierarchy. At successive levels of the hierar-
chy the purpose stated initially as the intention of the root map is further 
refined.
b)At any given level of the hierarchy, the multi-facetted dimension is 
based on multi-thread and multi-path topologies. Multi-thread introduces 
local faceting in the sense that it allows to represent the different ways for 
achieving an intention directly. Multi-path introduces global faceting by 
representing different combinations of intentions and strategies to achieve 
a given map intention. Any path from Start to Stop represents one way of 
achieving the map intention, therefore the purpose represented in this map.

Comparing Map with other goal modeling approaches 

As process models, maps can be compared to the various types of process 
modelling languages and formalisms that have emerged  supporting a vari-
ety of purposes. The existing formalisms can be roughly classified accord-
ing to their orientation to activity-sequence oriented languages (e.g., UML 
Activity Diagram), agent-oriented languages (e.g., Role-Activity Diagram 

Ii

Ij

Sij1

Sstm1

Sstm2 Spm

Sststop
Spstop

MS1
Smp

Start

Im

Stop

Ip



Capturing System Intentionality with Maps   151  

[27]), state-based languages (e.g. UML state charts), intention-oriented 
languages (e.g. Maps).

The concept of goal is central in business process modelling and design. 
It is included in many definitions of business processes (e.g. “a business 
process is a set of partially ordered activities aimed at reaching a goal” 
[15]. However, most process modelling languages do not employ a goal 
construct as an integral part of the model. This is sometimes justified by 
viewing these models as an “internal” view of a process, focusing on how
the process is performed and externalising what the process is intended to 
accomplish in the goal [7].  

In contrast, intention-oriented process modelling focuses on what the 
process is intended to achieve, thus providing the rationale of the process, 
i.e. why the process is performed. Intention-oriented process modelling 
such as Map, follows the human intention of achieving a goal as a force 
which drives the process. As a consequence, goals to be accomplished are 
explicitly represented in the process model together with the alternative 
ways for achieving them, thus allowing variability in goal achievement to 
be modelled and  facilitating the selection of the appropriate alternative for 
achieving the goal at enactment time.  

3   Illustrating the use of Map

In this section we show the use of the Map representation system to cap-
ture the multi-facetted purpose of a system and take the financial informa-
tion system of DIAC, the financial branch of Renault  to illustrate this. 

3.1 The DIAC Context 

The DIAC company aims to sell products for financing the purchase of 
Renault vehicles. These are loans and leases. Business processes are or-
ganized into sales and post-sales administration. Sales processes include 
the definition of catalogues of products and contracting customers. Post-
sales processes include treasury and information flow management.  DIAC 
has a number of subsidiaries in different countries in Europe which have 
developed their own processes and their own information systems to sup-
port these activities.

The objective of the project was to standardize both the business proc-
esses and the supporting information systems across Europe. The DIAC 
headquarters in Paris were leading the project but the Spanish information 
system was selected as the basis for adaptation and further deployment in 
France, Spain, Portugal and Germany in a first stage. There were new 



152      Colette Rolland  

business needs as well : (a) diversification of the sales channels to include 
for example, sales by the Internet in addition to regular vendors, (b) inclu-
sion of additional financial services such as offering personal loans in ad-
dition to car loans, and (c) introducing a customer centric culture to replace 
the current contract centric one. 

Our mission in the project was twofold (a) to help DIAC stakeholders 
capturing the intentionality behind the future DIAC business and support-
ing information system with maps and (b) to derive the information system 
specifications from these maps.  In the following, we illustrate the use of 
Map as part of activity (a). 

3.1.1 The Maps Construction Process 

We were typically faced to a system adaptation problem bounded by the 
following constraints:

No large scale deviations from the selected software system (the Span-
ish information system) 
Compliance with some of the functionality not found in the selected sys-
tem but provided by others (the French system) 
Provision of functionality for handling the new business opportunities 
that were now recognized to be important. 

From the foregoing it seemed to us that the adaptation process should  
be driven by gaps which identify what has to be changed/adapted to the 
new situation. In this change context, it is not so much the representation 
of the future situation that is important but the difference with the current 
situation. If gaps remain implicit, it is difficult to identify what has to be 
changed. Explicit gap representation seems to us, therefore, crucial to ex-
pressing change requirements. We developed a gap typology adapted to 
maps and organized the process for eliciting gaps between the As-Is situa-
tion and the To-Be situation as an iterative one as follows: 

Repeat till all maps have been considered 
1. Construct the As-Is map (if it does not exists yet) 
2. Construct the To-Be by difference with the As-Is map taking into ac-

count the target selected system and the organization requirements for 
change. The To-Be map and the Gaps are modelled concurrently and 
then, documented,  

3. Deliberate on each section of the To-Be map to decide if further re-
finement is required to identify more detailed gaps or not. Every sec-
tion marked as ‘to-be-refined’ will serve as starting point for a new 



Capturing System Intentionality with Maps   153  

iteration of the elicitation process. Every section that does not require 
refinement gets the ‘green’ status. 

The three steps were carried out in a participative manner. This allowed 
the consideration of different view points with the aim of reconciling them 
co-operatively, in the construction of the As-Is and To-Be maps as well as 
in the elicitation of gaps. Additionally, in step 3, the decision to refine elic-
ited gaps at an iteration was also made co-operatively. As before, the re-
finements committed to in this step emerge as a consensus from among the 
different view points. 

3.1.2 The Top Level Map 

In its totality, the DIAC business and system can be seen to meet the pur-
pose, Satisfy Financial Needs of Renault Vehicle buyers Efficiently. This is 
the intention of the root map shown in Fig. 8.  The map shows that to meet 
this purpose three intentions have to be achieved, namely Offer a product,
Gain the customer, and Manage the customer relationship. Evidently, 
there is an ordering between these intentions: the company cannot gain 
customers unless it offers products and it needs to maintain the customer 
relationships to be reimbursed of the customers’ loans and pursue business 
with them.  
The map of Fig. 8 shows a number of paths from Start to Stop that are con-
structed over 14 facets named C1 to C14 in the Figure. Thus, the map is 
able to present a global perspective of the diverse ways of achievement of 
the main purpose. When a more detailed view is needed, then it becomes 
necessary to focus more specifically on the multi-facetted nature of each 
intention found in the ‘global’ map. The detailed view of the intentions 
contained in Fig. 8 is brought out in turn below. 

The multi-facetted nature of Gain the customer is shown in Fig. 8 by in-
cluding three strategies for its achievement (a) By prescribing products it 
offers, (b) By prospecting new customers and (c). By securing the cus-
tomer loyalty. The three facets are <Offer a product,, Gain the customer, 
By prescribing>, <Offer a product,, Gain the customer, By prospecting>,
and <Manage the customer relationship, Gain the customer, By securing 
the customer loyalty >. Whereas the first of these three facets corresponds 
to a well established business strategy, the other two are novel. By secur-
ing the customer loyalty supports the company's essential requirement to 
keep customers as long as there is no need to Stop financing them by ex-
clusion. It is completely innovating compared to the As-Is business model. 

The intention of Managing the customer relationship is initiated By de-
manding of the transfer of the contracts signed with the pre-sales depart-



154      Colette Rolland  

ment to the post-sales administration. In DIAC's vision of the future way to 
hold the business, “customer relationship” means having business dealings 
with, and for customers. The intention name was thus introduced to em-
phasize a determining gap with the contract-wise management of custom-
ers currently prevailing in France and Spain. The customer relationship 
management requires, first of all, a unified handling of all contracts for a 
given customer. This corresponds to a change of culture for the company 
and an important change in the information system data structure and func-
tionalities.

Fig. 8. Top level To-Be map of DIAC 

As shown in Fig. 8, there are a number of different strategies to Manag-
ing the customer relationship. This multi-faceting highlights the new em-
phasis put by DIAC on the achievement of this intention in a set of diverse 
ways. Managing the relationship with customers should be done By debts
recovery according to the contracts repayment schedules, and by managing 
multiple flows of customer-related information. This is shown in the map 
by the strategies: By processing modification requests, By processing in-
formation and complaints requests, and By handling legal obligations of 
communication. The latter strategy is imposed by the European and na-
tional laws on information privacy. Managing the customer relationship By 
capitalization of treasury, is an absolute requirement to ensure forthcom-
ing financing. The strategy By handling accidents is important as well as, 
for some products, DIAC may propose to pay in the place of customers 
who have suffered damages that stop them to reimburse their debts. 

By prospection

By securing the
customers loyalty

By debts recovery By capitalisation

By processing
modification requests

By exclusion

By processing information
requests and complaint

By handling
accidents

By handling legal obligations
of communication

By termination of the 
contractual relationship By demand

of transfer

By design

By prescription

Gain the
customer

Offer a
product

Manage the
customer relationship

C1

C3C2

C4
C5

C6 C7

C8

C9
C10C12 C11

C13

C14

Stop

Start
Map C : <Finance the purchase and 

lease of Renault vehicles>

By prospection

By securing the
customers loyalty

By debts recovery By capitalisation

By processing
modification requests

By exclusion

By processing information
requests and complaint

By handling
accidents

By handling legal obligations
of communication

By termination of the 
contractual relationship By demand

of transfer

By design

By prescription

Gain the
customer

Offer a
product

Manage the
customer relationship

C1C1

C3C3C2C2

C4C4
C5C5

C6C6 C7C7

C8C8

C9C9
C10C10C12C12 C11C11

C13C13

C14C14

Stop

Start
Map C : <Finance the purchase and 

lease of Renault vehicles>



Capturing System Intentionality with Maps   155  

4   Conclusion

The thrust of this chapter is to embedding systems in their larger usage 
context that is made possible by stepping back from merely anticipating 
the functionality that a system must provide (as done in conceptual model-
ling) to the determination of this functionality in a systematic manner. This 
is done by identifying the aims and objectives of different stakeholders and 
the activities they carry out to meet these objectives. The goal driven ap-
proaches that support this view lead to better understand the purpose be-
hind the system To-Be and therefore, to more easily accepted systems in 
organizations.
The belief of the author is that goal-driven approaches are now facing the 
challenge of forthcoming multi-purpose systems, i.e. systems that incorpo-
rate variability in the functionality they provide and will be able to self 
adapt to the situation at hand. The goal/strategy maps have been intro-
duced and discussed as an example of goal model that has been conceived 
to meet the aforementioned challenge.  

A map expression provides a synthetic view of the variability of a sys-
tem in a relatively easy to understand way. Variations are revealed in two 
ways, by the gradual movement down the different levels of a top map, 
and by the alternative strategies/paths available at a given map level. 
Variations express the multi purpose behind systems. Their expression re-
lates more closely to the organizational stakeholders as different from sys-
tem developers. Yet, this expression acts as a specification of what the new 
system should achieve.  

Maps have been used in large scale industrial projects and in different 
areas such as business process modeling [25,33], change management [26, 
37] , system evolution handling [36, 39], installation of ERP systems [30, 
31, 45], process/system alignment [10, 40] and more recently in service 
definition and composition [18].  

Finally, it is clear that the map needs to be supported by (a) a guidance 
mechanism that systematically helps the dynamic construction of maps, 
their verification and documentation and (b) an enactment mechanism that 
would present the different choices available for achieving an intention 
and aid in selecting one or more of these. These form the topic of current 
work.



156      Colette Rolland  

References 

[1] Antòn, A. I.(1996), Goal based requirements analysis. 2nd International Con-
ference on Requirements Engineering ICRE’96, pp. 136-144. 

[2] Antón, A. I., McCracken, W. M. and Potts, C.: Goal Decomposition and Sce-
nario Analysis in Business Process Reengineering, Advanced Information 
Systems Engineering, 6th International Conference Proceedings (CAiSE ‘94), 
Utrecht, The Netherlands, (1994) 94-104. 

[3] Bachmann  Managing variability in software architecture. ACM Press, NY, 
USA. (2001) 

[4] Bosch, Variability issues in Software Product Lines. 4th International Work-
shop on Product Family Engineering (PEE-4), Bilbao, Spain (2001) 

[5] Bubenko, J., Rolland, C., Loucopoulos, P., de Antòn ellis V.(1994), Facilitat-
ing ‘fuzzy to formal’ requirements modelling. IEEE 1st Conference on Re-
quirements Enginering, ICRE’94 pp. 154-158. 

[6] Dardenne, A., Lamsweerde, A. v., and Fickas, S., (1993), Goal-directed Re-
quirements Acquisition, Science of Computer Programming, 20, Elsevier, 
pp.3-50. 

[7] Dietz J.L.G., “Basic Notions Regarding Business Processes and Supporting In-
formation Systems”, Proceedings of BPMDS’04, CAISE’04 Workshops Pro-
ceedings, Latvia, Riga, (2004).160-168,

[8] Dik, S.C. The theory of functional grammar, Foris Publications, Dodrecht, The 
Netherlands, (1989) 

[9] Dubois E., Hagelstein J., Rifaut A., Formal Requirements Engineering with 
ERAE, Philips Journal of Research, Vol. 43, No 4. (1989) 

[10] Etien, A., and Rolland, C.: Measuring the fitness relationship, Requirements 
Engineering Journal (REJ), Springer, 10:3, pp. 184 - 197, (2005) 

[11] European Software Institute, European User Survey Analysis, Report 
USV_EUR 2.1, ESPITI Project. (1996) 

[12] Fillmore C. J., The case for case, in Universals in linguistic theory, Holt, 
Rinehart and Winston, Inc, E.Bach/R.T.Harms (eds) (1968) 

[13] Van Gurp J., Variability in Software Systems, the key to Software Reuse. Li-
centiate Thesis, University of Groningen, Sweden (2000) 

[14] Halmans J., Communicating the variability of a software product family to 
customers. Software and System Modeling, Springer-Verlag. (2003) 

[15] Hammer M., and Champy J., Re-engineering the Corporation: A Manifesto 
for Business Revolution, Harper Collins Publishers, New York. (1993) 

[16] Jackson M., Software Requirements & Specifications – a Lexicon of Practice, 
Principles and Prejudices. ACM Press. Addison-Wesley. (1995) 

[17]  Johnson J., Chaos : the Dollar Drain of IT project Failures. Application De-
velopment Trends, (1995) 41-47 

[18] Kaabi, R.S, Souveyet, C., Capturing intentional services with process busi-
ness maps, IEEE international Conference on RCIS (Research Challenges in 
Information Science), Ouarzazate, Maroc. (2007) 



Capturing System Intentionality with Maps   157  

[19] Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, A.. Feature-Oriented 
Domain analysis (FODA) Feasibility Study (Tech. Rep. CMU/SEI-90-TR-21), 
Pittsburgh, PA, Software Engineering Institute, Carnegie Mellon University 
(1990) 

[20] Krogstie J., Sølvberg A.: A classification of methodological frameworks for 
computerised information systems support in organisations, in Proc. IFIP 
8.1/8.2 Conf. Method Engineering: Principles of Method Construction and 
Tool Support,August 1996, Atlanta, USA, Chapman&Hall, (1996) 

[21] Lamsweerde, A.v.(2001), Goal-oriented requirements engineering: a guided 
tour. RE’01 International Joint Conference on Requirements Engineering, To-
ronto, IEEE,, pp.249-263 

[22] Lee, J., “Extending the Potts and Bruns Model for Recording Design Ration-
ale”, Proceedings of the IEEE 13th International Conference on Software En-
gineering, Austin, Texas. (1991) 

[23] Lindland O.I., Sindre G., and Sølvberg A.: Understanding quality in concep-
tual modelling', IEEE Software, March 1994 (1994) 42--49 

[24] META Group  Research on Requirements Realization and Relevance, report 
(2003) 

[25] Nurcan, S., Rolland, C.:  Meta-modelling for cooperative processes, The 7th 
European-Japanese Conference on Information Modelling and Knowledge 
Bases,  Toulouse, (1997) 361-377.  

[26] Nurcan, S., Rolland, C., A multi-method for defining the organisational 
change”, Journal of Information and Software Technology, Elsevier. Vol. 45 
N°2, (2003) 61-82 

[27] Ould, M., Business Processes: Modelling and Analysis for Re-engineering 
and Improvement John Wiley & Sons. (1995)  

[28] Potts, C., Takahashi, K., and Antòn , A. I. (1994), Inquiry-based require-
ments analysis. IEEE Software 11(2), pp. 21-32. 

[29] Prat, N., Goal formalisation and classification for requirements engineering.
3rd International Workshop on Requirements Engineering: Foundations of 
Software Quality REFSQ’97, Barcelona, Spain, (1997) 145-156. 

[30] Rolland C., Prakash N., Bridging the gap between Organizational needs and 
ERP functionality. Requirements Engineering journal 5 (2000). 

[31] Rolland, C., Prakash, N., “Matching ERP System Functionality to Customer 
Requirements”, Proceedings of the 5th IEEE International Symposium on Re-
quirements Engineering, Toronto, Canada. (2001) 

[32] Rolland C., Salinesi C.: Modeling goals and reasoning with them, Chap9 of 
the book  Engineering and Managing Requirements , A. Aurum and C. Woh-
lin (eds), (Springer Verlag Pub, TBP 2005) 

[33] Rolland, C., Nurcan, S., Grosz G.:A unified framework for modelling co-
operative design processes and co-operative business processes, Proceedings 
of the 31st Annual International Conference on System Sciences, Big Island, 
Hawaii, USA. (1998) 

[34] Rolland, C., Souveyet, C., and Ben Achour, C. (1998), Guiding goal model-
ling using scenarios. IEEE Transactions on Software Engineering, Special Is-
sue on Scenario Management, 24(12) 



158      Colette Rolland  

[35] Rolland, C., Prakash, n.,  & Benjamen, A.. A Multi-Model View of Process 
Modelling. Requirements Engineering Journal (REJ), (1999) 169-187 

[36] Rolland, C., Salinesi, C., Etien, A.:Eliciting Gaps in Requirements Change, 
Requirements Engineering Journal (REJ), 9:1, pp. 1 - 15, 2004. (2003)

[37] Rolland, C., Loucopoulos, P., Kavakli, V., Nurcan, S.: Intention based model-
ling of organisational change: an experience report, Proceedings of the Fourth 
CAISE/IFIP 8.1 International Workshop on Evaluation of Modeling Methods 
in Systems Analysis and Design (EMMSAD'99), Heidelberg, Germany. 
(1999) 

[38] Rummler, G.A., Brache, A. P., Improving Performance, Jossey-Bass Publish-
ers (1995) 

[39] Salinesi, C., Presso, M. J.: A Method to Analyse Changes in the Realisation 
of Business Intentions and Strategies for Information System Adaptation, Pro-
ceedings of the 6th IEEE International Enterprise Distributed Object Comput-
ing Conference (EDOC’02), Lausanne, Switzerland. (2002) 

[40] Salinesi, C., Rolland, C.: Fitting Business Models to Systems Functionality 
Exploring the Fitness Relationship, Proceedings of the 15th Conference on 
Advanced Information Systems Engineering (CAiSE’03), Klagenfurt/Velden, 
Austria, (2003) 

[41] Standish Group, Chaos. Standish Group Internal Report (1995) 
[42] Svahnberg  On the notion of variability in Software Product Lines. Working 

IEEE/IFIP Conference on Software architecture. (2001) 
[43] Sølvberg, A.: Data and what they refer to, in P.P.Chen et al.(eds.): Concep-

tual Modeling, pp.211-226, Lecture Notes in Computer Science, Springer 
Verlag, (1999)  

[44] Yu, E.S.K., Mylopoulos, J. :From E-R to ‘A-R’ - Modelling Strategic Actor 
Relationships for Business Process Reengineering, Proceedings of the 13th In-
ternational Conference on the Entity-Relationship Approach, Manchester. 
(1994) 

 [45] Zoukar, I., and Salinesi, C.: Matching ERP Functionalities with the Logistic 
Requirements of French railways - A Similarity Approach, International Con-
ference on Enterprise Information Systems (ICEIS), Porto, Portugal, 2004. 



Conceptual Modeling and Software Design of 
Multi-agent Systems 

David Kung1 , Krishna Kavi2

1 Univ. of Texas at Arlington, USA
2Univ. of North Texas, USA 

Abstract. We present a framework for conceptual modeling, requirements analysis 
and design of agent-based systems. The framework is rooted in the Belief Desire In-
tention (BDI) formalism and extends the Unified Modeling Language (UML) to model 
multi-agent systems. We introduce several modeling constructs including Agent, Be-
lief, Goal, Plan, FIPA Performative, KQML-Performative, and Blackboard. In addi-
tion, we introduce Agent Goal Diagram to model the relationships between the goals 
and the environment of an agent; Use Case Goal Diagram to model the relationships 
between use cases and goals; Agent Domain Model to facilitate understanding of do-
main knowledge of an agent; Agent Sequence Diagram to model interactions within an 
agent. Similarly, Agent Activity Diagram and Agent Statechart Diagram are intro-
duced. We illustrate the framework through an agent-based intelligent elevator system. 

1 Introduction 

Over the last decade the popularity of agent-based systems have increased 
rapidly because agents bring intelligence, reasoning and autonomy to 
software systems. Agents are being used in an increasingly wide variety of 
applications from simple e-mail filter programs, such as MAXIS [21], to 
complex mission control and safety critical systems including air traffic 
control, such as OASIS [20]. Until recently few proposals for Agent Ori-
ented Software Engineering and extensions to UML have been reported [7, 
35, 29]. This should be contrasted with the object-oriented (OO) paradigm 
that is supported by modeling languages such as UML and a variety of 
CASE tools that aid during the analysis, design, implementation and vali-
dation phases of OO software systems: all of which contributed to the uni-



160      David Kung, Krishna Kavi   

versal acceptance of the OO paradigm. In this paper, we propose a frame-
work for conceptual modeling [31, 32, 33], requirements analysis, and de-
sign of multi-agent systems. It is an extension of the UML to support 
multi-agent systems (MAS) development. Our approach is rooted in the 
BDI formalism [28], but stresses the importance of conceptual modeling 
and practical software design methods instead of reasoning theories. In 
particular, we propose to extend UML [4] with conceptual modeling con-
structs called Agent, Belief, Goal, Plan, FIPA Performative, KQML 
Performative, and Blackboard. Agent is the super-type for all agent 
types. Belief, Goal and Plan model the reactive and proactive behaviours 
of agents. An agent has, among other data types, a collection of beliefs, 
goals and plans. Beliefs are the agent’s observations and/or sensing of the 
environment and are updated by sensors or other agents. Changes in an 
agent’s beliefs trigger the re-evaluation of the utility values of goals of the 
agent. Changes to goals’ utility values result in pre-empting some plans 
and initiating new plans. Execution of plans affects the environment which 
in turn changes the beliefs, and so on. Agent communicates with each 
other through agent communication performatives such as FIPA [6] or 
KQML [9], or shared blackboards as in Linda or its extensions [22]. We 
introduce Agent Goal Diagram (AGD) to model the relationships between 
the goals and the environment, the Use Case Goal Diagram (UCGD) to re-
late use cases and goals, Agent Domain Model (ADM) to facilitate under-
standing of domain knowledge of an agent, Agent Sequence Diagram 
(ASD) to model interactions within an agent. Similarly, Agent Activity 
Diagram and Agent Statechart Diagram are introduced.

2 Extending UML 

The framework is aimed to provide a modeling language to help applica-
tion engineers to focus their effort on agent-oriented modeling. Agent,
Belief, Goal and Plan are implemented as abstract classes in the proposed 
framework. Application specific BDI agent (resp. belief, goal, plan) types 
are implicitly defined as subclasses of Agent (resp. Belief, Goal, Plan);
and hence, they inherit the model-defined structural and behavioural fea-
tures and relationships. As in OO, concrete, application specific types must 
implement the inherited abstract features. In this way, the framework en-
forces the BDI model but also provides the flexibility for implementing 
application specific behaviour, including re-using an existing design or 
implementation. 

In general, beliefs may be shared and modified by other agents. This can 



Conceptual Modeling and Software Design of Multi-agent Systems      161 

be achieved either by direct communication using KQML [9] or FIPA-
ACL [6] messages, shared knowledge-bases or blackboards (e.g., Linda or 
its extensions such as LIME [22]). Goals can be proactive or reactive – 
proactive goals reflect the desires of an agent. These goals may impact 
how an agent reacts to external events (including the possibility of ignor-
ing external stimuli — accomplished by ignoring/giving up goals with 
lower utility values). Reactive goals reflect how an agent can be situated in 
an environment. 

2.1 New Modeling Constructs 

The following provides (albeit an incomplete) list of new modeling con-
structs for MAS. An agent specification language (ASL) in BNF is given 
in [15]. 

Belief: Belief has a name for identifying Belief instances, a set of user-
defined, application dependent annotations, and a list of goals that may be 
affected by changes to the belief. Examples of application dependent anno-
tations are sampling frequency and probability of change of sensed values. 
Belief has methods for querying and updating a belief and relating goals 
with a belief. When a Belief instance is change, the affected Goal instances 
are informed, see below. 

Goal: Goal has a name, a utility value, set and get functions, and a plan 
to accomplish the goal. The utility value of a goal indicates how valuable 
the goal is to the overall goal of the system. In addition, Goal has two ab-
stract functions: beliefChanged(b: Belief ) and eval():real. The former is 
automatically invoked by a changed belief that affects the goal. It allows 
the goal to respond to belief changes. The utility values are real values be-
tween 0 and 1 with 0 representing unreachable goals. The implementation 
of eval() is application dependent and can be a conventional decision tree, 
Computational Tree Logic (CTL) derivations as described in [27], or any 
other evaluation mechanism appropriate for the type of agent. 

Plan: Plan has an identifying name and an abstract execute() method 
which can be invoked by a Goal object to start a plan. A subclass of Plan-
must implement the execute() method according to the concrete plan. The 
implementation may invoke KQML/FIPA performatives to communicate 
with other agents as well as perform conventional and knowledge based 
computations. In general, plans can be implemented by the command pat-
tern [10]. The generic command class may implement Thread and the 
command subclasses each implement an action of the agent. A plan can be 
defined as a sequence of command objects and dynamically generated ac-



162      David Kung, Krishna Kavi   

cording to the reasoning steps. Plan also has a stop() method which can be 
invoked to terminate the plan. 

Beliefs, Goals and Plans: These are collections of Belief, Goal and Plan
objects and provide standard operations for querying, inserting, updating 
and deleting an element. These collections also have operations of their re-
spective component types and delegate the call to each of the component 
type instances.

FIPA, and KQML Performatives: There are two Command Patterns 
[10] introduced to accommodate all the FIPA and KQML speech act per-
formatives, respectively. Their subclasses are named after the performa-
tives, each subclass implements the functionality of one performative. New 
speech act performatives can be supported by introducing additional com-
mand patterns.

FIPA, and KQML Interfaces: These interfaces define method signa-
tures that correspond to FIPA and KQML performatives, respectively. 
Again, new speech act performatives can be supported by introducing ad-
ditional interfaces. 

Agent: Agent is the superclass for all agent types. It has Beliefs, Goals, 
Plans and methods to select the optimal goal. It has an abstract goalVal-
ueChanged (g: Goal) method, which is automatically invoked when a goal
instance is changed. Agent implements both FIPA and KQML Interfaces 
and delegates the implementation of the performatives to the appropriate 
FIPA or KQML Performative subclasses. This way our framework ac-
commodates both FIPA and KQML performatives and their extensions.

Blackboard: This is a concrete class, supported by the Singleton Pattern 
and Flyweight Pattern [10], to permit the use of shared blackboards. Agent 
can define polymorphic methods for reading, removing, writing, and ap-
pending to the blackboard (similar to Linda or LIME [22]). 

Figure 1 shows the nations for above modeling constructs. 

Fig. 1. Graphical notations 

2.2 New Diagrams 

In this section, we describe a number of new diagrams. Their use is illus-
trated in section 3:  

Belief Goal Plan Blackboard

GoalsBeliefs Plans

Agent

Agents



Conceptual Modeling and Software Design of Multi-agent Systems      163 

Agent Goal Diagram (AGD): An AGD depicts the goals of an agent 
and their relationships to the environment. In addition, an AGD depicts re-
lationships among the goals like goal-subgoal relationship. An AGD can 
also illustrate roles of an agent. For example, a goal of an auction agent 
playing the role of a buyer could be ”minimize cost”. The same agent 
when playing the role of a seller could have a goal to ”maximize profit”. 
Thus, the AGD for Auction-Agent/Buyer would contain ”Minimize Cost” 
as a goal while the AGD for Auction-Agent/Seller would contain the goal 
”Maximize Profit”. 

Use Case Goal Diagram (UCGD): A UCGD combines the existing 
Use Case Diagram (UCD) and the AGD and shows the relationships be-
tween use cases and goals. That is, which use cases would affect which 
goal and vice versa. This information provides a high level guidance to 
Agent Sequence Diagram (ASD) construction. It can also be used to check 
the consistency between UCGD and ASD. 

Agent Domain Model (ADM): In OO development, a System Domain 
Model (SDM) documents domain object classes and their attributes and re-
lationships. The existing SDM is extended to include agents as domain 
concepts. Conceptual Modeling and Software Design of Multi-Agent Sys-
tems 5 
Unlike an SDM, an ADM represents the domain knowledge that is internal 
to an agent, including the definitions of the agent’s Beliefs, Goals and 
Plans and their intrinsic relationships. 

Agent Sequence Diagram (ASD): An ASD depicts interactions among 
the beliefs, goals, plans and other objects of an agent to collectively carry 
out a task. It is a refinement of an agent. 

Agent Design Diagram (ADD): ADD is introduced to document the 
design of an agent, derived from the corresponding ADM and ASD and 
implemented as a package in Java or a module in C++. This facilitates the 
re-use of an agent’s design and/or implementation because an application 
can simply import a package or a module. 

Agent Activity Diagram (AAD) and Agent Statechart Diagram 
(ASCD): These diagrams are introduced to model the internal activity and 
information flows and the internal state behaviours of agents. 

2.3 Discussion 

In our framework, flexible relationships as well as interactions among the 
agents are accomplished through FIPA performatives, KQML performa-
tives, or Blackboard. The speech act performatives allow an agent to 
communicate with another agent of her choice. In particular, to query the 



164      David Kung, Krishna Kavi   

capabilities of other agents and then request services. Agents can create 
and/or subscribe to a common blackboard to form a group. It is also possi-
ble to define group hierarchies through the use of blackboard messages. 
Role dependent beliefs, goals and plans of an agent can be accomplished 
by generalization/specialization or inheritance. That is, treating roles as de-
rived agent types of a more general agent type. Instances of the derived 
types can be used to represent different roles of the agent (which is an in-
stance of the more general agent type). 

3 The Intelligent Elevator Case Study 

The multi-agent intelligent elevator system (IES) consists of ordinary ele-
vator hardware, an agent for each elevator car and a blackboard serving as 
a shared memory between the agents. The car agents communicate through 
the blackboard as well as directly with one another using an agent commu-
nication language. During the normal hours operation of the IES, a request 
by a passenger is posted with the Blackboard. Car agents can retrieve and 
update these requests asynchronously. The agent(s) decide how to satisfy 
the requests. Once inside the elevator car, passengers can enter a destina-
tion request. All the destination requests are maintained by the car agent 
and used to instruct the elevator to stop when the floor is reached. When an 
elevator reaches its final destination and there are no pending requests 
from the final destination floor, the car agent checks if it is during the rush 
hour. If so, the agent consults the blackboard and travels to a destination 
floor as appropriate; otherwise, the agent reads the blackboard for pending 
requests and consults the other elevator car agents to determine its next 
destination. The agent will go to serve a floor if and only if the following 
conditions hold: 

There is a pending request from the floor. 
It is the agent that can serve the request sooner than other agents. 

If no floor needs to be served, the elevator enters the stand-by state and 
sleeps for a couple of seconds. When it wakes up, it repeats above process 
and goes to sleep again if no request needs to be served. During rush hours 
the demand for service is high and is usually in early morning, late after-
noon and lunch time hours. The rush hour schedule is stored with the 
blackboard and periodically updated by an intelligent service log (ISL). 
The ISL uses data mining techniques to discover new demand patterns 
from its service log and computes the up-to-date rush hour schedule. The 
ISL does this once a while. The frequency is adaptive and adjusts to one 



Conceptual Modeling and Software Design of Multi-agent Systems      165 

that will provide the most suitable rush hour schedule. During a rush hour, 
the car agents direct their respective elevators to rush to floors whose de-
mands have not been completely satisfied. The car agents use the antici-
pated rush hour demand and the demand that has been served to approxi-
mately determine how much demand remains to be served. 

Applying the methodology described in the last section, we have the fol-
lowing (we have omitted steps 1-3) because these are the same as conven-
tional software development): 

Step 4.1. Identify use cases and goals from requirements. 
A use case defines an application process to accomplish a task through 
interactions between an actor and the system under consideration. An actor 
may be a class of users, roles played by users, or other systems. A use case 
is initiated by a user with a particular goal in mind, and completes success-
fully when that goal is satisfied. A complete set of use cases specifies all 
the different ways to use the system, and therefore defines all required sys-
tem behaviours. 
The IES has the following use cases: 

Request Elevator: The passenger from outside of the elevator initiates 
this use case when the passenger wants to go to a particular floor. The 
agent can also initiate this use case during rush hour. 
Service Request in standby: This use case is initiated when the elevator 
car is idle. 
Service Request in motion: This use case is initiated when the elevator 
car is in transition and a new request comes in. 
Request Floor: This use case is initiated by the passenger inside the ele-
vator car to go to the destination floor. 
Open Door: This use case is initiated by the Passenger or Timer.  
Close Door: This use case in initiated by the passenger or Timer, and the 
weight sensor. 

Step 4.2. Refine use case diagrams and goal diagrams. 
In this step, new use cases and goals are added and existing ones are 
revised. The use cases and goals are shown in use case diagrams and goals 
diagrams (see Figure 2), respectively. In particular, the figure shows a use 
case diagram on the left and a goal diagram on the right. The elevator sub-
system box on the left shows the use cases and the actor (the passengers of 
the elevator). The diagram also contains a box on the right representing the 
Elevator Car Agent. Recall that the notation for an agent is the smiley face 
icon. The goals of the agent are shown as ovals with a curly paper icon. An 
association is drawn between the use case “Service Request in Standby” 



166      David Kung, Krishna Kavi   

and the “Meet Required Response Time” goal signifying that when a pas-
senger requests an elevator in standby the “Meet Required Response 
Time” goal will be affected. The agent’s goals are sometimes conflicting 
wherein the agent takes a decision on which goal to pursue.  

In addition to the goals, a goal diagram may also specify relationships 
among the goals using UML modeling constructs like inheritance, aggre-
gation and association: 

Fig. 2. Use Case Goal Diagram for the IES I 

Ensure QoS: This is a reactive Goal, which is responsible for ensuring 
the Quality of Service to the users. In order to accomplish this goal, both 
its subgoals, namely, “Ensure Safety” and “Meet Required Response 
Time” have to be achieved: 
- Ensure safety Goal: This Goal ensures safety of the Elevator system. 

This comes into picture during the Open Door and Close Door use 
cases. It considers following factors: 

o 1. Motor Status whether it is ON or OFF. 
o 2. Weight of the Elevator 
o 3. Floor Sensor whether Elevator car is in a floor or in 

transition.
- Meet Required Response Time: This goal is responsible for ensuring 

the required response time must be met. 
Conserve Energy: This proactive goal is responsible in conserving the 
energy of the elevators cars by either Minimize Movement goal or 
Maximize Efficiency goal: 
- Minimize Movement: This goal is responsible for minimizing the 

movement of the elevator Car. The utility value is evaluated based on 
the distance, since the Elevator car needs to travel to service a pas-
senger from the elevator car’s current position. 

EnsureQoS

Meet   Required
Response Time Ensure Safety

Conserve Energy

Minimiz
Movement

Maximize
Efficien

� ElevatorCarAg

<<proactive>>

<<reactive>>

Elevator System

Floor
Sensor

Passenger Request Floor

Open Door

Close Door

Request Elevator

Service Request
in Stand-By

Service Request
in motion

<<extends>>

<<extends>>

Timer

Weight
Sensor

<<extends>> <<extends>>

�
Elevator Car
Agent



Conceptual Modeling and Software Design of Multi-agent Systems      167 

- Maximize Efficiency: This goal maximizes efficiency by serving the 
passengers in nearby floors that want to travel in the same direction 
as the current elevator direction. 

Step 4.3. Refine system domain model and agent domain models. 
In this step the system domain model — an ontological or conceptual 
model [2, 18, 31] for the application domain objects, their attributes and 
relationships—is constructed or refined for the current increment. The sys-
tem domain model for the elevator example consists of objects represent-
ing various parts of an elevator. Since the domain model has been ad-
dressed elsewhere, we will not repeat here. We introduce the Agent 
Domain Model (ADM) to capture the application dependent beliefs, goals 
and plans of an agent and their properties and relationships. In our ap-
proach, an ADM is constructed for each type of application specific agent. 

The agent domain model, shown in Figure 3, consists of a collection of 
timer, requests, weight, door status, last destination and motor status be-
liefs. Our application consists of Minimize Movement, Meet Required Re-
sponse Time and Ensure Safety goals. The Elevator CarAgent has an 
ECAMaster-Plan. The change in the Requests belief notifies Minimize 
Movement and Meet Required Response Time goals. The change in beliefs 
related to state of elevator car notified the Ensure Safety goal. 

The diagram indicates that the Elevator Car Agent has two beliefs: Elev- 
CarState and Requests. These beliefs are implicitly defined as subclasses 
of Belief indicated by the cloud icon. Changes to the Requests belief will 
affect the two goals as shown in the diagram. Similarly, the two goals are 
subclasses of Goal and hence must implement the beliefChanged (b: Belief 
) method. The diagram also indicates that the goals have plans and each 
plan delegates its task to a command object [10] that implements a thread. 



168      David Kung, Krishna Kavi   

Fig. 3. Agent domain model 

Step 4.4. Specify system and agent sequence diagrams 
For each use case, at least one system level sequence diagram is con-
structed to document how the agents and other objects work together to 
accomplish the business process underlying the use case. This is the same 
as in OO modeling [19, 4] except that agents may communicate with other 
agents and interact with objects (e.g., opens/closes an elevator door). Simi-
larly, Agent Sequence Diagrams are constructed to show the intrinsic in-
teractions within an agent, as illustrated in Figure 4. 

The Open Door Agent Sequence Diagram (Figure 4) begins with a state 
change in the motor. The Motor keeps updating its own status with the 
agent. The update of the motor status changes the motor belief, which in 
turn notifies the Ensure Safety goal subscribed to the motor belief. The En-
sure Safety goal then evaluates a utility value (which in this case is 1 or 0) 
based on following parameters: 

The motor state being ON or OFF. 
The elevator is on a floor or is in transition. 
The total weight of the elevator should be less then a threshold.  

The evaluated utility value is sent to the Elevator Car Agent. The agent 
then can either ask the goal to pursue or to abandon. If the agent decides to 
pursue, then the goal creates a plan for execution. The plan in turn opens 
the door of the elevator. 

affects

delegate to delegate to

b)

1..*
ElevCarState

floorNo
direction
load

Request
floorNo
direction
status

Requests

Minimize
Movement

type: =reactive

MinimizeTurn
AroundTime

type:=reactive

<<Thread>>
ServReq
Plan2Cmd

execute( )

<<Thread>>
ServReq
Plan1Cmd

execute( )

execute()

 ServeRequest
Plan2

ServeRequest
Plan1

execute()

� ElevatorCarAgent

Create (g: Goals, b: Beliefs)
SelectGoal (): Goal

Has-plan

Has-plan



Conceptual Modeling and Software Design of Multi-agent Systems      169 

Fig. 4. Agent Sequence diagram for Open Door 

Steps 4.5. Refine Design Class Diagrams and 
Steps 4.6. Refine State and Activity Diagrams 
In step 5, we derive the design class diagram from the system domain 
model and sequence diagrams and the Agent Design Diagrams from the 
Agent Domain Models and Agent Sequence Diagrams. In particular, the 
domain model provide information to define the structural aspect while the 
sequence diagrams provide information for the behavioural aspect. For 
agents, beliefs, goals and plans that have non-trivial activity and/or behav-
iour, the corresponding Agent Activity Diagrams and Agent Statechart 
Diagrams are also defined. 

4 Lessons Learned 

During the course of this project, several valuable lessons have been 
learned and will be presented in the following subsections. We believe that 
the lessons could benefit other research efforts on providing a software en-
gineering framework for multi-agent systems because the most of the les-
sons are generic.

e:Elevator
CarAgent

state:Motor
State

:EnsureSaf
ety

:ExamSafe
tyPlan

:Elevatormotor : Motor

beliefChanged(status)

create( )

execute( )

setMotorStatus( )

eval( )

onFloor=
getElevatorPosition( )

[onFloor = true]
[motor=idle]



170      David Kung, Krishna Kavi   

4.1 An SE Framework is Helpful 

A team of software engineering students have applied the proposed model-
ing techniques and methodology to the development of the intelligent ele-
vator system. In retrospect, the team came to the following positive aspects 
of having a software engineering framework: 

The primitives of BDI agents and the diagrams were very helpful to un-
derstanding the BDI model of agency and avoiding the overhead of im-
plementing it from scratch. The BDI model is the most studied agent 
model and has been applied in practice. One concern of BDI is that it 
was not designed for multi-agent systems, but the framework provides 
plug-in capability to accommodate communication among agents in a 
multi-agent system (see below). 
The framework provides a common vocabulary and unified modeling 
language for the designers and programmers to communicate. Without 
such a common reference framework, the communication and teamwork 
would have been much more difficult and time consuming. 
It clearly distinguishes and distributes the responsibilities among the 
primitive concepts (like Agent, Goal, Plan, etc.) and defines their inter-
actions/interfaces. This feature helped achieve separation of concerns 
and facilitated understanding on how the components work together. 
However, the current framework had not implemented the model-
defined interactions among the beliefs, goals and plans of an agent. 
Therefore, the individual team members had to implement the interac-
tions. It is hoped that such support would be in a future version of the 
framework. 
The framework provides a predefined, abstract multi-agent systems ar-
chitecture for designing application specific agents while allowing ap-
plication specific implementation. 
The framework allows use of any agent communication language and 
the ability to plug-in any implementation of the communication mecha-
nism. The team was able to use JATLite’s implementation of KQML 
communication for its elevator agents [14]. 
The blackboard mechanism is a useful way of sharing information 
among agents. In regards to the elevator project, all outside elevator re-
quests and the rush hour schedule were posted on the blackboard for the 
agents to learn from. 



Conceptual Modeling and Software Design of Multi-agent Systems      171 

4.2 Using Design Patterns 

Software design patterns [10] have roots in architectural patterns. Accord-
ing to Alexander, patterns repeat themselves, since they are effective solu-
tions to specific problems [1]. The purpose of design patterns is to capture 
software design know-how and make it reusable. Design patterns can im-
prove the structure of software, facilitate maintenance, and help avoid ar-
chitectural drift. Design patterns also improve communication among 
software developers and empower less experienced personnel to produce 
high-quality designs. Successful reuse of well-designed and well-tested 
software components improves software quality and reliability. In this pro-
ject, we have used and benefited from several design patterns. This experi-
ence could suggest the incorporation of these patterns into the software en-
gineering framework. 

4.3 Some Research Issues 

In the multi-agent elevator system, utility values based on the current state 
of the environment were used to select a goal to pursue. The framework 
leaves the computation of the utility value entirely to the application de-
veloper. On the one hand, this flexibility is desirable because different ap-
plications have different ways to assess the utility of a goal. On the other 
hand, this shifts the burden to application developers. In our case, the util-
ity values were calculated using ad-hoc algorithms invented by the team. It 
would be very helpful if the software engineering framework could pro-
vide default algorithms and their implementation for re-use. 

A serious problem in the elevator system was concurrency. An agent’s 
environment is constantly changing, thereby triggering several goals. The 
question now is what goal should be pursued? If the utility values of sev-
eral goals triggered are the same, which one should be pursued next? If 
several goals are pursued and hence several plans are simultaneously exe-
cuted, the system could quickly run out of resources and crash. This could 
be a topic of research in software engineering for multi-agent systems, es-
pecially for large multi-agent systems. 

The framework provides flexibility for the multi-agent systems develop-
ers to plug-in any AI learning algorithm implementation. But the frame-
work does not provide any APIs that implement any such algorithms. 
Therefore, the team members had to spend considerable time analyzing 
and implementing a learning capability. It would be very helpful if a soft-
ware engineering framework for multi-agent systems can provide APIs 



172      David Kung, Krishna Kavi   

that implement some of the existing AI learning algorithms so that the de-
veloper can easily re-use any of them. 

Agent decision-making process was very crucial in the project. It 
brought up the issue of collaboration. Could agents come to a final agree-
ment on an issue? Could one agent make decisions for other agents with-
out violating the autonomy property? Or yet, should another agent be cre-
ated to make final decisions for the agents themselves? As above, a 
software engineering framework could prefabricate agent decision making 
as well as agent coordination algorithms as APIs to facilitate the design 
and implementation processes. 

5 Related Work 

In this section we will limit our review of research projects in the area of 
agent oriented methodologies that are based on UML and/or BDI like 
agents. For more details on other methodologies we refer the reader to sur-
veys in [34] and [12]. 

Rumbaugh et al’s Object Modeling Technique (OMT) was adapted by 
Kinny et al [17] to translate the Belief, Goal, Plan and Agent Models to 
formal models like BDI, our approach provides modeling and implementa-
tion with the advantage of using application specific design and implemen-
tation alternatives. This is achieved by the use of abstract classes (Agent, 
Goal, Belief and Plan) and design patterns as the underlying implementa-
tion model to provide the power and flexibility to support all possible 
needs.

UML based modeling approaches have taken the front stage at Interna-
tional Workshops on Agent-Oriented Software Engineering (AOSE) [7] 
[35], The agent UML (AUML) approach proposed by Odell et al [24] in-
troduces the Agent Interaction Protocol (AIP) for agent communication 
and constraints on messages. Yim et al. [36] proposed an architecture-
centric design method based on OO design methods, design patterns and 
software architecture. They denote agent, agent messages, and other con-
cepts using UML stereotypes. Bergenti and Poogi [3] treat agents as com-
municating entities. Similar to Yim et al, this approach uses UML to 
model MAS and requires no extension to UML. In addition, a Belief 
Model, a Goal Model and a Plan Model were proposed to specify the be-
liefs, goals and plans for agents. In contrast, we propose to extend UML 
from ground-up by introducing the concept of an Agent.  

Methodology for Engineering Systems of Software Agents 
(MESSAGE/UML) proposed by Caire et al [5] describes an analysis proc-



Conceptual Modeling and Software Design of Multi-agent Systems      173 

ess that consists of various levels with more detail added to the views at 
each level. The analysis model consists of different “views”: 1) Organiza-
tion view, consisting of entities in the system like agents, organizations, 
roles and relationships between them. 2) Goal/Task view, showing goals, 
tasks, situations and dependencies amongst them (this is similar to our 
Agent Domain Model). 3) Agent/Role view, describing agents and their 
roles. 4) Interaction view, describing the interactions amongst the 
agents/roles, the initiator of the interaction, the events that trigger the in-
teraction. 5) Domain view, which is the same as a (System) Domain Model 
in our framework. Our modeling approach is use case centric and derives 
heavily from the Unified Process [19]. 

The Tropos methodology [11] covers a wide range of software devel-
opment phases and emphasizes on requirements analysis. The methodol-
ogy has a modeling language, which is not based on UML. It consists of 
the following phases: 1) the early requirements phase to identify goals, 2) 
the late requirements phase to identify the requirements for the actors, 3) 
the architectural design phase to assign goals and tasks to actors, 4) the de-
tailed design phase to produce the details of actors and their communica-
tion and coordination protocols, and 5) the implementation phase. It is 
based on BDI concepts and framework and suggests that developers 
choose a framework for implementation. 

6 Conclusions and Future Work 

We have described a framework and the necessary extensions to UML to 
address the modeling and design of MAS including modeling constructs 
like Agent, Belief, Goal, Plan, FIPA Performative, KQML Performative, 
and Blackboard. Our approach draws from the BDI formalism. Agents are 
peers in the decision making process. The communication between agents 
is demonstrated by using a black board mechanism. Our approach allows 
the flexibility of using FIPA, KQML or any other agent communication 
languages. Various diagrams are introduced, based on UML notations. The 
modeling process uses Agent Goal Diagram to relate an agent’s goals with 
its environment, Use Case Goals Diagram (UCGD) to associate use cases 
with goals, Agent Domain Model to describe application specific beliefs, 
goals, plans and their relationships. Our framework utilizes interfaces and 
abstract classes to provide flexibility in implementing application specific 
intelligent behaviours. The sequence diagrams from UML are used to por-
tray interactions among agents. To model the decision making process and 
interactions within a agent, we proposed Agent Sequence Diagrams. 



174      David Kung, Krishna Kavi   

We are in the process to complete the implementation of the IES using 
the methodology discussed in this paper. We plan to apply the framework 
to modeling and design of intelligent agents for MavHome smart home 
project[8]. The MavHome consists of a hierarchy of intelligent agents that 
perceive the environment through sensors and act upon the environment to 
maximize the comfort of its inhabitants and minimize home maintenance 
costs. As future work, we will design and implement a Computer Aided 
Software Engineering (CASE) environment to provide modeling, design 
and analysis support to large-scale multi-agent systems development. 

References 

[1] Alexander C., Ishikawa S., Silverstein M., Jacobson M., Fiksdahl-King I. and 
Angel S., A Pattern Language, Oxford University Press, New York, 1977. 

[2] Bubenko jr,, J.A.: Information modeling in the context of system development, 
Invited paper to IFIP Congress, pp. 395 - 411, 1980. 

[3] Bergenti, F., Poggi, A.:Exploiting UML in the design of Multi-Agent systems, 
Proceeding of the ECOOP Workshop on Engineering Societies in the Agents 
World 2000 (ESAW 00), pp 96-103,2000. 

[4] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User 
Guide, Addison Wesley, 1998.   

[5] Caire, G., Leal, F., Chainho, P., Evans, R., Garijo, F., Gomez, J., Pavon, J., 
Kearney, P., Stark, J., Massonet, P.: Agent oriented analysis using 
MESSAGE/UML, Proc. of 2nd International Workshop on Agent Oriented 
Software Engineering, pp. 101-108, Montreal Canada, August 2001. 

[6] Chiariglione, L.: FIPA 97 Specification, http:// leonardo.telecomitalialab.com/ 
fipa/ spec/ fipa97/ fipa97.htm. 

[7] Ciancarini, P., Wooldridge, M. (eds.): Agent Oriented Software Engineering, 
Proc. First International Conference on Agent Oriented Software Engineering, 
Springer, 2000. 

[8] Cook, D.: http://ranger.uta.edu/smarthome/links.html. 
[9] Finn, T., Labrou, Y., Mayfield, J.: KQML as an agent communication lan-

guage, in Software Agents, edited by J.Bradshaw, MIT Press, Cambridge, 
1977. 

[10] Gamma, E. et al.: Design Patterns: Elements of Reusable Object-Oriented 
Software, Addison-Wesley, 1995. 

[11] Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos software development 
methodology: process, models and diagrams, Proc. of International Conf. on 
Autonomous Agents and Multiagent Systems: Part 1, 2002, Bologna, Italy, 
2002. 

[12] Iglesias, C., Garijo, M., Gonzales, J.C.: A survey of agent-oriented method-
ologies. In Intelligent Agents V: Proceedings of the ATAL’98, volume 1555 
of LNAI. Springer, 1999. 



Conceptual Modeling and Software Design of Multi-agent Systems      175 

[13] Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research 
and development, in Autonomous Agents and Multi-Agent Systems, Kluwer 
Academic Publishers. 

[14] Jeon, H., Petrie, C., Cutkosky, M.R.: JATLite: A java agent infrastructure 
with message routing, IEEE Internet Computing, Mar/Apr 2000. 

[15] Kavi, K., Aborizka, M., Kung, D.: A framework for designing, modeling and 
analyzing agent based software systems, in Proc. of 5th International Confer-
ence on Algorithms & Architectures for Parallel Processing, October 23-25, 
2002, Beijing, China. 

[16] Kavi, K., Kung, D., Bhambhani, H., Pancholi, G., Kanikarla, M., Shah, R.:  
Extending UML to Modeling and Design of Multi-Agent Systems, Proc. of 
ICSE 2003 Workshop on Software Engineering for Large Multi-Agent Sys-
tems (SELMAS), Portland, Oregon, May 3–4, 2003. 

[17] Kinny, D., Georgeff, M.: Modeling and Design of Multi-Agent Systems, In 
Proc. of the 3rd Int. Workshop on Intelligent Agents: Agent Theories, Archi-
tectures, and Languages, ATAL’96, pages 1–20, Budapest, Hungary, Aug. 
1997. 

[18] Kung, D.: Conceptual modeling in the context of software development,” 
IEEE Trans. on Software Eng. Vol. 15, No. 10, pp. 1176 - 1187, (Oct. 1989). 

[19] Larman, C.: Applying UML and Patterns, Prentice Hall, 2001. 
[20] Ljunberg, M., Jucas, A.: The OASIS air traffic management system, Proc. of 

the 2nd Pacific Rim International Conference on AI, Seoul, Korea, 1992. 
[21] Maes, P.: Agents that reduce work and information overload, Communica-

tions of the ACM, 37(7), pp 31-40. 
[22] Murphy, A., Picco, G., Roman, G.C.: LIME: A middleware for physical and 

logical mobility, Proceeding of the 21 st International Conference on Distrib-
uted Computing Systems (ICDCS),April,2001,pp 524-533. 

[23] Optimal Aircraft Sequencing using Intelligent Scheduling, http:/-

/www.gsia.cmu.edu/andrew/course/45/865/2000/oasis.html. 
[24] Odell, J., Van Dyke Parunak, H., Bauer, B.: Extending UML for Agents, 

AOIS Workshop at AAAI 2000. 
[25] Odell, J.J.,  Van Dyke Parunak, H., Bauer, B.: Representing Agent Interaction 

Protocols in UML, in Proc. of First International Conference on Agent- Ori-
ented Software Engineering, Paolo Ciancarini and Michael Wooldridge eds., 
Springer, Berlin, pp. 121-140, 2001. 

[26] Van Dyke Parunak, H., Bauer, B.: Representing social structures in UML, 
Proc. of Autonomous Agents ’01, Montreal Canada, May 28-June 1, 2001. 

[27] Rao, A., Georgeff, M.: Modeling rational agents within a BDI architecture, 
Proceedings of the Second International Conference on Principles of Knowl-
edge Representation and Reasoning, Cambridge, MA, 1991, pp. 473-484. 

[28] Rao, A., Georgeff, M.: BDI agents: From theory to practice, Proceedings of 
the First International Conference on Multi-Agent Systems (ICMAS-95), San 
Francisco, pp. 312-319. 

[29] 1st International Workshop on Software Engineering for Large-Scale Multi-
Agent Systems, Orlando, Florida, USA, in conjunction with ICSE 2002, May 
19, 2002, 



176      David Kung, Krishna Kavi   

[30] Garcia, A.F. (ed.): Software Engineering for Large Multiagent Systems, ICSE 
Workshop Proceedings, Portland, Oregon, May 2-3, 2003. 

[31] Sølvberg A.: A Model for Specification of Phenomena, Properties, and In-
formation Structures, IBM Research Lab. San Jose, Calif. 95193, 
RJ2027(28348)7/18/77 

[32] Sølvberg A.: On the Specification of Scenarios in Information System De-
sign, IBM Research Lab. San Jose, Calif. 95193, RJ2065 (28689) 8/15/77, 
1977. 

[33] Sølvberg, A.: A contribution to the definition of concepts for expressing 
user’s information systems requirements, in Entity-Relationship Approach to 
System analyses and Design, P.P. Chen (ed.), Elsevier Science Publishing 
Comp., pp. 359 - 380, 1980. 

[34] Tveit, A.: A Survey of Agent-Oriented Software Engineering. NTNU Com-
puter Science Graduate Student Conference, Norwegian University of Science 
and technology, 2001. 

[35] Wooldridge, M., Weib, G., Ciancarini, P. (eds.): Agent Oriented Software 
Engineering II, Proc. Second International Workshop, Montreal, Canada, May 
29, 2001, Springer 2001. 

[36] Yim, H., Cho, K., Jongwoo, K., Park, S. Architecture-Centric Object-
Oriented Design Method for Multi-Agent Systems, in Proc. of the Fourth In-
ternational Conference on Multi-Agent Systems (ICMAS-2000), 2000. 



Agent Approach to Online Legal Trade 

Antje Dietrich, Peter C. Lockemann, Oliver Raabe 

Fakultät für Informatik, Universität Karlsruhe, Germany 

Abstract. Large open electronic markets rely on some sort of self-organization, pri-
marily those of a market economy. To function properly and continuously there must 
be an element of trust among the participants. Trust is achieved by imposing a legal 
framework within which all business is conducted. This paper examines how well the 
agent concept can, both as a design method and a software technology, support market 
participants in concluding legal contracts. 

1 Introduction 

Electronic markets are – aside from eventual physical transport of traded 
goods – large, distributed and often ubiquitous information systems. Con-
sequently, the development of electronic markets should follow the rules 
of good information systems engineering. In a nutshell, information sys-
tems engineering insists that one acquires a sound and formal understand-
ing of the application before building the supporting technical system, and 
that the steps from the conceptual design to the technical solution proceed 
along a solid methodology. 

Many electronic markets are open: their participants may come and go. 
Large open systems cannot be governed by a cumbersome central author-
ity if they are to function effectively and efficiently. Rather they have to 
rely on some sort of self-organization where the participants act autono-
mously but observe implicit or explicit rules that strike a balance between 
individual interests and the common good. For open electronic markets the 
rules are those of a market economy: The markets are controlled by supply 
and demand, driven by prices, and forced into efficiencies by competition. 
However, to function properly and continuously there must also be an 
element of trust among the participants. Society in general, and organiza-



178      Antje Dietrich, Peter C. Lockemann, Oliver Raabe 

tions in particular, achieve trust by imposing a legal framework within 
which all business is conducted, and enforcing sanctions if trust is broken. 
Participants in a business transaction can protect themselves if they enter 
into a legally effective contract. 

Negotiations and legal advice have a strong flavour of non-determinism 
and could prove fairly resistant to a methodical, let alone formal engineer-
ing approach. We argue in this paper that software agents are well suited 
as a conceptual framework for the automated support of self-organizing 
markets. We proceed with the argument as follows. Section 2 introduces 
the market scenario underlying our work, and Section 3 software agents as 
the conceptual framework. Section 4 structures spontaneous negotiations 
in terms of this framework, and Section 5 does the same for legal advice. 
Section 6 briefly explores the technical challenges for a software agent so-
lution. Section 7 concludes the paper. 

2 A Scenario 

2.1 Local Energy Markets 

To trust the market participants one must first of all trust the legal system 
itself. Given today’s state of the art chances are best if one confines busi-
ness to a local market. The scenario underlying our work is a local grid of 
providers and consumers of electrical energy. Such markets are evolving 
because of the growing number of decentralized power generators such as 
combined heat and power plants (CHP) with electricity as a by-product, 
fuel cells, solar panels, wind power, or biomass plants. 

By setting the right market mechanisms all parties involved should draw 
benefits. Suppose in our scenario a community of households or small en-
terprises that act on a market alternately as suppliers when they produce 
electricity beyond their current needs or as consumers when they operate 
under peak demand. Add a large electricity provider that guarantees a base 
supply and maintains the grid for power transmission. Now, if a participant 
wishes to offset some of its cost it will have to deliver electricity to the 
grid during peak loads when it can fetch an attractive price, and schedule 
its own appliances during times of low load with – hopefully – lower rates. 
As a supplier the participant may get some automated support by accessing 
an optimizer that computes a price it can fetch for its own energy, based on 
own profile, rates offered by competitors and load characteristics of the 
electrical grid. As a consumer the participant may employ another opti-
mizer that schedules the appliances or one that selects the offer best suited 
to its needs if a good number of offers exist. Alternatively, a consumer 



Agent Approach to Online Legal Trade      179 

may specify a rate structure it is willing to accept, and then invite bids 
from the various providers. Ultimately, the supplier will have found a con-
sumer willing to take delivery, and both will have come to an agreement 
on the conditions of the energy transfer. From this point on the supplier 
may feed the excess energy into the grid provided it has negotiated a con-
tract with of one of the large power suppliers for the power transmission. 

The overall benefit of such a market is reduced need for non-
reproducible resources like gas or coal. In other words, we claim that elec-
tronic markets provide mechanisms that are well suited to the conservation 
of natural resources by making more efficient and economical use of them. 

2.2 Contractual Framework 

The scenario offers ample opportunities for negotiations with legal conse-
quences. Take the enterprise or household as a supplier. For one it will 
have to enter into a – presumably long-term – contract with a large pro-
vider to cover the transmission of its electric energy. And after it found a 
willing consumer it will have to negotiate a contract with it. Likewise, as a 
consumer it must conclude a contract with a supplier, and in case of group 
rebates also one covering the entire group. 

The scenario is representative of what one could term a market of short-
lived (or perishable) goods, i.e., goods that can not be stored or at best for 
a very short period, and that must find their consumers fairly quickly. 
Hence there is hardly time for obtaining professional legal advice. Also, 
the parties involved rarely have much of a legal background, i.e., as law 
laypersons have difficulties in judging the legal ramifications of a contract. 
Consequently, the scenario is typical for a situation where automated legal 
advice seems necessary. 

3 Software Agents 

3.1 Agent Characteristics 

Open electronic markets fall into the class of loosely coupled distributed 
information systems. Agents are a useful design principle to describe the 
components in such a system if the emphasis is on the services that the 
components provide. Agents may describe both the real world where the 
physical participant is called the principal and the technical world with 
software agents. The two are related: The principal keeps major responsi-
bilities but delegates others to particular software agents. 



180      Antje Dietrich, Peter C. Lockemann, Oliver Raabe 

The usefulness of the agent approach derives from their property of 
autonomy: There is little or no central control in loosely coupled systems, 
instead each component must be capable of controlling its own progress. 
The autonomy is not unrestrained [22]. An agent provides a specified ser-
vice. To render the service the agent must be capable of perceiving its en-
vironment (including other agents), and of responding somehow to the 
changes that occur (called reactive behaviour). Since the environment pro-
gresses somewhat unpredictably, the agent must be guided by goals given 
on its way, with goal deliberation and means-end assessment as parts of 
the overall decision process of practical reasoning. An agent may also have 
to be proactive, that is, to take the initiative in pursuance of its goals. 

3.2 Multiagent Systems 

A (distributed) system of software agents is called a multiagent system if 
the individual agent can attain its goals only with the help of others. Mu-
tual support is contingent on existence of a shared (high-level) purpose, or 
goal. For example, in our scenario the individual goal of an agent is to ob-
tain the best possible deal as a supplier or consumer, whereas the overall 
goal is to ensure that the decentralized energy market functions efficiently 
and conforms to legal norms. 

To pursue the shared goal or procure help, a software agent must be ca-
pable of interacting with other agents. Due to the autonomy of the compo-
nents, all communication between agents can only be asynchronous and, 
hence, message exchange is the primary means for the agents to coopera-
tively pursue the high-level goals. The agents must agree among them-
selves what the rules of engagement are. These rules define their interac-
tion protocol. A well-known standard is the contract net protocol [22]. 

3.3 Agent Types 

The notion of agent is too generic to be of immediate value to the concep-
tual design of loosely coupled information systems. Not all of the charac-
teristics mentioned before may be needed, at least not to the same degree. 
Therefore, the literature differentiates among three types of agents [21]. 

The reactive agent emphasizes reactivity over proactivity and goal-
directedness. Basically it works from rules “situation  action” that spec-
ify for each possible sensory input which action the agent should (immedi-
ately) perform upon this input. During execution, the agent takes its sen-



Agent Approach to Online Legal Trade      181 

sory input and matches it against the conditions for each action, taking (by 
inhibition) conflicts into account, that arise if more than one rule applies. 

If the emphasis is on proactivity and goal-directedness while reactivity 
is of little importance, the solution is a deliberative agent. These agents 
store and maintain a model of their environment, and new sensory input is 
placed in the model as a perception. At some point in time the agent con-
sciously starts a logical reasoning process. The best known among this
agent type is the belief-desire-intention (BDI) agent. The agent takes its 
beliefs, i.e., the sensory input accumulated over time, and its desires, i.e., 
its goals, and forms intentions about what it is going to do in the future. In-
tentions are courses of action to which an agent commits itself. 

A BDI agent shows poor reactivity because the reasoning process ap-
plied to a sensory input is so slow that the action may no longer be appro-
priate by the time it has been derived. Therefore, in order to combine both 
reactive and deliberative mechanisms a special hybrid agent makes more 
sense. A well-known example is the InteRRaP architecture that consists of 
three layers, each equipped with a database: A behavioural layer for reac-
tive situation-action rules, a plan layer for goal-directed proactive plan-
ning, and a co-operation layer for modelling and handling interaction with 
other agents [13]. If an input cannot be handled on a layer, the situation is 
escalated to the next higher layer.

4 Negotiation 

4.1 Basic Workflow 

Contracts are a matter of bilateral or multilateral negotiation and agree-
ment. Jennings et al. argue in a survey paper that negotiation is the most 
fundamental mechanism for managing inter-agent dependencies such that 
a group of agents comes to a mutually acceptable agreement on some mat-
ter [8]. Ludwig et al. distinguish between negotiation protocol and nego-
tiation strategy, where the former determines the rules by which the parties 
must abide and thus the flow of messages between the parties, and the lat-
ter the way in which a given party acts within the rules to secure the best 
private outcome [14]. Our scenario differs from all these studies in that it 
embeds the negotiation proper into a legal framework: Laws ensure that 
contracts – however arrived at – meet certain societal norms. Conse-
quently, two interleaving but distinctive tasks must be solved: Negotiating 
a contract and checking it for legal compliance. Following the proven 
software principle of separation of concerns we delegate each task to a 



182      Antje Dietrich, Peter C. Lockemann, Oliver Raabe 

separate agent – both with the same principal –, a contract negotiator and a 
legal advisor. 

Fig.1. Workflow for contract negotiation 

Figure 1 shows the negotiation process in the form of a basic workflow. 
Assumptions underlying the workflow are that suppliers publish standard 
contracts in the form of tariffs – perhaps for different classes of users and 
varying over days and hours within a day – and general terms and condi-
tions (GTC), but that they allow to a certain degree to negotiate from them. 
Further, the legal basis is assumed to be Section 150 (2) BGB (the German 
civil code) where acceptance of an offer conditioned on further revision is 
considered a new offer. We note that, therefore, it is the consumer who 
starts with the first offer, and the supplier who closes with the final offer. 

Figure 1 also indicates that the consumer – or more precisely, the con-
sumer contract agent – may first engage an optimizer service. Provided the 
customer’s load profile is known the optimizer ranks in monetary terms the 
suppliers on the basis of their published rates. This allows the consumer 
agent to select a specific supplier. The agent then starts with its offer by 
including further factors with no direct monetary valuation. The supplier 
contract agent may accept it, or it may return a counteroffer, which the 
consumer agent may now accept or counter with a new offer. Ultimately 
the two agents either may come to an agreement, or one may break off the 
process. Figure 1 also indicates that each agent may consult with its legal 
advisor agent when a new offer arrives (shown in the figure) or after it 
modified the incoming offer. 

In general the workflow will be more complicated. For example, the 
consumer agent may return to the ranked list and select the next supplier if 
it is not satisfied with the negotiation. Usually the provider of the electric 

optimizer
service

customer
customer

contract agent
customer legal 

advisor
supplier legal 

advisor
supplier

contract agent
supplier

customer intention
query

product description draft of offer
commented offer

offer incoming offer
commented offer

accepted offer
final offer

recommendation

notification

notification

modify
offerrevised offer

incoming offer
commented offer

revised offer
incoming offer

commented offer

modify
offer

may be 
repeated
n times



Agent Approach to Online Legal Trade      183 

grid for transporting the energy must be included as a third party. Also, on 
a more technical level we would have to include a service for enforcing se-
curity during establishing the connection and the message exchange, and 
an archiving service for tracking and reconstructing the negotiation proc-
ess.

4.2 Contract Agent 

4.2.1 Agent Type 

All participants have considerable leeway within which to act. As a result, 
the fellow negotiators’ behaviour appears fairly unpredictable – non-
deterministic – to each negotiator so that a heavy dose of goal-directedness 
and logical reasoning, and even some proactivity is needed. On the other 
hand, the workflow shows little in terms of reactivity. This suggests the 
BDI type as the best solution for the contract agent. 

4.2.2 Beliefs 

Beliefs represent the organized input accumulated over time. To function 
properly, the contract agent’s beliefs must hold a user model, i.e., a model 
of its principal whose interests it has to pursue, and a history of the current 
negotiation as it evolves between the agent and the other party. 

In our scenario the contract agent starts the negotiation with the opti-
mizer input as the basis. Consequently, the negotiation concerns non-
monetary factors only. Typically, many are of a business nature with legal 
ramifications. Take agreements on form, applicable law, jurisdiction, li-
ability provisions, warranty terms, contract duration, or terms of notice. 
Others may have a social touch such as the percentage of energy from re-
newable sources. The user model assigns valuations to these factors. 
Therefore we refer to the user model as the user’s preferences. Currently 
we allow six preferences. These are listed in Table 1. 

Owing to the layperson nature of many principals the options for the 
preferences are given in linguistic terms. The standard approach to the in-
terpretation of such terms is fuzzy sets [9,33]. To give very simple exam-
ples of rectangular membership functions, contract durations short, me-
dium and long could be 8 months or less, 9 to 16 months, and 17 months 
or more, respectively. 



184      Antje Dietrich, Peter C. Lockemann, Oliver Raabe 

Table 1. Preferences in the energy scenario 

preference options comment
legal form weak, advanced, qualified proven strength of digital 

signature 
applicable legal system D, CH, AT options for cross-border 

trade
successful outcome important, unimportant priority for closing the 

contract 
contract duration short, medium, long  
period of notice short, medium, long acceptable week range 
consideration of renewable 
sources

high, low 

The same agent may sometimes act as a supplier and at some other time 
as a consumer. In this case we have to provide two sets of preferences. 

We assume that the history does not extend beyond the current negotia-
tion so that the agent does not show inexplicable behaviour due to earlier 
but uncontrolled learning. Given the user model, the history simply reflects 
the current valuations of the preferences, whether these are still subject to 
negotiation or have already been agreed upon by the two parties. 

4.2.3 Desires 

In the BDI concept desires play the roles of goals. The overall goal is 
straightforward: Given the optimal tariff, the two parties wish to maximize 
their own benefits in terms of the preferences. In all likelihood they will 
have to enter into some compromises. Therefore, it makes sense to com-
pute the benefit from the preferences in terms of a utility function. The in-
dividual goals are reflected by the relative weight associated with each 
preference, possibly by weight functions if interdependencies must ob-
served among the preferences (for example, between contract duration and 
period of notice), and by the threshold for an acceptable benefit. 

The desires may also include the agents’ attitudes. An agent may pro-
ceed in a greedy or cooperative fashion depending on how much under-
standing it is willing to develop for the other party, and it may be patient or 
impatient depending what upper time limit it tolerates for the negotiation. 

4.2.4 Intentions 

The courses of action are best explained by the view of the negotiation that 
the contract agent carries with him (Figure 2). Parameters are the kind of 



Agent Approach to Online Legal Trade      185 

proposals generated, the content of the alternatives, the number of itera-
tions pursued, and the break-off decisions. 

Fig. 2. Contract negotiation as intentions 

4.3 Reasoning Process 

The reasoning process implements the specific negotiation strategy of the 
agent and produces the actions. We assume that all strategies follow com-
mon ground rules: 

Each party (consumer and supplier) tries to negotiate a contract that ma-
ximizes its own utility. 
Neither party knows the current strategy (including the preferences) of 
the other party. 
Either party may break off the negotiation with acceptance or rejection. 

The negotiation strategy can be seen as a decision-making model of the 
single agent while it is contemplating the next step. It follows from the as-
sumptions that decisions must entirely be based on criteria owned by the 
agent itself. This is the main justification for the heavy reliance on prefer-
ences. Given one’s own valuation of a preference, and a value or an inter-
val as a counteroffer for the preference, the agent can compute a utility of 

Initiator Responder

1: propose (offer 1)

1. Preliminary offer
2. Possible responses

by responder
3. Possible responses

by initiator

2: reject - proposal

2: accept - proposal

2: propose (counteroffer)

3: accept - proposal

3: reject - proposal

3: propose (offer 2)

break

break

case

case

0...*

case

0...*

Alternative
responses

Iterations

Arbitrary
breakoff

break



186      Antje Dietrich, Peter C. Lockemann, Oliver Raabe 

this preference and the total utility over all preferences. Given this utility, 
the agent continues with the negotiation protocol on the basis of utility 
threshold, order of preferences if the preferences are mutually independent, 
greedy or cooperative strategy and degree of patience, possibly utilizing 
the accumulated negotiation history. Since the utility function contains a 
large number of parameters, the agent may have to apply an optimization 
function to decide on the next counteroffer. Further, since many of the 
aforementioned criteria are of a gradual nature, reasoning is technically re-
alized on the basis of manipulating fuzzy sets [20]. 

5 Legal Assistance 

5.1 Legal Advisor Agent 

In the scenario of Section 2.2 there is a clear need for legal assistance
while inspecting the contract or negotiating for specific conditions, but 
there is no economical benefit or even the time to consult one. Hence, the 
only way to act with the necessary legal confidence would be for both 
sides to employ some means for automated legal advice. The workflow of 
Figure 1 illustrates how legal advice is incorporated into the agent negotia-
tions.

As Figure 1 shows the legal advisor agent is contacted by its own con-
tract agent several times and for two or three distinctive purposes. Suppose 
the consumer, after having consulted the optimizer, initiates the negotia-
tion with a non-binding offer. Before the consumer agent approaches the 
identified supplier it consults with its legal advisor to check the offer (ini-
tial check). After the consumer contract agent received a – possibly modi-
fied – offer from the supplier agent it again consults with its legal advisor 
who may suggest additional modifications and thus may cause a – now 
binding – offer to be returned to the supplier agent. This may continue 
several times until the consumer agent feels its preferences have been met, 
and the legal advisor in a final check recommends acceptance on legal 
grounds (the check may include further legal domains such as consumer 
protection law), or the negotiation has come to a dead end.  

Likewise, the supplier contract agent will involve its own legal advisor 
agent. Whenever it receives a new offer from the consumer agent it will 
consult with its advisor and perhaps receive suggestions on how to modify 
the offer from a legal standpoint. 

Clearly then, the legal advisor agent assumes a much more passive role 
than the contract agent. Whereas the contract agents are the ones driving 



Agent Approach to Online Legal Trade      187 

the entire negotiation process, a legal advisor agent becomes active only 
upon explicit request by the contract agents. It is the typical reactive agent. 

5.2 A Bird’s Eye View of Legal Reasoning 

5.2.1 Legal Norms 

Legal reasoning is a highly complex intellectual process that is influenced 
by numerous factors such as the legal framework within which one oper-
ates (take the Continental European norm-based system of positive law 
and the Anglo-American case-law), cultural tradition, an attorney’s spe-
cialization, a judge’s experience and philosophical outlook, or the specific-
ity or vagueness of a norm). Consequently, we have to begin by deciding 
on the framework – it is norm-based –, on the specificity of the norms – by 
relying on GTCs we will be able to avoid much vagueness – and also on 
the narrowness of the domain – we restrict ourselves to electronic energy 
trade and data protection. 

To integrate legal reasoning into an agent we need an abstract model of 
the legal norms. Decisions are taken on the basis of primary norms. These 
norms determine a legal consequence (LC), given one or more states of 
facts (SF). Take as an example from the German Federal Data Protection 
Act (FDPA, in German: BDSG)1

[Section 4a FDPA Consent shall be effective (LC) when based on the data 
subject's free decision (SF1). [...] Consent shall be given in writing 
(SF2)[...].]2

Not all norms fit this pattern. Rather some norms have a supporting 
function in that they explicate the meaning of a state of facts in some other 
norm (statutory definitions). Take 
[Section 4 FDPA The collection, processing and utilization of person-
related data shall be admissible only if permitted or prescribed by this Act 
[...] or if the data subject has consented.] 
where a prior paragraph explicates 
[Section 3 FDPA “Person-related data” means any information [SF1] 
concerning the personal [SF2] or material [SF3] circumstances of an iden-
tified [SF4] or identifiable [SF5] individual [...].] 

                                                     
1 We take FDPA as an example because it is an excellent example for a modern 

law that supports automatic inferences. Further, its importance in our scenario 
derives from the fact that while parties to a contract may have to make personal 
data available, these must only be processed if a legitimate interest exists. 

2 Translated from the German original. 



188      Antje Dietrich, Peter C. Lockemann, Oliver Raabe 

The example Sec. 4 FDPA includes another function: The second part is 
of a character akin to flow control in that it determines whether the norm 
applies at all, and if it does, it offers alternative routes of argument. Other 
norms have the purpose of determining exceptional situations where some 
other norm can be applied or should be excluded, or that impose further 
obligations on the parties involved. 

5.2.2 Legal Reasoning 

Legal reasoning is an intellectual affair, but fortunately there are a number 
of legal philosophies that try to explicate this process (for the German le-
gal system see, e.g., [18]). We base our approach on the work by Larenz 
[10]). Somewhat simplified, the jurist – most likely by experience – has 
some idea of the legal consequence he or she wishes to attain. This in turn 
determines a limited set of primary norms from which to start. Each of 
these norms must now be inspected in order to determine whether the 
given situation matches the state of facts demanded by the norm. This may 
in turn require the jurist to look for statutory definitions. Other norms may 
refer the jurist to related norms that may him or her implore to pursue al-
ternative routes or exceptions. Technically speaking, what the jurist even-
tually constructs is a (hopefully acyclic) graph of norms that ultimately al-
lows a decision of whether the originally intended legal consequence can 
be reached. 

If this sounds familiar to Artificial Intelligence researchers, there is in-
deed a strong similarity to theorem proving. Clearly the human mind will 
not be able to handle a comparable complexity, so jurists economize by 
learning how to prune the graph early enough, and to dynamically build up 
frequently occurring norm graphs during their daily practice. 

5.2.3 Subsumption 

According to Larenz, the norms in the positive law do not address singular 
cases but rather cover general classes of real-world situations. On the other 
hand, the jurist faces a specific real-world situation. Hence, before s/he 
even begins with legal reasoning s/he must try to find the norms whose 
general domain covers the situation (subsumes the situation). The jurist 
applies an intellectual process referred to as subsumption.

Subsumption is an interpretative process. Consequently, to mechanize 
subsumption the semantics must be considered, and these should go be-
yond thesauri. Ontologies hold particular promise because they reflect se-
mantic relationships between terms, and these relationships can particu-
larly be defined such that they directly support the subsumption process. 



Agent Approach to Online Legal Trade      189 

Lately, by providing a sound formal underpinning on the basis of descrip-
tion logic powerful inference mechanisms have become possible for on-
tologies.

5.2.4 Ontologies 

Ontologies are tedious to build. Consequently there should be more and 
smaller ones. For example, for subsumption purposes we may have one for 
the legal domain and another for the application domain – in our case en-
ergy generation, consumption and trading. Take Figure 3. The legal ontol-
ogy shown reflects the statutory definition Sec. 3 FDPA – except, though, 
for the legal terms “identifiable” and “identified”. On the bottom is a small 
excerpt of the domain ontology. Provided we already know that someone 
is an individual) we should match, by subsumption, name and email ad-
dress (that are shown to be personal information) to person-related data in 
the sense of the legal ontology. 

Our most important contribution is to explicate the reasoning behind the 
match in a third ontology which incorporates judicial metaknowledge, i.e., 
operational knowledge guiding the subsumption process. Metaknowledge 
summarizes how a certain community of jurists arrives in several steps, by 
textual, historical, systematic and teleological interpretation, at associating 
concrete facts with a legal term that has no direct counterpart in the do-
main ontology and may thus be subject to judicial opinion. Take again 
Figure 3. The rule on top reflects the primary norm Sec. 4 FDPA and con-
tributes to norm graph building. The rule relies on the statutory definition 
Sec. 3 FDPA. As indicated above, the legally appropriate interpretation of 
the terms “identifiable” and “identified” may be a matter of judicial opin-
ion. The meta-knowledge in Figure 3 provides the necessary guidance to-
gether with the associated rule shown in the Figure. In essence, to be iden-
tifiable the information must objectively be knowable, and it must be made 
known with subjectively limited effort. 

Ontologies are even more versatile. For example, one could translate 
some of the statutory definitions into the ontology and thus prune the norm 
graphs even further. Jurists may include in the ontology their own legal 
definitions of legal terms left consciously or unconsciously vague by law-
makers. Ontologies may even render help if the jurist must resort to con-
clusion by analogy because a given situation seems not covered by law. 
Ontologies may thus become powerful though not unlimited tools for 
automated legal advice, a promise that still has to be explored and under-
stood at length. Some related work can be found in [5,19]. 



190      Antje Dietrich, Peter C. Lockemann, Oliver Raabe 

Fig. 3. Linked ontologies (explanation in the text) 

5.2.5 Example 

Suppose A stores B’s name and email address. B has consented that A may 
pass on these data. A plans to give the data to C. C is a company affiliate 
of A. Case: May A pass on the email address? 

Step 1: Determine the relevant primary norm. Sec. 4 FDPA is found. 
Step 2: Preliminary check: Is the norm applicable? According to Sec. 4 

FDPA, the legal consequence of permission to pass is given if passage of 
the email address is either collection, processing or utilization of person-
related data. The statutory definition of person-related data is found in Sec. 
3 FDPA. Subsumption via domain ontology: B is natural person, name and 
email address are distinctive information. Subsumption via legal ontology: 
Is person identifiable, i.e., can email address be associated with a specific 
person? Answer can be found via the metaknowledge in Figure 4. More 
specifically, can one tell purely from the address format whether it is le-
gitimate? Does one happen to know or can one find out with modest effort 

Primary rule:
personal data
if information
and identified or identifiable
and individual

identified
antonym

identification
objectively
possible

identification
subjectively

possible

identifiable

information individual
person-related

data
legal
ontology

metaknowledge

metarule:
identifiable
if not identified
and identification objectively possible
and identification subjectively possible

individual
identification
subjectively

possible
information

domain
ontology

eMail address
name



Agent Approach to Online Legal Trade      191 

whether it refers to a specific person (subjective identification)? This 
should be possible under the circumstances A is in. Hence, name and email 
address are person-related data. By further statutory definition, processing 
is storing, modification, deletion, or transmission. Next definitions: 
Transmission is information of a third party. Third party is any party out-
side the responsible party. Responsible party is the one that processes the 
data for its own purposes. Conclusion: Company affiliate is third party. 
Consequence: Sec. 4 FDPA is applicable. 

Step 3: Application of the norm. Is the intended utilization permitted? 
According to Sec. 4 FDPA, A needs legal permission or the affected per-
son’s consent. Priority is on the latter. Sec. 4a FDPA explicates the formal 
conditions of consent. Subsumption: B’s agreement meets the condition. 
Conclusion: A may give the data to C. 

6 Implementation 

It is often argued that the sole purpose of agent technology is for the con-
ceptual design of loosely coupled distributed information systems. Indeed, 
it does not follow from such a design that the software implementation 
must necessarily follow the agent principle. There are some advantages if 
it does, though. In particular, it may be easier to verify that the implemen-
tation satisfies the design. 

To gain first experiences we developed a quick prototype using the 
FIPA compliant agent platform JADE [1]. While JADE does not directly 
support BDI agents it allowed us to experiment with the organization of 
the contract agent. We used the methods of “Prometheus” [17] for specify-
ing, designing and implementing the contract agent. Despite the relatively 
simple conceptual structure of the contract agent the implementation con-
sists of close to 50 Java classes. 

The legal advisor is much more demanding. We restricted ourselves to 
standard business transactions, i.e., those that follow specified standard 
contracts. For these chances are reasonable that the semantics can largely 
be formalized via an ontology, and norm graphs can evolve fairly quickly 
This is a conclusion that is borne out by earlier attempts to automate spe-
cial sections of the law [2,6]. 

Figure 4 shows the basic architecture. It follows the reference architec-
ture based on the layering pattern as proposed by Lockemann and Nimis 
[12,13]. Major layers are the ontology layer to support the subsumption 
process, and a behavioural layer for classical logical rule processing to 



192      Antje Dietrich, Peter C. Lockemann, Oliver Raabe 

model legal reasoning. Both layers include components for the domain and 
legal experts to build the ontology and the rule base. 

Fig. 4. Legal advisor agent architecture 

The behavioural layer includes a rule engine, and the legal norms and 
summarized norm graphs are expressed as logical rules in the format re-
quired by the rule engine. In our first experiments the rules are translated 
into Java code, and rule processing is by means of the rule engine JESS. 
As noted in Sec. 5.2.2, legal reasoning starts from some legal consequence 
the jurist wishes to attain, and a primary norm that may support the conse-
quence, and then works its way backwards to construct a norm graph. 
Consequently, inference by rule processing should primarily employ 
backward chaining (sometimes legal obligations must be derived by for-
ward chaining). As a further complication, the order in which rules are ap-
plied, i.e., are arranged in the graph, is significant. 

For managing ontologies we used the framework KAON [15]. Unfortu-
nately, KAON only offers navigational means such as path expressions to 
exploit the semantic network. This is a far cry from any inference on the 
basis of description logic as suggested in Sec. 5.2.3. A successor to 
KAON, KAON 2 includes a description logic reasoner [7], although it im-
poses a number of restrictions on the logic to make reasoning decidable 
and tractable. Ontology reasoning seems important because rule processing 
and ontology processing should take place in an interleaved fashion.  

dialog component
(interaction with
contract agent)

explanation component
(recommendations,
comments)

rule engine

norms

norm graphs

subsumption

Graphical
modeling
of rules

Graphical
ontology
modeling

ontology services ontology

Agent framework



Agent Approach to Online Legal Trade      193 

7 Conclusions 

The work reported in this paper is part of the SESAM project [4] which in 
turn is one of seven projects in the nationwide German initiative on an 
“internet economy”. The scenario of Section 2 underlies the SESAM pro-
ject. While it may sound futuristic we have the support of one of the large 
German energy providers who plans first experiments to test the prerequi-
site technical mechanisms and their acceptance. 

For the proof of concept a demonstrator has been developed. The dem-
onstrator includes technical guarantees that the processes in an open elec-
tronic market follow legal guidelines of trust and confidentiality [3]. 

Our foremost challenge is to carry our ontology approach to subsump-
tion to much more depth. This requires a much more detailed study of link-
ing ontologies. We hope to profit from recent studies by Lin, Sølvberg et 
al. [11]. 

One may ask oneself whether contracts negotiated by software agents 
have any legal standing at all, i.e., whether software agents can conclude 
legally valid contracts. Nitschke argues in [16] that even though the agent 
generates the contractual declaration, the declaration is generally based on 
the principal’s will. For this reason and because a principal needs to will-
ingly activate and instruct his agent in order to make it conclude contracts 
on his behalf, the agent’s declarations can be ascribed to the principal and 
can therefore be regarded as declarations issued by the principal. 

References 

[1] Bellifemine, F.; Bergenti, F.; Caire, G.; Poggi, A.: JADE – a Java agent de-
velopment framework. In Multi-Agent Programming ed by Bordini, R.; Das-
tani, M.; Dix, J.; El Fallah-Seghrouchni, A.  (Springer, New York 2005) 125-
147 

[2] Bohrer, A.: Entwicklung eines internetgestützten Expertensystems zur 
Prüfung des Anwendungsbereiches urheberrechtlicher Abkommen, 2003  

[3] Conrad, M.: Non-repudiation mechanism for peer-to-peer networks. Proc. 2nd 
Conf. On Future Networking Technologies (CoNEXT) 2006, 249-250 

[4 ] Franke, M., Rolli, D., Kamper, A., Dietrich, A., Geyer-Schulz, A.Lockemann, 
P., Schmeck, H., Weinhardt, C.: impacts of distributed generation from virtual 
power plants. Proc. 11th Annual Internatl. Sustainable Development Research 
Conf., 2005, 1-12 

[5] Gangemi, A., Sagri, M.-T., Tiscornia, D.: Metadata for content description in 
legal information. Proc. 5th Int. Conf. on Databases and Expert Systems 2003 

[6] Haft, F., Lehmann, H.: Das LEX-Projekt: Entwicklung eines Expertensystems. 
Attempto 1991 



194      Antje Dietrich, Peter C. Lockemann, Oliver Raabe 

[7] Hustadt,U., Motik,B.,  Sattler,U.: Reducing SHIQ description logic to disjunc-
tive Datalog programs. Proc. 9th Int Conf. on Knowledge Representation and 
Reasoning. AAAI 2004, 152-162 

[8]  Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Sierra, C., 
Wooldridge, M.: Automated negotiations: prospects, methods and challenges. 
J. of Group Decision and Negotiation 10(2), 199-215 (2001) 

[9]  Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty and Information (Prentice-
Hall, Englewood Cliffs 1988) 

[10] Larenz, K. Methodenlehre der Rechtswissenschaft (Springer, Berlin Heidel-
berg New York 1991) 

[11]  Lin, Y., Strasunskas, D., Hakkarainen, S., Krogstie, J., Sølvberg, A.: Seman-
tic annotation framework to manage semantic heterogeneity of process mod-
els. Proc. 18th Conf. on Advanced Information Systems Engineering. Lecture 
Notes in Computer Science vol 4001 (Springer, Berlin Heidelberg New York 
2006) 433-446 

[12]  Lockemann, P.C.; Nimis, J.: Dependable multi-agent systems: layered refer-
ence architecture and representative mechanisms. To appear in Lecture Notes 
in Artificial Intelligence (Springer, Berlin Heidelberg New York 2007) 

[13] Lockemann, P.C., Nimis, J., Braubach, L., Pokahr, A. Lamersdorf, W.: Ar-
chitectural design. In Multiagent Engineering ed by Kirn, S., Herzog, O., 
Lockemann, P., Spaniol, O. (Springer, Berlin Heidelberg New York 2006) 
405-429 

[14] Ludwig, S.A., Kersten, G.E., Huang, X.: Towards a behavioural agent-based 
assistant for e-negotiations. Proc. Montreal Conf. on E-Technologies 
(MCETECH), 2006 

[15] Maedche, A., Motik, B., Stojanovic, L.: Managing multiple and distributed 
ontologies in the Semantic Web. The VLDB Journal 12(4), 286-302 (2003) 

[16]  Nitschke, T.: Legal consequences of agent deployment. In Multiagent Engi-
neering ed by Kirn, S., Herzog, O., Lockemann, P., Spaniol, O. (Springer, 
Berlin Heidelberg New York 2006) 597-618 

[17]  Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems – A Prac-
tical Guide (Wiley, Chichester 2004) 

[18]  Ring, S. Computergestützte Rechtsfindungssysteme, Voraussetzungen, Gren-
zen und Perspektiven, München 1994 

[19]  Senn, A., Schweighofer, E., Liebwald, D., Geist, A., Drachsler, M.: LOIS: 
Erfahrungen und Herausforderungen bei der Weiterentwicklung multilin-
gualer Rechtsontologien. In e-Staat und e-Wirtschaft aus rechtlicher Sicht ed 
by Schweighofer et al. (Boorberg 2006) 290-295 

[20] Weisbrod, J.: A new approach to fuzzy reasoning. Soft Computing 2, June 
1998 

[21] Weiss, G. (ed.): Multiagent Systems, A Modern Approach to Distributed Ar-
tificial Intelligence (MIT Press, Cambridge 1999) 

[22]  Wooldridge, M.: An Introduction to Multiagent Systems (Wiley, Chichester 
2002) 

[23] Zadeh, L.A.: PRUF – a meaning representation language for natural lan-
guages. Int. J. for Man-Machine Studies 10, 395-460 (1978) 



Methods and Tools for Developing Interactive 
Information Systems  

Anthony I. Wasserman 

Carnegie Mellon West, USA 

Abstract. This paper describes the evolution of hardware and software technology 
over the past three decades, focusing on approaches for building interactive informa-
tion systems and web applications. Successive generations of technology have used 
advances in hardware and software technology, along with increasingly sophisticated 
development methods and tools, to reduce development times and to produce a better 
user experience. After describing the key technology characteristics of each genera-
tion, this paper also describes the evolution of a specific methodology, User Software 
Engineering, from its origins in the 1970’s to its applicability to the development of 
modern Web applications.

1 Introduction

The processes and tools for developing interactive information systems 
(IIS) have changed drastically over the past three decades. Users of these 
systems have moved from slow, text-based systems in the 1970’s to 
today’s high-speed Web-based applications. Methods for developing these 
systems have evolved from the phased waterfall approach of the 1970’s to 
more agile approaches commonly followed today. Similarly, the tools for 
creating these systems have evolved rapidly, reflecting changes in 
hardware technology, user interfaces, development notations and 
languages and mechanisms for collaboration among members of a team. 

Looking back over the history of hardware and software technology, it 
is helpful to identify different generations of this technology that had a ma-
jor impact on the processes used for building an IIS and the nature of the 
resulting system. 



196      Anthony I. Wasserman 

2 First Generation: Mainframes, Batch and Files 

In the 1960’s, most computing was batch-oriented, with few interactive 
systems. Graphical displays were available for some highly-specialized 
applications, such as radar tracking. Early database management systems 
used a hierarchical or network oriented view of data and were deployed on 
large mainframe systems. Terminal devices were slow (300 baud) and 
resembled teletypes, displaying text only in uppercase and printing on rolls 
of paper. The slow speed severely limited the amount of interaction. 
Among the first interactive applications were airline reservation systems, 
financial applications and military applications, such as radar tracking. 
These systems, in general, used file systems rather than a DBMS to store 
information, reflecting the need to obtain the best possible performance 
from the limited capabilities of the hardware. The first interactive 
programming environments, such as BASIC, also were developed at that 
time, making use of the early time-shared operating systems. 

Development techniques for interactive systems were in their infancy, 
since there was almost no experience in building them. There were no 
analysis and design methods, no database modelling methods, or any of the 
other techniques that are now common. Modelling was at the procedural 
level, e.g., flowcharts, and at the logical level for files and data. In sum-
mary, the various hardware and software pieces for building an IIS weren’t 
yet in place. For software professionals about to retire, the first generation 
reflects the situation at the beginning of their careers. 

3 Second Generation: Time-Sharing, Terminals and Early 
DBMSs

The widespread presence of time-shared operating systems and 
alphanumeric video terminals transformed computing in the 1970’s. 
Furthermore, this technology was available on minicomputers, such as 
those made by Digital Equipment Corporation, making it practical for 
almost every organization to obtain one. Primitive networks were in place 
to provide remote access to computing, including low-speed dialup. 

The user interfaces were still text-based, but gradually moved from be-
ing line-oriented (glass teletype) to screen-oriented. While the first win-
dowing systems were being developed in research settings, they were not 
generally available. Database systems had matured, but they remained very 
expensive. The first relational database management systems and the SQL 
query language were also introduced as research projects in the 1970’s. 



Methods and Tools for Developing Interactive Information Systems      197 

The first analysis and design methods also emerged in the 1970’s, includ-
ing Parnas’ principles of modularity [10], Structured Design [15], Struc-
tured Analysis [4] and many more. Data modelling methods also appeared, 
including Chen’s Entity-Relationship Modelling [3] and Bubenko’s Infer-
ential Abstract Modelling [2], though these were still primarily of interest 
to the research community and not to the average IIS developer. Sølvberg 
proposed techniques for integrating some of these models [16]. 

Nonetheless, all of the pieces were in place for the earliest interactive 
information systems. Bank tellers used terminals to process user transac-
tions. Travel agents installed terminals for an airline reservation system 
and learned the arcane text commands for checking schedules and booking 
reservations. Similarly, companies began using interactive systems for 
managing their business, including accounting and order processing. While 
many of these systems were very primitive by today’s standards, they were 
the vanguard of the transition to interactive computing.  

4 The Origins of User Software Engineering 

The User Software Engineering (USE) methodology was conceived during 
this period (1975-1980) [19]. USE added the user perspective to function 
and data design for overall system design. At that time, systems were 
frequently imposed on users, and users rarely participated in definition and 
design of a system. Systems were architected top-down or bottom-up. 

However, users have little interest in the structure of the system; their 
only concern is whether the system makes it easier for them to get their job 
done. What was needed for an IIS was not top-down design, but rather out-
side-in design, where "outside" represents the user's perception of the sys-
tem. Outside-in modelling is one of the most important concepts of the 
USE methodology. By emphasizing the external view of a system, it be-
came much easier to communicate with users.  

Each user interaction with the system was viewed as an event that could 
trigger an activity and/or a response. For example, the system could dis-
play a menu of choices to the user, with the user’s input determining the 
program action, eventually leading to either program termination or an-
other request for user input.  

The user interaction and the system behaviour were modelled as a hier-
archical set of transition diagrams. This approach had two major benefits. 
First, even on paper, it was possible to walk through a dialogue with a po-
tential user of a system, validating the overall scenario. Second, and more 



198      Anthony I. Wasserman 

significant, transition diagrams are a formal, executable model, making it 
possible to build an executable version of the emerging system.  

The executable nature of transition diagrams led to the most important 
innovation of the USE methodology: rapid prototyping of user interfaces.
The state transition diagrams, including specification of the user inputs and 
system outputs, were encoded in a transition diagram language TDL. This 
language also included the ability to specify executable program units. A 
tool, RAPID/USE, was built to interpret the TDL and execute the associ-
ated program units. In this way, RAPID/USE could be used both for proto-
typing the user interface and for running a complete program. 

In this way, users could begin to work with the emerging system at a 
very early stage of development, to the extent that they could actively con-
tribute to the definition of the system and the style of the user interface. 
This notion of user involvement in the software development process is, in 
many respects, the central idea of the USE methodology. The RAPID/USE 
system also gathered metrics on user behaviour, making it possible to track 
error conditions, task completion times and other measures of usability.  

In general, developers would start by designing part of the user inter-
face, implementing it and adding functions or pseudo-functions as place 
holders, as well as beginning design of the relational database model. This
incremental approach to application development was a sharp contrast to 
the waterfall approach in widespread use at the time. This approach is very 
much in line with today’s agile methodologies [7].  

The ability to separate the user interface component from the program 
operations led to another significant concept of the USE methodology: a
three-tier architecture. This notion was very similar to the Model-View-
Controller (MVC) approach first presented by Reenskaug [11]. 

Fig. 1. The three-tier architecture of the USE methodology (from [24]) 

This architecture shows the separation between the various components 
of the information system, anticipating client-server systems of the early 
1990’s and modern n-tier architectures. In addition, it shows the possibility 
of associating multiple user interfaces with a set of system operations. 
Such an approach permitted separate interface designs for novice and ex-
pert users, as well as an application programming interface that could be 
used to drive test cases or to integrate the system with another system. 



Methods and Tools for Developing Interactive Information Systems      199 

5 Third Generation: Personal Computers and WIMP   

The third generation focused on three dramatic changes in computing 
systems: graphical user interfaces (GUIs), powerful personal computers 
and computer networking. Rudimentary GUIs were built for Pong, 
PacMan, Spacewar and other arcade games, but GUIs were not generally 
available for general purpose systems until the release of the Apollo and 
Sun workstations in 1982 and the Apple Macintosh™, with its integrated 
windowing system, in 1984. With the Macintosh, the user interface shifted 
from the alphanumeric screen of video terminals to a bitmapped display 
using an interface style known as WIMP (windows, icons, menus and 
pointer). The GEM GUI provided a similar interface for PC DOS about a 
year later and supported colour as well. Microsoft Windows was 
announced about the same time, but it was not until Windows 3.1 was 
released in 1992 that PC users had a widely used GUI. 

The growth of personal desktop computing created a revolutionary 
change in applications. Previously, users had worked with “dumb” termi-
nals, with all of the computing being done on a remote machine. Suddenly, 
the personal computer could run applications locally or emulate a terminal 
running a remote program. From a software perspective, the WIMP ap-
proach came with a set of libraries, application programming interfaces 
(APIs) and user interface guidelines for building applications using each 
windowing system, with the result that there was a great deal of common-
ality among GUIs on a particular computing platform. Many platform ven-
dors offered incentives to software vendors to comply with the GUI guide-
lines, and users came to expect applications to comply with platform 
standards. By the early 1990’s, new applications were being built with 
GUI interfaces, though many older enterprise applications still used alpha-
numeric interfaces. 

In the same period, DBMSs became widely available. With the wide-
spread adoption of Unix, C became an important programming language 
for IIS applications, with C-based APIs for the windowing systems and the 
DBMSs.

These advances led to significant changes in methods and tools for IIS 
development. Instead of a text-based interaction with a file system, devel-
opers now wrote C code to build GUI interfaces on personal computers 
and to connect their application to local and remote RDBMSs. The MVC 
architecture and the WIMP interface were well-suited to an object-oriented 
programming paradigm, for which the C++ language was widely adopted. 

With these technology advances, the USE tools were no longer appro-
priate for prototyping of user interfaces. The WIMP interface could not be 



200      Anthony I. Wasserman 

easily modelled with the hierarchy of state transition diagrams that worked 
for text-based systems, since there would be far too many states and transi-
tions.

However, the process advocated in the USE methodology remained 
valid: use a succession of prototypes of the user interface to elicit user re-
quirements and to implement increasing functionality of the IIS. From 
there, various user inputs could be associated with program actions that in-
cluded the database operations for the various IIS functions. The emer-
gence of standard mechanisms for database access and for GUI manage-
ment led to common architectures for IIS development, making the 
development process more efficient and the resulting system more robust. 

The USE methodology could be used with advanced 4GL systems, such 
as PowerBuilder (now owned by Sybase), a rapid application development 
system including screen design and database access mechanisms. Power-
Builder, as with many other 4GL systems, was designed to be used in a 
client-server environment, providing the GUI interface on the user’s local 
machine and network connectivity to a remote RDBMS. 

In the area of software methods, structured approaches were being sup-
planted by object-oriented approaches, using hybrid notations such as 
OMT [12] and OOSD [23], pure OO notations such as Booch’s clouds [1] 
and the use case approach of Jacobson [5]. The OO approach and the use 
case notation worked well for the design of an IIS, since there is a mapping 
between these logical concepts and the implementation. 

Another key development of this generation was the growth of open 
source software, paralleling the development of the commercial software 
industry. Among the software packages released in source format were 
Berkeley Unix, the Ingres RDBMS, the USE rapid prototyping tools and 
the GNU software (Emacs, GCC etc.). Many of these free and open source 
components were suitable for inclusion in other packages, thereby reduc-
ing the time and effort needed to build new applications. 

6 Fourth Generation: The World Wide Web and Multi-tier 
Systems

The next major advance in technology for IIS was driven by the invention 
of the World Wide Web (including the HTTP protocol, the HTML 
language and URLs) by Tim Berners-Lee and his colleagues at CERN in 
1989, followed by the development and release of the Mosaic graphical 
Web browser, developed by Marc Andreesen and Eric Bina at the US 
National Center for Supercomputing Applications (NCSA) and released in 



Methods and Tools for Developing Interactive Information Systems      201 

late 1993. Andreesen and Bina commercialized their work at Netscape 
Communications, releasing the Netscape Navigator browser in 1994, a key 
milestone in the evolution of the Internet from a research tool to a 
ubiquitous resource for networked communications and services. 

The Web brought forth a new generation of user interfaces and a new 
way of thinking about applications and their development. There was a 
vast investment in new Web-based businesses, virtually all of which had 
the characteristics of an IIS, using a Web browser as the “local” front end 
connected to a remote server that implemented program behaviour and ac-
cessed one or more databases and other remote services. The mediation be-
tween the web browser and the server-side application code was the Com-
mon Gateway Interface (CGI), a standard way for an HTTP server to pass 
a user request to an application program and to receive data back to for-
ward to the user. 

For existing client-server systems, the advent of the Web provided an 
opportunity to replace a platform-specific GUI with a browser-based GUI 
as a way to modernize their systems, keeping much of the server-side in-
frastructure in place. However, the vast majority of Web applications were 
written from scratch and therefore had no need to accommodate older 
technologies. What was most important for many of the new start-up busi-
nesses was to get their website up and running as quickly as possible, as a 
way to gain a competitive advantage on potential competitors and to gen-
erate revenue for their business. In an earlier paper [21], we showed how 
our original implementation to the CRIS Conference Management System 
example [20] could be modified to present a Web interface. 

Interactive web systems could be divided into those that needed support 
for a large number of concurrent interactions and those that didn’t. For the 
latter category, new scripting languages, including Perl, Python and PHP, 
emerged. Clicking on an image map or on a web form “Submit” button 
could be associated with a server-side action implemented in one of these 
(or other) languages. These actions often included access to remote files 
and databases, with retrieved data formatted into HTML and passed 
through the CGI for display in the user’s browser. 

High volume and critical systems, such as those for e-commerce, travel 
and financial applications, needed a more robust and secure infrastructure, 
including server-side load balancing, firewalls, routers and support for 
transactions. While these systems were logically three-tier systems, they 
were, in practice, N-tier systems, replicating the web servers and applica-
tion servers, as well as adding clustered databases, content delivery sys-
tems, media streaming servers and/or online payment gateways. Many of 
these applications were built using what is now called Java Platform, En-
terprise Edition (Java EE, formerly J2EE), which provides built-in support 



202      Anthony I. Wasserman 

for access to shared resources and many other features needed for creating 
these sophisticated web applications.  

Over time, standard approaches for building such systems have 
emerged. For example, Sun Microsystems, which has controlled the Java 
standard until recently, has led the creation of a set of development guide-
lines, patterns and blueprints for building Java EE applications [8]. 

As Web applications have grown to predominate older client-server ap-
plications, the term “Web application” has effectively supplanted the term 
“interactive information system”, even though it is slightly narrower in 
some respects. 

Design and development of Web applications presents some new tech-
nical challenges, which have been addressed by a broad variety of new 
tools. As with older applications, the skills needed for design of the GUI 
are quite different from those needed to implement the functionality of the 
system. Over the past decade, tools for design of the Web interface have 
evolved from text-based HTML editors to WYSIWYG design tools (e.g., 
NVU and FrontPage) to web site design tools capable of applying a tem-
plate, cascading style sheets and links to CGI actions (e.g., Dreamweaver). 
Developers without graphical design experience can select from a vast 
number of pre-built site templates, making it quite straightforward to cre-
ate a prototype of the user interface and to test it with several different web 
browsers on popular platforms (Windows, MacOS, Linux). 

The design process for the conceptual data model, now often called “in-
formation architecture”, has remained relatively unchanged over the years. 
The ideas pioneered by Chen, Bubenko and others not only remain in 
widespread use, but have also been incorporated into numerous other mod-
elling notations, such as the Unified Modelling Language (UML) [13]. 

The widespread use of scripting languages for Web applications is very 
helpful for rapid prototyping and for the application of agile methodolo-
gies. One can iteratively define the database schema, adding new tables 
and columns to the schema as needed and writing the scripts to connect the 
actions specified in the HTML code to the appropriate computational and 
database modification actions.   

7 Fifth Generation: Richer User Interface,
Application Generation Tools and Open Source 

Among the primary difficulties in building Web applications are building 
usable Web user interfaces and making the application robust, scalable and 
secure. Web application performance is critical to the success of a site, 



Methods and Tools for Developing Interactive Information Systems      203 

since users quickly grow impatient with slow response times. Poor 
performance may be caused by any or all of the following: 

large images or streaming media transferred to the user’s browser; 
the nature of the HTTP protocol, which requires a separate call to the 
server for each item to be displayed in the browser 
inefficient database design or coding 
high traffic volume for the web site or a service used by the application, 
as well as high overall Internet traffic 

While this list is not complete, it serves to illustrate the complexity of 
building Web applications and the importance of the user interface design. 
Over the past few years, there has been a great deal of effort expended on 
overcoming these problem areas. We discuss three of these efforts:  

7.1 AJAX (Asynchronous JavaScript and XML) 

The technologies comprising AJAX are intended to reduce the amount of 
data traffic between the server and the browser by avoiding the need to 
reload an entire web page each time the user requests a change, with the 
result being a richer user experience. Many “Web 2.0” websites, such as 
Gmail, Basecamp and Flickr, use this approach, which also facilitates the 
development and use of Web applications offered as a service, such as the 
Zoho Office Suite and productivity tools. There are more than 100 toolkits 
to aid in the development of these interfaces, including toolkits developed 
by IBM (Dojo), Yahoo, Google and numerous start-ups. 

Use of such a toolkit is certainly a requirement for rapid prototyping of 
user interfaces, since hand coding of the Ajax interface can be extremely 
time-consuming and error-prone. Since the primary goal of prototyping is 
to gain a better understanding of the user requirements, it is difficult to jus-
tify additional time and effort on GUI design at the earliest stages of a pro-
ject, and it is often better to defer tuning the GUI until the use cases and 
functional requirements have been determined. 

7.2 Application Generation Tools 

Automatic generation of applications is a longstanding goal of the software 
development community and many development tools (e.g., Software 
through Pictures [22]) and 4GLs (e.g., PowerBuilder) have aimed to 
generate part of all of an application from high level or visual development 
tools. The Object Management Group has been the primary sponsor for the 



204      Anthony I. Wasserman 

Model Driven Architecture project, which allows specification of the high-
level architecture of a system independent of its implementation 
technology. Many companies have built products intended to generate an 
architecture from such a specification [9]. 

Automatic generation of a Web application is not easy, as it requires 
generation of the user interface, the database schema and the application 
logic in a way that links the separate pieces to one another. However, a 
vast body of knowledge about construction of Web applications has 
emerged, and there are now a variety of approaches. For many common 
types of Web applications, there are now website builder tools (e.g., City-
Max and Caspio Bridge) with which one can quickly create a customized 
site. Similarly, Wiki tools (e.g., MediaWiki) and content management sys-
tems (e.g., Drupal) can be used to rapidly build specialized applications. 
Zou and Zhang [25] have described a framework for automatic generation 
of e-commerce web applications. 

The Rails framework [17], built for the Ruby language [18], follows a 
different approach. Its creators describe Rails as “a full-stack framework 
for developing database-backed web applications according to the Model-
View-Control pattern.” When you create a new application with Rails, it 
generates the application framework automatically, using a database 
schema that you provide. It generates Ruby code to produce a basic web-
based interface. Powerful Web applications, such as the Basecamp col-
laborative project management tool (http://www.basecamphq.com), have 
been developed with Rails.

For the CRIS conference management application, one could start by 
defining the mailing list table as follows: 

CREATE table mailing_list 
(name varchar (30) not null primary key, 
affiliation varchar (63), 
detail_address varchar (255),
postcode varchar (15), 
city varchar (30), 
country varchar (30));

The generation process creates a web-based form with the fields linked to 
the columns of the table, with the needed HTML code being generated by 
the Rails framework. Showing the use of Rails for the entire conference 
management system is beyond the scope of this paper; a significant 
amount of hand coding in Ruby is needed above and beyond the parts that 
can be generated automatically. Nonetheless, Ruby on Rails goes a long 
way toward automated generation of a Web application. 



Methods and Tools for Developing Interactive Information Systems      205 

7.3 Open Source Software 

Free, libre and open source software (FLOSS) products have been widely 
used for many years. Among the most prominent of these open source 
products are the GNU Emacs text editor, the GNU Compiler Collection, 
Berkeley Unix, the Apache web server, the Eclipse development 
framework, the MySQL and PostgreSQL DBMSs, the JBoss Java EE 
application server, various distributions of Linux and scripting languages, 
including Perl, Python, PHP and Ruby. Today, there are hundreds of 
widely used open source products and thousands of open source projects. 

FLOSS products, both commercial and non-commercial, have made 
significant inroads into companies to support their software infrastructure. 
The Apache HTTP server, for example, is used for more than 60% of all 
websites. Beyond that, many FLOSS components have been integrated 
into leading software products. For example, SugarCRM is used with the 
Apache HTTP server, MySQL or PostgreSQL and PHP. In addition, many 
of the most heavily used websites, including Google and Yahoo, are built 
on FLOSS technologies, and the Windows operating system includes li-
censed open source components. 

More than 60% of Java developers now use the Eclipse development 
environment, causing vendors of traditional closed source environments, 
such as BEA and Borland, to link their development tools to Eclipse. As 
FLOSS products have grown in use, they have found their way into virtu-
ally every organization, either intentionally or accidentally.  

Early FLOSS projects were focused on development tools, small com-
ponents and middleware. In many cases, the project would create a FLOSS 
replacement for a piece of commercial software, matching the external 
specifications so that the open version could serve as a replacement for the 
closed one. More recently, there has been a growth in FLOSS applications, 
such as SugarCRM and OrangeHRM, that build upon an open source in-
frastructure.

Rather than designing and writing the CRIS conference management 
application from scratch, one now has the option of using an open source 
conference management system. The SourceForge repository 
(http://www.sf.net) contains more than 140,000 open source projects (of 
varying quality and maturity). Among them is the IAPR COMMENCE 
Conference and Meeting Management System [14]. COMMENCE uses an 
HTTP web server, along with MySQL and PHP. Since those components 
were already running on my server, it was possible to download 
COMMENCE, install it in the HTTP server directory, run the setup script 
to create the database and immediately use the application. All of the soft-
ware was freely available and the COMMENCE system comes very close 



206      Anthony I. Wasserman 

to meeting the original requirements for the CRIS system. A screen of the 
COMMENCE application is shown in Figure 2. 

The availability of this existing and freely usable open source project 
completely transforms the application development process. This un-
changed version of the COMMENCE application can serve as a working 
prototype for the desired application, and the source code can be modified 
to improve the user interface, as well as to address missing requirements 
and remove unwanted functionality from the original version. The total 
time required to find and install the application was less than an hour. 
Methodologies such as User Software Engineering and the Rational Uni-
fied Process [6] become essentially irrelevant in this setting. 

Fig. 2. Screen for COMMENCE Conference Management System 

Open source software is transforming the software industry and shifting 
the traditional build vs. buy decision process. There are a growing number 
of open source alternatives to traditional closed source applications and 
tools. As their numbers grow, developers will increasingly look toward 
these open source packages as key components for systems that they are 
designing and developing. This growing inventory of high quality FLOSS 
components may have a bigger impact on Web application development 
than any other aspect. 

8 Conclusion 

The nature of interactive systems has changed drastically over the lifetime 
of today’s computer science community. Severe limitations in storage 
capacity and processing speed are rarely an issue today. The nature of the 



Methods and Tools for Developing Interactive Information Systems      207 

user interface is much more intuitive, though also much more complex. 
The body of existing tools provides much more powerful application 
development capabilities than was previously. Furthermore, the presence 
of high quality existing applications and application frameworks means 
that fewer new applications need to be built from scratch, but rather by 
reusing and modifying existing software. Such an approach implies a 
revolutionary change in system development methodologies. For a method 
such as User Software Engineering, the key concepts remain valid, but 
may be less relevant as new development builds on existing code.  

Future applications will certainly take advantage of new technologies in 
user interface development. Work is already well underway in developing 
web applications for mobile devices, addressing the challenge of providing 
a good user experience with the limited display area, restricted input 
mechanisms and relatively low bandwidth of current mobile devices. 
Among the approaches for overcoming these restrictions are voice-based 
applications, which remain quite limited in scope, but which could eventu-
ally overcome many of the current difficulties in using web applications.

Other advances are harder to predict, but continuing change is a cer-
tainty. It would have been nearly impossible to predict today’s Web appli-
cations from the information systems of the 1960’s described in Section 2. 
Forty years from now, future generations of information systems special-
ists will likely be using technologies that we cannot easily imagine. 

References 

[1]  Booch, G. Object-Oriented Analysis and Design, 2nd ed. Reading, MA: Addi-
son Wesley, 1993. 

[2]  Bubenko, JA, Jr. IAM: an Inferential Abstract Modelling Approach to Design 
of Conceptual Schema. ACM SIGMOD Toronto, Canada, 1977, 62-74. 

[3]  Chen, Peter P-S. The Entity-Relationship Model – Toward a Unified View of 
Data. ACM Transactions on Database Systems, 1976; 1: 9-36. 

[4] DeMarco, T. Structured Analysis and System Specification. Prentice-Hall, 
Englewood Cliffs, NJ, 1979. 

[5]  Jacobson, I, Christerson, M, Jonsson, P, Overgaard, G. Object-Oriented Soft-
ware Engineering-A Use Case Driven Approach. Addison-Wesley, Reading, 
MA, 1992. 

[6]  Kruchten, P. The Rational Unified Process: an Introduction. 3rd ed. Addison 
Wesley,Reading, MA, 2003 

[7] Larman, C. Agile and Iterative Development: a Manager’s Guide. Addison-
Wesley, Reading, MA, 2003. 

[8]   http://java.sun.com/blueprints/enterprise/index.html 
[9]   http://www.omg.org/mda/committed-products.htm 



208      Anthony I. Wasserman 

[10] Parnas, DL. On the Criteria to be used in Decomposing Systems into Mod-
ules. Communications of the ACM, 1972; 15:1053-1058. 

[11] Reenskaug, T. “Thing-Model-View Editor: an Example from a Planningsys-
tem”, Xerox PARC Technical Note, May, 1979 (available at 
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html) 

[12] Rumbaugh, J., et al. Object-Oriented Modelling and Design. Englewood 
Cliffs, NJ: Prentice-Hall, 1991. 

[13] Rumbaugh, J, Jacobson, I, Booch, G. The Unified Modelling Language Ref-
erence Manual. Addison-Wesley, Reading, MA, 1999. 

[14] http://sourceforge.net/projects/iaprcommence/ 
[15]  Stevens, W, Myers, GJ, Constantine, LL. Structured Design. IBM Systems 

Journal, 1974; 13: 115-139 
[16]  Sølvberg, A. A Draft Proposal for Integrating System Specification Models. 

In: Olle, TW, Sol, HG, Verrijn-Stuart, AA (eds.) Information Systems Design 
Methodologies: a Comparative Review. North-Holland, Amsterdam, 1982. 

[17] Thomas, D, Hansson, D, et al.. Agile Web Development with Rails. 2nd ed. 
Pragmatic Bookshelf, Raleigh, NC, 2006. 

[18] Thomas, D, Fowler, C, Hunt, A. Programming Ruby, 2nd ed. Pragmatic Book-
shelf, Raleigh, NC, 2005. 

[19]  Wasserman, A.I., “USE: a Methodology for the Design and Development of 
Interactive Information Systems,” In: Formal Models and Practical Tools for 
Information Systems Design, ed. Schneider, H-J. North-Holland, Amsterdam, 
1979, 31-50. 

[20] Wasserman, AI, "The User Software Engineering Methodology: an Over-
view," In: Olle, TW, Sol, HG, Verrijn-Stuart, AA (eds.) Information Systems 
Design Methodologies: a Comparative Review. North-Holland, Amsterdam, 
1982, 591-628. 

[21] Wasserman, AI, “User Software Engineering: a Retrospective”, In Brink-
kemper, S, Lindencrona, E, and Sølvberg, A (eds.) Information Systems En-
gineering. Springer, Berlin, 2000, 149-158. 

[22] Wasserman, AI, Pircher P, “A Graphical, Extensible Integrated Environment 
for Software Development,” ACM SIGPLAN Notices, 22, 1 131-142. (Proc. 
ACM SIGSOFT/SIGPLAN Symposium on Practical Software Development 
Environments) 

[23] Wasserman, AI, Muller, RJ, Pircher, P. “The Object-Oriented Structured De-
sign Notation for Software Design Representation”, IEEE Computer, 23(3) 

[24] Wasserman, AI, Pircher, P, Shewmake, D, et al. Developing Interactive In-
formation Systems with the User Software Engineering Methodology. IEEE 
Transactions on Software Engineering, 1986; 12: 326-345. 

[25] Zou, Y, Zhang, Q, “A Framework for Automatic Generation of Evolvable E-
Commerce Workplaces Using Business Processes”, Proc. 2006 International 
Conference on Software Engineering, Shanghai, 2006, 799-802. 



Conceptual Alignment of Software Production 
Methods 

Óscar Pastor, Arturo González, Sergio España 

Valencia University of Technology, Valencia, España 

Abstract. From an Information Systems (IS) perspective, a myriad of specific ap-
proaches exist to deal with the different parts of a software production process. How to 
align them correctly taking a conceptual approach is still a very open problem. Instead 
of facing how to incrementally improve pre-existing methods, more and more propos-
als that are based on different paradigms or combine current IS concepts in some ap-
parently innovative way are introduced. The conclusion of all of this is that, more than 
ever, we should concentrate on the essentials of IS modelling. A set of precise con-
cepts is essential to be able to understand what each technique offers. A conceptual 
reference framework is needed to appropriately align the different proposals. This 
work presents a conceptual framework to be used for the conceptual alignment of 
software production methods. As a practical application, it is applied to the OO-
Method, which is a conceptual model-based software production method, in order to 
show how the different pieces of the method fit the proposed framework conceptually. 

1 Introduction 

What is a software production process? It should be easy to answer such an 
apparently simple question. But if we ask this (apparently) simple question 
to either an academic or an industrial audience, there will probably be as 
many different answers as people. Again, if we add some simple adjec-
tives, such as correct, or complete, or efficient (in relation to the software 
production process they describe), things will get even worse. The fact is 
that, after several decades of intensive theoretical and practical work, 
properly characterizing a specific software production process is still a 
very difficult task. Why is it so complicated?  

Even though we obtained a huge number of different answers, we could 
conclude that there is some basic agreement on the fundamentals. No mat-



210      Óscar Pastor, Arturo González, Sergio España 

ter how a software production is defined, there is a set of phases that in-
clude a higher-level phase that deals with Requirements Modelling, a sub-
sequent phase that deals with Conceptual Modelling, and a lower-
abstraction level phase that is oriented to Design and Implementation.  

However, even if this generic structure is accepted, things remain com-
plicated.  If we refer to Requirements Modelling, there is some confusion 
when Requirements Modelling is related to Business Modelling, or Busi-
ness Process Modelling, or even Organizational Modelling. There are early 
and late requirements, different concepts and notations for business proc-
ess modelling, goal-oriented techniques (KAOS, i*), scenario-oriented ap-
proaches (most of which are use case-based); the list could go on. 

When an attempt is made to obtain a conceptual schema from any of 
these higher-level models, too many questions arise: how can a conceptual 
schema be derived from a requirements model? What if the process is 
started from a goal-oriented model? Is a functional, use case-based model 
ever useful in accomplishing this model transformation? How can non-
functional requirements be properly represented? Can a goal model be di-
rectly transformed into a conceptual schema? Should this conceptual 
schema be object-oriented for the sake of understandability? Does it make 
sense to use aspect-oriented technology? If so, at what level? (Since the 
use of early aspects to deal with requirements generates aspect-oriented 
conceptual models.) Is object-oriented more convenient than aspect-
oriented or vice versa? Or should both of them be ignored?  

There are specific software production processes that are designed to 
provide an operational answer to the need for an appropriate solution. Nor-
mally, they come under the label of methods, and are based on a chosen 
paradigm. Examples of these are the OO-Method [18] for an object-
oriented method; Tropos [3] for an agent-oriented method; Early Aspects 
[1,11] for an aspects-based proposal; and some generic proposals (nor-
mally based on UML [14]) which include the RUP [7] and Wisdom [13].  

Finally, there are a myriad of specific techniques to deal with different 
parts of the process. However, there is still no proposal that deals success-
fully with the problem of correctly aligning these techniques. More than 
ever, it is necessary to concentrate on the essentials of Information Sys-
tems (IS) modelling. A set of precise concepts is essential to be able to un-
derstand what each technique offers. A conceptual reference framework 
that is based on a set of relevant and significant concepts is needed to con-
front this methodological Tower of Babel.

The use of basic frameworks of reference is a well-known, successful 
strategy, that is widely used in sound IS research. For instance, a basic 
framework for performance engineering during IS development is pro-
posed in [15]. The strategy of IS modelling presented in [16] has been 



Conceptual Alignment of Software Production Methods      211 

properly adapted to the context and objectives our work. Since the inherent 
complexity of IS is in the origin of the definition of diverse software de-
velopment processes, and since different methods view the IS design and 
implementation from different perspectives, our goal is to identify a basic 
set of concepts of reference. Our final objective is to use this framework to 
characterize the different perspectives, strategies, and views of a given 
method. This characterization is called a conceptual alignment of a method 
with respect to the proposed framework, which shows how a given pro-
posal relates to the basic concepts of our framework. This framework is 
used to classify any software production method from a unified conceptual 
base. It also will help us to understand the current situation of Software 
Engineering and to propose future lines of research from a very precise 
and well-analyzed context. 

The conclusions obtained from the use of this framework are relevant 
because it highlights the various limitations of current software develop-
ment methods. It also helps to clarify frequent misunderstandings that can 
be found in the literature, and it identifies deficiencies in the underlying 
criteria. For example, most methods offer poor communicational analysis 
of the IS. Communication is not always properly considered. Managing 
communication properly in IS development is fundamental, especially in 
the current socio-economic context where IS are more and more complex 
and need to be properly integrated and aligned with organizational needs. 
To fulfill our objectives, the main IS concepts are presented in Sect. 2, tak-
ing the FRISCO proposal [5] as a starting point. Sect. 3 presents an exten-
sion that properly incorporates the communicational perspective, which 
makes up a conceptual reference framework. Sect. 4 describes the applica-
tion of this framework using the OO-Method, as an example. Finally, Sect. 
5 presents further issues related to the application of the framework as well 
as some conclusions. 

2 Core Elements Borrowed from FRISCO 

As stated by Mylopoulos in [12], the use of conceptual models for Infor-
mation Systems (IS) engineering was launched by Sølvberg in [20] and 
comprehensively represented in Bubenko’s Conceptual Information Model 
[4]. A reasonable degree of maturity of the use of these models was at-
tained during the 80's. The FRISCO reports are a good reflection of this. If 
a framework for IS is required, the FRISCO proposal is, in our opinion, a 
very appropriate starting point. Before introducing our proposal we present 
some basic definitions that were used as a source. 



212      Óscar Pastor, Arturo González, Sergio España 

As their own name states, IS are systems. Therefore, they are better un-
derstood from a systemic perspective. The raison d'être of an IS is to sup-
port the mission of a particular organization. This Organizational System 
(OS) is interested in monitoring a certain Subject System (see Fig. 1). 
However, the imbrications between these systems can be quite varied, de-
pending on the degree of overlapping. Also note that we do not make a dis-
tinction here between IS and Computerized Information (Sub-)Systems. 

Fig. 1. The context of organizational management Information Systems 

Organizations are often very complex systems. They are characterized 
by the existence of actors who require the adequate knowledge and re-
sources to carry out their tasks. When something of interest happens in the 
environment of the organization, this event is reported to the IS by inter-
acting with it. In order to reason unambiguously about IS, a framework of 
well-defined and related concepts is desirable. The following framework is 
based on the IFIP WG 8.1 Task Group results [5]. Several concepts are 
borrowed from the FRISCO conceptual framework, some of which are 
later extended to meet our needs.  

According to FRISCO1, A transition is a special binary relationship 
between a pre-state and a post-state.

A transition occurrence is a specific occurrence of a transition. A set 
of transition occurrences is subject to strict partial ordering.

An action is a transition involving a non-empty set of actors in its pre-
state, and, if not “destroyed” or “consumed” by the action, in its post-
state as well, and involving a nonempty or empty set of other things (ac-
tands) as part of its pre-state, and having a nonempty or empty set of other 
things (actands) in its post-state.

An actor is a special thing conceived as being “responsible” or “re-
sponsive” and as being able to “cause” transitions.

Let actorOf be a function determining the actors performing an action.
A human actor is a responsible actor with the capabilities and liabili-

ties of a normal human being, in particular capable of performing perceiv-

                                                     
1 Definitions literally taken from the FRISCO proposal are shown in cursive. 



Conceptual Alignment of Software Production Methods      213 

ing actions, conceiving actions and representing actions. Then, let a non-
human actor be any actor which is not human (e.g. sensors and other Com-
puterized Information System components like a central processing unit). 

An actand is a thing involved in the pre-state or post-state of an action, 
not considered as an actor for that action. An input actand (respectively
output actand) is a part of the pre-state (post-state) of an action, exclud-
ing the actors. The pre-state of an action is called its resources.

Let inputOf be a function determining the input actands of an action.
Let outputOf be a function determining the output actands of an action.

Fig. 2. FRISCO notation for the main elements and their relationships 

The FRISCO notation for the main types of elements and their relation-
ships (see Fig. 2) will be extensively used throughout the chapter. 

The goal of an action is a special input actand of that action, pursued 
by the actors of that action and stating the desired output state intention-
ally.

Last, but not least, a message is an actand composed of data, transmit-
ted by one actor (the sender) via a channel (a medium), and intended for a 
non-empty set of other actors (the receivers). Although a message transfer 
is a complex sequence of actions, we sometimes abstract some of its steps. 

3 Towards a Precise Communicational View of IS 

Some specializations of the concepts present in FRISCO help to achieve a 
better understanding of the complexity of Information Systems (IS). 

We distinguish between external and internal actions. External actions 
are those which occur outside the boundaries of the IS. The changes that 
some external actions induce in the state of the Subject System are of great 
interest to the Organizational System. We refer to these external action oc-
currences as events. Since this word has been overloaded with different 
meanings, depending on the author, further explanation is necessary. 

In the literature on real-time, embedded and control systems, the con-
cept of event is often used in a broad sense: both external and internal tran-
sition occurrences are considered events. In programming environments, 



214      Óscar Pastor, Arturo González, Sergio España 

the term event designates any stimulus that interrupts a system component 
activity. In object-oriented techniques, events are also used in a generic 
fashion. An individual stimulus from one object to another is an event for 
Rumbaugh et al. [19]. According to Booch et al. [2], “in the context of 
state machine, an event is an occurrence of a stimulus that can trigger a 
state transition”.  

In contrast, we use the term event in a way similar to [6]. An event is a 
stimulus that occurs in the outside world to which the Organizational Sys-
tem must respond [21]. 

An external message  is a message involved in a message transfer in 
which either the sender is communicating an event to the IS (e.g. a hotel 
clerk checking out a customer) or the IS is communicating facts upon peti-
tion of an actor belonging to the Organizational or Subject Systems. 

Fig. 3. Subject domain events trigger organizational responses 

Fig. 3 shows an event occurring in the domain of the Subject System. 
An actor of the OS perceives this occurrence and reports it to the IS. The 
reaction of the OS to the event may have connative influence on the Sub-
ject System, but we preferred not to close the loop. 

This figure makes use of FRISCO notation (see Fig. 1)2. Note that since 
the event is a transition occurrence, has no symbol assigned to it. It is, 
therefore, represented as an action that is performed by an actor of the sub-
ject domain, which is perceived as being of interest to the organization. 
FRISCO [5] defines the following OS external functions: impression is 
                                                     
2 We extend the FRISCO notation with the use of rounded rectangles to denote the 

boundaries of the different systems involved. Also, in this particular diagram, 
dashed-lined geometrical shapes are used to denote a clustering of concepts. 



Conceptual Alignment of Software Production Methods      215 

the “conception of changes in the system domain as caused by the envi-
ronment”, and expression is the “conception of changes in the domain of 
the environment as caused by the system”. These are related to the organ-
izational actor’s behaviour towards the event. For reasons of brevity, in 
some diagrams we do not include the sequence of actions that the event in-
volves; that is, those elements outside the OS. Similarly, we will implicitly 
cluster the impression and expression actions in some of the subsequent 
diagrams. The focus will be placed on the interaction between organiza-
tional actors and the IS (which is not represented in Fig. 3). 

3.1 From ISO82 to FRISCO98: It is all about Communication 

Early in the 80’s, an ISO report [6] presented a conceptual framework for 
IS, defining the basic interaction architecture shown in Fig. 4. According 
to this report, every IS reacts to messages with depending on different ob-
jectives. The objective of the IS is to memorize reported facts. The princi-
ple objective of the OS is to react to events. 

Fig. 4. Information System model according to ISO [6]3

When it comes to comparing ISO and FRISCO4 IS models, two issues 
should be addressed with respect to the ISO diagram (Fig. 4). 

Intention. ISO distinguishes between ingoing messages, which are in-
tended to enter new information that the IS was not aware of, and outgo-
ing messages, which are intended to recover information from the IS 
memory. 
Communication. Although bi-directionality is not explicitly drawn, in-
going and outgoing messages are, in actual fact, input and output dia-
logs, respectively. However, these dialogs are asymmetric. This is quite 
clear in the case of output dialogs: the objective of a listing is to retrieve 
facts from the system’s memory, but some information input may be 
needed (e.g. report parameters like selection criteria). In general, this in-

                                                     
3 In Fig. 4, the diagram is not expressed in terms of the FRISCO notation, but ac-

cording to the ISO report. 
4 In this chapter, when we refer to ISO, we mean [3]; by FRISCO, we mean [2] 



216      Óscar Pastor, Arturo González, Sergio España 

put information is only used to generate the output, so it is not expected 
to be stored persistently. 

FRISCO does not maintain this vision; their report presents a slightly dif-
ferent diagrammatic view of the IS, by focusing on the dialogical commu-
nication between the IS and its users. The input and output dialogs of ISO 
are generalized. Fig. 5 shows the FRISCO conception of the IS as a “chan-
nel for the message transfers between the various users” who want to 
“communicate about one and the same domain”. 

Fig. 5. Information System model according to FRISCO [5] 

Users are actors who specify input messages to the processor and re-
ceive output messages from it. Processors are actors that are responsible 
for checking input messages, keeping the domain model denotation (i.e. 
the information base) logically consistent with the language representation 
(i.e. the conceptual model), and retrieving information to produce output 
messages; in short, a processor is responsible for the IS reaction to external 
stimuli. Both users and processors can be human or non-human. 

FRISCO’s description of the interaction between the users and the IS is 
a refinement of each of two dialogs defined by ISO. There is an implicit 
asynchrony between the ISO input and output dialogs, while in the 
FRISCO diagram, the interaction loop occurs synchronously. In summary, 
the diagrammatic view of an IS in ISO (Fig. 4) is projected in a forked 
fashion onto the FRISCO diagram (Fig. 5). 

3.2 Further Refinement of the IS Model 

Before refining the FRISCO IS model, we present an abstraction mecha-
nism that is not addressed by FRISCO notation, but that will be used in 
subsequent diagrams. Some IS elements are generalized by placing them 
inside rectangles; these rectangles are marked by an icon that denotes the 



Conceptual Alignment of Software Production Methods      217 

kind of elements they generalize (see Fig. 6.a). This syntactical resource is 
used for the sake of diagrammatic economy.

Fig. 6. Generalization of Information System elements 

Note that the pieces of diagram shown in Fig. 6 indicate two actions (A1 
and A2) and two actands (N1 and N2). In Fig. 6.b, N2 is an input of both 
actions. In Fig. 6.c, the actions A1 and A2 have been generalized and the 
inputOf relationship between N2 and the generalization keeps the same 
semantics as in the former diagram: N2 is still an input for both actions. 

Fig. 7. Refined Information System model 

Since our intention is to design a rich and expressive IS model, Fig. 5 is 
further decomposed by refining the IS processor and its actions. The fol-
lowing variations have been made to achieve Fig. 6. The interactive loop 



218      Óscar Pastor, Arturo González, Sergio España 

has been individualized to fit a single Subject System event reaction. 
Therefore, many elements are now named in singular terms; i.e. the Users
actor has been renamed Primary actor.

To better justify how Fig. 7 has resulted from the refinement of Fig. 5, 
we will structure the explanation in five subsections. 

3.2.1 The Information System memory 

The Language representation and Domain model denotation elements are 
equivalent to the ISO Conceptual schema and Information base concepts, 
respectively. The Conceptual schema gathers the abstract knowledge of 
the OS; that is, the model of the IS memory, the types of facts the IS can 
register, and many rules about its behaviour. We highlight the fact that the 
information base is mainly composed of Information base entities; in the 
end, entities and their relationships are the IS memory imprints about Sub-
ject System facts. Due to the use that we make of the topological refine-
ment, the Conceptual schema and the Information base entities are input 
for all the actions generalized inside the box. 

3.2.2 The Information System Interface Viewed as a Message Editor 

The IS Processor is refined into Interface processor and Reaction proces-
sor (note that the actor generalization helps to perceive this refinement). 
The Interface Processor actor is in charge of the actions that take place in 
the interface of the IS5. The Formulation of the input message corre-
sponds to a formulation of a fact that has occurred and has been perceived 
in the reality6; it produces the Input message, which the Primary actor
expresses in terms of the subject domain language (e.g. a verbal descrip-
tion, a business form). The Edition and encoding of input message is the 
process of re-encoding the Input message into a Coded input message so 
that the IS accepts (understands) it and is able to react according to the 
type of message. This translation is intended to re-express the message us-
ing a shared linguistic code [8] that is closer to the solution (e.g. XML is 
actually an appropriate linguistic code to support this element). This view 
enforces the conception of the IS interface as a message editor. However, 
the interface is also a message displayer, if the opposite direction is con-
sidered. A Coded output message, which is originated by the IS reaction, 
needs to be translated again to an external actor-intelligible Output mes-

                                                     
5 Note that one of the actorOf relationships crosses an action, for the sake of a 

nicer layout. 
6 The term reality should be taken from a Constructivist philosophical position. 



Conceptual Alignment of Software Production Methods      219 

sage and issued to the actor by means of a Decoding and display of out-
put messages action. Note that both actions of the interface can make use 
of the information base (e.g., to help the user pick a business object with-
out having to know its internal identifier).  

3.2.3 The Information System Reaction 

The Actions of the processor element in Fig. 5 has been decomposed into 
two interface actions (described above) and an Information System reac-
tion. The Reaction processor performs the following steps of the Infor-
mation System reaction: (1) it takes the Coded input message and checks 
if it corresponds to one of the expected types of messages (this knowledge 
is contained in the Conceptual schema); (2) then, it takes the needed facts 
from the information base; (3) it processes all this information according to 
a certain recipe of rules (i.e. an algorithm); (4) it updates the information 
base; (5) it produces the Coded output message. Obviously, the Informa-
tion System reaction could be further refined to explicitly denote all these 
steps, but we chose to keep the diagrams simple. 

3.2.4 The Organizational System Reaction 

The OS reacts to Subject System events according to certain Organiza-
tional Goals, which are usually stated by organizational actors at the stra-
tegic level. Goals affect actions and can, therefore, be considered as input 
actands for any action being performed inside the boundaries of the OS. 
Fig. 8 shows a broad generalization of the organizational actions that are 
affected by Organizational Goals. Goals could be considered as the con-
ceptual schema of an organization. A particular subset of these goals is the 
Information System Goals, which affects the IS actions.  

Whenever one undertakes the modelling of any aspect of an IS, granu-
larity emerges as an unavoidable issue to be tackled. Actions in general 
and organizational reactions in particular are susceptible to being treated at 
various granularity levels. The models presented in Fig. 7 and 8 are fo-
cused on interactions between an actor and the IS at the refinement level 
(granularity) of Subject System events. A so-called business activity could 
comprise several of these interactions, or even be decomposed into much 
lower granularity interactions. We will tiptoe round this thorny issue in 
this chapter, since it deserves to be tackled with great care and detail. 



220      Óscar Pastor, Arturo González, Sergio España 

Fig. 8. Further refined Information System model 

4 A Practical Application of the Conceptual Framework 

The conceptual framework in Sect. 3 can be used to show the reasoning 
principles that are behind any specific software production method, inde-
pendently of its core paradigm or its associated software process. As a 
practical example, we are going to apply the concepts to explain the OO-
Method [18], which is a Conceptual Schema-Centric Software Develop-
ment Method, that was developed at the Valencia University of Technol-
ogy and that has been implemented commercially7.

                                                     
7 OlivaNova model compiler by CARE Technologies http://www.care-t.com - Last 

visit: Jan-2007. 



Conceptual Alignment of Software Production Methods      221 

4.1 How IS Elements are Observed and Described 

A software development method uses abstraction to reduce the complexity 
of the treated systems. Taking the system as a whole, the method defines a 
way to decompose it into smaller parts and proposes languages to describe 
these parts.

Each description of the IS in terms of modelling primitives is called a 
perspective. The primitives offered by the modelling language can be 
mapped to an upper-level conceptual framework like the one defined in 
Sect. 3. We call this mapping a conceptual alignment.

The model for an IS that we have presented constitutes an appropriate 
framework for dealing with IS components and their relationships. We 
considered two different strategies to represent it: a FRISCO-compliant 
(based on the concepts representation in Fig. 2 and on the abstraction 
mechanisms introduced at the beginning of Sect. 3.2), and a UML-like 
Class Diagram. We chose the FRISCO-based representation to define the 
conceptual alignment, because it is visually more intuitive for our purpose. 
We could also accomplish OCL-based navigations on the Class Diagram, 
but we believe the first option to be more understandable and practical 
from the conceptual point of view. In consequence, the conceptual align-
ment for a given method is represented as a view of the IS model (Fig. 8), 
where the IS elements are conveniently located, and are traversed (navi-
gated) according to the techniques provided and applied by the method 

When a given technique of a given method is analyzed, the navigation 
that corresponds to its conceptual alignment may not be complete. Many 
times, some elements are used and others are not. We refer to this as ellip-
sis. The ellipsis is the omission of certain type of IS elements in the de-
scription of an IS. This is an important issue because it allows us to better 
understand the particular characteristics of a method from the IS specifica-
tion perspective. This ellipsis can be temporal or total. It is temporal when 
we do not consider a given element at a given instant in order to focus on 
other elements that associated with it, using the transitivity property. The 
ellipsis is total when the given method does not consider a particular IS 
element at all. In this case, there is a potential topic for discussion.

Before illustrating these issues using the OO-Method, is necessary to in-
troduce the main characteristics of the method. 

4.2 The OO-Method at a Glance 

As briefly mentioned above, OO-Method is a software development 
method based on a clear separation between the Problem Space (what we 



222      Óscar Pastor, Arturo González, Sergio España 

want to build) and the Solution Space (how we are going to build it). The 
definition of a problem (the abstract description of an IS, represented in the 
corresponding Conceptual Schema) can be enacted regardless of any par-
ticular reification (concrete implementation of a software solution). This 
positions OO-Method as a sound methodological foundation on which to 
build tools that embrace the MDA directive of separating the logic of 
software systems from their (multiple) possible implementations. 

The formalism underlying OO-Method is OASIS, a formal and object-
oriented specification language for the specification of IS [17]. This formal 
framework provides a characterization of the conceptual elements needed 
to accurately specify an IS. It encompasses two main components: the 
Conceptual Model and the Execution Model. Since the Execution Model is 
the characterization of how a model is implemented in a target technology 
(e.g. Java, .NET), we will focus on the OO-Method Conceptual Model. 
The objective is to see how the method sets and provides the basic building 
units required to build a Conceptual Model for practical use. 

The Conceptual Model comprises four complementary views: the Do-
main Model (or Object Model), the Dynamic Model, the Functional Model 
and the Presentation Model. All of them together constitute the whole 
Conceptual Model specification. These four views allow the definition of 
all structural and functional aspects of a system in an abstract (implemen-
tation-independent) yet accurate fashion by means of a set of modelling 
constructs. These conceptual primitives (or conceptual patterns) are con-
ferred a precise semantics. Any of these conceptual patterns has a UML-
based graphical notation, which hides the complexity of the underlying 
OASIS formal specification from the modeller. More details can be found 
in [18] and [10]. 

4.3 Conceptual Alignment of the OO-Method Conceptual-
Modelling Phase 

The following sequence of diagrams describes the OO-Method Conceptual 
Modelling phase in terms of its corresponding conceptual alignment. At 
each step, the same strategy is followed: we repeat the conceptual align-
ment graph of elements, and we “colour” its elements depending on the 
specification technique that is being considered. The notation contains:  

Elements that are being considered in the specification: a thick line with 
a grey background. This represents a basic element that is being de-
scribed at that very step. 
Elements that are not considered in a given context: soft grey line and 
font. If these elements appear elements that are being specified, it is a 



Conceptual Alignment of Software Production Methods      223 

case of ellipsis. This case appears in the OO-Method between the ele-
ments Interface processor and Information System reaction when agents 
are assigned to class operations in Fig. 10. 
Elements already specified: they are represented as a normal dark line, 
with a grey background. It means that this element has been previously 
specified, and it is not relevant in the current specification step. 

In accordance with this notation, we develop the following conceptual 
alignment of the OO-Method with respect to the reference framework. 

4.3.1. Specification of the Information System Memory 

We start by identifying the IS memory components. The specification of 
the static part of the OO-Method Domain Model is the natural starting 
point for the OO-Method proposal.  

Fig. 9. Identifying the entities of the Domain Model 

Fig. 9 shows how the specification of class attributes and class relation-
ships constitutes the identification of the relevant entities of the Domain 
Model. It corresponds to the Information Base Entities in the conceptual 
framework. This is why this actand is represented with a thick line and 
grey background.  

4.3.2 Specification of the Information System Reaction 

Once the IS memory has been considered, it is time to assign system func-
tionality to the entities of the Domain Model. We specify this under the 
umbrella of Information System reaction. This is covered in the OO-
Method by determining class operations in the objectual Domain Model 
(see Fig. 10, right), by the state diagram that constitutes the OO-Method 
Dynamic Model (see Fig. 11, top right), and by the Functional Model, 
where the effect of every class operation on the object state is declaratively 
specified (see Fig. 11, bottom right).  



224      Óscar Pastor, Arturo González, Sergio España 

In Fig. 10 we can see how the Information System reaction represents 
the action that directly interacts with the Information base entities, and 
how the Interface processor actor is responsible for specifying the opera-
tion that will be sent to the Information System reaction box. A clear ex-
ample of ellipsis appears in the diagram. In this case the ellipsis was con-
sciously introduced by the method, since the way the input message is 
edited and encoded is not the focus of these modelling components. As ex-
plained in Sect. 4.3.3, this is accomplished by a fourth OO-Method con-
ceptual-modelling view named the Presentation Model. 

Fig. 10. Assigning system functionality to entities of the Domain Model 

The Dynamic and Functional Models (see Fig. 11) accurately describe 
the behaviour by means of state diagrams and abstract instructions that 
specify how the IS reacts to input messages. 

Fig. 11. Specifying behaviour and reaction in the Dynamic and Functional Models  

4.3.3 Specification of the Information System Interface 

Once static class architecture and system functionality (in the way of IS 
reaction) has been specified, the last step is the specification of the user in-
teraction. In the OO-Method proposal, this is accomplished by creating the 
Presentation Model. 



Conceptual Alignment of Software Production Methods      225 

Fig. 12. Specifying edition and display of messages in the Presentation Model 

Fig. 12 illustrates the corresponding conceptual alignment. In this case, 
the OO-Method Presentation Model (Fig. 12, right) is conceptually aligned 
with the actions of Edition and encoding of input (output) messages, which 
generates the Coded input (output) message actand. These messages are 
assumed to be properly processed by the IS, as specified in the models re-
lated to IS reaction (Sect. 4.3.2). 

4.3.4 Specification of the Organizational System Reaction 

It should be noted that the OS reaction, which is an element of the full con-
ceptual framework, is not covered by the OO-Method Conceptual Model-
ling. This occurs because the requirements modelling phase is not sub-
sumed by the conceptual modelling strategy provided by OO-Method. This 
can also be seen as an indication that the performed conceptual alignment 
could go beyond one specific phase (Conceptual Modelling) to cover other 
phases of a full software process associated to a given method. This inter-
phase conceptual alignment can make the proposal even more powerful 
when applied to compare different methods.  

This case study provides some interesting lessons that are discussed in 
the next section. 

5 Concluding Remarks 

The only way to properly confront the problem of understanding the essen-
tials of any given software development method is to have a precise char-
acterization of this set of concepts. The objective of this work is to estab-
lish this set of concepts. 

Software production methods tend to suffer from a certain degree of ri-
gidity with respect to their strategies.  Some of them tend to be more 
method-centred; these are based on a sequential strategy of perspectives 
arranged by well-defined procedures. Others are more solution-centred; 
these emerge as a reaction to the dullness of method-centred attitudes and 



226      Óscar Pastor, Arturo González, Sergio España 

(pre)suppose that the discovery of requirements may be guided by the per-
spectives induced by the solution’s cognitive structure. Other methods can 
be seen as problem-oriented; these depend on the characteristics of the 
problem and the knowledge the users (problem owners) have of it. 

Even though one might be tempted to ask questions such as: What is the 
best strategy? What is the most appropriate choice of perspectives? There 
is really no “best” strategy, since strategies and perspectives are influenced 
by the problem to be solved. Having a common conceptual framework and 
performing the conceptual alignment of a method with respect to this 
common conceptual framework will enable us to understand the strategies 
and principles of any method.  

The conceptual framework presented here follows the FRISCO tradi-
tion, and we have applied it to a specific software production method (the 
OO-Method). This framework can be applied to any other method. In fu-
ture work, we are going to perform the same exercise with other well-
known proposals based on different paradigms such as Wisdom [13] 
(UML, user-centred), Tropos [3] (agent-oriented), Early Aspects-based 
approaches [1,11], etc. This will open the door to further studies that deal 
with in-depth method understanding and comparison, which will help to 
identify weak points. In the case of OO-Method, we have detected the total 
ellipsis of the (external) communicational elements of the IS. This also ap-
pears to be common to other methods that we have begun to analyze, so 
we plan to give descriptive support to the usage of communicational-
oriented perspectives, based on Input and Output messages. Since many 
definitions describe Information Systems as a tool for communication we 
believe it to be a promising line of research. 

A comparison among various methods will also help to better under-
stand the concept of quality in conceptual modelling, following the tradi-
tion of well-known previous works such as [9]. This comparison will en-
able an enhancement of the criteria underlying well-established methods. 
We hope that a better integration among the various strategies will provide 
a holistic integration which will benefit the current state of Software Engi-
neering.

References 

[1] Baniassad, E., Clements, P., Araújo, J., Moreira, A., Rashid, A., Tekiner-
dogan, B.: Discovering early aspects. IEEE Softw. 23(1): 61-71 (2006)  

[2]  Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modelling Language ref-
erence manual (Addison-Wesley 1999)  



Conceptual Alignment of Software Production Methods      227 

[3]  Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: 
TROPOS: an agent-oriented software development methodology. Autono-
mous Agents and Multi-Agent Systems 8(3): 203-236 (2004)  

[4]  Bubenko, J.: Information modelling in the context of system development. In: 
Proceedings IFIP Congress 1980, pp 395-411  

[5]  Falkenberg, E., Hesse, W., Lindgreeen, P., Nilsson, B., Oei, J., Rolland, 
C.;Stamper, R., Van Assche, F., Verrijn-Stuart, A., Voss, K.: FRISCO. A 
Framework of Information Systems Concepts. (IFIP WG 8.1 Task Grup Re-
port 1998)  

[6]  Griethuysen, J.J.v. (ed): Information processing systems - Concepts and ter-
minology for the conceptual schema and the information base. ISO 
TC97/SC5/WG3, publication ISO/TR 9007:1987  (1982)  

[7]  Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development
(Addison-Wesley 1999)  

[8]  Jakobson, R.: The Speech Event and the Functions of Language. In: On lan-
guage, ed by Monville-Burston, M., Waugh, L. R. (Harvard University Press 
1990) pp 69-79  

[9]  Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding quality in conceptual 
modelling. IEEE Softw. 11(2): 42-49 (1994) 

[10] Molina, P.J., Meliá, J., Pastor, O.: JUST-UI: A user interface specification 
model. In: Computer-Aided Design of User Interfaces III, ed by Kolski, Ch., 
Vanderdonckt, J., 4th International Conference on Computer-Aided Design of 
User Interfaces CADUI'2002 (Kluwer 2002) pp 63-74  

[11] Moreira, A., Rashid, A., Araújo, J.: Multi-dimensional separation of concerns 
in requirements engineering. In Proceedings of RE 2005, 13th IEEE Interna-
tional Conference on Requirements Engineering, Paris, France, August-
September 2005 (IEEE Computer Society Washington DC 2005) pp. 285- 296 

[12] Mylopoulos, J.: Information modelling in the time of the revolution. Inf. Syst. 
23(3-4): 127-156 (1998)  

[13] Nunes, N.J., Cunha, J.F.e.: Wisdom: a software engineering method for small 
software development companies. IEEE Softw. 17(5): 113-119 (2000)  

[14] Object Management Group: Unified Modelling Language: Superstructure v. 
2.0. http://www.omg.org/docs/formal/05-07-04.pdf (2005) Cited Jan 2007 

[15] Opdahl, A.L., Sølvberg, A.: A framework for performance engineering dur-
ing information system development. In Proceedings of CAiSE 1992, ed by 
Loucopoulos, P., 4th Conference on Advanced information Systems Engi-
neering, Manchester, England, May 1992. Lecture Notes in Computer Sci-
ence, vol 593. (Springer Berlin Heidelberg New York 1992) pp 65-87  

[16] Opdahl, A.L., Sølvberg, A.: Conceptual integration of information system 
and performance modelling. In Proceedings of IFIP WG 8.1 Working Confer-
ence on Information Systems Concepts: Improving the Understanding, ed by 
Falklenberg, E.D, Rolland, C., Nasr-El-Dein El-Sayed, E.S., Alexandria, 
Egypt, April 1992. (North-Holland 1992) pp 273-294  

[17] Pastor, Ó., Hayes, F., Bear, S. (1992) OASIS: An object-oriented specifica-
tion language. In Proceedings of CAiSE 1992, ed by Loucopoulos, P., 4th 
Conference on Advanced information Systems Engineering, Manchester, Eng-



228      Óscar Pastor, Arturo González, Sergio España 

land, May 1992. Lecture Notes in Computer Science, vol 593. (Springer Ber-
lin Heidelberg New York 1992) pp 348-363  

[18] Pastor, Ó., Gómez, J., Insfrán, E., Pelechano, V.: The OO-method approach 
for information systems modelling: from object-oriented conceptual model-
ling to automated programming. Inf. Syst. 26(7): 507-534 (2001)  

[19] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-
oriented modelling and design. (Prentice-Hall 1991) 

[20] Sølvberg, A.: A contribution to the definition of concepts for expressing us-
ers’ information systems requirements. In Entity-Relationship Approach to 
Systems Analysis and Design, ed by Chen, P., 1st International Conference on 
the Entity-Relationship Approach, Los Angeles, USA,  (North-Holland 1980) 
pp 381-402 

[21] Yourdon, E., Modern structured analysis. Yourdon Press Computing Series 
(Prentice-Hall 1989) 



The Co-Development of System Requirements 
and Functional Architecture 

Klaus Pohl1,2, Ernst Sikora1

1Software Systems Engineering, University of Duisburg-Essen, Germany 
2Lero - The Irish Software Engineering Research Centre 

Abstract. It is widely recognized that in system development, innovative requirements 
and innovative architectural solutions need to be co-developed. Yet, no comprehensive 
method exists to support the co-development of requirements and architecture. This 
chapter describes the COSMOD-RE method for supporting the co-development of re-
quirements and architectural artefacts at four distinct levels of abstraction. An over-
view on the method is provided, and the activities for supporting the development of 
system requirements and the functional system architecture are described. 

1 Introduction 

The evolution of information systems from centralized architectures into 
distributed architectures has already been observed, for instance, in [18]. 
Since then, information systems have evolved further. Today, innovative 
software-intensive systems have to incorporate both, information system 
and embedded system components in order to provide the required func-
tionality. A recent example is the radio frequency identification (RFID) 
technology which integrates information systems (e.g. inventory systems) 
with a network of software-intensive embedded systems (smart tag read-
ers). Furthermore, systems that were traditionally designed purely as (real-
time) embedded systems have to incorporate information systems technol-
ogy in order to realize innovative functionality. For example, the increased 
amount of data that needs be processed in a modern vehicle has raised the 
need for persistent data storage and reliable data retrieval capabilities (see 
e.g. [19]). Similar examples can be found in various other domains such as 
telecommunications or building automation. In short, a convergence of in-



230      Klaus Pohl, Ernst Sikora 

formation systems and embedded systems can be observed in innovative 
systems development. The convergence facilitates new system functional-
ity but also increases the complexity of the resulting systems and therefore 
imposes a new challenge for the developers. 

When the development of an innovative software-intensive system is 
initiated, typically not much more is known about the planned system than 
a vision of the changes (or enhancements) that the system should bring 
about in its application domain (cf. [9]). An example of a vision is: “De-
velop a driver assistance system that maintains a safe following distance 
on motor-ways”.1 The stakeholders (customers, users, requirements engi-
neers, managers, architects, etc.) have different needs and wishes concern-
ing, e.g., the system usage, the technology that the system will be based 
on, or the development process. In order to facilitate the implementation of 
the system, the stakeholders must achieve a consolidated view of the sys-
tem including the specification of the system’s functionality, behaviour, 
and technical structure(s). Traditionally, two kinds of processes are per-
formed to support the specification task: 

The requirements engineering process: This process is predominantly 
concerned with the problem space. In this process, the stakeholders de-
velop the requirements for the new system by collaboratively perform-
ing elicitation, negotiation, documentation, and validation activities. 
The architectural design process: This process is predominantly con-
cerned with the solution space. In this process, the stakeholders develop 
a (core) technical solution for the planned system including, for in-
stance, the technical system structure which defines the configuration of 
interacting embedded system and information system components. 

The development of a new system can be regarded as a learning process, 
in which the stakeholders explore the problem, define requirements for the 
planned system, and incrementally build a solution structure. The emerg-
ing solution points to areas of the problem space that require a more in-
depth exploration. The new insights gained typically entail further itera-
tions of exploring the problem space, defining requirements and elaborat-
ing on the solution. In this spirit, Nuseibeh [13] has proposed twin-peaks, a 
simple spiral model for the co-development of requirements and design. 
According to the twin peaks model, the development proceeds in a spiral 
from coarse-grained to detailed requirements and architectural definitions. 

However, presently, no method exists to support the co-development of 
requirements and architectural artefacts. The twin-peaks model itself does 
                                                     
1 The “adaptive cruise control” system (ACC) is used as an example throughout 

this chapter. For details about the ACC system, see [3]. 



Co-Development of System Requirements and Functional Architecture      231 

not provide methodical guidance. For instance, it does not define what 
coarse or detailed means with respect to requirements and design artefacts 
and activities. It does not indicate how the gap between coarse and detailed 
artefacts can be bridged and what relations exist between requirements and 
architecture. Other approaches that are applied to support the transition 
from requirements to architecture such as architecture description lan-
guages, goal-based approaches, and problem frames have been analyzed 
by Galster et al. with the result that none of the approaches closes the gap 
between requirements and architecture (for details, see [5]). 

The remainder of this contribution is structured as follows. Section 2 
presents the key principles of our method COSMOD-RE (sCenario and 
gOal based SysteM develOpment methoD) for supporting the co-
development of requirements and architectural artefacts for software-
intensive systems. Section 3 defines the activities for part of our method. 
Section 4 summarizes this contribution. 

2 Overview of the COSMOD-RE Method 

The main goal of the COSMOD-RE method is to support the refinement of 
an overall system vision into a coherent set of requirements and architec-
tural artefacts. In order to manage high system complexity, the COSMOD-
RE method structures the development artefacts and activities by means of 
a hierarchy of abstraction layers. The development artefacts at the different 
abstraction layers are produced by three distinct co-design processes. Each 
co-design process includes the co-development of two viewpoints, the re-
quirements viewpoint and the architecture viewpoint. 

In the following, we briefly characterize the abstraction layers and the 
two viewpoints (Section 0), define key requirements and architectural arte-
facts at two layers (Section 0), and structure the development process in 
three co-design processes and five sub-processes (Section 0). 

2.1 Abstraction Layers for Requirements and Architecture 

The use of layers (constituting different levels of abstraction) is an estab-
lished concept to manage a high system complexity. By considering the 
planned system at a high level of abstraction, a comprehensive view of the 
system and its benefits for the users can be conveyed to all stakeholders. 
At lower layers, details are specified that are required by engineers and 
software developers to construct the system. The layers defined in the 
COSMOD-RE method are shown in Fig. 1. 



232      Klaus Pohl, Ernst Sikora 

Fig. 1. The four abstraction layers defined in the COSMOD-RE method 

The hierarchy depicted in Fig.1 is a means-ends hierarchy, i.e. a hierar-
chy in which layer Li+1 provides the means to achieve the ends (solve the 
problem) imposed by the artefacts at layer Li. The four abstraction layers 
can be characterized as follows: 

L1: At the system layer, the relationships between the system and its en-
vironment are considered. The system itself is regarded as a black box 
that interacts with external actors through a set of well-defined inter-
faces. The system level emphasizes the usage of the system. 
L2: The functional components layer includes the functional decomposi-
tion of the system, i.e., a decomposition into units of coherent function-
ality. These units, or functional components, have well-defined inter-
faces which are used to connect the components to each other. 
L3: At the HW/SW (hardware/software) components layer, the decom-
position of the system into HW and SW components is defined. System 
functions defined at L2 are assigned either to hardware or to software. 
L4: The SW-deployment layer assigns SW components to programmable 
HW components. 

As depicted in Fig. 2, each COSMOD-RE abstraction layer consists of a 
requirements viewpoint and an architecture viewpoint. To each viewpoint, 
distinct development artefacts are assigned. For instance, the requirements 
viewpoint at the system layer includes requirements artefacts pertaining to 
the entire system such as models describing the externally visible system 
behaviour. At the functional components layer, the requirements viewpoint 
includes requirements artefacts pertaining to individual functional compo-
nents.

Some definitions such as the identifiers of the functional components 
are shared between the requirements viewpoint and the architecture view-
point. This fact is indicated in Fig. 2 by the overlap between the two view-
points.



Co-Development of System Requirements and Functional Architecture      233 

Fig. 2. Requirements viewpoint and architecture viewpoint 

A characterization of the requirements viewpoint and the architecture 
viewpoint is provided in Table 1. Section 0 describes key requirements and 
architectural artefacts at two abstraction layers. 

Table 1. Characterization of the requirements viewpoint and the architecture 
viewpoint at each abstraction layer 

Layer Requirements Architecture 
L1 - system - Interactions between system 

and external actors 
- Functional and quality re-

quirements pertaining to the 
entire system 

- Design specifications of exter-
nal system interfaces 

L2 – functional 
components 

- System-internal interactions 
- Functional and quality re-

quirements for each func-
tional component 

- Design specifications of func-
tional component interfaces 

- Configuration of the functional 
components 

L3 – HW/SW - Interactions of HW and SW 
components 

- Functional and quality re-
quirements for each HW and 
SW component 

- Design specifications of
HW/SW component interfaces 

- Configuration of the HW/SW 
components 

L4 – SW-
deployment 

- Requirements pertaining to 
the deployment of individual 
SW components 

- Specification of the SW-
deployment 

2.2 COSMOD-RE Artefacts 

An overview of the key requirements and architectural artefacts at the sys-
tem layer and the functional components layer is shown in Fig. 3. The role 
of the artefacts shown in Fig. 3 is described in Section 0, and the activities 
that produce, consume, and modify the artefacts are presented in Section 0. 



234      Klaus Pohl, Ernst Sikora 

Fig. 3. COSMOD-RE artefacts at the system and functional components layers 

2.2.1 Requirements Artefacts at the System Layer 

The requirements viewpoint at the system level represents mainly the con-
cerns of the users or customers of the planned system. It encompasses the 
following types of artefacts: 

Context model: The context model documents the embedding of the en-
visioned system into its environment. The context model defines the ex-
ternal actors (entities in the system environment) that interact with the 
system. An actor represents a human user or a system. In addition, the 
context model denotes the principle nature of the interactions between 
the system and the external actors. 
System goals: System goals refine the overall system vision. A system 
goal documents an intended high-level property of the system, for in-
stance, concerning its usage by external actors. Goals are typically hier-
archically structured. Sub goals are related to super goals by means of 
AND/OR refinement relationships (see e.g. [10]). An example of a sys-
tem goal is: “The system shall inform the driver about important 
events.” Each system goal is associated to at least one system scenario 
which concretizes the system goal (cf. e.g. [6]). Typically, several (de-
tailed) requirements can be derived from a system goal. 



Co-Development of System Requirements and Functional Architecture      235 

System scenarios: System scenarios define interactions between external 
actors and the system (cf. “type B” and “type C” scenarios in [14]). The 
documentation of system scenarios is based on use case templates (cf. 
e.g. [7]) or a model-based technique (cf. e.g. [8]). The use of goals and 
scenarios in COSMOD-RE is motivated by their successful application 
in innovative development (see e.g. [2], [11], [15], [17]). 
Detailed system requirements: The detailed system requirements sub-
sume functional requirements (function, structure, and behaviour) and 
quality requirements such as performance, safety, or security require-
ments. System requirements are documented using a natural language 
and/or requirements modeling languages (cf. [4] for examples). 

2.2.2 Requirements Artefacts at the Functional Components Layer 

The requirements at the functional components level refine the system-
level requirements into requirements for individual functional components: 

Component goals: Component goals define required properties of indi-
vidual functional components. Like system goals, component goals are 
hierarchically structured. In addition, the component goals refine the 
goals defined at the system layer. Component goals are associated with 
component scenarios which concretize the goals. 
Component scenarios (system-internal scenarios): Component scenarios 
or system-internal scenarios (see “type A” scenarios in [14]) refine the 
system scenarios. A component scenario defines the interactions be-
tween the functional components that are required to realize the external 
interactions of the system (i.e. the interactions with external actors). 
Detailed component requirements: The detailed component require-
ments include functional requirements and quality requirements for the 
individual components. The development of detailed component re-
quirements is not in the scope of this chapter. 

2.2.3 Architectural Artefacts 

The architecture viewpoint represents mainly the concerns of engineers, 
system architects, and other technical stakeholders. The architectural arte-
facts considered in COSMOD-RE (at the system layer and the functional 
components layer) can be characterized as follows: 

System interfaces: System interfaces are the locations where interactions 
between the system and its environment, i.e. the exchange of informa-
tion, energy, or material, take place. The interface definitions describe 
the functions or services that the system provides to its users and to ex-



236      Klaus Pohl, Ernst Sikora 

ternal systems. A complex software-intensive system typically has sev-
eral different types of interfaces such as human-machine interfaces and 
network interfaces. 
Logical architecture: The logical system architecture defines a decom-
position of the overall system into a set of functional components. Each 
component has well-defined interfaces through which it can interact 
with other functional components or external actors (humans and sys-
tems). The logical architecture abstracts from certain aspects such as the 
partitioning of the system into software and hardware. 

2.3 COSMOD-RE Process Structure 

The COSMOD-RE process structure includes three co-design processes 
(Section 0). Each co-design process is subdivided into five sub-processes 
(Section 0). In addition, COSMOD-RE defines a set of activities that are 
performed within the five sub-processes. The activities are presented in 
Section 0. 

2.3.1 Three Co-Design Processes 

Based on the hierarchy of abstraction layers, COSMOD-RE defines three 
co-design processes with the following responsibilities (see Fig. 4): 

System-level co-design: The objective of this process is to develop the 
system requirements (L1) and the logical system architecture (L2).
Function-level co-design: This process produces the functional-
component requirements (L2) and the HW/SW architecture (L3).
HW/SW-level co-design: The objective of this co-design process is to 
develop the HW/SW requirements (L3) and the SW-deployment (L4).

Fig. 4. Assignment of the co-design processes to the four abstraction layers 



Co-Development of System Requirements and Functional Architecture      237 

2.3.2 Five Sub-Processes 

Each co-design process includes five sub-processes which support the co-
development of innovative requirements and an innovative architectural 
solution. In the following, we briefly characterize the five sub-processes. 
The description of the five sub-processes is based on the system-level co-
design process: 

SP1: Development of the requirements viewpoint at the system layer:
The goal of this sub-process is to develop innovative actor-system inter-
actions and to define these interactions in terms of overall system goals 
and system scenarios. 
SP2: Development of the architecture viewpoint at the functional com-
ponents layer. The goal of this sub-process is to develop an innovative 
functional architecture for the intended system which, e.g., embeds new 
technologies and thus can provide innovative functionality or quality. 
SP3: Comparison of the requirements and the architecture viewpoints.
The main goals of this sub-process are (1) to check if the architecture 
supports the identified requirements, and (2) to identify new require-
ments based on the proposed architecture by comparing the results of 
the sub-processes SP1 and SP2. The comparison of the two viewpoints is 
driven by the refinement of system scenarios into component scenarios 
and the refinement of the associated goals. 
SP4: Consolidation of the requirements and the architecture viewpoints.
The main goal of this sub-process is to consolidate the requirements 
viewpoint and the architecture viewpoint based on the inconsistencies 
detected and the ideas developed in the sub-process SP3.
SP5: Definition of detailed requirements. The goal of this sub-process is 
to produce textual requirements as well as models of function, da-
ta/structure, and behaviour that can be integrated into (one or multiple) 
requirements documents. The requirements are developed based on the 
consolidated set of goals, scenarios, and architectural artefacts. 

The sub-process SP5 accounts for the fact that detailed requirements 
cannot be defined at the desired level of detail without making explicit or 
implicit assumptions about the intended solution. When the system re-
quirements are defined, the system goals, system scenarios, and the logical 
system architecture have already been established and consolidated in an 
iterative process. A (partial) system architecture can thus be used as an in-
put for the definition of the system requirements in the system-level co-
design process. Furthermore, the definition of detailed requirements can 
initiate further iterations of the other sub-processes, e.g. if missing or in-
complete goals and scenarios are detected. 



238      Klaus Pohl, Ernst Sikora 

3 Activities in the System-Level Co-Design Process 

This section describes the key activities of the system-level co-design 
process. The primary goal of the system-level co-design process is to spec-
ify the system from a usage perspective and to establish a (partial) coarse-
grained solution. The system-level co-design process includes the activities 
shown on the left of Fig. 5. In addition, Fig. 5 shows the assignment of the 
eight activities to the five sub-processes defined in Section 0. The content 
of each cell indicates the relevance of the activity in the respective row for 
the sub-process in the respective column. The symbol “ ” means the ac-
tivity is highly relevant for the sub-process. The symbol “ ” means the ac-
tivity is somewhat relevant. “ ” indicates that the activity is of little or no 
relevance for the sub-process. In the following, we describe each activity. 

3.1 Context Elicitation 

The goal of this activity is to identify context entities and to determine the 
relevance of each context aspect for the planned system. The procedure of 
identifying context aspects can be described as follows: 

1. Identify relevant requirements sources such as stakeholders, docu-
ments, and existing systems. 

2. Use the requirements sources to identify relevant context entities. 
3. Iterate the above steps until a sufficiently detailed model of the sys-

tem context has been established. 

The following structuring of the context into four context facets can be 
used to support the identification of context entities: 

Usage facet: The usage facet contains all context objects and aspects 
that are related to the usage of the system by humans and other systems. 
The context analysis activity should identify, for instance, the business 
processes that must be supported by the planned system and determine 
the external actors (people and systems) that use the planned system. 
Subject facet: The subject facet comprises the “real-world” entities that 
must be represented in the planned system and acquired, stored, and 
processed by the system. Based on the analysis of the subject facet, a 
data model of the system can be developed. 



Co-Development of System Requirements and Functional Architecture      239 

context
elicitation

scenario
elicitation

goal
elicitation

architectural
design

specification of
detailed

requirements

scenario
refinement

goal
refinement

requirements
and design
evaluation

SP1
Development of 
the requirements 

viewpoint

SP2
Development

of the architecture 
viewpoint

SP3
Comparison of the 
requirements and 
the architecture 

viewpoints

SP4
Consolidation of 
the requirements 
and the architec-
ture viewpoints

SP5
Definition of 

detailed 
requirements

Fig. 5. Overview of the main development activities in the system-level co-design 
process including the assignment to the five sub-processes 

IT-system facet: The IT-system facet includes all objects and aspects 
pertaining to the technical infrastructure in which the planned system is 
embedded as well as the relevant strategies and policies related to the in-
frastructure. When analyzing this facet, the stakeholders should identify, 
for instance, innovative technologies and technological trends that might 
affect the planned system. 
Development facet: The development facet comprises regulations and 
standards concerning the development process. This facet affects, for 
example, the tools and techniques that the developers must use. 

Any object or aspect that is identified by this procedure is assigned to 
one of the following two categories: 



240      Klaus Pohl, Ernst Sikora 

The aspect/object is within the relevant system context since it uses the 
system or affects the system in some other way. An example is a source 
providing data to the planned system in a specific format or using a spe-
cific protocol which the system must adhere to. 
The aspect/object is not relevant for the planned system. In some cases, 
a negotiation process is required to determine whether an aspect/object 
is relevant for the planned system or not. The stakeholders should 
document the results of the negotiation to make them transparent for 
other development activities. 

The context knowledge elicited and documented at the system layer is 
refined at the functional components layer. The refinement is performed to 
support goal refinement and scenario refinement (see Sections 0 and 0). 
For instance, an external system may be refined into its functional compo-
nents in order to identify those functional components that interact with the 
planned system. 

3.2 Goal Elicitation 

The objective of this activity is to elicit system goals. Typically, different 
stakeholders have different goals for a system. Managers have business 
goals. Users have goals pertaining to system usage. Engineers have goals 
concerning the technical solution. 

Goals are identified using requirements elicitation techniques such as in-
terviews or group discussions. For innovative systems, the development of 
goals should be supported by creativity techniques such as brainstorming 
(cf. e.g. [12]). Typically, some of the identified goals conflict with each 
other. To support the identification of conflicts, goals should be structured 
into different categories. The four context facets (see Section 0) can be 
used as a rough classification scheme for goals. After performing the clas-
sification, conflicts can be identified, firstly, within each category. If a 
conflict is detected, negotiation activities are performed in order to resolve 
the conflict. After the conflicts within each category have been resolved, 
the stakeholders should check for conflicts among goals in different cate-
gories (which can be more subtle and therefore more difficult to detect). 

In addition to positive goals the stakeholders should identify negative 
goals (anti goals). Negative goals are goals that the system must prevent 
from being satisfied. An example of a negative goal is “the system shall 
(not) cause an accident”. By identifying scenarios that result in the satis-
faction of negative goals and by conceiving means to prohibit such scenar-
ios, the identification of safety and security requirements is supported. 



Co-Development of System Requirements and Functional Architecture      241 

3.3 Goal Refinement 

The objective of this activity is to refine system goals that have been iden-
tified in the goal elicitation activity in order to (eventually) produce a set 
of component goals. The goal refinement activity produces sub goals that 
are related to the initial goals by AND/OR refinement relationships. In the 
case of AND refinement, all sub goals must be satisfied to satisfy the super 
goal. For instance, the goal “maintain safe distance” can be refined (AND 
refinement) into the two sub goals “measure distance” and “reduce speed”. 
The OR refinement relationship indicates that satisfying one sub goal is 
sufficient to satisfy the super goal. The responsibility for satisfying a sub 
goal can be with the system or with a functional component: 

If the system has the responsibility for satisfying the sub goal, the sub 
goal is assigned to the system layer. 
If a single functional component is responsible for satisfying the sub 
goal, this sub goal is assigned to the functional components layer and re-
lated to the respective functional component. 

Goal refinement can be used to support the design of functional compo-
nents. For instance, if a functional component lacks the required interfaces 
or connections for satisfying a sub goal that is assigned to the component, 
a redesign of the component is needed. If the goal “reduce speed” is re-
fined into two sub goals “actuate brakes” and “reduce engine torque”, the 
stakeholders must check if the functional component that is responsible for 
reducing the speed is able to interact with the component that controls the 
engine torque, for example. 

The goal refinement activity is closely related to the scenario refinement 
activity (see Section 0). If a system scenario is refined into a component 
scenario, the goals associated to the system scenario should also be re-
fined. The resulting sub goals should be assigned to the component sce-
nario.

3.4 Scenario Elicitation 

The objective of this activity is to develop system scenarios, which are, in 
most cases, system usage scenarios. Each system (usage) goal that is elic-
ited in the goal elicitation activity should be concretized by at least one 
system scenario. For instance, the stakeholders might concretize the goal 
“maintain save following distance” by the following scenario: 

1. The driver activates the ACC (adaptive cruise control) system. 
2. The ACC recognizes a relevant vehicle ahead. 



242      Klaus Pohl, Ernst Sikora 

3. The ACC signals the detection of the vehicle to the driver. 
4. ACC reduces the speed in order to maintain a safe following distance. 

Scenarios for innovative systems should be developed collaboratively 
by an interdisciplinary team (cf. e.g. [11]). Initially, the scenario develop-
ment should focus on the main scenarios, i.e. the scenarios that are most 
likely to occur. Subsequently, the main scenarios should be analyzed in or-
der to identify alternative and exceptional scenarios and thus to obtain a 
more complete set of scenarios. Alternative scenarios describe alternative 
ways of satisfying the goal of the main scenario. An alternative scenario 
for the ACC system might be, for example: 

3. (…see main scenario…) 
4a. The driver operates the brake pedal. 
5a. The operation of the brake pedal deactivates the ACC. 

Exceptional scenarios describe sequences of interactions that are per-
formed when an error occurs (e.g. when a user enters incorrect data or a 
hardware component fails). An exceptional scenario terminates without 
satisfying the scenario goal. 

In addition to the above-mentioned scenarios, the stakeholders should 
identify negative scenarios. Negative scenarios describe sequences of in-
teractions which must be actively prevented by the system. Negative sce-
narios are, for example, scenarios, in which a user gains illegal access to 
privileged system functions, or scenarios, in which humans sustain damage 
due to system failure. 

To provide more detailed guidance for the development of goals and 
scenarios, established goal- and scenario-based requirements engineering 
approaches can be applied (cf. e.g. [1], [6], [11], [16]). 

3.5 Scenario Refinement 

The objective of the scenario refinement activity is to refine system scenar-
ios into component scenarios. The refinement of the system scenario pre-
sented in Section 0 is depicted in Fig. 6. In the component scenario, func-
tional components and (system-internal) interactions between the 
components are shown. 



Co-Development of System Requirements and Functional Architecture      243 

sy
st

em
sc

en
ar

io
driver vehicle

activate ACC
acquire distance

vehicle
ahead

reduce
speed

co
m

po
ne

nt
sc

en
ar

io

driver vehicle
ahead

displays and
controls

cruise
control deceleration

activate ACC

signal activation
acquire distance

reduce speed

object indicationindicate
object recognition

indicate object recognition

Fig. 6. Sample refinement of a system scenario into a component scenario 

The scenario refinement supports the development and evaluation of the 
logical architecture. The possible results of the scenario refinement include 
the identification of additional functional components, the identification of 
additional component interactions as well as the identification of additional 
interactions with external actors. The consistency between the resulting 
component scenario and the original system scenario should be checked at 
the end of the refinement. 

3.6 Specification of Detailed Requirements 

The objective of this activity is to develop functional and quality require-
ments for the planned system. The inputs to this activity include goals, 
scenarios, and a (coarse-grained) logical architecture. Thereby, explicit ar-
chitectural knowledge can be considered when defining the detailed sys-
tem requirements. 

The requirements artefacts produced by this activity are comprehensive 
specifications of the externally observable system behaviour, functionality, 
and structure/data. Concerning the system behaviour, major system states 
such as “inactive mode”, “standby mode”, “active mode”, and “failure 
mode” are defined. Concerning the system functionality the major func-
tions that are available at the system interfaces are described (e.g. “activate 
ACC”, “adjust set speed”, and “adjust set distance”). Concerning struc-
ture/data, major structural and data elements are described (e.g. the “mo-



244      Klaus Pohl, Ernst Sikora 

tion data”  “vehicle speed”, “acceleration/deceleration”, “steering an-
gle”).

3.7 Architectural Design 

The objective of this activity is to establish a coarse-grained architecture 
including the system interfaces, architectural styles and patterns, and func-
tional components. 

The main emphasis of this activity within COSMOD-RE is to develop 
creative design ideas which enhance the functionality or quality of the sys-
tem. A creative design idea for the ACC system might be to equip the sys-
tem with a voice control component which allows the driver to activate 
and deactivate the system and adjust system parameters via speech com-
mands. Design ideas can be identified, e.g., based on market trends and 
technological innovations. For example, if a new type of network appears 
on the market, the system engineers might conceive ways of exploiting the 
new network technology for the planned system. 

The design ideas developed in this activity are, initially, documented us-
ing simple architectural models such as boxes-and-lines models. Typically, 
an architectural model includes several design ideas that are integrated into 
an overall candidate architecture. The result of the architectural design ac-
tivity is a (partial) logical architecture consisting of system interfaces, key 
functional components, and their interconnections. 

3.8 Requirements and Design Evaluation 

The objective of this activity is to identify inconsistencies between the sys-
tem-level requirements artefacts and the logical architecture. The compari-
son of the system-level requirements artefacts with the logical architecture 
is facilitated by refining system goals into component goals and the re-
finement of system scenarios into component scenarios (see Sections 0 and 
0). The following questions should be raised during the evaluation: 

Does the architecture satisfy the system goals and system scenarios? 
Does the proposed architecture offer potentials for innovative goals and 
scenarios that have not been conceived yet? 
Do the system goals and scenarios account for feature interactions and 
failure states that become evident through the analysis of the logical ar-
chitecture? 

By resolving the detected inconsistencies, the stakeholders improve the 
completeness of the specification and the consistency of requirements and 



Co-Development of System Requirements and Functional Architecture      245 

architecture. In addition, answering the above questions may lead to crea-
tive ideas for enhancing the requirements and architectural definitions. 

4 Summary 

In this chapter, the key principles of the COSMOD-RE have been pre-
sented. COSMOD-RE supports the co-development of requirements and 
architectural artefacts for innovative software-intensive systems. The 
method defines four abstraction layers for requirements and architecture. 
The co-development of requirements and architectural artefacts is sup-
ported by means of five interrelated sub-processes which include the de-
velopment of innovative goals and scenarios, the development of innova-
tive design ideas, and the consolidation of requirements and design. The 
main emphasis of this chapter has been on the description of the activities 
for developing goals and scenarios at the system level, refining the goals 
and scenarios, designing a coarse-grained, logical system architecture, 
evaluating the architecture against the requirements artefacts, and develop-
ing detailed requirements based on consolidated goals, scenarios, and ar-
chitectural artefacts. Overall, the COSMOD-RE process structure and the 
associated set of activities provide a systematic support for incorporating 
and exploiting architectural knowledge in the requirements engineering 
process and consolidating requirements and architectural definitions. 

We are currently working on a formalization of our method as a basis 
for developing tools that support the COSMOD-RE activities and the man-
agement of the artefacts produced by the activities. 

Acknowledgments. This research was partly founded by the BMBF pro-
ject REMsES, grant no. 01 IS F06 D. The writing of this chapter was 
partly founded by SFI grant no. 03/CE2/I303_1. 

References 

[1] Antón, A.I., Dempster, J., Siege, D.: Deriving Goals from a Use Case Based 
Requirements Specification for an Electronic Commerce System. In: Proc. 6th 
Int. Workshop on Requirements Engineering: Foundation for Software Qual-
ity, REFSQ’00 (2000) pp 10-19 

[2] Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered 
Systems (Morgan Kaufmann, San Francisco 1998) 

[3] Robert Bosch GmbH: ACC Adaptive Cruise Control (The Bosch Yellow Jack-
ets, Edition 2003) available via http://www.christiani-tvet.com 



246      Klaus Pohl, Ernst Sikora 

[4] Davis, A.M.: Software Requirements: Objects, Functions, and States (Prentice 
Hall, Englewood Cliffs 1993) 

[5] Galster, M., Eberlein, A., Moussavi, M.: Transition from Requirements to Ar-
chitecture: A Review and Future Perspective.  In: Proc. 7th ACIS Interna-
tional Conf. on Software Engineering, Artificial Intelligence, Networking, and 
Parallel/Distributed Computing, SNPD'06 (2006) pp 9-16 

[6] Haumer, P., Pohl, K., Weidenhaupt, K.: Requirements Elicitation and Valida-
tion with Real World Scenes. IEEE Trans. on Softw. Eng. 24(12), 1036-1054 
(1998) 

[7] Halmans, G., Pohl, K.: Communicating the Variability of a Software Product 
Family to Customers. Software and Systems Modeling 2(1), 15-36 (Springer, 
Berlin Heidelberg New York 2003) 

[8] ITU-T Recommendation Z.120: Message Sequence Chart (MSC). Interna-
tional Telecommunication Union (2004) 

[9] Jarke, M., Pohl, K.: Establishing Visions in Context: Towards a Model of Re-
quirements Processes. In: Proc. 14th Int. Conf. on Inf. Systems, Orlando, Flor-
ida (1993) pp 23-34 

[10]  Van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided 
Tour. In: Proc. 5th IEEE Int. Symp. on Req. Eng., RE'01, Toronto, Canada 
(IEEE Computer Society Press 2001) pp 249-262 

[11]  Maiden, N.; Alexander, I. (eds.): Scenarios, Stories, Use Cases: Through the 
Systems Development Life-Cycle (Wiley, Chichester, West Sussex 2004) 

[12]  Maiden, N; Robertson, S.; Robertson, J.: Creative Requirements: Invention 
and Its Role in Requirements Engineering. In: Proc. 28th Int. Conf. Softw. 
Eng., ICSE’06, 20-28 May, Shanghai, China (ACM 2006) pp 1073-1074. 

[13]  Nuseibeh, B.: Weaving Together Requirements and Architectures. IEEE 
Computer 34(3), IEEE Computer Society (2001) pp 115-117 

[14]  Pohl, K., Haumer, P.: Modelling Contextual Information about Scenarios. In: 
Proc. 3rd Int. Workshop on Requirements Engineering: Foundation for Soft-
ware Quality, REFSQ’97, Barcelona (Presses Universitaires, Namur 1997) 

[15]  Puschnig, A.; Kolagari, R.T.: Requirements Engineering in the Development 
of Innovative Automotive Embedded Software Systems. In: Proc. 12th IEEE 
Int. Req. Eng. Conf., RE'04, Kyoto, Japan (IEEE Computer Society 2004)   

[16]  Rolland, C., Souveyet, C., Achour, C.B.: Guiding Goal Modeling Using Sce-
narios. IEEE Trans. on Softw. Eng. 24(12), 1055-1071 (1998) 

[17]  Rolland, C., Grosz, G., Kla, R.: Experience with Goal-Scenario Coupling in 
Requirements Engineering. In: Proc. 4th IEEE Int. Symp. on Requirements 
Eng., RE’99, Limerick, Ireland (IEEE Computer Society 1999) pp 74-81 

[18]  Sølvberg, A.. Research Issues in Integrated Distributed Information Systems. 
Keynote Speech CAiSE’93 (1993) 

[19]  Zhu, Q., Medjahed, B.: Developing In-Vehicle Database Management Tech-
niques for Efficient Vehicular Applications, Technology Day 2006, Henry W. 
Patton Center for Engineering Education and Practice, University of Michigan 
– Dearborn (2006) 



Capturing Dependability Threats in Conceptual 
Modelling

Guttorm Sindre1, Andreas L. Opdahl2

1 NTNU, Trondheim, Norway 
2 University of Bergen, Bergen, Norway; 

Abstract. To improve the focus on security and other dependability issues it might be 
useful to include such concerns into mainstream diagram notations used in information 
systems analysis. In particular, there have been proposals introducing inverted icons to 
depict functionality not wanted in the system (e.g., misuse cases) or actors with mali-
cious intent (in i* diagrams), thus addressing security issues in such notations. But 
there are many other modelling notations also used in early systems development, and 
the focus on dependability could be strengthened if these provided similar means to in-
corporate dependability issues. This paper looks at the possibilities for addressing de-
pendability in information models and workflow models. To maintain visual consis-
tency with the abovementioned proposals, it is suggested to apply inverted icons also 
here. In information models this can be used to represent misinformation, and in work-
flow models malicious or fraudulent actions attacking the business process. In both 
cases, inversion of icons contributes to clearly distinguishing between what is wanted 
in the system and what must be avoided, thus enabling a visual representation of de-
pendability concerns. 

1 Introduction 

Often, malicious attacks or accidents have disastrous effects in organiza-
tions because they happen in ways that were not imagined when automated 
information systems and manual routines were developed. For instance, 
some computer criminals can perform attacks with a persistence and inge-
nuity which is very hard to protect against [2, 16] – especially since the 
system must succeed every time, while the attacker needs to succeed only 
once. And even the most elaborate technological protection will be futile if 
the organization’s employees are duped by social engineering attacks [17] 



248      Guttorm Sindre, Andreas L. Opdahl 

to give away confidential information. Similarly, safety concerns may have 
been taken into account in the development of a system, but unforeseen 
combinations of external events, system faults, and human failure may 
sometimes lead to disastrous effects [13].  

Hence, increased focus on supporting early discussions to identify pos-
sible threats to a system could be much needed[3, 8], but mainstream tech-
niques for security analysis such as [7] tend to be formal and heavyweight, 
not easily including a broad range of stakeholders. To the extent that in-
formal modelling techniques are used in systems analysis, these primarily 
deal with system functionality, while security is often delayed to later 
phases. This often leads to expensive rework or losses due to security 
breaches [12]. Therefore there is a need to integrate dependability concerns 
into mainstream early phase techniques for systems development. 

There are two notable proposals that have both made use of inverted 
icons to capture attackers and security threats. Use case diagrams were ex-
tended with inverted actor and use case icons into misuse case dia-
grams[21], and i* diagrams were similarly extended with inverted actor 
icons to capture attackers and inverted goal icons for the malicious goals 
of these attackers [15]. 

Fig. 1. Misuse case diagram with security threats, adapted from [19] 

The diagram of Fig. 1 shows some normal use cases for a Knowledge 
Map application, as well as the Actors using this functionality. Addition-



Capturing Dependability Threats in Conceptual Modelling      249 

ally, there are misuse cases (inverted), as well as the actor for the misuse 
cases, in this case a generic “Attacker”. Misuse cases can threaten normal 
use cases, and more use cases can then be introduced to mitigate the mis-
use cases. The misuse cases in this example are security-related, since they 
are initiated by a malicious attacker. But accidental mistakes by legitimate 
actors can be modelled in much the same way. As suggested by [1], misuse 
cases can also be applicable in cases of health and environmental safety, 
and non-human threats such as bad weather, floods, and fires can be an-
thropomorphized so that the same inverted actor symbols can still be used. 
The example of Fig. 2 shows a boiler system controlled by a computer and 
an operator. On the left are the normal, successful actions of these two ac-
tors. On the right, there are possible mistakes and failures that threaten the 
normal operation of the system. 

Fig. 2. Safety-oriented misuse case diagram. 

The example of Fig. 2 is adapted from [13], but there it was modelled 
with a Cause-Consequence Diagram, which is a safety-specific technique 
not utilizing inverted icons. The point here is not that misuse cases is better 
than CCD’s for capturing safety issues (it may easily be the other way 
around, since the latter technique was specifically designed with safety in 
mind), but misuse cases do have the advantage of being just a minor exten-
sion of a notation which is already known by many software developers, 



250      Guttorm Sindre, Andreas L. Opdahl 

and which is used anyway in a huge number of projects. Thus the thresh-
old for introducing safety concerns in a mainstream project would be 
smaller. 

Another technique where the use of black icons have been suggested to 
deal with security issues is i* [15]. The example of Fig. 3 shows an excerpt 
from an i* diagram illustrating the basic extensions. Unlike misuse case 
diagrams, the symbols are not directly inverted but embedded in black rec-
tangles, otherwise the idea is analogous: The Attacker has malicious intent, 
in this case trying to hurt the soft-goal of preserving the privacy of patient 
data. The diagram also shows that this attacker role may be played by an 
actor which is otherwise a legitimate actor in the system, namely an Insur-
ance Company. Here, i* has an advantage over misuse cases in providing 
more powerful concepts for modelling the various relationships between 
agents, roles, and positions. Also, the modelling of goal hierarchies in i* 
can be useful for investigating trade-offs between various counter-
measures to attack, as is shown in [15]. On the other hand, in spite of i*’s 
huge success in academia and increasing interest in this technique with 
various industrial applications, misuse cases still have an advantage in be-
ing based on a more mainstream technique generally known to software 
engineers.

Fig. 3. Example of an i* diagram with an attacker, excerpt from [15] 

Both misuse cases and the elaboration of security issues with i* (or the 
related Tropos, cf. [18]) have shown a lot of promise, and there is no rea-
son to stop at this, as there are several other modelling paradigms where 
the inclusion of inverted icons could also be considered. In the rest of the 
paper we will look at various opportunities for this. Section 2 considers the 
usage of inverted icons in information models. Section 3 similarly looks at 



Capturing Dependability Threats in Conceptual Modelling      251 

inverted icons in models for business processes or workflow. Finally, sec-
tion 4 provides some discussion and conclusions to the paper.  

2 Modelling Information and Misinformation 

The WWW has made a wealth of information freely available for almost 
anyone. Often the problem is that a search returns too much information, 
and that some of the information is of poor quality. In some cases, such 
poor information quality is only a minor annoyance, but in other cases 
there may be serious safety issues involved when people take action based 
on misinformation. One notable example is web information containing 
medical advice, where misinformation [9] may cause people to hurt them-
selves or their children, or in the case discussed in [24]: their pets. As em-
phasized by [6] medical misinformation comes not only from unserious 
charlatans marketing bogus drugs or therapies, but even to some extent 
from medical journals, as one study is often contradicted by later ones[11].  

While it is undoubtedly useful to model information (e.g., for the pur-
pose of building a database or ontology), it could be questioned whether it 
is useful to model also misinformation (which would normally not be 
wanted in the database anyway). However, making a concept model that 
includes frequent types of misinformation may be a first step towards pro-
viding automatic support for detecting and systematizing web documents 
that contain misinformation, and investigate how misinformation spreads 
from one document to the next. It might also provide assistance for ranking 
online documents based on the ratio of information vs. misinformation. 
For instance in the domain of medical advice, the huge number of docu-
ments available on the web, with varying quality, suggests that a concept 
model supporting the identification of information as well as misinforma-
tion could be most helpful. 

In other cases, where misinformation is used for fraud against business 
processes, such as embezzling funds through fake invoices, concept mod-
els including misinformation could be useful in discussing business proc-
ess reengineering, audit procedures or security protection mechanisms to 
reduce the possibility for fraud.  

In systems analysis information is often modelled with ER-diagrams or 
similar notations, such as UML class diagrams. For the purpose of this pa-
per we will look at one particular notation for information modelling, 
namely Sølvberg’s Referent Model [22], and extending this to represent 
misinformation. The motivation for choosing the Referent Model instead 
of ER or UML class diagrams is that it has been demonstrated to be well 



252      Guttorm Sindre, Andreas L. Opdahl 

suited for modelling the contents of documents, cf. [4, 5], in particular 
semi-structured information on the web, such as medical information.  

For simplicity the example of Fig. 4 displays only a smaller part of what 
a medical advice document on the internet might contain. The white Ref-
erent sets denote accepted phenomena (e.g., in accordance with best medi-
cal knowledge), whereas the black Referent sets denote misinformation. 
The white part of the diagram indicates that the universe of discourse con-
cerns symptoms that have causes. Often, several symptoms occur together, 
hence a symptom collection is an aggregation of symptoms often co-
occurring, and it is for such symptom collections (which may in some 
cases still consist of a single symptom) that diagnoses may be suggested.  
Notice that the referent set Diagnosis Options, which associates symptom 
collections with causes, does not contain instances of the diagnosis, as es-
tablished for one specific patient by one specific doctor. Instead it contains 
sets of diagnoses, i.e., all the candidate diagnoses given a certain symptom 
collection. Finally, the diagnosed causes may be either diseases or normal 
states (e.g., having a headache after working all night with a conference 
paper or being slightly depressed when the paper is still rejected). This is 
of course a gross simplification as there are a number of health problems 
that are not diseases, e.g., injuries or back problems, but the diagram 
would be far too big if attempting a complete ontology of the domain. Fi-
nally, some action may be recommended for a suggested cause, such as 
immediately consulting your doctor or dentist, seeking some alternative 
treatment, buying some drug, performing some self-treatment, or (e.g., in 
the case of the work all night headache) just taking a rest, so a more com-
plete model would also indicate various types of treatment, how these 
treatments could be obtained, their costs, side-effects etc. 

The inverted part of the diagram concerns itself with some types of mis-
information that may be present in this domain. First of all, there may be 
misinformation about symptoms. A document may contain discussion of 
bogus symptoms, i.e., something presented as a symptom without being 
medically recognized as such. This is shown by the fact that the example 
instance S2 which is a member of Bogus Symptom, is not a member of the 
Symptom referent set. On the other hand, an Inaccurate Symptom is a 
member of the Symptom set, thus representing a medically recognized 
symptom. The problem here is that the description of the symptom is im-
precise, so that the reader of the document may easily misinterpret it, for 
instance failing to recognize the symptom even if having it, or on the other 
hand getting unsubstantiated fear of displaying the symptom when it is 
really not present. This lack of precision is indicated by the fact that the 
description value of the symptom instance S1 does not correspond to any 



Capturing Dependability Threats in Conceptual Modelling      253 

description in the corresponding value set (rectangle with a triangle in the 
lower right corner). 

Symptom
Misinfo

Inaccurate
Symptom

Bogus
Symptom

Symptom Cause
Normal
state

Disease

Action

C.recommends

description

Diagnosis
Options

Diagnosis
Misinfo

S1 S2

Symptom
Collection

Omissive
Diagnosis
Options

Excessive
Diagnosis
Options

D2

D.given_for

Fig. 4. Example of Referent Model including misinformation 

Diagnosis Misinformation is probably an even more serious problem 
than Symptom Misinformation. One medical advice website would not be 
expected to offer diagnoses for all possible symptom collections, so it 
makes little sense to talk about misinformation for symptoms and causes 
that the document is not at all dealing with. However, if diagnoses are sug-
gested for a certain symptom collection, then one can talk about two dif-
ferent kinds of misinformation: 

Omission: The document offers some candidate diagnoses, but not all 
the known candidate diagnoses for the symptom collection, i.e., some 
candidate diagnoses are ignored. Or alternatively, the document starts 
with the cause (e.g., discussing a certain disease), but does not provide 
all the possible symptom collections relevant for this disease. 
Excess: The document offers some diagnoses that are discredited / not 
accepted, i.e., bogus relationship instances between symptom 
collections and causes. One option here may be that both the symptom 
collection and cause are medically recognized, but that no relationship 
really exists between them. Another option would be the suggestion of a 
completely bogus cause (e.g., being the victim of a witch spell or under 
the influence of a demon inhabiting your computer keyboard). 

If the reader performs some kind of self-diagnosis based on such misin-
formation, several problems may occur. For instance, a serious health 

S1.description



254      Guttorm Sindre, Andreas L. Opdahl 

problem may be mistaken for a less serious one, so that the patient fails to 
seek the needed medical assistance in time, or instead embarks on some 
self-treatment that actually worsens the condition. Or instead, unnecessary 
fear may be inflicted on the reader, who believes that his health problems 
are much more serious than they really are. 

Beyond the suggested Action given a cause, Fig. 4 could have been ex-
tended with various other concepts, such as suggested treatments for dis-
eases and treatment providers (authorized or not) offering to perform these 
treatments at certain cost and quality levels, drugs and drug providers 
(again authorized or not), side-effects (of treatments or drugs), etc. For all 
of these, various types of misinformation could also be modelled: 

Treatment misinformation, such as offering a treatment which really has 
no mitigating effect on the diagnosed health problem, exaggerating the 
positive effects of a treatment or concealing negative side-effects, or 
passing off as treatment of the disease something which really only 
reduces the symptoms. 
Treatment or drug provider misinformation, for instance passing off as 
authorized a provider or vendor who is not. 
Drug misinformation, such as inaccurate dosage information, 
concealment of side-effects, or trying to sell fake products. 

Such misinformation could be modelled in a way similar to the example 
in Fig. 4. Another example of misinformation is given in Fig. 5, more di-
rectly linked to fraudulent behaviour against a particular business process. 
Assume that in University X it is common procedure for professors to pay 
for minor research expenses (e.g., books, equipment, conference trips) out 
of their own pocket and later get refunded, because this is administratively 
simpler than having to apply up front to have the university cover the ex-
pense immediately. The model shows that an expense is incurred by ex-
actly one professor, whereas each professor may have had several ex-
penses. Similarly, a claim is made by exactly one professor, who can make 
several claims. A claim may be related to one or more expenses, and at the 
bottom, claims are specialized according to the various stages they go 
through (un-submitted, submitted, checked, accepted or rejected, and if ac-
cepted then later reimbursed). Assuming that some professors might try to 
embezzle funds through this reimbursement process, some misinformation 
sets have been added to the model, most notably “Illegitimate Claim”. As 
can be seen, there are several subtypes of illegitimate claims: 

Private claim c (def.): seivateExpeneeformadec Pr)(_.
Excessive claim c (def.): amounteamountceformadec ..)(_.



Capturing Dependability Threats in Conceptual Modelling      255 

date
amount

date
type
amount

E.paid_by

Professor

Expense

Claim

C.made_for

C.made_by

Submitted
Claim

Unsubm
Claim

Checked
Claim

Accepted
Claim

Reimbursed
Claim

Rejected
Claim

Legitimate
Claim

Research
Expense

Illegitimate
Claim

Private
Claim

Excessive
Claim

Fake
Claim

Private
Expense

Fake
Expense

F.passed_off_as

Repeated
Claim

Fig. 5. Potential misinformation in an expense reimbursement process 

Repeated claim c (def.; some other claim which is already submitted has 
involved the same expense): 

)(_. eformadec
)')(_'.':)'(( mUnsubmClaiceformadecccClaimc

Fake claim c (def.): eFakeExpenseeformadec )(_.
Some of these definitions might have been possible to illustrate dia-

grammatically, but the diagram would easily become clumsy if trying to 
do too much just with visual symbols. Notice that Fake Expense is not a 
subset of Expense, since a fake expense does not at all correspond to a real 
expense incurred by the professor (could for instance be “proven” by a re-
ceipt retrieved from the trash bin of the university bookshop, thus really 
being paid by another person) – this in contradiction to a private expense, 
which was paid for by the professor, but includes goods or services for 
private use rather than for research purposes. Notice that the Private Ex-
pense rectangle is not inverted. A private expense is not illegitimate as 
such, but becomes illegitimate only if a claim is made for it as a research 
expense (e.g., passing off a strip club bill as a seminar fee, internet gam-



256      Guttorm Sindre, Andreas L. Opdahl 

bling losses as fees for electronic journal subscriptions, or payments to 
students doing work in the professor’s garden as rewards for research as-
sistance)1.

3 Workflow Models with Inverted Icons 

Business processes, as captured for instance by workflow models, are fre-
quently threatened by fraud and other types of attack. While the normal le-
gitimate workflow is interesting to model to provide automated support for 
it, the modelling of the attacker‘s action needs another motivation. Still it 
is interesting to model because it can aid the discussion of security re-
quirements, both in brainstorming for various fraud options and to elabo-
rate possible mitigation mechanisms such as audit procedures or even re-
engineering the business process to make it less prone to particular types 
of attack. 

Submitted
Claim

Unsubm
Claim

Checked
Claim

Accepted
Claim

Reimbursed
Claim

Rejected
Claim

Illegitimate
Claim

Prof write claim Prof write illeg. claim

Prof submit claim

Acct reject

Acct accept

Prof bribe Acct Prof forge signatures

Acct accept
(deliberately
allowing illeg
claim)

HOD reject HOD accept

fake

Prof insert claim in mail

Salaries reimburse
Salaries reimburse
(not noticing signatures
  are fake)

Claim with fake 
signatures of Acct and 
HOD arrives at Salaries 

in same envelope as 
legitimate claims

Fig. 6. Behaviour Network Model of the reimbursement process, including fraud 

An early formalism for the modelling of system activity was that of 
Petri nets [20], which are still used for the modelling of workflows. There 

                                                     
1 Note that all these examples are fictitious and not related to any real professor 

that we know of. 



Capturing Dependability Threats in Conceptual Modelling      257 

are many different dialects of Petri nets to choose from. For our particular 
purpose we select the Behaviour Network Model [14, 23], due to the fact 
that it is integrated with ER-style information modelling.  

Fig. 6 shows a BNM diagram for the reimbursement process related to 
the Referent Model of Fig. 5. Apart from the normal ingredients of Petri 
nets (places and transitions) BNM provides the possibility to link places to 
entity classes, thus showing the type of tokens. 

The diagram of Fig. 6 can be explained as follows: The normal process 
starts with the professor writing a claim, then submitting it. It is then 
checked by an accountant to see if all claimed expenses are validated (e.g., 
with receipts) and if the sums add up correctly. If there is some problem, 
the accountant returns the claim to the professor for corrections or request-
ing additional information. If OK, the accountant signs the claim as 
checked and forwards it to the Head of Department. The HOD does not 
make any detailed check of receipts (which was the accountant’s responsi-
bility) but rather considers if the expense is a research expense in accor-
dance with department policy. If the expense is considered private, the 
HOD will reject it. Otherwise the HOD signs it as accepted and forwards it 
to Salaries for reimbursement.  

As for the inverted part of the diagram, this initially shows the professor 
entering an illegitimate claim into the system. Then the diagram depicts 
three different ways that fraud can be attempted: (a) submit the illegitimate 
claim into the normal process using the transition “Prof submit”, hoping 
that the control is sloppy enough or any fake receipts clever enough that 
the fraud will not be discovered, (b) collude with the accountant using the 
transition “Prof bribe Acct”. Here, the accountant knowingly accepts an il-
legitimate claim, for instance under a deal of splitting the profits. Since the 
HOD’s inspection of the claims is rather superficial, this may have good 
hope of succeeding. (c) try to bypass the department’s internal control al-
together, via the transition “Prof forge signatures”. Here the professor does 
not submit his claim the normal way but instead himself signs for the ac-
countant and HOD so that the claim appears to have passed acceptance. 
Then, it is simply slipped into the envelope that the department sends to 
Salaries every second week, containing claims for various professors in the 
department. This can fairly easily be achieved if the professor has a key to 
the mailroom and is familiar with the routines, thus knowing when this en-
velope is likely to be waiting to be picked up from the department outbox. 

In BNM it would also be possible to make formal expressions for pre-
conditions and post-conditions of the transitions, which might be particu-
larly appropriate for security analysis, but this is beyond the scope of this 
paper. Even without including such formal conditions, the above diagram 
may support a discussion of possible ways to mitigate the fraud – for in-



258      Guttorm Sindre, Andreas L. Opdahl 

stance by annotating various options directly onto the diagram. For the 
simplest fraud (where the Prof submits an illegitimate claim in the normal 
way) the most obvious mitigation would be a more thorough control by the 
accountant or HOD. The collusion between professor and accountant could 
possibly be mitigated by process redesign, such as swapping claims be-
tween various accountants in a way not predictable to the professors in ad-
vance (i.e., not using the same accountant for claims from Prof X every 
time), or by sometimes double-checking claims by two accountants. The 
final fraud variation, where the professor forges the signature of the ac-
countant and HOD could be mitigated in several ways: (1) by changing to 
electronic claim forms with digital signatures (the Prof would then need to 
obtain the HOD’s password rather than simply forging a handwritten sig-
nature), (2) by sending the claims from the HOD to Salaries in another 
way (i.e., avoiding that the envelope waits in the Dept Outbox for some 
time), (3) having the Acct and HOD keep lists of the claims that have 
really been accepted, then comparing with a list from Salaries of which 
claims were actually reimbursed (will not prevent the fraud, but ensures 
that it is detected within a month). All the above-mentioned mitigation op-
tions could easily be positioned in the BNM diagram, which could thus be 
a useful basis for initial discussion of various possibilities. Then, the most 
promising possibilities could be taken further, comparing the cost of miti-
gations to the assumed cost of the fraud. 

4 Discussion and Conclusions 

The paper has looked at the expression of security threats and related is-
sues of misinformation and fraud in conceptual models. Through some ex-
amples the paper has demonstrated that inverted icons are not only inter-
esting with use case and i* diagrams, for which such proposals have been 
made some years ago, but also for quite different types of diagrams, such 
as information models and Petri nets. Of course, the same information 
models could have been made without the use of inversion, just relying on 
the node names to tell which parts of the diagram were about information, 
and which were about misinformation. However, it is our belief that the 
models become much clearer if the important distinction between informa-
tion and misinformation is made explicit. The same applies to the Petri net, 
but again a model where the malicious actions were not visually distin-
guished from the legitimate actions would easily have become confusing 
for the stakeholders. Moreover, the presence of the inverted nodes strongly 



Capturing Dependability Threats in Conceptual Modelling      259 

invites a focus on dependability aspects early on, calling such issues to the 
attention of those who discuss the diagrams. 

A challenge to the proposed approach is that models quickly grow quite 
complex when both positive and negative elements are to be shown to-
gether, especially with Petri nets, for which this is often a problem even 
without the inclusion of malicious actions. This kind of modelling will 
therefore rely on diagramming tools with good support for filtering and 
decomposition. For the modelling of fraudulent business processes one 
could of course consider other modelling languages with more powerful 
abstraction mechanisms than Petri nets, for instance the Extended Enter-
prise Modelling Language (EEML), which gradually developed from work 
on the PPP modelling approach in Arne Sølvberg’s research group in the 
late 80’s [10]. This must potentially be investigated in future work. 

Other topics for future work are a better evaluation of the proposed ap-
proaches in terms of industrial case studies or controlled experiments, as 
well as tool development to facilitate their potential industrial application. 
Additionally, it could be interesting to investigate how to integrate light-
weight approaches based on inverted icons with more formal and heavy-
weight approaches to dependability requirements. 

References 

[1] Alexander, I., Misuse Cases: Use Cases with Hostile Intent. IEEE Software, 
2003. 20(1): p. 58-66. 

[2] Andrews, M. and J.A. Whittaker, How to Break Web Software. 2006, Upper 
Saddle River, NJ: Addison-Wesley. 

[3] Bauer, M.D. Fear and loathing in information security.  2005 11 Feb [cited 
2006 1 Oct]; Available from: http://www.oreillynet.com/pub/a/network/2005/ 
02/11/mbauer_1.html  

[4] Brasethvik, T. and J.A. Gulla. A Conceptual Modeling Approach to Semantic 
Document Retrieval. in 14th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE'02). 2002. Toronto: Springer Verlag. 

[5] Brasethvik, T. and A. Sølvberg. A Referent Model of Documents. in 1th 
ERCIM Database Research Group Workshop on Metadata for Web Data-
bases. 1998. Sankt Augustin, Germany: ERCIM. 

[6] Burney, M. Don't Believe Everything You Read - Even in Medical Journals. 
HealthFactsAndFears.com  2005  [cited 2006 1.1.]; Available from: http:// 
www.acsh.org/factsfears/newsID.591/news_detail.asp  

[7] CCIMB, Common Criteria for Information Technology Security Evaluation. 
1999, Common Criteria Implementation Board. 



260      Guttorm Sindre, Andreas L. Opdahl 

[8] CSC. How CSC's Bill Tafoya Applies Creative Thinking to IT Security.  2002  
[cited 2006 1 Oct]; Available from: http://www.csc.com/features/2002/117.
shtml  

[9] Detwiler, S., Charlatans, Leeches, and Old Wives: Medical Misinformation. 
Searcher, 2001. 9(3). 

[10] Gulla, J.A., O.I. Lindland, and G. Willumsen. PPP: A Integrated CASE Envi-
ronment. in Advanced Information Systems Engineering, CAiSE'91. 1991. 
Trondheim, Norway: Springer (Lecture Notes in Computer Science 498). 

[11] Ioannidis, J.P.A., Contradicted and initially stronger effects in highly cited 
clinical journals. Journal of the American Medical Association, 2005. 294: p. 
218-228. 

[12] Jürjens, J., Secure Systems Development with UML. 2004, Berlin: Springer. 
[13]  Leveson, N.G., Safeware: System Safety and Computers. 1995, Boston: Ad-

dison-Wesley. 
[14]  Kung, C.H, Sølvberg, A.: Activity Modeling and Behavior Modeling. in IFIP 

WG 8.1 Working Conference on Comparative Review of Information Sys-
tems Design Methodologies: Improving the Practice (CRIS '86). 1986. 
Noordwijkerhout, The Netherlands: North-Holland. 

[15]  Liu, L., E. Yu, and J. Mylopoulos. Security and Privacy Requirements 
Analysis within a Social Setting. in 11th International Requirements Engi-
neering Conference (RE'03). 2003. Monterey Bay, CA: IEEE Press. 

[16] Mitnick, K.D. and W.L. Simon, The Art of Intrusion. 2006, Indianapolis: 
Wiley. 

[17] Mitnick, K.D. and W.L. Simon, The Art of Deception: Controlling the Hu-
man Element of Security. 2002, Indianapolis: Wiley Publishing, Inc. 

[18]  Mouratidis, H., P. Giorgini, and G. Manson. Integrating Security and Systems 
Engineering: Towards the Modelling of Secure Information Systems. in 15th 
Conference on Advanced Information Systems Engineering (CAiSE'03). 
2003. Velden, Austria: Springer LNCS 2681. 

[19]  Petit, M., Knowledge map of research in interoperability in the INTEROP 
NoE. 2004, Univ. Namur, Belgium. p. 278. 

[20]  Petri, C.A., Kommunikation mit Automaten. 1962, University of Bonn. 
[21]  Sindre, G. and A.L. Opdahl. Eliciting Security Requirements by Misuse 

Cases. in 37th International Conference on Technology of Object-Oriented 
Languages and Systems (TOOLS-PACIFIC 2000). 2000: IEEE CS  Press. 

[22]  Sølvberg, A., Data and what they refer to, in Conceptual Modeling, Current 
Issues and Future Directions (Selected Papers from the Symposium on Con-
ceptual Modeling, Los Angeles, CA, held before ER'97). P.P. Chen, et al., 
Editors. 1999, Springer Verlag: Berlin. p. 211-226. 

[23]  Sølvberg, A. and D.C. Kung. On Structural and Behavioral Modeling of Re-
ality. in IFIP WG 2.6 Working Conference on Data Semantics (DS-1). 1985. 
Hasselt, Belgium: North-Holland. 

[24]  Tabaka, C. Medical misinformation on the internet and how it can harm your 
tortoise.2003 [cited 2006 1.1.]; Available from: 
http://www.chelonia.org/articles/Medical_misinformation.htm  



What Is Being Iterated? 
Reflections on Iteration in Information System 
Engineering Processes 

Nicholas Berente, Kalle Lyytinen

Case Western Reserve University, Cleveland, U.S.A 

Abstract. Iteration is a fundamental principle of information system engineering, yet the 
concept remains under-theorized in the literature. In this chapter we articulate a lens for 
studying iteration through four types of iterating artifacts: concepts, representations, in-
stantiations, and methodologies, and we apply this lens to a variety of prescriptive ap-
proaches to system development. Our review of these approaches suggests that iteration 
across one artifact or set of artifacts may substitute for iterations across another. We con-
clude with a reflection on how it is not the presence of iteration that distinguishes between 
methodologies, as iteration can be assumed in all system development efforts. Rather, the 
attitude toward iteration that various methodologies imply, and the audience of iterations
across specific artifacts that the various approaches prescribe do more to differentiate be-
tween methodologies. 

1 Introduction 

Although “iteration” is often stressed as a fundamental principle of modern 
software development practices [18], the concept of iteration is not new. In-
formation system engineering has always been an iterative process: from the 
formulations of earliest methodologies, concepts relating to iteration have 
been inherent in the discussions among researchers [32]. Yet, surprisingly, re-
searchers have not addressed the types of iterations that occur across the vari-
ous methodologies in any depth or the reasons for iteration.   

The term “iteration” is not always used to denote the same aspect of design. 
For example, iteration most commonly refers to the cyclical generation of 
functional software code and it’s testing [5]. But iteration also connotes repe-
tition of a phase of development due to rework [20], the progressive design of 
“perceivable” subsystem structures [32], or successive sub-phases within a 
main phase [29]. Less common applications of the word also abound. For ex-



262  Nicholas Berente, Kalle Lyytinen 

ample, Checkland and Scholes [16] indicate that the cyclical comparison of 
conceptual models to the real world forms an iteration. Iterative activities also 
often go by different names, such as “prototyping” to iteratively elicit user in-
put [1], “rounds” of iterative design activities to reduce risk [9], or even a 
“dance” of human interactions toward increased mutual understanding [10]. 

The concept of iteration is fundamental to design activity and therefore in-
herent in each design methodology. However, it is rarely articulated carefully 
in information system development literature. We follow Dowson in viewing 
iteration as a “generic” term implying “change to previous decisions and ac-
tions, and to the objects that have resulted from these actions. It is important 
to note that the need for these changes does not arise solely (or even mainly) 
from previous mistakes and errors; it is an inevitable part of the refinement 
and evolution of a software system” [22: p.36].  

This chapter explores the concept of iteration as it pertains to information 
systems engineering processes, and seeks to understand the types of iterations, 
that is, the “artifacts” that iterate, and the configurations in which iterations 
emerge. In order to do this, we will establish four broad categories of artifacts 
that undergo iteration during development processes, and then address pre-
scriptive literature to understand how these artifacts are treated across a vari-
ety of approaches.   

2 What is Being Iterated? 

According to Simon [49], the fundamental activity in design processes in-
volves iterative “generate-test” cycles which traverse cognitive and represen-
tational spaces during the design process. March and Smith [41] build upon 
Simon’s ideas and enlist the “artifacts” associated with information system 
development as: constructs (concepts), models (representations), methods 
(processes), and instantiations (software code), which all can be mapped ei-
ther to cognitive or representational spaces. Our conceptualization of these 
four artifacts can be summarized as follows:   

Conceptual artifacts are representations of constructs that support the 
design process; such as stages in the process, or representations of a 
methodology.  
Representational artifacts are representations of the system-in-
development, or software code.  
Instantiation artifacts are manifestations of the code itself, and 
Methodological artifacts are conceptual artifacts relating specifically to the 
process from a meta level. 



 What is Being Iterated ?  263 

We will use this classification to analyze what is being iterated and make 
sense of alternative forms of iteration. We examine what happens when we 
are iterating through conceptual, representational, or methodological artifacts, 
or through instantiations of the system itself [41]. Finally, we examine the ex-
pected impact of prescriptive iterative practices for each type of iteration.  

2.1 Concepts 

The most common conceptual artifact present in the design is the step, stage, 
or phase of the design. Stages are iterated if they are repeated. Stages and 
phases of the process are constructs that are prescribed by a methodology, but 
are not directly related to the designs or code instantiations. Other terms for 
such repeating steps in the methodology are “rounds” [9] and “iterations” 
[5,31,34]. Iterations over stages have traditionally been considered an inevita-
ble, necessary evil [20,48], but are now more commonly thought to enhance 
the system quality across multiple dimensions [3,5,7,14,18,23,30,35,44]. Such 
stages can be formal, such as the requirements determination phase, which re-
sults in “frozen” requirements [21], or they can be fairly indeterminate, such 
as “time-boxed” steps [2,6]. 

Beyond stages some researchers describe other forms of conceptual itera-
tions. The perceptions of individual designers change throughout the design, 
at different levels of the design [32]. For example, systems design has been 
likened to a hermeneutic circle [11], where a designer iteratively compares an 
artifact to its context in order to understand its meaning. Checkland [15] rec-
ommends specific representations, such as rich pictures and holons, to guide a 
system developer in iterative cognitive cycles between the representations, 
personal mental models, and perceptions of reality that progressively refine 
his underlying concepts. As conceptual models of reality cannot have a direct, 
one-to-one mapping to the system, Sølvberg [50,52] suggests iterating across 
conceptual models while communicating and developing requirements, then 
translating these models into data models that represent the design model. 

Researchers have also likened forms of system development to dialectic 
cycles [17]. Such cycles are evident in participatory approaches that encour-
age dialogs between system developers and the user community [24,45]. 
These dialogs result in a series of iterative agreements concerning system 
functionality, the anticipated environment, or appropriate methodologies [45]. 
They typically involve cycles of cooperation and conflict that are intended to 
improve user-related outcomes such as user satisfaction and system use.   



264  Nicholas Berente, Kalle Lyytinen 

2.2 Representations 

System engineering processes are rife with representational artifacts that de-
pict the information system or its environment. These representations are in-
tended to describe aspects of the entire system, or portions of it. For example, 
requirements definitions, specifications, and data models depict slices of the 
system from a certain perspective and using a particular abstraction level. 
Other representations are intended to illustrate only aspects or parts of the sys-
tem, for example, use cases, user-interface mock-ups, or user views. Throw-
away prototypes [4], if actually thrown away, would be considered representa-
tional artifacts even though they are representations made up of software 
code.

Early representations in the design process need to accommodate the 
“fuzzy” cooperative thinking necessary while requirements and needs are be-
ing articulated, while later representations involve formal, detailed specifica-
tions that guide programming [53]. Over the course of design, representations 
change and evolve or translate into other representations, such as “as built” 
software documentation. Because of this need for downstream documentation, 
no software development methodology can overlook iteration across docu-
ments entirely, although some, such as XP [5], do look to remove documenta-
tion from the critical path of development.   

Iteration across a representation can imply changes to that representation 
that refine or improve it, but can also indicate different alternatives of which 
only one will be incorporated in the final design [33,50]. The extant literature 
addresses various forms of iteration related to representations – some to a 
great degree, such as requirements determination [21] and related data models 
[50] in general, as well as the wide array of documentation within formal 
methodologies [7,9,20,28,31,45,51].  

2.3 Instantiations 

Software code evolves through multiple instantiations in some development 
approaches including versions of a completed system, or evolutionary proto-
types. The common usage of “iterative development” refers to software de-
velopment that proceeds through “self-contained mini-projects”, where each 
produces partially completed software [34]. This has traditionally been re-
ferred to as evolutionary prototyping [1,6,23], or explorative programming 
[51]. Although iterative development has been associated with stepwise re-
finement of a blunt system [56], it is most often equated with evolutionary en-
hancement, where a subset of the final code is developed to evolve into the fi-
nal system [3]. 



 What is Being Iterated ?  265 

The justification for evolutionary prototyping centers on trial and error 
learning (i.e., learning by doing) about both the problem and solution. Users 
and developers do not know what they need until they see something useful. 
Generation of prototypes assists learning about the product and to communi-
cate it in ways that is often superior to traditional documentation, thus sup-
porting mutual learning [1,3,5,7,14,18,23,30,35,44].  

Although evolutionary prototyping is the idea most often associated with 
iterative development, all application software iterates over the course of its 
life-cycle even if the methodology is not referred to as iterative. In this sense, 
each version of a software system can be considered an iteration. As bugs are 
fixed or enhancements added to code in a linear, even in a supposedly “non-
iterative” evolutionary process, each new instantiation of code can be consid-
ered an iteration. An iteration of the software can also be tested. When all or 
some portion of the code is compiled, the result is an iteration of compiled 
code. Anytime a designer replaces or adds to any part of working code result-
ing in some form of instantiation, he has developed an iteration of that code.  

2.4 Methodologies 

System designers work within implicit or explicit normative frameworks that 
guide their work. The explicit representations of such frameworks are known 
as methodologies. Such frameworks offer stability and resist change: organi-
zations are known to not change their methodologies even after numerous 
failures [39]. Since all methodologies have limitations [18], a conclusion that 
many have reached is that a contingency approach to selection of develop-
ment methodologies is a necessity [18,19,21,26,42]. In this approach, selec-
tion of the appropriate methodology depends upon critical project variables 
such as the project’s level of uncertainty [21], innovativeness, criticality, 
number of users [26], and risk [42], as well as the size of the development 
team [18], and organizational fit [19]. In an effort to find an appropriate 
methodology, if a team were to change its methodology between projects, it 
might implement entirely different methodologies, or perhaps merely imple-
ment a few practices from current vogue methodologies. As methodologies 
change between projects, one could say the methodologies and their represen-
tations iterate toward the goal of an ideal fit with the specific context.   

An articulation of each variant of a methodology would be the iterating ar-
tefact. A better and more fine-grained example of methodological iteration is 
the idea presented in method engineering literature [12,47,54]. Because meth-
odologies cannot specify all of the tasks to be done in a development project, 
and problems change during development, designers must reflect on their ac-
tions [15]. Through this reflection, designers will learn and continuously 
evolve their practices [47]. As practices evolve and designers learn, capturing 



266  Nicholas Berente, Kalle Lyytinen 

that process knowledge and rationale for method-related decisions can reduce 
errors and facilitate proper evolution of development methods [47]. When de-
velopers articulate changes in their development processes, they are iterating 
their methodology.  

Any change to the development methodology may or may not improve 
specific outcomes. In this sense, changes are essentially experiments associ-
ated with trial and error learning around a methodology and development 
process. A series of changes that take advantage of learning from iterations 
would conceivably lead to improvements. Incremental refinement of method-
ologies can lead to better outcomes than radical changes to methodology, be-
cause incremental refinements take process experience and continuous evolu-
tion into consideration.  

3 Prescriptive Software Engineering Approaches 

Five general approaches were identified as classes of information system en-
gineering methodologies: traditional, evolutionary, hybrid, socio-technical, 
and sense-making. In the next section, these five approaches will be briefly 
addressed and their treatment of iteration for each class of methodologies will 
be explored.  

3.1 Traditional Approaches: Waterfall and SDLC

There are numerous system development life-cycle methodologies (SDLC). 
The life-cycle approach is based on the assumption that all development 
should follow a series of stages that center on activities of definition, devel-
opment and implementation, with varying sub-steps [20]. The life-cycle struc-
ture emphasizes the documents and approvals that must be completed during 
each step. Iterations typically follow review processes that connect steps and 
determine whether the project can go on to the next step, or whether a step 
must be performed again. Reasons for iteration during the formal review 
process of a life-cycle approach include technical uncertainty, quality con-
cerns, and budget problems [51].  

The Waterfall model is the most well known a life cycle methodology and 
is often characterized as top-down, unidirectional, and non-iterative [48]. 
Contrary to this popular claim, even in its earliest manifestation Royce sug-
gested that unwanted changes and their resulting iterations are inevitable, and 
he recommended a number of practices to address such unanticipated prob-
lems, including piloting any sizable software project with a “preliminary pro-
gram design” [48: p.331]. This concept was later popularized by Brooks when 
he stressed to “plan to throw one away; you will, anyhow” [14: p.116]. Royce 



 What is Being Iterated ?  267 

also suggested iterative maintenance of design documentation. He understood 
that requirements change over time as the developer learns from the design, 
and therefore the requirements should evolve through a series of at least five 
documents to the final documentation of the design “as built.” Updates to de-
sign documentation occur for two primary reasons: to guide or to track devel-
opment.  

3.2 Evolutionary/Agile Approaches 

Iterative development practices emerged soon after Waterfall. The idea of 
“stepwise refinement” involved a blunt, top-down design of the main system, 
then a phased decomposition and modular improvement of the code – largely 
to increase system performance [57]. Stepwise refinement was criticized for 
requiring “the problem and solution to be well understood,” and not taking 
into consideration that “design flaws often do not show up until the imple-
mentation is well underway so that correcting the problems can require major 
effort” [3: p.390]. To address these issues, Basili and Turner recommended an 
“iterative enhancement” method of software development. They suggested 
that designers start small and simple, by coding a “skeletal sub-problem of the 
project.” The team should develop a “project control list” that details all of the 
expected tasks that the system is expected to achieve. Then developers incre-
mentally add functionality by iteratively extending and modifying the code, 
using the control list as a guide, until all items on the list have been addressed. 
Each iteration involves design, implementation (coding & debugging), and 
analysis of the software. When analysis finds a given iteration to be accept-
able, the control list is modified accordingly, and the developers are on to the 
next task on the list. This idea of iterative enhancement established the foun-
dation for evolutionary prototyping and many modern agile development 
methods.

Modern manifestations of evolutionary development practices are labeled 
“agile,” or lightweight methodologies [18]. Agile methodologies are based on 
the assumption that communication is necessarily imperfect [18], and that 
software development is a social activity among multiple developers and users 
of the system. According to proponents of agile methods, increased documen-
tation is not necessarily the answer to the weaknesses of evolutionary devel-
opment practices. Rather, certain complementary activities must be in place to 
augment evolutionary development and to increase the quality or scope of it-
erations, such as pair programming, time-boxing, test-first development, etc. 
[5].  

Anticipated benefits of evolutionary development are many. By growing 
the design in this matter software can be developed more quickly [13]. Be-
yond speed, evolutionary development enables a “more realistic validation of 



268  Nicholas Berente, Kalle Lyytinen 

user requirements,” the surfacing of “second-order impacts,” and increased 
the possibility of comparing several alternatives [7: p.656]. Prototyping can 
demonstrate technical feasibility, determine efficiency of part of the system, 
aid in design/specification communication, and organize implementation deci-
sions [23]. Prototyping is thought to mitigate requirements uncertainty [21], 
aid in innovation and increase participation [26], reduce project risk [9,40,42], 
and lead to more successful outcomes [35]. Because developers generate code 
rather than plan and document, they are expected to be more productive 
[3,5,34]. Therefore projects using evolutionary prototyping can be expected to 
cost less [3,5,18,35].   

One problem with strict evolutionary design, however, is the lack of “itera-
tive” planning for each prototype. Starting with a poor initial prototype could 
turn users away; prototyping can contribute to a short-term, myopic focus for 
the project; and “developing a suboptimal system” could necessitate a great 
deal of rework in later phases [7]. Exhaustive design documentation will still 
be required even if prototyping is the primary process [28]. The output of evo-
lutionary development often resembles unmanageable “spaghetti code” that is 
difficult to maintain and integrate, similar to the “code and fix” problems that 
Waterfall was originally intended to correct [9]. Also, by using the software 
code itself to guide discussions of requirements, conversations tend to focus 
mainly on detail, rather than business principles associated with the informa-
tion system [51]. Many continuing problems associated with evolutionary de-
velopment include “ad hoc requirements management; ambiguous and impre-
cise communication; brittle architectures; overwhelming complexity; 
undetected inconsistencies in requirements, designs, and implementation; in-
sufficient testing; subjective assessment of project status; failure to attack risk; 
uncontrolled change propagation; insufficient automation” [31: ch.1].   

Therefore, many caution that evolutionary development practices will not 
be suited to every situation as such approaches make often unrealistic assump-
tions. Evolutionary methods assume that projects can be structured according 
to short-term iterations, face-to-face interaction is tenable and superior to 
formal documentation, and the cost of change remains constant over the pro-
ject [55]. Issues such as scaling, criticality, and developer talent often require 
hybrid methodologies – or some combination of evolutionary prototypes with 
more formal methods [18,36]. Also, evolutionary development requires com-
plementary innovations to succeed [5,7].  

3.3 Heavyweight/Hybrid Approaches 

While the bulk of software engineering approaches recognize the power of 
prototyping, many do not believe strict evolutionary development to be a uni-
versal answer to all needs of development. Rather, they argue that formal 



 What is Being Iterated ?  269 

planning, documentation, and discipline is the answer, and thus developed 
“heavyweight” methodologies.  

Boehm [7] described his COCOMO process as the waterfall model using 
incremental development. Boehm’s process involved three explicit “incre-
ments of functionality”: the first of which provided “a basic capability to op-
erate and gain experience with the model”; the second is intended to add 
“valuable capabilities”; and the third added “nice to have features” [7: p.42]. 
Within each increment, however, development was expected to proceed line-
arly with distinct start and endpoints. Boehm was detailed about the number 
of documents that were expected to be produced in each phase, and they were 
fixed after they were produced within incremental trajectories, but modified 
between increments. One recent example of the adapted Waterfall method is 
McConnell’s “survival” process, which recommends essentially a repackaged 
Waterfall process with prototyping in the requirements definition phase, and 
staged delivery and testing in the implementation phase [43].  

Boehm’s spiral model [9] involves a great deal of planning and formal re-
views, but it is based rounds of development and allows for a number of pro-
totypes. Rather than three clear increments [7], the spiral model allows any 
number of increments, which are guided by a hierarchy of risks. Early in de-
velopment, when user-interface risks are particularly salient, evolutionary 
rounds of prototyping may occur until these specific risks are reduced. Later 
rounds, when interface-control risks might dominate, the rounds might entail a 
series of mini-waterfall processes. A modern descendent of the spiral model is 
the rational unified process, or RUP [31].  

A noteworthy software engineering practice that stresses high formality is 
the capability maturity model of software development, or CMM [28]. The 
fundamental premise of CMM is that only statistically measured processes 
can be improved to reach consistency with cost, performance, and schedule 
expectations. In order to accomplish accurate measurement that is essential 
for consistency, the process must be mature. Different development teams 
have different levels of maturity. The failure of immature teams (levels 1&2) 
are not typically because of technical failure, but rather the “confused and in-
coherent process” due to lack of consistent management is typically at fault 
[28: p.28]. More mature teams have orderly, measured processes, actively de-
veloped standards, advanced tools and languages, etc. CMM is a top-down 
philosophy that stresses continuous process improvement and repeatable 
processes within well defined phases. The process itself is incrementally (it-
eratively) improved through the five CMM levels, with well-defined assess-
ment methods at each level.  

A fundamental assumption of each formal methodology is that certain as-
pects of the development process can be frozen, documented (and therefore 
communicated) adequately, and built-on with subsequent phases. The spiral 
model’s rounds build upon frozen previous rounds. Although Humphrey 



270  Nicholas Berente, Kalle Lyytinen 

warns not to freeze requirements too soon, he indicates that requirements 
should in fact be frozen at an appropriate time.  

3.4 Participatory & Socio-Technical Approaches 

Many information development researchers are concerned with system design 
as a social process, which involves communication, participation, and power. 
The multidimensionality of information solutions needs to be addressed. Al-
though they are certainly technical systems, information systems are “more 
primarily, organizational and social communication systems” [29]. A view of 
information systems as socio-technical systems, complete with a multiplicity 
of perspectives, and as potential vehicles for control or emancipation [27] is 
not addressed in much of the information system engineering literature.  

A growing segment of the information system engineering research and 
practitioner community believe that “passive” user participation is not suffi-
cient to gain an adequate fit between the business process and the IS. There-
fore, user involvement in the development process and the resulting knowl-
edge of the system leads to better information system design, and a more 
successful implementation [46]. The socio-technical approaches, also known 
as participatory design approaches, not only involve users, but give them con-
trol over the development process. System designers act more like consultants 
to users who develop systems. The presence of ‘neutral’ facilitators is also re-
quired to manage the diversity and inevitable conflict in participatory exer-
cises. Socio-technical development approaches seek to balance social and 
technical aspects of the development system [27,45].  

ETHICS is a popular socio-technical, participatory methodology which re-
sembles the life-cycle approaches in that is primarily linear in its view of 
stages and it tries to have clear understandings of the problems, objectives, 
etc. before the start of the design [45]. However, within each stage, a great 
deal of organic, discussion-based interaction takes place to define the steps, 
multiple alternatives are encouraged, adding a level of iteration reminiscent of 
early evolutionary approaches [i.e.,30]. But it is not evolution of the design it-
self, rather, the evolution of interpersonal agreements about the design and the 
design process. Ideas of groups of people, discussion, diverse goals, and con-
flict add to illustrate the interpersonal tensions associated with design. If co-
operation and conflict do not emerge early, the result can be a potentially inef-
fective solution – with less cooperation and more conflict after 
implementation, when it is more difficult to make changes. Agreements on the 
design and its process thus can change iteratively throughout the development 
process.

Based on ETHICS, as well as a number of other participatory methodolo-
gies from the Scandinavian school [24], STEPS was developed as a sort of 



 What is Being Iterated ?  271 

culmination of participatory methods [24]. One important contribution of 
STEPS is formal documentation of expected work practices resulting from 
implementation of the system, and changes in planned work practices aligning 
with the evolution of the system [24,25]. Participatory methods often resem-
ble the highly formalized hybrids of linear SDLC methodologies with proto-
typing principles. However, they can add unique theoretical twists to their 
prescriptive methodologies. For example, the PIOCO methodology [29] re-
quires iterative problem solving within levels of abstraction. Rather than 
freezing portions of the design through predetermined linear phases, develop-
ers are allowed to engage in explicit non-linear iterative activity throughout 
the design, and then freeze the design at specific level of abstraction before 
tackling lower levels of abstraction.

3.5 Sense-Making Approaches 

Sense-making approaches to information system design emerged around is-
sues concerning problem formulation. Problems, or requirements, do not exist 
objectively on their own in the world. But rather they are thought to be “con-
structed between various stakeholders adhering to various perspectives” [27: 
p.37]. Such approaches criticize other methods for taking simplistic, unrealis-
tic view of meaning attached to the system, and a mechanistic view of organi-
zations [37]. The most well-known sense-making approach is the soft systems 
approach (SSA), developed by Peter Checkland [15].  

SSA is concerned with influencing a problematic situation by focusing on 
the “planning process” involved around problem identification [16]. This 
process involves refinement of a designer’s conceptual model of the problem 
through multiple cycles. The conceptual models are based on a designer’s un-
derstanding of the salient relationships, perceptions of the problem, political 
dimensions, and social roles, norms and values. To document this understand-
ing, Checkland recommends conceptual representations called “rich pictures,” 
“holons” and “root definitions.” The designer’s conceptual models are linked 
together and extended to approach the problem formulation in an iterative 
fashion - between conceptual models and the real world. The analyst can cy-
cle through all stages of SSA, among a few stages, or within any stage a num-
ber of times. To understand an ensuing process, the analyst iterates cogni-
tively between perceptions of the social world external to him, his internal 
ideas, various representations, and the instantiations of the methodology [16].  

Although this form of inquiry is likely to offer a richer view of the social 
and cognitive phenomena surrounding design, it is apparent that there is little 
focus on overall cost and rework associated with iterations beyond what can 
be articulated through the perceptions and interests of individuals. Also, due 
to the cyclical nature of the methodology, no formal “universal” steps are ad-



272  Nicholas Berente, Kalle Lyytinen 

dressed to provide a sense of progress. Rather, the inquiry resembles evolu-
tionary methods, where convergence is the goal rather than an attempt to fit 
the outcome into neatly planned steps.  

4 Reflections: What is Being Iterated? 

From the above analysis, it is apparent that different methodologies vary in 
the iterations they address, and the reasons for iteration. For example, to ad-
dress changing user requirements, traditional approaches iterate representa-
tional artifacts such as documentation, whereas evolutionary approaches iter-
ate the instantiation. Both methods iterate to capture requirements, but they do 
so using different artifacts.  

The philosophy associated with the iteration is also distinct across ap-
proaches. For example, traditional, heavyweight, and participatory methods 
encourage “freezing” requirements, which is expected to put an end to the it-
eration of requirements. Evolutionary and sense-making approaches question 
whether such freezing can ever really occur. Table 1 summarizes the iterating 
artifacts that are addressed in the different approaches, and their expected im-
pacts.

The information systems development process can be defined as a change 
process of an object system to achieve certain objectives [27]. In this sense, 
designers are addressing issues of the current system and identifying and mo-
bilizing resources that will enable movement from the current socio-technical 
system to a new one of the future. Due to uncertainty and ambiguity this is by 
necessity iterative. Information systems are dynamic and always evolving, 
under revision, and behaving differently in unique contexts due to learning 
and idiosyncratic practices. We assert that there is no single entity that is the 
system in a given development process, rather we view the system to be an 
elusive idea that can only be approximated through representations [38]. Early 
in the design process, the information system may be little more than an idea 
generated by a handful of people whose only tangible artifact is a vague con-
ceptual model of some sort [53]. Later in the process the information system 
may be represented by lines of incomplete code, dozens of use cases, system 
models, and a great number of varying expectations of the system’s utility. 
Yet throughout the process, individuals can all discuss the information system 
as if it were a single, discrete entity, although all individuals only have a par-
tial view [56].  

Since all system development is iterative, one might question the actual 
difference between modern “iterative” development and traditional method-
ologies. The answer appears to be in the way that these methodologies view 
the idea of iteration, and their audience for a given iteration. The first distinc- 



 What is Being Iterated ?  273 

Table 1. Iterating Artifacts Across Information Systems Engineering Approaches. 

App. Iterating Artifact Type Description Expected Impacts 

Tra-
dition Conceptual Stages - formal Phases in linear process Discourage costly & inevita-

ble problem fixes 
Representational: Doc. Capture solutions to problems Track changes to code 
Representational: Process Track. Capture progress of project Monitor proj.through phases 
Instantiation: Software Code Fix prob. according to phases Fix problems 

Evo-
lution Conceptual Stages - cycle Scheduled and informal itera-

tions
Enables enhancement of 
code

Representational: Process Track. Capture progress of project Monitor project over time 

Instantiation: Software Code Enhance code, fix problems Better code, less cost, strong. 
user-related outcomes 

Method: Between projects Change method Contingency alignment; 
learning and experience 

Method: Within projects Refine method Refinement 
Hy-
brid Conceptual Stages – formal Phase within cycle is repeated Enables disciplined en-

hancement/problem fixes 

Conceptual Stages – cycle Scheduled repetition of entire 
cycle

Enables enhancement of 
code

Representational: Requirements Requirements can iterate be-
fore frozen Guide specifications 

Representational: Specifications Specifications can iterate be-
fore frozen Guide development of code 

Representational: Doc. Code documentation Track development of code 
Representational: Process track-
ing

Formal process documenta-
tion

Monitor project through 
phases

Instantiation: Software code Enhance code, fix problems Better code, stronger user-
related outcomes 

Method: Within project Adapt process within method Better fit to support code de-
velopment 

Part. Conceptual Stages – formal Phases in linear process Discourage costly and inevi-
table problem fixes 

Conceptual: Agreements Document coopera-
tion/conflict results 

Accommodate multiple per-
spectives

Representational: Doc. Capture solutions to problems Track changes to code 
Representational: Process track-
ing Capture progress of project Monitor project through 

phases

Instantiation: Software code Enhance code, fix problems Better code, stronger user-
related outcomes 

Instantiation: Object system Address object system con-
text

Accommodate multiple per-
spectives

Method: Between projects Improve method Accommodate multiple per-
spectives

Method: Within projects Refine method Accommodate multiple per-
spectives

Sense
-Mak Conceptual: Stages - cycle Cycling between designer and 

context
Enables the progressive im-
provement of understanding 

Conceptual: Problem under-
standing

Iterations btwn representation 
and world Refine understanding 

Representational: Requirements Object system representations 
iterated

Tool for improvement of un-
derstanding 

Instantiation: Object system Active explicit interaction 
with object system 

Improve and refine under-
standing

Method: Within project Refine method based on un-
derstanding 

Supports designer under-
standing



274  Nicholas Berente, Kalle Lyytinen 

tion lies in the view, or attitude toward iteration. Traditional methodologies 
attempt to avoid or minimize iteration, viewing it as an inevitable evil that can 
only be managed through better proactive planning. Evolutionary, or iterative, 
development processes embrace iteration as the mechanism by which devel-
opers can reach better outcomes. Traditional methodologies have attempted to 
deal with iteration as a reaction to an error or problem, whereas modern meth-
odologies proactively seek the value of planned iteration. The other difference 
between iterative and traditional development is the intended audience for the 
iteration. Iterative development creates iterations specifically for garnering 
feedback from some portions of the clientele, whereas traditional development 
keeps its iterations within the developer community until the review process is 
expected at the end of a given phase, or until a complete release is made.   
The first distinction, the proactive view of iteration, is addressed by founda-
tional researchers through notions such as iterative enhancement [3] and evo-
lutionary prototyping [1,23], and has now been embraced by agile methodolo-
gies [5,16,34]. The second distinction, which is the visibility of iteration has 
not been addressed, and can only be understood through understanding the 
varied roles of the artifacts used in a design process. Obviously there are 
many artifacts and past research has not been very clear about their roles. In 
this paper we have attempted to tease out iterations associated with system 
development by identifying sets of artifacts that are described in the extant lit-
erature. This exercise is intended to guide researchers’ thinking about iteration 
in the future. By establishing a more detailed understanding of the information 
that each artifact makes visible, the role of the various artefacts and the rela-
tionships between these artifacts, better methodologies can be designed.  

The four artifacts we have identified are located at different levels of ab-
straction and they overlap. For example, a given methodology can be consid-
ered a function of cognitive understanding [12,18,47], and might therefore be 
considered a conceptual artifact which iterates. Likewise, all representational 
artifacts typically represent conceptual, or methodological facets, or instantia-
tions of the system itself. Instantiations can be self-evident (evolutionary pro-
totypes), or they can be characterized by representational artifacts (such as 
throw-away prototypes), or they can be mental constructs of the designers.  

4 Conclusion 

In this essay, we have identified several iterating artifacts that are present in 
information system engineering processes based on the type of artefact. 
Through this effort, we look to remind researchers and practitioners that itera-
tion forms the first principle of any system development project, regardless of 
methodology. Simon [49] argues that design cannot exist without iteration, as 



 What is Being Iterated ?  275 

an activity without iteration cannot rightly be called design. The only ques-
tions become then: What is iterated? Why is it iterated? How long is it al-
lowed to iterate? For whom and by whom it is iterated? And, of course, what 
are the effects of this iteration?  

Our primary contribution has been to lay foundations for establishing a 
more refined view of iteration by introducing the four types of iterating arti-
facts, and by illustrating their application across five broad classes of informa-
tion systems engineering methodologies. The construct of an iterating artifact 
can be leveraged in the future to aid in the design of methodologies and the 
tools that support these methodologies. It can be also used as a construct in 
studying empirical system design processes and their outcomes. By distin-
guishing different forms of iterating artifacts we offer a conceptual baseline 
for future treatments of these artifacts across methodological approaches and 
empirical investigations.  

References 

[1] Alavi, M.: An assessment of the prototyping approach to information systems de-
velopment, Communications of the ACM, 27(6): 556-563 (1984). 

[2] Auer, K., Meade, E., and Reeves, G.: The rules of the game. In: Extreme Pro-
gramming and Agile Methods, Lecture Notes in Computer Science, Vol. 2753, ed 
by Maurer, F., Wells, D. (Springer, Berlin Heidelberg New York 2003). 

[3] Basili, Turner: Iterative enhancement: a practical technique for software devel-
opment. IEEE Transactions on Software Engineering. 1(4): 390-396 (1975). 

[4] Baskerville, R.L., Stage, J.:Controlling prototype development through risk 
analysis,” MIS Quarterly 20(4): 481-504 (1996). 

[5] Beck, K.: Extreme Programming Explained: Embrace Change. The Agile Soft-
ware Development Series, (Addison-Wesley 2002). 

[6] Beynon-Davies, P., Tudhope, D., Mackay, H.: Information systems prototyping 
in practice. Journal of Information Technology. 14(1): 107-120 (1999).  

[7] Boehm, B.: Software Engineering Economics, (Prentice-Hall 1981). 
[8] Boehm, B., Gray, T.E., Seewaldt, T.: Prototyping vs. specification: a multiproject 

experiment. IEEE Transactions on Software Engineering, 10(3): 290-302(1984). 
[9] Boehm, B.: The spiral model of software development and enhancement. Com-

puter, 21(5): 61-72 (1988). 
[10]  Boland, R.J.: The process and product of system design. Management Science, 

24(9) 887-898 (1978). 
[11]  Boland, R.J., Day, W.F.: The experience of system design: a hermeneutic of or-

ganizational action. Scandinavian Journal of Management, 5(2): 87 (1989). 
[12]  Brinkkemper, S.: Method engineering: engineering of information systems de-

velopment methods and tools. Information and Software Technology, 38(4): 275-
280 (1996). 

[13]  Brooks, F.P.: No silver bullet: essence and accidents of software engineering. 
Computer, 20(4): 10-19 (1987).  



276  Nicholas Berente, Kalle Lyytinen 

[14]  Brooks, F.P.: The Mythical Man Month: Essays on Software Engineering (Addi-
son-Wesley 1995). 

[15]  Checkland, P.: Systems Thinking, Systems Practice (Wiley 1981). 
[16]  Checkland, P., Scholes, J.: Soft Systems Methodology in Action, (Wiley 1999).  
[17]  Churchman, C.W.: The Design of Inquiring Systems (Basic Books 1971). 
[18]  Cockburn, A.: Agile Software Development, The Agile Software Development 

(Addison-Wesley 2002). 
[19]  Cooperider, J.G., Henderson, J.C.: Technology-process fit: perspectives on 

achieving prototyping effectiveness. Journal of Management Information Sys-
tems, 7(3): 67-87 (1991). 

[20]  Davis, G.B.: Management Information Systems: Conceptual Foundations, Struc-
ture, and Development (McGraw Hill 1974). 

[21]  Davis, G.B.: Strategies for information requirements determination. IBM Sys-
tems Journal. 21(1): 4-30 (1982). 

[22]  Dowson, M.: Iteration in the software process; review of the 3rd International 
Software Process Workshop. In: ICSE 1987, Proceedings of the 9th international 
conference on software engineering, Monterey, California, 1986.  

[23]  Floyd, C.: A Systematic Look at Prototyping. In Approaches to Prototyping, ed 
by Budde et al (Springer, Berlin, Heidelberg, New York 1984). 

[24]  Floyd, C., Mel, W.M., Reisin, F.M., Schmidt, G., Wolf, G.: Out of scandinavia: 
alternative approaches to software design and system development. Human-
Computer Interaction. 4(4): 253-350 (1989). 

[25]  Floyd, C.: STEPS - a methodical approach to PD. Communications of the ACM. 
36(6): 83 (1993). 

[26]  Hardgrave, B., Wilson, R., Eastman, K.: Toward a contingency model for select-
ing an information system prototyping strategy. Journal of Management Informa-
tion Systems. 16(2): 113-136 (1999). 

[27]  Hirschheim, R., Klein, H., Lyytinen, K.: Information Systems Development and 
Data Modeling: Conceptual and Philosophical Foundations (Cambridge Univer-
sity Press 1995). 

[28]  Humphrey, W.S.: Managing the Software Process (Addison-Wesley 1989). 
[29]  Iivari, J., Koskela, E.: The PIOCO model for information systems design. MIS 

Quarterly. 11(3): 401 (1987). 
[30]  Keen, P.G.W., Scott Morton, M.S.: Decision Support Systems: An Organiza-

tional Perspective (Addison-Wesley 1978). 
[31]  Kruchten, P.: The Rational Unified Process An Introduction, 2nd edn (Addison-

Wesley 2000). 
[32]  Langefors, B.: Theoretical Analysis of Information Systems (Auerbach 1973). 
[33]  Langefors, B.: Information and Data in Systems (Mason/Charter 1976). 
[34]  Larman, C.: Agile and Iterative Development, A Manager’s Guide (Pearson 

2004). 
[35]  Larman, C., Basili, V.: Iterative and incremental development: a brief history,” 

Computer. 36(6): 47-56 (2003). 
[36]  Lindvall, M., Basili, V., Boehm, B., et al: Empirical findings in agile methods. 

In: Extreme Programming and Agile Methods – XP/Agile Universe 2002, Lecture 
Notes in Computer Science 2753, ed by Maurer, F., Wells, D. (Springer, Berlin 
Heidelberg New York 2003). 



 What is Being Iterated ?  277 

[37]  Lyytinen, K.: Information Systems Development as Social Action: Framework 
and Critical Implications. Dissertation (Jyvaskyla Studies in Computer Science, 
Economics and Statistics ISBN 0357-9921; 8, 1986). 

[38]  Lyytinen, K.: A taxonomic perspective of information systems development: 
theoretical constructs and recommendations. In: Critical Issues in Information 
Systems Research, ed by Boland, R.J., Hirschheim, R. (Wiley 1987). 

[39]  Lyytinen, K., Robey, D.: Learning failure in information systems development, 
Information Systems Journal. 9(2): 85 (1999).  

[40]  Lyytinen, K., Mathiassen, L., Ropponen, J.: Attention shaping and software risk - 
a categorical analysis of four classical risk management approaches, Information 
Systems Research. 9(3): 233-255 (1998). 

[41]  March, S., Smith, D.: Design and natural science research on information tech-
nology. Decision Support Systems. 15(4): 251-266 (1995). 

[42]  Matthiassen, L., Seewaldt, T., Stage, J.: Prototyping and specifying: principles 
and practices of a mixed approach. Scandinavian Journal of Information Systems. 
7(1): 55-72 (1995). 

[43]  McConnell, S.: Software Project Survival Guide (Microsoft Press 1998). 
[44]  McCracken, D.D., Jackson, M.A.: A maverick approach to systems analysis and 

design. In: Systems Analysis and Design. A foundation for the 1980's, ed by Cot-
terman, W.W, et al (North-Holland 1981). 

[45]  Mumford, E.: Redesigning Human Systems (Idea Group 2003). 
[46]  Oppelland, H.J., Kolf, F.: Participative development of information systems: 

methodological aspects and empirical experience. In: The Information Systems 
Environment, ed by Lucas, H., et al [IFIP 1979] (North-Holland 1980).  

[47]  Rossi, M., Ramesh, B., Lyytinen, K., Tolvanen, J.P.: Managing evolutionary 
method engineering by method rationale. Journal for the Association of Informa-
tion Systems. 5(9): 356-391 (2005). 

[48]  Royce, W.W.: Managing the development of large software systems. Proceed-
ings of IEEE WESCON. (1970). 

[49]  Simon, H.: The Sciences of the Artificial, 3rd edn (MIT Press 1996). 
[50]  Sølvberg, A.: Software requirements definition and data models. Fifth Interna-

tional Conference on Very Large Databases (1979). 
[51]  Sølvberg, A., Kung, D.C.: Information Systems Engineering, an Introduction. 

(Springer, Berlin Heidelberg New York 1993).  
[52]  Sølvberg, A.: Data and what they refer to. In: Conceptual Modeling, Current Is-

sues and Future Directions. Lecture Notes in Computer Science, Vol. 1565, ed by 
Chen, P.P., Akoka, J. (Springer, Berlin Heidelberg New York 1999). 

[53]  Sølvberg, A.: Co-operative concept modeling. In: Information Systems Engineer-
ing, State of the Art and Research Themes, ed by Brinkkemper, S., et al 
(Springer, Berlin Heidelberg New York 2000). 

[54]  Tolvanen, J.P., Lyytinen, K.: Flexible method adaptation in CASE. The Meta-
modeling Approach. Scandinavian Journal of Information Systems. 5(1): 551-578 
(1993). 

[55]  Turk, D., France, R., Rumpe, B.: Assumptions underlying agile software devel-
opment processes. Journal of Database Management. 16(4): 62 (2005). 

[56]  Turner, J.: Understanding the elements of system design. In: Critical Issues in In-
formation Systems Research, ed by Boland, R.J., Hirschheim, R. (Wiley 1987). 



278  Nicholas Berente, Kalle Lyytinen 

[57]  Wirth, N.: Program development by stepwise refinement. Communications of the 
ACM. 14(4): 221-227 (1971). 



Systems Development in a GRIDs Environment 

Keith G. Jeffery 

CCLRC Rutherford Appleton Laboratory, UK 

Abstract. Over the past 30 years or more information systems engineers have at-
tempted to improve the cost effectiveness of systems development by improving re-
quirements capture and analysis, by structured design, by utilising design languages 
that can be verified for consistency more or less formally and in some cases matched 
formally to requirements. While data design methods improved significantly with rela-
tional and extended relational paradigms, program design was not so successful. Jack-
son input-process-output and hierarchic design methods gave way to functional. Ob-
ject-orientation soon came up against the inability of hierarchic/inheritance 
mechanisms to represent the real world requirements which has more complexity. As-
pect-oriented programming was intended to resolve this problem but appears to have 
caused even more confusion. Meantime, a bringing together of functional and object-
oriented process design as service-oriented architecture, together with relational data 
design principles, has given some hope for progress. Early system design achieved de-
vice independence of programs and then (with relational technology) true data inde-
pendence. However, general virtualisation of computing, data storage and communica-
tions resources has hitherto not been possible. The GRIDs paradigm achieves this 
latest step forward. Starting with metacomputing (linked supercomputers) in the USA, 
the European vision of GRIDs is a general IT 'surface' with which the end-user inter-
acts intelligently to determine her requirement and the system behind the surface offers 
a 'deal' to fulfil the request. Beneath the 'surface' various architectures have been at-
tempted. The GLOBUS architecture provides computational scheduling, but does not 
virtualise generally computation, data or network resources. The bringing together of 
WS (web services) with the GRIDs environment led to OGSA (Open Grids Services 
Architecture). Work with OGSA has exposed two major problems: the operating sys-
tem facilities provided today are inadequate in various areas including security and re-
silience and the multiple layers in the service-oriented architecture expose too much 
complexity. The latest thinking revolves around SOKU (Service Oriented Knowledge 
Utilities) which are composed of self-managing, self-assembling, self-organising and 
self-destroying processes with exposed parametric and data input/output interfaces as 
well as its service description including non-functional aspects. The key is metadata 
(describing the SOKU processes and the data resources) and its use. 



280      Keith G. Jeffery 

1 A Short History of Computing: A Personal View 

From the earliest stages of using computers there has been the concept (al-
though not the name) of systems engineering. Even the earliest program-
mers planned out their program before coding it. The software systems de-
velopment methods developed along two parallel lines: one emphasising 
efficiency of developer time and fidelity to informally-defined user re-
quirements with associated techniques of prototyping and fourth genera-
tion languages; the other emphasising correctness of the program, formal 
verification and formally-defined specifications. The former led to the so-
called design methodologies, the latter to formal methods in software en-
gineering, proof systems and in particular their application in the safety-
critical environment. 

An alternative and complementary viewpoint emerged in the sixties 
where systems development concentrated on the data. This was no surprise 
since large corporations were using computers for business processing and 
required to represent their business world of interest.  
The problems with these approaches used in the seventies and eighties are 
well-documented. Software development was slow and error-prone and the 
use of formal methods made it slower. Data-centric approaches failed to 
map correctly the objects and their relationships in the real world: well-
known examples include early database systems which could only map hi-
erarchies, not fully-connected graph structures. 

With the relational theory of data, and attached concept of the relational 
algebra (and calculus) a new age dawned. By the late eighties the first kind 
of software engineering came together with data engineering providing 
unprecedented speeds of system development, conformance to informally-
stated user requirements and ability to adapt. Security issues emerged and 
were solved and there were attempts at distribution and the provision of 
business continuity. Furthermore, entity-relationship modelling based on 
the relational approach provided a further level of abstraction and a com-
munications environment between the designer/developer and the end-
user. Earlier work on artificial intelligence became encapsulated as knowl-
edge engineering and aided the modelling process by providing a formal-
ism for expressing the semantics of the information and for specifying 
constraints. In this era Arne Sølvberg and his team produced excellent 
R&D results demonstrating formal systems engineering from requirements 
specification to running system. 

However, early systems had problems with performance, and errors 
made in the data modelling led to many work-arounds and modifications to 
the associated software. The systems became expensive to maintain. Steps 



Systems Development in a GRIDs Environment      281 

were taken to formalise requirements and to generate systems – both data 
structures and software – using predefined component software fragments. 
The concept now known as services emerged. 

To overcome the data-process gap, object-orientation was introduced 
reaching acceptance in the late eighties. Based on much earlier software 
engineering principles (e.g., those of Simula in the sixties) object-
orientation encapsulated the static data model aspects of the application 
with the dynamic process aspects. Information Systems developed using 
this paradigm proved to be lacking in performance and additionally there 
were problems in both data modelling (related to hierarchic restrictions on 
inheritance) and process-modelling (repetition of the same code for many 
objects). The latter was to some extent overcome by aspect-oriented pro-
gramming at the end of the nineties but by then the world was returning 
(indeed, many had never left) to relational database technology (improved 
with some object-oriented aspects). 

The emergence of the world-wide-web rekindled interest in old tech-
nologies in information retrieval and hypermedia. Progressively the web 
systems developed and heightened the visibility of technologies such as 
mobile code, service-oriented architecture and hypermedia. The web of-
fered new possibilities in user interface design and in thin clients. Linking 
with the emergence of wireless technology and widespread use of mobile 
phones it was a short step to the concept of ambient, pervasive computing. 
Tim Berners-Lee emphasised the importance of semantics and trust rekin-
dling interest in knowledge engineering. 

In the USA in the late nineties the need for massive computation power 
to simulate various physical phenomena (from nuclear explosions to cli-
mate) led to the metacomputing (linked supercomputers) concept popular-
ised as ‘the GRID’. In Europe a wider concept emerged simultaneously – 
GRIDs. It is in this context that systems engineering – and specifically in-
formation systems engineering – is now discussed. 

2 Requirements Today and Tomorrow 

2.1 User Perspective 

Users demand systems that are easy to use. The end-user has a low atten-
tion span and requires immediate satisfaction. The threshold barrier to 
achieve usage of the system must be very low, else impatience precludes 
usage. The system should be capable of handling heterogeneous character 
sets, languages (information syntax) and semantics (knowledge). The sys-



282      Keith G. Jeffery 

tem must be easy to understand and intuitive in its operation. The system 
must be knowledge-assisted – providing contextual hints, help, explana-
tion. It must also be knowledge-assisted to assist in reducing the effort of 
input and update and to ensure constraints are in place to assure data qual-
ity. The end-user must have choice in the end-user device used implying 
that the system must be device-independent, adaptive to changing user 
modes of interaction through various media and be adaptable for variously 
abled persons. Naturally the system must handle the problems of intermit-
tent connection, synchronisation and data transfer optimisation required in 
a mobile, ambient, pervasive environment. This requires particular exper-
tise in user interface design. 

2.2 System Perspective 

The system should provide adequate performance, achieved by (re-
)scheduling, parallelism, and distribution with appropriate optimisations 
and reconfiguration. The system should provide appropriate security, trust, 
privacy. For security of future use, the system should provide appropriate 
curation, preservation, which may be linked with appropriate failover and 
business continuity facilities. All this implies that systems have to be  
‘self-*’ or autonomic: self-managing, self-configuring, self-organising, 
self-tuning, self-scheduling, self-maintaining, self-adapting. With millions 
of nodes and massive processing requirements it will be simply uneco-
nomic for persons to ‘be in the loop’ of systems management.  

3 The GRIDs Paradigm 

The concept of the GRID was initiated in the USA in the late 1990s. Its 
prime purpose was to couple supercomputers in order to provide greater 
computational power and to utilise otherwise wasted central processor cy-
cles. Starting with computer-specialised closed systems that could not 
interoperate, the second generation consists essentially of middleware 
which schedules a computational task as batch jobs across multiple com-
puters. However, the end-user interface is procedural rather than fully de-
clarative and the aspects of resource discovery, data interfacing and proc-
ess-process interconnection (as in workflow for a business process) are 
primitive compared with work on information systems engineering involv-
ing, for example, databases and web services. 

Through GGF (Global GRID Forum, now OGF Open GRID Forum) a 
dialogue has evolved the original GRID architecture to include concepts 



Systems Development in a GRIDs Environment      283 

from the web services environment. OGSA (Open Grid Services Architec-
ture) with attendant interfaces (OGSI) is now accepted by the GRID com-
munity, and OGSA/DAI (Data Access interface) provides an interface to 
databases at rather low level. 

In parallel with this metacomputing GRID development, an initiative 
started in UK has developed an architecture for GRIDs that combines 
metacomputing (i.e. computation) with information systems. It is based on 
the argument that database R&D (research and development) – or more 
generally ISE (Information Systems Engineering) R&D - has not kept pace 
with the user expectations raised by WWW. Tim Berners-Lee threw down 
the challenge of the semantic web and the web of trust [1]. The EC (Euro-
pean Commission) has argued for the information society, the knowledge 
society and the ERA (European Research Area) – all of which are depend-
ent on database R&D in the ISE sense. This requires an open architecture 
embracing both computation and information handling, with integrated de-
tection systems using instruments and with an advanced user interface 
providing ‘martini’ (anytime, anyhow, anywhere) access to the facilities. 
The GRIDs concept [6] addresses this challenge, and further elaboration 
by a team of experts has produced the EC-sponsored document ‘Next Gen-
eration GRID’ [3]. 

It is time for the database community (in the widest sense, i.e. the in-
formation systems engineering community) to take stock of the research 
challenges and plan a campaign to meet them with excellent solutions, not 
only academically or theoretically correct but also well-engineered for 
end-user acceptance and use. 

3.1 The Idea 

In 1998-1999 the UK Research Council community was proposing future 
programmes for R&D. The author was asked to propose an integrating IT 
architecture [6]. The proposal was based on concepts including distributed 
computing, metacomputing, metadata, agent- and broker-based middle-
ware, client-server migrating to three-layer and then peer-to-peer architec-
tures and integrated knowledge-based assists. The novelty lay in the inte-
gration of various techniques into one architectural framework. 



284      Keith G. Jeffery 

Fig. 1. Grids Architecture 

3.2 The Requirement 

The UK Research Council community of researchers was facing several 
IT-based problems. Their ambitions for scientific discovery included post-
genomic discoveries, climate change understanding, oceanographic stud-
ies, environmental pollution monitoring and modelling, precise materials 
science, studies of combustion processes, advanced engineering, pharma-
ceutical design, and particle physics data handling and simulation. They 
needed more processor power, more data storage capacity, better analysis 
and visualisation – all supported by easy-to-use tools. 

On the other hand, much of commercial IT (Information Technology) 
including process plant control, management information and decision 
support systems, IT-assisted business processes, entertainment and media 
systems and diagnosis support systems all require ever-increasing compu-
tational power and expedited information access, ideally through a uniform 
system providing a seamless information and computation landscape to the 
end-user. Thus there is a large potential market for GRIDs systems.  

The original proposal based the academic development of the GRIDs 
architecture and facilities on scientific challenging applications, then in-
volving IT companies as the middleware stabilised to produce products 
which in turn could be taken up by the commercial world. During 2000 the 
UK e-Science programme was elaborated with funding from 04 2001. 

The Knowledge Grid 

The Information Grid 

The Computation / Data Grid

DATA TO 
KNOWLEDGE 

CONTROL 



Systems Development in a GRIDs Environment      285 

3.3 Architecture Overview 

The architecture proposed consists of three layers (Fig.1). The computa-
tion/data grid has supercomputers, large servers, massive data storage fa-
cilities and specialised devices and facilities (e.g. for VR (Virtual Reality)) 
all linked by high-speed networking and forms the lowest layer. The main 
functions include compute load sharing/algorithm partitioning, resolution 
of data source addresses, security, replication and message rerouting. This 
layer also provides connectivity to detectors and instruments. The informa-
tion grid is superimposed on the computation/data grid and resolves ho-
mogeneous access to heterogeneous information sources mainly through 
the use of metadata and middleware. Finally, the uppermost layer is the 
knowledge grid which utilises knowledge discovery in database technol-
ogy to generate knowledge and also allows for representation of knowl-
edge through scholarly works, peer-reviewed (publications) and grey lit-
erature, the latter especially hyperlinked to information and data to sustain 
the assertions in the knowledge. 

The concept is based on the idea of a uniform landscape within the 
GRIDs domain, hiding complexity by easy-to-use interfaces.  

3.4 The GRID 

In 1998 – in parallel with the initial UK thinking on GRIDs – Foster and 
Kesselman published a book generally known as ‘The GRID Bible’ [4]. 
The essential idea is to connect together supercomputers to provide more 
power – the metacomputing technique. However, the major contribution 
lies in the systems and protocols for compute resource scheduling. Addi-
tionally, the designers of the GRID realised that these linked supercomput-
ers would need fast data feeds so developed GRIDFTP. Finally, basic sys-
tems for authentication and authorisation are described. The GRID has 
encompassed the use of SRB (Storage Request Broker) from SDSC (San 
Diego Supercomputer Centre) for massive data handling. SRB has its pro-
prietary metadata system to assist in locating relevant data resources. It 
also uses LDAP as its directory of resources. The GRID corresponds to the 
lowest grid layer (computation/data layer) of the GRIDs architecture. 

4 The GRIDs Architecture 

The idea behind GRIDs is to provide an IT environment that interacts with 
the user to determine the user requirement for service and then, having ob-



286      Keith G. Jeffery 

tained the user’s agreement to ‘the deal’ satisfies that requirement across a 
heterogeneous environment of data stores, processing power, special facili-
ties for display and data collection systems (including triggered automatic 
detection instruments) thus making the IT environment appear homogene-
ous to the end-user.

Referring to Fig. 2, the major components external to the GRIDs envi-
ronment are: 

users: each being a human or another system; 
sources: data, information or software 
resources: such as computers, sensors, detectors, visualisation or VR 
(virtual reality) facilities 

Each of these three major components is represented continuously and ac-
tively within the GRIDs environment by: 
1) metadata: which describes the external component and which is 
changed with changes in circumstances through events 
2) an agent: which acts on behalf of the external resource representing it 
within the GRIDs environment. 
As a simple example, the agent could be regarded as the answering service 
of a person’s mobile phone and the metadata as the instructions given to 
the service such as ‘divert to service when busy’ and/or ‘divert to service if 
unanswered’. 

Finally there is a component which acts as a ‘go between’ between the 
agents. These are brokers which, as software components, act much in the 
same way as human brokers by arranging agreements and deals between 
agents, by acting themselves (or using other agents) to locate sources and 
resources, to manage data integration, to ensure authentication of external 
components and authorisation of rights to use by an authenticated compo-
nent and to monitor the overall system. 

Fig. 2. The GRIDs Components 

Rm:Resource 
Metadata 

Ra:Resource 
Agent 

Ua:User
Agent 

Um:User  
Metadata

Sm: Source 
Metadata 

Sa:Source  
Agent 

Brokers

The GRIDs 
Environment 

USER 
(human or another 

system) 

SOURCE
(data, information, 
software) 

RESOURCE
(computer, detector, 
sensor, VR facility) 



Systems Development in a GRIDs Environment      287 

From this it is clear that they key components are the metadata, the 
agents and the brokers.  

5 Systems Development in a GRIDs Environment 

The architecture sketched above depicts the middleware necessary for ap-
plications to be constructed and executed. The EC NGG1 (Next Genera-
tion Grids Expert Group 1) confirmed this set of requirements and archi-
tecture characterised as ‘the invisible GRID’ i.e. hidden from the end-user 
but available and performing. However the requirements outlined earlier 
demand ‘so-called non-functional’ characteristics of the system which are 
not at this level but which concern the lower levels of the architecture – in 
particular the provision of performance and trust /security. This led the 
NGG2 expert group of the EC to an architecture for systems development 
with operating systems enhanced with foundationware to bring them up to 
the required interface standard including provision of trust and security, 
performance and self-* features. Above the foundationware is the service-
oriented middleware providing the basic services required by end-user ap-
plications which themselves sit on top of the middleware layer and are de-
veloped essentially by composition of services including, where necessary 
because of unavailability, the provision of new services. 

It was then realised by the NGG3 expert group of the EC that this lay-
ered architecture was too complex and that a simplification was possible. 
The foundationware and middleware layers could both be implemented as 
components providing services, and these components had to have certain 
characteristics. Essentially the components had to be active, that is they 
had to be themselves self-motivating such that they could compose them-
selves into applications based on requirements, and since they are self-
managing they could reorganise (self-tune, self-schedule) with changing 
resource availability opportunities and changing user requirements. The 
SOKU (service-oriented knowledge utility) concept was defined. 

5.1 SOKU 

The concept of SOKU is based on a service. The service can be discov-
ered, composed into larger-scale services, replicated for parallelism and 
distributed, modified by parametric input. In order for this to be achieved 
the service needs to be wrapped by rich metadata such that these actions 
can be automated and not require human intervention. The key question 



288      Keith G. Jeffery 

then is what metadata is required for these autonomic actions to be achiev-
able at execute time and for systems development at system build time. 

5.2 Environment 

The problem is how to specify, design and construct such systems – or sys-
tem components – based on SOKUs. Traditional system development 
technologies are only partly appropriate to this new environment. Instead 
of the traditional requirements specification, iterative development and de-
livery of an end-to-end system - which may or may not include precon-
structed components – the emphasis is on the development of precon-
structed components that can be automatically or semi-automatically 
composed at both system development time and at execute time. This re-
quires a different kind of analysis of requirements utilising an approach 
that considers a much wider context than the system being specified in or-
der to optimise the future utilisation of components being developed. In 
other words the requirement is for the development of generic components 
that meet the specification of the system currently being developed but 
also can be re-used in other systems. This approach has been discussed in 
the past – usually in an object oriented environment with the class concept 
– but has rarely if ever been achieved. The contention of this paper is that 
this is because the metadata associated with the components was inade-
quate for the re-use purpose. 

6 Metadata is the Key Technology 

Metadata is data about data [7]. An example might be a product tag at-
tached to a product (e.g., a tag attached to a piece of clothing) that is avail-
able for sale. The metadata on the product tag tells the end-user (human 
considering purchasing the article of clothing) data about the article itself – 
such as the fibres from which it is made, the way it should be cleaned, its 
size (possibly in different classification schemes such as European, British, 
American) and maybe style, designer and other useful data. The metadata 
tag may be attached directly to the garment, or it may appear in a catalogue 
of clothing articles offered for sale (or, more usually, both). The metadata 
may be used to make a selection of potentially interesting articles of cloth-
ing before the actual articles are inspected, thus improving convenience. 
Today this concept is widely-used. Much e-commerce is based on B2C 
(Business to Customer) transactions based on an online catalogue (meta-
data) of goods offered. One well-known example is www.amazon.com. 



Systems Development in a GRIDs Environment      289 

B2B (Business to Business) is more complex, often involving negotiation 
to reconcile metadata differences in syntax and semantics including meta-
data associated with trust and security. 

What is metadata to one application may be data to another. For exam-
ple, an electronic library catalogue card is metadata to a person searching 
for a book on a particular topic, but data to the catalogue system of the li-
brary which will be grouping books in various ways: by author, classifica-
tion code, shelf position, title – depending on the purpose required. 

6.1 Current Availability and Usage 

A database schema is a well-known example of metadata. However, it 
does little more than provide an interface to provide independence between 
software and data and a naming system for data objects to be used in soft-
ware. Database schemas do provide information on syntax (structure) at 
both logical and physical levels but fail to address the semantic (meaning) 
level.

A URI provides metadata pointing to the actual object of interest. URIs 
can be rather complex, including not just an internet address but also pa-
rameters or even a query. 

DC (Dublin Core) is a well-known metadata standard for describing ob-
jects, initially designed to describe web pages. It has a set of extensions 
(qualified DC) which makes interoperation difficult as different developers 
interpret differently the semantics (and in some cases the syntax) of DC. 

There have been various attempts at trust negotiation and rights man-
agement/trading using metadata and standards for recording rights have 
been proposed. The management of rights associated with created works 
has been discussed extensively [8]. This extends to IPR (intellectual prop-
erty rights) as understood in this environment. However, the management 
of rights in a B2B transaction (or a business relationship with multiple 
transactions e.g. within a supply chain) is more complex. Setting up the re-
lationship involves trust negotiations which in turn require access to condi-
tions of business, background information on the organisation and possibly 
references concerning the organisation. From this basis an appropriate 
trust/security policy can be put in place for transactions with the organisa-
tion concerned and encoded as metadata which wraps the transactional in-
formation in order to ensure the security systems in the organisation oper-
ate correctly. A basic trust model is presented in [9] while a more 
business-oriented approach is that of TrustCom project [10]. 

Dictionaries, thesauri, domain ontologies are all required for interpreta-
tion of semantics and are used in association with other metadata to sup-



290      Keith G. Jeffery 

port the IT processes, and their users, in understanding and interaction. 
They are also used for interoperation between heterogeneous systems. 

Procedure calls and functional signatures provide some metadata infor-
mation about the functional properties of a software component. However 
the information is usually very limited and commonly the information is 
only encoded as comments within the component. A further problem is 
that, in general, non-functional properties (such as performance, limita-
tions of use, precision/accuracy etc) are not declared and documented. 

O-O classes and KE frames provide metadata again concerning the 
properties of a software component or software/data component. Herein 
lies the problem, the confusion between software and data properties and 
how they should be described or exposed for utilisation by other systems. 
In general these technologies are being superseded by service-oriented 
components. 

6.2 Kinds of Metadata 

It is increasingly accepted that there are several kinds of metadata. The 
classification proposed (Fig. 3) is gaining wide acceptance and is detailed 
below.

Fig. 3. Metadata Classification 

Schema Metadata: Schema metadata constrains the associated data. It de-
fines the intension whereas instances of data are the extension. From the 
intension a theoretical universal extension can be created, constrained only 
by the intension. Conversely, any observed instance should be a subset of 
the theoretical extension and should obey the constraints defined in the in-
tension (schema). One problem with existing schema metadata (e.g. sche-

data  
(document)

SCHEMA NAVIGATIONAL ASSOCIATIVE

how to get it 

constrain it 

view to users 



Systems Development in a GRIDs Environment      291 

mas for relational DBMS) is that they lack certain intensional information 
that is required [11]. Systems for information retrieval based on, e.g. the 
SGML (Standard Generalised Markup Language) DTD (Document Type 
Definition) experience similar problems. 

It is noticeable that many ad hoc systems for data exchange between 
systems send with the data instances a schema that is richer than that in 
conventional DBMS – to assist the software (and people) handling the ex-
change to utilise the exchanged data to best advantage. 
Navigational Metadata: Navigational metadata provides the pathway or 
routing to the data described by the schema metadata or associative meta-
data. In the RDF model it is a URL (universal resource locator), or more 
accurately, a URI (Universal Resource Identifier). With increasing use of 
databases to store resources, the most common navigational metadata now 
is a URL with associated query parameters embedded in the string to be 
used by CGI (Common Gateway Interface) software or proprietary soft-
ware for a particular DBMS product or DBMS-Webserver pairing.

The navigational metadata describes only the physical access path. 
Naturally, associated with a particular URI are other properties such as: 

security and privacy ; 
access rights and charges  
constraints over traversing the hyperlink mapped by the URI;  
semantics describing the hyperlink such as ‘the target resource describes 
the son of the person described in the origin resource’ 

However, these properties are best described by associative metadata 
which then allows more convenient co-processing in context of metadata 
describing both resources and hyperlinks between them and – if appropri-
ate - events. 
Associative Metadata: In the data and information domain associative 
metadata can describe: 

a set of data (e.g. a database, a relation (table) or a collection of 
documents or a retrieved subset). An example would be a description of 
a dataset collected as part of a scientific mission; 
an individual instance (record, tuple, document). An example would be 
a library catalogue record describing a book ; 
an attribute (column in a table, field in a set of records, named element 
in a set of documents). An example would be the accuracy/precision of 
instances of the attribute in a particular scientific experiment ; 
domain information (e.g. value range) of an attribute. An example 
would be the range of acceptable values in a numeric field such as the 



292      Keith G. Jeffery 

capacity of a car engine or the list of valid values in an enumerated list 
such as the list of names of car manufacturers; 
a record/field intersection unique value (i.e. value of one attribute in one 
instance) This would be used to explain an apparently anomalous value.  

In the relationship domain, associative metadata can describe relation-
ships between sets of data e.g. hyperlinks. Associative metadata can – with 
more flexibility and expressivity than available in e.g. relational database 
technology or hypermedia document system technology – describe the se-
mantics of a relationship, the constraints, the roles of the entities (objects) 
involved and additional constraints. 

In the process domain, associative metadata can describe (among other 
things) the functionality of the process, its external interface characteris-
tics, restrictions on utilisation of the process and its performance require-
ments/characteristics.  

In the event domain, associative metadata can describe the event, the 
temporal constraints associated with it, the other constraints associated 
with it and actions arising from the event occurring. 

Associative metadata can also be personalised: given clear relationships 
between them that can be resolved automatically and unambiguously, dif-
ferent metadata describing the same data may be used by different users. 

Taking an orthogonal view over these different kinds of information ob-
jects to be described, associative metadata may be classified as follows: 

descriptive: provides additional information about the object to assist in 
understanding and using it; 
restrictive: provides additional information about the object to restrict 
access to authorised users and is related to security, privacy, access 
rights, copyright and IPR (Intellectual Property Rights); 
supportive: a separate and general information resource that can be 
cross-linked to an individual object to provide additional information 
e.g. translation to a different language, super- or sub-terms to improve a 
query – the kind of support provided by a thesaurus or domain ontology; 

Most examples of metadata in use today include some components of most 
of these kinds, but neither structured formally nor specified formally so 
that the metadata tends to be of limited use for automated operations thus 
requiring additional human interpretation. 



Systems Development in a GRIDs Environment      293 

6.3 What is Needed Now 

The roadmap for moving forward requires several components: 

1. a generally agreed understanding of the purposes, uses and needs for 
metadata in a GRIDs/ambient environment 

2. the definition of metadata that is machine understandable as well as 
machine readable 

3. the definition of metadata for description, restriction, correctness, 
navigational access and system support 

4. standardisation of (2) and (3) with widespread deployment and use 
5. a process for updating (4) 

Clearly (1), (2) and (3) will require more research and development in-
cluding extensive testing for effectiveness before we can move to (4). I 
foresee this R&D effort lasting for some years, and keeping active re-
searchers in the area very busy! 

7 Conclusion 

The GRIDs architecture will provide an IT infrastructure to revolutionise 
and expedite the way in which we do business and achieve leisure. The 
Ambient Computing environment will revolutionise the way in which the 
IT infrastructure intersects with our lives, both professional and social. The 
two architectures in combination will provide the springboard for the 
greatest advances yet in Information Technology. This can only be 
achieved by excellent R&D leading to commercial take-up and develop-
ment of suitable products, to agreed standards, ideally within an environ-
ment such as W3C (the World Wide Web Consortium) and/or OGF (Open 
GRID Forum). The current efforts in GRID computing have moved some 
way away from metacomputing and towards the architecture described 
here with the adoption of OGSA (Open Grids Services Architecture). 
However, there is a general feeling that Next Generation GRID requires an 
architecture rather like that described here, as reported in the Report of the 
EC Expert Group on the subject [3]. To develop instances of this architec-
ture will require advanced information systems engineering. The key is 
advanced, machine-understandable metadata to describe the architectural 
components.

Acknowledgements: Although the author remains responsible for the con-
tent, many of the ideas have come from fruitful discussions not only with 
the author’s own team at CCLRC-RAL but also with many members of the 



294      Keith G. Jeffery 

UK science community and the UK Computer Science/Information sys-
tems community. The author has also benefited greatly from discussions in 
the contexts of ERCIM (www.ercim.org), W3C (www.w3.org) and the EC 
NGG Expert Group.

There is one special acknowledgement. I was working on - or more ac-
curately struggling with - how best to manage the systems development 
process for advanced information systems applications when I met Arne. 
We have been colleagues and -I am proud to say- friends for approxi-
mately 25 years. We have served together on boards and committees, most 
recently as president and vice-president of ERCIM. Arne has been mentor 
and guide, opponent and partner (in discussions and debate), supporter and 
critic. We have worked together on developing a strategy for IT in Europe 
(and wider) and we have worked together on projects. Whether in a profes-
sional context, or as host (and raconteur) Arne is always excellent com-
pany. He has surely been a major influence on my career. 

References 

[1] Berners-Lee,T.: ‘Weaving the Web’ 256 pp Harper, San Francisco 1999  
[2] http://purl.oclc.org/2/ 
[3] www.cordis.lu/ist/grids/index.htm  
[4] Foster, I., Kesselman, C. (Eds). The Grid: Blueprint for a New Computing In-

frastructure. Morgan-Kauffman 1998 
[5] Jeffery, K.G.: ‘An Architecture for Grey Literature in a R&D Context’ Pro-

ceedings GL'99 (Grey Literature) Conference Washington 2 October 1999  
[6] Jeffery, K.G.: Original Paper available at http://www.cclrc.ac.uk/Publications-

/1433/KnowledgeInformationData20000124.htm 
[7] Jeffery, K.G. ‘Metadata’: in Brinkkemper,J; Lindencrona,E; Sølvberg,A: ‘In-

formation Systems Engineering’ Springer Verlag, London 2000.  
[8] http://www.dlib.org/dlib/july98/rust/07rust.html 
[9] http://jan.netcomp.monash.edu.au/publications/IC2002_69.pdf[10]  
[10] http://www.eu-trustcom.com/  
[11] Jeffery, K. G., Hutchinson, E. K., Kalmus, J. R., Wilson, M. D., Behrendt, W. 

, Macnee, C. A.: 'A Model for Heterogeneous Distributed Databases' Proceed-
ings BNCOD12 July 1994; LNCS 826 pp 221-234 Springer-Verlag 1994 



Adaptive Information Systems1

Barbara Pernici

Politecnico di Milano, Italy 

Abstract. Adaptivity in information systems is proposed in the context of mobile and 
multichannel applications of information systems. Adaptivity may range from interaction 
functionality to variable ways of providing services according to a variable context of use. 
The paper will focus on adaptivity of process-based service provisioning, following a 
service oriented approach, to information system development, in which services are 
selected, deployed, and invoked in variable contexts. Support to self-healing features of 
service-based information systems will also be discussed. 

1 Introduction 

New technologies available for the development of information systems allow 
dynamically composing services to provide advanced personalized value 
added services and ubiquitous and mobile access from the users with a variety 
of access devices. To support the development of such information systems, a 
clear requirement emerges for flexibility and adaptability.   

Flexibility for information systems processes has been studied in the 
context of workflow systems for building systems that are flexible regarding 
both business and corresponding IT infrastructure transformation [7].    

To provide adaptability in information systems and in particular context-
awareness, the Service Oriented Architecture (SOA) [1] provides a conceptual 
and technological infrastructure that facilitates the development of adaptive 
systems.  

                                                     
1 Part of this work has been funded by the EU STREP-FET Project WS-Diamond and 

FIRB 2005 Tekne project. 



296      Barbara Pernici 

In the MAIS (Multichannel Adaptive Information Systems) project [15], 
model-based development has been considered both to develop front-end and 
back-end services. The adaptation process operates at several levels: selecting 
the most appropriate contents (e.g., according to user interests), building an 
adequate layout for web pages according to layout capabilities of the client 
device, developing adaptive and flexible processes which select services 
based on the context of execution, both at the user side and the service side.  

The quality of the design of the information system is particularly critical in 
adaptive and flexible systems. In fact, while high quality for conceptual 
modeling would require properties such as validity and completeness of the 
developed models, the trade off between desirable properties and cost impact 
becomes significant. In [13], the concept of feasibility is introduced and, in 
particular, feasible validity, feasible completeness, and feasible 
comprehensibility. On the other end, a feasible design requires mechanisms 
which allow adapting the system at run time to cope with situations which 
have not been completely considered at design time.  

The goal of this paper is to discuss how process flexibility can be achieved, 
and to discuss it with respect to the relation between design time and run time 
aspects of the design of adaptive information systems. We focus in particular 
on process-related aspects, and on methods to achieve flexibility through 
dynamic service invocation, negotiation, and self-healing properties 
introduced in the information system.  

The structure of the paper is as follows. In Section 2, we discuss flexible 
processes. In Section 3, we introduce negotiation and re-optimization as 
adaptivity mechanisms. In Section 4, we present the concept of self-
healability of processes. Finally in Section 5 we discuss related work.  

2 Flexible Processes 

In the MAIS project, a major research question which has been addressed is 
the development of interactive information systems on a multi-channel 
platform [15]. In Fig. 1, we illustrate the context-aware process execution 
scenario considered in the MAIS project. A variable service execution context 
is assumed, including different user profiles, different and variable interaction 
devices and interaction contexts, variable service provisioning contexts, and 
variable and context-dependent network characteristics. Adaptivity can be 
provided at different levels: service provisioning, network, and front-end.  

Process support technologies are a natural choice for enabling interaction 
machines. Such technologies are typically based of process models, which 
need to be flexible enough for people to adapt them to support their emerging 
goals. Service Oriented Architectures (SOA) favour the development of 



Adaptive Information Systems      297 

systems to support processes in a mobile environment, providing a general 
infrastructure to access services: a communication infrastructure to invoke 
services, based mainly on the SOAP protocol; the publication of services in a 
service registry (or broker) by the service providers; retrieval of services from 
the registry by user applications; a direct interaction between requestor and 
provider, without the intervention of the service broker.  

Fig. 1. MAIS context-aware processes 

In MAIS, services can be composed to develop applications using 
workflow-like languages. In particular, processes are modelled and executed 
using an extension of the Business Process Execution Language (BPEL), 
which allows the definition of composed services as web services. BPEL 
provides the basic coordination constructs for process definition, such as 
sequence, iteration, and selection, allowing both synchronous and 
asynchronous interaction. Innovative solutions have been developed for 
service provisioning on multiple channels. The focus of the research is 
adaptivity to channel and context characteristics at the service level and an 
optimized selection of micro-services to dynamically create value-added 
flexible macro-services. The focus is mainly on web-services, i.e., e-services 
that are provided using a web infrastructure on an Internet connection 
provided on variable types of connection. An adaptive service execution has 
been studied, with the goal of providing flexible e-services and focusing on 
dynamic semantic-based selection and composition of services from an 
extended UDDI registry. This is achieved by taking into account functional 
and quality-of-service parameters, and dynamic service substitution and 
execution mechanisms [6]. 



298      Barbara Pernici 

A service is characterized both by functional aspects (i.e., the provided 
capabilities) and by non-functional aspects (i.e., quality-of-service levels), and 
the same service might be offered with a different quality of service.  

Processes are realized by composing services offered by different 
providers. Specifically, a MAIS process describes the composition of different 
services to obtain a flexible e-service, where service selection, and in some 
cases dynamic composition, may be performed at run time, during process 
execution. The execution of a flexible service depends on the context of 
execution and the quality of service of the component services. The MAIS 
approach allows services to be dynamically selected or substituted, and to be 
dynamically composed in a high-performance process orchestration 
environment.  

In Fig. 2, the architecture of the MAIS back-end flexible Web service 
environment is shown through its main modules. Service selection is based on 
the MAIS Service Registry, which extends the UDDI registry functionality 
with service and domain ontologies. The same ontologies are used during 
publication by the Semantic Publisher and during retrieval by the 
Matchmaker. Dynamic composition of new services is performed with the 
support of a Behavioral Compatibility Engine. The semantic and syntactic 
mediation of services is of key importance in dynamic composition. This is 
why the MAIS Service Registry also stores a Wrapper Repository, where 
semantic and syntactic wrappers are stored.  

The flexible invocation and orchestration environment is illustrated in the 
upper part of the figure. MAIS flexible services are invoked by external end 
users and Web applications through a Platform Invoker module, which 
provides an interface to the MAIS back-end environment. Services are 
invoked by a Concrete Service Invoker, which provides the basic mechanisms 
for adaptivity: it retrieves from the MAIS Service Registry the services to be 
invoked, invoking them through wrappers, if needed; context information for 
context-aware service invocation is provided by support from the MAIS 
Reflective Architecture, a middleware component to exchange context 
information.   

The process orchestration provided by the Process Orchestrator is based on 
an abstract description of the processes, and actual services are invoked 
through the Concrete Service Invoker. The Concretizator module performs 
selection of services for an abstract composed process orchestrated by the 
Process Orchestrator using optimization and negotiation techniques, and using 
recommendations for personalized service selection from the 
Recommendation Environment. A number of support tools have also been 
developed within the MAIS environment to support service design [15]. 
    The MAIS Process Language allows the definition of flexible processes in 
terms of the following elements provided as annotations to an abstract BPEL 
process specification: 



Adaptive Information Systems      299 

Fig. 2. MAIS back-end environment 

Component services: the requested abstract service operations of 
component services; 
Quality constraints: quality constraints may be specified on the process 
(global constraints) or on component services (local services).  
Selection constraints: preferred concrete services may be associated with 
the requested abstract services; selection constraints may also be used to 
specify that two operations in the process must be executed by the same 
service.
Probability of executing a given execution path: for optimizing service 
selection, it is useful to take into consideration information about the 
probabilities of possible executions. This is particularly important when 
cycles and alternative execution paths are present. Probabilities of 
execution are associated with switches in the flow, and cycles are 
associated with the maximum number of expected iterations and, at times, 
with a probability of executing the ith iteration; such information may be 
derived from execution logs. 
Negotiation: negotiation preferences may be associated with each service 
invocation activity (e.g., the auction type, and negotiation attributes). 
Negotiation preferences are expressed using WS-Policy. 



300      Barbara Pernici 

A flexible process is specified by the process provider, which provides 
annotations to the process. Such annotations may also be used in the service 
request phase, taking into account user preferences and additional constraints, 
either explicitly formulated or derived from the execution context. 

Service selection for the execution of an abstract process in a given 
execution context is considered as an optimization problem, with global and 
local constraints. In [2] the problem is solved with a linear programming 
approach (MILP), weighting possible process execution plans, which 
associate to each component operation a concrete service executing it, 
according to their probability of execution and assigning to each plan a score 
as follows (assuming that the considered QoS parameters are execution time, 
availability, price, and reputation): 

3. QoS Negotiation and Re-Optimization 

3.1 QoS agreement 

To achieve more flexibility and adaptivity, QoS negotiation can be adopted 
both during service selection and at run time.  

For service selection performed with a QoS optimization approach 
mentioned above, QoS negotiation can be adopted to relax QoS constraints in 
case no feasible solution can be found by the optimization algorithm. The 
constraints which are the best candidates for negotiation can be identified, and 
bilateral negotiations with candidate service providers may help reaching a 
feasible solution. The flexibility of the process is thus obtained relaxing the 
original global constraints in a limited way and allocating a minimum number 
of additional resources to the process, according to the results of negotiation 
with candidate providers. 

In addition negotiation can be used to agree the QoS level of the invoked 
services [10]. In fact, usually both service requestors and service providers 
specify ranges for QoS characteristics in service requests and service 
publication. After service selection for the process, a contract should be 
established among the parties which specifies which is expected the service 
QoS level. Such level can be used to monitor process performance and to 



Adaptive Information Systems      301 

perform adaptation operations at run time in case the parameters levels 
specified in the contract are not respected. 

In [10], two approaches to automated contract negotiation of QoS and 
prices in service oriented architectures are proposed. In the first one, 
negotiation is automated only on the service provider side. The manual 
interaction of the service consumer is still required. In the second one, the 
negotiation is automated on both sides; the provider and the consumer 
delegate the execution of the negotiation to a negotiation broker. The 
Negotiation Broker performs the automated negotiation using the strategies 
specified by providers and consumers through policies. 

The result of the negotiation process is a contract, which is formalized 
using WS-Agreement. The contract allows the architecture to monitor the 
service provisioning phase, enforcing penalties and recovery actions when the 
contract is not fulfilled by one or both parties. 

3.2 Re-optimization 

At run time, an adaptive mechanism consists in updating the global plan 
identified by initially solving the optimization problem in order to take into 
account the variability of Web services and of end users context. Re-
optimization is performed periodically and is triggered in the following cases: 

The current value of the quality attributes of the composed service can be 
evaluated after the end of execution of every task. If the current QoS value 
differs more than a given threshold value from the corresponding prediction 
which can be evaluated from the global plan, then the re-optimization is 
performed.
If a Web-service invocation fails, then re-optimization identifies a 
substitute service. 
Re-optimization is triggered by end user’s context switch, since different 
channels can be associated with different constraints and set of weights. 

Re-optimization requires some information on the current state of the 
composite service execution and starts revising the process instance 
specification.

4 Self-Healing Processes 

While the flexible process execution environment developed in MAIS allows 
the development of information systems according to the feasible design 
principles, the resulting applications may incur in situations which are not 
anticipated in the developed models. 



302      Barbara Pernici 

We distinguish here between expected exceptions, which are part of the 
models, and unexpected exceptions, which cannot be anticipated at run time 
or for which the additional cost for considering them at design time would not 
be justified. 

The problem of exception modeling and handling has been studied 
extensively in the workflow literature and in particular in the WIDE project 
[8] the concept of exception pattern has been proposed to make exception 
design easier. In the WAMO system [12] a constructive approach to handle 
unanticipated exceptions at run time has been proposed, to define possible 
process repair plans according to predefined rules. In BPEL, several 
exception, event, and message handling mechanisms are proposed to support a 
sophisticated approach to considering exceptions in the design phase. 

However, modeling of exception and repair rules might also become a 
design activity with costs which cannot be justified and with a severe impact 
on comprehensibility, violating the feasible comprehensibility requirement 
[13].  

An innovative proposal to provide self-healing properties to service-based 
processes is being developed within the WS-Diamond2 project. While the 
normal behaviour of the process and its expected exceptions are modelled, an 
environment to support unexpected exceptions is provided. The environment 
is based on two main components: a monitoring and diagnosis component, 
which analyze the process behaviour to identify failures and possible causes 
of errors [3], and a repair component, which supports repair actions (Fig. 3). 
Repair actions are performed on the processes underlying the services through 
a service management interface defined for the process. 

Fig. 3. Self-healing processes

A process is considered repaired when normal execution flow can be 
resumed. In the WS-Diamond project a set of repair actions on process 
instances has been defined [14]. They can be classified into actions which act 

                                                     
2 Web-Service Diagnosis, Monitoring, and Diagnosability, EU FET-STREP 

Project, http://wsdiamond.di.unito.it/ 

Si

Di Ri

SMi

Fault

Repair actions 



Adaptive Information Systems      303 

of single services, such as retry an operation invocation, redo an operation 
with different parameters, or service substitution, and repair actions on the 
process flow or data, such as changes of variable values, changing the point of 
execution of the process (e.g., going back and forward in the process flow), 
selecting alternative execution paths. An extreme process repair action is the 
migration to a different process in case the process being executed cannot be 
repaired. In WS-Diamond, repair actions can be either manually invoked, or 
an execution plan could be automatically defined, along the lines proposed in 
[12] for workflow dynamic exception handling. 

5 Related Work 

Several methodological approaches and systems have been proposed to 
support process-based service composition, by extending traditional process 
management system technology to distributed, Internet-based scenarios. 

In [9] dynamic and adaptive composition of e-services is proposed. In 
SELFSERV [5], services can be composed and executed in a decentralized 
way and a first approach to QoS based service selection has been proposed in 
[16]. The evaluation of quality of flexible process models in discussed in [7]. 

Flexible and context aware mechanisms are needed in future systems. In 
[11] a layered architecture for flexible e-service invocation is proposed based 
on substitution mechanism. Moreover, for the more general use of mobile 
applications, it is important to be able to adapt these systems to the user at 
hand, thus making a case for simple user models to guide the adaptation. 
Banavar and Bernstein [4] highlight the importance of semantic modeling in 
this respect.

6 Concluding Remarks 

Flexibility and adaptation techniques for processes in adaptive information 
systems have been discussed in the paper. The trade-off between model 
completeness and flexibility and adaptivity at run time has been discussed, 
focusing on ways for enhancing the information system process specification 
with mechanisms to provide adaptivity at run time. In particular, in mobile 
information systems, the main requirement is for flexible and adaptive system 
behaviour in the execution of process, since the context of invocation may be 
very variable: a multitude of services are available across the network, 
providers and services may vary in time, and changes in the context are 
frequent. The traditional view of requirement engineering, where a 
requirement specification is developed early on in a project and then 
undergoes only minor changes during development and further system 



304      Barbara Pernici 

evolution, only partially applies. Rather, it is important to deal with ever 
evolving, unclear, and inconsistent user requirements that change and emerge 
through actual use. 

References 

[1] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. (Springer Verlag, 
Berlin Heidelberg New York 2004) 

[2] Ardagna, D., Pernici, B.: Dynamic Web Service Composition with QoS 
Constraints, International Journal of Business Process Integration and 
Management (IJBPIM), accepted for publication 

[3] Ardissono, L., Console, L., Goy, A., Petrone, G., Picardi, C., Segnan, M., 
Theseider Dupré, D.: Enhancing Web Services with Diagnostic Capabilities. In: 
Proc. of ECOWS 2005 - 3rd IEEE European Conference on Web Services, Vaxjo, 
Sweden, 2005, pp 182-191 

[4] Banavar G., Bernstein, A.: Software infrastructure and design challenges for 
ubiquitous computing applications. Commun. ACM 45(12):92-96 (2002) 

[5] Benatallah, B., Sheng, Q.Z., Dumas, M.: The Self-Serv environment for web 
services composition. IEEE Internet Computing 7(1):40-48 (2003) 

[6] Bianchini, D., De Antonellis, V., Melchiori, M., Pernici, B., Plebani, P.: Ontology 
based methodology for e-service discovery. Information Systems 31(4-5):361-
380 (2006) 

[7] Carlsen, S., Krogstie, J., Sølvberg, A., Lindland, O.I.: Evaluating Flexible 
Workflow Systems. In: Hawaii International Conference on System Sciences 
(HICSS-30), Maui, Hawaii (1997) 

[8] Casati, F., Castano, S., Fugini, M.G., Mirbel, I., Pernici, B.: Using Patterns to 
Design Rules in Workflows. Trans. on Software Engineering 26(8):(2000)  

[9] Casati, F., Shan, M.: Dynamic and adaptive composition of e-services. 
Information Systems 26(3) (2001) 

[10] Comuzzi, M., Pernici, B.: An Architecture for Flexible Web Service QoS 
Negotiation. In: Proc. EDOC 2005, Enschede, The Netherlands (2005), pp 70-82  

[11] De Antonellis, V., Melchiori, M., De Santis, L., Mecella, M., Mussi, E., Pernici, 
B., Plebani, P.: A layered architecture for flexible e-service invocation”, Software 
& Practice Experience. Software Practice & Experience 36(2):191-223 (2006) 

[12] Eder, J., Liebhart, W.: The Workflow Activity Model. In:Proc. CoopIS 1995
[13] Lindland, O.I, Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual 

Modeling. IEEE Software, 11(2):42-49 (1994) 
[14] Modafferi, S., Mussi, E., Pernici, B.: SH-BPEL - A Self-Healing plug-in for Ws-

BPEL engines. In: MW4SOC: Workshop of the 7th International Middleware 
Conference 2006, Melbourne, Australia (2006) 

[15] Pernici, B. (ed.): Mobile Information Systems – Infrastructure and design for 
adaptivity and flexibility. (Springer, Berlin Heidelberg New York 2006) 

[16] Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: 
QoS-Aware Middleware for Web Services Composition. IEEE Trans. On 
Software Engineering 30(5): 311-327 (2004). 



Modelling of the People, by the People, 
for the People 

John Krogstie 

IDI, NTNU, Trondheim, Norway 

Abstract. Modeling approaches as we know them today started to be used in a large 
scale around 30 years ago, using DFDs and ER-diagrams. Still the main focus is for 
intermediaries to document the knowledge as held by different stakeholders for further 
use, rather than for people themselves to use these means for knowledge representation 
for their own needs. Although useful e.g. in systems development, for modeling to 
have a larger effect, we propose a move the field to enable all knowledge workers to 
be active modelers. This chapter provides an overview of interactive models as an 
approach to support this vision, and gives an overview of the necessary future 
development to make this a reality on a large scale. 

1 Introduction 

It can be argued that the main reason that humans have excelled, is their 
ability of representing and transferring knowledge across time and space, 
inventing new knowledge on the way. Whereas in most areas of human 
conduct, one-dimensional (textual) languages being either informal (natu-
ral language) or formal (as in mathematics) have traditionally been used 
for this purpose, we see the use of two and many-dimensional representa-
tional forms to be on the rise. One such technique is traditionally termed 
modelling, although this term is used in different senses in different areas. 
Our background is primarily the use of modelling in the development of 
enterprises and enterprise information systems in particular.

Although useful e.g. in systems development, for modelling to have a 
larger effect, we propose a move of the technologies and approaches for 
this to enable also ‘normal’ knowledge workers (i.e. not only system de-
velopers) to be active modellers, both in restricted situations, and also to-



306      John Krogstie 

wards the adaptations of the applications they are using to support their 
work task. One approach towards this is the application of what we term 
interactive models (also termed Active Knowledge Models [13]). Although 
interactive models can be used across a large range of knowledge creation 
and knowledge representation tasks, our focus in this chapter is the use of 
these techniques relative to provide IT-support in an enterprise. 

The use of interactive models is about discovering, externalizing, cap-
turing, expressing, representing, sharing and managing enterprise knowl-
edge. A model is active if it directly influences the reality it reflects, i.e. 
changes to the model also change the way some actors perceive reality. 
Actors in this context include users as well as software components. [6] 
argue that active models can enable IS to meet many business needs that 
current technologies fail to support.  

Model activation is the process by which a model affects reality. Model 
activation involves actors interpreting the model and to some extent adjust-
ing their behaviour accordingly. This process can be  

Automated, where a software component interprets the model, 
Manual, where the model guides the actions of human actors, or 
Interactive, where prescribed aspects of the model are automatically 
interpreted and ambiguous parts are left to the users to resolve (through 
modeling in an guided environment). 

Fully automated activation implies that the model must be formal and 
complete, while manual and interactive activation also can handle incom-
plete and partly informal models. Completing this terminology, we define 
a model to be interactive if it is interactively activated. That a model is in-
teractive entails a co-evolution of the model and its domain. A model that 
does not change will not be able to reflect aspects of reality that changes, 
nor can it reflect evolution of a human actor's understanding. Conse-
quently, an interactive model that does not evolve will deteriorate. It con-
tributes to change, but does not reflect this change. The process of updat-
ing an interactive model is called articulation. The interplay of articulation 
and activation reflects the mutual constitution of interactive models and 
the social reality they reflect. The software components that support inter-
twined articulation and activation are termed model activators.

The most comprehensive theoretical approach to this field is Peter 
Wegner's interaction framework [23, 24]. Its development was triggered by 
the realisation that machines involving users in their problem solving, 
could solve a larger class of problems than algorithmic systems computing 
in isolation [23]. The primary characteristic of an interaction machine is 
that it can pose questions to users during its computation. The process can 



Modelling of the People, by the People, for the People      307  

be a multi-step conversation between the user and the machine, each being 
able to take the initiative. The notion of an interaction machine is further 
extended to that of multi-stream distributed interaction machines, enabling 
multiple users and external systems to interact simultaneously, e.g. in 
groupware systems. DEUDU (Design of End-user Design in Use) [3] is a 
similar concept for system adaptability by user intervention – as a contrib-
uting designer – at use time. 

Interactive models allows us to capture and benefit from situated, work-
generative knowledge that otherwise will only be captured as tacit knowl-
edge in the minds of those involved if at all. Active and situated knowl-
edge has some very important intrinsic properties, and the only way we 
can benefit from these properties is by supporting users interactive model-
ling using the technology to model and execute models. 

The industrial community has not been offered much new in terms of IT 
approaches and solutions over the last fifteen years. The few exceptions 
that spring to mind are enterprise modelling (EM), industrial portals and 
more recently web services and Service Oriented Architecture. This has 
left industry with a long list of unsolved problems. The situation has been 
described in the IDEAS project [8]: 

Aligning business, ICT and knowledge management (KM), 
Reducing expenses for application portfolio management and applica-
tions integration, 
Achieving cheaper and faster solutions development, delivery, deploy-
ment and integration, 
Achieving predictability, accountability, adaptability and trust in net-
worked organizations, 
Achieving ease of re-engineering, reuse and management of solutions, 
Supporting concurrency, context-sensitivity and multiple simultaneous 
life-cycles of products and processes, 
Providing self-organizing, self-managing and re-generating solutions, 
Automating or semi-automating information and knowledge manage-
ment,
Supporting learning-by-doing 
Achieving independence of system experts,
Harmonizing user environments and designing personalized workplaces 

Continuous, on-demand industrial computing solutions are urgently 
needed in order to meet the business demands and opportunities of the new 
global economy. These solutions must offer qualities, capabilities and ser-
vices that dramatically reduce the costs of developing, deploying, operat-
ing and managing customer solutions.  



308      John Krogstie 

One approach to interactive models is termed Active Knowledge Mod-
elling (AKM) technology [5, 7, 12, 19]. AKM is offering new roles for En-
terprise Modelling to address the above issues: developing visual scenes 
for pro-action learning, modelling actions to capture context, creating con-
textual descriptions of work, and supporting knowledge evolution.  
    Recent platform developments [1] will support integrated modelling and 
execution platforms as one common platform, thereby enabling what in 
cognitive psychology is denoted as “closing the learning cycle”. We will 
return to this approach after describing briefly the history and state of the 
art in the field of IS and enterprise modelling. We will then conclude look-
ing at some of the potential pitfalls and problems of this approach. 

2 State of the Art and State of Practice Within IS and 
Enterprise Modelling 

Modelling approaches as we know them today within the information sys-
tem field started to be used in large scale around 30 years ago, with devel-
opments such as DFDs and ER-diagrams, including e.g. the Phenomena 
model [17]. From the start a focus was to develop conceptual modeling 
languages that would focus on the important concepts of the world, typi-
cally containing a few, general concepts, depicted with simple and abstract 
visual icons. The languages were to be used to develop models by experts, 
although being meant to be used as a communication-artefact with differ-
ent types of ‘domain experts’. In the eighties, there were a large number of 
proposals for THE right modelling notation. In IFIP WG8.1 there was a 
number of conferences (the so-called CRIS–conferences – Comparative 
Research on Information Systems, e.g. [15]) starting out a long tradition in 
this, being followed up in the EMMSAD workshop series related to the 
CAiSE-conference since 1996. Understanding that language appropriate-
ness was to a large extent based on the situation and goals of modelling, 
meta-modelling approaches started to appear around 1990 with tools such 
as RAMATIC making it possible for projects and organizations to extend 
existing notations, or in fact creating whole new notations from scratch. 
Successful approaches of metamodeling are e.g. MetaEdit [10]. Also Mi-
crosoft is currently pursuing this approach with the focus on DSL – Do-
main Specific Languages. The development of UML profiles can be 
looked upon as a variant of this. Still the main focus in the application of 
these techniques is for intermediaries (e.g. analysts, designers) to docu-
ment the knowledge as held by different stakeholders for further use, 



Modelling of the People, by the People, for the People      309  

rather than for people themselves to use these powerful means for knowl-
edge representation and creation for their own needs.  

Whereas the first modelling approaches where focused on software 
development, the area of enterprise modelling (EM) provided in the eight-
ies the use of similar techniques to a somewhat broader scope. Five main 
categories for enterprise (process) modeling inspired by [4, 18, 21] is: 

1. Human-sense making and communication to make sense of aspects of 
an enterprise and to communicate with other people 

2. Computer-assisted analysis to gain knowledge about the enterprise 
through simulation or deduction. 

3. Business Process Management. 
4. Model deployment and activation to integrate the model in an informa-

tion system.  
5. Using the model as a context for a system development project, with-

out being directly implemented (as it is in category 4). 

State-of-practice in EM has progressed furthest in certain manufacturing 
industries, and in particular with respect to these three areas:  

Enterprise Architecture is currently the most vivid and fastest growing 
market particularly in the US. 
Business Process Modelling looked like a fast growing market already 
around 1998, but new requirements for web-service security have 
slowed it down. As for BPM (Business Process Management), the area 
appears to be on the rise once again. 
Enterprise Performance Analyses is another market that has as yet to 
really take off. 

We believe that the major reasons for this slow acceptance and modest 
market penetration are mainly to be found in the fact that also EM is still a 
tool-based effort for experts, lacking scientifically based methodologies 
and respective visual languages. 

The characteristics of the EM models, approaches and usage of models 
by industry are: 

The enterprise knowledge that can be represented is predetermined by 
vendor proprietary languages, 
The modelling approach, roles of modellers, and views to create are also 
predetermined, 
Modelling is not an integral part of engineering or product development, 
but performed in isolation by specialists, 
The user interface is systems engineer oriented, and supports just one 
style of modelling, 



310      John Krogstie 

There is limited support for knowledge externalization, sharing, and 
management,
Most models are collections of diagrams and functional views and give 
no support for adaptation and extension of meta-models, 
Models and modelling environments are detached from solution 
execution platforms. 

In short it is fair to say that so far EM is just another technology island 
in the non-interoperable industrial tools and systems landscape. Current 
standardization activities have little effect on industry. Although many 
such activities are going on, present standards (e.g. ENV 12204 or DIS 
19439) are rarely used within industry. With respect to other, de-facto 
standards (e.g. BPMN from BPMI.org and OMG), industry does not per-
ceive a clear distinction between conceptual and execution-oriented stan-
dards.

Now this situation is about to change. The goal is to make explicit 
knowledge that add value to the enterprise and can be shared by business 
applications and users for improving the agility and performance of the en-
terprise. Here we propose that this is best achieved in what we define as 
Enterprise Visual Scenes (EVS) as will be described in the next section. 

3 Towards Enterprise Visual Scenes 

EM can contribute to solve interoperability difficulties by increasing the 
shared understanding of the enterprise structures, rules and behaviour. EM 
provides methodologies for the identification of connected roles, objects 
and processes between enterprises from different perspectives. Sets of 
software applications used in the enterprises and their relationships can be 
identified with EM, and their degree of interoperability can be analyzed. 
Many languages and tools exists that support some form of EM with par-
tially overlapping approaches. Today, several attempts to combine lan-
guages are known. For example, the Unified Enterprise Modeling Lan-
guage project [20] has prototyped an integrated approach for exchange of 
enterprise models among EM tools, work that has been continued within 
the EU NoE INTEROP [16] and ATHENA [2]. 

As indicated above, enterprise modelling shows various inadequacies in 
a number of areas. The solution to these fallacies is to develop and share 
core languages, services, modelling constructs, models and meta-model 
structures by use of a comprehensive modelling infrastructure. An example 
of a comprehensive modelling infrastructure is given in Figure 1, depicting 
the solution platform as a platform providing services to help one or more 



Modelling of the People, by the People, for the People      311  

networking companies perform practical work and achieve business goals. 
The core of the AKM is its approach, its CPPD (Collaborative Product and 
Process Design) methodologies – POPS innovative knowledge space, EKA 
structures, collaboration spaces, and its MUPS (model-configured and 
user-composable services) and industrial solution platforms. We will re-
turn to all of these areas below. The layers of platforms and services are il-
lustrated in Figure 1, where the two lowest layers are identical with the 
products developed and delivered by Troux Technologies or other vendors, 
and the layers above are enabled by task, view, role and collaboration 
space management added by AKModelling.  

Fig. 1. Integrated modeling infrastructure 

 3.1 POPS as Core Modelling Languages 

It can be argued that the core knowledge of any enterprise is the four in-
separable dimensions of product, organization, process and system 
(POPS). Reflective views, recursive work processes, repetitive tasks and 
solutions, and replicable meta-models and templates are intrinsic proper-
ties of these dimensions. Business and other aspects and views are derived 
from these core enterprise knowledge dimensions. This core knowledge in-
tegrates and provides the qualities that future solutions depend on.  



312      John Krogstie 

This core description is required in order to define, calculate and man-
age parameters and balance attributes and value sets across disciplines. 
Any EM language must be a derivation from this core. Otherwise it will 
not produce quality, manageable models and solutions. The partial, com-
plementary languages can be used separately, and there is no demand to 
use more than one language from any of the four dimensions. 

In the ATHENA project we have developed a first version of such a uni-
fied enterprise modelling language to enable the exchange of enterprise 
models independent of tools [26]. The partners have provided new solu-
tions for open, tool-independent visual languages to model the core enter-
prise knowledge. These visual languages will offer consistent and coherent 
enterprise descriptions, and will represent a scientific basis for enterprise 
modelling. 

3.2 EKA – The Enterprise Knowledge Architecture 

The Enterprise Knowledge Architecture (EKA) uses state-of-the-art IT and 
visual enterprise knowledge management services to build inline interac-
tive models and situated meta-models. These enterprise specific meta-
models, including meta-models to integrate partner processes and systems, 
tune the modelling infrastructure (MI) to each enterprise. The enterprise 
specific infrastructure supports simultaneous modeling, meta-modeling, 
model management and work execution, using model-generated work-
places (MGWP) as described below [11]. 

The knowledge structures and views are adapted, extended, coordinated 
and managed by services, which for quality assurance should be imple-
mented as repeatable work processes. The tasks of these work processes 
are themselves part of the modelling infrastructure. Any task can be in-
voked and executed as need arises, supporting unpredictable situations. 
Execution of these tasks may vary between automatic and highly interac-
tive depending on the context. This means that self-adaptive, self-
organizing solutions are possible, since situated knowledge can be mod-
elled and activated. 

3.2.1 Model-Generated Workplaces (MGWP) and Model-Configured 
and User-Composable Services (MUPS) 

A model-generated workplace (MGWP) is a working environment for the 
business users involved in running the business operations of the enter-
prise. It is a user platform that provides the graphical front-end for human 



Modelling of the People, by the People, for the People      313  

users to interact with software services supporting their day-to-day busi-
ness activities. 

The workplace can be tailored to meet the specific requirements of dif-
ferent roles or persons within an enterprise, providing customized presen-
tation and operation views. This is achieved through model-configured and 
user-composable services (MUPS). These services make use of models to 
generate business-oriented and context-aware graphical user interfaces. 

Fig. 2. Operational view of a model-generated workplace 

Fig. 2 depicts an operational view of a model-generated workplace, exem-
plified with two different persons accessing ICT services and knowledge 
assets using different model-generated views, e.g. Gantt charts for project 
monitoring, web forms for activity reporting, bar graphs visualizing budget 
spending, and Web documents reporting on activities. The different views 
may reflect the same knowledge asset in a different form or manner that 
best suit the role or person using that asset in a given business context. In-
formation represented in the different views is based on the same models 
ensuring information consistency. The models of the MGWPs are them-
selves knowledge models. MGWPs will typically be implemented as Web 
portals and MUPSs specify Web elements that can be generated in such 
portals.

3.2.2 EVS - Enterprise Visual Scenes 

An enterprise has many knowledge spaces. These spaces can be imple-
mented as Enterprise Visual Scenes (EVS). Enterprise visual scenes are 



314      John Krogstie 

ensembles of views to interrelated interactive models supporting arche-
typical work in an organization. 

We see four major enterprise visual scenes required to continuously in-
novate, operate, evolve and transform, and govern and manage future en-
terprises. In addition there will be a multitude of smaller, more project and 
task specific scenes to support situated project work. The four Visual 
scenes for future enterprising are briefly defined as: 

The Innovative scene where focus is to invent, reuse, design and learn. 
The main concept is the industrial War-room, implemented as an appli-
cation of the POPS core languages. The innovative scene manages con-
tinuous change in product, process and organizational structures of the 
organization. 
The Operations scene where focus is to operate, generate, adapt, extend, 
manage and terminate; The main concept is Collaborative Business So-
lutions (CBSs) generation and Visual Enterprise Computing (VEC) de-
livery approach, supported by multiple life-cycle management (adapting 
and extending the modelling infrastructure). Proof of concept for this 
scene has been provided in earlier projects supporting solutions genera-
tion and user deployment [19], being further brought to practical appli-
cations in the ongoing MAPPER project [14].
The Governance scene where focus is to govern, plan, decide, assign, 
measure and strategize; The main concept is related to aggregation and 
propagation of parameters, attributes and values, achieving the “real-
time enterprise”. 
The Evolutions scene where the focus is to analyze, configure, change, 
transform, align, and manifest; The main concept is continuous collabo-
rative business management (CBM). 

3.2.3 The Power of Visual Scenes 

There is a need to enhance the way people think about computing, and 
there is a need to extend information systems and enterprise modeling 
from being a tool-based exercise for experts, isolated from operational 
business solutions, to become visual environments for a new style of com-
puting supported by an integrated modelling infrastructure. Visual pat-
terns, scenes and languages, have at least six properties that natural lan-
guage and current software methods will never acquire. We believe these 
properties are fundamental in driving a new approach to systems engineer-
ing, and for solving the challenges facing industry and IT providers: 



Modelling of the People, by the People, for the People      315  

1. Being able to collapse life-cycle stow-piping, i.e. play with abstractions 
of the time-dimension, removing the phases of material and information 
flows,

2. Providing methods for concurrently evolving concepts, content, context 
and actions,

3. Correlation of conceptual views (meta-views), several content and 
functional views, and finally contextual views, and their dependencies, 

4. Defining and applying business and working services and rules that are 
valid in given contexts, 

5. Performing innovative works, and being able to create meta-models by 
executing tasks, 

6. Supporting pro-action learning in visual scenes for role-playing and dry-
runs.

When we can support these properties then maybe we can truly support 
design, problem-solving and organizational team learning with the use of 
computers. 

3.2.4 How to Represent – Building the EKA 

The EKA (Enterprise Knowledge Architecture) is a set of inter-dependent 
knowledge representations, that allow us to separately define, de-couple 
and manage enterprise knowledge structures and constructs. It provides 
adaptable visual languages, and supports interoperable solutions. The six 
major enterprise knowledge representation aspects (UEMLST) are com-
posed of:

User enterprise views,  
Enterprise models and sub-models, and structures of integrated solution 
models, 
Meta-model definitions of various types of models, 
Language; core visual constructs as basis for modeling languages,  
Structures of meta-model objects and constructs, and finally  
Type-hierarchies representing standardized industrial knowledge.  

These enterprise knowledge model representations are vital for the for-
mation, integration and operation of intelligent enterprises and smart or-
ganizations, and must be visually editable and manageable in a portal envi-
ronment in order to harvest the full benefits of visual scenes. 

The portal acts as an integrator and as an environment to plug in and 
perform applications and services over the device of choice. Application 
services are work processes, single or cascaded tasks, stored in the reposi-
tory for re-activation and repetitive execution. The services provided in the 



316      John Krogstie 

portal, supported by the modelling infrastructure, are services to build 
knowledge models, to cooperate and collaborate, to perform work and pro-
ject simulation, services to do work management, and finally services to do 
work execution. 

Most existing enterprise modeling frameworks like Zachman [25], 
CIMOSA [22], and GERAM [9] represent useful methodology views, but 
all of them are lacking meta-views, support for appropriate meta-modeling 
languages and meta-model design and management structures. These are 
crucial knowledge constructs and structures for enterprise integration, and 
for linking to execution engines. None of them are aware of the key capa-
bilities and services provided by a comprehensive modelling infrastructure, 
and of the integrating properties of a logically consistent, coherent and 
complete EKA layer. This layer must be designed for each enterprise, but 
the design is based of extensive reuse of constructs and structures and re-
activation of tasks as design services. 

4 Concluding Remarks 

The importance of interactive models will slowly be appreciated, as the 
change from legacy systems and solutions delivery will demand full inte-
gration of these.

Most projects do modelling by using professional model builders and 
consultants, whereas engineering and industrial users are rarely involved. 
This is partly due to the user interfaces of the EM tools, but also relates to 
the value contributed by the modelling process. If EM is externalizing and 
sharing knowledge, then it should be the knowledge of the people possess-
ing the core enterprise knowledge.

Involvement of stakeholders in sharing knowledge and data is a key is-
sue. Think of inter-relating all stakeholder perspectives and life-cycles 
views from requirements, expectations and constraints on design to main-
tenance and decommissioning or re-engineering. Being able to interrelate 
and analyze, build this “big picture” and make it active or drive execution 
depends mainly on two conditions: 

1. The real designers and engineers must work with real customer 
product deliveries, and  

2. The product and process are designed/modelled and worked out 
(executing tasks) in concert by the real users.  

This implies closing the gap between modeling and execution. Many might 
argue that modeling is inherently difficult, and thus can not be expected to 



Modelling of the People, by the People, for the People      317  

be done by traditional knowledge workers. We agree that modeling on the 
type level, where you try to perceive a large number of cases in the future, 
is difficult. Modeling in the interactive modeling approach is mainly on the 
instance level, which should be manageable by most knowledge workers, 
given that they have an appropriate working environment (read MGWP). 
There are still large challenges for such an approach, especially on the in-
teroperability of modeling infrastructures that need to be tackled.   

References 

[1] AKModelling http://www.akmodeling.com/ . Cited 1 Mar 2007 
[2] ATHENA Integrated Project, IST –2002- 50678, project A1, see www.athena-

ip.org. Cited 1 Mar 2007 
[3] Bøving, K.B. and Petersen, L.H. (2002) Design for Dummies: Understanding 

Design Work in Virtual Workspaces. In Proceedings of PDC2002, Malmö, 
Sweden, 23-25 June. 

[4] Curtis, B., Kellner, M., Over, J.: Process Modelling, Communication of the 
ACM, 35(9), 75-90 (1992). 

[5] Elvekrok, D.R. et al, Active Knowledge Models of Extended Enterprises. In 
Proceedings of CE 2003, Madeira, July 2003 

[6] Greenwood, R.M., Robertson, I, Snowdon, R.A. and Warboys, B.C. (1995) 
Active Models in Business, 5th Conference on Business Information Technol-
ogy, CBIT '95 . 

[7] Haake, J. and Lillehagen F., Supporting evolving Project-based Networked 
Organizations. In Proceedings of CE 2003, Madeira, July 2003. 

[8] IDEAS, IST-2001-37863, Deliverable D2.3 Goals and Challenges for the 21st

Century. http://www.ideas-roadmap.net. Cited 1 Mar 2007 
[9] IFIP-IFAC Task Force on Architectures for Enterprise Integration. GERAM: 

Generalised enterprise reference architecture and methodology. Technical Re-
port Version 1.6.3, March 1999. Available at http://www.cit.gu.edu.au/-
~bernus/taskforce/geram/versions/. Cited 1 Mar 2007. 

[10] Kelly, S., Lyytinen, K., and Rossi, M. MetaEdit+: a fully configurable Multi-
User and Multitool CASE and CAME environment. In Proceedings CAiSE 
1997. Barcelona, Spain, June 1997. 

[11] Krogstie, J. and Jørgensen, H. D. Interactive Models for Supporting Net-
worked Organisations. In 16th Conference on advanced Information Systems 
Engineering. 2004. Riga, Latvia: Springer Verlag. 

[12] Lillehagen F. The foundation of the AKM Technology. In Proceedings of CE 
2003, Madeira, July 2004 

[13] Lillehagen, F., J. Krogstie, and Solheim, H. G. From Enterprise Modelling to 
Enterprise Visual Scenes. International Journal of Internet and Enterprise 
Management, 2005. 



318      John Krogstie 

[14] MAPPER 6FP project, Model-based Adaptive Product and Process Engineer-
ing, http://193.71.42.92/websolution/UI/Troux/07/Default.asp?WebID=260&-

PageID=1 . Cited 1 Mar 2007. 
[15] Olle, B., Sol, H., and Verrijn-Stuart, A. editors, Information System Design 

Methodologies: A Comparative Review. North-Holland, 1982. 
[16] Opdahl, A and Berio, G. A Roadmap for UEML. In Proceedings of I-ESA'06,

Bordeaux,France, March 2006. 
[17] Sølvberg, A. A contribution to the definition of concepts for expressing users' 

information systems requirements. In Entity-Relationship Approach to Sys-
tems Analysis and Design. North-Holland, 1980.  

[18] Totland, T. (1997). Enterprise Modelling as a means to support human sense-
making and communication in organizations. IDI. Trondheim, NTNU. 

[19] Tinella S. et al Model Driven Operational Solution: The User Environment 
Portal Server. In Proceedings of CE 2003, Madeira, July 2003. 

[20] UEML thematic network IST–2001–34229, WP1 State-of-the-art, see www.-
ueml.org. Cited 1 Mar 2007.  

[21] Vernadat, F. B. Enterprise Modelling and Integration: Principles and Appli-
cations, (Chapman & Hall, 1996) 

[22] Vernadat, F. B. The CIMOSA languages. In: Handbook of Architectures of 
Information Systems. Ed P. Bernus, K. Mertins, and G. Schmidt, editors, 
(Springer Berlin, Heidelberg, New York, 1998). 

[23] Wegner, P. Why interaction is more powerful than algorithms, Communica-
tions of the ACM, 40(5), 80-91 (1997).  

[24] Wegner, P. and Goldin, D. Interaction as a Framework for Modeling. In: 
Conceptual Modeling. Current Issues and Future Directions, ed by Chen P. 
P., Akoka J., Kangassalo H, and Thalheim B. Lecture Notes in Computer Sci-
ence 1565 (Springer Berlin, Heidelberg, New York, 1999) 

[25] Zachman framework website. http://www.zifa.com. Cited 1 Mar 2007. 
[26] Ziemann, J., Ohren, O., Jaekel.F-W., Kahl, T. and Knothe, T. Achieving En-

terprise Model Interoperability Applying a Common Enterprise Metamodel. 
In Proceedings of  I-ESA 2006 - March 2006 



A Research Agenda for Conceptual Schema-
Centric Development 

Antoni Olivé1, Jordi Cabot2

1Universitat Politècnica de Catalunya, Spain 
2Universitat Oberta de Catalunya, Spain 

Abstract. Conceptual schema-centric development (CSCD) is a research goal that re-
formulates the historical aim of automating information systems development. In 
CSCD, conceptual schemas would be explicit, executable in the production environ-
ment and the basis for the system’s evolution. To achieve the CSCD goal, several re-
search problems must be solved. In this paper we identify and comment on sixteen 
problems that should be included in a research agenda for CSCD.  

1 Introduction 

The goal of automating information systems (ISs) building was established 
in the 1960s [51]. Since then, the goal has been reformulated many times, 
but the essential idea has remained the same: to automatically execute the 
specification of an information system in its production environment. 

Forty years later, it is clear that this goal has not been achieved to a sat-
isfactory degree. The main reason is that a number of major problems re-
main to be solved [41]. Most of these problems are technical, but others 
are related to the lack of maturity in the information systems field, such as 
the lack of standards. The insufficient standardization of languages and 
platforms has hampered advances in the automation of systems building. 
Fortunately, however, the last decade has seen the emergence of new stan-
dards related to information systems development. The progress made in 
standardization provides an opportunity to revive the goal of automation 
[50]. 



320       Antoni Olivé, Jordi Cabot 

In [37] we proposed to call the goal “conceptual schema-centric devel-
opment” (CSCD) in order to emphasize that the conceptual schema should 
be the focus of information systems development.  

To achieve the CSCD goal, numerous research problems must be 
solved. In this paper we propose a research agenda with sixteen main re-
search problems that we believe it is necessary to solve in order to achieve 
that goal. This agenda extends, refines and updates the one proposed in 
[37]. 

The paper is organized as follows. In the next section we briefly review 
the role and contents of conceptual schemas. In Section 3 we characterize 
the CSCD goal. We then present the proposed research agenda in Section 
4. Finally, in Section 5 we summarize the conclusions of this paper. 

2 Conceptual Schemas 

In this section, we first review the main functions of ISs and then analyze 
the knowledge required by a particular IS to perform these functions. 
Through this analysis we will be able to define and establish the role of 
conceptual schemas. 

2.1 Functions of an Information System 

Information systems can be defined from several perspectives. For the 
purposes of conceptual modeling, the most useful is that of the functions 
they perform. According to this perspective, an IS has three main functions 
[3, p.74]: 

Memory: To maintain a consistent representation of the state of a do-
main.
Informative: To provide information about the state of a domain. 
Active: To perform actions that change the state of a domain. 

The memory function is passive, in the sense that it does not perform ac-
tions that directly affect users or the domain, but it is required by the other 
functions and it constrains what these functions can perform.  

In the informative function, the system communicates some information 
or commands to one or more actors. Such communication may be explic-
itly requested or implicitly generated when a given generating condition is 
satisfied.



A Research Agenda for Conceptual Schema-Centric Development      321 

With the active function, the system performs actions that change the 
state of the domain. Such actions may be explicitly requested or implicitly 
generated when a given generating condition is satisfied. 

2.2 Knowledge Required by an Information System 

In order to perform the above functions, an IS requires general knowledge 
about its domain and knowledge about the functions it must perform. In 
the following sections, we summarize the main pieces of knowledge re-
quired by each function. 

If the memory function of an IS has to maintain a representation of the 
state of the domain, the IS must know the entity and relationship types to 
be represented and their current population. The entity and relationship 
types that are of interest are general knowledge about the domain, while 
their (time-varying) population is particular knowledge.  

In conceptual modeling, an Information Base (IB) is the representation 
of the state of the domain in the IS. The representation of the state in the 
IB must be consistent. This is achieved by defining a set of conditions 
(called integrity constraints) that the IS is required to satisfy at any time. 
Such integrity constraints are general knowledge about the domain.  

The domain state is not static. Most domains change over time, so their 
state must also change. When the state of a domain changes, the IB must 
change accordingly. There are several kinds of state changes. If they are 
caused by actions performed in the domain, they are called external do-
main events. If they are caused by actions performed by the IS itself, they 
are called generated domain events. The IS must know the types of possi-
ble domain event and the effect of each event instance on the IB. This is 
also general knowledge about the domain. 

If the informative function has to provide information or commands on 
request, the IS must know the possible request types and the output it must 
communicate. On the other hand, if there are generated communications 
then the IS must know the generating condition and the output it has to re-
turn when the condition is satisfied.  

In general, in order to perform the informative function, the IS needs an 
inference capability that allows it to infer new knowledge. The inference 
capability requires two main elements: derivation rules and an inference 
mechanism. A derivation rule is general knowledge about a domain that 
defines a derived entity or relationship type in terms of others. The infer-
ence mechanism uses derivation rules to infer new information. 

If, in the active function, the IS has to perform a certain action on re-
quest, then the IS must know the possible request types and the action it 



322       Antoni Olivé, Jordi Cabot 

has to perform in each case. On the other hand, if a certain action must be 
performed when a generating condition is satisfied, the IS must know this 
condition and the action it has to perform.  

2.3 Conceptual Schemas 

The first conclusion from the above analysis is that in order to perform its 
required functions, an IS must have general knowledge about its domain 
and about the functions it has to perform. In the field of information sys-
tems, such knowledge is referred to as the Conceptual Schema (CS).  

Every IS embodies a CS [29, 34, 48, p.417+]. Without a CS, an IS could 
not perform any useful functions. Therefore, developers need to know the 
CS in order to develop an IS.  

The main purpose of conceptual modeling is to elicit the CS of the cor-
responding IS. As we have seen, given that all useful ISs need a CS, we 
can easily reach the conclusion that conceptual modeling is an essential ac-
tivity in information systems development.  

3 Conceptual Schema-Centric Development 

In this section we reformulate the vision of the conceptual schema-centric 
development (CSCD) of information systems. To achieve this vision, we 
must be able to specify the initial conceptual schema, to execute it in the 
production environment and to evolve it in order to support the new func-
tions of the IS. We call these three main distinguishing characteristics ex-
plicit, executable and evolving schema.

Explicit schema. Once the functions of the IS have been determined, there 
must be an explicit, complete, correct and permanently up-to-date concep-
tual schema written in a formal language. We need a development envi-
ronment with tools that facilitate the validation, testing, reuse and man-
agement of (potentially large) schemas. 

Executable schema. The schema is executable in the production environ-
ment. This can be achieved by the automatic transformation of the concep-
tual schema into software components (including the database schema) 
written in the languages required by the production environment, or by the 
use of a virtual machine that runs over this environment. In either case, the 
conceptual schema is the only description that needs to be defined. All the 
others are internal to the system and need not be externally visible.  



A Research Agenda for Conceptual Schema-Centric Development      323 

According to the conceptualization principle [27], conceptual schemas 
exclude all aspects related to information presentation. Therefore, the 
software responsible for handling user interactions (the presentation layer) 
is outside the scope of CSCD.  

Evolving schema. Changes to the functions of the IS require only the 
manual change of its conceptual schema. The changes to this schema are 
automatically propagated to all system components (including the database 
schema and data) if needed. 

4 Towards a Research Agenda for CSCD 

CSCD is still an open research goal. There are many research problems 
that must be solved before CSCD can become a widely used approach in 
the development of industrial information systems. In this section, we 
identify some of the research problems found related to the three CSCD 
features presented above. Our starting point is the agenda presented in 
[37], which we extend, refine and update here. We highlight the problems 
related to CSCD; see [9, 14, 55] for other relevant research agendas in 
conceptual modeling.

4.1 Explicit Schemas 

Very large conceptual schemas. The conceptual schema of a large or-
ganization may contain thousands of entity types, relationship types, con-
straints, and so on. The development and management of (very) large con-
ceptual schemas poses specific problems that are not encountered when 
dealing with small conceptual schemas. Conceptual modeling in the large 
is not the same as conceptual modeling in the small. The differences are 
similar to those observed between programming in the large and pro-
gramming in the small [16]. We need methods, techniques and tools to 
support conceptual modellers and users in the development, reuse, evolu-
tion and understanding of large schemas. 

So far, work on this topic has focused mainly on conceptual schemas for 
databases [1, 11, 46]. In CSCD we have to deal with ISs and take into ac-
count both the structural (including constraints and derivation rules) and 
behavioral schemas.  

Business rules integration. A business rule is a statement that defines or 
constrains certain aspects of a business. From the information systems per-



324       Antoni Olivé, Jordi Cabot 

spective, business rules are elementary pieces of knowledge that define or 
constrain the contents of and the changes to the information base. Business 
rules are the main focus of a community that advocates a development ap-
proach in which the rules are explicitly defined, directly executed (for ex-
ample in a rules engine) and managed [8, 42]. Given that business rules are 
part of conceptual schemas, we can state that the community already fol-
lows the CSCD approach as far business rules are concerned.  

It is both useful and necessary to integrate the business rules and CSCD 
approaches. It should be possible to extract the rules embedded in a 
schema and to present them to users and conceptual modellers in a variety 
of ways and languages, including natural language. Automated support for 
this extraction and presentation is necessary. It should also be easy to pick 
up on a particular rule and to integrate it into the schema. Automated sup-
port for this integration is desirable. 

Similarly, the workflow community fosters the use of workflow specifi-
cations as the primary artefact in the software development process. Work-
flow specifications define a set of activity ordering rules that control the 
workflow execution. These rules are usually executed and managed with 
the help of dedicated workflow management systems. Workflow specifica-
tions should be also integrated with the CSCD approach.  

Schema integration. A conceptual schema is very rarely developed by a 
single conceptual modeller [47]. Instead, several sub-schemas are (sepa-
rately) developed by different modellers, each of whom addresses a spe-
cific part of the IS. To apply the CSCD approach, these sub-schemas must 
subsequently be integrated in a single schema that represents the overall 
view of the IS.

A first step in integrating the schemas is to identify and characterize the 
relationships between the different sub-schemas (schema matching [40]). 
Once these have been identified, matching elements can be linked in a co-
herent schema (schema merge [39]).  

Previous research on this topic focuses on the integration of database 
schemas [6, 38]. More recently, the problem has been studied at a more 
abstract level (for example, [4] presents general operators for model 
matching and merging). Nevertheless, much work remains to be done on 
schema integration in the presence of general integrity constraints and de-
rived elements. Moreover, research on the integration of behavioural sche-
mas is still in a preliminary stage [49]. 

Complete and correct conceptual schemas. Several factors affect the 
quality of a conceptual schema, as stated in the framework presented in the 
seminal paper [28] and validated in [32, 33]. Completeness and correctness 



A Research Agenda for Conceptual Schema-Centric Development      325 

are two of the quality factors of conceptual schemas. A complete concep-
tual schema includes all knowledge relevant to the IS. A correct concep-
tual schema contains only correct and relevant knowledge. Correctness is 
also referred to as validity. Consistency is subsumed by validity and com-
pleteness. In CSCD, completeness and correctness are the principal quality 
factors. They can be achieved by using a very broad spectrum of ap-
proaches, including testing and verification. It should be possible to test 
and verify conceptual schemas to at least the same degree that has been 
achieved with software. 

Several studies have focused on testing conceptual schemas [25, 30, 20, 
57]. There are automatic procedures for the verification of some properties 
of conceptual schemas in description logics [10]. Model checking is being 
explored as an alternative verification technique [18]. Nevertheless, in all 
these topics, a lot of work remains to be done [35]. 

Refactoring of conceptual schemas. In general, several complete and cor-
rect conceptual schemas may exist for the same IS. However, some are 
better than others in terms of quality. Therefore, in some cases an initial 
conceptual schema may be improved if it is first transformed into a better 
(semantically-equivalent) alternative schema. 

For this purpose, the application of refactorings at the model level has 
been proposed. Refactoring was initially proposed at the code level [19] as 
a disciplined technique for improving the structure of existing code (using 
simple transformations) without changing the external observable behav-
iour. More recently, work has been done to apply this technique to design 
models instead of to the source code [31]. In CSCD, we need specific 
refactoring operations that take into account all the components in a con-
ceptual schema. General guidelines have not yet been developed to deter-
mine when and where to apply refactorings in order to improve the quality 
of the conceptual schema. 

Reverse engineering. Most legacy applications do not have an explicit 
conceptual schema. To benefit from the CSCD approach, we must elicit 
the explicit conceptual schema from the internal schema embodied in the 
software components that form the legacy application. This process is 
known as reverse engineering.

Reverse engineering applied to entity and relationship types and to the 
taxonomies of conceptual schemas has been extensively studied for rela-
tional databases [15] and object-oriented languages [53]. However, much 
work remains to be done regarding the reverse engineering of general in-
tegrity constraints and derived elements of schemas. Moreover, a complete 
understanding of the application code in order to elicit the behavioural part 



326       Antoni Olivé, Jordi Cabot 

of the schema is also needed. Ideally, the interactions between the applica-
tion’s various software components should also be considered during the 
reverse engineering process. 

4.2 Executable Schemas 

Materialization of derived types. In general, conceptual schemas contain 
many derived entity and relationship types, with their corresponding deri-
vation rules [36]. For reasons of efficiency, some of these types must be 
materialized. The process to determine the derived types that need to be 
materialized should be as automatic as possible. Moreover, changes in the 
population of base types may require changes in that of one or more mate-
rialized types. The propagation of these changes should be completely 
automatic.

The work done on the selection of database views that need to be mate-
rialized in data warehouses [23] is highly relevant to the determination of 
the derived types to materialize in ISs. Similarly, the large body of work 
on the incremental maintenance of materialized database views [22] is 
highly relevant to the more general problem of change propagation in ISs. 

Enforcement of integrity constraints. Most conceptual schemas contain 
a large number of integrity constraints. The IS must enforce these con-
straints efficiently. This can be achieved in several ways [52]. The main 
approaches are integrity checking, maintenance and enforcement. In integ-
rity checking and maintenance, each constraint is analyzed in order to (1) 
determine which changes to the IB may violate the constraint; (2) generate 
a simplified form of the constraint, to be checked when a particular change 
occurs; and, (3) (in maintenance) generate a repair action. In integrity en-
forcement, each event (transaction) is analyzed in order to (1) determine 
which constraints could be violated by the effect of the event; and, (2) 
generate a new version of the event effect that ensures that none of the 
constraints will be violated.

In CSCD, the analysis—regardless of the approach taken—should be 
fully automatic and able to deal with any kind of constraint. A general 
method for this analysis does not yet exist. However, a great deal of re-
search and development work has been carried out on the enforcement of 
constraints in the database field for relational, deductive and object-
oriented databases [12, 44]. The general method is likely to be an exten-
sion of this work. A recent step in this direction (for the integrity checking 
strategy) is [13].  



A Research Agenda for Conceptual Schema-Centric Development      327 

From declarative to imperative behaviour specifications. There are two 
different approaches for specifying the effect of the domain events of an 
IS: the imperative and the declarative approaches [56]. In an imperative 
specification, the conceptual modeller explicitly defines the set of changes 
(insertions of entities and relationships, updates of attribute values, etc.) to 
be applied over the IB. In a declarative specification, a contract for each 
domain event must be provided. The contract consists of a set of pre and 
postconditions. A precondition defines a set of conditions on the event in-
put and the IB that must hold when the domain event is issued, while post-
conditions state the set of conditions that must be satisfied by the IB at the 
end of the domain event. 

In conceptual modeling, the declarative approach is preferable since it 
allows a more abstract and concise definition of the event effect and con-
ceals all implementation issues [56]. Nevertheless, in order to execute the 
conceptual schema, these declarative specifications must be automatically 
transformed into their equivalent imperative specifications. The main prob-
lem of declarative specifications is that they may be non-deterministic, i.e. 
there may be several possible states of the IB that verify the postcondition 
of a contract. This implies that a declarative specification may have several 
equivalent imperative versions, which hampers the transformation process.  

Up to know, there is no general method that automatically provides this 
translation. Current solutions are mainly limited to deal with the frame 
problem [7], which discusses the possible IB states for types that are not 
referred to in the event contract. The automatic transformation for types 
that do appear in the contract needs further investigation. 

Reusability. The possibility of reusing previously developed software 
pieces in the implementation of a new IS is one of the long-standing goals 
in the software community. In CSCD, reusability could help to reduce the 
effort required to transform the conceptual schema into an appropriate set 
of software components by means of studying the commonalities between 
the schema and a given set of existing software elements [2]. 

The main obstacle to a broader adoption of the reusability goal is the 
problem of selecting the right software component/s to reuse. Currently, 
the selection process is not completely automatic and requires a formal 
definition of the software components and a semantic comparison between 
the components and the conceptual schema [43]. This kind of analysis is 
still under development, particularly for two specific types of software 
components: commercial-off-the-shelf (COTS) components and web ser-
vices. Ideally, the selection process should also consider possible non-
functional requirements of the IS and the cost of integrating the selected 
component into the rest of the system. 



328       Antoni Olivé, Jordi Cabot 

4.3 Evolving Schemas 

Concept evolution. The most fundamental changes to a conceptual 
schema are the addition or removal of concepts (entity, relationship or 
event types or states in state machines) and the addition or removal of 
edges in the concept generalization hierarchy. In CSCD, evolution must be 
automatically propagated to the logical level [26]. Therefore, these 
changes must be propagated to the logical schema(s) of the database(s) 
(and/or to other software components generated for the execution of the 
CS) and to its (their) instances. Changes to the generalization hierarchy 
may induce a change (increase or decrease) in the population of some con-
cepts such that certain integrity constraints are violated. The IS should (ef-
ficiently) detect these violations and produce an appropriate response. Fur-
ther work on these topics must take into account the considerable amount 
of existing work on database schema evolution, which focuses mainly on 
concept evolution [5]. 

Furthermore, concept evolution may also affect other elements in the 
conceptual schema. For instance, changes to a generalization hierarchy 
may affect the general integrity constraints defined in the schema (some 
constraints may become unnecessary while others may now be required). 
Additionally, the formal definition of constraints, derivation rules and do-
main events may need to be adjusted after a concept evolution since they 
may refer to elements that no longer exist in the schema or whose specifi-
cation (cardinality, data type, changeability, etc.) has been changed during 
the evolution process. 

Constraints evolution. Adding a constraint may turn the IB inconsistent. 
Changing a constraint may be considered as a removal (which cannot lead 
to any inconsistencies) plus an addition. When a constraint is added, the IS 
has to check whether or not the current IB satisfies it. For very large IBs, 
the checking procedure may need to be efficient. If one or more fragments 
of the IB violate the constraint, the IS has to produce a response (to reject 
the constraint, to ignore the inconsistency, to repair the fragment or to 
handle the fragment as an exception). 

In the database field, the problem of adding constraints has been studied 
for particular constraints and database models [54]. In CSCD, we need to 
be able to deal with particular constraints (like cardinalities) but also with 
general constraints expressed in a conceptual modeling language, includ-
ing base and/or derived types. 

Derivability evolution. The derivability of entity and relationship types 
may change. A base type may become a derived type or vice versa. Fur-



A Research Agenda for Conceptual Schema-Centric Development      329 

thermore, a derivation rule may also change. Changing the derivability of a 
type may produce a change in its population and, indirectly, in that of other 
types. If the change affects a materialized type it must be recomputed. For 
large IBs, recomputation may need to be efficient. Changing the popula-
tion of a type may also induce the violation of certain integrity constraints. 
The IS should (efficiently) detect these violations and produce an appro-
priate response. 

Some work has been carried out on this topic [21], but much more needs 
to be done. A partially similar problem in the database field is that of 
“view adaptation” after view redefinition [24].  

Completeness and correctness of the evolved schema. After evolving 
the CS, it is necessary to check that the conceptual schema is still complete 
and correct. This verification should be done efficiently. In particular, it is 
only necessary to consider the evolved subset of the schema (together with 
other schema elements that may have been affected by the evolution-
induced effects).

Approaches for the efficient verification of evolved schemas focus on 
the detection of consistency (see, for example, [17]). These approaches 
state that a conceptual schema is consistent if it satisfies a set of integrity 
constraints (usually referred to as well-formedness rules) predefined by the 
conceptual modeling language used in the specification of the schema. 
These constraints restrict the possible structure of schemas defined with 
that modeling language. Efficiency is achieved by checking the relevant 
constraints on the evolved part of the schema. A constraint is relevant to an 
evolved schema if changes in the schema could induce a violation of this 
constraint.

Much work is required to efficiently verify other quality factors of the 
evolved schema. 

4.4 Other Research Problems 

Benchmarks for CSCD. In most areas of computer science (databases, 
computer architectures, programming and so on), an extensive set of 
benchmarks have been developed to test the performance (or the covering 
or any other property) of a method that addresses a research goal in that 
area. Benchmarks are also useful for comparing different proposals tack-
ling the same goal. 

In CSCD, benchmarks could help to measure the progress of the com-
munity regarding the different research goals presented in this study. Addi-
tionally, conceptual modellers could benefit from benchmarks when select-



330       Antoni Olivé, Jordi Cabot 

ing a tool to specify the conceptual schemas. Several benchmarks are 
needed, depending on the research goal concerned. 

Education for CSCD. When the conceptual schema is placed at the centre 
of the development process, the focus of software engineering education 
needs to be shifted from code-centric to model-centric. As expressed in 
[45], each role in the software development process requires appropriate 
education. In CSCD, the main role is that of the conceptual modeller. 
Therefore, we must develop appropriate teaching/learning techniques to 
leverage the modeling abilities of software engineering students and practi-
tioners. This is a critical factor in the success of the CSCD approach. 

We are currently witnessing an increase in the number of available 
modeling courses (both virtual and traditional face-to-face courses), par-
ticularly for the popular Unified Modeling Language. However, most of 
these courses focus on the notational aspects of modeling languages. In-
stead, in CSCD education, we must concentrate on clearly explaining the 
semantics of the different modeling constructs and how they can be com-
bined to construct complete and correct conceptual schemas. A body of 
examples of “good” and “bad” schemas for well-known domains would 
therefore be very useful. 

5 Conclusions 

Conceptual schema-centric development (CSCD) is a reformulation of the 
goal of automating information systems building that highlights the central 
role of conceptual schemas in the automatic development of information 
systems. In CSCD, conceptual schemas would be explicit, executable in 
the production environment and the basis for the system evolution.  

 To achieve the CSCD goal, numerous research problems must be 
solved. The main purpose of this paper was to identify and comment on a 
list of sixteen open problems that should be included in a research agenda 
for CSCD.

We believe that this research agenda must be carried out before the 
CSCD approach can become widely used in practice.  

Acknowledgements 

We wish to thank the GMC group (Jordi Conesa, Dolors Costal, Cristina 
Gómez, Enric Mayol, Joan Antoni Pastor, Anna Queralt, Maria-Ribera 



A Research Agenda for Conceptual Schema-Centric Development      331 

Sancho, Ruth Raventós and Ernest Teniente) for many useful comments on 
previous drafts of this paper. This work was partially supported by the 
Ministerio de Ciencia y Tecnologia and FEDER under project TIN2005-
06053. 

References 

[1] Akoka, J., Comyn-Wattiau, I.: Entity-relationship and object-oriented model 
automatic clustering. Data & Knowledge Engineering, 20, 1996, pp. 87-117 

[2] Basili, V., Briand, L.C., Melo, W.: How reuse influences productivity in ob-
ject-oriented systems. Communications of the ACM 39 (10), 1996, pp. 104-
116 

[3] Boman, M., Bubenko, J.A. jr., Johannesson, P., Wangler, B.: Conceptual Mod-
elling. Prentice Hall, 1997, p. 269 

[4] Bernstein, P.A.: Applying Model Management to Classical Meta Data Prob-
lems. In Proc. CIDR 2003, pp. 209-220 

[5] Banerjee, J., Kim, W., Kim, H-J., Korth, H.F.: Semantics and Implementation 
of Schema Evolution in Object-Oriented Databases. In Proc. ACM SIGMOD 
1987, pp. 311-322 

[6] Batini, C., Lenzerini, M., Navathe S.B.: A Comparative Analysis of Method-
ologies for Database Schema Integration. ACM Comput. Surv. 18 (4), 1986, 
pp. 323-364 

[7] Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure 
specifications. IEEE Transactions on Software Engineering 21, 1995, pp. 785-
798 

[8] BRCommunity.com (Eds.): A Brief History of the Business Rule Approach. 
Business Rules Journal, 6 (1), January 2005 

[9] Brinkkemper, S., Lindencrona, E., Sølvberg, A. (Eds.): Information Systems 
Engineering. State of the Art and Research Themes, Springer, 2000 

[10] Calvanese, D., Lenzerini, M., Nardi, D.: Description Logics for Conceptual 
Data Modeling. In Chomicki, J., Saake, G. (Eds.): Logics for Databases and 
Information Systems. Kluwer, 1998, pp. 229-263 

[11] Castano, S., de Antonellis, V., Fugini, M.G., Pernici, B.: Conceptual Schema 
Analysis: Techniques and Applications. ACM TODS, 23 (3), 1998, pp. 286-
333 

[12] Ceri, S.; Fraternalli, P.; Paraboschi, S.; Tanca, L. “Automatic Generation of 
Production Rules for Integrity Maintenance”. ACM TODS, 19 (3), 1994, pp. 
367-422 

[13] Cabot, J., Teniente, E.: Incremental Evaluation of OCL Constraints. In Proc. 
CAiSE 2006, LNCS 4001, pp. 81-95 

[14] Chen, P., Thalheim, B., Wong, L.Y.: Future Directions of Conceptual Model-
ing. In Proc. ER 1997, LNCS 1565, pp. 287-301 

[15] Davis, K.H., Aiken, P.H.: Data Reverse Engineering: A Historical Survey. In 
Proc. Working Conference on Reverse Engineering, 2000, pp. 70-78 



332       Antoni Olivé, Jordi Cabot 

[16] DeRemer, F., Kron, H.: Programming-in-the-Large Versus Programming-in-
the-Small. IEEE Trans. Software Eng. 2 (2), 1976, pp. 80-86 

[17] Egyed, A. Instant consistency checking for the UML. In Proc. ICSE 2006, pp. 
381-390 

[18] Eshuis, R., Jansen, D.N., Wieringa, R.: Requirements-Level Semantics and 
Model Checking of Object-Oriented Statecharts. Requirements Engineering 7 
(4), 2002, pp. 243-263 

[19] Fowler, M.: Refactoring: Improving the design of existing code. Addison-
Wesley, 1998, p. 464 

[20] Gogolla, M., Bohling, J., Richters, M.: Validation of UML and OCL Models 
by Automatic Snapshot Generation. In Proc. UML 2003, LNCS 2863, pp. 
265-279 

[21] Gómez, C., Olivé, A.: Evolving Derived Entity Types in Conceptual Schemas 
in the UML. In Proc. OOIS 2003, LNCS 2817, pp. 33-45 

[22] Gupta, A., Mumick, I. S.: Materialized Views. Techniques, Implementations 
and Applications. The MIT Press, 1999 

[23] Gupta, H., Mumick, I.S.: Selection of Views to Materialize in a Data Ware-
house. IEEE Trans on Knowledge and data engineering, 17 (1), 2005, pp. 24-
43

[24] Gupta, A., Mumick, I.S., Ross, K.A.: Adapting Materialized Views after Re-
definitions. In Proc. ACM SIGMOD 1995, pp. 211-222 

[25] Harel, D.: Biting the Silver Bullet. Toward a Brighter Future for System De-
velopment. Computer, January 1992, pp. 8-20 

[26] Hick, J-M., Hainaut, J-L.: Strategy for Database Application Evolution: The 
DB-MAIN Approach. In Proc. ER 2003, LNCS 2813, pp. 291-306 

[27] ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema 
and the Information Base, J.J. Van Griethuysen (Ed.), March 1982 

[28] Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding Quality in Concep-
tual Modeling. IEEE Software, March 1994, pp. 42-49 

[29] Mays, R.G. “Forging a silver bullet from the essence of software”. IBM Sys-
tems Journal, 33 (1), 1994, pp. 20-45 

[30] Mellor, S.J., Balcer, M.J.: Executable UML. A Foundation for Model-Driven 
Architecture. Addison-Wesley, 2002, p. 368 

[31] Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Trans. Soft-
ware Eng. 30 (2), 2004, pp. 126-139  

[32] Moody, D.L., Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the Quality 
of Process Models: Empirical Testing of a Quality Framework. In Proc. ER 
2002, LNCS 2503, pp. 214-231 

[33] Moody, D.L., Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the quality 
of information models: empirical testing of a conceptual model quality 
framework. In Proc. ICSE 2003, pp. 295-307 

 [34] Mylopoulos, J.: The Role of Knowledge Representation in the Development 
of Specifications. In Proc IFIP 1986, pp. 317-319 

[35] Mylopoulos, J.: Information Modeling in the Time of the Revolution. Infor-
mation Systems 23(3/4), 1998, pp. 127-155 



A Research Agenda for Conceptual Schema-Centric Development      333 

[36] Olivé, A.: Derivation Rules in Object-Oriented Conceptual Modeling 
Languages. In Proc. CAiSE 2003, LNCS 2681, pp. 404-420 

[37] Olivé, A.: Conceptual Schema-Centric Development: A Grand Challenge for 
Information Systems Research. In Proc. CAiSE 2005. LNCS 3520, pp. 1-15 

[38] Parent, C., Spaccapietra, S.: Issues and approaches of database integration. 
Communications of the ACM 41 (5), 1998, pp. 166-178 

[39] Pottinger, R., Bernstein, P.A.: Merging Models Based on Given Correspon-
dences. In Proc VLDB 2003, pp. 826-873 

[40] Rahm, E., Bernstein P.A.: A survey of approaches to automatic schema 
matching. VLDB Journal 10 (4), 2001, pp. 334-350 

[41] Rich, C., Waters, R.C.: Automatic Programming: Myths and Prospects. 
Computer, August 1988, pp. 40-51 

[42] Ross, R.G. (Ed.): The Business Rules Manifesto. Business Rules Group. Ver-
sion 2.0, November 2003 

[43] Schumann, J. M.: Automated Theorem Proving in Software Engineering, 
Springer, 2001, p. 228 

[44] Schewe, K-D., Thalheim, B.: Towards a theory of consistency enforcement. 
Acta Informática 36, 1999, pp. 97-141 

[45] Shaw, M.: Software Engineering Education: A Roadmap. In Future of Soft-
ware Engineering, Proc ICSE 2000, pp. 371-380 

[46] Shoval, P., Danoch, R., Balabam, M.: Hierarchical entity-relationship dia-
grams: the model, method of creation and experimental evaluation. Require-
ments Eng., 2004, 9, pp. 217-228 

[47] Sølvberg, A.: Co-operative Concept Modeling. In [9], pp. 305-326 
[48] Sowa, J.F.: Knowledge Representation. Logical, Philosophical and Computa-

tional Foundations. Brooks/Cole, 2000, p. 594  
[49] Stumptner, M., Schrefl, M., Grossmann, G.: On the road to behavior-based 

integration. In Proc. APCCM 2004, pp. 15-22 
[50] Steimann, F., Kühne, T.: Coding for the Code. ACM Queue, 3 (10), 2006, pp. 

45-51 
[51] Teichroew, D., Sayani, H.: Automation of System Building. Datamation, 17 

(16), 1971, pp. 25-30 
[52] Teniente, E., Urpí, T.: On the abductive or deductive nature of database 

schema validation and update processing problems. Theory and Practice of 
Logic Programming 3 (3), 2003, pp. 287-327 

[53] Tonella, P., Potrich, A.: Reverse Engineering of Object Oriented Code. 
Springer, 2005, p. 210 

[54] Türker, C., Gertz, M.: Semantic integrity support in SQL: 1999 and commer-
cial (object-)relational database management systems. VLDB Journal, 10, 
2001, pp. 241-269 

[55] Wand, Y., Weber, R.: Research Commentary: Information Systems and Con-
ceptual Modeling – A Research Agenda. Information Systems Research, 13 
(4), 2002, pp. 363-376 

[56] Wieringa, R.: A survey of structured and object-oriented software specifica-
tion methods and techniques. ACM Computing Surveys 30, 1998, pp. 459-
527 



334       Antoni Olivé, Jordi Cabot 

[57] Zhang, Y.: Test-Driven Modeling for Model-Driven Development. IEEE 
Software, September/October 2004, pp. 80-86 



Bibliography 

[1] Andersen, R., Bubenko jr. J.A., Sølvberg, A. editors: Proceedings of the Third 
International Conference on Advanced Information Systems Engineering 
(CAiSE'91) number 498 in Lecture Notes in Computer Science, Trondheim, 
Norway, May 1991. Springer-Verlag.  

[2] Andersen, R., Conradi, R., Krogstie, J., Sindre, G., Sølvberg, A.: Project 
courses at the NTH : 20 years of experience. In J.L. Diaz-Herrera, editor, 7 th 
Conference on Software Engineering Education (CSEE'7) pages 177–188. 
Springer Verlag (LNCS 750), 1994.  

[3] Andersen, R., Sølvberg, A.: Software configuration management an its data-
base implications. In Proceedings of DAISEE '87 - Datastøttet Systemutvik-
ling Oslo, Norway, November 12-13 1987.  

[4] Andersen, R., Sølvberg. A.: Support for development teams in information 
systems engineering. In Proceedings of the 3rd European Workshop on the 
Next Generation CASE Tools Manchester, England, 1992.  

[5] Andersen, R, Sølvberg, A.: Conflict management in systems development 
groups. In N.Prakash, C.Rolland, and B.Pernici, editors, Information Systems 
Development Process (IFIP 8.1) pages 207–227, Como, Italy, 1993. North 
Holland.   

[6] Bergheim, G., Sandersen, E., Sølvberg, A.: A taxonomy of concepts for the 
science of information systems. In Falkenberg and Lindgren, editors, Informa-
tion Systems Concepts: An In-Depth Analysis San Diego, USA, 1989.  

[7] Brasethvik T., Sølvberg A.: A Referent Model of Documents ERCIM Work-
shop on Web-bases & Meta-data, St. Augustin, Bonn, May 1998 

[8] Brataas, G., Hughes, P., Sølvberg, A:. Integrating management of human and 
computer resources in task processing organizations: A conceptual view. 
pages 703–712, Volume 4, Maui, Hawaii, January 4–7 1994. IEEE. 

[9] Brataas, G., Hughes, P., Sølvberg, A.: Performance Engineering of Workflow 
Systems With an Integrated View of Human and Computerised Work Proc-
esses. Proc. CAiSE'97 

[10] Brinkkemper S., Lindencrona E., Sølvberg A.(eds.): Information Systems 
Engineering: State of the art and Research Themes, Springer, June 2000 

[11] Bubenko, J., Impagliazzo, J., and Sølvberg, A.: History of Nordic Comput-
ing: Springer-Verlag 2005. ISBN 0-387-24167-1. 488 p 

[12] Carlsen, S., Jørgensen, H.D., Krogstie, J., Sølvberg, A.: Flexible Support of 
Work Processes - Balancing the Support of Organisations and Workers. In 
Proceedings of EURAM - 2nd Annual Conference on Innovative Research in 
Management, Stockholm, Sweden, 2002 



336      Bibliography 

[13] Carlsen, S., Krogstie, J., Sølvberg, A. and Lindland, O. I.: Evaluating Flexi-
ble Workflow Systems, Hawaii International Conference on System Sciences 
(HICSS-30), Maui, Hawaii, 1997. 

[14] Farshchian B. A., Krogstie J., Sølvberg A.: Integration of User Interface and 
Conceptual Modeling, in Stephanidis, C. (ed.) Proceedings of the Workshop 
on User Interfaces for All, European Research Consortium for Informatics and 
Mathematics, ICSFORTH, Heraklion, Greece, 1995 

[15] Krogstie, J., Sølvberg, A.: Software maintenance in Norway: A survey inves-
tigation. Best paper at ICSM'94, September 1994. 

[16] Krogstie J., Sølvberg A.: A classification of methodological frameworks for 
computerised information systems support in organisations, in Proc. IFIP 
8.1/8.2 Conf. Method Engineering: Principles of Method Construction and 
Tool Support, August 1996, Atlanta, USA, Chapman&Hall, 1996 

[17] Lin, Y., Strasunskas, D., Hakkarainen, S., Krogstie, J.,  Sølvberg, A.: Seman-
tic Annotation Framework to Manage Semantic Heterogeneity of Process 
Models. Proceedings of the 18th Conference on Advanced Information Sys-
tems Engineering(CAiSE*06), Luxemburg,2006, Springer-Verlag, LNCS. 

[18] Lindland, O.I., Willumsen, G., Gulla, J.A. Sølvberg, A.: Prototyping in trans-
formation-based case environments. In Proceedings of the 5th International 
Conference on Software Engineering and Knowledge Engineering (SEKE'93)
pages 696--603, Hotel Sofitel, San Francisco Bay, USA, 1993. Knowledge 
Systems Institute.  

[19] Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding Quality in Concep-
tual Modeling, IEEE Software, 11(2):42–49, March 1994. 

[20] Lunde, Ø., Brasethvik, T., Sølvberg, A.: A model-based approach to data-
warehousing. NOKOBIT-97 (Norsk konferanse om organisasjoners bruk av 
IT), Bodø, Norway, 1997 

[21] Moody, D.L.; Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the Quality 
of Process Models: Empirical Testing of a Quality Framework. In S. Spac-
capietra, S.T. March, and Y. Kambayashi (Eds.): ER 2002, LNCS 2503, pp. 
214–231, 2002.  

[22] Moody, D.L.; Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the quality 
of information models: empirical testing of a conceptual model quality 
framework. In Proc. 25th International Conference in Software Engineering 
(ICSE'03), Portland, OR, USA, 3-10 May 2003. 

[23] Moody, D.L.; Sindre, G., Brasethvik, T., Sølvberg, A.: An instrument for 
empirical testing of conceptual model quality frameworks. In Proceedings of   
EMMSAD'02, Toronto, Canada, May 2002. 

[24] Opdahl, A.L., Sølvberg, A.: Conceptual integration of information system 
and performance modelling. In Proceedings of IFIP WG 8.1 Working Confer-
ence on Information System Concepts – Improving The Understanding Alex-
andria, Egypt, April 13--15 1992.  

[25] Opdahl, A.L., Sølvberg, A.: A framework for performance engineering dur-
ing information system development. In Proceedings CAiSE'92: The Fourth 
Conference on Advanced information Systems Engineering Manchester, Eng-
land, 1992. Springer Verlag.  



Bibliography      337 

[26] Opdahl, A.L., Vetland, V., Brataas, G., Sølvberg, A.: CASE tool support for 
efficient utilisation of computing resources. In Proceedings of the 3rd Euro-
pean Workshop on the Next Generation CASE Tools Workshop Manchester, 
England, May 1992.  

[27] Opdahl, A.L., Vetland, V., Sølvberg, A.: An integrated environment for per-
formance evaluation and possible information systems engineering applica-
tions. In Proceedings of Norsk Informatikk Konferanse (NIK '89) November 
14–15 1989. 

[28] Sindre, G., Moody, D.L., Brasethvik, T., Sølvberg, A.: Introducing Peer Re-
view in an IS Analysis Course. Journal of Information Systems Education, 
14(1):101–119, 2003. 

[29] Sindre, G., Moody, D.L., Brasethvik, T., Sølvberg, A.: Students' Peer Review 
in Modelling Exercises. In Proc. Informing Science + Information Technol-
ogy Education Joint Conference (InSITE 2003), Pori, Finland, 24–27 Jun 
2003. 

[30] Sølvberg A.: On the Specification of Scenarios in Information System De-
sign, IBM Research Lab. San Jose, Calif. 95193, RJ2065 (28689) 8/15/77 

[31] Sølvberg A.: A Model for Specification of Phenomena, Properties, and In-
formation Structures, IBM Research Lab. San Jose, Calif. 95193, 
RJ2027(28348)7/18/77 

[32] Sølvberg. A.: A contribution to the definition of concepts for expressing us-
ers' information systems requirements. In P.P. Chen, editor, Entity-
Relationship Approach to Systems Analysis and Design. North-Holland, 1980.  

[33] Sølvberg, A.: A draft proposal for integrating system specification models. In 
Olle, Sol, and Verrijn-Stuart, editors, Information System Design Methodolo-
gies: A Comparative Review. North-Holland, 1982.  

[34] Sølvberg. A.: A framework for data base design. In Proceedings of the Sec-
ond Scandinavian Research Seminar on Information Modelling and Database 
Management Tampere, Finland, 1983.  

[35] Sølvberg. A.: Behaviour-specification in an information systems analysis 
cntext. In E.A. Oxborrow, editor, Proceedings of the Fifth British National 
Conference on Databases (BNCOD5) pages 71–85. Cambridge University 
Press, 1986.  

[36] Sølvberg. A.: Guidelines for data administration. In Proceeding of IFIP 10th 
World Congress pages 23--26. North-Holland, 1986.  

[37] Sølvberg. A.: Integrated modelling and support environments for information 
systems. In B.Randell, editor, 23rd Newcastle-upon-Tyne International Semi-
nar on the Teaching of Computer Science at University Level Newcastle-
upon-Tyne, England, 1990.  

[38] Sølvberg. A.: Research issues in integrated distributed information systems. 
Keynote Speech CAiSE`93, June 1993.  

[39] Sølvberg. A. et al.: Research and curricula development at Norwegian univer-
sities. I: History of Nordic Computing. USA: Springer Publishing Company 
2005. ISBN 0-387-24167-1. pages 137–154 



338      Bibliography 

[40] Sølvberg, A.: Co-operative Concept Modeling, in Brinkkemper S., Linden-
crona E., Sølvberg A.(eds.): Information Systems Engineering: State of the art 
and Research Themes, Springer, June 2000 

[41] Sølvberg A.: Conceptual Modeling in a World of Models in R.Haschek (ed.): 
Entwicklungsmethoden fuer Informationssysteme und deren Anwendung, 
pp.63-77, B.G.Teubner, 1999  

[42] Sølvberg A.: Data and what they refer to, in P.P.Chen et al.(eds.): Conceptual 
Modeling, pp.211–226, Lecture Notes in Computer Science, Springer Verlag, 
1999  

[43] Sølvberg, A., Krogstie, J., Seltveit, A.H.(eds:): Proceedings of the IFIP8.1 
WC on Information Systems Development for Decentralized Organizations 
(ISDO'95), Trondheim, Norway, 21-23 August 1995. Chapman & Hall. 

[44] Sølvberg, A., Kung. C.H.: An exercise of integrating data base design tools. 
In Proceedings of the Third Scandinavian Research Seminar on Information 
Modelling and Database Management Tampere, Finland, 1984.  

[45] Sølvberg, A., Kung. C.H.:  Activity modelling and behaviour modelling. In 
Olle, Sol, and Verrijn-Stuart, editors, Information Systems Design Methodolo-
gies: Improving the Practice. North-Holland, 1986.  

[46] Sølvberg, A., Kung. C.H.:  On structural and behaviour modelling of reality. 
In Steele and Meersman, editors, Database Semantics. North-Holland, 1986.  

[47] Sølvberg, A., Kung. C.H.: Information Systems Engineering. Springer-
Verlag, 1993.  

[48] Steinholtz, B., Sølvberg, A., Bergman, L. editors: Proceedings of the Second 
Nordic Conference on Advanced Information Systems Engineering 
(CAiSE'90) number 436 in Lecture Notes in Computer Science, Stockholm, 
Sweden, May 1990. Springer-Verlag.  

[49] Vestli, M., Nordbø, I., Sølvberg, A.: Developing well-structured knowledge-
based systems. In Proceedings of the Sixth International Conference on Soft-
ware Engineering and Knowledge Engineering pages 366–373, Jurmala, Lat-
via, June 21-23 1994.  

[50] Vestli, M., Nordbø, I., Sølvberg, A.:  Modeling control in rule-based systems. 
IEEE Software pages 77–81, March 1994.  

[51] Vetland, V., Hughes, P., Sølvberg, A.: A composite modelling approach to 
software performance measurement. In Proceedings of SIGMETRICS '93
pages 275--276, Santa Clara, California, May 10–14 1993. Extended Abstract.  

[52] Vetland, V., Hughes, P., Sølvberg, A.: Improved parameter capture for simu-
lation based on composite work models of software. In Proceedings of the 
1993 Summer Computer Simulation Conference Boston, USA, July 19–21 
1993.   

[53] Yang, J., Sølvberg, A.: Intelligent ODA/ODIF documents: Perspectives for 
the petroleum industry. In Proceedings of Offshore Information Conference
pages 161–188, Glasgow, Scotland, September 26–28 1990.  

[54] Yang, M., Sølvberg, A.: The new PPP: Its architecture and repository man-
agement. In Proceedings of the Fifth Workshop on The Next Generation of 
CASE Tools Utrecht, Holland, 1994.  



Index

A

Actor model, 12 
Adaptive systems, 295 
Agent modelling, 161 
Agent object relationship  modeling, 

31
Agent-based systems, 159 
Agile development, 267 
AJAX, 203 
AKM, 308 
AOSE, 172 
APM, 114 
Architectural design, 230 
Arity, 23 
Articulation, 306 
As-is map, 152 
ASME, 51 
AUML, 172 

B

BDI, 160, 179 
Blackboard, 163 
BMM, 126 
BMO, 127 
BNM, 77 
BPM, 309 
BPMN, 126 
BPR, 40 
Business intelligence, 40 
Business model, 124 
Business process modelling, 309 
Business process optimization, 111 
Business process redesign, 116 
Business reengineering, 109 
Business rule integration, 323 

Business rules model, 12 
BWW;80 

C

CADIS, 7 
CAiSE, 308 
CIMOSA, 316 
CMM, 269 
CODASYL, 2 
Collaborative integration, 46 
Conceptual alignment, 221 
Conceptual schema, 5 
Conceptual schema-centric 

development, 320 
Content management, 68 
Content system,  61 
Context model, 234 
Contract agent, 184 
COSMOD-RE, 31 
CRIS, 10, 201, 308 
CRM, 40, 76 
CSDP, 26 

D

Data integration, 39 
Data modelling, 5,  197 
Data warehouses, 45 
Database farms, 72 
Dataspace systems, 46 
DEMO, 31 
Deontic operators, 25 
Dependability, 248 
DEUDU, 307 
Disjunctive mandatory constraint, 

24
Domain model denotation, 218 



340      Index 

Domain specific language (DSL), 
308 

Dublin Core, 289 

E

e3value, 127 
EAI, 40 
EEML, 259 
Elementary facts, 23 
EMMSAD, 308 
Enterprise architecture, 309 
Enterprise knowledge architecture 

(EKA), 312 
Enterprise modelling, 11, 81, 307 
Enterprise models, 124 
Enterprise systems, 107 
Enterprise visual scenes (EVS), 313 
Entity type, 22 
EPC, 126 
ER, 19 
ERCIM, 294 
ERP, 76 
ERP systems, 108 
ETHICS, 270 
Evolutionary development, 267 
Executable models, 124 
Executable schema, 322 
External schema, 5 
External uniqueness constraint, 24 

F

F3, 12 
Facet modelling, 79 
Fact-oriented modeling, 19 
Federated database systems, 45 
FIPA performatives, 163 
Fit analysis, 112 
FLOSS, 205 
Fraud, 251 
Frequency constraint, 25 
FRISCO, 10, 211 

G

Generic data access plug-in, 96 

GERAM, 316 
GLOBUS, 279 
Goal elicitation, 240 
Goal model, 126 
Goal modelling, 234 
Goal refinement, 241 
Grid data integration, 46 
GRIDs, 279 

H

HYBRIS, 8 

I

i*, 126,  248 
IFIP, 5, 308 
Infological approach, 2 
Information algebra, 3 
Information systems development 

cycle, 113 
Intention modelling, 142 
Intention/strategy map, 143 
Interactive information systems, 195 
Interactive models, 306 
Internal schema, 5 
Internal uniqueness constraints, 24 
ISO 82 report, 215 
Iterative development, 261 

K

KQML performatives, 163 

L

Language representation, 218 
Legal advisor agent, 184 

M

MAIS, 296 
Mandatory role constraint, 24 
Map, 142 
Model-driven architecture (MDA), 

76, 124, 204, 222 
Mediated query systems, 44 
Memes, 65 



                                                                                                  Index   341

Metadata, 288 
Misinformation, 251 
Misuse case diagram, 248 
Mobile application, 295 
Model activation, 306 
Model activators, 306 
Model management, 45, 86 
Model quality, 114 
Model-configured and user-

composable services (MUPS), 
313 

Model-generated workplace 
(MGWP), 312 

Models as blueprints, 124 
Models as sketches, 124 
Multi-channel application, 295 

N

NIAM, 6, 21, 125 
NORMA, 22 

O

OASIS, 222 
Objectification, 31 
Object-oriented design, 200, 214 
OCL, 20 
OLAP, 40, 59 
OML, 81 
OMT, 200 
Ontological foundations, 80 
Ontologiy, 13, 31 
Open source software, 200 
Operational data store, 45 
OPRR, 81 
ORM, 20 
OWL, 31 

P

PantaRhei, 103 
Participative modelling, 153 
Participatory design, 270 
Peer-to-peer  integration, 45 
Personal data integration systems, 

46

Petri nets, 117, 126 
Platform independent model (PIM), 

124 
PIOCO,271 
POPS, 311 
Portals, 44 
PPM, 77 
PPP, 114, 259 
Pragmatics, 62 
Predicate, 23 
Process model,125 
Process modeling,110 
Prototyping,271 
Platform specific model (PSM), 124 

R

RAPID/USE, 198 
REA, 127 
Referent modelling language 

(RML), 10, 64 
Requirements engineering, 230 
Ruby, 204 
RUP, 269 

S

SAP, 115 
Scenario elicitation, 241 
scenario modelling, 234 
Scenario refinement, 242 
Schema evolution, 328 
SCM, 76 
Self-healing systems, 302 
Semantics, 62 
Semantic integration, 39 
SEQUAL, 77 
Set comparison constraint, 25 
SIGMOD, 6 
SIRUP, 39 
SOA, 295 
SOAP, 297 
Soft systems approach, 271 
Software agents, 176 
Software production process, 209 
Software through Pictures (StP), 203 
SOKU, 279 



342      Index 

STEPS, 271 
Syntax, 62 
System architecture, 231 
System development life-cycle 

(SDLC), 266 
System goals, 234 
System scenarios, 235 

T

TEMPORA, 11 
To-be map, 152 
Tropos, 173, 226 
TrustCom, 289 

U

UDDI, 297 
UEML, 85 
UML, 3, 14, 19, 81, 124, 151, 202 
UML extension, 160 
UML profiles, 308 
USE, 197 

V

Value model, 124 
Value type,22 
VLDB, 6 

W

Web 2.0, 203 
Web services, 45,  279 
WfMS, 91 
Workflow engine, 102 
Workflow management system, 45, 

91
Workflow metamodel, 98 
Workflow models, 256 
workflow repository, 102 

X

XML, 40, 68, 93 

Z

Zachman, 316 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




